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ABSTRACT 

 

Large Eddy Simulations of Jet Flow Interactions Within Rod Bundles. 

(May 2010) 

Nathaniel O. Salpeter, B.S., University of Florida 

Chair of Advisory Committee: Dr. Yassin A. Hassan 

 

The present work investigates the turbulent jet flow mixing of downward 

impinging jets within a staggered rod bundle based on previous experimental work. 

The two inlet jets had Reynold's numbers of 11,160 and 6,250 and were chosen to 

coincide with the available data.  Steady state simulations were initially carried out 

on a semi-structured polyhedral mesh of roughly 13.2 million cells following a 

sensitivity study over six different discretized meshes. Very large eddy simulations 

were carried out over the most refined mesh and continuous 1D wavelet transforms 

were used to analyze the dominant instabilities and how they propagate through the 

system in an effort to provide some insight into potential problems relating to 

structural vibrations due to turbulent instabilities.  The presence of strong standing 

horseshoe vorticies near the base of each cylinder adjacent to an inlet jet was noted 

and is of potential importance in the abrasion wear of the graphite support columns 

of the VHTR if sufficient wear particles are present in the gas flow. 



iv 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair, Dr. Yassin A. Hassan, and my 

committee members, Dr. William H. Marlow, and Dr. Kalyan Annamalai, for their 

guidance and support throughout the course of this research. 

I have much gratitude for the constant assistance, advice, and encouragement 

of Dr. Hassan, and the assistance of all of my lab colleagues. Finally, I would like to 

thank my friends and family for their continual support of my education. 



v 

 

NOMENCLATURE 

d,  distance to nearest wall 

Gb,  bouyancy production term 

Gk,  turbulent production term 

h,  cell size 

S, ������� strain rate tensor 

���� ,  deformation tensor 

t,  time 

���,  turbulent stress tensor strain rate tensor. 

v,  velocity 

vg,   velocity component || to gravity force 

V,  cell volume 

W,  rotation rate tensor 

 

∆,  length Scale 

ε,  rate of dissipation of turbulence kinetic energy 

κ,  von Karman constant 

η,  time scale ratio of the turbulence to the mean strain 

µ,  viscosity 

��,   sub-grid scale turbulent viscosity 

ρ,  density 

YM, dilatation dissipation 

ω,  specific dissipation rate 
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1. INTRODUCTION 

The push for safer and more efficient nuclear reactors with less margin for risk 

has resulted in the need for high fidelity numerical simulations of reactor designs.  

In order to achieve the necessary confidence level in the simulations being 

conducted using current computational fluid dynamics (CFD) techniques, it is 

paramount that numerical models be validated against experimental data 

representative of phenomena likely to appear within a nuclear power plant.   

The focus of this study is partly on the validation of numerical models against 

results previously published by Amini and Hassan [1] but also on the identification 

of flow features seen in the numerical results for further investigation both 

experimentally and through CFD simulations.  The experimental study was focused 

on jet impingement upon a lower plane within a bank of staggered rods parallel to 

the inlet jet axis, mimicking similar phenomena of the lower plenum of a very high 

temperature gas cooled reactor (VHTR).  Two jets within the rod bundle were used 

with a single outlet to one side of the channel.  This work details a numerical study 

aimed at making a contribution in the validation of numerical models for such 

nuclear applications by modeling the experimental facility within the Star-CCM+ 

v.3.06.006 CFD package and quantifying the level of agreement of the result with 

the experimental data.  Additional analysis of the flow phenomenology seen in the 

CFD results was also performed.  It is important to note that in the process of  
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validating numerical models, the cases in which the models have discrepancies from 

the experimental results are just as important in the determination of model limits as 

are the results that match closely with the experimental data set. 

In the case of mixing within the lower plenum mixing of the VHTR, the 

importance of such studies are to ensure the absence of hot streaking and hot spots 

as well as investigate possible locations of turbulence induced vibrations and 

abrasion within the support structure.  Hot streaking is a phenomenon by which hot 

gas exits the reactor core and exhausts into the lower plenum but does not 

sufficiently mix prior to reaching the steam generator, thus causing hot spots within 

other plant components not specifically designed to handle such spikes in 

temperature. 

One investigation at Sandia National Laboratory involves the numerical study 

of the effect of static helicoidal inserts inside the jet inlets in order to disrupt axial 

momentum and increase mixing [Rodriguez, El-Genk 2009].  This study looked at 

both jets with and without helicoidal inserts in the inlet jets; however, the focus of 

the work was on structures right in the wake of the jet as opposed to the present 

study in which structures within the rod bundle will be investigated as well. 

Studies have been done involving axial flow along rod arrays in which 

‘pulsing’ phenomena are found between closely spaced rods.  One experimental 

study investigates channel flows with varying sized rods within it [Rehme K. 1989].  

Spectral analysis of the same channel conditions was done a few years later and 

found very regular azimuthal component fluctuations between the rods [Möller 

1992].  The present study has high velocity jet impingement on a lower plane rather 
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than a uniform cross flow.  The similarity with the pulsations of flow between the 

previous study and this work is in the regions between adjacent rods as well as 

between rods and adjacent walls.  In these locations there is an updraft from the 

impinged jet striking the wall and moving upwards in the small space between the 

rods and the wall.  In locations of flow past cylindrical rods, the generation of 

turbulent instabilities presents a structural concern with respect to vibration in the 

support rods of the VHTR. 

Jet impingement studies using numerical methods have suggested the presence 

of different modes of flow structure in the impinged flow [Li et al. 2005].  In their 

study, numerical results indicated the presence of two modes downstream of the 

impingement location.  One was that the flow remained along the lower plane and in 

the other the flow separated from the lower plane and flowed freely within the 

domain.  In the case of the present study, flow within the rod bundle remained in the 

regime where the flow remained in contact with the impingement plane until coming 

in contact with the adjacent rods. 

  The necking of the jet and formation of ring vorticies has been observed in 

experimental works for round jets in the same range of Reynolds numbers as the 

present work [F. Shu et al. 2005].  In the case of a jet that has a top-hat profile as 

opposed to a Gaussian profile, a reduced distance (x/D) to the onset of vortex rings 

has been documented [New et al 2006].   

Muzzammil and Gangadhariah [2003] experimentally investigated the presence 

of the primary horseshoe vortex formed around the base of a pier column in a 

crossflow and the key role that is played by this vortex in the scouring of the loose 
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surrounding base material. Wear particles that are present in the gas flow after 

passing through the core may potentially act as an abrasive in locations with strong 

consistent vorticies over the lifespan of a reactor.  Greeley and Iverson [1985] 

describe shadow zones as features observed in the wake of horseshoe vorticies just 

following an obstruction and before the onset of turbulent instabilities.  This 

phenomenon of high inertia dust particles settling out of the bulk flow has been 

described by them as the reason for dust buildup just behind obstructions in windy 

conditions.  When concerned with mixing levels, such dead zones should be kept in 

mind.     

Work by Pardee [1967] investigated graphite dusting rates for brushes in 

electrical components and found that there is a strong dependence on atmosphere 

and moisture content.  Pardee states that moisture absorbtion into graphite plays the 

largest role in the dusting phenomenon. Once a threshold moisture content in the 

atmosphere is exceeded, graphite dusting drops off drastically.  Applying this line of 

reasoning to the VHTR, dry helium with very low levels of residual moisture would 

lead to a higher rate of dusting than would a flow with moisture content above this 

threshold.  Additionally, helium is only physisorbed and not chemisorbed into the 

graphite, and only at very low temperatures [Lee and Johnson 1978] not seen in the 

VHTR.  Chemisorbed molecules occupy the active sites of the exposed graphite; 

however, inert helium is not chemisorbed thus producing no absorption film which 

counter intuitively facilitates vapor absorption into the graphite [Savage 1948]. 

Unfortunately, the problem is not quite so simplistic.  Additional moisture 

content in the helium would introduce a host of problems throughout the reactor and 
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steam generator and is therefore not a viable solution to the issue of dusting.  The 

problem of suspended particles must be addressed in terms of the effect of particles 

in suspension as well as potential locations of coalescence.  This study identifies 

potential locations of dust coalescence in a staggered rod bundle arrangement 

similar to that of the VHTR as well as locations of where graphite dust in the flow 

might act as wear particles and erode structural components in the lower plenum. 

Ongoing experimental studies similar to that of Amini and Hassan have been 

recently performed at the matched index of refraction [MIR] facility at Idaho 

National Laboratory using a narrower channel [McIlroy Jr. et al. 2008].  The  

narrowed flow section is useful in studies of flows along the reflector wall of the 

lower plenum but eliminated flow features that are present away from the wall by 

the introduction of significant wall effects.  The experimental data set of Amini and 

Hassan [2009] provides flow data for a wider range within the bundle as shown in 

Figure 1.  This figure shows two planes within the 3D model and the difference in 

channel width between studies. 
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Figure 1. Illustration of differences in experimental channel widths between Amini and Hassan’s 

study and McIlroy Jr. et al’s 

 

Experimental flow visualization studies by Shu et al [2005] investigated the 

effect of nozzle shape on flow in water jets in the Reynolds number range of 5,000-

10,000.  In the case of the axis-symmetric round nozzle, the presence of strong 

Kelvin-Helmholtz instabilities in the range of 1-5 diameters was observed using the 

planar laser induced fluorescence (PLIF) technique as shown in Figure 2.   

 

 

Figure 2. Flow visualization of F. Shu et al.[2005] in which necking occurs in round jet of 

Re=5,000 
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Numerous studies of vortex shedding following cylinders have been 

performed.  Fey et al. [1998] developed a new Strouhal(St)-Reynolds number 

relationship based on experimental data for circular cylinders in uniform flows 

within the same Reynolds number range of interest as the present study.  Other 

studies in the same Reynolds number range but of two in-line cylinders have been 

performed.  Xu and Zhou [2004] found little to no detectable vortex shedding 

between the two cylinders for a distance of L/d<2; however, there was a rapid 

reduction in St behind the downstream cylinder as the gap increased from 1<L/d<2.  

Angrilli et al. [1982] investigated the influence of close proximity walls on the 

Strouhal number.  Their investigation concluded that the wall increases the Strouhal 

number slightly as it gets closer to the cylinder, thus increasing shedding frequency. 

Vortex shedding frequency calculations using the equation for the Sr number 

should be approached with caution in the case of this study because of the non-

uniformity of the flow field.  The Strouhal-Reynolds number relationship developed 

by Roshko [1954] between Reynolds numbers of 300 and 10,000 gave a Strouhal 

number within 4% of the best fit of experimental data for uniform flow over a 

cylinder.  While this error might be low for a linear approximation, the presence of a 

regime changes within this region should be noted.  Like Roshko, Bloor [1963] 

observed irregularities in the 200<Re<400 range as well, but suggested that in this 

range turbulence was introduced by three dimensional effects.  Above Re=400, 

transition takes place before the separation layer curls up.  The regularities in the 

signals taken downstream of the cylinder were found to only occur when transition 

occurred well within the separated region.  Bloor determined that regularities in the 
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signal occurred for all Reynolds numbers above 1,300. The averaged Reynolds 

number was 4,641 in the lower plane region of the present study which put the flow 

regime past the cylinder above Bloor’s criteria and near transition between the 

subcritical flow regime and the presence of Kelvin-Helmholtz instabilities in the 

shear layer [Fey et al. 1998].  As will be shown in the results of the present study, 

transition between high and lower fluctuation regimes appear to take place as the 

flow fluctuates in time. 

 

 

1.1. Experimental Reference Setup 

The experimental setup of Amini and Hassan [2009] that was numerically 

modeled in this study utilized the matched index of refraction (MIR) technique and 

dynamic particle image velocimetry (PIV) to obtain time resolved two dimensional 

velocity fields within a staggered rod bundle.  The MIR technique relies on the 

principle that when the test fluid and the solid structures within the domain have a 

perfectly matched index of refraction, the solid structure no longer refracts the light.  

This results in no distortion of the light and a completely transparent experimental 

region for taking measurements.  The technique of 2D particle image velocimetry 

(PIV) relies on a focused plane of high intensity pulsed laser light to illuminate 

micron sized seeding particles that faithfully follow the flow paths.  A high speed 

camera captures the particles illuminated by the laser.  A cross correlation PIV 

algorithm is applied to the sequence of images and by knowing the frame rate of the 

captured images and the length scale within the illuminated domain, nearly 
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instantaneous velocities may be obtained.  The rod bundle has a 3:4:3 configuration 

of 29 rods with pitch to diameter ratios indicated in figure 3. 

 

Figure 3. Rod bundle configuration of Amini and Hassan [2009]  

 

 The rod bundle, as seen in Figure 4, was situated between two flow 

straighteners present for other experimental investigations not addressed in this 

experimental study.  The straighteners of the experiment were modeled in the 

computer sided design (CAD) model to mimic the same experimental geometry in 

the CFD simulations.  The inlet tube lengths prior to the jet entrance exceeded 10 

diameters.  In the case of this work, the inlet tube lengths were modeled with 10 

diameter lengths to allow sufficient length for flow development.  The viewpoint 

from which experimental data was captured was the vertical mid-plane bisecting the 

two inlet jets.   
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Figure 4. Experimental setup including flow straighteners and camera viewpoint of data 

collection 
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2. METHODOLOGY 

In order to perform the desired CFD simulations, the fluid domain must first be 

discretized into small pieces over which the governing equations may be applied to 

obtain the results for a given numerical model.  An important part of the 

discretization process is to ensure that numerical diffusion due to the size of the grid 

is kept to a minimum.  In the following section, descriptions of the turbulence 

models are given followed by the grid sensitivity method and results.   

 

2.1. Turbulence Model Specifications 

The various turbulence models employed throughout the study are outlined in 

brief in this section.  It is suggested that for more in-depth coverage of the presented 

models, the supplied references be looked into. 

 

2.1.1. Standard k-ε Model 

    The most frequently seen of all the turbulence models in CFD simulations is 

the standard k-ε model.  The form used has transport equations defined by the work 

of Jones and Launder (1972) and coefficients defined by Launder and Sharma 

(1974).  The model is known to produce robust results even for less than ideal 

conditions.  The main transport equations involved in the model are: 
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2.1.2. Realizable k-ε Model 

    The transport equations and the alterations to certain coefficients [Shih et al 

1995] for the realizable k-ε turbulence model are as follows: 
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The main difference between the standard k-ε model and the realizable model 

is that the term for turbulent viscosity (equation 5) has a coefficient Cµ in it that is 

not defined as a constant any more but instead by equation 6-7 which are  functions 
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of mean strain rate, angular velocity of the rotating system, and the turbulence fields 

k and ε.   

�� ' �6> *?
3                (5)

 

 6> ' 4
&@A&BC(D+E

F
               (6) 

Where      

 G(A+ ' (�: � ! I: I+J
?           (7) 

The other change from a constant to a formula is the Cε1 coefficient (equation 

8). These changes result in a more robust dissipation rate equation over the standard 

model. 

 634 ' max (0.43, Q
RAQ+     (8) 

Where 

 S ' T*
3                   (9) 

 

Other coefficients present in the model’s formulation are given by the 

following equations and specified constants. 

 

 UV ' 6J
? cos Y            (10) 

Y ' acos 6J
?I     (11) 
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                   (12)  
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2.1.3. Large Eddy Simulation (LES) with WALE Subgrid Model 

 

The large eddy simulation (LES) model resolves large scales using the Navier-

Stokes equations directly just as in unsteady RANS simulations, and uses a subgrid 

scale(SGS) model for the turbulent stress tensor. The SGS model resolves the effects 

of scales smaller than the grid size and their effect on the larger scales.  An implicit 

scheme for time stepping was used instead of an explicit scheme.  The ramifications 

of this is a relaxation of the acceptable Courant Friedrich Levi (CFL) condition to 

obtain satisfactory results that resolve the dominant structures (less than 5); 

however, the most refined scales with lower energies might not be fully resolved.  

The advantage to this method is a drastic reduction in the computational time 

necessary to run the simulation until fully developed periodic steady state conditions 

have been reached in the flow.  This is due to the ability to choose a time step nearly 

10 times larger than that for the standard LES approach. 

The selection of time step for the LES simulation was chosen from the CFL 

condition (equation 13) for the given length scales.  The maximum velocity 

(~1.3m/s) in the flow domain occurs at the high Reynolds number jet entrance into 

the domain.  The cell size for the LES simulation is approximately 0.65mm as 

discussed in the following section.  Applying the CFL condition of 1, the time step 

chosen is 0.0005s.   

   6_` '  a·∆�
∆c       (13) 

Upon running the simulation, the maximum CFL number in the entire flow 

domain was a value of 2.08 and values in the range over 1 were only present in the 
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core of the jet and not in the viscous superlayer where the jet entrains the quiescent 

domain.  The Courant limit below a value of 5 is satisfied in the very large eddy 

simulation.  Very small scale eddies in the viscous superlayer may be expected not to 

be resolved fully, but the large scale frequencies should present themselves clearly. 

The turbulent stress tensor, ��� , is represented below as a function of SGS 

turbulent viscosity ��, kinetic energy �, and the strain rate tensor �������. 

��� ' 2��������� ! 9
8 (��e · f � ��+    (14) 

Where ������� is computed by: 

������� ' 4
9 (ef � ef5+     (15) 

The subgrid model used was the wall adapting local eddy-viscosity (WALE) 

subgrid scale model.  The WALE SGS model [Nicoud and Ducros 1999] for 

turbulent viscosity ��  is defined by the length scale ∆, density ρ, the strain rate 

tensor �������, the deformation tensor ���� , and a constant 6g.  

 �� ' �h      (16) 

 ' (CjΔ+9 (TZ[l TZ[l +m ?n
(Top���� Top����+q ?n A(TZ[l TZ[l +q rn     (17) 

Where the coefficient 6g ' 0.544 which is near the value 6g t 0.5 suggested 

by Nicoud and Ducros [1999] for the best results using the model.  The deformation 

tensor ����  is defined by  

���� ' uef · ef � (ef · ef+5v     (18) 

The length scale ∆ is defined as the minimum value between CjV4 8n  and κd 

where V is cell volume, κ is the von Karman constant, and d is the distance to the 

nearest wall.  The resulting model properly scales near wall eddy viscosity.  It has 
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been demonstrated that the WALE SGS model can better handle laminar to turbulent 

transitional regimes [Nicoud and Ducros 1999] than the traditional Smagorinsky 

eddy viscosity model; however, it should be noted that a similar coefficient to that 

present in the Smagorinsky SGS model is used which has local influence on the 

flow.   

 

2.2. Discretization 

The majority of numerical works published in the infancy of CFD, while 

showing advancements in the field, were severely hindered by a lack of structured 

methodology for limiting the extent of error due to numerical diffusion [Roache 

1998]; a problem involving discretization error that has since been extensively 

studied and proper practices have been developed.   

Beginning as an editorial policy statement in 1986 in the ASME Journal of 

Fluids Engineering [Roache et al 1986], sensitivity analysis has since grown into a 

science of its own.  Many revisions and additions have been made to such policies 

over the years in peer review journals from a wide range of fields in which CFD 

techniques are either developed further or simply drawn upon as a tool to aid in a 

study.    The process of ensuring the fidelity of a simulation has become as integral a 

step in CFD as the presentation of the results themselves.  The most recent policy 

statement in the Journal of Fluids Engineering [Celik et al. 2008] emphasizes 

techniques employing the Richardson’s Extrapolation (RE) method and grid 

convergence indices (GCI).  The technique of Richardson’s Extrapolation as a 

method of extrapolating a solution out to its limit has been around long before the 
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advent of CFD; however, the use of RE as a tool in grid convergence studies is 

extremely useful, so long as the proper measures are taken to ensure an extrapolated 

result is obtained that is true to the models and methods being applied.   

The objective of any simulation is to obtain high fidelity results; however, 

many times the results become products of the numerical diffusion artifacts as 

opposed to the flow physics.  A necessary measure to limit such diffusion is to 

perform a mesh sensitivity study to determine the grid size below which numerical 

artifacts don’t present themselves in the result.  Difficulties arise in such efforts due 

to the advent of the unstructured mesh.  In this work, unstructured polyhedral cells 

were used in the discretization process.  In an effort to make the meshes more 

comparable to one another and limit error sources, a volume modifier was employed 

in the meshing process that forced the polyhedral cells into a semi-structured pattern 

within the volume.  This process helped homogenize the mesh throughout the 

domain of interest with the exception of very close to wall features that the mesh 

must adapt around.  The prism layer for all of the meshes was maintained the same 

as to avoid introducing affects from sources other than the core polyhedral mesh.   

 

 

Figure 5. Numerical domain with volume modifier (pink) for mesh ordering into semi-structured 

pattern  
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The cell sizes within the bundle region of interest had cell sizes of 0.65mm, 

0.75mm, 0.9mm, 1.2mm, 2mm, and 3mm.  The number of cells for each grid is 

given in table 1.  Figure 6 illustrates the mesh densities with different cell sizes 

taken along the mid-plane of the channel bisecting both inlet jets.  It may be seen 

that at the coarsest grid sizes, out of plane rods tend to disrupt the semi-structured 

grid alignment.  As the grids are refined, the cell structures in the core regions away 

from the walls and rods are homogenous.  Cell sizes within the rod bundle in the 

horizontal plane are shown in figure 7. The corresponding cells to rod diameter 

ratios are indicated in table 2. 

 

Table 1. Base cell sizes and total number of cells for each grid used in the sensitivity study 

Grid Number Cell Size (h) in mm Number of Cells (N) 

0 0.65mm 13,207,130 

1 0.75mm 10,176,501 

2 0.90mm 7,662,692 

3 1.20mm 5,603,819 

4 2.00mm 4,439,612 

5 3.00mm 4,237,281 
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a)  0.65mm Cell Size             b)  0.75mm Cell Size 

    

b) 0.9mm Cell Size                  c)   1.2mm Cell Size 

    

d) 2mm Cell Size                 e)   3mm Cell Size 

Figure 6. Vertical mid-plane sections of semi-structured polyhedral meshes for sensitivity study 
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Figure 7. Horizontal plane sections of semi-structured polyhedral meshes for sensitivity study 

 

Table 2.  Cell to rod diameter ratio table of sensitivity study grids 

Grid Number Cell Size (h) in mm Cell to rod diameter ratio (dc/D) 

0 0.65mm 0.061 

1 0.75mm 0.070 

2 0.90mm 0.084 

3 1.20mm 0.112 

4 2.00mm 0.187 

5 3.00mm 0.281 

 

 

 Discretization error was quantified using the procedures outlined in the 

quality control statement of Celik et al. [2008] as well as Roache [1998] which 

identify accepted techniques by which the Richardson extrapolation(RE) method 

may be applied reliably.  Local and global orders of accuracy, extrapolated results, 

percent errors, and grid convergence indexes were all calculated in accordance with 

these accepted practices in an effort to ensure that high fidelity results had indeed 

been obtained. 

 In total, the six meshes listed in Tables 1 and 2 were investigated using the 

realizable k-ε turbulence model with an all-y+ wall function applied to a two cell 
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prism layer that remained constant between the different grids.  The steps by which 

RE was performed are as follows [Celik et al. 2008]: 

Step 1 

 For grid sizes h1<h2<h3, where r21=h2/h1 and r32=h3/h2 are near or greater than 

1.3, the local apparent order of accuracy, p, of the simulation is calculated with the 

following expressions: 

 

x ' 4
yz {?J |ln |3m?

3?J| � ~(x+|    (19a) 

~(x+ ' ln ({?J� �V+
({m?� �V+     (19b) 

� ' sign (3m?
3?J+      (19c) 

Where 

094 ' �9 ! �4      (20a) 

089 ' �8 ! �9      (20b) 

 Equations (19a-c) were solved using an iterative procedure with an initial 

guess of φ1 where φn represents the result of the associated grid n.  The global order 

of accuracy is obtained by taking the mean of the local orders to obtain pave. 

 

Step 2 

 The extrapolated values  φ���94
 and  φ���89

  were calculated using the following 

equations: 

φ���94 ' (�?J�
φJ�φ?+

(�?J� �4+      (21a) 
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φ���89 ' (�m?�
φ?�φm+

(�m?� �4+      (21b) 

 

Step 3 

 The relative errors, ��94 and ��c�94 , were calculated by the expressions below: 

��94 ' |�J��?
�J |     (22a) 

��c�94 ' |����?J ��J
����?J |     (22b) 

 

Step 4 

 Calculate the grid convergence index for the most refined mesh with: 

.6���7�94 ' _V ��?J
{?J�����4    (23) 

 In eqn 5, the Fs coefficient serves as a ‘buffer coefficient’ for the extrapolated 

error approximation GCI.  In the case of rough grids, a conservative value of 3 may 

be applied to this factor, and a value of 1.25 in the more refined grid cases [Roache 

1998], as in the case of this study.  The idea behind this coefficient reducing to a 

value of 1 for a more refined grid is that as grid cell size gets smaller, the error due 

to numerical diffusion reduces to the point that any error present between the 

extrapolated solution and the calculated solution is the absolute error and is no 

longer an artifact of grid dependency, thus GCI = e in such a case. 

 The first investigated parameter in the sensitivity study was the velocity 

magnitude in the axial direction to the inlet jets at both nozzle locations (x=775mm 

and x=673.4) within the channel.  For all grids, line probes sampled 30 points from 
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the bottom of the channel to points within the inlet jet (y=0mm to y=78.2mm) as 

shown in figure 8.  Grid convergence indices were calculated based on three grids at 

a time.  Grid combinations following the recommendation of having grid size ratios 

larger than 1.3 [Celik et al. 2008] were used; however, combinations were also used 

that intentionally violated this practice to investigate the scale of the error in the 

Richardson extrapolation.  This grid sensitivity study was performed using two 

different Dirichlet boundary conditions, thus giving two separate sets of results 

using identical grids.  Ensuring grid dependence for both cases further insures that 

the fidelity of the end result has not been compromised due to numerical diffusion. 

Discrepancies between validation data and numerical results will instead be a direct 

result of the numerical model or models used. 

 

2.3. Grid Sensitivity Study Results and Discussion 

The results presented in this section are those for the sensitivity study 

performed for the case of Rejet1=11,160 and Rejet2=6,250.  In appendix A, results of a 

sensitivity study are given for the case of Rejet1=13,400 and Rejet2=6,700 to 

demonstrate that the simulation was grid size independent for multiple boundary 

conditions.   

Figure 8 shows the location of the line probes used to obtain results from each 

mesh.  Given that each mesh has a varying number of cells along this line, a 

controlled line probe was used with 30 points taken at identical heights for each grid 

size.  In the cases of the very coarse mesh sizes, a certain degree of interpolation 
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occurs in the result.  The error introduced by this interpolation becomes minute as 

the mesh is refined. Results from the different grids are shown in figure 9. 

 

 

Figure 8. Axial line probe locations for sensitivity study 

 

The calculated grid convergence indices (GCI) are presented in figure 10 for 

both high and low Re jets.  Grid convergence indices are presented as a percent and 

can effectively be interpreted as the percent error of the simulation result based on 

which grids are analyzed.  In the case of GCI – 3;2;0, the reported error would apply 

to grid 0.   

A point of interest in the plot of velocity magnitude versus y-position for the 

low Reynolds number jet (figure 9) is the crossing of the results of the 0.65mm mesh 

and the 0.90mm mesh at y=24mm.  A cross in the result can be indicative of locally 

oscillating convergence of the result.  This form of convergence may be considered 

valid as these grid sizes are shown to be in the asymptotic range of convergence in 
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the neighboring locations.  The crossing feature represents itself in the GCI as well 

as the error between the extrapolated and the calculated results.  At the point of the 

cross, the extrapolated solution is equivalent to the same value. This causes the GCI 

and the error between the extrapolated and the calculated results of the 0.90mm and 

0.65mm grid to drop to zero. This is the cause of the dip seen in the GCI of Rejet2 in 

figure 10. 

 

 

Figure 9. Axial flow velocity directly below inlet jets Rejet1=11,160 and Rejet2=6,250 
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Figure 10. Grid convergence indices directly below inlet jets Rejet1=11,160 and Rejet2=6,250 

 

The extrapolated results presented in figures 11 are zooms of the region near 

the lower plane between y=0mm and y=50mm.  These results illustrate the 

importance of using three grids that all lie within the asymptotic zone as well as 

satisfy the grid size ratio of rik≳1.3.  Extrapolated results obtained using grids not in 

the asymptotic zone or not following the suggested cell size criteria exhibit a 

divergence in the extrapolated result leading to unrealistic results.  This is shown 

most prominently in figure 11 by the acceleration towards y=0mm obtained from the 

extrapolated result of grids 4, 3, and 1.  
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The extrapolated result that consistently had physically realistic results, had 

the lowest GCI values, and satisfied the refinement criteria was the extrapolation 

calculated using grids 3, 2, and 0.  This was expected based on the criteria 

previously mentioned.  The results from the extrapolation using these grids were 

used in the calculation of the relative errors shown in figure 12.   This figure clearly 

shows the decrease in approximation error as the refined grids approach asymptotic 

convergence on the ideal result that is totally free from numerical diffusion.  The 

global order of accuracy for the two jets were pave=1.99 in the high Re jet and 

pave=3.23 for the low Re jet. 

In addition to line probes, the mean vortex diameters of the two primary 

recirculation zones present adjacent to the central rod were used as sensitivity study 

parameters with the 0.65mm, 0.90mm, and 1.20mm grid sizes.  The recirculation 

zone metrics are shown in figure 13 and the mean diameter, Dv, is defined as the 

sum of a1 and b1. 
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Figure 11. Extrapolated results directly below inlet jets Rejet1=11,160 and Rejet2=6,250 
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Figure 12. Error from each grid size to the result extrapolated from grids 3, 2, and 0 for 

Rejet1=11,160 and Rejet2=6,250 

 

Figure 13. Mean vortex diameter metrics 
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The result of the sensitivity study indicate a 7.3% error(±1.15mm) in the mean 

diameter of the vortex on the side of the high Reynolds number jet, and 13.6% 

error(±1.47mm) in the mean diameter on the side of the low Reynolds number jet.  

This error underlies the difficulty in determining grid size independence in highly 

three dimensional flows.  It should also be noted that the large error present in this 

parameter is also influenced by the feature size relative to the grid size.  The orders 

of convergence for the primary vorticies on the high and low Reynolds number sides 

of the central rod are still 2.89 and 3.65 respectively. Unfortunately, in flows with 

very convoluted structures, large measurable features can be limited which often 

influences the relative magnitude of errors when dealing with smaller structures.  In 

terms of cell size, an error of 13.6% in the present grid for the low Re jet vortex 

equates to about 2.5 cell diameters.  At the time of this study, the particular grid was 

at the upper bounds of the computational capabilities available, but the result still 

provides acceptably resolved flow structure in staggered rod bundles.    

The case of Rejet1=11,160 and Rejet2=6,250 has corresponding experimental 

data obtained in a geometrically identical facility using dynamic PIV [Amini and 

Hassan 2009].  For this reason, only this case was run using additional turbulence 

models, and only with the most refined grid.  The following section contains the 

results and analysis of key features and phenomena present in the domain. 
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2.4. Analysis Methods 

Advanced frequency analysis methods have been developed and employed 

extensively in recent years for the purpose of visualizing a decomposed frequency. 

The wavelet transform enables instantaneous visualization of the frequencies present 

and their intensities throughout the length of the signal on a single contour plot.  The 

idea behind wavelets takes root back to Joseph Fourier and his developed method 

now referred to as the Fourier transform [Fourier 1822] whereby sine and cosine 

waves are be superimposed to represent another function entirely.   

Nearly a century later, Alfréd Haar completed his dissertation at the University 

of Gottingen in which he established the Haar basis function [Haar 1909].  The 

function is a simple scalable square step function that which may be used in much 

the same manner as the sine and cosine functions in the Fourier transform.   Work by 

Paul Levy on the randomness of Brownian motion in the 1930s found that through 

the use of the Haar function as opposed to the traditional trigonometric functions of 

the Fourier transform, he could resolve much finer details of the motion.  

In 1985 a major advance in the basis functions employed was made through the 

creation of a continuously differentiable family of functions now known as Meyer 

wavelet.  Meyer’s work came in response to new advances in digital signal filtering 

and processing algorithms developed by Stephane Mallat [Mallat 1989].  Since then, 

other wavelets functions have been developed, each allowing for the identification 

of specific signal features.  The use of the second derivative Gaussian wavelet, more 

commonly referred to as the Mexican hat wavelet, results in a decomposition that 

identifies maximums and minimums in the signal with good time localization.  
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Similar continuous wavelet basis functions such as the Morlet wavelet [Goupillaud 

et al. 1984] were developed by other researchers simultaneously in other fields.  The 

Morlet wavelet offers its own sets of advantages and disadvantages such as the 

ability to better resolve details in the frequency domain.  The wavelet transform 

method of signal decomposition is a proven method that offers a very powerful tool 

for signal analysis.  In the case of the present study, convoluted signals are 

decomposed for analysis through this method as well as with some other 

complimentary methods such as the Fast Fourier Transform (FFT). 

 The wavelet transform is a method by which a single defined wavelet basis 

function �(t+ is expanded in its range and domain as well as translated such that an 

entire series of functions or ‘atoms’ is formed to characterize the signal s(t).  The 

atoms are defined by the function ��,/(t+ [Misiti et al 2007]: 

 

��,/(t+ ' 4
√� � <��/

� =     (24) 

 

Where the coefficient b translates the wavelet basis function  �(t+ , and a 

adjusts the scale.  The continuous wavelet transform of signal s(t) is defined by the 

function 6�. 

 

6�(%, �+ ' - �(�+��,/(t+���������� ��    (25) 

 

The coefficients 6�(%, �+  give an indication of the correlation between the 

adjusted wavelet function and the signal for given values of a and b over the entire 



 

 

time domain.  By plotting the coefficients over the entire domain with respect to 

time and scale, with contour

depiction of the decomposed 

single plot.    

 

 Graphically, this may be shown 

 

 

 Example Wavelet Decomposition:

 

  Start with signal 

cosine signal in figure 14: 

Figure 14. Sample signal s(

 

A desired wavelet is chosen (the reasoning behind the choice of th

for ease of visual explination

wavelet (aka. the Mexican hat wavelet)

 

By plotting the coefficients over the entire domain with respect to 

contour intensity indicating coefficient values, a logical 

decomposed signal over the entire time domain may be viewed in a 

ally, this may be shown more readily with the following example

Example Wavelet Decomposition: 

with signal s(t) that is to be decomposed, in this case the simple 

 

(t) versus time t 

 

is chosen (the reasoning behind the choice of th

for ease of visual explination).  In this case the second derivative of the Gaussian 

wavelet (aka. the Mexican hat wavelet) shown in figure 15 will be used.
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By plotting the coefficients over the entire domain with respect to 

intensity indicating coefficient values, a logical 

time domain may be viewed in a 

h the following example.   

, in this case the simple 

is chosen (the reasoning behind the choice of this wavelet is 

.  In this case the second derivative of the Gaussian 

will be used. 



34 

 

 

 

Figure 15. Mexican Hat wavelet basis function for continuous wavelet transform 

 

The Mexican hat basis function is defined as: 

�(�+ ' 9
√8 ��J

r(1 ! �9+���?
?     (26) 

 

 

The continuous wavelet transform calculates the coefficient that indicates the 

degree of matching for different wavelet atoms.  For a single well-scaled atom, this 

appears graphically as shown in figure 16. 

 

Figure 16. Signal s(t) with single wavelet atom with high level of matching 

 

 

The plot of coefficients takes the form of scale (often period or frequency) vs. 

time, with color intensity as the contour.  The plot for this single atom is a single 

point with a given intensity indicated in figure 17. 



 

 

Figure 17. Coefficient plot for single wavelet atom

 

When a multiple series of atoms are taken at the same translation

coefficient plot becomes populated

 

Figure 18. Multiple atoms with varying degrees of matching

 

By extrapolating this population to a continuous series of atoms, translating 

them over the entire domain, and allowing atoms to take the negat

frequencies become identifiable within the coefficient plot

Coefficient plot for single wavelet atom 

When a multiple series of atoms are taken at the same translation

coefficient plot becomes populated as shown in figure 18.   

Multiple atoms with varying degrees of matching 

By extrapolating this population to a continuous series of atoms, translating 

them over the entire domain, and allowing atoms to take the negative form, key 

frequencies become identifiable within the coefficient plot presented in figure 19
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When a multiple series of atoms are taken at the same translation in time, the 

 

By extrapolating this population to a continuous series of atoms, translating 

ive form, key 

presented in figure 19. 



 

 

Figure 19. Continuous wavelet transform over entire time domain

 

 

In the case of multiple frequencies

advantages of the wavelet 

wavelet does a good job identifying local maximums and minimums within the 

signal.  The application in the current study 

the absolute value of the contribution 

negative contributions.  An example of this is shown in the next example.  

wavelet basis functions offer other advantages such as the ability to better identify 

fine gradients in the signal. 

Take the case of a signal made up of two sine waves with intensities

1.0 and frequencies of 10 Hz

 

 

Continuous wavelet transform over entire time domain 

In the case of multiple frequencies superimposed upon one another, the 

advantages of the wavelet transform become apparent.  As seen, the Mexican hat 

wavelet does a good job identifying local maximums and minimums within the 

the current study utilizes a color contour that is based on 

the absolute value of the contribution rather than separately identifying positive and 

.  An example of this is shown in the next example.  

wavelet basis functions offer other advantages such as the ability to better identify 

 

e of a signal made up of two sine waves with intensities

Hz and 50 Hz respectively.   

s(t)= 0.3sin(2π10t)+sin(2π50t)  
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superimposed upon one another, the 

As seen, the Mexican hat 

wavelet does a good job identifying local maximums and minimums within the 

that is based on 

identifying positive and 

.  An example of this is shown in the next example.  Other 

wavelet basis functions offer other advantages such as the ability to better identify 

e of a signal made up of two sine waves with intensities of 0.3 and 

 (27) 
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Applying the wavelet transform and setting the scale in terms of frequency, the 

coefficient plot is obtained and both characteristic frequencies are visualized 

independently over the time domain in figure 20.  It should be noted that the 

frequency domain is inversely related to the period; therefore, a lower period 

denotes a higher frequency.  As the period approaches zero, the frequency 

approaches infinity; hence the large jump in frequency near the origin.   

 

 

Figure 20. Continuous wavelet transform of superimposed signal s(t) using the Mexican Hat 

wavelet 

 

Two different identified signals are present in the wavelet coefficient plot at 

the frequencies 10 Hz and 50 Hz.   The ‘legs’ seen between the lower and higher 

frequency signals indicate that they are in phase with one another.  The distortion 

near t=0 takes place due to the filtering algorithm being performed over a finite 
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domain.  There is no distortion at t=0.3 due to the length of the signal extending 

beyond that which is plotted.  In practice, the coefficients at the beginning and end 

of the plot are ignored to avoid the effects error introduced by this mechanism.  

Many times signals are doubled or tripled before the wavelet transform is done such 

that there is sufficient data to accurately decompose the signal.  Sufficient results 

were obtained in this study to avoid the use of this technique. 

The use of the Morlet wavelet, shown in figure 21, on the same signal will 

produce a different coefficient plot due to the high gradients of the basis function.  

This makes the wavelet ideal for identifying gradients in the signal with high 

accuracy in the frequency domain.  

 

 

Figure 21. Morlet wavelet basis function 

 

The Morlet basis function is defined by the following equation [Goupillaud et 

al. 1984]: 

�(�+ ' ���?
? cos (5�+     (28) 

 



39 

 

 

The plot of coefficients, in figure 22, obtained from the wavelet transform 

using the Morlet basis function shows a tightened frequency resolution.  As the 

focus of this study was around the study of turbulent structures and frequencies 

present within the rod bundle, the Morlet basis function was used in the analysis of 

the signals. 

 

 

 

Figure 22. Continuous wavelet transform of superimposed signal s(t) using the Morlet wavelet 

 

Another well established spectral decomposition method is the Fast Fourier 

Transform (FFT).  While the use of FFT in identifying frequencies present in a given 

signal is extremely useful, it lacks the ability to decompose the signal for every 

sampled point in time.  Figure 23 presents the FFT spectrum for the signal s(t) with 

the two present frequencies clearly identified by the peak locations as well as the 

intensity indicated by the magnitude of the peak.   
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Figure 23. Fast Fourier Transform of signal s(t) 

 

The use of various frequency analysis methods to complement one another 

improves on the comprehensiveness of the study.  While the wavelet transform 

provides an instantaneous depiction of the signal, FFT is useful for decomposing the 

signal over the entire domain as well as providing a secondary decomposition for 

analysis.   
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3. RESULTS 

3.1. Jet Spreading Rate and the Viscous Superlayer 

Steady state results, while not entirely representative of a flow dominated by 

unsteady flow phenomena, are still useful in identifying regions of interest to be 

investigated in unsteady results, as well as providing good points of comparison 

with time averaged experimental data.  The experimental data of Amini and Hassan 

[2009] is presented as a time averaged velocity field obtained using dynamic 2D 

PIV.   Comparison between simulation results using various numerical models was 

performed using line probes taken in the axial direction within each jet, and then 

plotted on the same axis for each jet.  In addition to steady state models, time 

averaging of the LES results was also performed over roughly 1400 time steps for a 

total simulation time of 0.7 seconds.   

Jet dispersion is one parameter for comparison amongst the different models.  

An arbitrarily threshold value for the jet ‘edge’ was set to be 15% of the peak jet 

velocity obtained by the probe nearest to the inlet.  This threshold value was kept 

constant for the remaining probes and was chosen because it gave the best 

compromise between spreading and velocity field variation on the fringe of the jet.  

Figures 24-26 show jet widths at varying heights between the inlet and 1.1cm from 

the bottom plane of the channel.   
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Figure 24. Line probe locations under each jet at increments of 5mm shown on the scalar result 

plot obtained using the realizable k-ε model. 

 

 

Figure 25. Velocity profiles along line probes of the averaged LES results for the two jets 

Re=6,250(left) and Re=11,160(right). 
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Figure 26. Velocity profiles along line probes of the averaged experimental data   [Amini and 

Hassan 2009] for the two jets Re=6,250(left) and Re=11,160(right). 

 

The velocity profiles at the jet nozzle outlets in the experimental data and 

numerical results differed from one another.  The experimental data shows outlet 

conditions partway between a top-hat velocity profile and a Gaussian profile, 

whereas the numerical results have a well defined top-hat profile.  The different 

profiles can have profound differences on the turbulent shear layer of the jet wake as 

demonstrated by New et al [2006].  It was shown that a top-hat velocity profile 

resulted in a dramatic reduction in the dimensionless length y/D to the formation of 

large scale Kelvin-Helmholtz vorticies in the viscous superlayer around the jet 

plume.  Parabolic entrance profiles tend to produce less coherent vortex structures 

and increased disintegration of flow structures into small scale eddies.   
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Figure 27. Spreading jet diameter with respect to distance from inlet nozzle  

 

Compiling the spreading jet diameters for all the models compared, as well as 

the experimental data [Amini and Hassan 2009] in figure 27, it is seen that in the 

case of the high velocity jet, the two variations of the k-epsilon model give nearly 

identical spreading rates, while the averaged result of the LES simulation has far 
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less diffusion.  Table 3 gives the half angles of the extrapolated line for each jet 

case.  It is possible that this came as a result of a high transfer of turbulent energy 

from the large scales to the SGS due to a high SGS coefficient, thus leading to 

decreased mixing in the jet plume and less spreading.  This effect has been 

documented by Ilyushin and Krasinsky [2005] for the Smagorinsky SGS model and 

a more in depth sensitivity study of the effect of the coefficient choice in the WALE 

SGS model should be performed.  The experimental data falls between both the 

steady state models as well as the time averaged LES results.  The spreading angle 

of the jets may be estimated by taking the half angle of the linear extrapolations 

plotted in figure 27.    

The spreading angles in the low Re jet illustrate the higher diffusion of the k-

epsilon models compared to the experimental data, while the averaged LES results 

underestimated the spreading angle.  While the averaged LES results may have come 

closer to the averaged experimental data than the other turbulence models for the 

high Re jet, it is important to keep in mind the effect of averaging on the result as 

well as uncertainty limits in both experimental data and numerical results.  Due to 

the crude nature of the particular spreading rate analysis, it should not be relied upon 

independently for determination of model applicability to such flow regimes.  

Additionally, in the case of highly unsteady flows, steady state and time averaged 

results can be very limiting. 
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Table 3. Spreading half-angles of the two jets using different models 

Jet Case Low Re Jet High Re Jet 

Experimental Data 4.35° 2.60° 

Standard k-epsilon 6.59° 3.46° 

Realizable k-epsilon 5.95° 3.46° 

LES 2.31° 2.15° 
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3.2. Recirculation Zones 

A key phenomenon present within the lower plenum is the formation of 

recirculation zones.  Within the lower plenum these may present the problem of hot 

spot formation along the support rods due to insufficient mixing.  Two primary 

recirculation zones are present in the results where the jet plumes impact the 

columns in the vertical mid-plane.  In the standard and realizable k-ε turbulence 

models, large vorticies were present where the flow strikes the rod and is directed 

upwards away from the bottom plane.  Secondary vorticies are present at the 

separation point above the main vortex.  Near the bottom edge of the rod, the flow 

appears to separate in the y direction with the flow that goes downwards partially 

doubling back on itself.  This point observed in the time averaged results of the LES 

simulations presents itself as a small vortex.  Vortexes around the base of a cylinder 

may be an indication of the presence of horseshoe vorticies as seen in previous 

studies of crossflow around a cylinder [Muzzammil and Gangadhariah 2003].   

The steady state results along the vertical mid-planes show the same basic 

trend with the time average of the LES results.  The key differences lie in the size 

and position of the two primary recirculation zones against the central rod, as well 

as the presence of secondary and tertiary recirculation zones.  The locations midway 

between the impinging jets and the central rod (x≈0.695m and 0.750m) show  

splitting features in the streamlines.  In the case of the simulations using the 

standard and realizable k-ε models, a recirculation zone only appears to be present 

on the side of the lower Re jet; however, the averaged LES results indicate the 

presence of a tight vortex on the high Re jet side as well.   
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a 

 
b 

 
c 

 

Figure 28. Steady state results in the vertical mid-plane bisecting the two jets for the a)standard 

k-ε model, the b) realizable k-ε model, and c) time averaged results from the LES 

model 
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Figure 29.  Time averaged results in the vertical mid-plane for the experimental data [Amini and 

Hassan 2009] 

  

Figure 30. Definition sketch of quantification metrics for primary and horseshoe vorticies 

 

Quantifying the size of the vorticies shown in figures 28 and 29 for comparison 

between models and experimental data is done by calculating the mean vortex 

diameter Dv, vortex velocity Vθ, and vortex strength Г from the quantities shown in 

figure 30.  Vortex quantities are defined by equations 29-31. 
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Dv = ai + bi      (29) 

Vθ=πNDv      (30) 

Г=πVθDv      (31) 

Comparing the results in table 4 between the steady state models, time 

averaged LES results, and the time averaged experimental data, several model 

features become evident.   

The primary vortex is measured by a1 and b1 and the smaller horseshoe vorex 

by a2 and b2.  The high Re or low Re designation for the jet vortex refers to which 

vortex is being quantified.  The high Re vortex is on the same side of the central rod 

as the high Re jet, and likewise is the same for the low Re vortex.  The horseshoe 

vortex was present on both sides of the central rod in the LES results and the metrics 

are similarly calculated.  Between the compared metrics, the realizable k-ε model 

most nearly simulated the size of the primary vorticies; however the vortex velocity, 

rotations per second, and vortex strength differed.  Strengths of the primary vorticies 

varied widely between the models and the experimental data.  The k-ε models both 

under predicted the vortex strength in comparison to the experimental data while the 

time averaged LES results over predicted the result.   

Comparing the vortex strength of the primary and horseshoe vortices in the 

LES results indicates the horseshoe vortex on the high Re number side of the central 

rod is 2.6 times the strength of the primary vortex on the same side.  On the low Re 

number side, the horseshoe vortex is only 70% the strength of the corresponding 

primary vortex.  Further study both experimentally and numerically on a more 

refined scale is needed into the interaction to draw more concrete conclusion on the 
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relation between primary and horseshoe vortex strengths for a complex flow as in 

this study. 

 

Table 4.  Metrics of primary and horseshoe vortex results 

Turbulence Model 

Jet 

Vortex 

Dv 

(m) 

Mean Vel. 

Mag. (m/s) 

Max Vortex 

Vel. (m/s) 

Rotations 

/s 

Vortex 

Strength (m
2
/s) 

Realizable k-ε model High Re 0.0159 0.0280 0.0449 0.9000 0.0039 

(Primary vortex) Low Re 0.0102 0.0176 0.0217 0.6755 0.0012 

Standard k-ε model High Re 0.0187 0.0308 0.0540 0.9195 0.0052 

 (Primary vortex) Low Re 0.0097 0.0123 0.0166 0.5454 0.0006 

Averaged LES Results High Re 0.0257 0.0679 0.1086 1.3435 0.0231 

 (Primary vortex) Low Re 0.0143 0.0703 0.0935 2.0862 0.0207 

Averaged LES Results 

(Horeshoe Vortex) 
High Re 0.0023 0.1244 0.1563 21.7617 0.0610 

Low Re 0.0031 0.0624 0.0738 7.5734 0.0145 

Ave. Experimental  

Results  

(Primary vortex) 

High Re 0.0152 0.0374 0.0701 1.4655 0.0082 

[Amini and Hassan 2009] Low Re 0.0100 0.0297 0.0478 1.5162 0.0045 

 

 

 

It is important to remember that the flow is highly three dimensional and that 

out of plane rods are present at locations midway between the impingement sites and 

the central rod.  These out of plane rods are even closer to the impinging jet and 

have strong horseshoe vorticies that travel around the base of the cylinders.  These 

vorticies interact in the vicinity of the mid-plane and fluctuations in the horizontal 

plane take place.  In the case of the standard and realizable k-ε turbulence models 

between the high Re jet and the rod, the steady state aspect of the models contribute 

to the simulation favoring both sides nearly the same, therefore averaging out each 

of the counter-rotating vorticies formed by the flow striking the out of plane rods.  

In the case of the averaged LES results, it is possible that one side was favored 
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slightly more than another, leading to the presence of a small vortex in this region.  

Between the lower Re jet and the central rod, recirculation zones were observed for 

all cases, but the averaged LES results showed a larger more pronounced zone 

(figure 28c).  

The time averaged experimental data [Amini and Hassan 2009] shown in figure 

29 indicates the presence of the same two primary recirculation zones adjacent to the 

center rod.  The same characteristic splitting of the streamlines as the out of plane 

features alter the flow patterns, although there was no identification of a vortex in 

this location.  It is possible that the experimental uncertainty, as well as the 

averaging of data acquired in 5000 frames taken over five seconds averaged out such 

vorticies.   

In the unsteady LES results, entrainment features are more readily identified 

than in the steady state results due to averaging.  High jet entrainment of the 

surrounding semi-quiescent fluid is indicated by the streamline tendency towards the 

jets.  Jet entrainment is highly dependent on viscous interaction between the 

surrounding fluid and the jet at the viscous superlayer.  Instability at the inlet 

location induces a slight pressure gradient in the jet plume.  The result of an initial 

perturbation of the jet is the development of a strong Kelvin-Helmholtz instability.  

This perturbation causes the jet core region to shrink causing an increase in speed as 

mass is conserved within the viscous superlayer.  This increase in velocity in turn 

results in a reduction in pressure according to Bernoulli’s principle which leads to a 

further buildup in the plume.  The resulting vortex that is produced axisymetrically 

around the jet plume travels down until it reaches the impingement layer, growing as 
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it travels further into the domain.  This ring vortex formation leads to the presence 

of what will be referred to as psuedo slugs within the jet plume.  The term pseudo 

slugs stems from the presence of very high entensity pressure and velocity waves  in 

these necked locations that travel with a very high periodicity. 

 

 

 

Figure 31. Instantaneous velocities and out of plane Z vorticity components illustrating vortex 

structures in the viscous superlayer 
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The necking of the jet and formation of ring vorticies has been observed in 

experimental works for round jets in the same range of Reynolds numbers as 

investigated in the present work [F. Shu et al. 2005].  In the case of a jet that has a 

top-hat profile as opposed to a Gaussian profile, a reduced distance (y/D) to the 

onset of vortex rings has been documented [New et al 2006] and it is possible that 

the strong presence of these structures in the numerical results but not the 

experimental data is due to slightly different entrance profiles causing the presence 

of different entrainment regimes within the domain.  The velocity and vorticity 

fields in figure 31 as well as the iso-surface plot in figure 32 show the formation of 

tight vortex rings and the high velocity in the jet at these necked locations due to the 

Kelvin-Helmholtz instability.  

In the near wall region at the base of the rod, a very tight vortex is present in 

the time averaged LES results.  Figure 33 illustrates the position of horsehoe 

vorticies along the base of the cylinder adjacent to the impinging flow and figure 34 

shows the location of the resulting shadow zone following the cylinder.  Doubling 

back of streamlines as seen in figure 35, in the k-ε models indicate a possible 

horseshoe vortex that was not completely resolved.  Instantaneous LES results in 

figure 36 show a large well defined vortex present in this location.  In the case of the 

experimental data shown in figure 37, this vortex is not present.  It is possible that 

the horseshoe vortex is not present in the actual case; however it should be noted 

that measurements in this region cannot be said to be conclusive due to obstructions 

and aberrations in the wall material near the edges of the experimental facility.    
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Figure 32. Vorticity iso-surfaces with velocity magnitude scalar coloration of instantaneous LES 

results 

 

Figure 33. Single horseshoe vortex around a column 

 

The importance of these horseshoe vorticies is threefold.  The first is the 

potential formation of hotspots in these locations; the second is the possible abrasion 

at the base of the graphite support rods; and the third is the settling of dust particles 

in the shadow zone in the wake of the support rod.  The nearly constant presence of 
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high intensity horseshoe vorticies, illustrated by figure 33, around the base of the 

cylinders could be points of high abrasion for a material prone to dust formation 

such as graphite if wear particles are present in the gas flow.  Muzzammil and 

Gangadhariah [2003] experimentally investigated the presence of the horseshoe 

vortex formed around the base of a pier column in a crossflow and the key role 

played by this vortex in the scour of the surrounding base.  While the case of scour 

at a pier base is focused on sand removal from the location of the vortex, the 

presence of wear particles in the flow, such as other dust particles released from the 

core, could potentially abrade the lower graphite plate.  The insulation later at the 

bottom of the lower plenum of the VHTR is composed of one meter of nuclear 

graphite and 200mm of carbon-carbon composite [MacDonald 2003].  

While the possible abrasion that might result in the locations of the horseshoe 

vorticies is a point of interest, the potentially more important issue lies in the 

shadow zones of the rods.  In the horizontal plane 2mm from the plane of 

impingement, shadow zones presented themselves in the results.  Shadow zones are 

features observed in the wake of horseshoe vorticies just following the cylinder and 

before the onset of the turbulent instabilities.  This phenomenon has been described 

by Greenly and Iverson [1985] as the reason for dust buildup just behind 

obstructions in windy conditions.  These zones are important as they may act as 

traps for the dust produced in the reactor core.  These particles will not be filtered 

out of the system properly and in the event of a large break loss of coolant accident 

(LOCA) scenario, the rapid depressurization of the reactor vessel would cause any 

such buildups to be released suddenly from the vessel into the containment. 
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Shadow zones are observed for most locations following rods in the numerical 

results as regions of relatively stagnant flow, although the size and shape vary 

largely based on the location relative to the two impinging jets.  It may be seen in 

the instantaneous velocity profile of the LES results that the impinged jet at a given 

instance tends to one side of the central rod.   

The steady state and time averaged LES results in figure 38 indicate an even 

distribution to both sides of the rod.  Figure 39 presents an instantaneous snapshot of  

the flow and shows a clear channeling to one side of the central rod.  From the times 

averaged result and this instantaneous result, there is turbulent switching in the 

bundle; however, the switching is evenly distributed to both sides of the bundle.   

Experimental data in the horizontal plane to validate this result was not available at 

the time of this study.   

 

 

Figure 34. Shadow zone in the wake just following a cylindrical obstruction 

 

These results are in agreement with those seen by Johnson et al [2006] in 

which the presence of standing wakes downstream of the cylinders were seen.  Their 

unsteady simulations and experimental data seem to confirm these shadow zones as 
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standing wakes following the cylinders; however, at the time of the publication it 

was unsure as to the accuracy of both the numerical results and experimental data.  

The results presented in the subsequent wavelet transform section indicate very low 

velocities in these locations; however, there were still measurable frequencies in the 

ranges calculated by means of the of the Strouhal number equation for the case of 

uniform flow past cylindrical structures. 

 

 

 

 

 

Figure 35. Numerical results of flow along the vertical mid-plane at the central cylinder base 

(located at x=0.729m) 
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Figure 36. Instantaneous LES results of flow along the vertical mid-plane at the central cylinder 

base (located at x=0.729m) 

 

 

Figure 37. Time averaged experimental data of flow along the vertical mid-plane at the central 

cylinder base (located at x=0.729m) 
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      a        b 

 

 c 

 

Figure 38. Steady state results in the horizontal plane 2mm from the bottom plane for the 

a)standard k-ε model, the b) realizable k-ε model, and c) time averaged results from 

the LES model 
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Figure 39. Instantaneous LES results of velocity and out of plane vorticity scalars 

 

 

3.3. Wavelet Transform Frequency Analysis 

A difficulty in the analysis of unsteady CFD simulations is the amount of 

information present in the results.  To focus the scope of this work, transient signals 

were extracted from the results in the vertical mid-plane bisecting the two inlets as 

well as a horizontal plane 2mm from the bottom.  The horizontal plane at y=2mm 

was chosen because it lies in the impingement plane of the jets and the vortex 

shedding in the flow past the cylinders is present as well.   

Signals in the vertical midplane were extracted from the results at the locations 

shown in figure 40.  The Morlet mother wavelet was used for its ability to identify 

sharp gradients in the signal.  This characteristic ability gives it particularly good 

frequency resolution as opposed to some of the other mother wavelets.  The 

continuous wavelet decomposition of the velocity magnitude signal at point 10 
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(figure 41) illustrates the dominant frequency introduced by the periodic Kelvin-

Helmholtz(KH) instability of the entrainment of surrounding fluid in the location 

two diameters from the jet inlet.  The dominant frequency present occurs around 43 

Hz as seen in both the wavelet coefficient plot as well as the peak at 43 Hz in the 

FFT plot.  The decomposition of the signal obtained at point 2, 6.5 diameters from 

the inlet jet, is shown in figure 42.  The dominant frequency remains the same as 

before; however, the intensity has increased as the KH instability continues to grow.  

Additional frequencies are detected in the range of 10Hz to 30Hz.  The source of 

these frequencies remains unknown for certain; however, it seems possible that these 

are the result of fluctuations in the centroid of the impingement location about the 

signal location.   

 

 

Figure 40. Extraction point locations along the vertical mid-plane for wavelet analysis  
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Figure 41. Wavelet transform of vertical point 10 using the Morlet mother wavelet 

 

As the jet spreading occurs, fluctuations induced by the presence of out of 

plane rods as well as turbulent spots along the lower plane of the channel alter the 

characteristic frequencies in the flow.  The decompositions of points 4 and 4 in 

figures 43 and 44 show results along the lower impingement plane just prior to 

impinging the central rod.  Newly introduced turbulent frequencies in the range of 7 

Hz to 30 Hz are seen due to other sources.  It should be noted that frequencies 

present in the very low range of less than 4 Hz should be taken with care.  The 
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filtering mechanism of the wavelet transform is such that the low pass filters require 

a longer signal to avoid influence of the finiteness of the signal.    

 

 

Figure 42. Wavelet transform of vertical point 2 using the Morlet mother wavelet 

 

The presence of the frequency spike at 7.8 Hz in the signals of both points 3 

and 4 can be linked to the vortex shedding of the out of plane rods.  The 

impingement layer of the jet is a high velocity flow approximately 3-4mm thick 

extends outward from the impingement locations.  The mean velocity magnitude of 
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the time averaged LES results for the region indicated in figure 45 is 0.435m/s. The 

Reynolds number for flow across a cylinder depends on the region over which the 

average velocity is taken.      

 

 

Figure 43. Wavelet transform of vertical point 3 using the Morlet mother wavelet 

 

Vortex shedding frequency calculations using the equation for the Sr number 

should be approached with caution in the case of this study. Variation in the size of 

the region of interest changes the mean Reynolds number used in the calculation.  
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The Strouhal-Reynolds number relationship (Eq.32) developed by Roshko [1954] 

between Reynolds numbers of 300 and 10,000 gave a Strouhal number within 4% of 

the best fit of experimental data for uniform flow over a cylinder.  While this error 

might be low, the presence of multiple regime changes within this region should be 

noted.  Like Roshko, Bloor [1963] observed irregularities in the 200<Re<400 range 

as well, but suggested that in this range turbulence was introduced by three 

dimensional effects.  Above Re=400, transition takes place before the separation 

layer curls up.  Regularity in the signal was found to only occur when transition 

occurred well within the separated region.  Bloor determined this occurred for 

Reynolds numbers above 1,300.  In the near wall region of the present study, the 

averaged Reynolds number was 4,641 which put the flow regime past the cylinder 

near the transition between the subcritical flow regime and the presence of Kelvin-

Helmholtz vortices in the shear layer [Fey et al. 1998].  The Strouhal number based 

on Roshko’s formulation was 0.211 for this mean Re number.  When the region of 

averaging was enlarged to include more of the low velocity core region, the 

difference in the Reynolds number changes the calculated frequency enough to note.   

 �� ' 0.212 ! 9.�
��       (32) 

�� ' �·�
�       (33) 
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If the Sr number is reduced, or the average velocity region is expanded, the 

effect on the frequency may be altered up or down by a few of Hz.  Regions with the 
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same widths but with heights of 3mm and 2mm had mean velocities of 0.360m/s and 

0.435m/s respectively.  For the lower mean velocity region, Sr changes a negligible 

amount; however the shedding frequency reduced to 7.12Hz.  The wavelet 

transforms indicate that frequencies vary in time and drift in and out of different 

regimes as the flow patterns evolve.  It seems acceptable to take the results of the Sr 

number calculation as a general guide in identifying the source of dominant 

frequencies as long as this variability is kept in mind.  

 

Figure 44. Wavelet transform of vertical point 4 using the Morlet mother wavelet 
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Figure 45. Zone of velocity averaging in time averaged LES results for frequency estimation 

 

Looking at the low Re jet signal decomposition of point 9 in figure 46, the 

entrainment fluctuations observed are 24.4 Hz which is approximately half the 

frequency of that seen as in the high Re jet.  The ratio of Reynolds numbers between 

high and low jets is equivalent to the ratio of the dominant frequencies in each jet 

within 0.4% of one other.   

The wavelet transform of the signal at point 6 (figure 47) taken along the 

bottom plane below the low Re jet has remnants of the 24 Hz dominant frequency 

generated by the KH instability in the jet superlayer, but has also developed 

frequencies characteristic to point 2 taken below the high Re jet.  A characteristic 

frequency around 7 Hz again presents itself and another around 20 Hz.  After 

observing the presence the 7 Hz frequency in various locations within the vertical 

mid-plane of the channel, the next step performed was the same frequency analysis 
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of signals acquired within the thin horizontal impingement layer at y=2mm from the 

lower plane.  The remaining vertical mid-plane points may be found in Appendix A.  

 

 

Figure 46. Wavelet transform of vertical point 9 using the Morlet mother wavelet 
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Figure 47. Wavelet transform of vertical point 6 using the Morlet mother wavelet 

 

Frequency decomposition was also done for points in the horizontal plane 2mm 

from the bottom and in the locations indicated in figure 48.  The decomposition for 

point 1 in figure 49 showed a shift in the signal frequency at the 20 Hz range to 42 

Hz between times 0.1s and 0.25s and then back down to 30 Hz by t=0.4s.  The 

velocity magnitude signal at this point shows that the velocity increased from a low 

of around 0.03m/s at 0.15s to a high of around 0.30m/s around 0.3s before again 
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reducing through the remainder of the signal.  There is an apparent correlation with 

the increase in the mean velocity to the increase in frequencies in the high range. 

The signal at point two in figure 50, which just follows the rod midway 

between the high Re jet impingement site shows similar dominant frequencies to 

those in point 3 of the vertical mid-plane (indicated in blue font in figure 48).  A low 

frequency around 4 Hz is present over the entire time domain and a well defined 

frequency around the 8 Hz range is present from 0.1s until 0.45s at which point it 

transitions to a higher range of 13 Hz with remnants of the 8 Hz signal still present. 

 

 

 
Figure 48. Locations of signal probes in the horizontal plane 2mm from the bottom plane.  Numbers in 

blue signify the points previously obtained in the vertical mid-plane 
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Figure 49. Wavelet transform of horizontal point 1 using the Morlet mother wavelet 
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Figure 50. Wavelet transform of horizontal point 2 using the Morlet mother wavelet 

 

When this signal was compared with that of point 3 in the horizontal plane 

(figure 51), a dominant frequency was seen at 3-4 Hz throughout the time domain 

similar to point 2.  There was also a frequency present around 13 Hz in between 

times 0.1s and 0.445s at which point it diminished.  Between 0.1s and 0.45s, both 

points 2 and 3 had distinctively different frequencies.  As the 13 Hz frequency 

diminished in the point 3 signal at 0.45s, signal 2 picked up traces of the same 
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frequency.  This shift seems to indicate a change in the channeling of flow from one 

side of the central rod to the other.  The time average of the flow in the horizontal 

plane for the LES results indicate that there is an equal preference to both sides, 

while the unsteady results indicate a characteristic switching of the flow from one 

side to the other as opposed to reaching a steady state free of large fluctuations. 

 

Figure 51. Wavelet transform of horizontal point 3 using the Morlet mother wavelet 

 

At signal locations 5 and 6 (figures 52 and 53), a dominant frequency was 

present around 6 Hz and the two signals were out of phase from one another by 
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about 0.25s.  As the flow from the high Re jet impingement hit the central rod and 

lost much of its momentum upward, the remaining flow split to both sides of the rod.  

As the split flow passes the secondary rods, turbulent fluctuations are generated by 

the flow separation from these rods in the same fashion as before but with a 

decreased frequency due to the lower velocity as the impinged flow continue to 

decay further from the impingement site.    

 

Figure 52. Wavelet transform of horizontal point 5 using the Morlet mother wavelet 
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Figure 53. Wavelet transform of horizontal point 6 using the Morlet mother wavelet 

 

After the shift in flow preference was observed between points 2 and 3, it 

seemed logical that the shift would also present itself in the signals throughout the 

rest of the domain.  Points 7 through 12 all exhibited large changes in the dominant 

frequencies present between 0.4s and 0.6s.  Point 7 was located behind a rod near 

the lower Re jet; however, while the flow from the high Re jet tended towards that 

side of the bundle (0.1s through 0.4s), the dominant frequency present was around 9 



77 

 

 

Hz.  When the flow shifted to the other side of the channel, a well defined frequency 

around 18 Hz became clear in the decomposition shown in figure 54.   

 

Figure 54. Wavelet transform of horizontal point 7 using the Morlet mother wavelet 

 

The signal in point 9 (figure 55) showed a trend inverse of that seen in point 7 

(figure 54).  As the flow shifted, the frequency reduced and peaks in the intensity of 

the lower frequencies are seen while only faint remnants of the higher frequency 

remained.  Velocities at points 9 and 10 (figures 55 and 56) were significantly lower 

than those recorded at points 7, 11, and 12 (figures 54, 57, and 58 respectively) due 
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to the larger shadow zone created both by the low Re jet flow past the two rods 

upstream of the points, and the flow of the high Re jet around the central rod causing 

a channeled flow away from these signal locations.  It is in these locations that one 

might expect large dust particles with high inertia to be thrown from the main flow 

and deposited into piles. 

 

 

Figure 55. Wavelet transform of horizontal point 9 using the Morlet mother wavelet 
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Figure 56. Wavelet transform of horizontal point 10 using the Morlet mother wavelet 

 

Interpretation of the wavelet coefficient plots via comparison from one 

neighboring point to another emphasized the relationship between flow direction, 

dominant and overlapping frequencies, and how all of these frequencies contribute 

to the overall flow structure present in rod bundles.  The coefficient plot obtained 

from the wavelet transform decomposition of the velocity magnitude signal at point 

12 (figure 58) emphasized many of the advantages of this form of analysis. 
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Figure 57. Wavelet transform of horizontal point 11 using the Morlet mother wavelet 

 

Initially, very distinct frequencies at different scalesare present in the 

coefficient plot.  Faint frequencies at the 26 Hz range seem to stem from the 

dominant entrainment frequency observed in the vertical mid-plane signal of the low 

Re jet (figure 51).  Frequencies in the range of 12 Hz and 7 Hz are present in several 

locations in the horizontal plane as flow passes the rods and induces turbulent 

fluctuates in the wakes.  As the flow transitioned around 0.4s on the high Re jet side, 

a strong increase in the sominant frequency was seen at point 12 by the moving from 
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4 Hz to 12 Hz between 0.4s and 0.55s.  This form of analysis is very powerful in the 

understanding of unsteady flow structure interactions within the domain. 

 

 

Figure 58. Wavelet transform of horizontal point 11 using the Morlet mother wavelet 
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4. CONCLUSIONS 

In this study of jet flow mixing and interaction in a staggered rod bundle, 

proper guidelines were employed in the development of a computational grid that 

ensured the mesh limited the amount of error present in the numerical result due to 

factors other than the turbulence models employed.  The discretized model offered 

acceptable results, but due to limitations in the computer cluster employed, further 

refinement of the mesh was not possible at the time of the study to obtain grid 

convergence criteria below 2% for all measured parameters.  Despite this, global 

convergence orders were still between 2
nd

 and 4
th

 order.  In future numerical studies 

of the same experimental setup, it would be beneficial to complete this simulation on 

a mesh with cells down to the 300µm range and time steps of 0.0001s.  Such a mesh 

would be in the range of 50 million cells and would require a significantly larger 

cluster to perform the calculation.   

The results of the work emphasized the importance of knowing the boundary 

conditions present in the actual VHTR and the difficulty faced when coupling 1 

dimensional system codes to high fidelity 3 dimensional CFD simulations.  Very 

little is known at the boundary condition in such couplings and as previous literature 

suggests, there is a high level of dependence on the inlet jet conditions.  In this 

study, the inlet boundary conditions had a top-hat profile which is suspected to have 

led to an increase in vortex ring generation during jet entrainment than would have 

been present with round Gaussian jet profiles.  Further work into the actual profile 

present in the lower plenum of the VHTR should be investigated as this profile 
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might have a profound influence on the level, frequency, and starting lengths 

Kelvin-Helmholtz instabilities.   

All models both steady and unsteady identified the two primary vorticies 

present along the central rod with the Realizable k-ε turbulence model most closely 

modeling the vortex sizes of the time averaged experimental data [Amini and Hassan 

2009].  The averaged large eddy simulation (LES) results overestimated vortex size, 

rotation rate, and vortex intensity compared to the experimental data.  It is possible 

that by running additional time-steps the averaged result will approach the 

experimental data; however, the averaging of the unsteady result nearly defeats the 

purpose of running unsteady simulations from the start.  Unsteady comparisons of 

vortex metrics including those mentioned as well as the drift in the vortex location 

over time would be particularly useful in understanding the vortex interaction. 

Small horseshoe vortices present between the primary vorticies, the bottom 

plane, and the rods were observed in the LES results.  Given sufficient wear 

particles present in the flow due to the release of graphite dust as coolant passes 

through the reactor core, these vorticies in the lower plenum should be investigated 

for possible locations of abrasion over the long lifespan of a reactor.   

Future investigation of dust buildup in the shadow zones present in the bundle 

should be performed both experimentally and numerically.  Experimentally this may 

be done by scaling the dust particle size and density appropriately to the test fluid 

being used and circulate the flow continuously until the particles have settled out.  

Numerically this may be done by performing LES simulations with a Lagrangian 

particle tracking solver.   
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Despite the discrepancy between the experimental data and the LES results, 

frequency information obtained through the analysis of the unsteady results using 

the fast Fourier transform (FFT) and the wavelet transform decomposition of the 

point signals throughout the domain provide useful insight into possible flow 

interactions.  Well defined Kelvin-Helmholtz vortex formation occurred in the 

entrainment process of the jets as they entered the main fluid body.  These vortex 

rings were generated with characteristic frequencies of 24Hz and 43Hz for the jets 

of Reynolds numbers 6,250 and 11,160 respectively.  The ratios of the vortex 

shedding frequencies of the two jets to the ratio of the jet Reynolds numbers fell 

within 0.4% of one another.   

Frequencies present following the staggered rods in the horizontal plane of the 

jet impingement at height y=2mm coincided with those estimated to be present in 

uniform flow past a cylinder by the Strouhal-Reynolds number relationship of 

Roshko and the correlation of Sr with shedding frequency.  The caveat in relying on 

this relationship alone when using steady state results is the shift of frequencies as 

the flow fluctuates on the different scales, both locally and globally within the 

domain.   Structurally speaking, analysis of the presence of consistent and well 

defined frequencies located at the base of the support structure in the lower plenum 

of the VHTR may or may not be an issue but should still be investigated.  A multi-

physics study coupling a CFD analysis using LES with structural finite element 

analysis methods in the support rods could provide a good insight into structural 

dynamics under different flow conditions in the lower plenum.   
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APPENDIX A 

 ALTERNATE SENSITIVITY STUDY 

 

 

Figure 59. Extrapolated results directly below inlet jets Rejet1=13,700 and Rejet2=6,700 
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Figure 60. Grid Convergence Indices directly below inlet jets Rejet1=13,400 and Rejet2=6,700 
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Figure 61. Axial flow velocity directly below inlet jets Rejet1=13,400 and Rejet2=6,700 
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Figure 62. Error from each grid size to the result extrapolated from grids 3, 2, and 0 for 

Rejet1=13,700 and Rejet2=6,700 
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APPENDIX B  

ADDITIONAL WAVELET TRANSFORM DECOMPOSITIONS 

B.1 Vertical Mid-plane Points 

 

Figure 63. Extraction point locations for wavelet analysis 

 

Figure 64. Wavelet transform of vertical point 1 using the Morlet mother wavelet 
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Figure 65. Wavelet transform of vertical point 5 using the Morlet mother wavelet 
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Figure 66. Wavelet transform of vertical point 7 using the Morlet mother wavelet 
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Figure 67. Wavelet transform of vertical point 8 using the Morlet mother wavelet 
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Figure 68. Wavelet transform of vertical point 11 using the Morlet mother wavelet 
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Figure 69. Wavelet transform of vertical point 12 using the Morlet mother wavelet 
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B.2  Horizontal plane points at y=2mm 

 

Figure 70. Locations of signal probes in the horizontal plane 2mm from the bottom plane.  Numbers in 

blue signify the points previously obtained in the vertical mid-plane 

 

 

Figure 71. Wavelet transform of horizontal point 4 using the Morlet mother wavelet 
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Figure 72. Wavelet transform of horizontal point 8 using the Morlet mother wavelet 
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APPENDIX C 

CODES AND MACROS 

 

C.1  Macro for result acquisition during LES simulation.  Written for Star-CCM+ 

v3.06.006 

 

// Macro by Nathaniel Salpeter 

// Copyright 2008 Texas A&M University 

 

//Macro is designed to run timesteps 

// Tasks while running include: 

//     Exporting desired scenes to the desired locations every 5 

timesteps, changing the filename 

//     Exporting desired tables to the desired locations every 1 

timesteps, changing the filename 

//     Saving the simulation to the desired location ever 50 timesteps, 

stepping the filename 

 

//  The above locations and intervals may be adjusted as necessary. 

 

package macro; 

 

import java.util.*; 

 

import star.common.*; 

import star.vis.*; 

import star.base.neo.*; 

 

 

public class LESspectralmacro extends StarMacro { 

 

  public void execute() { 

 

int FileName ; FileName=0; 

int TimeStep ; 

 

//LES-5-2.8 small jet fluctuation path 

String path11 = "/emchome/natesal/Rod Bundle/LES/backupsimfiles/5-

28gpmLES/small-rod-fluctuation-imgs/";  

//LES-5-2.8 large jet fluctuation path 

String path12 = "/emchome/natesal/Rod Bundle/LES/backupsimfiles/5-

28gpmLES/large-rod-fluctuation-imgs/";  

//LES-6-3 Mid Vector Scene location 

String path13 = "/emchome/natesal/Rod Bundle/LES/backupsimfiles/5-

28gpmLES/vert-mid-imgs/";  

//LES-6-3 large Mid Vector Scene location 

String path14 = "/emchome/natesal/Rod Bundle/LES/backupsimfiles/5-

28gpmLES/vert-mid-lg-imgs/";  
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//LES-5-2.8 small jet table path-high 

String path1211 = "/emchome/natesal/Rod Bundle/LES/backupsimfiles/5-

28gpmLES/small-rod-fluctuation-tbl/high/";  

//LES-5-2.8 small jet table path-low 

String path1212 = "/emchome/natesal/Rod Bundle/LES/backupsimfiles/5-

28gpmLES/small-rod-fluctuation-tbl/low/";  

//LES-5-2.8 large jet table path 

String path22 = "/emchome/natesal/Rod Bundle/LES/backupsimfiles/5-

28gpmLES/large-rod-fluctuation-tbl/"; 

//LES-6-3 Mid table location 

String path23 = "/emchome/natesal/Rod Bundle/LES/backupsimfiles/5-

28gpmLES/vert-mid-tbl/";  

//LES-6-3 Mid table location 

String path24 = "/emchome/natesal/Rod Bundle/LES/backupsimfiles/5-

28gpmLES/vert-mid-lg-tbl/";  

 

 

//Set save location 

String path3 = "/emchome/natesal/Rod Bundle/LES/backupsimfiles/5-

28gpmLES/periodic-saves/"; 

 

 

StringBuffer path211 = new StringBuffer("") ; 

StringBuffer path212 = new StringBuffer("") ; 

StringBuffer path213 = new StringBuffer("") ; 

StringBuffer path214 = new StringBuffer("") ; 

 

StringBuffer path221 = new StringBuffer("") ; 

StringBuffer path222 = new StringBuffer("") ; 

StringBuffer path223 = new StringBuffer("") ; 

StringBuffer path224 = new StringBuffer("") ; 

 

 

StringBuffer path32 = new StringBuffer("") ;  

 

    Simulation simulation_0 =  

      getActiveSimulation(); 

 

for(int i = 1; i < 10000; i++){ 

     

    FileName = FileName + 1 ; 

 

//getTime 

 

double currentTime=getActiveSimulation().getSolution().getPhysicalTime();  

 

    simulation_0.getSimulationIterator().step(1, true); 

 

if (i % 5 == 0){ 

 

    Scene scene_0 =  

      simulation_0.getSceneManager().getScene("small-jets-fluctuations"); 
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path211.append("LES-5-2,8-sml-Hjets-ST-

").append(currentTime).append(".png") ; 

scene_0.printAndWait(resolvePath(path11 + path211.toString()), 1, 800, 

600); 

path211.delete(0,path211.length()); 

 

   Scene scene_1 =  

      simulation_0.getSceneManager().getScene("large-horiz-

fluctuations"); 

 

path212.append("LES-5-2,8-lg-Hjets-ST-

").append(currentTime).append(".png") ; 

scene_1.printAndWait(resolvePath(path12 + path212.toString()), 1, 1000, 

800); 

path212.delete(0,path212.length()); 

 

    Scene scene_6 =  

      simulation_0.getSceneManager().getScene("high-vert-mid-const"); 

 

path213.append("LES-5-2,8-vert-high-mid-ST-

").append(currentTime).append(".png") ; 

scene_6.printAndWait(resolvePath(path13 + path213.toString()), 1, 800, 

600); 

path213.delete(0,path213.length()); 

 

    Scene scene_7 =  

      simulation_0.getSceneManager().getScene("all-vert-mid-const"); 

 

path214.append("LES-5-2,8-vert-lg-mid-ST-

").append(currentTime).append(".png") ; 

scene_7.printAndWait(resolvePath(path14 + path214.toString()), 1, 800, 

600); 

path214.delete(0,path214.length()); 

     

} 

 

    XyzInternalTable xyzInternalTable_4 =  

      ((XyzInternalTable) simulation_0.getTableManager().getTable("all-

vert-mid")); 

 

xyzInternalTable_4.extract(); 

 

    path224.append("LES-5-2,8-vert-all-ST-

").append(currentTime).append(".csv") ; 

    xyzInternalTable_4.export(resolvePath(path24 + path224.toString()), 

2); 

    path224.delete(0,path224.length()); 

 

 

 

    XyzInternalTable xyzInternalTable_3 =  

      ((XyzInternalTable) simulation_0.getTableManager().getTable("high-

jet-2mmhoriz-small")); 

 

xyzInternalTable_3.extract(); 
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    path221.append("LES-5-2,8-high-sml-Hjet-ST-

").append(currentTime).append(".csv") ; 

    xyzInternalTable_3.export(resolvePath(path1211 + path221.toString()), 

2); 

    path221.delete(0,path221.length()); 

 

 

    XyzInternalTable xyzInternalTable_2 =  

      ((XyzInternalTable) simulation_0.getTableManager().getTable("low-

jet-2mmhoriz-small")); 

 

xyzInternalTable_2.extract(); 

 

    path221.append("LES-5-2,8-low-sml-Hjet-ST-

").append(currentTime).append(".csv") ; 

    xyzInternalTable_2.export(resolvePath(path1212 + path221.toString()), 

2); 

    path221.delete(0,path221.length()); 

 

    XyzInternalTable xyzInternalTable_1 =  

      ((XyzInternalTable) simulation_0.getTableManager().getTable("full-

horiz-2mm-3rows")); 

 

xyzInternalTable_1.extract(); 

  

    path222.append("LES-5-2,8-horiz-lg-ST-

").append(currentTime).append(".csv") ; 

    xyzInternalTable_1.export(resolvePath(path22 + path222.toString()), 

2); 

    path222.delete(0,path222.length()); 

 

    XyzInternalTable xyzInternalTable_0 =  

      ((XyzInternalTable) simulation_0.getTableManager().getTable("Mid 

Plane Table")); 

   

xyzInternalTable_0.extract(); 

 

    path223.append("LES-5-2,8-vert-high-ST-

").append(currentTime).append(".csv") ; 

    xyzInternalTable_0.export(resolvePath(path23 + path223.toString()), 

2); 

    path223.delete(0,path223.length()); 

   

    if (i % 100 == 0){ 

 

path32.append("LES-5-2,8-ST-@").append(currentTime).append(".sim") ; 

simulation_0.saveState(resolvePath(path3 + path32.toString())); 

path32.delete(0,path32.length()); 

 

    } 

     

    } 

  } 

} 
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C.2 Program for preparing LES results of wavelet transform decomposition.  Written 

for Matlab v. R2007a. 

 

% This program performs averaging on the results as well as splitting 

instantaneous velocity components into files 

  
length=187797;  % length of data file 

tmin=32.3000;   % Initial Time 
tmax=33.0120;   % End Time 

  
sectionlength=187797; 

  
sections=ceil(length/sectionlength); 

 
sectionnumb=0; 
sectionstart=0; 
sectionend=0; 

  
for i=1:sections; 
    if (i == 1); 
    sectionstart=1; 
    elseif (i ~=1); 
    sectionstart=(i-1)*sectionlength; 
    end 
    if (i ~= sections); 
    sectionend=(i)*sectionlength-1; 
    elseif (i== sections); 
    sectionend=length; 
    end 
  

% Go to numericfilezoomed subroutine 
 [numb,count,velmag,velx,vely,velz,Z]= 

numericfilezoomed(sectionstart,sectionend,tmin,tmax,length); 

  

  
velmagFN = sprintf('STvelmag%d.csv',sectionnumb); 
    dlmwrite(velmagFN, velmag) 
velxFN = sprintf('STvelx%d.csv',sectionnumb); 
    dlmwrite(velxFN, velx) 
velyFN = sprintf('STvely%d.csv',sectionnumb); 
    dlmwrite(velyFN, vely) 
velzFN = sprintf('STvelz%d.csv',sectionnumb);     
    dlmwrite(velzFN, velz) 
          

 

 

 

 

% Go to numericaveragezoom subroutine 
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[AveTotal,xpos,ypos,zpos]= 

numericaveragezoom(sectionstart,sectionend,sectionlength,numb,count,secti

onnumb,length,velmag,velx,vely,velz,Z); 
 

xposFN = sprintf('STxpos%d.csv',sectionnumb);        
    dlmwrite(xposFN, xpos) 
yposFN = sprintf('STypos%d.csv',sectionnumb);        
    dlmwrite(yposFN, ypos) 
zposFN = sprintf('STzpos%d.csv',sectionnumb);        
    dlmwrite(zposFN, zpos) 
AveTotalFN = sprintf('STAveTotal%d.csv',sectionnumb);       
    dlmwrite(AveTotalFN, AveTotal) 

     
    clear xpos 
    clear ypos 
    clear zpos 
    clear Z 

     

  
end 

    

 

 

function[numb,count,velmag,velx,vely,velz,Z]= 

numericfilezoomed(sectionstart,sectionend,tmin,tmax,length) 

  
    numb=1; 
tmin=32.3000; 
tmax=33.0120; 

  

  

  
for n=tmin:0.0005:tmax; 
   count=1; 

 
FileName = sprintf('LES-5-2,8-vert-all-ST-%e.csv',n); 
time=n; 
 if ispc 
    FileName = strrep(FileName, 'e+0', 'e+00'); 
 end 

  

  
fprintf(FileName); 
fprintf('  '); 
Z(1)=importdata(FileName); 
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for p=sectionstart:sectionend; 

   
    velmagV=Z(1).data(p,1); 
    velxV=Z(1).data(p,2); 
    velyV=Z(1).data(p,3); 
    velzV=Z(1).data(p,4);     

  
    velmag(count,numb)=single(velmagV); 
    velx(count,numb)=single(velxV); 
    vely(count,numb)=single(velyV); 
    velz(count,numb)=single(velzV);       

     
        if (p ~=sectionend); 
        count=count+1; 
        end 
    end 

  
if (n ~= tmax); 
numb=numb+1; 
end   

  
end  
    clear velmagV; 
    clear velxV; 
    clear velyV; 
    clear velzV;   

  
return 

  

 

function[AveTotal,xpos,ypos,zpos]= 

numericaveragezoom(sectionstart,sectionend,sectionlength,numb,count,secti

onnumb,length,velmag,velx,vely,velz,Z) 

  
numb=numb-1; 

  
      count=1; 
if (sectionstart==1); 
    countmax=sectionend; 
elseif (sectionstart ~= 1); 
    countmax=sectionend-sectionstart; 
end 

  
for p=sectionstart:sectionend; 

       
    xposV=Z(1).data(p,5);         
    yposV=Z(1).data(p,6); 
    zposV=Z(1).data(p,7);    
    xpos(count,1)=single(xposV);         
    ypos(count,1)=single(yposV); 
    zpos(count,1)=single(zposV); 
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     count=count+1; 
    end 

  
    clear xposV;        
    clear yposV; 
    clear zposV; 

     
for p=1:countmax; 
    Avevelmag(p)=0; 
    Avevelx(p)=0; 
    Avevely(p)=0; 
    Avevelz(p)=0; 

  
    end 

         
for n=1:numb;     
for p=1:countmax; 

    
    Avevelmag(p)=velmag(p,n)+Avevelmag(p); 
    Avevelx(p)=velx(p,n)+Avevelx(p); 
    Avevely(p)=vely(p,n)+Avevely(p); 
    Avevelz(p)=velz(p,n)+Avevelz(p) ; 

     
end  
end  

  
    for p=1:countmax; 

  
    Avevelmag(p)=Avevelmag(p)/numb; 
    Avevelx(p)=Avevelx(p)/numb; 
    Avevely(p)=Avevely(p)/numb; 
    Avevelz(p)=Avevelz(p)/numb; 

     
    end 

     
    Avevelmag=Avevelmag'; 
    Avevelx=Avevelx'; 
    Avevely=Avevely'; 
    Avevelz=Avevelz'; 

     
    % recombine phase 

     
    for p=1:countmax; 
    AveTotal(p,1)=Avevelmag(p); 
    AveTotal(p,2)=Avevelx(p); 
    AveTotal(p,3)=Avevely(p); 
    AveTotal(p,4)=Avevelz(p); 
    AveTotal(p,5)=xpos(p,1); 
    AveTotal(p,6)=ypos(p,1); 
    AveTotal(p,7)=zpos(p,1); 
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    end 

         
    return 

 

% Export point data for wavelet decomposition.   

 

 
numb=1424; 
    u=importdata('STvelz1.csv'); 

   
for p=1:12; 
    for n=1:numb; 
usignal(p,n)=0; 

  
    end 
end 

  
    for n=1:numb; 
         usignal(1,n)=u(6161,n); 
         usignal(2,n)=u(73384,n); 
         usignal(3,n)=u(65283,n); 
         usignal(4,n)=u(58929,n); 
         usignal(5,n)=u(137984,n); 
         usignal(6,n)=u(163580,n); 
         usignal(7,n)=u(93432,n); 
         usignal(8,n)=u(115139,n); 
         usignal(9,n)=u(164705,n); 
         usignal(10,n)=u(6702,n); 
         usignal(11,n)=u(102368,n); 
         usignal(12,n)=u(59660,n); 
    end 

   
    dlmwrite('STvelz-points.csv', usignal); 
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C.3  Program for performing wavelet transform decomposition and the Fast Fourier 

Transform.  Written for Matlab v. R2007a. 

 

reset(0); 
whitebg 
i=9 
figure('Position',[0,0,700,700]); 
Fs = 2000;     % Sample rate 
lv = 2848*0.0005;   % # of samples multiplied by timestep 
signal = y(i,1:lv*2000); 
T = 1/Fs;                     % Sample time 
L = 2848;                     % Length of signal 
t = (0:L-1)*T;  

  
set(subplot(3,1,1),'Xtick',[]); 
plot(signal,'r'); 
title('Signal of Horizontal Point 9 Velocity Magnitude'); 
xlabel('Time (s)') 
ylabel('Velocity Magnitude (m/s)') 
set(gca,'Xlim',[200 1200]) 
set(gca,'XTick',[200:200:1200]) 
croppedtimelabels = ['0.1'; 
          '0.2'; 
          '0.3'; 
          '0.4'; 
          '0.5'; 
          '0.6']; 
set(gca,'XTickLabels',croppedtimelabels) 
subplot(3,1,2); 

  
set(subplot(3,1,2),'Xtick',[]); 
subplot(3,1,2); 
maxscale=300; 
scales = (1:maxscale); 
wname='morl'; 
cwt(signal,scales,wname,'plot'); 
colormap(Jet(64)); 
title('Continuous Transform of Horizontal Point 9 using Morlet Mother 

Wavelet'); 
ylabel('Frequency (Hz)'); 
xlabel('Time (s)') 
tt = get(gca,'Yticklabel'); 
[r,c] = size(tt); 
yl = char(32*ones(r,c)); 
for k = 1:3:r , yl(k,:) = tt(k,:); end 
set(gca,'YLim',[1 maxscale]); 
set(gca,'YTick',[1:(maxscale/8):maxscale]) 

  
for n=1:9 
    temp(n)=1+(maxscale/8)*(n-1); 
freqlabel(n)=scal2frq(temp(n),wname,1/Fs); 
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freqlabel2(n)=1/(temp(n)*0.0005); 
end 

  
set(gca,'Yticklabel',freqlabel); 
set(gca,'XLim',[200 1200]); 
set(gca,'XTick',[200:200:1200]) 
croppedtimelabels = ['0.1'; 
          '0.2'; 
          '0.3'; 
          '0.4'; 
          '0.5'; 
          '0.6']; 
set(gca,'XTickLabels',croppedtimelabels) 

  

 
subplot(3,1,3); 
set(subplot(3,1,3),'Xtick',[]); 
plot(Fs*t(1:1424),signal(1:1424)) 
title('Signal Corrupted with Zero-Mean Random Noise') 
xlabel('time (milliseconds)') 
NFFT = 2^nextpow2(L);  
Y = fft(signal,NFFT)/L; 
f = Fs/2*linspace(0,1,NFFT/2+1); 

  
semilogx(f,2*abs(Y(1:NFFT/2+1)),'blue')  
title('FFT of Signal') 
xlabel('Frequency (Hz)') 
set(gca,'XLim',[1 200]); 
set(gca,'XTick',[1,10,50,100,150,200]) 
ylabel('|Y(f)|') 
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