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ABSTRACT

Scale Effects in Crystal Plasticity. (May 2010)

Guruprasad Padubidri Janardhanachar, B.E., B. M. S. College of Engineering;

M.S., Indian Institute of Science

Chair of Advisory Committee: Amine Benzerga

The goal of this research work is to further the understanding of crystal plas-

ticity, particularly at reduced structural and material length scales. Fundamental

understanding of plasticity is central to various challenges facing design and manufac-

turing of materials for structural and electronic device applications. The development

of microstructurally tailored advanced metallic materials with enhanced mechanical

properties that can withstand extremes in stress, strain, and temperature, will aid

in increasing the efficiency of power generating systems by allowing them to work

at higher temperatures and pressures. High specific strength materials can lead to

low fuel consumption in transport vehicles. Experiments have shown that enhanced

mechanical properties can be obtained in materials by constraining their size, mi-

crostructure (e.g. grain size), or both for various applications. For the successful

design of these materials, it is necessary to have a thorough understanding of the in-

fluence of different length scales and evolving microstructure on the overall behavior.

In this study, distinction is made between the effect of structural and material

length scale on the mechanical behavior of materials. A length scale associated with

an underlying physical mechanism influencing the mechanical behavior can overlap

with either structural length scales or material length scales. If it overlaps with struc-

tural length scales, then the material is said to be dimensionally constrained. On the
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other hand, if it overlaps with material length scales, for example grain size, then the

material is said to be microstructurally constrained. The objectives of this research

work are: (1) to investigate scale and size effects due to dimensional constraints; (2)

to investigate size effects due to microstructural constraints; and (3) to develop a size

dependent hardening model through coarse graining of dislocation dynamics.

A discrete dislocation dynamics (DDD) framework where the scale of analysis is

intermediate between a fully discretized (e.g. atomistic) and fully continuum is used

for this study. This mesoscale tool allows to address all the stated objectives of this

study within a single framework. Within this framework, the effect of structural and

the material length scales are naturally accounted for in the simulations and need not

be specified in an ad hoc manner, as in some continuum models. It holds the promise

of connecting the evolution of the defect microstructure to the effective response of

the crystal. Further, it provides useful information to develop physically motivated

continuum models to model size effects in materials.

The contributions of this study are: (a) provides a new interpretation of mechan-

ical size effect due to only dimensional constraint using DDD; (b) a development of

an experimentally validated DDD simulation methodology to model Cu micropillars;

(c) a coarse graining technique using DDD to develop a phenomenological model to

capture size effect on strain hardening; and (d) a development of a DDD framework

for polycrystals to investigate grain size effect on yield strength and strain hardening.
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CHAPTER I

INTRODUCTION

A. Motivation

A knowledge of plasticity in metals is fundamental to the understanding of metal

forming in manufacturing processes, material design and failure under extreme ther-

momechanical conditions. Recently, there has been a widespread interest in develop-

ing micro and nano engineering for a variety of applications ranging from integrated

chips, medical devices to gadgets used for entertainment purposes (Spearing, 2000;

Grayson et al., 2004; Ekinci and Roukes, 2005). Micro- and nano-scale single crystals,

microcrystalline (MC), ultra-fine grain (UFG) and nanocrystalline (NC) materials are

used extensively in the design of these products. For successful design of these ma-

terials a thorough knowledge of materials mechanical properties are necessary. In

particular, inelastic material properties like yield strength, ductility, fatigue and duc-

tile fracture play key role in designing reliable devices. For bulk crystalline materials

these properties are well established and have been successfully used in the design of

large structural components. However, a number of questions arise as device/sample

geometry approach the size of microstructural features. Does the material inelastic

behavior change with respect to bulk? Do size effects emerge under these condi-

tions? If so, what are the governing mechanisms that affect deformation-induced mi-

crostructure? These questions and their implications on developing new technologies

have generated renewed interest amongst the research community to study inelastic

behavior of crystalline materials.

This dissertation follows the style of Journal of the Mechanics and Physics of

Solids.
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Microstructural features like grain boundaries, particle inclusions, precipitates,

bilayer interfaces, etc., impose microstructural constraints on the material. Mi-

crostructural constraints arise in a material when the characteristic length of de-

formation process is no longer negligible compared with the size of microstructural

features. At these length scales material mechanical properties are known to deviate

from their bulk counterparts.

The effect of grain size on mechanical strength of crystals is well documented

in the literature since the pioneering work by Hall (Hall, 1951) and Petch (Petch,

1953). Advances in MC, UFG and NC materials have demonstrated that there is an

increased strength, hardness, reduced ductility, enhanced diffusivity, higher specific

heat, enhanced thermal expansion coefficient in comparison with conventional crys-

talline materials (Gleiter, 1989; Meyers et al., 2006). While some of the changes in

properties are desirable some are not. For example, the increase in strength comes

at the cost of decrease in ductility of the crystal, which in general is not a desirable

property in the design. These challenges can be overcome by designing heterogeneous

microstructures with tailored properties (Koch, 2003). This requires an understand-

ing of structure-property relationships in these materials.

Under the absence of microstructural constraints and at scales where device di-

mension is of the order of characteristic length of the deformation process the strength

and failure behavior in materials are known to be different from their bulk counter-

parts (Greer et al., 2005; Gerberich et al., 2003). These size effects are primarily

due to dimensional constraints. A material free from externally imposed constraints

is said to be dimensionally constrained when the characteristic length of the defor-

mation process is no longer negligible compared with atleast one dimension of the

deformed body. The coupling between dimensional and microstructural constraints

also poses challenges in the design of thin films (Arzt, 1998). The ratio of film thick-
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ness to grain size, called the grain aspect ratio, is known to have an effect on the

hardening and Bauschinger behavior of thin films (Nicola et al., 2006). Other mi-

crostructural features like grain orientation and grain boundaries are also known to

affect the mechanical behavior of thin films. Depending on the microstructural fea-

ture, the material can undergo strengthening or weakening (Geers et al., 2006). These

scale and size effects can have serious implications on the integrity and reliability of

structural components and devices.

The challenge in the field of plasticity is to predict the mechanical response

of crystalline materials along with the spatial and temporal evolution of the under-

lying organized defect microstructure. A continuum model which can address the

above challenge is still lacking. Continuum based crystal plasticity models have been

successful in modeling first order crystallographic phenomena like effect of crystal

texture on elastic and plastic anisotropy, formability of sheets, etc., in bulk materials.

However, as currently formulated, continuum crystal plasticity models are unable to

predict the emergence of dislocation substructures. A model which can predict both

the mechanical response as well as the underlying defect substructure is necessary

because: (i) it provides insight into the structure-property relationship in materials;

(ii) it can predict evolution of defect substructure which is relevant in severe plastic

deformation processes used in grain refinement and hence can help in material de-

sign; and (iii) when characteristic length scale of dislocation substructures becomes

of the order of dimension of deformed body deviations from conventional/bulk be-

havior would emerge. Further, at reduced structural and material length scales,

microstructure is no longer statistically homogeneous and redundant, thus rendering

homogenization of material by assuming sources of plasticity at every material point

within a representative volume element not suitable.

Gradient and nonlocal plasticity theories have been developed to address some of
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the phenomenon not captured by classical continuum crystal plasticity models. These

theories set out to examine the influence of strain gradients and model scale effects

on yield strength and strain hardening behavior. They generally involve the compu-

tation of geometrically necessary dislocations from gradients of plastic deformation,

and predict size-dependent response when macroscopic strain gradients are imposed.

However, these models fail to predict the emergence of a substructure and, hence,

they cannot predict size effects in the absence of macroscopic strain gradients. A

notable exception maybe the theory of field dislocation mechanics (Roy and Acharya,

2006), which is still under development. In addition, when a material is dimension-

ally and/or microstructurally constrained the stochastic nature of a finite number

of dislocations account for the material response and these models cannot capture

them. They also do not account for energy due to line curvature of dislocations,

dislocation source strength and distribution, source truncation due to free surfaces,

and long range effects due to signed dislocation segments, which can influence the

material behavior at reduced scales. The idea of a fixed length scale governing the

material behavior, as proposed by these models, also may not be considered general.

The continuum crystal plasticity models, gradient and nonlocal models, are pri-

marily predictive in their scope and do not offer significant insight into the mechanisms

influencing the mechanical response of materials. In a recent review on ‘Viscoplastic-

ity of heterogeneous metallic materials’ by McDowell (2008) it is highlighted that one

of the main current challenges in crystalline behavior is to identify the key competing

mechanisms for important phenomena such as size effects in plasticity. Towards this

end, a framework based on discrete dislocation dynamics (DDD) offers a promising

alternative to address issues related to mechanical behavior of materials at reduced

length scales. This is a mesoscale computational framework where plastic flow is due

to the collective motion and interaction of an ensemble of dislocations. It accounts
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for the long-range nature of dislocation stress fields and short-range dislocation in-

teractions. The effect of different length scales is implicitly accounted for in the

framework so that the mechanical response is a natural outcome of the simulations.

Within a single framework it offers the capability to investigate mechanical behavior

of materials due to dimensional constraints, microstructural constraints and also their

coupling. They can also be used as part of multiscale modeling strategy to bridge the

gap between atomistic models and continuum crystal plasticity models.

In summary, a continuum model which can predict material mechanical response

and the underlying organized defect substructure is still lacking. A model which can

address this challenge will provide insight into the structure-property relationship

in materials, aid in material design by predicting defect microstructure evolution,

and help to understand the behavior of materials which are dimensionally and mi-

crostructurally constrained. Also, an understanding of material mechanical response

at reduced length scales is needed for designing reliable structural components, and

efficient MEMS and NEMS devices. This has motivated the need to undertake the

current study using DDD framework, which offers a promising alternative to address

the issues raised by material behavior at reduced length scales.

B. Goal and objectives

The goal of this research is to further the understanding of crystal plasticity, particu-

larly at reduced structural and material length scales. The focus is on plastic behavior

of materials at low homologous temperatures. Limitations on structural length scale

imposes dimensional constraints on the material. The material length scale, grain

size, of a polycrystal leads to microstructural constraint on the material. A study

on coupling effect due to both dimensional and microstructural constraints on the
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material is not considered in this study.

The objectives of this research work are: (1) investigate scale and size effects

due to dimensional constraints; (2) investigate size effects due to microstructural

constraints; and (3) develop a size dependent hardening model through coarse graining

of dislocation dynamics.

C. Background

1. Classical crystal plasticity

Historically metals have been subjected to plastic deformation by cold and hot work-

ing processes to develop specialized components like coins, wires, wheels etc. It was

only after the work by Ewing and Rosenhain (Ewing and Rosenhain, 1900), during

the late 19th century, understanding of mechanisms leading to the plastic behavior in

metals began to mature. Their optical micrographs of polycrystalline Pb identified

that plastic deformation took place by slip. They identified slip steps, formed by the

development of slip bands along specific planes, at the specimen surfaces. They thus

concluded that plastic deformation was caused by simple shear of certain families of

planes along certain preferred directions. This observation was remarkable because it

was only latter that the crystalline structure of metals was ascertained (Hull, 1919).

Following the discovery of the crystalline structure of metals, Taylor and Elam

(1925), Orowan (1934) and Polanyi (1922) all independently confirmed that plastic

yield would begin on a slip system when the resolved shear stress reached a criti-

cal value, independent of the orientation of the tensile axis. This is what is now

commonly known as the Schmid law (Schmid, 1924). However, certain experimental

observations like the observed shear strength in metals being almost orders of mag-

nitude less than the theoretical shear strength could not be convincingly explained
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during the 1920s. In the early 1930s Taylor (1934), Orowan (1934), and Polanyi

(1934) explained the micromechanics of slip based on dislocations. Dislocations are

linear lattice imperfections in crystalline materials. Taylor (1934) explained that the

shear stress necessary for the motion of dislocations is very less and hence their glide

results in shear strength which is more consistent with the observed experiments.

(a) (b)

Fig. 1. (a) Shear stress versus shear strain curves for Cu single crystals of different

orientations and for single slip orientation; (b) Compressive stress versus strain

response of Cu polycrystals. This figure is taken from Kocks and Mecking

(2003).

Typical shear stress versus shear strain response of bulk Cu single crystals in

tension is shown in Fig. 1a (Kocks and Mecking, 2003). Fig. 1b shows typical stress

versus strain response of Cu polycrystals (Kocks and Mecking, 2003). The defor-

mation in both single and polycrystals is characterized by initial elastic response,

yielding, and hardening. In particular three distinct regimes, differentiated by the

slope of the curve, can be identified in single crystals oriented for single slip. These
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three regimes are commonly called Stage I, Stage II and Stage III hardening. In single

crystals oriented for multiple slip stage I is absent and the response is predominantly

stage II and stage III hardening. This response is very similar to the hardening re-

sponse observed in polycrystals. Later, advances in the field established that stage

I hardening depends strongly on the orientation of the crystal; stage II hardening is

athermal in nature and is rather insensitive to strain-rate and temperature with its

value being a constant in the range of µ/200−µ/100 (where µ is the shear modulus);

and stage III is strongly affected by temperature and strain-rate (Kocks and Mecking,

2003).

One major challenge in developing a model is to qualitatively and quantitatively

establish a relation between material microstructure and its macroscopic response. In

the context of plastic deformation in metals and metallic alloys this amounts to identi-

fying and describing lattice defects, for example dislocations, including their collective

static and dynamic behavior that are responsible for macroscopic properties. Over

the past few decades significant progress has been made in incorporating microme-

chanics, idealized by phenomenological representation, in continuum descriptions of

plastic deformation. Early development of constitutive laws for elastic-plastic defor-

mation of crystals is attributed to Taylor (1938). Since then, work by Hill (1966), Hill

and Rice (1972) and Asaro and Rice (1977) have substantially contributed towards

modeling of plastic deformation in materials. A fundamental premise upon which

these models have been developed is that material flows through crystal lattice via

dislocation motion; but the lattice with material embedded on it undergoes elastic

deformation. Also, polycrystals are approximately modeled as a collection of single

crystals. The readers are referred to Asaro (1983), Nagdhi (1990), and Dawson (2000)

for an extensive overview on modeling aspects in crystal plasticity.
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a. Experiments on microstructurally constrained materials

Early experiments on mild steel by Hall (Hall, 1951) and Petch (Petch, 1953) have

shown the sensitivity of polycrystal yield strength to grain size. They consistently

observed an increase in polycrystal yield strength (σy) with decrease in grain size.

This is commonly known as the Hall-Petch effect and is given by the equation,

σy = σ0 + k1d
−n (1.1)

where, σ0, k1 and n are constants. σ0 is the friction stress that may include contribu-

tions from solutes and particles within the material. A generalization of Eq.( 1.1) can

be made for the flow stress if the constants σ0 and k1 are considered to be functions of

strains. Hall-Petch relation has been found to be applicable for grain sizes all the way

down to 10 nm as seen in Fig. 2. Recent experimental work (Ohno and Okumura,

2007) has demonstrated that the value of the exponent n is 0.5 for polycrystals with

grain sizes up to 5 µm and below this it increases to almost 1.0. This increase in

strength is usually attributed to dislocation pile-up at grain boundaries or due to the

development of strain gradients within the material due to a mismatch in the grain

orientations. Below 10 nm Hall-Petch relation breakdown and experimental findings

have reported an inverse Hall-Petch effect (Chokshi et al., 1989; Kumar et al., 2003).

This has been attributed to diffusional creep in NC samples (Chokshi et al., 1989)

but there have been conflicting findings from other works that attribute the break

down to the presence of flaws (Weertman, 2002; Meyers et al., 2006).

At strains beyond 5% experimental results show that the response of the poly-

crystal is weakly dependent on the grain size, and the work hardening rates converged

to that of a coarse grained polycrystal Huang and Hansen (2003). However, within

the grain size dependent strain regime, polycrystals with grain size d < 5 µm show a
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Fig. 2. Yield stress versus grain size plot for Cu polycrystals with grain size varying

from coarse to nano range. The plot is taken from Meyers et al. (2006).

low transient hardening rate (Flinn et al., 2001; Sinclair et al., 2006; Dao et al., 2007).

UFG Cu obtained from equal channel angular extrusion (ECAE) have demonstrated

evidence of stable microstructure against fatigue-induced changes (Maier et al., 2006),

flow stress anisotropy and Bauschinger effect (Haouaoui et al., 2006), in contrast to

coarse grained specimens. The average grain size of a polycrystal is also known to

affect the strain-rate sensitivity of the material (Zhang et al., 2004). These observa-

tions point towards the influence of microstructural constraint like grain size on the

inelastic behavior of crystals.

There is a large body of experimental data that highlight the influence of mi-

crostructure and dimensional constraints on the inelastic response of crystals (Arzt,

1998). The high shear strength observed in the twisting of thin Cu wires (Fleck et al.,

1994), increased bending hardening of ultra thin beams (Stölken and Evans, 1998) and

indentation depth dependent hardness of crystals (Swadener et al., 2002) are some of
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the examples that highlight the sensitivity of material properties to crystal dimen-

sions. In all these experiments the material was subjected to an external loading,

which led to the development of strain gradients. Ashby (Ashby, 1970) showed that

the presence of strain gradients lead to the development of geometrically necessary

dislocations in the materials for compatibility reasons, which lead to the observed size

effect.

b. Experiments on dimensionally constrained materials

The size effects described till now are mainly due to the development of strain gra-

dients within the material either due an imposed external loading or due to mi-

crostructural constraint. The question is does size effect exist in the absence of strain

gradients. Recent micropillar experiments (Uchic et al., 2004; Dimiduk et al., 2005;

Greer et al., 2005; Volkert and Lilleodden, 2006; Frick et al., 2008) have shown that

size effects emerge even in unconstrained small samples subjected to homogeneous

deformation.

One of the earliest work to explore the effect of only dimensional constraints

on mechanical behavior (Suzuki et al., 1956; Fourie, 1967, 1968) reported almost no

change in the yield strength and a slight increase in the hardening rate of submil-

limeter Cu single crystals. With advance in technology for processing micro and

nano single crystals, there has been a surge of interest in exploring the size effects

of unconstrained crystals using micro-bending, micro-compression and micro-tension

experiments (see Figs 3a-c). In a typical micro-compression experiment, focus ion

beam (FIB) microscope along with ion lathe technique is used to machine cylindrical

compression samples into the surface bulk crystals, leaving the sample attached to

the bulk at one end as shown in Fig. 3b. Nanoindentation using a flat tip nanoin-

denter is used to subject the micron and nano crystals under compression (Uchic
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et al., 2004). Experiments on [269] Ni and Ni-based alloys of size in the range of 40

to 1.0 µm (Uchic et al., 2004; Dimiduk et al., 2005) have shown an increase in the

strength of crystals upto 15 times (as compared to bulk Ni) with decrease in sample

size. However, they did not observe a significant increase in the hardening rate of

the crystals. They noted that as the crystal size approached 1 µm the stress-strain

response was characterized by frequent strain bursts and increased finite discrete slip

bands along the gauge length of the crystal as shown in Fig. 3b.

Experiments on < 001 > oriented Au crystals below 1 µm also showed a trend

towards increase in crystal strength with decrease in its size (Greer et al., 2005;

Greer and Nix, 2006; Brinckmann et al., 2008). Flow stress as high as 800 MPa

was reached in 200 nm specimen as compared to 25 MPa in a bulk sample at 10%

strain. A comparative experimental study between Au (FCC crystal) and Mo (BCC

crystal) showed that the slope of strengthening in Au is more than twice than that of

Mo (Brinckmann et al., 2008). The Au specimens did not show significant increase

in hardening rate but Mo specimens demonstrated substantial increase in hardening

rate with decrease in specimen size.

The effect of specimen size and crystallographic orientation on Au crystals was

studied by Volkert and Lilleodden (2006). They reported an increase in yield stress

(defined at 5% strain) and hardening rate with decrease in specimen size. The hard-

ening rate was determined to be as high as 50 times the bulk value of µ/100. There

were no significant differences quantitatively in the values of yield stress and hard-

ening rate with changes in crystal orientation. However, the number of active slip

system did depend on the crystal orientation. An increase in hardening rate by 10

times was reported in Frick et al. (2008) from experiments on [111] Ni crystals. The

increase in flow stress with decrease in crystal size in their experiments are as shown

in Fig. 3d. The critically resolved shear stress determined at 3% strain was in good



13

agreement with the data from [269] Ni reported in Dimiduk et al. (2005).

(a)

(b)

(c)

(d)

Fig. 3. Size effects due to dimensional constraints: (a) Scanning electron microscope

(SEM) micrograph image of a deformed Cu microcrystal showing slip traces on

the surface (Motz et al., 2005); (b) SEM image of a deformed Ni microcrystal

subjected to micro-compression experiment showing traces of slip on the sur-

face (Uchic et al., 2004); (c) SEM images of Cu microcrystals taken during in

situ micro-tension experiment (Kiener et al., 2008a); and (d) Representative

compressive true stress versus true strain response of Ni micropillars (Frick

et al., 2008).

Several explanations have been proposed to explain the observed strengthening

with decrease in specimen size. The role played by single ended dislocation sources

on strengthening has been put forward in (Rao et al., 2007; Norfleet et al., 2008).

In (Greer et al., 2005; Brinckmann et al., 2008) the competition between dislocation

nucleation and dislocation exit at the free surface leading to a ’dislocation starved’

condition has been proposed as the reason for strengthening. This hypothesis was
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also supported by in-situ TEM compression experiments on Ni (Shan et al., 2008).

A lack of favorable dislocation sources for nucleation thus requiring higher stresses

for the nucleation of new dislocations for plastic deformation was the reason reported

in Volkert and Lilleodden (2006). Combination of dislocation-dislocation interaction

and higher stresses required for the nucleation of new dislocations was the reason

proposed in Frick et al. (2008) for the observed increase in hardening rate and flow

stress with decrease in sample size.

The influence of processing techniques used to produce micropillars on the ob-

served size effects cannot be completely ruled out. Experiments on Mo-alloy speci-

mens produced from directional solidification techniques behave like dislocation-free

materials, with their yield stresses approaching theoretical strength. In these experi-

ments (Bei et al., 2008a,b) there was no evidence of size effects. They argue that FIB

techniques introduces extrinsic defects on the layer adjacent to the milled surface.

These defects may include dislocations, implanted Ga ions or even intermetallic com-

pounds and adjacent amorphous layers. Recent advances in conducting in situ tension

experiments of micron and submicron Cu crystals have overcome the limitations on

the aspect ratio of specimens used for conducting the compression tests (Kiener et al.,

2008a). A higher hardening rate was demonstrated by specimens with aspect ratio

1:1 as compared to specimens with aspect ratio 5:1 and higher. Electron back scatter

diffraction (EBSD) scans showed the development of significant misorientations of the

crystal lattice of low aspect ratio specimens. These misorientations were believed to

be caused by dislocation pile-ups and contribute to the hardening of the crystals.

The review of experimental facts highlight the lack of sufficient understanding

regarding the underlying mechanism governing the size affected strengthening. The

inconsistency in the hardening rate observed by different experimental groups is also

not completely understood. The challenge in experiments is to isolate competing
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mechanisms or factors contributing to the size affected plastic behavior in crystals. A

theoretical undertaking, which provides control over the type of boundary condition,

crystal form and its initial conditions, will be able to shed more light on the issue of

scale effects in crystal plasticity.

2. State of the art modeling techniques

a. Gradient-based plasticity models

Classical crystal plasticity models cannot predict size effects observed in dimension-

ally and microstructurally constrained materials. These models do not possess length

scale in their constitutive theory which can capture the size effects. Higher-order gra-

dient theories, motivated by the observation of large strain-gradients in experiments

(Fleck et al., 1994), incorporate a characteristic length scale as material property to

capture the size effect. The framework of geometrically necessary dislocations (GNDs)

introduced by Nye (Nye, 1953) and latter Ashby (Ashby, 1970) has provided a physi-

cal basis for higher-order gradient models. In these models plastic strain gradients in

materials is related to the emergence of GNDs for maintaining lattice compatibility.

This section provides a brief overview of mathematical description of GND density

and its subsequent use in higher-order gradient models.

In a region of a crystal large enough for the effects of the dislocations within

it to be averaged Nye defined a tensor αij (Nye, 1953). Nye defined this tensor as

a number density of lines piercing a plane. The tensor αij is a representation of

dislocations whose geometric properties are not canceled by other dislocations in the

crystal lattice. This tensor is defined such that the net Burgers vector B of a unit

area normal to the unit vector r is given by

Bi = αijrj (1.2)
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Consider dislocations with length parallel to the unit vector t and Burgers vector

b. If there are n dislocations crossing unit area normal to t then the number crossing

unit area normal to unit vector r is given by nt.r. The corresponding Burgers vector

is b(nt.r), which when written in index notation takes the form,

Bi = bi(ntjrj) (1.3)

Comparing Eq.( 1.3) and Eq.( 1.2) the Nye’s tensor αij is determined to be,

αij = nbitj (1.4)

Arsenlis and Parks (1999) proposed a definition of Nye’s tensor based on the

description of dislocation density as line length in a reference volume. Here, for a

dislocation with Burgers vector b and local unit tangent line direction t, the Nye’s

tensor is defined as,

αij ≡
1

V

∫
L

bitjds (1.5)

where V is the reference volume; ds is an element of arc length along the dislocation

line; and L the total length of dislocation line within V . Considering each of the

dislocation line segments separately with constant Burgers vector, Eq.( 1.5) can be

re-written as,

αij ≡
1

V

N∑
ξ

bξ
i

∫
l

tξjdsξ (1.6)

where, l is the length of a dislocation segment of type ξ and N is the number of

dislocation segments. The integral relation proposed has the the property of averaging

the dislocation properties within a volume. Also, it can be observed from Eq.( 1.6)

that the only information needed from a dislocation line segment to calculate the Nye
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tensor is its Burgers vector and two endpoints. Hence, Eq.( 1.6) can be re-written as

αij =
1

V

N∑
ξ

l̄ξbξ
i t̄

ξ
j (1.7)

where, l̄ξ is the secant length of the dislocation segment ξ; and t̄ξ is the average tangent

vector of dislocation segment ξ. Noting that dislocation density is line length in a

volume; the summation of geometric dislocation lengths, l̄ξ, in a reference volume V ,

can be replaced by a summation of geometric dislocation density, ρxi
GND, in the volume

αij =
N∑
ξ

ρξ
GNDbξ

i t̄
ξ
j (1.8)

where, ρξ
GND ≡ l̄ξ

V
. It is this portion of the total dislocation density which has ge-

ometric consequences. The tensorial sum determined in Eq.( 1.8) can be explicitly

written for edge and screw dislocation line segments as,

αij =
Ns∑
κ=1

(
ρκ

e+ − ρκ
e+

)
bκ
i t

κ
j +

Ns∑
κ=1

(
ρκ

s+ − ρκ
s+

)
bκ
i m

κ
j (1.9)

where subscripts ρe and ρs denote pure edge and screw dislocation density, respec-

tively; the sign of the subscript + or - indicates the polarity of the dislocation density;

κ denotes the slip-system; mκ is unit vector in reference configuration corresponding

to the slip direction; and tκ corresponds to tangent line direction of edge dislocation

density.

Fleck et al. (1994) developed a strain gradient theory of rate independent plas-

ticity in a phenomenological manner based on dislocation theory to model size effects

observed in their torsion experiments on micron Cu specimens. An internal con-

stitutive length parameter was introduced in the constitutive relation to scale the

rotational gradients. Physically, this material length parameter was related to the

storage of GNDs. The model was successful in predicting the size dependent tor-
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sional behavior of micron Cu wires and bending of thin beams (Stölken and Evans,

1998). It was also used to predict the indentation hardness but could not predict

the 200 to 300% increase reported in experiments (De Guzman et al., 1993). Hence,

this model was extended to account for both rotation and stretch gradient of defor-

mation in the constitutive model by Fleck and Hutchinson (2001). This resulted in

the introduction of two length scales in the constitutive relation. Nix and Gao (Nix

and Gao, 1998) introduced the contribution of GND density directly in the Taylor

relation between shear strength and dislocation density of the crystal. All the models

described above are phenomenological in nature and depended on experiments to de-

termine the material length scale. This drawback was overcome by the development

of mechanism based strain gradient plasticity (Gao et al., 1999). They proposed a

multiscale hierarchical framework in which at the microscale level the accumulation

of GND density leads to an increase in the flow stress according to the Taylor relation.

At the mesoscale they introduced higher order stresses as thermodynamic conjugates

of the strain gradient such that the Clausius-Duhem inequality is satisfied.

There have been attempts to extend continuum crystal plasticity theory to ac-

count for strain gradients. This involves quantitatively interpreting and accounting

for imperfect lattice structure in crystals. One way is to introduce strain gradient

effect in the strain energy of the material. Maximum dissipation rate hypothesis can

then be used to obtain the governing equations of motion for the material (Baek and

Srinivasa, 2003). Acharya and Bassani (2000) showed that elastic distortion of the

lattice is not compatible with a deformation that can be derived from a continuous

displacement field. The lattice incompatibility is capable of representing lattice im-

perfections associated with GNDs. The lattice incompatibility is characterized by

the gradient of the elastic distortion field. This term introduces an evolving length

scale when introduced in the hardening response. This approach coupled with the
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admittance of Taylor law at the individual grain level was used to predict grain size

dependent hardening response (Acharya and Beaudoin, 2000) and the Hall-Petch

relation (Evers et al., 2002; Abu Al-Rub and Voyiadjis, 2006) in polycrystals.

Strain gradient plasticity theories have been successful in predicting and explain-

ing size effects observed in crystals due to an imposed gradient on the boundary and

due to microstructural constraints. However, state of the art strain gradient plastic-

ity theories are incapable of predicting size effects arising solely due to dimensional

constraints in materials. Further, they are not capable of predicting the underlying

defect substructure and its evolution with deformation.

b. Discrete dislocation dynamics

Discrete dislocation dynamics (DDD) framework provides a useful tool to address is-

sues related to mechanical behavior of materials at a length scale intermediate between

atomistic and continuum. The need for understanding the origins of heterogeneous

plasticity and pattern formation in crystals (Mughrabi, 1983) lead to the develop-

ment of DDD (Kubin et al., 1992; Kubin and Canova, 1992). In DDD, appropriate

equations of motion (viscous drag) are integrated to obtain dynamical evolution of

a system of dislocations. The characteristics of DDD framework include: (i) probe

giving the accurate dynamical evolution of a dislocation system for a given set of

atomistically-informed rules for short-range interactions; (ii) provides for determina-

tion and prediction of certain material properties at nearly atomic scale; (iii) offers

a benchmark for verification of existing and yet to be developed continuum material

models; and (iv) accurate integration requires time steps in the nanosecond range,

limiting the total simulation time to less than a second on today’s processors.

Typical boundary value problem (BVP) involves determining the displacement,

strain and stress fields in a body Ω containing N dislocations subjected to boundary
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tractions T0 on surface Sf and displacements U0 on surface Su. The singular fields

associated with dislocations preclude the direct application of finite element method

(FEM) to solve the BVP. Lemarchand et al. (2001) developed a discrete-continuum

framework to solve the BVP. In this framework, a 3D-DDD model solves for the

dynamic and local interactions of dislocation lines and computes the plastic strain

generated by dislocation line. FEM is then used to compute the displacement field

that is the solution for the BVP. Currently, this procedure is limited to one dislo-

cation per mesh element due to breakdown of the interpolation procedure at short

distances. The mesh has to be refined down to a value that is typically the small-

est distance between interacting segments, which sets limitations to the dimensions of

the simulated configurations. More recently, extended finite element method (XFEM)

has been used to solve the BVP (Gracie et al., 2007). In this model, FEM is used

to determine the total stress field subject to prescribed internal discontinuities, i.e.,

dislocation slip. Displacement is decomposed into a continuous part and a discon-

tinuous or an enriched part. Two enrichment functions are used in the model. The

first adds a discontinuity on a closed-surface in the domain, for e.g., edge dislocation

enrichment introduces a tangential jump of constant magnitude across slip plane.

The second enrichment adds a field defined by analytical functions characteristics of

core mechanics in the vicinity of core. However, the computational cost due to the

need for refined mesh to account for local gradients in the fields is very large in this

method.

3D and 2D DDD frameworks have been developed based on the method of su-

perposition (Amodeo and Ghoniem, 1990; Kubin et al., 1992; Van der Giessen and

Needleman, 1995; Zbib et al., 1998). In this method, the solution to the BVP is

determined by superimposing the analytical infinite domain solution of each dislo-

cation and an image field. FEM is used to determine the solution with boundary
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tractions and displacements chosen to cancel the tractions and displacements due to

infinite dislocation fields on the boundary. The computation of the long range dislo-

cation interactions in this method goes as O(N2). This method has been extensively

used in various studies like inelastic behavior of composite material (Van der Giessen

and Needleman, 1995; Cleveringa et al., 1997), bending of crystals (Cleveringa et al.,

1999), and fracture in crystals (Cleveringa et al., 2000; Balint et al., 2005a). Recently,

both 3D and 2D DDD have been used to investigate size effects due to dimensional

constraints (Deshpande et al., 2005; Benzerga and Shaver, 2006; Tang et al., 2007;

Rao et al., 2008). 2D DDD frameworks have also been used to investigate the effect

of microstructural constraints, imposed by grain boundaries, on the mechanical be-

havior of crystalline materials (Biner and Morris, 2002, 2003; Balint et al., 2005b). A

detailed review of literature related to the application of DDD framework to investi-

gate size effects due to dimensional constraints is provided in Chapter IV. Chapter

VI provides a review of the application of DDD framework to investigate the effect of

microstructural constraints, imposed by grain boundaries, on the mechanical behavior

of crystalline materials.

c. Molecular dynamics studies

Molecular dynamics simulation is being used to investigate the effect of dimensional

as well as microstructural constraints on the strength of crystals. These simula-

tions provide useful information regarding the underlying mechanisms leading to-

wards strengthening in crystals under different constraints. Horstemeyer et al. (2001)

performed molecular dynamics simulations using the embedded atom method (EAM)

on Ni single crystals. Their simulations predicted size effects due to dimensional con-

straints with yielding dominated by nucleation of dislocations from the free surface of

the crystal. The yield surface was found to scale inversely with the volume to surface
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area ratio. Molecular dynamics simulations on Ni single crystals was also performed

by Cao et al. (2008). They have explored the size range between 4 to 16 nm. The

simulations predict size effects on the strength with the yield strength of the 4 nm

crystal approaching close to the theoretical yield. The stress-strain response demon-

strates zigzag like response. However, the size ranges explored in these calculations

have not been able to be achieved in the experiments. Further, these molecular dy-

namics simulations show a trend towards softening upon yielding while experimental

observations have been consistently showing a trend towards hardening (Volkert and

Lilleodden, 2006; Frick et al., 2008).

Grain size effects on the strength and the validity of Hall-Petch effect in nanocrys-

talline materials have been explored using molecular dynamics simulations. Simula-

tions with grain size in the range of 30 nm - 10 nm have predicted Hall-Petch like

behavior (Van Swygenhoven and Spaczer, 1999). Below 10 nm experiments have

predicted an inverse Hall-Petch like behavior (Dao et al., 2007). These observations

were also made by recent molecular dynamics simulations (Yamakov et al., 2004;

Wolf et al., 2005). Their simulations suggested a cross-over between a dislocation

dominated deformation process to grain boundary mediated process with decrease

in grain size. Based on these observations they have developed a stress-grain size

deformation mechanisms maps. Simulations have also described the role of diffusion

creep on inverse Hall-Petch effect (Desai et al., 2008). Large-scale molecular dynam-

ics simulations have also been performed to investigate rate controlling mechanism of

yielding in twinned Au nanowires (Deng and Sansoz, 2009b).

Molecular dynamics simulations are useful to predict and probe mechanisms

for predicting grain size effects below 10 nm. Current computational power limit

their analysis for a wide range of grain sizes varying from micrometers to a few

nanometers. They are severely restricted by time scale limitations, which prevent
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them from exploring large strain deformation mechanisms.

D. Outline of the dissertation

This dissertation consists of six chapters. Chapter I presents motivation, goal, ob-

jectives and background literature related to the undertaken research work in this

study. The review of literature particularly highlights recent advances made in un-

derstanding plastic behavior due to dimensional and microstructural constraints. The

challenges faced by the modeling community to develop phenomenological, analyti-

cal and computational frameworks to simulate material behavior due to dimensional

and microstructural constraints is succinctly presented. This overview establishes

the capability of the mesoscale modeling technique, discrete dislocation dynamics

(DDD), to address issues related to plastic deformation in crystalline materials due

to dimensional and microstructural constraints.

DDD is used as the computational tool towards achieving the objectives of this

research work. Chapters II, III and IV present results related to effect of dimensional

constraint on plastic behavior. Simulation results shown in Chapter II establish that

there is a significant increase in the strength of crystals with decrease in crystal

dimension. More importantly, simulations predicted that not only flow stress but

hardening rate also increases with decrease in crystal size for the first time. An

analysis of microstructure evolution revealed the emergence of scale dependent GND

density with the density being higher in smaller crystals.

Chapter III presents comparison between experimental measurements and sim-

ulation results for the evolution of plastic deformation and strain hardening in Cu

micropillars. Both experiments and simulations showed a size affected hardening be-

havior in micropillars. The flow stress and hardening rate predicted from simulations
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are in good agreement with the experimental results. Significant lattice misorien-

tations were found in deformed pillars from experiments and simulations. Chapter

IV provides a summary of the lessons learned and the contributions made from this

study (Chapters II and III) as well as other work not yet published in light of the

recent micropillar experiments and simulations available in the literature.

In Chapter V development of a phenomenological framework to model size depen-

dent hardening in crystals is presented. This model is based on direct coarse graining

of dislocation dynamics. The coarse graining technique, which captures the spatial

and temporal evolution of defect microstructure, holds the promise of connecting the

microstructure and the effective response in crystal plasticity.

Effect of microstructural constraint, due to grain size, on crystal plasticity is

investigated in Chapter VI. In this chapter, description of the development of a DDD

based polycrystal computational tool with enhanced short-range dislocation represen-

tation is presented. The results from the simulation show an increase in flow stress

and hardening rate with decrease in grain size. The simulations are able to predict

the Hall-Petch behavior observed in experiments.
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CHAPTER II

SIZE EFFECTS UNDER HOMOGENEOUS DEFORMATION OF SINGLE

CRYSTALS: A DISCRETE DISLOCATION ANALYSIS ∗

A. Overview

Mechanism-based discrete dislocation plasticity is used to investigate the effect of size

on micron scale crystal plasticity under conditions of macroscopically homogeneous

deformation. Long-range interactions among dislocations are naturally incorporated

through elasticity. Constitutive rules are used which account for key short-range

dislocation interactions. These include junction formation and dynamic source and

obstacle creation. Two-dimensional calculations are carried out which can handle

high dislocation densities and large strains up to 0.1. The focus is laid on the effect of

dimensional constraints on plastic flow and hardening processes. Specimen dimensions

ranging from hundreds of nanometers to tens of microns are considered. Our findings

show a strong size dependence of flow strength and work-hardening rate at the micron

scale. Taylor-like hardening is shown to be insufficient as a rationale for the flow

stress scaling with specimen dimensions. The predicted size effect is associated with

the emergence, at sufficient resolution, of a signed dislocation density. Heuristic

correlations between macroscopic flow stress and macroscopic measures of dislocation

density are sought. Most accurate among those is a correlation based on two state

variables: the total dislocation density and an effective, scale-dependent measure of

signed density.

∗Reprinted with permission from “Size effects under homogeneous deformation of
single crystals: A discrete dislocation analysis” by Guruprasad, P. J. and Benzerga,
A. A., 2008. J Mech Phys Solids 56, 132–156, Copyright [2008] Elsevier Ltd.
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B. Introduction

Plastic deformation in small volumes is characterized by well documented deviations

from bulk behavior. Of particular significance among these deviations is the size-

dependence of plastic flow properties at the micron and sub-micron scale; see e.g.

(Fleck et al., 1994; Stölken and Evans, 1998; Nix and Gao, 1998; Swadener et al., 2002;

Uchic et al., 2004; Greer et al., 2005; Dimiduk et al., 2005). This scale dependence of

strength poses serious challenges to the effective design of small-scale structures, let

alone the challenge of quantifying the uncertainty that results from the spread in the

values of strength upon scale reduction.

Under circumstances where a strain gradient is imposed, such as under indenta-

tion (Nix and Gao, 1998; Swadener et al., 2002), the size effect is commonly attributed

to a density of geometrically necessary dislocations (GNDs), which is needed to ac-

commodate the so-imposed strain gradient. The connection between GNDs and what

may be viewed as the plastic portion of the strain gradient is the underlying concept

behind various augmented plasticity theories developed in recent years (Fleck et al.,

1994; Gao et al., 1999; Fleck and Hutchinson, 2001; Acharya, 2001; Gurtin, 2002;

Acharya, 2004); see (Forest and Sievert, 2003) for an exhaustive description of sev-

eral classes of non-local theories.

By way of contrast, in the absence of strain gradients existing nonlocal plas-

ticity theories would predict a size-independent response. Recent experiments have

yet shown compelling evidence of size-dependency in micropillar compression (Uchic

et al., 2004; Greer et al., 2005; Dimiduk et al., 2005; Volkert and Lilleodden, 2006;

Greer and Nix, 2006). The fact that size effects also emerge under states of macro-

scopically homogeneous deformation has motivated alternative explanations of size-

dependent plastic behavior. Dimiduk et al. (2005) investigated possible intrinsic
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changes to dislocation mechanisms upon scale reduction and conclude that the ob-

served size-dependent flow may be dominated by stochastic effects, including dis-

location generation by a stress-dependent source distribution. This rationale of

size-dependent flow being controlled by multiplication processes is corroborated by

a number of discrete dislocation dynamics calculations of thin films (von Blanck-

enhagen et al., 2001), micropillar compression (Benzerga and Shaver, 2006) and

grain-boundary sources (Espinosa et al., 2006). It remains that, while multiplication-

controlled plasticity would significantly affect the elastic-plastic transition, it alone

could not explain the effect of size on work-hardening; (e.g., Volkert and Lilleodden,

2006). It is difficult indeed to conclude from the micropillar experiments of Greer

et al. (2005) and Dimiduk et al. (2005) whether the strengthening that occurs upon

scale reduction is the result of increased yield strength or increased work-hardening

rate at small strains.

Here we perform calculations where size effects emerge in the absence of macro-

scopic strain gradients and where the behavior is not multiplication controlled. Sim-

ilar calculations were recently reported by Deshpande et al. (2005) but their cal-

culations did not include forest hardening. Attention is focused on circumstances

under which apparent macroscopic yield is essentially size independent but, due to

microstructure evolution, the subsequent work hardening behavior is strongly size de-

pendent. In that sense, the calculations here are complementary of those of Benzerga

and Shaver (2006) and Deshpande et al. (2005) and aim at providing an alternative

explanation of size-dependent plastic flow at the micron scale and below.

The analyses are carried out within the framework of mechanism-based discrete

dislocation plasticity (M-DDP) developed by Benzerga et al. (2004). The dislocations

are modeled as line defects in a linear elastic, isotropic solid so that the long-range

interactions between them are directly accounted for. Superposition is used to rep-
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resent the solution of the boundary value problem of interest in terms of the infinite

medium singular fields for the discrete dislocations and image fields that enforce

boundary conditions (Van der Giessen and Needleman, 1995). The short-range in-

teractions are incorporated into the formulation through a set of constitutive rules

that allow for approximate representations of key three-dimensional dislocation mech-

anisms in a two-dimensional framework, for the purpose of computational efficiency.

These rules, which may be referred to as “2.5D” rules, account for junction formation

and destruction, dynamic source creation and line tension. Within this framework,

the stress–strain curve, including a two-stage response (Benzerga et al., 2004), the

evolution of the dislocation structure and energy storage (Benzerga et al., 2005) are

outcomes of the formulation and not constitutive assumptions.

In the present investigation, geometrically similar planar crystals are subject

to nominally uniform compression at fixed applied strain rate. Global as well as

local measures of flow stress and dislocation density are quantified and analyzed to

develop a suitable structure–property relationship in terms of reduced state variables.

The results indicate that, at the micron scale, geometrically necessary dislocations

play an important role in setting the flow stress even under states of macroscopically

homogeneous deformation.

C. Problem formulation

The formulation follows that of mechanism-based discrete dislocation plasticity (M-

DDP) as described by Benzerga et al. (2004). It extends the original two-dimensional

(2D) framework (Van der Giessen and Needleman, 1995) by incorporating key three-

dimensional effects as a set of constitutive rules. In this mesoscopic model, plastic

flow arises due to the nucleation and motion of edge dislocations modeled as line
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singularities in a homogeneous and isotropic elastic medium. The challenge is to

solve boundary value problems involving the collective motion and interaction of a

large number of discrete dislocations. The formulation is an incremental one where

at each time increment dislocation structure, stress, strain and displacements are

determined. Assuming infinitesimal displacement gradients, superposition is used to

describe the current state of the body in terms of the displacement, strain and stress

fields as

u = ũ + û, ε = ε̃ + ε̂, σ = σ̃ + σ̂ (2.1)

The singular (̃ ) fields are obtained by the superposition of the fields (ui,εi,σi) asso-

ciated with individual dislocations,

ũ =
N∑

i=1

ui, ε̃ =
N∑

i=1

εi, σ̃ =
N∑

i=1

σi, (2.2)

with N the total number of dislocations in the sample. The (̂ ) fields are the image

fields that correct for the actual boundary conditions. The latter are specified in terms

of conventional tractions and displacements applied to portions of the boundary ∂Ω of

a finite domain Ω. When dislocations are kept at a core distance from all boundaries,

the (̂ ) fields are smooth and obey a well-posed boundary value problem, which is

solved using the finite element method. The framework used in this investigation does

not account for finite lattice rotations and shape changes due to slip. Deshpande et al.

(2003) have developed a finite strain discrete dislocation plasticity model to account

for finite lattice rotations and shape changes due to slip.

The glide motion of dislocation i is determined by the Peach-Koehler force, f i,

given by

f i = mi ·

(
σ̂ +

∑
j 6=i

σj

)
· bi (2.3)

where mi is the slip plane normal and bi the Burgers vector with signed length bi
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and b = |bi|.

Two types of dislocation Frank–Read sources are considered. Static sources are

initially present with specified density and spatial distribution. Dynamic sources are

formed in the course of the deformation due to dislocation interactions. Also, two

types of dislocation obstacles are modeled: (i) initial stress-free point obstacles that

represent precipitates; and (ii) dynamic obstacles that represent forest dislocations.

The locations of initial, static sources and obstacles are randomly generated. A

static source i nucleates a dipole when the magnitude of the Peach-Koehler force

exceeds a critical value, τ i
0nb, for a prescribed time t0n. The source strengths are

randomly assigned from a Gaussian distribution with average τ̄0n. The sign of the

nucleated dipole depends on the sign of the Peach-Koehler force acting on the source.

A dislocation may get pinned at a static obstacle and is released when the Peach-

Koehler force at the location of the obstacle attains the value τobsb
i, with τobs the

obstacle strength.

When dislocations gliding on intersecting planes approach each other within a

critical distance d∗, a junction is formed, irrespective of the sign of the interacting

dislocations. Junction formation results in dynamic dislocation source and obstacle

evolution during the deformation process. A junction which cannot be unzipped,

for example due to cross-slip, is termed an anchoring point. A breakable junction

is referred to as a dynamic obstacle. Such an obstacle is destroyed if the Peach-

Koehler force acting on either dislocation comprising the junction attains or exceeds

the breaking force, τ I
brkb. The breaking stress for junction I is configuration dependent

and is given by:

τ I
brk = βbrk

µb

SI
(2.4)

where SI is the distance to the nearest junction in any of the two intersecting planes
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and βbrk is a scaling factor for the junction strength. The dislocations forming a

junction are released when the latter is destroyed and are free to glide along their

respective slip planes.

At the level of refinement of a 2D model, the formation of an anchoring point

can only be treated as a statistical event. The probability that a junction forms an

anchoring point has the prescribed value p. Anchoring points lead to the formation of

new, dynamic sources. A dislocation dipole is nucleated at source I when the value of

the Peach-Koehler force at either junction forming the source exceeds the value τ I
nucb

during a time tInuc. Both values depend on the local configuration and hence evolve

dynamically. The nucleation stress is given by

τ I
nuc = βnuc

µb

SI
(2.5)

where βnuc is a factor that reflects the strength of the source and SI is the distance

to the nearest junction on the slip plane where τ I
nuc is being resolved. The nucleation

time tInuc is given by

tInuc = γ
SI

|τ I |b
(2.6)

where γ is a material constant with units of a drag factor, and τ I is the current

resolved shear stress at the location of anchoring point I, exclusive of the junction self-

stress. The nucleation conditions (2.5)–(2.6) result from a dislocation multiplication

model first developed by Benzerga et al. (2004) and later improved by Benzerga

(2008). Their model describes the dynamic bow-out of a dislocation segment using

line tension approximations.

For determining the dislocation evolution it is necessary to account for the inter-

action of moving dislocations with junctions. Several options are physically possible

which are discussed by Benzerga et al. (2004). Here the only mechanism for junction
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destruction is unzipping, as described through Eq. (2.4). In particular, the mecha-

nism of destruction by annihilation is not used. Thus, anchoring points cannot be

broken in the simulations discussed below. Annihilation of two co-planar disloca-

tions of opposite sign occurs by eliminating both dislocations when they are within

a material-dependent critical annihilation distance, Le, provided that none of them

is involved in a junction. Dislocations are allowed to glide out of the crystal but

geometry changes, such as step formation, are not accounted for.

There is an energy cost associated with the expansion of dislocation loops. But

this is not explicitly taken into account in the two-dimensional formulation with

loop expansion represented by dipole separation. Hence, to represent the additional

energy cost associated with loop expansion in two-dimensions, a configurational force

of magnitude Libi and pointing from one dislocation constituting the dipole toward

the other is introduced with

Li = −α
µb

S i
d

(2.7)

where α is the line tension parameter and S i
d the algebraic distance between the

dislocations, members of the same dipole, so that the sign of Li depends on the sign

of S i
d. Further details are given by Benzerga et al. (2005).

Dislocation glide is taken to be drag controlled following:

Bvi = sign(τ i + Li)〈|τ i + Li| − τP〉bi (2.8)

with B the drag factor, vi the glide velocity of dislocation i, τ i = f i/bi, Li the line

tension given by (2.7) and τP the Peierls stress. Note that τ i differs from the resolved

shear stress in that the stress field of dislocation i is excluded. The symbol 〈·〉 denotes

McCauley’s brackets. To the neglect of line tension and frictional stress the right-hand

side of (2.8) reduces to the glide Peach-Koehler force f i defined by (2.3).
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The difference between the M-DDP framework and other 2D discrete disloca-

tion modeling resides in the set of additional constitutive rules (2.4)–(2.7) with (2.8)

amended as appropriate. Accounting for these 2.5D rules is key to predicting the

multi-stage hardening response of single crystals, as shown by Benzerga et al. (2004).

The additional rules were derived using dislocation theory so that good estimates

of all but one parameter (p which sets the probability of forming new sources) are

generally known. Ranges for the parameters d∗, βbrk, βnuc, γ and α were discussed by

Benzerga et al. (2004).

Here, calculations are carried out for planar model face centered cubic crystals

having dimensions L×H, subject to plane strain uniaxial compression in the x1–x2

plane (Fig. 4). The surfaces at x2 = ±H/2 are traction free and the shear stress

vanishes at x1 = ±L/2. A uniform displacement u1 = ±U/2 is prescribed along

x1 = ±L/2. The rotation of the tensile axis is not restricted. There are two slip

systems oriented at ±ϕ0 from the loading x1–axis. The average compressive stress

and the applied strain are given by, respectively,

σ = − 1

H

∫ H/2

−H/2

σ11(±L/2, x2)dx2; ε = −U

L
(2.9)

D. Results

The calculations are carried out for geometrically similar specimens such that the

aspect ratio L/H = 3 is kept fixed with L varied between 0.6 µm and 38.4 µm. The

crystal orientation is defined by ϕ0 = 35.25◦. The material parameters, ν = 0.3,

µ = 26 GPa, b = 0.25 nm, B = 10−4Pa s and τP = 0, are taken to be representative of

aluminum. The values of the parameters entering the “2.5D” constitutive rules are

d∗ = 6b, p = 0.05, βbrk = βnuc = 1, γ = 0.1B and α = 0. The annihilation distance is

taken to be equal to the critical distance for junction formation Le = d∗ = 1.5 nm.
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x2

x1 σ, εσ, ε

ϕ0

L

H

Fig. 4. Geometry of the compression problem for a planar model fcc crystal with two

slip systems oriented at ±ϕ0 from the x1–axis.

The analyses are carried out for initially dislocation free crystals but with poten-

tial static sources and obstacles randomly distributed on predefined slip planes, with

densities ρ0 = 1.5 × 1014m−2 and ρobs = 6 × 1014m−2, respectively. Thus, the initial

source density is two orders of magnitude larger than in the microcrystals tested by

Dimiduk et al. (2005). This high value of ρ0 is chosen to promote athermal hardening

processes, which were found to be ineffective at low source density (e.g., a value of

1012m−2 was used by Benzerga and Shaver (2006)). On the other hand, the value of

ρobs has little effect on the results. The mean and standard deviation of the initial

source strength distribution are τ̄0n = 50 MPa and 10 MPa, respectively, t0n = 10 ns

and τobs = 150 MPa. The slip plane spacing is set to 20b. The imposed strain rate

ε̇ = −U̇/L = 6.66 × 104 s−1 is kept the same for all specimens. A time step of

∆t = 0.5 ns is used to resolve the dynamics of dislocation nucleation and motion.

Since the results are not sensitive to mesh density when the gradients of the (̂ ) fields

are resolved, a uniform finite element mesh (60 and 20 elements along x1 and x2

respectively) is used for all specimens.
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1. Flow stress and work-hardening

Typical stress versus strain responses are shown in Fig. 5 for selected specimens

showing the overall transition from elastic to plastic regimes and from stage I to stage

II hardening. Although the specimens are oriented for double slip from the outset,

all responses exhibit some extent of stage I hardening because slip activity initiates

on a few slip planes. At the scales considered here, this results in easy glide up to a

few percent of strain. All specimens were taken well into stage II and some up to a

strain of 0.1. The calculations corresponding to the H = 6.4 µm and H = 12.8 µm

specimens were terminated prior to reaching the strain of 0.1 (Fig. 5b) when the

number of dislocations was such that the computations were severely slowed down,

e.g., over 465,000 dislocations were involved in the simulations in the H = 12.8 µm

specimen at ε ≈ 0.06.

Unlike in previous calculations (Benzerga and Shaver, 2006; Benzerga, 2008)

there is no initial dislocation structure in the present calculations. Therefore, dis-

location activity takes place at σ ≈ 105 MPa, irrespective of specimen size. This

value is consistent with a mean source strength value of 50 MPa and a Schmid factor

fS = (sin 2ϕ0)/2 = 0.47 for both slip systems. Subsequently, there is a noticeable

stress drop because the stress required for sustained plastic flow is smaller than the

stress at initial yield. As shown by Benzerga and Shaver (2006) and Benzerga (2008),

the post-yield stress drop is eliminated by incorporating an initial dislocation struc-

ture.

The specimen size affects the stress–strain curve in a number of respects. To

quantify the size effect, the values of the 0.2% yield strength, σy, the rate of stage

I hardening, ΘI, the stress at the beginning of stage II, σII, and the rate of stage

II hardening, ΘII, are reported in Table I. For most specimen sizes three values are
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Fig. 5. Representative stress versus strain compression responses of the (a)

H = 0.2 µm, 0.4 µm, 0.8 µm and 6.4 µm specimens; and (b) H = 0.8 µm,

1.6 µm, 3.2 µm, 6.4 µm and 12.8 µm specimens. A reduced stress range is

shown in (b) and two realizations of the H = 0.2 µm specimen are shown in

(a).
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Table I. Characteristics of the multi-stage hardening response of geometrically similar

crystals with a length to height ratio of 3. The symbols σy, σII, ΘI and ΘII

refer to the 0.2% yield strength, the flow stress at the beginning of stage II,

the rate of stage I hardening and the rate of stage II hardening, respectively.

Up to three realizations are reported for each specimen size.

Size, H σy σII ΘI/µ ΘII/µ

(µm) (MPa) (MPa)

80 258.3 0.0366 0.192
0.2 115 175.0 0.0114 0.244

77 208.3 0.0175 0.239

95 186.6 0.0132 0.119
0.4 95 213.3 0.0179 0.128

75 211.1 0.0172 0.080

75 200.0 0.0193 0.071
0.8 90 190.0 0.0186 0.065

85 151.1 0.0114 0.065

80 156.0 0.0117 0.055
1.6 75 152.0 0.0125 0.044

80 160.0 0.0131 0.050

80 107.5 0.0053 0.037
3.2 65 100.0 0.0049 0.032

72 133.3 0.0099 0.039

70 101.7 0.0047 0.024
6.4

75 101.9 0.0041 0.029

90 93.5 0.0030 0.022
12.8

75 90.9 0.0026 0.018
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given which correspond to distinct realizations of the initial static source and obstacle

distributions. The precise definition of the parameters listed in the table is given in

Fig. 6. The instantaneous work hardening rate is defined as Θ = dT /dΓ, where

T = fSσ and Γ = ε/fS respectively refer to the macroscopic flow stress and shear

strain, resolved on either slip system.

Most notable in the stress–strain curves of Fig. 5 is the effect of size on the

stage II hardening rate, ΘII. As shown in Table I other characteristics of the stress–

strain response are also size-dependent. While the values of the yield strength σy

exhibit a slight increase with decreasing specimen size (roughly 20% over the size

range investigated) those of σII increase by nearly a factor of 3. Correspondingly, the

stage I hardening rate, ΘI, increases by one order of magnitude, Table I. The increase

in the spread of the values of all characteristics with decreasing specimen size is also

noteworthy.

σ

ε0.002

σy

σII

I

II

θII

1

θI

1

Fig. 6. Sketch of a typical stress–strain multistage response of a single crystal showing

the definition of the strength and hardening quantities listed in Table I. Here

θi = Θi/f
2
S (i = I, II).

Fig. 7a depicts the values of the flow stress, σf , as a function of specimen height,



39

H, at various strain levels. Because of strain hardening the scaling of σf with size

varies in the course of deformation. A power law of the form

σf

σ0

≡ T
fSσ0

=

(
H

H0

)−x

(2.10)

fits relatively well the data in Fig. 7a at all strain levels but the scaling exponent x

increases from ≈ 0.1 at ε = 0.02 to over 0.4 at ε = 0.1. The effect of specimen size

on stage II hardening is quantified in Fig. 7b. The work hardening rate ΘII increases

steadily with decreasing specimen size. The µ/200 to µ/100 range of bulk values of

ΘII is also depicted in Fig. 7b for comparison purposes. In the H = 0.2 µm specimen,

the calculated value of ΘII, averaged over three realizations, is about 20 times larger

than the maximum bulk value. By way of contrast, in the largest specimen analyzed,

the value of ΘII is less than twice the bulk value. In addition, it is worth noting that

the effect of size on ΘII is enhanced for values of H in the sub-micron regime.

2. Evolution of the dislocation structure

Fig. 8 shows the dislocation density, ρ, versus strain curves corresponding to the over-

all stress–strain responses in Fig. 5. Up to a strain of about 0.04 the evolution of the

dislocation density is insensitive to specimen size. Beyond the 0.04 strain level the

rate of increase of ρ is consistently increased with decreasing specimen size. In ad-

dition, for fixed specimen dimensions, the rate of dislocation accumulation decreases

with increasing strain for ε < 0.04 so that the curves are concave downward. By way

of contrast, the increase in ρ for ε > 0.04 is rather linear, except for the largest two

specimens where the density versus strain curves retain the slightly concave shape.

The corresponding evolution of total junction density is shown in Fig. 9a. The junc-

tion density increases with strain for specimens of all sizes, but there is a noticeable

decrease in the junction production rate after some straining. Similar trends are ob-
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Fig. 7. (a) Flow stress, σf , versus crystal height, H, at various strain levels. Best

fit lines following power law (2.10) are based on two or three realizations per

specimen size. The value of the scaling exponent x in (2.10) is 0.09, 0.2, 0.26,

0.33 and 0.42 at ε = 0.02, 0.04, 0.06, 0.08 and 0.1, respectively. (b) Stage II

work hardening rate, ΘII, in units of the shear modulus µ, versus crystal height,

H, showing two distinct scaling regimes with the best power law fits exhibited.

Bounds of scatter bars correspond to actual maxima and minima from several

realizations and averages are connected by the dotted line. Horizontal lines

depict the typical, material-independent range of bulk values of ΘII/µ.
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Fig. 8. Evolution of dislocation density with strain for selected realizations of all spec-

imen sizes corresponding to the stress–strain responses of Fig. 5.

tained for the dynamic obstacle density (Fig. 9b) but the production rate of obstacles

vanishes with continued deformation. This is due to the fact that after sufficient strain

hardening, stress levels are so high that obstacles are more easily broken. Although

not shown in the figure, the results indicate that the dynamic source production also

decreases in rate with increasing strain but does not saturate. Anchoring points can-

not be destroyed but large back-stresses on densely packed slip planes tend to shut

down the sources located on these planes. This ultimately leads to a decrease in the

production of dynamic sources.

Beyond the details of dislocation structure evolution described above, it is em-

phasized that there is little correlation between junction density and specimen size, at

fixed overall strain. The dynamic obstacle density shows a more consistent decrease

with increasing specimen size, but only for H > 0.8 µm. Whether all junctions or

only the dynamic obstacles are chosen to represent the forest, the size dependence of
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Fig. 9. (a) Total junction density versus strain for selected realizations of all specimen

sizes; (b) corresponding evolution of dynamic obstacle density. At fixed strain

dρo ≤ dρj since ρj = ρo + ρa and the density ρa of anchoring points can only

increase with strain or remain constant.
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the flow stress cannot be correlated with the spacing between forest dislocations.

The dislocation distributions corresponding to a strain of 0.1 are shown in Fig. 10

for selected specimen sizes. Positive dislocations are shown in black whereas nega-

tive dislocations are shown in gray. Two specimens with H = 0.2 µm are shown to

highlight the increased variability of the results in smaller specimens. In one realiza-

tion of the H = 0.2 µm specimen, the dislocation structure (Fig. 10a, left) shows an

excess of negative dislocations within the specimen, i.e. a residual Burgers vector.

Interestingly, this realization is characterized with a higher flow stress and a larger

value of the stage II hardening rate; see Fig. 5. In all other specimens the ratio of

signed to total dislocation density at ε = 0.1 essentially vanishes over the volume of

the specimen.

3. Flow stress scaling

In physical theories of crystal plasticity, the dislocation density is commonly used as

the structural parameter for macroscopic descriptions of plastic flow, with the flow

stress governed by Taylor-like hardening following:

T = Aµb
√

ρ (2.11)

where A is a constant in the range 0.3 to 0.5 when the athermal component of T

is retained (Gil Sevillano, 1993). Fig. 11 shows the evolution of T with strain for

selected specimen sizes. The flow stress is given in units of µb
√

ρ to explore the

validity of Eq. (2.11) at the micron scale. This plot clearly shows that the increase in

dislocation density with decreasing specimen size (Fig. 8) does not suffice to explain

the corresponding increase of the flow stress (Fig. 5). At fixed specimen size, there

is a deformation regime where the bulk scaling law (2.11) holds with values of the

pre-factor A within the range 0.3–0.5. The bigger the sample the larger the extent
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(a)

(b)

(c)

(d)

Fig. 10. Spatial distribution of dislocations at ε = 0.1 in the crystals of height

(a) H = 0.2 µm; (b) H = 0.4 µm; (c) H = 0.8 µm (all scaled appropri-

ately); and (d) H = 3.2 µm (not scaled). Positive dislocations are shown

as black dots whereas negative dislocations are shown as gray dots. Two

realizations are shown for the H = 0.2 µm specimen as in Fig. 5.
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of this regime and the smaller the value of A. But a deviation from this behavior

takes place for all specimen sizes. This deviation is more pronounced in stage II and

is larger in magnitude for smaller specimens. The behavior in Fig. 11 indicates that,

at the micron scale, (i) the dislocation density does not suffice to set the flow stress;

and (ii) the spatial distribution of dislocations affects the flow stress, in a way not

specified as yet, and this effect is inherently increased with decreasing sample size.

4. Local flow stress and dislocation density

In principle the applied loading can be accommodated by a uniform stress distri-

bution. However, the presence of a dislocation structure and the heterogeneity of

dislocation mediated slip lead to an inhomogeneous stress distribution. Fig. 12 shows

contours of the axial stress σ11 corresponding to selected specimen sizes at a strain

ε = 0.1 (see Fig. 20 on page 72 for an example of contours of the stress compo-

nents σ22 and σ12). The corresponding dislocation structures were shown in Fig. 10.

In any given specimen, the spatial average of σ11 over the volume corresponds, in

magnitude, to the overall stress given by Eq. (2.9). Clearly, at a strain of 0.1 the

heterogeneous internal stress field has evolved in such a way that surface boundary

layers have formed which are softer than the core of the specimen. The fact that

the core is harder than regions located near the free surfaces is consistent with the

experimental measurements of Fourie (1968). In the calculations, the formation of a

hard core between softer boundary layers is associated with the increased propensity

of dislocation intersections within the core, which enhance junction formation and

subsequent forest hardening mechanisms.

In Fig. 12a two specimens with H = 0.2 µm are considered just like in Fig. 10a.

The stress distributions are quite different in the two samples, especially at the strain

of 0.1. In the sample shown on the right, stress concentrates along a band and this
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Fig. 11. Macroscopic flow stress, T = fSσ, in units of µb
√

ρ, versus macroscopic re-

solved shear strain, Γ = ε/fS, with fS = 0.47 the Schmid factor. The speci-

men realizations correspond to those in Figs. 5 and 8 for the stress–strain and

density–strain curves, respectively.
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(a)

(b)

(c)

(d)

σ11(MPa)

Fig. 12. Contours of axial stress σ11 at ε = 0.1 in crystals of height (a) H = 0.2 µm;

(b) H = 0.4 µm; (c) H = 0.8 µm (all scaled appropriately); and

(d) H = 3.2 µm (not scaled). Two realizations are shown for the H = 0.2 µm

specimen as in Fig. 10.
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may contribute to lower the overall flow stress and work hardening rate. This picture,

together with the build-up of a residual Burgers vector in the sample shown on the

left (recall Fig. 10a) is consistent with the scatter in the ΘII values shown in Fig. 7b.

In order to quantify the flow stress variation across specimen height, averages of

the axial stress were calculated over strips of equal thickness h, running parallel to the

specimen axis. Define Σ11(x
n
2 ) = 〈σ11(x1, x2)〉Ωn with 〈 · 〉X the spatial average over X

and Ωn a strip-like domain defined by −L/2 ≤ x1 ≤ L/2 and −h/2 ≤ x2 − xn
2 ≤ h/2

where xn
2 = (n− 1

2
)h−H/2 refers to the center-coordinate of the strip. Fig. 13 shows

the so-averaged axial stress, Σ11, against the x2 location of the strip.

The stress profiles in Fig. 13 reveal a number of interesting features. First, in

any given specimen the flow stress is typically 3 times as large in the core than near

the surface. Second, there essentially is a pointwise increase of the flow stress when

the specimen size decreases. We may also notice that the flow stress is not uniform

in the soft boundary layers. It attains a minimum at a distance, roughly 10 to 15%

of the total specimen height, from the free surface. This effect is associated with the

formation of nearly dislocation-free thin layers in the vicinity of the top and bottom

free surfaces (Fig. 10). These thin layers are harder than regions located farther away

from the surface (Fig. 12).

Also noticeable in Fig. 13 is the symmetry of the stress distribution about the

x1 axis for all but one realization of the H = 0.2 µm specimen. The asymmetry of

the latter, already noticeable at ε = 0.033 (Fig. 13a), is such that the flow stress in

the bottom half of the specimen is larger than the average flow stress of the whole

specimen, which is approximately 2 GPa; see Fig. 5. This means that a tendency to

bending has occurred inside the specimen, superposed onto the overall compressive

stress state. This is consistent with the picture in Fig. 10a (left) and a residual

Burgers vector. Although a significant portion of the strengthening in the H =
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Fig. 13. Variation of the flow stress across the crystal height for selected specimen

sizes (a) at ε = 0.033; and (b) at ε = 0.1. The local flow stress is identified

with |Σ11|, the axial stress averaged over horizontal domains.
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0.2 µm specimen discussed above may be associated with a density of geometrically

necessary dislocations (GNDs) induced by local lattice rotations within the specimen,

this behavior does not explain the size dependence of flow stress and strain hardening

depicted in Figs. 5 and 7 for H ≥ 0.4 µm. Indeed, the net Burgers vector in all

specimens with H ≥ 0.4 µm is negligible in magnitude. As shown in Fig. 13b,

the whole stress profiles are shifted toward larger stresses when the specimen size is

decreased.

While the Taylor hardening equation (2.11) does not hold overall, the question

arises as to whether it is valid locally. Local dislocation densities were calculated,

consistent with the local flow stress definition above. The height h of the domains

Ωn sets the window of resolution. The dislocation density profiles obtained at a

strain ε = 0.1 and using a resolution h = 40nm are shown in Fig. 14a for selected

specimens. As expected, the distribution has a rather symmetric bell shape with the

dislocation density being greater within the core region than outside of it. Fig. 14b

depicts the deviation of local flow stress from what would have been its value had

Taylor hardening applied locally. The deviation is minimum near the surfaces and

maximum at the center. These plots clearly show that Taylor hardening breaks down

at the microscopic scale as well.

5. Distribution of local GND density

Since the size-dependence of the overall flow stress is associated with an increase in

stress throughout the specimen and not only within the core, the question addressed

now is that of what relationship there is, if any, between local flow stress and local

dislocation density. In particular, the way in which the signed dislocation density

affects the local flow stress is of interest. The densities of positive and negative

dislocations on slip system κ, ρ
(κ)
+ and ρ

(κ)
− , respectively, were evaluated separately.
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Fig. 14. (a) Variation of the dislocation density across the crystal height for selected

specimen sizes at ε = 0.1. Local densities are calculated in horizontal domains

of equal thickness h = 40 nm (see text). (b) Corresponding deviation of the

local flow stress from ideal Taylor hardening, eq. (2.11) with A = 0.3. Both

Σ11 and ρ are evaluated at the same resolution h = 40 nm.
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Fig. 15. Variation of the signed dislocation density, ρG, across crystal height at ε = 0.1.

(a) Effect of the resolution h on ρG in the H = 3.2 µm specimen. (b) Effect of

specimen size on ρG evaluated at the same resolution h = 50 nm for selected

specimen sizes at ε = 0.1. For the specimen with height 12.8 µm the ρG was

evaluated at a strain of ε = 0.056. The signed or GND density ρG is calculated

using (2.18). See additional material in Appendix A on page 223.
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The signed, or GND, density for slip system κ is defined as |ρ(κ)
+ − ρ

(κ)
− |. The total

GND density, ρG, is defined using the net Burgers vector based on Nye’s tensor (see

Section. 1).

Clearly, both |ρ(κ)
+ − ρ

(κ)
− | and ρG are resolution-dependent. Fig. 15a shows the

through-thickness distribution of ρG corresponding to four different values of the res-

olution h in the H = 3.2 µm specimen strained to ε = 0.1. The method used to

define local densities is the same as in the previous section. At the coarsest resolu-

tion h = H the GND density only represents 0.3% of the total dislocation density,

consistent with a macroscopically homogeneous deformation. However, a local GND

density emerges at sufficient resolution. It peaks at the center of the specimen but all

values are significant relative to the total dislocation density. As expected, the local

GND density is highly resolution-dependent: the finer h the higher the fluctuations

in ρG.

Fig. 15b depicts the through-thickness distribution of the GND density for the

three specimens shown in Fig. 14 at ε = 0.1, in addition to one H = 12.8 µm

specimen at ε = 0.056. The same resolution h = 50 nm was used for all specimens

1. This value of h is sufficiently small in comparison with the smallest specimen

(H = 0.2 µm) but large enough so that individual domains contain on average a large

number of dislocations. Typically, at ε = 0.1 there were about 60 and 630 dislocations

per domain analyzed in the H = 0.2 µm and H = 3.2 µm specimens, respectively.

Fig. 15b reveals a trend for increasing local GND density upon a decrease in specimen

size. The same trend is obtained when each slip system is analyzed separately.

It is worth emphasizing that, in all specimens with H ≥ 0.4µm, the net GND

1Admittedly, fixing only ‘h’ does not lead to a constant domain area within which
the GND density is determined when sample size is varied. Further analysis maybe
be found in Chapter V and in Appendix A. The additional analysis also includes
spatial maps of GND density.
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density represents less than 10% of the total density up to ε = 0.1. Although the

imposed deformation is macroscopically homogeneous a GND density emerges in mi-

croscopic domains. This finding highlights the role of a locally non-vanishing GND

density in setting the local, and by way of consequence, the global flow stress. Quanti-

fying the relationship between local flow stress and local GND density is, however, not

a trivial task in view of the fact that the GND density is dependent upon resolution

and vanishes overall. Only macroscopic, heuristic correlations can be envisaged using

appropriately defined GND measures. One such correlation is developed in Section 7

below.

6. Bauschinger effect

In view of the build-up of a signed dislocation density at the micro-scale, significant

back-stresses arise which contribute to the apparent work-hardening. In an attempt

to quantify the effect of such back stresses, all specimens were unloaded to σ = 0.

Fig. 16 shows the stress versus strain curves corresponding to unloading from two

strain levels. Reverse plasticity takes place in all cases prior to complete unloading.

This indicates a Bauschinger effect. When unloading from ε = 0.033, i.e. roughly the

end of stage I, the Bauschinger effect is small in all specimens with H ≥ 0.4 µm in

comparison with the H = 0.2 µm specimen (Fig. 16a). By way of contrast, unloading

from ε = 0.067 reveals a strong Bauschinger effect in all specimens that were deformed

up to that strain (Fig. 16b). The H = 12.8 µm specimen was unloaded from the

highest strain of 0.057 reached in the forward loading calculation. The corresponding

curve is also shown in Fig. 16b.

In an accompanying paper we use a strain measure of the Bauschinger effect to

show that the latter increases in magnitude with decreasing specimen size. Here, what

we abstract from the results in Fig. 16 is that a significant portion of the simulated
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Fig. 16. Selected stress versus strain curves with unloading to σ = 0 from a strain

of (a) ε = 0.033 showing a small Bauschinger effect. More data points are

used to plot the loading and unloading behavior; and (b) ε = 0.067 showing

a strong Bauschinger effect.
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strain hardening is due to back-stresses associated with the rise of a micro-scale GND

density. While the GND density vanishes at the macro-scale, the back-stress does

not, because of its long-range character.

7. Development of a scaling law

The key features of the discrete dislocation analyses carried out here may be sum-

marized as follows: (i) Taylor hardening breaks down globally and locally; (ii) the

microscopic GND density does not vanish as opposed to the macroscopic GND den-

sity; and (iii) a significant portion of the observed strain hardening must be associated

with evolving back stresses. With this in mind, it would be useful to develop a re-

lationship between flow stress and appropriately chosen structural variables, it being

understood that the total dislocation density alone does not describe the current

state. Conclusions (ii) and (iii) above will guide the development of this new scaling

law.

First, to describe the current state, the dislocation density is supplemented with

an additional variable that may be viewed as an integral measure of the microscopic

GND density. For each slip system κ, define

ρ̄
(κ)
G =

p∑
n=1

Ωn

Ω
|ρ(κ)

+n − ρ
(κ)
−n| (2.12)

where the local signed density is evaluated within domains Ωn of resolution h that

make up volume Ω. Here, Ωn/Ω = h/H = 1/p with p an integer. A similar density ρ̄G

is defined as an average over all slip systems consistent with the net Burgers vector

(see Section. 1). This new variable is termed effective GND density.

The distribution of local signed density (i.e., the |ρ(κ)
+n − ρ

(κ)
−n| terms in (2.12))

depends on the resolution h with the fluctuations increasing with decreasing h as

illustrated in Fig. 15a. Fig. 17 shows the extent to which the effective GND density
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Fig. 17. Effective GND density, ρ̄G, normalized by the total dislocation density versus

resolution h for the H = 0.2 µm, 0.8 µm and 3.2 µm specimens at three

strain levels, ε = 0.033, 0.067 and 0.1, and for the H = 12.8 µm specimen

at ε = 0.033 and 0.056. Solid lines run through the points corresponding to

either ε = 0.1 or ε = 0.056. The value of ρ̄G at resolution h = H is identified

with the actual GND density ρG in the specimen. The densities ρG and ρ̄G

are calculated using (2.18) and (2.19), respectively. See additional material

in Appendix A.
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ρ̄G is itself depending on resolution. For a given specimen size, the latter is varied

from 1 nm to the full height H of the specimen. At any given resolution, and in

most cases, three data points are shown which correspond to the three strain levels

ε = 0.033, 0.067 and 0.1. At fixed specimen size and strain level, decreasing h leads to

an increase in ρ̄G. This increase is the integral measure of microscopic GND density

build-up. At the limit h = H, which sets the coarsest resolution, the effective GND

density coincides with the actual GND density in the specimen at the current strain

(ρ̄G = ρG). At the lower limit h = 1 nm, the dislocation spacing is nearly resolved so

that ρ̄G approaches the total density. In addition, at fixed resolution larger than 25 nm

and different from the specimen size, the effective GND density is found to increase

with increasing strain with the rate of increase being greater in smaller specimens.

Although definition (2.12) is resolution-dependent Fig. 17 shows that there is a

resolution range over which the sensitivity of the effective GND density to resolution

is small in comparison with its sensitivity to specimen size. Roughly speaking the

upper and lower limits of that range are 100 nm and 25 nm.

Next, write the total density as ρ = ρ̄G + (ρ− ρ̄G). Several correlations were in-

vestigated assuming a two-variable state law for the macroscopic flow stress T (ρ, ρ̄G).

Because the overall flow stress is the same for either slip system, data corresponding

to both slip systems was used to qualify the correlation with more data points. The

following additive form has proven most effective based on fits to numerical results:

T = T (κ) = Aµb

√
ρ(κ) − ρ̄

(κ)
G + µl2ρ̄

(κ)
G (2.13)

where A and l are fitting constants. The proposed form is well-defined since ρ̄
(κ)
G

cannot exceed the total density on slip-system κ as shown in Section. 1. The first

term of (2.13) represents a variant of the classical size-independent forest hardening

term whereas the second term represents the increase in flow stress associated with
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Fig. 18. Qualification of correlation (2.13) scaling the macroscopic flow stress T with

two state variables: the dislocation density ρ(κ) and the effective GND density

ρ̄
(κ)
G , specified per slip-system κ to maximize the number of data points. ρ̄

(κ)
G

is defined through (2.12). The data analyzed include the H = 0.2 µm (two

realizations), 0.8 µm and 3.2 µm specimens at three strain levels, ε = 0.033,

0.067 and 0.1, and the H = 12.8 µm specimen at ε = 0.033 and 0.056. For

each condition three values of the resolution h were used h = 25, 50 and

100 nm. There are a total of 84 points in the plot with some overlap. The

length scale l in (2.13) is found to be 5.1± 2 nm with A = 0.3.
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the effective GND density. The factor l has dimensions of a length but does not

necessarily represent the length scale of the deformation process itself. The results in

Fig. 17 clearly indicate that ρ̄G (or ρ̄
(κ)
G ) would essentially vanish in a bulk sample so

long as the dislocation spacing is not fully resolved. The scaling law (2.13) reduces

then to the classical Taylor hardening equation (2.11).

In order to qualify the proposed correlation (2.13) the data corresponding to the

H = 0.2, 0.8, 3.2 and 12.8 µm specimens within the 25 to 100 nm resolution range is

gathered in Fig. 18. The data correspond to all strain levels shown in Fig. 17. Then

viewing T as a function of ρ(κ) and ρ̄
(κ)
G the factors A and l were determined by linear

regression, constraining A to lie between 0.3 and 0.5. The remarkable result is that,

even though the effective GND density very much depends on resolution, the length

parameter l in (2.13) was found to be independent of resolution. The fit in Fig. 18

was obtained using A = 0.3 and l = 5.1± 2 nm. Eventually, if densities ρ and ρ̄G are

used in (2.13) the length l would be 4.0± 2.3 nm.

8. Slip patterns

Fig. 19 shows the distribution of slip at ε = 0.1 in the same specimens shown in

Figs. 10 and 12. The computation of total slip γtot is explained in Section. 2. For

all specimen sizes fine slip bands are generated along the whole gauge length of the

specimen, in contrast with the slip patterns obtained by Benzerga (2008) in the low

dislocation density case where the behavior was essentially multiplication-controlled.

In sub-micron specimens, the calculations there exhibited single or a few intense slip

bands extending across the specimen thickness. Here, the slip bands do not extend

across the thickness because slip is restricted by dislocation interactions. The initial

dislocation source density is high enough to promote forest hardening mechanisms

even in the smallest specimens.
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Fig. 19. Contours of total slip γtot at ε = 0.1 in crystals of height (a) H = 0.2 µm;

(b) H = 0.4 µm; (c) H = 0.8 µm (all scaled appropriately); and

(d) H = 3.2 µm (not scaled). Units are arbitrary. Two realizations are

shown for the H = 0.2 µm specimen as in Figs. 10 and 12.
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In addition, the slip patterns in Fig. 19 show that in larger specimens slip is

more diffuse: the imposed strain rate is accommodated by many more slip bands

per unit volume, but the slip bands are more intense in smaller specimens. Also, in

regions with high dislocation densities the slip bands are consistently shorter: the

dislocations remain the most effective obstacles to the motion of other dislocations in

a single crystal.

E. Discussion

Mechanism-based discrete dislocation plasticity (M-DDP) has been used to analyze

the effect of dimensional constraints on plastic flow in the absence of macroscopic

strain gradients. A unique capability of the framework is that it permits analyses of

the multi-stage hardening response of single crystals to be undertaken. In particular,

the effect of size on work-hardening has been analyzed in detail. The results indicate

that the work-hardening rate increases with decreasing specimen size. Our findings

demonstrate that this strengthening is due to an increase in stress throughout the

specimen when the specimen size is reduced. This increase in stress is associated with

the emergence of a signed dislocation density at sufficient resolution. Evidently, the

local GND, or signed, density is resolution dependent, but it is worth emphasizing

that domains where the GND density does not vanish can be large enough to contain

many dislocations and so can be viewed as statistically homogeneous with respect to

plastic behavior.

Consistent with a macroscopically homogeneous deformation, no net GND den-

sity accumulates over the specimens in general. However, a non-vanishing local GND

density emerges in the course of deformation as a result of an evolving dislocation

structure. As described by Benzerga et al. (2004), specific dislocation patterns form
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locally which involve dislocation wall formation, cell closure and cell subdivision.

The process of cell closure for instance evolves through the formation of tilt walls

that induce lattice misorientations across them. Arrays of geometrically necessary

dislocations are formed subsequently to accommodate local lattice rotations. Such

arrays were referred to as geometrically necessary boundaries (GNBs) by Benzerga

et al. (2004). The fact that dislocation structures typical of single and polycrystal de-

formation involve the formation of GNBs is well appreciated in the literature (Hughes

and Hansen, 1993). Although the patterns described above are planar, they do have

in common with those described by Hughes and Hansen (1993) that they lead to

significant lattice rotations and build-up of local GND density.

An important aspect of the behavior predicted by the M-DDP calculations here

is that Taylor-like hardening breaks down at the macro-scale, i.e. that of the sam-

ple. The scaling law (2.11) characteristic of bulk behavior ceases to be valid even in

the largest specimens analyzed after sufficient straining. In addition, the deviation

from (2.11) is found to increase in magnitude and to occur at a lower strain with

decreasing specimen size (Fig. 11). Previous discrete dislocation analyses carried out

by Benzerga et al. (2004) within the same framework did not explore size effects.

The values of ΘII/µ = 0.022 and 0.025 predicted in their analyses for specimens with

H = 2 µm and 4 µm, respectively, are about three times the average bulk value and

fall slightly below the curve in Fig. 7b. This difference is attributed to the lower strain

rate of order 100 s−1 used by Benzerga et al. (2004). Also their analyses indicated

that equation (2.11) was valid over the full strain range they investigated. One key

difference between their analyses and those reported here is the strain level and dislo-

cation density reached in the simulations. Here, the calculations were conducted up to

a strain of 0.1 whereas those that exhibited comparable hardening rate in (Benzerga

et al., 2004) were limited to strains of 0.05; also, the dislocation densities reached in
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the present simulations are up to one order of magnitude higher.

Most importantly, the present M-DDP calculations demonstrate that Taylor-

like hardening breaks down at the micro-scale, i.e. that of a non-vanishing GND

density. This is best illustrated by the results selected in Fig. 14b. This finding raises

fundamental questions regarding the formulation of augmented theories of plasticity.

Many such theories are based on the understanding that plastic flow processes are

inherently size-independent in the absence of strain gradients at the scale of the

elementary volume. For instance, some theories presume as valid the scaling of the

flow stress with the dislocation density at the micro-scale (Nix and Gao, 1998; Gao

et al., 1999). Although the M-DDP analyses predict that the scaling law (2.11)

breaks down under conditions of macroscopically homogeneous deformation, it is

likely that (2.11) will break down under macroscopically inhomogeneous deformation

as well.

The scale dependence of strength and hardening beyond yielding and in the

absence of macroscopic strain gradients poses a challenge to modeling of plasticity

at the micron scale. Nonlocal plasticity theories, in their current form, fail to cap-

ture size effects under nominally uniform deformation. In general, the length scales

that enter such theories stem from dimensional considerations and thus are not tied

to the physics of deformation. In addition, the length scales of nonlocal plastic-

ity theories are fixed whereas plastic deformation involves evolving length scales. A

coarse-grained version of so-called field-dislocation mechanics (Acharya, 2001, 2004;

Roy and Acharya, 2006) begins to show the promise of predicting size-dependency in

the absence of macroscopic gradients.

It remains that the size effect predicted by the calculations here is directly linked

to GNDs. From that point of view, it is no different in essence from the plasticity size

effect documented for nanoindentation of films or bending of foils. The scale at which
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GNDs operate is smaller, however, under macroscopically homogeneous deformation.

As a consequence, the scale dependence of plastic flow arises in a specimen size range

below 10 µm or so. On the other hand, under inhomogeneous deformation this scale

dependence is already noticeable for a specimen size about 100 µm (Stölken and

Evans, 1998).

From the practical standpoint, because of the size dependence of strain hardening

(Fig. 7b), the power law scaling (2.10) of the flow stress changes upon deformation.

Our calculations predict a scaling exponent in the range 0 to 0.42 for strains ranging

from yield to 0.1 (Figs. 5 and 7a). The discrete dislocation calculations of Benzerga

and Shaver (2006) and similar recent unpublished work predict a value of x larger than

unity whereas those carried out by Deshpande et al. (2005) predict x = 0.5, closer

to the value predicted here at ε = 0.1. The main difference between the two sets

of calculations is directly related to the density of initial dislocation sources. At low

initial densities (typically 1 µm−2 and below) the behavior is multiplication controlled

as in (Benzerga and Shaver, 2006). On the other hand, at high initial dislocation

density (typically 100 µm−2 and above) the behavior is rather dislocation-interaction

controlled. The two sets of studies are thus complementary of each other in that

they explore two extreme scenarios, which help shed some light on the experimental

results. Experimental reports of the flow stress scaling indicate values of the scaling

exponent x ranging from 0.6 in Au microcrystals at ε = 0.05 (Volkert and Lilleodden,

2006) to 0.6–0.7 in Ni microcrystals at ε = 0.01 (for diameters larger than 1 µm)

(Dimiduk et al., 2005) to a value as high as x = 1.1 at ε = 0.1 in gold microcrystals

with diameters in the sub-micron range (Greer and Nix, 2006). Note that these

experimental values are often determined after some plastic straining; hence they are

not representative of the scaling of the flow stress over the full strain range. Yet the

0.6–1.1 range of experimental values is contained within the 0.4–1.5 range of predicted
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values, and this suggests that the behavior observed in micropillars may be affected

by multiplication as well as interaction processes but in proportions that may vary

with density and strain level.

In light of the recent micropillar experiments along with discrete dislocation

predictions like those presented here, it would be a subtle task to apportion the

origin of size effects in previous experiments where strain gradients were superposed

onto a homogeneous component of the applied strain. In particular, the enhanced

size effect reported in recent studies (Swadener et al., 2002) for nanoindentation at

the sub-micron scale may be the signature of the emergence of strain gradients and

related GND densities at a scale much smaller than that associated with the gradient

part of the imposed strain.

In our view, it is worthless to pursue a universal correlation between flow stress

and dislocation density that would be valid at all scales. One should be content if

a scaling law can be at all inferred and accept that the involved constants may be

resolution-dependent. The results of the present M-DDP analyses have been used to

derive and qualify a correlation between the macroscopic flow stress, the dislocation

density and an appropriate macroscopic measure of the microscopic GND density.

One remarkable aspect of the flow stress scaling relation (2.13) is that, while the

effective GND density depends on resolution, factors A and l do not. Thus, the pro-

posed correlation can be used as a fundamental law in physics-based phenomenological

modeling of plastic behavior at the micron scale.

The additive form in the generalized Taylor equation (2.13) was motivated in

part by the fact that there is a strong connection between the emergence of a local

GND structure and the Bauschinger effect. At low strains the local GND density

is very small relative to the total density. As a consequence the classical scaling

law (2.11) holds (Fig. 11) and the Bauschinger effect is small (Fig. 16). By way of
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contrast, at higher strains typical of stage II the local GND density is significant and

so is the Bauschinger effect. Such a strong effect indicates that a significant portion

of the flow stress results from back stresses. The effect of the latter is inherently

different from that associated with forest hardening. It is therefore not surprising

that a linear, rather than square root, dependence upon the effective GND density

was found to fit better the M-DDP results.

Ultimately, there is no substitute to injecting appropriate physics in developing

a better understanding of size-dependent plasticity. Despite the idealization inherent

to the representation of dislocation reactions within M-DDP, the merit of the frame-

work is to enhance the capability of mesoscale modeling at capturing the richness

of collective dislocation behavior without too much compromise to computational

power. Most calculations carried out here were run on a Linux desktop. Only those

calculations corresponding to the largest three specimens were carried out on a su-

percomputer using a sequential code. Ongoing efforts at parallelizing the code and

improving dislocation dynamics algorithms will impart further capabilities to the

framework.

F. Conclusions

Discrete dislocation analyses of the uniaxial compression of single crystals potentially

oriented for double slip have been carried out to investigate the effect of specimen size

on plastic flow properties. The calculations are two-dimensional but key physics of

the three-dimensional dislocation interactions were incorporated through additional

constitutive rules. Such “2.5D” rules account for line tension, junction formation and

destruction, and dynamic source and obstacle creation. Within this framework, plas-

tic flow arises from the nucleation and subsequent motion of discrete dislocations. The
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multi-stage hardening response as well as the evolving dislocation structure are natu-

ral outcomes of the simulations. In this work, a relatively high density of pre-existing

internal Frank–Read sources was used to promote athermal hardening processes. Our

conclusions are as follows.

• Strengthening upon scale reduction is predicted under nominally uniform com-

pression. The size effect is significant for both the flow stress and the work-

hardening rate. In particular, the stage II hardening rate increases by one order

of magnitude within the range of specimen sizes explored here.

• The rate of dislocation accumulation increases with decreasing specimen size.

However, the flow stress is not set by the dislocation density as in bulk plasticity;

Taylor-like hardening breaks down at both macro- and micro-scales.

• Although in general no net GND density accumulates in the specimens, con-

sistent with a macroscopically homogeneous deformation, a microscopic GND

density emerges in the course of deformation, which strongly affects the micro-

scopic, hence the macroscopic, flow stress.

• The emergence of a local GND density results from microstructure evolution and

is associated with a strong Bauschinger effect. The evolution of the dislocation

structure is promoted by increased dislocation interactions fostered by the usual

athermal hardening processes, but with characteristic lengths comparable with

the size of submicron-scale specimens. The size effect results.

• A new scaling law for the flow stress is proposed based on the discrete dislocation

analyses. Two state variables are used: the dislocation density and an effective

GND density. The latter depends on resolution but the scaling parameters do

not.
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• The size effect predicted here stems from interaction controlled behavior, which

primarily affects the hardening and is promoted at high dislocation density.

On the other hand, at low dislocation densities forest hardening mechanisms

are less effective and the behavior may become multiplication-controlled. Both

types of behavior may be invoked in interpreting the results of recent micropillar

experiments.

G. Supplementary material

1. Calculation of the actual and effective GND densities

Consider a volume ω of crystalline material that is plastically deformed by slip on

Ns slip systems. Assuming plane strain, the density of geometrically necessary dis-

locations over ω is defined as the Euclidean norm of the net Burgers vector, to be

specified below, per unit material Burgers vector length, i.e.,

ρG =
||B||

b
=

√
BiBi

b
. (2.14)

Following the formulation in (Cermelli and Gurtin, 2001) a network of dislocations

piercing a plane with unit normal n has a net Burgers vector B per unit area given

by:

B = Gn (2.15)

where G is the geometric dislocation tensor. Assuming infinitesimal rotations, and

to the neglect of elastic strains, G reduces to Nye’s tensor α (Nye, 1953).

For pure edge dislocations under the assumed plane strain conditions n is chosen

as the out of plane normal e1× e2 with e1 and e2 the base vectors in the x1–x2 plane

of Fig. 4. The components of Nye’s tensor on that base are written as (Arsenlis et al.,
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2004)

αij =
Ns∑
κ=1

(ρ
(κ)
+ − ρ

(κ)
− )b

(κ)
i nj (2.16)

where b(κ) is the Burgers vector of slip-system κ and is here written as b s(κ) with s(κ)

a unit vector along the slip direction. Thus, under the conditions of the simulations

here, equation (2.15) is specified in view of (2.16) as

Bi = b

Ns∑
κ=1

(ρ
(κ)
+ − ρ

(κ)
− )s

(κ)
i (2.17)

Denoting ϕ(κ) the oriented angle that defines slip direction on slip-system κ, measured

from the x1 axis, the formula used to calculate ρG is then obtained as

ρG =

√√√√[∑
κ

(ρ
(κ)
+ − ρ

(κ)
− ) cos ϕ(κ)

]2

+

[∑
κ

(ρ
(κ)
+ − ρ

(κ)
− ) sin ϕ(κ)

]2

(2.18)

For the double slip configuration considered here, ϕ(1) = ϕ0 = 35.25◦ and ϕ(2) =

π − ϕ0 = 144.75◦.

The effective GND density ρ̄G is defined as

ρ̄G =

p∑
n=1

Ωn

Ω
ρGn (2.19)

where ρGn is the GND density calculated as in (2.18) but specified over the local

domain Ωn defined in the text.

Since a correlation of the form (2.13) is sought, the positiveness of ρ(κ) − ρ̄
(κ)
G ,

specified for each slip-system, is in question. The inequality ρ(κ) ≥ ρ̄
(κ)
G , with ρ̄

(κ)
G

given by (2.12), follows from the identity

ρ(κ)
n = |ρ(κ)

+n − ρ
(κ)
−n|+ 2 min(ρ

(κ)
+n, ρ

(κ)
−n) (2.20)

which is valid for each domain Ωn. If a correlation where ρ − ρ̄G is used instead,
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the inequality ρ ≥ ρ̄G, with ρ̄G given by (2.19), holds true because the actual GND

density within a given domain cannot exceed the total density in that domain.

2. Determination of slip contours

Since in discrete dislocation plasticity, the plastic part of the deformation is associated

with the evolution of displacement jumps across the slip planes, the displacement

gradient field involves delta functions which need to be accounted for to compute the

slip. To simplify the calculation, an approximation is used. A smooth strain rate field,

ε̇s, is introduced in each finite element that is computed by differentiating the total

displacement rate field u̇ in that element using the finite element shape functions.

Then, within an element, the slip on the κth system is defined by

γ(κ) = s(κ)
p ε̇s

pqm
(κ)
q (2.21)

where s(κ) is the slip direction and m(κ) the slip normal for slip system κ. Because

γ(κ) includes contributions from all dislocations it does not represent the actual slip

on system κ. It is rather viewed as a convenient measure for visualizing the slip

patterns. The pointwise total slip is defined as γtot =
∑
κ=1,2

|γ(κ)|. Note that slip

displacements associated with dislocations exiting at free surfaces are accounted for

in (2.21) although no account is taken of actual geometry changes, e.g., creation of

new free surface.

3. Stress contours

In the simulations, the crystal surfaces at x2 = ±H/2 are taken to be traction free.

This boundary condition leads to σ22 = σ12 = 0 along the top and bottom surface

of the crystal. Contour of σ22 and σ12 in a crystal of height H = 3.2 µm are shown

at a strain of ε = 0.1 in Fig. 20a and b, respectively. The contour plots show that
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Fig. 20. Contours of stress: (a) σ22; (b) σ12. The contours are shown at ε = 0.1 in a

crystal of height H = 3.2 µm.

along the top and bottom surfaces of the crystal σ22 and σ12 vanish; small regions of

stresses seen along the top and bottom surface of the crystal in the contours are an

artifact of the extrapolation in plotting nodal stress values.
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CHAPTER III

STRAIN HARDENING IN MICROPILLAR COMPRESSION: EXPERIMENTS

AND MODELING

A. Overview

Experimental measurements and simulation results for the evolution of plastic de-

formation and strain hardening in micropillars are compared. In the experiments,

the stress–strain response of high-symmetry Cu single crystals is determined using

micropillar compression. Pillars with either circular or square cross-sections, pillars

on a substrate and coated pillars are considered. Discrete dislocation simulations

are conducted within a two-dimensional plane strain framework with the dislocations

modeled as line singularities in an isotropic elastic medium. The pillar is modeled

using a planar crystal potentially oriented for multiple slip. Physics-based constitu-

tive rules are employed for an adequate representation of strain hardening. Both the

experiments and the computations show: (i) a steady strain-hardening behavior in

all pillars, (ii) a flow strength and hardening rate that increase with decreasing pillar

size and (iii) significant lattice misorientations after heavy deformation. Furthermore,

the experimental measurements and simulation results for the flow stress at various

strain levels and the hardening rates are in good quantitative agreement.

B. Introduction

Materials harden when they are plastically deformed. In pure materials plastic resis-

tance comes from dislocation interactions and intersections. The mechanisms for this

resistance vary from one stage of deformation to another, with many details being

material specific. However, the main features of strain hardening remain the same,
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as manifested for example by universal values of the work hardening rates when nor-

malized by the material stiffness. This holds for both single and polycrystals (Argon,

2008).

Over the past few years, new experimental methods have been developed that en-

able probing of the mechanical response of materials at the scale of their microstruc-

tures. These techniques thus permit fundamental issues in crystal plasticity to be

addressed and limits of current models to be examined. Among such methods, mi-

cropillar compression has been extensively used (Uchic et al., 2004; Dimiduk et al.,

2005; Greer et al., 2005; Volkert and Lilleodden, 2006; Kiener et al., 2006; Frick et al.,

2008; Kiener et al., 2008b); see Uchic et al. (2009) for a recent review. In general,

a common trend emerges from pillar compression experiments with smaller being

stronger. However, there are conflicting reports on whether strain-hardening is size-

dependent and, if so, what the origin of the apparent hardening is. In addition, the

strength of the scaling of flow stress with pillar diameter varies from one experimental

data set to another. Therefore, there is a need for further experimental investigation

coupled with analysis of plasticity in micron and sub-micron size objects, especially in

the absence of imposed strain or stress gradients. In particular, design of experiments

that allow an investigation of strain hardening at the micron and sub-micron scales

has far reaching implications on physics-based plasticity modeling and simulation

efforts.

Phenomenological models of plasticity do not include adequate representation of

microstructural effects at the dislocation scales. In addition, current continuum mod-

els are incapable of providing a rationale for micropillar plasticity and size-effects. Un-

der such circumstances, recourse to lower scale, higher resolution analyses is necessary.

Fully discrete atomic-level methods, such as molecular dynamics (MD), have been

used for understanding plasticity in nano-scale domains, e.g., (Horstemeyer et al.,
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2001; Deng and Sansoz, 2009a). However, MD is incapable of resolving sample sizes

ranging from 100 nm to over 10 microns, i.e., the range of pillar diameters consid-

ered in the experiments thus far. Alternatively, semi-discrete analyses may be used

which are based on dislocation theory, i.e., linear elasticity for long-range dislocation

interactions as well as suitably specified atomic-level input.

Progress on discrete dislocation dynamics (DD) simulations of micropillar plas-

ticity has recently been reviewed by Uchic et al. (2009). Subtleties aside, three-

dimensional (3D) simulations have essentially confirmed two strengthening mecha-

nisms: the role of source strength distribution when sources are available, e.g., Rao

et al. (2008) and El-Awady et al. (2009), and the imbalance between rates of disloca-

tion generation and dislocation annihilation/immobilization when there is paucity of

sources, e.g., Tang et al. (2007) and Rao et al. (2008). As noted by Uchic et al. Uchic

et al. (2009), it is remarkable that some two-dimensional (2D) DD simulations (Ben-

zerga and Shaver, 2006) had identified such strengthening mechanisms; see Benzerga

(2008) for an elaboration on the second mechanism, termed exhaustion hardening.

None of the DD simulations above have discussed the transition to bulk-like

behavior where forest hardening processes are generally expected to result in size in-

dependent response. However, the preliminary experimental results of Kiener et al.

(Kiener et al., 2008b) as well as the DD simulations of Guruprasad and Benzerga

(Guruprasad and Benzerga, 2008b) have independently revealed that size-dependent,

steady strain-hardening can be obtained up to very large strains. Such behavior can-

not be rationalized in terms of previously established strengthening mechanisms. The

lack of investigations centered on size-affected strain hardening is not commensurate

with the critical need for improved hardening models in continuum descriptions and

is in part due to the absence of clear trends in most previously published experiments.

Driven by previous investigations (Kiener et al., 2008b; Guruprasad and Benz-
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erga, 2008b), the objective of this work is to combine experiments and DD modeling

and simulation in an investigation of (i) the propensity of micropillars to strain harden;

and (ii) the size dependence of strain hardening. Micro-compression experiments were

carried out on high symmetry Cu single crystalline micropillars made by focused ion

beam (FIB) milling, with either circular or square cross-sections and diameters or

side lengths from 8.2 down to 0.9µm (Kiener et al., 2008b). The choice of Cu is

motivated by its technological use in micro- and nano-electronics applications, the

availability of tensile data for micron-thick thin films (Hommel et al., 1999; Huang

and Spaepen, 2000; Xiang and Vlassak, 2006; Gruber et al., 2008) as well as micro-

tension specimens (Kiener et al., 2008a, 2009a), and by the vast literature concerning

the hardening behavior of macroscopic samples (Diehl, 1956; Suzuki et al., 1956; Ar-

gon and Brydges, 1968; Prinz and Argon, 1980; Argon, 2008). In an additional set of

experiments, pillars coated with a thin TiN film and pillars on a stiff MgO substrate

were also used in an attempt to investigate the effect of boundary conditions (Kiener

et al., 2009b). Strong effects of size on flow strength and strain hardening and a weak

effect of cross-section shape were evidenced, with no significant effect of coating or

substrate on the salient features.

The discrete DD formulation follows that of Guruprasad and Benzerga (Gu-

ruprasad and Benzerga, 2008b). Pillars with a square cross-section are modeled using

a plane strain approximation. The simulations are conducted using the paradigm of

2.5D DD which, despite well known idealizations, represents well key physical aspects

of crystal plasticity, including strain hardening (Benzerga et al., 2004). In this for-

mulation, plastic flow arises from the collective motion and interaction of discrete

edge dislocations, represented as line singularities in an elastic solid such that the

long-range interactions among dislocations are directly accounted for. Atomic level

input is incorporated through a set of constitutive rules for close-range interactions.
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Chief among these are rules that lead to dynamic multiplication at junction-anchored

Frank–Read sources and to effective dislocation storage at dynamically formed junc-

tions. The boundary conditions are enforced by solving for an image field, following

the superposition method in (Van der Giessen and Needleman, 1995). This 2.5D DD

framework, which enhances the standard 2D model of van der Giessen and Needleman

(Van der Giessen and Needleman, 1995), has predicted a range of features observed

experimentally in bulk plasticity including Taylor hardening, stage I and stage II

hardening with rates in keeping with experimental measurements, and refinement of

the dislocation structure upon hardening.

In carrying out the comparison between experiments and modeling, few param-

eters related to the initial dislocation-source population and dynamic dislocation-

junction population are chosen so as to obtain a good representation of the behavior

of the largest specimens. Then, with all constitutive parameters fixed, the mechanical

response beyond yielding is predicted for all other sizes. The computations provide

insight into the mechanisms leading to the observed size dependence and the predic-

tions are compared quantitatively with the experimental observations.

C. Experiments

1. Methods

The mechanical response of four sets of Cu micropillars (Table II) was investigated

using flat punch indentation (Kiener et al., 2008b, 2009b). In this micro-compression

technique, focused ion beam (FIB) machining is used to cut out specimens of desired

shapes and dimensions out of a bulk single crystal. These pillar specimens are loaded

in compression using a flat conical microindenter. A detailed description of the ex-

perimental setup can be found in (Kiener et al., 2009c). The nominal stress σ and
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Table II. The four sets of micropillar samples tested.

Sample

Shape

Cu 〈100〉 Cu 〈111〉 Cu 〈100〉/MgO TiN/Cu 〈111〉

Table III. Cross-section shape, crystal orientation, and the minimum and maxmimum

equivalent diameter, D, of the pillars tested.

Cross section Orientation/ Minimum equivalent Maximum equivalent Standard
shape constraint diameter (µm) diameter (µm) deviation (%)

Circular Cu 〈100〉 0.8 6.7 11

Circular Cu 〈100〉/MgO 0.98 1.08 6

Square Cu 〈111〉 0.95 5.71 4

Square Cu 〈100〉/MgO 0.41 1.07 4

Square TiN/Cu 〈111〉 0.72 7.27 2
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strain ε are determined from the measured load, P , and tip displacement, u, using

the simple expressions:

σ = P/A; ε = u/H, (3.1)

where, H is the height of the pillar measured from the base and A is the cross-

sectional area measured at half the pillar height after FIB machining. All samples

(round and square) are represented by a dimensional parameter, D, corresponding to

the diameter of a circle of area A. Table III lists ranges of D for all pillars tested.

All specimens originated from high purity (99.999%) melt grown single crystal rods1

with a diameter of 10 mm and either a 〈100〉 or a 〈111〉 orientation. Disks having

2 mm thickness were subsequently cut from these rods and bars with dimensions of

2× 2× 9 mm3 were cut using a diamond wire saw.

The first set of specimens were 〈100〉 micropillars having a round cross-section

(Table II) with diameters varying from 6.7 to 0.8 µm (Table III). The second set of

specimens were 〈111〉 pillars with a square cross-section and corresponding D between

0.9 µm and 5.7 µm. These pillars were fabricated using a dual beam FIB/SEM

workstation2 equipped with a Ga+ ion source operated at 30 keV. All samples had

an aspect ratio of about 2:1 following the suggestions of Zhang et al. (Zhang et al.,

2006).

The third set of specimens (Table II) were square 〈111〉 pillars coated with TiN.

These were made by physical vapor deposition of a 0.8 µm TiN film onto the top sur-

face of one of the 〈111〉Cu disks, followed by FIB milling as above. The TiN coating is

intended to serve as a stiff atomically bonded interface preventing possible dislocation

escape through the top surface of the pillar. The fourth and final set of specimens

1purchased from MaTecK GmbH, Juelich, Germany.
2Leo XB1540, Carl Zeiss SMT AG, Oberkochen, Germany.
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were 〈100〉 pillars on an MgO substrate. Pillars with both round and square cross-

sections were produced from a 1 µm thick single crystalline film grown on MgO〈100〉

(Purswani et al., 2006). In this case, the stiff substrate prevents dislocations from

moving into the underlying bulk material. This stands in contrast with the situa-

tion in conventional micro-compression testing where the sample is connected to a

base of the same material. However, the fabrication procedure narrowed the range of

achievable D to values from 0.75 to 1 as limited by the film thickness.

Immediately after fabrication, the samples were transferred from the FIB into

a scanning electron microscope (SEM)3 to minimize exposure to air. Sample testing

was performed in situ in this tungsten filament SEM using a microindenter4 equipped

with a flat conical diamond tip (Kiener et al., 2009c). The applied strain rate was

about 3× 10−3 s−1.

Some details of specimen preparation are worth mentioning for completeness.

After cutting, the 2× 2× 9 mm3 bars were electrochemically polished on the surface

that later became the pillar top surface and on an adjacent side to remove the defor-

mation layer from the cutting process. Removal was confirmed by large area electron

backscatter diffraction (EBSD) imaging depicting no wavy deformation structure. To

ensure free view of the whole sample during testing, without the need to tilt the whole

testing apparatus, it is anticipated to locate the micro-compression samples possibly

close to a sample edge. The electrochemical polishing inevitably led to a rounded

sample edge. To restore a sharp edge and minimize the required time for FIB milling,

the perpendicular sample side was carefully polished with a 1 µm grained alumina

suspension. The deformation layer from this preparation step was found to be about

3Leo 440 Stereoscan, Carl Zeiss SMT AG, Oberkochen, Germany
4UNAT, ASMEC, Radeberg, Germany
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5 µm thick from EBSD and cross-section FIB investigation. Therefore, as a general

rule, another 10 µm of material were removed by coarse FIB cutting before starting

the actual sample fabrication. The milling currents were reduced from 1000 pA for

coarse milling to 100 pA for finishing of the desired sample dimensions. In the case

of the Cu on MgO samples, no additional surface preparation was required, since the

deposited film had a clean surface, and the MgO could be cleaved thus forming sharp

edges.

The fabrication strategies applied to obtain square or round cross-sections are

different, particularly in what regards tapering. Round pillars are relatively simple to

realize. However, they tend to be tapered with potential issues associated with stress-

and strain gradients (Frick et al., 2008; Kiener et al., 2009b). On the other hand,

the samples with square cross sections were untapered. The fabrication procedure

can be regarded as a simplified variant of the lathe milling procedure introduced by

Uchic et al. (Uchic et al., 2004) with a base geometry that is less well defined. A

significant advantage of this fabrication method is that it ensures a nominally uniform

stress state over the sample height. Moreover, this square geometry is more directly

comparable to the simulated sample geometry, as will be explained in Section D.

Finally, micro-tensile specimens oriented for single slip were tested following the

procedure detailed in (Kiener et al., 2008a, 2009a). This data will be used solely for

the purpose of model parameter calibration, as will be explained in Section 2.

2. Experimental results

Fig. 21 shows SEM images recorded during in situ compression testing of two 〈100〉Cu

micro-compression samples with diameters of 6 µm. They were fabricated with com-

parable dimensions just next to each other using the same FIB conditions. Loading

was performed right after fabrication under displacement controlled (d.c.) mode (a-
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Fig. 21. (a-c) In situ SEM images of a 〈100〉Cu sample with size D = 6.0 µm com-

pressed by a flat diamond punch under displacement controlled (d.c.) mode.

Multiple slip on several slip planes is observed. (d-f) In situ SEM images

of another 〈100〉Cu sample with similar dimensions loaded in load controlled

(l.c.) mode. The specimen deformed in multiple slip on a limited number of

slip planes. (g) Load - displacement data for the two samples. The d.c. sam-

ple shows a lower plastic limit and several load drops, while the l.c. sample

sustains a higher plastic limit before undergoing plastic deformation including

several displacement bursts. (h) Pole figure map of the two samples measured

prior to deformation using electron backscatter diffraction.
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Fig. 22. Representative stress - strain curves showing a sample size effect for tested

samples of: (a) tapered round shaped 〈100〉Cu; (b) straight square shaped

〈111〉Cu; and (c) straight square shaped 〈111〉Cu with a TiN top coating.
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c), which was generally applied for this study, and under load controlled (l.c.) mode

(d-f), which is very common in literature. Fig. 21g provides the recorded load versus

displacement data, while a pole figure plot of the sample orientation before deforma-

tion is shown in Fig. 21h. It is apparent that both samples deform under multiple slip

on equivalent slip systems. There is a more distributed slip characteristic observed

for the d.c. mode, while slip is more confined to fewer glide planes in l.c. mode.

Since the simulations presented in this study are run under d.c. mode, we will just

use samples tested in d.c. mode for comparison to the simulation data.

Fig. 22 shows representative nominal stress versus strain curves only for the

〈100〉Cu, 〈111〉Cu, and 〈111〉Cu with TiN systems. The 18 tested 〈100〉Cu samples

on MgO cover only a limited size range and are therefore not shown in Fig. 22 and

Fig. 23. However, the data will be used later in Fig. 24. It should be mentioned that

the curves shown in Fig. 22 differ in the used output data rate. Fig. 22a was recorded

with 32 data points per second, Fig. 22b using 16 points per second, and Fig. 22c

with 4 points per second. No general differences between the curves are observed,

but noise tends to obscure fine details of the stress versus strain curve for 32 data

points per second for the used experimental setup. This can of course be changed

by binning the data using for example a moving average filter. In the case of only

4 data points per second, the resulting stress strain curves are devoid of noise, but

lose some of the fine details.

For a discussion of size dependent hardening, the stress values at various amounts

of strain were extracted and converted from normal stress to shear stress using the

nominal Schmid factors of fs = 0.408 for 〈100〉Cu and fs = 0.278 for 〈111〉Cu. No

changes of these values during straining were taken into account. The nominal shear

stresses for strain values of 0.05, 0.10, 0.15, and 0.20 are plotted on a double loga-

rithmic scale in Fig. 23a for 〈100〉Cu and in Fig. 23b for 〈111〉Cu and 〈111〉Cu with
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TiN. Straight lines representing a best fit to the data were obtained if at least three

data points were available for the crystal orientation and strain level.

The scaling exponent deduced from Fig. 23 is shown in Fig. 24 for all material

systems and strain ranges with sufficient data points. A simple intersection method

was used to determine the hardening rates in the non-linear low strain regimes. Com-

parable to the determination of a secant modulus versus a tangent modulus, this

will underestimate the true hardening rate and consequently the scaling exponent. A

more adequate fit can be applied once a more detailed understanding of the governing

hardening process is achieved. No discrimination between 〈100〉Cu and 〈100〉Cu on

MgO was made, since the limited size range of the 〈100〉Cu on MgO samples questions

the feasibility of an extrapolation. Indication is given that the 〈111〉 direction is the

most hardenable crystal direction, as observed in macroscopic testing of bulk crystals

(Diehl, 1956; Suzuki et al., 1956). Moreover, a clear effect of the TiN top coating

is evident. This was not observed at the previously reported flow stress values at

a strain of 0.10 (Kiener et al., 2009b, 2006, 2009a), but is clearly depicted at lower

strain values. Moreover, there is higher initial hardening for TiN coated samples.

At a strain of 0.10 the data for the coated samples closely merges with the values

observed for uncoated samples for strains equal or higher than 0.10.

D. Modeling

1. Formulation and simulation methods

This section describes the discrete dislocation dynamics model used in the simulation

of micropillar compression. Cu micropillars are modeled as planar crystals subjected

to uniaxial plane strain compression in the x1 direction with deformation taking

place in the x1–x2 plane. A schematic representing the geometry of planar crystals
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Fig. 23. Size dependent technical shear stress for strain values ranging from 0.05 to 0.20

for: (a) tapered round shaped 〈100〉Cu; (b) straight square shaped 〈111〉Cu

and straight square shaped 〈111〉Cu with TiN top coating. The straight lines

represent a best fit to the data sets.



87

Fig. 24. The power exponent deduced from the best fit to the data in Fig. 23 is shown

as a function of strain for the different samples investigated.

ϕ0

ϕ0

x1

x2

Application
of strain rate

Sample

H

D

Fig. 25. Schematic showing the plane strain model of a micropillar oriented for sym-

metric double slip with two slip systems oriented at ±ϕ0 from the x1 axis.

The displacement boundary conditions applied allow the rotation of the crys-

tal axis. The micropillar width is D and its height is H.
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and boundary conditions used in the simulations are as shown in Fig. 25. Self-similar

planar crystals with width D, height H and a fixed aspect ratio of H/D = 2 are

considered. Each crystal has two potential slip systems on which dislocations can

nucleate and glide. The two slip systems are oriented at ±35.25◦ from the x1-axis.

The boundary conditions are such that surfaces at x2 = ±D/2 are traction free

and the shear stress vanishes at x1 = ±H/2. A uniform displacement u1 = −U is

prescribed along x1 = H/2, the top surface. At the bottom surface one end is fixed

to eliminate rigid-body rotation; but other nodes along this surface are constrained

only along x1 but are free to move laterally along the x2 direction. This model allows

for the rotation of the crystal axis.

In the simulations plastic flow arises due to the collective motion of dislocations,

which are modeled as line singularities in a linear elastic, homogeneous isotropic

medium with elastic constants µ (shear modulus) and ν (Poisson’s ratio). A superpo-

sition method is used to solve the boundary-value problem described above in terms

of the infinite medium singular fields for the discrete dislocations and image fields

that enforce boundary conditions (Van der Giessen and Needleman, 1995). The finite

element method is used to obtain the image field solutions. In this way, the long-

range interactions between dislocations are directly accounted for. The short-range

dislocation interactions are described below as given in (Benzerga et al., 2004). All

simulations are carried out assuming infinitesimal displacement gradients.

The simulation follows an incremental procedure. At current time t the body is in

equilibrium with the applied boundary conditions. The stress and displacement fields

along with the positions of all the dislocations are known. During subsequent time

step an increment of loading is applied and the solution requires the determination

of forces on dislocations, updated dislocation structure, and corresponding updated

stress and displacement fields. The glide motion of dislocation i is determined by the
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Peach-Koehler force, f i, given by,

f i = mi ·

(
σ̂ +

∑
j 6=i

σ̃j

)
· bi (3.2)

where, mi is the slip plane normal; bi is the Burgers vector having magnitude b; σ̂ is

the image stress field; and σ̃j is the singular stress field of dislocation j.

Initially there are no dislocations inside the crystal, but a random distribution

of Frank-Read sources and point obstacles are considered. A dislocation dipole is

nucleated from a source when the Peach-Koehler force acting on it exceeds a critical

value τnucb for a prescribed time t0n. The source strengths are randomly assigned

from a Gaussian distribution with average τ̄nuc. The sign of the nucleated dipole

depends on the sign of the Peach-Koehler force acting on the source. A dislocation

may get pinned at a static obstacle and is released when the Peach-Koehler force

at the location of the obstacle attains the value τobsb
i, with τobs being the obstacle

strength. The glide velocity vi of dislocation i is given by:

Bvi = f i − α
µb

S i
d

bi (3.3)

where B is the drag factor and the second term represents the line tension, α being

a parameter and S i
d the algebraic distance between the dislocations, members of

the same dipole. Annihilation of two co-planar dislocations of opposite sign occurs

by eliminating both dislocations when they are within a material-dependent critical

annihilation distance, Le. Apart from the line tension, this basic set of constitutive

rules was first proposed by Kubin et al. (Kubin et al., 1992) and extensively used in

subsequent 2D calculations, e.g., (Van der Giessen and Needleman, 1995; Cleveringa

et al., 1997; Deshpande et al., 2003; Nicola et al., 2006; Miller et al., 2004).

Key short-range 3D dislocation interactions included as constitutive rules in the
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2D model are: (a) formation of junctions; (b) junction stabilization; (c) unzipping/break-

away of junctions; and (d) formation and activation of dynamic sources. When dis-

locations gliding on intersecting planes approach each other within a critical distance

d∗, a junction is formed, irrespective of the sign of the interacting dislocations. A

junction which is stabilized and cannot be unzipped becomes an anchoring point for

a new dynamic source. A breakable junction is referred to as a dynamic obstacle.

Such an obstacle is destroyed if the Peach-Koehler force acting on either dislocation

comprising the junction attains or exceeds the breaking force, τ I
brkb. The breaking

stress for junction I is configuration dependent and is given by:

τ I
brk = βbrk

µb

SI
(3.4)

where SI is the distance to the nearest junction in any of the two intersecting planes;

βbrk is a scaling factor for the junction strength.

The stabilization of junction, for example due to cross-slip, can only be treated

as a statistical event in the current 2D representation. The probability of a junction

becoming an anchoring point is prescribed to be p, typically a low value. These

anchoring points lead to the formation of dynamic sources from which new dislocations

can be nucleated. A dislocation dipole is nucleated at source I when the value of the

Peach-Koehler force at either junction forming the source exceeds the value τ I
nucb

during a time tInuc. Both values depend on the local configuration and hence evolve

dynamically. The nucleation stress is given by

τ I
nuc = βnuc

µb

SI
(3.5)

where βnuc is a factor that reflects the strength of the source and SI is the distance

to the nearest junction on the slip plane where τ I
nuc is being resolved. The nucleation
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time tInuc is given by

tInuc = γ
SI

|τ I |b
(3.6)

where γ is a material constant with units of a drag factor, and τ I is the current

resolved shear stress at the location of anchoring point I, exclusive of the junction

self-stress. In summary, junction formation results in dynamic dislocation source

and obstacle evolution during the deformation process and this is key to adequate

simulation of strain hardening.

The average compressive stress is computed by averaging the tractions on the

top surface and the applied strain is calculated as:

σ = − 1

D

∫ D/2

−D/2

σ11(H/2, x2)dx2; ε = −U

H
(3.7)

where, σ11 is the normal stress along x1 direction. These quantities are directly

comparable with experimental measurements (3.1). Hence the same notation is used.

During the simulations the evolution of total dislocation density is continuously

monitored. However, dislocation density alone as a structural parameter may not

be sufficient to explain the observed macroscopic behavior in micron and sub-micron

specimens. At these small scales the specimen size begins to interact with the charac-

teristic length of dislocation substructures developed in the specimens. Hence we also

monitor the evolution of geometrically necessary dislocation (GND) density. GNDs

do not vanish at sufficient resolution of the size of dislocation substructure developed

in the specimen. To facilitate this, the net GND density (ρGND) and the effective GND

density (ρ̄GND) are evaluated at each time increment in the discrete dislocation calcu-

lations following the methodology presented in (Guruprasad and Benzerga, 2008a).

In a sub-domain ω within a body Ω subject to boundary tractions and displacements
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the GND density is given by:

ρGND(ω) =

√√√√[∑
κ

(ρ
(κ)
+ − ρ

(κ)
− ) cos ϕ(κ)

]2

+

[∑
κ

(ρ
(κ)
+ − ρ

(κ)
− ) sin ϕ(κ)

]2

(3.8)

where, ϕ(κ) is the angle that defines the slip direction on slip-system κ; ρ
(κ)
+ and

ρ
(κ)
− represent the positive and negative dislocation density on the slip-system κ,

respectively. In particular, the net GND density over the whole volume Ω is ρGND ≡

ρGND(Ω). By defining a uniform and structured grid on the body Ω, and using Eq. 3.8

we can obtain spatial distribution of GND density at a desired resolution.

To quantify the effect of the build-up of GND densities over sub-domains ω on

the actual volume Ω a new quantity termed effective GND density is defined as:

ρ̄GND =
N∑

n=1

Ωn

Ω
ρGND(Ωn) (3.9)

where, Ωn is the n-th grid element defining a sub-domain ω; N is the total number

of elementary domains/grids in the body Ω; ρGND(Ωn) is the GND density calculated

from (3.8) but specified over Ωn. It is emphasized here that net GND density ρGND

is uniquely defined but effective GND density ρ̄GND is not because of the resolution

dependence.

2. Choice of parameters

The simulations are carried out with elastic constants, µ = 47 GPa and ν = 0.34,

Burgers vector b = 0.255 nm, and drag factor B = 10−4 s−1 representative of Cu. A

slip plane spacing of 40b is used in all specimens. An initial dislocation source density

of ρnuc = 20×1012m−2 is considered in the simulations. All specimens were subjected

to a constant strain rate of ε̇ = −104 s−1 with a time step of ∆t = 0.5 ns used to

resolve dynamics of dislocation nucleation and motion.
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Fig. 26. Schematic highlighting the steps followed in the calibration of the parameters

which enter into the simulations: (a) The initial source and obstacle prop-

erties (ρnuc, τ̄nuc, ρobs, τobs) were calibrated to match the apparent yield and

hardening observed in the micro-tension experiment on a crystal oriented for

single slip. The parameters governing the junction/dynamic obstacle strength

(βbrk) and the probability of junctions stabilizing (p) were calibrated to achieve

hardening observed in the micro-compression experiment on a crystal oriented

for multiple slip; (b) The parameters obtained from the calibration step was

used to investigate size-effect in crystals by reducing the width down to Dmin.
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Key parameters related to the initial source/obstacle population and to the dy-

namic junction population are chosen from a two-step calibration process, as schemat-

ically shown in Fig. 26. A systematic size-effect investigation is then carried out by

fixing these parameters and varying only the width of the crystal D as described

in Fig. 26b. Specifically, the calibrated parameters are: the average initial source

strength τ̄nuc, initial obstacle density ρobs, the junction strength parameter βbrk and

the anchoring point formation probability p. In the first step, τ̄nuc and ρobs are cali-

brated based on a fit, in the average sense, to a micro-tension experiment conducted

on crystal with size D = 3.0 µm and oriented for single slip. This set of parameters

is then used in the second step to calibrate βbrk and p on the compression response of

one of the largest pillars tested. The rationale behind this procedure is that βbrk and

p affect the hardening response whereas τ̄nuc and ρobs primarily affect the apparent

yield strength.

The principle of calibration step 1 is described in Section 1. It was found that

an average source strength of τ̄nuc = 20 MPa and an obstacle density of ρobs =

20×1012 m−2 provided a good fit between the experiment and the simulation response

as shown in Fig. 27a. This set of parameters leads to a value of τY = 23.6 MPa. We

notice a deviation from the elastic slope in simulations shown in Fig. 27a at this shear

stress. This is followed by transient hardening regime up to a shear stress of 30 MPa,

beyond which we notice a very agreement between the experiment and the simulation

response.

The parameters chosen above were then used in the compression of a crystal with

width D = 5.7 µm and oriented for symmetric double slip with ϕ0 = ±35.25◦. The

values determining junction strength, βbrk, and probability of junction stabilizing,

p, in simulation are chosen such the the hardening behavior observed in the micro-

compression test of 〈111〉 Cu with width D = 5.7 µm is achieved. A junction strength
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Fig. 27. Plots showing the comparison between shear stress (τ) versus shear strain

(γ) response between simulations and experiments in the calibration step: (a)

Micro-tension simulation response is shown in comparison to micro-tension

experiment on 〈2̄34〉 Cu for a crystal with size D = 3.0 µm. In the simulation

and the experiment the crystal is oriented for single slip; (b) Micro-compres-

sion simulation response is shown in comparison to to micro-tension experi-

ment on 〈111〉 Cu for a crystal with size D = 5.7 µm. The crystal is oriented

for symmetric double slip in simulation and multiple slip in experiment.
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value of βbrk = 5 and probability of junction stabilizing p = 0.01 was found to achieve

the hardening observed in the micro-compression test. Fig. 27b shows the comparison

between the simulation and the experimental result. Within the shear strain range

of γ = 0.02− 0.1, the hardening rate in the simulations averaged over three different

realizations of initial source and obstacle distribution is 439± 11 MPa. This value is

within the range of typical bulk stage II hardening rate, µ/200− µ/100.

Additional parameters of atomistic character are assigned values based on esti-

mates from 3D DD analyses, atomistic calculations or theory (Benzerga, 2009). In

view of the universality of scaling laws in bulk plasticity, the key trends are not sensi-

tive to particular choices of many such parameters. The values of the parameters used

in the simulations which enter in the equations governing the short range interactions

and dislocation glide relation are: d∗ = Le = 1.5 nm, βnuc = 1, γ = 1000B, α = 0.3.

The critical time for nucleation of dislocations from a source is fixed at t0n = 10 ns.

3. Simulation results

In the simulations the crystal width D is varied within the range 0.4–9.6 µm with

a fixed aspect ratio of H/D = 2. In this section, results are presented to highlight

the qualitative and quantitative features emerging from the size-effect investigation.

The simulation results presented here use the fixed set of material parameters given in

Section 2 and determined from calibration procedure. Crystals oriented for symmetric

double slip are subjected to uniform compression for a range of sizes which include

those corresponding to the experiments. For each size of the crystal atleast three

realizations corresponding to a fixed source and obstacle density but different initial

distribution of source and obstacles was simulated.

In Fig. 28a and b the shear stress versus shear strain response is shown for

crystals with width D = 2.08 µm and D = 1.08 µm, respectively. For the purposes of
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Fig. 28. Plots showing the prediction of shear stress (τ) versus shear strain (γ) response

from the simulations as compared to experiments for selected samples: (a)

Comparison between the round 〈100〉 Cu and simulation for crystal with size

D = 2.08 µm; (b) Comparison between the round 〈100〉 Cu and simulation

for crystal with size D = 1.08 µm.
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Fig. 29. Representative stress (σ) versus imposed strain (ε) response from simulations

are shown for crystals with size varying from D = 0.4 - 3.2 µm.

comparison the experimental response from crystals of the same size is shown. Since

the orientation along which the crystals are loaded in simulations and experiments

are different, appropriate Schmid factor (fs = 0.471 in simulation; fs = 0.408 for

〈100〉 Cu) was used for the two set of stress versus strain curves to obtain the shear

stress versus shear strain response. From Fig. 28a and b we notice a good agreement

between the simulation and experimental shear stress versus shear strain response.

Right after the onset of yield the simulations are able to capture the strain hardening

noticeable in the experiments. The shear stress averaged from three realizations in

the simulations for the crystal with width D = 2.08 µm is 71.7± 10.6 MPa at a shear

strain of γ = 0.1. The corresponding value in the experiment is 100 MPa. In the

crystal with width D = 1.08 µm the shear stress averaged from three realizations is

98.6 ± 23.6 at a shear strain of γ = 0.15. This compares well with the experimental

value of 110 MPa, measured at a shear strain of γ = 0.15.
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Representative stress versus strain response for crystal width in the range D =

0.4− 3.2 µm is shown in Fig. 29. A general trend of increase in flow stress and strain

hardening with decrease in the specimen size is observed. Subsequent to yield, all the

specimens with the exception of the crystal with width D = 0.4 µm begin to show

strain hardening. This feature is similar to the trend observed in the experimental

curves. The crystal with width D = 0.4 µm does not show much hardening until a

strain of ε = 0.02. However, beyond this strain the crystal begins to harden at a

much faster rate than the other specimens.

The evolution of dislocation density during deformation for the crystal with D =

0.4 µm and D = 5.7 µm is shown in Fig. 30. In the specimen with width D = 5.7 µm

the dislocation density builds-up at a rapid rate in both slip systems from the onset of

plastic deformation. Within the strain range shown the density continues to increase

and the rate of increase is similar in both slip systems. The activation of both slip

systems from the onset of plastic deformation precludes the observation of a two

stage stress-strain response in the simulation. On the other hand, we do not observe

a build-up of dislocation density in any of the two slip systems of the specimen with

D = 0.4 µm until strain a of ε = 0.02. Beyond a strain of ε = 0.02 we notice that

the rate of increase in the dislocation density is different in the two slip systems.

This suggests that in smaller crystals due to the discreteness of source distribution

there can be localization of slip. Also, it explains the lack of hardening in the smaller

specimen until a strain of ε = 0.02 and the hardening observed beyond this strain.

We also gather from Fig. 30 that the build-up in the dislocation density is more in the

crystal with width D = 5.7 µm than in the crystal with width D = 0.4 µm. However,

the flow stress values reached in the crystal with width D = 0.4 µm is larger than

those reached in the crystal with width D = 5.7 µm. This suggests the breakdown

of Taylor-law, where the flow stress scales as the square root of the total dislocation
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Fig. 30. Evolution of the dislocation density (ρ) in the simulations with strain (ε) at

two slip systems is shown for crystals with size D = 0.4 µm and D = 5.7 µm.

density.

Deformed configurations at a strain of ε = 0.1 is shown for crystals with width

0.4 µm, 1.6 µm and 5.7 µm in Fig. 31. All the specimens show evidence of double

slip. However, in the crystal with width D = 0.4 µm we observe localization of slip

along one of the two slip systems. This is also reflected from the dislocation density

evolution curves for the two slip systems shown in Fig. 30. In crystals with width

D = 1.6 µm and D = 5.7 µm slip is more evenly distributed along the height of the

specimens and evidence of barreling during deformation is observed.

The effect of crystal size on the dislocation structure that develops and on the

stress distribution in the x1 direction (σ11) is shown in Fig. 32a. In the crystal

with width D = 0.4 µm the concentration of dislocations is only along a few slip

planes. However, in crystals with width D = 1.6 µm and D = 5.7 µm, one can

see the development of dislocation structure near the center the crystal. Near the
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D = 0.4 µm D = 1.6 µm D = 5.7 µm

Fig. 31. Deformed configurations in the simulations of crystals with size D = 0.4 µm,

1.6 µm and 5.7 µm are shown at a strain level of ε = 0.1.

crystal center there are more slip plane intersection points leading to the formation

of junctions, which pin the dislocations and prevent them from escaping at the free

surfaces. Overall, we observe a general trend where the crystal central region is harder

than its surface. The stress near the core region is almost 5 times the values reached

near the surface. The distribution of stress near the soft regions is not uniform in

general and small pockets of hard dislocation free regions are observed very close to

the free surface.

In Fig. 32b contours of GND density (ρGND), determined based on the method-

ology presented in Section. D, is shown. A resolution of 50 × 50 nm2 is used while

determining the spatial distribution of GND density. In all the specimens we notice

that the GND density is higher at the crystal central region than near the surfaces.

Consistent with the macroscopically homogeneous deformation in the crystal, the net

GND density in the crystal with width D = 5.7 µm constitutes only 0.3% of the
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total dislocation density at a strain of ε = 0.1. However, with decrease in crystal size

the net GND constitutes a larger percentage of the total dislocation density with the

value being as high as 63% in the crystal with width D = 0.4 µm. The GND density

accumulation is accompanied by disturbances in lattice rotation fields as shown in

Fig. 32c. In large crystals (D = 5.7 µm) we notice formation of domains of large

lattice rotation fields (κ). It is observed that these domains are not oriented along

the slip planes. The lattice rotation fields are typically found to be high at the cen-

tral region of the crystal with its magnitude being as high as 3◦. With decrease in

size of the crystal the formation of large domains of lattice rotation fields vanish. A

common feature observed from the lattice rotation contours is the fragmentation of

rotation fields associated with mismatches in the sign of adjacent rotation fields in

the crystals.

E. Comparison of experimental and computational results

In this section quantitative and qualitative comparison between the experimental and

simulation results are presented. Quantitative comparison is made on the effect of

crystal size on flow stress and strain hardening rate. Similarities in the features of

deformed configurations, nearest neighbor misorientations and global misorientations

in crystals from EBSD studies in the experiments are qualitatively compared with

simulation results. Finally, the capability of the simulations to quantify microstruc-

tural features in the crystal which can provide a means to explain the observed size

dependent behavior in the crystals is shown.

The simulation results and experimental data for flow stress versus crystal width

at a strain of ε = 0.05 and ε = 0.1 is shown in Fig. 33. Overall, the simulation results

are able to capture the increase in crystal flow stress with decrease in specimen size



103

σ11 (MPa)

ρGND (µm−2)

κ (deg)

D = 0.4 µm D = 1.6 µm D = 5.7 µm

(a)

(b)

(c)

Fig. 32. Contour plots are shown at a strain level of ε = 0.1 in crystals with size

D = 0.4 µm, 1.6 µm and 5.7 µm: (a) Contour plots of axial stress, σ11, with

dislocation structure superposed on it; (b) Contour plots of GND density,

ρGND; and (c) Contour plots of lattice rotations, κ.
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Fig. 33. The shear stresses (τf) from the simulations for various crystal widths (D) are

shown in comparison to experimental data from round 〈100〉 Cu and square

〈111〉 Cu at strains of ε = 0.05 and 0.1.

observed in the experiments. The simulation results also reveal a trend where the

flow stress scatter increases with decrease in crystal size. The power scaling exponent

determined from the simulations at ε = 0.05 is 0.092± 0.041. At a strain of ε = 0.05

the resolved flow stress values in the crystal with width D = 0.4 µm are less than

in crystals larger than it. This is because a steady build-up of dislocation density in

these crystals does not take place immediately after the onset of yield as shown in

Fig. 30. This results in a low value of the exponent calculated. The power exponent

from the simulations at a strain of ε = 0.1 is 0.17± 0.03. The increase in the power

scaling exponent with increase in strain is due to the size-effect in the strain hardening

observed in the crystals. The large standard deviation observed in the values of the

power exponents determined from the simulations reflects the increase in the scatter

of the resolved flow stress values with decrease in the crystal size. For example, at

a strain of ε = 0.1 the resolved flow stress in the crystals with width D = 0.4 µm is
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found to vary between 238 MPa - 118 MPa.

A discussion on strain hardening in the classical macroscopic sense is done based

on true stress versus true strain data. On a micrometer scale an experimental de-

termination of true stress versus strain curves as possible in computational studies

is desirable and seemingly within reach when using in situ SEM testing approaches.

However, as depicted in Fig. 34, there are situations where even during continuous

observation of sample deformation it remains questionable to ask for the actual con-

tact area or the smallest cross section. These strain localizations at the sample/punch

interface should be minimized in micro-tensile testing (Kiener et al., 2008a), allowing

a more accurate determination of true stress values. The inclination of the flat punch

in Fig. 34 is an artifact of the slow scanning direction of the electron beam from the

left to the right while the punch moves down. Hence, to calculate the hardening rates

between two reference strains (ε), values of stress (σ) were calculated under the as-

sumption of homogenous deformation and volume conservation at respective strains,

which is a common approach (Frick et al., 2008; Greer et al., 2006, 2005). The strain

hardening rate is then given by, Θ = f 2
s

∆σ

∆ε
; where, fs is the Schmid factor. In the

present case, this procedure is justified by the investigated multiple slip orientation

and the confirmative in situ observation. A similar approach was followed in the

simulations to determine the hardening rate between two reference strains.

Fig. 35 shows the comparison between the strain hardening rates obtained from

experiments and simulations. The normalized strain hardening rate from the sim-

ulations, determined between the strain range of ε = 0.02 − 0.1, are shown with

the normalized strain hardening rate from the experiments, determined between the

strains of 0.02− 0.05, for different crystal widths. Both simulations and experiments

show size-effect on the hardening rate. Overall, there is a good agreement between the

normalized hardening data from simulations and experiments in crystals with width
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Fig. 34. In situ SEM images of a 〈100〉Cu sample during compression. The inclination

of the top surface of the diamond punch is a result of the electron beam

scanning from the left to the right during image acquisition while the sample

was compressed. It is noted that there was a loss of contact in the center of

the contact area in (c).
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Fig. 35. Strain hardening rate (Θ) data normalized by the Cu shear modulus (µ)

for crystals of various sizes are shown from simulations and experiments on

round 〈100〉 Cu, square 〈111〉 Cu, and square 〈111〉 Cu coated with TiN.

The hardening rate in the simulations is determined between the strains of

ε = 0.02− 0.1 and in the experiments between the strains of ε = 0.02− 0.05.

These data are shown in comparison to the normalized bulk stage I and stage

II hardening rate (Argon, 2008).
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lesser than D = 6.0 µm. The simulations predict the hardening rate in the crystal

with width around D = 0.4 µm to be almost 2 times the bulk stage II hardening

rate limit. A notable observation from Fig. 35 is the discrepancy in hardening rates

predicted by simulations and experiments for crystal widths larger than D = 6.0 µm.

The hardening rates predicted by the simulations in crystals with width D = 6.4 µm

and D = 9.6 µm are within the bulk stage II hardening rate of µ/100− µ/200. This

is expected in the simulations because these sufficiently large crystals, oriented for

symmetric double slip, show build up of dislocation density in both the slip systems

right after the onset of yield. This behavior was already noticeable in the crystal with

width D = 5.7 µm as shown in Fig. 30. This response is typical of bulk crystals.

The strain hardening rates observed in the simulations and experiments in this

investigation are lower in values than those reported for stage II hardening rate pre-

sented in (Guruprasad and Benzerga, 2008b). The difference in the hardening be-

havior observed in the two sets of simulations can be attributed to the way in which

junctions are modeled. In (Guruprasad and Benzerga, 2008b) the junctions formed

were considered to be unbreakable. However, during the simulations the character of

this junction can change from a dynamic obstacle to a stable junction if the criterion

for junction stabilization is met. However, in the present investigation the junctions

are not considered unbreakable. This allows for relaxation of stresses within the

crystals during the breaking of junctions.

To understand the mechanisms leading to the hardening, the local microstruc-

ture of deformed samples was further analyzed. Thus, the two samples shown in

Fig. 21 were subject to electron backscatter diffraction (EBSD) investigation after

deformation. Due to the high compressive strain of 18.4% and 28.3%, respectively,

large slip steps on the sample surface complicated EBSD investigation. Therefore,

both sample surfaces were FIB polished using an ion current of 100 pA. An inclined
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Fig. 36. Electron backscatter diffraction (EBSD) investigation of the deformed samples

shown in Fig. 1. (a, f) Inclined SEM view of the FIB polished surface of the

sample shown in Fig. 1a-c and d-f, deformed up to 28.3% and 18.4% strain,

respectively. The crack like feature in Fig. 1a is the rest of a slip step that was

not polished away. (b, g) Nearest neighbor misorientation and (c, h) global

misorientation with respect to the undeformed sample base. (d, j) 〈001〉 pole

figure and (e, k) 〈111〉 pole figure with the same color code applied as for the

global misorientation maps. Fragmentation in the misorientation maps and

much stronger peak broadening in the pole figure maps is observed for the

upper sample deformed to higher strains.
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SEM view is shown in Fig. 36a for the sample shown in Fig. 21a-c loaded to a strain of

28.3%, and in Fig. 36f for the sample shown in Fig. 21d-f loaded to a strain of 18.4%.

The crack like feature in Fig. 36a is the rest of a slip step that was not completely

removed by FIB polishing. Subsequently, EBSD investigations were performed with

a step size of 25 nm. Fig. 36b and g show nearest neighbor misorientations maps with

the color code ranging from 0◦ to 8◦. A larger number of highly misoriented boarders

are observed for the stronger deformed sample. Furthermore, the global misorienta-

tions with respect to the undeformed sample base increases with increasing maximum

strain, as depicted in Fig. 36c and h. Note that in these images the color code ranges

from 0◦ to 20◦. The increasing crystal fragmentation observed in the previous images

is also reflected in the 〈100〉 and 〈111〉 pole figures shown in Fig. 36d, j and Fig. 36e,

k, respectively, where increased peak broadening in multiple directions is seen. The

same color code as for the misorientation maps was applied. These observations can

be correlated to the load-displacement data in Fig. 21g, where the stronger deformed

sample shows significantly increased hardening after point c. This could have been

the start of the fragmentation process, which did not occur in the other sample, since

it was not loaded to such high strains.

Deformed configurations, GND density contour and lattice rotation contour fig-

ures from simulations are shown in Fig. 37. The width of the crystal, D = 6.4 µm, is

comparable to the width of the crystal shown from experiments in Fig. 36. Figs. 37a-c

correspond to the simulations from the current investigation, where the junctions are

modeled as breakable. These figures are shown at a strain level of ε = 0.1. Fig. 37d

correspond to simulations presented in (Guruprasad and Benzerga, 2008b), where the

junctions were modeled as unbreakable junctions. Only central part of this crystal,

which has an aspect ratio of H/D = 3, is shown at a strain level of 0.083.

The deformed configuration in Fig. 37a shows that the slip is not local or confined
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to a few active slip planes; but it is distributed over the height of the crystal. There

is a clear evidence of the crystal deforming by double slip. Contours of GND density,

which can be thought of as representing the nearest neighbor misorientations within

the crystal, are shown in Fig. 37b. A resolution of 50×50 nm2 was used to determine

the spatial distribution of the GND density in the crystal. The GND density is found

to be higher in magnitude at the central region in the crystal than near the surfaces.

This feature is similar to large number of local misorientation boundaries observed

in Fig. 36b at the center of the crystal. An observation of the lattice rotation field,

κ, in Fig. 36c reveal that at the central region of the crystal the the magnitude of

the rotation field is as high as 3◦, and there is a mismatch in the sign of the rotation

fields. A similar feature was observed in the simulations presented in (Guruprasad

and Benzerga, 2008b) as shown in Fig. 37d. This mismatch in the sign of the large

magnitude rotation fields at the central region indicates fragmentation process which

was also observed in experiments, as highlighted in Fig. 36c.

The DD framework used in the simulations readily allows the quantification of

the dislocation substructure evolution in the crystals during the deformation. Trans-

mission electron microscopy studies can be done in the experiments to quantify the

dislocation substructure (Norfleet et al., 2008). Fig. 38 shows the total dislocation

density (ρ) in the simulated crystals at a strain of ε = 0.1 for various sample widths

(D). A general trend of decrease in the total dislocation density with decrease in the

crystal width was observed. The total dislocation density in the crystal with width

D = 6.4 µm was found to be as high as 386 µm−2, while in the crystal with width

D = 0.4 µm it was as low as 44 µm−2. This result is in stark contrast to the findings

reported in (Norfleet et al., 2008) from TEM investigation of Ni microcrystals in the

range of 1 µm - 20 µm. Also, in the present investigations we see a continuous increase

in the density of dislocations with deformation. However, in (Norfleet et al., 2008)
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Fig. 37. Deformed configuration and contour plots are shown for crystal with size

D = 6.4 µm, aspect ratio (H/D) of 2:1, and initial source density of

ρnuc = 20 × 1012 m−2 at a strain level of ε = 0.1: (a) Deformed configu-

ration showing symmetric double slip in the crystal; (b) GND density (ρGND)

contour plot; and (c) Lattice rotation (κ) plot. (d) Lattice rotation (κ) in a

crystal with size D = 6.4 µm, aspect ratio (H/D) of 3:1 and an initial source

density of ρnuc = 1.5× 1014 m−2 is shown at a strain level of ε = 0.083. Only

the central part of the crystal is shown for clarity. In (c) and (d) we notice

fragmentation of rotation fields at the central region of the crystal.
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Fig. 38. Total dislocation density (ρ) in crystals at a strain of ε = 0.1 is shown as a

function of crystal size D.

the dislocation density was not found be a function of the imposed strain. This is be-

cause in (Norfleet et al., 2008) after the initial exhaustion hardening regime significant

hardening, as reported in this investigation, was not present. Finally, the presence of

significant density of dislocations in crystals with widths as small as 0.4 µm in the

simulations suggest that the crystals are not ’starved’ of dislocations.

The methodology presented in Section. D is used to quantify local dislocation

substructures in terms of GND density in the crystal. This methodology allows for

the determination of spatial as well as temporal evolution of the GND density. Spatial

distribution of GND density in crystals for various crystal widths are shown in Fig. 32b

and Fig. 37b. In Fig. 39a and c we show the effective GND density (ρ̄GND) as defined

by Eq. 3.9, as a function of crystal width (D); the two trends shown correspond to two

different choice of resolution used in the calculation of ρ̄GND. Fig. 39a is determined

keeping the thickness of the resolution, h = 200 nm, constant for specimens of all the

size but the length of the resolution is always equal to the length of the sample. This
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procedure does not lead to maintaining the a constant domain area while determining

ρ̄GND for samples of different sizes. The Fig. 39 correspond to calculations where the

resolution size was kept constant at 200 × 800 nm2 in all the samples. Two trends

are observed from Fig. 39a and c: (a) ρ̄GND increases with decrease in the crystal

width; and (b) the scatter in the value of ρ̄GND increases with decrease in crystal

width. This trend is similar to the trend observed in flow stress scaling with crystal

width (Fig. 33). These observations suggest that the emergence of GND density and

its significant contribution to the total dislocation density will play a role in the size-

effect on flow stress and hardening in small crystals. In crystals with size D = 6.4 µm

and larger the hardening is governed by forest hardening mechanisms, as indicated by

a high value of total dislocation density and low value of ρ̄GND. Fig. 39b and d show

the average number of dislocations per domain (〈N〉) for the two choice of resolutions

chosen for the calculation of ρ̄GND. Except in a few realizations of samples with size

D = 0.4 µ, all the other samples atleast had more than 10 dislocations per domain,

which was used in the calculation of ρ̄GND.

F. Conclusions

The focus of this study was to gain insight into the evolution of plastic deformation

and strain hardening in micropillars through experiments and simulations. Micro-

compression experiments have been carried out on high-symmetry Cu micropillars

with square as well as circular cross-sections. The samples included micropillars on

substrate, and coated pillars. Cu micropillars, oriented for multiple slip, are modeled

as planar crystals subjected to plane strain compression using discrete dislocation dy-

namics. It does not account for the effect of substrate and coating on pillars. In this

framework, long range interactions due to dislocations are naturally accounted for
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Fig. 39. (a) Effective GND density (ρ̄GND) normalized by the total dislocation den-

sity (ρ) in crystals at a strain of ε = 0.1 is shown as a function of crystal

size D. (b) Average number of dislocations per domain (〈N〉) used in the

calculation of (a) is shown as a function of crystal size D. A resolution size

of h = 200 nm and length equal to the size of the sample is used in the de-

termination of (a) and (b); (c) Effective GND density (ρ̄GND) normalized by

the total dislocation density (ρ) in crystals at a strain of ε = 0.1 is shown

as a function of crystal size D. (d) Average number of dislocations per do-

main (〈N〉) used in the calculation of (c) is shown as a function of crystal size

D. A constant resolution size of 200× 800 nm2 is used in the determination

of (c) and (d).
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through elasticity; key short-range dislocation interactions are incorporated through

constitutive rules. These rules include: junction formation, stabilization and nucle-

ation from stable junctions which act as anchoring points, and their evolution with

deformation. For adequate representation of the behavior of bulk crystal, parameters

related to initial dislocation-source, obstacle and dynamic-junction population are

chosen based on a calibration process with experimental data. Subsequently, fixing

these parameters a systematic study of size effects on Cu micropillars has been carried

out using simulations. The main findings from this study are:

• Both the experiments and simulations predict size affected plastic deformation

in micropillars. In particular, flow stress as well as strain hardening rate in-

creases with decrease in pillar size.

• There is a good qualitative and quantitative agreement between experiments

and simulations on plastic deformation, flow stress at different strains and strain

hardening rate of Cu micropillars upto the strains reached in calculations.

• Electron backscatter diffraction of deformed micropillars showed significant lat-

tice misorientations after heavy deformations. Similar features were also ob-

served in deformed samples from simulations.

• Simulations showed that there is an emergence of GND density due to nearest

neighbor misorientations within the micropillars. Further, quantification of dis-

location structure within the micropillars showed that: (i) there is a significant

density of dislocations even in the smallest pillars used in calculations; (ii) the

magnitude of effective GND density normalized by the total dislocation density

and its scatter increases with decrease in pillar size. The size effect observed in

micropillars is rationalized on the basis of an emerging GND density within the
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pillars due to an evolving dislocation structure.

G. Supplementary material

1. Calibration step 1

The yield stress in the DD simulations is primarily governed by the average initial

dislocation source strength (τ̄nuc), the standard deviation of the source strength distri-

bution (Σnuc), point obstacle density (ρobs), and obstacle strength (τobs). These four

parameters are chosen such that the apparent yield observed in the micro-tension

experiment of 〈2̄34〉 Cu with width D = 3.0 µm is achieved. Since the specimen was

oriented for single slip its deformation is predominantly dominated by source and

obstacle properties and hence allows for a good calibration of these parameters used

in simulations. The number of parameters to be calibrated is reduced from four to

two by fixing the obstacle strength to τobs = 150 MPa and considering the standard

deviation of the source strength to be Σnuc = 0.25τ̄nuc. This reduces the problem to

determining two parameters, τ̄nuc and ρobs, which leads to an apparent yield observed

in the micro-tension experiment. Using the analytical relation given in (Chakravarthy

and Curtin, 2010) between the yield stress (τY), obstacle density (ρobs), and the aver-

age source strength (τ̄nuc) a first estimate for the parameters is made. The parameters

are then used in the simulation of a crystal with width D = 3.0 µm, oriented for single

slip with ϕ0 = 28.8◦. This slip configuration has a Schmid factor of fs = 0.422, which

is the same as the Schmid factor for 〈2̄34〉 Cu specimen tested in the experiment.

From the first estimate the values of the parameters are changed until a good fit is

obtained between the simulation and the experimental result.

The yield stress τY is related to the obstacle density and the average source

strength by the following expression in (Chakravarthy and Curtin, 2010):
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τY =

√
m

Lobs

L∗
obs

µb

π(1− ν)

τobs

Lobs

+ τ 2
nuc (3.10)

In Eq. 3.10 τY is defined as the stress at which dislocations nucleated from sources

achieve flow past obstacles in their path. The average obstacle spacing Lobs is related

to the obstacle density as Lobs = 1/(ρobsd). It is the weakest of the sources which

nucleate first and hence the active sources are typically from the lower set of the

source strength distribution; thus, τnuc = τ̄nuc − 2Σnuc. The ratio L∗
obs/Lobs is a

material independent parameter based on the statistical considerations of the obstacle

spacing with a value of 6.7. The value of numerical factor m for obstacles randomly

distributed around the sources is, m = 4.5.
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CHAPTER IV

MICROPILLAR PLASTICITY: A DISCRETE DISLOCATION DYNAMICS

PERSPECTIVE

A. Introduction

The growing interest in miniaturization of technology has demanded the need to

understand mechanical behavior of materials at small length scales. In these mate-

rials, there is overlap between a length scale associated with physical phenomenon

influencing mechanical property and structural or material length scale. Under these

circumstances material mechanical properties deviate from known bulk properties.

Recent advances in experimental technique has made it possible to study the in-

fluence of dimensional constraints on the plastic behavior of materials without the

influence of microstructural constraints. This chapter focuses on the progress made

in experimental, and simulation work towards understanding the size affected plastic

behavior in materials due to dimensional constraints. In particular, it provides a

summary of key results and findings from the current research work.

B. Micropillar experiments

This section summarizes the salient features of micropillar fabrication techniques,

testing, and its mechanical response. Potential factors related to fabrication tech-

niques and testing methodology which affect the mechanical response of micropillars

is also discussed. Finally, dislocation mediated mechanisms identified from experi-

ments that govern the mechanical response of micropillars is presented.
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1. Micropillar fabrication and testing

Micro-compression of FCC single crystals has been the focus of a number of re-

cent experimental investigations. In particular, the materials of interest have been

Ni (Uchic et al., 2004; Dimiduk et al., 2005; Frick et al., 2008), Au (Greer et al.,

2005; Volkert and Lilleodden, 2006), Cu (Kiener et al., 2009c), and Al (Ng and Ngan,

2008b). Technological relevance coupled with a large body of knowledge related to

the bulk plasticity behavior of these materials have made them the popular choice

in micro-compression experiments. Samples for micro-compression experiments are

prepared from these materials predominantly from focus ion beam (FIB) micromilling

technique.

FIB micromilling allows to prepare a series of isolated single crystal micropillars

with size below 40 µm in diameter within the surface of bulk samples. The micropillar

size which can be FIB micromilled is limited by the time taken by the fabrication

process. For a micropillar of diameter 40 µm, the time taken for FIB micromilling is

almost 3 days (Dimiduk et al., 2005). Depending on the procedure used during the

FIB micromilling, one can achieve either a perfect cylindrical sample with the desired

aspect ratio or a tapered sample with larger than desired gauge length. Cylindrical

micropillar samples can be achieved by adopting the lathe milling technique in which

ion beam is at an oblique angle to the bulk sample surface (Uchic et al., 2004; Dimiduk

et al., 2005). On the contrary, if ion beam is perpendicular to the bulk sample surface

it leads to a tapered sample (Greer et al., 2005; Volkert and Lilleodden, 2006; Frick

et al., 2008). The control provided in the fabrication of the sample by lathe milling

procedure over the later method however comes at the cost of increased processing

time. A major concern of samples prepared from FIB micromilling is the presence

of an irradiation damage layer created by the impact of highly accelerated Ga+ ions.
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More recently, sample preparation based on selective etching of directionally solidified

alloys has been developed to prepare micropillars free of irradiation damage layers (Bei

et al., 2008a). Microelectronics-based fabrication technique which extends on the FIB

based micromilling (Uchic et al., 2004) is used to make samples smaller than 300

nm (Brinckmann et al., 2008).

A schematic of the experimental setup commonly used in the micro-compression

test is as shown in Fig. 1. The method is based on an extension of typical nanoin-

dentation test. Samples prepared from any of the fabrication methods described

above are tested at room temperature using nanoindentation system. A diamond or

canonical indenter with flat tip is used to load the sample either under displacement

controlled (Dimiduk et al., 2005; Greer et al., 2005) or load controlled (Volkert and

Lilleodden, 2006; Frick et al., 2008) mode. Typical applied displacement rates are in

the range of 0.2−5 nm/s and applied loading rates are in the range of 0.8−100 µN/s.

2. Micropillar mechanical behavior

The primary focus of the micropillar experiments has been to investigate the effect of

sample size on material strength. In particular, most of the research has concentrated

on the scaling of flow stress with sample size (Uchic et al., 2004; Dimiduk et al.,

2005; Greer et al., 2005; Brinckmann et al., 2008; Ng and Ngan, 2008a) and to a

lesser extent on the effect of sample size on material strain hardening (Volkert and

Lilleodden, 2006; Frick et al., 2008). A common trend observed in all the experiments

is an increase in the flow stress with decrease in size of the sample. This phenomenon

has been observed for crystals below 40 µm down to 160 nm for various FCC crystals

and more recently in some BCC crystals (Brinckmann et al., 2008) as well. It should

be noted here that the strengthening observed in these experiments is unlike those

observed in whiskers which contain a very small density of dislocations in them. The
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Fig. 40. Schematic of micropillar experimental setup. The black are in (a) represents

the nanoindentation system and the lower gray are represents the micropillar

sample machined into the surface of bulk single crystal. An SEM image of flat

diamond tip is shown in (b). This figure is taken from Dimiduk et al. (2005).
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Table IV. Compilation of data from micropillar experiments. The following notations

are used in the table: E is the material Young’s modulus; ρint is the initial

dislocation density; σf−min is the flow stress corresponding to the smallest

sample tested; σf−max is the flow stress corresponding to the largest sample

tested; nmin is the lowest scaling exponent of flow stress determined; nmax

is the highest scaling exponent of flow stress determined. The lowest and

largest scaling exponents correspond to exponents determined at a lower and

higher value of strain corresponding to an equation of the form σf = σ0D
n;

where D is the size of sample. The flow stress values correspond to: a flow

stress at 1% strain; b flow stress at 10% strain; c flow stress at 0.2% strain;
d flow stress at 5% strain.

Material Pillar E ρint σf−min σf−max nmin nmax References
diameter (µm) (GPa) (m−2) (MPa) (MPa)

Ni〈269〉 1 - 40 205 3× 1012 53a 411a -0.64 - Dimiduk et al. (2005)
Ni[111] 0.16 - 2 308 ≈ 1012 636b 3888b -0.69 -0.86 Frick et al. (2008)
Au〈001〉 0.2 - 0.95 48.5 - 157b 590b - -0.97 Brinckmann et al. (2008)

Au 0.18 - 8.5 78 - 40c 563c -0.61 - Volkert and Lilleodden (2006)
Al 0.86 - 6.3 70 ≈ 1012 48d 240d -0.92 - Ng and Ngan (2008b)

Cu〈100〉 0.9 - 6.7 126 ≈ 1013 253b 472b -0.19 -0.3 Kiener et al. (2009c)
Mo〈100〉 0.98 - 0.2 329 - 2850b 1325b - -0.45 Brinckmann et al. (2008)
Nb(100) 0.9 - 0.1 145 - 2188.8b 456b -1.06 Kim et al. (2009)
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observation of increase in crystal strength with decrease in sample size even in the

presence of a relatively large density of dislocation of the order of 1012m−2 is the

remarkable discovery and observation from the micropillar experiments.

Table IV provides a summary of results compiled from micropillar experiments

for various FCC crystals. It gives the range of pillar diameter, Young’s modulus of the

material, initial dislocation density, minimum flow stress recorded which corresponds

to the largest sample tested, maximum flow stress recorded which corresponds to

the smallest sample tested, and flow stress scaling exponent. Where data available,

minimum scaling exponent corresponding to scaling determined at a low strain value

and maximum scaling exponent corresponding to scaling determined at a high strain

value are provided. The initial dislocation density in most of the experiments are in

the range of 1012 − 1013m−2. In all the experiments the flow stress values reached

by the smallest sample tested is significantly higher than its bulk counterpart. For

example, the flow stress reached in 160 nm Ni sample is more than 70 times the

flow stress recorded in the Ni sample of size 40 µm. An interesting observation

from Table. IV is the values reported for flow stress scaling exponent by different

experimental groups. In general, from Table IV we notice that the scaling exponent

as low as -0.19 and as high as -1.0 have been reported in the experiments. Also, an

increase in the value of scaling exponent with increase in strain has been observed

in experiments. Frick et al. (2008) observed in Ni micropillar experiments that the

scaling exponent increased from -0.69 to -0.86 with increase in strain from 3% to 10%.

Similarly, Kiener et al. (2009c) observed in their Cu micropillar experiments that flow

stress increased from -0.19 to -0.3 with increase in strain from 5% to 10%.

The increase in flow stress scaling exponent with increase in strain has been

attributed to the ability of the micropillars to strain harden and size effect observed

in strain hardening (Frick et al., 2008; Kiener et al., 2009c). Frick et al. (2008) and
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Volkert and Lilleodden (2006) report strain hardening rate almost 20 times the bulk

range for samples as small as 200 nm; while Kiener et al. (2009c) report a value which

is 2 times the bulk range for the sample with size 800 nm. The reason for differences

in scaling of flow stress observed from different experimental groups has not been

clearly identified and rationalized. Also, not all the micropillar experiments report

on the effect of sample size on strain hardening rate of micropillars. Dimiduk et al.

(2005), Greer et al. (2005) and Ng and Ngan (2008b) only mention about the size

effect on the initial transient hardening observed at very low strains. They do not

quantify hardening rate beyond the initial transient regime.

The stress versus strain response observed from the micropillar experiments is

unlike the response typically observed in their bulk counterparts. In micropillar ex-

periments, the stress versus strain curves are characterized by intermittent elastic or

near elastic loading followed by strain bursts. Attempt was made by Dimiduk et al.

(2006) to characterize these discrete slip events. Their analysis revealed a power-law

scaling between number of discrete slip events and its magnitude suggesting that a lin-

ear regime exists in which the probability of observing a displacement event of a given

magnitude decreases as the event size increases. In the experiments by Kiener et al.

(2009c) the stress versus strain response demonstrated a steady hardening response

and a lack of intermittent elastic loading followed by strain bursts.

3. Influence of fabrication and testing method on micropillar mechanical behavior

When analyzing the micropillar experimental results careful attention needs to be

provided at the fabrication and testing method employed during the experiment for

an accurate assessment of the intrinsic material properties. Primary issues related

to fabrication and testing which might have an influence on micropillar mechanical

response and currently under investigation are: (i) difficulty to fabricate micropillars
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with uniform cross-section along its gauge length for samples below 1 µm; (ii) presence

of an irradiation-damage layer on micropillar surface created by high impact Ga+

ions; (iii) lateral sample compliance; and (iv) misalignment between flat-punch tip

and sample top surface.

Inability to fabricate micropillars with uniform cross-section along its gauge

length results in taper of the sample. Taper angle of magnitude 3.5◦ has been observed

in Ni samples by Frick et al. (2008). There has been finite element based numerical

study (Zhang et al., 2006) which has suggested that a taper of 2.86◦ in samples with

an aspect ratio of 2:1 to 5:1 can lead to an artificial hardening. However, Frick et al.

(2008) has observed that the stress gradient between the top and bottom surface of

the sample is well below 50% but the increase in stress beyond yield is well above

350% and hence strain hardening cannot be a result of primarily sample taper. Also,

taper is self-similar across the range of micropillar diameter tested and yet there is

a consistent trend of sample size on flow stress and strain hardening. While the in-

fluence of taper on measured values of flow stress and strain hardening rate cannot

be ignored it does not affect the overall trend of increased strengthening due to a

reduction in sample size.

Micropillar sample fabrication using FIB technique induces an irradiation-damage

layer on the surface due to high impact Ga+ ions. However, experiments have not be

done to ascertain if the presence of irradiation-damage layers translates into strength-

ening in micropillar experiment. Recent in-situ nanocompression experiments have

shown that the high density of small dislocation loops, due to ion beam irradiation,

at the surface escaped upon application of loading. This phenomenon was termed

’mechanical annealing’. Also, Greer et al. (2005) and Greer and Nix (2006) pro-

cessed samples using different fabrication techniques to prepare samples with varying

degrees of ion beam irradiation effect. Despite the varying degree of irradiation ef-
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fect in the samples the flow stress data measured in these experiments were similar.

This suggested that irradiation-damage layer might not play a significant role in the

strengthening observed in micropillar experiments.

Kiener et al. (2008a) conducted micro-tension tests on Cu micropillars. They

observed that the flow stresses obtained from these tests were almost 4 times lesser

than the flow stresses observed in micro-compression tests. This result highlighted

the strong influence of stiff lateral constraint offered by the bulk material the sample

is attached to on flow stress data in micro-compression tests. Kiener et al. (2009a)

showed that if the lateral compliance in micro-compression test was reduced by plac-

ing the sample on a needle tip then the flow stress values obtained are similar to those

obtained from micro-tension test. Another issue of importance is the misalignment

between the flat-punch tip and the sample top. A large misalignment can under-

estimate the material modulus, yield and the strain hardening in the test due to

plastic instability. In fact, this is one of the reason why yield is not usually defined at

the 0.2% strain; instead different groups have probed the flow stress values at larger

strains to determine the saturation stress where the effect of sample misalignment

or sample taper effect maybe minimized. The readers are referred to the article by

Kiener et al. (2009b) for a discussion on the influence of experimental constraints on

micro-compression tests.

Attempts are being made to characterize the initial internal defect microstruc-

ture, their evolution and their effect on the overall macroscopic response using trans-

mission electron microscopy (TEM) (Norfleet et al., 2008; Frick et al., 2008; Ng and

Ngan, 2008b) and X-ray diffraction (XRD) (Maass et al., 2007, 2008). The slip traces

and bands in Ni samples observed by Norfleet et al. (2008) revealed dislocation struc-

tures similar to those observed in bulk crystals during stage I hardening. They also

reported an increase in dislocation density during the initial stage of deformation and
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significant dislocation activity on non-primary slip planes. Frick et al. (2008), apart

from identifying increase in dislocation density, also reported lattice rotation upto 3◦

of the micropillar relative to the substrate. XRD studies by (Maass et al., 2007,

2008) also showed evidence of local lattice distortions due to pre-existing dislocations

or low angle boundaries, inside the micropillars.

Summary of experimental work has unequivocally shown that there is an overall

increase in sample strength with decrease in sample size. There are also evidence that

show significant increase in strain hardening rate in crystals with decrease in their

sample size; however, this finding has not been reported by all the experimental groups

and uncertainties exist in the assessment of these results. Further, the summary

highlighted the role played by fabrication and testing methods on the experiments.

A systematic research to characterize the importance of each fabrication and testing

method, though currently underway, is still lacking. Evidence from TEM and XRD

studies of the micropillars have revealed that dislocation structure and local lattice

gradients play a role in the strengthening observed in micropillars. However, a direct

correlation between the defect microstructural details and macroscopic response has

not been completely established.

C. Micropillar simulation predictions

This section provides an overview of the simulation efforts which have been performed

and are currently underway to understand the phenomenon of size affected strength-

ening observed in micropillar experiments. In particular, the focus is on 3D as well as

2D discrete dislocation dynamics (DDD) based simulation studies. First, simulation

results based on 3D-DDD are presented. This is followed by 2D-DDD investigations

from the current investigation. Comparison of experimental and 2D-DDD simulation
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studies are also presented. Explanation for the observed size-effect on strengthening

based on simulations are finally discussed.

Simulations offer the advantage of investigation of size-effect in micropillars

under idealized conditions without the influence of factors like, pillar taper angle,

irradiation-damage layer, lateral sample compliance, misalignment, among other is-

sues. Hence, simulations allows one to study the intrinsic material behavior without

the influence of fabrication and testing methodology. Simulations also have the capa-

bility to model micropillars to reproduce actual experimental conditions that includes

some of the factors listed above; thus providing more insight into the experimental

observations. However, idealizations inherent to the simulation models, limitations

on simulation cell size and simulation time due to computational challenges, approx-

imations related to initial defect source structure strength and distribution limit the

scope with which one can explore the micropillar mechanical behavior in accurate

detail.

1. 3D discrete dislocation dynamics simulations

A majority of the simulation studies performed to understand micropillar mechanical

behavior are based on 3D-DDD (Rao et al., 2008; El-Awady et al., 2008; Senger et al.,

2008; Weygand et al., 2008; El-Awady et al., 2009; Akarapu et al., 2010; Zhou et al.,

2010). This approach naturally accounts for dislocation glide, short-range dislocation

interactions, and dislocation interactions with free surfaces. However, this comes at

the cost of severe computational resources and hence limits the ability of the studies

to relatively smaller simulation cells and very low strains. A consequence of this is

the inability of these models to explore a wide range of pillar sizes to investigate

the transition of mechanical behavior of crystals from size affected to typical bulk

response. Restrictions on the range of strain levels which can be reached by these
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Table V. Compilation of data from micropillar experiments. The following notations

are used in the table: E is the material Young’s modulus; ρint is the initial

dislocation density; σf−min is the flow stress corresponding to the smallest

sample tested; σf−max is the flow stress corresponding to the largest sample

tested; nmin is the lowest scaling exponent of flow stress determined; nmax is

the highest scaling exponent of flow stress determined. The lowest and largest

scaling exponents correspond to exponents determined at a lower and higher

value of strain corresponding to an equation of the form σf = σ0D
n; where

D is the size of sample. The flow stress values correspond to: a flow stress

at 1% strain; b flow stress at 0.5% strain; c flow stress at 0.2% strain.

Material Pillar E ρint σf−min σf−max nmin nmax References
diameter (µm) (GPa) (m−2) (MPa) (MPa)

Ni 0.5 - 20.0 157 1012 − 1013 50a 840a -0.43 -0.84 Rao et al. (2008)
Ni 0.25 - 5.0 200 1− 5× 1012 88b 797b -0.69 - El-Awady et al. (2009)
Ni 0.5 - 1.0 200 2.5× 1013 373a 683a -0.67 - Zhou et al. (2010)
Al 0.5 - 2.0 72 2× 1013 51c 120c -0.57 - Senger et al. (2008)
Cu 0.2 - 2.5 129 1013 435c 1562c - - Akarapu et al. (2010)
Al 0.4 - 3.2 70 1012 70a 900a -0.83 -1.01 Benzerga (2009)

simulations preclude the study of strain hardening behavior in microcrystals. Despite

the limitations, these simulations have been able to qualitatively and quantitatively

capture some salient features of micropillar experiments. They have also shed light

on the possible dislocation mediated mechanisms which can lead to size effects in

micropillars.

Table V provides a summary of results compiled from DDD simulations. Ex-

cept for the data from work by Benzerga (2009), all the other data are from 3D-

DDD simulations. In the 3D-DDD simulations the largest crystal size considered was

20 µm (Rao et al., 2008) and the smallest crystal size considered was 0.2 µm (Akarapu

et al., 2010). In all the 3D-DDD simulations an initial density of Frank-Read sources

are considered from which dislocations are nucleated. The Frank-Read source den-

sity considered in the simulations are in the range of 1012 − 1013 m−2. However,
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due to lack of sufficient information about the initial microstructure configuration

from experiments differences exist between different simulations in the distribution of

these Frank-Read sources. Senger et al. (2008) and Weygand et al. (2008) considered

Frank-Read sources of constant length. A more common approach is to consider a

random distribution of Frank-Read sources whose length is restricted by the size of

the crystal (Rao et al., 2008; El-Awady et al., 2009; Akarapu et al., 2010; Zhou et al.,

2010). Differences also exist based on distribution of Frank-Read sources on one slip

system (El-Awady et al., 2008), randomly distributed (Rao et al., 2008), or on all

possible slip systems (Senger et al., 2008; El-Awady et al., 2009; Akarapu et al., 2010;

Zhou et al., 2010). Tang et al. (2008) considered a network of dislocations as initial

microstructure which was generated by a relaxation procedure mimicking a thermal

annealing process.

All the 3D-DDD simulations presented in Table V are able to capture the size-

effect observed in micropillar experiments. Difference, however, exist in the stress-

strain response reported from various 3D-DDD simulations. Senger et al. (2008) and

Weygand et al. (2008) obtain a near perfect plastic or small hardening depending

on initial source distribution following the yield. Rao et al. (2008), El-Awady et al.

(2009) and Zhou et al. (2010) are able to reproduce stress-strain response which is

qualitatively similar to micropillar response; the response is characterized by intermit-

tent elastic or near elastic loading and strain bursts. The flow stress scaling exponent

predicted from 3D-DDD simulations are given in Table V. The scaling exponent

predicted from 3D-DDD simulations are in the range of -0.4 to -0.85. The variabil-

ity of the scaling exponent predicted in the work by Rao et al. (2008) is dependent

on the initial dislocation source density used in the simulations. Rao et al. (2008)

observed that the scaling exponent decreased with increase in the initial dislocation

source density. The high scaling exponent of -0.87 observed by Frick et al. (2008) was
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that a strain of 10% due to size-effect observed in strain hardening rate. However,

the strain levels reached by the 3D-DDD simulations are very small and they do not

show any size-effect on strain hardening observed in micropillar experiments (Volkert

and Lilleodden, 2006; Frick et al., 2008).

Simulations from 3D-DDD (Rao et al., 2008; El-Awady et al., 2009) have at-

tributed the observed size-effect and the transient-hardening response at small strain

regime in micropillars to two mechanisms: (a) source-truncation; and (b) exhaustion

hardening. The initial source strength distribution is refined when a Frank-Read (FR)

source interacts with the free surface and creates two single-ended sources with length

smaller than the initial FR source. Among all the available single-ended sources it is

the source with the largest length which sets the flow stress observed in micropillars.

Similar observation was first reported by Benzerga and Shaver (2006) using 2D-DDD

simulations. The exhaustion hardening is an outcome of lack of sufficient number of

mobile dislocations within the micropillars to accommodate the applied loading. In a

bulk crystal there are many potential mobile dislocation segments which can accom-

modate the applied loading. However, in micropillars there are only a finite number

mobile dislocation segments and a source can be shut-off during deformation due to

forest-hardening processes. Subsequently, the stress has to be increased to activate

the next weakest source in micropillars leading to the transient-hardening response

observed in the small strain regime in simulations.

2. 2D discrete dislocation dynamics simulations

In this section results and insight gained on the mechanical behavior of micropillars

from 2D-DDD simulations are presented. In particular, attention is focused on 2D-

DDD simulations from the current research work and its contribution to the ongoing

discussion on micropillar plasticity. Flow stress and strain hardening rate predicted
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Fig. 41. Comparison is shown between flow stress data from Ni (Frick et al., 2008) and

Au (Brinckmann et al., 2008) micropillar experiments and simulation results

from (Benzerga, 2009). The flow stress scaling exponent is close to -1.0 in both

experiments and simulations. All the data shown are suitably normalized.

from simulations are compared with experimental data. Analysis of deformed mi-

cropillars in simulations reveal possible mechanisms which aid to explain the observed

size-effects on flow stress and strain hardening. Details regarding the formulation of

2D-DDD framework and constitutive rules included to account for short-range dislo-

cation interactions can be found in Chapter II and III. 2D-DDD simulations (Benzerga

and Shaver, 2006; Benzerga, 2009; Guruprasad and Benzerga, 2008b) have been able

to capture the salient features of mechanical response of micropillars. Benzerga and

Shaver (2006) and Benzerga (2009) have shown that at very low initial dislocation

source density, of the order of 1012 m−2, stress-strain response is characterized by flow

intermittency at coarse time scales. The applied strain rate is predominantly accom-

modated by elastic loading followed by relaxation. On the other hand, at high initial

dislocation source densities, of the order of 1013 m−2 and 1014 m−2, the stress-strain
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response was similar to bulk crystal characterized by a steady hardening following

the yield. However, the observed strain hardening rates were higher than the known

bulk range and was dependent on micropillar size (Guruprasad and Benzerga, 2008b).

These two sets of simulations with low and high initial dislocation source densities

have been able to capture the range of experimental results reported in experiments

on flow stress scaling, and size effect on strain hardening.

Fig. 41 shows flow stress predicted from simulations for various micropillars in

comparison to experimental results. The flow stress data is normalized with material

shear modulus (µ) and Burger’s vector. The reference Burger’s vector bref = 0.25 nm

used in simulations. These simulation results correspond to calculations with an initial

dislocation source density of 1012 m−2. It can be observed that flow stress predicted

from simulations for micropillars of various sizes compare well with experimental

results reported by Greer et al. (2005); Brinckmann et al. (2008) and Frick et al.

(2008). Flow stress scaling of -1.09 and -0.97 was determined by Greer et al. (2005)

and Brinckmann et al. (2008) at low strains, while Frick et al. (2008) inferred a

flow stress scaling of -0.86 at a strain of 10%. Simulations predict a value of -0.83

and -1.01 depending on the source length cut-off used in the calculations. Flow

stress versus sample size data from simulations performed with an initial dislocation

source density of 1013 m−2 and 1014 m−2 is shown in Fig. 42. Experimental data

from Cu micropillars (Kiener et al., 2009c) are shown for the purpose of comparison.

It should be noted here that simulations with initial dislocation source density of

1013 m−2 were specifically performed for Cu micropillars as described in Chapter

III. Flow stress predicted from simulations agree well with the experimental values.

However, we notice that the flow stress predicted from simulations with an initial

dislocation source density of 1014 m−2 are on the higher side. This is because of

the significant hardening rate observed in these simulations, where junctions were
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Fig. 42. Comparison is shown between flow stress data from Cu (Kiener et al., 2009c)

and simulation results from the current study. These data correspond to lower

scaling exponent of flow stress data from experiments and simulations. All

the data shown are suitably normalized.
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Fig. 43. Flow stress from simulations for crystals with aspect ratio (L/D) of 1, 2,

3 and 6. The slip planes are oriented at an angle of ±35.25◦ to the load-

ing direction in all the simulations. The initial dislocation source density is

ρnuc = 1.5×1014 m−2. The flow stress scaling exponent corresponding to data

at a strain of ε = 0.02 is -0.10 and the scaling exponent corresponding to

ε = 0.1 is -0.31.

treated as unbreakable. However, the flow stress scaling of -0.42 predicted from these

simulations is close to scaling of -0.3 reported by Kiener et al. (2009c) at a strain of

10%.

Additional simulations were carried out to explore the effect of sample aspect

ratio (L/D) on the trends observed above. Fig. 43 shows normalized flow stress ver-

sus sample size for various micropillar sizes at different strains. The sample aspect

ratio was varied between 1-6. Irrespective of the sample aspect ratio, the simulations

predicted an increase in flow stress with decrease in size. Further, with increase in

strain the flow stress scaling was found to increase. Flow stress scaling, determined

by accounting all the simulations irrespective of its aspect ratio, was found to increase

from -0.1 at a strain of 2% to -0.31 at a strain of 10%. The effect of active slip systems
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Fig. 44. Comparison of normalized flow stress data between simulations for crys-

tals with slip system oriented at ±35.25◦ and ±54.75◦. The aspect ra-

tio (L/D) of the crystals was 3. The initial dislocation source density is

ρnuc = 1.5× 1014 m−2.

on flow stress prediction in micropillars is shown in Fig. 44. These simulations were

carried out on micropillars with L/D = 3 and an initial dislocation source density of

1014 m−2. The two slip systems considered were: (a) ±35.25◦; and (b) ±54.75◦. At

low strains the flow stress predictions from the two sets of simulations are similar.

However, with an increase in strain there is a noticeable difference in the flow stress

values predicted; with micropillars oriented at ±54.75◦ being relatively harder than

micropillars oriented at ±35.25◦. Within the 2D idealization of micropillars in simu-

lations, the number of potential sites for junction formation is more in crystal with

slip planes oriented at 54.75◦ than in crystals with slip planes oriented at 35.25◦; with

all other geometric dimensions being similar. This increases the chance of junctions

formation, which can potentially act as dynamic obstacles and block dislocations, in

the crystal with slip planes oriented at 54.75◦. This increase in resistance to slip leads
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Fig. 45. Comparison is shown between strain hardening rate from Ni (Frick et al.,

2008), Au (Volkert and Lilleodden, 2006), and Cu (Kiener et al., 2009c) mi-

cropillar experiments and simulation results from the current study. Simula-

tion results correspond to an initial source density of ρnuc = 20 × 1012 m−2

and 1.5×1014 m−2. The strain hardening rate data is normalized with respect

to material shear modulus (µ).

to an increase in hardening observed in these crystals relative to the crystals with slip

planes oriented at 35.25◦.

Comparison between strain hardening rate predicted from simulations and ex-

periments is shown in Fig. 45. The strain hardening rate data is normalized by the

material shear modulus (µ). The simulation results correspond to cases with an ini-

tial dislocation source density of 1013 m−2 and 1014 m−2. All simulations correspond

to micropillars with L/D = 3 and slip planes oriented at ±35.25◦. Both experiments

and simulations predict an increase in strain hardening rate of micropillars with de-

crease in size. Strain hardening rate as high as 20 times the bulk stage II hardening
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rate has been predicted in micropillars as small as 200 nm. Frick et al. (2008) re-

ports that strain hardening rate scales as -1 with micropillar size. The corresponding

scaling factor from simulations with an initial dislocation source density of 1014 m−2

is -0.85. The strain hardening rate predicted from experiments on Cu micropillars is

lower than those predicted on Ni (Frick et al., 2008) and Au (Volkert and Lilleodden,

2006). Strain hardening rate predicted from simulations with an initial dislocation

source density of 1013 m−2 compares well with this data.

Fig. 47 shows normalized strain hardening rate versus initial dislocation source

density in samples with size D = 0.8 µm. The initial dislocation source density was

varied in the range 1013 m−2 to 1014 m−2. All the calculations predicted a strain

hardening rate which is larger than the bulk stage II hardening range. Also, the

strain hardening rate did not significantly vary with variation in the initial dislocation

source density; within the range explored in the calculations. However, with decrease

in initial dislocation source density there was scatter in the predicted strain hardening

rate.

Deformed configurations of three planar crystals with size D = 3.2 µm and

aspect ratio of 1, 2 and 3 are shown at a strain of ε = 0.1. All the crystals are

oriented for symmetric double slip. These results correspond to simulations with

an initial dislocation source density of 1014 m−2. Despite the random distribution of

dislocation nucleation sites within the crystals and differences in geometry of samples,

the samples deformed in double slip. The slip observed is not local or confined to a

few active slip planes but it is distributed over the length of the specimen. There are

no indications of bending of samples during the deformation. Evidence of localized

slip are however rare events which can occur in smaller samples as shown in Fig. 31

(Chapter III).

Contours of lattice rotation fields in samples are shown in Fig. 49. These results
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Fig. 46. Normalized stage II hardening rate (ΘII/µ) versus sample size (D) from simu-

lations for crystals with aspect ratio (L/D) of 1,2,3,6. These data correspond

to flow stress data shown in Fig. 43.

correspond to the samples shown in Fig. 48b and c, respectively. Domains of large

lattice rotations, not necessarily aligned along the slip planes, are formed in both

the crystals. Within the crystals gradients of local lattice rotations can be observed,

despite the imposed homogeneous deformation.

Locally within the crystal there is an emergence of geometrically necessary dis-

location (GND) density to accommodate the gradients in lattice rotation fields. Con-

tours of GND density distribution within the crystals are shown in Fig. 50. Fig. 50a

and b correspond to the results shown in Fig. 49. The GND density contours are at

a resolution of 50 × 50 nm2 following the methodology presented in Chapter III. It

is observed that at the central region of the crystals there is relatively higher GND

density than near the free surface. At the central region dislocation patterns, like cell
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Fig. 47. Normalized stage II hardening rate from simulations for a crystal with size

D = 0.8 µm is shown as a function of initial dislocation source density. The

aspect ratio of the crystal is L/D = 3 and the crystal is oriented at ±35.25◦

to the loading direction.

walls, are formed leading to the observed high density. Also, bands of high GND den-

sity emerge out of the extreme slip plane intersection points from both the crystals.

These high GND density regions correspond to tilt wall-like dislocation structures

formed at these locations. The local emergence of GND density is considered to be

the key mechanism leading to the observed size effect in flow stress and hardening in

samples with high initial dislocation source density.

At low initial dislocation source densities (≈ 1012 m−2) formation of dislocation

structures, like cell walls, are not common phenomenon. Size effects observed in

these simulations were explained by Benzerga and Shaver (2006) based on the source

strength distribution in micropillars. Later, similar ideas were also put forward based

on 3D-DDD simulations (Rao et al., 2008; El-Awady et al., 2009). Benzerga (2009)
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argued that at low initial dislocation source density the size effect is due to statistics

of source strength distribution and exhaustion hardening. The exhaustion hardening

here refers to imbalance between dislocation nucleation from source and dislocation

escape.

D. Conclusions and outlook

Recent contributions from experiments and simulations in the field of micropillar

plasticity is reviewed in this study. In particular, focus was on the findings from

the current research work and its relevance to the field of micropillar plasticity. In

this study, 2D-DDD framework is used to investigate micropillar plasticity. Within

this framework, key short-range dislocation interactions are modeled as constitutive

rules and they include: junction formation; junction stabilization; and nucleation of

dislocations from stable junctions which act as anchoring points. The simulations were

able to capture the salient features of micropillar plasticity observed in experiments.

A summary of key findings from literature review and simulation results from this

study are as follows:

• A review of experimental work on micropillars revealed that there is strength-

ening upon scale reduction. The scaling of flow stress obtained from various

investigations ranged from as high as -1.0 to as low as -0.3. An increase in

strain hardening rate with decrease in sample size was also observed in some

experiments. However, there are inconsistencies in the reporting of strain hard-

ening rate in the literature and not all the experiments reported on the size

affected hardening behavior of micropillars.

• 3D-DDD as well as 2D-DDD have been used to investigate the size affected

strengthening behavior in micropillars. 3D-DDD has been able to capture
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(a)

(b)

(c)

Fig. 48. Deformed configurations of crystals with size D = 3.2 µm and at a strain level

of ε = 0.1 for crystals with an aspect ratio of: (a) L/D = 2; (b) L/D = 1;

and (c) L/D = 3. The applied strain rate boundary condition is shown

schematically.
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(a) (b)

θ (deg)

Fig. 49. Contours of lattice rotations are shown at a strain level of ε = 0.1 for crystals

with size D = 3.2 µm and aspect ratio of: (a) L/D = 1; and (b) L/D = 3.
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(a) (b)

ρGND (µm)−2

Fig. 50. Contours of GND density contours are shown at a strain level of ε = 0.1

for crystals with size D = 3.2 µm and aspect ratio of: (a) L/D=1; and (b)

L/D = 3.
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salient features of micropillar plastic behavior like: stress-strain response; and

size effect on flow stress. These 3D-DDD investigations, however, were not able

to capture the range of flow stress scaling observed in the experiments. Also,

they did not report on the effect of sample size on strain hardening rate.

• 2D-DDD investigation from this study has been able to shed some light on the

plastic behavior of micropillars. Simulation results were able to capture the

size effect on flow stress as well as strain hardening rate. The study revealed

that when the initial dislocation source density is high (≈ 1013 m−2 - 1014 m−2)

the stress-strain response is characterized by steady hardening response. The

flow stress scaling predicted in this case, -0.4, agreed well with the lower range

of values determined from experiments. A good agreement was also obtained

between the size affected hardening behavior in micropillars between simulations

and experiments.

• 2D-DDD simulations, independent of the current research work, has shown that

when the initial dislocation source density is low (≈ 1012 m−2) the scaling ob-

tained from simulations is -1.0, which agrees well with the higher range of scaling

predicted from experiments. This work along with the current study has been

able to span the range of scaling on flow stress determined from experiments.

• Analysis of 2D-DDD simulations highlight the transition from forest hardening

dominated regime to exhaustion hardening dominated regime depending on the

sample size and initial dislocation source density. In the high initial disloca-

tion source density case the size effect on strengthening is due to the evolution

of the dislocation structure and its interaction with free surfaces; while in the

low initial dislocation source density case, the size effect is due to initial source
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strength distribution affected by source truncation, followed by dynamic oper-

ation of source and rare events.

• A review of experimental work on micropillars has highlighted potential fac-

tors involving sample fabrication technique, geometry, and testing methodology,

which might affect micropillar plasticity. The current research work attempted

to address some of these issues by performing simulations with samples of differ-

ent aspect ratio, slip system angle and initial dislocation source density. Simu-

lations involving sample taper, effect of substrate and FIB induced irradiation-

damage layer on sample are other studies that need to carried out to gain more

insight into micropillar plasticity.
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CHAPTER V

A PHENOMENOLOGICAL MODEL OF SIZE-DEPENDENT HARDENING IN

CRYSTAL PLASTICITY∗

A. Overview

A phenomenological model of plastic deformation is proposed which captures the

size-dependence of plastic flow strength and work-hardening in pure FCC crystalline

materials. Guided by discrete dislocation dynamics analyses, the treatment is based

on two structural variables determining the mechanical state of the material. A

complete description of plastic behavior is achieved given two inherently different

statements for the evolution of structure, supplemented by a new kinetic equation,

which specifies the hardening law in differential form at fixed structure. Evolution

of the first state variable is set by phenomenology; it accounts for the cardinal bulk

phenomena of athermal hardening and dynamic recovery, in addition to geometric

storage. The second state variable is kinematically determined so that an evolution

equation need not be formulated explicitly in rate form. The model formulation

leaves unaltered the classical treatment of dynamic recovery. However, since there

virtually is no experimental data on the temperature and strain-rate dependence of

plastic flow at the micron scale, emphasis is laid on athermal behavior. In this limit,

the model equations are integrated following specified strain paths to give the flow

strength at current structure. Model predictions are assessed through comparison

with results from discrete dislocation analyses of geometrically similar crystals subject

to compression.

∗Reprinted from “A phenomenological model of size-dependent hardening in crys-
tal plasticity” by Guruprasad, P. J. and Benzerga, A. A., 2008. Phil Mag 88, 3585–
3601, Copyright [2008] Taylor and Francis.
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B. Introduction

Phenomenological theories of plastic flow and work hardening in single and poly-

crystals are quite mature, especially for face-centered cubic and like materials at low

homologous temperature (Kocks et al., 1975; Gil Sevillano, 1993; Kuhlmann-Wilsdorf,

1999; Kocks and Mecking, 2003). A widely accepted model of work hardening is

one developed by Kocks, Mecking and co-workers (Mecking and Kocks, 1981; Estrin

and Mecking, 1984; Kocks and Mecking, 2003). It is based on considerations of

slip kinetics at fixed dislocation structure and dislocation density evolution, with

guidance from extensive experimental measurements and observations. As it stands,

the model strictly applies to bulk crystalline solids. Since no length scale enters the

constitutive relations, the model does not capture the size-dependence of strength

and work hardening at the micron scale, e.g. (Swadener et al., 2002; Uchic et al.,

2004; Greer and Nix, 2006; Dimiduk et al., 2005; Volkert and Lilleodden, 2006; Frick

et al., 2008). To date several attempts have been made to incorporate a length-

scale dependence in the model (Acharya and Beaudoin, 2000; Verdier et al., 2006;

Abu Al-Rub and Voyiadjis, 2006; Evers et al., 2002). Notable among these is the

inclusion in Ref. (Acharya and Beaudoin, 2000) of a physically-motivated measure of

lattice incompatibility in the dislocation density evolution equation, thus resulting in

a net effect of geometrically necessary dislocations (GNDs) on incremental hardening

moduli. A common assumption in (Acharya and Beaudoin, 2000; Verdier et al., 2006;

Abu Al-Rub and Voyiadjis, 2006) is that the fundamental Taylor equation giving the

flow strength in terms of dislocation density as

T = T0 + Aµb
√

ρ, (5.1)



149

remains unaltered at the micron scale. Here, T0 and A are constants; µ is the shear

modulus and b the Burgers vector strength.

The present paper starts from the premise that the validity of Taylor harden-

ing, or the Bailey-Hirsch relationship (5.1), is questionable at micron-scale resolu-

tions. Since plastic deformation is inherently heterogeneous, the dislocation density

is a spatially fluctuating quantity and a simple back-of-the-envelope derivation shows

that the very format of equation (5.1) cannot be scale-independent. Physically, any

type of dislocation–dislocation interactions results in a flow strength scaling with

the square root of the dislocation density, whether the interactions are long-ranged

(Taylor, 1934) or short-ranged (Gil Sevillano, 1993). However, at a resolution of non

vanishing GND density in the sense discussed in (Arsenlis et al., 2004; Guruprasad

and Benzerga, 2008b), whether the additional strengthening due to GNDs would be

consistent with the format of equation (5.1) remains unfounded physically. Further-

more, recent discrete dislocation dynamics calculations (Guruprasad and Benzerga,

2008b) strongly suggest that Taylor hardening breaks down in microcrystals subject

to nominally uniform compression; also see (Ng and Ngan, 2008a).

The objective of this paper is to extend the validity of the classical Kocks-

Mecking-Estrin model down to the micron scale. In reaching that objective, we

build on previous work by Acharya and Beaudoin (Acharya and Beaudoin, 2000) and

extensively use results from the discrete dislocation simulations of Guruprasad and

Benzerga (Guruprasad and Benzerga, 2008b). One promising route to quantitative

understanding of size-dependent strength is to connect rates of work hardening with

structural measures that are expressible solely in terms of kinematics. This seems now

possible based on advances made in recent years (Arsenlis and Parks, 1999; Acharya

and Bassani, 2000; Acharya, 2004; Cermelli and Gurtin, 2001; Gurtin, 2006) for the

characterization of geometrically necessary dislocations. Meanwhile, the Taylor alias
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Bailey-Hirsch equation (5.1) is relaxed. Of course, it is still required that any exten-

sion of the model would recover the kinetic equation (5.1) in the limit of bulk material.

The challenge is to specify the dependence of T vis-a-vis the enhanced representation

of structure. In the proposed model, the constitutive statement is contained in a

differential form of the hardening law so that the flow strength becomes a derived,

instead of a primitive, quantity. The paper is organized as follows. In Section C the

new work-hardening model is developed. In Section D the framework of mechanism-

based discrete dislocation plasticity (M-DDP) is introduced and a methodology for

model assessment is presented. Results from dislocation dynamics simulations and

model predictions are presented and discussed in Section E, followed by concluding

remarks.

C. Work hardening model

The classical hardening model of Kocks and Mecking (Kocks and Mecking, 2003)

strictly applies to the bulk behavior of pure materials across a wide range of tem-

peratures and strain rates. It relies on a flow stress equation of the type (5.1) sup-

plemented by a dislocation density evolution equation. Thermal activation enters

in (5.1) through A. In the classical theory, the evolution of the dislocation den-

sity accounts for dislocation accumulation due to forest interactions and dynamic

recovery due to dislocation annihilation and cross-slip. Mechanical behavior of single

and polycrystals, which is reflected in well-characterized stages of deformation, can

thus be analyzed with the work hardening rate θ derived from the two ingredients

above. θ is dominated by its athermal component during stage II, then gradually

decreases with increasing stress following remarkable scaling of the Voce type (Estrin

and Mecking, 1984). Although phenomenological in nature, this theory has strong
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experimental grounding and may be considered as the most complete physical theory

of work-hardening.

In extending the theory to the micron scale, attention is mostly focused on the

athermal component of the flow stress. A single-parameter relation of the type (5.1)

is presumed no longer valid at micron scale resolution where the local dislocation

distribution affects the flow stress beyond the zeroth order moment of that distribu-

tion, i.e., the density. During stage II, for instance, forest hardening processes, which

are dominated by dislocation-dislocation interactions, lead to an evolving dislocation

structure and result in the formation of dislocation patterns (Mughrabi, 1983). Ap-

proaches based on single-parameter relations such as (5.1) do not account for the

effect of the dislocation substructure on flow stress and hardening, or perhaps weakly

through A. However, in micro-scale specimens the interaction between the character-

istic lengths of these patterns and specimen dimensions results in peculiar behavior,

not necessarily observed in bulk samples. One way to incorporate such effects is to

acknowledge that at some sufficient resolution, the density of geometrically necessary

dislocations does not vanish, and to seek its contribution to the flow stress.

At the relevant scale of description, the density of geometrically necessary dislo-

cations can be quantified based on the net Burgers vector B as

ρG =
||B||

b
(5.2)

where ||.|| refers to the Euclidean norm and b is the material Burgers vector length.

Following the formulation in (Cermelli and Gurtin, 2001; Gurtin, 2006), a network of

dislocations piercing a plane with unit normal n has a net Burgers vector B per unit

area given by:

B = Gn (5.3)
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where G is termed the geometric dislocation tensor. In the context of small trans-

formations, G is simply (minus) the curl of the displacement gradient. In fact, it

may be viewed as a measure of lattice incompatibility associated with dislocations

(Acharya and Bassani, 2000; Bassani, 2001). In general, for an arbitrary dislocation

network, Eqs. (5.2) and (5.3) do not provide a unique description of the GND state

and, as elaborated upon in (Arsenlis and Parks, 1999), some minimization procedure

would be necessary to define uniquely the GND state at the current point. In an-

ticipation of the validation approach, to be described below based on direct discrete

dislocation analyses, we note that under plane strain deformation with only pure edge

dislocations as the carriers of plasticity, Eqs. (5.2) and (5.3) suffice to define the GND

density ρG.

Next, the GND density measure defined above is taken to affect the evolving state

in two ways (i) it contributes to dislocation density accumulation; (ii) it enhances the

rate of hardening. Introducing Γ as a measure of cumulated slip work-conjugate with

T , the evolution of the dislocation density is given by:

dρ

dΓ
= k0ρG + k1

√
ρ− k2ρ (5.4)

The last two terms in (5.4) correspond to dislocation storage and dynamic recovery,

respectively, as in the original model (Mecking and Kocks, 1981; Kocks and Mecking,

2003) with k1 a constant and k2 a material-dependent function of strain-rate and

temperature. It is the first term in (5.4) that represents the effect of GNDs following

a proposal by Acharya and Beaudoin (Acharya and Beaudoin, 2000). Here, k0 is

a non-dimensional constant. It is appropriate to mention that all three phenomena

(storage due to a forest, recovery and “geometric” storage) are present from the outset

of plastic deformation albeit some might dominate in any given stage of deformation.

The new model differs from recent ones available in the literature through the
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hardening law. Models based on the Taylor relation (5.1) invariably lead to a hard-

ening rate that is directly proportional to the dislocation density rate in (5.4) just

as in the classical models (Kocks and Mecking, 2003). In other words, according to

the models in (Kocks and Mecking, 2003) and (Acharya and Beaudoin, 2000) the

only way the flow stress can increase is through an increase in the dislocation density,

irrespective of whether the latter is affected by the current GND content. A corollary

of what precedes is that if one imagines two neighboring states of the material char-

acterized by the same dislocation density but with different dislocation arrangements

then there is not net change in the flow stress between these two states. We postulate

that this cannot hold in micron scale specimens. Thus, a scale effect of internal stress

on hardening is inherent to our concept. In the proposed model, the net change of

the flow stress dT at the current state is given by superposition of a bulk hardening

component, which in stage II is solely set by forest interactions, and a GND state

dependent component. Generically, this statement is contained in writing:

dT = Θ∞(ρ; Γ̇, T )dΓ + ΘG(ρG, ρ)dΓ (5.5)

where Θ∞ is the hardening rate of the bulk material, and in that regard it may

depend on strain rate and temperature T depending on the stage of deformation, and

the function ΘG remains to be specified. To that end we begin by observing that,

if attention is focused on stage II hardening, then ΘG cannot depend on the GND

density alone for it is evident that ρG is an evolving quantity while the hardening

rate is constant. Furthermore, since any length scale that would enter the description

should evolve with the state, it would be reasonable to take ΘG dependent upon the

dislocation density as well. Yet, determining a suitable function ΘG is not a trivial

matter. One plausible choice, which is corroborated by the physical arguments above

and inspired by careful analysis of the discrete dislocation calculations of Guruprasad
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and Benzerga (Guruprasad and Benzerga, 2008b), consists of writing

Θ ≡ dT
dΓ

= Θ∞ + δµ
ρG

ρ
(5.6)

where µ is the elastic shear modulus as above and δ a non-dimensional constant. It is

emphasized that integration of (5.6) following a given strain path ultimately results

in a size-dependent flow strength at fixed strain rate and temperature. This can be

seen by noticing that the ratio ρG/ρ is scale dependent. Alternatively, the 1/ρ term

may be likened to the square of a length scale, as for example in (Bassani, 2001),

except that this length scale is fixed there whereas it evolves here.

It is a fundamental nature of the constitutive structure considered here that

the flow stress depends on the path followed in (ρ,ρG) space and hence cannot, in

general, be expressed as a point function of the variable (ρ,ρG). Nevertheless, it is

worth illustrating the size-dependence of flow strength that would result in the model.

In doing so, we neglect the contribution of the dynamic recovery term. The hardening

equation (5.6) is integrated analytically from an initial state with flow stress Ti and

dislocation density ρi to a neighboring state with flow stress T and dislocation density

ρ using the dislocation density evolution equation (5.4). The integration is carried

out keeping ρG fixed during the strain increment. The flow stress is then derived in

closed form as

T −Ti =
2Θ∞

k1

(
√

ρ−√ρi)+

(
2Θ∞k0ρG

k2
1

+
2δµ

k0

)
log

(
k1
√

ρi + k0ρG

k1
√

ρ + k0ρG

)
+

2δµ

k0

log

(√
ρ

ρi

)
(5.7)

The first term in (5.7) is the usual Taylor hardening term. The last two terms reflect

the contribution of the GND density to strengthening. This effect is explicit in the

second term but implicit (through the parameter δ) in the third term.
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D. Model assessment

In order to assess the proposed extension of the Kocks-Mecking-Estrin model down

to the micron scale, recourse to direct discrete dislocation dynamics simulations is

appropriate, since many of the assumptions underlying the model are grounded in

dislocation theory. The framework of mechanism-based discrete dislocation plastic-

ity (M-DDP) is particularly well-suited for such a task, although the assessment is

currently possible only in the athermal limit.

1. Mechanism-based discrete dislocation plasticity

The framework was developed by Benzerga et al. (Benzerga et al., 2004) and recently

used by Guruprasad and Benzerga (Guruprasad and Benzerga, 2008b) in analyses

of size-dependent hardening in single crystals subject to compression loading. In

M-DDP key dislocation mechanisms are taken into account so that the multi-stage

single-crystal hardening response is a natural output of the simulation and not an

input as in continuum-based frameworks. The model involves solving boundary value

problems arising due to the collective motion of a large number of discrete disloca-

tions in an incremental way. At each time step the dislocation structure, stress and

displacements are determined. Assuming small transformations, superposition of the

singular infinite-medium dislocation fields and image fields is used to determine the

mechanical fields. The image fields correct for the actual boundary conditions. In a

two-dimensional idealization, edge dislocations are considered under assumed plane

strain conditions. The glide motion of dislocation i is determined by the Peach-

Koehler force, f i, given by

f i = mi ·

(
σ̂ +

∑
j 6=i

σj

)
· bi (5.8)
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where mi is the slip plane normal and bi the Burgers vector having magnitude |bi| = b.

Initially, a random distribution of Frank-Read type point sources and point ob-

stacles is generated on prescribed slip planes. Under load, a dislocation dipole is nu-

cleated from a source when the local resolved shear stress exceeds a source-dependent

critical value, τ0n, during a critical time t0n. Glide dislocations may get pinned at ob-

stacles and released if the local stress exceeds the obstacle strength τobs. Dislocations

may escape at free surfaces and co-planar dislocations of opposite sign may annihilate

if they fall within a critical distance Le from each other. The above-mentioned rules

were developed in (Van der Giessen and Needleman, 1995) based on an early work of

Kubin et al. (Kubin et al., 1992). These rules are supplemented by so-called “2.5D”

constitutive rules that incorporate some 3D dislocation interactions (Benzerga et al.,

2004). These include dynamic junction formation and destruction, production of dy-

namic sources of the Frank–Read kind and line tension. Line tension is explicitly

considered in the formulation to account for the energy associated with the expan-

sion of dislocation loops. Dislocation motion is prescribed through the viscous drag

relationship:

Bvi = (τ i + Li)bi (5.9)

with B the drag factor, vi the glide velocity of dislocation i, τ i = f i/bi and Li the

line tension. A junction is taken to form when two dislocations gliding in intersecting

slip planes fall within a critical distance, d∗, from each other. A junction thus formed

can either act as an obstacle or an anchoring point and this is considered to be a

statistical event. The probability that a junction forms an anchoring point has a

prescribed value, p. A breaking strength is specified as τ I
brk = βµb/SI for junction I,

with β a constant and SI a nearest-junction spacing. Multiplication from dynamic

sources is taken to occur for a critical stress having the same form, SI being now
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the spacing between anchoring points, and which has to be exceeded during a critical

time tInuc = γSI/|τ I |b with γ a constant. Details may be found in Ref. (Benzerga

et al., 2004).

The methodology developed in (Guruprasad and Benzerga, 2008b) to quantify

the emergence of geometrically necessary dislocations (GNDs) has been implemented

to monitor the evolution of the GND density during the simulations. Based on char-

acterizations of the GND state presented in (Acharya and Bassani, 2000; Cermelli

and Gurtin, 2001; Arsenlis et al., 2004), Guruprasad and Benzerga (Guruprasad and

Benzerga, 2008b) arrived at the following formula giving the GND density over any

sub-domain ω of the body Ω of interest:

ρG(ω) =

√√√√[∑
κ

(ρ
(κ)
+ − ρ

(κ)
− ) cos ϕ(κ)

]2

+

[∑
κ

(ρ
(κ)
+ − ρ

(κ)
− ) sin ϕ(κ)

]2

(5.10)

where ϕ(κ) is the angle that defines the slip direction on slip-system κ with respect

to the loading axis, ρ
(κ)
+ and ρ

(κ)
− are, respectively, the positive and negative disloca-

tion density on slip-system κ within ω. When body Ω is subjected to macroscopically

homogeneous deformation such as compression, the GND density ρG vanishes if deter-

mined within the whole volume of the body, i.e., ρG(Ω) ≈ 0, where the approximate

character of the statement is due to statistical effects associated with dislocation es-

cape at free surfaces. Locally, however, there exist sub-domains ω (containing many

dislocations) over which the GND density ρG does not vanish. Evidence for this is

taken from the analyses of Guruprasad and Benzerga (Guruprasad and Benzerga,

2008b) who discussed the evolving GND state in relation with plasticity size effects.
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2. Setup of M-DDP simulations

All the calculations were carried out assuming small strains and rotations for a planar

crystal having dimensions L×H, subject to plane strain uniaxial compression. The

planar crystal was loaded such that there were two slip systems oriented at ±35.25◦

from the loading axis. The specimen height, H, was varied within the range 0.2–

12.8 µm and the aspect ratio was L/H = 3 for all specimens. Material properties

representative of aluminum were used with ν = 0.3, µ = 26 GPa, b = 0.25 nm and

B = 10−4 Pa s. The values of the parameters entering the “2.5D” constitutive rules

were d∗ = 6b, p = 0.05, βbrk = βnuc = 1, γ = 0.1B and α = 0. The annihilation

distance was taken to be equal to the critical distance for junction formation Le =

d∗ = 1.5 nm. Initial dislocation sources were randomly generated on prescribed slip

planes with density 1.5× 1014 m−2. Their strengths were generated from a Gaussian

distribution with mean value τ̄0n = 50 MPa and standard deviation 10 MPa. The

critical nucleation time was t0n = 10 ns for all sources. Also, initial obstacles were

randomly generated with density 6 × 1014 m−2 and strength τobs = 150 MPa. A

displacement rate was imposed at one end of the specimen and scaled with specimen

length so that the applied strain rate ε̇ = −U̇/L = 6.66× 104 s−1 was kept the same

for all specimens, irrespective of their size. A fixed time step of 0.5 ns was used.

3. Method of assessment

Ideally, it is at the scale of a non-vanishing GND density that one would seek valida-

tion of the hardening model of Section C. This, however, presents some difficulties

in terms of defining local measures of flow stress and cumulated slip in the M-DDP

calculations. In what follows, a global assessment of the model is proposed instead.

To account for the effect of locally non-vanishing GND densities an effective GND
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density is defined over the entire domain Ω as:

ρ̄G =

p∑
n=1

Ωn

Ω
ρG(Ωn). (5.11)

Here, Ωn is the n-th element of a uniform grid defined over Ω, p is the total number

of grid elements and ρG(Ωn) is the GND density within Ωn, calculated from (5.10).

The effective GND measure (5.11) is evaluated at each time increment in the discrete

dislocation calculations.

Similarly, an effective flow stress and effective cumulated slip are defined based

on the computed uniaxial response in compression. Under displacement controlled

loading, the net axial stress and strain are computed as:

σ = − 1

H

∫ H/2

−H/2

σ11(±L/2, x2)dx2; ε = −U

L
(5.12)

σ and ε are the only non-zero macroscopic stress and strain components, respectively.

The effective flow stress and cumulated slip are thus defined as:

T̄ = fSσ; Γ̄ =
(
ε− σ

Ē

)
/fS (5.13)

where fS = 0.47 is the Schmid factor and Ē is the plane strain elastic modulus.

In what follows, when predictions of the work-hardening model of Section C are

plotted against the M-DDP results, one should bear in mind that it is the effective

quantities that are displayed for the latter. For clarity, the bars will be dropped from

the flow stress and cumulated slip notations, but not from the effective GND density

to avoid confusion. In a sense, the method of assessment is similar to what is usually

done to identify isotropic hardening models in conventional plasticity models based

on data from uniaxial testing.
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E. Results

Representative flow stress versus cumulated plastic strain responses are shown in

Fig. 51a for specimens with height H = 0.2 µm, 0.8 µm, 3.2 µm and 12.8 µm.

The results clearly show that the overall hardening behavior is affected by specimen

dimensions within the size range investigated. The corresponding evolution of the

dislocation density with Γ is depicted in Fig. 51b. Although there is some variation

of the total dislocation density with specimen size, this variation does not provide

a consistent explanation of the size-dependence of work-hardening, Fig. 51a. The

results reported here are consistent with those in (Guruprasad and Benzerga, 2008b).

The reader is referred to (Guruprasad and Benzerga, 2008b) for details in analyzing

the M-DDP results in terms of size effects on the 0.2% yield strength, stage I and

stage II characteristics, flow stress scaling and its evolution with strain, emergence

of local GND densities along with an in-depth analysis of resolution effects on the

latter.

The evolution of the effective GND density is shown in Fig. 51c. The selected

curves correspond to the stress–strain responses of Fig. 51a. ρ̄G is computed us-

ing (5.11) and a grid of horizontal strips of length L and height h = 50nm, irre-

spective of specimen size. In order to check the dependence of the results upon grid

resolution and definition, other grids were used, including a grid of square elements

of side length h = 50nm. As discussed in (Guruprasad and Benzerga, 2008b), the

results are expectedly resolution-dependent but the general trends remain the same.

In particular, for given grid resolution and topology ρ̄G is found to increase at a faster

rate in smaller specimens, just as depicted in Fig. 51c. The value of ρ̄G is found to be

as large as 40% of the total dislocation density in the H = 0.2 µm specimen while in

the H = 12.8 µm specimen it is found to be less than 2%. This build-up of effective
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Fig. 51. Discrete dislocation dynamics results: (a) Representative curves of flow stress,

T , versus cumulated plastic strain, Γ, in compression of specimens with height

H = 0.2 µm, 0.8 µm, 3.2 µm and 12.8 µm. (b) Evolution of the dislocation

density, ρ, with Γ for the same specimens. (c) Corresponding evolution of the

effective GND density, ρ̄G, with Γ. See additional material in Appendix A.
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GND density (ρ̄G) takes place while there is essentially no net accumulation of GND

density (ρG) in the specimens. The fact that ρG ≈ 0 is in keeping with the state of

macroscopically homogeneous deformation in uniaxial compression1.

It is interesting that mere reduction in specimen dimensions leads to faster ac-

cumulation of effective GND density. It is even more so without imposition of any

gradients in the macroscopic fields. Analysis of the results indicates that two factors

contribute to this rather curious phenomenon. First, the smaller the specimen the

shorter the distance from active sources to free surfaces, so that dislocation escape

is more likely to occur. This reflects a statistical contribution to the geometric den-

sity. However, this is not the dominant factor. The main contribution comes from

microstructure evolution and how the latter is affected by specimen dimensions. One

key aspect of mechanism-based DDP, in comparison with strictly 2D models, is the

complex evolution of the dislocation structure as plastic deformation proceeds. As

described in (Benzerga et al., 2004) and (Guruprasad and Benzerga, 2008b), specific

dislocation patterns develop naturally in the simulations, as dictated by the funda-

mental constitutive rules. Although these are meant to represent dislocation interac-

tions at short range, the net result is the development of a highly heterogeneous slip

pattern with associated internal stresses that have a much longer range than would

be predicted without enhanced rules for short-range interactions. The dislocation

patterns that form subsequently may be characterized by an evolving spectrum of

internal length scales. For the sake of discussing the results, it suffices to think of

one dominant internal length scale, which characterizes the deformation process and

which, of course, evolves with it. It is the interaction of this internal length scale with

specimen dimensions that leads to the size-dependence of the structural measure that

1Exceptionally, two realizations of the H = 0.2 µm specimen had ρG greater than
20% of the total density.
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is ρ̄G, as shown in Fig. 51c.

Since the evolution of the dislocation structure is not independent of kinematic

constraints, it is natural to expect that more effective accumulation of GND density in

smaller samples be also accompanied by more visible disturbances in lattice rotation

fields. In Fig. 52 contours of the in-plane lattice rotation θ are shown which correspond

to the same realizations discussed so far. The lattice rotation maps are acquired at

the same overall strain of ε = 0.06. Let us bear in mind that edge effects are negligible

and that the overall hardening response is mostly affected by what happens in the

central regions of the specimens where dislocation intersections occur more effectively.

In the H = 12.8 µm specimen the wavelength associated with fluctuations in θ within

the central region is much smaller than the specimen height H. In addition, the

magnitude of the lattice rotation is rather weak. On the other hand, in the central

region of the H = 0.2 µm specimen, the wavelength of the lattice rotation field is

comparable with H and its magnitude is much stronger (larger than 3◦). These

observations corroborate our statement above that the size-dependence of the GND

density is rooted in the evolving dislocation structure and highlight the correlation

between the length scales characterizing the current structure and the gradients of

local fields such as lattice rotations.

Most notable in the mechanical response of the crystals shown in Fig. 51a is the

effect of specimen size on the hardening rate in stage II, ΘII. This effect is quantified

in Fig. 53, where new results are superposed onto those of Ref. (Guruprasad and

Benzerga, 2008b). Each datum point correspond to one M-DDP calculation. Each

value reported for Θ is obtained by numerical differentiation of the effective flow stress

with respect to the effective cumulated slip, as explained in (Benzerga et al., 2004).

For reference, the µ/200 to µ/100 range of work-hardening rates for bulk materials,

i.e., the Θ∞ of Eq. (5.6), is depicted by two horizontal lines. Hence, the calculated
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Fig. 52. Contours of lattice rotation, θ, at a strain of ε = 0.06 for single crystal speci-

mens with height (a) H = 0.2 µm; (b) H = 0.8 µm; (c) H = 3.2 µm; and (d)

H = 12.8 µm.



165

value of ΘII for the smallest specimen (H = 0.2 µm), averaged over all realizations,

is about 20 times larger than the bulk value. By way of contrast, in the largest

specimen analyzed (H = 12.8 µm), the value of ΘII is less than twice the bulk value.

Also reported in Fig. 53 is a large set of experimental data on copper taken from

(Suzuki et al., 1956). To the best of our knowledge, Suzuki et al. have carried out the

most thorough investigation of size effects on work hardening in single crystals down

to specimen diameters of 100µm. The overwhelming majority of their data points

fall within the range of bulk values with a clear trend for increasing scatter with

decreasing specimen size. It is particularly encouraging that some of the measured

values of ΘII in specimens with diameters smaller than, say 500µm are approximately

equal to those predicted by the M-DDP calculations for the H = 12.8 µm specimens.
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Fig. 53. Stage II hardening rate, ΘII, in units of shear modulus, µ, versus specimen

height, H. Experimental data is taken from Suzuki et al. (1956).
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It is worth noting that the effect of size on ΘII is enhanced for values of H in

the sub-micron regime. Thus, if a power law scaling of the type ΘII/µ = (H/H0)
x

is sought with H0 a reference length, then the best fit is obtained with a scaling

exponent x = −0.85 for H ≤ 1µm and x = −0.5 for H > 1µm. This is depicted by

the two scaling regimes in Fig. 53. Also, it can be observed that with decrease in

specimen size there is an increase in the scatter of the ΘII values (recall that a log

scale is used in Fig. 53). However, trends based on average values are all consistent

with the above.
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Fig. 54. M-DDP results versus Taylor hardening predictions for the flow stress in spec-

imens with: (a) H = 0.2 µm; (b) H = 0.8 µm; (c) H = 3.2 µm; and (d)

H = 12.8 µm. The value of the constant in (5.1) is A = 0.3.
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Fig. 55. Evolution of the effective GND density, ρ̄G, normalized by the total dislocation

density, ρ, with deformation for specimens with height H = 0.2 µm, 0.8 µm,

3.2 µm and 12.8 µm. See additional material in Appendix A.

Before we proceed to assessment of the work-hardening model, it is worthy to

establish, for the record, the inability of the Bailey-Hirsch or Taylor relationship (5.1)

to capture the size-dependence of the flow stress, that is even when evolution of dis-

location density is taken from the dislocation dynamics results2. M-DDP results and

Taylor hardening predictions are compared in Fig. 54 for selected calculations corre-

sponding to H = 0.2 µm, 0.8 µm, 3.2 µm and 12.8 µm. The reference values, T0 and

ρ0, were taken to correspond to T and ρ from the M-DDP calculation at Γ = 0.03,

a strain level beyond which stage II hardening is found to be dominant. Also, the

value of the constant A in (5.1) was taken to be 0.3 in all cases. Comparison between

M-DDP results and Taylor hardening predictions clearly demonstrates that there ini-

2It is evident that if the dislocation density is obtained by integration of (5.4) with
k0 = 0, as in the original KME model, then the Taylor equation would simply lead
to a size-independent response.
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tially is a deformation regime where the Taylor hardening law gives a reasonable

prediction of the flow stress. However, a deviation from this behavior takes place for

all specimens after sufficient straining. The smaller the specimen the larger the devi-

ation of the Taylor prediction; see e.g. Fig. 54a. Note that the trends are consistent

with the expectation that equation (5.1) would work well for bulk specimens. Indeed,

a good prediction is obtained for the 12.8 µm specimen throughout the deformation

(Fig. 54d). It is worth emphasizing that it is the value of ρ computed from DD that

is used to assess equation (5.1). This was done to minimize the effect of differences

between model and DD simulations in terms of predicted dislocation density evolu-

tion. The discrepancy between the KME model predictions and DD results would be

greater than shown in Fig. 54 if one strictly integrates (5.4), holding k0 = 0, since

the response predicted by the KME model is size-independent. Therefore, the results

of Fig. 54 are taken as evidence that, at the micron scale, a model of the flow stress

based on the total dislocation density as the only state variable is not enough, even

under macroscopically homogeneous deformation such as the uniaxial compression

loading considered here. Furthermore, an amendment of the KME model that is sim-

ply based on the proposal (5.4) as an evolution law for the dislocation density would

not suffice. This is so because the additional hardening that would result from (5.4)

in view of (5.1) scales as ρG/
√

ρ, a quantity that is found to increase significantly

with continuing deformation, according to the DD simulations.

A key observation inferred from the discrete dislocation simulations relates to the

evolution of the dislocation structure. Although the total dislocation density and the

effective GND density both increase with strain (Fig. 51), their ratio ρ̄G/ρ remains

nearly constant with strain. This is illustrated in Fig. 55 for the same specimen sizes

and realizations discussed thus far. In addition, it is clear from the figure that the ratio

ρ̄G/ρ increases with decreasing specimen size. Both observations from the M-DDP
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results, i.e., the constance of ρ̄G/ρ with plastic strain and its size-dependence, provide

strong support to the format of equation (5.6) giving the instantaneous hardening

rate, a key ingredient of the model.

In what follows, we identify the material constants δ, k0, k1 and k2 appearing

in (5.6) and (5.4) based on DD results corresponding to the H = 3.2 µm specimen.

Subsequently, we compare model predictions with DD results for all realizations of

the other specimens. To that end, the coupled non-linear differential equations (5.6)

and (5.4) are integrated using a forward scheme from an initial state (ρ0, ρG0, τ0)

and using, at each incremental step, the value of ρG calculated from DD. Such a

procedure would qualify the physical hardening model leaving the prediction of ρG

to appropriate kinematical treatments (Acharya and Beaudoin, 2000; Evers et al.,

2002). The choice of the sample set with H = 3.2 µm for parameter identification

is rationalized as follows: (i) the values of ρ̄G computed from DD are large enough

to identify k0 in (5.4) and δ in (5.6) with a good confidence interval; (ii) the scatter

in both ρ̄G and T is small. Using this approach, the constant δ = 0.48 in (5.6) was

obtained using a least-square fit to M-DDP data plotted in terms of dT /dΓ versus

strain for all five realizations of the H = 3.2 µm specimen. In doing so, an estimate

of Θ∞ was taken to be 260 MPa, which is the value of the athermal hardening rate

of a bulk specimen. Next, the constants k0, k1 and k2 in (5.4) were determined using

the same realizations for H = 3.2 µm based on numerical evaluation of the rates

dρ/dΓ. The best fit in an ensemble average sense was obtained using k0 = 22.8,

k1 = 516.9 µm−1 and k2 = 10.0.

With the model coefficients thus determined, Fig. 56 shows the comparison,

in terms of dislocation density versus strain, between model predictions and M-DDP

results. In Fig. 56a the good correspondence obtained for H = 3.2 µm simply validates

the calibration of material constants k0, k1 and k2; the predictions for the H = 0.8 µm
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and 12.8 µm specimens are very good. In addition, the model is capable of capturing

the scatter associated with different realizations for a given specimen size as shown in

Fig. 56b for H = 0.2 µm. We emphasize that the origin of scatter in model predictions

is not inherent. It is the consequence of using DD results to infer the values of ρ̄G for

use in (5.4) and (5.6) at the current integration step. However, the results of Fig. 56

show that the scatter in ρ is mostly effected by GND density build-up. This provides

further support to the format of Eq. (5.4).
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Fig. 56. M-DDP results versus model predictions for the dislocation density in speci-

mens with: (a) H = 0.8 µm and H = 12.8 µm (M-DDP data for 3.2 µm was

used for calibration; see text); (b) H = 0.2 µm (two realizations).

The model prediction for the flow stress is illustrated in Fig. 57 for two different

realizations of the specimens with H = 0.2 µm, 0.8 µm and 3.2 µm, and for one

realization each for the H = 6.4 µm and 12.8 µm specimens. The comparison is

restricted to the range Γ = 0.04–0.16 to avoid the transient behavior at smaller

plastic strains. For a given specimen the values of the reference parameters T0 and ρ0

are the values corresponding to T and ρ at Γ = 0.04 from the M-DDP simulations.
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The results in Fig. 57 show that the model picks up very well the size-dependence of

the flow stress and reasonably well the scatter observed for smaller specimens.

F. Concluding remarks

In this paper, a model of size-dependent work-hardening in crystal plasticity has been

developed. The model is phenomenological in nature but has good physical ground-

ing. It is an extension of the well received Kocks–Mecking–Estrin model to the micron

scale. The treatment is based on two state variables: the total dislocation density

and the GND density, Eq. (5.2). The main novelty resides in a relatively simple ki-

netic equation at fixed structure parameters, Eq. (5.6). The new equation specifies

the hardening law in differential form and was developed based on careful analysis

of discrete dislocation dynamics results, where the GND density was monitored con-

tinuously using Eq. (5.10). The evolution of structure is specified explicitly for the

dislocation density, the rate of which is affected by the GND density through Eq. (5.4).

On the other hand, since the GND density is kinematically determined no explicit

evolution equation is specified for it. Thus, the physical hardening model must be

supplemented by a mechanical model containing a statement about the GND state.

Frameworks capable of such characterization are available in the literature (Acharya

and Bassani, 2000; Evers et al., 2002; Acharya, 2004; Gurtin, 2006).

Critical insight was gained from discrete dislocation dynamics simulations in the

course of model development. In addition, a subset of the simulations was used to

calibrate the model parameters. Thus, taking the DD results as reference naturally

raises the question of how reliable the simulation predictions are. While the observed

trends warrant verification from fully 3D simulations, there is no reason why the

fundamental trends would be mere artifact of idealizations inherent to the “2.5D”
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Fig. 57. M-DDP results versus model predictions for the size-dependent flow stress

in specimens with: ((a),(b)) H = 0.2 µm; ((c),(d)) H = 0.8 µm; ((e),(f))

H = 3.2 µm; (g) H = 6.4 µm; and (h) and H = 12.8 µm. For H ≥ 3.2 µm

scatter in simulated stress–strain responses is insignificant.
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model. The constitutive rules used to describe short-range dislocation interactions

contain a level of idealization, just like in any other model. In particular, their specific

formulation is debatable. However, one must observe that the rules were formulated

at the fundamental level of individual dislocations, and the same rules were applied to

all crystals, irrespective of their dimensions. Within the “2.5D” paradigm of M-DDP,

the size-dependent response comes out as the manifestation of collective dislocation

behavior.

The proposed model addresses the physical aspects of work-hardening at the

micron scale. Its implementation to solve boundary-value problems would require,

however, an additional statement for a flow rule, which is expected to affect the

GND density, albeit indirectly. Granted that the discrete dislocation calculations do

reveal a fundamental fact about work-hardening, the new model possesses the ca-

pability of predicting size-dependency of work-hardening when the GND density is

fully specified. Further fundamental understanding of work-hardening at the micron

scale would require experimental work targeted at GND density measurements. Very

recent experiments indicate qualitative support to both M-DDP and model predic-

tions (Frick et al., 2008). Finally, we observe that for work hardening to take place in

crystalline specimens with sub-micron dimensions, initial dislocation densities of the

order of 1013 m−2 or higher must be present. For densities lower than say 1012 m−2,

other types of disturbance to plastic flow would occur (Benzerga and Shaver, 2006;

Benzerga, 2008; El-Awady et al., 2008; Benzerga, 2009). This sets implicit limits of

validity for the proposed model.
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CHAPTER VI

GRAIN SIZE EFFECT IN POLYCRYSTALS: A DISCRETE DISLOCATION

DYNAMICS ANALYSIS

A. Introduction

Microcrystalline (MC), ultra-fine grain (UFG) and nanocrystalline (NC) materials

have been the focus of widespread research over the past couple of decades owing to

their superior mechanical properties as compared to coarse-grained materials (Gleiter,

1989; Dao et al., 2007). Refinement of grain size from coarse-grained materials has

resulted in an increase in material yield strength, superior wear resistance, enhanced

plastic formability at low temperatures etc., among other improvements (Kumar et al.,

2003). However, these improved mechanical properties come at the cost of a reduction

in ductility and toughness. Efforts are on to understand the governing mechanisms

underlying mechanical properties of these materials with the aim to arrive at an op-

timal set of mechanical properties with a balance between strength, ductility and

toughness (Koch, 2003). However, this task to connect the underlying material mi-

crostructure to its macroscopic property continues to be a challenge in the field of

mechanics as well as materials science.

Hall (1951) and Petch (1953) noted that the yield strength in polycrystals is

inversely proportional to the square-root of grain size. The phenomenon of increase in

polycrystal strength with decrease in size is known as the Hall-Petch effect. Following

this discovery, there has been a number of experimental studies probing the strength of

polycrystals for a range of grain sizes all the way down to 10 nm and below (Meyers

et al., 2006). It is now established that strengthening in polycrystals is sustained

with refinement of grain size down to 10 nm; below this grain size some studies have
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reported an inverse Hall-Petch effect (Chokshi et al., 1989; Meyers et al., 2006; Dao

et al., 2007).

Classically, following the work by Eshelby et al. (1951) and Hirth and Lothe

(1968), Hall-Petch effect is attributed to the scaling of dislocation pile-ups at the

grain boundaries with grain size. Pile-ups at grain boundaries leads to build up of

backstress at dislocation sources and hence require an increase in stress resolved along

its slip plane to nucleate dislocations. Explanations based on the correlation between

flow stress and dislocation density coupled with the mean free path of dislocation

motion was also used to explain the Hall-Petch effect Embury (1971). Hirth (1972)

proposed a model where the grain was assumed to have a composite microstructure

with a hard grain boundary region and an interior core. It was shown that depending

on the area occupied by the hard grain boundary region the yield stress in polycrystal

can vary as d−1/2 or d−1. Though these analytical models provide information about

the possible governing mechanisms leading to grain size effects in polycrystals they

are, however, based on analysis of a single grain and do not predict the ensemble

behavior of dislocations on multiple grains.

Recently there have been a number of investigations based on discrete disloca-

tion dynamics framework and molecular dynamics which have attempted to provide

insight into the effect of grain size on polycrystal mechanical behavior. Grain size

effects on strength in NC materials have been explored using molecular dynamics

simulations. Molecular dynamics simulations predicted a Hall-Petch like behavior in

NC materials with grain size in the range of 30 nm - 10nm (Van Swygenhoven and

Spaczer, 1999). Below 10 nm experiments have predicted an inverse Hall-Petch like

behavior (Dao et al., 2007). These observations were also made by recent molecular

dynamics simulations (Yamakov et al., 2004; Wolf et al., 2005). Their simulations

suggested a cross-over between a dislocation dominated deformation process to grain
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boundary mediated process with decrease in grain size. Based on these observa-

tions they have developed stress-grain size deformation mechanisms maps (Yamakov

et al., 2004). Simulations have also described the role of diffusion creep on inverse

Hall-Petch effect (Desai et al., 2008). Molecular dynamics simulations are useful to

predict and probe mechanisms for predicting grain size effects below 10 nm. Cur-

rent computational power limit their analysis for a wide range of grain sizes varying

from micrometers to a few nanometers. They are severely restricted by time scale

limitations, which prevent them from exploring large strain deformation mechanisms.

Discrete dislocation dynamics (DDD) offers a promising alternative to investigate

mechanical behavior of polycrystals over a range of grain sizes varying from a few mi-

crometers to few nanometers. In DDD framework dislocation nucleation, dislocation

glide, dislocation-dislocation interactions and their interaction with grain boundaries

are naturally accounted for. Biner and Morris (Biner and Morris, 2002, 2003) have

studied the evolution of flow stress for grain sizes ranging from 16 to 2 µm under

shear deformation. They noticed that at small strain values the flow stress scaled

as d−1/2, where d is the grain size. However, with increasing deformation and an ex-

panding region of dislocation pile-ups inside the grain the flow stress scaling was close

to d−1. Lefebvre et al. (2007) explored the region below 2 µm upto 500 nm using

2D DDD enhanced with additional rules to account for junction formation. Their

simulations predicted Hall-Petch effect in their with the flow stress scaling as d−1/2.

In their simulations the rate of increase of dislocation density was found to scale with

the inverse of the grain size leading to the strengthening of the crystals. Grain sizes

below 500 nm were explored in the 2D DDD simulations of Balint et al. (2008). They

observed that the strengthening in crystals was due to blocking of slip transmission

between grains. Attempt has been made to allow for dislocations to glide across the

grain boundaries by Li et al. (2009). 2D DDD polycrystal frameworks have also been
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used to address problems on thin films where coupled grain size and film thickness

effects prevail (Nicola et al., 2006; Kumar et al., 2009).

Except for the 2D DDD framework by Lefebvre et al. (2007) none of the other 2D

DDD models accounted for short-range dislocation interactions like junction forma-

tion. A 2D DDD framework which accounts for key short-range dislocation interac-

tions should be able to capture features of coarse grain size polycrystal. Subsequently,

a gradual reduction in grain size should naturally be able to capture microstructural

changes within grains due to constrains offered by grain boundaries.

In this work, we enhance the 2D DDD framework developed by Balint et al.

(2008) by incorporating additional rules to account for dislocation expansion, junc-

tion formation, junction stabilization and nucleation of sources from stable junctions

which act as anchoring points. The effect of these additional rules on the polycrys-

tal mechanical response and on its microstructure is discussed. This framework is

then used to do a systematic investigation of grain size effects in MC and UFG poly-

crystals. Attempt is made to explain the observed grain size effect on mechanical

behavior based on characterizing the dislocation microstructure within grain using

the methodology developed in Chapter II.

B. Polycrystal discrete dislocation dynamics formulation

This section provides an overview of the polycrystal discrete dislocation dynamics for-

mulation developed in this work. The formulation builds on the framework described

by Balint et al. (2008). The original formulation by Balint et al. (2008) is enhanced

by including key 3D short-range dislocation interactions as constitutive rules in the

2D model. In particular, the formulation allows for the formation of dislocation junc-

tions, stabilization of junctions, breaking of junctions and nucleation of dislocations



178

from stabilized junctions which act as anchoring points. Polycrystals are idealized as

planar unit cells of size L× L consisting of square grains with size d×d. Each grain

g consists of active slip systems oriented at an angle of ϕg(κ) with respect to the x1

axis; where κ refers to the slip system. A schematic describing the geometry of the

unit cell with square grains is as shown in Fig. 58.
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Fig. 58. Sketch of the pure shear problem with doubly periodic boundary conditions.

Individual square grains g consist of active slip systems (κ) oriented at an

angle of ϕg(κ) with respect to the x1 axis.

The unit cell is subjected to doubly periodic pure shear by imposing the dis-

placement boundary condition given by,

∆ui = εij∆xj (6.1)



179

where, ∆ui is the difference between displacements on opposite sides of the unit cell

specified by the difference position vector ∆xj. The strain components are specified

as ε12 = ε21 = γ/2 and ε11 = ε22 = 0, where γ is the applied shear strain. The work

conjugate shear stress is given by,

τ =
1

2L2

∫
C

(T1x2 + T2x1) dC (6.2)

where, Ti = σijnj is the traction on the boundary C of the unit cell with nj the

outward unit normal.

In the simulations, unit cells are assumed to be homogeneous linear elastic

isotropic materials with Young’s modulus E and Poisson’s ratio ν. Dislocations,

whose collective motion and interaction leads to the plastic deformation in the unit

cell, are described as line defects with only edge character. The boundary value

problem described above is solved following the superposition technique presented in

Van der Giessen and Needleman (1995) incrementally. At each time increment, dislo-

cation structure, stress, strain and displacements are determined. Assuming infinites-

imal displacement gradients, the current state of the body, in terms of displacements,

strains and stresses, is given by,

u = ũ + û, ε = ε̃ + ε̂, σ = σ̃ + σ̂ (6.3)

The singular (̃ ) fields are obtained by the superposition of the fields (ui,εi,σi) asso-

ciated with individual dislocations,

ũ =
N∑

i=1

ui, ε̃ =
N∑

i=1

εi, σ̃ =
N∑

i=1

σi, (6.4)

where, N is the total number of dislocations in the sample. The singular disloca-

tion fields for each dislocation is determined analytically by considering them to be
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present in a linear elastic isotropic homogeneous infinite medium. These fields are

not periodic. The periodicity is enforced by the image fields, denoted by ,̂ which

corrects for and enforces the actual boundary condition given in Eq. (6.1). The grain

boundaries of the unit cell and the unit cell boundary are considered as impenetrable

boundaries for the dislocations.

The discrete dislocation rules presented here are general in scope and can be used

for either a single crystal or for a grain in a polycrystal. Here, it is specialized for a

grain in a polycrystal. Within each grain, the glide of the dislocation is determined

by the glide component of Peach-Koehler force, f i, given by,

f i = mi ·

(
σ̂ +

∑
j 6=i

σj

)
· bi (6.5)

where mi is the slip plane normal and bi the Burgers vector having magnitude b.

Dislocation glide is taken to be drag controlled following:

Bvi = f i − α
µb

S i
d

bi (6.6)

where B is the drag factor and the second term represents the line tension, α being

a parameter and S i
d the algebraic distance between the dislocations, members of the

same dipole; vi the glide velocity of dislocation i. Initially there are only static

Frank-Read sources present with a specified density and spatial distribution. The

other type of FranK-Read sources considered in the framework are dynamic sources,

which are formed during plastic deformation due to dislocation interactions. The

two types of dislocation obstacles modeled are: (i) stress-free point obstacles that

can be thought to represent sessile defects and precipitates, for example; and (ii)

dynamic obstacles that represent junctions formed during plastic deformation. The

spatial distribution of initial static sources and stress-free point obstacles is randomly
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generated. Dislocation dipole is nucleated from a static source i when the magnitude

of the Peach-Koehler force acting on it exceeds a critical value, τ i
0nb, for a prescribed

time t0n. The strength of the static sources are randomly assigned from a Gaussian

distribution with average τ̄0n. The sign of the nucleated dipole depends on the sign of

the Peach-Koehler force acting on the source. A dislocation may get pinned during

glide at a point obstacle. The dislocation is released when the Peach-Koehler force at

the location of the point obstacle attains a value τobsb
i, with τobs the obstacle strength.

Key 3D short-range dislocation interactions included at the level of individual

grains in the framework are: (i) formation of dislocation junctions; (ii) stabilization

of junctions; (iii) nucleation of dislocations from stable junctions which are anchoring

points; and (iv) annihilation of dislocations. When dislocations gliding on intersecting

planes approach each other within a critical distance d∗, a junction is formed, irre-

spective of the sign of the interacting dislocations. Junctions thus formed can act as

either a dynamic dislocation source or dynamic obstacle during the deformation pro-

cess. Also, their density evolves during the course of deformation. A stable junction

which cannot be unzipped, for example due to cross-slip, is termed an anchoring point

and a breakable junction is referred to as a dynamic obstacle. A dynamic obstacle is

destroyed when the Peach-Koehler force acting on either dislocation comprising the

junction attains or exceeds the breaking force, τ I
brkb. The breaking stress for junction

I is configuration dependent and is given by:

τ I
brk = βbrk

µb

SI
(6.7)

where SI is the distance to the nearest junction in any of the two intersecting planes

and βbrk is a scaling factor for the junction strength. The dislocations forming junc-

tions and pinned at these junctions are released when the latter is destroyed. The

released dislocations are free to glide.
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The formation of an anchoring point by junction stabilization, for example due

to cross-slip, is treated as a statistical event in our 2D model. The probability of a

junction forming an anchoring point has a prescribed value p. These anchoring points

lead to the formation of new dynamic sources. A dislocation dipole is nucleated at

dynamic source I when the value of the Peach-Koehler force at either junction forming

the source exceeds the value τ I
nucb during a time tInuc. Both values depend on the local

configuration and hence evolve dynamically. The nucleation stress is given by

τ I
nuc = βnuc

µb

SI
(6.8)

where βnuc is a factor that reflects the strength of the source and SI is the distance

to the nearest junction on the slip plane where τ I
nuc is being resolved. The nucleation

time tInuc is given by

tInuc = γ
SI

|τ I |b
(6.9)

where γ is a material constant with units of a drag factor, and τ I is the current

resolved shear stress at the location of anchoring point I, exclusive of the junction

self-stress. When two co-planar dislocations of opposite sign glide within a material-

dependent critical, Le, they are annihilated.

In a typical simulation, a unit cell is subjected to boundary tractions and dis-

placements. At the current time step, the dislocation structure in each grain is known

from the procedure outlined above. The geometrically necessary dislocation (GND)

density over any sub-domain, ω ⊆ Ω, defined within a grain g is obtained following

the formulation described in Appendix A of Chapter II as,

ρg
GND(ω) =

√√√√[ Ns∑
κ=1

(ρ
g(κ)
+ − ρ

g(κ)
− ) cos ϕg(κ)

]2

+

[
Ns∑
κ=1

(ρ
g(κ)
+ − ρ

g(κ)
− ) sin ϕg(κ)

]2

(6.10)

where, Ns denotes the number of active slip systems under the imposed loading;
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ρ
g(κ)
+ and ρ

g(κ)
− represent the positive and negative dislocation density on slip-system

κ in grain g, respectively; and ϕg(κ) denote the oriented angle that defines the slip

direction on slip-system κ in grain g, measured from the x1-axis. At each time step the

GND density can be obtained from a straightforward computation using (5.10). The

argument ω is kept here to emphasize that the computation is resolution dependent.

This comes from the fact that the per-system signed density, ρ
g(κ)
+ −ρ

g(κ)
− , is evaluated

within ω in grain g. Likewise, the GND density on slip system κ in a grain g is simply:

ρ
g(κ)
GND(ω) =

∣∣∣ρg(κ)
+ − ρ

g(κ)
−

∣∣∣ (6.11)

Using either (6.10) or (6.11), maps of spatial distribution of GND density can be

generated at desired resolution. Define a uniform and structured grid on body Ω of

each grain g; The grid element size sets the resolution. The element-level values of

GND density are then extrapolated to the nodes of the grid, which allows to generate

contours of GND density. Because of the structured topology of the grid, we will

exclusively use Eq. (6.10) in generating GND maps. GND density contours provide

snapshots of the frozen dislocation structure. In the current model, the GND density

arising from lattice misorientations across grain boundaries are not captured; since,

grain boundaries are modeled as impenetrable obstacles to dislocations.

C. Simulation setup and parameters

Calculations are carried out on a unit cell with dimension of 10× 10 µm−2 with grain

size ranging from 5.0 µm to 0.72 µm. The polycrystal unit cell consists of two types of

square grains in a checker-board type arrangement. The slip systems are oriented at

±54.75◦ and 35.25◦ with respect to the x1 axis in the two types of grains considered

in the checker-board arrangement. Individual grains are considered to be elastically
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isotropic with Young’s modulus E = 70 GPa and Poisson’s ratio ν = 0.33. The

magnitude of Burger’s vector b = 0.25 nm. These values are representative of Al.

An initial dislocation source density of ρnuc = 20 × 1012 m−2 is considered in all the

simulations with an average source strength of τ̄nuc = 50 MPa, standard deviation

of Σnuc = 10 MPa; critical time for nucleation of dislocation dipoles from sources

is tnuc = 10 ns. The initial point obstacle density considered in the simulations

is ρobs = 20 × 1012 m−2; the obstacle strength is τobs = 150 MPa. Initially there

are no dislocations in the simulations and the aforementioned density of static point

sources and obstacles are randomly distributed on the slip planes, which are separated

by 100b. The drag coefficient B = 10−4 Pas. The critical distance for dislocation

annihilation is Le = 6b.

The values of the parameters entering the constitutive rules governing the ad-

ditional short-range dislocation interactions considered in this work are given by:

d∗ = 6b, p = 0.01, βnuc = 1, βbrk = 10, and γ = 1000B. A time step of ∆t = 0.5 ns

and a loading rate of γ̇ = 2000 s−1 is used in all the simulations.

D. Results and discussion

In this section results from simulations of doubly periodic cells with square grains are

presented. First, simulation results are presented to highlight the effect of new ad-

ditional rules incorporated in the formulation on the unit cell macroscopic response.

Subsequently, the new formulation is used to investigate grain size effect on the macro-

scopic response of polycrystals. Insight is gained from probing the dislocation struc-

ture, substructure and stress distribution within simulation unit cells to understand

the effect of grain size in MC and UFG polycrystals.

The effect of line tension parameter α on the macroscopic response of the unit
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Fig. 59. Average shear stress (τ) versus shear strain (γ) response in a unit cell with

line tension parameter α = 0.0 and α = 0.1. The calculations are performed

considering only static initial sources and obstacles in the unit cell. The grain

size of the unit cell is d = 5.0 µm for both the cases.

cell is shown in Fig. 59. The average shear stress versus shear strain response is shown

for the case with α = 0.0 and α = 0.1 for a unit cell with grain size of d = 5.0 µm. In

these simulations only static initial sources and obstacles are considered. Formation

of junctions, dynamic obstacles, dynamic sources and their evolution is not considered

in these simulations. Fig. 59 shows that increasing the value of α increases the 0.2%

offset strain yield stress and the subsequent flow stress of the unit cell. The 0.2%

offset strain yield stress in the simulation with α = 0.0 is 80 MPa while the yield

stress of the unit cell in the simulation with α = 0.1 is 140 MPa. The increase in

the yield and the flow stress in the simulation with α = 0.1 is due to the additional

energy cost associated with the expansion of the dislocation loop accounted for in the

simulations as given by Eq. 6.6.

Fig. 60 shows the comparison between average shear stress versus shear strain

response in simulations for the case with only static initial (SI) sources and obstacles
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Fig. 60. Average shear stress (τ) versus shear strain (γ) response is shown for the

calculation where dynamic sources and obstacles formation allowed in the

calculation. For comparison the response of a unit cell with only static initial

(SI) sources and obstacles is shown. A grain size of d = 5.0 µm is considered

in both the calculations.

and the case where junction formation, dynamic obstacle and dynamic source evolu-

tion is considered. In these simulations the effect of line tension parameter α is not

included. A grain size of 5.0 µm is considered in the unit cells. It is observed from

the average shear stress versus shear strain response that the simulation with only

static initial sources and obstacles show almost perfect plastic response beyond yield.

When junctions are allowed to form, and dynamic obstacle and source evolution is

accounted for in the simulation, an appreciable hardening is observed in the unit cell

response beyond yield. The 0.2% offset shear strain yield stress is around 77 MPa in

both the simulations. An average shear stress value of 91 MPa is reached at a shear

strain of γ = 0.01 in the simulation where junction formation, dynamic obstacle and

source evolution is accounted for.

The evolution of defect microstructure in terms of total dislocation density (ρ),
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pinned dislocation density (ρpin), and junction density (ρjun) characterized as dynamic

obstacles and sources is shown in Fig. 61. For the purpose of comparison, evolution

of total dislocation density and pinned dislocation density from simulations with only

static initial sources and obstacles are also shown. The total dislocation density

increases with deformation in the case where junction formation, dynamic obstacle

and source evolution is accounted for and in the case with only static initial sources

and obstacles (Fig. 61b). At the low strains reached, the difference in the magnitude

of the total dislocation density between the two formulations is not significant but is

expected to develop gradually as plastic strain accumulates. A noticeable difference

is observed in the density of the pinned dislocations between the two cases as shown

in Fig. 61b. The pinned dislocation density shown here accounts for only those

dislocations which are pinned at either point obstacle or dynamic obstacles. It is seen

that the pinned dislocation density is higher when junction formation and pinning at

junctions which are dynamic obstacles is accounted for in the simulation as compared

when only point obstacles are present. The dynamic obstacles act as additional

pinning points for dislocations. This can contribute to hardening in two ways: (i) it

can lead to an increase in the backstress at a source; and (ii) it limits the effective

mean free path of dislocations to a value smaller than the grain size.

The evolution of the junction density characterized by dynamic obstacles, and

source evolution is shown in Fig. 61c. Overall, the dynamic obstacle density increases

with increase in deformation. Initially, there is some fluctuation with the dynamic

obstacle density but with increase in the total dislocation density the dynamic obstacle

density also increases. One can corelate this increase in dynamic obstacle density

with the increase in pinned dislocation density seen in Fig. 61b. The dynamic source

density also increases with deformation. However, due to the low probability of

junctions becoming anchoring points (p = 0.01) their density is significantly lower
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Fig. 61. Evolution of total dislocation density (ρ) and pinned dislocation density (ρpin)

with average shear strain (γ) is shown for calculation where dynamic sources

and obstacles formation is considered in the simulation in (a) and (b), re-

spectively. The calculation with only static initial sources and obstacles (SI)

is shown for comparison. (c) Evolution of the junction density (ρjun) with

average shear strain (γ) is shown. The total junction density is the sum of

density of dynamic obstacles and dynamic sources.
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Fig. 62. Average shear stress (τ) versus shear strain (γ) response of unit cells with

grain size (d) varying from 5.0 µm - 0.72 µm.

than the dynamic obstacle density. The dynamic sources once formed are considered

unbreakable and cannot be annihilated. Also, these dynamic sources do not act as

pinning points. They only act as new sources from which dislocation dipoles can be

nucleated when the critical condition as given by Eq. 6.8 and Eq. 6.9 is reached.

Simulations on unit cells with grain sizes (d) varying from 5.0 µm - 0.72 µm

is performed to investigate the grain size effect on the macroscopic response of the

polycrystal unit cell. At grain sizes smaller than 0.72 µm, the time increment used

in the simulations was not able to resolve dislocation glide before the dislocation

encounters a grain boundary. This implicitly set the range of grain sizes which can

be explored in the simulations. The average shear stress (τ) versus shear strain (γ)

response from the simulations for various grain sizes are shown in Fig. 62. It can be

seen from Fig. 62 that with decrease in grain size there is an increase in the yield

stress of the unit cell. Also, a trend of increasing strain hardening rate of the unit

cell with decrease in grain size can also be observed from Fig. 62. Fig. 63 shows the

yield stress (τy) at 0.2% offset shear strain for unit cells with different grain sizes as a
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Fig. 63. Yield stress determined at 0.2% offset shear strain is shown as a function of

grain size (d).

function of grain size. The solid line in Fig. 63 is the fit based on Hall-Petch relation

given by,

τ = τ0 + kd−1/2 (6.12)

It is observed from Fig. 63 that the simulation results compare very well to the Hall-

Petch relation with the values of the constants determined to be τ0 = 44.3 MPa and

k = 63.1 MPa µm1/2. Huang and Hansen (2003) have noted that the value of k

is 40 MPa µm1/2 for recrystallized aluminum and 140 MPa µm1/2 for cold worked

aluminum.

Spatial distributions of dislocation structure superposed on internal stress dis-

tribution in the unit cell for the two extreme grain sizes considered in this study

are shown in Fig. 64 at 0.2% offset shear strain. The spatial distribution of dis-

location structure reveals isolated glide dislocations, short dislocation pile-ups near

junctions, as well as dislocations piled-up at the grain boundaries. In the unit cell

with a grain size of d = 5.0 µm (see Fig. 64a) we notice pile-ups of dislocations both
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Fig. 64. Spatial distribution of dislocation structure superposed on internal stress (σ12)

distribution at 0.2% offset shear strain in the unit cell is shown for simulations

with grain size of: (a) d = 5.0 µm; and (b) d = 0.72 µm.
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at the central region of a grain and at the grain boundaries. The pile-ups at the cen-

tral regions is due to dislocations blocked by point obstacles and dynamic obstacles.

From the spatial distribution of dislocation structure in the unit cell with a grain size

of d = 0.72 µm we observe that dislocation pile-ups are predominantly at the grain

boundaries. Pile-ups within the central region of grains, as observed in the unit cell

with grain size of d = 5.0 µm, was not observed. This observation reveals a tran-

sition from the material behavior dependency on dislocation-dislocation interactions

to dislocation-grain boundary interactions. Also, we observe that the overall density

of dislocations blocked at grain boundaries is more in the unit cell with grain size of

d = 0.72 µm than in the unit cell with a grain size of d = 5.0 µm.

The spatial distribution of dislocation structure is correlated to the internal stress

developed within the unit cell for simulations with two extreme grain sizes in Fig. 64.

In both cases the two slip systems within the grains are symmetric with respect to

the x1-axis. Hence dislocation activity and consequently the stress distribution will

be similar in both the slip systems. In both the unit cells high local stresses are

observed near the location of dislocation pile-ups; be it within the central region of

the grain or near the grain boundary. However, we notice that overall the stresses

in the unit cell with grain size of d = 0.72 µm is higher than the stress in the unit

cell with grain size of d = 5.0 µm. With decrease in grain size the area fraction of

dislocations blocked at grain boundaries increases leading to large areas within the

grains with high stresses.

Lefebvre et al. (2007) reported that in unit cells with grain size as large as

d = 2.0 µm dislocation pile-ups dominate while at grain sizes around d = 0.5 µm the

pile-ups are difficult to form but a significant density of dislocations nucleated from

slip planes not favorably oriented for slip and blocked at grain boundaries dominate

the deformation process. They found a linear dependence between dislocation density
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and strain and that dislocation density decreases like the inverse of grain size. Based

on the idea of storage rate of dislocations as suggested by Ashby (1970) they concluded

that Hall-Petch relation is due to variation of dislocation storage rate when mean free

path of dislocation is altered by grain boundaries. Balint et al. (2008) interpreted

their results in terms of slip blocking/transmission. They observed that when the

density of available sources are very small it is difficult to form continuous slip bands

across adjacent grains. It is noted that the observation made by Lefebvre et al. (2007)

and Balint et al. (2008) lead to build-up of GNDs at the grain boundaries. Ashby

(1970) has shown that it is the build-up of GNDs at the grain boundaries which lead

to the grain size dependence on flow stress observed in polycrystals.

Using the procedure outlined in Section. B contours of GND density for unit cells

with different grain sizes can be determined. Fig. 65 shows the spatial distribution

of GND density in unit cells with grain size of d = 5.0 µm and d = 0.72 µm at 0.2%

offset shear strain. The spatial distribution of GND density is determined with a

resolution size of 100 × 100 nm2 (see Fig. 66 for GND contours shown at different

resolution size). As noted earlier, the additional contribution to the GND density

due to grain boundaries is not included in the plots, since lattice misorientations at

grain boundaries are not explicitly represented. Nevertheless, one can qualitatively

compare the fields due to deformation-induced GND density. It is observed that

irrespective of the grain size the GND density is generally higher near the grain

boundaries than at the central region of the grain. The pile-ups of dislocations and

the dislocations blocked at the grain boundaries lead to a higher density of GNDs at

the grain boundaries. Moreover, it is also observed that overall the GND density is

higher in the unit cell with a grain size of d = 0.72 µm than in the unit cell with

grain of size 5.0 µm. The corresponding GND maps at coarser resolution for the two

unit cells are shown in Fig. 66.
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Fig. 65. Spatial distribution of dislocation structure superposed on GND density

(ρGND) contours is shown at 0.2% offset shear strain in a unit cell with grain

size of: (a) d = 5.0 µm; and (b) d = 0.72 µm. A resolution size of 100×100 nm2

is used in the calculation of GND density.
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Fig. 66. Spatial distribution of GND density (ρGND) contours is shown at 0.2% offset

shear strain in a unit cell with grain size of: (a) d = 0.72 µm and the resolution

size used was 175×175 nm2 ; (b) d = 5.0 µm and the resolution size used was

200×200 nm2; (c) d = 0.72 µm and the resolution size used was 700×700 nm2;

and (d) d = 5.0 µm and the resolution size used was 715× 715 nm2.
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E. Conclusions and outlook

This work set out to investigate the effect of grain size on ploycrystals using a 2D dis-

crete dislocation dynamics (2D-DDD) framework. The 2D-DDD framework has been

enriched by incorporating constitutive rules to account for, dislocation line tension,

junction formation, junction stabilizing and nucleation of dislocations from stable

junctions which act as anchoring points. Currently, the grain boundaries are consid-

ered to be impenetrable to dislocations, and GND densities due to lattice misorien-

tations across the grain boundaries are not accounted for in the framework.

• For polycrystal unit cells with sufficiently large grain size (d = 5.0 µm) the

simulations are able to capture hardening due to dislocation interaction with

point and dynamic obstacles within the grain. There is a need to pursue such

calculations to large strains in order to validate the predictions against experi-

ments.

• An investigation of the grain size effect on yield strength revealed a Hall-Petch

relation. This is a natural outcome from the simulations. Simulations showed

that yield stress scales as d−1/2 with the value of k = 63.1 MPa µm1/2. This

compares well with the experimental results on recrystallized aluminum.

• Analysis of dislocation structure revealed dislocation-dislocation interactions

within the grains and dislocation-pileups at grain boundaries to be dominating

deformation behavior in unit cells with large grain sizes. In smaller grain sizes

dislocation-dislocation interactions within the grains are rare and deformation

is characterized by dislocation pile-ups at the grain boundaries and dislocation

blockage at grain boundaries. Down to the smallest grain size considered in

this study, it is not expected that other mechanisms, such as grain boundary
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sliding, are active.

• Simulations revealed the development of deformation-induced GND density in

the vicinity of grain boundaries with their magnitude being higher in unit cells

with smaller grain size than in larger grain size.
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CHAPTER VII

CONCLUSIONS

A. Summary

The focus of the current work was to investigate the influence of structural and mate-

rial length scales on the plastic behavior of materials. A continuum crystal plasticity

model which can predict the material mechanical response and its underlying defect

substructure is currently lacking. At length scales where one of the dimensions of the

deformed body, its microstructural feature, or both, approach the size of the substruc-

ture size effects emerge. The study of material mechanical properties, in particular

the flow strength and hardening behavior of materials, at reduced length scales is

also motivated by: (a) a growing trend towards miniaturization in technology which

demands understanding material mechanical properties for their design; (b) potential

improvements in material mechanical properties which can be achieved by controlling

different length scales to design efficient structural components; and (c) the capabil-

ity of such an investigation to shed light on fine-scale physical phenomenon which

affect the material macroscopic response. Towards this end, the following objectives

were set for the study: (a) investigate scale and size effects due to dimensional con-

straints; (b) investigate size effects due to microstructural constraints; and (c) develop

size dependent hardening model through coarse graining of dislocation dynamics. A

summary of this research work is as follows:

• State of the art continuum models fall short in completely addressing the chal-

lenges involved in modeling and understanding the behavior of materials at

reduced length scales. Atomistics and Molecular dynamics based simulations,

though conceptually capable of meeting the challenges, become computationally
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expensive and intensive. A promising alternative is to use discrete dislocation

dynamics (DDD) framework. In this study, a 2D-DDD framework is used to

address the objectives listed above.

• 2D-DDD is a mesoscale technique where plastic flow in the material is due to

the nucleation, collective glide, and interactions of dislocations. Within this

framework long-range interactions due to dislocations is naturally incorporated

through elasticity. Key 3D dislocation short-range interactions are incorporated

through constitutive rules within the framework. The short-range interactions

include, junction formation, junction stabilization, and nucleation of disloca-

tions from stable junctions which act as anchoring points. Using plane strain

approximations, single crystals are modeled as planar crystals, and polycrystals

as planar unit cells with square grains. This framework naturally accounts for

the effect of structural and material length scale and the macroscopic response

is an outcome of the simulations and not an input.

• Materials subjected to dimensional constraints were investigated by modeling

micropillars as planar crystals subjected to nominally uniform compression.

This study revealed strengthening upon scale reduction. A significant size effect

was observed in both flow stress and strain hardening rate. This general obser-

vation was validated by undertaking a combined experimental and simulation

study of size effects in Cu micropillars. Based on calibration process, attempt

was made to represent the initial source and obstacle density and strength distri-

bution in the simulations close to experimental samples. The simulations were

able to capture the overall stress-strain response determined from experiments

characterized by yield followed by steady hardening, which is size dependent. A

good quantitative agreement was obtained on flowstress and strain hardening
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rate predictions between simulations and experiments.

• In the simulations the observed size effect was rationalized to be due to the

emergence of a non-vanishing density of geometrically necessary dislocations

(GND), which emerges locally due to dislocation structure development and its

interaction with the free surfaces. The GND density is dependent on the reso-

lution of the analysis and vanishes at the scale of the sample, consistent with

homogeneous state of macroscopic deformation in the simulations. The GND

density emerges to accommodate local lattice rotations within the crystal. Elec-

tron back scatter diffraction studies on Cu micropillars revealed distributions

of lattice misorientation within the crystals thus corroborating the simulation

results.

• A review of literature on micropillars highlighted some differences in their ob-

served mechanical behavior. All the studies reported strengthening upon reduc-

tion in sample size; however, there were differences in the reported flow stress

scaling and strain hardening rates. 2D-DDD simulations performed at extreme

values of initial dislocation source densities was able to capture the range of

flow stress scaling exponents reported in the experiments. Further, this analy-

sis revealed a transition from dislocation interaction controlled behavior to dis-

location multiplication controlled behavior, when the initial dislocation source

density was decreased. More precisely, a transition from forest hardening domi-

nated behavior to exhaustion hardening dominated behavior was observed with

reduction in initial dislocation source density. In forest hardening dominated

regime, it is the evolving dislocation structure which leads to the observed size

effect. On the other hand, in the exhaustion hardening dominated regime,

source-truncation, source dynamics and rare events lead to the observed size
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effects.

• A methodology based on the concept of Nye’s tensor was developed to capture

the spatial and temporal distribution of GND density in crystals during simula-

tions. Subsequently, coarse graining of discrete dislocation dynamics technique

was adopted to develop a phenomenological model to capture size effect on

plastic flow stress and strain hardening. In this model, a complete description

of plastic behavior is provided by giving two inherently different statements: a

statement of evolution of structure accounting for athermal hardening, dynamic

recovery and geometric storage; and, a kinetic statement specifying a harden-

ing law in differential form. This model is limited to the case where the initial

dislocation source density is high enough for forest hardening behavior to be

dominant.

• Planar unit cells with square grains and subjected to doubly periodic pure shear

conditions was considered to investigate the effect of microstructural constraints

on material strength - yield stress and strain hardening. The grain size consid-

ered in the study falls within the range of microcrystalline to ultra-fine grained

polycrystals. Within the framework, grain boundaries are considered to be im-

penetrable to dislocations. The simulations revealed that there is an increase

in the yield stress and strain hardening rate with decrease in grain size. The

scaling of the yield stress with grain size followed the Hall-Petch relation and is

in good agreement with experimental data reported for recrystallized Al.

• Analysis of dislocation structure in unit cells with the largest and smallest

grain sizes used in simulations revealed that transition of deformation process

dominated by dislocation-dislocation interactions to dislocation-grain boundary

interactions takes place by decreasing the grain size. The observed size effect
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on yield and strain hardening is rationalized due to the presence of deformation

induced GND density at the grain boundaries, with their overall magnitude

increasing with decrease in unit cell grain size. The GND density emergence is

due to dislocation pile-ups and dislocation blockage at the grain boundaries.

B. Recommendations for future work

The field of plasticity in bulk materials is mature; however, much work still needs to

done before one can make a similar claim about materials with structural and material

length scale restrictions. The ultimate goal would be to achieve this status with a

seamless transfer of scientific knowledge from research stage to structural component

design stage. The current research undertaking is only a small step towards this goal.

Provided below is a list of recommendations for future work:

• In experiments, the base of the micropillars is attached to the bulk material from

which it is fabricated or can be attached to a substrate of different material.

Samples with size below 1.0 µm are mostly tapered and not perfect cylinders.

These complexities are not incorporated in the current model. For a better

agreement of results between simulations and experiments it is desirable to

include these aspects in the model.

• Electron backscatter diffraction studies of micropillars fabricated using focus

ion beam technique (FIB) have revealed the presence of defects which lead to

internal lattice distortions leading to local gradients. However, none of the

DDD simulations, both 3D-DDD as well as 2D-DDD in the current work, has

considered this initial condition in the model. Almost all the simulations, 3D-

DDD as well as 2D-DDD, start with an initial state with net Burger’s vector

zero. Modeling micropillars with an overall net Burger’s vector due to local
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gradients in the sample is within the scope of the 2D-DDD framework presented

in the current work. Such a study can shed more light on the size affected

strengthening in micropillars.

• The current investigation on the size effect due to microstructural constraints

explored the range of grain sizes typical of microcrystalline (MC) and ultra-fine

grained (UFG) materials. Most of the molecular dynamics simulations in the

literature have explored the range of nanocrystalline (NC) materials with grain

size of typically 10 nm or less. There is a range of grain size between 500 nm

- 10nm which has not yet been carefully explored. This range of grain size is

within the scope of analysis using the current 2D-DDD framework. However,

such an analysis would require a detailed representation of grain boundaries.

Experiments have shown evidence that in NC materials plastic deformation is

grain boundary dominated with grain boundary sliding, nucleation of dislo-

cations from grain boundary, and grain boundary absorption, being possible

dominant mechanisms. More realistic grain morphologies also needs to be ac-

counted for in the framework.

• Introducing nano-twins within grains has recently emerged as a potential tech-

nique to strengthen materials. These nano-twins act as barriers for free dislo-

cation glide and hence act as a potential strengthener. A study of the effect of

nano-twins on strengthening is possible using grain boundaries as impenetrable

to dislocations in the 2D-DDD framework.

• The current work was focused on investigating the effect of structural and ma-

terial length scales separately. A study on the coupling effect of these length

scales on the plastic deformation was not within the scope of the objectives set.

This coupling effect, however, becomes important to understand the mechanical
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behavior of thin films with grain sizes between micron to nano range or thin

films with nano-twins.

• Most of the work, including the current study, related to the investigation on the

effect of reduced structural and material length scales on plastic deformation is

applicable for materials at low homologous temperature. It is not understood

how different length scales affect the high temperature behavior, like creep, in

materials. To address this issue physical mechanisms like dislocation climb and

vacancy diffusion must be included in the current 2D-DDD framework.

• Coupling of DDD with phase transformation to study mechanical behavior of

technologically important multiphase carbon steels.
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APPENDIX A

SPATIAL DISTRIBUTION AND TEMPORAL EVOLUTION OF GND DENSITY

Using Eq. (2.18), maps of spatial distribution of GND density can be generated

at desired resolution. Define a uniform and structured grid on body Ω; for example,

the finite-element mesh used for computing the image fields is one such grid. The

grid element size sets the resolution. The element-level values of GND density are

then extrapolated to the nodes of the grid, which allows to generate contours of

GND density. Because of the structured topology of the grid, we will exclusively use

Eq. (2.18) in generating GND maps. GND density contours provide snapshots of the

frozen dislocation structure.

Fig. 67 shows contours of ρGND in four specimens having different sizes, keeping

the same resolution of 50 × 50nm2. The nominal compressive strain ε ≡ ε11, i.e.,

the imposed axial displacement per specimen length, is 0.06. Examples of dislocation

structures are shown in Fig. 10 and are not superposed on the contours for clarity.

Because of the double-slip configuration, dislocation intersections and subsequent

reactions are more likely to occur in the central region of the specimens where stresses

are also found to be higher. In sufficiently large specimens (Figs. 67a,b) the areas close

to the two extreme slip plane intersections are preferred regions of high GND density.

Out of these fan out narrow bands of relatively high GND density. In the continuum

limit, these bands may be thought of as “weak shocks” in the sense that GND density

jumps occur across them but displacements and stresses remain continuous.

With decreasing specimen size the dislocation structure no longer develops as

it would had the free surfaces been farther apart from each other. This trend is

clearly seen in Fig. 67 as one goes from the top specimen (H = 12.8µm in (a)) to the
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Fig. 67. Contours of GND density at ε = 0.06 in crystals of height (a) H = 12.8 µm;

(b) H = 3.2 µm; (c) H = 0.8 µm; and (d) H = 0.2 µm.
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bottom one (H = 0.2µm in (d)). In particular, the peculiar spatial distribution of

GND density shown in Figs. 67a,b completely disappears in Fig. 67d where the GND

density maximum moves toward the center of the specimen.

The evolution of effective GND density, ρ̄G, as predicted from simulations is

shown in Fig. 68. The effective GND density, ρ̄G, is computed from Eq. (2.19) using

a resolution area of 50 × 600 nm2 in all the simulations. It is emphasized here that

the results are resolution-dependent but general trends remain the same. For a given

resolution and topology, ρ̄G is found to increase at a faster rate in smaller specimens

as shown in Fig. 68. To highlight the scatter associated with very small samples

simulation results from two realizations of the H = 0.2 µm specimen is shown. The

value of the ρ̄G is found to be as large as 40% of the total dislocation density in the

H = 0.2 µm specimen while in the H = 12.8 µm specimen it is found to be 16%.

This build-up of ρ̄G takes place while there is essentially no net accumulation of GND

density in the specimens.

From Fig. 68 we observe that the effective GND density increases with strain.

However, their ratio, ρ̄G/ρ, remains nearly constant with strain as shown in Fig. 69.

Overall a trend emerges where ρ̄G/ρ increases with decrease in specimen size. Two

different realizations are shown for the specimen with size H = 0.2 µm to highlight

the scatter in very small samples.
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Fig. 68. Evolution of the effective GND density, ρ̄G, with cumulated slip, Γ̄, for spec-

imens with size H = 0.2 µm, 0.8 µm, 3.2 µm, and 12.8 µm. Cumulated slip:

Γ̄ =
(
ε− σ/Ē

)
/fs; where, Ē is the plane strain elastic modulus.
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Fig. 69. Evolution of the effective GND density, ρ̄G, normalized by the total dislocation

density, ρ, with cumulated slip, Γ̄ for specimens with size H = 0.2 µm, 0.8 µm,

3.2 µm, and 12.8 µm. Cumulated slip: Γ̄ =
(
ε− σ/Ē

)
/fs; where, Ē is the

plane strain elastic modulus.
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