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 ABSTRACT 

 

Numerical Analysis of a Floating Harbor System and Comparison with Experimental 

Results. 

 (May 2010) 

HeonYong Kang, B.S., Pusan National University 

Chair of Advisory Committee: Dr. Moo-Hyun Kim 

 

 As a comparative study, the global performance of two cases for a floating 

harbor system are researched by numerical analysis and compared with results from 

experiments: one is a two-body case such that a floating quay is placed next to a fixed 

quay, a normal harbor, and the other is a three-body case such that a container ship is 

posed in the middle of the floating quay and the fixed quay.  

 The numerical modeling is built based on the experimental cases. Mooring 

system used in the experiments is simplified to sets of linear springs, and gaps between 

adjacent bodies are remarkably narrow as 1.3m~1.6m with reference to large scales of 

the floating structures; a water plane of the fixed quay is 480m×160m, and the ship is 

15000 TEU (twenty-foot equivalent unit) class.  

 With the experiment-based models, numerical analysis is implemented on two 

domains: frequency domain using a three dimensional constant panel method, WAMIT, 

and time domain using a coupled dynamic analysis program of moored floating 

structures, CHARM3D/HARP.  
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 Following general processes of the two main tools, additional two calibrations 

are implemented if necessary: revision of external stiffness and estimation of damping 

coefficients. The revision of the external stiffness is conducted to match natural 

frequency of the simulation with that of the experiment; to find out natural frequencies 

RAO comparison is used. The next, estimation of damping coefficients is carried out on 

time domain to match the responses of the simulation with those of the experiment.  

 After optimization of the numerical analysis, a set of experimental results from 

regular wave tests is compared with RAO on frequency domain, and results from an 

irregular wave test of the experiment are compared with response histories of simulation 

on time domain. In addition, fender forces are compared between the simulation and 

experiment. Based on response histories relative motions of the floating quay and 

container ship are compared. And the floating harbor system, the three-body case, is 

compared with a conventional harbor system, a fixed quay on the portside of the 

container ship, in terms of motions of the container ship. As an additional simulation, the 

three-body case is investigated on an operating sea state condition. 

 From the present research, the experimental results are well matched with the 

numerical results obtained from the simulation tools optimized to the experiments. In 

addition, the floating harbor system show more stable motions of the container ship than 

the conventional harbor system, and the floating harbor system in the operating sea state 

condition have motions even smaller enough to operate in term of relative motions 

between the floating quay and the container ship.  
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CHAPTER I 

 

INTRODUCTION 
 

 With globalization, the number of international trades has been grown up as 

shown in Fig. 1.1; in other words, the capacity of container traffic is directly related to 

power of growth in the current global era. In the meantime, sustainable development has 

become a world-wide problem owing to global warming. Based on these two remarkable 

points, demand of an alternative harbor system has been increasing, which has expanded 

capacity and is built by eco-friend construction. 
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Figure 1.1 Increasing Container Traffic ( Source: AAPA World Port Rankings ) 
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 For recent years, as the alternative a Floating Harbor System, which has a 

floating quay as additional container terminal on the sea around a normal harbor on land, 

has been researched by numerical analysis and experiment. A research group under Dr. 

Moo-Hyun Kim, Texas A&M University, had carried out the numerical analysis of the 

floating harbor system as a preliminary research. On the other hands, the experiments of 

the Floating Harbor System had been conducted at Korea Ocean Research & 

Development Institute (KORDI), Korea, which applies narrow gaps, mooring system of 

real fenders and hawser lines, and geographical features, which is more practical in 

comparison with numerical analysis conditions. 

 In this research, two experimental cases of the floating harbor system conducted 

by KORDI are analyzed by numerical analysis and the results from the simulations are 

compared with those from experiment.  

 For decades, a lot of researches about various topics related to the present 

research topic had been carried out. As multiple-body analysis, Kodan (1984) examined 

the two slender bodies posed parallel in oblique waves. Sannasiraj et al. (2000) studied 

multiple-body’s dynamics in multi-directional waves using finite element method. For 

the narrow gap, Huijsmans et al. (2001) applied lid on the gaps. Furthermore, as the 

Liquefied Natural Gas (LNG) market is growing, Buchner et al. (2001) studied the 

interaction of LNG carrier and FPSO moored side by side, and Buchner et al. (2004) 

examined the motions and mooring loads of multiple-body focused on narrow gaps 

between LNG carrier and FPSO.  
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 Concerning a box-shaped floating structure, which is the shape of the floating 

quay, Chen and Huang (2004) carried out the time-domain simulation of floating 

pier/ship around harbor in potential flow. And for resonance phenomena, Lee and Kim 

(2005) studied about the interaction of two-body resonance by full and partial coupling.  

 In terms of the comparative study of numerical simulation and experiments, two 

researches of LNG system, LNG carrier and FPSO or shuttle tankers, had done. Inoue 

and Islam (1999) analyzed the system on both frequency domain based on linear wave 

theory and time domain based on analysis of dynamics coupled by mooring system. On 

the other hand, Hong et al. (2005) analyzed the system on frequency domain based on 

second order wave theory. As an initiative step of the floating harbor system, Kim et al. 

(2006) researched into numerical analysis of the floating harbor system on both 

frequency domain and time domain. The analysis on frequency domain is based on 

linear wave potential theory, and that on time domain includes nonlinearities of fluid and 

coupled dynamics. 

 In this study, general method is based on Kim et al. (2006). Furthermore, two 

calibrating processes are implemented if necessary as shown in Fig. 1.2; the first 

calibration is stiffness revision to match natural frequencies with those of experiment, 

and the second is estimation of damping force to match the responses with those of 

experiment. In Chapter II, two-body case of the floating harbor system is investigated; 

the floating quay is posed next to the fixed quay. In Chapter III, three-body case is 

examined, which consists of the floating quay on the starboard of the 15000TEU 

container ship and the fixed quay on the portside of the ship.   
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CHAPTER II 

 

TWO-BODY ANALYSIS: FLOATING QUAY AND FIXED QUAY 
 

2.1 Introduction 

 To examine the survivability of floating quay in a severe sea state, this two-body 

case is taken up, which is the floating quay moored to the fixed quay. In experiment, a 

series of regular wave tests with wave height 0.7m were conducted, and an irregular 

wave test with significant wave height 2.5m were carried out.  

 In this chapter, numerical modeling is at first investigated such as panel modeling, 

simplification of fenders/hawsers. Based on the experiment-based modeling, both of 

frequency domain analysis and time domain analysis are conducted. In frequency 

domain analysis, hydrodynamic properties and response are calculated at each wave 

frequency using WAMIT. And Response Amplitude Operator (RAO)’s obtained by 

WAMIT are compared with the experimental regular wave test results. In time domain 

analysis, the irregular wave test is carried out using CHARM3D; hydrodynamic 

properties are imported from WAMIT, and the responses are calculated based on stokes 

wave theory such that an irregular wave is made by superposition of a set of regular 

waves. The response histories obtained by CHARM3D are compared with experimental 

irregular wave test results. Furthermore, total RAO’s are compared such that the 

experimental regular wave tests and WAMIT RAO results are compared with spectrum 

RAO’s obtained from both of experimental and numerical response histories. 
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2.2 Frequency Domain Analysis 

 In frequency domain analysis, two simulation cases are conducted to analyze the 

two-body case, which are distinguished from modeling of the fixed quay; one is that the 

fixed quay is paneled by user, and the other is that the fixed quay is automatically 

generated in WAMIT. The first case is explained from Section 2.2.1 to 2.2.6, and the 

next case is explained in Section 2.2.7. 

 Theoretically, the ocean is assumed as ideal fluid based on the linear velocity 

potential theory; ideal fluid represents inviscid, incompressible, and irrotational flow, 

and the linear velocity potential theory is first order wave theory derived from linear 

boundary conditions (Newman, 1967).  

 Using WAMIT, two differential equations are solved: Laplace equation, which is 

a Partial Differential Equation (PDE) to get the velocity potential, and Motion equation, 

which is an Ordinary Differential Equation (ODE) to get the response at each frequency.  

  

2.2.1 Boundary Information  

 The Laplace Equation, equation (2.1), is derived from Mass Conservation and 

Momentum Conservation of ideal fluid.   

 RSITT where    ,    02      (2.1) 

 From the superposition principle of linear theory, total velocity potential T  is 

made of three velocity potentials such as incident velocity potential I , scattered 

(reflected) velocity potential S , and radiated velocity potential R .  And the T  

should satisfy a set of linear boundary conditions.  In addition to general boundary 
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conditions like bottom boundary condition, kinematic/dynamic free surface boundary 

condition, and radiation condition, the body surface boundary condition, which is 

generated by wetted surface of a floating structure, is also included. 

 To set up the general boundary conditions, boundary information which consists 

of water depth, wave heading, and wave frequency region are specified; wave frequency 

region imply the region of discrete wave frequencies to be calculated in WAMIT. 

 In this comparative study, boundary information is based on the experiments: 

water depth is 18m, wave heading is 135 degree with respect to positive x axis, and 

wave frequency region is 0.01 rad/sec to 1.6 rad/sec. The reason that the minimum 

frequency is 0.01 rad/sec is that certain natural frequencies of floating quay are expected 

to be below 0.1 rad/sec due to the small external stiffness. And 25 discrete wave 

frequencies in the frequency region are input with the frequencies denser in low 

frequency region. 

 

2.2.2 Geometric Information 

 To set the body surface boundary condition, the wetted surface of floating 

structures are input by a set of quadrilateral panels as geometric information; it can be 

input with triangular panels if necessary.  

 With the paneling criteria above, floating quay and fixed quay of experiment are 

paneled from the particulars of the floating quay and the schematic as given in Table 2.1 

and Fig. 2.1. The geometric information is given by coordinates of each panel’s vertices. 
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Table 2.1 Geometric Particulars of Floating Quay 

 Floating Quay 

Length [meter] 480 

Breadth [meter] 160 

Draft [meter] 6 

Shape of Submerged Part Simple box barge type 

 
 
 

 

Figure 2.1 Experimental Schematic of Two-body Case 
 
 
 
 
 For floating quay and fixed quay, 3840 and 2965 panels are used respectively. In 

Fig. 2.2, the fixed quay, green panels, is modeled as slightly longer in x direction and 

twice longer in y direction than the floating quay, yellow panels, from the experimental 

schematic. On the right and bottom of the figure, fixed quay has larger draft than floating 

quay because the draft of fixed quay is same as water depth. In the x-y plane, the origins 

of each body coordinate system are indicated and the enlarged figure shows remarkably 

narrow gap as 1.3m. In this case, the origin of floating quay’s body coordinate system is 
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simultaneously set as the origin of global coordinate system for this two-body case. In 

addition, all origins of the coordinate systems are placed on mean water line. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2 Panel Modeling and Arrangement of Two-body Case; Center Is x-y Plane, 

Right Is y-z Plane, and Bottom Is x-z Plane  
    
 
 
 From the set of boundary conditions as given so far, velocity potentials are 

calculated at the center of each panel, and the velocity potential in each panel is assumed 

to be constant.  
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 As velocity potentials on the whole panels, which represents the effect of fluid on 

the floating structure, are obtained, hydrodynamic properties are calculated at each 

frequencies: added mass, radiation damping coefficient, first order wave force (exciting 

force), mean drift force, RAO, and free surface elevation. 

 

2.2.3 External Dynamic Information 

 Section 2.2.1 to 2.2.2 dealt with the input to solve the PDE, the first equation of 

two equations solved by WAMIT as mentioned at the beginning of the frequency 

domain analysis. This section accounts for the inputs to solve the ODE, the next 

equation of the two equations, as a motion equation of the floating structures.  

 Mathematically, it is non-homogeneous with constant coefficients, and it is 

physically a motion equation for forced vibrating motion of damped mass-spring system. 

In this regard, vibrating object is a floating structure and components of the equation 

such as mass, spring, and damping are reformed owing to the interaction with ocean and 

mooring system from general ODE like equation (2.2) to equation (2.3).  

 FKXXCXM              (2.2) 

  1)()()( WHEER FXKKXCCXMM       (2.3) 

 For the mass component, added mass is added to the mass of the floating 

structure to account for resistance of fluid against structure’s accelerated/decelerated 

motion. And the total mass as sum of structure mass M (external mass) and added mass 

M  is referred to as “virtual mass”. In the spring term K , both the stiffness of structure 

(external stiffness EK ) and hydrostatic stiffness HK  by gravity are applied. The third 
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component, damping coefficient C can consist of radiation damping coefficient 

RC from the radiation/diffraction theory, and viscous damping or external damper 

(external damping coefficient EC ). Subscript  represents that the values are the 

function of each incident wave frequency; for instance, if sec/5.0 rad , M , RC , 

and 1WF  are calculated for the frequency 0.5 rad/sec and then the response X  is 

calculated for the frequency as well. 

 To solve the motion equation at each frequency, two groups of inputs are 

substituted into the motion equation: hydrodynamic properties obtained from the 

velocity potentials at each frequency and the coefficients such as M , EK , EC .  In this 

Section 2.2.3, we set the coefficients of the floating quay, which are supposed to input 

by user, based on the experiment information. 

 For the fixed quay, it is fixed as a part of land around the floating quay. Thus, 

we assume that the fixed quay has as enormous mass and stiffness, 10 times more than 

those of the floating quay. Thus, the process to get the external dynamic information 

of the fixed quay is omitted.   

 

2.2.3.1 External Mass Matrix 

 Theoretically, the equation (2.3) is obtained by solving linear and angular 

momentum equation with respect to 6 Degree of Freedom (DOF) motions of each body. 

Thus, if N is the number of floating bodies, the 6×N ODE’s are given for 6×N DOF 
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motions, including coupling effects in the 6×N DOF motions: surge-pitch coupling, 

sway-roll coupling (Mercier, 2004). 

 Using WAMIT, the set of equations are formed as matrix equations. As parts of 

the external matrix M  mass matrix of each body is input by  






































B
ZZ

B
YZ

B
XZ

B
CG

B
CG

B
ZY

B
YY

B
XY

B
CG

B
CG

B
Zx

B
YX

B
XX

B
CG

B
CG

B
CG

B
CG

B
CG

B
CG

B
CG

B
CG

mxmy

mxmz

mymz

mxmym

mxmzm

mymzm

M

0

0

0

000

000

000

   (2.4) 

 which has ten independent variables;  

m : mass of the structure, 

],,[ B
CG

B
CG

B
CG zyx : coordinates of center of gravity with respect to body coordinate system, 

],,,,,[ B
ZX

B
YZ

B
XY

B
ZZ

B
YY

B
XX IIIIII : mass moment of inertia with respect to body coordinate 

system, where B
YX

B
XY II  , B

ZX
B
XZ II  , and B

YZ
B
ZY II  . 

 In the present study, the external mass matrix of floating quay is input as 

equation (2.5) from the particulars in Table 2.2; the particulars are given by KORDI and 

the mass of body is checked with the displacement calculated from WAMIT. 
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Table 2.2 Inertia Particulars of Floating Quay 

 Floating Quay 

Mass 4.7232E+008 kg 

C.G. [ 0 , 0 , 0.14 ] 

],,[ B
ZZ

B
YY

B
XX III  [2.16E+012 , 7.5E+012 , 9.5E+012 ] 

],,[ B
ZX

B
YZ

B
XY III  [ 0 , 4E+010 , -2.21E+009 ] 

  
 
 



























12+9.5E10+4E9+2.21E-000

10+4E12+7.5E0007+6.6125E

9+2.21E-012+2.16E07+6.6125E-0

000008+4.7232E00

0076.6125E-084.7232E0

07+6.6125E0008+4.7232E

M   (2.5) 

 

2.2.3.2 External Stiffness Matrix 

 In the matrix equation of equation (2.3), the EK  is also 6N×6N, and it accounts 

for the external mooring system of floating structures as simplified linear springs for 6 

DOF motions.  

 In a general numerical analysis, the best option is that certain mooring system is 

simplified as linear spring on frequency domain, and then altered to real mooring system 

on time domain by CHARM3D. The reasons that the simplified stiffness is input on 

frequency domain are at first WAMIT solves only the ODE with constant coefficients 

and secondly mean drift force results on frequency domain is dependent on the stiffness. 

Thus, to get more accurate mean drift forces and responses on frequency domain, the 

simplified linear spring is indispensible.  
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 In the present study, the numerical modeling is based on experimental structures, 

which are moored by fenders and hawsers; on frequency domain the mooring system is 

simplified to external stiffness on frequency domain, and moreover the use of simplified 

stiffness is extended to time domain analysis owing to the complexity of this system 

such as large scaled three bodies with narrow gap. 

 In the experiment of this two-body case, floating quay is moored to the fixed 

quay by fenders and mooring lines, which mainly suppress surge, sway, and yaw as 

shown in Fig. 2.3. 

 

 

Figure 2.3 Schematic of Mooring System for Two-body Case 
 

 The hawser lines indicated as K5 and fenders as K9 or K10 are equipped at four 

points with stiffness as Table 2.3. 

Y

X 



 15 

Table 2.3 Stiffness of Mooring System 

 Mooring System Spring type Stiffness (ton/m) 

K5 ( MOORING LINE) Tension 8031.5 

K9 (Fender, Longitudinal side) Compression 12613 

K10 (Fender, Lateral side) Compression 4376 

 

 Before the simplification of the fenders and hawsers to linear spring stiffness, 

one thing should be recognized; the floating quay has two types of stiffness for one 

motion; for example, K5, mooring line stiffness, acts for negative sway motion, and for 

positive sway motion K9, fender stiffness, would work.  Thus to apply the system to the 

simplified spring stiffness, which represents only one stiffness regardless of the direction 

of a motion, the two stiffness should be estimated as one value.  

 As an alternative, a single stiffness is obtained from reaction force data of hawser 

and fender measured in the experiment. The approximated stiffness of each motion is 

given in Table 2.4. 

 

Table 2.4 Linear Spring Stiffness of Two-body Case 

Motion Stiffness (N/m) 

SURGE 1.3E+7

SWAY 2.3E+7

HEAVE1 1.15E+7

HEAVE2 0.65E+7 
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 And to calculate matrix EK , the linear springs are assumed to act on the same 

positions as hawsers/fenders in Fig. 2.4. And the positions are given in Table 2.5. 

 

 
Figure 2.4 Schematic of Linear Springs 

 

Table 2.5 Spring Positions of Two-body Case 

Point Number Coordinates 

P1 ( 120, 80, 2) 

P2 (-120, 80, 2) 

P3 (-240, 40, 2) 

P4 (-240, -40, 2) 
 

 Assuming the linear springs as given by Fig. 2.4 and Table 2.5, external stiffness 

of rotational motions and coupled motions between 6×N motions are calculated by 

formula below; the calculation is based on the principal that stiffness of certain mode 

represents the total external restoring force induced by unit displacement of the mode. 

 In case of roll, if floating body has unit roll angle, the external restoring force by 

eight springs are 

KHEAVE2/2 

KSURGE/2 

KHEAVE2/2 
KHEAVE1/2 

KSWAY/2 

KHEAVE1/2 

KSWAY/2 

KSURGE/2 



 17 

 Nm/rad 010+7.3692E        

80 0715.12  073.211 222
1

2



 EEPKPKK yheavezswayroll

 (2.6) 

In the same manner, respective external stiffness of pitch and yaw is given by 

 Nm/rad 011+3.7445E         

240 0765.02  073.133 222
2

2



 EEPKPKK xheavezsurgepitch

 (2.7) 

 Nm/rad 011+3.52E         

120 073.240  073.113 2222



 EEPKPKK xswayysurgeyaw

 (2.8) 

 In that the springs are acting on the points off the origin of the body coordinate 

system, the springs generate coupled stiffness between translational and rotational 

motions. Thus, the coupled stiffness is calculated as 

 
N 072.6E2  073.11  EPKK zsurgepitchsurge    (2.9) 

 
N 074.6E2  073.23  EPKK zswayrollsway    (2.10) 

 
08N9.2E 80 0715.1111  EPKK yheaverollheave    (2.11) 

 
09N+1.56E 240 0765.0322  EPKK xheavepitchheave   (2.12) 

 Summing up, the external stiffness is input as 





































11+3.52E00000

011+3.7445e09+1.56E072.6E

0010+7.3692e89.2E74.6E-0

09+1.56E89.2E7+1.8E00

0074.6E-072.3E0

072.6E0007+1.3E

     EK  
(2.13) 
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2.2.3.3 External Damping Coefficient Matrix 

 In general, using external damping coefficient matrix EC , constant damping 

coefficient is applied to the ODE, and the constant coefficients can account for linear 

viscous roll damping or a constant external damper.  

 However, in the present study, EC  is assumed to be zero on frequency domain. 

And damping force including various kinds of damping effects from viscous damping to 

eddy damping is applied in time domain analysis.  

 

2.2.4 Results of Hydrodynamic Properties 

 As mentioned with equation (2.3) hydrodynamic properties such as added 

mass M , radiation damping coefficient RC , hydrostatic stiffness HK , first order wave 

force 1WF  , and second order wave force 2WF  (mean drift force) are calculated by solving 

the Laplace Equation with a set of boundary equations at each incident wave frequency 

using WAMIT.  

 The separate results based on the 25 discrete frequencies are connected by linear 

interpolation.  

 In this research, the linear velocity potential is obtained by source formulation on 

each panel and integrated by Green Theorem. And the effect of irregular frequencies, a 

well-known mathematical problem of the velocity potential theory, is not removed. 
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2.2.4.1 Added Mass / Added Moment of Inertia 

 Theoretically, added mass/moment of inertia of each motion ijM  is calculated 

by surface integral of real part of certain radiation velocity potential relevant to the 

motion iR  along boundary surface; 

  
SB

jRiij dsnM }Re{        (2.14) 

 For instance, 14M  is added mass of surge motion generated by roll motion.  

 The results of the present two-body case are shown in Fig. 2.5 for 6 DOF pure 

motions. Based on the fact that coupling terms jiM ij       where  is relatively quite 

small, generally less than 10% of results for pure motions, the coupling results are 

omitted in the figures; however, all the coupling terms are input in numerical analysis. In 

Fig. 2.5, there are several peaks suddenly changed owing to pumping modes generated 

on gaps between adjacent bodies; 1.3m gap between floating quay and fixed quay in 

both longitudinal and transverse sides. In addition, irregular frequency results also can 

cause those peaks. 
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Figure 2.5 Added Mass / Moment of Inertia of Floating Quay, 2-body Case 
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2.2.4.2 Radiation Damping Coefficient  

 Radiation damping coefficient is also obtained from iR  for each motion 

similarly with added mass; however, the integrand is imaginary part of iR in the 

damping coefficient; 

  
SB

jRiijR dsnC }Im{        (2.15) 

 The results of floating quay are obtained as shown in Fig. 2.6 for 6 DOF pure 

motions. The results from the coupled motions are also omitted based on the same 

reason as plotting the added mass.  

 Physically, the radiation damping represents energy dissipation by generating 

waves through 6 DOF motions of certain body. In general, a well-known week point of 

numerical analysis is underestimated radiation damping coefficient of roll motion. 

  In this frequency domain analysis, the intact RC  of roll motion is used. And then, 

on time domain external linear damping coefficient is applied for the roll motion.  
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Figure 2.6 Radiation Damping Coefficients of Floating Quay, 2-body Case 
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2.2.4.3 First Order Wave Force/ Moment 

 Unlike added mass and damping coefficient by iR , first order wave force 1WF  

is calculated from diffraction velocity potential D ; 

 SID          (2.16) 

 1WF  is usually named as “Wave Exciting Force/Moment”, and the formula is 

obtained by direct integration of hydrodynamic pressure as  

 
SB

iDiW dSnAiF 1        (2.17) 

A  is amplitude of the incident wave and assumed to be 1m here, and the results are 

shown in Fig. 2.7; the real parts of the wave exiting force/moment are plotted. 

  

2.2.4.4 Mean Drift Force/Moment 

 From the equation 2.3, we can recognize this frequency domain analysis deals 

with only linear wave effects; however, to analyze the wave effects more accurately, the 

velocity potential need to be calculated by extension of the boundary condition from first 

order to second order. From the extension, the most remarkable change is an additional 

force term 2WF , which consists of functions of two variables: difference frequencies and 

sum frequencies.  

 In general, the difference frequency component is named as Drift Force/Moment, 

and the sum frequency component is called as Springing Force/Moment. Except for the 

Tension Leg Platform (TLP), the effect of the springing force is usually neglected; in the 

meantime, the drift force is generally applied to the system since the drift force can be a 
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significant excitation force in low frequency region, where natural frequencies of general 

floating bodies are placed. Thus, to clarify the resonance phenomena, the drift force 

should be applied to the numerical analysis.  

 Nevertheless, cost to calculate the exact drift force is too expensive related to the 

calculation of other properties based on the linear wave theory. Thus, an alternative is 

usually adopted using the mean drift force. The mean drift force is a main component of 

the exact drift force; at the same time, it can be obtained by linear velocity potential. 

Furthermore, since the main purpose is to examine resonance, the magnitude can have 

somewhat tolerance. Thus, an approximation method applicable in time domain analysis, 

Newman’s Approximation, is used in a general numerical analysis. The method 

approximates the drift force directly from the mean drift force.  

 Therefore, in this study, mean drift force is obtained from frequency domain 

analysis as shown in Fig. 2.8 and the approximation method is implemented in time 

domain analysis; the results plotted in Fig. 2.8 are the real parts of the mean drift 

force/moment. Theoretically,  mean drift force DiiF  is drift force of mono-chromatic 

wave and obtained by boundary surface integral of pressure p  normal to the surface; 

  )(    ,     )(  
SB

Dii

SB

Dii pdsNXMdspNF


     (2.18) 

 N


 is normal vector at the center of each panel and X


 represent the position 

vector. The bar means time averaging and DiiM  is mean drift moment for rotational 

motion; the pressures are obtained from the linear velocity potential. 
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Figure 2.7 First Order Wave Force of Floating Quay, 2-body Case 
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Figure 2.8 Mean Drift Force of Floating Quay, 2-body Case 
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2.2.5 RAO Comparison 

 Substituting the external dynamic information and hydrodynamic properties into 

equation (2.3) for each frequency, the response X  is calculated, which represents 

floating quay’s responses to the first order wave load, exciting force/moment, at each 

wave frequency  . In other words, X   is responses to regular wave test of wave 

frequency  .  

 In this regard, the experimental results of regular wave tests are compared with 

sets of X  in terms of RAO as 

 
IncidentA

X
RAO          (2.19) 

 In the comparisons of RAO’s, RAO calculated by WAMIT, which is indicated as 

“WAMIT RAO”, is plotted with three sets of experimental data: first one is linear 

response indicated as “Linear Response” that has same frequency of motion as 

frequency of incident wave, the next is nonlinear response indicated as “Nonlinear 

Response” that has offset between motion frequency and incident wave frequency, and 

the last is experimental spectrum RAO indicated as “Experiment Spectrum RAO”, 

which is calculated from the time series of incident wave elevation and responses to the 

experimental irregular wave test. 

 Spectrum RAO is the RAO calculated from two sets of power spectrum: one is 

incident wave power spectrum incidentS  and the other is response power spectrum reponseS , 

which are transformed from wave elevation and responses on time domain by Fast 

Fourier Transform (FFT), respectively; 
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incident

reponse

S

S
OSpectrumRA         (2.20) 
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Figure 2.9 Comparison of Incident Wave Spectra in Experiment 
 

 Since power spectrum transformed from time series tends to be variant with 

various FFT techniques, in the present study the FFT is standardized to make identical 

incident wave spectrum to incident wave power spectrum given by KORDI; in Fig. 2.9 

the blue line is the power spectrum transformed from wave elevation data of experiment.  

 The reasons that the experimental one (blue line) is different from theoretical one 

(green line) are, at first, the experimental wave elevation history used for FFT is data 

measured around floating quay, which includes noise, as an alternative to absence of 

exact experimental wave elevation data, and secondly the exact spectrum of incident 
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wave given by KORDI as a figure on the right has similar trend to the blue line above: 

energy in low frequencies and a cave-in at peak frequency.  

 From Fig. 2.10, the linear/nonlinear responses of the experiments are generally 

matched well with WAMIT RAO. And to confirm the natural frequency between 

simulation and experiment, Experiment Spectrum RAO is compared with WAMIT RAO 

based on a viewpoint that natural frequency is usually presented by peaks in a low 

frequency region. The general natural frequencies of simulation show good agreement 

with those of experiment as well. Therefore, the first calibrating process given in Fig. 1.2 

is abridged in this 2-body case. 

 The correspondences represent reliability of both results in numerical analysis on 

frequency domain and experimental results from regular/irregular wave tests.  The small 

differences between the two result sets would be generated by four aspects: uncertainties 

of experimental process, filtering process to get Linear/Nonlinear Response from sets of 

response histories of experiments, assuming that wave is harmonic, and the absence of 

viscous effect.  However, the differences between the numerical analysis and experiment 

on frequency domain seem acceptable; accordingly, the hydrodynamic properties are 

exported to time domain analysis with mean drift force.  

 In addition, focusing on the linear and nonlinear responses of experiments in 6 

DOF motions almost responses shown in translational motions are linear; in the 

meantime, rotational motions show nonlinear responses more, which represent rotational 

motions are more affected by nonlinear phenomenon.  
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2.2.6 Free Surface Elevation Comparison 

 As second comparative results set, free surface elevation is drawn. The 

measuring points are given in Fig. 2.11 as assigned in the experiment.  

 In experiment, free surface elevation is measured by a series of regular wave 

tests at each point. The measured data is filtered and averaged per frequency; afterward, 

the experimental results are compared with the numerical results calculated from the 

WAMIT on frequency domain. 
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Figure 2.11 Measuring Points of Free Surface Elevation 

  

 Coordinates of the measuring points are given with respect to global coordinate 

system in Table 2.6.  

 The free surface elevation is derived from total velocity potential by dynamic 

free surface boundary condition; 
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5 
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z

T

tg
         (2.21) 

  

Table 2.6 Coordinates of Measuring Points 

Measuring Points Coordinates 
1 378.7, -38.7, 0 
2 343.7, -3.7, 0 
3 308.7, 31.3, 0 
4 358.7, -218.7, 0 
5 358.7, -318.7, 0 
6 158.7, -218.7, 0 
7 58.7, -218.7, 0 
8 -41.3, -218.7, 0 
9 -141.3, -218.7, 0 

 

 The results are presented as non-dimensional wave elevation generated by unit 

wave amplitude in Fig. 2.12. 

 In the figures, blue line represents free surface elevation of ideal fluid and 

magenta square is the results of virtual ocean fluid expressed as Newtonian fluid with 

viscosity and incompressibility, theoretically. Despite the fact that the mainly different 

factor is viscosity in the two result sets, the trend of numerical free surface elevation 

along wave frequency generally shows good agreement with experimental one except for 

the results as measuring point #2. In the case of measuring point #2, we can expect 

certain erroneous of the experiment.   
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Figure 2.12 Free Surface Elevation Comparison, 2-body Case 
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Figure 2.12 Continued 
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2.2.7 Alternative Modeling of Fixed Quay: Infinite Walls 

 In this section, an alternative to the modeling of the fixed quay is introduced. In 

terms of interaction between two bodies’ motions, the fixed quay makes only reflected 

waves not radiated waves. To design such a fixed structure in numerical modeling, there 

are three methods using WAMIT: setting not to solve radiation velocity potential of the 

fixed structure, assigning extremely large mass and stiffness, and adopting infinite wall.  

 In the present research, two methods, the second and the third, are adopted. 

While the second method was used in the previous sections, the third method is given in 

this section to confirm the hydrodynamic properties. As the third, infinite wall option 

case as shown in Fig. 2.13 is implemented and the results are compared with the 

previous results set.  
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Figure 2.13 Schematic of Infinite Walls 
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 In the infinite wall case, the floating quay is assumed to be located around two 

orthogonal infinite walls indicated as dotted blue arrows. Using this option in WAMIT, 

the two-body case is considered as single body case, and thus the advantage is reducing 

the computing time.  

 On the other hand, disadvantage is overestimated wave reflection owing to the 

infinitely extended walls. As a reference, a set of six hydrodynamic properties from 

added mass/moment of inertia to measurements of free surface elevations are compared 

with those of the previous two-body case as shown in Fig. 2.14 to Fig. 2.19. 

 In the comparisons, the unmatched peaks can be seen for all the hydrodynamic 

properties, which represent possible differences for resonance phenomenon for each 

motion.  

 From the relatively remarkable dissimilarities between the previous two-body 

case and the current single body case, the second modeling of the fixed quay is 

considered as the better option in this research; moreover, the second option is used for 

further study like time domain analysis.   
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Figure 2.19 Comparison of Free Surface Elevation 
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Figure 2.19 Continued 
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2.3 Time Domain Analysis 

 In time domain analysis, a regular wave test or an irregular wave test can be 

implemented from the results obtained in the frequency domain analysis. At first, the 

regular wave test can be easily carried out by substituting variable  t  at each step into 

the solution to equation (2.3); however, the irregular wave test give rise to a set of more 

advanced processes based on the stokes wave theory such that an irregular wave can be 

made of a series of regular waves.  

 From the stokes wave theory and characteristics of time domain analysis, the 

equation (2.3) is reformed as 

 DtCttWtWtHEt FFFFXKKXMM   21)()(     (2.22) 

 Briefly speaking the reformed terms, an additional wave excitation force tWF 2 , 

drift force, is at first applied as mentioned in Section 2.2.4.4. To reduce the computing 

time, Newman’s Approximation is adopted, as described in Section 2.3.1. Next, the 

added mass and damping coefficient terms are reformed to infinite frequency added 

mass M as equation (2.23), and radiation damping force CtF as equation (2.24), which 

includes retardation function )(tR , based on the Commins Equation (Commins 1962).  
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RC   represents the radiation damping coefficients from WAMIT, and thus )(tR  can be 

referred to as the Inverse Fourier Transform of RC  . CtF  represents the memory effect 

of fluid, and max    is the max wave frequency of the set of regular waves used in time 

domain analysis to make an irregular wave.  

 After that, two excitation forces, exciting force and drift force, are superposed 

with respect to the set of wave frequencies based on the stokes wave theory;  
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At this step, notice is that the sum frequency second order force is omitted since the 

effect is negligible except for a TLP case. A  presents an amplitude of the wave at each 

frequency, and *  A  represents the complex conjugate. )(  1 WL  and )(  2 WQ  are the 

complex value of the wave exciting force and the drift force at each wave frequency, 

respectively. 

 As the last of the reformed components, nonlinear drag force DtF  is applied into 

the system to account for the various effects of viscosity and energy dissipation, which 

are not easy to clarify analytically, as described in Section (2.3.2). In addition, TotalK  , 
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sum of the external stiffness EK   and hydrostatic stiffness HK  , represents one of the 

Total Dynamic Information shown in Fig. 1.2. HK   is calculated from WAMIT and it is 

a set of static stiffness for heave, roll, and pitch motions, which are dominantly affected 

by the gravity. We can also categorize the external mass matrix also into the Total 

Dynamic Information. Shortly, the external dynamic information with the HK   is 

presented as Total Dynamic Information in the present study.   

 Finally, to solve the equation (2.22) at each step, two schemes, Adams-Moulton 

scheme and Adams-Bashfort scheme, are used in CHARM3D (Ran, 2000).  

 

2.3.1 Second Order Wave Force 

 As mentioned in the previous sections about mean drift, the second order wave 

forces, drift force and springing force, are usually applied to the system to get more 

accurate responses in terms of resonance. And in this study, only drift force is applied to 

the system.  

 Considering methods to calculate the drift force, there exists three ways to 

calculate the drift force; first one is solving second order velocity potential problem to 

get complete formula of the drift force, the next is calculating it without a term of 

integral along free surface in the complete formula, and the third one is using an 

approximate method such that the drift force is calculated directly from mean drift force 

using Newman’s approximation as equation (2.26).  

  ),(),(
2

1
),(),( 2222 jjWiiWijWjiW QQQQ      (2.26) 
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),(  2 iiWQ   is the mean drift force at frequency i  .  The drift force by i   and j   

),(  2 jiWQ   can be referred to as an averaged mean drift force of ),(  2 iiWQ   and 

),(  2 jjWQ  . 

 In comparison of three methods above, first one is the most accurate especially at 

scale. However, in terms of demanding time to calculate and importance to identify drift 

force with respect to frequency the third approximated method is adopted in this research.  

 

2.3.2 Drag Plate Information 

 As mentioned in Section 2.2, one of the most different characters between ideal 

fluid and real ocean flow is viscosity. To account for the viscosity effect, Morison 

formula’s damping force term DF  is taken up; 

 UUACF DD 
2

1
                 (2.27) 

   is water density, A  is projected area with respect to the plane of motion 

direction; for instance, to input DF  for surge motion, A  is projected area of an object to 

y-z plane. DC  is drag coefficient, and U  is relative velocity of fluid.  

 Before input of viscous effect, there is one point to be recognized. In various 

characters of fluid, viscous effect is one of the most difficult things to figure out 

accurately by analytical method. In this regard, a set of experiments is in general 

conducted, and corresponding simulations are carried out and compared with the 

experiments as one of design processes for a floating structure or system. Thus, in the 
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present study viscous effect is estimated in terms of “damping force DF ” by response 

comparison on time domain between CHARM3D and experimental results, which is the 

process indicated as Calibration II in Fig. 1.2. 

 Using CHARM3D in time domain analysis, A  and DC  are supposed to be input 

by user. In this case, DF  is adopted for surge and sway motions of the floating quay, and 

A  is input as shown in Fig. 2.20; DC is input as 2 as an initial value of the second 

calibration. Since the fixed quay is assumed to be immovable, there is no input for the 

damping force of the fixed quay. Moreover, as mentioned above damping force is 

estimated based on the comparison of response histories; for example, if certain 

responses of simulation are larger than those of experiments, the damping forces of the 

relevant motions get increased. For the equation (2.27), inputs are given in Table 2.7. 

 

Plate #1 2 3 4 

(a) Drag plates to x-z plane for sway 

 5 
(b) Drag plates to y-z plane for surge 

Figure 2.20 Drag Plates of Floating Quay 
 

Table 2.7 Drag Plate Information of Floating Quay 

Plate number DAC
2

1
 

Center Coordinates 
of each drag plate 

Unit Normal Vector 

1 738000 -180, 0, -3 0, 1, 0 

2 738000 -60, 0, -3 0, 1, 0 
3 738000 60, 0, -3 0, 1, 0 
4 738000 180, 0, -3 0, 1, 0 

5 984000 0, 0, -3 1, 0, 0 
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2.3.3  Sea State 

 In this section, a set of information for sea state is defined to specify incident 

wave conditions and extra environmental conditions. At first, incident wave frequencies 

and heights are assigned in terms of a type of wave spectrum, a significant wave height, 

and a peak period with a certain wave frequency region. After that, extra environmental 

conditions like current, wind force are specified. All the sea state conditions are based on 

the experimental irregular wave test.  

 From the sea state information given by the KORDI, the sea state is assigned as 

Table 2.8; since the KORDI conducted only one test of irregular incident wave, which is 

severe sea state condition to examine the survivability, the simulation also take up the 

only one sea state at this step.  

 

Table 2.8 Sea State Conditions of 2-body Case 

Sea state Identified Values 

Wave Spectrum Type Bretschneider-Mitsuyatsu Spectrum 

Significant Wave Height (HS) [m] 2.8 

Peak Period (TP) [sec] 15.5 

Wave Frequency Region [rad/sec] 0.25 ~ 1.5 

The Number of Incident Waves 126 

 

 The sea state inputs are identical to those of experiment except for the wave 

frequency region. Owing to the unclear data about the region of incident wave frequency, 

we assumed that the minimum frequency is 0.25 rad/sec.   
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 For the extra environmental conditions, there is no current, but wind force is 

applied as a pair of static forces as shown in Fig. 2.21; the experiments had been carried 

out in a indoor three dimensional shallow water tank, 

 

  

Figure 2.21 Static Wind Force in Experiment 

 

 The exquipment of static wind force is presented as a weight connected to 

floating quay by a line through a pulley as shown on the left picture in Fig. 2.21; in 

addition, it is indicated as green box on the fixed quay of the right figure.  

 The force magitude is given as 17032400N and the height of the line’s 

connection point on the fixed quay is assumed as 20 m. Considering coupled effect in 6 

DOF motions by the static force, static force of sway and static moment of roll are input 

as Table 2.9.  

 

Table 2.9 Effects of Static Wind 

Motion External Static Force/Moment 

Sway [N] 17032400 

Roll [Nm] -340648000 



 51 

 

2.3.4 Response History Comparison 

 Using CHARM3D, an irregular wave test of numerical analysis on time domain 

is conducted based on the equation (2.22) and the sea state conditions.  

 As results of the irregular test simulation, response histories of 6 DOF motions, 

surge, sway, heave, roll, pitch, and yaw, of the floating quay are obtained. Time domain 

analysis is implemented for about 1hour 40mins, and time interval is assigned as 0.05sec.  

 Before the comparison of irregular test wave results, a checking process should 

be carried out to examine reliability of the whole process of the numerical analysis. 

From a characteristic between frequency domain analysis and time domain analysis, the 

responses to time domain analysis are Inverse Fourier Transform (IFT) of those to 

frequency domain analysis; conversely, the responses to frequency domain analysis are 

the Fourier Transform of those to time domain analysis.  

 Thus, the time domain results are compared with the frequency domain results in 

terms of Spectrum RAO described in Section 2.2.5 by FFT.  

 
2.3.4.1 Confirmation of Time Domain Results 

 To examine feasibility of time domain results, CHARM3D Spectrum RAO is 

compared with WAMIT RAO in Fig. 2.23; CHARM3D Spectrum RAO is the results of 

FFT from the responses to the irregular wave test using CHARM3D, and indicated as 

CHARM3D RAO in the figures. The irregular wave test should have certain conditions 

identical to WAMIT’s linear motion equation such that the excitation force is only wave 

exciting force, and there is no viscous effect.  
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 As described in Section 2.2.5, the FFT is standardized with reference to 

comparison of incident wave spectrums such that the theoretical wave spectrum and 

CHARM3D wave spectrum should be matched each other, because the wave elevation 

history is IFT of the theoretical wave spectrum. The comparison is shown in Fig. 2.22; 

the CHARM3D Spectrum RAO is obtained from 0.1 rad/sec to 1.0 rad/sec since the 

incident wave energy, a denominator in the formula of the spectrum RAO, is close to 

zero out of the region. From Fig. 2.23, we can see the correspondence between 

CHARM3D Spectrum RAO and WAMIT RAO, which represents the reliability of the 

time domain analysis using CHARM3D. 
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Figure 2.22 Comparison of Incident Wave Spectra in Simulation, 2-body Case 
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Figure 2.23 RAO Comparison between Time Domain and Frequency Domain, 2-
body Case 

 

 



 54 

2.3.4.2  Comparison of Responses with Experiment 

 As a prerequisite for comparison between experiment and simulation, it is 

required to identify coordinate systems between them.  

 

 
x

Figure 2.24 Coordinate System Comparison between Experiment and Simulation, 
2-body Case 

 

 From Fig. 2.24 experimental coordinate system has opposite x and y axis and the 

origins are placed at an identical horizontal position. Meanwhile, numerical modeling 

places origins of each body coordinate system on mean water line, but experimental 

body coordinate system is placed on the origin at center of gravity.  

 In the present study, the coordinate system of experiment is transformed to that 

of simulation; consequently, a couple of coordinate transformations are processed as 

follows;  
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),,,,,( zyxzyx   represents original coordinate system of experiment, and directions of 

x and y axis are changed at first; not only for surge and sway signs but also signs of roll 

and pitch are changed by right-hand rule.  

 For the difference of z coordinate, transformation of translational motions is 

required owing to a coupled motion; for instance, sway and heave coordinates are 

changed by roll motion, and surge and heave coordinates are changed by pitch motion as 

shown in Fig. 2.25. 

 

 

 

Figure 2.25 Coordinate Transformation for Roll motion: (a) before roll (b) after 
roll 

 

Consider the origin of the experiment as “O1” and that of simulation as “Ob” 

before roll motion.  And “Oa” indicates the moved origin of simulation after roll motion 

“θX1”, which is the roll angle with respect to experimental coordinate system. 

Z  Z
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1Y  1Y
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 The distance between two origins O1 and Ob is the z coordinate of center of 

gravity (CGZ) with respect to Ob, and the rolling moves the Ob to Oa, which gives rise to 

additional positive surge and heave displacements of the simulation’s origin, as 

described by an enlarged triangle figure above. In the meantime, the roll angle is 

invariant.  

For pitch motion, the additional displacements of surge and heave are influenced; 

the positive pitch motion come with the negative displacement of surge and positive 

displacement of heave according to the right-hand rule. 

Thus, the second coordinate transformation is given by 
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 The converted results of experiment, which are displacements with respect to the 

body coordinate system of simulation, presented in Fig. 2.26. 

 After the identification of the body coordinate system, CHARM3D responses 

histories are compared with the experimental results in Fig. 2.27. 
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Figure 2.26 Floating Quay’s Responses of Experiment after Coordinate 
Transformation, 2-body Case 
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 From the comparison of response histories, the motions such as surge, sway, and 

yaw, which have dominant effects of the horizontal external stiffness, present slightly 

overestimated simulation responses as much as about one tenth larger than responses of 

the experiment. It is largely due to the underestimated damping forces/moments given as 

2DC  for surge and sway directions. According to a research about a floating structure 

next to a wall by Buchner, the effects of damping force in this case are increased than a 

single body case (Buchner et al. 2004).  

 For roll motion, the response of the simulation is also a little bit overestimated; 

this is a well-known phenomenon of general numerical analysis caused by 

underestimated roll radiation damping.  

 Thus, to account for larger effects of damping force/moment for surge, sway, and 

roll motions, the damping force/moment are revised in the next section. 

 In the meantime, the heave and pitch motions have opposite responses to other 

motions such that the responses of the simulation are underestimated. Based on the fact 

that the motions are dominantly affected by the hydrostatic stiffness, the motions are not 

dependent the external stiffness, which is a variable of natural frequency and main factor 

to determine the dynamics. In other words, the motions are generally invariant with 

numerical modeling. Thus, it would be rational to expect that there are uncertain 

differences between experiment and simulation such as measuring process or unexpected 

disturbance in the experiment.    
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2.3.4.3 Calibration II: Damping Force Estimation 

 At this point, the second calibrating process is implemented, as described in Fig. 

1.2. From the schematic of this two-body case, the present system has remarkably 

narrow gap, 1.3m, with two vertical walls in 18m-depth shallow water; therefore, the 

effects of damping force/moment are increased by effects from the narrow gap and 

shallow water depth. 

 To account for the increased damping effects, the CD of surge and sway of the 

floating quay is amplified to 6 as summarized in Table 2.10.  

 

Table 2.10 Calibration of Damping Force Inputs; Floating Quay 

Plate number 2  ,
2

1
DCDAC  6  ,

2

1
DCDAC  

1 984000 2952000 

2 738000 2214000 
3 738000 2214000 
4 738000 2214000 

5 738000 2214000 

 

  And to solve the overestimated roll motion, linear roll damping coefficient is applied to 

the system.  

 The linear roll damping coefficient LC  is given by a certain percentage   of 

critical roll damping coefficient criC . And the damping force DF  is calculated by 

 )(2       ,
100 rollrollrollcricriLD IICwhereUCUCF  

  (2.30) 
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 The damping force is calculated by multiplying the angular velocity of the roll 

U by LC . And the sum of mass moment of inertia rollI  and added moment of inertia 

rollI  for the roll motion represents virtual mass moment of inertia. Using CHARM3D, 

the   and natural frequency of roll roll  are supposed to be input as shown in Table 

2.11; the roll  is obtained from the RAO comparison from a viewpoint of that the  roll  

is a peak of the two peaks, which is not coincide with the peak frequency of sway in the 

roll RAO comparison. 

 

Table 2.11 Roll Damping Coefficient; Floating Quay 

  roll  [rad/sec] 

5% 0.38 

 

 With the damping inputs revised, the irregular wave test is newly carried out, and 

the responses are given in Fig. 2.28 and Fig. 2.29. And statistic comparison of the 

responses is obtained as shown in Table 2.12 by three rows of each motion: the first row 

is for the results from the initial damping coefficients, the next is for the results from the 

revised damping coefficients, and the final is for the results of the experiment. In 

addition, total RAO comparison, which includes the CHARM3D RAO updated after the 

damping revision, are plotted in Fig. 2.30. 

 From the figures of comparison and statistics, the responses are somewhat 

decreased and closer to those of the experiment after the revision of the damping 
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coefficients. Not only surge, sway, and roll, but also the other motions are also 

influenced by coupling effects between the motions.  

 In addition, the sway motion of the simulation is generally overestimated than the 

experiment because of a difference of mooring system design; in the simulation, the 

mooring system is designed as simple linear springs while the experiment applied real 

fenders directly contacted to the two bodies. Thus, in experiment, we can expect there 

exist more energy dissipations than the simulation if the floating quay has large sway 

response; for example, deformation of contacted surface on the two bodies or various 

frictions on the fenders. Therefore, the sway motion of the simulations shows larger 

response than the experiment, and it can be considered that the larger response of the 

simulation would be altered to the energy dissipation if the real fender system is adopted.  

 Finally, considering limits of each motion response, the critical values are given 

by the KORDI: 0.48 meter for surge and sway motions, 0.8 meter for heave motion, 3 

degree for roll motion, and 1 degree for pitch and yaw motions. The values for surge and 

sway are critical values to be in elastic region of the fenders. The other values are 

referred from the reference for motions of very large structures based on Japan’s rules.  

From Fig. 2.28 and Fig. 2.29, surge and sway are out of the limit not only for experiment 

but for simulation. For heave motion, there is a peak out of the limit around 800 sec in 

the response of the experiment. The responses of the other motions, roll, pitch and yaw, 

are even smaller than the limit in both of the experiment and simulation. The main 

reason that there are certain values over the limit is that the sea state condition is severe 

sea state to examine the survivability not operability.  
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 To conclude, in the severe sea state condition the two-body system can be out of 

the region that fenders act elastically in terms of surge and sway motions, but the other 

motions can be considered as safe despite the severe sea state.  

   

Table 2.12 Statistics of Responses; Floating Quay, 2-Body Case 

Motion Mean 
Root mean 

square 
Standard 
deviation 

Max Min 

Surge [m] 
-0.06111 
-0.06133 

(-0.03116) 

0.2086 
0.1734 

(0.1684) 

0.1995 
0.1839 

(0.1655) 

0.5119 
0.4516 

(0.6007) 

-0.8512 
-0.7871 
(-1.247) 

Sway [m] 
0.0 
0.0 

(-0.01792) 

0.2803 
0.2623 

(0.1876) 

0.2803 
0.2623 

(0.1867) 

1.604 
1.45 

(0.8383) 

-0.8567 
-0.7568 

(-0.5412) 

Heave [m] 
-0.01567 
-0.0156 

(-0.04173) 

0.04264 
0.03521 
(0.1768) 

0.03966 
0.03851 
(0.1718) 

0.1108 
0.1094 

(0.5298) 

-0.1941 
-0.1775 
(-0.834) 

Roll [deg] 
0.0 

-0.0001 
(0.01787) 

0.1085 
0.0871 

(0.0863) 

0.1085 
0.08714 
(0.0844) 

0.3673 
0.3145 
(0.313) 

-0.3572 
-0.3029 
(-0.266) 

Pitch [deg] 
0.0 

-0.0008 
(-0.0232) 

0.03189 
0.03121 
(0.0607) 

0.03189 
0.03122 

(0.05607) 

0.1067 
0.1059 
(0.19) 

-0.1066 
-0.1067 
(-0.361) 

Yaw [deg] 
-0.04479 
-0.04517 

(-0.01049) 

0.12509 
0.09212 
(0.0607) 

0.1168 
0.1026 

(0.05976) 

0.3494 
0.2544 
(0.158) 

-0.5972 
-0.5735 
(-0.302) 
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Figure 2.28 Comparison of Response Histories after Damping Estimation: Surge, 
Sway, Heave of Floating Quay, 2-body Case 



 65 

0 1000 2000 3000 4000 5000 6000
-0.4

-0.2

0

0.2

0.4

de
gr

ee

ROLL

 

 

CHARM3D:Initial Damping

Experiment

0 1000 2000 3000 4000 5000 6000
-0.4

-0.2

0

0.2

0.4

de
gr

ee

 

 

CHARM3D:Revised Damping

Experiment

0 1000 2000 3000 4000 5000 6000
-0.4

-0.2

0

0.2

0.4

de
gr

ee

PITCH

 

 

CHARM3D:Initial Damping

Experiment

0 1000 2000 3000 4000 5000 6000
-0.4

-0.2

0

0.2

0.4

de
gr

ee

 

 

CHARM3D:Revised Damping

Experiment

0 1000 2000 3000 4000 5000 6000
-0.6

-0.4

-0.2

0

0.2

de
gr

ee

YAW

 

 

CHARM3D:Initial Damping

Experiment

0 1000 2000 3000 4000 5000 6000
-0.6

-0.4

-0.2

0

0.2

Time [sec]

de
gr

ee

 

 

CHARM3D:Revised Damping

Experiment

Figure 2.29 Comparison of Response Histories after Damping Estimation: Roll, 
Pitch, Yaw of Floating Quay, 2-body Case 
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CHAPTER III 

 

THREE BODY ANALYSIS: CONTAINER SHIP BETWEEN FLOATING QUAY 

AND FIXED QUAY 

 

3.1 Introduction 

 This three-body case is taken up to investigate operability and survivability of the 

floating harbor system in case that a container ship operates on/off loading on both of 

starboard and port to the floating quay and the fixed quay simultaneously. The container 

ship is modeled as a 15000TEU class container ship and the floating quay and the fixed 

quay are identical to the previous two-body case. Experimental results are given by sets 

of responses to a series of regular wave tests and one irregular wave test from KORDI.  

 To implement the numerical analysis of this three-body case, we follow general 

processes identical to those of the two-body case; based on the same theoretical 

background, the WAMIT and CHARM3D are used. In addition, two calibrating 

processes are adopted as mentioned in Fig. 1.2: stiffness revision based on natural 

frequency comparison and damping estimation from response history comparison.  

 After optimization of the simulation, a series of results from experimental regular 

wave tests are compared with the results from simulation in terms of RAO on frequency 

domain, and the results from irregular wave test in experiment is compared with the 

results from the irregular wave test of simulation using CHARM3D.  
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 Furthermore, motions of the container ship in the present floating harbor system 

are compared with that in a conventional harbor system, which does not have the 

floating quay but have a normal harbor, the fixed quay.  

 

3.2 Frequency Domain Analysis 

 Based on the same theoretical backgrounds as previous, a set of input 

information for the numerical analysis is specified from the experiments; for example, 

the boundary condition to assign general boundary information, geometric information 

to specify the body surface boundary condition, and external dynamic information to 

solve the motion equations of the ship and the floating quay. 

 At first, boundary information is obtained from the previous case as shown in 

Table 3.1 in view of the fact that both of the experimental two-body and three-body 

cases are conducted in the same shallow water basin. 

 

Table 3.1 Boundary Information 

Water Depth [m] 18 

Wave Heading [deg] 135 

Wave Frequency region [rad/sec] 0.01~1.6 

Number of discrete frequencies 25 
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3.2.1  Geometric Information 

 A set of coordinates is input to WAMIT, which present the wetted surfaces of the 

three bodies. Compared to the two-body case, this case has one more large-scaled 

structure, the 15000TEU container ship, next to the fixed quay, and the gaps are 1.6 m 

for longitudinal sides between the three bodies and a transverse side between the floating 

quay and the fixed quay as shown in Fig. 3.1.  

 In that the large scale two floating structures can be more sensitive to pumping 

effect, finer panels are used. And geometric particulars of the floating quay and the 

15000TEU container ship are given from the KORDI as Table 3.2. 

 

Figure 3.1 Experimental Schematic of Three-body Case 
 

Table 3.2 Geometric Particulars of Floating Quay and Container Ship 

 Floating Quay 
15000TEU 

Container Ship 
Length [meter] 480 400 
Breadth [meter] 160 57.5 

Draft [meter] 6 14 
Shape of 

Submerged Part 
Simple box barge type Normal container ship hull 
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 For the floating quay, the number of panels is increased to 5440 due to the 

smaller size of panels on the identical body shape to the two-body case.  

 In case of the 15000TEU container ship, it is not an existing ship, and thus the 

offset data is given by a virtual ship modeled by linear expansion of an existing 

maximum container ship. Based on the offset data, wetted surface of the ship is modeled 

by a set of 3304 panels as shown in Fig. 3.2.  

 

(a) Experimental Modeling 
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(b) Numerical Modeling 

 
Figure 3.2 Panel Modeling of 15000TEU Container Ship 

  

 In the concrete, two parts of the ship demand caution in modeling the panels. The 

hull shape from one part between stem and stern can be regarded as a box barge with 

edge rounded off. In the stern and stem parts, however, there exist smoothly curved 

surface like a bulbous bow close to the mean water level and almost horizontal surface 
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around the mean water level respectively. To make clearly perpendicular panels along 

mean water line, it is required to cut off the smoothly curved surface and replace them 

with discontinuous vertices to make vertical panels as shown in Fig. 3.3. 

 In the cases with hull panels identical to the original curved surface in stern and 

stem parts, the responses on time domain are diverged because of abnormal added mass 

and damping coefficient.  

 

(a) stem (b) stern 
Figure 3.3 Panel Modeling in Stern and Stem Parts of the Container Ship 

 

 Based on the experimental arrangement as shown in Fig. 3.1, origins of body 

coordinate system of each body are fixed as shown in Fig. 3.4. Body coordinate system 

of the floating quay coincides with a global coordinate system of the three-body case. As 

same as two-body case, origins of each body coordinate system are on mean water line 

with right-hand rule.  

 In case of the fixed quay, 2560 panels are used without bottom panels. Since the 

fixed quay is assumed to be fixed on sea floor, the panels on the bottom are dispensable.  
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 By contrast with the previous two-body case, the gap distance for longitudinal 

and transverse sides is 1.6m; and even though there is increment of gap as much as 0.3m, 

the gap is still remarkably narrow relative to the scale of structures. 

 

Figure 3.4 General Schematic of 3-body Case for Simulation 
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3.2.2 External Dynamic Information 

 To solve the motion equations of the two floating structures, the container ship 

and the floating quay, external mass, stiffness and damping coefficient are input. Main 

difference is the external dynamic information is given by 12×12 matrices since two 

bodies are analyzed in terms of 6 DOF motions of each body including full interaction 

between motions. 

 

3.2.2.1 External Mass Matrix 

 Two 6×6 matrices of the floating quay and the container ship are calculated from 

the particulars as given in Table 3.3; the matrix of floating quay is identical to the 

previous case. 

 

Table 3.3 Inertia Particulars of 15000TEU Container Ship 

 15000TEU Container Ship 

Mass 2.1370E+008 kg 

C.G. [ 0 , 0 , 9.2 ] 

],,[ B
ZZ

B
YY

B
XX III  [1.4873E+011, 2.5107E+012, 2.4926E+012] 

],,[ B
ZX

B
YZ

B
XY III  [ 0 , 0 , 0 ] 

 

 ZZYYXX III ,,  are calculated from the conventional equations;  

 

YYZZ

YYYYYY

XXXXXX

II

LengthKmKI

BreadthKmKI






25.0    ,

42.0     ,
2

2

     (3.1) 



 74 

 Thus the external mass matrix of the ship is  


























12+2.4926E000

122.5107E0009+1.9661E

011+1.4873E09+1.9661E-0

0008+2.1370E00

009+1.9661E-08+2.1370E0

09+1.9661E0008+2.1370E

00
0
0CSM  (3.2) 

 Two mass matrices of the floating quay and container ship are composed as  














CS

FQ
TotalE Mmatrixzero

matrixzeroM
M

    66

    66
_      (3.3) 

 Total external mass matrix TotalEM _  consists of four 6×6 matrices: mass matrix 

of floating quay FQM  as equation (2.5), that of the container ship CSM , and two 6×6 

zero matrices.  

 

3.2.2.2 External Stiffness Matrix 

 In the same manner as the two-body case, we at first estimate the linear spring 

stiffness for translational motions based on the schematic of a real mooring system as 

shown in Fig. 3.5. And then the external stiffness matrix of each body is calculated with 

the coupled stiffness in 6 DOF motions.  
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Figure 3.5 Schematic of Mooring System for Three Body Case 
 

 From the figure above, the floating quay is moored by four dolphin fenders at 

points indicated as K1, and the container ship is moored by four hawsers indicated as K3 

and two fenders presented as K6.  

 Considering stiffness of positive and negative motions, stiffness of the floating 

quay can be considered as symmetric since dolphin fender is equipped with four linear 

springs in the experiment, as shown in Fig. 3.6; however stiffness of ship is asymmetric. 

 

 

Figure 3.6 Experimental Dolphin Fender 
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 Thus, in case of the floating quay original stiffness of dolphin fender is used as 

stiffness for the linear spring, and mooring system of the container ship is simplified as 

stiffness estimated from experimental reaction forces of fenders and hawsers, as 

described in Section 2.2.3.2. The stiffness of each linear spring of both bodies is given in 

Table 3.4. 

 

Table 3.4 Stiffness of Linear Springs of Three-body Case 

Motion Floating Quay Stiffness [ N/m ] Container Ship Stiffness [ N/m ] 

SURGE 3.92E+7 4.1921E+5 

SWAY 3.92E+7 10.1856E+5 

HEAVE  0.4482E+7 0.61856E+5 

 

 For both of the floating quay and the container ship, each one forth stiffness of 

surge, sway, and heave are assumed to act on four points, which are positions same as 

dolphin fenders and connecting points of hawser lines/fenders respectively. Coordinates 

of the acting points are given in Table 3.5 with respect to each body coordinate system. 

 

Table 3.5 Spring Positions of Three-body Case 

Point Number Floating Quay Container Ship 

P1 -195, -40, 0.1 -225.26 , 0.0 , 30 

P2 -195, 40, 0.1 -170.6 , 14.0 , 30 

P3 195, -40, 0.1 175.3 , 17,41 , 30 

P4 195, 40, 0.1 190.5 , 6.3 , 30 

 

 From these two sets of information, the external stiffness matrix is calculated for 

each body using the formulas same as described in Section 2.2.3.2 
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


























011+15.533E00000

0011+1.7043E0006+3.92E

00009+7.1716E06+3.92E-0

0006+4.482E00

00006+3.92E-0 73.92E0

0006+3.92E000  73.92E

EFQK   (3.4) 

































10+3.8125E00000

0 9+2.6789E0383012071.258E

0089.2504E583148073.056E0

03830125831484E1856.600

0073.056E0 05E1856.100

07+1.258E000  5E1921.4

 ECSK  (3.5) 

 In terms of two moving structures, total external stiffness TotalEK _ is composes as  














ECS

EFQ
TotalE Kmatrixzero

matrixzeroK
K

    66

    66
_      (3.6) 

In same order as external mass matrix, 6×6 external stiffness matrix of the floating quay 

EFQK  and that of the container ship ECSK  are placed.  

 In case that two floating structures are moored to each other, the coupled 

stiffness, which is indicated as 6×6 zero matrix in the equation (3.6), should be 

calculated. The present three-body case, however, have a separate mooring system; the 

floating quay is moored to the sea floor by the dolphin fender system, and the ship is 

moored to the fixed quay by fenders and hawser lines. Thus there is no effect of the 

coupled stiffness between each body.  
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3.2.2.3 External Damping Coefficient Matrix 

 As same as the two-body case, viscosity effect of real fluid is ignored in the 

frequency domain analysis; therefore, the external damping coefficient matrix is zero 

since there is no even an additional external damper in this three-body case. In time 

domain analysis, viscous effect is included into total damping force, which represents 

uncertain damping mechanism in the floating harbor system; in example, energy 

dissipation can be caused by a nonlinear deformation of fenders or collapse between 

structures.  

 

3.2.3 Results of Hydrodynamic Properties 

 Based on the same theoretical backgrounds as mentioned in Section 2.2.4, four 

hydrodynamic properties and responses are obtained for the two floating structures, the 

15000TEU container ship and the floating quay, using WAMIT: added mass/ moment of 

inertia, radiation damping coefficient, wave exciting force/moment, mean drift 

force/moment, RAO. Added mass and damping coefficients are plotted only for diagonal 

terms in the 12×12 matrix. Wave exciting force and mean drift force are the results of 

real values. From Fig. 3.7 to Fig. 3.11 the results of the floating quay are shown. And 

Fig. 3.12 to Fig. 3.16 show the results of the container ship. Fig. 3.17 shows the 

comparison of the free surface elevation comparison between experiment and 

simulation; the comparison show agreement with acceptable differences from 

experiment and simulation due to the assumptions such as harmonic wave, inviscid fluid. 
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 The hydrodynamic properties have tendency to fluctuate along frequencies, 

which represent the pumping effects at the gaps and the effect of irregular frequencies in 

high frequency region; at this point, the irregular frequencies mean a well-known 

erroneous of the numerical analysis using Green theorem and source formulation (CH 

Lee, 1995). 

 The first calibrating process described in Fig. 1.2 is carried out based on the fact 

that the comparison of RAO shows disagreement such that the peaks in low frequency 

region, which represent the natural frequency of the system. Therefore, the natural 

frequency of the simulation should be corrected to be matched with experiment since the 

natural frequencies of a certain structure are unique characteristic of the structures, 

which is fixed as long as the mass and stiffness of the structure is fixed.  

 In the present numerical analysis, it is one of the most essential things to input 

the mass and stiffness of certain objects as accurate as possible; especially in such a 

comparative study, the values should be identified to the experimental values.  
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Figure 3.7 Added Mass/Moment of Inertia of Floating Quay, 3-body Case 
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Figure 3.8 Radiation Damping Coefficients of Floating Quay, 3-body Case 
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Figure 3.9 First Order Wave Force of Floating Quay, 3-body Case 
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Figure 3.10 Mean Drift Force of Floating Quay, 3-body Case 
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Figure 3.12 Added Mass/Moment of Inertia of the Container Ship, 3-body Case 
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Figure 3.13 Radiation Damping Coefficients of Container Ship, 3-body Case 
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Figure 3.14 First Order Wave Force of Container Ship, 3-body Case 
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Figure 3.15 Mean Drift Force of Container Ship, 3-body Case 
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Figure 3.16 RAO Comparison of Container Ship, 3-body Case 
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Figure 3.17 Free Surface Elevation Comparison, 3-body Case 
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Figure 3.17 Continued 
 

 

3.2.4 Calibration I: Stiffness Revision 

 From the comparisons of RAO, we can recognize offsets of peaks in low 

frequency region between the experiment and simulation, which indicate the difference 

of natural frequencies in the simulation from those in the experiment. Especially, the 

differences are found in surge, sway, and yaw motions, which have dominant effect of 

the external stiffness, as more clearly shown in Fig. 3.18. 

  Natural frequencies of the simulation are corrected by changing stiffness, one of 

the variables of the natural frequency; the formula of a natural frequency is given by  
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


MM

KTotal


2         (3.7) 

 The natural frequency  is a function of mass of the structure M  , the added 

mass at the frequency M  , and the total stiffness TotalK , which is the sum of the 

external stiffness EK and the hydrostatic stiffness HK . In the variables of the natural 

frequency, all values are fixed or calculated from WAMIT except for the EK . And one 

thing to note is that the EK  is temporally estimated from the measured reaction force 

data of the fenders and hawser lines; therefore, it is possible to cause the differences in 

the natural frequencies between the experiment and simulation.  

 As a first step, natural frequencies of each motion for respect body should be 

clarified; for example, from the fact that this three-body case consists of two floating 

structures and one fixed structures, the interactions among them are quite complex than a 

single body or the previous two-body case. The interactions are also presented in terms 

of peaks in the RAO’s of 6 DOF motions for each body such that certain peak 

frequencies exist not only in one mode but also in the other modes; for example, the 

motions, which have strong coupling effects, such as surge and pitch, sway and roll have 

certain peak frequencies in common. Therefore, to clarify the natural frequency of each 

motion is not simple.  

 Considering such a difficulty, we can find the natural frequencies based on a set 

of criteria as below for the purpose to find natural frequencies only for surge and sway 

motions of each body; 

1. The natural frequency is usually placed in low frequency region. 



 93 

2. The natural frequency of surge or sway motions also appear in RAO’s of 

pitch and roll motions, respectively.  

3. The natural frequency of surge or sway motions of a floating structure also 

appear in RAO’s of the same motions of the other floating structure, 

respectively.  

4. Finally, the natural frequency can be exactly obtained by free decay test of 

experiment.  
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Figure 3.18 RAO Comparison of Surge and Sway 



 94 

0 200 400 600 800 1000 1200
-1.5

-1

-0.5

0

0.5

1

1.5
SURGE : RESPONSE HISTORY

[sec]

[m
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

X: 0.1841
Y: 0.36

 (rad/sec)

S
( 

)

SURGE : RESPONSE SPECTRUM

(a) Free Decay Test : Surge 

0 100 200 300 400 500 600
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
SWAY : RESPONSE HISTORY

[sec]

[m
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

X: 0.1841
Y: 1.329

 (rad/sec)

S
( 

)

SWAY : RESPONSE SPECTRUM

(b) Response Spectrum of Surge Free Decay Test 

Figure 3.19 Experimental Free Decay Tests 

 

 In the present three-body case, only two free decay tests for the floating quay had 

obtained from the KORDI: free decay tests for surge and sway motions. Thus, using FFT 

the natural frequencies of surge and sway motions of the floating quay are obtained as 

shown in Fig. 3.19. As a result of the four criteria, each natural frequency of surge and 

sway motions for each body is assumed as given in Table 3.6.   
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Table 3.6 Natural Frequencies of Three-body Case 

Motion Experiment [rad/sec] Simulation [rad/sec] 

Floating Quay Surge / Sway 0.1841 / 0.1841 0.27 / 0.27 

Container Ship Surge / Sway  0.06136 / 0.09204 0.03 / 0.03 

 

 From the assumed natural frequencies, the external stiffness is revised using the 

equation (3.8); the added mass at the natural frequencies are obtained from Fig. 3.7 and 

Fig. 3.12, and the variables are given in Table 3.7. 

 )(2
 MMKK ETotal        (3.8) 

As mentioned above briefly, the horizontal motions such as surge, sway, and yaw are out 

of the effect of HK . Thus EK  is equal to the TotalK .  

 

Table 3.7 Revised External Stiffness 

Motion   [rad/sec] M  [kg] M [kg] EK [N/m] 

Floating Quay 
Surge 0.1841 4.7273E+08 2.118E+07 1.6726E+07 

Sway 0.1841 4.7273E+08 6.441E+07 1.8191E+07 

Container 
Ship 

Surge 0.06136 2.1370E+08 7.097E+07 1.0718E+06 

Sway  0.09204 2.1370E+08 6.648E+08 7.4421E+06 

 

 Using the EK revised as above for surge and sway motions and the external 

stiffness for heave same as the initial, new external stiffness matrix is calculated. The 

formulas to calculate the matrix of the external stiffness are based on those in Section 

2.2.3.2 with the acting positions identical to the Table 3.4.  

 Based on the revised external stiffness matrix, three results of frequency domain 

analysis are updated: RAO, mean drift force, and free surface elevation. The other 
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hydrodynamic properties such as added mass, damping coefficient and wave exciting 

force are free to motions of the floating.  

 In Fig. 3.20 and Fig. 3.21, the peak frequencies of the simulation are shifted 

closer to those of the experiment, especially in surge, sway, yaw motions of each body. 

The mean drift force/moment shown in Fig. 3.22 and Fig. 3.23 represent the change in 

natural frequency region. In the comparison of free surface elevation, the results are 

changed on the frequencies around the natural frequencies of each body, as shown in Fig. 

3.24. Focusing on the RAO comparison after the stiffness revision, the results from 

experiments are well matched with WAMIT RAO. Thus, we can conclude two things in 

terms of optimization of the numerical analysis; 

1. Natural frequencies are generally placed in the low frequency region for a 

floating structure to avoid the frequency region, where has high energy based 

on a general ocean wave spectrum; therefore, hydrodynamic properties 

around the natural frequency, the low frequencies under 0.1 rad/sec, also 

require to be calculated to analyze the resonance phenomenon more 

accurately.   

2. To make a numerical modeling as exact as possible, free decay tests of 

experiment is required to find the natural frequency of each motion for each 

body; if the natural frequency is obtained from the free decay test fully, the 

external stiffness can be easily and exactly calculated by equation (3.7). 
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Figure 3.20 RAO Comparison of Floating Quay after Calibration I 
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Figure 3.21 RAO Comparison of Container Ship after Calibration I
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Figure 3.22 Mean Drift Force of Floating Quay after Calibration I 
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Figure 3.23 Mean Drift Force of Container Ship after Calibration I 
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Figure 3.24 Continued 
 

3.2.5  Smoothing Mean Drift Forces/Moments 

 As an additional step to optimize numerical analysis for time domain analysis in 

case of such multiple-body systems with side-by-side arrangement, mean drift 

forces/moments require certain treatments like smoothing remarkable large peaks. As 

mentioned in Buchner et al (2004), there exist several abnormally overestimated peaks at 

certain frequencies in mean drift force results, which represent pumping modes at the 

gaps due to absence of viscous effect in the fluid.  

 In this study, the exaggerated peaks are manually smoothed to make the peaks 

reasonably high, as shown in Fig. 3.25 and Fig. 3.26. In the present time domain analysis, 
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the mean drift force before smoothing is used until estimation of damping, and then the 

smoothed mean drift force is applied to the system in order to clearly see overestimated 

effects of the original mean drift force. 
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Figure 3.25 Smoothed Mean Drift Force of Floating Quay, 3-body Case 
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Figure 3.26 Smoothed Mean Drift Force of Container Ship, 3-body Case 
 



 105 

3.3 Time Domain Analysis 

 Using CHARM3D, which is based on the theoretical backgrounds described in 

Section 2.3, an irregular wave test of simulation is carried out for this three-body case. 

To apply the second order wave force, drift force, Newman’s approximation is adopted 

as same as the two-body case. And the total dynamic information is made of two 12×12 

matrices: external mass matrix and sum of the external stiffness matrix and the 

hydrostatic stiffness matrix.  

 

3.3.1 Drag Plate Information 

 As described in Section 2.3.2, the drag plate information is applied to account for 

the viscous effect of the real ocean fluid; in frequency domain, the viscosity is 

completely ignored since the analysis is based on the ideal fluid theory and external 

damping is also assumed to be zero. At the beginning stage to estimate damping force, a 

set of drag plate information is input to calculate the damping force using the Morison 

equation. The drag plates for the container ship are designed as shown in Fig. 3.27, and 

the input information is given by Table 3.8; those for the floating quay are identical to 

values of the two-body case before calibration II. 
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(a) Plates to x-z plane for sway 

 
(b) Plates to y-z plane for sway 

Figure 3.27 Drag Plates of Container Ship 
 

 

 Moreover, the damping force is estimated from the comparison of response 

histories between the simulation and experiment by increasing the DC  and adopting 

linear critical damping of roll motion, as demonstrated in Section 2.3.4.3. 

 

Table 3.8 Drag Plates Information of Container Ship 

Plate number DAC
2

1
 

Center Coordinates 
of each drag plate 

Unit Normal Vector 

1 403950 -187.67, 0, -4.67 0, 1, 0 

2 807905 -140.75, 0, -7 0, 1, 0 
3 807905 -84.45, 0, -7 0, 1, 0 
4 807905 -28.15, 0, -7 0, 1, 0 
5 701715 24.45, 0, -7 0, 1, 0 
6 701715 73.35, 0, -7 0, 1, 0 
7 701715 122.25, 0, -7 0, 1, 0 
8 350860 163.00, 0, -4.67  0, 1, 0 

9 803600 0, 0, -7 1, 0, 0 

 

 

3.3.2  Sea State 

 For this three-body case, the KORDI carried out the experiment of only one 

irregular wave test, which is same as the two-body case. Thus, at this step, the same 

9 

 
     2              3                4              5              6               7     

8#1
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irregular wave test in Table 3.9 is simulated to examine the survivability of this three-

body system. And as a set of additional case study, the operability is also investigated by 

input of less severe sea state conditions, after finishing the second calibration process. 

 

Table 3.9 Sea State of 3-body Case 

Sea state Identified Values 

Wave Spectrum Type Bretschneider-Mitsuyatsu Spectrum 

Significant Wave Height (HS) [m] 2.8 

Peak Period (TP) [sec] 15.5 

Wave Frequency Region [rad/sec] 0.25 ~ 1.5 

The Number of Incident Waves 126 

 

 Contrary to the two-body case, not only currents but also wind forces are ignored 

in the experiment, and thus those are not accounted in time domain simulation.  

 

3.3.3 Response History Comparison 

 In the previous sections, the input to perform the irregular wave test of 

simulation has been prepared from the experiment. The simulation is conducted for 

about 1 hour 40 min, and the time interval for each step is 0.05 sec.  

 

3.3.3.1 Confirmation of Time Domain Results 

 To check reliability of the numerical analysis as described in Section 2.3.4.1, 

CHARM3D spectrum RAO’s calculated from the response histories are compared with a 

set of WAMIT RAO’s. At this point, we should take notice that this time domain results 
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is obtained from inputs identical to the inputs of the frequency domain analysis; 

meanwhile, the irregular wave test, which is prepared in Section 3.3.1 to 3.3.2, is 

identified from the experiment. Thus, two inputs are excluded to implement a new 

irregular wave test to compare with WAMIT RAO: the drag plate information and drifts 

forces/moments.  

 FFT is tuned to make incident wave spectrum, which is calculated from wave 

elevation measured in CHARM3D, matched with the theoretical wave spectrum, as 

shown Fig. 3.28.  

 The RAO comparison between CHARM3D Spectrum RAO and WAMIT RAO 

show good agreement. Fig. 3.29 and Fig. 3.30 represent the RAO comparison of the 

floating quay and container ship, respectively; the CHARM3D Spectrum RAO is 

indicated as CHARM3D RAO in the figures. 
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Figure 3.28 Comparison of Incident Wave Spectra in Simulation, 3-body Case 
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Figure 3.29 RAO Comparison between Time Domain and Frequency Domain of 
Floating Quay, 3-body Case 
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Figure 3.30 RAO Comparison between Time Domain and Frequency Domain of 
Container Ship, 3-body Case 
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3.3.3.2 Comparison of Responses with Experiment 

 In same manner in the two-body case, each coordinate system in Fig. 3.31 should 

be indentified between the experiment and numerical analysis before the comparison of 

the response histories. 

    [8.4,145.7,0]

   [0,0,0]

   [0,110.35,0]

x

Figure 3.31 Coordinate System Comparison between Experiment and Simulation, 
Three-body Case 

 

 As same with the two-body case, coordinate systems of the experiment have 

opposite directions of x and y coordinates, and they have z coordinate offsets: 0.14m for 

the floating quay and 9.2m for the container ship.  

 The coordinate systems of the experiment are transformed to those of the 

simulations using equation (2.25) and (2.26). After the transformation, the response 

histories of the experiment are shown in Fig. 3.32 and Fig. 3.33. 

 After this identification of the coordinate system, the response histories of the 

simulation, which are the results of the initial damping force, are compared with those of 

the experiment in Fig. 3.34 and Fig. 3.35.  

 From the differences in the response comparisons, damping is calibrated and 

smoothed drift force is applied to the system. 
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Figure 3.32 Floating Quay’s Responses of Experiment  
after Coordinate Transformation, 3-body Case 
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Figure 3.33 Container Ship’s Responses of Experiment  
after Coordinate Transformation, 3-body Case 
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Figure 3.34 Comparison of Response Histories for Floating Quay, 3-body Case 
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Figure 3.35 Comparison of Response Histories for Container Ship, 3-body Case 
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3.3.3.3 Calibration II: Damping Force Estimation 

 By comparison of the response histories, at first the motions, which have narrow 

gap effects, have overestimated responses to the numerical analysis; for example, surge 

and sway motions of the floating quay show almost one and a half times larger responses 

than those of experiment. In case of the container ship, only sway motion has 

exaggerated response as much as almost two times than the experiment. Thus, the drag 

coefficients DC are changed to 6 for the surge and sway of the floating quay and 8 for the 

sway of the container ship; the values are empirically obtained by comparison of a series 

of irregular wave test simulation. 

 Next, roll motions of the two bodies should be corrected using the extra damping 

coefficient. In this study, for the extra roll damping, a critical damping coefficient is 

applied, as described in Section 2.3.4.3; the exaggerated roll motion is a well-known 

phenomenon in a general numerical analysis, which is caused by underestimated 

radiation roll damping.  

 From the comparisons of the roll motions between the simulation and experiment, 

the container ship has larger difference than the floating quay; it is largely due to effects 

of the bilge keel with gap effects on the both sides of the container ship (Chakrabarti 

2001 and Buchner et al. 2004). Thus, 20% of critical roll damping for the container ship 

is applied to this three-body system, and 5% of the critical damping for the floating quay 

is used like the two-body case. 

 The revised damping inputs of the floating quay are same as the values in Section 

2.3.4.3, and those of the container ship are summarized in Table 3.10 and 3.11. 



 117 

Table 3.10 Roll Damping Coefficient; Container Ship 

  roll  [rad/sec] 

20% 0.3068 

 

 The natural frequency of the roll motion is picked in the same manner with the 

floating quay case such that in roll RAO comparison of the container ship a peak placed 

out of the low frequency region and not appeared in the other motions remarkable is 

assumed to be a resonance peak.  

 

Table 3.11 Calibration of Damping Force Inputs; Container Ship 

Plate number 2   ,
2

1
DD CAC  2 ,8   ,

2

1
DD CAC  

1 403950 1610000 

2 807905 3230000 
3 807905 3230000 
4 807905 3230000 
5 701715 2810000 
6 701715 2810000 
7 701715 2810000 
8 350860 1400000 

9 803600 803600 

 

 Results to the revised damping inputs are shown in Fig. 3.36 to Fig. 3.39. From 

the comparison after the second calibration general motions except for the heave of the 

floating quay show good agreement with experiment results; all the responses are 

somewhat decreased due to the increased damping forces/moments.  
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Figure 3.36 Comparison of Response Histories of Floating Quay after 
Calibration II, 3-body Case: Surge, Sway, and Heave 
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Figure 3.37 Comparison of Response Histories of Floating Quay after 
Calibration II, 3-body Case: Roll, Pitch, and Yaw 
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Figure 3.38 Comparison of Response Histories of Container Ship after 
Calibration II, 3-body Case: Surge, Sway, and Heave 
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Figure 3.39 Comparison of Response Histories of Container Ship after 
Calibration II, 3-body Case: Roll, Pitch, and Yaw 
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3.3.3.4 Overestimated Drift Force and Treatment 

 Despite two calibration processes, external stiffness revision and damping 

estimation, the horizontal responses like surge, sway of the floating quay and sway of 

the container ship still show somewhat differences between experiment and simulation. 

As mentioned in Section 3.2.5, it is largely due to overestimated drift forces at pumping 

mode frequencies. 

 Thus, at this point the original drift forces/moments input is altered to the 

smoothed drift forces/moments inputs in Fig. 3.25 and Fig. 3.26; all the other inputs are 

fixed as developed so far to see the effects only by drift forces/moments. 

 After input of the smoothed drift forces/moments the renewed responses are 

compared in Fig. 3.40 to Fig. 3.43. The comparisons of statistics are given in Table 3.12 

and 3.13. In addition, total RAO comparisons, which include the updated CHARM3D 

RAO, are plotted in Fig. 3.44 and Fig. 3.45. 

 In terms of limits of motions, the floating quay still has responses over the limit 

for surge and sway motions, 0.48 meter, in both of simulation and experiment even 

though surge and sway of the floating quay and sway of the container ship are quite 

decreased after smoothing drift forces/moments. In the meantime, heave, pitch, and yaw 

motions of the floating quay for both the experiment and the simulation are in the limits, 

0.8 meter, 1 degree, and 1 degree, respectively.  

 Meanwhile, in roll motion the response to the experiment is within the limit, 3 

degree, but the response to the numerical analysis has several peaks of the limit. In this 
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regard, it is seen that uncertain energy dissipation in the experimental system caused the 

underestimated response. 

 In case of the container ship, the limits of the responses are considered to be 

same as the values of the floating quay except for surge and sway motions; the limit for 

surge is assumed to be 1m, and that for sway is assumed to be 0.6m. Based on the limits, 

surge and sway of both simulation and experiment have responses out of the limits, and 

a couple of peaks in heave motion of the numerical analysis are out of the limit. 

Meanwhile, all the other responses are within each limit.  

 To conclude, because of the severe sea state conditions there exist certain peaks 

out of each limit in terms of comparisons of the responses not only for simulation but 

also for experiment.  

 Thus, to see the operability of the floating harbor system, additional numerical 

analysis is required; for instance, an operating sea state condition is input to the 

simulation, which is optimized to the relevant experiment so far. 
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Figure 3.40 Comparison of Response Histories of Floating Quay after 
Smoothing Drift Force, 3-body Case: Surge, Sway, and Heave 
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Figure 3.41 Comparison of Response Histories of Floating Quay after 
Smoothing Drift Force, 3-body Case: Roll, Pitch and Yaw 
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Figure 3.42 Comparison of Response Histories of Container Ship after 
Smoothing Drift Force, 3-body Case: Surge, Sway, and Heave 
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Figure 3.43 Comparison of Response Histories of Container Ship after 
Smoothing Drift Force, 3-body Case: Roll, Pitch and Yaw 
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Table 3.12 Statistics of Responses; Floating Quay of 3-body Case 

Motion Mean RMS STD Max Min 

Surge [m] 
-0.001 
-0.006 
(0.0) 

0.2939 
0.1733 

(0.2559) 

0.2939 
0.1732 

(0.2559) 

1.01 
0.6133 

(0.8121) 

-0.9347 
-0.5857 
(-1.288) 

Sway [m] 
0.2402 
0.1966 
(0.0) 

0.4646  
0.3622 

(0.2729) 

0.3977 
0.3043 

(0.2729) 

2.225 
1.905 

(0.8835) 

-0.9868 
-0.8502 
(-1.052) 

Heave [m] 
-0.0111 
-0.0107 

(0.0) 

0.0549 
0.0529 

(0.1471) 

0.0538 
0.0518 

(0.1471) 

0.1728 
0.1701 

(0.5324) 

-0.2339 
-0.2177 

(-0.4301) 

Roll [deg] 
0.0074 
0.0070 
(0.0) 

0.0846 
0.0824 

(0.08297) 

0.0842 
0.0821 

(0.08297) 

0.3420 
0.3333 

(0.2319) 

-0.2979 
-0.2706 

(-0.3113) 

Pitch [deg] 
-0.0005 
-0.0005 
 (0.0) 

0.0409 
0.0406 

(0.04584) 

0.0409 
0.0406 

(0.04584) 

0.1455 
0.1448 
(0.157) 

-0.1383 
-0.1383 

(-0.1688) 

Yaw [deg] 
-0.0173 
-0.0171 

(0.0) 

0.0981 
0.0974 

(0.1076) 

0.0966 
0.0959 

(0.1076) 

0.3026 
0.3186 

(0.3357) 

-0.4166 
-0.4112 

(-0.3508) 

 

Table 3.13 Statistics of Responses; Container Ship of 3-body Case 

Motion Mean RMS STD Max Min 

Surge [m] 
-0.4910 
-0.4702 

(0.0) 

1.0654 
1.0189 
(1.036) 

0.9455 
0.9039 
(1.036) 

2.553 
2.478 
(3.41) 

-4.052 
-4.038 

(-4.363) 

Sway [m] 
-0.15 
-0.03 

(-0.05) 

0.5848 
0.4736 
(0.28) 

0.5652 
0.4726 

(0.2755) 

1.45 
1.45 

(1.15) 

-2.25 
-1.74 

(-0.85) 

Heave [m] 
0.0048 
0.0053 

(0.00036) 

0.2214 
0.2191 

 (0.1716) 

0.2213 
0.2191 

(0.1716) 

0.9223 
0.8987 

(0.5341) 

-0.7321 
-0.7227 

(-0.5796) 

Roll [deg] 
-0.0699 
0.0023 
(0.0) 

0.5416 
0.5066 

(0.4818) 

0.5372 
0.5066 

(0.4818) 

1.989 
1.992 

(2.167) 

-1.920 
-1.795 

(-2.182) 

Pitch [deg] 
-0.0103 
-0.0102 

(0.0) 

0.1269 
0.1264 

(0.1528) 

0.1265 
0.1260 

(0.1528) 

0.3952 
0.3924 

(0.5886) 

-0.4461 
-0.4386 

(-0.5271) 

Yaw [deg] 
-0.0031 
-0.0013 

(0.0) 

0.1829 
0.1774 

(0.1975) 

0.1829 
0.1774 

(0.1975) 

0.6454 
0.6266 

(0.7379) 

-0.5976 
-0.5742 

(-0.6378) 
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Figure 3.44 Total RAO Comparison of Floating Quay, 3-body Case 
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Figure 3.45 Total RAO Comparison of Container Ship, 3-body Case 
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3.3.3.5 Comparison of Fender Force 

 From a couple of calibration processes and smoothing drift force the current 

numerical analysis on time domain can be considered as optimized one fit to the 

experiment. In that, the final responses as above are assumed to be the best results from 

the optimized simulation.  

 Using the responses, the fender forces of the floating quay are compared between 

experiment and simulation. While the fender force of the experiment is data directly 

measured in the experiment, the fender force of the simulation is obtained by 

multiplication of response and stiffness.  

 To calculate the fender force from the responses, the measuring points in the 

simulation are assigned as same as the experimental measuring points, which are 

indicated as a series of Fx, Fy in Fig. 3.1. The positions are given in Table 3.14. 

 

Table 3.14 Measuring Points of Fender Force 

Position Coordinates 

Fx1, Fy1 195, -40, 0.1 

Fx2, Fy2 195, 40, 0.1 

Fx3, Fy3 -195, 40, 0.1 

Fx4, Fy4 -195,-40, 0.1 

 

 At each time step, positions of the four points after the 6DOF displacements are 

calculated, and then differences from the initial positions is multiplied by the stiffness of 

surge and sway as the fender force at each step.  
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 If the initial positions are zyx ,, , the final position ZYX ,,  after 6 DOF 

displacements  zyxzyx DDD  ,,,,,  are obtained by matrix multiplication as  
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 And the fender force at each step is calculated by  
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 Fig. 3.46 is the comparison of the fender forces between the simulation and 

experiment, and they generally show good correspondence; however, the sway fender 

force at point #2 has large peaks in the experimental results set, and the sway fender 

force at point #4 show overestimated results of the simulation as much as about one and 

a half times than those of the experiment. Statistics from the results are summarized in 

Table 3.15. Between two rows of each measuring point, the first row represents the 

statistics of simulation, and the next row is experimental results. 
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Figure 3.46 Comparison Fender Force 



 134 

Table 3.15 Statistics of Fender Force 

Measuring 
Points 

Mean RMS STD Max Min 

Fx1 
-7.576E+4 722980.3 0.719E+6 2.890E+6 -2.702E+6 

-1.158E+5 948495.4 9.414E+5 4.916E+6 -2.629E+6 

Fy1 
 6.159E+5 2058307 1.964E+6 8.976E+6 -5.352E+6 

 4.833E+4 2161540 2.161E+6 7.767E+6 -9.409E+6 

Fx2 
 2.204E+4 807900.7 8.076E+5 2.989E+6 -2.499E+6 

 1061 1056001 1.056E+6 4.930E+6 -3.951E+6 

Fy2 
 6.151E+5 2058068 1.964E+6 8.973E+6 -5.355E+6 

-2.085E+5  2407047 2.398E+6 7.415E+6 -2.315E+7 

Fx3 
 2.473E+4 808578.3 8.082E+5 3.026E+6 -2.485E+6 

2.806E+4  1058372 1.058E+6 5.751E+6 -3.752E+6 

Fy3 
 1.133E+6 2330018 2.036E+6 1.138E+7 -5.360E+6 

-3.138E+4  1846267 1.846E+6 6.786E+6 -8.527E+6 

Fx4 
-0.731E+5 722507.5 7.188E+5 2.894E+6 -2.696E+6 

1.024E+4  856361.2 8.563E+5 3.927E+6 -3.099E+6 

Fy4 
1.134E+6 2331378 2.037E+6 1.138E+7 -5.357E+6 

1.052E+4  861864.2 8.618E+5 4.246E+6 -3.090E+6 

 

 

3.3.3.6 Relative Motions 

 To examine the relative motions, at first two sets of target positions are assigned, 

as shown in Table 3.16. From Fig. 3.47 the targeted points of the floating quay are 

picked as crane operating rooms, and targeted points of the container ship are positions 

horizontally identical to the operating rooms but on the top of the container ship as 

working scope of the cranes. At the points, the horizontal and vertical relative 

displacements are calculated as shown in Fig. 3.48, and the statistics are obtained as 
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given in Table 3.17; all the relative motions are calculated from the final results of the 

optimized simulation. In the Table 3.17, at each measuring points the first row presents 

the heave relative motion and the second row represents horizontal relative motion. 

 

 

Figure 3.47 Schematic of 3-body Case 

 

Table 3.16 Measuring Points of Relative Displacements 

Measuring Point Floating Quay Container Ship 

1 132.25 , 94 , 77 132.25 , 0 , 35 

2 43.25 , 94 , 77 43.25 , 0 , 35 

3 -43.25 , 94 , 77 -43.25 , 0 , 35 

4 -132.25 , 94 , 77 -132.25 , 0 , 35 
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Figure 3.48 Relative Displacements on Cranes 
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Table 3.17 Statistics of Relative Motions at Cranes 

Measuring 
Points 

Mean RMS STD Max Min 

#1 
-41.97 
16.17 

41.27 
16.19 

0.3987 
0.8209 

-40.55 
19.16 

-43.20 
13.05 

#2 
-41.99 
16.15 

41.99 
16.16 

0.3121 
0.6589 

-40.79 
18.57 

-43.09 
13.54 

#3 
-42.00 
16.12 

42.00 
16.13 

0.3927 
0.6460 

-40.70 
18.22 

-43.20 
13.54 

#4 
-42.02 
16.10 

42.02 
16.12 

0.5767 
0.7889 

-40.08 
18.69 

-43.92 
12.65 

 

 Next, relative motions of 6 DOF responses of the container ship with respect to 

the floating quay are compared between the simulation and the experiment in Fig. 3.49, 

and statistics of the responses are summarized in Table 3.18. 

 

Table 3.18 Statistics of 6DOF Relative Motions 

Motions Mean RMS STD Max Min 

Surge -0.464/0.0 1.003/1.156 0.890/1.156 2.298/4.229 -3.981/-4.89 

Sway -0.223/0.0 0.633/0.329 0.593/0.329 1.729/1.147 -2.583/-1.032 

Heave 0.016/0.0 0.259/0.248 0.259/0.248 1.093/0.697 -0.829/-0.643 

Roll -0.005/0.0 0.507/0.470 0.507/0.470 1.986/2.215 -1.758/-2.212 

Pitch -0.010/0.0 0.159/0.172 0.159/0.172 0.518/0.615 -0.545/-0.579 

Yaw 0.016/0.0 0.216/0.202 0.216/0.202 0.767/0.712 -0.626/-0.688 
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Figure 3.49 Relative Response Histories for 6 DOF Motions 
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3.3.3.7 Acceleration at Crane Operating Room 

 To examine operability of the cranes, accelerations at the operating rooms are 

calculated from the response histories of the simulation; if the acceleration is over a 

certain critical value, the operator would be interrupted by the noticeable acceleration, 

and thus it consider as one of parameters to operate in the cranes.  

 Limit of the acceleration is assumed from the KORDI such that Root Mean 

Square (RMS) of the acceleration should be less than 0.2m/s2; as this value is 

temporarily given limit, there are no clear references for operability of such vast floating 

structures. 

 The positions of the crane operating room are assumed to be same as the 

measuring points of the floating quay in the Table 3.16. In Fig. 3.50, horizontal and 

heave accelerations are shown, and statistics of the results are given in Table 3.19. In the 

table, two rows of each measuring point represent statistics of horizontal acceleration by 

the first row and those of heave acceleration by the next row, respectively. The table 

shows that all the RMS is within the limit.  
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Figure 3.50 Accelerations at Crane Operating Rooms 
 
 

Table 3.19 Statistics of Accelerations at Crane Operating Rooms 

Measuring 
Points 

Mean RMS STD Max Min 

#1 
0.0438 

0.0 
0.0502 
0.0313 

0.0246 
0.0313 

0.1681 
0.1157 

0.0003 
-0.1049 

#2 
0.0391 

0.0 
0.0448 
0.0268 

0.0218 
0.0268 

0.1389 
0.1072 

0.0002 
-0.0925 

#3 
0.0396 

0.0 
0.0455 
0.0254 

0.0225 
0.0254 

0.1413 
0.0991 

0.0001 
-0.0872 

#4 
0.0451 

0.0 
0.0523 
0.0273 

0.0265 
0.0273 

0.1708 
0.1028 

0.0004 
-0.0916 
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3.4 Comparison with Conventional Harbor System 

 As an additional numerical analysis, a conventional harbor system is investigated 

and compared with the floating harbor system on frequency domain and time domain, 

which consists of only two bodies: the fixed harbor on the port of the container ship, as 

shown in Fig. 3.51.  

 

-200-1000100200

   [0,0,0]

x   [8.4,35.35,0]    [8.4,145.7,0]

   [0,0,0]

   [0,110.35,0]

x

Figure 3.51 Schematic Comparison: Conventional Harbor System (Left), 
Floating Harbor System(Right) 

 

 In particular, the hydrodynamic properties and responses of the container ship are 

compared between two cases: one is the ship in the conventional floating harbor system, 

and the other is the ship in the floating harbor system.  

 Inputs of the simulation for the conventional harbor system are identical to those 

of the container ship and fixed quay in the three-body floating harbor system. 

 For frequency domain analysis of the conventional harbor system, boundary 

condition is same as the three-body case. To input the geometric information, the same 

panel coordinates are used only for the container ship and fixed quay. The body 

coordinate system of the container ship is coincided with the global coordinate system, 
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and the longitudinal gap is fixed as 1.6 meter. The external dynamic information is 

adopted from the two-body case for the fixed quay, and that of the container ship is 

taken up from the values in the three-body case after the first calibration as external 

stiffness revision. Using WAMIT, the hydrodynamic properties and RAO are calculated, 

and the results are compared with those of the container ship in the three-body case, as 

shown in Fig. 3.52 to Fig. 3.56; as mentioned in Section 3.2.5, mean drift 

forces/moments are smoothed to account for reduced pumping peaks by viscous effect. 

 For time domain analysis of the conventional harbor system, sea state conditions 

are same as the previous cases, and drift force is applied through Newman’s 

Approximation in the same manner with other cases. The damping coefficients are fixed 

as the values after the second calibration of damping estimation in the three-body case 

such that 8DC  for drag plates toward sway motion and %20  to obtain the linear 

roll damping coefficients, as described in Section 3.3.3.3. The response histories of the 

container ship in the conventional harbor system are compared with those in the three-

body case in Fig. 3.57 to Fig. 3.58.  

 From comparisons of the response histories, the responses of the container ship 

in the conventional system are generally larger than those in the floating harbor system; 

in Table 3.20 statistics for the comparison of container ship responses are summarized, 

and they show clearly larger responses for all 6 DOF motions in the conventional harbor 

system.  

 Thus, it would be advantage from the floating harbor system that the motions of 

the container ship become more stable. 
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Figure 3.52 Comparison of Added Mass/Moment of Inertia between 2 Cases: 
Floating Harbor System and Conventional Harbor System 
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Figure 3.53 Comparison of Radiation Damping Coefficients between 2 Cases: 
Floating Harbor System and Conventional Harbor System 
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Figure 3.54 Comparison of Wave Exciting Force/Moment between 2 Cases: 
Floating Harbor System and Conventional Harbor System 
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Figure 3.55 Comparison of Smoothed Drift Force/Moment between 2 Cases: 
Floating Harbor System and Conventional Harbor System 
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Figure 3.56 Comparison of RAO between 2 Cases: Floating Harbor System and 
Conventional Harbor System 
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Figure 3.57 Comparison of Response Histories for Surge, Sway, Heave between 
2 Cases: Floating Harbor System and Conventional Harbor System 
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Figure 3.58 Comparison of Response Histories for Roll, Pitch, Yaw between 2 
Cases: Floating Harbor System and Conventional Harbor System  
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Table 3.20 Statistics of Comparison with Conventional Harbor System 

Motions Mean RMS STD Max Min 

Surge 
-0.470 1.019  0.904 2.478 -4.038 

-0.426 1.577  1.518 3.906 -6.665 

Sway 
-0.026 0.474  0.473 1.451 -1.742 

-0.034 0.769  0.768 2.590 -2.531 

Heave 
0.005 0.219  0.219 0.899 -0.723 

-0.004 0.234  0.234 0.867 -0.936 

Roll 
0.002 0.507  0.507 1.992 -1.795 

0.137 0.752  0.739 2.650 -2.381 

Pitch 
-0.010 0.126  0.126 0.392 -0.439 

-0.009 0.370  0.370 1.170 -1.261 

Yaw 
-0.001 0.177  0.177 0.627 -0.574 

0.010 0.306  0.306 1.155 -1.122 

 

 

 
 

3.5 Operating Sea State Condition 

 Based on the optimized numerical analysis tool for the 3-body floating harbor 

system, the global performances of the 3-body floating harbor system are investigated 

for an operating wave condition as described in Table 3.21; up to this point, the sea state 

used in numerical analysis and experiment was survival condition. 
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Table 3.21 Operating Sea State Condition 

 Significant Wave Height (m)  Peak Period(s)  

Survival Condition 2.8  15.5  

Operating Condition 0.88  7.5  

 

 The results from the operating condition and the survival condition are compared 

in terms of statistics of relative motions for the container ship with respect to the floating 

quay in Table 3.22; Fig. 3.59 and Fig. 3.60 represent 6 DOF responses of the two 

floating bodies in the operating sea state condition. 

 

Table 3.22 Comparison of Relative Motions between 2 Sea State Conditions: 

  Operating Condition and Survival Condition 

Motions Mean STD Max Min 

Surge -0.0449  
0.4639  

0.1490  
0.8995  

0.4312  
2.2980  

-0.5035  
-3.9810  

Sway -0.0894   
-0.2229  

0.3712  
0.5930  

1.0995  
1.7294  

-1.6613  
-2.5832  

Heave 0.0000  
0.0160  

0.0347  
0.2590  

0.1103 
1.0930  

-0.1267  
-0.8288  

Roll -0.0014  
-0.0047  

0.1761  
0.5065  

0.5905  
1.9860  

-0.6117  
-1.7580  

Pitch -0.0004  
-0.0097  

0.0094   
0.1588  

0.0381  
0.5176  

-0.0434  
-0.5453  

Yaw 0.0032  
0.0158  

0.0338  
0.2162  

0.1330  
0.7670  

-0.1404  
-0.6264  
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Figure 3.59 Response Histories of Floating Quay to Operating Sea State, 3-body 
Case 
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Figure 3.60 Response Histories of Container Ship to Operating Sea State, 3-body 
Case 
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CHAPTER IV 

 

CONCLUSION 

 

 Results from the numerical analysis are generally well matched with those of the 

experiment on both of frequency and time domains using WAMIT and CHARM3D with 

three additional processes: revising external stiffness, estimating damping coefficients, 

and smoothing drift forces/moments. 

 For the large scale of the floating quay and the container ship with remarkably 

narrow gap, finer panels are used since the hydrodynamic properties are more sensitive 

to the panel size, and mean drift forces/moments are smoothed.  

 Considering resonance phenomenon the external stiffness is revised to get the 

natural frequency of simulation matched with that of the experiment. In addition, as 

natural frequencies are practically placed in low frequency region, a frequency region to 

be analyzed is extended to 0.01 rad/sec. After that, damping coefficients are revised to 

match responses between numerical analysis and experiment on time domain.  

 Results from the optimal simulation show good correspondence with experiment 

in terms of RAO on frequency domain and response histories on time domain. And 

dolphin fender force also has good agreement between the simulation and experiment 

except for certain strange peaks in experiments; the correspondences represent reliability 

and capability not only for the optimized numerical analysis but the experiment. 

Furthermore, the research shows the feasibility and benefits of the floating harbor system.  
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