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ABSTRACT 

 

Modeling of Wave Impact Using a Pendulum System. (May 2010) 

Chunyong Nie, B.S., Harbin Engineering University 

Chair of Advisory Committee: Dr. John M. Niedzwecki 

 

For high speed vessels and offshore structures, wave impact, a main source of 

environmental loads, causes high local stresses and structural failure. However, the 

prediction of wave impact loads presents numerous challenges due to the complex nature 

of the instant structure-fluid interaction. The purpose of the present study is to develop an 

effective wave impact model to investigate the dynamic behaviors of specific shaped 

elements as they impact waves. To achieve this objective, a wave impact model with a 

body swinging on a pendulum system is developed. The body on the pendulum goes 

through a wave free surface driven by gravity at the pendulum’s natural frequency. The 

system’s motion and impact force during the entire oscillation time beginning from the 

instant of impact are of interest. The impact force is calculated by applying von Karman’s 

method, which is based on momentum considerations. The usual wave forces are 

presented in the Morison’s equation and incorporated into dynamic systems with other 

wave forces. For each body shape, the dynamic system is described by a strongly 

nonlinear ordinary differential equation and then solved by a Runge-Kutta differential 

equation solver.  The dynamic response behavior and the impact force time history are 

obtained numerically and the numerical results show support the selection of a pendulum 
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model as an efficient approach to study slamming loads. The numerical prediction of this 

model is compared to previous experiments and classification society codes.  

Moreover, a basic design of wave impact experiments using this pendulum model 

is proposed to provide a more accurate comparison between numerical results and 

experimental data for this model. This design will also serve as a first look at the 

experimental application of the pendulum model for the purpose of forecasting slamming 

force.   
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1. INTRODUCTION 

 

One important objective of research in offshore engineering is to develop 

methods of designing safe and economic structures. The prediction of operational and 

extreme loads caused by the environmental forces is of particular interest to designers of 

offshore structures and ships. Naval architects are concerned with ships underway 

slamming into waves and in particular the impact occurring with the ship moving with 

relatively high forward speed. These slamming impact loads result in localized high 

pressure on the hull. If these slamming loads occur with high frequency, it may lead to 

structural fatigue problems, especially for high speed vessels.  

Faltinsen (1990) defined slamming impact as ‘impulse loads with high pressure 

peaks occur during impact between a body and water’. There are several types of ship 

slamming in practice. Slamming on a bow flare or bottom occurs in rough seas, when the 

ship is lifted out of water and enters the water again.  The slamming impact also happens 

on vertical columns or horizontal structural members in the splash zone on offshore 

platforms, usually in the presence of wave breaking. Wet-deck slamming acts on the 

bottom of the platform deck or the catamaran deck connecting the two pieces, when the 

heave motion is large. Green water slamming occurs on the bow stem by breaking waves 

or on the upper deck and bridge in rough seas when incoming waves run-up on a floating 

platform and exceed the freeboard. Green water used to be exclusively a topic for high 

speed ships, but it is now of concern for offshore ship structures like Floating 

Production, Storage and Offloading Systems (FPSO), where no operational measures 

can be applied to reduce green water like voluntary speed reduction. For vessels with 

liquid tank onboard, slamming acts on the inner side of a partially filled tank, and results 

in sloshing loads.  

Behind the diversity of slamming impact in outward forms, there is some 

common ground underlying in the physics of slamming. The most essential action during 

slamming is that a body enters the water free surface, named water entry. Water entry 

appears to be the most popular slamming model as it is used by many researchers, von 

This thesis follows the style of Ocean Engineering. 
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Karman (1929), Wagner (1932), Faltinsen (1977), Campbell & Weyberg (1980), R. 

Zhao (1993), etc. During slamming, wave breaking can release large amount of energy 

on vertical or inclined cylindrical structural members. Water run-up along columns may 

cause damage on platform decks during slamming. When slamming occurs, the wave 

impact force dominates the more usual wave induced hydrodynamic forces and 

buoyancy loading.  

 

1.1. Literature review 

Slamming is a complicated nonlinear physical process, where jet flow, air 

trapping, and water compressibility may be involved. The classic simplified analytical 

formula for water impact cannot adequately take these factors into account. With the 

advancement of computational capability, more accurate solutions have obtained and the 

prediction of various wave impact loads now compare more favorably with experiment 

results. 

Analytical methods developed for the water entry of simple shapes have a long 

history. The pioneering analytical methods were established by von Karman (1929) and 

Wagner (1932). Von Karman’s method is based upon momentum considerations. The 

momentum of the fluid-body system increases during impact because the hydrodynamic 

added-mass occurs, such that the system momentum after penetration must be equal to 

the sum of the body momentum and hydrodynamic added-mass momentum. More 

specifically, in Wagner’s method, the velocity potential is first found from the solution 

of the boundary value problem for a 2-dimension plane, and then the impact pressure is 

determined from Bernoulli’s equation. Wagner’s method accounts for local free surface 

elevation and thus has been found to yield conservative estimation of peak impact 

pressures, while von Karman’s method tends to underestimate impact force. Kaplan and 

Silbert (1976) applied von Karman’s method to a horizontal cylinder and investigated 

the process from wave impact through fully submerged status. They considered the wave 

impact force as a sum of the buoyant force, the time-rate of the change of hydrodynamic 

added-mass momentum and the dynamic pressure due to surface oscillation. The 

 



 3

hydrodynamic added-mass was expressed using Taylor’s cylinder added-mass formula 

that allowed them to obtain the derivative of the added-mass analytically. Sarpkaya 

(1978) further improved von Karman’s analytical solution. He found that it was not 

realistic to assume that slamming coefficients reached a maximum value instantaneously 

at t=0. Thus, a model of rise time was introduced which allowed a finite time for the 

slamming coefficient to reach its maximum. He assumed the slamming coefficient 

increases linearly during the rise time, and set different values to the rise time. Sarpkaya 

also proposed the global dynamic response transfer function of rigid cylinders. The 

transfer function was found to be very sensitive to the duration of rise time assumed, i.e., 

when the rise time was larger than 1/100 sec, the transfer function dramatically lost its 

harmonic shape. Isaacson and Prasad (1994) investigated the wave impact loads due to 

waves interacting with a horizontal cylinder near the free surface. A single degree of 

freedom dynamic model was established using slamming coefficients and other 

hydrodynamic coefficients from experimental data. The time history of the vertical 

impact force and dynamic response of the cylinder was obtained by solving the 

differential equation numerically by using a time-stepping procedure. Korobkin (1996) 

presented acoustic approximation and a method of normal modes to study the defection 

of a curved plate under slamming and included the effect of weak fluid compressibility. 

Bifurcation analysis on the nonlinear dynamics system excited by slamming was 

introduced by Liaw et al. (1996) and the bifurcation behavior of a horizontal cylinder 

under water slamming was proven not sensitive to the magnitude of the slamming force. 

Oliver (2007) developed a second order correction of Wagner’s method for the location 

of the high pressure on the jet-root region and the upward force. The solution of an 

entering wedge using the correction was compared well with experimental and 

numerical results. 

Unlike analytical methods, numerical methods can be used to more accurately 

address complex shapes of practical interest. The most developed numerical method for 

slamming problems is the Boundary Element Method (BEM). Zhao et al. (1993) 

presented nonlinear BEM to solve water entry of arbitrary cross section neglecting the 
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consideration of jet flow. Their results compared favorably with experimental results. In 

1997, Zhao developed two methods in water entry of arbitrary 2-D section. The first 

method is a fully nonlinear numerical simulation, and flow separation was considered. 

The second method was an approximate approach, extending Wagner’s classical 

method, but not including flow separation. The latter is a very robust numerical method, 

referred to as the ‘Generalized Wagner method’, where the body-boundary conditions 

with a free surface approximation are applied in Wagner’s outer flow domain. The 

results were validated by using vessel cross-sections and dropping them into an initially 

quiescent fluid. Hermundstad & Moan (2005) applied nonlinear strip theory and 

Wagner’s method to investigate slamming impacts of a vessel with BEM codes. The 3-D 

numerical results compared well with experimental results. Greco et al. (2008) 

investigated the bottom slamming a Very Large Floating Structure using a boundary 

element method. Linear global analysis and nonlinear local analysis for platform 

behavior without coupling global and local analysis was studied separately.  

In addition to Boundary Element method, other methods including the Finite 

Element Method (FEM) and the Smoothed Particle Hydrodynamics (SPH) method have 

been used to predict slamming loads. Le Sourne et al. (2003) generally discussed the 

application of LS-DYNA 3D in slamming simulation, which is a nonlinear dynamics 

FEM software. Peseux (2005) dealt with slamming between a ship bow and water free 

surface by solving the 3-D Wagner problem utilizing with the Finite Element Method. 

The numerical prediction was confirmed by experimental data. Oger et al (2006) used 

the SPH method for solid-fluid coupling in surface flow context and simulated two 

wedge water entry problems. Aquelet et al (2006) solved Navier-Stokes equations with 

an Arbitrary Lagrangian Eulerian (ALE) formulation for the fluid and a Lagrange 

formulation for the structure to predict impact loads on a wedge shape entering an 

undisturbed fluid. Chen (2009) used a computational fluid dynamics method to solve the 

unsteady Navier-Stokes equations with an interface-preserving level-set method for the 

simulation of green water effect on offshore structures and ships. 
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Despite the sophisticated development of numerical methods, the slamming 

problem is still too difficult to be modeled completely due to its short time scale and 

complication when considering a random wave field. Thus experimental methods remain 

a strong component of wave slamming research. Faltinsen (1977) conducted an 

experiment of horizontal Polyvinyl Chloride (PVC) cylinders to simulate the slamming 

on trusses of semisubmersibles. The pinned-end horizontal PVC cylinders were forced 

with constant velocities through an initially undisturbed free surface. The results of the 

tests were found to be up to 100% higher than the theoretical prediction. The slamming 

coefficients obtained from the tests had an average of 5.3, as compared to theoretical 

value at 3.1.  

Sarpkaya (1978) conducted the experiments in a U-shaped water tunnel with two 

vertical legs which could initiate oscillations of free surface. Horizontal rough aluminum 

cylinders supported elastically were tested in one of the legs. An accelerometer was 

placed inside each cylinder and impact forces were measured by wave transducers 

attached to the cylinders. The measured initial slamming coefficient was found close to 

theoretical value π. The experiment showed that the dynamic response was as important 

as the impact force. The slamming coefficient can be amplified or attenuated to the 

initial value according to the dynamic system characteristics. It was also found that the 

drag force becomes important after the cylinders are the fully submerged. 

Suchithra et al. (1995) conducted a series of laboratory tests of wave impact on 

horizontal plates with and without stiffeners in a wave flume that was 3m in width and 

10m in length, and equipped with a hinged paddle wave maker. He designed a U-shaped 

aluminum cell to measure axial and bending force. First, waves were generated without 

the slab and with the wave probe at the intended location of the slab. Then the wave 

probe was removed and the slab was placed at the designed location. The factors 

affecting slamming coefficients were discussed, including wave frequency, deck 

clearance, the presence of stiffeners, and Keulegan-Carpenter number. 

Yoshimoto et al. (1997) conducted experiments to estimate the bottom slamming 

loaded on a pontoon-type very large floating structure model scaled with the ratio of 
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1:37.5. The models were made from aluminum honeycomb panels with the purpose of 

easily manufacturing the target rigidity. The vertical movement of the vessels was 

measured using LED lights and there were 10 pressure sensors were attached along the 

length of each model. Comparison between two models with different mattering rigidity 

in materials was presented. The results indicated the model with low rigidity had smaller 

extent of bottom emergence but larger impact pressure.  

Hermundstad and Moan (2005) conducted model tests for the slamming on the 

bow flare of a Ro-Ro ship with P-P length of 120 m and service speed of 20 knots. The 

model with scale ratio 1:21.62 was self-propelled with only cable and rope connected it 

to the carriage. Two slamming panels were amounted on the force transducers to 

measure the impact pressure. The ship motion was measured using an optical system. 

The tests were conducted in different wave headings at the heave/pitch resonance period. 

The results of the tests agreed well with the numerical results obtained from existing 

Boundary Element Method software.  

Table 1, 2 and 3 summarize the previous studies on wave impact.   



 

Table 1. Selected important papers using analytical methods for slamming problems 

Year Author Paper title Brief overview 

1932 H. Wagner 

Uber Stossund 
Gleitvorgange an der 

Oberflache von 
Flussigkeiten 

A water impact theory was derived with consideration of free 
surface elevation. The theory can be applied to arbitrary shape with 
small deadrise angle. Although air trap and compressibility isn’t 
included, the theory is still strong even today, because it can be used 
to accurately present impact pressure and it is a conservative method 
in practice.   

1976 Kaplan and 
Silbert 

Impact Forces on 
Horizontal members in 

the splash zone 

A solution for a cylinder from impact starting instant to full 
immersion in wave has been obtained. The force acting on the 
cylinder is considered as the sum of buoyancy and the rate of change 
of momentum which is related to the wave elevation.  

1996 Korobkin 
Acoustic 

approximation in the 
slamming problem 

A solid, slightly curved plate impact on weak compressible water 
has been investigated using acoustic approximation and the method 
of normal modes. The supersonic stage during the impact when the 
free surface remains undisturbed outside the contact position is 
concerned. The comparison between rigid body impact and elastic 
boy impact is made.  

2007 Oliver 

Second-order Wagner 
theory for two-

dimensional water-
entry problems at 

small deadrise angles 

The second-order corrections of Wagner’s theory have been made 
for the jet-root regions and the upward force on the structure. The 
results are compared with numerical and experimental data. The 
prediction capability of Wagner’s theory is improved. 

7 
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Table 2. Selected important papers using numerical methods for slamming problems 

Year Author Paper title Brief overview 

1987 Greenhow Wedge entry into 
initial calm water 

A versatile numerical approach has been introduced concerning 
wedges of various angles entry initial calm water with both gravity 
and the nonlinearity of the boundary conditions on the wedge and free 
surfaces taken into account for the first time. 
 

1993 Zhao et al. Water entry of two 
dimensional body 

Nonlinear BEM has been presented to solve water entry of arbitrary 
cross section without the consideration of jet flow. The results were 
compared with experimental results. For small deadrise angles the 
results agree well with Wagner’s theory. 
 

1997 Zhao et al. 

Water entry of 
arbitrary two-

dimensional sections 
with and without 
flow separation 

Two methods have been developed for arbitrary two-dimensional 
sections slamming problem. One is a nonlinear BEM numerical 
simulation approach taking flow separation into account. The other is 
a generalization of Wagner’s method without flow separation. The 
results of this method agree with the nonlinear method and the 
calculation is efficient. 

2006 G. Oger et al 
Two-dimensional 

SPH simulations of 
wedge water entries 

The smoothed particles hydrodynamics method (SPH) has been 
introduced for a numerical simulation for solid-fluid impact on a free 
surface. Two wedge water entry cases are simulated and results are 
compared with analytical and experimental data to validate the new 
numerical method. 

2008 Greco et al 

Bottom slamming for 
a Very Large 

Floating Structure: 
Uncoupled global 

and slamming 
analyses 

The bottom slamming for a very large floating structure (VLFS) has 
been studied. Linear analysis for global motion and nonlinear analysis 
for flow evolution and local stresses without flow separation.  The 
coupling between global behavior and local phenomena is not taken 
into account. The hydroelastic coupling and air cushion associated 
with scale transferring challenges are discussed.  

8 

 



 

Table 3. Selected important papers using experimental methods to investigate slamming problems 
Year Author Paper title Brief overview 

1977 Faltinsen 

Water impact loads and 
dynamic response of 
horizontal circular 

cylinders in offshore 
structures 

Experiments of rigid horizontal cylinder and horizontal elastic 
cylinder have been conducted respectively. The experimental 
results are both larger than theoretic results. For realistic extreme 
wave conditions in the North Sea, the stresses could be higher 
than yield stress according to the model results.  

1978 Sarpkaya Wave impact loads on 
cylinders 

Slamming experiments of a horizontal cylinder under impact of 
harmonically oscillating flow has been conducted. The 
experiments focused on the dynamic response of system, the 
dynamic characteristics, the slamming coefficient, and the effect 
of drag force. It validated the theoretical value of slamming 
coefficient at initial time is π, and showed that it lies between 
0.5π and 1.7π related to the rise time and natural frequency of the 
cylinder. 

1995 Suchithra et 
al. 

A study of wave impact 
on horizontal slabs 

A laboratory study of wave impact on horizontal slabs has been 
conducted, and slamming coefficients under different conditions 
has been examined. The effect of stiffener arrangement, wave 
frequency, deck clearance were investigated. Freak waves were 
also investigated with regards to the wave impact .  

1997 Yoshimoto et 
al 

Slamming load on a very 
large floating structure 

with shallow draft 

Experiments have been conducted to estimate the bottom 
slamming load on a pontoon-type very large floating structure 
with a shallow draft. The models were made from aluminum 
honeycomb panels. The scaling ratio of models is 1:37.5. The 
results are related to a simple analytical method. 

2005 Hermundstad 
& Moan 

Numerical and 
experimental analysis of 
bow flare slamming on a 
Ro-Ro vessel in regular 

oblique waves 

A method to predict the slamming load on a Ro-Ro hull is 
introduced using nonlinear strip theory and generalized Wagner’s 
theory. BEM is used to solve the equations. Model test of the hull 
is conducted in regular wave of different directions and heights 
The results of experiments and numerical solutions agree well.  

9 
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1.2. Research objectives 

Slamming impact on structures of different shapes has been studied with various 

methods, including some very accurate numerical schemes and software 

implementations. With existing codes, the impact pressure distribution can be obtained 

and generally agrees well with the experimental data. However, most of the research has 

focused on the hydrodynamic loading. Some studies have considered local behavior and 

reliability under slamming, but only a few of them have investigated the dynamic 

behavior of the system due to wave impact. The existing experimental studies have 

focused on either the simple structure or the ship model tests. However, the ship model 

tests are costly and due to scale effects, it may be questionable to apply the experimental 

findings of one ship model to other ship forms. The slamming tests of simple shapes are 

mostly for fixed structures or structures forced at certain velocities, and thus can’t 

adequately account for the dynamic behavior of the floating or compliant structures.  

A basic objective of this thesis research is to investigate the global response of 

the nonlinear slamming dynamics of specific shaped elements impacting with waves. To 

achieve this objective, wave impact on a body swinging on a pendulum system, which is 

similar to realistic wave impact encountered by ships and ocean structural elements, is 

investigated. The body on the pendulum goes through wave free surface driven by 

gravity at the pendulum’s natural frequency. The system motion and impact force during 

the whole oscillating time history starting from the impact instant is of interest.  

An analytical model to be used as the basis for the numerical simulation to study 

wave impact on pendulum systems will be presented. A variety of elementary body 

shapes swinging on the pendulum into an oncoming wave are investigated. Linear 

stretching wave theory is used to obtain values of pressure distribution and particle 

motion on each point at the interface. Using stretching wave theory, the relative position 

between free surface and the body can be evaluate more actually than in previous 

research studies (Isaacson 1994). Gravity acts as the major restoring force of the system, 

while the hydrodynamic forces correspond to the exciting force acting on the system. 

The hydrodynamic force on various body shapes being tested consists of drag force, the 
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Froude-Krylov force and the actual impact force. The hydrostatic force is calculated 

based upon Archimedes principle. Wave diffraction and radiation during the impact and 

when the object goes beneath the wave free surface is also investigated but not explicitly 

evaluated included in the numerical computation. Some hydrodynamic parameters 

obtained from earlier research will be used with von Karman’s theoretical model and the 

nonlinear ordinary differential equations of motion will be solved using a MATLAB 

time-marching solver. Thus the time history of pendulum/body motion and its impulsive 

loading history will be obtained. These simulation results will then be compared with 

experimental data and classification society rules. 
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2. THEORETICAL ANALYSIS 

 

The prediction of impact loading and structural response of marine structures is 

of significant importance to ensure the survival of structures in a rough ocean 

environment. Developing appropriate physical models of wave impact requires a careful 

review and understanding of each factor that affects wave impact force and the motion 

of the structures. So it is important to establish a proper physical understanding of the 

process，such that the analytical models can take into account for as much of this 

understanding as possible in order to make sure the solutions are realistic and yet 

solvable.  

 

2.1. Morison wave force on a pendulum system 

2.1.1. Stretching wave theory 

In the real world, ocean waves are random. However, for the engineering 

purposes, there are a number of ways to describe ocean waves and their kinematics. One 

approach is to develop an idealized model for the extreme effects of the random waves 

based upon a design wave approach. These analytical wave theories provide 

deterministic expressions for wave kinematics needed for estimating the wave forces. 

Figure 1 illustrates the region of application for the various wave theories used in 

offshore design.  

Canonical linear wave theory is based on small amplitude assumption that 

eliminates the second order terms in the free surface boundary conditions, and 

consequently it is unable to calculate the motion of water particles about static water 

level (SWL). However, the wave amplitude has significant influence on the wave force 

and cannot be ignored. The wave stretching method that was first proposed by Wheeler 

(1969) modifies linear wave theory to enable to account for free surface effects without 

requiring one use higher order wave theory. Wave stretching methods allow one to 

estimate the wave kinematics in the water columns that is form the seafloor to the 

instantaneous wave surface elevations. Wave kinematics can be considered to be 
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functions of the ratio between vertical position with respect to the seafloor and the 

distance from free surface to water bottom.  

Chakrabarti (2005) developed linear stretching formulas which are quite similar 

to Wheeler’s and give exactly the same value of horizontal particle velocity at free 

surface, while Chakrabarti’s formulas are simpler in expression. Chakrabarti’s linear 

stretching formulas are given by: 

 ( ) ( )cosh ( ) cos
2 cosh

gkH k y du k
k dω η

x ct+
= −⎡ ⎤⎣ ⎦+  (1) 

 
( ) (sinh ( ) sin

2 cosh
gkH k y dv

k dω η
)k x ct+

= −⎡ ⎤⎣ ⎦+
 (2) 

 
( ) (cosh ( ) sin

2 cosh
gkH k y du

k d η
)k x ct+

= −⎡ ⎤⎣ ⎦+
&  (3) 

 
( ) (sinh ( ) cos

2 cosh
gkH k y dv

k d η
)k x ct+

= − −⎡ ⎤⎣ ⎦+
&  (4) 

 
( ) (cosh ( ) cos

2 cosh
H k y d )p g

k d
ρ

η
k x ct+

= −⎡ ⎤⎣ ⎦+
 (5) 

These equations will be used to describe the wave kinematics in the numerical 

simulation of wave impact models for this research investigation.  
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Figure 1. Application range of wave theories (API 2000) 
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2.1.2. Pendulum system 

A pendulum system subjected to wave impact is investigated in this research 

study, and is illustrated in Figure 2. Similar to an articulated floating system in practice, 

the pendulum subjected to wave forces can be considered as a single degree of freedom 

(SDF) system in terms of angular motion: 

 I C K Mθ θθ θ θ+ + =&& &  (6) 

where, I is moment of inertia; Cθ and Kθ are angular damping and stiffness coefficients. 

The exciting force on the RHS can be calculated by diffraction theory. The damping 

item for offshore platforms is mainly drag force, but there are other resources of 

damping, like radiation, second-order wave drift and linear viscosity. M  is the moment 

due to wave forces.  

In this study, the wave forces other than impact force are evaluated by Morison’s 

equation. When the characteristic dimension, D, of the object is small compared to the 

wave length λ , the wave force can be evaluated using the Morison equation which can 

be expressed as: 

 1( )
2 d r r m

duF t C A u u C V
dt

ρ ρ= +  (7) 

where, u  is the flow velocity, the relative velocity ru u x= − & , V is the volume in the 

water, is the drag coefficient, is the inertia force coefficient. , where 

 is added-mass coefficient. The added-mass is associated with the relative velocity 

between fluid and structure. In this study, the added-mass coefficients are obtained from 

previous experimental studies (See Figure 3). In fact, the inertia force in Morison 

equation is the asymptotic expression of the exact solution from diffraction theory when 

dC mC 1m aC C= +

aC

/D λ  is 0.  
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Figure 2. A pendulum system subjected to wave impact  

 

 

 

 

 
Figure 3. Analytical dimensional added-mass for vertical cylinders. Rahman & 

Bahtta (1993) 
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The drag force in the Morison’s equation makes the dynamic system nonlinear 

and this is expressed by the following equation: 

 
( )1

2d D pM C A l l lρ θ ω θ ω= −& & −
 (8) 

where, ω  is tangential velocity of water particle cos sinu vω θ θ= − . Sarpkaya (1981) 

provided an analytical method to linearize the drag force, with assumption that radiation 

damping and exciting moment are linear. 

The calculation of usual wave force (not impact) strongly depends on the scale of 

the objects relative to the scale of wave profiles. Two dimensionless parameters 

associated with the scale ratio between objects and waves are Keulegan-Carpenter 

number and scatter parameter. 

 uTKC
D

=  (9) 

where, k is wave length; T is wave period; u is water particle velocity; D is characteristic 

body scale (diameter). And, Scatter parameter = kD. Table 4 illustrates the effects of the 

scale parameters on wave force estimation. Simply, a diffraction coefficient is defined as 

the ratio of diffraction force and Froude-Krylov force 

 

diffraction
h

F K

F
C

F −

=
 (10) 

Boccotti (2000) provided the diffraction coefficients for vertical cylinders of 

different relative radii (see Figure 3) from analytical solutions and tests. The values of 

both vertical and horizontal diffraction coefficients are about 2. Chakrabarti (1987) also 

suggested 2.0 as the diffraction coefficient when ka is between 0 and 1.0 for horizontal 

cylinders.  

Radiation effect is that when the body oscillates in the water, the body motion 

will force or radiate waves. As a result, the velocity potential in the wave field changes 

as well as the pressure distribution on the body surface. Both radiation and diffraction 

effects have to be taken into account for oscillating large structures. A significant 

difference between wave diffraction and wave radiation is that wave diffraction only 

 



18 
 

contributes to inertia forces but wave radiation contributes to both added-mass and 

damping. Besides radiation, damping is also from wave drift induced additional 

resistance and drag. For structure with small underwater part, radiation damping is not 

significant. Existing programs based on diffraction theory can be used to obtain added-

mass and damping coefficients due to radiation. We can simply use data from some 

analytical and experimental results to estimate the radiation damping coefficients in the 

pendulum systems (see Figure 4). 

 

 

 

 

 
Figure 4. Solutions of diffraction coefficients for vertical cylinders given by 

Boccotti (2000) 
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Table 4. Effects of relative body scale on wave force calculation 

 

 KC number<<1 KC number≥1 

ka<<1  drag force not important 

 diffraction not important 

 Morison equation 

 Steel jacket structure in 

operational sea 

 drag force dominating 

 diffraction not important 

 Morison equation 

 Steel jacket structure in 

storm sea 

ka≥1  Linear diffraction theory  

 drag force not important 

 Large floating structure in 

operational sea 

 nonlinear diffraction theory 

 drag force important 

 formation of vortices 

 model tests 

 Large floating structure in 

storm sea 
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2.2. Theoretical model for wave impact force 

2.2.1. Von Karman’s method 

The case of initial calm surface entry, first calculated by von Karman (1929), is 

used as an essential idealization for water impact problems. Faltinsen (1990) 

investigated a horizontal jacket cylinder truss in the splash zone by using the water entry 

model and von Karman’s method neglecting the wave forces as a first approximation. 

Von Karman’s method is derived by momentum considerations with the assumption of 

incompressible potential flow. 

 From a Lagrangian view, the momentum of a group of fluid particle or a material 

volume of fluid can be expressed as: 

 
( )M t vρ

Ω

d= Ω∫∫∫
r r

 (11) 

where, v is the fluid velocity and r
Ω  is the volume of the particle group. Note that the 

boundary of the particle group or material volume is flexible. Using the transport 

theorem, the derivative of Eq (11) with respect to time is written as: 

 
n

s

dM v d vu
dt t

ρ ρ
Ω

∂
= Ω +

∂∫∫∫ ∫∫ ds
r r

r

 (12) 

where,  is the normal component of the velocity of the material volume surface. The 

positive normal direction is out of the material volume. Now we consider the Euler’s 

equation for inviscid fluid:  

nu

 v pv v gz
t ρ

⎛ ⎞∂
+ ∇ = −∇ +⎜∂ ⎝ ⎠

⎟

r
r r

 (13) 

Integrating both sides of the Euler’s equation over the material volume yields: 

 

v pd v vd gz
t ρΩ Ω Ω

⎛ ⎞∂
Ω+ ∇ Ω = −∇ + Ω⎜ ⎟∂ ⎝ ⎠

∫∫∫ ∫∫∫ ∫∫∫
r

r r d
 (14) 

By applying Gauss–Ostrogradsky theorem, the third order integral in Eq (14) is then 

written as 

 ( )
s

v vd v vn ds
Ω

∇ Ω =∫∫∫ ∫∫
r r r rr  (15) 
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and the RHS of Eq (14) can be written as 

 s

p pgz d gz nds
ρ ρΩ

⎛ ⎞ ⎛ ⎞
−∇ + Ω = − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫∫∫ ∫∫

r

 (16) 

Now Eq (14) can be rewritten as 

 n
s

v pd gz n
t ρΩ

vv ds
⎡ ⎤⎛ ⎞∂

Ω = − + −⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦
∫∫∫ ∫∫

r
r r   (17) 

where, normal component nv v= nrr . Substituting Eq (17) into the second term of the LHS 

of Eq (12) results in the following equation: 

 ( )n n
s

dM p gz n v v u ds
dt

ρ
ρ

⎡ ⎤⎛ ⎞
= − + + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫∫

r
r r  (18) 

 Now consider the boundary conditions of the material volume in the presence of 

an impacting object. The surface of the material volume consists of the free surface fs , 

the body surface  and the far field surface sbs ∞ . For each boundary, the normal fluid 

velocity  is equal to normal velocity of the volume boundary . At free surface, the 

vertical coordination and pressure are zero. At far field, the volume boundary is 

considered as static, and pressure is purely static pressure. In summary, the boundary 

conditions at those three surfaces listed are the  following: 

nv nu

: 0, 0,

:
: 0,

f n n

b n n

n

s p z v u

s v u
s u p gzρ∞

= = =

=

= =
 

Substituting the boundary conditions into Eq (18), yields 

 
b

n
s s

dM p gz nds vv ds
dt

ρ ρ
ρ

∞

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
∫∫

r

∫∫
r rr  (19) 

The impact force on the body is the water pressure integral over the interface, can be 

expressed as  

 b

impact
s

F pnds= ∫∫
r

 (20) 

Rearranging Eq (19), 
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 b b

b b

n
s s s

n
s s s

dMpnds gznds vv ds
dt

d nds vv ds gznds
dt

ρ ρ

ρ φ ρ ρ

∞

∞

= − − −

= − − −

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫

r r rr

r rr r
 (21) 

where, 
bs

dM d nds
dt dt

φ= ∫∫
r

r  is easily deduced from (11) by Gauss–Ostrogradsky theorem, 

and integral n
s

vv dsρ
∞

∫∫
rr will die out because the quadratic velocity is very small at s∞ . 

It is known that  from the definition of added-mass, where 33 33

bs

n ds vAρ φ = −∫∫ 33A  

is added-mass of direction normal to surface. Further, 33A  is related to submerged 

volume by an added-mass coefficient which can be evaluated numerically by potential 

flow theory, and yet also can be expressed theoretically for some simple shapes. In 

addition, the last term is simplified by Gauss theorem as
bs

gznds g dsρ ρ
Ω

gρ= − =∫∫∫ − Ω∫∫
r , 

which is simply the buoyancy.  Thus,  

 

 33
impact

dA vF g
dt

ρ= + Ω  (22) 

 Now consider the presence of wave, where, the free surface is not quiescent and 

not horizontal. The slope of the free surface is then expressed as  

 
arctan Hk

x
ηβ

π
∂

= − ≈
∂  (23) 

Hence the impact forces are decomposed into two directional components, which are 

 
sin

cos
x impact

y impact

F F

F F

β

β

=⎧⎪
⎨ =⎪⎩

 (24) 

The pendulum system is considered as a single degree of freedom system and is 

expressed in terms of the angular motion. Impact loading is the exciting moment with 

respect to the hinge, so one can express the impact moment in terms of xF  and . yF
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 cos sinimpact x yM F L F Lθ θ= +  (25) 

where, L is the length of the pendulum and θ  is the instant angular displacement. 

Neglecting vertical relative velocity between the body and free surface, the impact 

velocity is now ( )cos sinv c Lθ θ= − & β . Considering 33dA
dt

is also associated with θ&  and 

θ , it is certain that the impacting system is a highly nonlinear dynamic system.   

 

2.2.2. Wagner’s method 

The approach in the previous subsection was based on von Karman’s (1929) 

solution without considering free surface elevation. Wagner’s method accounting for the 

local free surface elevation is believed to yield accurate estimates of peak impact 

pressure. In Wagner’s method, the body is approximated as a flat plate in uniform flow 

and this allows one to obtain the velocity potential of the flow, by solving boundary 

value problems. Consequently, the local water surface elevation can be included and a 

new expression of the wetted area is obtained. The velocity potential and its derivative in 

vertical direction can be expressed as follows: 

 2 2 ,V wc x at x wcφ = − − <  (26) 

and 

 

2 2
,

1 /

V
z x

V V at x w
wc x

c

φ φ∂ ∂
= −

∂ ∂

= −
−

>
 (27) 

where, V is the velocity of uniform flow, wc is one half of the wedge width, x and z are 

the horizontal and vertical coordinates. 

Integrating Eq (27) over time yields a free surface elevation which is associated 

with submerged width wc. There is also a geometry relationship between wc and local 

surface elevation depending on the specific shape of the structure, and that allows one to 

solve for wc. As long as the expression of the wetted length wc is obtained, the fluid 

potential can be simply expressed with potential theory, i.e. equation (26) is the flow 
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potential below a flat plate. The hydrodynamic impact force is then calculated using 

Bernoulli’s equation. For a circular cylinder, the wetted length is 2  times the wetted 

length without local elevation, while the peak slamming coefficient at the initial time of 

impact is found to double the slamming coefficient without local elevation. The 

slamming coefficient is defined as  

 21
2

s
s

FC
V Dρ

=
 (28) 

where, sF is the impact force per length of the cylinder and D is the diameter. This result 

is a little higher than the experimental results from Campbell & Weynberg (1980), and 

thus is considered as a reasonable and conservative estimation. Table 5 provides a 

focused comparison between von Karman’s method and Wagner’s method on water 

entry into an initially calm free surface. One thing that should be noted is that, the 

potential flow method without local elevation consideration will lead to the results of 

von Karman’s momentum conservation method, so the potential flow method without 

local elevation is generally also called von Karman’s solution.  

 Generally, von Karman’s method is less accurate than Wagner’s method in 

estimating of peak pressure, but there are exceptions, because the 3-dimensional effects 

tend to reduce the impact loads by Faltinsen (2004). On the other hand, von Karman’s 

method agrees well with the experimental values except as noted for the initial peak 

value. Moreover, in the wave impact problem, the free surface elevation will be 

expressed by various wave theories and the water entry doesn’t have to be solved in the 

vertical direction. In this case, the local elevation estimation in Wagner’s theory can be 

questionable, because the main contribution to the local free surface elevation will be the 

proceeding wave but not the actual impact which disturbs the flow. For dynamic 

problems with incoming waves, the momentum conservation method is far more robust 

than using potential theory, because the expression of potential for complex flow field 

may require a lot of computation using computational fluid dynamics. In fact, Wagner’s 

theory is popular with the studies using Boundary Element Method. In this research 
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investigation, the theoretical model and computational model will be developed based on 

von Karman’s theory. 

 

2.2.3. Other physical consideration 

It is not difficult to understand that the theoretical impact force reaches the 

maximum value or a very large value instantaneously, i.e. t=0. This is not physically 

precise, because the force cannot reach a large value instantly due to the compressibility 

of water. The compressibility gives the water a pressure upper limit that the water 

pressure may reach at most, which is 

 max ep c Vρ=  (29) 

where, is the velocity of sound in the water, V is the flow velocity. It is noted that 

will change dramatically if air bubbles present. When the water is subject to a 

disturbance, the disturbance will propagate in the fluid with the sound velocity. 

Obviously, the time duration leading to the maximum impact force is very short. 

Sarpkaya (1978) developed a model of rise time, assuming that the slamming coefficient 

increases linearly during the rise time. Sarpkaya also developed the global dynamic 

response transfer function of rigid cylinders, and found the transfer function is very 

sensitive to the duration of rise time assumed. When the rise time is larger than 1/100 

sec, the transfer function dramatically loses its harmonic shape.  

ec

ec

Air trapping may occur during the slamming, especially in the context of ship 

bottom slamming and wave breaking. In bottom slamming, the deadrise angles are small, 

so the water tends to trap air and form an air cushion. When the deadrise angle is 0, the 

peak impact pressure is proportional to impact velocity (Chuang 1967), rather than to 

square of the impact velocity as reflected in either von Karman or Wagner’s theory. 

Increasing the deadrise angle will reduce the effect of air trapping. 

.  
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Table 5. Comparison between von Karman’s method and Wagner’s method 

 

 
Slamming coefficient 

Pressure at measured 

peak pressure instant 

Peak pressure 

position 

Wagner High estimation Good Good 

Von Karman Low estimation Good Bad 

 

 

 

 

 
Figure 5. Pendulum bodies of different shapes 
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2.2.4. Wave impact of a spherical body 

In this case, a pendulum with a spherical body is released above a progressive 

wave and impacts the wave (Figure 5). Weights can be added along the pendulum arm to 

change the natural period of the pendulum system. The length of pendulum, the height of 

the frictionless pivot and the radius of the sphere are known.  

Viscosity is neglected and the damping force is not included in the following 

dynamic equations. 

  (30) ( ) 2 sinadded totalm m l mgl Mθ θ+ + =&&

 total F K added mass hydrostaticM M M M−= + +  (31) 

In order to calculate the total impact moment on the pendulum, the dynamic 

process of wave impact by the body is divided into four stages: fully submerged, mostly 

submerged, slightly submerged and not submerged, as illustrated in the Figure 6. 

In the first stage, the whole sphere is submerged under the wave surface. The 

criterion of this stage is physically described as uh uη< , where, and uh uη are the vertical 

position and local wave elevation of the highest point on the sphere. The added-mass 

coefficient and Froude-Krylov force are present in this stage. The added-mass 

coefficient of a sphere is 0.5, according to classical analytical method, and Froude-

Krylov force is given by Chakrabarti (1987): 

 x H

y V

F C V
F C Vv

uρ
ρ

=
=

&

&
 (32) 

where, the velocities and accelerations are of the water particle located at the center of 

the sphere, and V is volume of the sphere. HC  and  are given coefficients. The 

Froude-Krylov force is induced from dynamic pressure under the wave, so the 

hydrostatic buoyancy which presents on a submerged body is not included. So, 

buoyancy must be calculated using Archimedes' principle and included in the inertia 

force. The fluid particle acceleration induced added-mass force is added to the Froude-

Krylov force to form an integral inertia force. This contribution to the added-mass force 

is given by: 

VC
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 a af C Vρ=  (33) 

 The other contribution of added-mass force due to response acceleration has 

been moved to LHS of the dynamic equation, see Eq (30).  

The second stage of the wave impact modeling addresses when the water line is 

above the center of the sphere but is still lower than the top of the sphere, i.e. 

,u centerh hη η> >

R

. The components of the forces in this stage are the same as the fully 

submerged stage, but here the challenge is to calculate the instantaneous submerged 

volume. A computer program was developed to calculate the volume of the partly 

submerged sphere based on the strip method. By inputting the maximum submerged 

depth and the radius of the sphere, the submerged volume can be calculated. The 

maximum submerged depth is given by: 

 ( ) cosims centerD h aη= − +  (34) 

where, arctan
x
ηα ∂

= −
∂

. 

External forces in this stage are also the added-mass and Froude-Krylov force. 

The added-mass coefficients and Froude-Krylov force formula are approximated, based 

on an ideal hemisphere shape. Added-mass coefficients are still approximated by sphere 

added-mass coefficients. The Froude-Krylov forces are calculated by Chakrabarti’s 

formula (1987) written as follows: 

 3[X H ]F C V u C vρ ω= +&  (35) 

 4[Y V ]F C V v C uρ ω= +&  (36) 

where, HC , ,  and  are coefficients from experiments. The volume V in VC 3C 4C (35), 

(36) and (33) becomes the submerged volume, because initial forces are due to fluid 

acceleration. Buoyancy that acts upward is also included.  

The slightly submerged stage of the wave impact model is defined as the 

condition centerh η< , but the sphere is not totally outside the water.  When the wave is 

high, the wave profile may be so steep that the body may be partially submerged in the 

wave profile even though the bottom of the body is not submerged at all. Hence, it is 
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difficult to identify the slightly submerged stage and not submerged stage. In this study, 

the whole wave surface within the projection of the sphere is examined. The range of the 

projected area is [ ], sinx r x r θ− + . If any ix that satisfies ( ) ( )i ix h xη >

( ih x

 exists, the sphere 

is slightly submerged, otherwise it is not submerged. The variable  is given by )

 2 2
0( ) ( )h x r r x= − − −Δ( )ih x

s

 (37) 

where, 0 cox l rθ= − . In the slightly submerged stage, the submerged volume is 

calculated by integrating the discrete slice area over the submerged depth.  

In the not submerged stage of the wave impact model, all external forces are 

equal to zero. For the slightly submerged stage, the forces consist of the inertia force and 

the impact force, due to the change of momentum of added-mass. The inertia force is 

obtained from the submerged volume and particle acceleration at an associated position. 

This stage utilizes Equations (35), (36) and (33) to calculate the inertia force, which is 

based on hemisphere, since the submerged volume is close to a hemisphere. The impact 

force is calculated from the change of momentum in terms of added-mass, as follows: 

( )added added
added

addeddm
dt

d m v dmm v
dt dt

added s force v= +

dv
dt

mas

= +

 (38)  

where, 

 added added
aρ

dm dVC g
dt dt

=  (39) 

and 

 added added addeddV V VdD
d

d
dt D t dt

α∂
α

∂
= +

∂ ∂
 (40) 

where, D is immersed depth of radial direction and α  is the  inclined angle of the water 

line. 

To simplify the differential equations, we assume α  is a constant during the 

impact moment. So 
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( ) (added added addeddV V D D V D

dt t
)+ Δ −

=
Δ  (41) 

where, 

 

( )cos
sin

d l
D t l

dt
θ

tθ θΔ = − Δ = Δ&

 (42) 

And the submerged depth D can be obtained from the following technique. In Figure 7 

AllD is a vector whose elements are the values of distance from the wave profile to the 

bottom of the sphere. The submerged depth is obtained by multiplying the median 

component with cosα .  

 

2.2.5. Wave impact on a vertical flat plate 

This impact of a vertical flat plate differs from sphere impact model in that the 

volume of the object is assumed to be zero, since the thickness of the flat plate is 

neglected. Therefore, the Froude-Krylov force associated with volume is neglect, and in 

this case the drag force due to the shape dominates. The drag force, known as Kutta-

Zhukhovsky lift force, may be calculated using potential flow theory, and is given by the 

following expression:  

 L = Uρ Γ  (43) 

where, 2 AUπΓ =  is the vortex strength and A is the area. The direction of the lift is the 

same as flow velocity U.  

The added-mass of the plate per unit width is given by Wagner as: 

 
2

2addedm bπρ=
 (44) 

where, b is one half of the submerged length. The impact force is given by: 

 
2

2
addeddm dbv b
dt dt

vπρ=
 (45) 

where, db
dt

can be expressed in terms of wave elevation rising rate and response velocity, 

that is 
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1 1cos tan
2 2

db d dv l
dt dt dt

η ηθ θ θ⎛ ⎞ ⎛= + = +⎜ ⎟ ⎜
⎝ ⎠ ⎝

& ⎞
⎟
⎠  (46) 

where, v is the vertical component of response velocity. When impact force occurs, 

db
dt

should always be positive. 

 

2.2.6. Wave impact on a vertical triangular body 

Vertical triangular body can be used to simulate ship bows subject to slamming. 

This is similar to flat plate slamming but it is subject to both buoyancy and Froude-

Krylov forces. The added-mass coefficient obtained from experimental data is 

approximately 1.2. The Froude-Krylov force is calculated based upon the difference of 

the wave induced pressure on the two sides or faces incident on the incoming wave. The 

pressure on each side is calculated from the integration of wave induced pressure over 

the submerged area. 

 
( , ) tan ( , )

2f k
s left s right

F p x z dxdz p x z dxdzθ
−

− −

= −∫∫ ∫∫
 (47) 

where, θ  is the vertex angle of the cross-section, and p(x, z) is the pressure field of the 

2-dimensional wave. For the left side of the cylinder, which is the upstream side, a 

double integral must be performed. To reduce the model computation, the integration 

over z-direction is obtained analytically, and the integration over x-direction is evaluated 

numerically using a trapezoidal scheme in the code. The analytical integral of pressure 

over z-direction is written as: 

 

sinh ( ) sinh ( )( , ) cos( )
2 cosh ( )left

gH k d k d e bp x z dz kx t
k d

ηρ ω
η

+ − + −
= −

+∫
  (48) 

where, d is water, ( )xη η=  is local wave elevation, e is the coordinate of the center of 

gravity, and b is one half length of the cylinder. This result is then integrated over x.  

 The slamming force is calculated only when the wave impacts the sharp side of 

the triangular body. The submerged volume is calculated from: 

 1 2( ) ( )V h d S S1 / 3η η η= + − + −  (49) 
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where,  1η  and 2η  are respectively the wave elevation of the flat and sharp sides, h  is 

the y-coordination of the gravity center of the cylinder, d is the distance from the lower 

end to the gravity center, and S is the cross-section area. The volume is needed to 

evaluate the buoyancy force. The slamming force is equal to the increasing rate of 

added-mass: 

 
2tana a

dVF C v C Sv
dt

ρ ρ= = α

/

 (50) 

where, is the relative horizontal velocity between structure and wave, the slope v

( 2 1) rα η η= − , and r is the height of the triangular cross-section. 

 

 



33 
 

 
Figure 6. Four stages of sphere impact. 

 

 

 

 
Figure 7. Illustration of the technique to calculate submerged depth 
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3. NUMERICAL ANALYSIS OF PENDULUM SYSTEMS 

 

This section presents the numerical simulation results for the various body shapes 

impacting the face of a wave. The numerical models are based on the ordinary 

differential equations of motion for pendulum systems, with slamming loads estimated 

based upon von Karman’s formula. All the wave loads are associated with the motion of 

the pendulum and updated over time. The results of numerical simulation are also 

compared with previously published experimental data and the classification society’s 

rules. The effects of some hydrodynamic coefficients are discussed based on the 

numerical models. 

 

3.1. Wave impact on a spherical body 

Specific parameters for this numerical simulation are as following: 

 

Length of pendulum: 2.0 m 

Radius of sphere: 0.1 m 

Mass of sphere: 10 kg 

Height from water level to pivot: 2.0 m 

Natural Frequency: 0.35 Hz 

Initial impact velocity: 4.2 m/s 

Wave height: 0.4 m 

Wave period: 0.2 ~ 2 s (0.5 ~5 Hz) 

Initial angle:  60°

 

The graphs presented in this subsection illustrate the dynamic response of the 

spherical body subjected to a range of wave conditions. Wave periods in the range of 

0.2~2s represent a range of wave periods of 2~20s in the real world assuming a Froude 

scaling of 1:100. Due to nonlinearity, the response spectra are not always dominated by 

exciting frequency. For high wave frequency, neither the exciting frequency nor natural 
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frequency is observed in the response spectra, while the dominating response frequency 

is located between them (see Figures 8 and 9). For low wave frequencies, the exciting 

force input per unit time decreases, and thus the total exciting energy is reduced. The 

motion of the pendulum is not disturbed by the wave as much as it is in the case of high 

frequency excitation. Therefore, the natural frequency dominates the response spectra 

for low wave frequencies (see Figure 10 - Figure 15).  

Consider the case where the pendulum arm is increased in length and the mass is 

increased to cause the spherical body always be submerged in the wave profile. In this 

situation the pendulum is not subject to wave impact forces, rather the body is subjected 

to only usual wave forces modeling using Morison’s equation. It is interesting that the 

natural frequency and exciting frequency are clearly observed (See Figure 16). When the 

exciting frequency is close to the natural frequency, the subharmonic responses are 

clearly observed in Figure 17. Those properties are not observed in the spectra for the 

case of wave impact. This indicates that the impact force brings considerable 

nonlinearity to the system and makes the response spectra less predictable. 

The total slamming force is composed of the inertia force, the impact force and 

the buoyancy force. Figures 18, 19 and 20 present the time series of these three 

slamming force components resulting from the impact of the spherical body with a wave 

whose frequency is  a 1 Hz. Note that the three components as presented cannot simply 

be added together as their vectors may not be aligned. Among these three force 

components, the impact force usually dominates the total force, but that is not always the 

case, as the deadrise angle has a large influence on the importance of impact force. 

The peak impact force can be studied using the pendulum without the wave field, 

i.e. using calm water in the tank. The relationship between the initial height of the 

spherical body above the free surface and the resulting impact force is presented in 

Figure 21.  
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Figure 8. Time history of motion for sphere, wave frequency =5 Hz 
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Figure 9. Response spectrum of velocity for sphere, wave frequency =5 Hz 
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Figure 10. Time history of motion for sphere , Wave frequency=2 Hz 
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Figure 11. Response spectrum of velocity for sphere, wave frequency = 2 Hz 
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Figure 12. Time history of motion for sphere, wave frequency =1 Hz 
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Figure 13. Response spectrum of velocity for sphere, wave frequency = 1 Hz 
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Figure 14. Time history of motion for sphere, wave frequency=0.5 Hz 
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Figure 15. Response spectrum of velocity for sphere, wave frequency =0.5 Hz 
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Figure 16. Without impact, nature frequency and exciting frequency for sphere  
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Figure 17. Subharmonic response for sphere 
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Figure 18. Impact force for sphere, wave frequency= 1 Hz 
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Figure 19. F-K force for sphere, wave frequency= 1 Hz 
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Figure 20. Buoyancy for sphere, wave frequency= 1 Hz 
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Figure 21. Initial height versus impact force for sphere, pivot height=2m, calm 

water 
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3.2. Wave impact on a vertical triangular body 

Specific parameters for this numerical simulation of a vertical triangular body are 

as following: 

 

Length of pendulum: 2.0 m 

Cross-sectional triangle height: 0.1 m 

Vertex angle:  45°

Distance from center of gravity to the end of cylinder: 0.3m 

Mass of weight: 10 kg 

Height from water level to pivot: 2.0 m 

Natural Frequency: 0.35 Hz 

Initial impact velocity: 4.2 m/s 

Wave height: 0.2 m 

Wave period: 0.5 ~ 3s  (1/3~ 2 Hz) 

Initial angle:  0°

 

The graphs in this subsection present the time series of response displacement 

and velocity of the triangular cross-sectional pendulum subjected to different wave 

frequencies. Using 1:100 Froude scaling, wave periods in the range of 0.5~3s represents 

wave periods in the range of 5~30s in ocean environments. Power spectra of response 

velocity are presented to illustrate the relationship between response and incoming wave 

in the frequency domain. (See Figure 22 – Figure 29). 

Based upon the following power spectra for different exciting wave frequencies, 

it is found that the frequency of response purely consists of the wave frequency and the 

natural frequency which is close to 1/3 Hz. In the Figure 23, a subharmonic response is 

observed at 4 Hz that is double the exciting wave frequency. A typical resonant behavior 

is observed when the exciting frequency is 1/3 Hz. The magnitude of response is found 

to be in the range of 5~50 times larger than those not subjected to resonant excitation.  

The response of resonance becomes stable at some value, because of the damping, which 
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is mainly resulted from the drag force. When the wave is removed and the cylinder 

impacts on the calm water, the motion damps out as time progresses (see Figure 30). 

Contrary to the spherical body, the forces of vertical triangular body impact 

model mostly result from free surface slope. Therefore, the force obtained from calm 

water impact has a very small impact force component. In the Figure 31 and Figure 32, 

comparing the magnitude of impact force with drag force, it is found that impact force 

does not dominate the total force, but the buoyancy and drag force do. The reason is that, 

for the vertical triangular body model, the body face is nearly perpendicular to the free 

surface, so the impact is not as strong as for the sphere, while on the sphere’s surface, 

some part is always parallel to the free surface and the rate of increase in added-volume 

is very large. For the same reason, the slamming force of the vertical triangular body is 

not obviously affected by the impact angle. The buoyancy force is presented in the 

Figure 33. 

Besides the impact angle, another factor affecting slamming loads is the shape of 

the body. For the vertical triangular body model, it is found that the waterline area 

largely affects the impact force. To change the waterline area, simply change the vertex 

angle from  to  and plot new results (see Figures 34 - 38). The results show that 

increasing the vertex angle or waterline area will increase the impact force. This 

conclusion is in accord with the extant knowledge in naval architecture that a slimmer 

bow reduces the wave impact and inertia force by piercing waves. Figure 38 illustrates 

the total slamming forces on the vertical triangular body. 

45° 60°
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Figure 22. Time history of motion for vertical triangular body, wave frequency=2 

Hz 
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Figure 23. Response spectrum for vertical triangular body, wave frequency=2 Hz 
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Figure 24. Time history of motion for vertical triangular body, wave frequency= 1 

Hz 
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Figure 25. Response spectrum for vertical triangular body, wave frequency= 1 Hz 
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Figure 26. Time history of motion for vertical triangular body, wave frequency= 

0.5 Hz 
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Figure 27. Response spectrum for vertical triangular body, wave frequency= 0.5 

Hz 
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Figure 28. Time history of motion for vertical triangular body, wave frequency= 

1/3 Hz 
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Figure 29. Response spectrum for vertical triangular body, wave frequency= 1/3 

Hz 
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Figure 30. Time history of motion for vertical triangular body in calm water 
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Figure 31. Impact force on vertical triangular body, wave frequency= 1 Hz 
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Figure 32. Drag force on vertical triangular body, wave frequency= 1 Hz 
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Figure 33. Buoyancy of vertical triangular body, wave frequency= 1 Hz 
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Figure 34. Inertia on vertical triangular body, wave frequency= 1 Hz 
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Figure 35. Total force on vertical triangular body, wave frequency= 1 Hz 
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Figure 36.  Impact on vertical triangular body(vertex angle 60° ), wave frequency= 

1 Hz 
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Figure 37. Inertia force on vertical triangular body (vertex angle ), wave 

frequency= 1 Hz 

60°

 



53 
 

0 2 4 6 8 10 12 14 16 18 20
12

14

16

18

20

22

24

26

28

30

t(sec)

F t(N
)

Total force(N) 

 
Figure 38. Total force on vertical triangular body (vertex angle ), wave 

frequency= 1 Hz 

60°
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3.3. Wave impact on a vertical flat plate 

In this case, the inertia force is comprised of Froude-Krylov force and added-

mass force, which are both related to the volume. The drag force is associated with the 

length scale in the flow direction. Since the thickness of the plate is neglected, the 

system will not experience inertia force and drag force, but it is subject to lift force and 

the plane body is still massive. Specific parameters for this numerical simulation are as 

following: 

 

Length of pendulum (from pivot to the center of gravity): 2.0 m 

Half width of the plate (from the center of gravity to the lower edge): 0.1 m 

Mass of weight: 20 kg 

Height from water level to pivot: 1.9 m 

Natural Frequency: 0.35 Hz 

Wave height: 0.2 m 

Wave period: 0.5 ~ 3s 

Initial angle:  5.7°

 

The graphs in this subsection illustrate the dynamics response of the flat plate. 

Based upon 1:100 Froude scaling, the wave periods in the range of 0.5~3s reflects the 

wave periods of 5~30s in ocean environments. Power spectra of response velocity are 

presented to explore the relationship between response and incoming wave in the 

frequency domain. The natural frequency 0.35 Hz represents a compliant system with a 

natural frequency of 0.035Hz. Based upon the time history of displacement in the Figure 

39, 41 and 43, the flat plate is found to oscillate about a positive angle, while Figure 45 

shows the oscillation excited by a low exciting frequency is about 

the equilibrium position of the pendulum, because for low exciting frequency, the 

pendulum has enough time to restore its original position between two impacts. 

In the power spectra, it is observed that the frequencies of response are strongly 

related to incoming wave frequency, especially for the situations with low exciting 

 

http://en.wikipedia.org/wiki/Mechanical_equilibrium
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frequencies. The natural frequencies of the pendulum are not obvious in the power 

spectra, because the plate impact system has very large damping due to the lift force.  

For a 2 Hz wave frequency, the peak response is found between 2 Hz and 1 Hz where 

there is neither the exciting frequency nor the natural frequency, and some response 

frequencies are also found lower than 1 Hz, which is related to natural frequency. In fact, 

several subharmonic response frequencies are observed (see Figure 40). For 1 Hz, 0.5 

Hz and 1/3 Hz wave frequency, the peak response frequencies are all found at the 

exciting frequencies (see Figure 42, 44 and 46). For 1/3 Hz wave, the exciting frequency 

is very close to the natural frequency of the pendulum, but no resonant response is 

observed because of the strong damping. Compared to spherical body impact and 

vertical triangular body impact, the pendulum natural frequency is not presented in the 

response spectra, because the natural frequency is always changed by large damping 

which varies over time. For low exciting frequency, the response time history displays 

more harmonic than high frequency, where groups are found in the response time series. 

The forces acting on the plate impact model differ from those acting on the 

sphere and vertical triangular body models. Since no volume is considered for the plate, 

there is no Froude-Krylov force. The damping force will be a lift force raised from 

potential flow theory, rather than viscous drag force, because the thickness is neglected. 

In the Figure 47 and Figure 48, comparing the magnitude of impact force with lift force, 

it is found that the magnitude of impact force and lift force are similar. This is because 

the body face is nearly perpendicular to the free surface, which is similar to the vertical 

triangular body model. For the plate impact model, the impact on the plate is not 

affected by the impact angle, and there is no shape parameter of a plate affecting impact 

like the waterline area of the vertical triangular body model. 
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Figure 39. Time history of motion for flat plate, wave frequency =2 Hz 
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Figure 40. Power spectrum for flat plate: wave frequency =2Hz 
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Figure 41. Time history of motion for flat plate, wave frequency=1 Hz 
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Figure 42. Power spectrum for flat plate: wave frequency =1Hz 
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Figure 43. Time history of motion for flat plate, wave frequency= 0.5 Hz 
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Figure 44. Power spectrum for flat plate: wave frequency =0.5 Hz 
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Figure 45. Time history of motion for flat plate, wave frequency= 1/3 Hz 
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Figure 46. Power spectrum for flat plate: wave frequency =1/3 Hz 
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Figure 47. Impact force on plate, wave frequency= 1 Hz 
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Figure 48. Lift force on plate, wave frequency= 1 Hz 
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3.4. Effects of modeling parameters on impact force 

3.4.1. Impact velocity 

To choose the proper dimensionless coefficients for setting up the experiments, a 

usual pendulum system with no outer forces can be used to explore the physical 

relationships among the variables (see Figure 49). According to the law of energy 

conservation, the motion of the pendulum can be written as: 

 ( ) 2
max

1
2

mg l h mv− =  (51) 

or  

 ( )max 2v g l h= −  (52) 

Using dimensionless variables (52) may be expressed as: 

 max 2 1v h
lgl

⎛= −⎜
⎝ ⎠

⎞
⎟  (53) 

It is safe to conclude that the free falling height is analytically proportional to the 

quadratic velocity. Figure 50 plots the quadratic relation between maximum velocity and 

the falling height. Figure 51 illustrates the relation between quadratic velocity and the 

falling height, where velocity is in form of a Froude number. In other words, free falling 

height and the square of impact velocity have exactly the same effects on impact force, 

when the pendulum impacts on water. Figure 52 and Figure 53 illustrate the relation 

between impact force and the quadratic impact velocity for two sphere impact models. It 

is found that the impact force is approximately linear with free falling height or 

quadratic impact velocity. Actually, the impact force is often considered proportional to 

the square of velocity in many previous studies.  

 

3.4.2. Mass 

 When the pendulum’s scales and falling height are fixed, there is no way to 

change them to impact velocity, but the impact force is still changeable as the mass of 

the pendulum changes. To avoid this disturbance from impact velocity, the effect of the 

falling height is removed simply by dividing impact force by quadratic impact velocity 
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which is linear to falling height (see Figure 54 and Figure 55). When the body penetrates 

the water surface, if the mass is too small, the velocity will soon reduce and the body 

will not penetrate deeply enough, so the impact force cannot reach a high value with the 

small penetrant depth and impact area. This is the reason mass affects impact force.  

 

3.4.3. The radius of the sphere 

 The change of radius may update the real impact height, even though h is fixed, 

because the real impact height should be h minus the radius of the sphere. The result 

shows the radius of the sphere is linear to the impact force. The radius and the falling 

height have the same linear relationship with impact force. To illustrate the effect of 

sphere radius, the impact velocity effect is removed (see Figure 56). 

 

3.4.4. The impact angle 

The impact angle is defined as the angle between velocity and the free surface 

when impact is occurring. This angle is determined by the ratio of falling height and 

pendulum length. Generally if the ratio is low, the impact angle becomes large and the 

impact velocity tends to be vertical to the free surface. To illustrate the effect of impact 

angle, the impact velocity effect is removed. The result shows that as the impact velocity 

tends to be vertical, the impact force increases (see Figure 57). This result makes much 

sense, because an impact from the normal direction is expected to be stronger than an 

oblique impact.  

 

3.4.5. The shape 

Bodies of different shapes in the numerical study have presented different 

behaviors during wave impact. In terms of impact force, the comparison of properly 

defined impact coefficients of those shapes can reflect the effects of body shapes on 

impact force, because it makes no sense to directly compare impact force with units for 

completely different shapes. A widely used form of impact coefficient can be written as 
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2

P
1/ 2s

impact

C
vρ

= , where is the impact velocity. According to numerical results, 

the value range of 

impactv

sC for each shape is generally presented in Figure 58. The sphere 

pendulum is subject to a larger impact, because the deadrise angle is naturally much 

smaller than those of the wedge and flat plate. If the wedge and flat plate experience 

impact on a steep wave profile, the impact loading would be large, too. 

It is worth noting that the derivation of the wave impact pressure in the impact 

coefficient expression above may be a problem, because the value of the impact area is 

hard to predict and thus may deviate a great deal from the real value. There are two ways 

to address this problem. First, the impact area can be derived from the instant penetrant 

depth which is updated in each time step. The disadvantages are the pressure is 

impossible to distribute equally on the impact area, and the real impact area may differ 

from the one obtained from penetrant depth because of the free surface elevation. The 

other way is to skip the impact pressure, but use impact force and characteristic length to 

define an impact coefficient, i.e. the radius of the sphere, in the definition of impact 

coefficient. But this method does not work properly if we want to compare the numerical 

results with previous experiments, where the shapes of models are different from the 

numerical models in this study. That is why it is necessary to develop a new experiment 

of wave impact, which will be discussed in a later section. 
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Figure 49. Variables of spherical pendulum 
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Figure 50. Analytical results of pendulum maximum velocities 
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Figure 51. Square of Froude number vs dimensionless falling height 
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Figure 52. Numerical results for sphere pendulum, r=0.1m, l=2m, h=2m 
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Figure 53. Numerical results for sphere pendulum, r=0.2m, l=3m, h=3m 
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Figure 54. Effect of mass on impact force, r=0.2m, l=3m, h=3m 
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Figure 55. Effect of mass on impact force, r=0.1m, l=2m, h=2m 
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Figure 56. Numerical results for sphere pendulum, m=20kg, l=2m, h=2m 
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Figure 57. Numerical results for sphere pendulum, m=20kg, l=2m, r=0.2m 
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Figure 58. Impact coefficient for different shapes 
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3.5. Comparison with experiment 

To compare the numerical results in this study with previous experiments, the 

first thing to do is to make sure the scale and definition of coefficients are the same.  To 

describe the loads of real floating structures, pressure is used rather than force. The 

scaling ratio of pressure is the same as the scaling ratio of length under Froude’s law, but 

it is not easy to select the proper characteristic length for a ship model to compare with 

the pendulum system. It has been proven that impact force is in proportion to velocity 

square or releasing height. Recall the slamming coefficient associated with velocity and 

pressure, written as 2

P
1/ 2s

impact

C
vρ

= . With this coefficient, it is possible to compare the 

numerical result from the pendulum model with ship model tests. We choose an initial 

angle of 45 , pivot height of 1.9 m, pendulum length of 2 m, which is equivalent to a 

falling height of 0.386 m. The impact force is pa, and 2.74 m/s, which gives a 

slamming coefficient of 16.1. Now we look at actual ship loads. Yoshimoto et al. (1997) 

conducted an experimental investigation of a very large floating structure (VLFS), 

showing that the impact pressure acting on the VLFS is about 

13 ( pa) with a wave height of 8 m and wave period of 7s. The 

maximum wave surface velocity is

°

2m

46.06 10×

/tonf 412.75 10×

3.59 /m sH
T
π

= . The slamming coefficient with 

respect to pressure is then 19.8, which is close to the numerical result 16.1. Based on the 

slamming coefficient from the numerical model, the VLFS impact force estimated with 

our numerical model is: 

 
2

4 3.59 /6.06 10 10.40 10
2.74 /

m spa pa
m s

⎛ ⎞× × = ×⎜ ⎟
⎝ ⎠

4  (54) 

which is close to Yoshimoto’s experimental results from ship model test pa. 412.75 10×

A slamming coefficient was defined by Sarpkaya (1978), written as 

 
22 /s mC F DLUρ=  (55) 

 



70 
 

where D and L are the scales of the cylinder , DL is therefore the projected area, 

2 /mU A Tπ= is the maximum vertical surface raising velocity. With this definition of 

slamming coefficient, the results of slamming tests were up to 6.3 in Sarpakaya’s tests. 

In initial calm water test, the velocity  is defined as the velocity of water entry. The 

slamming coefficient was from 4.1 to 6.4 in Faltinsen(1977)’s initial calm water test. 

The results from Sarpakaya and Faltinsen’s test also coincide with the numerical results 

using the pendulum model, because the projected area in their definition of slamming 

coefficient is larger than the real impact area that use 

mU

spC , the coefficient in this study. 

 

3.6. Comparison with classification society codes 

A classification society, the American Bureau of Shipping (ABS), includes rules 

for three different types of steel vessels: vessels intended to carry oil in bulk, vessels 

intended to carry ore or bulk cargos, and vessels intended to carry containers. The rules 

of external wave-induced bow pressure are expressed by the same equation as: 

  (56) 
2 2 2

bij k ij ij ij P  = kC C V  sin kN/m  (tf/m , Ltf/ft )γ 2

where 

k = 1.025 (0.1045, 0.000888) 
2 1/2

bi ij bi  {1  cos [90(F 2a ) / F ]} ijC = + −  

ijV  = 1ω V sin ij α  + 2ω ( )1/2 L  

1ω  = 0.515 (1.68) for m (ft) 

  = 1.0 (1.8) 

V = 75% of the design speed, , in knots. V is not to be taken less than 10 knots dV

ij γ 1
ij ij tan  (tan / cos )β α−= , local bow angle measured from the horizontal, not to be 

taken less than 50° 

ijα  = local waterline angle measured from the centerline, not to be taken less than 35° 
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ijβ = local body flat plate angle measured from the horizontal, not to be taken less than 

35° 

biF = freeboard from the highest deck at side to the load waterline (LWL) at Station i 

ija = vertical distance from the LWL to . jWL

kC  = 0.7  at collision bulkhead and 0.9 at 0.0125L 

= 0.9 between 0.0125L and FP 

= 1.0 at and forward of FP 

i, j = station and waterline 

The formula is analogous to the numerical result of a pendulum water impact 

model where the impact pressure is proportional to the squared impact velocity. The 

difference is  is determined by velocity and vessel’s length. The limitation of the 

pendulum impact model is that it can’t take all naval architecture parameters into 

account. Besides, bottom slamming of vessels with high speed is associated with the 

vessel’s geometry parameters, vibration frequency and design speed. However, the 

bottom slamming is associated with the square root of velocity rather than squared, and 

thus the speed’s influence is much weaker than bow slamming.  

ijV

The steel ships rules of Bureau Veritas (BV) give the strength requirements to 

resist green water forces for air pipes, ventilator pipes and their closing devices located 

within the forward quarter length of vessels. The green water induced pressure is given 

by: 

 
2

d s pp  0.5  V C C Cρ=  (57) 

where 

ρ = density of sea water 

V= velocity of water over the fore deck, recommended to be equal to 13,5 m/sec 

dC : Shape coefficient 

= 0.5   for pipes 

=1.3   for air pipe or ventilator heads in general 
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=0.8   for an air pipe or ventilator head of cylindrical form with its axis in the vertical 

direction 

sC  =3.2, slamming coefficient 

pC :  protection coefficient  

=0.7   for pipes and ventilator heads located immediately behind a breakwater or a 

forecastle 

=1.0   elsewhere and immediately behind a bulwark 

The formula is consistent with the numerical result of pendulum water impact 

model. The air pipes and ventilator pipes are single objects not affected by naval 

architecture parameter. Therefore, the pendulum impact model is a good fit for the green 

water problems above. 

In BV steel vessel rules, the bow impact pressure is given for the vessel with speed 

larger than 17.5 knots, length between 120m and 200m. It is expressed in , with 

the following formula: 

2 kN / m

 (0.22 0.15 tan )(0.4 sin 0.6 )FI L S Zp nC C C V Lα β= + +  (58) 

where 

SC : coefficient depending on the type of structures on which the bow impact pressure is 

considered to be acting:  

 = 1.8   for plating and ordinary stiffeners 

 = 0.5   for primary supporting members 

LC : coefficient depending on the ship's length:  

= 0.0125   for L < 80 m 

= 1.0      for L ≥ 80 m 

ZC :  Coefficient depending on the distance between the summer load waterline and the 

calculation point:  

 = C – 0.5 (z - T)   for z ≥ 2 C + T - 11  

 = 5,5            for z < 2 C + T - 11  

C :  Wave parameter  
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α :  Flare angle at the calculation point, defined as the angle between a vertical line and 

the tangent to the side plating, measured in a vertical flat plate normal to the horizontal 

tangent to the shell plating 

β:  Entry angle at the calculation point, defined as the angle between a longitudinal line 

parallel to the center line and the tangent to the shell plating in a horizontal flat plate 

This formula is similar to ABS’ steel vessel rules and also coincides with BV’s 

Offshore Units rules of bow impact. The pressure is proportional to the squared speed 

and the vessel length. 

In the Recommended Practice of Det Norske Veritas (DNV), the wave-in-deck 

horizontal force on the simple box-type deck structure on a fixed jack-up platform is 

calculated in the following formula:  

 
21

2h hF C V Aρ=
 (59) 

where, ρ  is the water density, =2.5 for end-on the broadside (beam and head sea), 

1.9 for oblique wave (quarter sea). 

hC

The vertical upwards wave-in-deck force is then calculated by the formula: 

 
21

2v v zF C V Aρ=
 (60) 

where, =5 for end-on the broadside (beam and head sea), 10 for oblique wave (quarter 

sea). 

vC

vF
A

 should be smaller than the peak pressure on the hull, because according to 

Yoshimoto’s experiments, the impact pressure is not evenly distributed and the high 

pressure zone is only about 1/50 of the ship length, rather than the wetted area A which 

is indicated in the following figure. That is the reason is smaller than the impact 

coefficient of 12 in Yoshimoto’s results. 

vC

The rules also give the dynamic formula for slamming on a horizontal slender 

structure. The formula was first given by Kaplan and the theoretical model is very clear, 

rather than the semi-empirical formula raised by ABS. The vertical force per unit length 

of the cylinder is: 
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( ) ,3 2

1 ,3 1( ) ( / )
2

a z
z a

m
F t gA m A C z r

z
ρρ ρ η η η η D

∂
= + + + +

∂
&& & & &

 (61) 

where, the first item of RHS is the buoyancy force, the second item is Froude-Krylov 

force which represents the effect of the spatial pressure gradient in the waves, the third 

item is the impact force due to the change of added-mass, and the last term is the drag 

force. Similarly, the horizontal force per unit length of the cylinder is 

 
( ) ,1

,1 1( ) ( / ) ( / )
2

a x
x a D

m
F t m A u u u u h z r C z r

z
ρρ η

∂
= + + +

∂
&&

 (62) 

where, the velocity in (61) is changed into fluid velocity according to real impact 

velocity. 

The slamming on vertical slender structure is calculate by the same theory, and the 

sectional force is eventually written as 

 
21( , )

2x SF z t C Duρ=
 (63) 

where,  is the slamming coefficient, SC

 

0.1075.15
19s

D sC
D s D
⎡ ⎤= +⎢ ⎥+⎣ ⎦  (64) 

where, s is the submergence relative to the wave surface. 

The rules of slamming pressure over a broad plate are given by 

 
21

2s pp Cρ= av
 (65) 

where, v is the relative normal velocity between water and surface, and the slamming 

coefficient is given by 

 ( )1.1

2.5
tan

paC
β

=
 (66) 

From DNV’s rules of slamming, it is not difficult to figure out that they are based 

on the classic von Karman’s theory that the force due to impact is calculated from the 

timely change of added-mass induced momentum, and for a slender structure, Morison’s 

equation is applied. The theories in DNV’s rules are consistent with the theory used in 
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our pendulum impact model, and our numerical results are consistent with DNV’s 

formulae, that the impact pressure is proportional to the squared impact velocity. 
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4.  EXPERIMENT DESIGN 

 

So far the numerical results of the impact of the pendulum system have been 

presented and compared with previous experiments on wave impact problems. However, 

none of the previous experiments use a pendulum model, so the comparison between 

numerical results in this study and previous experimental results is only approximate and 

qualitative. On the other hand, most previous experimental results are in terms of impact 

pressure and it is not quite precise to convert the numerical results from force to pressure 

in the numerical study. For a more reliable comparison between numerical results and 

experimental data, a hydrodynamic experiment of wave impact on pendulum system in 

wave flume was designed, so that the uniform definition of an impact coefficient can be 

utilized to compare the numerical and experimental results.  

 

4.1. Similarity and scaling considerations 

To design a hydrodynamic model test, dimensionless numbers are used to scale 

the parameters of the model to make the experimental model dynamically similar to the 

prototype. The Reynolds number, the Froude number, the Strouhal number and the Euler 

number are considered most commonly in model tests. Theoretically, in hydrodynamic 

tests only when all four numbers are equal for model and prototype, is the model said to 

be similar to the prototype, but it is nearly impossible to set up such an experiment. The 

Reynolds number concerns the viscosity of the fluid, so if the viscous drag force 

dominates, the Reynolds number is used for scaling variables related to viscosity in the 

test. The Froude number is used where the inertia force dominates. The Strouhal number 

involves the unsteady motion of fluid, and is often applied in vortex induced vibration 

problems. The Euler number reflects the effect of compressibility. In the impact 

problem, the drag is quite small relative to the inertia impact force, and vorticity and 

compressibility are neglected. Therefore the scale ratios should be determined by laws of 

Froude. Table 6 is developed for the Froude number as the scale criterion. Gravitational 
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acceleration g and fluid density ρ  are constants in the scaling. Table 7 is an example of 

scaling a sphere with scaling ratio 1/10. 

The scaling ratio between the real ship and a pendulum model should be 

determined by the capability of an experimental device, specifically, the wave maker. 

For example, if the ratio of the wave height in wave flume and the real wave height is 

determined, this ratio is set as the scaling ratio, and other scaling ratios are calculated 

based on it, according to Froude’s law.  

 

4.2. Dimensionless parameters 

The data of a hydrodynamic experiment should be presented in terms of 

dimensionless coefficients that do not depend on units and the scaling ratio of the model.  

Proper dimensionless coefficients should be chosen from a scaling analysis based on the 

qualitative relationship between the variables known from the numerical analysis, which 

are summarized in Table 8.  

The impact pressure is a function of impact angle δ , impact velocity, body mass, 

body size, fluid density and the shape of model, written as  

 
( , , , , , )impactF f v m r shapeδ ρ=  (67) 

Using π  theorem, Eq (68) can be written as 

 
3

2 2
( , , )1

2

impactF mf shape
rv r

δ
ρρ

=
 (69) 

where the LHS is defined as the impact coefficient, as in many studies on wave impact. 

It is worth noting that under the same Fr, impact pressure varies by the same ratio as the 

characteristic length, which coincides with Fr number’s scaling rules in Table 8.  

 



78 
 

Table 6. Scaling ratio of Froude numbers 

Parameter Dimension Scale ratio( model

prototype

Lr
L

= ) 

Length L r  
Time T 1/2r  
Mass M 3r  

Velocity 1LT −  1/2r  
Acceleration 2LT −  ------- 

Angle ------- ------- 

Angular velocity 1T −  1/2r−  
Frequency 1T −  1/2r−  

Force 2MLT −  3r  
 

 

 

 

Table 7. The scaling for an exemplary sphere model 

 

Parameters input prototype ratio Model 

Mass 20000kg 1/1000 20kg 

Length of 

pendulum 

100m 1/10 10m 

Radius 10m 1/10 1m 

Wave height 5m 1/10 0.5m 

Wave period 6sec 1/10  1.9sec 
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Table 8. Properties of modeling variables 

 

Variables Peak impact pressure Response of dynamic system 

L \ Natural period, exciting moment 

m \ Natural period, inertia 

h(θ) Impact pressure Initial conditions 

Shape(sphere, 

wedge, flat plate, 

hemisphere) 

Impact pressure Hydrodynamic coefficients 

r(dimension of 

objects) 

Duration of impact, impact 

force 

Magnitude and duration of 

exciting force 

Impact angle Impact pressure \ 

 

 



80 
 

The impact forces in our models are defined in terms of moments, with respect to 

the pendulum’s pivot. The wave impact coefficient for the sphere is defined as 

 2 2
total

imp
MC

l r vρ
=  (70) 

where impM represents the impact inducing global moment of the numerical results, l is 

the length of pendulum, r is the characteristic size of the body, and v is impact velocity.  

Using the impact coefficient in either of the recommended forms above, the 

important relationships, vs shape,  vsimpC impC 3

m
rρ

and  vs impC δ , can be investigated 

through experimental studies. This represents a major goal of this experimental study. 

As long as those relations are exactly known, it is possible to design pendulum models to 

simulate dynamic impact system with any impact coefficients.  

For the impact on wave profile, rather than initial calm water, the impact 

coefficient also can be defined with a characteristic velocity, / 2H ω ,  the maximum 

surface raising velocity. The impact coefficient can then be expressed as 

 

 
2 2( / 2 )

total
imp

MC
l r Hρ ω

=
 (71) 

With this definition of impact coefficient, the relationship between  and impact 

velocity can be investigated, even though it is already understood quite clearly, both 

numerically and theoretically.  

impC

 

4.3. Conceptual design of the apparatus 

A series of tests on a pendulum system was designed in order to develop an 

effective experimental apparatus to simulate wave slamming in the real world, as well as 

to compare with the numerical results. The tests are conducted in the Ocean Engineering 

Wave Tank at Texas A&M University. The 2D wave tank is 35.05 meters long, 0.914 

meters wide and 1.22 meters deep, with glass walls and a beach wave absorber. A 

variable height random deepwater wave generator is able to generate wave heights of 
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0.254 meters in 0.914 meters of water. The towing carriage is mounted on rails and is 

capable of driving at a maximum speed of 0.610 m/s. For each body shape, a series of 

tests involve models with different wave frequencies, initial falling heights, and 

pendulum lengths. To serve this purpose, a pivot height adjustable pendulum device with 

a PVC hollow arm was designed, as illustrated in Figures 59 and 60. The pivot height 

can be adjusted by sliding the ends of the triangle tower’s legs along the rail. A variable 

weight can be attached to the arm at a variable position, which can both change the 

natural frequency and the mass of the pendulum. This design saves effort in preparing 

arms with different lengths and bodies with different masses. Table 9 presents the scales 

of the pendulum model properties for the experiment setup. A speedometer is mounted 

to a specific height and follows the movement of the pendulum. The tip of the 

speedometer is always attached to a smooth pad mounted on the pendulum arm at the 

same height as the speedometer, as soon as the pendulum falls to a low enough height. 

Pressure sensors are mounted on the bodies. Figure 61 is an example of a pressure sensor 

pattern on the spherical body. The pressure sensor wires go from the inside of the body 

through the inside of the hollow arm and reach to the top of the triangle tower. A wave 

height sensor is used to make sure the desired waves are generated.  

 

 

 



82 
 

 
 

Figure 59. Plan of experiment setup 
 

1--- Frictionless pivot 2--- Triangle tower 3--- Light pole 
4--- Control weight 5--- Pendulum bob 6--- Water flume 

7--- Smooth pad 8--- Movement transducer 9--- Transducer shelf 
10--- Wave height sensor 11--- Adjustable fixer 12--- Wave sensor shelf 
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Figure 60. Adjusting pivot height by sliding fixers of triangle tower 

 
 
 

Table 9. Parameter selecting of experiment setup 

 

 

Properties Value Units 

PVC Arm length 

PVC Arm diameter 

        Inner 

        Outer 

1.0 

 

1.5 

2.5 

M 

 

CM 

CM 

Triangle legs length  0.9 M 

Height of movement transducer 0.5 M 

Water depth 1.02 M 

Mass of weight 3.0 Kg 

Mass of body Various  

Dimension of body Various  
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Figure 61. Pressure transducer positions 
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5. CONCLUSION 

 

A wave impact model based on the development of a pendulum system was 

studied to verify its capability to simulate slamming loads on offshore structures and 

vessels. The wave impact force and the dynamic behavior of the model was investigated 

using numerical simulations and results were compared with previous experimental data 

and classification society design codes. A basic experimental design of a pendulum 

apparatus was developed in order to provide a first look at a device that could be used to 

measure impact loads. 

The essence of this wave impact model is a single degree-of-freedom pendulum 

system described in terms of angular motion. The system is excited by wave forces 

acting on the body, which is fixed to the end of the pendulum. The usual wave forces are 

evaluated by Morison’s equation, and the impact force is estimated by von Karman’s 

method. Hydrodynamic coefficients are mainly obtained from existing experimental 

data. Since the exciting forces are related to the motion of systems and include several 

nonlinear terms, the 4th order Runge-Kutta time domain ordinary differential equation 

solver is used to solve the equation of motion and obtain the time history of motion. 

Three body shapes, sphere, flat plate and vertical triangular body, were used in 

the numerical investigation of wave impact force since the loads are highly dependent on 

body shape. The pendulum system displays different dynamic behaviors when subject to 

different wave frequencies. In the numerical simulation, the wave frequencies were 

varied between 1/3 Hz to 2 Hz, and the pendulum system natural frequency was 0.35 Hz. 

These were close to the ocean wave and compliant structural frequencies obtained based 

upon Froude number scaling. For the sphere, the natural frequency and exciting 

frequency were not shown in the response spectrum when it encountered high wave 

frequencies, due to strong nonlinear behavior. Because a nonlinear von Karman impact 

force comprises a larger portion of the total force than for other shapes, the numerical 

prediction can be less accurate. On the other hand, at lower excitation frequencies, the 

natural frequency dominates the response spectrum, consequently the loads imposed on 
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the system can be considered to be an impulsive excitation and results in free vibration at 

the natural frequency. In a special case where the sphere remains completely submerged 

in water, the response demonstrates a more linear behavior. The spectrum is then simply 

made up by natural frequency and wave frequency, because of the absence of impact on 

wave profile. Without the abrupt impact, the nonlinear behavior is weakened and the 

system experiences continuous force loading rather than impulse loading.  

For the vertical triangular body, the impact force exerted on the structure is less 

sudden and less fierce than that on the sphere. This leads to a response spectrum that 

follows linear dynamics theory. The power spectrum clearly displays the natural 

frequency, the exciting wave frequency and various harmonics. At the resonant 

frequency, the response amplitude remains at a high value, because of the low damping 

force contribution from the viscous drag force.  

For the plate body, the outstanding property of response is the large inertia force. 

Due to a great amount of lift, the plate cannot restore itself to its original position when 

subject to high wave frequencies. The natural frequency is difficult to observe in the 

response spectrum, because the large lift force serves as damping in the system. Wave 

frequency dominates the power spectrum for most frequencies. At the resonant 

frequency, the response is still at a normal magnitude. In other words, for the plate body, 

the natural frequency is dominated by the large time-dependent damping force, and to 

some extent, the system loses its dynamic feature. Though the systems of the vertical 

triangular body and plate body also experience impact force, this impact force, as well as 

other wave forces, is gradual and continuous. Thus, the nonlinearity of wave forces is 

too weak to be observed from response plots. In conclusion, the shape of the body 

influences the dynamic behavior mainly by changing the proportion of each force 

component, while the properties of wave force components are different.  

The peak impact force is shown to be affected by several modeling parameters, 

including impact velocity, mass, body radius, impact angle and shape. Impact velocity is 

the most important factor affecting impact force, such that the impact coefficients in 

most previous studies are defined by the relationship between impact force and impact 
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velocity.  In this study, the plots of quadratic impact velocity versus the peak impact 

force show that quadratic impact velocity is approximately linearly related to the peak 

impact force. Impact velocity is the maximum velocity at which a pendulum falls to the 

water surface. It is also shown analytical that the falling height is proportional to the 

quadratically to the maximum velocity; therefore, falling height is linear to impact force. 

The falling height, or the quadratic velocity, is actually equivalent to the energy released 

during the impact.  

  Body mass is not associated with velocity, but it is still found that increasing 

mass causes the peak impact force to increase, especially when the mass is small. One 

explanation is that when the mass is too small, the body does not have enough energy to 

penetrate the water. A light body can be easily bounded back before it reaches a large 

impact force value. The radius of a body is also found to be approximately linearly 

related to the peak force. This is unexpected, considering the impact area is proportional 

to the square of the radius. However, a large radius leads to a less deep penetration, 

similar to the effect of a smaller mass. The impact angle or direction is another important 

factor of impact force. In calm water, the value of falling height over pendulum length 

determines the impact angle. When the direction of impact velocity is perpendicular to 

the free surface, the impact force reaches the greatest value. For the same reason, the 

impact force in the front of a body is very large in a high sea condition, because a steep 

crest results in an impact angle close to a right angle.  

Moreover, the shape of the body is seen to influence the impact force or, from a 

dimensionless perspective, the impact coefficient. Body shape influences the interaction 

between body and water. For instance, the vertical triangular body has a smaller impact 

coefficient, because it has a sharp shape to pierce the profile. Also, continuous contact 

with water leads to a smaller impact coefficient on the plate than on the sphere, which 

penetrates water from the air. These facts are consistent with naval architecture real 

world design practice. For example, a vessel designed with a sharp bow can reduce the 

impact force when it heads into big waves and a large impact is exerted on the bottom 

when a high speed vessel lifts out of the water and falls to water again.  
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Comparing the numerical results with previous experiments and existing codes 

leads to a qualitative verification of the capability of the numerical model. Thus, this 

study has basically shown the pendulum model to be an effective and efficient method to 

predict the slamming effect on ocean structures. This is especially so for a high-speed 

vessel running into waves, where the relative motion between vessel and water is similar 

to the pendulum impact model. However, based on available experimental data, it is 

difficult to make an accurate quantitative comparison between the pendulum model and 

previous studies, due to the lack of data of any similar pendulum model. This research 

study has illustrated the feasibility of using the pendulum model as a robust method on 

wave slamming problems. Some effort was directed toward designing an experimental 

setup to utilize the pendulum model concept for use in studying on wave slamming 

loads. Further research that includes experimental studies is needed to establish the 

pendulum system as design tool for studying impact loads on ships and offshore 

platforms. 
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APPENDIX A 

 

Nomenclature 

 
 a  = wave amplitude 

  = vertical component of added-mass 33A

 B  = global damping coefficient 

 c  = wave celerity 

  = added-mass coefficient aC

  = nonlinear coefficient dC

 sC  = slamming coefficient 

 d  = water depth 

 D  = characteristic scale of body 

 g  = gravitational acceleration 

 H  = wave height 

 K  = global stiffness coefficient 

 L  =  wave length 

 m  = mass of pendulum body 

  = added-mass of pendulum body addedm

 R  = radius of pendulum body 

 s  = vertical coordinate with respect to water bottom 

 T  = wave period 

  = horizontal water particle velocity u

  = horizontal water particle acceleration u&

  = particle velocity relative to structural velocity ru

  = vertical water particle velocity v

  = vertical water particle acceleration v&

 ,x y  = global coordinate 
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 η  = wave elevation 

 ρ  = water density 

 φ  = wave velocity potential 

 θ  = wave phase 

 ω  = angular wave frequency 
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APPENDIX B 

 

MATLABTM CODES FOR SPHERICAL BODY 

 

1. Spherical body impact dynamic equations 

 

function [th_prime F1 F2 F3]= sphere_stretching(t, th) 

th_prime=zeros(2,1);             % define output vector 

  

%%%%%%%%%%%%%% INPUT  PARAMETERS %%%%%%%%%%%% 

scl=1;                               % scale ratio 

m=50*scl^3;                    % mass,kg 

l=2*scl;                            % length of pendulum,m 

h=2*scl;                           % pivot height,m 

r=.1*scl;                           % radius of sphere,m 

  

g=9.81;                             % gravity acceleration,m/s^2 

H=0.2*scl;                        % wave height,m 

d=5*scl;                            % water depth,m 

T=2*scl^0.5;                     % wave period,s 

den=1.027e3;                     % water density,kg/m^3 

cm=1.20;                           % added-mass coefficients 

c3=0.042;c4=12.754;         % f-k force coefficients from handbook 

  

w=2*pi/T;                           % angular frequency,1/s 

k=w^2/g;                             % wave number,1/m 

c=w/k;                                  % wave celerity,m/s 

x=sin(th(2))*l;                     % x-coord of sphere center 

y=h-cos(th(2))*l;                 % y-coord of sphere center 

el1=H/2*cos(k*x-w*t);       % wave elevation for the lowest point 

dela=-k*H/2*sin(k*x-w*t);   % slope of water surface 

a=-atan(dela); 
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hd=h-cos(th(2))*l-r;         % y-coord of low point 

hu=h-cos(th(2))*l+r;        % y-coord of high point 

  

if hu<el1                          %full immersed condition, high point is under wave profile 

    V=4/3*pi*r^3;             % volume of sphere  

     

    %added inertia 

    am_surge=0.5*den*g*V;  % added-mass for surge motion 

    am_heave=0.5*den*g*V;  % added-mass for heave motion 

    ja=am_surge*sin(th(2))+am_heave*cos(th(2))*l^2; % inertia due to added-mass 

     

    %f-k force 

    ph=k*x-w*t;         % phase 

    s=y+d;                   % y-coord wrt water bottom 

    el=H/2*cos(ph);    % water elevation 

    u=g*k*H/2/w*cosh(k*s)/cosh(k*(d+el))*cos(ph);     % horizontal particle velocity 

    v=g*k*H/2/w*sinh(k*s)/cosh(k*(d+el))*sin(ph) ;    % vertical particle velocity 

    ax=g*k*H/2*sin(ph);                                         % horizontal particle acceleration 

    ay=-g*k*H/2*sinh(k*s)/cosh(k*(d+el))*cos(ph);     % vertical particle acceleration 

    mfk=1.5*den*V*ax*l;  

    mimp=0;                                           % moment of impact force 

    fimpc=0;                                          % resultant impact force 

    Fc=sqrt((1.5*den*V*ax)^2+(1.1*den*V*ay+den*V*g)^2);        % resultant total force 

    lal=0;                                                     % impact pressure 

  

elseif hu>el1 & el1>y         % mostly immersed condition, center is under wave profile 

    dims=(el1-y)*cos(a)+r;    % calculate d accurately 

    %immersed inertia 

    am_surge=0.5*den*g*vol_sph(r,dims); 

    am_heave=0.8*den*g*vol_sph(r,dims); 

    ja=am_surge*sin(th(2))*l^2+am_heave*cos(th(2))*l^2; 

    %f-k force 
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    V=vol_sph(r,dims);         %immersed volume 

    ph=k*x-w*t; 

    el=H/2*cos(ph); 

    s=y+d;                     % use sphere center as center of submerged volume     

    u=g*k*H/2/w*cosh(k*s)/cosh(k*(d+el))*cos(ph);  % particle velocities at surface 

    v=g*k*H/2/w*sinh(k*s)/cosh(k*(d+el))*sin(ph); 

  

    ax=g*k*H/2*sin(ph); 

ay=-g*k*H/2*sinh(k*s)/cosh(k*(d+el))*cos(ph); 

%f-k force by coefficients and immersed volume 

    mfk=1.5*den*V*(ax+c3*w*v)*cos(th(2))*l+1.1*den*V*(ay+c4*w*u)*sin(th(2))*l;  

    mimp=0; 

    fimpc=0; 

    Fc=sqrt((1.5*den*V*(ax+c3*w*v))^2+(1.1*den*V*(ay+c4*w*u)+den*V*g)^2); 

    lal=0; 

else 

    n=500;                                  % number of discrete elements  

    xdom=linspace(x-r,x+r,n);  %the horizontal domain of object 

    span=2*r/n;                          % horizontal span 

    alld=[];                                 % collection of discrete immerse depth 

    I=[]; 

    tipt=h-l*cos(th(2));       %y coord of most left point 

    for i=1:n 

        eli=H/2*cos(k*(xdom(i))-w*t);   

        dx=span*(i-1); 

        dtip=sqrt(r^2-(r-dx)^2); 

        tip=tipt-dtip; 

        if eli> tip 

            alld=[alld,eli-tip]; 

            I=[I,i]; 

        end 

    end 
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    if  length(alld)==0        % not immersed 

        fimpc=0; 

        ja=0; 

        fimpx=0; 

        mfk=0; 

        mimp=0; 

        Fc=0; 

        dV=0; 

        dd=0; 

        V=0; 

        lal=0; 

    else                                 % slightly immersed 

        

        xdom_mid=xdom(ceil(median(I)));    % x-coord of the center of submerged area 

        ev=H/2*w*sin(k*xdom_mid-w*t);    % velocity of surface elevation at the middle of 

immersed area 

        dela=-k*H/2*sin(k*xdom_mid-w*t);  % slope of waterline 

        a=-atan(dela); 

        dmid=alld(ceil(length(alld)/2));            % the center component of alld 

        dmax=max(alld);                                  % the maximum component of alld 

        dims=mean([dmid,dmax])*cos(a);       % submerged depth 

        V=vol_sph(r,dims); 

        dt=0.002;                                              % time lag, to get derivation of V 

        dd=-sin(th(2))*th(1)*l*dt;                    % often less than 0 

        dV=(vol_sph(r,dims+dd)-V)/dt;           % immersed volume changing rate 

        fimpx=0.8*den*g*dV*(c-th(1)*l*abs(cos(th(2))));           % horizontal impact force 

        fimpy=0.8*den*g*dV*(ev-th(1)*l*abs(sin(th(2))));          % vertivcal impact force 

        mimp=fimpx*abs(cos(th(2)))*l+fimpy*abs(sin(th(2)))*l; % impact moment 

        fimpc=sqrt(fimpx^2+fimpy^2)*sign(th(2));                       % resultant impact force, with 

direction correction! 

        simp=(r^2-(r-dims)^2)*pi;                                                  % impact area (projected) 

        lal=fimpc/simp; 
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        if  dd<0                         % when exit 

            mimp=0; 

            fimpc=0; 

            fimpx=0; 

            fimpy=0; 

        end 

         

        am_surge=0.5*den*g*vol_sph(r,dims);                           % added-mass 

        am_heave=0.8*den*g*vol_sph(r,dims); 

        ja=am_surge*sin(th(2))*l^2+am_heave*cos(th(2))*l^2; % added inertia 

        ph=k*xdom_mid-w*t;                          % wave theory, calculate f-k force 

        el=H/2*cos(ph); 

        s=d+el;                                                    % use velocities at wave surface 

        u=g*k*H/2/w*cos(ph); 

         

        v=g*k*H/2/w*sinh(k*s)/cosh(k*(d+el))*sin(ph); 

        ax=g*k*H/2*sin(ph); 

        ay=-g*k*H/2*sinh(k*s)/cosh(k*(d+el))*cos(ph); 

%f-k force 

        mfk=1.5*den*V*(ax+c3*w*v)*cos(th(2))*l+1.1*den*V*(ay+c4*w*u)*sin(th(2))*l;      

        

Fc=sqrt((1.5*den*V*(ax+c3*w*v)+fimpx)^2+(1.1*den*V*(ay+c4*w*u)+fimpy+den*V*g)^2); 

    end 

end 

 

%%%%%%%%%%%%% differential equations %%%%%%%%%%%%%%%%%%% 

th_prime(1)=(mimp+mfk-m*g*l*sin(th(2))+den*g*V*l*sin(th(2)))/(m*l^2+ja); 

th_prime(2)=th(1); 

  

% outputs 

F1=fimpc;          % resultant impact force 
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F2=mfk/l;          % resultant impact pressure 

F3=den*g*V;     % Buoyancy 

end 

  

2. Solve differential equations of spherical body impact 

 

clc 

clear 

clf 

% set initial conditions 

lag=0.005; 

initial=[0 0.5]; 

tspan=0:lag:10; 

  

% solve dynamic system in time domain   

[t,n_q]=ode45('sphere_stretching',tspan,initial); 

figure(1) 

subplot(211) 

plot(t,n_q(:,2)),xlabel('t(sec)'),ylabel('\theta(rad)'),title('Response Displacement of sphere') 

subplot(212) 

plot(t,n_q(:,1)),xlabel('t(sec)'),ylabel('\omega(rad/s)'),title('Response Velocity of sphere') 

  

F=[]; 

FI=[]; 

FII=[]; 

for i=1:length(t) 

    t1=t(i);n_q1=n_q(i,:); 

[a,F1,F2,F3]=sphere_stretching(t1,n_q1); 

F=[F F1]; 

FI=[FI F2]; 

FII=[FII,F3]; 

end 
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figure(2) 

plot(t,F),xlabel('t(sec)'),ylabel('F_{impact}(N)'),title('Impact force','fontsize',16) 

 figure(3) 

plot(t,FI),xlabel('t(sec)'),ylabel('P_{impact}(N)'),title('Impact pressure','fontsize',16) 

figure(4) 

 plot(t,FII),xlabel('t(sec)'),ylabel('F_{buoy}(N)'),title('Buoyancy','fontsize',16) 

figure(5) 

te=t;fe=n_q(:,1); 

[spe2,fre2]=pwelch(fe,128,[],[],1/lag); 

plot(fre2,spe2),title('smoothed power spectrum of response angular 

velocity'),xlabel('frequency(Hz)'),ylabel('P_{uu} (rad^{2}/sec)') 

 

3. Self-defined function to calculate submerged volume  
 
% to calculate the submerged volume of sphere 
function V=vol_sph(r,d) 
n=100;        % discrete number 
ri=linspace(r-d,r,n); 
span=d/n; 
V=0; 
for i=1:n 
    rw=sqrt(r^2-ri(i)^2); 
    a=pi*rw^2; 
    v1=span*a; 
    V=V+v1; 
end 
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