
PERFORMANCE OF QUANTIZED CONGESTION NOTIFICATION IN TCP

INCAST IN DATA CENTERS

A Thesis

by

PRAJJWAL PRASAD DEVKOTA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2010

Major Subject: Computer Engineering

PERFORMANCE OF QUANTIZED CONGESTION NOTIFICATION IN TCP

INCAST IN DATA CENTERS

A Thesis

by

PRAJJWAL PRASAD DEVKOTA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, A.L. Narasimha Reddy
Committee Members, Srinivas Shakkottai

Dmitri Loguinov
Head of Department, Costas N. Georghiades

May 2010

Major Subject: Computer Engineering

iii

ABSTRACT

Performance of Quantized Congestion Notification in TCP Incast in Data Centers.

(May 2010)

Prajjwal Prasad Devkota, B.E., Birla Institute of Technology, Mesra, India

Chair of Advisory Committee: Dr. A. L. Narasimha Reddy

This thesis analyzes the performance of Quantized Congestion Notification

(QCN) during data access from clustered servers in data centers. The reasons why

QCN does not perform adequately in these situations are examined and several mod-

ifications are proposed to the protocol to improve its performance in these scenarios.

The causes of QCN performance degradation are traced to flow rate variability, and

it is shown that adaptive sampling at the switch and adaptive self-increase of flow

rates at the QCN rate limiter significantly enhance QCN performance in a TCP In-

cast setup. The performance of QCN is compared against TCP modifications in a

heterogeneous environment, and it is shown that modifications to QCN yield better

performance. Finally, the performance of QCN with the proposed modifications is

compared with that of unmodified QCN in other workloads to show that the modifi-

cations do not negatively affect QCN performance in general.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Reddy for his continuous guidance, feedback and

support. I would like to thank the Parallel Data Laboratory of Carnegie Mellon

University, in particular Amar Phanishayee, for having made their ns-2 simulation

code available, and Rong Pan and Dr. Balaji Prabhakar for offering suggestions during

our implementation of QCN baseline simulations. I would like to thank Manish Singh

for his help on understanding several ns-2 architecture concepts and getting on with

my code, as well as Kiran Kotla, Kapil Garg, and other members of my research

group for their help.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . viii

LIST OF TABLES . xi

CHAPTER

I INTRODUCTION . 1

A. Background . 1

B. TCP Incast . 2

1. Barrier Synchronized Requests and Minimum Ef-

fective Rate . 3

2. TCP Timeouts . 4

3. Incast Problem in Literature 5

4. Silent Periods during TCP Incast Collapse 7

C. Current Approaches to Dealing with Incast 8

II 802.1QAU - CONGESTION NOTIFICATION 11

A. Introduction . 11

B. Quantized Congestion Control 11

1. Overview . 11

2. Congestion Point . 12

3. Reaction Point . 14

4. Comparison of QCN and TCP Rate Control Mechanisms 17

III PERFORMANCE OF UNMODIFIED CONGESTION NO-

TIFICATION PROTOCOLS IN THE INCAST SCENARIO . . 20

A. Evaluation of QCN in TCP Incast Scenario 20

1. Unmodified Newreno 20

vi

CHAPTER Page

2. Newreno with Reduced Minrto 22

B. QCN Performance in TCP Incast 22

1. QCN Behavior before Onset of TCP Timeouts 24

a. Performance of TCP with Reduced Minrto over

QCN . 32

2. QCN Behavior after Onset of TCP Timeouts 33

3. Perfect Rate Distribution 34

4. Fair Queuing . 36

5. Improvements to QCN 37

IV EFFECTS OF MODIFICATIONS TO QCN TO MITIGATE

INCAST COLLAPSE . 41

A. QCN Timer Modifications 41

B. Sampling Modifications . 42

1. Congestion Memory Based Sampling 42

2. Detailed Sampling . 43

C. Adaptive R AI . 45

D. Combining CP and RP Modifications 48

V PERFORMANCE OF TCP AND QCN IN A MIXED PRO-

TOCOL ENVIRONMENT . 52

VI PERFORMANCE OF MODIFICATIONS IN QCN BASE-

LINE SIMULATIONS . 56

A. Overview . 56

B. Baseline 1 . 59

1. Workload . 59

C. Baseline 2 . 63

1. Workload . 63

D. Baseline 3 . 66

1. Workload . 66

E. Baseline 4 . 69

1. Workload . 69

VII CONCLUSIONS AND FUTURE WORK 73

REFERENCES . 74

APPENDIX A . 78

vii

CHAPTER Page

VITA . 80

viii

LIST OF FIGURES

FIGURE Page

1 Basic Setup Subject to TCP Incast Collapse (Based on [9]) 2

2 Effect of Link Rate Variation on Barrier Synchronized Flows 4

3 TCP Incast Collapse . 6

4 QCN Components (Based on [15]) 13

5 QCN Overview (Based on [16]) . 15

6 QCN Fast Recovery and Active Probing (Based on [15]) 18

7 Simulation Setup for TCP Incast Collapse 21

8 Unmodified TCP Newreno Goodput vs Number of Flows 22

9 TCP with 10ms Minrto Goodput vs Number of Flows 23

10 Unmodified QCN Goodput vs Number of Flows 24

11 Timeouts per Flow in Unmodified TCP vs Number of Flows 25

12 Timeouts per Flow in Unmodified QCN vs Number of Flows 25

13 Unmodified TCP Drops with Time 26

14 Unmodified QCN Drops with Time 27

15 Link Rate Statistics for QCN 8 Flows 128KB Bufsize 29

16 Link Rates for 3 Flows for QCN 8 Flows 128KB Bufsize 30

17 10ms Minrto TCP with Unmodified QCN Goodput vs Number of Flows 32

18 Instantaneous Throughput for 3 Flows from 5.5s-6.5s: 128KB Buf-

size, 64 Flows . 34

ix

FIGURE Page

19 QCN Flow Rate for 3 Flows from 5.5s-6.5s: 128KB Bufsize, 64 Flows 35

20 C/n Rate Distribution Goodput vs Number of Flows 36

21 Unmodified TCP with SFQ at Switches Goodput vs Number of Flows 37

22 Unmodified TCP with DRR at Switches Goodput vs Number of Flows 38

23 Unmodified TCP with SFQ with Hard Queue Partitioning at

Switches Goodput vs Number of Flows 39

24 Congestion Memory Based Sampling in Incast Setup 44

25 Detailed Sampling in Incast Setup 47

26 Adaptive R AI in Incast Setup . 48

27 Adaptive R AI with Congestion Memory Based Sampling in In-

cast Setup . 49

28 Adaptive R AI and Detailed Sampling in Incast Setup 51

29 Performance of Unmodified TCP in Mixed Protocol Setup 53

30 Performance of TCP with 10ms Minrto in Mixed Protocol Setup . . 53

31 Performance of Unmodified QCN in Mixed Protocol Setup 54

32 Performance of QCN with Adaptive R AI and Congestion Mem-

ory Based Sampling in Mixed Protocol Setup 55

33 Performance of QCN with Adaptive R AI and Detailed Sampling

in Mixed Protocol Setup . 55

34 QCN Baseline Simulation 1 (Based on [23]) 59

35 Normal QCN (Drops: 0.5GB: 1207 1GB: 884 2GB: 618) 61

36 QCN + Adaptive R AI + Congestion Memory Based Sampling

(Drops: 0.5GB: 1157 1GB: 893 2GB: 632) 62

x

FIGURE Page

37 QCN + adaptive R AI + Detailed Sampling (Drops: 0.5GB: 99

1GB: 71 2GB: 45) . 62

38 QCN Baseline Simulation 2 (Based on [22]) 63

39 Normal QCN (Drops: 1196) . 64

40 QCN + Adaptive R AI + Congestion Memory Based Sampling

(Drops: 1118) . 65

41 QCN + Adaptive R AI + Detailed Sampling (Drops: 94) 65

42 QCN Baseline Simulation 3 (Based on [22]) 66

43 Normal QCN (Drops: 189) . 67

44 QCN + Adaptive R AI + Congestion Memory Based Sampling

(Drops: 184) . 68

45 QCN + Adaptive R AI + Detailed Sampling (Drops: 0) 68

46 QCN Baseline Simulation 4 (Based on [24]) 69

47 Normal QCN (Drops: 382) . 71

48 QCN + Adaptive R AI + Congestion Memory Based Sampling

(Drops: 389) . 71

49 QCN + Adaptive R AI + Detailed Sampling (Drops: 17) 72

xi

LIST OF TABLES

TABLE Page

I Silent Period in Seconds for Unmodified TCP Simulations 8

II Silent Period in Seconds for Unmodified QCN Simulations 28

III Average Minrate and Goodput for Our Implementation of QCN

for: 128 KB Buffer Size . 31

IV Feedback Levels in Unmodified QCN 45

V Extra Feedback Levels in Detailed Sampling (for Level 7 in Pre-

vious Table) . 46

VI QCN Feedback Packets Generated for: 128 KB Buffer Size 50

VII QCN Simulation Timeouts per Flow: 128 KB Buffer Size 50

1

CHAPTER I

INTRODUCTION

A. Background

Data is being stored in big data centers and accessed increasingly over wide area net-

works. Google, Yahoo, IBM, Microsoft, Amazon.com and many others are providing

services to store, access and process data in such data centers. The economies of scale

are driving these data centers to become big.

The data centers are typically organized with many storage devices, associated

servers to manage the data and Ethernet switches to interconnect these servers within

the data centers. The data of one user may be spread across or striped across many

servers for performance or reliability reasons. Distributed filesystems such as Panasas

[1], NFSv4.1 [2], lustre [3] and distributed search queries, such as employed by Yahoo!

[4] are becoming increasingly popular. When a user accesses data from data centers,

the data will cross the data center Ethernet switches during the data delivery to user.

The Ethernet switches, typically, have small buffers of the range 32KB - 256KB and

these small buffers may overflow at the times of congestion.

Data is accessed over wide area networks using network transport protocols such

as TCP and UDP. When a packet is dropped in the Ethernet switches due to con-

gestion, TCP automatically adjusts its rate using a closed loop Additive Increase

Multiplicative Decrease [5] algorithm. A transport protocol such as UDP, on the

other hand, does not do any rate limiting by itself, necessitating that the layers above

implement congestion control. Other transport protocols such as Real-time Trans-

port Protocol [6], Structured Stream Transport (SST) [7] may be used by different

The journal model is IEEE Transactions on Automatic Control.

2

applications.

B. TCP Incast

In a clustered setup, data is distributed across multiple servers for increasing perfor-

mance and reliability, with a client relying on several servers to send parts of the data

to it in parallel. Dividing data across multiple servers is generally a good solution to

decrease data access latency as well as increase reliability of the storage system.

Packet buffers in switches are expensive, and recent work [8] also explores the

possibility of using small buffers in equipment and still achieving near full link utiliza-

tion. However, increasing the number of servers in a distributed setup is not always

beneficial when dealing with low buffer switches. We introduce a very simple setup

in Figure 1 (based on [9]), which we shall use both to explain Incast, and to study

the performance of various protocols in a setup causing Incast later in this thesis.

Fig. 1.: Basic Setup Subject to TCP Incast Collapse (Based on [9])

3

The setup in Figure 1 (based on [9]), consists of a client node, which requests

data from multiple servers at once. An example scenario where this could happen is

one where data is stored in fixed size blocks, which are striped into smaller chunks

and stored across the servers. When the client needs to read data, it sends requests to

all the servers which have the data stored. Each server sends back the stripe of data

it has stored back to the client. This response from the server is known as a Server

Response Unit (SRU). For purposes of simplicity, let us assume that the client is able

to only request one block of data at a time. This implies the following sequence of

events: i. client sends request to servers ii. servers send back SRUs to client iii. after

receiving all SRUs, client issues another request.

1. Barrier Synchronized Requests and Minimum Effective Rate

In the setup in Figure 1, the client sends a request to all servers simultaneously,

receives the SRUs from all servers, and sends its next request. This kind of a setup

where the client does not send a new request till all responses to the current request

have been received is known as a barrier synchronized setup.

Let us consider that there are 10 servers (hence flows) in the setup. This would

imply that each flow should get an effective rate of 100Mbps and respond to the

client. However, let us assume that for some reason, one flow is only able to transmit

at 50Mbps. In a normal TCP setup, the other flows would take advantage of this

extra 50Mbps bandwidth, and the link would still be fully utilized.

However, in a barrier synchronized setup, the other flows can only transmit the

currently requested SRU, after which they have to wait for the slow (50Mbps) flow

to complete its SRU transmission, after which the client issues a new request. This

implies that the effective time for transmission of a SRU is the longest time taken

among all the flows, and thus, that the effective rate of all flows is the minimum rate

4

among all flows. This effect is illustrated in Figure 2.

Fig. 2.: Effect of Link Rate Variation on Barrier Synchronized Flows

2. TCP Timeouts

As seen in Figure 1, the client, as well as each of the servers, are connected to a single

switch. The physical capacity of each link is the same. In our simulations, we allocate

1Gbps to each link.

As the client sends a request to all servers at once, all servers send back their

SRUs almost simultaneously back to the client. This leads to a bottleneck at the

switch -> client link, where the input is n (number of servers) Gbps, while the output

link is just 1Gbps. Congestion leads to packet drops, and packet drops in turn, tell

TCP that there is congestion.

The congestion control mechanism of TCP quickly cuts rates down, and soon,

all flows transmit at roughly C/n capacity, where C is the link capacity, and n is the

number of servers. However, for the congestion control mechanism of TCP to work

5

properly, it must detect losses. This is done by two mechanisms [5] : i. TCP Fast

Retransmit based on DUPACK detection and ii. Timeout based retransmit. TCP is

able to detect packet drops through duplicate DUPACKs with a smaller number of

flows, but as the number of flows goes up, TCP timeouts also begin occurring. We

will examine the reasons for these timeouts occurring in coming sections, but for now,

let us consider the effect a timeout has on a flow.

The TCP based timeout mechanism causes a flow to timeout if an acknowledg-

ment is not received for a packet after 2x the estimated Round Trip Time (RTT) [5].

The Retransmit Timeout (RTO) value thus calculated however, has a lower limit of

200ms in current TCP implementations. A smaller lower bound was previously not

necessary due to higher link latencies, and lower RTO settings also require a finer

clock granularity. Let us assume that a SRU is of 256KB size, implying that the time

to transmit the SRU with a 1Gbps link would be roughly 2ms. However, because of

this timeout, the SRU transmission cannot be completed until the timeout expires,

and the effective flow rate is decreased greatly.

In a setup where the TCP flows are not synchronized with each other, this does

not pose much of a problem. However, as seen in subsection 1, the effective rate

of all flows is equal to that of the timed out flow, leading to a drastic drop in link

utilization.

3. Incast Problem in Literature

It has been seen that after timeouts begin to occur significantly, TCP performance

drops drastically, and is known as the TCP Incast problem [9]. An illustration of the

TCP Incast effect in our own simulations can be seen in Figure 3. As can be seen

from the figure, link utilization drops drastically after a certain number of flows is

exceeded, and the number of flows supported before this performance collapse occurs

6

is roughly doubled with a doubling in the switch buffer size. These results are based

on the simulations done by Phanishayee et al. in [9].

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

Number of Flows

32 KB
64 KB

128 KB
256 KB

Fig. 3.: TCP Incast Collapse

The reason for this drop in network throughput is because of the interplay of

heavy congestion (and hence packet drops), TCP rate control and timeout mecha-

nisms, and the synchronized nature of the traffic.

A nice summary of the preconditions for TCP Incast is stated in [10], where the

preconditions are listed as: High-bandwidth, low-latency networks, Clients issuing

barrier-synchronized requests, and servers returning data that is not sufficient to

significantly utilize the link for a long period of time by itself.

Heavy packet drops due to severe congestion cause the TCP timeout mechanism

to kick in (as opposed to DUPACKs preventing timeouts from being necessary [9]).

The onset of TCP timeouts, as discussed in subsection 2, can cause a catastrophic

performance collapse, thus leading to the TCP Incast problem.

TCP timeouts can occur due to several reasons [9]:

• An entire window of data is lost, so that no feedback is received at the sender

7

(Full Window Loss)

• Last packet in a Server Response Unit (SRU) is lost: since no further packets

are sent before the client issues another request, no DUPACKs occur, causing

a timeout to be necessary (Last Packet Loss)

• Retransmitted packet (due to DUPACKs/timeout) is also dropped (Lost Re-

transmit)

In a non-synchronized flow scenario, even if a single flow times out, the other

flows continue transmitting, while adjusting their rates. Eventually, they all converge

to rates are more or less evenly divided among all flows. However, in a synchronized

transmission scenario, most flows will have already finished transmitting their data

before the victim flow(s) finish transmission after timeout. After the timeout period

has elapsed, the affected flow will reduce its window and go into Slow Start, but

the other flows will rapidly increase their rates until they detect packet drops, by

which time another timeout will likely have occurred. The timeout mechanism, while

effective in most setups, incurs a very heavy penalty in the setup in question, leading

to continuously poor performance with the onset of TCP timeouts.

4. Silent Periods during TCP Incast Collapse

An interesting observation is the occurrence of ’silent periods’ in the simulations. A

’silent period’ is the period when a victim flow waits for a TCP timeout to occur,

while other flows wait for the client to send another request. Very little traffic flows

through the switch − > client link during these intervals. A table of total times

during which no traffic was seen along the bottleneck link was generated for each

set of simulations, and in each simulation, a very strong correlation was observed

between the onset of long periods spent in silence with the onset of Incast. The table

8

of total seconds spent in silence (over a period of 20 seconds) is shown in Table I for

unmodified newreno:

Table I.: Silent Period in Seconds for Unmodified TCP Simulations

Flows 32 64 128 256

2 0 0 0 0

4 6 0 0 0

8 16 9 0 0

16 16 15 15 0

32 15 14 14 12

64 14 12 12 12

As can be seen from the table, after Incast collapse occurs, the amount of time

during which no data is sent increases significantly. The actual observed link utiliza-

tion is even less than the ’active time’/total simulation time, presumably because of

the way the silent periods are calculated: only periods with no traffic are counted,

and if a period has minimal traffic, it is not counted as a silent period. For example,

for 4 flows and 32 KB buffer size, 6 seconds (out of 20) are spent in total silence. The

actual observed goodput for this simulation is 647 Mbps (64.7% utilization), while

14/20 gives us 70% utilization.

C. Current Approaches to Dealing with Incast

Increasing the SRU size and increasing the buffer size in the switch are two methods

by which the onset of Incast can be pushed further away. The authors state that the

number of servers supported before Incast collapse roughly doubles with a doubling

9

of the buffer size in [9]. Ethernet flow control [11] is also effective for the simple setup

of Figure 1, but is seen to fail in more complex setups because of problems with head

of the line blocking [9].

The most effective method proposed in the literature so far deals with not trying

to prevent TCP timeouts, but with simply reducing the penalty of the timeouts on the

flows. Phanishayee et. al. propose reducing the TCP minimum retransmission timer

(minrto) from its current value of 200ms to values of 1ms or lower in [10], and show

that using a small TCP minrto value does not negatively effect TCP performance in

general scenarios. This modification reduces the penalty of TCP timeouts to a value

that does not reduce the effective flow rates significantly. In our simulations using

TCP with reduced minRTO, we noted that the onset of timeouts occur with roughly

the same number of flows as in unmodified TCP, but a much greater number of actual

timeouts occur while throughput is unaffected, which satisfies the aim of the TCP

modification. However, no ’silent periods’ are observed for the simulations, which is

quite obvious, considering the fact that timeout penalties are considerably reduced.

However, while modified TCP is an effective solution to the basic TCP Incast

problem, two questions still remain: i. the performance of TCP flows in a mixed

protocol environment, and ii. the effect of introducing switches which have Quantized

Congestion Notification, which is being standardized by the IEEE 802.1 QAU group

[12] and will likely be implemented in data center switches. While TCP might perform

well in a homogeneous environment, a data center environment consist of various other

protocols such as UDP, which are much more aggressive. This mix of protocols can

have a detrimental effect on TCP performance, and the question of how TCP can be

made to perform better in such a setup arises.

In the following chapters in this thesis, we will talk about Quantized Congestion

Notification (QCN), and the performance of TCP flows in an environment where QCN

10

is enabled in the switch. We will analyze the causes of poor performance of Incast

flows in a setup with QCN enabled, and propose various modifications to alleviate

these problems. Further, we show that these modifications do not have a detrimental

effect on QCN performance in other workloads.

11

CHAPTER II

802.1QAU - CONGESTION NOTIFICATION

A. Introduction

The full title of the IEEE 802.1 QAU Congestion Notification PAR is IEEE Stan-

dard for Local and Metropolitan Area Networks – Virtual Bridged Local Area Net-

works - Amendment: 10: Congestion Notification. This standard specifies protocols,

procedures, and objects for congestion management of long-lived data flows in low

bandwidth delay product networks [12]. The switches employed are able to send

congestion information to traffic sources, which are able to rate limit their flows to

avoid frame loss, regardless of the transport level protocol being used. The standard

recently adopted by the committee is Quantized Congestion Notification (QCN). Two

other protocols that had previously been examined by the commitee along with QCN

were Ethernet Congestion Manager (ECM, previously known as Backward Conges-

tion Notification or BCN) [13], and Forward Explicit Congestion Notification (FECN)

[14].

B. Quantized Congestion Control

1. Overview

QCN consists of two main components: the Congestion Point (CP) and the Reaction

Point (RP). An illustration of QCN components, including the traffic source and

destination, is shown in Figure 4 (based on [15]). The CP monitors for congestion,

and notifies the RP when congestion occurs, including the flow id of the offending

flow.

When transmitting data from a traffic source to its destination host, all interme-

12

diate switches can become congested, and are hence called congestion points. These

switches (CPs) regularly sample packets and monitor their queue lengths to make

sure congestion is not occurring, based on the growth rate of the queue and its offset

from an equilibrium point QEQ, around which the queue length is intended to stabi-

lize. A CP calculates a feedback value based on the queue state, and if the computed

feedback is negative (implying congestion), sends this feedback to the source of the

sampled packet. The feedback, however, is quantized into a 6 bit value (between 0

and 63), leading to the name Quantized Congestion Notification.

The RP has rate limiters for various flows, and can adjust the rate of each

offending flow individually. Based on feedback from the CP, the RP adjusts the rate

of the flow. Negative feedback causes multiplicative rate decrease for the offending

flow. Rate increase is more complex, and has three different behaviors, depending

on how when the last negative feedback message was received. There is no positive

feedback as such in QCN, only the lack of negative feedback. These stages will be

described in more detail later.

2. Congestion Point

To control congestion, each Congestion Point (intermediate switch) samples forwarded

packets with a frequency that depends upon the amount of congestion encountered.

During heavy congestion, packets are sampled more frequently, while packets are

sampled less often is there is less congestion. Congestion is determined based on the

feedback value calculated. The feedback value thus calculated, if negative, is put in

a feedback message, along with the flow identification information (flowid), and sent

back to the RP, which takes appropriate action based on the feedback.

Feedback is calculated on the basis of offset (qoff) from an equilibrium queue

length (QEQ) and the rate of growth of the queue (qdelta). It can be expressed as:

13

Source
Reaction Point

Congestion

Point

Congestion

Point
Destination

Server Rate Limiter Switch 1 Switch n Client

(End Host)

QCN Components

Sends

Traffic to

Destination

Receives

Traffic from

Source

Rate limits

traffic from

source

based on

feedback

Probabilistically

sends feedback

based on

congestion

Fig. 4.: QCN Components (Based on [15])

14

qdelta = qlen− qold

qoff = qlen−QEQ

Fb = −[qoff +W ∗ qdelta]

where W is a weight parameter, set to 2 in our simulations. The calculated feedback

is quantized to 6 bits (values between 0 and 63), and if the feedback is negative, then

a feedback message is sent back to the source.

3. Reaction Point

The RP is the part of the QCN mechanism that does the actual rate limiting of flows

based on feedback from the CPs. A single RP can have multiple rate limiters, one for

each offending flow. These rate limiters use rate limiting mechanisms such as Token

Bucket or Leaky Bucket [5] to physically rate limit each offending flow individually.

An overview of the QCN rate control mechanism is given Figure 5.

When a Reaction Point (RP) receives a feedback message, it performs multi-

plicative decrease and goes into Fast Recovery mode. The rate at the time negative

feedback was received is set as the target rate (TR), and the current rate (CR) is

reduced according to the equation:

CR = CR ∗ (1−Gd ∗ |Fb|)

During Fast Recovery mode, the new current rate is set to the average of the

current rate and the target rate, while the target rate is left unchanged. Thus,

the current rate increases very rapidly the first time congestion is indicated, then it

gradually converges towards the rate at which negative feedback was received. The CP

however, does not send any positive feedback. RPs perform self-increase periodically

15

Rate Limiter

(RL)

Negative Feedback:

Timer:

Byte Counter: Fast Recovery (FR):

Active Probing (AI):

HAI:

· Increment each time X

bytes are sent

· X=150 KB for FR

· X=75 KB for HAI

· Counter reset on negative

feedback

· Reset both byte counter

and timer

· Multiplicative Decrease:

TR=CR

CR=CR*(1-Gd*|Fb|)

· Increment every X ms

· X=15 ms for FR

· X=7.5 ms for HAI

· After Negative Feedback is

Received

· Both Byte Counter and

Timer <5

· Self Increase:

CR = (CR + TR) / 2

Byte Counter OR Timer >= 5,

but not both

Self Increase:

TR = TR + R_AI

CR = (CR + TR)/2

· Both Byte Counter and

Timer >= 5

· Self Increase:

TR = TR + i * R_HAI

CR = (CR + TR) / 2

+

+

-

QCN Overview

Fig. 5.: QCN Overview (Based on [16])

16

on the basis of lack of negative feedback using the two mechanisms below:

• Time elapsed: Each RP has a timer that is activated when negative feedback

is received. It also has a counter than keeps track of the number of timer cycles

elapsed since the last negative feedback was received. We shall refer to this as

the timer state. The RP timer expires every 15ms during the Fast Recovery

stage and Active Probing stage. During the HAI phase, the timer expires every

7.5ms. The timer state is incremented by 1 every time the timer expires, and

self increase is also performed.

• Bytes transmitted: The RP also has a byte counter which keeps track of bytes

transferred. The byte counter is incremented each time 150KB is transferred

during Fast Recovery and Active Probing,while it is incremented each 75KB

during HAI stage. Similar to incrementing the timer state, an increment of the

byte counter also signifies self increase.

Self increase as referred to above implies the increase of the RP target rate ac-

cording to the phase QCN is currently in. The policy of rate increase differs depending

upon whether QCN is in the FR, AI, or HAI stage. The working of the three phases

is described below:

• Fast Recovery (FR): QCN is in FR after negative feedback is received, and

as long as both the timer state and byte counter are below 5. During this

stage, current rate (CR) is incremented with each self increase according to the

following equation:

CR = (CR + TR)/2

• Active Probing (AI): During this stage, QCN is the least aggressive. During

each self increase, the Target Rate is increased by R AI, and CR is increased

17

as before:

TR = TR +R AI

CR = (CR + TR)/2

• HAI: This is a stage of aggressive probing, which occurs when both the byte

counter and timer state are greater than or equal to 5. QCN increases the

target rate by R HAI multiplied by the number of times the event (timer elapse

or required number of bytes transmitted) has elapsed. It can be written as:

TR = TR + i ∗R HAI

CR = (CR + TR)/2

where i is the event count. Figure 5 (based on [16]) shows a summary of the

workings of QCN, while Figure 6 (based on [15]) shows rate changes during FR

and AI stages.

4. Comparison of QCN and TCP Rate Control Mechanisms

QCN and changes to TCP are two different approaches to solving the congestion

problem in data centers. QCN implements congestion control in the Ethernet link

layer and allows applications with different transport protocols (TCP and UDP) to

fairly share bandwidth in the data center. QCN rate control is equivalent to physical

bandwidth restriction: the flow can use a maximum rate not exceeding whatever

QCN has allocated to it at the time.

TCP flow control, based on controlling the sender’s window size controls the

sending rate, as a function of the available physical bandwidth. It is hard limited by

the rate assigned to it by the QCN RP. An approach that modifies TCP to reduce

18

Fig. 6.: QCN Fast Recovery and Active Probing (Based on [15])

minrto aims not to prevent timeouts, but to remove the penalty incurred by the onset

of timeouts. In our Incast simulation setup, only one flow is present on a link in any

direction, and hence, we will be referring to flow rate as link rate as appropriate to

make it easier to intuitively understand: the QCN link rate will be the maximum

bandwidth physically usable by the flow.

Changes to TCP, such as modifications to timers, are specific to TCP, and address

TCP’s problems in data center scenarios without requiring extensive modifications to

data center network infrastructure. As we will point out later, QCN tries to avoid

packet drops and consequent TCP timeouts that result in performance loss, while

modifications to TCP timers recover quickly from TCP timeouts without necessarily

reducing the number of packet drops.

In the rest of this thesis the effectiveness of QCN in TCP Incast scenarios is

studied. Simulation results show that QCN as per current specifications is not very

19

effective in controlling the congestion collapse in the Incast scenarios. The causes of

this are analyzed, and two modifications to QCN to improve its performance in TCP

Incast scenarios are proposed. It is shown that QCN with the proposed enhancements

can be an effective solution in mixed workloads with TCP and UDP in data centers,

while continuing to function effectively in other workloads as well.

20

CHAPTER III

PERFORMANCE OF UNMODIFIED CONGESTION NOTIFICATION

PROTOCOLS IN THE INCAST SCENARIO

A. Evaluation of QCN in TCP Incast Scenario

In Chapter I section B, the basic setup used for simulations was described. The setup

will be explained in more detail below, and the performance of QCN in the TCP

Incast scenario will then be presented.

Figure 7 shows the basic simulation setup, similar to what is used in [10]. There

is one single client requesting data blocks from n servers, each of which returns a

fixed size block in response to a request sent by the client. The client waits for server

responses, and when it has received all of the responses, it sends the next request to

the servers. All links are 1 Gbps links, and when the servers send their responses

back, the switch->client link gets saturated. This leads to packet drops, and with a

sufficient number of servers, TCP Incast occurs.

All simulations have been done using the ns-2 network simulator. Unless other-

wise specified, all simulations have a runtime of 20s, and the server response units

are 256KB each. Switch buffer sizes of 32, 64, 128, and 256KB have been used, and

flows upto 64 have been used, but with only flows that are powers of 2 (2,4,8,...).

1. Unmodified Newreno

We first verified the occurrence of TCP Incast with unmodified newreno, and link

layer congestion control mechanism. The link utilization versus the number of flows

for 32, 64, 128, and 256 KB buffer sizes was plotted, and Incast collapse was seen

to occur as early as with 8 flows for 32 KB buffer size, collapse occurred at 32 flows

21

Fig. 7.: Simulation Setup for TCP Incast Collapse

22

for 256KB switch buffer size. The performance of unmodified newreno is shown in

Figure 8. This was found to be in accordance with the results presented in [17].

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

Number of Flows

32 KB
64 KB

128 KB
256 KB

Fig. 8.: Unmodified TCP Newreno Goodput vs Number of Flows

2. Newreno with Reduced Minrto

We reduced the minimum retransmission timeout for TCP, and ran simulations with

rtos of 10ms and 1ms, as suggested in [17]. The performance of TCP with a minrto

changed to 10ms is shown in Figure 9. As seen in Figure 9, performance is much

better, and there is almost 100% link utilization for 256KB buffer sizes, while goodput

drops to 60% for 32 and 64 KB buffer sizes. The reason for improved performance

is that, even though timeouts themselves are not prevented, the effect timeouts have

on the entire flow rate is minimized to a negligible amount [17].

B. QCN Performance in TCP Incast

First, we need to point out that there are several releases of the QCN pseudocode.

Our implementation of QCN is as per QCN pseudocode version 2.2 released by Rong

23

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

Number of Flows

32 KB
64 KB

128 KB
256 KB

Fig. 9.: TCP with 10ms Minrto Goodput vs Number of Flows

Pan [18] 1. We shall be referring to our implementation of QCN based on the lat-

est available release of the pseudocode ([18]) as unmodified QCN, and all proposed

modifications are applied to this implementation.

QCN can effectively control link rates very rapidly in a data center environment.

However, it performs poorly in the TCP Incast setup in Figure 7. The performance

of TCP Incast with QCN is shown in Figure 10.

Before analyzing QCN behavior, it is necessary to make a distinction between

two regions in which QCN can operate, based on the number of flows (in the TCP

Incast setup examined).

1. Before the onset of TCP timeouts (and hence ’periods of silence’)

2. After the onset of TCP timeouts (and hence ’periods of silence’)

QCN initially behaves in the first region, effectively rate limiting TCP flows, and

1This version of pseudocode employs slightly different sampling as compared to
the previously released version [19]. The effects of this in both Incast and baselines
are quite noticeable though, as are discussed in the appropriate sections.

24

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

Number of Flows

32 KB
64 KB

128 KB
256 KB

Fig. 10.: Unmodified QCN Goodput vs Number of Flows

preventing TCP timeouts from occurring as such. However, fairness issues play a big

role in a barrier synchronized setup such as this one, causing variations in QCN flow

rates to affect overall performance.

After TCP timeouts begin to occur, QCN flow rates fluctuate to a greatly, and

behavior very similar to that of only TCP after Incast collapse is observed. These

regions are examined in detail in the following sections.

1. QCN Behavior before Onset of TCP Timeouts

At first glance, it appears that the throughput collapses at 8 flows regardless of the

buffer size. The throughput however, picks up for 256KB and 128KB after the initial

drop at 8 flows. For 256KB buffer size, the throughput goes up to around 700Mbps,

and goes only slightly lower for a higher number of flows. This is different from TCP

behavior without QCN.

If the number of timeouts, which were seen to be the main cause of TCP Incast

collapse, are observed, with QCN, the onset of timeouts is actually delayed. Timeouts

25

in normal newreno begin occurring at 4 flows, and at 16 flows, timeouts occur even

for 256KB buffer size. On the other hand, timeouts begin significantly at 4 flows for

32KB, 8 flows for 64, 16 flows for 128KB, and 32 flows for 256KB buffer sizes with

QCN enabled. The occurrence of TCP timeouts is shown in Figures 11 and 12.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

T
im

eo
ut

s

Number of Flows

Buffer Size: 32 KB
Buffer Size: 64 KB

Buffer Size: 128 KB
Buffer Size: 256 KB

Fig. 11.: Timeouts per Flow in Unmodified TCP vs Number of Flows

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

T
im

eo
ut

s

Number of Flows

Buffer Size: 32 KB
Buffer Size: 64 KB

Buffer Size: 128 KB
Buffer Size: 256 KB

Fig. 12.: Timeouts per Flow in Unmodified QCN vs Number of Flows

The number of drops that occur before timeouts begin occurring is also much less

26

for newreno than for QCN, as shown in Figures 13 and 14. We note that before TCP

timeouts begin to occur, the total number of queue drops is less than 1000. This would

imply that TCP should be able to perform quite well with QCN enabled, and should

achieve full link utilization. This is in fact, corroborated by observing the Congestion

Window values with QCN enabled as compared to those with only newreno. If we

compare the performance of newreno and QCN at 16 flows, with 256KB buffer size

for example, the congestion window for the QCN enabled simulation goes up steadily

to 450, while the average congestion window for unmodified newreno stays at around

30. At the end of this simulation (20 seconds), there are 35000 drops for unmodified

newreno only, while there are only 40 drops for newreno on top of QCN.

With the data just quoted for the simulation with 256KB buffer size and 16

flows, the performance of QCN would be expected to be at least as good as that of

unmodified newreno. However, while the goodput of newreno is constantly at full

link utilization (1Gbps), the goodput achieved with QCN is at 700Mbps.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2 4 6 8 10 12 14 16 18 20

In
st

an
ta

ne
ou

s
Li

nk
 R

at
e

number of flows

Queue Drops

Fig. 13.: Unmodified TCP Drops with Time

All of the data above seems to indicate that though QCN performance drops

27

 38.6

 38.7

 38.8

 38.9

 39

 39.1

 39.2

 39.3

 39.4

 0 2 4 6 8 10 12 14 16 18 20

In
st

an
ta

ne
ou

s
Li

nk
 R

at
e

number of flows

Queue Drops

Fig. 14.: Unmodified QCN Drops with Time

after TCP timeouts begin to occur, its performance is also not very good before

TCP timeouts occur. The onset of TCP Incast due to timeout penalties can be

corroborated with the total silent time during a simulation, as shown in Chapter I

section B subsection 4. As can be seen from Table II however, even when not much

time is spent in a silent period (e.g. 256 KB buffer, 8 flows), the total link utilization

is very low.

The reason for this poor performance of QCN cannot be explained by looking at

TCP behavior alone. In fact, in Chapter I section B subsection 2, we discussed how

TCP timeouts cause TCP Incast behavior, and without timeouts, TCP itself should

perform without problems, as seen by the large congestion window size and small

number of drops.

However, as explained in Chapter II section B subsection 4, rate limiting is

also done by QCN, and if QCN allocates a certain rate to a flow, that allocation is

equivalent to a physical limit on the bandwidth that can be utilized. Please refer to

the example in Chapter I section B subsection 1, where one flow with an effective

28

Table II.: Silent Period in Seconds for Unmodified QCN Simulations

Flows 32 64 128 256

2 0 0 0 0

4 0 0 0 0

8 13 0 0 0

16 13 10 0 0

32 14 8 5 0

64 15 10 5 1

bandwidth of 50Mbps slowed down all other flows. The poor performance of QCN

can be explained when these two concepts are kept in mind: QCN allocates rates that

are fair over time, but at small time scales, this allocation is not perfectly fair. There

is a certain variation among allocated flow rates at any given time, and the minimum

rate for a flow becomes the effective rate for all flows, leading to a noticeable decrease

in total link utilization. This effect is examined in more detail later.

We make several observations from the results in Figure 10 immediately: i. QCN

does not achieve full link utilization even when only unmodified TCP does and ii.

QCN provides higher goodput with higher buffers than when QCN is not employed

after unmodified TCP collapses due to Incast. We shall deal with these observations

in the coming section. In later sections, we propose modifications to basic QCN to

make it perform well in the Incast scenario.

First, let us consider QCN performance without TCP timeouts, or with very

little penalty of timeouts (using TCP with reduced minrto). TCP performance before

timeouts is very good, utilizing 100% link capacity, and modified TCP, with reduced

29

penalty of timeouts, utilizes nearly 100% link capacity as well. This suggests that link

utilization should be near 100% with QCN at the Ethernet Link Layer and the same

transport layer protocols above it. However, with QCN enabled, full link utilization

is not achieved. In fact, in Figure 17 we see that past 8 flows, even with a modified

TCP with minrto reduced to 10ms, link utilization does not go above 80% using QCN

at the link layer, and drops to 45% link utilization with 8 flows.

To explain this low utilization, let us refer to a simulation with 128KB buffer size

and 8 flows. We first look at Figure 15, where we see that the minimum link rate is

constantly below 80 Mbps throughout the simulation. However, as seen in Figure 16,

where 3 flows are examined, we see that the rate allocated to each flow varies with

time, and the flow with minimum rate is not fixed over time, implying that there is

not one particular victim flow, and over a longer time, rate allocation is fair.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 2 4 6 8 10 12 14 16 18 20

In
st

an
ta

ne
ou

s
Li

nk
 R

at
e

number of flows

Max:
Min:

Mean:
Median:

Fig. 15.: Link Rate Statistics for QCN 8 Flows 128KB Bufsize

Consider the time it takes for QCN to increase and decrease link rates. Rate

decrease is instantaneous: each time negative feedback is received, the link rate is

reduced multiplicatively. However, link rate increase only takes place if negative

30

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 2 4 6 8 10 12 14 16 18 20

In
st

an
ta

ne
ou

s
Li

nk
 R

at
e

number of flows

Flow 1:
Flow 2:
Flow 3:

Fig. 16.: Link Rates for 3 Flows for QCN 8 Flows 128KB Bufsize

feedback has not been received for a certain period. This period can either be 15ms

(timer based), or the time to transmit 150KB (byte counter based). These periods

are sufficiently fine-grained for most purposes, but let us take a closer look at the

timescales involved in our simulation.

A client request for data causes each server to send back a Server Response Unit

(SRU), which is 256KB in our simulations. The time to transmit 256KB using the

full 1Gbps link capacity is roughly 2 milliseconds. However, if we assume that the

flow can physically only use 100Mbps because of QCN rate limiting, then the time

to transmit one SRU is roughly 20 milliseconds. The timer and byte counter based

thresholds described in the preceding paragraph do not take much effect during the

time to transmit a single SRU, implying that not much rate increase occurs during

this period. Hence, we can approximately assume that link rates are static during

the time to transmit a single SRU. This further implies, in our example simulation

of 128KB buffer size and 8 flows, that the minimum link rate while transmitting an

SRU is 80Mbps or less. No matter what the maximum link rate is, the effective rate

31

of all flows thus becomes 80Mbps or less due to flow synchronization at the SRU

granularity, leading to an effective throughput of less than 8*80=640Mbps.

Link rates have been sampled periodically in the simulation, and the minimum

rate among all of the link rates is termed the minimum link rate for that instant.

The average value of the minimum link rate across the simulation period is referred

to as the average minrate. If our hypothesis that the effective rate for all the flows is

roughly equal to the minimum rate at any given time, then the averaged value of the

minrate * the number of flows should give the effective goodput for the simulation

before TCP collapse occurs. This is corroborated by the data in Table III. Though we

have not shown data for other simulations for brevity, this relation holds true before

the onset of TCP timeouts in all QCN based simulations (as well as those with TCP

with reduced minrto over QCN, since timeout penalties are very small in this case).

Table III.: Average Minrate and Goodput for Our Implementation of QCN for: 128

KB Buffer Size

Avg

Flows Avg Minrate Avg Minrate*Flows Goodput Timeouts

2 512.19 1024.37 966.61 0

4 208.74 834.94 835.29 0

8 59.31 474.46 484.77 0

16 36.21 579.312 613.37 0.063

32 29.40 940.77 325.01 8.94

64 32.03 2049.80 408.40 22.75

The bold entries in the table indicate the point at which the goodput becomes

32

much less than the sum of link rates (avg minrate * flows) of all the flows. It is

observed at this point, QCN is unable to control the congestion and timeouts start

occurring and the timeouts increase as the number of flows are increased.

a. Performance of TCP with Reduced Minrto over QCN

According to the explanation of the bad performance of QCN given above, we can

conclude that even when TCP does not have long intervals without traffic, link uti-

lization is still low. This would imply that even with the TCP modifications proposed

in [10], if QCN was also enabled in the setup, then the link utilization should be very

similar to that of unmodified TCP performing over QCN, at least before TCP time-

outs begin to occur significantly. This is confirmed by simulation: Figure 17 shows

the performance of TCP with 10 ms minrto over a QCN enabled setup.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

Number of Flows

32 KB
64 KB

128 KB
256 KB

Fig. 17.: 10ms Minrto TCP with Unmodified QCN Goodput vs Number of Flows

It can be seen from Figures 10 and 17 that the performance of TCP with and

without modified minrto is very similar with QCN enabled before TCP timeouts begin

occurring.

33

2. QCN Behavior after Onset of TCP Timeouts

It can be seen from Table III that when TCP timeouts begin occurring (last column

corresponds to TCP timeouts per flow), average minrate * number of flows is much

greater than the observed goodput of the flows. This happens because of the TCP

timeouts: even though a flow is allocated a certain link rate, it cannot utilize that

rate if it has to wait for at least 200ms before it can start sending again. The actual

traffic generated by the timed out flow is hence very low, and this low rate affects all

other flows as they are all synchronized, leading to a very low utilization throughout.

This effect is was discussed in Chapter I section B subsection 1.

During the 200ms interval when a flow is waiting for a TCP timeout to expire,

the other flows are waiting for a client request. During this time, the flows do not

receive any negative feedback from QCN CPs. Lack of negative feedback is perceived

as no congestion, and the RPs increase the available link rates for flows by an amount

controlled by the parameter R AI (which is set to 5Mb). As pointed out earlier,

link rate can be increased every 15ms or after successfully sending 150KB of data.

The 200ms timeout interval corresponds to roughly 13 15ms intervals, and hence

13*5=65MB rate increase could occur in the link rate (if in the AI region of QCN).

When the TCP timeout period expires, all the flows could have seen a 65MB rate

increase, and with even 8 flows, this is equivalent to half the total link capacity. When

the flows begin transmission again, this increased link rates leads to congestion again

and timeouts occur, and so on. This can be observed in Table III, where the avg.

min rate* num flows exceeds the link capacity of 1 Gbps for 64 flows.

An illustration of increases in QCN rate due to no negative feedback is shown in

Figures 18 and 19. Note that flow 1 steadily has more rate allocated to it till around

5.6 seconds, when there is a sharp drop in rate. This corresponds to a spike in the

34

instantaneous throughput of flow 1. Flow 2 is also seen to have become active at

the same time, and other flows (not shown in figure) are also seen to become active.

Further, there is a drop in the rate allocated to flow 2 as well at around the same

time. After this, both flow 1 and flow 2 do not increase their rates during the period

the flows are transmitting (5.7s for flow 1, nearly 5.8 seconds for flow 2). Flow 3 is

apparently under timeout at this period, and is not transmitting. Its allocated rate

is steadily increasing, and soon after it begins transmission at around 5.84 seconds,

a corresponding drop in its allocated flow rate is seen.

 0

 20

 40

 60

 80

 100

 120

 140

 5.6 5.8 6 6.2 6.4

In
st

an
ta

ne
ou

s
T

hr
ou

gh
pu

t

number of flows

Flow 1
Flow 2
Flow 3

Fig. 18.: Instantaneous Throughput for 3 Flows from 5.5s-6.5s: 128KB Bufsize, 64

Flows

3. Perfect Rate Distribution

In subsection 1, it was pointed out that the poor performance of QCN was because

of small timescale rate variations in a barrier synchronized setup, where all flows

would effectively have an effective rate equal to the minimum rate among all flows.

A natural question that arises is: if QCN were able to perfectly control rates among

35

 0

 100

 200

 300

 400

 500

 600

 700

 5.6 5.8 6 6.2 6.4

In
st

an
ta

ne
ou

s
Li

nk
 R

at
e

number of flows

Flow 1
Flow 2
Flow 3

Fig. 19.: QCN Flow Rate for 3 Flows from 5.5s-6.5s: 128KB Bufsize, 64 Flows

flows, so that if there are n flows competing for a link of capacity C, then each flow

would be allocated a rate of C/n, would QCN performance in a TCP Incast setup

improve? In a sense, this would be the ideal case for QCN.

The simulation for this scenario is quite simple to implement: each flow is allo-

cated a physical capacity equal to C/n, where n is the total number of flows. The

same simulation set was run, and the results are shown in Figure 20. It can be seen

from the figure that all flows, irrespective of buffer size, have almost complete link

utilization. Further, though the figures have not been included for brevity, there are

no queue drops or TCP timeouts for any number of flows and any buffer sizes, and

the average queue length is less than 1 for all simulations.

These results strongly suggest that if QCN is able to achieve perfect rate distri-

bution, its performance in a TCP Incast setup should considerably improve.

36

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

Number of Flows

32 KB
64 KB

128 KB
256 KB

Fig. 20.: C/n Rate Distribution Goodput vs Number of Flows

4. Fair Queuing

While it is not clear on how a perfect rate distribution can be achieved, achieving

better fairness at small timescales is desirable. Fair Queuing [5] is useful for providing

fairness at small timescales. Simulations were run with both Stochastic Fair Queuing

(SFQ) [20] and Deficit Round Robin (DRR) [21] to see if performance would improve

over newreno performance, with an intent of using fair queuing on top of QCN if

results showed significant improvements. These results are shown in Figures 21 and

22.

The results of SFQ at the switches are not seen to be much better than than

of unmodified TCP, while those of DRR are somewhat improved for 32 and 64 KB

buffer sizes before collapse, while results are not much better for higher buffer sizes.

A simulation using SFQ with queue allocations hard limited, where each flow was

assigned Q/n queue length, where Q is the total queue capacity and n is the number

of flows was also carried out. The results for this simulation are shown in Figure 23.

It was found that in order to get SFQ to support upto 64 flows without Incast

37

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

Number of Flows

32 KB
64 KB

128 KB
256 KB

Fig. 21.: Unmodified TCP with SFQ at Switches Goodput vs Number of Flows

collapse, 1 MB buffer was required. Similarly, for DRR, 2 MB buffer was required, and

for simple droptail, 2 MB buffer was required. SFQ with hard partitioning required

2 MB buffer size as well. Though Fair Queuing provides fairness among flows, it was

seen not to be very effective in the Incast setup with small buffer sizes.

As none of the simulation setups yielded much performance benefit over simple

droptail queuing at the switches, the implementation of QCN with these mechanisms

was not carried out.

5. Improvements to QCN

Two major factors were seen to have an effect on QCN performance: before and after

TCP timeouts begin occurring:

1. High variation among QCN flow rates at small timescales

2. Rapid increase of QCN flow rates during ’silent periods’ due to TCP timeouts

Modifications to QCN that would help improve its performance in the Incast

setup need to address these issues effectively.

38

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

Number of Flows

32 KB
64 KB

128 KB
256 KB

Fig. 22.: Unmodified TCP with DRR at Switches Goodput vs Number of Flows

In subsection 1, it was pointed out that lack of fairness at the very small timescales

taken to transmit a single SRU over the link causes performance degradation. The

problem in dealing with QCN rate control however, is the fact that the rates are not

determined centrally by the CP, but by each RP individually, based on feedback from

the CP. Even if all RPs started with the same rate, the packets originating from their

respective flows would get sampled at different times, leading to different feedback

values, and hence, different rates at different times.

One way of dealing with this problem is to make high feedback packets reach as

many flows at once as possible. While it is not possible to send feedback for a packet

to unrelated flows, if sampling is done very rapidly during times of heavy congestion,

the delay between feedback calculation for different flows is minimized (and hence,

flows get feedback packets that are closer in feedback values, as well as in time).

Stepping up sampling during congestion could possibly help in increasing fairness.

The sampling modifications applied to QCN are discussed later in this thesis.

39

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

Number of Flows

32 KB
64 KB

128 KB
256 KB

Fig. 23.: Unmodified TCP with SFQ with Hard Queue Partitioning at Switches

Goodput vs Number of Flows

Another approach to the problem is to note that if flows are increasing their

rates during AI (R AI based increase) and decreasing the rates again after receiving

negative feedback regularly, a very approximate estimation of the average range of

flows would be the average time between negative feedback for a flow times R AI/(AI

timer period) (or R HAI/(HAI timer period) for HAI). This estimate is not very

accurate, but it gives an intuitive understanding of the significance of the R AI value

and timer period in the improvement of small time scale fairness among flows in the

Incast setup. Both approaches were tried, but preliminary simulation results were

good with R AI reduction, while timer period increase caused reduction in goodput,

and was not explored further. R AI modifications are discussed later in this thesis.

However, AI timer based modifications could also potentially be helpful for improving

fairness among flows.

Further, in subsection 2, it was seen that TCP timeouts cause QCN to spuriously

increase its flow rates. This can be dealt with in the two ways mentioned above as

40

well:

Sampling more during congestion would cause the RPs to cut down their rates

more quickly during heavy congestion, when timeouts are most likely to occur. Once

the rates are cut down sufficiently, performance stabilizes. Higher sampling can pre-

vent timeouts even when a greater number of flows are present, thus delaying the

onset of Incast.

Once timeouts do occur, it was seen that RP rates increase due to lack of negative

feedback. With lower values of R AI and R HAI, these rates cannot be increased as

quickly, and rates are lower at the next timeout, and so on, till rates converge around

an optimal value. This approach too, does not completely mitigate TCP timeouts, it

simply pushes them further away by allowing QCN to recover from timeouts occurring

upto a certain number of flows.

QCN allocated flow rates are thus seen to increase significantly during TCP

timeouts, and by the time the TCP flows begin transmitting again, due to the high

rates allocated, they experience time-outs again. This leads to a behavior very similar

to that of TCP Incast without QCN. Decreasing the rate increase during AI and HAI

stage of QCN can push back the permanent onset of timeouts to a larger number of

flows. It would be necessary to make QCN congestion aware though, so that rate

increase is moderated only during periods of severe congestion, and not otherwise.

The proposed modifications to QCN, with the effect they have on QCN perfor-

mance will be described in the coming chapter.

41

CHAPTER IV

EFFECTS OF MODIFICATIONS TO QCN TO MITIGATE INCAST COLLAPSE

In subsection 5 in the previous chapter, the reasons for the lack of performance of QCN

in a TCP Incast setup were discussed. Further, several modifications to improve QCN

performance were suggested. The modifications proposed to QCN, and the effect they

have on QCN performance, are outlined below:

A. QCN Timer Modifications

As discussed in the earlier chapter, rate increase of QCN flows during TCP timeouts

can cause congestion again, and prevent the flow rates from converging properly.

QCN performs self-increase by two mechanisms: i. Timer based increase and ii. Byte

counter based increase. During a timeout, the flows are silent, and do not perform

byte counter based rate increase. However, each time the RP timer period expires,

self-increase is done, with the result that the flow rate reaches the original rate (at

which negative feedback had been received), and begins to increase steadily beyond

that, with an increment of R AI each period. One of the modifications attempted

was to increase the RP timer period itself.

The RP self-increase timer period was increased by a factor of 5 in preliminary

simulations, and the overall link rates were seen to be much more uniform. However,

with an increase in the number of flows, the performance degraded significantly: links

were seen to have very low rates, and all of a sudden a link would have a sharp rate

increase, which would then again get decreased to the average rate, while some other

link would have an increase in link rate. Further timer based modifications have not

been attempted so far.

42

B. Sampling Modifications

In order to test the hypothesis of lack of sufficient feedback during severe congestion

phases, QCN was initially modified to sample every packet. The results were seen to

be much better, and collapse did not occur even for 32KB buffer size. Since every

packet was sampled, the number of QCN feedback packets sent increased, but was

just around 5 times as much as normal sampling. This can be explained by the fact

that only negative feedback packets are sent, and not all sampled packets necessarily

generate negative feedback (especially after flow rates stabilize to values that do not

cause congestion).

However, as sampling every packet might not be necessary, especially during

periods of less congestion. two different strategies which offer almost the same level

of performance as sampling every packet, while sampling more packets only during

congestion, are proposed. These strategies are described in the following sections.

1. Congestion Memory Based Sampling

During a TCP timeout, there is little or no traffic through the bottleneck. No traffic

implies that the RPs are not transmitting, and this means that they do not receive

negative feedback. This lack of negative feedback causes them to ramp up their rates

during the timeout period. On the other hand, the CP sees that its queue is empty,

and tends to sample less packets according to the QCN sampling algorithm. However,

as soon as the victim flows complete their remaining transmissions, all flows will send

data at high rates, causing Incast to occur again. If the CP actually sampled more

packets during a period of timeout, anticipating a flood of traffic, this problem could

be alleviated.

The only way to distinguish between genuine lack of traffic and lack of traffic

43

due to a ’period of silence’ being in progress is by keeping track of previous conges-

tion events: if heavy congestion had recently occurred, then a period of no traffic

is probably a result of congestion. This means that when traffic resumes, sampling

should actually be more, and not less. For this reason, a memory variable (simple

counter) is added to the CP, and is incremented every time a congestion event occurs.

A congestion event is defined in terms of queue length exceeding 90% of the queue,

though using feedback could possibly be more appropriate in terms of the current

implementation of QCN. The sampling frequency is scaled exponentially based on

this counter (multiplied by 2 to the power of this counter value).

In terms of implementation, this strategy requires an extra memory element to

keep track of congestion events, and also needs logic to divide the sampling interval

by the memory element. However, the dividing logic consists simply of right shifts

equivalent to the value of the counter, as the divisions are in powers of two. Hence,

the extra overhead to implement this strategy in terms of memory and computation

is not very high. An extra variable equivalent to 90% of the queue (QSC) also needs

to be defined, but using the calculated feedback value as an indicator of congestion

should be as effective.

The performance of this strategy in the Incast setup is shown in Figure 24. The

performance is considerably improved compared to the QCN results shown earlier in

Figure 10.

2. Detailed Sampling

A closer look at QCN performance for flows that do not cause collapse shows that

the link rate converges very rapidly. After collapse, however, this convergence does

not occur as TCP flows timeout before convergence, leading to spurious increases in

QCN flow rates. However, with every packet being sampled, flow rates converge even

44

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

Number of Flows

32 KB
64 KB

128 KB
256 KB

Fig. 24.: Congestion Memory Based Sampling in Incast Setup

when normal QCN collapses. This implies that more frequent sampling during heavy

congestion than what is employed by normal QCN will be helpful. QCN quantizes

feedback in terms of 64 levels (0-63), but the sampling at the CP is quantized into

8 levels i.e., only 8 different sampling frequencies are employed based on the conges-

tion level. The heaviest congestion level (7)) is expanded into eight more sampling

frequency levels to allow more frequent feedback. This leaves the sampling for less

severe congestion unchanged, while sampling during periods of heavier congestion is

stepped up aggressively.

Table IV shows the sampling used in the unmodified QCN algorithm, while Table

V shows how for the highest level of congestion (Feedback/8=7), 8 further sublevels

have been created. The second columns in the tables show the average number of

bytes the CP sends before sampling another packet, while the third columns show

the number of packets sent assuming a packet size of 1500 Bytes. Note that though

sampling frequency is modified, the feedback sent by the CP to the RP is unmodified,

and is still 6 bits in length (0-63).

45

In terms of implementation cost, no extra memory resources are required, and

a slight change in the sampling algorithm with a sampling lookup table that has 15

levels instead of 8 levels is used. Hence, this is very easy to implement in hardware,

and requires no extra logic or changes to other elements elsewhere in the network.

Table IV.: Feedback Levels in Unmodified QCN

Feedback/8 Bytes to Send Packets to Send

0 15000 100

1 75000 50

2 50000 33

3 37500 25

4 30000 20

5 25000 16

6 21500 14

7 18500 12

The performance of this strategy in the Incast setup is shown in Figure 25. The

results are observed to be considerably better than the QCN results shown earlier in

Figure 10.

C. Adaptive R AI

As observed in the QCN analysis section, QCN performance in TCP Incast is not

very good because of the difference between minimum and maximum flow rates at

a given instance of time. The average values of the flows do converge around an

optimal division of rates, but the fluctuation of rates in the Active Probing stage of

46

Table V.: Extra Feedback Levels in Detailed Sampling (for Level 7 in Previous Table)

Feedback Level Bytes to Send Packets to Send

56 18500 12

57 15500 10

58 12500 8

59 9500 6

60 6500 4

61 4500 3

62 3000 2

63 1500 1

QCN creates enough variations that the variation in flow rates causes sub-optimal

throughput for synchronized flows.

One way of dealing with this problem is to reduce the amount by which an RP

increases its rate during congestion by making the self-increase rate (R AI, R HAI)

congestion aware. The increase rate adjustment is done by dividing R AI (and R HAI)

by a memory element which keeps track of received congestion feedback. As feedback

can be any value between 0 and 63, with 63 signifying the highest level of congestion,

the memory element keeps track of the feedback severity as well: the absolute value

of the feedback level is added to the memory element, and this value divided by 64

(to normalize it) is used to divide R AI and R HAI.

The memory element is decremented by 1 each time the RP timer expires, leading

to a slow increase in rate with recovery from congestion.

In terms of implementation cost, an extra counter is required in every Reaction

47

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

Number of Flows

32 KB
64 KB

128 KB
256 KB

Fig. 25.: Detailed Sampling in Incast Setup

Point. Further, logic to divide target rate increase by the memory element needs to

be added, but this can be replaced by a lookup table if necessary, as the possible

values of effective R AI are always 5Mbps and R HAI: 50Mbps (or whatever values

are implemented) divided by fixed increments of a bounded counter. With the use of

a lookup table, the computational overhead is low, while some memory needs to be

added for the table itself, but should not be very expensive, as it is on the RP.

To reduce false positives, the memory element is increased by the feedback

amount only during the first cycle of fast recovery (the same strategy is employed for

changing target rate in the QCN pseudocode).

The performance of this strategy in the Incast setup is shown in Figure 26. The

results are observed to be considerably better than the QCN results shown earlier in

Figure 10. Throughput still drops to below 300Mbps at 32 flows for 32KB buffer size

and 64 flows for 64KB buffer size, but overall performance improves.

48

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

Number of Flows

32 KB
64 KB

128 KB
256 KB

Fig. 26.: Adaptive R AI in Incast Setup

D. Combining CP and RP Modifications

Simulations were also run with both the CP side (sampling) modifications and RP

side (R AI) modifications implemented. This was done for both of the sampling

strategies described previously.

The performance graphs of combining adaptive R AI, which is an RP side mod-

ification, with sampling modifications, which are CP side modifications, are shown

in Figures 27 and 28. As can be seen, a combination of the RP and CP side modifi-

cations show even better performance results than either of the strategies alone. An

intuitive explanation of this is that while RP modifications (adaptive R AI) reduce

aggressiveness of rate growth during periods of lesser congestion, the CP modifica-

tions (detailed sampling and congestion memory based sampling) act during periods

of high congestion by notifying the RPs more rapidly that they are causing conges-

tion. As they work in different phases of the Incast cycle, combining them has a

better effect on the overall performance of QCN in a TCP Incast setup.

The number of feedback messages sent in various systems with different modifi-

49

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

Number of Flows

32 KB
64 KB

128 KB
256 KB

Fig. 27.: Adaptive R AI with Congestion Memory Based Sampling in Incast Setup

cations to QCN are shown in Table VI. It is observed that the proposed modifications

increase the number of feedback messages sent. As observed earlier, during heavy con-

gestion events, higher sampling is desired. It is observed that adaptive R AI technique

and its combination with sampling techniques require a significantly smaller number

of feedback messages than when sampling techniques are employed by themselves.

The average number of timeouts experienced by each flow in various experiments

are shown in Table VII. It is observed that higher sampling is more effective in con-

trolling the number of timeouts and timeouts can be kept very low, even with a

high number of flows using faster sampling. The results also show that the signifi-

cant number of timeouts occur with only changes to RTO timers of TCP. Note that

the number of timeouts is much higher with Modified TCP with 10ms minrto after

timeouts start occurring. However, as reducing the minimum RTO of TCP aims to

reduce the penalty of TCP timeouts on flow rates than avoid timeouts, this still yields

performance near 900 Mbps, even with 127.69 timeouts per flow at 64 flows.

Further, the total number of seconds spent without transmitting any data (over

50

Table VI.: QCN Feedback Packets Generated for: 128 KB Buffer Size

Flows I II III IV V VI VII

2 4740 18969 7282 11716 3357 3337 8905

4 5535 10985 10514 10299 4454 5920 4853

8 6530 15996 10613 15386 7879 8762 8687

16 8844 21786 15494 19894 10840 12150 13444

32 14551 46670 30779 42621 21912 20146 28112

64 21846 155051 156161 121382 54405 36076 62553

I: Unmodified QCN
II: Sampling Every Packet
III: Congestion memory based sampling
IV: Detailed Sampling
V: Adaptive R A
VI: II + IV
VII: III + IV

Table VII.: QCN Simulation Timeouts per Flow: 128 KB Buffer Size

Flows I II III IV V VI VII

16 91.69 0.12 0 0 0.06 0 0

32 106.66 0.44 0 0 0.96 0 0

64 127.69 9.28 0.22 0.28 4.31 0.21 0.22

I: Modified TCP with 10ms minrto
II: Unmodified QCN with modified TCP
III: Congestion memory based sampling
IV: Detailed Sampling
V: Adaptive R AI
VI: II + IV
VII: III + IV

51

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

Number of Flows

32 KB
64 KB

128 KB
256 KB

Fig. 28.: Adaptive R AI and Detailed Sampling in Incast Setup

a total simulation time of 20 seconds) upto 64 flows was found to be 0 for both

combinations of sampling and adaptive R AI strategies, as well as for congestion

memory based sampling. 5 seconds were spent without transmission for 32KB buffer

size, 64 flows, for detailed sampling, while 9 seconds were spent without transmission

for 32KB buffer size, 64 flows with only adaptive R AI. Adaptive R AI alone also

had 1 second without transmission with 64KB buffer size and 64 flows. Overall, the

performance of all modifications exceed those of unmodified QCN.

52

CHAPTER V

PERFORMANCE OF TCP AND QCN IN A MIXED PROTOCOL

ENVIRONMENT

As seen in section D of the previous chapter, unmodified TCP also performs quite

well with QCN that has both CP and RP side modifications implemented. However,

link utilization is not 100%: with it falling down to as far as 80% for 256KB buffer

sizes and 70% for 32KB buffer sizes for both strategies for upto 64 flows (Figures 27

and 28). However, as can be seen in Figure 9, the performance of TCP with modified

minrto is much better: with almost 100% link utilization for 256KB buffer size, and

lesser utilization for lower buffer sizes, even with 10ms TCP minrto.

However, QCN will most likely be implemented soon in data center switches, and

any performance problems due to the switches implementing QCN will lead to the

performance issues seen in Chapter 3. Further, it is quite possible that a clustered

storage setup will not only have TCP flows from the Incast setup, but will also have

UDP flows and possibly other protocols in the mix as well. At least in the case of UDP,

TCP tends to yield most of the bandwidth demanded by an aggressive UDP protocol.

The aim of QCN is to function in such an environment, and we ran simulations in a

mixed protocol environment as well.

The simulation setup was modified to add one high bandwidth UDP CBR flow

(400Mbps) from an additional node to the client node, and the simulations were run

both with and without QCN, and both with and without a modified (reduced minrto)

TCP.

The performance of TCP (Figure 29) undergoes collapse even earlier than in the

simple setup, with the number of servers supported per buffer size halved. Simulation

results show that the setup with modified TCP with minrto 10ms only (no QCN)

53

yielded 400Mbps to the UDP flow (Figure 30), and fairly utilized the remaining

bandwidth with 256KB buffer size. The performance was slightly worse with lower

buffer sizes, but this performance would likely also nearly be upto 60% link utilization

with smaller minrto values as proposed in [17].

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

number of flows

32 KB
64 KB

128 KB
256 KB

Fig. 29.: Performance of Unmodified TCP in Mixed Protocol Setup

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

number of flows

32 KB
64 KB

128 KB
256 KB

Fig. 30.: Performance of TCP with 10ms Minrto in Mixed Protocol Setup

The performance of unmodified QCN (Figure 31) was not so good, though it

54

was still better than that of modified TCP for 256KB buffer sizes in flows except 8

flows, where it drops to 500Mbs bandwidth utilization. The performance of mod-

ified QCN with both modified and unmodified versions of TCP running on top of

it are very similar, so the goodput graph of unmodified TCP above QCN with the

proposed modifications has only been shown. Adaptive R AI + detailed sampling,

however is seen to perform badly at 32 KB buffer size and 64 flows however (200Mbps

throughput), though higher buffer sizes do well.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

number of flows

32 KB
64 KB

128 KB
256 KB

Fig. 31.: Performance of Unmodified QCN in Mixed Protocol Setup

With a modified QCN (Figures 32 and 33), the total bandwidth utilized by the

synchronized requests was around 800Mbps for 64, 128, and 256 KB buffer sizes, and

around 700Mbps for 32 KB buffer size. This is clearly an improvement over TCP with

modified minrto, where fairness is improved among TCP flows, but the problem of

competing with aggressive non-TCP flows still exists. One of QCN’s main strengths is

performing well in such environments, and while it does have an advantage over TCP

in this regard, as seen from the performance of unmodified QCN above, modifying

QCN helps greatly in a barrier synchronized flow setup.

55

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

number of flows

32 KB
64 KB

128 KB
256 KB

Fig. 32.: Performance of QCN with Adaptive R AI and Congestion Memory Based

Sampling in Mixed Protocol Setup

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

G
oo

dp
ut

number of flows

32 KB
64 KB

128 KB
256 KB

Fig. 33.: Performance of QCN with Adaptive R AI and Detailed Sampling in Mixed

Protocol Setup

56

CHAPTER VI

PERFORMANCE OF MODIFICATIONS IN QCN BASELINE SIMULATIONS

A. Overview

Even though QCN with the proposed modifications performs much better than un-

modified QCN in a TCP Incast setup, the effects this has on QCN performance in

other workloads where QCN is intended to operate should be examined. The IEEE

working group has a set of baseline simulations intended to be used for examining

QCN performance in various setups. Four of the QCN baseline simulations have been

examined as faithfully as possible using the ns-2 network simulator, with some minor

differences in implementation. The performances of both QCN without modifica-

tions, as well as the modifications we have proposed have been examined, and the

results will be discussed in this chapter. The factors that are especially important are

responsiveness to congestion, queue stability, recovery from congestion, and fairness

among flows.

When a congestion event occurs, the rate of any offending flows should quickly be

adjusted in response to the congestion. Further, given that other conditions are sim-

ilar among the flows, each should get a fair share of the bandwidth of the congested

link. Any innocent flows (i.e. flows that do not contribute to the congestion occur-

rence) should not be penalized because of the congestion event. When the congestion

event disappears, the rates of the concerned flows should be accordingly adjusted to

achieve maximum link utilization in the uncongested link. The performance of QCN

with modifications should be better than, or at least as good as, that of unmodified

QCN in these aspects.

The four baseline simulations outlined in [22], [23], and [24] were implemented

57

in order to evaluate the performance of the proposed modifications against that of

unmodified QCN. However, due to ns-2 implementation difficulties, virtual output

queuing (VOQ) could not used in the switches in the baseline simulations. The default

output queuing mechanism of ns-2 was used instead. Node traffic was generated using

Constant Bit Rate (CBR) sources, as initial simulations showed CBR and poisson

(exponential traffic) sources performing similarly.

The difference in the queuing model however,should not make a major differ-

ence in the in the flow traffic distribution. The other simulation parameters are as

described in the original simulations.

The results of the simulations will be summarized in this section. The details of

each baseline simulation, and relevant results for the simulations will be presented in

the following sections.

The queue behavior of the simulations were somewhat different from baseline

simulations. The queue lengths fluctuated between 0 and a peak value (depending on

each simulation), while the average value was close to the equilibrium point of QCN.

This is possibly because of the queuing strategy employed (our simulations use simple

Droptail Queuing, while the cited simulations use Virtual Output Queuing), or other

simulation parameter differences (e.g. the latency of the simulations was not clear,

and 1 microsecond link-link latency was used). However, the traffic behavior was very

similar to that shown in the slides. For this reason, comparison is done with results

obtained in our simulations instead of with the results presented in the slides, while

obtained results are compared with that in the slides as a general sanity check (traffic

behavior should be similar, and queue length should be similar). Sampling strategy

was observed to be very important in queue behavior, traffic, and number of drops.

On the other hand, adaptively changing R AI and R HAI was seen to introduce a

minimal amount of latency into recovery from congestion (will be examined in more

58

detail in relevant sections).

A few general observations based on the simulations are listed below, though only

results for unmodified QCN, QCN with adaptive R AI + congestion based memory

sampling and QCN with R AI and detailed sampling are presented for brevity. It was

seen that:

1. The performance of the QCN based on the older pseudocode is slightly bet-

ter than the implementation based on pseudocode version 2.2 (which we shall

continue referring to as unmodified QCN) in terms of queue drops and queue

lengths.

2. Congestion memory based sampling does not have much of an effect on QCN

performance in the baseline simulations as compared to unmodified QCN per-

formance.

3. R AI modifications have only a slight effect on QCN performance: improving

it somewhat, but not much. The time to recover from congestion is slightly

longer.

4. Detailed sampling results are very similar to the results obtained from QCN

based on [19].

5. Even with combined modifications, the simulation results are dependent mostly

only on the type of sampling used (as explained above for the two proposed

modifications), with the RP side modifications not making much difference in

either sampling method.

Overall, no negative effect was seen in the baseline simulations with the proposed

QCN modifications in effect: both individually, and combined (sampling and R AI

based modifications).

59

The details of each simulation will be presented in the following sections. The

QCN parameters used in the simulations are listed in Appendix A.

B. Baseline 1

Core Switch

Node 2

Node N

Node 1

Baseline 1: Output Generated Hot Spot Single Hop

RX Service Rate=20%,10%,5%

Fig. 34.: QCN Baseline Simulation 1 (Based on [23])

1. Workload

All Nodes (10): Uniform Distribution, load = 8.5 Gbps

Node 1 Service Rate = 1 Gbps

One Congestion Point

Hotspot (2 Gbps, 1 Gbps, and 0.5 Gbps output generated service rate scenarios):

Degree: 9, Severity: 8.5:

Duration: 80ms from time=10 to 90ms

60

The setup for Baseline 1 is shown in Figure 34 (based on [23]). In the first baseline

simulation, a congestion event is created starting at 10ms and ending at 90 ms. During

this time, the service rate of the bottleneck link (Core Switch-Node 1) goes down from

10Gbps to 2, 1, and 0.5 Gbps, depending on the simulation. For each simulation, the

throughput of the bottleneck link, the queue length of the link, and the total number

of drops are observed. A steady queue length during congestion implies stability

during congestion, while oscillations could lead to overutilization/underutilization of

the link in severe cases.

The number of drops and time for the queue length to stabilize indicate the

response to congestion events, while the rise of bandwidth with time after congestion

is over indicates the recovery of QCN from congestion.

Behavior of unmodified QCN and QCN using adaptive R AI+congestion based

memory sampling are very similar: the queue length reaches full capacity several

times, though the average length is quite stable. There are drops when the bottleneck

occurs, and the number of drops is constant afterwards (graph not shown for brevity).

For adaptive R AI + detailed sampling, the number of drops is far less, and the queue

occasionally spikes up, but the overall queue length is much less than that with only

QCN or QCN + adaptive R AI + congestion based memory sampling. This behavior

is very similar to the results observed if sampling outlined in [19] is used. The actual

number of drops are shown below with the figure captions.

The link utilization of the congested link is not much for the first 25 ms, after

which the congested link is utilized in adaptive R AI + detailed sampling. After

the congestion event goes away, the link rate picks up more slowly as compared to

unmodified QCN for 1 Gbps for both modifications and 2 Gbps as well for adaptive

R AI + detailed sampling, but link rates rise steeply during the HAI stage, leading

to full link utilization within comparable times of that of unmodified QCN.

61

As seen in Figures 35, 36, and 37, the fastest recovery from congestion occurs

when the bottleneck is limited to 2Gbps, and QCN with adaptive R AI+Detailed sam-

pling recovers the fastest, while unmodified QCN and QCN with adaptive R AI+congestion

memory based sampling perform very similarly. The queue lengths are also similar for

the latter two, while the former has smaller queue lengths. Number of drops are simi-

lar for the latter two, while for the former, they are very low. Overall, results indicate

that the proposed modifications do not have a negative effect on QCN behavior.

 0
 1000
 2000

 3000
 4000
 5000
 6000

 7000
 8000
 9000

 0 0.05 0.1 0.15 0.2 0.25 0.3

Queue Drops for Congested Link

0.5 Gbps
1 Gbps
2 Gbps

(a) Throughput

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3

Queue Drops for Congested Link

0.5 Gbps
1 Gbps
2 Gbps

(b) Queue Length

Fig. 35.: Normal QCN (Drops: 0.5GB: 1207 1GB: 884 2GB: 618)

62

 0
 1000
 2000

 3000
 4000
 5000
 6000

 7000
 8000
 9000

 0 0.05 0.1 0.15 0.2 0.25 0.3

Queue Drops for Congested Link

0.5 Gbps
1 Gbps
2 Gbps

(a) Throughput

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3

Queue Drops for Congested Link

0.5 Gbps
1 Gbps
2 Gbps

(b) Queue Length

Fig. 36.: QCN + Adaptive R AI + Congestion Memory Based Sampling (Drops:

0.5GB: 1157 1GB: 893 2GB: 632)

 0
 1000
 2000

 3000
 4000
 5000
 6000

 7000
 8000
 9000

 0 0.05 0.1 0.15 0.2 0.25 0.3

Queue Drops for Congested Link

0.5 Gbps
1 Gbps
2 Gbps

(a) Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.05 0.1 0.15 0.2 0.25 0.3

Queue Drops for Congested Link

0.5 Gbps
1 Gbps
2 Gbps

(b) Queue Length

Fig. 37.: QCN + adaptive R AI + Detailed Sampling (Drops: 0.5GB: 99 1GB: 71

2GB: 45)

63

C. Baseline 2

Node 7

Node 8

Node 9

Node 1

Node 2

Node 3

Edge Switch 1 Edge Switch 3

Node 10

Node 11

Node 12

Node 4

Node 5

Node 6

Edge Switch 2 Edge Switch 4

Core Switch

Baseline 2: OG HS Multi-Hop: Selected Victims

Rx/Service rate=5%

Fig. 38.: QCN Baseline Simulation 2 (Based on [22])

1. Workload

All: Uniform Distribution traffic (background traffic)

Nodes 1-6: 25% (2.5Gbps) Nodes 7-10: 40% (4Gbps)

Primary Hotspot:

Node 7 service rate = 5% (Rx only)

If saturation tree spreads = 5 congestion points in total

The setup for Baseline 2 is shown in Figure 38 (based on [22]). In Baseline 2,

the bottleneck link receives uniform traffic from other nodes, but its service rate is

only 5% of the actual link capacity, causing a bottleneck to be formed. As seen in

64

Figures 39, 40, and 41, queue length gradually settles down for unmodified QCN and

QCN + adaptive R AI + congestion based memory sampling, while it varies between

0 and a peak of 45 packets for QCN + adaptive R AI + detailed sampling. For the

first two, rates gradually converge to rates that are very close to each other, and

full link capacity is utilized, (the label -7 in the graphs, signifying traffic from all

sources to node 7), while for the latter strategy, rates converge together more quickly,

but constantly go up and down a small range. The link utilization varies between

70% to full utilization, giving an average utilization of around 85% link utilization.

Less variation is anticipated with the use of Virtual Output Queuing, as outlined in

the simulations outlined in [22], [23], and [24]. Overall, traffic behavior and queue

behavior is not negatively affected by proposed modifications.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normal QCN Bottleneck Throughput

1-7
2-7
3-7
4-7
5-7
6-7
8-7
9-7

10-7
Bottleneck Link Throughput

(a) Throughput

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normal QCN Queue Length

ES3-N7-out

(b) Queue Length

Fig. 39.: Normal QCN (Drops: 1196)

65

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

QCN with RAIL and QSC2 Bottleneck Throughput

1-7
2-7
3-7
4-7
5-7
6-7
8-7
9-7

10-7
Bottleneck Link Throughput

(a) Throughput

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

QCN with RAIL and QSC2 Queue Length

ES3-N7-out

(b) Queue Length

Fig. 40.: QCN + Adaptive R AI + Congestion Memory Based Sampling (Drops:

1118)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

QCN with RAIL and Detailed Sampling Bottleneck Throughput

1-7
2-7
3-7
4-7
5-7
6-7
8-7
9-7

10-7
Bottleneck Link Throughput

(a) Throughput

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

QCN with RAIL and Detailed Sampling Queue Length

ES3-N7-out

(b) Queue Length

Fig. 41.: QCN + Adaptive R AI + Detailed Sampling (Drops: 94)

66

D. Baseline 3

Node 7

Node 8

Node 9

Node 1

Node 2

Node 3

Edge Switch 1 Edge Switch 3

Node 10

Node 11

Node 12

Node 4

Node 5

Node 6

Edge Switch 2 Edge Switch 4

Core Switch

Baseline 3: OG HS Multi-Hop: Selected Victims

Service Rate=20%

Fig. 42.: QCN Baseline Simulation 3 (Based on [22])

1. Workload

Four culprit flows of 2 Gb/s each from nodes 1, 4, 8, 9 to node 7 (hotspot)

Three victim flows of 7 Gb/s each: node 2 to 9, node 5 to 3, node 10 to 6

Node 7 service rate = 20%

Five congestion points, all switches and flows affected

Fair allocation provides 0.5 Gbps to all culprits and 7 Gbps to all victims

The setup for Baseline 3 is shown in Figure 42 (based on [22]). In the third

baseline simulation, the four culprit flows mentioned above can cause problems for

the three victim flows if PAUSE is issued (which we are not simulating). However, the

67

allocation between the culprit flows should also be fair, and each should get 0.5Gbps

rate allocation. As seen in Figures 43, 44, and 45, queue behavior is very similar

for all unmodified QCN and the proposed modifications. The number of drops in

unmodified QCN and QCN + adaptive R AI + congestion memory based sampling

are very similar, while there are no observed drops for QCN + adaptive R AI +

detailed sampling. All three simulations are seen to allow full link utilization of the

bottleneck during congestion (0-1-0.9s), and to recover from congestion at similar

intervals. Fairness among flows is observed, with slightly more variation in QCN +

adaptive R AI + detailed sampling, in the simulations carried out, but the amount

of variation is not seen to be very significant. Overall, both proposed modifications

perform well, and do not seem to affect QCN performance much.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1-7
4-7
8-7
9-7

Total

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ES3-N7-out

(b) Queue Length

Fig. 43.: Normal QCN (Drops: 189)

68

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1-7
4-7
8-7
9-7

Total

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ES3-N7-out

(b) Queue Length

Fig. 44.: QCN + Adaptive R AI + Congestion Memory Based Sampling (Drops: 184)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1-7
4-7
8-7
9-7

Total

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ES3-N7-out

(b) Queue Length

Fig. 45.: QCN + Adaptive R AI + Detailed Sampling (Drops: 0)

69

E. Baseline 4

S1

Core Switch

H1.1

H1.n

S4

H2.1

H2.n

S2

H3.1

H3.n

S3

H4.1

H4.n

Baseline 4: Multi-Hop Single HS Large Network

HotSpot

10Gbps

10*n Gbps

Large BW link (not

aggregated)

n=4...64

N=4.n=16...256

Fig. 46.: QCN Baseline Simulation 4 (Based on [24])

1. Workload

Load: H1.1 – H4.n λ = 85%, Skewed Uniform

H1.1 is targeted with 2 λ

All other nodes with λ (N - 2)/(N - 1)

Congestion Point:

Node H1.1

HS degree = N

HS severity = 1.7:1

Note: For our purposes, only n=4 (i.e. N=16) has been simulated.

70

The setup for Baseline 4 is shown in Figure 46(based on [24]). In the fourth

baseline simulation, there is no drop in the link rate, and instead, the bottleneck link

is targeted with excess traffic. The stability of the queue is examined, as well as the

link utilization of the bottleneck and the fairness among flows. A small variation

is observed among flow rate allocations, but the fairness is much better than that

with just UDP and no flow control. As seen in Figures 47, 48, and 49, queue length

behavior is quite similar in all three simulations. However, it is seen in the figures that

there is some variation among flows, with some flows transmitting at full capacity, and

others transmitting at as low as 300Mbps for unmodified QCN, 400Mbps for QCN +

adaptive R AI + congestion memory based sampling and QCN + adaptive R AI +

detailed sampling. The results presented in [24] show variations in flow rates as well,

with low rates being around 500Mbps, and high rates being around 1000Mbps, with

not much variation. However, in our simulations, it was observed that some flows

would constantly transmit at around 1100Mbps, while the QCN rates allocated to

them were much higher (e.g. 3Gbps). This implied that even when QCN rates were

cut down, these flows would transmit at much less than the total rate allocated, so

would continue to enjoy full rate transmission.

Due to rates being cut down, queue lengths are not very high, and high feedback

is not received. This results in flows with lower allocated rates to be unable to increase

rates by much, while flows with high allocations continue transmitting at high rates

(and their higher rate enables more frequent byte based rate increase). This problem

is one of fairness, and is seen to be present in [24], though to a lesser extent, possibly

because of Virtual Output Queuing. However, as the range of flow variations is seen in

all three simulations while the queue length fluctuates around the equilibrium point,

the proposed modifications are seen to perform similarly to unmodified QCN. Once

again, drops for QCN + adaptive R AI + detailed sampling are seen to be much less

71

than those for unmodified QCN and QCN + adaptive R AI + congestion memory

based sampling.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normal QCN Throughput Through Bottleneck

2-1
3-1
4-1
5-1
6-1
7-1
8-1
9-1

10-1
11-1
12-1
13-1
14-1
15-1

Bottleneck Link Throughput

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normal QCN Queue Length

ES1-N1-out

(b) Queue Length

Fig. 47.: Normal QCN (Drops: 382)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

QCN with RAIL and QSC2 Throughput Through Bottleneck

2-1
3-1
4-1
5-1
6-1
7-1
8-1
9-1

10-1
11-1
12-1
13-1
14-1
15-1

Bottleneck Link Throughput

(a) Throughput

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

QCN with RAIL and QSC2 Queue Length

ES1-N1-out

(b) Queue Length

Fig. 48.: QCN + Adaptive R AI + Congestion Memory Based Sampling (Drops: 389)

72

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

QCN with RAIL and Detailed Sampling Throughput Through Bottleneck

2-1
3-1
4-1
5-1
6-1
7-1
8-1
9-1

10-1
11-1
12-1
13-1
14-1
15-1

Bottleneck Link Throughput

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

QCN with RAIL and Detailed Sampling Queue Length

ES1-N1-out

(b) Queue Length

Fig. 49.: QCN + Adaptive R AI + Detailed Sampling (Drops: 17)

73

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

QCN is being investigated as a congestion control mechanism to be implemented in

data centers, where clustered storage and mixed protocol environments are both likely

to be found. It is desirable to use switches with QCN to support various data center

applications in order to support zero loss environments. If QCN does not work well

in a clustered storage environment, this will be a barrier for its adaptation in data

center environments. The ability of QCN to distribute bandwidth fairly not only

among TCP flows, but also among flows that do not implement any rate control on

their own, makes it a very desirable candidate for adaptation.

The causes of QCN sub-optimal performance in a basic TCP Incast setup have

been examined, and several modifications that do not affect QCN behavior in nor-

mal setups, and are not very difficult/expensive to incorporate have been suggested.

Though these modifications do offer good link utilization, further work on improving

QCN performance can be done. Possibility of timer based modifications and other

mechanisms for improving QCN fairness in the TCP Incast setup, where not only

aggregate fairness over time is important, but fairness over very short time intervals

is also important, is one such possible area of study.

74

REFERENCES

[1] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J. Zelenka,

and B. Zhou, “Scalable performance of the Panasas parallel file system,” in Proc.

USENIX Conference on File and Storage Technologies, San Jose, CA, USA, 2008,

pp. 17–33.

[2] “Network file system version 4,” http://www.ietf.org/dyn/wg/charter/

nfsv4-charter.html, Last Accessed: March 16, 2010.

[3] “Lustre File System,” http://wiki.lustre.org/index.php/Main Page, Last Ac-

cessed: March 16, 2010.

[4] B. B. Cambazoglu, V. Plachouras, and R. Baeza-Yates, “Quantifying perfor-

mance and quality gains in distributed web search engines,” in Proc. 32nd Inter-

national ACM SIGIR Conference on Research and Development in Information

Retrieval, Boston, MA, USA, 2009, ACM, pp. 411–418.

[5] L. Peterson and B. Davie, Computer Networks: a Systems Approach, San

Francisco, CA, Morgan Kaufmann Publications, 2007.

[6] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport

protocol for real-time applications,” Online, 1996, http://www.ietf.org/rfc/

rfc1889.txt, Last Accessed: March 24, 2010.

[7] B. Ford, “Structured streams: a new transport abstraction,” in Proc. SIG-

COMM ’07: 2007 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications, New York, NY, USA, 2007, pp. 361–

372.

75

[8] A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspectives on router buffer

sizing: recent results and open problems,” ACM SIGCOMM Computer Com-

munication Review, vol. 39, no. 2, pp. 34–39, 2009.

[9] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger, G. A.

Gibson, and S. Seshan, “Measurement and analysis of TCP throughput collapse

in cluster-based storage systems,” in Proc. FAST’08: 6th USENIX Conference

on File and Storage Technologies, San Jose, CA, USA, 2008, pp. 1–14, http:

//portal.acm.org/citation.cfm?id=1364813.1364825.

[10] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R.

Ganger, G. A. Gibson, and B. Mueller, “Safe and effective fine-grained

TCP retransmissions for datacenter communication,” in Proc. SIGCOMM09,

Barcelona, Spain, 2009, pp. 303–314.

[11] “Ethernet flow control,” http://en.wikipedia.org/wiki/Ethernet flow control,

Last Accessed: March 16, 2010.

[12] “802.1Qau - Congestion notification,” http://www.ieee802.org/1/pages/802.1au.

html, Last Accessed: March 16, 2010.

[13] D. Bergamasco, “Data center ethernet congestion management: backward con-

gestion notification,” in IEEE 802.1 Meeting, 2005, http://www.ieee802.org/1/

files/public/docs2005/new-bergamasco-backward-congestion-notification-0505.

pdf.

[14] J. Jiang, R. Jain, and C. So-In, “Forward explicit congestion notification (FECN)

for datacenter ethernet networks,” in Proc. SPECTS 2008: Performance evalu-

ation of computer and telecommunications systems, Edinburgh, UK, 2008, pp.

542 – 546.

76

[15] R. Pan, B. Prabhakar, and A. Laxmikantha, “QCN: Quantized congestion

notification,” Online, 2007, http://www.ieee802.org/1/files/public/docs2007/

au-prabhakar-qcn-description.pdf.

[16] A. Kabbani, R. Pan, B. Prabhakar, and M. Seaman, “QCN: algorithm

for p-code,” Online, 2007, http://www.ieee802.org/1/files/public/docs2007/

au-prabhakar-qcn-with-timer-0711.pdf.

[17] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R.

Ganger, and G. A. Gibson, “A (In)Cast of thousands: scaling datacenter TCP to

kiloservers and gigabits,” Pittsburgh, PA: CMU-PDL-09-101: Carnegie Mellon

University Parallel Data Lab Technical Report, 2009.

[18] R. Pan, “QCN pseudocode version 2.2,” IEEE EDCS-608482, 2008, http:

//www.ieee802.org/1/files/public/docs2008/au-pan-qcn-serial-hai-2-1-0408.zip.

[19] R. Pan, “QCN pseudocode released in 2007 November,” IEEE

EDCS-608482, 2007, http://www.ieee802.org/1/files/public/docs2007/

au-rong-qcn-serial-hai-pseudo-code-0711.pdf.

[20] J. M. McKenney, “Stochastic fairness queuing,” in IEEE INFOCOM, San Fran-

cisco, CA, USA, 1990, pp. 733 – 740.

[21] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round

robin,” SIGCOMM Comput. Commun. Rev., vol. 25, no. 4, pp. 231–242, 1995.

[22] B. Atikoglu, A. Kabbani, R. Pan, and B. Prabhakar, “QCN: Second batch of

benchmark simulations,” IEEE, Tech. Rep., 2008, http://www.ieee802.org/1/

files/public/docs2008/au-sim-rong-qcn-hai-0108.pdf.

77

[23] B. Atikoglu, A. Kabbani, R. Pan, and B. Prabhakar, “QCN: An update of

benchmark simulations,” IEEE, Tech. Rep., 2008, http://www.ieee802.org/1/

files/public/docs2008/au-sim-rong-qcn-hai-updatesimu-0108-1.pdf.

[24] B. Atikoglu, A. Kabbani, R. Pan, and B. Prabhakar, “QCN: Benchmark simu-

lations - scenario 4,” IEEE, Tech. Rep., 2008, http://www.ieee802.org/1/files/

public/docs2008/au-sim-rong-qcn-hai-0208.pdf.

78

APPENDIX A

QCN BASELINE SIMULATION PARAMETERS

The parameters used are listed below:

Traffic

Constant Bit Rate Source

Uniform destination distribution (to all nodes except self)

Fixed packet size = 1500 B

Switch

Output Queue with 100 packets queue size per output

Adapter

Token Bucket based rate limiting

One rate limiter per destination

Egress Buffer Size = 1500 KB

Ingress Buffer Size = Unlimited

The QCN parameters used in the baseline simulations are listed below:

QCN

W = 2.0

Q EQ = 33 KB

GD = 0.0078125

Base marking: once every 150 KB

Margin of randomness: 30%

Runit = 1 Mb/s

MIN RATE = 10 Mb/s

BC LIMIT = 150 KB

79

TIMER PERIOD = 15 ms

R AI = 5 Mbps

R HAI = 50 Mbps

FAST RECOVERY TH = 5

Quantized Fb: 6 bits

80

VITA

Prajjwal Prasad Devkota received his Bachelor of Engineering degree in elec-

tronics and communications engineering from Birla Institute of Technology, Mesra,

Ranchi, India, in 2002. He joined the Computer Engineering program under the

Electrical Engineering Department of Texas A&M University in August 2007, and

received his Master of Science degree in May 2010. His research interests are in

computer networks and security.

Mr. Devkota can be reached at the Department of Electrical and Computer

Engineering, Texas A&M University, 331E Wisenbaker, College Station, TX 77843-

3259. His email is prajjwal@tamu.edu.

