A COMPARATIVE STUDY OF SEX SALARY DIFFERENTIALS FOR FULL-TIME WORKERS WITH A DEGREE IN SCIENCE OR ENGINEERING

A Thesis

by

RAYNA LYNN MCKINLEY

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2010

Major Subject: Economics

A COMPARATIVE STUDY OF SEX SALARY DIFFERENTIALS FOR FULL-TIME WORKERS WITH A DEGREE IN SCIENCE OR ENGINEERING

A Thesis

by

RAYNA LYNN MCKINLEY

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Manuelita Ureta Committee Members, Carolyn Clark Adalbert Mayer

Head of Department, Timothy Gronberg

May 2010

Major Subject: Economics

ABSTRACT

A Comparative Study of Sex Salary Differentials for Full-time Workers with a Degree in Science or Engineering. (May 2010)

Rayna Lynn McKinley, B.A., Texas A&M University

Chair of Advisory Committee: Dr. Manuelita Ureta

This thesis compares two datasets, the Science and Engineering Indicators 2006 (SEI) and the 1993 National Survey of College Graduates (NSCG), and looks at the impact of sex on full-time annual salary while controlling for different variables. The SEI provides a study based on data from 1999 about the sex effects on salary, adds controls, and records the changes in the effect of sex on salary. The SEI study finds after adding controls for worker heterogeneity and compensating wage differentials, women with bachelor's degrees earn 11.0% less, women with master's degrees earn 8.0% less, and women with doctoral degrees earn 8.4% less than their male counterparts. My analysis of the NSCG finds after adding controls, women with bachelor's degrees earn 18.5% less, women with master's degrees earn 18.7% less, and women with doctoral degrees earn 15.3% less than their male counterparts. Additionally, in the NSCG and the SEI the field of degree impacted the sex effects the most for bachelor's and master's degree holders. This research is useful to study the difference between these datasets from different time periods. Specifically, the difference in the sex wage gap and in the changing importance of certain variables affecting the sex wage gap.

TABLE OF CONTENTS

	Page			
ABSTRACT	iii			
TABLE OF CONTENTS				
LIST OF TABLES	v			
1. INTRODUCTION	1			
2. LITERATURE REVIEW	3			
2.1 Worker heterogeneity	3 8			
3. SCIENCE AND ENGINEERING INDICATORS 2006	12			
3.1 Controls	12 14			
4. 1993 NATIONAL SURVEY OF COLLEGE GRADUATES	15			
4.1 About the survey	15 16 16			
5. RESULTS	19			
5.1 Expected results	19 19 20 22			
6. CONCLUSIONS AND FUTURE AREAS OF RESEARCH	23			
REFERENCES				
APPENDIX	28			
VIII V	<i>5</i> 1			

LIST OF TABLES

		Page
Table 1	Sex Salary Differentials from Science and Engineering Indicators 2006	14
Table 2	Results of Sex Salary Differentials	20

1. INTRODUCTION

A worker's output is compensated by wages. Theoretically, a person's wage or salary reflects his or her rate of productivity. Productivity is measured by looking at output per unit of input. The output is considered to be the good or service produced as a result of the worker's input. A worker's input is measured by time- typically an hour of labor is one unit of labor. If every worker was to produce the same output, there would be a flat rate of compensation where everyone earned the same. The only difference expected in total earnings would be the difference in hours worked.

However, this is obviously not the case for the world in which we live. First, there is the consideration that workers have different rates of productivity. This means that worker A may be able to produce 1 unit of output x in time t, while worker B produces 2 units of output x in time t. Both workers produced output x in t time but worker B produced more than worker A. If they are working under the same conditions it is important to understand why worker B was able to produce more than worker A. One consideration is that worker B has more skill which positively affects his or her rate of productivity.

Skill is a hard aspect to measure. There are many traits and characteristics specific to the worker and job that impact earnings and are important to consider. Some characteristics and traits discussed in this thesis include the education level and experience of the worker, the sex and age of the worker, and the worker's occupation.

This research looks at these characteristics and traits that impact differences in

This thesis follows the style of *Journal of Labor Economics*.

earnings for male and female workers in the 1993 National Survey of College Graduates and compares results to the 1999 report found in the Science and Engineering Indicators 2006. By looking at an older dataset, I can see a difference in the sex wage gap and the changing importance of certain variables that affect the sex wage gap. Section 2 provides a review of research important to this project and explains possible sources of discrimination. Section 3 looks at data presented by the National Science Board in the Science and Engineering Indicators 2006 report. Section 4 explains the 1993 National Survey of College Graduates data set and the research method for this project. Section 5 looks at the results, the interesting points, and compares these results to the results from the SEI report. Finally, Section 6 gives the conclusions and possible areas of future research.

2. LITERATURE REVIEW

To get an idea about current research that has been conducted which impacts this topic, the following section reviews the existing literature. There are two aspects that are considered: differences among workers - worker heterogeneity - and differences among jobs - compensating wage differentials.

2.1 Worker heterogeneity

Human capital theory is the belief that a worker improves his or her skill through investment in human capital through some kind of education or experience. On the other hand, signaling theory is the belief that a more able worker will show his or her higher skill by choosing to obtain more education or training. Whether the worker has a predetermined ability which affects how much skill he or she can attain as thought of in signaling theory or the worker can increase his or her skill as thought of in human capital theory, it is an important aspect to consider when comparing rates of productivity. Going by either theory, a more able worker will have more education and training than those workers less able.

One type of education is schooling through institutions such as K-12 schools and universities. The level of education is generally categorized into less than high school diploma, high school diploma, some college, associate, bachelor's, some graduate, master's, and PhD. The more investment a worker makes in his or her education the higher level of education obtained. Dougherty 2005 looks at data to analyze why returns to schooling are higher for women than for men. He finds that there are high percentages of women working in professional occupations, where returns to schooling are rewarded and that there are low percentages of women among occupational categories such as manual workers where returns

to schooling are low. He also finds that the earnings for workers who have completed a bachelor's degree has a higher sex wage gap than workers who have a master's or PhD; the sex wage gap in earnings for workers with a master's is not significant; and that there is some significance in sex on earnings for workers who hold a PhD. Mulligan and Rubeinstein 2004 find that married women with advanced degrees have high and stable labor force participation. This makes sense from the perspective of opportunity cost, women with highskills and advanced degrees typically earn a higher salary. This higher salary makes leisure time more costly. That, combined with a possible personal motivation to work encourages high participation rates of not only married women, but all workers with advanced degrees as well. Garcia-Aracil 2008 looks at how a worker's field of study affects his or her earnings and the sex wage gap. Garcia-Aracil 2008 finds that if a worker has a job related to his or her field of study that there is a positive influence on his or her salary. Women may be more likely to choose to work in fields which are not closely related to their field of study which would cause a difference of earnings depending on sex. Roksa 2005 finds that majors dominated by women are valued less than majors dominated by males. After controlling for major, women earn 32% less than men. However, this gap converges as more factors are considered but remains significant. This could be a result of difference in preferences in occupation. It is possible that women choose to study majors which are less valuable monetarily because of a high intrinsic value. Theoretically, a student attending college would select his or her major to maximize lifetime earnings depending on the student's comparative advantage, as pointed out in Freeman and Hirsch 2007. It is possible that women choose majors for different reasons than men. If a woman knows she wants to have children in the future she realizes this would require some amount of time out of the work

force for labor. If she knows time out of the labor force is more costly in one field than another, she may choose the field of study which does not have as high a cost of being out of the labor force, such as education or language which does not change quickly compared to computer science which does change quickly. Taylor 2007 finds that occupational preferences were different depending on degree level. He found that both male and female doctoral students were more likely to list academia as a preferred occupation field. However, if students choose their desired occupation before attending college, they know the level of education that occupation requires and may obtain more education if they need it. Most students entering college do not have a family yet. If students do have an occupation in mind before obtaining a degree, women may select occupations that do not require as much education but do minimize the cost of being out of the labor force in consideration of the necessary time that they need for labor, recovery, and possibly caring for young children. McDonald and Thornton 2007 analyzes the sex wage gap for initial salary offers for college graduates. They find that much of the difference in starting salary offers can be explained by differences in major. This is important because, as Loury 1997 shows, the sex composition of majors has been changing. Napari 2006 also shows that there are significant differences in the sex composition of majors and that university major has a significant impact on the sex wage gap. By including measures for different majors Napari 2006 finds that 30% of the sex wage gap can be explained. As policies have been implemented to encourage women into occupations of all sorts, it is possible that their choices concerning education are also changing.

Another type of education is employer training. This training can be job or industry specific. By having the opportunity to participate in specific training, workers can learn new

or different methods for improving productivity. This type of education can tie in with a workers experience. On-the-job training (OJT) is training that takes place during the time a worker is working in the physical environment of the job. Through demonstration, repetition, or by figuring out how to accomplish a task a worker will learn how to accomplish a task more quickly, thus improving his or her productivity. Evertsson 2004 finds that when controlling for industry, men receive more OJT than women. If men are receiving more training and are improving their productivity more, this would impact the sex wage gap. For this, it is important to know why men receive more OJT than women. If it is due to discriminatory practices, this would make an otherwise neutral control reflect discrimination. However, it is possible that women are more likely to opt out of training or to not request as much training.

Also, through labor force experience, workers' earnings tend to grow due to promotions or advancements in his or her career. These promotions and advancements are generally given to successful workers and could reflect increases in productivity. Whatever the case, earnings tend to be higher for workers who have been with one company for several years than workers who have been with one company for shorter amounts of time. Blau and Kahn 2006 find experience in the labor market to be an important factor. During the 1980s the sex pay gap converged significantly, although during the 1990s they found that the sex pay gap was converging at a slower rate. They looked at the labor force entrance rates and found there were a higher percentage of women entering the labor force in the 1980s. As these women gained labor force experience their salary reflected this change. However, Keaveny, Inderrieden, and Toumanoff 2007 find that men are compensated better than women for their experience and women are compensated better than men as the size of the

firm they work for increases. This could be a result if men choose to stay with one employer longer in order to develop skills and gain experience while women choose to develop skills and gain experience through changing employers. Fitzenberger and Kunze 2005 find a wage gap between men and women, but that this gap has decreased recently. They also find that this gap is the largest for the lower part of the wage distribution and that it increases with experience. If women choose to stay with low paying jobs for different reasons than men, this could explain this difference. For example, a woman may choose to keep a low paying job for job security she would not increase her earnings as much as a man who chooses to remain with a low paying job for possibilities of advancement within the organization, which is a reward on his experience.

There may also be worker traits associated with lower salaries which are not related to skill. As equality for people regardless of individual traits has become the norm, policy makers have noticed persisting wage disparities. By understanding what causes the differences, policy makers can act accordingly to improve equal opportunities for all. While this research focuses on possible sex discrimination, other traits are important to consider, such as age. For example, if age is not considered and a smaller sex wage gap exists for older women than younger women, then sex discrimination could be misestimated, affected by which group worked the most. Duncan and Loretto 2004 look at how age affects men and women's earning differently. Their data shows that women typically reach the top of their career at age 35 and that women experience more discrimination than men throughout their career. It is possible that women change preferences around 35 years old which affect their careers. It would be interesting to see how age affects cohorts differently as they age, to see if there were actually different measures to determine earnings for different cohorts. In fact,

O'Neill and Polachek 1993 found that women in recent cohorts earned higher returns to years of work experience. Younger cohorts of women may have different preferences than older women which lead to higher returns to years of work experience. Another aspect to consider regarding age is if there are differences between younger and older workers and their intention to leave their job. Kidd and Green 2006 look at the careers of research scientists and find that older men on open-ended contracts in the higher end of salary compensation are less likely to leave their position. Generally, they also find that age negatively impacts a worker's intention to quit. It is possible that women reach this age which affects her intentions to quit at an earlier age and thus she stops making choices that would increase her earnings sooner than men who reach this age which affects his intentions to quit later in his career.

2.2 Compensating wage differentials

There are other things to consider that affect salary, but not necessarily a worker's productivity. These include differences which describe characteristics of a job. These other controls are important to consider because if women are more likely to choose a characteristic than men, then the affect of sex on salary could be over or under estimated if not properly controlled for.

One important job characteristic to consider is the occupation of the job. Some occupations earn higher salaries than others. By not considering this characteristic, if women are more likely to choose a lower earning occupation than their male counterparts, there could be an overestimation of the sex bias. Macpherson and Hirsch 1995 and Reid 1998 find that occupations with a higher percentage of women pay less. Macpherson and Hirsch 1995 also show that as the percentage of women in an occupation increases the compensation

decreases. They find that controlling for skill-related occupations lowers the sex composition effects and that 66 percent of the sex composition is due to differences in characteristics and other effects such as the worker's productivity rate or differences in reasons for choosing his or her occupation. Goldberg, Finkelstein, Perry and Konrad 2004 found that men in occupations dominated by women, or known for being "women's" jobs, earned higher salaries than men in male jobs or women in male or female jobs. This could be because men who choose to work in a female dominated job may have more skill and thus earn more. Alksnis, Desmarais and Curtis 2008 find that there are differences in pay for the same job depending on if the job is in the "male" domain or the "female" domain. This could be because of unseen differences in the domains which require different abilities. For example, a secretary at a school may need a different set of skills from a secretary at a lawyer's office. Garcia-Aracil 2008 suggests that the sex wage gap is influenced by the percentage of women within particular fields and by women specializing in discipline subfields which are not valued as highly. Women may choose to specialize in things for different reasons than men. For example, if women value job security more than men they may select a specialization which provides this but not opportunities for advancement; however, if men value opportunities for promotion they may select a specialization which offers more opportunities for advancement. Fitzenberger and Kunze 2005 found data supporting that women with low-skills benefit more by working in a female-dominated occupation while women with high-skills benefit more by working in a male-dominated occupation. This could be because women who choose to work in a low-skill occupation do not have the same abilities of men who choose to work in a low-skill occupation and women would not be as successful in jobs dominated by men in low-skill occupations. Dolado,

Felgueroso, and Jimeno 2003 also find some support that women earn less than men as the sex composition shifts to a higher proportion of women. Women could choose to accept a lower offer than men for the opportunity to enter a male dominated occupation so that she can at least have the job and then prove her ability to perform well. Joy 2003 finds differences in occupational choice to be important with women preferring to enter clerical, health, and teaching occupations. Kunze 2005 finds that sector choices differ significantly for men and women. Both find that women are more likely to work in service occupations while men are more likely to work in technical occupations. These differences affect not only salaries but the development of skills. Since service occupations require less technical skills, these occupations offer smaller lifetime wage growth.

Another job characteristic to consider is the geographic region. Salaries in a city are generally higher than salaries in rural areas to make up for the higher cost of living. Also, it is possible that employers in a city have more resources and are able to be more productive than employers in rural areas. Blau and Kahn 2006 found that the sex wage gap is associated with location of employment. For some industries, access to unskilled labor is an important consideration for facility location. Devereux, Griffith and Simpson 2004 found this to be especially true for the textile and apparel industries in the UK. If some areas have a higher percentage of unskilled women, this industry concentration could affect their wages. Another aspect to consider about geographic location is the industry concentration for certain occupations. When an area is known for a specialized occupation, workers in that occupation earn more in that geographic area than they would in an area where there is not much demand for workers in their occupation.

An additional job characteristic to consider is whether the institution is public or private or for profit or non-profit. Gibelman 2003 finds that there is a smaller sex wage gap in state and local government occupations in the social services sector. Roksa 2005 sees that women and certain majors are more likely to work in the public and nonprofit sectors. If women are more likely to choose to work in public institutions, and if the public institutions have lower level of compensation, women could be seen as earning less than men who are more likely to work in a higher paying private institution. Taylor 2007 finds that female students studying science or engineering were more likely than men to view nonprofits as a preferable workplace. For men, Taylor 2007 finds that they would rather work in a corporation. These differences in preferences of institution could lead to differences in earnings if nonprofits or corporation have different levels of compensation. Panizza and Qiang 2005 look at the public-private wage differential and sex wage gap in Latin America. They find that there is a benefit of working in the public sector which is usually higher for women than men. The model used assumes that immeasurable differences in productivity for men and women is the same in the public and private sectors and this could support the conclusion that discrimination does exist and that the laws present in the public sector for salary successfully reduces this discrimination.

3. SCIENCE AND ENGINEERING INDICATORS 2006

This section looks at the National Science Board's Science and Engineering Indicators 2006 publication (SEI). This report was prepared by the National Science Foundation's Division of Science Resources Statistics which uses simple, understandable statistical tools. The SEI report gathers quantitative data of indicators from national and international science and engineering enterprises. These indicators provide a policy neutral summary of the state of the science and engineering sector. Their data shows that there has been a change in the sex composition of science and engineering occupations. In 2000, women accounted for half of the graduates receiving degrees in science and engineering. Their growing representation in this field makes it interesting to look at how the labor market responds. By looking at raw data it appears that there is a large difference between men's and women's earnings. However, due to differences between the men and women much of this difference can be explained. Through studying these differences, policies can be designed to improve or to retain equality in ways that do not show discrimination.

3.1 Controls

The SEI report controls for level of degree, age, years since degree, work experience, fields of degree, occupation, and employer characteristics. The employer characteristics include academic, nonprofit, private, and public workplaces, relation of work performed to degree, working in science and engineering or research and development, employer size, and the geographic region. Noted in this study is that factors can cause different affects depending on degree level. For example, it is more common for bachelor's or master's degree holders to be employed in the public for-profit sector than another sector. Likewise

for doctoral degree holders a major choice of employment is doing research in academia as a tenure-track position or in a postdoc position. However, because of differing university classifications a postdoc position is libel to be self reported in various sectors. With the increase of women in the science and engineering sector, women now account for 30% of the workforce in academia, 28% of which is full-time faculty.

The different controls used take into account differences in characteristics which either affect or are correlated with earnings. Recent measures have been taken across the nation to attract women to study fields in science and engineering. Age and years since degree take into account the average younger age of women working in science and engineering fields and reduce the salary differences significantly for all degree levels, although most significantly for bachelor's degree holders and doctoral degree holders. Field of degree has a large impact on salaries for all levels of degree holders, primarily due to the tendency for women to pursue social and life sciences as opposed to engineering and computer sciences, which are higher paying. Women graduating with science and engineering degrees in 2000 made up 78% of degrees awarded in psychology, 59% of degrees awarded in biological/agricultural sciences, 55% of degrees awarded in social sciences, and 47% of degrees awarded in mathematics. On the other hand women graduating with science and engineering degrees only made up 21% of degrees awarded in engineering, 27% of degrees awarded in computer sciences, and 43% of degrees awarded in physical sciences. Controlling for occupation and employer effects also reduces the wage differential, suggesting that there are differences in choice of employment between men and women for whatever reason.

3.2 Results

For each degree level, bachelor's, master's, and doctoral, there are regression measures for different variables. By adding variables the difference in earnings changes and is reported. By looking only at sex, women compared to men with bachelor's degrees earn 35.1% less, with master's degrees earn 28.9% less, and with doctoral degrees earn 25.8% less. Adding controls for age and years since degree, female bachelor's degree holders earn 27.2% less, female master's degree holders earn 25.5% less, and female doctoral degree holders earn 16.7% less compared to their male counterparts. Adding a control for the field of degree, female bachelor's degree holders earn 14% less, female master's degree holders earn 9.6% less, and female doctoral degree holders earn 10.3% less compared to their male counterparts. Adding controls for occupation and employer characteristics, female bachelor's degree holders earn 11% less, female master's degree holders earn 8% less, and female doctoral degree holders earn 11% less, female master's degree holders earn 8% less, and female doctoral degree holders earn 8.4% less compared to their male counterparts.

The following table (Table 1) shows SEI's data results for 1999 that gives estimations for salary differentials by sex for people holding degrees in science and engineering using individual characteristics.

Table 1 – Sex Salary Differentials from Science and Engineering Indicators 2006

	Degree		
Variable	Bachelor's	Master's	Doctoral
Female versus male	-35.1	-28.9	-25.8
+ Age and years since degree	-27.2	-25.5	-16.7
+ Field of degree	-14.0	-9.6	-10.3
+ Occupation and employer characteristics	-11.0	-8.0	-8.4

Linear regressions on ln(full-time annual salary) for p = 0.05

Source: National Science Foundation, Division of Science Resources Statistics, Scientists and Engineers Statistical Data System (SESTAT) (1999), http://sestat.nsf.gov

4. 1993 NATIONAL SURVEY OF COLLEGE GRADUATES

This project will replicate the research conducted in the SEI report using the 1993 National Survey of College Graduates (NSCG) data set. I expect some differences since the data from the SEI and NSCG study different years. It is important to note the changes in the market over this time period. In the report presented by SEI there have been three prominent trends noted since 1990. First, there was a large increase in the degrees awarded in the areas of social sciences and psychology. Second, there was a steady rise in degrees awarded in the life sciences followed by a decline. Third, there was a large increase awarded in computer sciences starting in the late 1990's. Additionally, there have been changes in the sex composition of academic positions with an increasing representation of women.

4.1 About the survey

The data set used in this project is the 1993 National Survey of College Graduates (NSCG). The questionnaire was designed and disseminated by the Bureau of the Census. A sample of people was selected from the 1990 Decennial Census Long Form sample, so the population sampled consists of those whom lived in the United States or abroad as US military personnel on April 1, 1990. The questionnaire refers to a specific week, April 15, 1993. As criteria, those surveyed reported at least a bachelor's degree in the 1990 Decennial Census Long Form and were less than 72 years old. The NSCG selected a random sample of 214,643 people out of the Decennial Census Long sample of 4,728,000 people who met the criteria of degree level and age. Initially, 78% of the sample responded to the NSCG questionnaire, providing 148,932 responses. The NSCG met an 80% follow-up response rate through mail, telephone, and in-person interviews.

4.2 About the data set

The survey is split into four different parts. Part A asks about employment status during the reference week of April 15, 1993, Part B asks about past employment, Part C asks about other work-related information, and Part D asks about background information. Job and education codes are provided for respondents to self-report their area of study and work. Job codes are split by broad categories and then by more specific categories when the area is of particular interest to the study (being in the realm of science and engineering). Likewise, the education codes are split first by a broad category and then into more specific categories for areas of interest. For both sections there is a choice if the respondent's job or major is not listed.

This survey is of particular use for this project because the questionnaire used is provided with the data results. This allows a third party to more appropriately analyze the data and understand possible inconsistencies in the data results. Questions that could be leading or confusing can be observed and, if necessary, those results can be withheld from the analysis to avoid compromised results. By using an older dataset we can study the changes in both the sex wage gap and the importance of variables affecting the sex wage gap.

4.3 Method

I use variables from the NSCG which best match up with the variables from the SEI. For the degree level I use the variable ED6C1 which allows the choice of degree level held; of interest is: bachelor's, master's, and doctoral. For bachelor's degree holders there are 27,480 observations; for master's degree holders there are 10,100 observations; and for doctoral degree holders there are 2,292 observations. Also, I drop the responses which

indicate the person was not working full-time during the reference time of the survey by looking at the response to variable EA7; this includes 79,614 responses. Like the SEI, I want to regress the variables on the natural log of full-time annual salary. To do this we generate a variable, LOGINCOME equal to ln(INCOME1), the natural log of the reported salary. Since I already dropped those that were not working full-time this new variable is the natural log of full-time salary.

For the sex control, I use the survey variable sex, which records 1 for male and 2 for female, to generate the variable SEX, 0 for male and 1 for female. For the age control I use the variable AGE, which presents the respondent's age. For the years since degree control I use the variable ED6B1YR. This variable reports the year the most recent degree was awarded, to figure the years since the degree was awarded I subtract the year from the reference year, 1993, and name a new variable as ED6B1YR2. The ED6D1 2 variable gives the self reported degree field for the most recent degree earned. I compare the list of degree fields in the NSCG survey and drop those responses which do not have a science and engineering degree as set by the National Science Foundation; this includes 86,458 observations. For the occupation control I use the variable which gives the self reported field of work, EA15. I use xi command in STATA to expand these categorical variables into indicator variable sets. For the employer characteristics control I use different variables such as: EA11 for academic; EA13 for nonprofit, private, and public workplaces; EA19 for relation of work performed to degree; however, there were no questions addressing employer size or geographic region.

This project follows the pattern from the SEI adding variables to study how the sex salary differentials change depending on the degree level of the worker's most recently

earned degree: bachelor's, master's, or doctoral. After partitioning the data by degree I run four regressions, adding variables and recording the change in the sex effect to the annual salary at p=0.05. First, I regress annual salary by sex. Following this, I add the following variables: age and years since the degree was earned; field of degree; and occupation and employer characteristics. In this way I can compare my results with the results in the SEI. I use STATA as the statistical analysis software, version 10.1. A log of the process can be found in the Appendix. My formulas look like the following:

- i. LOGINCOME = $\beta_0 + \beta_1$ SEX
- ii. LOGINCOME = $\beta_0 + \beta_1 SEX + \beta_2 AGE + \beta_3 ED6B1YR2$
- iii. LOGINCOME = $\beta_0 + \beta_1 SEX + \beta_2 AGE + \beta_3 ED6B1YR2 + \beta_4 ED6D1_2$
- iv. LOGINCOME = $\beta_0 + \beta_1 \text{ SEX} + \beta_2 \text{ AGE} + \beta_3 \text{ ED6B1YR2} + \beta_4 \text{ ED6D1}_2 + \beta_5 \text{ EA15} + \beta_6 \text{ EA11} + \beta_7 \text{ EA13} + \beta_8 \text{ EA19}$

5. RESULTS

5.1 Expected results

The expectations for this work are based on the trends noted in the SEI. Since the NSCG is from 1993 while the SEI is from 1999 I expect to see the trends affect the data over time. With the increase of degrees awarded in computer sciences, social sciences and psychology, there are a higher proportion of younger workers in the SEI. For younger workers there is, perhaps, more emphasis placed on the degree level awarded and the field of the degree, as they have not had as much time to gain work experience. With the increase and then decrease of degrees awarded in life sciences, workers are more likely to be younger in the NSCG; by the time of the SEI workers are more likely to have a few years of experience. This means, for those with degrees in life sciences, more emphasis is placed on degree and field of degree in the NSCG while for the SEI more emphasis is placed on occupation and employer characteristics. Also noted in research, occupations with a higher proportion of women earn less on average. The sex composition changes in academic positions could be affected by this more in the SEI than the NSCG.

5.2 Results

In order to compare results to the SEI, the following table (Table 2) is modeled after the table in the SEI. However, this table shows the results from the NSCG dataset for the effects of sex on salary differentials for full-time workers holding degrees in science and engineering.

Table 2 - Results of Sex Salary Differentials

	Degree			
Variable	Bachelor's	Master's	Doctoral	
Female versus male	-45.4	-43.8	-40.4	
+ Age and years since degree	-39.4	-38.3	-23.5	
+ Field of degree	-25.8	-21.1	-16.4	
+ Occupation and employer characteristics	-18.5	-18.7	-15.3	

After running a linear regression on the natural log of annual full-time salary for those holding degrees in science and engineering fields I find the following results. Only considering sex, women compared to men with bachelor's degrees earn 45.4% less, with master's degrees earn 43.8% less, and with doctoral degrees earn 40.4% less. Additionally controlling for age and years since degree, women compared to men with bachelor's degrees earn 39.4% less, with master's degrees earn 38.3% less, and with doctoral degrees earn 23.5% less. Adding a control for the field of degree, women compared to men with bachelor's degrees earn 25.8% less, with master's degrees earn 21.1% less, and with doctoral degrees earn 16.4% less. Adding controls for occupation and employer characteristics, women compared to men with bachelor's degrees earn 18.5% less, with master's degrees earn 18.7% less, and with doctoral degrees earn 15.3% less, with master's degrees

5.3 Outcome of expected results

The three trends that I expect to affect the data that would impact the results are: an increase in computer science, social science, and psychology degrees; increase and then decrease in degrees awarded in life sciences; and the changes in sex composition in academia.

I expect that with the increase of degrees awarded in computer sciences, social sciences and psychology, that there will be a higher proportion of younger workers in the SEI. For younger workers there might be more emphasis placed on the degree level awarded and the field of the degree, as they have not had as much time to gain work experience. For workers with bachelor's degrees, the SEI controls for age and years since the degree was earned impacts the sex effects more than controlling for these things in the NSCG. However for master's and doctoral degree holders, controlling for age and years since degree impacts the sex effects more in the NSCG than the SEI. However, these results include workers with degrees in life sciences which could have a different impact.

The second trend was an increase and then decrease of degrees awarded in life sciences. Because the data for the SEI is newer, workers are more likely to have a few years of experience due to a decrease in entrants. This means that for life sciences I expect more emphasis is placed on when the degree was earned and field of degree in the NSCG; while for the SEI, I expect more emphasis is placed on occupation and employer characteristics. In fact, I find that the field of degree impacted the effect of sex more in the NSCG. Also, age and the years since the degree was earned impacted the effect of sex more for master's and doctoral degree holders in the NSCG. On the other hand, age and the years since the degree was earned had more impact on the sex effects in the SEI for those with bachelor's degrees. I also find that controlling for occupation in the NSCG has more impact to the sex effect than in the SEI for bachelor's and master's degree holders.

The third trend was a sex composition change in academic positions. This impact would show up in the doctoral level for occupation and employer characteristics and would be more important in the SEI. I find that this is indeed the result because in the NSCG

employer and occupation characteristics decreased the sex effects by 1.1 percentage points while in the SEI employer and occupation characteristics decreased the sex effects by 1.9 percentage points.

5.4 Items of interest

The first, and quite apparent, thing to notice is the difference of importance sex plays in the NSCG and the SEI. In the SEI the sex effect was 35.1% for bachelor's degree holders, 28.9% for master's degree holders, and 25.8% for doctoral degree holders. However, in the NSCG the sex effect was 45.4% for bachelor's degree holders, 43.8% for master's degree holders, and 40.4% for doctoral degree holders. Since the NSCG is older than the SEI it could be showing that the choices women make or the experience they have gained at the time of the SEI has cause the sex wage gap to converge. Another item of interest is that field of degree impacted the sex effects the most for bachelor's and master's degree holders in both the NSCG and the SEI. While for doctoral degree holders controlling for age and years since the degree was earned impacted the sex effects the most in both the NSCG and the SEI.

6. CONCLUSIONS AND FUTURE AREAS OF RESEARCH

The results of this study show that it is important to consider more variables than sex alone when looking at differences in earnings between men and women. Also, it is important to realize the differences between datasets. In this case, the SEI considered factors such as employer size and geographic region, which cannot be controlled for in the NSCG because that information was not collected. This difference could have increased the importance of occupation and employer characteristics in the NSCG. This difference could make it difficult to draw substantial conclusions in comparing the two studies. By assuming that there is no significant impact from these differences I find that in the NSCG, women with bachelor's degrees earn 18.5% less than men with bachelor's degrees, women with master's degree earn 18.7% less than men with master's degrees, and women with doctoral degrees earn 15.3% less than men with doctoral degrees. This is in contrast with the SEI, after adding all the controls for worker heterogeneity and compensating wage differentials, women with bachelor's degrees earn 11.0% less than men with bachelor's degrees, women with master's degrees earn 8.0% less than men with master's degrees, and women with doctoral degrees earn 8.4% less than men with doctoral degrees.

It is important to note the limitations of these datasets. One of these limitations is that age, while being a reasonable estimator of experience for men, is not a reasonable estimator of experience for women. This difference in the appropriateness of using age as an estimator for experience could cause some of the wage gap that remains after controlling for multiple factors. With actual information on work experience the remaining wage gap could be accounted for.

Another area that could impact the remaining wage gap that would be interesting to research would be to look at the impact of having a spouse who worked in a similar field. If women are more likely to relocate for family than men, as indicated in Keith and McWilliams 1997, then having a spouse who works in a similar field could be beneficial. If the husband lives in an area where he has good job opportunities, his wife would also have good job opportunities. In fact, the geographic location with the best opportunities would be the same for both of them. However, if they work in different fields the area the husband works in might not have as good of job opportunities for his wife.

Another area that could impact the remaining wage gap would be to consider the sex differences in working out-of-field. If there are many men or women working out-of-field in science and engineering occupations, this could impact the sex differentials because they would not be included in the scope of this study. This study only considered those workers who most recently received a degree in science and engineering. However, it is possible that there are workers working in science and engineering who have degrees in non-science and engineering fields or who have more recently received a degree in another field such as business administration, but who still work in a science and engineering field.

REFERENCES

Alksnis, Christine, Serge Desmarais, James Curtis. 2008. Workforce segregation and the gender wage gap: Is "women's" work valued as highly as "men's"? *Journal of Applied Social Psychology* 38, no. 6:1416-1441.

Blau, Francine D., and Lawrence M. Kahn. 2006. The U.S. gender pay gap in the 1990s: Slowing convergence. *Industrial and Labor Relations Review* 60, no. 1:45-66.

Devereux, Michael P., Rachel Griffith, and Helen Simpson. 2004. The geographic distribution of production activity in the UK. *Regional Science and Urban Economics* 34:533-564.

Dolado, Juan J., Florentino Felgueroso, and Juan F. Jimeno. 2003. Where do women work?: Analysing patterns in occupational segregation by gender. *Annales d'Économie et de Statistique* 71/72:293-315.

Dougherty, Christopher. 2005. Why are the returns to schooling higher for women than for men? *The Journal of Human Resources* XL, no. 4:969-988.

Duncan, Colin, and Wendy Loretto. 2004. Never the right age? Gender and age-based discrimination in employment. *Gender, Work and Organization* 11, no. 1:95-115.

Evertsson, Marie. 2004. Formal on-the-job training: A gender-typed experience and wage-related advantage? *European Sociological Review* 20, no. 1:79-94.

Fitzenberger, Bernd, and Astrid Kunze. 2005. Vocational training and gender: Wages and occupational mobility among young workers. *Oxford Review of Economic Policy* 21, no. 3:392-415.

Freeman, James A., and Barry T. Hirsch. 2007. College majors and the knowledge content of jobs. *Economics of Education Review* 27:517-535.

Garcia-Aracil, Adela. 2008. College major and the gender earnings gap: A multi-country examination of postgraduate labour market outcomes. *Institute for Innovation and Knowledge Management* 49:733-757.

Gibelman, Margaret. 2003. So how far have we come? Pestilent and persistent gender gap in pay. *Social Work* 48, no. 1:22-32.

Goldberg, Caren B., Lisa M. Finkelstein, Elissa L. Perry, and Alison M. Konrad. 2004. Job and industry fit: The effects of age and gender matches on career progress outcomes. *Journal of Organizational Behavior* 25:807-829.

Joy, Lois. 2003. Salaries of recent male and female college graduates: Educational and labor market effects. *Industrial and Labor Relations Review* 56, no. 4:606-621.

Keaveny, Timothy J., Edward J. Inderrieden, and Peter G. Toumanoff. 2007. Gender differences in pay of young management professionals in the United States: A comprehensive view. *Journal Of Labor Research* XXVIII, no. 2:327-346.

Keith, Kristen, and Abagail McWilliams. 1997. Job mobility and gender-based wage growth differentials. *Economic Inquiry* XXXV:320-333.

Kidd, Jennifer M., and Frances Green. 2006. The careers of research scientists: Predictors of three dimensions of career commitment and intention to leave science. *Personnel Review* 35, no. 3:229-251.

Kunze, Astrid. 2005. The evolution of the gender wage gap. *Labour Economics* 12:73-97.

Loury, Linda Datcher. 1997. The gender earnings gap among college-educated workers. *Industrial and Labor Relations Review* 50, no. 4:580-593.

Macpherson, David A., and Barry T. Hirsch. 1995. Wages and gender composition: Why do women's jobs pay less? *Journal of Labor Economics* 13, no. 3:426-471.

McDonald, Judith A., and Robert J. Thornton. 2007. Do new male and female college graduates receive unequal pay? *The Journal of Human Resources* XLII:32-48.

Mulligan, Casey B., and Yona Rubinstein. 2004. The closing of the gender gap as a Roy model illusion. Working Paper No. 10892, National Bureau of Economic Research, Cambridge, MA.

Napari, Sami. 2006. Type of education and the gender wage gap. Discussion Paper No. 128, Helsinki School of Economics, FDPE and HECER, Helsinki, Finland.

National Science Foundation. 2006. S&E Degrees 1966-2006. Data on the number and types of bachelor's, master's and doctoral degrees awarded by U.S. institutions. http://www.nsf.gov/statistics/nsf08321/pdf/appb.pdf.

O'Neill, June, and Solomon Polachek. 1993. Why the gender gap in wages narrowed in the 1980s. *Journal of Labor Economics* 11, no. 1:205-228.

Panizza, Ugo, and Christine Zhen-Wei Qiang. 2005. Public–private wage differential and gender gap in Latin America: Spoiled bureaucrats and exploited women? *The Journal of Socio-Economics* 34:810-833.

Reid, Lori L. 1998. Devaluing women and minorities: The effects of race/ethnic and sex composition of occupations on wage levels. *Work and Occupations* 25, no. 4:511-536.

Roksa, Josipa. 2005. Double disadvantage or blessing in disguise? Understanding the relationship between college major and employment sector. *Sociology of Education* 78:207-232.

Taylor, Dorceta. 2007. Employment preferences and salary expectations of students in science and engineering. *Bioscience* 57, no. 2:175-185.

APPENDIX

Setup log

- . drop if ed6d1_2==602
 (249 observations deleted)
- . drop if ed6d1_2==610
 (1432 observations deleted)
- . drop if ed6d1_2==651
 (4796 observations deleted)
- . drop if ed6d1_2==653
 (9969 observations deleted)
- . drop if ed6d1_2==654
 (2111 observations deleted)
- . drop if ed6d1_2==655
 (789 observations deleted)
- . drop if ed6d1_2==656
 (2535 observations deleted)
- . drop if ed6d1_2==657
 (2102 observations deleted)
- . drop if ed6d1_2==658
 (328 observations deleted)
- . drop if ed6d1_2==659
 (1885 observations deleted)
- . drop if ed6d1_2==661
 (980 observations deleted)
- . drop if ed6d1_2==662
 (988 observations deleted)
- . drop if ed6d1_2==663
 (880 observations deleted)
- . drop if ed6d1_2==701
 (1960 observations deleted)
- . drop if ed6d1_2==702
 (78 observations deleted)
- . drop if ed6d1_2==703
 (1377 observations deleted)
- . drop if ed6d1_2==704
 (621 observations deleted)
- . drop if ed6d1_2==705
 (6635 observations deleted)

- . drop if ed6d1_2==706
 (523 observations deleted)
- . drop if ed6d1_2==707
 (1486 observations deleted)
- . drop if ed6d1_2==708
 (405 observations deleted)
- . drop if ed6d1_2==709
 (411 observations deleted)
- . drop if ed6d1_2==710
 (2341 observations deleted)
- . drop if ed6d1_2==711
 (1539 observations deleted)
- . drop if ed6d1_2==712
 (357 observations deleted)
- . drop if ed6d1_2==713
 (4315 observations deleted)
- . drop if ed6d1_2==760
 (3422 observations deleted)
- . drop if ed6d1_2==772
 (1527 observations deleted)
- . drop if ed6d1_2==781
 (431 observations deleted)
- . drop if ed6d1_2==782
 (458 observations deleted)
- . drop if ed6d1_2==783
 (55 observations deleted)
- . drop if ed6d1_2==784
 (982 observations deleted)
- . drop if ed6d1_2==785
 (275 observations deleted)
- . drop if ed6d1_2==786
 (6612 observations deleted)
- . drop if ed6d1_2==787
 (2514 observations deleted)
- . drop if ed6d1_2==788
 (736 observations deleted)
- . drop if ed6d1_2==789
 (618 observations deleted)
- . drop if ed6d1_2==790
 (481 observations deleted)
- . drop if ed6d1_2==791
 (894 observations deleted)

- . drop if ed6d1_2==800
 (1414 observations deleted)
- . drop if ed6d1_2==810
 (3533 observations deleted)
- . drop if ed6d1_2==820
 (1001 observations deleted)
- . drop if ed6d1_2==830
 (655 observations deleted)
- . drop if ed6d1_2==850
 (609 observations deleted)
- . drop if ed6d1_2==861
 (121 observations deleted)
- . drop if ed6d1_2==862
 (1978 observations deleted)
- . drop if ed6d1_2==926
 (2208 observations deleted)
- . drop if ed6d1_2==941
 (493 observations deleted)
- . drop if ed6d1_2==942
 (2009 observations deleted)
- . drop if ed6d1_2==943
 (1221 observations deleted)
- . drop if ed6d1_2==944
 (647 observations deleted)
- . drop if ed6d1_2==995
 (773 observations deleted)
- . keep if ea7==1
 (79614 observations deleted)
- . gen logincome = ln(income1)
 (2072 missing values generated)
- . gen ed6b1yr2 = 93 ed6b1yr
- . gen SEX=sex==2

Regression for bachelor's degree holders

. keep if ed6c1==1
(17458 observations deleted)

. xi: reg logincome SEX

Source	SS	df		MS		Number of obs F(1, 29522)	
	1148.19472 13526.5487					Prob > F R-squared Adj R-squared	= 0.0000 $= 0.0782$
Total	14674.7434	29523	. 49	7061391		Root MSE	= .67689
logincome	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
SEX _cons	4540016 10.47351			-50.06 2298.81		4717777 10.46458	4362255 10.48244
. xi: reg logi	income SEX age	e ed6b1	yr2				
Source	SS	df		MS		Number of obs F(3, 29520)	
	2365.02107 12309.7224					Prob > F R-squared Adj R-squared	= 0.0000 = 0.1612
Total	14674.7434	29523	.49	7061391		Root MSE	= .64575
logincome	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
SEX	3939981	.0087	 7301	-45.13	0.000	4111095	3768868
age	.0067724	.0008	3295	8.16	0.000	.0051465	.0083983
ed6b1yr2	.0156561	.0008	3633	18.13	0.000	.0139639	.0173483
_cons	9.96705	.020)236	492.54	0.000	9.927387	10.00671
. xi: reg logi	income SEX age	e ed6b1	.yr2	i.ed6d1_2			
					_2_1 for	ed6d1_2==-57	omitted)
Source	SS	df		MS		Number of obs F(96, 29427)	
Model	3096.61907	96	32.	2564487		Prob > F	
Residual	11578.1244	29427	. 3	39345242		R-squared	
Total	14674.7434	29523	.49	7061391		Adj R-squared Root MSE	
logincome	Coef.	 Std.	Err.	t	 P> t	 [95% Conf.	Interval]
	2502240					0770400	- . 2396076
SEX age	2583249 .008424	.0095		-27.05 10.34	0.000	2770422 .0068278	.0100203
ed6b1yr2	.0156468	.0008		18.27	0.000	.0139679	.0173257
_Ied6d1_2_2	.6228775	.6873		0.91	0.365	7242626	1.970018
_Ied6d1_2_3	.5891654	.5248		1.12	0.262	4396477	1.617979
Ied6d1_2_4	.0205906	.2851		0.07	0.942	5383962	.5795775
_Ied6d1_2_5	2608175	.2842		-0.92	0.359	8179408	.2963058
_Ied6d1_2_6	.0197366	.290		0.07	0.946	5494348	.588908
_Ied6d1_2_7	0728022	.2844		-0.26	0.798	6304045	.4848
_Ied6d1_2_8	1472301	.2872	2473	-0.51	0.608	7102475	.4157874

					=	
_Ied6d1_2_9		.28826	-0.51	0.611	7116244	.4183805
_Ied6d1_2_10	.0647125	.2856989	0.23	0.821	49527	.6246951
_Ied6d1_2_11	.0522909	.2810936	0.19	0.852	4986651	.6032469
_Ied6d1_2_12	1670273	.2975425	-0.56	0.575	7502238	.4161692
_Ied6d1_2_13	.1310401	.3023437	0.43	0.665	4615671	.7236472
_Ied6d1_2_14	0211615	.297554	-0.07	0.943	6043807	.5620576
_Ied6d1_2_15	l - . 2358522	.3214412	-0.73	0.463	8658913	.3941869
	.0150973	.2836002	0.05	0.958	5407718	.5709663
_Ied6d1_2_17	.0524432	.2870702	0.18	0.855	5102273	.6151137
Ied6d1 2 18	.293835	.3383462	0.87	0.385	3693387	.9570087
Ied6d1 2 19	0181495	.305407	-0.06	0.953	6167608	.5804618
_1ed6d1_2_20	.0434486	.2845818	0.15	0.879	5143445	.6012417
_1ed6d1_2_21	0505635	.2845883	-0.18	0.859	6083694	.5072423
Ied6d1 2 22	.5086762	.3171338	1.60	0.109	1129202	1.130273
_Ied6d1_2_23	.2945026	.2820228	1.04	0.296	2582747	.84728
_1ed6d1_2_24	.2317694	.283153	0.82	0.413	3232232	.786762
_Ied6d1_2_25	.3227053	.2810231	1.15	0.413	2281125	.873523
			0.94	0.231		
_Ied6d1_2_26	.2675372	.2845558			2902049	.8252793
_Ied6d1_2_27	.2677184	.2923984	0.92	0.360	3053954	.8408323
_Ied6d1_2_28	.2370371	.2832761	0.84	0.403	3181966	.7922708
_Ied6d1_2_29	.2743794	.2934911	0.93	0.350	3008762	.849635
_Ied6d1_2_30	.0917943	.2861418	0.32	0.748	4690564	.652645
_Ied6d1_2_31	.0519656	.283936	0.18	0.855	5045616	.6084928
_Ied6d1_2_32	0542526	.2849009	-0.19	0.849	6126711	.504166
_Ied6d1_2_33	0130565	.2816667	-0.05	0.963	5651358	.5390227
_Ied6d1_2_34	.3720385	.282214	1.32	0.187	1811135	.9251905
_Ied6d1_2_35	.1390268	.2881225	0.48	0.629	4257062	.7037598
_Ied6d1_2_36	.1332684	.2835281	0.47	0.638	4224593	.6889962
_Ied6d1_2_37	.3426128	.3073287	1.11	0.265	2597651	.9449907
_Ied6d1_2_38	.4112683	.2813769	1.46	0.144	140243	.9627796
_Ied6d1_2_39	.2834429	.2809214	1.01	0.313	2671757	.8340615
_Ied6d1_2_40	.336824	.2834088	1.19	0.235	2186699	.8923179
_Ied6d1_2_41	.3394473	.2807484	1.21	0.227	2108322	.8897267
_Ied6d1_2_42	.2371069	.284435	0.83	0.405	3203984	.7946122
_Ied6d1_2_43	.3420319	.2921695	1.17	0.242	2306333	.9146971
_Ied6d1_2_44	.2820741	.2854149	0.99	0.323	2773518	.8415
	.4714229	.3339049	1.41	0.158	1830455	1.125891
	.2565753	.2819697	0.91	0.363	2960978	.8092485
_Ied6d1_2_47	.254033	.290233	0.88	0.381	3148365	.8229026
_Ied6d1_2_48	.2967014	.2808021	1.06	0.291	2536833	.847086
_Ied6d1_2_49	.3794749	.2875868	1.32	0.187	184208	.9431578
_1ed6d1_2_50	.3935453	.2929948	1.34	0.179	1807376	.9678283
_Ied6d1_2_51	.2231095	.2876585	0.78	0.438	340714	.7869329
_1ed6d1_2_52	'	.2944903	1.64	0.100	0929148	1.061513
_1ed6d1_2_53		.2859909	1.86	0.062	0275083	1.093602
_1ed6d1_2_54		.2843494	1.08	0.280	2499579	.8647172
_Ied6d1_2_55		.2817527	1.03	0.303	2623095	.8421863
_Ied6d1_2_56		.2824466	0.59	0.554	3862807	.7209354
	.2625066			0.354	2905681	
_Ied6d1_2_57	•	.2821746	0.93 0.77			.8155814
_Ied6d1_2_58	.2169066	.2833414		0.444	3384551	.7722683
_Ied6d1_2_59	1301415	.2908575	-0.45	0.655	7002352	.4399523
_Ied6d1_2_60	.23793	.2836476	0.84	0.402	3180319	.7938919
_Ied6d1_2_61	.2236753	.2811929	0.80	0.426	3274753	.7748259
_Ied6d1_2_62	•	.2942357	0.92	0.359	3070249	.8464054
_Ied6d1_2_63	.1604912	.2921919	0.55	0.583	412218	.7332004
_Ied6d1_2_64	.3358281	.2879112	1.17	0.243	2284906	.9001469
_Ied6d1_2_65		.3191212	0.92	0.359	332619	.9183645
_Ied6d1_2_66		.2984075	0.49	0.627	4398063	.7299777
_Ied6d1_2_67	.1384002	.2812082	0.49	0.623	4127804	.6895808
_Ied6d1_2_68	.1546836	.2932316	0.53	0.598	4200634	.7294306
_Ied6d1_2_69		.2822902	0.32	0.749	4629273	.6436754
_Ied6d1_2_70	.2013646	.3030065	0.66	0.506	3925416	.7952709
_Ied6d1_2_71	.1360009	.317114	0.43	0.668	4855567	.7575584

```
_Ied6d1_2_72 | .2321042 .2821604 0.82 0.411
                                                 -.3209428
_Ied6d1_2_73 | .1327126 .2886633 0.46 0.646
                                                 -.4330804
_Ied6d1_2_74 | .0673388 .2877699 0.23 0.815 -.4967031
_Ied6d1_2_75 | -.1919952 .285313 -0.67 0.501 -.7512214
                                                             .3672311
_Ied6d1_2_76 | .0855746 .2909702 0.29 0.769
                                                 -.48474
                                                             .6558892
_Ied6d1_2_77 | -.0328955 .2811972
                                 -0.12 0.907
                                                 -.5840546
                                                             .5182636
                                                             .7482764
_Ied6d1_2_78 | .1842338 .2877702
                                  0.64 0.522
                                                 -.3798087
                                                 -.4978322
                                                             .6390669
_Ied6d1_2_79 | .0706173 .2900187
                                   0.24 0.808
                       .2855404
                                 -0.36 0.722
0.30 0.765
                                                             .4581897
_Ied6d1_2_80 | -.1014822
                                                  -.6611541
                       .286629
_Ied6d1_2_81 | .0857239
                                                  -.4760818
                                                             .6475295
                                  0.13 0.896
                                                             .8295192
_Ied6d1_2_82 |
              .0517087
                         .396833
                                                  -.7261017
                                  0.41 0.682
              .1384371 .3383698
_Ied6d1_2_83 |
                                                  -.5247827
                                                              .801657
                                 -0.68 0.494
_Ied6d1_2_84 | -.1925494
                        .2816458
                                                 -.7445878
                                                             .3594889
-0.81 0.419
                                                 -.7900129
                                                             .3289153
                                 -0.45 0.654
                                                             .4334317
_Ied6d1_2_86 | -.1286864 .2867884
                                                 -.6908046
                                  0.72 0.469
                                                 -.3477482
_Ied6d1_2_87 | .2038573
                        .281425
                                                             .7554628
_Ied6d1_2_88 |
               .027573 .2841968
                                  0.10 0.923 -.5294654
                                  0.05 0.959 -.5781527
                                                            .6096448
_Ied6d1_2_89 | .0157461 .3030027
                                  0.09 0.929 -.5372525
                                                            .5886564
_Ied6d1_2_90 | .025702 .2872151
_Ied6d1_2_91 | .0132052 .2812146
                                  0.05 0.963
                                                 -.537988
                                                           .5643983
                                                           .4711032
_Ied6d1_2_92 | -.0799637 .2811502 -0.28 0.776 -.6310305
                                                            .4332163
_Ied6d1_2_93 | -.1213872 .2829545 -0.43 0.668 -.6759907
-.2548577
9.147266
                                   1.08
                                         0.282
                                                             .8749458
                                 34.49 0.000
                                                           10.24964
. xi: reg logincome SEX age ed6blyr2 i.ed6d1_2 i.ea15 ea11 ea13 ea19
i.ed6d1_2 __Ied6d1_2_1-94 (_Ied6d1_2_1 for ed6d1_2==-57 omitted)
               _Iea15_10-501
                                (naturally coded; _Iea15_10 omitted)
i.ea15
    Source | SS df MS
                                               Number of obs = 27480
                                               F(202, 27277) = 47.58
                                               Prob > F = 0.0000

R-squared = 0.2606
    Model | 3384.59672 202 16.7554293
   Residual | 9605.28192 27277 .352138502
                                               Adj R-squared = 0.2551
-----
     Total | 12989.8786 27479 .47272021
                                                Root MSE = .59341
 logincome | Coef. Std. Err. t P>|t| [95% Conf. Interval]
______

      -.18467
      .0098718
      -18.71
      0.000
      -.2040193
      -.1653208

      .0091325
      .0008196
      11.14
      0.000
      .0075261
      .0107389

      .0145377
      .0008628
      16.85
      0.000
      .0128465
      .0162288

       SEX |
       age |
   ed6b1yr2 |
 _Ied6d1_2_2 |
                                  0.85 0.393 -.8160197
             .6296612 .7375731
                                                           2.075342
_Ied6d1_2_3 | .3600034 .4996645
                                  0.72 0.471 -.6193645 1.339371
_Ied6d1_2_4 | .1855712 .2712106
                                  0.68 0.494 -.3460155 .7171578
_Ied6d1_2_5 | -.0473234 .2708212 -0.17 0.861 -.5781466 .4834999
_Ied6d1_2_6 | .1799693 .2772411
                                                            .7233759
                                  0.65 0.516 -.3634374
_Ied6d1_2_7 | .1898587 .2709895
                                  0.70 0.484 -.3412946
                                                             .721012
_Ied6d1_2_8 | .0889411 .2738561
                                   0.32 0.745
                                                 -.4478308
                                                            .6257131
                                                            .6778288
                                                 -.4010912
_led6d1_2_9 | .1383688 .2752275
                                  0.50 0.615
                       .2726677
                                  0.93 0.350
0.99 0.320
                                                            .7892484
_Ied6d1_2_10 | .2548058
                                                 -.2796368
                       .2672742
                                  0.99 0.320
0.18 0.861
                                                             .7895914
_Ied6d1_2_11 | .2657204
                                                  -.2581506
                       .288007
             .0504125
                                                 -.5140959
_Ied6d1_2_12 |
                                                             .6149209
                                   1.62 0.106
                                                            1.067273
_Ied6d1_2_13 |
              .4824173
                         .298388
                                                 -.1024384
_Ied6d1_2_14 |
                       .2845384
                                  0.66 0.512
                                                 -.3710425
              .1866671
                                                             .7443768
_Ied6d1_2_15 | -.0798074
                                 -0.24 0.811
                        .3329772
                                                 -.7324597
                                                             .5728448
                       .2705691
                                  0.79 0.432
_Ied6d1_2_16 | .2125947
                                                 -.3177346
                                                             .7429239
_Ied6d1_2_17 | .1504123
                                  0.55 0.584 -.3881413
                       .2747651
_Ied6d1_2_18 | .3166924
                       .3327896
                                  0.95 0.341 -.3355921
                       .2979241
_Ied6d1_2_19 | .2234829
                                  0.75 0.453 -.3604635
                                                             .8074293
                                  0.82 0.412 -.3094458
_Ied6d1_2_20 | .222475 .2713811
                                                           .7543958
                       .2711421 0.66 0.507 -.3516481
                                                             .7112565
_Ied6d1_2_21 |
              .1798042
```

_Ied6d1_2_22	.412258	.3041535	1.36	0.175	1838983	1.008414
_Ied6d1_2_23	.2884544	.268168	1.08	0.282	2371685	.8140773
_Ied6d1_2_24	.2580419	.2692831	0.96	0.338	2697667	.7858506
_Ied6d1_2_25	'	.2671953	1.09	0.274	2312127	.8162199
	'					
_Ied6d1_2_26	.2628268	.2707359	0.97	0.332	2678293	.793483
_Ied6d1_2_27	.2927152	.2784944	1.05	0.293	253148	.8385784
_Ied6d1_2_28	.2374826	.2694729	0.88	0.378	290698	.7656631
_Ied6d1_2_29	.3038005	.280075	1.08	0.278	2451609	.8527619
_Ied6d1_2_30	.2645791	.2721952	0.97	0.331	2689375	.7980956
_Ied6d1_2_31	.2573328	.2705927	0.95	0.342	2730427	.7877082
			0.84			
_Ied6d1_2_32	.2271834	.2713273		0.402	3046321	.7589988
_Ied6d1_2_33	.1572268	.2678891	0.59	0.557	3678494	.682303
_Ied6d1_2_34	.3850848	.2683437	1.44	0.151	1408825	.9110522
_Ied6d1_2_35	.2461355	.2747319	0.90	0.370	2923531	.784624
_Ied6d1_2_36	.3046941	.2709621	1.12	0.261	2264054	.8357935
_Ied6d1_2_37	.4303487	.298082	1.44	0.149	1539073	1.014605
_Ied6d1_2_38	.4416582	.2677095	1.65	0.099	0830661	.9663826
	'					
_Ied6d1_2_39	.3385599	.2669201	1.27	0.205	1846172	.8617369
_Ied6d1_2_40	.2714294	.26954	1.01	0.314	2568828	.7997416
_Ied6d1_2_41	.3387762	.2668484	1.27	0.204	1842602	.8618127
_Ied6d1_2_42	.2690144	.2701882	1.00	0.319	2605682	.798597
_Ied6d1_2_43	.4074299	.2778044	1.47	0.142	1370809	.9519407
_Ied6d1_2_44	.3326612	.2711013	1.23	0.220	1987113	.8640336
Ied6d1 2 45	.4991838	.3177487	1.57	0.116	1236199	1.121987
_Ied6d1_2_46	.3164178	.2680037	1.18	0.238	2088831	.8417186
_Ied6d1_2_47	.2856701	.2762136	1.03	0.301	2557227	.8270628
_Ied6d1_2_48	.2997233	.2667761	1.12	0.261	2231714	.822618
_Ied6d1_2_49	.4160757	.275025	1.51	0.130	1229873	.9551386
_Ied6d1_2_50	.3939741	.2799483	1.41	0.159	1547387	.942687
_Ied6d1_2_51	.2525417	.2736608	0.92	0.356	2838474	.7889307
	.3461765	.2805983	1.23	0.330	2038105	.8961635
_Ied6d1_2_52	'					
_Ied6d1_2_53	.4367676	.2726614	1.60	0.109	0976627	.9711979
_Ied6d1_2_54	.315134	.2699761	1.17	0.243	2140329	.844301
_Ied6d1_2_55	.3358234	.2677491	1.25	0.210	1889785	.8606254
_Ied6d1_2_56	.2860117	.2683471	1.07	0.287	2399623	.8119856
	.2922376	.2680355	1.09	0.276	2331257	.8176008
_Ied6d1_2_58	.3066808	.2690618	1.14	0.254	220694	.8340557
	.1588155	.2795789	0.57	0.570	3891734	.7068044
_Ied6d1_2_59						
_Ied6d1_2_60	.2696589	.2696699	1.00	0.317	2589079	.7982257
_Ied6d1_2_61	.3554986	.2672995	1.33	0.184	168422	.8794193
_Ied6d1_2_62	.3148873	.2797885	1.13	0.260	2335124	.863287
_Ied6d1_2_63	.2300784	.2780823	0.83	0.408	3149771	.7751339
_Ied6d1_2_64	.377447	.2738734	1.38	0.168	1593589	.9142528
	.4820666	.3113364	1.55	0.122	1281686	1.092302
_Ied6d1_2_66		.2914829	0.79	0.427	33997	.8026727
_1ed0d1_2_00	2710101					
_Ied6d1_2_67		.2674937	1.01	0.311	2532822	.7953203
_Ied6d1_2_68		.2798649	1.20	0.232	2139641	.8831348
_Ied6d1_2_69	.2044673	.2693387	0.76	0.448	3234503	.732385
_Ied6d1_2_70	.3303468	.2916886	1.13	0.257	2413778	.9020713
_Ied6d1_2_71	.3316572	.3060832	1.08	0.279	2682815	.931596
_Ied6d1_2_72	.3226514	.2681398	1.20	0.229	2029162	.8482191
_Ied6d1_2_73	.281649	.2751672	1.02	0.306	2576927	.8209908
_Ied6d1_2_74	.2636397	.27475	0.96	0.337	2748843	.8021638
_Ied6d1_2_75		.271606	0.09	0.930	5085586	.5561648
_Ied6d1_2_76	.3099617	.2786872	1.11	0.266	2362794	.8562028
_Ied6d1_2_77	.1925202	.2673068	0.72	0.471	3314148	.7164552
_Ied6d1_2_78	.3013733	.2737648	1.10	0.271	2352196	.8379663
_Ied6d1_2_79	.2763882	.2763476	1.00	0.317	2652671	.8180436
_Ied6d1_2_80	.0695828	.2719432	0.26	0.798	4634398	.6026054
		.2727979			2817194	.787676
_Ied6d1_2_81	.2529783		0.93	0.354		
_Ied6d1_2_82	.109906	.3765315	0.29	0.770	6281149	.8479269
_Ied6d1_2_83	.3372533	.3212887	1.05	0.294	2924888	.9669955
_Ied6d1_2_84	.0671308	.2680313	0.25	0.802	4582243	.5924859

_Ied6d1_2_85	.0076141	.2727584	0.03	0.978	5270062	.5422345
_Ied6d1_2_86	.0930807	.2728446	0.34	0.733	4417086	.62787
_Ied6d1_2_87		.2674341	1.24	0.214	191824	.856545
	.2285996	.2704744	0.85	0.398	301544	.7587432
_Ied6d1_2_89		.293975	0.69	0.491	3735854	.7788265
_Ied6d1_2_90	.1760617	.2732596	0.64	0.519	3595411	.7116644
_Ied6d1_2_91		.2672797	0.74	0.459	3260792	.7216844
_Ied6d1_2_92		.2672909	0.59	0.557	3668099	.6809977
_Ied6d1_2_93	.084439	.2697065	0.31	0.754	4441994	.6130774
_Ied6d1_2_94		.2742663	1.38	0.167	1586591	.9164928
Iea15_21		.0750176	-0.57	0.568	1898837	.1041928
_Iea15_22		.0934622	0.04	0.965	1790966	.1872847
_1ea15_23	0952242	.0724012	-1.32	0.188	2371342	.0466857
_lea15_24		.076123	-0.68	0.494	201272	.0971379
_1ea15_24 _Iea15_25		.1003815	-0.39			.1578797
				0.699	2356261	
_Iea15_26		.0753697	-2.22	0.027	3149501	019493
_Iea15_27		.0839732	-0.35	0.726	1940523	.1351312
_Iea15_31		.0799039	-6.44	0.000	6711615	3579301
_Iea15_32	478949	.0721928	-6.63	0.000	6204505	3374474
_Iea15_33	3090166	.0578104	-5.35	0.000	4223279	1957054
_Iea15_40	6094353	.1123886	-5.42	0.000	8297227	3891479
_Iea15_51	.0509109	.0533859	0.95	0.340	0537282	.15555
_Iea15_52		.05349	2.40	0.016	.0234854	.2331718
_1ea15_52		.0754998	1.83	0.067	0097608	.2862063
_1ea15_54		.0589358	2.81	0.005	.050311	.2813453
	.0344206	.0573804	0.60	0.549	078048	.1468892
_Iea15_70		.0772753	-4.09	0.000	4679028	1649759
_Iea15_81		.082928	-1.53	0.125	2897439	.0353425
_Iea15_82		.0572563	2.17	0.030	.0122858	.2367363
_Iea15_83	.0487126	.1320394	0.37	0.712	2100914	.3075166
_Iea15_84	.1463017	.1059898	1.38	0.167	0614436	.3540471
_Iea15_85	.0862969	.0619066	1.39	0.163	0350431	.2076369
_Iea15_86	.0512879	.0558443	0.92	0.358	0581699	.1607456
 _Iea15_87		.0633511	3.15	0.002	.0751741	.3235171
_Iea15_88		.0541861	4.13	0.000	.1176109	.3300259
_1ea15_89		.0532434	2.06	0.040	.0051802	.2138999
	.0228152	.0596271	0.38	0.702	0940569	.1396872
		.0593648	0.53	0.702	0848215	.1478945
_Iea15_92	.1112466	.0960092	1.16	0.247	0769363	.2994295
_Iea15_93		.0756776	0.74	0.462	0926142	.2040498
_Iea15_94		.0539115	2.15	0.032	.010131	.2214694
_Iea15_95		.1116068	1.32	0.186	0711666	.3663435
_Iea15_96		.0799915	4.43	0.000	.1977099	.5112849
_Iea15_97	.3051909	.0856342	3.56	0.000	.1373435	.4730383
_Iea15_98	.2049358	.0657036	3.12	0.002	.0761533	.3337182
_Iea15_99	.1627852	.0578058	2.82	0.005	.0494829	.2760876
	0851226	.0621578	-1.37	0.171	2069551	.03671
	2268438	.0786425	-2.88	0.004	3809871	0727004
	2470028	.0969406	-2.55	0.011	4370112	0569943
_Iea15_102		.0670632	-0.82	0.412	1864493	.0764453
		.1154579	-1.26	0.207	3720061	.0806007
	5132046	.0765728	-6.70	0.000	6632911	363118
	.3656811	.1185098	3.09	0.002	.1333958	.5979664
	1813604	.0712882	-2.54	0.011	3210888	041632
	2063979	.0615586	-3.35	0.001	3270559	0857398
_Iea15_114	2231579	.0702001	-3.18	0.001	3607536	0855622
_Iea15_120	0207256	.1075717	-0.19	0.847	2315716	.1901204
_Iea15_130	2022123	.1456525	-1.39	0.165	4876986	.0832739
	.2610494	.0511256	5.11	0.000	.1608406	.3612581
_Iea15_151		.0580061	-0.39	0.697	1363103	.0910796
_Iea15_151		.0630459	-0.09	0.925	1295236	.1176226
_1ea15_152 _Iea15_153		.0532438	-0.03	0.821	116429	.092292
_Iea15_133 _Iea15_171		.1093457	3.21	0.021	.1361723	.5648186
_16012_1/I	1 .3304933	· TO 2040 /	2.41	0.001	.1301/23	.7040100

_Iea15_172	.2164837	.2046838	1.06	0.290	184707	.6176745
_Iea15_173	0739147	.1090561	-0.68	0.498	2876703	.1398409
_Iea15_174	.056098	.1040059	0.54	0.590	147759	.2599549
_Iea15_175	0728031	.3024112	-0.24	0.810	6655444	.5199383
_Iea15_176	2102627	.3476247	-0.60	0.545	8916248	.4710994
_Iea15_191	1588713	.3505567	-0.45	0.650	8459803	.5282377
 _Iea15_192	.0721908	.1385651	0.52	0.602	199404	.3437855
	0587288	.0587327	-1.00	0.317	1738479	.0563904
_Iea15_194	.0538537	.0702876	0.77	0.444	0839135	.191621
_Iea15_195	.0715724	.3508066	0.20	0.838	6160263	.7591711
_Iea15_196	.183002	.1019884	1.79	0.073	0169005	.3829044
rea15190 rea15197	1325842	.0816394	-1.62	0.104	2926016	.0274331
_Iea15_198	0078218	.1050801	-0.07	0.941	2137841	.1981405
_1ea15_190	.0138403	.0566096	0.24	0.807	0971174	.1247981
_Iea15_200	1 .1751533	.0573232	3.06	0.002	.062797	.2875097
_Iea15_201 _Iea15_202	3183417	.0605275	-5.26	0.002	4369787	1997046
_1ea15_202 _Iea15_203	.0604385	.0575451	1.05	0.294	0523529	.1732298
_1ea15_203 _Iea15_221	5154229	.0985279	-5.23	0.000	7085427	3223031
_1ea15_221 _1ea15_222	.0558839	.0589254	0.95	0.343	0596129	.1713806
				0.000	388669	1483246
_Iea15_223	2684968	.0613107	-4.38			
_Iea15_231	1807579	.2232633	-0.81	0.418	6183654	.2568496
_Iea15_232	0484011	.1127966	-0.43	0.668	2694882	.172686
_Iea15_233	.1141218	.3471961	0.33	0.742	5664002	.7946438
_Iea15_234	4409657	.270473	-1.63	0.103	9711066	.0891751
_Iea15_235	.1915753	.2163043	0.89	0.376	2323922	.6155429
_Iea15_236	3755813	.1065408	-3.53	0.000	5844066	166756
_Iea15_237	070014	.178927	-0.39	0.696	42072	.2806919
_Iea15_238	1136089	.1210232	-0.94	0.348	3508206	.1236028
_Iea15_240	2223411	.0546814	-4.07	0.000	3295195	1151627
_Iea15_251	7151494	.2704563	-2.64	0.008	-1.245258	1850412
_Iea15_252	6859198	.4236989	-1.62	0.105	-1.516391	.1445516
_Iea15_253	4741916	.4228186	-1.12	0.262	-1.302938	.3545544
_Iea15_254	(dropped)					
_Iea15_255	(dropped)					
_Iea15_256	139007	.3016186	-0.46	0.645	7301948	.4521807
_Iea15_257	6736039	.3468556	-1.94	0.052	-1.353459	.0062508
_Iea15_271	(dropped)					
_Iea15_272	0867934	.5958506	-0.15	0.884	-1.254691	1.081104
_Iea15_273	(dropped)					
_Iea15_274	(dropped)					
_Iea15_275	.3671557	.5960438	0.62	0.538	8011205	1.535432
_Iea15_276	8245512	.5994093	-1.38	0.169	-1.999424	.3503216
_Iea15_277	3100871	.5961642	-0.52	0.603	-1.478599	.8584253
_Iea15_278	(dropped)					
_Iea15_279	(dropped)					
_Iea15_280	.1645056	.3019021	0.54	0.586	4272379	.7562491
_Iea15_281	(dropped)					
_Iea15_282	(dropped)					
_Iea15_283	(dropped)					
_Iea15_285	0397161	.4229198	-0.09	0.925	8686604	.7892282
_Iea15_286	(dropped)					
	(dropped)					
	(dropped)					
	(dropped)					
_Iea15_291	(dropped)					
_Iea15_292	0413107	.2304516	-0.18	0.858	4930076	.4103861
_1ea15_293	(dropped)				. == = 0 0 7 0	
_1ea15_295	5090467	.5958797	-0.85	0.393	-1.677001	.658908
_1ea15_296	.0708876	.4257139	0.17	0.868	7635334	.9053086
_1ea15_298	(dropped)	. 120 / 100	J • ± /	3.300	•	• 5 5 5 5 5 5 5
_Iea15_299	.8545443	.5969368	1.43	0.152	3154822	2.024571
_1ea15_299 _Iea15_401	1904702	.0656188	-2.90	0.132	3190863	0618541
_Iea15_401 _Iea15_402	4238229	.0740826	-2.90 -5.72	0.004	5690287	2786172
_+04+0_402	1 • 1200223	.0/10020	J • 12	0.000	. 30 30 20 1	• Z 10011Z

_Tea15_403 _Tea15_404 _Tea15_405 _Tea15_500 _Tea15_501 _ea11 _ea13 _ea19	 (c	.4423398 .3220128 .1654686 .1779319 .0068364 dropped) 01182	.077 .061 .055 .093	50545 77942 L6165 51696 31345 L6207 58394	-5.82 -4.14 2.69 -3.23 -0.07 -7.29 -6.97	(0.000 0.000 0.007 0.001 0.941	5914104 4744933 .0446972 2860671 1893848 0149966	-	293269 169532 .2862 069796 .17571 008643 029244	2 4 8 2 4 9
_cons		9.658004		20703	35.50		0.000	9.124733		10.1912	8

Regression for master's degree holders

. keep if ed6c1==2
(35655 observations deleted)

. xi: reg logincome SEX

Source		df		MS 		Number of obs F(1, 12067)	= 1019.56
Model Residual	489.591104 5794.57336					Prob > F R-squared Adj R-squared	= 0.0779
Total	6284.16447	12068	.520	729571		Root MSE	
logincome	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
SEX _cons	4384722 10.55946			-31.93 1398.09		4653892 10.54465	4115551 10.57426
. xi: reg logi	ncome SEX age	e ed6b1	yr2				
Source	SS	df 		MS		Number of obs F(3, 12065)	
	1081.66931 5202.49516					Prob > F R-squared Adj R-squared	= 0.0000 = 0.1721
Total	6284.16447	12068	.520	729571		Root MSE	= .65666
logincome	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
SEX	3825456	.0131	478	-29.10	0.000	4083174	3567738
age					0.000	.0045398	.0083809
ed6b1yr2		.0010	391	18.99	0.000	.0176932	.0217669
_cons	10.03485	.0303	284	330.87	0.000	9.975397 	10.09429
. xi: reg logi							
i.ed6d1_2	_Ied6d1_2	2_1-94		(_Ied6d1_	_2_1 for	ed6d1_2==-57	omitted)
Source	SS	df 		MS		Number of obs F(96, 11972)	
Model	1506.91807	96	15.6	970632		Prob > F	
Residual	4777.2464	11972	.399	034948		R-squared	
	6284.16447	12068	.520	729571		Adj R-squared Root MSE	
logincome	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
SEX	2109853	.0145	182	-14.53	0.000	2394433	1825272
age	.0111393	.0009	822	11.34	0.000	.009214	.0130645
ed6b1yr2	.018513	.001		17.75	0.000	.0164685	.0205575
_Ied6d1_2_2	.1038801	.5767		0.18	0.857	-1.026627	1.234387
_Ied6d1_2_3		.7294		0.40	0.689	-1.137552	1.722039
_Ied6d1_2_4 _Ied6d1_2_5	2500387 5175929	.3785		-0.66 -1.34	0.509	9919687 -1.274259	.4918913 .2390729
_1ed6d1_2_6	2408598	.3805		-0.63	0.180 0.527	9868029	.5050834
_Ied6d1_2_7	4904459	.3731		-1.31	0.189	-1.221976	.2410839
_Ied6d1_2_8	2588666	.3775		-0.69	0.493	9989264	.4811931

= 16.14 0 0	E455046	0.000000	4 0 0	0 1 0		0000011
_Ied6d1_2_9		.3772917	-1.37	0.172	-1.255144	.2239614
_Ied6d1_2_10	6145353	.3725288	-1.65	0.099	-1.344752	.1156815
_Ied6d1_2_11	4215527	.3673853	-1.15	0.251	-1.141687	.2985821
_Ied6d1_2_12	6265594	.3805792	-1.65	0.100	-1.372556	.1194376
	568708	.3786099	-1.50	0.133	-1.310845	.1734288
_1ed6d1_2_14	4281068	.3764547	-1.14	0.255	-1.166019	.3098056
	2032121	.3956896	-0.51	0.608	9788278	.5724037
_Ied6d1_2_15						
_Ied6d1_2_16	3185121	.3724334	-0.86	0.392	-1.048542	.4115176
_Ied6d1_2_17	3449996	.3729402	-0.93	0.355	-1.076023	.3860237
_Ied6d1_2_18	3110568	.3995907	-0.78	0.436	-1.094319	.4722057
_Ied6d1_2_19	3449019	.3785361	-0.91	0.362	-1.086894	.3970903
_Ied6d1_2_20	5121517	.3738939	-1.37	0.171	-1.245044	.220741
Ied6d1 2 21	3674905	.3720095	-0.99	0.323	-1.09669	.3617085
	.0654216	.4211477	0.16	0.877	7600962	.8909394
	.0021542	.368042	0.01	0.995	7192678	.7235762
_1ed6d1_2_24	2311155	.3860999	-0.60	0.549	9879339	.5257029
_Ied6d1_2_25		.3655127	0.07	0.944	6907405	.7421878
_Ied6d1_2_26	.1153893	.3733951	0.31	0.757	6165257	.8473042
_Ied6d1_2_27	226709	.4159122	-0.55	0.586	-1.041964	.5885464
_Ied6d1_2_28	.1096955	.3692009	0.30	0.766	6139981	.8333892
_Ied6d1_2_29	1766796	.3770603	-0.47	0.639	915779	.5624199
_Ied6d1_2_30	2949605	.3711065	-0.79	0.427	-1.022389	.4324684
_Ied6d1_2_31	4114033	.3769612	-1.09	0.275	-1.150308	.3275017
Ied6d1 2 32	4278347	.3717833	-1.15	0.250	-1.15659	.300921
Ied6d1 2 33	2816176	.3696943	-0.76	0.446	-1.006278	.4430431
						.6914411
_Ied6d1_2_34	0295255	.3678097	-0.08	0.936	7504922	
_Ied6d1_2_35	2469696	.3911281	-0.63	0.528	-1.013644	.5197049
_Ied6d1_2_36	3013125	.3755	-0.80	0.422	-1.037353	.4347284
_Ied6d1_2_37	2868099	.3779076	-0.76	0.448	-1.02757	.4539502
_Ied6d1_2_38	.0080523	.3669431	0.02	0.982	7112157	.7273203
_Ied6d1_2_39	0839136	.3656216	-0.23	0.818	8005913	.6327641
_Ied6d1_2_40	.0530107	.3673642	0.14	0.885	6670827	.7731042
	.0590581	.3652244	0.16	0.872	656841	.7749571
	1061783	.3710404	-0.29	0.775	8334777	.621121
_Ied6d1_2_43	0379564	.3681659	-0.10	0.918	7596212	.6837084
	.0930848	.3837876	0.24	0.808	6592011	.8453707
_Ied6d1_2_44						
_Ied6d1_2_45	.2434807	.4466772	0.55	0.586	6320791	1.11904
_Ied6d1_2_46	0178978	.3678457	-0.05	0.961	738935	.7031393
_Ied6d1_2_47	0072973	.3721902	-0.02	0.984	7368504	.7222558
_Ied6d1_2_48	0541611	.3656297	-0.15	0.882	7708546	.6625325
_Ied6d1_2_49	1054167	.3743599	-0.28	0.778	8392228	.6283894
_Ied6d1_2_50	1514303	.3955925	-0.38	0.702	9268557	.6239951
_Ied6d1_2_51	3014951	.3974317	-0.76	0.448	-1.080526	.4775354
_Ied6d1_2_52	.01716	.3740269	0.05	0.963	7159934	.7503134
_Ied6d1_2_53		.4019748	0.32	0.746	6577318	.9181397
_1ed6d1_2_54	.1080271	.3687294	0.29	0.770	6147423	.8307965
		.3726911			8658442	.5952259
_Ied6d1_2_55			-0.36	0.717		
_Ied6d1_2_56	•	.3785523	-0.30	0.765	8550652	.6289828
_Ied6d1_2_57	0251004	.3734372	-0.07	0.946	7570979	.7068972
_Ied6d1_2_58	0922247	.376449	-0.24	0.806	8301258	.6456764
_Ied6d1_2_59	5664309	.3770511	-1.50	0.133	-1.305512	.1726504
_Ied6d1_2_60	2280919	.3720651	-0.61	0.540	9573999	.501216
_Ied6d1_2_61	2262975	.366556	-0.62	0.537	9448067	.4922117
_Ied6d1_2_62	.0451269	.3687417	0.12	0.903	6776667	.7679205
_Ied6d1_2_63	0932219	.3701425	-0.25	0.801	8187611	.6323174
_Ied6d1_2_64	19706	.382	-0.52	0.606	9458419	.5517219
_1ed6d1_2_65	•	.4114504	-0.37	0.710	9596886	.6533302
		.3899029	-0.37			
	•			0.887	8198005	.7087453
_Ied6d1_2_67	3604707	.3667575	-0.98	0.326	-1.079375	.3584334
_Ied6d1_2_68	3350379	.3956218	-0.85	0.397	-1.110521	.440445
	1319366	.3680195	-0.36	0.720	8533145	.5894413
_Ied6d1_2_70		.378896	-0.52	0.601	940684	.544711
_Ied6d1_2_71	2765087	.3956442	-0.70	0.485	-1.052035	.499018

```
_Ied6d1_2_72 | -.1680823 .3670988 -0.46 0.647
                                             -.8876555
                                                        .5514909
_Ied6d1_2_73 | -.2809871 .3781929 -0.74 0.458 -1.022307
_Ied6d1_2_74 | -.5121763 .3679772 -1.39 0.164 -1.233471
_Ied6d1_2_75 | -.4648425
                     .3656553 -1.27 0.204 -1.181586
                                                        .2519013
_Ied6d1_2_76 | -.5137015
                      .3844831
                              -1.34 0.182 -1.267351
                                                        .2399478
                     .3679234
                                                        .2429113
_Ied6d1_2_77 | -.4782783
                              -1.30 0.194 -1.199468
                     .3753998
                                              -1.020235
                                                        .4514544
_Ied6d1_2_78 | -.2843901
                               -0.76 0.449
                      .4020198
                                              -1.021944
                                                        .5541046
_Ied6d1_2_79 | -.2339195
                                -0.58 0.561
                                                        .4147176
_Ied6d1_2_80 | -.3088108
                      .3691166
                                              -1.032339
                                -0.84 0.403
_Ied6d1_2_81 |
                                              -.8604549
                                                        .5745585
            -.1429482
                      .3660446
                                -0.39
                                       0.696
                                -0.36 0.718
_Ied6d1_2_82 |
            -.1365094
                      .3773153
                                              -.8761087
                                                         .6030898
                                -0.73 0.467
                      .384525
_Ied6d1_2_83 |
            -.2799489
                                               -1.03368
                                                         .4737823
_Ied6d1_2_84 |
                                -1.18 0.237
            -.4319891
                       .365322
                                              -1.148079
                                                         .2841012
                              -1.85 0.065 -1.426677
_Ied6d1_2_85 | -.6919824
                      .3748134
                                                         .0427126
_Ied6d1_2_86 | -.2806358
                      .3878222
                                                         .4795587
                               -0.72 0.469
                                               -1.04083
_Ied6d1_2_87 |
             -.20891 .3676008 -0.57 0.570 -.9294671
                                                         .5116471
_Ied6d1_2_88 | -.3851662 .3775476 -1.02 0.308 -1.125221
                                                        .3548884
_Ied6d1_2_89 | -.5992384
                     .7294314 -0.82 0.411 -2.029042
                                                        .8305654
                      .370054 -0.24 0.811 -.8137997
_Ied6d1_2_90 | -.0884339
                                                         .636932
_Ied6d1_2_91 | -.3755544
                     .3689377 -1.02 0.309 -1.098732
                                                       .3476232
                                                        .2725855
_Ied6d1_2_92 | -.4504419
                      .368861 -1.22 0.222 -1.173469
                                                        .2973203
_Ied6d1_2_93 | -.4268007
                      .3694189
                                -1.16 0.248
                                              -1.150922
                      .3792565
_Ied6d1_2_94 | -.0251757
                                -0.07
                                       0.947
                                              -.7685799
                                                         .7182286
                                            9.292653
                              27.35 0.000
                                                        10.72726
     _cons | 10.00996
                      .3659419
. xi: reg logincome SEX age ed6blyr2 i.ed6d1_2 i.ea15 ea11 ea13 ea19
i.ed6d1_2 __Ied6d1_2_1-94 (_Ied6d1_2_1 for ed6d1_2==-57 omitted)
              _Iea15_10-501
                              (naturally coded; _Iea15_10 omitted)
i.ea15
    Source | SS df MS
                                            Number of obs = 10100
                                            F(197, 9902) = 19.59
    Model | 1445.67281 197 7.33844066
                                            Prob > F = 0.0000
                                            R-squared = 0.2804
  Residual | 3709.97614 9902 .374669374
                                            Adj R-squared = 0.2661
_____
     Total | 5155.64895 10099 .510510837
                                            Root MSE =
  logincome | Coef. Std. Err. t P>|t| [95% Conf. Interval]
______
                       .016294 -11.47 0.000 -.2188362
       SEX | -.1868966
                                                         -.154957
              .011046 .0010923
                              10.11 0.000
                                              .0089048
.0140821
                                                        .0131872
       age |
            .0163539
                       .001159 14.11 0.000
   ed6b1yr2 |
                                                         .0186257
             .2280006 .5922227
 _Ied6d1_2_2 |
                                0.38 0.700 -.9328765 1.388878
_Ied6d1_2_3 | .2922303 .7123742
                                0.41 0.682 -1.104168 1.688629
_Ied6d1_2_4 | -.3061954 .3741488 -0.82 0.413 -1.039603 .4272124
                                                        .3148658
_Ied6d1_2_5 | -.4519666 .3912004 -1.16 0.248 -1.218799
_Ied6d1_2_7 | -.3681046 .3741341 -0.98 0.325 -1.101484
                                                       .3652744
                                             -.9536826
                                                        .5188215
_Ied6d1_2_8 | -.2174306
                     .3755998 -0.58 0.563
                      .3773678
                                                        .2709958
_Ied6d1_2_9 | -.4687219
                              -1.24 0.214
                                               -1.20844
                      .3718359
                                                        .3477104
_Ied6d1_2_10 | -.3811636
                                -1.03 0.305
                                              -1.110038
                                                        .3335097
_Ied6d1_2_11 | -.381481
                      .3647533
                                -1.05
                                              -1.096472
                                       0.296
                                      0.089
                                                        .1009252
_Ied6d1_2_12 |
             -.6578595
                      .3870949
                                -1.70
                                              -1.416644
                                -0.99 0.321
_Ied6d1_2_13 |
            -.3832508
                      .3860445
                                              -1.139977
                                                         .3734751
_Ied6d1_2_14 |
            -.189865
                               -0.50 0.614
                                              -.9280617
                      .3765919
                                                         .5483317
                              -0.32 0.751
_Ied6d1_2_15 | -.1267186
                      .3997099
                                             -.9102313
                                                         .6567942
_Ied6d1_2_16 | -.2768054
                      .3697307
                              -0.75 0.454
                                             -1.001553
                                                         .4479421
                                                         .4120435
Ied6d1 2 17 | -.3173801
                      .3721162 -0.85 0.394 -1.046804
_Ied6d1_2_18 | -.2834142
                     .4047013 -0.70 0.484 -1.076711
                                                        .4558329
_Ied6d1_2_19 | -.2842427
                     .3775503 -0.75 0.452 -1.024318
                                                       .3090907
                     .3721503 -1.13 0.259 -1.14989
_Ied6d1_2_20 | -.4203996
                                                        .3516903
_Ied6d1_2_21 | -.3715022
                      .3689374 -1.01 0.314 -1.094695
```

_Ied6d1_2_22	0451648	.4198991	-0.11	0.914	8682525	.777923
_Ied6d1_2_23	1197679	.3621467	-0.33	0.741	8296492	.5901133
_Ied6d1_2_24	3590293	.3802262	-0.94	0.345	-1.10435	.3862916
Ied6d1_2_25	•	.3596534	-0.28	0.781	8049807	.6050071
_1ed6d1_2_26	0388987	.3681071	-0.11	0.916	7604636	.6826661
	•					
_Ied6d1_2_27	3398053	.4079602	-0.83	0.405	-1.13949	.4598798
_Ied6d1_2_28	.0112496	.3633083	0.03	0.975	7009086	.7234078
_Ied6d1_2_29	3223993	.3721111	-0.87	0.386	-1.051813	.4070143
_Ied6d1_2_30	322033	.3660682	-0.88	0.379	-1.039601	.3955352
_Ied6d1_2_31	4692611	.3737567	-1.26	0.209	-1.2019	.2633782
	•					
_Ied6d1_2_32	4336015	.3669424	-1.18	0.237	-1.152883	.2856802
_Ied6d1_2_33	3603184	.3645021	-0.99	0.323	-1.074817	.3541799
_Ied6d1_2_34	1797615	.3620976	-0.50	0.620	8895465	.5300235
_Ied6d1_2_35	301768	.3848995	-0.78	0.433	-1.056249	.4527134
	2606296	.3757506	-0.69	0.488	9971773	.4759181
_1ed6d1_2_37	2653672	.3767919	-0.70	0.481	-1.003956	.4732216
	•					
_Ied6d1_2_38	1124927	.3620345	-0.31	0.756	822154	.5971686
_Ied6d1_2_39	156448	.3590269	-0.44	0.663	8602138	.5473178
_Ied6d1_2_40	1255857	.361395	-0.35	0.728	8339935	.5828221
Ied6d1 2 41	1067448	.3594212	-0.30	0.766	8112834	.5977939
_Ied6d1_2_42	2202689	.3645125	-0.60	0.546	9347877	.4942499
	•			0.778		
_Ied6d1_2_43	1021274	.3624282	-0.28		8125604	.6083055
_Ied6d1_2_44	0327512	.3788968	-0.09	0.931	7754661	.7099638
_Ied6d1_2_45	.1913994	.4389625	0.44	0.663	6690565	1.051855
_Ied6d1_2_46	1592343	.3617313	-0.44	0.660	8683013	.5498328
_Ied6d1_2_47	0791609	.3673931	-0.22	0.829	7993262	.6410043
_Ied6d1_2_48	1551681	.3599728	-0.43	0.666	860788	.5504518
						.5490471
_Ied6d1_2_49	1731503	.3684298	-0.47	0.638	8953477	
_Ied6d1_2_50	1214139	.3867768	-0.31	0.754	8795752	.6367474
_Ied6d1_2_51	4079917	.4002713	-1.02	0.308	-1.192605	.3766215
_Ied6d1_2_52	1686986	.3712781	-0.45	0.650	8964792	.5590821
_Ied6d1_2_53	.0257555	.4051829	0.06	0.949	7684855	.8199965
_Ied6d1_2_54	0344998	.3617528	-0.10	0.924	7436089	.6746093
	•					
_Ied6d1_2_55	217644	.3671776	-0.59	0.553	9373869	.5020989
_Ied6d1_2_56	1205065	.3770361	-0.32	0.749	859574	.6185611
_Ied6d1_2_57	0480234	.3681539	-0.13	0.896	76968	.6736333
_Ied6d1_2_58	1735078	.3712578	-0.47	0.640	9012487	.5542332
_Ied6d1_2_59	5370253	.3947576	-1.36	0.174	-1.310831	.23678
_Ied6d1_2_60	2472861	.3678723	-0.67	0.501	9683907	.4738186
_Ied6d1_2_61	1747509	.3622229	-0.48	0.630	8847815	.5352797
_Ied6d1_2_62	0527135	.3626958	-0.15	0.884	763671	.658244
_Ied6d1_2_63	0912229	.3660319	-0.25	0.803	80872	.6262742
_Ied6d1_2_64	1567798	.383922	-0.41	0.683	9093451	.5957856
_Ied6d1_2_65	1582802	.4307969	-0.37	0.713	-1.00273	.6861694
_Ied6d1_2_66		.4054707	-0.32	0.746	9263079	.6633025
_Ied6d1_2_67	3205541	.3624554	-0.88	0.377	-1.03104	.3899322
_1ed0d1_2_07	0105077					
_Ied6d1_2_68		.4137035	-0.05	0.962	8305407	.7913453
_Ied6d1_2_69		.3646419	-0.36	0.716	8475839	.5819606
_Ied6d1_2_70	1641799	.3749998	-0.44	0.662	899256	.5708961
_Ied6d1_2_71	256901	.3973501	-0.65	0.518	-1.035788	.521986
_Ied6d1_2_72		.3618592	-0.48	0.629	8840826	.5345529
_Ied6d1_2_73		.3750192	-0.83	0.405	-1.047411	.4228173
_Ied6d1_2_74	4162884	.3634447	-1.15	0.252	-1.128714	.2961372
_Ied6d1_2_75		.3603509	-1.35	0.176	-1.193856	.218866
_Ied6d1_2_76	3057974	.391242	-0.78	0.434	-1.072711	.4611165
_Ied6d1_2_77	4974096	.3634983	-1.37	0.171	-1.20994	.2151211
_Ied6d1_2_78		.3706593	-1.00	0.320	-1.095413	.3577222
_1ed6d1_2_79		.4273391	-0.57	0.571	-1.079975	.5953685
_Ied6d1_2_80	3722116	.3674527	-1.01	0.311	-1.092494	.3480705
_Ied6d1_2_81		.3598889	-0.74	0.462	9701881	.4407231
_Ied6d1_2_82		.3730857	-0.43	0.665	8928549	.5697929
_Ied6d1_2_83		.378425	-0.95	0.343	-1.100648	.3829319
_Ied6d1_2_84		.3599186	-1.25	0.212	-1.154366	.2566616
		.0000100	1.20	V.212	1.101000	.2000010

_Ied6d1_2_85	7549646	.3775432	-2.00	0.046	-1.495026	0149031
_1ed6d1_2_86		.3843778	-0.75	0.453	-1.041768	.465149
_1ed6d1_2_87		.3627877	-0.65	0.516	9465351	.4757403
_1ed6d1_2_88		.3741153	-0.87	0.384	-1.059343	.4073412
_1ed6d1_2_89		•0711100	0.07	0.001	1.009010	. 10 / 5 112
_Ied6d1_2_90		.3646712	-0.29	0.772	8204714	.6091881
_1ed6d1_2_91		.3644076	-0.98	0.326	-1.072519	.3561069
_Ied6d1_2_92		.3645165	-1.16	0.248	-1.135743	.29331
_Ied6d1_2_93		.3656175	-1.41	0.157	-1.233743	.199626
_Ied6d1_2_94		.3773523	-0.12	0.908	7834374	.6959375
Iea15_21		.1325081	1.28	0.199	0895426	.4299432
		.1594246	2.69	0.007	.1159217	.7409312
		.117968	2.11	0.035	.0172762	.4797588
_Iea15_24		.1409618	2.09	0.037	.0180104	.5706381
_Iea15_25	.3792043	.1436123	2.64	0.008	.0976948	.6607137
_Iea15_26	.1447761	.1708372	0.85	0.397	1900995	.4796518
_Iea15_27		.1421772	2.78	0.005	.1167422	.6741345
_Iea15_31		.2033218	-3.21	0.001	-1.050668	253564
_Iea15_32	3055836	.325277	-0.94	0.348	9431928	.3320255
_Iea15_33		.1413552	-1.21	0.228	4475168	.1066534
_Iea15_40		.1406717	-1.27	0.203	4548728	.0966177
_Iea15_51	.2635685	.1055503	2.50	0.013	.0566685	.4704686
_Iea15_52		.1050534	3.66	0.000	.178259	.590111
_Iea15_53		.1201412	4.05	0.000	.2508717	.7218742
_Iea15_54		.112093	3.98	0.000	.2264025	.6658526
_Iea15_55	.3521437	.1123774	3.13	0.002	.131861	.5724263
_Iea15_70		.117161	1.11	0.265	0991507	.360168
_Iea15_81		.1677591	1.47	0.141	0821119	.5755722
_Iea15_82		.1083128	4.16	0.000	.238532	.6631624
_Iea15_83		.2935682	1.78	0.076	0540803	1.096827
_Iea15_84		.1922917	1.67	0.095	0558136	.6980482
_Iea15_85		.1175812	3.58 2.92	0.000	.1899425	.6509088
_Iea15_86		.1080588 .1150498	4.37	0.004	.1032564 .2777812	.5268911 .7288232
_Iea15_87 _Iea15_88		.1041325	4.20	0.000	.2332444	.6414862
_1ea15_89		.1041323	4.20	0.000	.2296134	.6382524
Iea15_90		.1106455	2.76	0.006	.08873	.5225053
_1ea15_91		.1215796	2.70	0.004	.1156065	.5922479
_1ea15_91 _Iea15_92	.5516267	.2170443	2.54	0.011	.1261756	.9770777
_1ea15_93		.1275968	2.32	0.020	.0460888	.5463204
_Iea15_94		.1070541	3.28	0.001	.1413945	.5610901
_1ea15_95		.1978669	-0.26	0.796	4390623	.3366564
_Iea15_96		.1453141	3.92	0.000	.2845069	.8541974
		.1678731	1.85		0187354	.6393953
_Iea15_98		.1622597	3.69	0.000	.2812827	.9174067
_Iea15_99	.4771243	.1109808	4.30	0.000	.2595794	.6946692
_Iea15_100		.145513	1.64	0.101	0466716	.5237987
_Iea15_101		.2036553	-0.67	0.500	5364626	.2619489
_Iea15_102	.0998082	.2569677	0.39	0.698	4039009	.6035173
_Iea15_103	.2955747	.1597831	1.85	0.064	0176327	.6087821
_Iea15_110		.1757886	1.27	0.203	1209971	.5681657
_Iea15_111		.1493895	2.10	0.036	.0202374	.6059049
_Iea15_112		.1206698	1.18	0.239	0945775	.3784973
_Iea15_113		.1365901	2.01	0.045	.0064465	.5419353
_Iea15_114		.1322831	1.91	0.056	0069805	.511623
_Iea15_120		.1924391	4.03	0.000	.3986857	1.153125
_Iea15_130		.2519142	-0.53	0.599	6263201	.3612863
_Iea15_141		.10029	5.46	0.000	.3512876	.7444653
_Iea15_151		.117523	2.42	0.016	.0537994	.5145373
_Iea15_152		.1178179	3.82	0.000	.2188191	.6807133
_Iea15_153		.1055893	3.33	0.001	.1445559	.5585088
_Iea15_171		.2286468	2.29	0.022	.0764502	.9728387
_Iea15_172	.4418194	.2720119	1.62	0.104	0913793	.9750182

_Iea15_173	.2961721	.1396659	2.12	0.034	.0223984	.5699457
_Iea15_174	.2520832	.1380848	1.83	0.068	0185911	.5227575
_Iea15_176	.0245782	.4477886	0.05	0.956	8531787	.902335
_Iea15_192	.2826203	.2250407	1.26	0.209	1585053	.7237459
_Iea15_193	.2422559	.1172167	2.07	0.039	.0124873	.4720245
_Iea15_194	.2417426	.1221286	1.98	0.048	.0023457	.4811396
_Iea15_195	0128355	.3089003	-0.04	0.967	6183429	.5926719
_Iea15_196	.3271868	.1309489	2.50	0.012	.0705003	.5838732
_Iea15_197	103844	.2338441	-0.44	0.657	5622261	.3545381
_Iea15_198	.2642754	.1485985	1.78	0.075	0270079	.5555588
_Iea15_200	.2441736	.121563	2.01	0.045	.0058854	.4824618
_Iea15_201	.4600184	.1336653	3.44	0.001	.1980071	.7220296
_Iea15_202	1300625	.1616883	-0.80	0.421	4470046	.1868796
_Iea15_203	.340464	.1208717	2.82	0.005	.1035307	.5773972
_Iea15_221	5248688	.44594	-1.18	0.239	-1.399002	.3492644
_Iea15_222	.4258481	.1266213	3.36	0.001	.1776445	.6740517
_Iea15_223	0500727	.1338462	-0.37	0.708	3124385	.212293
_Iea15_231	.2838502	.2029597	1.40	0.162	1139921	.6816925
_Iea15_232	.4520883	.1274099	3.55	0.000	.2023389	.7018377
_Iea15_234	.5500492	.375077	1.47	0.143	1851781	1.285276
_Iea15_235	3139207	.2298984	-1.37	0.172	7645683	.136727
_Iea15_236	.0561608	.1089038	0.52	0.606	1573129	.2696344
_Iea15_237	.1129437	.2393878	0.47	0.637	3563051	.5821926
_Iea15_238	.0059615	.1525618	0.04	0.969	2930908	.3050138
_Iea15_240	.197109	.1040427	1.89	0.058	0068359	.4010538
_Iea15_251	1323719	.6622218	-0.20	0.842	-1.430462	1.165718
_Iea15_252	.7273065	.6207904	1.17	0.241	489569	1.944182
_Iea15_253	.0682954	.4517841	0.15	0.880	8172935	.9538844
_Iea15_254	(dropped)					
_Iea15_255	(dropped)					
_Iea15_256	(dropped)					
_Iea15_257	(dropped)					
_Iea15_271	(dropped)					
_Iea15_272 _Iea15_273	(dropped) 2699866	.6314461	-0.43	0.669	-1.50775	.9677764
_Iea15_273 _Iea15_274	1.350868	.6274386	2.15	0.009	.1209606	2.580775
_Iea15_274 _Iea15_275	-1.927128	.6227775	-3.09	0.031	-3.147899	7063574
_1ea15_275 _1ea15_276	(dropped)	.0221113	-3.09	0.002	-3.14/099	/0033/4
_1ea15_277	(dropped)					
_1ea15_277	(dropped)					
_Iea15_279	(dropped)					
_Iea15_280	.0756266	.4522718	0.17	0.867	8109183	.9621714
_Iea15_281	(dropped)					
	(dropped)					
	(dropped)					
_Iea15_284	(dropped)					
_Iea15_285	.2006984	.6209739	0.32	0.747	-1.016537	1.417934
_Iea15_286	.4888769	.6248334	0.78	0.434	7359238	1.713678
_Iea15_287	(dropped)					
_Iea15_288	(dropped)					
_Iea15_289	(dropped)					
_Iea15_290	(dropped)					
_Iea15_291	-1.111594	.621234	-1.79	0.074	-2.329339	.1061513
_Iea15_292	.4136666	.2697737	1.53	0.125	1151448	.9424781
_Iea15_293	(dropped)					
_Iea15_294	(dropped)					
_Iea15_295	5926089	.6225124	-0.95	0.341	-1.81286	.6276422
_Iea15_296	.0966845	.6210078	0.16	0.876	-1.120617	1.313986
_Iea15_297	(dropped)					
_Iea15_298	.2378806	.4470726	0.53	0.595	6384728	1.114234
_Iea15_299	.22773	.3227582	0.71	0.480	4049417	.8604017
_Iea15_401	1298787	.1927622	-0.67	0.500	5077318	.2479744
_Iea15_402	0562141	.1796154	-0.31	0.754	4082968	.2958687

_Iea15_403 _Iea15_404 _Iea15_405 _Iea15_500 _Iea15_501 _ea11 _ea13		2162144 .0000983 .344591 .16907 0701264 (dropped) 004274	.2298973 .2287757 .1333679 .1098315 .1620955	-0.94 0.00 2.58 1.54 -0.43	0.347 1.000 0.010 0.124 0.665	6668598 4483487 .0831628 0462221 3878666	.234431 .4485453 .6060191 .384362 .2476137
ea19 _cons		0286114 9.830176	.0106985	-2.67 26.30	0.008	0495827 9.097382	0076401 10.56297

Regression for doctoral degree holders

. keep if ed6c1==3
(43649 observations deleted)

. xi: reg logincome ${\tt SEX}$

SS	df 	MS			
	4401			Prob > F R-squared	= 0.0000 = 0.0438
2601.5621		.590995479			
Coef.	Std. E	Err. t	P> t	[95% Conf.	Interval]
40392 10.65598				4596815 10.63118	3481585 10.68078
income SEX age	 ed6b1y	 vr2			
SS	df	MS			
				Prob > F R-squared	= 0.0000 = 0.2685
2601.5621	4402	.590995479			
Coef.	Std. E	Err. t	P> t	[95% Conf.	Interval]
2345042 .0056309 .0341606 9.891722	.00183	3.07 389 18.58	0.000 0.002 0.000 0.000	2842094 .0020318 .0305554 9.775087	1847991 .0092301 .0377658 10.00836
				ed6d1_2==-57 (omitted)
SS	df	MS			
				Prob > F R-squared	= 0.0000 = 0.3037
2601.5621	4402	.590995479		Root MSE	= .64816
Coef.	Std. E	Err. t	P> t	[95% Conf.	Interval]
1637982 .0071762 .0335223 1.061894 1.11764 1.177405 1.163288 .8301434 1.199341 1.207636	.00191 .00191 .52927 .3990 .40275 .39910	3.75 14 17.54 709 2.01 777 2.80 696 2.92 941 2.91 772 2.16 702 3.02	0.000 0.000 0.000 0.045 0.005 0.003 0.004 0.031 0.003 0.003	2157866 .0034285 .0297749 .0242503 .3352441 .3877889 .3808386 .0750083 .4209777	1118098 .010924 .0372697 2.099537 1.900036 1.967021 1.945737 1.585279 1.977705 1.992524
	113.993702 2487.56839 2601.5621 Coef. 40392 10.65598 .ncome SEX age	113.993702 1 2487.56839 4401 2601.5621 4402 Coef. Std. E 40392 .02844 10.65598 .01265 .ncome SEX age ed6bly SS df 698.459506 3 1903.10259 4399 2601.5621 4402 Coef. Std. E 2345042 .02535 .0056309 .00183 .0341606 .00183 9.891722 .05949 .ncome SEX age ed6bly	113.993702	113.993702	Tell

_Ied6d1_2_9	1.067265	.376826	2.83	0.005	.3284923	1.806038
_Ied6d1_2_10	.9566164	.382574	2.50	0.012	.2065746	1.706658
_Ied6d1_2_11	.9301727	.3897519	2.39	0.017	.1660585	1.694287
_Ied6d1_2_12	1.001303	.379685	2.64	0.008	.256925	1.745681
_Ied6d1_2_13		.3945577	2.10	0.035	.0566353	1.603707
_Ied6d1_2_14	1.14809	.3868686	2.97	0.003	.3896291	1.906552
_Ied6d1_2_15	1.039759	.3800059	2.74	0.006	.2947519	1.784766
_Ied6d1_2_16		.4187962	2.67	0.008	.2964885	1.938601
_Ied6d1_2_17		.3828957	3.19	0.001	.469293	1.970638
_Ied6d1_2_18	.9620018	.3818543	2.52	0.012	.213371	1.710632
_Ied6d1_2_19	.9479612	.3842719	2.47	0.014	.1945907	1.701332
_Ied6d1_2_20	1.114891	.3800432	2.93	0.003	.3698113	1.859971
_Ied6d1_2_21	1.557289	.4321961	3.60	0.000	.7099623	2.404615
_Ied6d1_2_22	1.607069	.5921169	2.71	0.007	.4462158	2.767923
_Ied6d1_2_23		.3800893	3.54	0.000	.5984617	2.088803
_Ied6d1_2_24	1.256754	.5293096	2.37	0.018	.2190348	2.294473
_Ied6d1_2_25	.6557299	.7485571	0.88	0.381	8118269	2.123287
_Ied6d1_2_26	1.183295	.5298744	2.23	0.026	.1444683	2.222121
_Ied6d1_2_27	.5731298	.5918646	0.97	0.333	5872292	1.733489
			2.03			
_Ied6d1_2_28	1.200278	.5920059		0.043	.039642	2.360914
_Ied6d1_2_29	1.09228	.4153823	2.63	0.009	.2779174	1.906643
_Ied6d1_2_30	.9197316	.4584527	2.01	0.045	.0209286	1.818535
_Ied6d1_2_31	1.285727	.5923023	2.17	0.030	.1245097	2.446944
	1.295487	.3919631	3.31	0.001	.5270382	2.063937
_Ied6d1_2_33		.4388222	1.63	0.102	1428608	1.577773
_Ied6d1_2_34	.6032638	.5299331	1.14	0.255	4356776	1.642205
_Ied6d1_2_35	1.480242	.405944	3.65	0.000	.6843826	2.276101
_Ied6d1_2_36	1.263741	.37937	3.33	0.001	.5199805	2.007501
_Ied6d1_2_37	1.244056	.3798781	3.27	0.001	.4992992	1.988812
_Ied6d1_2_38	1.534964	.398943	3.85	0.000	.75283	2.317097
		.377063				2.078092
			3.55	0.000	.5996168	
_Ied6d1_2_40	1.21449	.3892827	3.12	0.002	.4512959	1.977685
_Ied6d1_2_41	1.17606	.399012	2.95	0.003	.3937907	1.958328
_Ied6d1_2_42	1.206069	.3945579	3.06	0.002	.432533	1.979606
_Ied6d1_2_43	1.313159	.384315	3.42	0.001	.5597038	2.066614
_Ied6d1_2_44	1.340006	.3790292	3.54	0.000	.5969134	2.083098
_Ied6d1_2_45	1.348883	.3926614	3.44	0.001	.5790643	2.118701
_Ied6d1_2_46		.7484524	1.88	0.060	0577506	2.876953
_Ied6d1_2_47	1.441971	.3979927	3.62	0.000	.6617004	2.222241
_Ied6d1_2_48	1.493685	.4388463	3.40	0.001	.6333201	2.354049
_Ied6d1_2_49	1.346602	.4152345	3.24	0.001	.532529	2.160675
	1.398166	.4100729	3.41	0.001	.5942118	2.202119
_Ied6d1_2_51		.4734631	2.96	0.001	.4719976	2.32846
_Ied6d1_2_52		.4078272	2.75	0.006	.3223837	1.921486
_Ied6d1_2_53		.7484909	2.05	0.040	.0667107	3.001565
_Ied6d1_2_54	1.013881	.3982362	2.55	0.011	.2331328	1.794628
_Ied6d1_2_55	1.165546	.3938762	2.96	0.003	.3933459	1.937746
_Ied6d1_2_56	1.058197	.3789344	2.79	0.005	.3152904	1.801103
_Ied6d1_2_57		.3970036	3.43	0.001	.5852336	2.141896
_Ied6d1_2_58	1.204331	.3832749	3.14	0.002	.4529154	1.955747
_Ied6d1_2_59	.8453326	.4101882	2.06	0.039	.0411529	1.649512
_Ied6d1_2_60	1.323129	.3945149	3.35	0.001	.5496771	2.096581
_Ied6d1_2_61	1.167373	.4079218	2.86	0.004	.3676368	1.96711
_Ied6d1_2_62	1.111588	.3754346	2.96	0.003	.3755425	1.847633
_Ied6d1_2_63		.407969	3.26	0.003	.5304013	2.130059
_Ied6d1_2_64		.3819298	2.84	0.004	.3376263	1.835184
_Ied6d1_2_65	1.232643	.4013773	3.07	0.002	.4457374	2.019549
_Ied6d1_2_66		.4222194	2.00	0.046	.0155676	1.671102
_Ied6d1_2_67	1.15618	.3760759	3.07	0.002	.4188778	1.893482
	1.189605	.4001679	2.97	0.003	.40507	1.97414
_Ied6d1_2_69		.3772637	2.49	0.013	.1985809	1.677843
		.3815904	2.49	0.013	.1921949	1.688422
_Ied6d1_2_71	1.179075	.3838211	3.07	0.002	.4265883	1.931562

_Ied6d1_2_72 _Ied6d1_2_73 _Ied6d1_2_74 _Ied6d1_2_75 _Ied6d1_2_76 _Ied6d1_2_77 _Ied6d1_2_78 _Ied6d1_2_78 _Ied6d1_2_80 _Ied6d1_2_81 _Ied6d1_2_81 _Ied6d1_2_82 _Ied6d1_2_82 _Ied6d1_2_83 _Ied6d1_2_83 _Ied6d1_2_84 _Ied6d1_2_85 _Ied6d1_2_86 _Ied6d1_2_87 _Ied6d1_2_87 _Ied6d1_2_87	1.095187 .8110486 1.035128 1.068519 1.355346 1.364402 1.082354 .983636 1.346316 1.336941 1.065011 1.252267 1.109685 1.042173 1.089177 1.03022 1.263798	.3816542 .4079515 .3980858 .3824414 .4186568 .4474114 .3873903 .3855436 .5917531 .3778527 .397092 .5294206 .415338 .3808937 .3795981 .4125764 .4735584	2.87 1.99 2.60 2.79 3.24 3.05 2.79 2.55 2.28 3.54 2.68 2.37 2.67 2.74 2.87 2.50 2.67	0.004 0.047 0.009 0.005 0.001 0.002 0.005 0.011 0.023 0.000 0.007 0.018 0.008 0.006 0.004 0.013	.346949 .0112538 .254675 .3187368 .5345634 .4872458 .3228702 .2277721 .1861759 .5961553 .2865066 .2143307 .2954084 .2954256 .3449699 .2213576 .3353796	1.843426 1.610843 1.815581 1.818301 2.176129 2.241559 1.841838 1.7395 2.506457 2.077727 1.843516 2.290204 1.923961 1.788921 1.833385 1.839082 2.192216
_redod1_2_88 _cons	8.685331	.3781957	22.97	0.008	7.943873	9.426789
. xi: reg logir i.ed6d1_2 i.ea15		_1-88	(_Ied6d1_	_2_1 for	eal1 eal3 eal9 ed6d1_2==-57 cmIeal510 om. Number of obs	itted)
Model Residual	448.114607 916.171338		3172094			= 0.0000 = 0.3285
Total	1364.28595	2291 . 59	5498012		Adj R-squared Root MSE	= 0.2722 = .65832

	,					
logincome	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
SEX	1532319	.0410467	-3.73	0.000	2337281	0727356
age	.0036671	.0028936	1.27	0.205	0020075	.0093417
ed6b1yr2	.0309295	.0028922	10.69	0.000	.0252578	.0366013
_Ied6d1_2_2	1.055589	.9650058	1.09	0.274	836871	2.948049
_Ied6d1_2_3	.6277203	.7274521	0.86	0.388	7988763	2.054317
_Ied6d1_2_4	.8244309	.7335954	1.12	0.261	6142134	2.263075
_Ied6d1_2_5	.7751098	.718983	1.08	0.281	6348782	2.185098
_Ied6d1_2_6	.5579006	.7128195	0.78	0.434	8400002	1.955801
_Ied6d1_2_7	.8326901	.7174504	1.16	0.246	5742925	2.239673
_Ied6d1_2_8	1.252509	.7601664	1.65	0.100	2382437	2.743261
_Ied6d1_2_9	.873442	.7018067	1.24	0.213	5028619	2.249746
_Ied6d1_2_10	.7911036	.716022	1.10	0.269	6130776	2.195285
_Ied6d1_2_11	.6803351	.726037	0.94	0.349	7434865	2.104157
_Ied6d1_2_12	.8324748	.7074697	1.18	0.239	5549347	2.219884
_Ied6d1_2_13	.2716837	.720895	0.38	0.706	-1.142054	1.685421
_Ied6d1_2_14	.8108218	.7123246	1.14	0.255	5861086	2.207752
_Ied6d1_2_15	.8979859	.7035627	1.28	0.202	4817617	2.277733
_Ied6d1_2_16	1.099371	.7722015	1.42	0.155	4149835	2.613725
_Ied6d1_2_17	1.140256	.7080658	1.61	0.107	2483223	2.528835
_Ied6d1_2_18	.5544891	.7231662	0.77	0.443	8637026	1.972681
_Ied6d1_2_19	.5438695	.7189558	0.76	0.449	8660653	1.953804
_Ied6d1_2_20	.9420588	.7072385	1.33	0.183	4448973	2.329015
_Ied6d1_2_21	1.336819	.7654022	1.75	0.081	1642008	2.83784
_Ied6d1_2_22	(dropped)					
_Ied6d1_2_23	.9391714	.7040496	1.33	0.182	4415311	2.319874
_Ied6d1_2_24	.7354104	.8497217	0.87	0.387	9309677	2.401789
_Ied6d1_2_25	.0348678	.9658563	0.04	0.971	-1.85926	1.928996
_Ied6d1_2_26	.9249341	.9603642	0.96	0.336	9584236	2.808292
_Ied6d1_2_27	1.346274	.9666551	1.39	0.164	5494205	3.241968

_Ied6d1_2_28	1.147858	.9749354	1.18	0.239	7640753	3.059791
_Ied6d1_2_29	.9474853	.7906982	1.20	0.231	6031425	2.498113
_Ied6d1_2_30	.5256249	.7777441	0.68	0.499	9995987	2.050849
	(dropped)					
_Ied6d1_2_32	8550508	.7152741	1.20	0.232	5476637	2.257765
	•					
_Ied6d1_2_33	.5610463	.7991008	0.70	0.483	-1.00606	2.128152
_Ied6d1_2_34	0446094	1.073857	-0.04	0.967	-2.150537	2.061318
_Ied6d1_2_35	1.265026	.7349622	1.72	0.085	1762986	2.706351
_Ied6d1_2_36	.9311464	.7037089	1.32	0.186	4488878	2.31118
	1.080241	.7093804	1.52	0.128	3109153	2.471398
_Ied6d1_2_38	1.169705	.7182023	1.63	0.104	2387518	2.578162
		.7003788			3983351	2.348672
_Ied6d1_2_39	.9751685		1.39	0.164		
_Ied6d1_2_40	1.014735	.7095436	1.43	0.153	3767415	2.406212
_Ied6d1_2_41	1.046693	.71983	1.45	0.146	3649563	2.458342
_Ied6d1_2_42	1.002926	.7446049	1.35	0.178	4573089	2.463161
_Ied6d1_2_43	.9141766	.7016538	1.30	0.193	4618274	2.290181
	.9829352	.7024469	1.40	0.162	394624	2.360494
_Ied6d1_2_45	.922215	.7116453	1.30	0.195	4733832	2.317813
	•	• /110455	1.50	0.133	. 4733032	2.31/013
_Ied6d1_2_46	(dropped)	5000016	1 60		0000000	0 604000
_Ied6d1_2_47	1.217053	.7229816	1.68	0.092	2007765	2.634883
_Ied6d1_2_48	.8927841	.8497246	1.05	0.294	7735997	2.559168
_Ied6d1_2_49	1.070543	.7383013	1.45	0.147	3773295	2.518416
_Ied6d1_2_50	.9968424	.7217759	1.38	0.167	4186228	2.412308
_Ied6d1_2_51	1.323838	.838137	1.58	0.114	3198213	2.967498
_Ied6d1_2_52	.6455617	.7215636	0.89	0.371	769487	2.06061
_Ied6d1_2_53	(dropped)	• / 2 2 0 0 0 0	0.03	0.071	• , 0 3 10 ,	2.00001
	1.243389	.7634218	1.63	0.104	2537477	2.740525
_Ied6d1_2_55	.9069134	.7289085	1.24	0.214	5225393	2.336366
_Ied6d1_2_56	1.261722	.7163953	1.76	0.078	1431908	2.666636
_Ied6d1_2_57	.8197559	.724178	1.13	0.258	6004201	2.239932
_Ied6d1_2_58	.9758869	.7218954	1.35	0.177	4398127	2.391586
_Ied6d1_2_59	.5768446	.7598846	0.76	0.448	9133551	2.067044
_Ied6d1_2_60	1.245499	.7358947	1.69	0.091	1976544	2.688652
	1.545989	.7736353	2.00	0.046	.0288227	3.063155
_Ied6d1_2_62	.8961385	.6970878	1.29	0.199	4709113	2.263188
_1ed6d1_2_63	1.116127	.7395811	1.51	0.133	3342558	2.56651
_Ied6d1_2_64	.8690382	.7180541	1.21	0.226	5391282	2.277205
_Ied6d1_2_65	1.103355	.7367985	1.50	0.134	3415708	2.548281
_Ied6d1_2_66	.1798962	.7952455	0.23	0.821	-1.379649	1.739442
_Ied6d1_2_67	.8913724	.6985395	1.28	0.202	4785242	2.261269
_Ied6d1_2_68	.9494255	.7247149	1.31	0.190	4718033	2.370654
_Ied6d1_2_69	.7684529	.7026637	1.09	0.274	6095315	2.146437
	.6487758	.7070032	0.92	0.359	7377188	2.03527
_Ied6d1_2_71		.7086103	1.56	0.120	2868779	2.492415
_1ed6d1_2_71		.7051667	1.29	0.128	4753913	2.290395
_1ed0d1_2_72	.5075010					
_Ied6d1_2_73		.7259623	0.35	0.724	-1.167292	1.680058
_Ied6d1_2_74		.7445948	0.79	0.430	8728661	2.047564
_Ied6d1_2_75		.7055421	1.11	0.269	6034765	2.163782
_Ied6d1_2_76	.9873495	.7779224	1.27	0.205	5382238	2.512923
_Ied6d1_2_77	1.354966	.8447452	1.60	0.109	301653	3.011584
_Ied6d1_2_78	1.055151	.7159704	1.47	0.141	3489288	2.459231
_Ied6d1_2_79	.7805541	.7377891	1.06	0.290	6663144	2.227422
_1ed6d1_2_80	1.116334	.8549987	1.31	0.192	5603923	2.793061
	1.091102	.7059304	1.55	0.122	2932888	2.475493
_Ied6d1_2_82	1.196189	.749409	1.60	0.111	2734669	2.665845
_Ied6d1_2_83	(dropped)					
_Ied6d1_2_84	1.173948	.7482628	1.57	0.117	29346	2.641357
_Ied6d1_2_85	.7316382	.7107831	1.03	0.303	6622693	2.125546
_Ied6d1_2_86	.8131153	.7184879	1.13	0.258	5959018	2.222132
		.7308718	0.88	0.381	7923668	2.074239
_Ied6d1_2_88		.7974685	1.35	0.177	4873297	2.64048
Iea15_21		.2571598	0.97	0.331	2543722	.7542531
Tea15_21 Tea15_22		.2485076	0.49	0.623	3650439	.609646
_1ea13_44	1 .1772011	. 4000/0	0.49	0.043	3030433	.003046

_Iea15_23	.3209875	.2528302	1.27	0.204	1748344	.8168094
_Iea15_24		.4173851	0.18	0.856	7430073	.8940497
_Iea15_25		.2492328	0.50	0.615	3632821	.6142521
_Iea15_26		.4093157	0.05	0.963	7837772	.8216301
_Iea15_27		.2603821	0.35	0.724	4187674	.6024963
_Iea15_31		.7012535	0.46	0.647	-1.053687	1.696751
_Iea15_32		.7446985	1.08	0.278	6527692	2.268067
 _Iea15_33		.5392164	-2.19	0.028	-2.239805	124905
	2985808	.2942368	-1.01	0.310	8756047	.2784431
_Iea15_51		.2626143	0.51	0.611	381501	.6485179
_Iea15_52		.3023084	-0.41	0.680	7174355	.4682703
_Iea15_53	.3187603	.2625024	1.21	0.225	1960297	.8335503
_Iea15_54	005402	.2891232	-0.02	0.985	5723977	.5615938
_Iea15_55	.1691142	.280673	0.60	0.547	3813099	.7195383
_Iea15_70	07406	.4027693	-0.18	0.854	8639257	.7158056
_Iea15_81	.137694	.714175	0.19	0.847	-1.262865	1.538253
_Iea15_82		.2635429	1.26	0.208	1845778	.8490832
_Iea15_83						
_Iea15_84		.3150677	1.31	0.189	2039023	1.031848
_Iea15_85		.2644264	0.36	0.718	4231362	.6139902
_Iea15_86		.2813004	-0.24	0.807	6203724	.4829367
_Iea15_87		.313682	0.79	0.428	3663804	.863935
_Iea15_88	•	.2502026	1.01	0.313	2381015	.7432365
_Iea15_89		.2484312	1.01	0.313	2364775	.7379127
_Iea15_90		.2745384	0.40	0.687	4278409	.6489463
_Iea15_91	•	.3805553	1.38	0.166	2193032	1.273301
_Iea15_92		.4538612	-1.04	0.298	-1.362341	.4177815
_Iea15_93		.2658542	0.62	0.532	3552663	.6874601
_Iea15_94	•	.2592941	0.86	0.389	2848782	.7321181
_Iea15_95	•	.5443583	0.25	0.803	9319602	1.203107
_Iea15_96		.3022205	0.21	0.835	5298695	.6554917
_Iea15_97		.5401306	0.67	0.504	6985335	1.419952
_Iea15_98		.4103732	0.74	0.458	4999912	1.109564
_Iea15_99		.2838457	0.78	0.434	3346204	.7786718
_Iea15_100 _Iea15_103		.3374215 .3839947	1.07 -0.49	0.286 0.621	3013128 9428771	1.022113 .5632167
	6195479	.4487666	-0.49	0.021	-1.499618	.2605225
_lea15_111	•	.2592842	2.86	0.004	.2336963	1.250654
_Iea15_111		.3436659	-0.71	0.478	9180852	.4298321
_Iea15_113		.7009697	0.31	0.757	-1.1579	1.591425
_Iea15_114		.3131984	0.53	0.594	4470963	.7813223
_Iea15_120		.3245825	-0.34	0.735	7464293	.5266394
_Iea15_130		.7018677	0.10	0.921	-1.306782	1.446065
	.4996873	.2344714	2.13	0.033	.0398686	.9595061
	.254295	.3067312	0.83	0.407	3472315	.8558216
_Iea15_152		.466626	0.73	0.463	5725594	1.257629
_Iea15_153		.2608071	0.49	0.621	3825597	.6403709
_Iea15_171	.1096307	.7309423	0.15	0.881	-1.323811	1.543072
_Iea15_172		.7308885	0.98	0.328	7179144	2.148757
_Iea15_173	.0915277	.3091481	0.30	0.767	5147385	.6977939
_Iea15_174	.0396954	.3110228	0.13	0.898	5702473	.649638
_Iea15_175	.0993119	.7028945	0.14	0.888	-1.279125	1.477749
_Iea15_176		.4574234	0.44	0.659	6949468	1.099147
_Iea15_191	•	.4089679	-0.15	0.883	8619612	.7420818
_Iea15_192	•	.335496	-0.85	0.396	9424739	.3733998
_Iea15_193	•	.2420763	0.21	0.836	4247149	.5247504
_Iea15_194	•	.2910879	0.56	0.572	4065264	.7351708
_Iea15_195		.7759719	-0.66	0.508	-2.036063	1.007433
_Iea15_196		.2498261	1.05	0.293	2271519	.7527094
_Iea15_197		.3339127	1.03	0.304	3111842	.9984794
_Iea15_198		.3186157	0.31	0.758	5266871	.7229789
_Iea15_200 _Iea15_201	•	.3040243	0.31 1.47	0.755 0.140	5014406 1570158	.6909955 1.109677
_16013_201	1 .4/0330/	. 3449309	1.4/	0.140	13/0138	1.1090//

_Iea15_202		.4090818	0.37	0.712	6514279	.953062
_Iea15_203	.6277561	.316616	1.98	0.048	.0068446	1.248668
_Iea15_222	.2131411	.5228391	0.41	0.684	8121918	1.238474
_Iea15_223	3709941	.381975	-0.97	0.332	-1.12008	.3780922
_Iea15_231	.0553796	.4466837	0.12	0.901	820606	.9313652
_Iea15_232	.3392686	.2730311	1.24	0.214	196169	.8747062
_Iea15_233	(dropped)					
_Iea15_234	.3773604	.7663096	0.49	0.622	-1.125439	1.88016
_Iea15_235	2501351	.3320164	-0.75	0.451	901248	.4009779
_Iea15_236	0460773	.2425871	-0.19	0.849	5218117	.4296571
	.0834721	.3412513	0.24	0.807	5857514	.7526956
	.1825801	.3325447	0.55	0.583	4695689	.8347291
 _Iea15_240	4913014	.3225362	-1.52	0.128	-1.123823	.14122
_Iea15_252	(dropped)					
_Iea15_253						
_Iea15_254						
_Iea15_255	(dropped)					
_Iea15_256	(dropped)					
_Iea15_257						
_Iea15_271	(dropped)					
Tea15271 Tea15272	(dropped) (dropped)					
	1.343528	.7255529	1.85	0.064	0793442	2.7664
_Iea15_273 Iea15_274	4508652	.7044856	0.64	0.522	9306922	1.832423
_Iea15_275	5603854	.5237123	-1.07	0.285	-1.587431	.4666598
_Iea15_276	(dropped)					
_Iea15_277						
_Iea15_278	(dropped)	7005005	0 56	0 574	0010510	1 707064
_Iea15_279	.3982563	.7085905	0.56	0.574	9913512	1.787864
_Iea15_280						
_Iea15_281	(dropped)					
_Iea15_282	(dropped)					
_Iea15_283						
_Iea15_284	(dropped)					
_Iea15_285	(dropped)					
_Iea15_286	3875915	.7211691	-0.54	0.591	-1.801867	1.026684
_Iea15_287	(o I- I- o)					
_Iea15_288	(dropped)					
_Iea15_289	.3958234	.5264018	0.75	0.452	6364962	1.428143
_Iea15_290						
_Iea15_291	2532739	.4567482	-0.55	0.579	-1.148997	.642449
_Iea15_292	(dropped)					
_Iea15_293	(dropped)					
_Iea15_294	(dropped)					
_Iea15_295		.7054214	0.84	0.401	7909679	1.975818
_Iea15_296						
_Iea15_297	(dropped)					
_Iea15_298	(dropped)					
_Iea15_299	(dropped)					
_Iea15_401	.3374151	.5336721	0.63	0.527	7091622	1.383992
_Iea15_402	-1.064999	.5281177	-2.02	0.044	-2.100684	0293145
_Iea15_403	.0320684	.5279043	0.06	0.952	-1.003198	1.067335
_Iea15_404	9320349	.5267294	-1.77	0.077	-1.964997	.1009271
_Iea15_500	.2386841	.2625412	0.91	0.363	276182	.7535502
_Iea15_501	4221109	.7549094	-0.56	0.576	-1.902554	1.058332
eal1						
ea13		.0058183	-2.38	0.017	0252603	0024399
ea19	0655012	.0284553	-2.30	0.021	1213045	009698
_cons	9.153596	.7394855	12.38	0.000	7.703401	10.60379

VITA

Name: Rayna Lynn McKinley

Address: 3035 Allen

College Station, TX 77843-4228

Email Address: rayna.mckinley@gmail.com

Education: B.A., Economics, Texas A&M University, 2006

M.S., Economics, Texas A&M University, 2010