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ABSTRACT

Simulation and Optimization Models for Scheduling Multi-step

Sequential Procedures in Nuclear Medicine. (May 2010)

Eduardo Pérez Román, B.Sc. Industrial Engineering, University of Puerto Rico

Co–Chairs of Advisory Committee: Dr. Lewis Ntaimo
Dr. César Malavé

The rise in demand for specialized medical services in the U.S has been recognized

as one of the contributors to increased health care costs. Nuclear medicine is a spe-

cialized service that uses relatively new technologies and radiopharmaceuticals with

a short half-life for diagnosis and treatment of patients. Nuclear medicine proce-

dures are multi-step and have to be performed under restrictive time constraints.

Consequently, managing patients in nuclear medicine clinics is a challenging problem

with little research attention. In this work we present simulation and optimization

models for improving patient and resource scheduling in health care specialty clin-

ics such as nuclear medicine departments. We first derive a discrete event system

specification (DEVS) simulation model for nuclear medicine patient service manage-

ment that considers both patient and management perspectives. DEVS is a formal

modeling and simulation framework based on dynamical systems theory and provides

well defined concepts for coupling components, hierarchical and modular model con-

struction, and an object-oriented substrate supporting repository reuse. Secondly, we

derive algorithms for scheduling nuclear medicine patients and resources and validate

our algorithms using the simulation model. We obtain computational results that

provide useful insights into patient service management in nuclear medicine. For ex-
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ample, the number of patients seen at the clinic during a year increases when a group

of stations are reserved to serve procedures with higher demand. Finally, we derive a

stochastic online scheduling (SOS) algorithm for patient and resource management in

nuclear medicine clinics. The algorithm performs scheduling decisions by taking into

account stochastic information about patient future arrivals. We compare the results

obtained using the SOS algorithm with the algorithms that do not take into consid-

eration stochastic information. The SOS algorithm provides a balanced utilization of

resources and a 10% improvement in the number of patients served.
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CHAPTER I

INTRODUCTION

The goal of this research is to develop models and algorithms for improving patient

service and resources management in highly constrained health care environments

such as nuclear medicine clinics (a sub-specialty of radiology). This research proposes

a methodology towards achieving this objective, including a simulation model that

integrates with the scheduling methods to manage patient service levels and resource

productivity, scheduling algorithms, and optimizing methods for scheduling when

dealing with random disruptions.

This research is motivated by the fact that health care facilities dedicated to

the diagnosis and treatment of patients are becoming more critical in comprehen-

sive health care systems. Diagnostic medicine procedures have increased 5-to-6 fold

whereas the U.S. population increased by approximately 50% in the last few years

[1]. This increase in demand has been identified as one of the contributors to the rise

of health care costs in the U.S. [2, 3].

Physicians are becoming more prone in asking patients to undergo specialized

procedures to make more accurate diagnoses. However, managing patients and re-

sources in specialized clinics such as nuclear medicine remains a challenging problem.

This may be attributed to the rise in demand for services and the nature of nuclear

medicine procedures/tests.

These procedures require the use of radiopharmaceuticals with limited half-life,

involve several steps that are constrained by strict time windows, and require multiple

resources for completion. Moreover, schedules in nuclear medicine have to account

The journal model is IEEE Transactions on Automatic Control.
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for other factors such as patient behavior, staff experience, service time variability,

equipment failures, and radiopharmaceuticals delivery times. Consequently, patient

management in nuclear medicine specialty clinics is a very challenging problem with

very little research attention. Few commercial packages are available to assist nuclear

medicine managers and they provide very rudimentary capabilities.

A. Problem Statement

Nuclear medicine uses painless and cost effective techniques to diagnose and treat

diseases. Procedures in this field are essential in many medical specialties such as

cardiology, pediatrics, and psychiatry. Nuclear medicine looks at both the physiology

(functioning) and the anatomy of the body in establishing diagnosis and treatment.

This health care discipline differs from X-ray, ultrasound and other diagnostic tech-

niques because determines the presence of a disease based on biological changes rather

than changes in anatomy.

Most nuclear medicine procedures require small amounts of radioactive materials

(radiopharmaceuticals) to be performed. Nuclear pharmacies are dedicated to the

compounding and dispensing of these radioactive materials. A centralized nuclear

pharmacy usually serve as a “drugstore” to several nuclear medicine departments.

When a particular radiopharmaceutical is required by a nuclear medicine department,

a request is performed and a trained nuclear pharmacist prepares the product and

dispenses it to the requesting clinic. Dosages, lead times, and appointment schedules

depend upon the lead time required to supply the radiopharmaceuticals to the clinic.

Radiopharmaceuticals are introduced into the body of the patient by injection,

swallowing, or inhalation. Radiopharmaceuticals require a time period that may

range from hours to days to diffuse. The time required depends on the body tissue
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being examined and the radiopharmaceutical being used. These substances decay

quickly and their effectiveness is only for a short period of time.

Nuclear medicine procedures are multi-step, involve multiple resources, and have

to be performed under restrictive time constraints. A test may involve a single cam-

era scan requiring either a short or long time (minutes to hours), or multiple scans

during one day, or on multiple days. Most of these procedures can be divided in three

major steps: radiopharmaceutical administration, imaging, and image interpretation.

Radiopharmaceuticals are detected by gamma cameras that work with computers

to provide images of the body part being examined. Several camera configurations

are available, including single and multiple cameras (parallel machines). A nuclear

medicine clinic typically has a certain number of cameras of each type. A sophis-

ticated camera may cost $1 million, although some can be purchased for $200,000.

These advance technology equipment may be subject to breakdowns if proper main-

tenance is not performed on them. The time required to obtain the images may

also vary from minutes to hours [4]. When imaging is completed too soon after ra-

diopharmaceutical administration a poor quality image could be obtained because

the radiopharmaceutical was not diffused properly. On the other hand, if imaging

is delayed too long the image obtained will be degraded because too much decay of

the radiopharmaceutical occurred. Under these circumstances the procedure has to

be suspended and re-scheduled for another day causing unnecessary patient exposure

to radiation, unnecessary resource utilization, and unnecessary expenses in a new

radiopharmaceutical ($100-$2000) to repeat the procedure. Suthummanon et al. [4]

demonstrated in their study that the operational time (machine time and direct la-

bor time) and the cost of radiopharmaceuticals have the most influence in cost per

procedure in nuclear medicine.

Nuclear medicine clinics normally operate one shift every weekday and may not
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be open on weekends. Nuclear medicine procedures require the participation of several

health professionals. Nuclear physicians are in charge of examining the patients before

procedures, interpreting test results, and they can also administer radiopharmaceu-

ticals to the patients. Technologists perform several important activities, including

calibrating equipment, counseling patients, administering radiopharmaceuticals, pa-

tient imaging, and results interpretation. Registered nurses assist in the procedures

and also administer the radiopharmaceuticals to the patients. Nurses also have an

important role taking care of patients during unexpected emergencies like seizures

and cardiac arrest. Resources availability have an important role in performing the

procedures as planned. Nuclear medicine facilities have a certain number of resources

on hand and they must plan accordingly. When a resource is not available guides in

how to handled patients must be follow.

Patient scheduling in nuclear medicine department must take into account several

practical needs. A schedule must satisfy the goals of both the departments and the

patients. Patients should be scheduled as soon as possible, resources and radiophar-

maceutical constraints must be observed and interference with other patients must

be minimized. Patients are concerned with the level of service they receive which

can be measured in terms of cost. Cost associated with nuclear medicine procedures

include money, time, discomfort, possibly drugs reactions, radiation dose and the hy-

pothetical risk of radiation-associated cancer [5]. Nuclear medicine departments are

concerned with providing acceptable levels of patient service, the good utilization of

expensive resources, and with the minimization of costs such as overtime.

A schedule could be disrupted by random unexpected events. Some examples

include, patient not showing up to their appointments, emergency patients requiring

priority service, camera breakdowns, radiopharmaceuticals not delivered on time, and

imaging repetition by physician request. If a patient moves during the scan, the pro-
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cedure has to be repeated. Remaining immobile during a procedure may be difficult

for some patients, especially for elderly patients that suffer from arthritis. Patients

being served, pending (i.e. scheduled later in the day) and scheduled for future days

may be rescheduled. Under unexpected events rescheduling is used to minimize pa-

tient inconvenience and to achieve higher service efficiency when a disruption occurs.

Depending upon the nuclear medicine department size, either a method to prescribe

an optimal schedule or a heuristic, may be preferred for rescheduling. Opportuni-

ties for improving efficiency and techniques to hedge random disruptions are major

concerns.

The limitations imposed by the behavior and life cycle of the radiopharmaceu-

ticals, procedure protocols, random disruptions, and resources availability make the

management of patients in nuclear medicine facilities a complex problem. This leads

to unique challenging scheduling issues that must be solved in order to provide a

higher level of patient service. There exist a need for identifying those factors pa-

tients consider relevant when they evaluate the service received at the clinic. For

example, waiting too long to get an appointment could increase patient discomfort

which can be considered as an indicative of a low quality of service, although this

may vary depending on the patient. In addition, performance measurements used

to evaluate the nuclear medicine department profitability have to be identified. This

research is aimed to identify a list of factors considered important when evaluating

service effectiveness in nuclear medicine clinics. This will be a combination of both

patients and management perspectives. Our goal is to elevate the level of service

offered to the patients and to improve the way resources are managed by properly

scheduling patients through the system.
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B. Research Objective and Tasks

The objective of this research is to develop models and algorithms for improving

patient service and resources management in highly constrained health care environ-

ments such as nuclear medicine clinics (a sub-specialty of radiology). We propose

a methodology towards achieving this objective, including a simulation model that

integrates with the scheduling methods to manage patient service levels and resource

productivity, algorithms for scheduling multi-steps medical procedures that are time

constrained, and optimizing methods for scheduling when dealing with random dis-

ruptions. We provide a description for each task in the following subsections.

1. Task 1: Modeling and Simulation of Nuclear Medicine Patient Service

Management

We first derive and implement a discrete event system specification (DEVS) simula-

tion model for nuclear medicine patient service and resource management. The model

incorporates both patient and resource scheduling algorithms within the simulation

framework and is capable of representing any nuclear medicine facility since it is au-

tomatically reconfigurable. This model provides a novel decision support system for

assisting managers not only in patient and resource scheduling but also in assessing

their daily scheduling decisions and system performance. A real nuclear medicine

specialty clinic was modeled using this simulation. We provide computational re-

sults that quantify important trade-offs among the scheduling strategy used by a real

nuclear medicine clinic.
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2. Task 2: Algorithms for Nuclear Medicine Appointment Scheduling

The second task is to derive algorithms to improve the way patients and resources

are scheduled in specialty clinics such nuclear medicine clinics. These algorithms

provide patient appointments for multi-step procedures by considering both patient’s

and manager’s interests. The algorithms are validated using a simulation model

of an actual nuclear medicine setting and historical data. Computational results

that provide useful insights into managing patients and resources in nuclear medicine

specialty clinics are discussed.

3. Task 3: Stochastic Online Algorithms for Nuclear Medicine Appointment

Scheduling

The last task is to derive a stochastic online scheduling algorithm for patient schedul-

ing in nuclear medicine clinics. The algorithm take advantage of existing historical

information on patient and radiopharmaceutical arrivals to make more informed deci-

sions. A preliminary computational study is presented that demonstrate the benefits

of considering stochastic information when performing appointment scheduling in

specialty clinics.

C. Organization of the Dissertation

The dissertation has six chapters. Chapter II contains a concise review of literature

on modeling and simulation in health care systems as well as patient scheduling in

health care. Chapter III discusses the first task (Section 1) where a discrete event

system specification (DEVS) simulation model for nuclear medicine clinics is derived.

Computational results are provided for a scheduling algorithm currently used in a real

nuclear medicine clinic. Chapter IV presents the second task proposed in Section 2.
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Here algorithms for patients and resources scheduling are derived and implemented

within a simulation model. Computational experiments are provided and trade-offs

among the proposed algorithms are discussed. In Chapter V a stochastic online

algorithm (Section 3) for patient and resource scheduling in nuclear medicine clinics

is derived and a preliminary computational study is presented. Finally, Chapter VI

contains the concluding remarks and the future research directions.
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CHAPTER II

LITERATURE REVIEW

Over the past years health care organizations have faced pressures to deliver quality

services to their patients while facing rising of costs [6]. This fact has motivated

researchers and health care professionals to identify new approaches to improve the

efficiency of health care operations and to reduce delivery costs. In this chapter, we

provide a literature review of some of the methodologies that have been used to study

health care systems. We focus on those topics that are aligned with the methodology

proposed in this work.

We first provide a background of the use of discrete event simulation in health

care systems analysis. Discrete event simulation is an operations research modeling

and analysis methodology that permits system evaluation [7]. In health care, discrete

event simulation can be used as a forecasting tool to assess the potential impact on

changes on patient flow, to examine resources allocation, and/or to investigate the

complex relationships among different system variables. The use of discrete event

simulation has become increasingly more accepted by health care decisions makers.

This is due in part to the large number of successful studies published in literature,

as well as the development of software packages.

In addition to discrete event simulation, we provide a description of other method-

ologies that have been used to analyze health care systems. Some of them include

queueing theory, dynamic programming, and mathematical programming. Most of

the research found in literature for these methodologies focuses in the patient schedul-

ing problem. The problem is addressed by deriving models that optimize a perfor-

mance measure of an appointment system.

The rest of the literature review discusses research work in online scheduling. We
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describe several problem settings in which this methodology has been implemented

and discuss how it can be adapted to address the problem of managing patient and

resources in health care systems. This chapter is organized as follows. In Section

A we provide a literature review on the use of discrete event simulation to analyze

health care system. In addition, we provide a subsection that focuses on the research

work that studies health care specialty clinics. Section B provides a description of

the existing analytical research work that addresses patient scheduling in health care

systems. We also provide a subsection for the work that is specialized in health care

specialty clinics. Section C discusses the research work published in online scheduling

and provides a description of how this framework can be adapted to the problem

studied in this work. Lastly, Section D describes the performance measures frequently

used in literature to assess the performance of health care systems.

A. Discrete Event Simulation in Health Care

Discrete event simulation [7, 8] has been used frequently to study patient appointment

systems in health care over the past years. Karnon [9] compare discrete event sim-

ulation modeling to several techniques, such as Markov chain analysis, and conclude

that simulation is particularly well suited for modeling health care clinics due to the

complexity of such systems. This technique has been used to forecast the impact of

changes in the system, to examine resource needs or to investigate the relationships

between variables in a system [10]. Most simulation studies in health care focus on

outpatient scheduling.

Ho and Lau [11] considers various rules for scheduling patient in outpatient clinics

with the goal of minimize the weighted sum of personnel’s and patients’ idle time.

They show that the idle times incurred by any of the rules are caused by three factors:
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probability of no-show, the coefficient of variations of service times, and the number

of patients per clinical session.

Klassen and Rohleder [12] study the best time to schedule patients with large

service time differences and variances using simulation. They try several scheduling

rules and take into consideration patient no-shows. They conclude that the best time

to schedule those patients is toward the end of the day. In addition, they analyze

the best time slots to leave open for potentially emergency patients and found no

conclusive policy.

Edwards et al. [13] develop simulation models to compare two clinics that used

two different queueing systems; serial processing and quasi-parallel processing. In

serial processing patients wait in a single queue whereas in quasi-parallel processing

patients are directed to the shortest queue to maintain flow. The authors showed

that in quasi-parallel processing waiting times can be reduced up to a 30%.

Hashimoto and Bell [14] conducted a simulation study in an outpatient clinic that

involve multiple sequential providers including a nurse, a physician, and a discharger.

Their primary issue was to quantify the trade-off of patient waiting times versus idle

time for doctors and staff. They concluded that increasing the number of physicians

without increasing the supporting staff significantly increased the length of stay for

the patients.

Swisher et al. [15] develop a simulation model that encompass both the op-

erations and information center of a health care outpatient clinic. They consider

scheduling more patients with significatively larger mean service times in the morn-

ing sessions rather than the afternoon. A reduction in the physicians’ overtime was

found by implementing a reduction in the physicians lunch time periods.

Groothuis et al. [16] investigate two patient scheduling policies in a hospital car-

diac catheterization lab using simulation. The first policy does not schedule patients
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after 4:00 PM whereas the second policy schedule a fixed number of patients each day.

They apply these scheduling policies to three different clinic configurations using pa-

tient thruput and working day duration as the performance measures. They found

that one of the configurations was able to accommodate in average two additional

patients per day while having less days exceeding eight hours.

Swisher and Jacobson [17] use an object oriented discrete event simulation to

evaluate different staffing options and facility sizes for a two physician family practice

health care clinic. They describe a measure for clinic effectiveness that takes into

account both patient and physician satisfaction. They use this measure to evaluate

the clinic configuration. The authors conclude that no specific configuration gives the

perfect balance between profit and satisfaction and that is up to the decision maker

to evaluate the trade-offs.

Rohleder and Klassen [18] consider discrete event simulation to study a rolling

horizon appointment scheduling. In this study two management policies are consid-

ered; overload rule and rule delay. In overload rules overtime and double booking are

used when patient demand is high, while the rule delay policy determines when the

overload rule is implemented. The authors conclude that the best scheduling policy

will depend on the performance measures that are considered more important by the

decision makers.

Guo et al. [19] present a simulation framework for a doctor’s appointment clinic

that server for the evaluation and optimization of scheduling rules. Their simulation

model captures four components of outpatient scheduling systems: external demand

for appointments, supply of provider time-slots, patient flow logic and the scheduling

algorithm. They demonstrate the framework for a pediatric clinic case and discuss

the challenges for adapting the framework to other settings.

Surgical (operating room) center scheduling has also been studied using simula-
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tion modeling. Fitzpatrick et al. [20] study several scheduling techniques for hospital

operating rooms that include: first-come-first-serve, fixed, variable, and mixed block.

Fixed policy schedules the same block of time in the same time-slot each day of the

week. The variable policy schedules based on seasonal demand fluctuations and mixed

block scheduling is a combination of fixed and variable. The authors conclude that

variable block scheduling is superior to the other alternatives in terms of resource

utilization, patient throughput, and patient waiting time.

Akkerman and Knip [21] use discrete event simulation to study the facility di-

mensioning problem in surgery center. They showed that the number of beds can be

reduced if recovering patients that no longer require specialized services are trans-

ferred. Butler et al. [22] study the sensitivity of patient misplacement with respect

to a variety of modifications in their bed allocation policy. They conclude that re-

ducing the length of stay and reallocating rooms among the different services within

a hospital could decrease patient misplacement.

Simulation has been also applied to study hospital emergency departments. In

emergency rooms patients arrive without an appointment most of the time and require

treatment over a large and varied set of conditions. Although patients arrivals are

highly unpredictable, the treatment sequence can be controlled by the staff. Lopez-

Valcarcel and Perez [23] use discrete event simulation to evaluate the staffing levels,

the arrival rates, and the service times in an emergency department. They recommend

that the arrival rate should not exceed twelve patients per hour. Altinel and Ulas [24]

use discrete event simulation to study the emergency department bed sizing problem.

El-Darzi et al. [25] analyze the patient flow to reduce emergency department stay

and increase patient throughput in emergency departments.

Garcia et al. [26] study the impact of having a fast-track queue in an emergency

department. The fast-track queue is used to serve no urgent patients in an emergency
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room. They conclude that assigning a limited amount of resources to a fast-track lane

significatively patient waiting times. Mahapatra et al. [27] presents a similar study

that analyzes the effects of having a fast lane for treating non critical patients in an

emergency department. The authors show that waiting times can be reduced by 10%

by adding a fast track unit to the emergency department.

Kirtland et al. [28] study several alternatives to improve patient flow in an

emergency department. Their goal is to reduce time patient spent at the facility

and determine the appropriate staffing levels using simulation. They found that by

using a fast track lane in minor care, placing patients in the treatment area instead of

sending them back to the waiting room, and using a point-of-care lab testing patient

waiting times can be reduced by an average of thirty eight minutes.

McGuire [29] uses simulation to determine how to reduce the length of stay for

patients in an emergency department. The author conclude that adding an additional

clerk during peak hours, extending the operating hours of the fast-track lane, adding

a holding area for waiting patients, and using physicians instead of residents in the

fast track area significatively reduced the amount of time patients spent at the clinic.

Badri and Hollingsworth [30] analyze the effects of several scenarios on schedul-

ing, limited staffing, and changing the patient demand patterns in an emergency

room. They conclude that serving only those patients that needed urgent care and

eliminating one or more doctors on each shift provides the better outcomes for the

clinic under study.

Samaha et al. [31] use discrete event simulation to reduce patient length of stays

in a hospital emergency department. The authors determined that the length of

stay was a process related problem rather that resource dependent. They show that

adding additional beds did not shorten the length of stay of the patients. For more

information about simulation studies in health care systems we refer the reader to
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some survey papers that have been written addressing this topic [32, 6, 33, 34, 35].

1. Discrete Event Simulation of Specialty Clinics

Specialty clinics bring their own set of problem characteristics when scheduling pa-

tients and allocating space within health care facilities. However, there is limited

research reported about the use of discrete event simulation for the problem of man-

aging patient in specialty clinics such as nuclear medicine departments. Most of the

research reported focuses in radiology departments.

Walter [36] develop a simulation model of a hospital radiology department to

predict the effects of scheduling policies on the efficiency of the appointment system,

as measured by the average patient queueing time and doctor idle time during the day.

He conclude that staff time savings were possible by segregating patients into inpatient

and outpatient sessions with a similar examination time distribution. Additionally,

he found that overbooking yield a small increase in staff utilization while substantially

increased patient waiting time at the clinic.

Kho and Johnson [37] developed a computer model that simulates patient flow

through a radiology facility. This model was used to identify causes of congestion and

low productivity and to predict effects of changes in the system. They conclude that

performance can be improved by distributing patient demand for outpatient services

evenly.

Johannes and Wyskida [38] develop a model for scheduling patients and clinical

instruments in a nuclear medicine department that minimizes the equipment idle

time. The authors used simulation to test the shortest-processing-time-first rule to

schedule several patient classes in a nuclear medicine department. Only a limited

number of procedures were studied and their heuristic assumes that the group of

patients requiring service are known at the beginning of the day.
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Sepúlveda et al. [39] use simulation to study a full service cancer treatment

center with the objective of analyzing patient flow through the clinic, evaluate the

impact of alternative floor layouts, using different scheduling options. The simulation

of three key scenarios were used to identify patient bottlenecks and improved patient

management at the center. Simulating different scheduling policies showed a 20%

increase in the number of patients seen per day.

Centeno et al. [40] perform a simulation study in a radiology department which

objective was to determine the adequate number of technologists assisting per oper-

ation while maximizing the utilization of the staff. The idle time of resources and

number of daily procedures were consider as performance measures for the system.

Ramakrishnan et al. [41] use simulation to study different scenarios of a radiology ser-

vice department. Their goal was to identify patient flow changes in the computerized

tomography (CT) scan area that would maximize patient throughput. An increase of

20% in patient throughput was found by making changes to the CT scan area. Other

research work on the use of simulation to analyze staff allocations to improve patient

flow in radiology departments includes O’Kane [42] and Klafehn [43].

B. Scheduling in Health Care

In this section we present a summary of analytical methodologies used for patient

scheduling in health care facilities. Liao et al. [44] consider the problem of scheduling

the optimal arrival times of K customers. Each request is to be assigned to one of

K equal time durations. The authors studied a static and a dynamic versions of the

planning arrival problem. For the dynamic case planning decisions are made at the

beginning of each time slot, whereas for the static problem decisions are made at the

beginning of the first time slot. Dynamic programming was applied to determine the
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optimal block sizes. The solution obtained is used as lower bound to solve the static

problem by a branch-and-bound algorithm, which is restricted to small size problems.

Wang [45] studies both the static and dynamic case for a single server system

with exponential service times and try to minimize the weighted sum of customer flow

time and system completion time. The author shows that customer flow times can be

represented by a phase type distribution and calculates the optimal appointment times

using a recursive procedure. The author concludes that the optimal appointment

intervals are not constants but dome shaped. He later extended the study to any

service time distribution that can be approximated with a phase-type distribution

[46].

Liu and Liu [47] consider the case of a queueing system with multiple doctors.

They study the effects of patient no-shows and doctors lateness in an operation session

divided into a number of identical periods and they schedule a group of jobs to serve

at the beginning of each period. They develop a dynamic programming formulation

that allow them to find optimal block sizes and use the results to solve the static

problem. The authors compare their results with those obtained using exhaustive

simulation.

Penneys [48] studies the effects of block versus sequential scheduling on patient

waiting times, length of patient encounters, and physician patient free time in two

busy dermatologist clinics. He concludes that under block scheduling physicians enter

the exam room earlier, increase patient free time during the day, and the clinic finishes

35 minutes before on average whereas patient waiting times remain about the same

under both policies. Chung [49] proposes a modified block scheduling method in

which a double book of patients is performed at the beginning of each hour and the

end of the hour is left open to catch up in case physician runs behind schedule. The

author claims an improvement of 15% on patients waiting time.
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Lau and Lau [50] address two problems relevant to outpatient and surgical

scheduling: a cost estimation given a particular scheduling rule and finding the opti-

mal schedule based on a particular sequence of arrivals. They present a procedure to

solve the first problem when service times are nonidentical distributed. They evaluate

the accuracy of their methods using simulation.

Cayirli et al. [51] use a classification scheme of “new/return” to analyze the

effects of sequencing in appointment scheduling. They consider the effects of accepting

patient walk-ins and the issue of patient punctuality. They claim that sequencing

decisions have more impact on clinic performance than the choice of an appointment

rule. They conclude that unexpected events such as walk-ins, no-shows, punctuality

and session volume have a great influence in the effectiveness of appointment systems.

Robinson and Chen [52] consider the problem of finding optimal appointment

times when a sequence of N patients has been specified. They formulate the problem

as a stochastic linear programming and solve it using Monte-Carlo integration. They

develop a heuristic that adjust appointment intervals using as a basis the structure

of the optimal policy.

Denton and Gupta [53] study the problem of determining the optimal appoint-

ment times for a sequences of jobs with uncertain duration. They present a two-stage

stochastic linear programming model to determine the optimal appointment intervals

by considering the expected cost of patient waiting, server idling and cost of tardi-

ness with respect to a chosen session length. They apply a decomposition approach

to solve it for a general i.i.d service times.

Brahimi and Worthington [54] present a queueing model to outpatient clinics.

They study the finite capacity multi-server queuing model with nonhomogeneous

arrivals and general discrete service times distributions. They claim that by using

analytical techniques, waiting times can be substantially reduced without increasing
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server idleness.

Gerchak et al. [55] study the reservation of surgical capacity for emergency cases

on a daily basis when these rooms are also used for elective surgeries. They formulate

the problem as a stochastic dynamic program assuming that surgery durations are

independent and identically distributed. They claim that the optimal policy is a

function of the patients waiting for deferrable surgeries. They develop an algorithm

that finds the optimal number of deferrable surgeries to schedule on any given day.

Kaandorp and Koole [56] consider a single server case with exponential service

and a single no-show probability for all patients. They propose a model that minimizes

the weighted average of the expected waiting time, server idle time, and overtime. The

authors claim that a local search can be used to obtain a globally optimal schedule

because the model is multi-modular.

Gupta and Wang [57] use a Markov Decision Process model to study the prob-

lem of which appointment request to accept to maximize the revenue of a primary

care clinic. They consider patient choices and claim that for a single server case an

optimal solution can be provided. For more information about scheduling studies in

health care systems we refer the reader to some survey papers that have been written

addressing this topic [58, 59].

1. Specialty Clinics Appointment Scheduling

Several papers study variations of the problem of scheduling patient in specialty clinics

using optimization techniques. For example, Conforti et al. [60] study optimization

models for outpatient scheduling within a radiotherapy department, whereby patients

have to visit the treatment center several times during the week.

Green et al. [61] address the problem of scheduling randomly arriving patients

of different types in an MRI facility. They formulate the problem as a finite-horizon
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dynamic program for an appointment schedule that allows at most one patient per

period and a single server, where only one patient can be served at a time. The

authors derive properties of the optimal scheduling policies and identify a service

sequence that minimize the expected total cost of serving patients in a diagnostic

facility. Patrick et al. [62] study a similar problem but they characterize patients

with different priorities. Kolisch and Sickinger [63] consider a similar problem but

with two CT scanners. The authors compare three decision rules under three different

appointment schedules.

Patrick and Puterman [64] consider the problem of scheduling patients in a CT

scan department. They formulate an optimization problem that returns a reservation

policy that minimizes the non-utilization of resources subject to an overtime con-

straint. Their approach assumes the use of a pool of patients that can be called to

occupy unused time slots. The authors use simulation to demonstrate a reduction in

outpatient waiting time.

Sickinger and Kolisch [65] propose a generalization of the Bailey-Welch rule as

well as a neighborhood search heuristic for a medical service facility with two re-

sources. The Bailey-Welch rule claims that for one server clinic the best performance

in terms of patient waiting and server idle time is to schedule two patients for the

first appointment space and one patient on the ones that follow. The authors analyze

the impact of different problem parameters on the total reward.

Standridge and Steward [66] propose a simulation model that includes a control

logic for patient scheduling. The system presented by the authors schedules patients

within a simulation framework. Vermeulen et al. [67] devise an adaptive approach to

automatic optimization of resource calendars in a CT scan facility. They implement

a simulation model for a case analysis to demonstrate that their approach makes

efficient use of resources’ capacity.
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C. Stochastic Online Scheduling

Online scheduling occurs naturally in several applications areas. Contrary to offline

optimization problems, data is not available in advance in online optimization. Online

stochastic optimization assumes the distribution of future requests, or an approxima-

tion thereof, is available for sampling [68]. The typical case is the existence of either

historical data or predictive models. Online stochastic optimization problems are

also constrained by time constraints, meaning that they have a limited time to find

a solution and make a decision for the problem.

Literature shows the benefits of taking into account future events when opti-

mizing decision processes online. It has been shown that using additional stochastic

information can improve the quality of solutions in scheduling applications such as:

dynamic vehicle routing [69, 70, 71] , packet scheduling [72, 69, 73, 68], reservation

systems [74], inventory management [70, 75], organ transplants [76], and elevator

dispatching [77]. In these sample applications, stochastic information is exploited in

widely different ways; however, the unifying theme seen throughout this research is

that there are considerable advantages to taking account of stochastic information.

The common strategy is to predict the future requests using a statistical model

by sampling the observations on the history. Chang et al. [72] study the multiclass

packet-network scheduling problem. The authors use a Hidden Markov Model (HMM)

to generate the tasks arrivals for each class with a particular weight and develop an

algorithm named expectation that adapts an optimal offline algorithm into an online

algorithm by sampling possible future tasks sequences from the HMM. Unfortunately,

the expectation algorithm does not perform well under time constraints, since it must

distribute its available optimizations across all requests.

This issue was recognized and addressed in [68] where a consensus algorithm
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was proposed. The consensus algorithm solve as many samples as possible and to

select the request which is chosen most often in the sample solutions at time t. The

consensus algorithm was shown to outperform the expectation algorithm on online

packet scheduling under time constraints. However, as decision time increases, the

quality of the consensus algorithm levels off and is eventually outperformed by the

expectation algorithm. The regret algorithm proposed in [69] combines the features of

both expectation and consensus algorithms. It evaluates every decision on all samples

like the expectation algorithm and has the ability to avoid distributing the samples

among decisions like the consensus algorithm.

Awasthi and Sandholm [76] consider the scheduling of human kidney transplants

using a stochastic online framework. They propose an adaptation of the regrets al-

gorithm proposed by Bent and Van Hentenryck [69]. Van Hentenryck et al. [74]

consider the online stochastic reservation problem where the goal is to allocate re-

quests that are received online to limited group of resources in order to maximize

the profit (Multi-knapsack problem). The authors adapted the consensus and regret

algorithms to their problem. A modification of the regret algorithm is presented that

is based on a constant sub-optimality approximation of multi-knapsack problem [78].

The authors used two black-boxes to handle the stochastic arrivals of reservation re-

quests for hotel rooms. One black-box is the sub-optimal approximation module and

the other is the sampling module which relies on the observations of the past arrivals.

This problem in general differs from the scheduling problems considered in [72, 68]

and [79]; mostly because the approach followed is not about selecting the best request

but rather about how best to serve a request.

The expectation algorithm has some resemblances to the sample average approx-

imation method for non-dynamic stochastic programming [80, 81] where the solution

depends of a deterministic part and a stochastic part. The deterministic part gives
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the immediate plan and the stochastic part gives a penalty for changing the plan to

accommodate the best as possible the scenario that has become reality. One must

average over many scenarios to find the best expected solution. The sample average

approximation has been applied to the stochastic vehicle routing problem [82].

In this work we consider using sampling of possible future procedure requests to

obtain an appointment date (day and time) for a patient. In other words, finding

a schedule by considering the possible requests that may occur after the procedure

request in hand. Conceptually the historical information provided by the clinic can

be incorporated in the classical way into a multistage integer stochastic program [83]

which would then be solved to come up with an optimal scheduling plan. However

such stochastic optimization techniques are not capable of efficiently solving problems

of the size of the required domain. In contrast, online stochastic algorithms are

suboptimal but scalable ways of solving stochastic integer programs [84, 85]. The idea

is to sample a subset of the future scenarios (trajectories), solve the offline problem

on each of them using a two stage stochastic integer programming (SIP) model [86],

assign a score to each possible action, and select the action that is the best overall.

D. Performance Measurements

Patient satisfaction in outpatient clinics may be difficult to quantify since it depends

on the way patients perceive the service received. Several performance measures have

been identified in the literature as the most commonly used for evaluating patient

service satisfaction in health care clinics. Waiting time Type 1, is the time a patient

waits from the time he/she calls for an appointment until the date of the appointment

[18, 87, 88]. Waiting time Type 2 is the time a patient waits from the time he/she

arrives at the clinic to the time when service is started [18, 89, 90, 40]. The percentage
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of time a patient requests for an appointment and is satisfied [61, 57] and the time

the patient spends in the system [91, 92] were the last ones identified.

Besides patient satisfaction, health care managers are concerned with the prof-

itability of the business. In particular, nuclear medicine department managers un-

derstand that providing a high level of service to their patients is important for

the business. But this requires improving other areas such as human resource over-

time [89, 90], resource utilization [18, 90, 40], and patient throughput [41]. Those

performance measures have been used commonly in literature to represent the man-

agement’s perspective.
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CHAPTER III

MODELING AND SIMULATION OF NUCLEAR MEDICINE PATIENT

SERVICE MANAGEMENT IN DEVS ∗

A. Introduction

Health care costs in the U.S. have increased in recent years and now exceed those

in other nations that provide similar, or better care for their citizens. Increased de-

mand for specialized services has been identified as one of the causes of this trend in

U.S. health care costs [3]. Speciality clinics such as nuclear medicine, a sub-specialty

of radiology, use appointment scheduling systems to manage patients. These clinics

are affected by many factors such as patient behavior, staff experience, service time

variability, equipment failures, and radiopharmaceuticals management, which have

an impact on the way the appointment systems perform. This chapter focuses on

patient service management in nuclear medicine, which uses new technology to treat

and diagnose patients. Nuclear medicine procedures/tests include positron emission

tomography(PET) scan, imaging test, heart stress and radiotherapy for lymphoma.

Most of the tests require administering a radioactive isotope or radiopharmaceutical

in order to take high quality images deep within the body and involve multiple scans

during one day, or on multiple days. To successfully perform a nuclear medicine test,

all the resources needed for each step of the test must be available at specific times.

If the test is not completed successfully, the patient must be re-scheduled for another

day. Therefore, scheduling patients, radiopharmaceuticals and resources to avoid

∗Reprinted with permission from “Modeling and Simulation of Nuclear Medicine
Patient Service Management in DEVS” by E. Pérez, L. Ntaimo, C. Bailey, and P.
McCormack, 2010. Simulation, Online First, Copyright [2010] by The Society for
Modeling and Simulation International.
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re-scheduling is a very challenging problem for nuclear medicine departments. Fur-

thermore, the characteristics of patient and resource management in nuclear medicine

make it a unique problem with little research work reported in the literature. The

limitations imposed by the behavior and short life cycle of the radiopharmaceuticals,

combined with the different types of patient arrivals, random disruptions and resource

availability, make the management of patient service in nuclear medicine a complex

problem.

The contributions of this research include the first (to the best of our knowledge)

DEVS simulation model for nuclear medicine patient service management. The model

represents an advance toward improving patient service in health care with innova-

tions in the way the model is represented and implemented. The model incorporates

both patient and resource scheduling algorithms within the simulation framework.

This in essence provides a novel decision support system for assisting managers not

only in patient and resource scheduling, but also in assessing their daily schedul-

ing decisions on system performance. The simulation model enables system-level

performance assessment, identification of potential bottlenecks, and integration of

scheduling and patient flow analysis. A computational study to quantify important

trade-offs between a patient and resource scheduling strategy currently used in a real

nuclear medicine clinic and variations of this strategy is presented. While this work

focuses on nuclear medicine, the results can be applied to many other systems that

are not as complex as nuclear medicine. These include diagnostic imaging areas such

as magnetic resonance imaging (MRI) and computed axial tomography (CT scan).

In nuclear medicine, a typical test requires at least three resources: a radiophar-

maceutical; gamma camera; technologist; and, sometimes, a nurse or EKG (electro-

cardiogram) technician. Nuclear medicine equipment may cost up to a million dollars

and therefore must be managed efficiently. The schedule for radiopharmaceutical de-
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livery, injecting the patient, and scanning must adhere to a specified protocol since

radioactivity decays over time. For example, a scan made too early before the radio-

pharmaceutical has diffused adequately, or too late after excessive decay has occurred,

results in a poor image. If there is too much delay, the procedure must be terminated

and repeated on another day, causing unnecessary exposure to radiation, poor utiliza-

tion of resources, and increased cost. Furthermore, since relatively few pharmacies

supply radiopharmaceuticals, the dosages and delivery schedules depend on the lead

time (hours to days) required to supply the radiopharmaceuticals. A well-designed

system for patient service management in nuclear medicine has to consider the goals

of both managers and patients.

A viable approach to address the challenging problem of managing patient service

in nuclear medicine is modeling and simulation (M&S). In this chapter, a discrete

event M&S approach for managing patient service in nuclear medicine is considered.

In particular, the discrete event system specification (DEVS) formalism [8] is used to

derive a generic simulation model for a nuclear medicine patient service management

that can be tailored to any real nuclear medicine clinic. DEVS is a formal M&S

framework based on dynamical systems theory and provides well defined concepts for

coupling components, hierarchical and modular model construction, and an object-

oriented substrate supporting repository reuse. Modular construction is one of the

most important characteristics of DEVS because it allows the modeler to design

and construct each model independently for optimal efficiency. As long as models

adhere to certain protocols, they can interact with each other. In this work, the

patient and management perspectives are considered. Both points of view are very

important for developing patient and resources scheduling policies, and for evaluating

the performance of patient service and resource utilization. Patients are concerned

with the level of service offered by the department while managers are also concerned
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with using their limited resources effectively.

The rest of the chapter is organized as follows. In Section B preliminaries on

DEVS are provided. The simulation model derivation, hierarchical structure, oper-

ation and implementation is presented in Section C. Section D presents a compu-

tational study and some concluding remarks and directions for future research are

presented in Section E.

B. Preliminaries

To provide a mathematical foundation for the proposed simulation models, we first

review some preliminaries on DEVS. The reader familiar with DEVS may skip this

section. In this work we use the parallel DEVS formalism [8] to construct the simu-

lation model for a nuclear medicine department. Parallel DEVS is a revision of the

classical DEVS formalism [8]. It uses a hierarchical approach to build complex models

starting with the basic or atomic model, and then coupling the atomic models to cre-

ate coupled (composite) models. An atomic model has to be in a defined state at any

time and has input and output ports through which all interaction with the environ-

ment is mediated. External events arising outside the model are received through the

input ports, and the model description determines how the model responds to them.

All internal events arising within the model change its state and manifest themselves

as events on the output ports to be transmitted to other models. Communication

between models is enabled via the couplings.

Unlike classical DEVS, parallel DEVS allows all imminent components to be

activated and send their outputs to other components of the system. DEVS has

a well defined concept of system modularity and component coupling to form cou-

pled models. This leads to the property of closure under coupling which justifies
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treating coupled models as components and enables hierarchical model composition

construct. Since several DEVS simulators have already been developed and validated,

the models developed in this work will be executed by the existing DEVS simulators.

Consequently, the focus of this chapter is on simulation modeling and not simulation

algorithms.

Let M denote an atomic model with a set of input ports IPorts, a set of input

values (events) Xp, a set of output ports OPorts, and a set of output values (events)

Yp. We denote by (p, v) the port-value pair. Then a basic parallel DEVS is a structure

defined as follows [8]:

DEV S = (XM , YM , S, δext, δint, δcon, λ, ta) (3.1)

where,

XM = {(p, v)|p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

YM = {(p, v)|p ∈ OPorts, v ∈ Yp} is the set of output ports and values;

S is the set of sequential states;

δext : Q×Xb
M → S is the external transition function, where Xb

M is a set of bags

over elements in XM and Q is the set of total states;

δint : S → S is the internal state transition function;

δcon : Q×Xb
M → S is the confluent transition function;

λ : S → Y b
M is the output function;

ta : S → R+
0,∞ is the time advance function; and

Q := {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the set of total states, where s is the state

and e is the elapsed time.

Note that a bag is a set with possible multiple occurrences of its elements. This
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allows parallel DEVS to handle multiple inputs. Equation (3.1) can be interpreted

as follows: At any time the system is in some state s and if no external events

occur, the system will not change state for a time ta(s) ∈ [0,∞]. When this time

expires the system outputs the value, λ(s), and changes to state s′ = δint(s). An

output is only possible after an internal transition. If an external event x ∈ XM

occurs when the system is in total state (s, e) with e ≤ ta(s), i.e., before expiration

time, the system changes to state s′ = δext(s, e, x). The external transition function

dictates the system’s new state when an external event occurs, while the internal

transition function dictates the system’s new state when no events occurred since

the last transition. The confluent function decides the next state in cases of collision

between external and internal events.

The DEVS formalism includes the means to construct models from components.

The specification includes the external interface, the components (DEVS models), and

the coupling relations. Let EIC, EOC and IC denote the external input coupling,

external output coupling and internal coupling, respectively. Then a coupled model

N can be defined mathematically as follows:

N = (X, Y,D, {Md | d ∈ D}, EIC,EOC, IC) (3.2)

where,

X = {(p, v)|p ∈ IPorts, v ∈ Xp}

is the set of input ports and values and

Y = {(p, v)|p ∈ OPorts, v ∈ Yp}

is the set of output ports and values. D is the set of component names, and for each
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d ∈ D,

Md = (Xd, Yd, S, δext, δint, δcon, λ, ta)

is a DEVS model with

Xd = {(p, v)|p ∈ IPortsd, v ∈ Xp}

and

Yd = {(p, v)|p ∈ OPortsd, v ∈ Yp}.

The external input coupling, EIC, connect external inputs to component inputs:

EIC ⊆ {((N, ipN), (d, ipd)) | ipN ∈ IPorts, d ∈ D, ipd ∈ IPortsd}. (3.3)

The external output coupling, EOC, connect external outputs to component outputs:

EOC ⊆ {((N, opd), (N, opN)) | opN ∈ OPorts, d ∈ D, opd ∈ OPortsd}. (3.4)

Lastly, the internal coupling, IC, connect component outputs to component inputs:

IC ⊆ {((a, opa), (b, ipb)) | a, b ∈ D, opa ∈ OPortsa, ipb ∈ IPortsb}. (3.5)

We should point out that in DEVS no output port of a component may be

connected to an input port of the same component, i.e., ((a, opa), (b, ipb) ∈ IC implies

a 6= b. In other words, no direct feedback loops are allowed for each component.

Armed with the above characterizations, we are now in a position to derive several

atomic and coupled DEVS models for nuclear medicine patient service management.

C. Simulation Model

The practical setting of a nuclear medicine department involves several resources,

which include humans and equipment, procedures/tests and performance measures.
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We start by describing these entities in the context of model abstraction and then

derive the corresponding atomic and coupled models that constitute the nuclear

medicine simulation model.

1. Model Abstraction

We conceptualize a nuclear medicine department model involving human and equip-

ment resources, stations, and patients. We classify these entities by considering their

roles and the interactions they have within the model.

a. Human Resources

We distinguish between four types of human resources: technologists, nurses, physi-

cians, and managers. We capture the behavior of each human resource by taking into

account the expertise and experience. Human resources that have been executing

their tasks for several years are expected to complete their tasks relatively faster than

those who have less experience. The set of activities each type of human resources

can perform depends on the expertise. Table I lists some of the activities that can be

performed by each type of human resource.

In our simulation model we represent each human resource type as a separate

atomic model, capable of receiving messages containing their schedules. A schedule

includes times (and stations) when the human resource will serve patients. When

it is time to serve a patient the human resource travels to the appropriate station

according to the schedule. Travel time from the human resource’s office to each

station is known.
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Table I. Human resources responsibilities in nuclear medicine

Human resource Responsibilities

Hydrate patient;

Technologist Radiopharmaceutical preparation;

Imaging

Hydrate patient;

Nurses Radiopharmaceutical administration;

Draw doses

Hydrate patient;

Physicians Radiopharmaceutical administration;

Draw doses

Hydrate patient;

Managers Radiopharmaceutical preparation;

Radiopharmaceutical administration

b. Procedures/Tests

Nuclear medicine procedures/tests are essential in medical specialties such as cardi-

ology, pediatrics and psychiatry. The procedures are usually requested by physicians

by calling the nuclear medicine clinic to ask for an appointment for a patient. The

procedures provide physicians with information about structure and function of the

human body (diagnosis) but are also used for disease treatment. Table II lists several

nuclear medicine procedures and their current procedural terminology (CPT) codes.

Each procedure images a specific organ and requires the administration of at least

one radiopharmaceutical. The number of steps for each procedure may range from 3

to 11. The duration of each step may vary depending on the experience of the human

resource in charge, however it must be completed within the time window stipulated

by protocol for the procedure. As an example, the CVE/SP-M procedure is described

in Table III. This procedure involves four steps and requires the use of two different
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Table II. Examples of nuclear medicine procedures

CPT Code Name

78465 Cardiovascular Event (CVE) Myocardial Imaging (SP-M)

78815 PET CT skull to thigh

78306 MSB-bone imaging (whole body)

78315 MSC-bone imaging (three phase)

78223 GIC-Hepatobiliary imaging

78472 CVJ-cardiac blood pool

78585 REB-Pulm perfusion / ventilation

78006 ENC-Thyroid imaging

78195 HEE-Lymphatic imaging

78464 CVD-Myocardial imaging

radiopharmaceuticals. This procedure takes a minimum of 95 minutes to complete

and requires the involvement of at least two human resources. Table IV shows the

steps for the PET/CT procedure. In this procedure only one radiopharmaceutical is

needed.

Table III. Procedure 78465: cardiovascular event (CVE) myocardial imaging (SP-M)

Step Activity Time (min.) Station Human Resource

1 Hydrate patient 10 TRT 1, 2 & 3 Technologists;

and dispense dose Nurse; Manager

2 Stress EKG 30 Treadmill 1 & 2; EKG Tech

3 Patient Wait 30-60 Waiting room

4 Imaging 30 Axis 1, 2, & 3; Technologists;

P2000A & B, P3000 Nurse; Manager
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Table IV. Procedure 78815: computed tomography (CT) skull to thigh

Step Activity Time (min.) Station Human Resource

1 Hydrate patient 10 TRT 1, 2 & 3 Technologists;

Nurse; Manager

Meridian; Technologists;

2 Dispense dose 5 TRT 1, 2 & 3; Nurse;

Axis 1, 2, & 3; Manager

P2000A & B

3 Patient Wait 60 Waiting room

Axis 1, 2, & 3; Technologists;

4 Imaging 45 Meridian; Manager

P3000, P2000A & B

c. Stations and Equipment

A nuclear medicine department has separate stations for performing specific proce-

dures/tests. We conceptualize stations as spaces where patients are served by human

resources. Every station has at most one type of nuclear medicine equipment. We

classify stations based on the type of equipment in the station. Nuclear medicine

equipment includes different types of gamma cameras and treadmills. Our simula-

tion model incorporates an atomic model for each equipment, an atomic model that

represents a room, and a coupled model for a station. The station coupled model

represents both the room space and the equipment in the station. Before starting

any activity at any station, the model has to verify that all the entities needed to

perform the procedure have arrived. For example, to administer a radiopharmaceuti-

cal the human resource, patient and the radiopharmaceutical needed to perform this

activity must be in the station. The time spent by these entities in the station will

depend on the protocol for performing the procedure/test, experience of the human

resource, and the type of equipment involved.
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d. Patients

Patient service requests are usually managed by a call center. A receptionist is in

charge of taking care of these requests by finding an appointment for the patient.

In the simulation model we represent the call center by a scheduler atomic model.

This atomic model is in charge of patients’ schedules. We also have a call generator

atomic model that generates patient service requests during the simulation. Patients

will always ask for one procedure and, in some cases, they will also provide a day of

preference for the appointment. The scheduling of patients depends on the algorithm

or rules available in a given nuclear medicine department. Schedule information is

passed to all the models involved in the scheduling. First, human resources whose

schedules were affected by the inclusion of a new patient are notified. Secondly,

notifications are sent to the models that are in charge of generating patients and

radiopharmaceuticals at the time of the appointment.

e. Performance Measures

Since our nuclear medicine patient service management approach involves both pa-

tient and management perspectives, models are designed to capture important infor-

mation pertaining to both perspectives. We derive a transducer atomic model, which

is responsible for collecting this information and for computing statistics of interest to

the modeler. In particular, we use performance measures that have been seen in the

literature. Table V gives the selected performance measures used to evaluate patient

service satisfaction in health care clinics.

Besides being concerned about the quality of service they provide to their pa-

tients, nuclear medicine managers have to watch for the profitability and operation of

the business. Table VI gives the performance measures that are commonly used in the
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Table V. Performance measures for patient satisfaction in health care

Name Description References

Waiting time Time patient wait from the time of [18]

Type 1 calling for an appointment until the

date of the appointment

Preference Number of times patient request for [61]

satisfaction ratio an appointment is satisfied

Cycle time Time patient spent on the system [91], [92]

Table VI. Managers performance measures

Name Description References

Equipment Maximize utilization [18],[90]

utilization

Human resource Most adequate number of human [90],[40]

utilization resources while maximizing

utilization

Patient Number of patients served per day [41]

throughput

literature from a management’s perspective in health care clinics.These measures are

used in our simulation model to assess the system performance of a nuclear medicine

clinic based on the patient and resource scheduling algorithm used by the clinic. We

discussed the algorithm in detail in Section D.

2. Atomic and Coupled Models

We now discuss each of the atomic and coupled models that were developed as part

of the overall simulation model. We derive an atomic model for each of the following

human resources: Manager (MANGR), Technologist (TECH), Nurse (NURSE), Re-

ceptionist (RCPST) and Physician (PHYS). Similarly, we derive an atomic model for
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all Equipment (EQUIP) resources including Treadmill, Axis Gamma Camera, TRT

Gamma Camera and P2000 Gamma Camera. We also derive an atomic model for

nuclear medicine department rooms (ROOM) such as the Waiting Room, Treadmill

Room, Axis Camera Room, TRT Camera Room and P2000 Camera Room. Note

that the names of the rooms are based on the equipment inside the room. So by

coupling the ROOM and EQUIP atomic models, we build a nuclear medicine depart-

ment station (STATION) coupled model. We should point out that atomic models

are generic representations of the different types of entities used in nuclear medicine.

So in the simulation the models are instantiated with different attributes to represent

the unique or different entities in nuclear medicine.

Next, we couple the above models to build a nuclear medicine department cou-

pled model called NMD. To model call requests, patient arrivals, and radiopharma-

ceutical arrivals, we derive atomic models for Call Generator (CGEN), Scheduler

(SCHED), Scheduled Patient Generator (PGENR), Radiopharmaceutical Generator

(RPGENR) and Transducer (TRANSD). These models are coupled together to build

an Experimental Frame (EF) coupled model. The overall simulation model results

from coupling NMD and EF.

We are now in a position to provide mathematical descriptions of the models.

However, due to space limitation we focus only on three atomic models, TECH,

EQUIP, and SCHED, which are critical to the operation of a nuclear medicine de-

partment. In what follows, × denotes the cartesian product of sets and ∧ denotes

the logic AND operation.

a. TECH Atomic Model

We consider a TECH atomic model having input and output ports as shown in Figure

1. The model has three basic input ports, namely; “in”, “set”, and “update”, and



39

two types of output ports, namely; “out” and “roomx”. The number of output

ports of type “roomx”, x = 1, · · · , n, depends on the number of rooms n in the

nuclear medicine facility. The input port “in” is for receiving a message to activate

the model at the beginning of the simulation. A new schedule for the technologist

is sent through the “set” port, while any updates to the schedule are sent through

the “update” port. The “out” output port allows for transmitting information to

the TRANSD atomic model. The rest of the output ports transmit information to

the rooms associated with the technologist. The TECH (technologist) atomic model

ager (MANGR), Technologist (TECH), Nurse (NURSE), Receptionist (RCPST) and Physician
(PHYS). Similarly, we derive an atomic model for all Equipment (EQUIP) resources including
Treadmill, Axis Gamma Camera, TRT Gamma Camera and P2000 Gamma Camera. We
also derive an atomic model for nuclear medicine department rooms (ROOM) such as the
Waiting Room, Treadmill Room, Axis Camera Room, TRT Camera Room and P2000 Camera
Room. Note that the names of the rooms are based on the equipment inside the room. So by
coupling the ROOM and EQUIP atomic models, we build a nuclear medicine department station
(STATION) coupled model. We should point out that atomic models are generic representations
of the different types of entities used in nuclear medicine. So in the simulation the models are
instantiated with different attributes to represent the unique or different entities in nuclear
medicine.

Next, we couple the above models to build a nuclear medicine department coupled model
called NMD. To model call requests, patient arrivals, and radiopharmaceutical arrivals, we
derive atomic models for Call Generator (CGEN), Scheduler (SCHED), Scheduled Patient
Generator (PGENR), Radiopharmaceutical Generator (RPGENR) and Transducer (TRANSD).
These models are coupled together to build an Experimental Frame (EF) coupled model. The
overall simulation model results from coupling NMD and EF.

We are now in a position to provide mathematical descriptions of the models. However, due
to space limitation we focus only on three atomic models, TECH, EQUIP, and SCHED, which
are critical to the operation of a nuclear medicine department. In what follows, × denotes the
cartesian product of sets and ∧ denotes the logic AND operation.

TECH Atomic Model

We consider a TECH atomic model having input and output ports as shown in Figure 1. The
model has three basic input ports, namely; “in”, “set”, and “update”, and two types of output
ports, namely; “out” and “roomx”. The number of output ports of type “roomx”, x = 1, · · · , n,
depends on the number of rooms n in the nuclear medicine facility. The input port “in” is for
receiving a message to activate the model at the beginning of the simulation. A new schedule
for the technologist is sent through the “set” port, while any updates to the schedule are sent
through the “update” port. The “out” output port allows for transmitting information to
the TRANSD atomic model. The rest of the output ports transmit information to the rooms
associated with the technologist.
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update
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station1

station2

.

.

.

stationn

TECH

Figure 1: A basic TECH (technologist) atomic model

The TECH (technologist) atomic model has eight basic states, namely; idle, get schedule,
waiting, update schedule, travel to, travel from, serve patient and wait here. We depict the be-
havior of the atomic model using the state (transition) diagram shown in Figure 2. Mathematically,
the TECH atomic model can be defined in Parallel DEVS as follows:

DEV STECH = (XM , YM , S, δext, δint, δcon, λ, ta) (6)
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Fig. 1. A basic TECH (technologist) atomic model

has eight basic states, namely; idle, get schedule, waiting, update schedule, travel to,

travel from, serve patient and wait here. We depict the behavior of the atomic model

using the state (transition) diagram shown in Figure 2. Mathematically, the TECH

atomic model can be defined in parallel DEVS as follows:

DEV STECH = (XM , YM , S, δext, δint, δcon, λ, ta) (3.6)

where,

XM = {(p, v)|p ∈ IPorts, v ∈ Xp}

is the set of input ports and values, where

IPorts = {“in”,“set”, “update”},
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get_schedule

idle waiting

update_schedule

travel_to

travel_from

serve_patient

wait_here

initialize

set sched update

if p == 

“update” if tw== 0

if tt== 0

if tw== 0
if tpd== 0 &

travel == false

if tpd== 0 &

travel == true

if tf == 0

if tu== 0if tg== 0

Fig. 2. State transition diagram for TECH atomic model

and for p =“in”; Xin = V1; for p =“set”, Xset = V2; and for p =“update”, Xupdate =

V3. The sets V1, V2 and V3 are arbitrary sets. The set

YM = {(p, v)|p ∈ OPorts, v ∈ Yp}

is the set of output ports and values, where

OPorts = {“out”,“station1”, “station2”, · · · , “stationn”}.

The sets Yout, Ystation1, Ystation2, · · · , Ystationn are arbitrary sets. The set

S = {“idle”, “get schedule”, “waiting”, “travel to”, “serve patient”,

“wait here”, “travel from”} × <+,0 × V1 × V2 × V3 is the set of sequential states.

External Transition Function:

δext((phase, σ, sched), e, (p, v))

= (“idle”, ∞, sched), if p == “in”
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= (“get schedule”, tg, sched), if phase == “idle” ∧ p == “set”

sched = computeEventDelays();

= (“waiting”, tw, sched), if phase == “get schedule”

tw = getWaitDelay();

= (“update schedule”, tu, sched), if phase == “waiting” ∧ p == “up-

date”

sched = updateEventDelays();

= (“idle”, ∞, sched), if phase == “waiting” ∧ sched == ∅

= (phase, σ − e, sched), otherwise.

Internal Transition Function:

δint((phase, σ, sched), e, (p, v))

= (“travel to”, tt, sched), if phase == “waiting” ∧ travel == true

tt = getTravelDelay();

stationID = getStationID();

= (“serve patient”, tpd, sched), if phase == “travel to”

tpd = getProcedureDelay();

= (“wait here”, tw, sched), if phase == “serve patient” ∧ travel ==

false

tw = getWaitDelay();

= (“serve patient”, tpd, sched), if phase == “wait here”

tpd = getProcedureDelay();

= (“travel from”, tf , sched), if phase == “serve patient” ∧ travel ==

true
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tt = getTravelDelay();

= (“wait”, tw, sched), if phase == “travel from”

tw = getWaitDelay().

Confluence Function:

δcon(s, ta(s), x) = δext(δint(s), 0, x).

Output Function:

λ(phase, σ, sched)

= (stationi, msgi) if phase == “travel to” ∧ stationID == i, where msgi

is the message to send to the Station coupled model for station i = 1, ..., n.

= (out, msgi);

Time Advance Function:

ta(phase, σ, sched) = σ.

Observe that the confluent function performs an internal transition before the

external transition. In other words, no preemptions are allowed. The operation of

the TECH atomic model can be described as follows. When an input is received

on the “set” input port, the model transitions to the “get schedule” state, where a

computeEventDelays() method is called to retrieve the technologist’s schedule for the

day. The schedule is saved in “sched”. The model transitions to “waiting” state after

the time required for obtaining the schedule (tg) is elapsed. If an input is received on

the “update” input port while the model is in the “waiting” state, a transition to the

“update schedule” state is performed and the method updateEventsDelay() is called

to update the technologist’s current schedule. After the time (tu) required to complete

the schedule update elapses, the model transitions back to the “waiting” state. The
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model goes into the “travel to” state when its time to serve the next patient in the

schedule (tw == 0), and remains in that state until the travel time (tt) to the patient

location (stationID) has elapsed. It then goes into the “serve patient” state. The

state “serve patient” involves performing a procedure based on the nuclear medicine

test prescribed for the patient.

As an example, suppose that a technologist has to perform the nuclear medicine

test CPT Code 78465 (see Table III) on a patient. This test involves the following

activities: hydrate patient(10 minutes), stress EKG (30 minutes), patient wait (30-60

minutes), imaging (30 minutes), and computer process (15 minutes). Let us assume

that the technologist has to perform step 1 and step 4 on the patient, and that

the duration of each activity is deterministic. Then the TECH atomic model would

transition from the “waiting” state to “travel to” state at the scheduled time and

remain in that state for a delay of tt minutes, which is the amount of time it takes to

travel to the station. Next, the model would transition to “serve patient” for step 1

for a delay of tpd = 10 minutes. After the delay elapses, the model would transition

from “serve patient” to “travel from’ for a delay of tf minutes, that is, the amount if

time it takes to travel from station 1 to the technologist’s office. Finally, the model

transitions from “travel from” to “waiting”.

Depending on the technologist’s schedule, the TECH model either remains in

the “waiting” for some delay tw, or repeats the process if another patient has to be

served. However, when its the scheduled time to travel to the imaging room, the

model has to be in the “waiting” state, from where it would transition to “travel to”

for a tt minutes delay, before moving to “serve patient”. This time to model goes into

the “serve patient” state to perform imaging for a delay of tpd = 30 minutes. Upon

completion of the delay, the model transitions to “travel from” for a delay of tf for

the imaging room, and finally to the “waiting” state to wait for the next activity in
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the schedule.

b. EQUIP Atomic Model

The EQUIP atomic model has one input port “in” and one output port “out” as

shown in Figure 3. The EQUIP atomic model has two states, “idle” and “busy”. The

behavior of this atomic model is depicted in Figure 4.

transitions to “waiting” state after the time required for obtaining the schedule (tg) is elapsed.
If an input is received on the “update” input port while the model is in the “waiting” state, a
transition to the “update schedule” state is performed and the method updateEventsDelay() is
called to update the technologist’s current schedule. After the time (tu) required to complete
the schedule update elapses, the model transitions back to the “waiting” state. The model goes
into the “travel to” state when its time to serve the next patient in the schedule (tw == 0), and
remains in that state until the travel time (tt) to the patient location (stationID) has elapsed.
It then goes into the “serve patient” state. The state “serve patient” involves performing a
procedure based on the nuclear medicine test prescribed for the patient.

As an example, suppose that a technologist has to perform the nuclear medicine test CPT
Code 78465 (see Table 3) on a patient. This test involves the following activities: hydrate
patient(10 minutes), stress EKG (30 minutes), patient wait (30-60 minutes), imaging (30
minutes), and computer process (15 minutes). Let us assume that the technologist has to
perform step 1 and step 4 on the patient, and that the duration of each activity is deterministic.
Then the TECH atomic model would transition from the “waiting” state to “travel to” state
at the scheduled time and remain in that state for a delay of tt minutes, which is the amount
of time it takes to travel to the station. Next, the model would transition to “serve patient”
for step 1 for a delay of tpd = 10 minutes. After the delay elapses, the model would transition
from “serve patient” to “travel from’ for a delay of tf minutes, that is, the amount if time it
takes to travel from station 1 to the technologist’s office. Finally, the model transitions from
“travel from” to “waiting”.

Depending on the technologist’s schedule, the TECH model either remains in the “waiting”
for some delay tw, or repeats the process if another patient has to be served. However, when
its the scheduled time to travel to the imaging room, the model has to be in the “waiting”
state, from where it would transition to “travel to” for a tt minutes delay, before moving to
“serve patient”. This time to model goes into the “serve patient” state to perform imaging for a
delay of tpd = 30 minutes. Upon completion of the delay, the model transitions to “travel from”
for a delay of tf for the imaging room, and finally to the “waiting” state to wait for the next
activity in the schedule.

EQUIP Atomic Model

The EQUIP atomic model has one input port “in” and one output port “out” as shown in
Figure 3. The EQUIP atomic model has two states, “idle” and “busy”. The behavior of this
atomic model is depicted in Figure 4.

in outEQUIP 

Figure 3: A basic EQUIP (equipment) atomic model

The model is initialized in “idle” state and transitions to the “busy” state if an input is
received via the “in” port. A method is called to compute the amount of time (tp) the model
will stay “busy” just before transition. This time tp depends on the activity performed on the
equipment (task). Let us call this method getTaskDuration() and we will use it in expressing
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Fig. 3. A basic EQUIP (equipment) atomic model

idle

busy

if t
p
== 0if p==“in”

initialize

Figure 4: State transition diagram for EQUIP atomic model

the model in parallel DEVS. When in “busy” state the model does not respond to any inputs,
implying that the equipment is busy. Once the amount of time has elapsed, the model returns
to the “idle” state. As we mentioned earlier, the EQUIP atomic model is coupled to a Room
(ROOM) atomic model. The coupling between these two models will be discussed later in the
paper. The “out” port of the EQUIP atomic model is used to transmit information to the
ROOM atomic model. We can now define EQUIP in Parallel DEVS as follows:

DEV SEQUIP = (XM , YM , S, δext, δint, δcon, λ, ta) (7)

where,
XM = {(p, v)|p ∈ IPorts, v ∈ Xp}

is the set of input ports and values, IPorts = {“in”}, and Xin = V1 is an arbitrary set. The
set

YM = {(p, v)|p ∈ OPorts, v ∈ Yp}
is the set of output ports and values, OPorts = {“out”}, and Yout is an arbitrary set. The set

S = {“idle”, “busy”} × <+
0 × V1

is the set of sequential states.

External Transition Function:

δext((phase, σ, task), e, (p, v))

= (“busy”, tp, task), if phase == “idle” ∧ p == “in”,
tp = getTaskDuration(task);

= (phase, σ − e, task), otherwise.

Internal Transition Function:

δint((phase, σ, task), e, (p, v))

= (“idle”, ∞, task), if phase ==“busy” ∧ tp == 0

Confluence Function:

δcon(s, ta(s), x) = δext(δint(s), 0, x).
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Fig. 4. State transition diagram for EQUIP atomic model

The model is initialized in “idle” state and transitions to the “busy” state if an

input is received via the “in” port. A method is called to compute the amount of

time (tp) the model will stay “busy” just before transition. This time tp depends on

the activity performed on the equipment (task). Let us call this method getTaskDu-

ration() and we will use it in expressing the model in parallel DEVS. When in “busy”

state the model does not respond to any inputs, implying that the equipment is busy.

Once the amount of time has elapsed, the model returns to the “idle” state. As we

mentioned earlier, the EQUIP atomic model is coupled to a Room (ROOM) atomic
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model. The coupling between these two models will be discussed later in the chapter.

The “out” port of the EQUIP atomic model is used to transmit information to the

ROOM atomic model. We can now define EQUIP in parallel DEVS as follows:

DEV SEQUIP = (XM , YM , S, δext, δint, δcon, λ, ta) (3.7)

where,

XM = {(p, v)|p ∈ IPorts, v ∈ Xp}

is the set of input ports and values, IPorts = {“in”}, and Xin = V1 is an arbitrary

set. The set

YM = {(p, v)|p ∈ OPorts, v ∈ Yp}

is the set of output ports and values, OPorts = {“out”}, and Yout is an arbitrary set.

The set

S = {“idle”, “busy”} × <+
0 × V1 is the set of sequential states.

External Transition Function:

δext((phase, σ, task), e, (p, v))

= (“busy”, tp, task), if phase == “idle” ∧ p == “in”,

tp = getTaskDuration(task);

= (phase, σ − e, task), otherwise.

Internal Transition Function:

δint((phase, σ, task), e, (p, v))

= (“idle”, ∞, task), if phase ==“busy” ∧ tp == 0

Confluence Function:
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δcon(s, ta(s), x) = δext(δint(s), 0, x).

Output Function:

λ(phase, σ, task)

= (out, msg) if phase == “busy”, where msg is the message to send to

the ROOM atomic model.

Time Advance Function:

ta(phase, σ, task) = σ.

c. SCHED Atomic Model

The SCHED atomic model is in charge of accommodating patients and resources into

the system schedule. We allow the modeler to use or implement a scheduling algorithm

of their choice. The SCHED atomic model in shown in Figure 5. It has one input

port “call in” and three types of output ports, namely; “patient out”, “radioph out”

and “hres x out”. The number of outport ports of type “hres x out” depends on the

number of human resources available in the nuclear medicine facility. The information

transmitted by these ports is used to update the human resources’ schedules. The

‘patient out” and “radioph out” output ports are used to send information to the

Patient Generator (PGENR) atomic model and the Radiopharmaceutical Generator

(RPGENR) atomic model, respectively.

The operation of the SCHED atomic model is depicted in Figure 6. The model

has three basic states: “idle”, “update schedule”, and “scheduling”. The model is

initialized in the “idle” state. A transition to the “scheduling” state occurs when the

model is in the “idle” state and a message (calli) is received at the “call in” input port.

A method, getPatientSchedule(); takes the information provided by the patient and
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Output Function:

λ(phase, σ, task)

= (out, msg) if phase == “busy”, where msg is the message to send to the ROOM
atomic model.

Time Advance Function:

ta(phase, σ, task) = σ.

SCHED Atomic Model

The SCHED atomic model is in charge of accommodating patients and resources into the system
schedule. We allow the modeler to use or implement a scheduling algorithm of their choice.
The SCHED atomic model in shown in Figure 5. It has one input port “call in” and three
types of output ports, namely; “patient out”, “radioph out” and “hres x out”. The number
of outport ports of type “hres x out” depends on the number of human resources available in
the nuclear medicine facility. The information transmitted by these ports is used to update the
human resources’ schedules. The ‘patient out” and “radioph out” output ports are used to send
information to the Patient Generator (PGENR) atomic model and the Radiopharmaceutical
Generator (RPGENR) atomic model, respectively.

call_in

patient_out

hres_1_out

hres_2_out
.

.

.

hres_n_out

SCHED

radioph_out

Figure 5: A basic SCHED (scheduler) atomic model

The operation of the SCHED atomic model is depicted in Figure 6. The model has three
basic states: “idle”, “update schedule”, and “scheduling”. The model is initialized in the “idle”
state. A transition to the “scheduling” state occurs when the model is in the “idle” state and a
message (calli) is received at the “call in” input port. A method, getPatientSchedule(); takes the
information provided by the patient and performs the scheduling using the algorithm chosen
by the user. If the scheduling is successful, the model transitions to the “update schedule”
state, where the schedules for the resources selected in serving the patient are updated. After
completing the schedule updates, the model transitions to the “idle” state. Otherwise, if
scheduling is unsuccessful, the model transitions from “scheduling” state back to the “idle”
state.

Mathematically, the SCHED atomic model can be expressed in Parallel DEVS as follows:

DEV SSCHED = (XM , YM , S, δext, δint, δcon, λ, ta) (8)

where,
XM = {(p, v)|p ∈ IPorts, v ∈ Xp}
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Fig. 5. A basic SCHED (scheduler) atomic model

performs the scheduling using the algorithm chosen by the user. If the scheduling is

successful, the model transitions to the “update schedule” state, where the schedules

for the resources selected in serving the patient are updated. After completing the

schedule updates, the model transitions to the “idle” state. Otherwise, if scheduling

is unsuccessful, the model transitions from “scheduling” state back to the “idle” state.

idle

update_schedule

scheduling

if search == 

false

initialize

if p ==

“call_in”

if search ==

true

done

Figure 6: State transition diagram for SCHED atomic model

is the set of input ports and values, IPorts = {“call in”}, and Xcall in = V1 is an arbitrary set.
The set

YM = {(p, v)|p ∈ OPorts, v ∈ Yp}
is the set of output ports and values, and OPorts = {“patient out”, “radioph out”, “hres 1 out”,
“hres 2 out”, · · · , “hres n out”}, where Ypatient out, Yradioph out, Yhres 1 out, Yhres 2 out, · · · , Yhres n out

are arbitrary sets. The

S = {“idle”, “update schedule”, “busy”} × <+,0 × V1

is the set of sequential states.

External Transition Function:

δext((phase, σ, calli), e, (p, v))

= (“scheduling”, ts, calli), if phase == “idle” ∧ p == “call in”,
appointment = getPatientSchedule(calli);

= (phase, σ − e, calli), otherwise.

Internal Transition Function:

δint((phase, σ, calli), e, (p, v))

= (“update schedule”, tu, calli), if phase == “scheduling” ∧ search = true;

= (“idle”, ∞, call i), if phase == “update schedule”;

= (“idle”, ∞, call i), if phase == “scheduling” ∧ search = false;

Confluence Function:

δcon(s, ta(s), x) = δext(δint(s), 0, x).

Output Function:

λ(phase, σ, calli)
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Fig. 6. State transition diagram for SCHED atomic model

Mathematically, the SCHED atomic model can be expressed in parallel DEVS

as follows:

DEV SSCHED = (XM , YM , S, δext, δint, δcon, λ, ta) (3.8)
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where,

XM = {(p, v)|p ∈ IPorts, v ∈ Xp}

is the set of input ports and values, IPorts = {“call in”}, and Xcall in = V1 is an

arbitrary set. The set

YM = {(p, v)|p ∈ OPorts, v ∈ Yp}

is the set of output ports and values, and OPorts = {“patient out”, “radioph out”,

“hres 1 out”, “hres 2 out”, · · · , “hres n out”}, where Ypatient out, Yradioph out, Yhres 1 out,

Yhres 2 out, · · · , Yhres n out are arbitrary sets. The

S = {“idle”, “update schedule”, “busy”} × <+,0 × V1 is the set of sequential states.

External Transition Function:

δext((phase, σ, calli), e, (p, v))

= (“scheduling”, ts, calli), if phase == “idle” ∧ p == “call in”,

appointment = getPatientSchedule(calli);

= (phase, σ − e, calli), otherwise.

Internal Transition Function:

δint((phase, σ, calli), e, (p, v))

= (“update schedule”, tu, calli), if phase == “scheduling” ∧ search =

true;

= (“idle”, ∞, call i), if phase == “update schedule”;

= (“idle”, ∞, call i), if phase == “scheduling” ∧ search = false;

Confluence Function:
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δcon(s, ta(s), x) = δext(δint(s), 0, x).

Output Function:

λ(phase, σ, calli)

= (patient out, patienti), if phase == “update schedule”, where patienti

is the message to send to PGENR;

= (radioph out, radiophi), if phase == “update schedule”, where radiopi

is the message to send to the RPGENR;

= (hres i out, msgi), if phase == “update schedule” ∧ hresID == i,

where msgi is the message to send to the atomic model for human resource

i = 1, ..., n.

Time Advance Function:

ta(phase, σ, calli) = σ.

We omit the mathematical definitions of the rest of the atomic models (CGENR,

PGENR, RPGENR and TRANSD) and instead devote the rest of this subsection to

explain some of the coupled models used to create the simulation model. All the cou-

pled models are coupled according to the three types of connections (EIC, EOC, and

IC ) defined in Equations 3.3, 3.4 and 3.5, respectively. We start with the STATION

coupled model. As shown in Figure 7, the model is created by coupling EQUIP and

ROOM. STATION has three input ports, namely; “patient in”, “radioph in”, and

“hres in”. EICs exist between the input ports and the ROOM atomic model. Two

ICs connect EQUIP with ROOM. Information is passed to EQUIP via ROOM when

an input has been received on STATION’s input ports. The STATION coupled model

has two types of output ports, “patient out” and “hres n out”. The number of out-

put ports of type “hres n out” depends on the number, n, of human resources in the
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nuclear medicine facility. The information transmitted by the outport ports is used

to notify when a patient or human resource has been released from the room. This

only happens when the ROOM atomic model receives information from the EQUIP

atomic model notifying the service performed on the patient has been completed.

= (patient out, patienti), if phase == “update schedule”, where patienti is the
message to send to PGENR;

= (radioph out, radiophi), if phase == “update schedule”, where radiopi is the
message to send to the RPGENR;

= (hres i out, msgi), if phase == “update schedule” ∧ hresID == i, where msgi

is the message to send to the atomic model for human resource i = 1, ..., n.

Time Advance Function:

ta(phase, σ, calli) = σ.

We omit the mathematical definitions of the rest of the atomic models (CGENR, PGENR,
RPGENR and TRANSD) and instead devote the rest of this subsection to explain some of
the coupled models used to create the simulation model. All the coupled models are coupled
according to the three types of connections (EIC, EOC, and IC ) defined in Equations 3, 4 and
5, respectively. We start with the STATION coupled model. As shown in Figure 7, the model is
created by coupling EQUIP and ROOM. STATION has three input ports, namely; “patient in”,
“radioph in”, and “hres in”. EICs exist between the input ports and the ROOM atomic model.
Two ICs connect EQUIP with ROOM. Information is passed to EQUIP via ROOM when an
input has been received on STATION’s input ports. The STATION coupled model has two
types of output ports, “patient out” and “hres n out”. The number of output ports of type
“hres n out” depends on the number, n, of human resources in the nuclear medicine facility.
The information transmitted by the outport ports is used to notify when a patient or human
resource has been released from the room. This only happens when the ROOM atomic model
receives information from the EQUIP atomic model notifying the service performed on the
patient has been completed.
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Figure 7: The STATION coupled model

The next model is the NMD coupled model shown in Figure 8. This model is a representation
of the nuclear medicine department (NMD) and is created by coupling the human resource
atomic models (TECH, NURSE, RCPST, PHYSN, MANGR) to STATION. In the figure we
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Fig. 7. The STATION coupled model

The next model is the NMD coupled model shown in Figure 8. This model is a

representation of the nuclear medicine department (NMD) and is created by coupling

the human resource atomic models (TECH, NURSE, RCPST, PHYSN, MANGR) to

STATION. In the figure we only show human resource models TECH, NURSE and

MANGR due to limitation in figure size.

The last coupled model is the Experimental Frame (EF) shown in Figure 9. The

EF allows the modeler to specify the type of experiments that should be performed

on NMD to enable answering questions of interest. Therefore, the EF is coupled

to NMD (as depicted by the arrows) to create the overall simulation model for a

nuclear medicine facility. The figure shows the atomic models that are part of EF

and the way they are connected. CGENR is an atomic model of a telephone call

center and is in charge of generating telephone call messages for patient appointment

requests. This model allows the user to specify the telephone call arrival rate and the
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Fig. 8. The NMD coupled model

associated probability distribution. The generated appointment requests are received

and processed by the SCHED atomic model. SCHED allows the user to select an

algorithm for scheduling patients (and the needed resources) into the system. The

schedule information is passed from SCHED to the RPGENR and PGENR atomic

models. RPGENR models the ordering and arrival of radiopharmaceuticals at the

facility at the scheduled time. PGENR models the actual arrival of patients to the

nuclear medicine facility at their appointment times. To compute the performance

measures of interest (described in Section 1), we created the transducer (TRANSD)

atomic model. The TRANSD atomic model collects information from NMD and

computes performance measures of interest.

3. NMD System Entity Structure

A system entity structure (SES) is used to plan, generate, and evaluate design of

simulation-based systems. This is a scheme that organizes a set of possible structures

of a system. A library of models is generated when all the components abstracted

from the real system are implemented. The SES is used to classify these components
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Fig. 9. The EF coupled model

by their characteristics and to organize them in a hierarchical composition. This

representation allows the modeler to visualize the system as a whole. The goal of the

SES is to synthesize a simulation model by traversing a model hierarchical structure.

A SES represents not a single model structure, but a family of structures from which

a candidate entity structure can be selected.

The SES for the NMD simulation model is shown in Figure 10. At the top level,

the scheme shows the two major coupled models that define the system structure.

The Experimental Frame (EF) branch is decomposed into three branches that are

assigned to the Transducer(TRANSD), Generator(GENR) and Scheduler(SCHED)

atomic models. The double line under the GENR branch means specialization. The

Generator model is categorized into specialized entities such as the Patient Gen-

erator(PGENR), Call Generator(CGENR) and the Radiopharmaceutical Genera-

tor(RPGENR). The NMD branch is decomposed into two branches: Human Resource

(HR) and Station (STATION). The HR branch is decomposed into four branches, each

define a different type of human resource existing in nuclear medicine. The Tech-

nologist (TECH) can be specialized into Nuclear Radiology Technologist and EKG

Technologist. The STATION branch is decomposed into two branches. A selection

constraint, depicted as dotted arrow from Gamma Camera (GAMMC) and Treadmill
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4.3 NMD System Entity Structure

A system entity structure (SES) is used to plan, generate, and evaluate design of simulation-
based systems. This is a scheme that organizes a set of possible structures of a system. A
library of models is generated when all the components abstracted from the real system are
implemented. The SES is used to classify these components by their characteristics and to
organize them in a hierarchical composition. This representation allows the modeler to visualize
the system as a whole. The goal of the SES is to synthesize a simulation model by traversing
a model hierarchical structure. A SES represents not a single model structure, but a family of
structures from which a candidate entity structure can be selected.

The SES for the NMD simulation model is shown in Figure 10. At the top level, the scheme
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Figure 10: System Entity Structure

shows the two major coupled models that define the system structure. The Experimental Frame
(EF) branch is decomposed into three branches that are assigned to the Transducer(TRANSD),
Generator(GENR) and Scheduler(SCHED) atomic models. The double line under the GENR
branch means specialization. The Generator model is categorized into specialized entities such
as the Patient Generator(PGENR), Call Generator(CGENR) and the Radiopharmaceutical
Generator(RPGENR). The NMD branch is decomposed into two branches: Human Resource
(HR) and Station (STATION). The HR branch is decomposed into four branches, each define
a different type of human resource existing in nuclear medicine. The Technologist (TECH)
can be specialized into Nuclear Radiology Technologist and EKG Technologist. The STATION
branch is decomposed into two branches. A selection constraint, depicted as dotted arrow
from Gamma Camera (GAMMC) and Treadmill (TREADM) specializes entities to ROOM.
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Fig. 10. System entity structure

(TREADM) specializes entities to ROOM. Specialization entities mean that those

entities cannot be selected independently. Finally, GAMMC is specialized into image

with SPEC capability (IMSPEC) and image (IMAG).

4. Model Implementation, Verification and Testing

We implemented the NMD simulation model in DEVSJAVA [93], a Java-based mod-

eling and simulation software implementation of DEVS formalisms such as parallel

DEVS. We tested and verified each atomic and coupled model using DEVSJAVA

Simulation Viewer Version (SimView) 1.0.4. SimView allows the modeler to visu-

ally inspect the behavior of each model created in DEVSJAVA. Atomic models were

verified first because they serve as building blocks for coupled models. Every compo-
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nent is represented with their input and output ports. Couplings among the various

models are also represented for coupled models. Figure 11 shows a print screen of a

SimView window for the EF coupled model.

Specialization entities mean that those entities cannot be selected independently. Finally,
GAMMC is specialized into image with SPEC capability (IMSPEC) and image (IMAG).

4.4 Model Implementation, Verification and Testing

We implemented the NMD simulation model in DEVSJAVA [32], a Java-based modeling and
simulation software implementation of DEVS formalisms such as Parallel DEVS. We tested and
verified each atomic and coupled model using DEVSJAVA Simulation Viewer Version (SimView)
1.0.4. SimView allows the modeler to visually inspect the behavior of each model created in
DEVSJAVA. Atomic models were verified first because they serve as building blocks for coupled
models. Every component is represented with their input and output ports. Couplings among
the various models are also represented for coupled models.

Figure 11: SimView window

SimView has the advantage of having several convenient functionalities that include allowing
the user to start and stop the simulation at any time during the simulation run, fast-forwarding
or slowing down the simulation, and being able to input user defined parameters created for
model verification and testing by simply clicking on a model’s input port and selecting the
desired option from the pop-up menu. To run a simulation, the user selects the appropriate
model from the top menu on the SimView window and click the run button. During the
simulation run the simulation clock is displayed on the window. Parameters and statistics of
are displayed as well by positioning the mouse cursor on top of the model block.

5 Application
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Fig. 11. SimView window

SimView has the advantage of having several convenient functionalities that in-

clude allowing the user to start and stop the simulation at any time during the sim-

ulation run, fast-forwarding or slowing down the simulation, and being able to input

user defined parameters created for model verification and testing by simply clicking

on a model’s input port and selecting the desired option from the pop-up menu. To

run a simulation, the user selects the appropriate model from the top menu on the

SimView window and click the run button. During the simulation run the simulation



55

clock is displayed on the window. Parameters and statistics of are displayed as well

by positioning the mouse cursor on top of the model block.

D. Application

To validate the NMD simulation model, we applied it to a real setting and used his-

torical data for a particular year. We implemented a patient and resource scheduling

algorithm that was used in practice that year to schedule patients and resources in

the simulation. Our simulation model validation is based on a real nuclear medicine

setting, historical data and expert opinion. After validating the simulation model,

we implemented and studied alternative scheduling algorithms to gain insights into

patient service management and system performance in nuclear medicine. Next we

describe the real nuclear medicine setting for our computational study. We then de-

scribe the experimental setup, report the simulation results and discuss our findings.

1. Real Nuclear Medicine Setting

We applied the NMD simulation model to the nuclear medicine department of the

Scott and White Health System in Temple, Texas, U.S.A. This nuclear medicine clinic

is one of the largest fully-accredited nuclear laboratories for general nuclear imaging

and non-imaging, nuclear cardiology and positron emission tomography (PET) scan

in the country. This facility operates five days a week from 8:00 am to 5:00 pm, and

is not open on weekends. There are sixteen fulltime physician support staff budgeted

in this department. Every member of the group performs specific tasks that depend

on the staff specialty. The department has eight technologists and two EKG tech-

nologists. This staff group has several responsibilities that include the preparation

and administration of the radiopharmaceuticals, drawing doses and imaging acquisi-
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tion. Electrocardiogram (EKG) technicians perform stress exams for cardiac tests.

A nurse assists with the radiopharmaceutical administration and drawing doses. The

division manager can also assist with those activities in the absence of one of the

regular staff. The department also has two fulltime nuclear medicine physicians, two

radiology residents, and a staff cardiologist.

There are seven gamma cameras (one Philips PRISM 3000, two Philips PRISM

2000, three Philips AXIS and one Philips Meridian). Five of these cameras are planar,

and are capable of doing 2D whole-body imaging and 3D Single Photon Emission

Computed Tomography (SPECT). The other two cameras are also planar, one is

SPECT capable of a small field of view only and the other is for imaging only. The

stress cardiac area comprises a nurse station and three stress rooms. Two of the stress

rooms have treadmills. The third room is for chemical stress testing for patients who

cannot walk on a treadmill. All three are equipped with EKG capability. In the PET

facility, there is one PET imaging camera, three patient preparation rooms for patient

hydration and waiting time, and a radiopharmaceutical receiving room. Around 60

different procedures are performed in this department. Table II in Section 1 shows

the procedures/tests that were performed more frequently at the clinic during the

year of our study and we only use these procedures in our simulation.

Patient calls are answered by three receptionists. Patients may provide a pre-

ferred day of the week for their appointment. A search for an appointment is first

done by trying to satisfy that preference. However, if an appointment is found where

the patient waits more than a month to be served, the preference provided is dis-

regarded and an alternative earlier appointment is provided. Resource scheduling

is performed using a load balancing routine where each resource is scheduled in a

round-robin manner. Nevertheless, some human resources (technologists) from the

staff are fixed to specific stations. Human resources assigned to stations take care



57

of the stations where equipment utilized the most is located. The clinic manager

schedules patients and resources mainly based on experience.

2. Experimental Setup

We used the following configuration for the NMD simulation model based on the

historical data: 7 gamma cameras, 2 stress rooms, 1 PET positron camera, 10 tech-

nologists, 1 nurse and 1 manager. The specific station names are TRT(1), TRT(2),

TRT(3), Treadmill(1),Treadmill(2), Axis(1), Axis(2), Axis(3), P2000(1), P2000(2),

P2000(3) and Meridian(1). The specific human resource names are Technologist(1),

Technologist(2), Technologist(3), Technologist(4), Technologist(5), Technologist(6),

Technologist(7), Technologist(8), Technologist(9) and Technologist(10). We assumed

Poisson arrivals for patient appointment calls based on historical data. There were

about 90 calls per day on average during that year. We computed average monthly

arrival rates to use in the simulation and set the appointment call interarrival process

to follow an exponential distribution with the following monthly mean interarrival

times in minutes: January, 6.00; February, 6.25; March, 6.58; April, 6.67; May, 6.75;

June, 6.88; July, 6.96; August, 7.04; September, 7.10; October, 7.29; November, 7.34;

and December, 7.44.

To generate a nuclear medicine procedure/test for each patient, we used an empir-

ical distribution for the procedures that were performed during that year. According

to historical data about 70% of the patient calls were for outpatients, who made

appointments in advance. The patients who required to be served immediately com-

prised the other 30%, half of which were inpatients who required to be served on the

same day. The other half were emergency patients who needed to be served as soon as

possible. Also, on average 1% of the patients arrived late for their appointments, 1%

canceled their appointments, and 1% were no shows. Therefore, we did not include
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late arrivals, cancelations, and no shows in our simulation.

We implemented a scheduling algorithm that was used during the year of our

study to schedule patients and resources. We refer to this algorithm as fixed resource

(FR) algorithm and it can be summarized as follows:

• FR: Under this scheduling policy Technologist(1) and Technologist(2) are fixed

to station Axis(1) and station Axis(2), respectively. The rest of the staff are

available to be scheduled to the other stations as needed. The manager is

available to perform procedures at any station.

To study the impact of patient and resource scheduling on system performance, we

implemented the following four alternative variations of the FR scheduling algorithm:

• NFR: This is the no fixed resource scheduling policy where none of the hu-

man resources are fixed to any station and the manager is available to perform

procedures at any station.

• FR ALL: Under this scheduling policy, the human resources are fixed to specific

stations as follows: Technologist(1) is fixed to station Axis(1); Technologist(2)

is fixed to station Axis(2); Technologist(3) is fixed to station Axis(3); Technolo-

gist(4) is fixed to station P2000(1); Technologist(5) is fixed to station P2000(2);

Technologist(6) is fixed to station P2000(3); and Technologist(7) is fixed to

station Meridian(1). Technologist(8) is not fixed to any station while Tech-

nologist(9) and Technologist(10) (EKG technologists) are both fixed to stations

Treadmill(1) and Treadmill(2). The manager is available to perform procedures

at any station.

• NFR NO MNGR: This is the same as NFR but the manager is no longer avail-

able to perform any procedures unless the patient has to wait for the appoint-
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ment for more than a month. This algorithm is aimed at studying the impact

of not using the clinic manager to perform technologist duties unless necessary.

• FR NO MNGR: This scheduling policy is the same as FR but the manager is

no longer available to perform any procedures unless the patient has to wait

more than a month for the appointment. This algorithm is aimed at studying

the impact of not using the clinic manager to perform technologist duties unless

necessary.

We used the performance measures identified in the literature (Section 1) to

quantify service levels based on both patient and management perspectives. Specif-

ically, we used two performance measures for patient satisfaction described in Table

V: patient waiting time Type 1 and patient preference satisfaction ratio. For man-

ager’s perspective performance measures, we used the three measures listed in Table

VI: equipment utilization, human resource utilization and patient throughput. We

made 100 replications for each simulation run and used a scheduling time horizon of

12 months with a warm-up period of 3 months. To maintain independence among the

replications, we used different seeds for the random number generators in the simu-

lation. We computed the mean, standard deviation and confidence intervals for all

the performance measures. All the simulations were conducted on a DELL Optiplex

GX620 with a Pentium D processor running at 3.2GHz with 2.0GB RAM.

3. Simulation Results

We first report model validation results based on patient throughput using FR. Figure

12 shows a plot of the average number of patients served in a given month using

FR and the actual historical values. As can be seen in the figure, the simulation

results show a decreasing trend in the average number of patients served per month
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from January to December matching the historical trend. The FR values are within

10% of the actual values. They are all below the actual values because we only

included the top ten procedures that were performed during that year (Table II) in

the simulation. The average annual patient throughput for FR is 61.57 patients per

day, compared to the actual annual patient throughput of 68.12 patients per day. For
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Figure 13: Number of patients served per month under different algorithms

standard deviation (Std. Dev) and the 90% confidence interval (CI). The results for human
resource and equipment (station) utilization are given in Figure 14 and Figure 15, respectively.
Observe that utilization values for both human resource and equipment highly depend on the
scheduling algorithm used. Finally, the results for patient perspective performance measures
are given in Figure 16. The figure shows variation of patient waiting time Type 1 and patient
preference satisfaction ratio (number of times patient request for an appointment is satisfied)
with the scheduling algorithm used.
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patient perspective measures under FR, Type 1 wait time (time a patient waits from

call to appointment) is 5.48 days, while patient preference is 87.68%. The actual

values for these two measures were not available for comparison. However, based on

expert opinion, these results are consistent with the expected values for the year of

our study.

Next we report simulation results for the rest of the alternative scheduling al-
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standard deviation (Std. Dev) and the 90% confidence interval (CI). The results for human
resource and equipment (station) utilization are given in Figure 14 and Figure 15, respectively.
Observe that utilization values for both human resource and equipment highly depend on the
scheduling algorithm used. Finally, the results for patient perspective performance measures
are given in Figure 16. The figure shows variation of patient waiting time Type 1 and patient
preference satisfaction ratio (number of times patient request for an appointment is satisfied)
with the scheduling algorithm used.
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gorithms and compare them to FR. Patient throughput results are summarized in

Figure 13. First, NFR provides results that are not significantly different from those

obtained by FR for all the months. Recall that in NFR no resource is fixed to any

station. Second, the results for FR ALL in which all the technologists are fixed to

specific stations (except Technologist 8), show a significant decrease in the average

number of patients served in each month compared to FR and NFR. Third, the results

for NFR NO MNGR (NFR without the manager) show a totally different trend. The

number of patients served for January to April are significantly lower than those under

FR and NFR, while those for June to December are significantly higher. The average

number of patients served in May is not significantly different from that under FR

and NFR. Finally, the results for FR NO MNGR (FR without the manager) shows a
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similar trend as NFR NO MNGR, but the lower values now range from January to

June, while the higher values range from August to December. The average number

of patients served in July is not significantly different from that under FR and NFR.

Table VII. Number of patients served, system throughput and simulation time
Patients CPU Time

Algorithm Statistic Served Patients/hr Patients/day (secs)
Mean 14782.84 6.84 61.6 614.44
Std. Dev. 78.99 0.04 0.33 6.47

NFR CI Lower 14769.72 6.84 61.54 613.36
CI Upper 14795.96 6.85 61.65 615.51
Mean 14776.2 6.84 61.57 611.39
Std. Dev. 78.65 0.04 0.33 9.09

FR CI Lower 14763.14 6.83 61.51 609.88
CI Upper 14789.26 6.85 61.62 612.9
Mean 14448.88 6.69 60.2 554.14
Std. Dev. 74.84 0.03 0.31 5.43

FR ALL CI Lower 14436.45 6.68 60.15 553.24
CI Upper 14461.31 6.7 60.26 555.04
Mean 14801.24 6.85 61.67 651.12
Std. Dev. 72.81 0.03 0.3 15.12

NFR NO MNGR CI Lower 14789.15 6.85 61.62 648.61
CI Upper 14813.33 6.86 61.72 653.63
Mean 14655.14 6.78 61.06 651.12
Std. Dev. 67.19 0.03 0.28 14.86

FR NO MNGR CI Lower 14643.98 6.78 61.02 648.65
CI Upper 14666.3 6.79 61.11 653.59

The statistical results for the annual number of patients served, patient through-

put and simulation CPU time for all the scheduling algorithms are given in Table VII.

We report the mean, standard deviation (Std. Dev) and the 90% confidence interval

(CI). The results for human resource and equipment (station) utilization are given

in Figure 14 and Figure 15, respectively. Observe that utilization values for both

human resource and equipment highly depend on the scheduling algorithm used. Fi-

nally, the results for patient perspective performance measures are given in Figure

16. The figure shows variation of patient waiting time Type 1 and patient preference
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Axis(2), respectively. As a consequence, Axis(1), Axis(2), Axis(3), P2000(1) and P2000(2)
have higher utilization.

Also, under FR utilization of TRT1, TRT2 and Meridian(1) is reduced. In fact, utilization
of Nurse(1) and Manager(1) is reduced by almost half. Since Nurse(1) and Manager(1) perform
some procedures on Axis(1) and Axis(2), their utilization decreases because they cannot use
those stations anymore as they are dedicated to the two technologists. In terms of patient
perspective measures, the results show that on average patients wait slightly less under FR

26

Fig. 16. Patient waiting Type 1 and preference satisfaction ratio

satisfaction ratio (number of times patient request for an appointment is satisfied)

with the scheduling algorithm used.

4. Discussion

Scheduling patients and limited resources in nuclear medicine to provide high levels

of patient service while maximizing system performance is challenging. The type

of algorithm used to schedule patients and resources has a high impact on system

performance measures for both patients and managers. Among the five schedul-

ing algorithms studied, only FR and NFR gives similar results in terms of patient

throughput. However, even for these two algorithms, human resource and equip-

ment utilization results are different. For example, FR has higher utilization for

Technologist(1) and Technologist(2), who are fixed to stations Axis(1) and Axis(2),

respectively. As a consequence, Axis(1), Axis(2), Axis(3), P2000(1) and P2000(2)

have higher utilization.
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Also, under FR utilization of TRT1, TRT2 and Meridian(1) is reduced. In fact,

utilization of Nurse(1) and Manager(1) is reduced by almost half. Since Nurse(1)

and Manager(1) perform some procedures on Axis(1) and Axis(2), their utilization

decreases because they cannot use those stations anymore as they are dedicated to

the two technologists. In terms of patient perspective measures, the results show

that on average patients wait slightly less under FR than NFR. Also, there is slightly

higher patient preference satisfaction. However, NFR not only provides similar pa-

tient throughput as FR, it also allows for equity in terms of evenly distributing the

workload among human resources and equipment.

FR ALL reveals that fixing all but one technologist to specific stations is not

good for the system in terms of the average number of patients served per month.

We observe that even though this patient throughput is significantly less than that

under FR and NFR, utilization of resources under this policy is comparable to the

other policies. We noticed that procedures with longer durations were scheduled

more often under FR ALL. However, FR ALL has the lowest time for patient waiting

time Type 1. This was caused by the fact that this policy was able to satisfy patient

preference only 25% of the time. So most of the time patients were scheduled without

taking into consideration their preferred appointment day, otherwise patients would

end up waiting more than a month for an appointment.

When manpower is reduced as in NFR NO MNGR and FR NO MNGR where

Manager(1) is no longer available to perform procedures, we observe that the system

cannot satisfy demand from January to May when the demand is higher (Figure

13). This forces the system to schedule more patients further into the future, that

is, longer patient waiting time Type 1. Consequently, there is a higher number of

patients served from June (NFR NO MNGR)/August (FR NO MNGR) to December

even though actual patient demand is lower during those months. In comparing
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NFR NO MNGR and FR NO MNGR, we see that NFR NOMNGR performs better

than FR NO MNGR in terms of the number of patients served from January until

October. FR NO MNGR serves more patients than NFR NO MNGR from November

to December (see Figure 3). Overall, we see that with limited human resources, not

fixing human resources to stations coupled with evenly distributing the workload

among resources results in better system performance.

NFR and FR scheduling policies reported similar results for the patient per-

spective performance measures; however FR performs slightly better than NFR. An

average waiting time Type 1 of around 5.5 days and a patient preference satisfaction

ratio that is close to 90% was obtained for both policies. The FR ALL algorithm

reported the lowest values for the average number of patients served during the year,

average waiting time Type 1, and patient preference satisfaction ratio. Flexibility

in terms of managing resources is limited when most of the technologists are fixed

to stations. This fact forces the FR ALL policy to disregard patient preference re-

quests most of the time. If patient preferences are taken into account patients would

end up waiting more than a month for their appointments. However, when patient

preferences are not taken into account, patients tend to be scheduled earlier on the

first appointment time slot available. NFR NO MNGR reported an average waiting

time of 7.86 days and a patient preference satisfaction ratio of 52.23%. Under this

policy the manager is not available most of the time and the staff capacity is less.

This drop in capacity causes an increase in the average waiting time and a decrease in

the patient preference satisfaction ratio when the figures are compared to those under

NFR and FR. FR NO MNGR reported the highest waiting time and one of the lowest

patient preference satisfaction ratios. Under FR NO MNGR flexibility for managing

the resources available is limited because two technologists are fixed to stations and

the manager is not available to perform procedures most of the time.
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E. Summary

Managing patient service in nuclear medicine under limited resources is a very chal-

lenging problem with very little research attention. In this chapter, we use the discrete

event system specification (DEVS) formalism to derive a generic simulation model for

nuclear medicine patient service management that takes both patient and manage-

ment perspectives. DEVS is a formal M&S framework based on dynamical systems

theory and provides well defined concepts for coupling components, hierarchical and

modular model construction, and an object-oriented substrate supporting repository

reuse. We implement and validate the simulation model based on a real nuclear

medicine setting and report computational results based on a scheduling algorithm

and several patient and management performance measures. The results provide use-

ful insights into patient service management in nuclear medicine. For example, fixing

technologists to specific stations may result in reduced patient throughput unless the

right number to fix to stations is carefully determined (e.g. through simulation).

Also, reducing manpower even by a single technologist can result in scheduling pa-

tients further into the future during months with high patient demand. Thus it is up

to each nuclear medicine clinic to select the ‘best’ scheduling policy based on which

performance measures, for both patient and management perspectives, would provide

a high level of service.

While this work focuses on nuclear medicine, we believe that results will find

generality in patient service management in other health care settings. It also provides

several future research directions. For example, the current simulation model can be

extended to a stochastic model using stochastic DEVS (SDEVS), which allows for

modeling atomic model state transitions as a stochastic process. One can also envision

stochastic optimization algorithms for scheduling patients and resources, which can
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be based on mathematical programming or stochastic online optimization. Finally,

the current work can be extended to a simulation-optimization setting, whereby the

simulation model provides feedback to stochastic optimization scheduling algorithms

with the objective of making optimal decisions based patient and the nuclear medicine

management perspectives.
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CHAPTER IV

PATIENT AND RESOURCE SCHEDULING OF MULTI-STEP MEDICAL

PROCEDURES IN NUCLEAR MEDICINE

A. Introduction

Nuclear medicine is a sub-specialty of radiology that provides highly specialized ser-

vices by means of new technology for diagnosis and treatment of patients. There

has been a rise in demand for such specialized services in the U.S. and this has been

attributed as a contributor to the increased health care costs, which surpassed those

in other nations that provide similar services. Physicians are becoming more prone

to asking patients to undergo specialized procedures in order to obtain more accu-

rate diagnoses. However, scheduling patients and resources in specialized clinics such

as nuclear medicine remains a challenging problem. This may be attributed to the

increased demand in services and the nature of nuclear medicine procedures. In this

chapter, we derive algorithms to assist nuclear medicine managers towards schedul-

ing nuclear medicine patients and resources more efficiently. We consider both the

patient’s and the manager’s perspectives.

Nuclear medicine procedures (tests or studies) are typically multi-step, involve

multiple resources, and require the administration of a radiopharmaceutical (radioac-

tive isotope, e.g., iodine-131) to the patient. This allows for images of specific body

organs to be taken (scan) using gamma cameras that sense the radiation emitted by

the radiopharmaceutical. Since radiopharmaceuticals have a short half-life (minutes),

their decay imposes strict time constraints on scheduling patients and resources in

order to get good quality scans. Thus scheduling patients in nuclear medicine requires

very strict procedure protocols, which if not followed can result in poor scans. In this



70

case, time, money and resources are wasted, and the patient has to be rescheduled

for another day after having been exposed to radiation. Some nuclear medicine tests

require only a single scan while others involve multiple scans in a day or multiple

days. Each scan takes several minutes to hours to complete.

Nuclear medicine procedures require the utilization of the several resources such

as a technologist, gamma camera, radiopharmaceutical, and sometimes, a nurse or

EKG (electrocardiography) technician. The gamma cameras may cost up to a mil-

lion dollars and thus have to be used and managed effectively. Since at many nuclear

medicine clinics radiopharmaceuticals are prepared at remote radio-pharmacies from

the clinic, scheduling of their delivery, patient injection and image acquisition requires

lead time and must be carefully managed. Radiopharmaceuticals may cost up to sev-

eral hundreds of dollars. The resources needed to perform each procedure step must

be available at the scheduled times. A patient has to be rescheduled if the procedure

is not completed successfully. Therefore, scheduling patients, resources, and radio-

pharmaceutical preparation and delivery is a challenging problem for nuclear medicine

departments. Consequently, providing a high quality of service to the patient through

the use of mathematical techniques is of great interest to nuclear medicine managers.

However, the characteristics found in the management of patients and resources in

nuclear medicine makes it a unique problem with limited research reported in the lit-

erature. Furthermore, very few commercial packages are available for patient service

management and the few available do not have algorithms for scheduling patients and

resources efficiently.

Several practical issues have to be considered to achieve a well designed system for

patient service management in nuclear medicine. For example, scheduling decisions

must satisfy the goals of both patients and managers. In this work, we consider

both perspectives. Both points of view are important when designing scheduling
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policies to improve the service offered to patients and the way resources are utilized.

The contributions of this chapter include mathematical algorithms for scheduling

patients and resources in nuclear medicine that consider both patient and manager

perspectives. These scheduling algorithms are implemented and tested using the

discrete event simulation model proposed by [94]. We obtain computational results

that provide useful insights into managing patient service and resources in nuclear

medicine. While this work focuses on nuclear medicine, we believe that results can

be applied to many other similar health care settings that may not be as complex

as nuclear medicine. For example, our results can be applied to diagnostic imaging

areas such as magnetic resonance imaging (MRI) and computed axial tomography

(CT Scan).

The rest of the chapter is organized as follows: In Section 2 we review closely

related work and provide preliminaries on nuclear medicine resources and procedures

in Section 3. We derive algorithms for scheduling nuclear medicine patients and

resources in Section 4. We report on a computational study to quantify important

trade-offs among different patient and resource scheduling strategies in Section 5.

We also discuss the results and highlight the insights into the complexity of nuclear

medicine patient service management. We end the chapter with some concluding

remarks and directions for further research in Section 6.

B. Nuclear Medicine Department Setting

A typical nuclear medicine department contains several entities that interact accord-

ing to the requirements of the service requested. These include humans (staff), pro-

cedures/tests, stations, and patients. We describe these entities in the context of

their interaction with the appointment scheduling system, and then summarize the
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performance measures used to evaluate the scheduling algorithms presented in this

chapter.

Table VIII. Staff duties in nuclear medicine
Human resource Responsibilities

Hydrate patient;

Technologist Radiopharmaceutical preparation;

Imaging

Hydrate patient;

Nurses Radiopharmaceutical administration;

Draw doses

Hydrate patient;

Physicians Radiopharmaceutical administration;

Draw doses

Hydrate patient;

Managers Radiopharmaceutical preparation;

Radiopharmaceutical administration

1. Nuclear Medicine Entities

a. Human Resources

The staff are comprised of four types of human resources: technologists, nurses, physi-

cians, and managers. Each human resource possesses his/her own expertise and ex-

perience, which determine the set of activities they can perform and the amount of

time required to complete each activity. Human resources that have more experience

are expected to complete their tasks relatively quickly. Some of the activities that

can be performed by the members of the staff are listed in Table VIII.
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Table IX. Diagnostic procedures in nuclear medicine

CPT Code Name

78465 Cardiovascular Event (CVE) Myocardial Imaging (SP-M)

78815 PET CT skull to thigh

78306 MSB-bone imaging (whole body)

78315 MSC-bone imaging (three phase)

78223 GIC-Hepatobiliary imaging

78472 CVJ-cardiac blood pool

78585 REB-Pulm perfusion / ventilation

78006 ENC-Thyroid imaging

78195 HEE-Lymphatic imaging

78464 CVD-Myocardial imaging (SP-R ORS)

b. Procedures (Tests)

Procedures/tests are requested by the patient’s primary physician or attending physi-

cian. Unlike general outpatient clinics, in nuclear medicine patients attend to their

appointments most of the time and no shows are not an issue. Nuclear medicine

procedures provide physicians with information about the function of organs of the

human body and are used for patient diagnosis and treatment. We present a list of

nuclear medicine procedures with their current procedural terminology (CPT) codes

in Table IX.

At least one radiopharmaceutical is administered to the patient at the beginning

of a procedure. Radiopharmaceuticals are requested in advance and they need to be

at the clinic by the time of the patient appointment. Nuclear medicine procedures are

multi-step and each step has a limited time duration. This time duration varies de-

pending on the human resource performing the task; however, the procedure step has

to be completed within the time window established by a protocol. Table X provides

a description of a nuclear medicine procedure. The MSC-bone imaging procedure has
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Table X. Procedure 78315: MSC-bone imaging (three phase)

Step Activity Time (min.) Station Human Resource

Meridian; Technologists;

1 Hydrate patient 20 TRT 1, 2 & 3; Nurse;

Axis 1, 2, & 3; Manager

P2000A & B

Meridian; Technologists;

2 Imaging 15 P2000A & B; Manager

Axis 1, 2, & 3

3 Patient Wait 150-180 Waiting

Axis 1, 2, & 3; Technologists;

4 Imaging 45 P3000; Manager

Meridian

fours steps and a minimum completion time of 230 minutes. This procedure requires

the utilization of one radiopharmaceutical, three stations, and three members of the

staff.

c. Stations and Equipment

Nuclear medicine departments are subdivided into stations where procedures/tests

are performed. Each station contains at least one type of equipment. Stations are

classified depending on the equipment they contain. Nuclear medicine equipment

include different types of gamma cameras and treadmills for cardiovascular tests. All

the entities needed to perform a procedure step have to be present in the station before

starting any activity. For example, in order to perform a scan the technologist and the

patient have to be present at the station and the camera has to be configured to take

the appropriate image. The time spent by these entities in the stations will depend

on several factors such as the expertise of the human resource and the procedure
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protocol.

d. Patients

Requests for procedures are managed by a call center. A receptionist takes care of

these requests by finding an appointment in the system for the patient. Requests are

always for a single procedure and sometimes patients will provide a preference for the

appointment date. The appointment provided to the patient is determined by the

scheduling policies or algorithms used by the clinic.

2. Performance Measures

We evaluate the performance of our scheduling algorithms using measures that take

into account the perspectives of both the clinic manager and the patients. The se-

lected performance measures were identified as commonly used in literature. Table

XI provide a description of performance measures used to quantify the level of patient

satisfaction in health care clinics. Performance measures that consider the perspective

of managers are provided in Table XII.

Table XI. Performance measures from patient’s perspective

Name Description Reference

Waiting Waiting time from the time of the [18],

time type 1 procedure request until the time [52]

of the appointment

Preference Number of times patients are [61]

ratio scheduled on the date requested

above all patient requests

Cycle time Time patient spends in the system [91],

[92]
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Table XII. Performance measures from manager’s perspective

Name Description Refs.

Equipment The amount of time an equipment [18],

utilization is used during operating hours [90]

Human resource The amount of time a human resource [90],

utilization is used during operating hours [40]

Patient Number of patients served per day [41]

throughput

To put all the pieces together, we now give a simple example (Figure 17) to

illustrate patient/resource schedules in nuclear medicine. Figure 17 (a) shows two

of the procedures performed in nuclear medicine. We list the step requirements for

each procedure as follows: time duration (time), station (s), and human resource (r).

For the purpose of this example, only one station and human resource is listed per

procedure step but is important to keep in mind that several stations and human

resources can be used to perform a procedure step in nuclear medicine (see Table X).

Figure 17 (b) depicts a schedule for procedure 78815 where the patient is assigned to

come at the beginning of the day. The schedule shows that to perform this procedure

four resources are required at different times of the day. Figure 17 (c) shows the

schedule for a second procedure (78465). Since some of the resources are unavailable

at the beginning of the day the procedure has to be scheduled later in the day. The

schedule shows that for this procedure five different resources are required. Also,

the figure shows that no other procedure can be fitted into the schedule due to the

unavailability of the resources at particular times. For instance, a second procedure

78465 cannot be schedule because the axis station and the technologist are unavailable

during the time slots that will be required for the last step of the procedure.
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time = 20

s = TRT

r = nurse

1 2 3 4

time = 15

s = axis

r = technologist

time = 150-180

waiting

time = 20

s = axis

r = technologist

time = 5

s = TRT

r = technologist

1 2 3 4

time = 30

s = treadmill

r = EKG tech

time =30-60

waiting

time = 30

s = axis

r = technologist

(a)  Procedures 78815 and 78465  

78815 78465

Technologist 2 4

EKG Technologist

Nurse 1

TRT 1

Axis 2 4

Treadmill

Waiting 3

10 30 50 70 90 110 130 150 170 190 210 230

time

(b)  Schedule of procedure 78815

Technologist 2 4 4

EKG Technologist 2

Nurse 1

TRT 1

Axis 2 4 4

Treadmill 2

Waiting 3

Waiting 3

10 30 50 70 90 110 130 150 170 190 210 230

time

(c)  Schedule for procedures 78815 and 78465  

Fig. 17. Example showing one and two scheduled procedures
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C. Patient and Resource Scheduling

We now turn to patient and resource scheduling in nuclear medicine and derive two

algorithms named: no fixed resource (NFR) and fixed resource (FR). NFR algorithm

schedules patients based on a patient’s preferred day for the appointment. However, if

the preference provided by the patient results in an appointment where the patient has

to wait more than a month, an earlier appointment for an alternate day is considered.

Like the NFR algorithm, the FR algorithm schedules patients by first considering their

preferred day. However, unlike the NFR algorithm, some of the members of the staff

are fixed to specific stations. In other words, some human resources are dedicated

to specific stations. We derived the FR algorithm based on the real-life practical

experience. We assume that no more than one patient can be scheduled to use the

same resource at the same time and that the scheduling horizon is long enough so

that no patient request is dropped.

We use the notation in Table XIII to mathematically describe the algorithms

using pseudocode. We also use the following symbols: ← denotes assignment; ==

denotes (equality) comparison, and && denotes logic “and”. We define the set of

day and time slot pairs (d, t) for resource r as Xr = {(d, t)| 1 ≤ d ≤ h, 1 ≤ t ≤ τ}.

Similarly, we define the set of day and time slot pairs (d, t) for station s as Ys =

{(d, t)| 1 ≤ d ≤ h, 1 ≤ t ≤ τ}. The sets Xr and Ys include all the time slots that are

already scheduled. The set of day and time slot pairs (d, t) for patient j is defined as

Aj = {(d, t)| 1 ≤ d ≤ h, 1 ≤ t ≤ τ}.

For easy of exposition, we first describe a method (function) we refer to as

CheckSchedule() (Figure 18), which is implemented by both the NFR and FR algo-

rithms. This method checks the availability of a human resource (when ρ = r) or a

station (when ρ = s) during a given time interval t to t+ akp, and returns a boolean
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Table XIII. Scheduling algorithms sets and parameters

Sets

J : Set of patients, indexed j.

S : Set of stations, indexed s.

R : Set of human resources, indexed r.

P : Set of nuclear medicine procedures, indexed p.

Rkp : Set of human resources qualified to perform step k of procedure p.

Skp : Set of stations where step k of procedure p can be performed.

Aj : Set of day and time slot pairs, (d, t), for patient j.

Xr : Set of day and time slot pairs, (d, t), for human resource r schedule.

Ys : Set of day and time slot pairs, (d, t), for station s schedule.

Parameters

dj : Call day for patient j.

tj : Call time for patient j.

pj : Procedure requested by patient j.

ω : Number of days in a week.

µ : Number of days in a month.

q : Day of the week requested by the patient, indexed q = 1, · · · , 5,

where 1=Monday, 2=Tuesday, · · · , 5=Friday .

np : Total number of steps for procedure p, indexed k = 1, · · · , np.
δp : Number of time slots required for procedure p.

akp : Number of time slots required for step k of procedure p

τ : Total number of time slots in a day, indexed t = 1, · · · , τ .

m : Number of days before arrival of radiopharmaceutical after placing order.

α : First day that can be used to schedule an appointment for patient j.

ρ : variable representing resource r or station s.

h : Total number of days in the scheduling horizon.
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indicating whether or not that time interval is available. If any one of the time slots

within the interval t to t+akp is occupied, that it is in the set Xρ, the method returns

false, otherwise it returns true. The method simply checks whether or not the time

slots from time t to t+ akp are included in the current schedule.

The NFR and FR algorithms share the same overall structure described by the

pseudocode in Figure 19. The set of patients J is initialized in line 1. Lines 2 and 3

define the time horizon (day and time) when patient requests will be received. Patient

requests are received (line 4) and added to set J as they arrive (line 5). A method

called ServeRequest-Algorithm(), where Algorithm denotes NFR or FR, takes pa-

tient information and finds an appointment (line 6). The two algorithms differ in the

way they implement this method.

CheckSchedule (ρ, d, t, akp)

1 X ← Xρ

2 for time = t to t+ akp do

3 if (d, time) ∈ Xρ

4 return false

5 else time← time+ 1

6 return true

Fig. 18. Pseudocode for CheckSchedule()

Scheduling-Algorithm

1 J ← {∅}, j = 0;

2 while d ≤ h

3 while t ≤ τ

4 (pj, q)←GetPatientRequest(j);

5 do J ∪ {pj}, dj ← d, tj ← t, j ← j + 1;

6 Aj ← ServeRequest-Algorithm (j, pj, dj, tj, q);

Fig. 19. Pseudocode for Scheduling-Algorithm
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1. NFR Algorithm

The NFR algorithm is invoked by the method ServeRequest-NFR() summarized in

Figure 20. The algorithm allows the patient (j) to provide a preferred day of the

week (q) for the appointment. Using this preferred day, a search for an appointment

is performed based on the patient’s requested procedure pj. Once an appointment is

found, the algorithm checks that the waiting time for the patient is not greater than

a month. If it is, the algorithm checks for an alternative appointment (different day

of the week) with lesser waiting time. We use a boolean variable θ to store the output

returned by the CheckSchedule() method. Recall that θ takes a value of true if a

resource (human r or station s) is available, and false otherwise.

The parameters of the procedure (pj) requested by patient j and the set Aj are

initialized in line 1. The starting day for searching for an appointment is determined

in line 2 using the following information: day when the request was received (dj),

patient preferred day (q), and the number of days (m) needed to obtain the radio-

pharmaceutical for procedure (pj). The scheduling horizon is defined in lines 3 and

4. Next a search for an available combination of human resource and station for each

step (k) of the procedure is performed. A breath-first search to select a human re-

source from set R as well as to select a station from set S (lines 5-11). We decided to

use breath-first search to ensure a balanced work assignment between the resources.

If no human resource is available to serve one of the procedure steps (line 24), the

current start time for the procedure is incremented (line 25). Using the new start

time, the algorithm checks if the amount of time remaining on the day searched is

enough to accommodate the procedure (line 26). If that is the case, the algorithm

begins a new search for an appointment using the new time as a starting time. Oth-

erwise, the algorithm moves to the following week to perform a new search on the
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ServeRequest-NFR (j, pj, dj, tj, q)

1 Initialize : p← pj; δ ← δp; n← np; Aj ← {∅}
2 Find :

⌈
dj+m−q

ω

⌉
then α← q + xω

3 for day = α to h do

4 for time = 1 to τ do

5 for k = 1 to n do

6 a← akp; R← Rkp; and S ← Skp

7 while R 6= {∅}
8 θr ← CheckSchedule(r, day, time, a), where r ∈ R
9 if θr == true

10 while S 6= {∅}
11 θs ← CheckSchedule(s, day, time, a), where s ∈ S
12 if θs == true

13 if k == 1 && day − dj > µ

14 Aj ← NoPreference(j, p, dj, tj)

15 return Aj
16 else

17 Aj ∪ {(day, time)}; Xr ∪ {(day, time)};
Ys ∪ {(day, time)}

18 time← time+ a; k ← k + 1; and go to step 6

19 if S == {∅}
20 time← time+ 1

21 if time+ δ > τ

22 day ← day + ω; Aj ← {∅}; Xr ← {∅}; Ys ← {∅};
and go to step 4

23 else Aj ← {∅}; Xr ← {∅}; Ys ← {∅}; and go to step 5

24 if R == {∅}
25 time← time+ 1

26 if time+ δ > τ

27 day ← day + ω; Aj ← {∅}; Xr ← {∅}; Ys ← {∅};
and go to step 4

28 else Aj ← {∅}; Xr ← {∅}; Ys ← {∅}; and go to step 5

29 return Aj

Fig. 20. Pseudocode for NFR
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NoPreference (j, pj, dj, tj)

1 Initialize : p← pj; δ ← δp; n← np; Aj ← {∅}; α← m+ dj

2 for day = α to h do

3 for time = 0 to τ do

4 for k = 1 to n do

5 a← akp; R← Rkp; and S ← Skp

6 while R 6= {∅}
7 θr ← CheckSchedule(r, day, time, a), where r ∈ R
8 if θr == true

9 while S 6= {∅}
10 θs ← CheckSchedule(s, day, time, a), where s ∈ S
11 if θs == true

12 Aj ∪ {(day, time)}; Xr ∪ {(day, time)};
Ys ∪ {(day, time)}

13 time← time+ a; k ← k + 1; and go to step 6

14 if S == {∅}
15 time← time+ 1

16 if time+ δ > τ

17 day ← day + 1; Aj ← {∅}; Xr ← {∅}; Ys ← {∅};
and go to step 4

18 else Aj ← {∅}; Xr ← {∅}; Ys ← {∅}; and go to step 5

19 if R == {∅}
20 time← time+ 1

21 if time+ δ > τ

22 day ← day + 1; Aj ← {∅}; Xr ← {∅}; Ys ← {∅};
and go to step 4

23 else Aj ← {∅}; Xr ← {∅}; Ys ← {∅}; and go to step 5

24 return Aj

Fig. 21. Pseudocode for NoPreference method for NFR
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day requested by the patient (line 27). The algorithm follows the same steps (lines

24-28) when no station is available (lines 19-23). A patient schedule is returned if a

combination of human resource and station is found for each procedure step and if

the waiting time for the appointment is less than a month (line 29). If the waiting

time exceeds a month, the NoPreference () method (Figure 21) is invoked (lines 13-

15).

The NoPreference () method schedules patients in the first space available in

the scheduling horizon. The earliest the appointment can be scheduled is determined

by the radiopharmaceutical arrival time (line 1). If no human resource is available to

serve one of the procedure steps (line 19) the current start time for the procedure is

incremented (line 20). Then the algorithm checks if the amount of time remaining on

the day for the search is enough to accommodate the procedure (line 21). If that is

the case, the method begins a new search for an appointment using the new time as

a starting time. If the time is not enough, a new search begins on the next day (line

22). The same course of action is followed when no station is available (lines 14-18).

The algorithm returns a patient schedule when a combination of human resource and

station is found for each procedure step (line 24).

2. FR Algorithm

The FR algorithm is a variation of the NFR algorithm and has been used in a practical

setting. This algorithm first tries to satisfy the preference provided by the patient; but

when the waiting time is longer than a month, it performs a search for an alternative

earlier appointment. FR and NFR algorithms differ in the way the human resources

are assigned to patients. In the FR algorithm a group of human resources (e.g. two

technologists) are assigned to always serve patients in specific stations. For example,

technologist 1 and technologist 2 have to serve all patients whose procedures require
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ServeRequest-FR (j, pj, dj, tj, q)

1 Initialize : p← pj ; δ ← δp; n← np; Aj ← {∅}

2 Find :
⌈

dj+m−q

ω

⌉
then α← q + xω

3 for day = α to h do

4 for time = 0 to τ do

5 for k = 1 to n do

6 a← akp; R← Rkp; and S ← Skp

7 while R 6= {∅}
8 θr ← CheckSchedule(r, day, time, a), where r ∈ R
9 if θr == true && r == r̂

10 if k == 1 && day − dj > µ

11 Aj ← NoPreference(j, p, dj , tj)

12 return Aj

13 else

14 Aj ∪ {(day, time)}; Xr ∪ {(day, time)}; Ys ∪ {(day, time)}
15 time← time+ a; k ← k + 1; and go to step 6

16 else if θr == true

17 while S 6= {∅}
18 θs ← CheckSchedule(s, day, time, a), where s ∈ S
19 if θs == true

20 if k == 1 && day − dj > µ

21 Aj ← NoPreference(j, p, dj , tj)

22 return Aj

23 else

24 Aj ∪ {(day, time)}; Xr ∪ {(day, time)}; Ys ∪ {(day, time)}
25 time← time+ a; k ← k + 1; and go to step 6

26 if S == {∅}
27 time← time+ 1

28 if time+ δ > τ

29 day ← day + ω; Aj ← {∅}; Xr ← {∅}; Ys ← {∅};
and go to step 4

30 else Aj ← {∅}; Xr ← {∅}; Ys ← {∅}; and go to step 5

31 if R == {∅}
32 time← time+ 1

33 if time+ δ > τ

34 day ← day + ω; Aj ← {∅}; Xr ← {∅}; Ys ← {∅};
and go to step 4

35 else Aj ← {∅}; Xr ← {∅}; Ys ← {∅}; and go to step 5

36 return Aj

Fig. 22. Pseudocode for FR
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the use of stations s1 and s2. We use r̂ to denote the human resources that may be

fixed to stations. The FR algorithm is invoked by the method ServeRequest-FR()

and the pseudocode is presented in Figure 22.

The pseudocode of the FR algorithm follows the major steps of the NFR algo-

rithm. However, FR has an additional condition to identify those human resources

that have been fixed to stations. A fixed human resource is always assigned to the

same station. Consequently, when the availability of a fixed human resource is con-

firmed, the algorithm also confirms the availability of the station that share the same

schedule (9-12). The algorithm returns a patient schedule if a combination of human

resource and station is found for each procedure step and if the waiting time for the

appointment is less than a month (line 36). The NoPreference () method is invoked

(lines 20- 22) if the waiting time exceeds a month. A description of this method is

provided in Figure 23. This method schedules patients in the first space available in

the scheduling horizon and is similar to the one described in Section 1. However, this

method includes the condition that identifies the human resources that are fixed to

stations.

3. Algorithm Extensions

We now propose two extensions for the NFR algorithm. These two extensions are

derived under the assumption that historical information about patient demand at

the clinic studied is available. This information is used to reserve some of the clinic

stations to be exclusively use by those procedures that are requested more often.

We refer to these algorithms as NFR FP (No Fixed Resource Fixed Procedure) and

NFR FP2, and they can be summarized as follows:

• NFR FP: Determine the procedure that is requested the most at the clinic and



87

NoPreference (j, pj, dj, tj)

1 Initialize : p← pj; δ ← δp; n← np; Aj ← {∅}; α← m+ dj

2 for day = α to h do

3 for time = 0 to τ do

4 for k = 1 to n do

5 a← akp; R← Rkp; and S ← Skp

6 while R 6= {∅}
7 θr ← CheckSchedule(r, day, time, a), where r ∈ R
8 if θr == true && r == r̂

9 Aj ∪ {(day, time)}; Xr ∪ {(day, time)}; Ys ∪ {(day, time)}
10 time← time+ a; k ← k + 1; and go to step 5

11 else if θr == true

12 while S 6= {∅}
13 θs ← CheckSchedule(s, day, time, a), where s ∈ S
14 if θs == true

15 Aj ∪ {(day, time)}; Xr ∪ {(day, time)}; Ys ∪ {(day, time)}
16 time← time+ a; k ← k + 1; and go to step 5

17 if S == {∅}
18 time← time+ 1

19 if time+ δ > τ

20 day ← day + 1; Aj ← {∅}; Xr ← {∅}; Ys ← {∅};
and go to step 4

21 else Aj ← {∅}; Xr ← {∅}; Ys ← {∅}; and go to step 5

22 if R == {∅}
23 time← time+ 1

24 if time+ δ > τ

25 day ← day+1; Aj ← {∅}; Xr ← {∅}; Ys ← {∅}; and go to step 4

26 else Aj ← {∅}; Xr ← {∅}; Ys ← {∅}; and go to step 5

27 return Aj

Fig. 23. Pseudocode for NoPreference method for FR
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the stations that can be used to perform this procedure. From the stations

identified, reserve a subset to be exclusively used to serve this procedure. The

size of the subset of stations depends on how often the procedure is requested.

For instance, if a procedure is requested 40% of the time, the algorithm reserves

40% of the stations identified to serve this procedure.

• NFR FP2: Reserve stations for the procedure requested the most as explained

in NFR FP. However, in this algorithm the stations reserved can also be used

to schedule the second procedure requested the most. If the procedure does not

have similar stations requirements; use the next procedure that is requested the

most.

D. Application

To evaluate the performance of our algorithms we applied them to an actual nuclear

medicine setting. The algorithms were implemented within the nuclear medicine

department simulation presented by [94] using historical data for a year of operations.

We first describe the configuration of the nuclear medicine setting we used and the

experimental setup, and then report the computational results and findings.

1. Nuclear Medicine Setting

The scheduling algorithms presented in this chapter were used to study one of the

largest fully accredited nuclear medicine laboratories in the country located at the

Scott and White Health System in Temple, Texas. This nuclear medicine clinic

operates nine hours days a week and is not open during weekends. The clinic has 12

stations which are named according to the type of equipment they contain. Table XIV

provides the names of the stations and the type of equipment each station contains.



89

Table XIV. Stations of the Scott and White nuclear medicine clinic
Station name Number Equipment

Axis 3 Philips Axis Camera

P2000 2 Philips PRISM 2000 Camera

P3000 1 Philips PRISM 3000 Camera

Meridian 1 Philips Meridian Camera

Treadmill 2 Treadmill

TRT 3 Used for patient preparation

The staff is composed of technologists, nurses, and a manager. There are eight

technologists and two EKG technologists in this clinic. The technologists have several

responsibilities that include drawing doses and image acquisition. EKG technologists

perform stress exams for cardiac tests and they are assigned to the Treadmill stations.

A nurse is in charge of helping to draw doses. In the absence of one of the staff mem-

bers, the division manager can perform that staff member’s tasks (see Table VIII).

Table IX of Section B shows the procedures that were performed more frequently at

the clinic for a year of observation.

2. Experimental Setup

The configuration of the clinic used for test our algorithms was based on historical

data. The clinic has twelve stations named: TRT(1), TRT(2), TRT(3), Treadmill(1),

Treadmill(2), Axis(1), Axis(2), Axis(3), P2000(1), P2000(2), P2000(3), and Merid-

ian(1). The staff has twelve members: Technologist(1), Technologist(2), Technolo-

gist(3), Technologist(4), Technologist(5), Technologist(6), Technologist(7), Technol-

ogist(8), Technologist(9), Technologist(10), Nurse(1), and Manager(1). A Poisson

process was assumed for procedure request arrivals based on historical data. The

monthly call interarrivals times in minutes followed an exponential distribution with
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the following means: January, 6.00; February, 6.25; March 6.58; April, 6.67; May,

6.75; June, 6.88; July, 6.96; August, 7.04; September, 7.10; October, 7.29; November,

7.34; and December, 7.44. Empirical distributions were used to generate a procedure

request and an appointment preferred day for each patient

We conducted experiments to gain management insights into the impact of the

scheduling approaches on patient service. In our computational study, we only con-

sidered the nuclear medicine procedures listed in Table IX. The performance mea-

sures listed in Section B were used to quantify service levels based on both patient

and management perspectives. We performed computational experiments using the

scheduling algorithms presented in Section C. Under the FR algorithm Technolo-

gist(1) and Technologist(2) are fixed to station Axis(1) and stations Axis(2). Under

NFR FP 40% of the stations are assigned to procedure 78465 and under NFR FP2

these stations are shared with procedure 78815. A second set of experiments was

performed to check the performance of the algorithms when capacity is added to the

system.

The algorithms were implemented in Java within the simulation model for a

nuclear medicine department [94]. The experiments involved 100 replications, using

a one-year period of operations with a three-month warm-up period. To maintain

independence of each replication, different seeds were used in the pseudo random

number generators for each simulation run. All the experiments were executed on a

DELL Optiplex GX620 with a Pentium D processor running at 3.2GHz with 3.0GB

RAM.

3. Computational Results

Table XV shows the throughput and the computation times for the four algorithms.

We report the mean, standard deviation (Std.Dev.), and a 95 % confidence interval
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for each performance measure. The results show that NFR and FR obtained similar

figures for the average number of patients served during the year. However, these

numbers were exceeded by the NFR FP and NFR FP2 algorithms, with NFR FP

obtaining the best performance with an average of 14,845 patients served during that

year. The computer times (CPU secs.) were about the same for all the algorithms but

it is evident that the computer times depend on the numbers of patients scheduled

by the system.

Table XV. Scheduling algorithms results
Patients CPU Time

Algorithm Statistic Served Patients/hr Patients/day (secs)
Mean 14782.84 6.84 61.60 614.44
Std. Dev. 78.99 0.04 0.33 6.47

NFR CI Lower 14767.17 6.84 61.53 613.15
CI Upper 14798.51 6.85 61.66 615.72
Mean 14776.20 6.84 61.57 611.39
Std. Dev. 78.65 0.04 0.33 9.09

FR CI Lower 14760.60 6.83 61.50 609.58
CI Upper 14791.80 6.85 61.63 613.19
Mean 14845.39 6.87 61.86 653.29
Std. Dev. 80.16 0.04 0.33 48.76

NFR FP CI Lower 14829.48 6.87 61.79 643.61
CI Upper 14861.29 6.88 61.92 662.96
Mean 14832.59 6.87 61.80 641.30
Std. Dev. 81.78 0.04 0.34 18.86

NFR FP2 CI Lower 14819.01 6.86 61.75 638.17
CI Upper 14846.16 6.87 61.86 644.43

Figure 24 shows the average number of patients served per month for each

scheduling algorithm. All the algorithms exhibit a decreasing behavior due to the

historical data used to define the interarrival times between patient requests in the

simulation. However, two different trends are observed, one for NFR and FR and

the other for NFR FP and NFR FP2. NFR and FR are able to schedule more pa-

tients from January to April. NFR FP2 served more patients from May to June than
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Fig. 24. Number of patients served per month using NFR, FR, NFR FP, and

NFR FP2 algorithms

NFR FP but both algorithms served the same number of patients in the month of

July. From August to December, NFR FP served more patients than NFR FP2. The

station reservation executed in the NFR FP and NFR P2 algorithms has two major

consequences. First, patient schedules are arranged so that more patients are accom-

modated into the system. Second, the number of patients that are seen per month

is limited by available system capacity. For instance, Figure 24 shows that during

the first three months of the year when the patient requests were more frequent, the

number of patients served under NFR FP was never higher than 1270. Since NFR FP

has more stations reserved to one procedure (CPT 78845), the capacity for serving

procedure requests is more limited compared to the other algorithms.

Figure 25 shows equipment utilization for each algorithm. Equipment utilization
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Fig. 25. Equipment utilization using NFR, FR, NFR FP, and NFR FP2 algorithms

under NFR and FR is about the same for all the equipment. NFR FP algorithm

shows a decrease in utilization for stations TRT(1) and TRT(2) when compared to

NFR and FR. These two stations were only used to serve procedure CPT 78845.

This procedure only uses TRT stations on the first step. Even though the procedure

is scheduled very often, the utilization reflected is low because the procedure step

has a small duration. Station TRT(3) shows a notable increase in utilization under

NFR FP when compared to NFR and FR. Since the other two TRT stations are

assigned to a single procedure, TRT(3) is now used to serve all the other procedure

requests that require the use of a TRT station. NFR FP also shows a decrease in

the utilizations of stations Axis(1) and Axis(2), which are stations now assigned to

only serve procedure 1. This assignment also causes the increase in the utilizations

of Axis(3), P2000(1), and P2000(2). Under the NFR FP2 algorithm the equipment
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utilizations were similar to the NFR FP, with small differences in the utilizations

of the TRT stations. NFR FP2 reserves TRT(1) and TRT(2) to serve procedures

CPT 78845 and CPT 78815. This change allows more flexibility when scheduling

procedures which causes an increase in the utilizations of stations TRT(1) and TRT(2)

and a decrease in the utilizations of the station TRT(3).
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Fig. 26. Human resource utilization using NFR, FR, NFR FP, and NFR FP2 algo-

rithms

Figure 26 depicts the human resource utilization at the clinic. Most of the algo-

rithms show a balanced distribution of the work among the staff. A noticeable differ-

ence is under the FR algorithm, where the manager and the nurse have smaller uti-

lization. Under FR, Technologist(1) and Technologist(2) are fixed to stations Axis(1)

and Axis(2), respectively. These two human resources are assigned to camera sta-

tions that are used to perform procedures that are requested the most. Since the

manager and the nurse have no access to these cameras under this algorithm, their
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utilization decreases and at the same time the utilization of both Technologist(1) and

Technologist(2) increases.
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Fig. 27. Patient waiting Type 1 and preference satisfaction ratio using NFR, FR,

NFR FP, and NFR FP2 algorithms

Figure 27 shows the performance measures for patient service. NFR and FR

algorithms performed better for both performance measures providing an average

waiting time (Type 1) from call to appointment of about 5.5 days and day requested

preference satisfaction ratio of about 87 %. NFR FP algorithm provides the highest

waiting from call to appointment with an average of 7.3 days and the lowest patient

preference satisfaction ratio with 70 %. Even though this algorithm is able to ac-

commodate more patients into the systems is evident that there is a price to pay in

terms of the service provided to patients. By fixing several stations to one procedure,

patient schedules are arranged so that more patients are accommodated into the sys-

tem. However, this results in longer patient wait time and lesser patient preference



96

satisfaction. NFR FP2 demonstrates that by being less restrictive with one of the

stations, patient service performance measures can be improved but with a tradeoff

that results in a noticeable decrease in patient throughput towards the end of the

year.

We now use the results obtained to study potential system capacity expansions

that can lead to improved performance. The modifications are tested using the

NFR FP algorithm since it provided the highest throughput among the proposed

algorithms Several modifications were considered but due to space limitation we only

discuss the following two cases:

• NFR FP TRT: Under this policy station TRT(4) is added to the system.

• NFR FP MC : This policy adds more capacity (MC) to the system by including

an additional EKG Technologist and the following stations: TRT(4), P2000(4),

and Treadmill(3). A new EKG Technologist is required to operate the new

Treadmill station.

Table XVI. Scheduling algorithms results for potential system capacity expansions
Patients CPU Time

Algorithm Statistic Served Patients/hr Patients/day (secs)
Mean 14845.39 6.87 61.86 653.29
Std. Dev. 80.16 0.04 0.33 48.76

NFR FP CI Lower 14829.48 6.87 61.79 643.61
CI Upper 14861.29 6.88 61.92 662.96
Mean 14838.80 6.87 61.83 653.28
Std. Dev. 58.30 0.03 0.24 17.50

NFR FP TRT CI Lower 14827.23 6.86 61.78 649.81
CI Upper 14850.37 6.88 61.88 656.75
Mean 14875.53 6.89 61.98 743.72
Std. Dev. 70.78 0.03 0.29 7.93

NFR FP MC CI Lower 14861.49 6.88 61.92 742.15
CI Upper 14889.58 6.89 62.04 745.29
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Table XVI shows the performance measures for the NFR FP algorithm when ad-

ditional stations are added to the system. NFR FP TRT shows an average through-

put similar to NFR FP. On the other hand the NFR FP MC obtained an improve-

ment of around 30 more patients a year. This improvement in throughput was ex-

pected because several stations were added to the system.
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Fig. 28. Number of patients served per month using NFR FP TRT and NFR FP MC

algorithms

Figure 28 shows the throughput per month for the algorithm under the new

system configurations. The graph shows that adding station TRT(4) to the system

helps by increasing the number of patients seen during the first months of the year

where procedure requests are performed more frequently. Likewise, the figure shows

that under the NFR FP MC the number of patients serve at the beginning of the

year was improved even more.
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Fig. 29. Equipment utilization using NFR FP TRT and NFR FP MC algorithms

Figure 29 shows the effects of the system modifications on equipment utilization.

The addition of a TRT(4) station results in reduced utilization of the other TRT

stations under NFR FP TRT. The amount of work is now balanced between these

stations, in particular between TRT(3) and TRT(4). Figure 30 shows the utilization

for the staff when capacity is added to the system. The graph shows the utilization

of the staff is balanced under the three alternatives.

Figure 31 displays the results obtained for the performance measures from pa-

tient’s perspective. The results were improved significantly with the addition of

the new stations. In terms of waiting times, a decrease of 1.3 days in average was

achieved under NFR FP TRT and a decrease of 2.1 days average was achieved under

NFR FP MC. On the other hand, an improvement in the patient preference satis-

faction ration was achieved by both modifications with 85 % for both NFR FP TRT
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Fig. 30. Human resource utilization using NFR FP TRT and NFR FP MC algo-

rithms

and 95% for NFR FP MC.

E. Summary

Managing patients in nuclear medicine departments is a challenging problem with

limited research reported in the literature. The complexity involved in this health

care setting makes this problem unique. In this chapter, we derive and implement

algorithms for scheduling nuclear medicine patients and resources. The scheduling

algorithms take into consideration the time constraints imposed by the decay of the



100

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

1

2

3

4

5

6

7

8

NFR_FP NFR_FP_TRT NFR_FP_MC

Da
y 

re
qu

es
te

d 
pr

ef
er

en
ce

 sa
tis

fie
d 

W
ai

tin
g 

fr
om

 c
al

l t
o 

ap
po

in
tm

en
t (

da
ys

)

patient waiting Type 1 patient preference satisfaction ratio

Fig. 31. Patient waiting Type 1 and preference satisfaction ratio using NFR FP TRT

and NFR FP MC algorithms

radiopharmaceuticals, which are required for most of the nuclear medicine procedures.

The algorithms were implemented within a simulation framework and the experiments

performed were based on historical data provided by an actual clinic. We obtain

computational results that provide useful insights into patient service management in

nuclear medicine. For example, no single patient and resource scheduling algorithm

provides the best results relative to all performance measures. Thus, it is up to the

nuclear medicine clinic to decide which algorithm to use under given demand and

patient/management preferences. However, in terms of throughput the results show

that reserving stations to be exclusively used by procedures that are requested fre-

quently improves the number of patients served. The results also show that reserving

stations for specific procedures affects patient service satisfaction by increasing the

waiting times. In terms of capacity, the results showed that by adding only one sta-
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tion (TRT) patient service satisfaction can be improved significantly.While this work

focuses on nuclear medicine, we believe it will also find generality in other health care

settings. Further research include stochastic (online) optimization algorithms that

take into account data uncertainties such as stochastic patient arrivals, patient no

shows, equipment failures, and delayed radiopharmaceutical deliveries.
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CHAPTER V

STOCHASTIC ONLINE PATIENT AND RESOURCE SCHEDULING OF

MULTI-STEP MEDICAL PROCEDURES IN NUCLEAR MEDICINE

A. Introduction

Nuclear medicine is a branch of medical imaging that uses small amounts of ra-

dioactive materials to diagnose and treat a variety of diseases, including many types

of cancers, heart disease and certain other abnormalities within the body. Medical

imaging has become a major factor in the total cost of U.S. health care [95]. According

to an analysis sponsored by the Blue Cross and Blue Shield Association, diagnostic

imaging technologies cost between $65 billion and $75 billion in 2000, more than

twice the cost of cardiovascular technologies or in vitro diagnostics [96]. In order to

obtain more accurate diagnoses physicians are requesting patients to undergo medical

imaging procedures more often. Suthummanon et al. [4] showed in their study that

machine time, direct labor time, and radiopharmaceuticals have the most influential

in the cost per procedure in nuclear medicine. However, scheduling patients and re-

sources in medical imaging clinics such as nuclear medicine departments remains a

challenge. This can be attributed to the increase in demand for this service and to the

complexity in the nuclear medicine procedure protocols. In this chapter we derive a

stochastic online scheduling algorithm for improving patient and resource scheduling

in nuclear medicine clinics. This scheduling algorithm considers both the patient’s

and manager’s perspectives.

Nuclear medicine is divided in two major areas: diagnostic and therapeutic.

Procedures in nuclear medicine require the administration of a radiopharmaceutical to

the patient, involve several resources and are multi-step following a specific sequence.
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Radiopharmaceuticals allow for the imaging (scans) or treatment of a specific organ

of the human body. The short half-life of the radiopharmaceuticals imposes strict

time constraints on scheduling patients and resources. To successfully complete a

procedure every step has to be initiated and completed within a specific time window.

If the procedure protocol is not followed a poor scan will result causing poor utilization

of expensive resources and patient rescheduling. A scan could last from minutes to

hours and a procedure may require multiple scans in a day or multiple days.

To perform a nuclear medicine procedure several resources are needed such as

a technologist, a radiopharmaceutical, gamma camera, and sometimes a treadmill,

a nurse or EKG technician. Radiopharmaceuticals are prepared in radio-pharmacies

outside the clinics, therefore scheduling of their delivery, patient administration and

image acquisition requires lead time and must be carefully managed. Gamma cameras

are expensive, some of them may cost up to $1 million and thus have to be managed

effectively. Resources required to serve a patient must be available at the time they

are scheduled. Patients are re-scheduled if the procedure is not completed success-

fully. Therefore, scheduling of patients, resources, and radiopharmaceuticals is a very

challenging problem for nuclear medicine departments. Consequently, finding ways

to provide a high quality of service to the patient by using mathematical techniques

is of great interest for nuclear medicine managers. The characteristics of this problem

make it unique with very limited research reported in the literature.

Patient requests in nuclear medicine arrive during the day as the scheduling

proceeds. The challenge is to schedule a sequence of appointment requests when not

all of them are known to the scheduler in advance. In other words, when a patient

request is received at the clinic, the receptionist has to provide an appointment to

the patient without taking into consideration the requests that will be received in the

future. This usually causes inefficiencies to the system such as lower utilization for
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some of the resources and longer waiting times for patients to get an appointment.

This problem can be considered as an online scheduling problem. In online scheduling

requests are not known in advance, rather they are revealed online during the day.

Consequently, every time a request is received a decision is made without knowing

the requests that will be arriving in the future.

Stochastic planning techniques are an alternative to address this problem. In

this chapter an online stochastic scheduling algorithm for patient and resource man-

agement in nuclear medicine clinics is proposed. The idea is to select the best ap-

pointment date for each request received that will allow the clinic to maximize the

cumulative value of the patients served over a long time horizon (maximize through-

put). An online stochastic framework for scheduling patients and resources in nuclear

medicine is developed. An algorithm is presented that uses a stochastic programming

model to solve the offline problem and select the most appropriate appointment for

a patient by taking into consideration future arrival requests.

The rest of the chapter is organized as follows: In Section B a description of

the scheduling problem is provided and the stochastic algorithm is presented. In

Section C the setting in which the algorithm was tested is described. A preliminary

computational study is reported in Section D and a discussion of the results is given.

The chapter ends with some concluding remarks and directions of future research in

Section E.

B. Scheduling Problem

In this section we provide a description of the problem of scheduling patients and

resources in nuclear medicine clinics from three different perspectives. First, a de-

scription is provided for the offline version of the problem in which it is assumed that
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all the patients requests that will be received at the clinic are known in advance.

Secondly, we provide a description of the online scheduling problem. In this problem

requests are revealed one at a time during the day and the appointment decision is

made without taking into account future requests. Lastly, we discuss the stochastic

online version of the problem where requests are also revealed during the day but pos-

sible future requests are taken into account when deciding on a patient appointment.

The possible future requests are based on historical data.

1. The Offline Problem

The offline problem is defined for a day in which each resource r has a schedule that

contains τ number of time-slots. Each schedule contains patients already scheduled

and open spaces to serve new patient requests. In the offline version of the problem

all patient requests are known in advance. A set J of patients asking for a procedure

request J is used as input. Each request is characterized by the type of procedure p re-

quested and a preferred day for the appointment (q). The goal is to find an assignment

of a subset B ⊆ J of patients asking for procedures satisfying the problem-specific

constraints and maximizing the objective function. Therefore, we derive an integer

programming (IP) model for multi-step medical procedure scheduling. The IP model

allocates a subset B of the requests to resources schedules so that their capacities

are not exceeded (only one patient can be served on each resource schedule time-slot)

and the objective function is maximized. Two binary variables are associated to this

problem, xikjt` and wikj` . Variable xikjt`=1 if patient j is scheduled to use resource i

at time-slot t when procedure is started at time ` for the k step of the procedure,

otherwise xikjt`=0. Variable wikj`=1 if resource i is selected to serve patient j in step k

when procedure is started at time `, otherwise wikj`=0. Table XVII gives the notation

and Figure 32 shows the IP model for the offline scheduling problem.
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Table XVII. Scheduling problem sets and parameters
Sets

J : set of patients, indexed j.
I : set of resources, indexed i.
S : set of stations, indexed s.
R : set of human resources, indexed r.
P : set of nuclear medicine procedures, indexed p.
A : set of radiopharmaceuticals, indexed a.

Skp : set of stations where step k of procedure p can be performed.
Rkp : set of human resources qualified to perform step k of procedure p.
Ikp : set of resources that can be used to perform step k of procedure p,

Ikp={Rkp ∪ Skp}.
Itj : set of resources that could be used in time-slot t to serve patient j.
Atj : set of radiopharmaceuticals that are required at time-slot t

to serve patient j.
Litj : set of appointment star times that require the use of resource i at

time-slot t for patient j.
Kitj : set of procedure steps that require the use of resource i at time-slot

t for an appointment for patient j.
Tij : set of time-slots where resource i could be used to serve patient j.
Taj : set of time-slots where radiopharmaceutical a could be used to serve

patient j.
Lj : set of possible start-times for patient j.

Parameters
i : subscript, for the i resource;
j : subscript, for the j patient;
a : subscript, for the a radiopharmaceutical;
p : subscript, for the p procedure;
k : subscript, for the k step of a procedure;
` : subscript, for the ` starting time-slot for a patient appointment;
t : subscript, for the t time-slot, incremental time;
τ : total number of time-slots in a day, indexed t, . . . , τ ;
sit : sit = 1, if resource i is available at time-slot t; otherwise sit=0;
sat : sat = 1, if radiopharmaceutical a is available at time-slot t;

otherwise sia=0;
dkp : number of time-slots required to complete step k of procedure p;
np : total number of steps for procedure p, indexed k, . . . , np;
q : day of the week requested by patient, indexed q=1,. . . ,5, where

1=Monday, 2=Tuesday, 3=Wednesday, 4= Thursday, 5=Friday.
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Max :
∑
j∈J

∑
i∈I1p

∑
`∈Lj

wi1j` (5.1a)

s.t.

np∑
k=1

∑
i∈Ikp

t=`+
∑k

k̂=0
dk̂−1∑

t=`+
∑k−1

k̂=0
dk̂−1

xikjt` ≤
np∑
k=1

2 dkp, j ∈ J, ` ∈ Lj (5.1b)

∑
j∈J

∑
k∈Kitj

∑
`∈Litj

xikjt` ≤ sit, ∀i ∈ Itj, ∀t ∈ Ti (5.1c)

∑
j∈J

∑
`∈Litj

xikjt` ≤ sat, ∀a ∈ Atj, ∀i ∈ Itj, ∀t ∈ Ti, k = 1 (5.1d)

∑
i∈Rkp

∑
`∈Lj

wikj` ≤ 1, j ∈ J, k = 1, . . . , np (5.1e)

∑
i∈Skp

∑
`∈Lj

wikj` ≤ 1, j ∈ J, k = 1, . . . , np (5.1f)

xikjt` − wikj` = 0, j ∈ J, i ∈ Ikp, k = 1, . . . , np, ` ∈ Lj, t ∈ Ti (5.1g)∑
i∈Rkp

wikj` −
∑

i∈R(k−1)p

w
i(k−1)
j` = 0, j ∈ J, ` ∈ Lj, k = 1, . . . , np, (5.1h)

∑
i∈Skp

wikj` −
∑

i∈S(k−1)p

w
i(k−1)
j` = 0, j ∈ J, ` ∈ Lj, k = 1, . . . , np, (5.1i)

∑
i∈Rkp

wikj` −
∑

i∈S(k−1)p

w
i(k−1)
j` = 0, j ∈ J, ` ∈ Lj, k = 1, (5.1j)

xikjt`, w
ik
j` ∈ {0, 1} (5.1k)

Fig. 32. IP model for the offline problem
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The objective function (Equation 5.1a) looks to maximize the number of patients

that can be scheduled to be served at the clinic in a day. Equation 5.1b is the

constraint used to verify that the number of resources assigned to the patient do not

exceed those needed to perform the procedure requested. Equation 5.1c gives for each

resource the time-slot by time-slot resource requirements that must be less than or

equal to the resource availability at each time period. Similar constraints are used for

radiopharmaceuticals (Equation 5.1d). Equation 5.1e and Equation 5.1f are used to

select the staff and station per procedure step respectively, and also to decide the start-

time of the appointment for each patient. Equation 5.1g is used to assure that the

same resource is scheduled for the duration of a particular procedure step. Equation

5.1h and Equation 5.1i are used to verify that the staff and stations, respectively,

selected to serve a patient follow the procedure sequence protocol. Equation 5.1j is

used to match a station to a staff member for each step of the procedure requested

by the patient. Finally, Equation 5.1k set values of the variables as binaries.

2. The Online Problem

In the online problem all the requests are not known in advance, rather they are

revealed online (one at the time) during the day and they are scheduled when they

are received. For example, if a sequence of requests ξ =〈ξ1, . . . , ξt−1, ξt〉 is revealed

at different times of the day, the requests ξ1, . . . , ξt−1 are already scheduled at time

t when request ξt is received. At time t the problem is to decide how to schedule

request ξt by keeping all the other patients already scheduled fixed.

To solve this problem an online framework is proposed. This framework has at

its disposal a mathematical model to solve the problem. In this case, an adaptation

of the IP model in Figure 32 presented in Figure 33 is used to solve the problem. The

new mathematical model only schedules one patient at a time by keeping the patient
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Max :
∑
i∈I1p

∑
`∈Lj

wi1j` (5.2a)

s.t.

np∑
k=1

∑
i∈Ikp

t=`+
∑k

k̂=0
dk̂−1∑

t=`+
∑k−1

k̂=0
dk̂−1

xikjt` ≤
np∑
k=1

2 dkp, ` ∈ Lj (5.2b)

∑
k∈Kitj

∑
`∈Litj

xikjt` ≤ sit, ∀i ∈ Itj, ∀t ∈ Ti (5.2c)

∑
`∈Litj

xikjt` ≤ sat, ∀a ∈ Atj, ∀i ∈ Itj, ∀t ∈ Ti, k = 1 (5.2d)

∑
i∈Rkp

∑
`∈Lj

wikj` ≤ 1, k = 1, . . . , np (5.2e)

∑
i∈Skp

∑
`∈Lj

wikj` ≤ 1, k = 1, . . . , np (5.2f)

xikjt` − wikj` = 0, i ∈ Ikp, k = 1, . . . , np, ` ∈ Lj, t ∈ Ti (5.2g)∑
i∈Rkp

wikj` −
∑

i∈R(k−1)p

w
i(k−1)
j` = 0, ` ∈ Lj, k = 1, . . . , np, (5.2h)

∑
i∈Skp

wikj` −
∑

i∈S(k−1)p

w
i(k−1)
j` = 0, ` ∈ Lj, k = 1, . . . , np, (5.2i)

∑
i∈Rkp

wikj` −
∑

i∈S(k−1)p

w
i(k−1)
j` = 0, ` ∈ Lj, k = 1, (5.2j)

xikjt`, w
ik
j` ∈ {0, 1} (5.2k)

Fig. 33. IP model for the online problem
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schedules of previous requests fixed.

A general framework for the online problem named Online Schema() is depicted

in Figure 34. The algorithms presented in this chapter share the same online schema

but differ in the way they implement the function ServeRequest(). Online Schema()

has a time horizon defined in days. The parameter h is used to define the total num-

ber of days in the scheduling horizon and the parameter b denotes a particular day

of the horizon. The set Gj is used to save the appointment schedule found using the

ServeRequest() function. An additional set Γ is used to save all the appointments

scheduled in the system. Also, in what follows ← is used to denote an assignment.

Online Schema

1 J ← {∅}, Γ← {∅}, j = 0;

2 while b ≤ h

3 while t ≤ τ

4 (pj, q)← GetPatientRequest(j);

5 do J ∪ {pj}, dj ← d, tj ← t, j ← j + 1;

6 Gj ← ServeRequest (j, pj, dj, tj, q,Γ);

7 Γ ∪Gj;

Fig. 34. The generic online algorithm

The first step of Online Schema() (line 1) initializes the patient set J and the

value of j. Lines 2 and 3 define the time horizon in which patient requests will be

accepted. The function GetPatientRequest() gets the required information from

the patient when the request is received (line 4). The patient is added to the set J in

line 5 and the ServeRequest() function is invoked in line 6. The ServeRequest()
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function use the information provided to find an appointment for the patient. We

define a ServeRequest-OS() function for the online problem in Figure 35. Line 1 is

used to call function OptSolution(). This function uses the information provided by

the Online Schema() framework to construct the IP mathematical model (Figure 33)

and obtain a schedule for patient j. The appointment found is returned in line 2.

ServeRequest-OS(j, pj, dj, tj, q,Γ)

1 Gj ← OptSolution(j, pj, dj, tj, q,Γ);

2 return Gj

Fig. 35. The ServeRequest-OS() function

3. The Stochastic Online Problem

The online stochastic problem is an extension of the online problem. Again, the

problem is to decide how to serve a request ξt by keeping all previous requests already

scheduled fixed. However, this problem also accounts for possible future requests

based on historical data to make more informed decisions (i.e. how to serve current

request).

For this problem, we propose a stochastic online framework that has at its dis-

posal a two-stage stochastic programming model to solve the problem. The first stage

of the model is presented in Figure 36 and decides when to schedule the current pa-

tient request and which resources to use. The first stage of the model is similar to

the IP formulation presented in Section 2 but differs in the objective function. An

additional coefficient that accounts for the expected value of the objective function

in the second stage is included that will allow for recourse/corrective actions for the
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Max :
∑
i∈I1p

∑
`∈Lj

wi1j` + E[Q(x, ω̃] (5.3a)

s.t.

np∑
k=1

∑
i∈Ikp

t=`+
∑k

k̂=0
dk̂−1∑

t=`+
∑k−1

k̂=0
dk̂−1

xikjt` ≤
np∑
k=1

2 dkp, ` ∈ Lj (5.3b)

∑
k∈Kitj

∑
`∈Litj

xikjt` ≤ sit, ∀i ∈ Itj, ∀t ∈ Ti (5.3c)

∑
`∈Litj

xikjt` ≤ sat, ∀a ∈ Atj, ∀i ∈ Itj, ∀t ∈ Ti, k = 1 (5.3d)

∑
i∈Rkp

∑
`∈Lj

wikj` ≤ 1, k = 1, . . . , np (5.3e)

∑
i∈Skp

∑
`∈Lj

wikj` ≤ 1, k = 1, . . . , np (5.3f)

xikjt` − wikj` = 0, i ∈ Ikp, k = 1, . . . , np, ` ∈ Lj, t ∈ Ti (5.3g)∑
i∈Rkp

wikj` −
∑

i∈R(k−1)p

w
i(k−1)
j` = 0, ` ∈ Lj, k = 1, . . . , np, (5.3h)

∑
i∈Skp

wikj` −
∑

i∈S(k−1)p

w
i(k−1)
j` = 0, ` ∈ Lj, k = 1, . . . , np, (5.3i)

∑
i∈Rkp

wikj` −
∑

i∈S(k−1)p

w
i(k−1)
j` = 0, ` ∈ Lj, k = 1, (5.3j)

xikjt`, w
ik
j` ∈ {0, 1} (5.3k)

Fig. 36. SIP model for the online stochastic problem, First Stage
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patient request the model is trying to schedule.

The second stage of the problem is presented in Figure 37 and represents a

possible “scenario”. A scenario in this problem is defined as sequence of future patient

requests arriving at the clinic after the current request that needs to be scheduled.

To generate a scenario ω for the second stage of the problem, a function GetSample()

is defined. This function returns a set of requests over a time interval that starts at

time t (time in which current request was received) and it is stored in set Jω. Two

new binary variables are defined for the second stage, yikωj′t` and zikωj′` . Variable yikωj′t`=1

if patient j′ is scheduled to use resource i at time-slot t and when the procedure

is started at time ` for the k step of the procedure. Otherwise yikωj′t`=0. Variable

zikωj` =1 if resource i is selected to serve patient j in step k and when the procedure

is started at time `. Otherwise zikωj′` =0. The second-stage problem is similar to the

offline problem presented in Section 1. This problem has a modification in Equation

5.4c. The solution (patient schedule) obtained on the first-stage of the problem is

now considered a parameter in this constraint.

4. Stochastic Online Scheduling Algorithm

The online stochastic algorithm for this problem follows the same framework presented

in Figure 34) but differ in the way the ServeRequest() function is implemented. A

description for the ServeRequest-SOS() for the online stochastic problem is presented

in Figure 38. Line 2 is used to establish the number of scenarios that are going to be

used to define the problem. Again, a scenario is a set of requests over a time interval

that starts at time t. The GetSample() function is used to generate the requests from

a probability distribution (line 3). The requests generated for scenario η are stored

in the set Uη and each scenario set is added to the set U . Once all the scenarios

are generated, the information is passed to the OptSolution() which generates the
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for each outcome ω ∈ Ω of ω̃, Q(x, ω) =

Max :
∑
j′∈Jω

∑
i∈I1p

∑
`∈Lj′

zi1ωj′` (5.4a)

s.t.

np∑
k=1

∑
i∈Ij′k

t=`+
∑k

k̂=0
dk̂−1∑

t=`+
∑k−1

k̂=0
dk̂−1

yikωj′t` ≤
np∑
k=1

2 dkp, ` ∈ Lj′ , ∀j′ ∈ Jω (5.4b)

∑
j′∈Jω

∑
k∈Kitj′

∑
`∈Litj′

yikωj′t` + xikωjt` ≤ sit, ∀i ∈ Itj′ , ∀t ∈ Ti (5.4c)

∑
j′∈Jω

∑
`∈Litj′

yikωj′t` ≤ sat, ∀a ∈ Atj′ , ∀i ∈ Itj′ , ∀t ∈ Ti, k = 1 (5.4d)

∑
i∈Rkp

∑
`∈Lj′

zikj′`ω ≤ 1, j′ ∈ Jω, k = 1, . . . , np (5.4e)

∑
i∈Skp

∑
`∈Lj

zikj′` ≤ 1, j′ ∈ Jω, k = 1, . . . , np (5.4f)

yikωj′t` − zikωj′` = 0, j′ ∈ Jω, i ∈ Ikp, ` ∈ Lj′ , t ∈ Ti, k = 1, . . . , np, (5.4g)∑
i∈Rkp

zikωj′` −
∑

i∈R(k−1)p

z
i(k−1)ω
j′` = 0, j′ ∈ Jω, ` ∈ Lj′ , k = 1, . . . , np, (5.4h)

∑
i∈Skp

zikωj′` −
∑

i∈S(k−1)p

z
i(k−1)ω
j′` = 0, j′ ∈ Jω, ` ∈ Lj′ , k = 1, . . . , np, (5.4i)

∑
i∈Rkp

zikωj′` −
∑

i∈S(k−1)p

z
i(k−1)ω
j′` = 0, j′ ∈ Jω, ` ∈ Lj′ , k = 1, (5.4j)

yikωj′t`, z
ikω
j′` ∈ {0, 1} (5.4k)

Fig. 37. SIP model for the online stochastic problem, Second Stage
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two-stage stochastic model and finds a solution or a schedule for the patient. This

solution is stored in set Gj and returned to the overall framework.

ServeRequest-SOS(j, pj, dj, tj, q,Γ)

1 U ← {∅}

2 for η= 1 to numberScenario do

3 Uη ← GetSample(η)

4 U ∪ Uη

5 Gj ← OptSolution(j, pj, dj, tj, q,Γ, U);

6 return Gj

Fig. 38. The ServeRequest() function

C. Application

In this section we consider a small instance of the problem of managing patients and

resources in nuclear medicine clinics. The goal of this example is provide a proof of

concept of the benefits of using stochastic online scheduling when managing patients

and resources in nuclear medicine.

Consider a nuclear medicine department with four human resources and four

stations. The members of the human resource group are named as follows: Tech-

nologist, one EKG technologist, Nurse, and Manager. The stations are classified

according to the equipment they contain. The clinic stations are named as follows:

TRT, Treadmill, Axis, and P2000. For the purpose of the example we limit the

number of procedures that can be requested to three. These procedures have been

identified as the most requested by the Scott and White Health System in Texas and
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Table XVIII. Highly requested nuclear medicine procedures

CPT Code Name

78465 Cardiovascular Event (CVE) Myocardial Imaging (SP-M)

78815 PET CT skull to thigh

78306 MSB-bone imaging (whole body)

they are listed in Table XVIII. A Poisson process is assumed for procedure request

arrivals with mean call interarrivals times of 6 minutes based on historical information

provided by a real clinic. Empirical distributions were used to generate a procedure

request and an appointment preferred day for the patient.

We conducted preliminary experiments to get insights into the impact of the

stochastic online scheduling in patient and resource scheduling in nuclear medicine

clinics. The results are compared with those obtained when solving the offline problem

(all requests are known in advance) and with an online implementation of the No Fixed

Resource (NFR) scheduling algorithm proposed in Chapter IV. The NFR algorithm

schedules patients and resources based on the patient’s preferred day of the week.

However, if the patients wait for the appointment is more than one month, an earlier

appointment is considered. The experiments were conducted using a time horizon of

a month.

The stochastic online algorithm was implemented in C++ and solved using

CPLEX. Two scenarios of future arrivals were generated every time a request was

received. Each scenario considered the requests that may be received for a time

period of a week. This information was used to construct the two-stage stochastic

programming model and to find an appointment for the patient request. All the ex-

periments were conducted on a DELL Optiplex GX 620 with a Pentium D processor

running at 3.2GHz with 3.0GB RAM.
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Table XIX. Average number of patients served using SOS algorithm

NFR SOS Offline

Patients served 463.00 521.00 579.00

Patients served / day 23.15 26.05 28.95

D. Preliminary Results

The results for the number of patients served during the month are reported in Table

XIX. We also report the number of patients served per day. The results show that the

stochastic online scheduling algorithm (SOS) performs better than the NFR algorithm

in terms of throughput. There is an increase of 12.53% in the number of patients

served. The maximum number of patients that can be served for this problem is 579

which is obtained by solving the offline problem.
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We also report the utilization for the human resources. The results are plotted

in Figure 39. The technologist is the human resource with highest utilization under

both NFR and SOS algorithms. The graph also shows that under the SOS algorithm

a higher utilization of all the human resources is obtained when compared to the NFR

algorithm. This can be attributed to the higher number patients served under the

SOS scheduling algorithm.
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Fig. 40. Equipment (station) utilization using SOS algorithm

Figure 40 depicts the utilization of the stations (equipment). The plot shows that

the station with highest utilization for both the NFR and SOS scheduling algorithm

is the Axis station. Since the SOS algorithm was able to accommodate more patients

into the system the utilization of the remaining stations; TRT, Treadmill, and P2000

was higher when compared to the NFR algorithm.
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E. Summary

Appointment scheduling in specialized clinics such as nuclear medicine departments

is a very challenging problem. Radiopharmaceutical properties require procedures to

be performed following strict protocols that must be adhered to by the staff. In this

chapter we derive a stochastic online scheduling algorithm for patient and resource

scheduling in nuclear medicine departments. This algorithm has at its disposal a

two-stage stochastic programming model which is used for solving the problem of

scheduling patients and resources in nuclear medicine. We obtain preliminary com-

putational results that provide proof of the concept for the potential of considering

stochastic information when scheduling patients in health care clinics. For example,

the number of patients served for a month was significatively larger under the SOS

scheduling algorithm when compared to the NFR scheduling algorithm. However,

the performance of the SOS algorithm can be improvement since the offline solution

of the problem provides a significatively larger number of patients served. Therefore

we believe that the SOS algorithm can be improved in such a way that the results

obtained can be closer to the offline solution.

Even though the SOS algorithm show some potential in improving the solution

of the problem there are some disadvantages attached to using the SOS algorithm

framework versus other methods. For example, the number of scenarios required to

obtain a “good” solution for a problem instance can be large. This can have some

repercussion in terms of the time required to obtain a solution.

Even though this work focus in nuclear medicine we believe it can also benefit

other health care settings or disciplines. Further research include the extension of the

algorithm to account for other uncertainty sources such as resource unavailability. In

addition, we will like to characterize the algorithms solutions with the objective of
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developing a heuristic that can find similar solutions with less computational effort.
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

This dissertation presents a study of patient and resource scheduling in specialty

health care clinics such as nuclear medicine departments. This study responds to the

fact that medical imaging clinics such as nuclear medicine clinics have become a factor

in the total cost of U.S. health care. Equipment utilization, direct labor time, and

radiopharmaceutical prices have been identified as the most influential factors in the

cost per procedure in nuclear medicine and there is a need for improving the existing

appointment systems to improve the way resources and patients are managed.

The strategies presented were designed to improve the management of patients

and resources in nuclear medicine clinics by taking into consideration both patients

and management perspectives. While this work focuses in nuclear medicine we believe

the solution strategy presented will find generality in other health care settings or

applications.

A. Conclusions

Given the rise in health care costs patient scheduling in medical clinics has been a

subject of study during the past few years. This work proposes a methodology for

improving patient service and resource management in highly constrained health care

environments such as nuclear medicine. In our study we found that implementing

some of the proposed ideas will result in a better patient service and in a better

utilization of the resources in health care nuclear medicine clinics.

We follow a methodology toward achieving our objective. First, we present a

simulation model that integrates with scheduling methods to manage patient service

levels and resource productivity. We validated the simulation model based on a real
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nuclear medicine setting and report computational results based on a scheduling algo-

rithm. The results show that fixing some of the human resources to specific stations

may reduce the patient throughput of the system unless it is carefully determined

(e.g. through simulation). In addition the results show that a balanced workload is

achieved under those algorithms where no human resources are fixed to stations.

In addition, we derive scheduling algorithms for scheduling multi-steps medical

procedures that are time constrained in health care specialty clinics. The scheduling

algorithms take into consideration the time constraints imposed by the decay of the

radiopharmaceuticals, which are required for most of the procedures. The algorithms

were implemented within the simulation framework and the experiments were based

on historical data. The results obtained provide good insights into patient and re-

source management in nuclear medicine clinics. No single algorithm provides the best

results relative to all performance measures. Thus, the nuclear medicine clinic could

decide which algorithm to implement based on priorities. The results show that re-

serving stations to be exclusively used to serve those procedures that are requested

more often improves throughput. However, this may also increase the average waiting

time for the patients.

Finally, we developed a stochastic online scheduling algorithm for managing pa-

tients and resources by tanking into consideration stochastic information about pa-

tient future requests. This algorithm has at its disposal a two-stage stochastic pro-

gramming model that is used to solve the scheduling problem. The preliminary results

obtained provide some insights to the benefits of considering stochastic information

when scheduling patients in health care clinics. We applied the stochastic online

scheduling (SOS) algorithm to a small problem instance derived from a real clinic.

The No Fixed Resource (NFR) algorithm was also implemented to this problem and

both performance were compared. The results show that the number of patients
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served under the SOS was significantly higher.

B. Future Research

Scheduling in highly constrained environments is an open challenge problem in health

care. This type of problem not only affect specialty clinics such as nuclear medicine

departments but also other health care settings like outpatient surgery centers. The

work presented in this dissertation represents a step forward in addressing this prob-

lem but additional questions that can be easily extended into future research direc-

tions.

First, specialty clinics are usually part of complex integrated systems (hospitals).

In such cases, a macroscopic analysis of multi-facility systems may be needed to

improve the performance of specialty clinics rather than focus on individual units.

Discrete event simulation can be used to capture the interaction of major service

departments and support services in the hospitals. At the facility level the discrete

event simulation model presented in this work can be extended to a stochastic discrete

event simulation model where additional stochastic information can be included to

improve the model representation of reality.

Further research also include extensions of the scheduling algorithms proposed in

this work. These algorithms can be extended to account for different patient behaviors

such as late cancelations, patient no-shows or emergencies. It will be interested to

investigate if a correlation exist between the amount of time patients have to wait for

an appointment and patient no-shows.

In the future one can consider characterizing the solutions provided by the

stochastic online scheduling algorithm with the objective of developing a heuristic

algorithm that can find similar solutions with less computational effort. Even though
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this work focus in managing patients and resources in nuclear medicine, we believe it

can also be applied to other health care settings or disciplines.

In addition, the simulation model presented in this work can be extended to

a simulation optimization setting. We can envision a framework in which the sim-

ulation model provides feedback to the scheduling algorithm with the objective of

making optimal decisions based on patient and the nuclear medicine management

perspectives. Finally, there is a need of quantifying the economic impact of enhanc-

ing alternatives. For example, the impact of purchasing additional equipment that is

considered critical for the clinic operation and/or the cost of cross training staff.
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