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ABSTRACT

Bayesian Model Selection for High-dimensional High-throughput Data.

(May 2010)

Adarsh Joshi, B.Tech., Indian Institute of Technology Bombay;

M.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Valen E. Johnson
Dr. David B. Dahl

Bayesian methods are often criticized on the grounds of subjectivity. Furthermore, mis-

specified priors can have a deleterious effect on Bayesian inference. Noting that model

selection is effectively a test of many hypotheses, Dr. Valen E. Johnson sought to eliminate

the need of prior specification by computing Bayes’ factors from frequentist test statis-

tics. In his pioneering work that was published in the year 2005, Dr. Johnson proposed

using so-called local priors for computing Bayes’ factors from test statistics. Dr. Johnson

and Dr. Jianhua Hu used Bayes’ factors for model selection in a linear model setting. In

an independent work, Dr. Johnson and another colleage, David Rossell, investigated two

families of non-local priors for testing the regression parameter in a linear model setting.

These non-local priors enable greater separation between the theories of null and alternative

hypotheses.

In this dissertation, I extend model selection based on Bayes’ factors and use non-

local priors to define Bayes’ factors based on test statistics. With these priors, I have been

able to reduce the problem of prior specification to setting to just one scaling parameter.

That scaling parameter can be easily set, for example, on the basis of frequentist operating

characteristics of the corresponding Bayes’ factors. Furthermore, the loss of information
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by basing a Bayes’ factors on a test statistic is minimal.

Along with Dr. Johnson and Dr. Hu, I used the Bayes’ factors based on the likelihood

ratio statistic to develop a method for clustering gene expression data. This method has

performed well in both simulated examples and real datasets. An outline of that work is

also included in this dissertation. Further, I extend the clustering model to a subclass of

the decomposable graphical model class, which is more appropriate for genotype data sets,

such as single-nucleotide polymorphism (SNP) data. Efficient FORTRAN programming has

enabled me to apply the methodology to hundreds of nodes.

For problems that produce computationally harder probability landscapes, I propose a

modification of the Markov chain Monte Carlo algorithm to extract information regarding

the important network structures in the data. This modified algorithm performs well in

inferring complex network structures. I use this method to develop a prediction model for

disease based on SNP data. My method performs well in cross-validation studies.
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CHAPTER I

INTRODUCTION

Markov Chain Monte Carlo (MCMC) based Bayesian model selection algorithms are be-

coming very popular for studying and comparing candidate models from an extremely large

space. Bayesian model selection methods have emerged as a strong alternative against step-

wise frequentist methods and have inherent advantages over their frequentist counterparts.

Within the Bayesian paradigm, model selection is based on posterior probabilities of dif-

ferent models.

Research in this area was initiated by George and McCulloch (1993, 1997), who pro-

posed a “Stochastic Search Variable Selection” procedure (SVSS) to determine promising

subsets of predictor variables in the linear model setting. They used latent variables to iden-

tify subset choices according to posterior probabilities within the context of a hierarchical

Bayesian mixture model. They used a Gibbs sampling algorithm to probe the multinomial

posterior distribution of each latent indicator variable. By examining the results of the

Gibbs output, they determined subsets of variables that had the highest posterior probabil-

ities of appearing as predictors in the regression equation.

Madigan and Raftery (1994) combined model selection with Bayesian model averag-

ing for prediction. In making predictions for future observations, Bayesian model averag-

ing accounts for model uncertainty, which often represents a major component of prediction

uncertainty (e.g., Leamer 1978; Hodges 1987; Raftery 1996; Moulton 1991; Draper 1995).

Subsequently, other researchers have extended Bayesian model selection ideas to more

The format and style follow that of Biometrics.
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complicated model settings. Using latent variable methodology (e.g., Albert and Chib

1993), Lee et al. (2003) cast variable selection for probit regression models into a frame-

work similar to that previously developed for linear models. Chen et al. (2004) proposed

a conditional beta-binomial prior density for latent variables in an SVSS-type algorithm

to explicitly model the presence of interaction terms. Zhang and Liu (2007) constructed

Bayes’ factors on groupings of single nucleotide polymorphism (SNP) data. They used a

multinomial sampling model and a product Dirichlet prior model, and applied their method

to datasets containing several hundred thousand SNP values to identify possible associa-

tions between subsets of SNPs.

In probability theory, statistics, and machine learning, a graphical model is a diagram

that represents conditional independence relationships among random variables. The nodes

of a graph are random variables that can be either continuous or categorical, and missing

edges represent conditional independence relationships. The edges can have a direction,

implying causal dependency between the “parents” and “children”. The information about

causal inference is not present in the data, so a researcher has to make modeling assump-

tions or impose prior information to investigate such relationships. When such relationships

are not of interest, one may choose graphs with undirected edges. Graphical models with

undirected edges are generally called Markov random fields or Markov networks. In this

work, only model selection on undirected graphs is considered.

Graphical models are a useful tool in studying large interaction networks because they

divide the set of nodes into “cliques”, or maximal sets with no missing edges. One of

the fundamental results pertaining to the theory of graphical models is the unpublished

Hammersley-Clifford theorem that states that the joint probability distribution of the graph

is determined completely after having determined the probability distributions of each

clique and their shared nodes or edges. Besag (1974) offers an insightful discussion of

the Hammersley-Clifford theorem along with an alternative proof.
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Graphical model theory for categorical data was introduced by Darroch, Lauritzen,

and Speed (1980). Around the same time, Goodman (1970, 1971) and Haberman (1974)

studied a sub-class of log-linear models in which the hypothesis tests for interactions and

the estimated cell counts could be computed directly; that is, without employing an iter-

ative scheme, they developed a class of models which they called decomposable models.

Darroch, Lauritzen, and Speed (1980) showed that graphical model class was a subset of

the hierarchical log-linear model class and contains the class of decomposable models.

Madigan and York (1995) proposed a model selection algorithm for graphical model

involving categorical random variables. Gaussian graphical models (GGMs; e.g., Lauritzen

1996; Jones and West 2005; Carvalho, Massam, and West 2007) assume a multivariate

normal distribution on the nodes in a clique, and have become an increasingly popular

class of models in the statistics and artificial intelligence community. GGMs have been

used to detect interactions among gene expression levels (Wu, Yong, and Kalpathi 2003

and Dobra et al. 2004).

The model space in Zhang and Liu (2007) is also a subspace of the graphical model

class. Verzilli, Stallard, and Whittaker (2006) have also used a subclass of the graphi-

cal model class for identifying the important SNPs amongst a hundred thousand of them.

Along with other authors, I have devised a methodology for gene clustering (Hu, Joshi, and

Johnson 2009) which is discussed in detail in this dissertation. These “cluster” models are

also form a subclass of the graphical model class.

Bayesian methods are often criticized on the grounds of subjectivity. The subjectiv-

ity arises because of the need for prior specification. The greatest strength of Bayesian

methods is their ability to incorporate prior information. However, the lack of prior infor-

mation in many scenarios turns this greatest strength into the greatest weakness of Bayesian

methods. Misspecified priors tend to affect Bayesian inference and Model Selection more

than parameter estimation. For example, Zhang and Liu (2007) noted in their paper that
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their estimated posterior probabilities depend critically on vaguely specified but very high-

dimensional product Dirichlet prior model. Verzilli, Stallard, and Whittaker (2006) also

used a similar prior. Bayesware Discoverer (www.bayesware.com) is a popular soft-

ware program for graphical model selection which also uses a hyper-Dirichlet prior. The

same is also true for almost all model selection algorithms including the ones that have

been referenced in this introduction (except for Hu, Joshi, and Johnson 2009). However,

little work has been done so far to address the problem of subjectivity in Bayesian analysis.

I also note that the use of prior information is not the only good reason for using

Bayesian methods over frequentist methods. The Bayesian angle of visualizing the data

generating mechanism has inherent advantages over the frequentist vision. In the context

of model selection, Bayesian methods are better than stepwise methods because they com-

pute the posterior probability for each possible model in a simultaneous fashion. Also,

model averaging makes more sense than just concentrating on the one maximum likeli-

hood estimate because we usually find that many models are able to explain the data to

a comparable degree. However, to average over comparable models one needs to have a

probability distribution over the space of models - something that’s absent in the frequentist

approach.

In our clustering method, we sought to eliminate the need of prior specification by

computing Bayes’ factors from frequentist test statistics (Hu, Joshi, and Johnson 2009).

Noting that model selection is effectively a test of many hypotheses, we first obtained the

likelihood ratio statistic (LRS) for such a test. Asymptotic theory completely specifies the

distribution of the LRS under the null and alternative hypotheses. Under the null hypothe-

sis, this distribution is free of any parameters, and under the alternative the distribution has

only one non-centrality parameter. We specified a prior on that non-centrality parameter in

a manner that produced good results in cross-validation.

For our clustering method, we used a Gaussian prior centered at 0 to specify the dis-
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tribution of the non-centrality parameter of the LRS under the alternative hypothesis. Such

priors are called local alternative priors and are standard in Bayesian hypothesis testing.

Johnson and Rossell (2010) proposed two classes of alternative prior distributions called

the non-local alternative priors which assign less weight to the region around the null value

(which is 0 for the non-centrality parameter) and more weight in the regions away from the

null value. Such priors therefore offer a convenient mechanism to separate the theory of

the null hypothesis from the alternative hypothesis. By ignoring small deviations from the

null hypothesis, they also offer a break from testing for statistical significance to a move

towards testing for practical significance.

In this dissertation, I extend the clustering methodology (presented in Hu, Joshi, and

Johnson 2009) by replacing local alternative priors with non-local alternative priors. Also,

I replace the clustering model by a more general subclass of graphical models that allow

the cliques to share nodes and edges. Allowing node and edge sharing is more appropriate

in many applications, particularly in genetics problems (e.g., SNP data). Graphical models

also allow very large clusters to be broken into component cliques that may share nodes

and edges.

An important principle in modeling is known as the Occam’s razor. According to

the principle of Occam’s razor, when competing hypotheses are equal in other respects,

one should select the hypothesis that introduces the fewest assumptions and postulates the

fewest entities while still sufficiently answering the question. Jefferys and Berger (1992)

present a discussion of Occam’s razor and Bayes’ factors. This has significance in model

selection algorithms which tend to select the simpler models due to an implicit Occam’s

razor inherent to the Bayes’ factors. Hence, there’s a higher chance of discovering the

complex interaction structure in large-scale genetics data when employing the graphical

model class than when using the clustering model class, because many clustering models

are rejected under the latter’s assumptions.
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In this dissertation, only graphical models pertaining to categorical data are consid-

ered. However, these ideas can be easily extended to graphical models with quantitative

nodes. Also, I restrict attention to decomposable graphs. I have done this primarily to make

the methodology computationally feasible. Although the class of decomposable models is

a subset of the class of graphical models, the decomposable model class still forms a rich

class of models with many practical applications.

As noted above, Zhang and Liu (2007), Verzilli, Stallard, and Whittaker (2006) and

our clustering method (Hu, Joshi, and Johnson 2009) also employ different subclasses of

graphical models in their methods. However, since the models considered here are less

restrictive than those models, a new MCMC methodology was developed. Madigan and

York (1995) and Bayesware Discoverer employ a more general class of models than those

considered in this dissertation. However, their MCMC method requires checking for ad-

missibility of every candidate model in every step, thereby rendering their methods very

computationally intensive. I also introduce a novel MCMC scheme to navigate through the

proposed model space. In fact, many of the restrictions on the model space used by me

were imposed with computational convenience in mind.

The organization of the rest of this dissertation is as follows. Chapter II discusses the

theory of Bayesian hypothesis testing using test statistics. Chapter III discusses a method-

ology for clustering gene expression data as presented in Hu, Joshi, and Johnson (2009).

Chapter IV covers a novel methodology for objective Bayesian graphical model selection.

An application of this methodology to develop a predictive model for SNP-disease data is

discussed in Chapter V. The derivation of Bayes’ factors for model selection is given in

Appendix A.
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CHAPTER II

BAYESIAN HYPOTHESIS TESTING USING TEST STATISTICS

2.1 Introduction

Bayesian model selection can be thought of as a comparison amongst all the models in

the model space. Compared to parameter estimation, hypothesis testing tends to be more

sensitive to prior misspecification; a bad choice of priors will have a deleterious effect on

model selection whereas, in typical estimation problems, the effect of prior misspecification

wears off as the sample size increases. In fact, slight changes in the hyperparameter values

can result in an entirely different set of models being selected.

Johnson (2005) and Johnson and Rossell (2008) sought to study the problem of hy-

pothesis testing in the Bayesian paradigm from a more theoretical perspective. Taking an

unconventional approach, he proposed to use test statistics to define Bayes’ factors. Not

only does this approach have a nice theoretical justification, it can easily be extended to

models beyond the paradigm of linear models. This chapter reviews the recent work of

Johnson and his co-authors (Hu and Johnson 2009; Hu, Joshi, and Johnson 2009) in the

field of Bayesian hypothesis testing, who have used the LRS and local alternative prior to

compute Bayes’ factors. Johnson and Rossell (2010) have proposed two classes of non-

local alternative priors for testing hypothesis concerning coefficients of a linear regression

model. Later in the chapter, I develop the theory of computing Bayes’ factors from LRS and

non-local alternative priors. Section 2.5 discusses parameter setting for the various priors,

while Section 2.6 compares the properties of the Bayes’ factors obtained for the various

types of priors. Chapter III outlines the methodology developed by Hu, Joshi, and John-

son (2009) for clustering gene expressions that uses local alternative priors for computing

Bayes’ factors.
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2.2 Background

For testing hypotheses in the Bayesian paradigm, one needs to specify at least two different

prior distributions corresponding to two hypotheses. If interest lies in testing a point null

hypothesis versus a composite alternative, only the prior distribution under the alternative

is required.

2.2.1 Vague priors in model selection

The primary impediment to the widespread application of objective Bayesian methodology

to parametric hypothesis tests has been the requirement to specify proper prior distributions

on model parameters. Bayes’ factors cannot be defined with improper prior distributions,

and the deleterious effects of vaguely specified prior distributions do not diminish even as

sample sizes become large. For example, consider the test of hypotheses related to the

mean parameter µ of a normal distribution with variance 1 based on n observations:

H1 : µ = 0 (2.1)

vs.

H2 : µ 6= 0. (2.2)

In a Bayesian setting, hypothesis H2 must be redefined as a distribution on the parameter

µ. Consider, for example:

H ′
2 : µ ∼ N(0, σ2

β). (2.3)

H ′
2 is indeed a re-statement of the “spike and slab” prior used by the SVSS algorithm

of George and McCulloch (1993, 1997), except that the prior probabilities of individual

hypotheses have not been assigned. Since interest lies in the Bayes’ factor, the choice of

those probabilities is immaterial to this discussion. Let φ(y∗, µ∗, σ2∗) denote the normal
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density with mean µ∗ and variance σ2∗ evaluated at y∗. The Bayes’ factor in favor of H2

versus H1 is:

BF (2|1) =
φ(Ȳ , 0,

(
σ2

β + 1/n
)
)

φ(Ȳ , 0, 1/n)
=

1

(1 + nσ2
β)

1
2

exp

(
1

2

nσ2
β

1 + nσ2
β

Zn

)
. (2.4)

Here, Zn is the observed likelihood ratio of the test. It’s evident from equation (2.4) that

if for fixed n, σ2
β → ∞, BF (2|1) → 0 under both the null and alternative distributions.

From a practical point of view this means that a vague prior distribution is not suitable for

moderate sample sizes.

Suppose for instance that data is indeed generated from a N(0.2, 1) distribution. Let

n = 200. The median value of the distribution of the LRS is then close to 8.0. Setting a

vague prior σ2
β = 100 when the observed value of the LRS is indeed 8.0, we get a Bayes’

factor in favor of the alternative equal to 0.122. In most practical applications, we would

like to be able to detect a mean of 0.2, however, in this case the vague prior is supporting the

null hypothesis. In terms of model selection, this means that models assigned significant

posterior probabilities will not perform well for prediction.

At the same time, letting σ2
β be too small can also create problems. If for fixed n we

let σ2
β → 0, then BF (2|1) → 1 under both the null and alternative distributions. In terms

of model selection, this means that prediction will suffer.

2.2.2 Zellner’s g-prior

A popular choice for the alternative distribution in variable selection is Zellner’s g-prior

(Zellner 1986). A useful feature of this prior is that it assigns a variance covariance matrix

to the predictors in a regression model which is proportional to (X ′X)
−1, where X is the

design matrix. As a result, the marginal density of the data can be obtained analytically,

yielding a convenient expression for the Bayes’ factor. In the one-dimensional case, the
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g-prior corresponds to an alternative distribution of the following form:

H ′
2 : µ ∼ N(0,

c

n
). (2.5)

Hence the expression for the corresponding Bayes’ factor can be written as

BF (2|1) =
φ(Ȳ , 0, (c + 1)/n)

φ(Ȳ , 0, 1/n)
=

1

(c + 1)
1
2

exp

(
1

2

c

c + 1
Zn

)
. (2.6)

In the multi-dimensional setting, if the data model is Y ∼ N(Xβ, I) and we test

H1 : β = 0 (2.7)

vs.

H ′
2 : β ∼ N(0, c (X ′X)

−1
), (2.8)

the expression for Bayes’ factor is:

BF (2|1) =
1

|I + cPX |
1
2

exp

(
1

2
Y ′{I − (I + cPX)−1}Y

)
(2.9)

=
1

(c + 1)
d
2

exp

(
1

2

c

c + 1
Zn

)
. (2.10)

Here, PX is the projection matrix defined by the predictors in X . The Bayes’ factors

in equations (2.6) and (2.10) is not consistent, since it does not go to 0 when the null

hypothesis is indeed true.

2.2.3 Nuisance parameters

An additional complication encountered in Bayesian hypothesis testing occurs in the pres-

ence of nuisance parameters. Since nuisance parameters require additional modeling, their

hyperparameters can have a significant effect on the Bayes’ factors for the parameters of

interest. Suppose, for example, that model for the data is Yi ∼ N(µ, σ2), where σ2 is

unknown. If interest lies in testing hypotheses in equation (2.1) versus equation (2.3), the

corresponding Bayes’ factor is
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BF (2|1) =

∫
φ(Ȳ , 0,

(
σ2

β + 1/n
)
)π(σ2)dσ2∫

φ(Ȳ , 0, 1/n)π(σ2)dσ2
. (2.11)

Here, π(σ2) denotes the prior distribution on σ2. From a practical point of view, the ex-

istence of nuisance parameters makes it harder for an investigator to find a good choice

of prior parameters. Since, Bayesian models typically involve nuisance parameters, this

problem is relevant to Bayesian analysis in general.

2.3 Bayes’ factors based on test statistics: testing nested models

Johnson (2005), Johnson and Rossell (2008), and Hu and Johnson (2009) proposed to use

test statistics to define Bayes’ factors for nested models. This approach has the following

advantages:

1. The theoretical framework for defining Bayes’ factors is well established.

2. These Bayes’ factors require just one hyperparameter which could be easily set to

get the desired operational characteristics.

3. The ideas are directly extendable to non-linear models.

The theoretical set up for defining Bayes’ factors based on test statistics is as follows.

Following Davidson and Lever (1970), consider the test of hypothesis:

H1 : θ =
(
θ0

1, θ2

)
, (2.12)

where θ0
1 is d−dimensional, against the sequence of local alternative hypotheses

H2,n : θ = (θn
1 , θ

∗
2) . (2.13)
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where

θn
i = θ0

i + δi,n/
√

n, with lim
n→∞

δi,n = δi, i = 1, . . . , d, (2.14)

and θ∗2 is the vector of the true values of the nuisance parameter θ2 under H2.

Let Zn = −2log(λn) be the LRS for the above test. Under the regularity conditions

of Davidson and Lever (1970), the distribution of the LRS converges to central χ2
d when

the null is true and a χ2
d(δ

′C̄11δ) distribution when the alternative is true. Here, C̄11 de-

notes the upper d × d submatrix of the inverse of the information matrix ΣI based on a

single observation, and δ = {δi}. Also the symbol χ2
ν is used to represent a central chi-

squared distribution with ν degrees of freedom and the symbol χ2
ν(∆) is used to represent a

chi-squared distribution with ν degrees of freedom, and non-centrality parameter ∆. Spec-

ifying a prior distribution on δ thus yields the marginal distribution of the LRS under the

alternative hypothesis. The Bayes’ factor is obtained as a ratio of the marginal distributions

of the LRS under the two hypotheses.

As a further note, the prior on distribution δ should generate values of δi that are

Op(
√

n),∀i = 1, . . . , d. Under certain regularity conditions on the design matrix, this

ensures that the difference between values of θ drawn under H2,n and H1 is Op(1). Only in

that case, do we have a meaningful test of hypotheses.

2.3.1 Local alternative prior

Johnson (2005) and Hu and Johnson (2009) proposed using a local alternative prior to

define the alternative distribution of δ. Specifically, they assumed that δ has a multivariate

normal distribution with mean 0 and covariance matrix cnC̄
−1
11 . For this sequence of alter-

natives, the Bayes’ factor in favor of the alternative model for a fixed value of n based on
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Zn is thus:

BFlocal(2|1) = (cn + 1)−d/2 exp

[
cnZn

2(cn + 1)

]
. (2.15)

The proof of the result in equation (2.15) can be found in Johnson (2005). The Bayes’

factor in equation (2.15) is similar to the term in equation (2.10), except that the scale

parameter c is now replaced by cn. Unlike the latter, the Bayes’ factor in equation (2.15) is

consistent under a true null and a true alternative hypothesis. In the one-dimensional case,

the Bayes’ factor in equation (2.15) is the same as the Bayes’ factor in equation (2.4). Even

in the presence of nuisance parameters, the expression for the Bayes’ factor computed from

the LRS remains the same as in equation (2.15), so the only parameter c can be set easily

based on, for example, frequentist operating characteristics.

2.4 Non-local alternative priors

Johnson and Rossell (2010) proposed two classes of alternative prior distributions called

non-local alternative prior distributions. These priors assign less weight to the region

around the null value and more weight to regions away from the null value, hence providing

a convenient mechanism to separate the theory of the null hypothesis from the alternative

hypothesis. By ignoring small deviations from the null hypothesis, they also offer a means

of testing for practical signicance as opposed to statistical significance. Figure 1 shows

the two non-local alternative prior densities plotted along with the local alternative prior

density.

Johnson and Rossell (2010) used non-local priors in regression models by assigning

non-local prior densities to regression coefficients. In Subsections 2.4.1 and 2.4.2 below,I

provide an outline for using non-local prior densities to compute Bayes’ factors based on

test statistics. Detailed proofs of the expressions for Bayes’ factors can be found in Ap-

pendix A of this dissertation. The proofs involve connecting the linear model to the LRS
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Figure 1: Alternative prior densities. A MoM density is depicted by the green curve, an
iMoM density by the purple curve, and a local prior density by the blue curve.

through a vector of random variables which have a joint multivariate Normal distribution of

dimension d. The test of hypothesis in equation (2.12) versus (2.13) then becomes equiva-

lent to a test concerning the mean vector of that multivariate normal distribution.

2.4.1 Moment prior

The first class of non-local alternative priors proposed in Johnson and Rossell (2010) is

called the Moment prior (MoM) density. Modeling δ under the alternative hypothesis as a

MoM density results in a prior density of the form:

πM (δ) =
1

k−1∏
i=0

(d + 2i)

[
δ′C̄11δ

nτ

]k
∣∣C̄11

∣∣ 12
(2πnτ)

d
2

exp

[
−δ′C̄11δ

2nτ

]
, (2.16)

which leads to a Bayes’ factor for testing hypothesis in equation (2.12) versus (2.13) that

can be expressed as
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BFM(2|1) =
µ∗k

k−1∏
i=0

(d + 2i)

1

(1 + nτ)k+ d
2

exp{1

2

nτ

(nτ + 1)
Zn}. (2.17)

2.4.2 Inverse Moment prior

The other class of non-local alternative priors proposed in Johnson and Rossell (2010) is

called the Inverse Moment prior (iMoM) density class. Modeling δ under the alternative

hypothesis as a iMoM density results in a prior density expressible as:

πI (δ) = cI

[
δ′C̄11δ

nτ

]− ν+d
2

exp

[
−
(

δ′C̄11δ

nτ

)−k
]

, (2.18)

where

cI =

∣∣∣∣C̄11

nτ

∣∣∣∣1/2
k

Γ (ν/2k)

Γ (d/2)

πd/2
, (2.19)

and the Bayes’ factor for testing hypothesis in equation (2.12) versus (2.13) obtained under

this alternative prior density is

BFI(2|1) =

(
2

nτ

)d/2
kΓ (d/2)

Γ
(

ν
2k

) Ez

[(
nτ
z

)(ν+d)/2
exp{−(nτ/z)k}

]
exp{−1

2
Zn}

, (2.20)

where z ∼ χ2
d(Zn), and Ez(·) represents expectation with respect to the density of z. This

value must be computed numerically as a one-dimensional integral.

2.5 Setting prior parameters

2.5.1 Local prior

For the local alternative prior, values of c between 1 and 3 produce models which perform

well in cross-validation studies. A method for clustering genes was developed by Hu, Joshi,
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and Johnson (2009). For their method, they used values of c in the range of 1-3. The details

of that method are discussed in Chapter III.

2.5.2 One dimensional non-local prior

For the non-local priors, the prior parameters obtained by Johnson and Rossell (2010) are

for the linear model case. They can be extended to Bayes’ factors based on the LRS using

the same connection between the linear model and the LRS that was used to derive those

Bayes’ factors. Specifically, we can view
¯C

1
2
11δ√
n

as a vector of standardized effects, where

C̄
1
2
11 is the half-matrix of C̄11.

Johnson and Rossell (2010) propose setting k = 1, and ν = 1 for the iMoM prior.

This leaves only one scaling parameter τ that must be specified. Johnson and Rossell

(2010) propose two methods for setting this parameter. In the first, they determine τ by

fixing the mode of the prior density at a value deemed most likely under the alternative

hypothesis. Let w = δ′ ¯C11δ
n

. Then the MoM and iMoM prior modes occur at the locus of

points for which w = 2kτ and w = τ( 2k
ν+d

)
1
k , respectively.

Alternatively, τ can be determined so that high prior probability is assigned to the

region of high practical significance, and low probability is assigned to regions of less

practical significance. For instance, standardized effect sizes of less than 0.2 are often

not considered substantively important in the social sciences (e.g., Cohen 1992). Small

standardized effects in model selection correspond to those features in data which are not

important in prediction and should be excluded by the rule of the Occam’s razor.

In the linear model case, Johnson and Rossell (2010) suggested that τ may be deter-

mined so that the prior probability assigned to the event that a standardized effect size is

less than 0.2, is say, less than 5%. When k = 1, and d = 1 the probability assigned to the

interval (a, a) by MoM prior centered on 0 with scale τ and n = 1 is

2

[
Φ

(
a√
τ

)
− a√

2πτ
exp

(
− a2

2τ

)
− 1

2

]
. (2.21)
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For an iMoM prior, the corresponding probability is

1−G
[
(a/

√
τ)−2k;

ν

2k
, 1
]
, (2.22)

where G(·; s1, s2) denotes a gamma distribution function with shape s1 and scale s2. For

τ = 0.114 and 0.348, the probabilities assigned by the MoM prior to the interval (0.2, 0.2)

are 0.05 and 0.01, respectively. The corresponding values of τ for the iMoM prior are 0.077

and 0.133 respectively.

2.5.3 Multi-dimensional non-local prior

In this subsection I demonstrate how the one-dimensional parameter recommendations can

be used to obtain parameter settings for multi-dimensional non-local alternative prior den-

sities. When d > 1, the LRS has a χ2
d when the null is true and a χ2

d(δ
′C̄11δ) distribution

when the alternative is true. Since χ2
d and χ2

d(δ
′C̄11δ) are obtained as sums of d indepen-

dent χ2
1 ’s (central and non-central respectively), the problem of parameter tuning of the

d-dimensional non-local alternative prior distribution could be interpreted as either of the

following:

1. The hypersphere in the d-dimensional space that is centered around the null value

and has a radius of 0.2 ∗
√

d has a low probability, say 0.05 or 0.01.

2. The mode of the d-dimensional distribution lies on a hyper-sphere whose radius is

proportional to
√

d.

It turns out that both approaches are easy to implement for the MoM prior, by choosing

τ = τ1 ∗ d, where τ1 = 0.114 or 0.348. However, the iMoM prior is more difficult. If the

first approach is taken, then τ is equal to τ1 ∗ d. However, doing this keeps the mode at

roughly the same distance from the null as in the one-dimensional prior. If we instead take

the second approach then the probability in the hypershphere in point 1 above will go to 0.
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This is not surprising because increasing d will cause the prior to become flatter near the

null value and increase sharply near the mode. Taking the view that it is more important

for the mode to move away from the null distribution than assigning a non-diminishing

probability to the region around the null distribution, τ should be set as equal to τ1∗d∗ d+1
2

,

where τ1 = 0.077 or 0.133. The practical implication of the foregoing discussion is that only

one parameter is required for all Likelihood Ratio tests on all degrees of freedom.

2.6 Comparison of Bayes’ factors

To compare the performance of the Bayes’ factors based on the local and non-local alterna-

tive prior densities, I simulated the values from the distribution of the LRS under true null

and true alternative hypotheses in a test of the mean vector of a multivariate normal distri-

bution with a covariance matrix equal to the identity matrix of size d. Formally speaking, I

assumed that Y ∼ N(µ, Id). I am interested in the distributions of the LRS involving the

test of point hypotheses:

H0 : µ = 0 (2.23)

vs.

H1 : µ = δ∗1. (2.24)

Here 1 represents a vector of 1’s. Let n denote the sample size. Then the distributions of the

LRS are under H0 and H1 are, respectively, χ2
d and χ2

d((
√

nδ∗)2). To get the distributions

of the Bayes’ factors, I first simulated the LRS and then use equations (2.15, 2.17, 2.20)

to obtain the corresponding Bayes’ factors. I set d = 1 and d = 9. For the alternative

hypotheses, I set δ∗ = 0.4 for the case d = 1, and δ∗ = 0.3 for the case d = 9.

The empirical distributions of the Bayes’ factors thus obtained are plotted in Figure

2. Compared to the Bayes’ factors based on the local alternative prior density, the Bayes’
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factors based on the non-local alternative prior densities tend to be much smaller when the

data is generated from true null hypothesis. However, when the data is generated from true

alternative hypotheses, Bayes’ factors based on the local and non-local alternative prior

densities are comparable in value.
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Figure 2: Distribution of Bayes’ factors. These figures show the empirical densities of
Bayes’ factors based on test statistics for the local (blue), MoM(green) and iMoM(purple)
alternative prior densities. The left panels correspond to scenarios when the data were
generated from the true null distribution, and the right panels correspond to scenarios when
the data were generated from the true alternative distributions. The top panels correspond
to the scenarios when the test of the null versus the alternative involves only 1 degree of
freedom and the bottom panels correspond to the scenarios when the test of the null versus
the alternative involved 9 degrees of freedom. All the figures correspond to a sample size
of 100.
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CHAPTER III

CLUSTERING GENE EXPRESSIONS

3.1 Introduction

Using the Bayes’ factors based on the local alternative prior in equation (2.15), we devel-

oped a method for clustering genes based on their co-expression values. We were able to

successfully apply the method to data on breast cancer patients and controls and obtained

gene clusters whose existence is corroborated by scientific literature. This section reviews

the methodology presented in Hu, Joshi, and Johnson (2009).

Our methodology consists of four innovations. The first, of course, was the use of

Bayes’ factors based on the LRS in model selection. Secondly, observed data structures

were converted to contingency tables by discretizing the raw gene expression data. With

this reduction, we were able to use classical log-linear models to explore interactions be-

tween arbitrary subsets of expression profiles. Unlike other methods for discretizing gene

expression data (e.g., Potamias, Koumakis, and Moustakis 2004), we discretize based on

within-subject rankings of expression levels. The obtained ranked values are invariant to

monotonic transformations applied to expression values at the subject level, hence this

method of discretization eliminates many of the normalization artifacts often associated

with gene expression experiments. In particular, the expression levels measured on a single

microarray produce ranked values that are invariant to monotonic transformations applied

to expression levels measured from that chip.

The third innovation of our methodology was the specification of a simple prior den-

sity on the space of cluster configurations - the Ewens’ sampling distribution. Analytic

expressions are readily available for prior expectations on the number of clusters for this

density, and density requires only one parameter to be set. Such expressions provide a
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convenient way to set that single parameter.

We restricted our attention to hierarchical log-linear models. Finally, we constrained

the variables in the model to be included in at most one cluster. This restriction implies that

a variable A cannot be assumed to interact with both variables B and C unless there exists

a multi-way interaction between the three variables. This assumption greatly improves the

computational efficiency of our algorithm by eliminating the need to implement iterative

estimation procedures to compute the LRS, hence allowing the method to be applied to

high-throughput genomic data comprising of potentially thousands of genes.

3.2 Discretization of gene expression data

Briefly, the discretization method can be explained in the steps below:

1. For each subject, rank the expression scores for all genes for that subject.

2. For each gene, discretize the expression levels based on the ranks obtained in the

previous step.

We converted each gene expression to a categorical random variable with only two cate-

gories; however a discretization into more than 2 categories can be achieved in a similar

way. Table 1 shows the discretization process for a hypothetical example, each subject

corresponds to a specific row of the table and each gene corresponds to a specific column.

A disadvantage of our method is that the discretization of continuous variables will result in

the loss of information. However, the alternative strategy will be to model the shape of the

interactions, which is unnecessary and the additional parameters required to model those

interactions will affect the inference on the interaction structures. We have compared our

method to methods for continuous gene expression data and have obtained similar results.

This suggest that the loss of information associated with the above discretization is small

compared to the gains through model simplification.



22

Table 1: Discretization of gene expression data. This table shows the discretization method
applied to gene expression data. The left most column contains the binary phenotype in-
formation for each subject. The columns marked G1 − G4 show the hypothetical gene
expression data (columns 2-5), within column ranks of gene expressions (columns 6-9)
and the discretized scores (columns 10-13) for 4 genes.

Raw Expression data Within-subject ranks Discretization within columns
Cancer G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4

0 3 6 9 0 6 3 2 6 6 3 6 9 4 6 0 1 6 3 6 2 0 6 6 6 3 1 6 9 6 4 1 6 0 6 1 0
0 2 9 8 1 6 2 2 6 9 4 6 8 3 6 1 1 6 2 6 2 0 6 9 6 4 1 6 8 6 3 1 6 1 6 1 0
1 2 1 0 3 6 2 3 6 1 2 6 0 1 6 3 4 6 2 6 3 1 6 1 6 2 0 6 0 6 1 0 6 3 6 4 1
1 6 1 4 3 6 6 4 6 1 1 6 4 2 6 5 3 6 6 6 4 1 6 1 6 1 0 6 4 6 2 0 6 5 6 3 1

3.3 Model

We model contingency tables of discretized gene expression data as a log-linear model. To

explain the model and the constraints, first consider a saturated log-linear model comprising

of 3 variables. Following the notation of Bishop, Fienberg, and Holland (1975), such a

model can be expressed as:

logmijk = u + u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + u123(ijk), (3.1)

where mijk is the expected cell count for level i of variable 1, level j of variable 2, and level

k of variable 3. The parameters of the model are the intercept u; main effects of variables

1, 2, and 3, u1(i), u2(j), u3(k), respectively; two-way interaction terms u12(ij), u23(jk), u13(ik);

and the three-way interaction term u123(ijk). Each of the seven subscripted u terms sum to

0 over each lettered subscript (i, j, or k). So if the number of levels of each variable are

n1, n2, and n3 respectively, u1(i) consists of (n1 − 1) independent parameters (degrees of

freedom), u12(ij) consists of (n1−1)∗(n2−1) independent parameters, and so on. The total

number of independent parameters in the model equals the number of elementary cells.

The hierarchical model constraint implies that a lower order term will be 0 only if all

the higher order terms containing the lower order term are also 0. With reference to the



23

model in equation (3.1), this means that if u12(ij) = 0, then u123(ijk) = 0. The constraint

that variables in the model be included in at most one cluster imply that we cannot have a

model which includes the interaction term u12(ij) and u13(ik), unless the model also includes

u23(jk). So an unsaturated model like

logmijk = u + u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik), (3.2)

is inadmissible in the model space, even though it is a hierarchical model. However, a

model like

logmijk = u + u1(i) + u2(j) + u3(k) + u12(ij), (3.3)

is admissible. The model constraints provide two nice properties which enable efficient

sampling algorithms:

1. Interactions within a cluster can be estimated and tested using only the marginal table

of that cluster.

2. Each of the models in the model space are directly estimable, that is, the cell estimates

can be obtained without employing an iterative scheme.

3.4 Ewens’ prior

We imposed a prior based on the Ewens’ sampling distribution (Ewens 1972) on the model

space. Tavare and Ewens (1997) provide analytic expressions for the expected number of

singleton clusters a and the total number of clusters K as a function of number of variables

p and a parameter θ as below:

E(a1) =
pθ

p + θ − 1
, and, (3.4)

E(K) =

p−1∑
i=0

θ

θ + i
. (3.5)
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From the above equations, we selected values of θ to constrain the number of nonsingle-

ton clusters expected a priori or, equivalently, to specify the prior expected proportion of

singleton clusters. For our analyses, we set θ so that r = E(a1)/E(K) ≈ 0.8.

3.5 Sampling scheme

Our interest was in obtaining an “average” model for gene clustering. A complete enumer-

ation of posterior probabilities of the models in the model space is not feasible even for

a moderate number of variables p. We therefore resorted to a Markov chain Monte Carlo

algorithm as described in the steps below.

1. Initialize the chain to a state in which each variable forms its own cluster.

2. (a) With probability Ps, select a cluster c random in the current model, say Mk, to

potentially split.

(b) With probability 1 − Ps, select two clusters c1 and c2 randomly to potentially

merge.

Let M ′ denote the proposed model state.

3. If the cluster chosen to split contains only one variable, or if the two clusters consid-

ered for merge contain more than the allowed number of variables, record the current

state and return to Step 2.

4. When a split is proposed, define the proposal density Q(M ′|Mk) to be

Q(M ′|Mk) =
Ps

|Mk|21−|c| , (3.6)

and the (reverse) proposal density to be

Q(Mk|M ′) =
1− Ps(|Mk|+1

2

) . (3.7)
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These proposal densities correspond to an equiprobable random split of a cluster c

containing |c| variables in model configuration Mk, which contains |Mk| clusters,

into one of 2|c|−1 configurations of two subclusters. When a merge of clusters c1 and

c2 is proposed, the proposal densities are

Q(M ′|Mk) =
1− Ps(|Mk|

2

) , (3.8)

and

Q(Mk|M ′) =
Ps

(|Mk|+ 1)21−|c1∪c2|
. (3.9)

5. Compute the Bayes’ factor BFlocal based on the LRS between the nested log-linear

models defined by the current and candidate states according to equation (2.15).

6. Let the Ewens’ prior probabilities for the current and candidate states be denoted by

πk and π′, respectively. The Metropolis-Hastings ratio for transition to the candidate

configuration is obtained as

min

(
1, BF × Q(Mk|M ′)

Q(M ′|Mk)
× π′

πt

)
, (3.10)

if a merge is proposed, or,

min

(
1,

1

BF
× Q(Mk|M ′)

Q(M ′|Mk)
× π′

πt

)
. (3.11)

if a split is proposed.

7. Record the current cluster configuration and return to Step 2 until a sufficient number

of cluster configurations have been sampled.

3.6 Simulated gene expression data example

To test the algorithm described above, we designed a simulation study in which a few

strongly interacting variables were seeded into a contingency table containing a total of
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Table 2: True clusters in the simulated gene expression data

Cluster (5, 6)
x6 = 0 x6 = 1

x5 = 0 50 10
1 10 50

Cluster (7, 8, 9)
x9 = 0 x9 = 1

x8 = 0 x8 = 1 x8 = 0 x8 = 1
x7 = 0 54 2 x7 = 0 2 2

1 2 2 1 2 54
Cluster (1, 2, 3, 4)

x3 = 0, x4 = 0 x3 = 1, x4 = 0
x2 = 0 x2 = 1 x2 = 0 x2 = 1

x1 = 0 43 1 x1 = 0 1 6
1 1 1 1 6

x3 = 0, x4 = 1 x3 = 1, x4 = 1
x2 = 0 x2 = 1 x2 = 0 x2 = 1

x1 = 0 6 1 x1 = 0 1 1
1 6 1 1 43

1000 binary variables with 120 joint observations on each. Interacting variables were di-

vided into three clusters of different sizes: {(1, 2, 3, 4), (5,6), (7, 8, 9)}. The marginal

tables corresponding to the true clusters are in Table 2. No structure was imposed on the

remaining variables, which were generated randomly. The parameter θ of the Ewens’ prior

density was set to 1,700 to limit the expected proportion of singleton clusters to 0.8. Ten

million iterations of the MCMC algorithm were performed to obtain the estimated posterior

probabilities of the clusters, as depicted in Table 3. The three true clusters were obtained

with high posterior probabilities, although three spurious triples are assigned higher poste-

rior probability than the true cluster (5,6).
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Table 3: Clustering simulated gene expression data. This table presents the results of the
gene clustering method applied to simulated gene expression data with 1000 “genes”. The
“true gene” clusters are: {(1, 2, 3, 4), (5,6), (7, 8, 9)}. The rightmost column shows the
posterior probability estimates for analysis with a local prior (c = 2).

1000 Genes
7 8 9 0.982
1 2 3 4 0.975

465 737 871 0.955
587 743 809 0.920
500 503 877 0.882

5 6 0.757
35 347 859 0.725
230 885 0.646
49 89 0.629
189 380 0.625

3.7 Analysis of breast cancer data

Our purpose in developing a statistical model for cluster configurations is to facilitate the

analysis of gene expression data. We therefore applied our method to the data presented in

West et al. (2001). Those data set consist of gene expression measurements taken on 7,129

genes sampled from 49 patients. Twenty-five of these patients were diagnosed as estrogen

receptor positive (ER+), whereas the remaining 24 were diagnosed as estrogen receptor

negative (ER-). The raw data were pre-processed using the robust multi-array analysis

(RMA) procedure proposed by Irizarry et al. (2003).

There are only a few previous studies of gene-gene interactions among these genes,

and one motivation for the current analysis is the exploration of interactions between previ-

ously implicated biomarkers of breast cancer. We therefore restricted our study to 71 genes

in which previous studies have indicated an association with some form of breast cancer

(e.g., Cooper 2001, Spurdle et al. 2007).

To proceed, we discretized the gene expression data using the method described above.

Since only 49 samples were available for this study, we restricted our investigation to four-
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way interactions. Marginal tables associated with four-way interactions thus had expected

cell counts of approximately 3 under the independence model; such models are on the

borderline in terms of the chi-squared approximation to the LRS.

For our analysis, the Ewens’ prior parameter was set to θ = 119. Thus, the prior

expectation of the proportion of non-singleton clusters was r ≈ 0.2. Results from this anal-

ysis are displayed in Table 4, where the 10 clusters estimated to have the highest posterior

probabilities are displayed. The MCMC algorithm described above was run to obtain 10

million samples from the posterior distribution on the clusters.

Table 4: Breast cancer data results with 71 genes

Local (c = 1) Local (c = 2) Local (c = 3)
BRCA1,JNK 0.597 BRCA1,JNK 0.694 BRCA1,JNK 0.763
HSF1,P53a 0.575 HSF1,P53a 0.635 HSF1,P53a 0.645
GSTP1b,AKT2 0.432 ESR1,GATA3 0.532 KRAS,CYR61,ATF 0.479
ESR1,GATA3 0.422 GSTP1b,AKT2 0.500 AR,FOXA1 0.476
CDKN2B,TSG101 0.304 AR,FOXA1 0.393 GSTP1b,AKT2 0.474
AR,FOXA1 0.287 GSTP1a,AR,FOXA1 0.389 ESR1,GATA3 0.457
ESRRA,ERBB2 0.283 KRAS,CYR61,ATF 0.345 GSTP1a,ESR1,GATA3 0.438
P53b,WNT10b 0.283 P53b,WNT10b 0.332 P53b,WNT10b 0.385
ERK2,NRAS 0.264 CDKN2B,TSG101 0.323 GSTP1a,AR,FOXA1 0.350
CYR61,ATF 0.263 ERK2,NRAS 0.314 ERK2,NRAS 0.348

In this table, we see that the two-gene clusters (BRCA1,JNK) and (HSF1, P53a) were

detected with high posterior probabilities. In addition, cluster (ESR1, GATA3) exhibits a

high posterior probability for c = 1, 2. For c = 3, both (ESR1, GATA3), and the cluster

(GSTP1a, ESR1, GATA3) are assigned fairly high posterior probabilities. For c = 1, 2, the

three-gene cluster (GSTP1a, AR, FOXA1) and the subcluster (AR, FOXA1) are detected

amongst the best clusters. Taken together, these observations indicate the existence of a

more complex interaction structure between the five genes GSTP1a, ESR1, AR, GATA3,

and FOXA1.

Marginal three-way contingency tables for the clusters (GSTP1a, ESR1, GATA3) and
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Table 5: Clusters in the breast cancer expression data

Cluster (GSTP1a, ESR1, GATA3)
xGSTP1a = 0 xGSTP1a = 1

xGATA3 = 0 1 xGATA3 = 0 1
xESR1 = 0 4 1 xESR1 = 0 20 0

1 1 19 1 0 4
Cluster (GSTP1a, AR, FOXA1)

xGSTP1a = 0 xGSTP1a = 1
xFOXA1 = 0 1 xFOXA1 = 0 1

xAR = 0 4 2 xAR = 0 19 0
1 1 18 1 1 4

(GSTP1a, AR, FOXA1) are shown in Table 5. In these tables, it appears that the two cluster

configurations are similar. Hence, the two three-gene clusters compete for gene GSTP1a,

which under our model is restricted to participate in at most one cluster.

Interactions of genes in the cluster (ESR1, GATA3, FOXA1) is well known in the

bioinformatics literature. There is an extensive literature (e.g., Bertucci et al. 2000, Lacroix

and Leclercq 2004) confirming the strong interaction among these three genes. To examine

the posterior probability that genes ESR1, GATA3, and FOXA1 form an interaction cluster,

we first removed the genes GSTP1a and AR from our dataset. We then reran the MCMC

algorithm on the remaining 69 genes, now taking θ = 116, (again making the prior expec-

tation of the proportion of non-singleton clusters equal to about 0.2. Posterior estimates of

cluster presence are displayed in Table 6.

As expected, the cluster (ESR1, GATA3, FOXA1) appears with high posterior prob-

ability for all settings of the prior. The three-way contingency table displayed in Table 7

indicates that both genes ESR1 and GATA3 coexpress at their low expression levels when

gene FOXA1 is downregulated, and coexpress at their high expression levels when gene

FOXA1 is upregulated.
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Table 6: Breast cancer data with 69 genes

Local (c = 1) Local (c = 2) Local (c = 3)
ESR1,GATA3,FOXA1 0.742 ESR1,GATA3,FOXA1 0.899 ESR1,GATA3,FOXA1 0.911
BRCA1,JNK 0.559 BRCA1,JNK 0.679 BRCA1,JNK 0.753
HSF1,P53a 0.550 HSF1,P53a 0.662 HSF1,P53a 0.673
GSTP1b,AKT2 0.468 GSTP1b,AKT2 0.493 KRAS,CYR61,ATF 0.517
CDKN2B,TSG101 0.338 KRAS,CYR61,ATF 0.389 GSTP1b,AKT2 0.460
ERK2,NRAS 0.318 P53b,WNT10b 0.356 P53b,WNT10b 0.398
ESRRA,ERBB2 0.301 ESRRA,ERBB2 0.328 ESRRA,ERBB2 0.359
P53b,WNT10b 0.282 ERK2,NRAS 0.323 ERK2,NRAS 0.341
CYR61,ATF 0.281 CDKN2B,TSG101 0.303 CDKN2B,TSG101 0.277
IFI27,TNFa 0.235 CYR61,ATF 0.265 IFI27,TNFa 0.268

Table 7: More clusters in the breast cancer expression data

Cluster (ESR1, GATA3, FOXA1)
xESR1 = 0 xESR1 = 1

xFOXA1 = 0 1 xFOXA1 = 0 1
xGATA3 = 0 20 1 xGATA3 = 0 4 0

1 1 3 1 0 20
Cluster (KRAS, CYR61, ATF)

xKRAS = 0 xKRAS = 1
xATF = 0 1 xATF = 0 1

xCY R61 = 0 17 0 xCY R61 = 0 4 4
1 0 8 1 4 12

Our model also detected the three-gene cluster (KRAS, CYR61, ATF) with relatively

high posterior probability. The interaction pattern between these genes can be better under-

stood by an examination of the corresponding marginal table as displayed in Table 7. This

table suggests that the association between genes CYR61 and ATF is strong when gene

KRAS is not highly expressed, and diminishes as the expression level of gene KRAS in-

creases. This kind of three-way interaction structure cannot be represented by sub-models

containing only lower order interaction terms.

To determine if the gene clusters identified by our method have any biological signifi-
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cance, we used the PubMed search engine (www.ncbi.nlm.nih.gov/sites/entr-

ez) to identify functions associated with identified gene clusters. As it happens, most of

the interactions detected by our method are well supported in the bioinformatics literature.

BRCA1 is a gene whose association with breast cancer is well-known. Harkin et al.

(1999) pointed out that expression of JNK is induced by activation of transcription factor

BRCA1. The strong association between HSF1 and P53a expressions has been described

in Quenneville et al. (2002).

As discussed above, the results in Table 4 indicate the existence of a more complex

interaction structure between the five genes GSTP1a, ESR1, AR, GATA3, and FOXA1. We

were indeed able to find literature supporting the three-gene sub-cluster (GSTP1a, ESR1,

AR). A significant interaction between ESR1 and AR is reported in Panet-Raymond et al.

(2000). Both the genes GSTP1a and ESR1 participate in a biological pathway involved

in carcinogen/estrogen metabolism. A more thorough search through the Gene Network

Database (http://humgen.med.uu.nl/lude/genenetwork) suggests that the

two genes are indirectly correlated through ESR1 � MNAT1 � PSMC4 � GSTP1.

The three-gene cluster (KRAS, CYR61, ATF) detected by our method is also interest-

ing. Chien et al. (2004) pointed out that low levels of CYR61 can be induced by aberrant

expression levels of transcription factors such as KRAS (e.g., during carcinogenesis of en-

dometrial adenocarcinomas). The two genes CYR61 and ATF3 are indirectly connected

through interactions CYR61 � FGFR1 � MAPK10 � TP53 � ATF3.

To compare our method to other methods, we also applied the Gaussian graphical

models (GGM) algorithm of Schafer and Strimmer (2005) to this data. GGM is imple-

mented in the R package GeneNet. Results extracted from the GeneNet algorithm are

displayed in Table 8. The pairwise associations reflected in this table are largely consis-

tent with the clusters detected using our algorithm. For example, GGM identifies (CYR61,

ATF) as a potential important association. However, it fails to identify the association of
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Table 8: Analysis of breast cancer data with GGM. The second column shows the pairs of
nodes that are estimated to have high probability. The third column provides the p-value
for the test of zero partial correlation. The fourth column provides the FDR-based q-value,
which accounts for multiplicity in testing. The final column provides an estimate of the
empirical posterior probability that the indicated nodes are connected in the GGM.

Rank Doubleton p-Value q-Value Empirical posterior probability
1 ESR1,GATA3 <0.0001 0.089 0.825
2 AR,FOXA1 0.0001 0.139 0.825
3 ESRRA,ERBB2 0.0002 0.147 0.635
4 GSTM1,GADD45 0.0006 0.245 0.635
5 BRCA1,BCL2 0.0006 0.256 0.635
6 CYR61,ATF 0.0007 0.269 0.635
7 BARD1,ERBB2 0.0010 0.287 0.635
8 HSF1,P53a 0.0010 0.291 0.635
9 FOLH1,IL10 0.0011 0.292 0.426
10 FOLH1,DCC 0.0016 0.3504 0.426

these genes with KRAS. Similarly, GGM detects the pairwise associations (ESR1, GATA3)

and (AR, FOXA1), but gives no indication that these two pairs of variables might be related

to each other and gene GSTP1a. At the same time, several pairwise associations identified

by the GGM were not detected by the cluster model. We were not able to identify these

pairwise correlations in a cursory search of PubMed, although this does not necessarily

mean that these interactions are not biologically significant.

As a concluding note, the similarity of results obtained using our method and GGM

indicates that little information was lost in the discretization procedure used in the prepro-

cessing step of our method.
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CHAPTER IV

OBJECTIVE BAYESIAN GRAPHICAL MODEL SELECTION

4.1 Introduction

In Chapter III I reviewed a method of clustering variables. When the interaction structure

in the data is simple, we can use that method and combine it with a post-hoc analysis to

learn about the true interaction structure between variables. However, with an increasing

number of variables it is reasonable to expect that the interaction structure in the data will

also become more complex.

The most serious disadvantage of the model in Chapter III is the restriction that any

variable cannot be included in more than one cluster. Thus, detecting an important in-

teraction between variables A and B may not be possible when there is an even stronger

interaction between variables B and C. However, from the point of view of prediction of

variable B, it will be necessary to include both those interactions. This is true for many

high-throughput data, including the SNP data that is analyzed in the next chapter. I return

to this point when I present the results of the analysis of SNP data in the next chapter.

As noted in the Introduction of this dissertation, the model proposed here is motivated

by my desire to analyze high-dimensional high-throughput data. There is a clear need to

move beyond clustering-type models towards models that allow for a general interaction

structure. The log-linear model framework in equation (3.1) does allow for any arbitrary

interaction amongst the variables. However, estimation of such models can become very

hard even when there are very few variables in the model (∼ 20). The primary impediment

to employing a general log-linear model to high-throughput data is that testing an interac-

tion between two variables requires fitting a model to the entire P− way contingency table,

where P is the total number of variables. Furthermore, even for small number of variables,
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fitting a model to the entire contingency table requires a computationally-intensive algo-

rithm.

Goodman (1970, 1971) and Haberman (1974) studied a sub-class of log-linear models

in which the hypotheses tests for interactions and the estimated cell counts could be com-

puted directly; that is, without employing an iterative scheme. They developed a class of

models called decomposable models. Like the clustering models of Chapter III, decompos-

able models are directly estimable. Furthermore, interactions involving two variables can

be tested in a marginal table that involves only a small subset of all the variables.

For a few decades, scientists have been studying Markov random fields to under-

stand complex interaction structures. Markov random fields divide the set of variables into

cliques, or the maximal sets with no missing edges. Unlike clustering-type models, these

cliques can share variables. One of the fundamental results pertaining to the theory of

Markov fields is the Hammersley-Clifford theorem (Besag 1974). Darroch, Lauritzen, and

Speed (1980) utilized some close connections between the theory of Markov random fields

and log-linear interaction models to define a new class of models for multidimensional con-

tingency tables: graphical models. They further established that the class of decomposable

models is a proper subset of the class of graphical models, and so decomposable models

inherit all the nice properties of the graphical model class. They also established that the

graphical model class is a subset of the hierarchical log-linear model class.

Another important property of graphical models is that they are “dense” in the space

of log-linear models. This means that for any general log-linear model, one can find a

graphical model which includes a few more interactions and includes it. Alternatively, a

graphical model can be obtained by removing few interactions from a general log-linear

model.

In graphical model terminology, variables are called vertices, or nodes. Nodes of

a graph are joined by edges. In terms of the log-linear model of equation (3.1), edges
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correspond to interaction terms - deleting an edge is equivalent to removing corresponding

interaction terms from the log-linear model equation. Furthermore, the largest interaction

(maximal subset) containing a particular subset of the nodes are called cliques. Henceforth,

I use the terminology of graphical models and that of log-linear models interchangeably.

4.2 Limitation of log-linear model: need for collapsibility

Even the simplest log-linear models can be hard to estimate. Consider the model:

logmijk = u + u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk). (4.1)

There exists no closed form for the cell estimates of this model. Bishop, Fienberg, and

Holland (1975) present an iterative algorithm for estimating this model that involves fitting

the marginal table of variables {1,2}, {2,3}, and {1,3} iteratively. The largest model in-

volving 3 variables which does not need an iterative fitting algorithm is the saturated model

presented in equation (3.1), for which the cell estimates are the observed cell counts. The

largest unsaturated model which does not need an iterative fitting algorithm is a model

which contains only two of the three two-way interactions, for example,

logmijk = u + u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik). (4.2)

The estimated cell counts of the above model can be expressed in closed form as

m̂123(ijk) =
x12+(ij)x1+3(ik)

x1++(i)

. (4.3)

In this equation, x12+(ij) represents the marginal cell counts in the table of variables {1,2},

and x1+3(ik) represents the marginal cell counts in the table of variables {1,3}, and x1++(i)
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represent the marginal counts of variable 1. The LRS for testing any log-linear model

containing 3 variables with respect to the saturated model in equation (3.1) is obtained as:

Zn =
∑
i,j,k

x123(ijk)log
(
m̂123(ijk)

)
. (4.4)

Hence, if a model is directly estimable, there exists a closed form solution for testing it

against the saturated model. Note that this is not the case with the model in equation (4.1).

Now consider the model

logmijk = u + u1(i) + u2(j) + u3(k) + u13(ik). (4.5)

The model in equation (4.5) is directly estimable. Let’s say we are interested in testing the

significance of the {1,2} interaction in the model in equation (4.2). We would compute

the LRS for that model with respect to the saturated model, and the LRS of the model in

equation (4.5). The LRS for the test of {1,2} interaction can then be computed by taking

the difference of the two quantities, both of which exist in closed form. Hence the LRS

for the test of interest also exists in a closed form. Note that this is not the case if we were

interested in testing the significance of the {2,3} interaction in the model in equation (4.1),

which would correspond to a test of model (4.1) versus the model (4.2). Now consider two

models for the marginal table of variables {1,2}:

logmij = u + u1(i) + u2(j) + u12(ij), and, (4.6)

logmij = u + u1(i) + u2(j). (4.7)

It can be verified that testing the model in equation (4.2) vs. the model in equation (4.5)

is equivalent to testing the model in equation (4.6) vs. the model in equation (4.7). In the
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language of Bishop, Fienberg, and Holland (1975), we can collapse the three-way table

over variable 3 to obtain the test for the interaction {1,2} in the model in equation (4.2).

Collapsibility is a very desirable property if we were to use log-linear models with

many variables. Unfortunately, most tests in most log-linear models do not permit col-

lapsibility. For example, consider testing the model in equation (4.1) versus the model in

equation (4.2). In this case, we cannot collapse the three-way table over variable 1 to obtain

the test of the {2,3} interaction.

Lack of collapsibility restricts the usefulness of log-linear models to only a small set

of variables. Consider a log-linear model with 35 variables which only contains only two-

way interactions. Testing for any of those two-way interactions requires that we obtain the

cell estimates from a table of 35 variables. Even if we ignore the fact that we would need

an iterative algorithm, every step of which would try to fit
(
35
2

)
marginal configurations,

the problem of storing a 35-way table cannot be ignored and is not feasible in software

packages like R and MATLAB.

Graphical models provide a convenient mechanism for achieving collapsibility. This

is discussed in the next section.

4.3 Graphical models in log-linear model notation

Christensen (1997) provides an informal definition for graphical models: a graphical model

is a hierarchical log-linear model for which if all the two-way interactions corresponding

to a higher order interaction are included, then that higher-order interaction must also be

included in the model. In graph theory, such highest-order interactions are called cliques.

For example, let’s consider a model of 5 variables and the following interactions:

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {2, 5}, {4, 5}. (4.8)

Let G1 denote the smallest graphical model that includes all the interactions in equation
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(4.8). Then G1 must also include the interactions {1,2,3,4} and {2,4,5}. We call these

highest interactions as cliques of the model G1, and denote G1 as below:

G1 :≡ [1 2 3 4][2 4 5]. (4.9)

Note that since G1 is also necessarily a hierarchical log-linear model, it must include all the

three-way interactions corresponding the variables in the {1,2,3,4} interaction. Note that

there are lot of log-linear models that do not include all the interactions in model G1, but

include all the interactions in equation (4.8). Let n be the number of all such models and

let they be denoted by M1, . . . ,Mn. Then, G1 also happens to be the smallest graphical

model that includes all the interactions of models M1, . . . ,Mn. In graph theory, G1 is

called the Independence Map (I-Map) of each of the modelsM1, . . . ,Mn. In graph theory,

G1 corresponds to Figure 3a.

a.

d.

b.

c.

Figure 3: Graphical models

Now consider the smallest graphical model G2 that includes all the interactions in
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equation (4.8) except for {1,4}. In the notation of graphical models, we can write:

G2 :≡ [1 2 3][2 3 4][2 4 5]. (4.10)

G2 also corresponds to Figure 3c. In the diagrammatic representation, G1, and G2 differ

only by the edge joining the nodes 1 and 4. We say G2 is obtained by breaking the edge

{1,4} of model G2. Since both the models G1 and G2 are necessarily hierarchical, a test of

hypothesis like below:

H0 : G2 (4.11)

vs.

H1 : G1, (4.12)

will translate in log-linear model notation to a test of alternative model G1 against a nested

null model which is obtained by setting the interaction terms u14, u124, u134, and u1234 to

0. Hence each edge corresponds to all the interactions of the log-linear model that contain

both the nodes joining that edge.

4.3.1 Implication of the Hammersley-Clifford theorem

The connection between log-linear models and graphical models can also be understood

from the Hammersley-Clifford theorem as presented in Besag (1974). For example, with

reference to graph G1, let Xi denote the random variable at node i, for i = 1, . . . , 5. Then

the Hammersley-Clifford theorem requires that

P (X1, . . . , X5) =
P (X1, X2, X3, X4) P (X1, X4, X5)

P (X1, X4)
, (4.13)

where the function P (·) above is the joint probability distribution of the random variables in
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the argument list. Assuming a Dirichlet distribution over the cells of the 5-way contingency

table, we have

m
(5)
ijklo ∝ P (X1 = i, X2 = j, X3 = k,X4 = l, X5 = o) (4.14)

∝
m

(4)
ijklm

(3)
ilo

m
(2)
il

. (4.15)

In this equation, m(p) represents the expected cell counts of the p−way table involving the

variables whose indices appear in the subscript. The equation (4.15) is a direct consequence

of the equation (4.13). Hence the Hammersley-Clifford theorem implies the equivalence

of the cliques and the highest interactions of the log-linear equation corresponding to the

graph.

4.4 Collapsibility in graphical models

Birch (1963, 1964) provided results for computing the maximum likelihood estimates of

cell counts for contingency tables. Those results can also be found in Bishop, Fienberg,

and Holland (1975). According to Birch’s results, any maximum likelihood solution for

any hierarchical log-linear model must satisfy all the maximal interaction constraints cor-

responding to that model. Furthermore the maximum likelihood solution for which cell

estimates are non-negative is unique. Hence, Birch’s results imply that any model of 5-

variables satisfying equation (4.15), will have the expected cell counts m̂(p) satisfy the

following relationship:

m̂
(5)
ijklo =

m̂
(4)
ijklm̂

(3)
ilo

m̂
(2)
il

(4.16)

=
x1234+(ijkl)x1++45(ilo)

x1++4+(il)

. (4.17)

The result in equation (4.16) is similar to the results in Goodman (1970, 1971). It means

that estimated cell counts for a graphical model are obtained as a product of the estimated
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cell counts of individual cliques divided by the estimated cell counts of the clique sepa-

rators, or variables that are common between different cliques. When individual cliques

correspond to log-linear models that are directly estimable, the entire model is directly

estimable as in equation (4.17). Equation (4.16) then implies collapsibility in graphical

models: it can be easily verified that if the interest is in a test of hypothesis correspond-

ing to any edge of a graphical model, then all the variables not included in the cliques

containing that edge can be collapsed. For example, when testing

H0 : G2 (4.18)

vs.

H1 : G1, (4.19)

we can collapse the 5-way table over the node labeled 5.

4.4.1 Decomposable graphical models

A class of log linear models called decomposable models were first introduced by Haber-

man (1974). The decomposable model class is a subclass of hierarchical log linear models,

in which all models are directly estimable. Darroch, Lauritzen, and Speed (1980) later

showed that the decomposable model class is a strict subset of the graphical model class.

Decomposable models do not have any closed loops involving four or more cliques. For ex-

ample, graph G3 in Figure 3b can be written in clique notation as G3 :≡ [1 2][2 3][3 4][1 4].

Since, the cliques form a closed-loop, this model is not directly estimable. Adding the

diagonal edge, {1,3} yields the model G4 :≡ [1 2 3][1 3 4], shown in Figure 3d, which

is directly estimable. Since decomposability requires that a graph have certain diagonal

edges, decomposable graphical models are also called triangulated graphs.
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4.5 Proposed model space for graphical model selection

The decomposable model class is directly estimable and provides a convenient mechanism

for collapsibility. For these two reasons, they are an attractive choice of model class for

modeling complex interaction networks. However, the general decomposable model class

is still very large, and it might not be possible to navigate through the entire model space

conveniently. Moreover for any moderate number of nodes (∼ 50 − 500), a subclass of

the decomposable model class can be used to understand the interaction network. For my

applications, I propose the following additional restrictions on the model space. In Section

4.6, I propose a Markov chain Monte Carlo algorithm to sample from that model space.

4.5.1 Model constraints

R1. Cliques are restricted to have size of 4 or less.

R2. A clique of size 3 may share at most one edge with at most one other clique.

R3. Cliques of size 4 may not share edges with other cliques.

Restrictions (R2) and (R3) above ensure that the computations in the proposed MCMC are

done entirely within one clique, and restriction (R1) restricts the size of that clique to at

most 4. Also, as long as the chain is initialized with a state satisfying restrictions (R1)-

(R3), any state proposed in the following MCMC scheme will automatically satisfy those

restrictions. Since the visited models are always decomposable graphs, the LRS for the

hypothesis test between two nested models is obtained in closed form.

4.5.2 Prior distribution

I assume a prior distribution that is uniform over the space of models.
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size > 2 

Propose a new state by joining 

the disjoined nodes of C1 and C2 

Compute Metropolis-

Hastings Ratio 

Increment the number of 

visits to the cliques in the 

current state by 1 

Choose one clique at random. Denote 

it C1, and the number of cliques by nC. 

Find nP2,1, as in step (4) 

Propose candidate state by breaking 

an unshared edge at random 

Is |C1|= 2, 3? 

Choose, at random, one clique 

of size > 1. Denote it by C1 

Decide with probability 

Pb to break an edge, 

and with probability (1- 

Pb) to    join an edge  

break join 

Yes No 

nP2,2 = 0 

Does C1 share an 

edge with another 

clique? 

Yes 

Find all cliques of size 2 which 

share a node with C1 and 

multiply their number with 

(|C1|-1) to obtain nP2,2 

No 

nP2,2 = 1 

Are both nP2,1 and 

nP2,2 equal to 0 

Compute �� as in step (6). 

Decide to form a clique of size 2 

with probability P2, and size > 2 

with probability (1- P2) 

 

No 

Propose a new state by 

randomly selecting one of 

the nP2,1 nodes of step 3 and 

joining it with a randomly 

selected node of C1 

size = 2 

Does C1 share an edge? 
Propose a new state by randomly selecting one of the 

cliques of step (5) and joining its unshared (with C1) 

node with a randomly selected unshared node of C1 

No 

Yes 

Yes 

Accept the proposal 

based on the M-H ratio? 

Update the current state 

to the proposal 
Yes 

No 

Figure 4: Diagrammatic representation of the proposed MCMC methodology
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4.6 MCMC

4.6.1 Algorithm

The sampling algorithm described below ensures that both the current and proposed states

of the Markov chain are decomposable graphs. Importantly, this alleviates the need for

checking restrictions (R1)-(R3). In the “join” step, it is proposed to join nodes of cliques

to form newer edges. In the “break” step, it is proposed to separate nodes connected by an

edge. Let |A| denote the number of nodes in clique A. The iterative algorithm is described

in steps as follows. A diagrammatic representation of the algorithm above is in Figure 4.

1. Initialize the Markov chain with a graph that has no edges between any pair of nodes.

2. Go to step (3) with probability Pb and step (4) with probability (1− Pb).

3. Choose at random clique amongst the set of cliques {C : |C| > 1}, and denote it

as C1. If the current state does not include any clique which includes more than one

node, go to step (11); otherwise, go to step (7).

4. Of all the cliques in the current state, choose one at random. Denote this clique

as C1 and let the total number of cliques be denoted by nC . Find all nodes which

are not connected to C1, neighbors of C1, neighbors of neighbors of C1 and so on,

and multiply their number by |C1| to obtain nP2,1. If |C1| is 2 or 3, go to step (5);

otherwise, set nP2,2 = 0, and go to step (6).

5. If C1 shares an edge with another clique, denote the other clique by C2, set nP2,2 = 1,

and go to step (6); otherwise, find all cliques that belong to the set {C : |C| = 2},

and share a node with C1 and multiply their number by (|C1| − 1) to obtain nP2,2.

Go to step (6).
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6. If both nP2,1 and nP2,2 are 0, skip to step (11); otherwise, compute P2 = nP2,1

nP2,1+nP2,2
.

Go to step (8) with probability P2 and step (9) with probability (1− P2)

7. Propose a new state by breaking a randomly chosen edge of C1 which is not shared

with other cliques. Go to step (10).

8. Propose a new state by randomly selecting one of the nP2,1/|C1| nodes of step (4)

and joining it with a randomly selected node of C1. Go to step (10).

9. If C1 shares an edge with another clique, propose a new state which contains a new

clique containing 4 nodes formed by joining the unjoined nodes of C1 and C2; oth-

erwise, propose a new state by randomly selecting one of the cliques of step (5) and

joining its unshared (with C1) node with a randomly selected unshared node of C1.

Go to step (10).

10. Calculate the Metropolis-Hastings ratio as a product of the Bayes’ factor and the ratio

of the transition probabilities as tabulated in Table 9. If the proposal is accepted,

update the clique configurations of the current state. Go to step (11).

11. Increment the number of visits to the cliques in the current state by 1. Go back to

step (2).

I used Pb = 0.5, for all my examples and is working well in the sense that the acceptance

is generally similar for “break” and “join” moves. This choice of Pb is also required to

maintain symmetricity in the moves involving breaking and joining of edges.

4.6.2 Transition probabilities

The transition probability ratios for the various steps of MCMC are as in Table 9. Below,

n1
C is the number of cliques in the larger model which include more than 1 node and n0

C

denotes the number of all the cliques in the smaller model.



46

Ta
bl

e
9:

Tr
an

si
tio

n
pr

ob
ab

ili
ty

ra
tio

s
fo

r
th

e
pr

op
os

ed
M

C
M

C
m

et
ho

do
lo

gy
.

T
he

nu
m

er
at

or
of

th
e

te
rm

s
in

th
e

la
st

co
lu

m
n

is
th

e
pr

ob
ab

ili
ty

of
pr

op
os

in
g

th
e

sm
al

le
r

m
od

el
w

he
n

th
e

cu
rr

en
ts

ta
te

is
th

e
bi

gg
er

m
od

el
,t

he
de

no
m

in
at

or
is

th
e

pr
ob

ab
ili

ty
of

pr
op

os
in

g
th

e
bi

gg
er

m
od

el
w

he
n

th
e

cu
rr

en
ts

ta
te

is
th

e
sm

al
le

rm
od

el
.T

he
tw

o
m

od
el

s
on

ly
di

ff
er

by
an

ed
ge

.T
he

fir
st

co
lu

m
n

sh
ow

s
ex

am
pl

es
of

th
e

co
rr

es
po

nd
in

g
m

ov
es

.

B



S
D

es
cr

ip
tio

n
T

(B
→

S
)

T
(S
→

B
)

=

[1
2

3
4]



[1

3
4]

[2
3

4]

⇀
:A

n
ed

ge
is

br
ok

en
in

a
cl

iq
ue

th
at

in
cl

ud
es

4
no

de
s

↽
:U

ns
ha

re
d

no
de

s
ar

e
jo

in
ed

fo
r

tw
o

cl
iq

ue
s,

bo
th

in
cl

ud
in

g
3

no
de

s,
th

at
sh

ar
e

a
no

de
am

on
gs

te
ac

h
ot

he
r

P
2

is
th

e
sa

m
e

fo
rb

ot
h

th
e

cl
iq

ue
s

th
at

sh
ar

e
an

ed
ge

P
b
∗

1
n
1 C

∗
1 6

(1
−

P
b
)∗

1
n
0 C

∗(
1
−

P
2
)∗

2

[1
2

3]
[1

2
4]



[1

3]
[1

2
4]

⇀
:A

n
ed

ge
is

br
ok

en
in

a
cl

iq
ue

th
at

in
cl

ud
es

3
no

de
s

an
d

sh
ar

es
an

ot
he

re
dg

e
↽

:U
ns

ha
re

d
no

de
s

ar
e

jo
in

ed
fo

r
a

cl
iq

ue
th

at
in

cl
ud

es
3

no
de

s
w

ith
a

cl
iq

ue
th

at
sh

ar
es

a
no

de
w

ith
it

an
d

in
cl

ud
es

on
e

ot
he

rn
od

e

n
P

2
,2

is
th

e
nu

m
be

ri
n

st
ep

(5
)a

bo
ve

fo
rc

liq
ue

[1
2

4]
in

th
e

sm
al

le
rm

od
el

P
b
∗

1
n
1 C

∗
1 2

(1
−

P
b
)∗

1
n
0 C

∗(
1
−

P
2
)∗

1
n

P
2

,2

[1
2

3]



[1
3]

[2
3]

⇀
:A

n
ed

ge
is

br
ok

en
in

a
cl

iq
ue

th
at

in
cl

ud
es

3
no

de
s

an
d

do
es

no
ts

ha
re

an
y

ed
ge

↽
:U

ns
ha

re
d

no
de

s
ar

e
jo

in
ed

fo
r

tw
o

cl
iq

ue
s,

bo
th

in
cl

ud
in

g
2

no
de

s,
th

at
sh

ar
e

a
no

de
w

ith
ea

ch
ot

he
r

n
P

1 2
,2

an
d

n
P

2 2
,2

ar
e

re
sp

ec
tiv

el
y,

th
e

nu
m

be
rs

in
st

ep
(5

)
ab

ov
e

fo
r

cl
iq

ue
s

[1
3]

an
d

[2
3]

P
b
∗

1
n
1 C

∗
1 3

(1
−

P
b
)∗

1
n
0 C

∗ P i
=

1
,2

(1
−

P
i 2
)

n
P

i 2
,2

!

[1
2]



[1

][
2]

⇀
:A

n
ed

ge
is

br
ok

en
in

a
cl

iq
ue

th
at

in
cl

ud
es

2
no

de
s

↽
:N

od
es

ar
e

jo
in

ed
fo

rt
w

o
cl

iq
ue

sw
hi

ch
ar

e
no

tc
on

ne
ct

ed
ei

th
er

di
re

ct
ly

or
th

ro
ug

h
ot

he
rc

liq
ue

s

In
de

x
i

ra
ng

es
to

in
cl

ud
e

al
l

cl
iq

ue
s

in
th

e
sm

al
le

r
m

od
el

th
at

co
nt

ai
n

ei
th

er
th

e
fir

st
no

de
or

th
e

se
co

nd
no

de

V
ar

ia
bl

es
1

an
d/

or
2

m
ig

ht
al

re
ad

y
be

in
cl

ud
ed

in
ot

he
rc

liq
ue

s,
in

w
hi

ch
ca

se
th

e
sm

al
le

rm
od

el
w

ill
ha

ve
1

or
0

ne
w

cl
iq

ue
s

P
b
∗

1
n
1 C

(1
−

P
b
)∗

1
n
0 C

∗ P i
1
=

1

P
i 2

n
P

s
C

i

!

1
n

P
s
C

i
=

1
n

P
i 2
,1
∗|

C
i
|



47

4.7 Examples

4.7.1 Simulated gene expression data

I applied the algorithm described above to the simulated example in Section 3.6. I used only

100 variables from the actual dataset containing the 1000 variables. As before, interacting

variables were divided into three clusters of different sizes: {(1, 2, 3, 4), (5,6), (7, 8, 9)}.

The interaction cluster (7, 8, 9) in Table 2 fits the models [7 8][9], [7 9][8], and [8 9][7]

equally well and each of these models, when compared to the saturated model, produces an

LRS value of 13.18 with 2 degrees of freedom. I therefore changed that interaction cluster

to another in which the three-way interaction is stronger. The modified cluster (7, 8, 9) is

in Table 10. The remaining part of the dataset was the same as the dataset used to report

the results of Section 3.6.

Table 10: Modified true cluster in the simulated gene expression data

Cluster (7, 8, 9)
x9 = 0 x9 = 1

x8 = 0 x8 = 1 x8 = 0 x8 = 1
x7 = 0 18 17 x7 = 0 3 22

1 7 18 1 32 33

The computation times for a FORTRAN routine is about 4-5 hours for every 10 million

updates of the MCMC algorithm using either the local or the MoM and iMoM prior densi-

ties. Summary statistics are tabulated in Table 11. The MCMC algorithm is able to detect

the cliques [5 6] and [7 8 9] with high probability. Instead of detecting the the 4-way clique

[1 2 3 4], it detected the existence of cliques [1 2 4][3 4]. In a test of model H1 : [1 2 4][3 4]

versus model H2 : [1 2 3 4], the p-value obtained for the LRS is 0.58, which suggests that

this particular observation of data under this model supports both structures approximately

equally well.
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Table 11: Graphical model analysis of the simulated gene expression data. The posterior
probability estimates are based on the number of times each interaction appeared in 10
million updates of the MCMC algorithms for each prior.

Local (c = 2) MoM (τ1 = 0.348) iMoM (τ1 = 0.133)
7 8 9 0.9947∗ 7 8 9 >0.9999∗ 7 8 9 >0.9999∗

3 4 0.9579∗ 3 4 >0.9999∗ 3 4 >0.9999∗

1 2 4 0.9204∗ 1 2 4 0.9763∗ 1 2 4 0.9805∗

5 6 0.8064∗ 5 6 0.9425∗ 5 6 0.9527∗

54 94 0.7819 54 94 0.9404 54 94 0.9464
18 91 0.6564 18 91 0.9286 18 91 0.9211
16 98 0.6325 16 98 0.8509 16 98 0.9131
11 90 0.6323 11 90 0.8486 11 90 0.8656
12 69 0.6036 12 69 0.8453 12 69 0.8653
34 94 0.5830 34 94 0.8188 34 94 0.8619
6 78 0.5821 84 88 0.8186 2 86 0.8613
2 86 0.5702 2 86 0.8086 4 61 0.8355
4 61 0.4437 4 61 0.8072 84 88 0.8281

84 88 0.4075 47 53 0.8047 6 78 0.8276
47 53 0.3977 6 78 0.8032 47 53 0.8246

The results in Table 11 are based on 10 million updates. Multiple runs of the MCMC

algorithm with different starting values produced similar results. However, the non-local

prior densities were unable to detect clique [1 2 4] for up to 50 million updates when the

Markov chain is initialized with a graph with no edges between the nodes. The reason

for this behavior is not hard to comprehend. For the MCMC algorithm to detect the clique

[1 2 4], at least two of its edges should form easily. However, the LRS values corresponding

to the tests H1 : [1][4] versus H2 : [1 4], and H1 : [2][4] versus H2 : [2 4] are both 0. This

value of the LRS corresponds to Bayes’ factor values in favor of the H2 versus H1 of 0.064,

0.003, and 0.003 for the local, MoM and iMoM prior densities. In other words, it is about

21 times harder for each of those edges to form with the non-local priors as compared to

the local prior.

Therefore, I used the output from the run with the local prior density to generate

initial values for runs with the non-local prior densities. Results based on this initialization
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scheme are reported in Table 11. I used multiple starting models but forced the clique

[1 2 3 4] to be included in all the starting models.

As a precautionary note, higher order interactions are less likely to be picked in the

absence of lower order interactions under the non-local versus local priors. Hence, I advise

the user to run the MCMC with the different priors. If there are higher order interactions

that are not detected by the runs for non-local prior densities, but are indeed assigned high

posterior probability by the local prior density, then they must be because of reasons similar

to the one discussed here. There is no guarantee, however, that running the MCMC with

the local prior will always be able to detect such higher order interactions.

With reference to the results in Table 11, the “best” 15 cliques obtained under the dif-

ferent alternative prior densities appear to be similar. However, the posterior probabilities

assigned to those cliques by the non-local alternatives are much higher than the local al-

ternative prior, and among the non-local priors they are consistently higher for the iMoM

density. It should be noted that these “best” cliques indeed correspond to the moderate to

strong interactions in the data.

4.7.2 Distribution of posterior probabilities

At first glance it might appear from Table 11 that the non-local priors assign higher poste-

rior probabilities to all the visted cliques than the local priors do. However, that is not the

case. Since it is not computationally feasible to keep track of all the cliques possible with

100 nodes, I considered a smaller dataset with only 20 binary variables formed by taking

the variables 1 through 20 in the example above. With 20 variables, there are 6195 cliques

possible. I ran the algorithm in Section 4.6 to obtain 10 million updates of the posterior

distributions elicited by the local and non-local priors.

The local prior visited 1228 cliques in the 10 million updates of the algorithm; the

MoM prior visited 424 cliques and the iMoM prior visited 476 cliques. I then computed
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the summary statistics for the posterior probabilities of all the cliques that were ranked

between 51 through 300 for each of the alternative prior densities. I chose the upper rank

cut-off of 51 to demonstrate the posterior probability distibution of the cliques that have

been assigned ranks higher than 50. I chose the lower rank cut-off of 300 to ensure that we

have reliable estimates of the posterior probabilities for the non-local priors. The density

plots of the posterior probabilities are shown in Figure 5. The non-local priors assigned

much smaller posterior probabilities to those cliques when compared to the local prior.

This behavior is expected because the non-local priors assign much lower probabilities to

small effect sizes a priori.

0.00 0.02 0.04 0.06
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Figure 5: Distribution of posterior probabilities. The figure shows empirical density esti-
mates of posterior probabilities of the cliques ranked between 51 and 300 according to the
different alternative prior densities in an example consisting of 20 nodes. The blue curve
shows the density plot for the local prior. The corresponding plots for the MoM and iMoM
priors are, respectively, in green and purple.
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4.7.3 Comparison to clustering method
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Figure 6: Simulation example comparing graphical model to clustering model

To demonstrate the utility of graphical model algorithm of Section 4.6 over the clus-

tering method of Chapter III, I constructed another example with 20 binary variables and

120 observations. The true interactions in the data have varying strengths and correspond

to graph cliques: [1 2][1 3][1 4][2 5][2 6][2 7][3 8][3 9][3 10]. Variables 11 through 20 were

then generated randomly. The true network is shown as in Figure 6. A comparison of the

two methods with the local prior (c = 2) is presented in Table 12.

While the graphical model method is able to identify the true 9 interactions and assign

them high posterior probabilities, the clustering model is able to identify only 3 of the

strongest interactions with high posterior probabilities. The graphical model method also

identifies 3 spurious interactions with posterior probability of at least 0.40. In general, and

as can also be seen in Table 12, the clustering model does not tend to assign high posterior

probabilities to interactions involving any randomly generated variables (false positives).

The reason for such behavior could be easily explained. With 20 variables there are 190
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Table 12: Comparison of the graphical model to the clustering model. The posterior prob-
ability estimates are based on the number of times each interaction appeared in 10 million
updates of the MCMC algorithms for the two methods. The last column shows the LRS
values corresponding to each interaction detected by the graphical model method. Each of
those LRS values correspond to a test with 1 degree of freedom.

Clustering model Graphical model
1 4 0.9162∗ 1 4 0.9637∗ 21.49
2 5 0.909∗ 2 5 0.9624∗ 24.53
3 10 0.6381∗ 3 10 0.9322∗ 15.13
6 13 0.2574 1 3 0.8561∗ 13.83
3 9 10 0.1427 2 7 0.8296∗ 10.75
12 19 0.1235 3 9 0.7769∗ 11.42
3 9 0.1068 1 14 0.6736 9.77
14 17 0.0606 1 2 0.6596∗ 10.94
2 5 7 0.0538 3 8 0.6576∗ 8.80
1 4 14 0.0447 1 20 0.5074 7.58
3 8 0.0008 6 13 0.4455 6.72
8 19 0.0007 2 6 0.407∗ 7.32
9 10 0.0003 12 19 0.3141 4.83
1 14 0.0002 2 15 0.1757 4.07
7 9 0.0001 3 17 0.1574 4.08

possible 2-way interactions, so at least some of them are likely to be moderately significant

false positives. These spurious cliques will be detected by the graphical model method with

moderately high posterior probability. On the other hand, each randomly generated variable

is expected to have several interactions with comparable strength. The clustering method

tends to distribute the posterior probability over these several spurious interactions, and

hence the posterior probability assigned to each one of them individually tends to become

small.

At this juncture I note that neither of the methods is expected to perform better than

the other in every possible scenario. Whereas the clustering model is better if there exist

only few interactions between the variables, the graphical model method will outperform

the clustering model if the data is generated by a complex interaction network.
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4.7.4 Breast cancer data

I next applied these methods to the breast cancer data described in Section 3.7. A compar-

ison of the gene clustering method of Chapter III to other methods is presented in Section

3.7. Although the graphical model method is expected to detect more false positives, it is

also expected to detect more true positives. The results of the analysis with the graphical

model method are presented in Table 13.

Table 13: Analysis of the breast cancer data with the graphical model method. The posterior
probability estimates are based on the number of times each interaction appeared in 10
million updates of the MCMC algorithms for each prior.

Local (c = 2) MoM (τ1 = 0.348) iMoM (τ1 = 0.133)
BRCA1,JNK 0.8963 BRCA1,JNK 0.978 BRCA1,JNK 0.9192
ESR1,GATA3 0.8752 ESR1,GATA3 0.9758 ESR1,GATA3 0.8829
AR,FOXA1 0.8658 AR,FOXA1 0.9715 AR,FOXA1 0.8670
HSF1,P53a 0.7649 HSF1,P53a 0.9288 HSF1,P53a 0.8183
P53b,WNt10b 0.6681 P53b,WNt10b 0.8460 GSTP1a,IKBKE 0.7371
GSTP1a,IKBKE 0.6099 ESRRA,ERBB2 0.8411 P53b,WNt10b 0.7065
CDKN2B,TSG101 0.5836 GSTP1a,IKBKE 0.8069 CDKN2B,TSG101 0.7045
EGR1,CYR61 0.5787 FOSL1,CYR61 0.8057 EGR1,CYR61 0.6992
ESRRA,ERBB2 0.5591 EGR1,CYR61 0.7989 ESRRA,ERBB2 0.6819
FOSL1,CYR61 0.5535 CDKN2B,TSG101 0.7601 GSTP1b,FOSL1,AKT2 0.6497
GSTP1b,FOSL1,AKT2 0.5426 AR,ERBB2 0.7485 FOSL1,CYR61 0.6332
CYR61,ATF 0.5287 ERK2,NRAS 0.7411 AR,ERBB2 0.6313
ERK2,NRAS 0.5220 ESR2,IL10 0.7387 CYR61,LSP1 0.581
ESR2,IL10 0.5168 CYR61,ATF 0.7336 ESR2,IL10 0.5707
AR,ERBB2 0.5041 CYR61,LSP1 0.6660 ERK2,NRAS 0.5697
CYR61,LSP1 0.4690 FOSL1,IL-13 0.6399 KRAS,CYR61,ATF 0.5529
Brca1-delta11b,ERCC2 0.4522 ERBB2 V-erb-b2,PLGL 0.6369 ERBB2 V-erb-b2,PLGL 0.5086
FOSL1,IL-13 0.4439 Brca1-delta11b,ERCC2 0.6368 KIAA0272,CDKN2B 0.5042
ERBB2 V-erb-b2,PLGL 0.4376 Brca1-delta11b,ESR2 0.6090 P450 XVIIA1,WNt10b 0.5034
Brca1-delta11b,ESR2 0.4252 IFI27,TNFa 0.5976 IFI27,TNFa 0.4882
IFI27,TNFa 0.4083 P450 XVIIA1,WNt10b 0.5653 Brca1-delta11b,ERCC2 0.4807
KRAS,CYR61,ATF 0.3892 KIAA0272,CDKN2B 0.5439 FOSL1,IL-13 0.4616

The graphical model method identified all biologically significant gene interactions

that were detected by the gene clustering method of Section 3.7. In addition, there are a

few more interactions detected by the graphical model method that are supported in the

bioinformatics literature. The association between AR and ERBB2 pathways is docu-

mented in Naderi and Hughes-Davies (2008), and also has been reported in Sanga et al.

(2009). More interesting are the additional interactions of protein CYR61. The interac-
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tions {CYR61,ATF} and {KRAS,CYR61,ATF} have been detected by both the clustering

model and the graphical model method. In addition, the graphical model method has de-

tected {EGR1,CYR61}, {FOSL1,CYR61} and {CYR61,LSP1}. Note that one could not

have detected all of these interactions of CYR61 with the clustering method, because that

method forces one gene to be in at most one cluster.

To investigate whether these additional interactions of CYR61 were actually biologi-

cally significant findings, I searched through the SA Biosciences website (http://www.

sabiosciences.com). Cysteine-rich 61 (CYR61/CCN1) is a secreted, extracellular

matrix-associated signaling molecule that belongs to the CCN gene family. The other mem-

bers of the CCN family of genes are CTGF/CCN2, NOV/CCN3, and the recently identified

Wnt1-induced secreted proteins WISP-1/CCN4, WISP-2/CCN5, and WISP-3/CCN6.

I found associations between CTGF and other genes. First, CTGF is suspected of

associating with the Transforming growth factor beta 1 (TGFB1) polypeptide by Weston,

Wahab, and M. (2003). TGFB1 increases the stability of the protein CDKN1A (Gong et al.

2003). CDKN1A is modulated by EGR1 (Ragione et al. 2003). Hence, I could deduce the

indirect association CYR61 (CCN1) � CTGF (CCN2) � TGFB1 � CDKN1A (p21Cip1)

� EGR1.

Luo et al. (2005) indicate that TGFB1 is down-regulated by the Transforming growth

factor, beta receptor II (TGFBR2) gene. As an AP1 site has been identified in the TGFBR2

promoter, upregulation of FOSL1 (also called FRA-1) may stimulate TGFBR2 transcrip-

tion (Lombaerts et al. 2006). These observations suggest the indirect association CYR61

(CCN1) � CTGF (CCN2) � TGFB1 � TGFBR2 � FOSL1 (FRA-1).

A comparison of the clustering method to GGM (Schafer and Strimmer 2005) is pre-

sented in Section 3.7. The graphical model method has identified more biologically signif-

icant gene interactions than both the clustering method and the GGM. In addition, most of

the additional interactions detected by the graphical model method agree with the results
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of the clustering model method presented in Table 4. Note that even though I have not

been able to verify the existence of the other interactions in the available literature, it does

not necessarily mean that those interactions are not biologically significant. A complete

analysis would require independent laboratory verifications of the results presented herein.

4.8 Computational issues

The alarm network described in Section 4.9 and the SNP data in Chapter V present a

unique computational problem. The probability landscape for these problems is extremely

“jagged”, so the algorithm in Section 4.6 produces a Markov chain which has an accep-

tance rate of less than 1%. This problem occurs because the Markov chain reaches a state

in which it is unable to form any new edges given the model constraints, and any move

involving breaking an already existing edge involves a very large Bayes’ factor. Thus, the

Metropolis-Hastings update probability for any move is essentially 0. Moreover, when the

Markov Chain reaches such a state, none of the “neighbors” of the current state form good

candidate proposals, so algorithms like the shotgun stochastic search (SSS, e.g., Jones et al.

2005) don’t work either.

For these reasons, I designed an approximate MCMC algorithm that was able to escape

sharp local maxima of the posterior distribution. In my examples, I observed that small

subsets of the set of all graph variables would tend to fit one, and sometimes, two models,

with very high posterior probabilities. Since the cliques of the graph are obtained by fitting

models to such small subsets, the probability dispersion over the model space appears to be

very low. Each individual run of the algorithm in Section 4.6 tends to stop updating after

reaching a “local maximum” in the model space. However, if I generate multiple “local

maxima” with multiple runs of the algorithm in Section 4.6 and multiple initial values, it

is not unreasonable to expect that the cliques corresponding to the such highest probability

model(s) will appear in several of such “local maxima.”
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To obtain the most important cliques in the data, I modified the algorithm in Section

4.6 in the following way. After every n1 iterations, I paused the (main) chain described in

Section 4.6 and ran an auxiliary chain for n2 iterations. At the end of the n2 iterations, I

started a new (main) chain initialized at the last state of the auxiliary chain. The auxiliary

chain is constructed using a similar algorithm as the main chain, however, the pseudo-

Bayes’ factor of the auxiliary chain is arbitrarily defined to be

BFaux = (BFmain)1/f(caux,iter) . (4.20)

The function f(caux, iter) is similar to the “temperature” parameter of simulated anneal-

ing algorithm (Kirkpatrick, Gelatt, and Vecchi 1983; Cerny 1985). In effect, it produces a

probability distribution over the model space which can be easily explored by the sampling

scheme described in Section 4.6. However, since I do not maintain the detailed balance

condition while transitioning between the main and auxiliary chains, the modified algo-

rithm does not provide samples from the target distribution even as the number of updates

becomes large. I note that it is unlikely that the higher temperature chain of a simulated

annealing algorithm will produce a state that would be improvement over the “local maxi-

mum” at the end of the main chain.

4.8.1 Choice of function f(·, ·)

My purpose of employing the auxiliary chain is merely to take the main chain to a different

part of model space and re-initialize it. While doing this, I want to make sure that the

auxiliary chain does not break the strong interactions that have already been detected. I

enforce this notion by letting the distribution of the auxiliary chain depend on the iteration

number i of the modified algorithm. Defining ncycles to be the total number of cycles of the

main and auxiliary chains, I defined the function f(caux, i) to be

f(caux, i) =

(
caux − (caux − log(4.0)) ∗

⌊
i

n1 + n2

⌋
∗ ncycles

)
∗ 1

log(4.0)
, (4.21)
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where bxc denotes the largest integer smaller than the real argument x. During the first run

of the auxiliary chain, f(caux, i) is defined as f(caux, i) = caux/log(4.0). Therefore, any

interaction that yields a Bayes’ factor of BFmain = ecaux , will correspond to a Bayes’ factor

in the auxiliary chain with value BFaux = 4.0. Therefore if ecaux corresponds to the Bayes’

factor of the strongest “edge” in the main chain, that strongest edge will have a chance of

1
5

of breaking in the first run of the auxiliary chain.

With increasing iteration number i of the modified algorithm, f(caux, i) gets closer to

1, so the distribution of the auxiliary chain gets closer to the distribution of the main chain.

This is equivalent to saying that with increasing number of alternative runs of the main and

auxiliary chains, our belief in the obtained strong cliques is increasing, so we will be less

inclined to change their structure.

I have only considered a form the function f(·, ·) which has a linear gradient in its

second argument. Since the distribution of absolute values of Bayes’ factors obtained in

any run is expected to be heavily right skewed, one might also consider a form of the

function f(·, ·) which is super-linear in its second argument, so that there are more runs of

the auxiliary chain for smaller values of f(caux, i) and less runs of the auxiliary chain for

larger values of f(caux, i). However, I have not explored that option, and the linear gradient

form appears to be sufficient for my examples.

4.8.2 Setting simulation parameters

To obtain caux, I performed a preliminary run of the modified algorithm while artificially

setting BFmain = BFaux = 1.0 and recording the actual BFmain for all of the proposed

moves corresponding to breaking and joining edges. After a sufficient number of iterations,

I set caux to be 1.1 times of the maximum value of the recorded BFmain.

To set the length of the main and auxiliary chains, n1 and n2 respectively, I first ran

a short chain from a randomly generated starting value and let it find the nearest “local
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maximum.” I then recorded the number of cliques in it. Denote this number by n∗C . Any

length of the auxiliary chain should be sufficient to break an edge if the Bayes’ factor

BFaux for such a move is larger than a particular value, say 100. Since I set Pb = 0.5 in all

my examples and the cliques are selected at random in the algorithm described in Section

4.6, I set the length of auxiliary chain as n∗C ∗ 200. I set the length of the main chain to be

twice the length of the auxiliary chain.

The final simulation parameter that needs to be set is the number of cycles, ncycles. I

set this parameter so that the slope of the function f(caux, i) with respect to the iteration

number i is 10. This value was chosen because any interaction that yields a Bayes’ factor of

BFmain = ecaux−10 will correspond to a Bayes’ factor in the auxiliary chain BFaux = 4.0

in the second run of the auxiliary chain, and any interaction that yields a Bayes’ factor of

BFmain = ecaux−20 will correspond to a Bayes’ factor in the auxiliary chain BFaux = 4.0

in the third run of the auxiliary chain, and so on.

4.8.3 Aggregating multiple runs

There’s no guarantee, however, that individual runs of the modified algorithm will yield

the highest probability models. For this reason, I ran the modified algorithm multiple times

and recorded the best models in individual runs. Then I counted the number of times each

clique was obtained in the best models over multiple runs. The cliques that appeared with

the highest frequencies were then used to build the model estimate.

4.9 Alarm network

The alarm network is shown in Figure 7. The true network has 37 nodes and 46 edges.

Table 14 provides the variable index versus the actual names of the variables in my dataset.

I applied my method to a dataset of 10,000 observations generated from this network. I

obtained the best cliques by aggregating the output from 100 runs of the modified algorithm
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Figure 7: Alarm network
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Table 14: Nodes in the alarm network

1 LVFAILURE 11 DISCONNECT 21 PULMEMBOLUS 31 HRSAT
2 HISTORY 12 MINVOLSET 22 SHUNT 32 EXPCO2
3 HYPOVOLEMIA 13 VENTMACH 23 SAO2 33 MINVOL
4 LVEDVOLUME 14 VENTTUBE 24 ANAPHYLAXIS 34 PAP
5 CVP 15 VENTLUNG 25 TPR 35 PRESS
6 PCWP 16 VENTALV 26 CATECHOL 36 CO
7 STROKEVOLUME 17 ARTCO2 27 HR 37 BP
8 ERRLOWOUTPUT 18 INSUFFANESTH 28 HRBP
9 INTUBATION 19 FIO2 29 ERRCAUTER
10 KINKEDTUBE 20 PVSAT 30 HREKG

in Section 4.8. I ran the algorithm in Section 4.8 for 700 cycles and 1400 cycles. The

cliques that were obtained with the highest frequency in the 100 runs are tabulated in Table

15.

The results from the modified algorithm in Section 4.8 generally appear satisfactory.

In regions of the true model graph, where the true model satisfies the model constraints

in Section 4.5, my method produces a network structure that agrees with the true model.

Differences between the true model and the structure determined by my method in those

regions occur because the data is supports those cliques more than the true model cliques.

For example, when the true model cliques are [11 14][13 14], my method fits the clique

[11 13 14]. The test of hypothesis H1 : [11 14][13 14] vs. H2 : [11 13 14] yielded a LRS

value of 1611.398 with 12 degrees of freedom. For the same reasons, my method fit

[7 27 36] where the true model cliques are [7 36][27 36], [16 19 20] where the true model

cliques are [16 20][19 20], and [8 27 28] where the true model cliques are [8 28][27 28]. For

a similar reason my method does not detect clique [18 26], and variable 18 shows up as

singleton clique. For a test of hypotheses which corresponds to the true model structure

H1 : [9 22][21 22] versus H2 : [9 21 22], the Bayes’ factors in favor of H2 over H1 were

4.9219 and 0.0085 for the local and MoM priors, respectively. As expected, my method us-
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Table 15: Graphical model analysis of the alarm network data

Local (c = 2) MoM (τ1 = 0.348)
700 cycles 1400 cycles 700 cycles 1400 cycles

11 13 14 100 100 11 13 14 100 100
1 2 100 100 1 2 100 100
12 13 100 100 12 13 100 100
1 3 4 100 100 18 100 100
1 3 7 100 100 21 22 100 100
21 34 100 100 21 34 100 100
25 36 37 100 100 25 36 37 100 100
27 29 30 100 100 27 29 30 100 100
27 29 31 100 100 27 29 31 100 100
4 5 100 100 4 5 100 100
4 6 100 100 4 6 100 100
7 27 36 100 100 7 27 36 100 100
8 27 28 100 100 8 27 28 100 100
9 15 16 97 100 16 17 32 98 99
9 15 33 96 100 9 15 16 98 99
16 17 32 95 100 9 15 33 98 99
24 25 92 94 24 25 95 100
26 27 91 94 17 26 90 94
18 84 88 26 27 88 93
17 26 81 92 1 3 4 84 91
14 16 35 63 64 1 3 7 84 91
21 22 62 63 14 16 35 58 62
10 16 35 59 59 20 22 23 58 57
20 22 23 56 62 10 16 35 55 55
16 20 22 52 62 16 20 22 52 55
16 19 20 47 38 16 19 20 48 45
19 20 46 57 20 23 42 43
9 21 22 38 38 9 22 42 43
20 23 32 32 19 20 38 45
14 33 35 29 29 14 33 35 33 35
10 33 35 25 25 10 33 35 27 33
16 20 23 12 5 1 4 7 16 9
25 26 36 9 6 3 4 7 16 9

ing the local prior detects both [9 21 22] and [21 22], whereas the MoM prior detects [9 21]

and [21 22].

In the regions of the true model graph which involve a loop of 4 variables, my method

tends to triangulate the loop by fitting two three-way cliques which share an edge. For

example, when the true model cliques are [1 4][1 7][3 7][3 4], my method fit the cliques

[1 3 4][1 3 7], and when the true model cliques are [27 30][29 30][29 31][27 31], my method

fits the cliques [27 29 30][27 29 31].

Even in the regions of the true model graph which involve a more complex interaction
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structure, my method fit can yield valuable information about the true model. For example,

consider the (ordered) loop involving 5 variables {25,26,27,36,37}. My method fits the

cliques [25 36 37] and [26 27] and the edge {27,36} as part of the clique [7 27 36]. Form-

ing the edge {25,26} would then violate the model restrictions in Section 4.5; hence my

method does not fit that edge. Similarly, consider the ordered loop involving 5 variables

{16,20,23,26,17}. My method fits the cliques [20 23] and [17 26] and the edges {16,17} and

{16,20}as part of the cliques [16 17 32], and [16 19 20][16 20 22], respectively. Forming the

edge {23,26} would violate the model restrictions in Section 4.5; hence my method does

not fit that edge. Also, consider the region involving variables {9,15,16,17,32}. This struc-

ture is formed by adding the edge {15,16} to the loop involving variables {9,16,17,32,15}.

My method fits the cliques [9 15 16] and [16 17 32]. Any attempt to join the edge {15,32}

will violate the model restrictions in Section 4.5, and hence that edge is not formed.

Finally, consider the region of the true model graph that is the hardest to fit. This

region involves variables 9, 10, 14, 15, 33 and 35. In the true model, the edge {9,15}

is included in the cliques [9 15 33]. That edge is also included in the loop {9,15,10,35},

and the interaction structure formed by adding the edge {15,16} to the loop involving

variables {9,16,17,32,15}. There’s another loop involving variables {10,35,14,15}, so the

edge {10,35} is included in two loops involving 4 variables each. Clearly, this configuration

violates many of the model restrictions in Section 4.5. My method fits the cliques [9 15 16]

and [9 15 33], so the edge {9,15} cannot be included in any other clique. The variables 10,

14 and 35 form two three-way cliques along with variable 16: [10 16 35] and [14 16 35].

Since, the true model graph has a loop involving variables {10,35,14,15}, it might appear

that either the model or the modified algorithm in Section 4.8 has failed in this region of

the graph. However, that is not the case.

I first ran the modified algorithm in Section 4.8 with the Bayes’ factor based on the

local prior as in equation (2.15) with just 4 variables to find the sub-graph that fits the best
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to those 4 variables. The 4 variables correspond to variables 10,14,15, and 35 of the alarm

network. The best fitting model was obtained as [10 15 35][14 15 35], and the sum of the

posterior probabilities of all the other models is essentially 0. In the dataset that I obtained, I

then tested the model H1 : [9][10][14][15][16][35] versus H2 : [9 15 16][10 15 35][14 15 35]

and H1 versus H3 : [9 15 16][10 16 35][14 16 35]. The former test yielded an LRS value

of 23695.67 with 108 degrees of freedom and the latter yielded an LRS value of 24368.28

with 108 degrees of freedom. Therefore, the model under H3 is more likely than the model

under H2. Hence my method found the fit that best explains this particular realization of

the data.

4.10 Implication of model inadequacy on prediction

The alarm network is a small network, yet it poses a problem for my model because the

model restrictions are not congruent with the true network. However, I emphasize that my

interest is in building a prediction model for a disease based on the genotype or expression

data, rather than obtaining an estimate of the exact network structure. Genomic applica-

tions typically involve at least hundreds of nodes, so there is a trade-off between modeling

complexity and its implementation in large datasets.

Moreover, I only need a model that can discover the edges that contain the most infor-

mation about a node, given its neighbors. In this regard, it is sufficient if my method can

predict individual nodes. Consider, for example, the node 26 in the alarm network. In the

true network, this node is included in the loops {26,25,37,36,27} and {26,17,16,20,23},

and joins an edge with variable 18. However, my method only fit the cliques [17 26] and

[26 27].

To test the predictive ability of my method versus the true model in predicting vari-

able 26, I divided my data set of 10,000 observations into a training sample of size 8,000

and a validation sample of 2,000 observations. I then fit the model [17 26][26 27] to the
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contingency table involving the variables 17, 26 and 27, and obtained the estimated cell

probabilities. I used these estimated cell probabilities to obtain the conditional probabilities

for the levels of variable 26 for each individual combination of the levels of the other two

variables. I then classified each observation in the validation sample for different threshold

values of these conditional probabilities.

I then repeated this procedure to classify the observations in the validation sample

based on the conditional probabilities obtained from the training sample by fitting the

model [17 26][16 17][16 20][20 23][23 26][26 27][25 26][25 37][36 37][27 36][26 27]. Note that

these are the cliques that belong to the loops {26,25,37,36,27} and {26,17,16,20,23} in the

true model. I excluded the edge {18,26} because it was not significant in the observed data.

The results of this out of sample cross-validation are shown in Table 16.

Table 16: Prediction in alarm network. Cross-validation results for the prediction of node
26 in the alarm network data: The first column shows the threshold probability for out of
sample classification. Columns 2 & 4 show the % of observations that could be classified
for that threshold, and columns 3 & 5 show the % of misclassifications for that threshold.

My method True model
Threshold % % Classified Misclassification rate (%) % Classified Misclassification rate (%)

99 65.80 0.15 79.15 0.13
95 81.85 0.55 86.95 0.29
90 81.85 0.55 92.85 1.02
80 82.85 0.66 94.85 1.32
70 90.15 2.50 98.25 2.90
60 99.95 5.35 99.05 3.23
50 100 5.40 100 3.50

As expected, the true model performs slightly better in out of sample prediction. How-

ever, the performance of my method is not far from optimal if misclassification error rates

are agreed to be the evaluation criteria. Overall, my method does not perform significantly

worse in predicting variable 26.
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CHAPTER V

ANALYSIS OF SNP DATA

A single-nucleotide polymorphism (SNP) is a variation in the DNA sequence, a difference

in a single nucleotide, A, T, C or G (see Figure 8). This can be a difference between mem-

bers of a species or within a chromosome pair in the same individual. For example, consider

two sequenced DNA fragments from different individuals, AAGCCTAG to AAGCTTAG.

The two sequences contain a difference in a single nucleotide. We say that there are two

alleles, C and T. Most common SNPs have only two alleles (description borrowed from

http://www.wikipedia.org).

Figure 8: Single-nucleotide polymorphism. Source: http://www.wikipedia.org

The term minor allele frequency refers to the lowest allele frequency at a locus that is

observed in a particular population. This is simply the lesser of the two allele frequencies

for SNPs at that locus. Variations between human populations mean that a SNP allele that

is common in one ethnic group may be much rarer in another.
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Genetic variations in humans can affect response to pathogens, chemicals, drugs, vac-

cines, and even radioactive agents, thus affecting disease progression, cure and prevention.

SNPs are also thought to be a key factor in personalized medicine. An important challenge

in genome-wide disease association studies is to understand the interconnections between a

network of the genes and their products. Hence, there is a growing need for algorithms and

models for reducing biological and statistical redundancy from hundreds of thousands of

SNPs. Dealing with many dependent association tests is another important statistical and

computational issue. The difficulty in a SNP association study is increased by the nature

of complex diseases in which the contribution of single gene is small to moderate. Instead

complex diseases are thought to result from gene-gene and gene-environment interactions.

In this chapter, I analyze the Single-Nucleotide Polymorphism data provided by the

Amos lab at the University of Texas M. D. Anderson Cancer Center (Taylor et al. 2007)

using the methodology outlined in the previous chapter. The data includes biallelic mea-

surements taken on 1260 Rheumatoid Arthritis patients and 908 normal subjects. About

550,000 measurements were taken on each subject at loci on 23 chromosome pairs. Rheuma-

toid arthritis (RA) is a chronic, systemic inflammatory disorder that attacks the joints. The

disease causes an inflammation of the synovial membrane that leads to the destruction of

the articular cartilage and stiffness in the joints.

The aim of my analysis of RA SNP data is to build a predictive model for the disease

based on subject genotypes. My approach is two-staged: first I use a graphical model to

find the SNPs that are likely to be the best predictors of the disease, and then I use those to

build a prediction model. This approach performs well in cross-validation studies.

5.1 Alternative approaches

In the context of genome-wide disease association studies, various approaches have been

proposed to develop disease-genotype models. These include Linkage Disequilibrium (LD)
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based SNP selection and supervised SNP selection. Zhang and Jin (2003) proposed a

two-stage approach to this problem: first, they identified haplotype blocks and then found

the tagSNPs that best distinguish the haplotypes within a haplotype block. In related ap-

proaches, Anderson and Novembre (2003) and Mannila et al. (2003) found haplotype block

boundaries using minimum description length methods.

These methods, however, tend to be less useful if there is significant diversity in the

genotypes of the sampled population. Owing to recombination events over several genera-

tions, i.e., if the sampled population is intermixed, there probably exist no haplotype blocks

of significant meaning.

Neale and Sham (2004) used a sliding window approach. They propose computing a

test statistic by combining p-values from multiple independent tests. Let pi be the p-value

of association between SNP i and the disease, and m be the number of SNPs in the sliding

window. Then their statistic is computed as−2
∑m

i=1 log(pi), and has a nominal chi-square

distribution with 2m degrees of freedom. Their method incorporates the ordering of SNPs

on the chromosome. Furthermore, results across adjacent windows are merged to detect

chromosome regions with significant associations. Alternative test based filter approaches

have also been proposed in Hoh and Ott (2000), Levin et al. (2005), Sun et al. (2006), Song

and Elston (2006) and Cheng et al. (2005), amongst many others. One major limitation of

these test-based filter approaches is that they may produce many highly correlated SNPs or

genes with redundant information, that are of little value for prediction.

Approaches based on logistic regression have been proposed by, for example, Durrant

et al. (2004). However, logistic regression based methods are applicable only when ana-

lyzing a small subset of SNPs. To see why, suppose that the disease (variable 1) has strong

marginal associations with both SNPs 2 and 3. Then a logistic regression can pick model

[1 2] [1 3] or [1 2 3] . Thus, the logistic model will select both SNPs 2 and 3 as predictors of

the disease. However, the true disease model could be [1 2] [2 3] . This is especially true if
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SNPs 2 and 3 are close to each other on the chromosome. Since in the true disease model

the disease is associated with SNP 3 only through SNP 2, the former is not required to

predict the disease and in fact, including it will hurt prediction. This necessitates the use of

models that explicitly model conditional independence relationships.

At this stage, I note that the model class that I consider is fairly rich and should find

applications to many other types of datasets. It is also worth pointing out the important

differences of my model when compared to Verzilli, Stallard, and Whittaker (2006) and

Zhang and Liu (2007). Verzilli, Stallard, and Whittaker (2006) use a decomposable graph-

ical model to search for multi-locus patterns of association around a causative site. Their

model space is restricted to form cliques of neighboring SNPs and their model incorporates

a prior that uses the location information of each SNP on the genome. Such a model largely

ignores epistatic information, i.e., the interaction of SNPs on different chromosomes. Also,

although it is not explicitly mentioned in their paper, they do not allow cliques to share

edges.

Zhang and Liu (2007) use an epistasis model in their method. They allow SNPs to be

associated with disease either marginally or through SNP interactions. However, all SNPs

that affect the phenotype through interactions are restricted to interact with each other. To

see why this is problematic, consider a true disease model that corresponds to Figure 9a.

The methodology of Zhang and Liu (2007) searches amongst models of the type shown in

Figures 9b, c, d and e, while only model Figures 9e covers all the interactions in the true

model. However, the model in Figure 9e contains many more interactions, and involves

many more degrees of freedom than it needs to, and so its predictive performance must

necessarily suffer. Also, since model in Figure 9e uses many more degrees of freedom than

the true disease model in Figure 9a, it’s harder to detect such a model from data sets of

moderate size. The algorithm used by Verzilli, Stallard, and Whittaker (2006) forms bigger

cliques by “merging” smaller cliques, and so is also prone to such problems.
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Figure 9: Models in Zhang and Liu (2007)

Zhang and Liu (2007) do not impose a restriction on the size of the cliques, and

Verzilli, Stallard, and Whittaker (2006) have allowed cliques that can include up to 8 ver-

tices. In my opinion, my restriction of the clique size to 4, along with edge sharing is

sufficient for most practical applications. I now describe the application of my method to

SNP data.

5.2 Outline of SNP analysis

5.2.1 Pre-selection of SNPs

My graphical model method can easily handle' 100 nodes (see Subsection 4.7.1). Nonethe-

less, as the number of nodes increases, the model space can become enormous. I, therefore

need a pre-selection method to choose the SNPs that will likely be the best predictors of

the disease node amongst the ' 550,000 SNPs. I propose pre-selecting SNPs based on

the ideas of a graphical model. A SNP whose strong association with the disease node is
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explained by another SNP is will not be a good predictor of the disease. The pre-selection

method is applied to individual chromosomes and is explained in the following steps.

1. Rank each SNP on the chromosome in the order of its association with the disease

node. I measure the strength of the association based on the Bayes’ factor based on

the iMoM prior. To illustrate, suppose variable 1 represents the disease node, and

S denotes a particular SNP node. Then the strength of the association of the two

nodes is obtained as the Bayes’ factor of the test H1 : [1][S] versus H2 : [1 S]. The

SNPs with strongest association with the disease are assigned the lowest rank. Let

all the SNPs on the chromosome be denoted in that rank order as S1, S2, . . . , Sn. Let

I denote the set I = {i : 1 ≤ i ≤ n}. Let i∗ = 1. Then iterate between the following

steps.

2. For all SNP indices j, such that j ∈ I, j > i∗, test the models H1 : [1 Si∗ ][Si∗ Sj],

and H2 : [1 Sj][S1 Sj] versus the saturated model involving the three nodes, H3 :

[1 Si∗ Sj].

(a) If the model H1 fits well to the data and model H2 does not, redefine set I =

I
⋂
{j}c.

(b) If the model H2 fits well to the data and model H1 does not, redefine set I =

I
⋂
{i∗}c. Skip to step (3).

(c) If both models H1 and H2 fit well to the data, redefine set I = I
⋂
{j}c.

I gauge the fit of the models H1 and H2 by computing their Bayes’ factors when

tested against the saturated model involving a three-way interaction of the disease

node and the two concerned SNPs. I say H1 fits well to the data if BFI(3|1) < 0.01,

and H2 fits well to the data if BFI(3|2) < 0.01.

3. Let i∗1 be the SNP index such that i∗1 = min(I ∩ {i : i > i∗}). Reset i∗ to i∗1.
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Here, Ac represents the complement of set A. Then, I only use the SNP indices in set I for

the next step of the analysis. Rephrasing step (2) above, if the model H1 fits well to the data

and model H2 does not, we do not include Sj in the next step of the analysis. Similarly, if

the model H2 fits well to the data and model H1 does not, we do not include Si∗ in the next

step of the analysis.

As mentioned above, I apply my pre-selection method to one chromosome at a time.

This is based on the belief that two SNPs are more likely to provide similar information

about the disease if they are on the same chromosome than when they are on different

chromosomes. Hence, if SNP S1 on chromosome 6 seems to be explaining away the disease

association of SNP S2, and the two SNPs are on different chromosomes, I retain both for

next step of the analysis.

5.2.2 Graphical model analysis

As a second step of the analysis, I apply the method described in Section 4.8 to the set

of nodes consisting of the disease node and the SNPs that were pre-selected in Subsection

5.2.1. All the cliques containing the disease node are recorded. I then build a predictive

model for the disease from these cliques.

5.2.3 Prediction model

To build a predictive model, I first rank the cliques containing the disease in order of their

predictive ability. I gauge the predictive ability of the cliques containing the disease node

by the strength of associations of the disease node and the other nodes in that clique. For

example, let us say I obtain a clique of size 2 and a clique of size 3 containing the disease

node: [1 S1] and [1 S2 S3]. I gauge the predictive ability of the clique of size 2 from the

Bayes’ factor of the test of H2 : [1 S1] versus H1 : [1][S1], and the predictive ability of the

clique of size 3 from the Bayes’ factor of the test of H2 : [1 S2 S3] versus H1 : [1][S2 S3].
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5.3 Results of cross-validation study

For my analysis, I converted the missing values of SNPs to another category of the categor-

ical variable corresponding to that locus. I set aside 131 patients and 89 normal subjects as

the validation sample. The testing sample hence consisted of 1129 patients and 819 normal

subjects.

Table 17: Predictive cliques for the disease node in the SNP data. I used different parameter
settings of the local and MoM priors. The disease node is labeled as “1.” For each prior and
parameter setting, the second column contains the number of times that clique was formed
in 100 runs, and the fourth column contains the logarithm of the metric of predictive ability
described previously.

Local (c = 1) Local (c = 2) Local (c = 3)
1,28,29 48 250.63 1,28,29 51 245.85 1,27 36 243.12
1,27,28 78 248.18 1,27,28 59 244.10 1,28,29 44 243.04
1,58,112 19 202.50 1,27 21 243.71 1,27,28 48 241.69
1,4,58 21 192.21 1,4,58 26 187.08 1,4,58 37 184.06
1,7,58 20 181.91 1,58,106 23 184.10 1,58,106 33 181.08
1,13,91 33 171.92 1,14,58 23 182.75 1,14,58 28 179.73
1,64,91 31 145.35 1,13,91 50 166.78 1,13,91 51 163.76
1,88,92 28 137.46 1,64,91 45 140.20 1,91,109 24 144.57
1,45,88 26 133.03 1,88,92 44 132.31 1,64,91 34 137.18
1,4,106 19 132.98 1,45,88 20 127.88 1,88,92 61 129.29

MoM (τ1 = 0.174) MoM (τ1 = 0.348) MoM (τ1 = 0.696)
1,27 57 243.76 1,27 87 242.15 1,27 77 240.48
1,28,29 32 239.81 1,4,58 73 174.23 1,58 98 171.33
1,27,28 30 239.45 1,91,109 77 134.57 1,91,109 79 128.69
1,4,58 67 180.10 1,64,91 50 127.14 1,88 94 121.04
1,58,106 53 177.10 1,88 95 122.74 1,13 99 112.84
1,91,109 41 140.44 1,13 97 114.54 1,112 98 109.41
1,64,91 55 133.01 1,112 96 111.11 1,14 64 94.95
1,88,92 64 125.09 1,14 83 96.65 1,98 95 93.20
1,13 99 116.21 1,98 90 94.90 1,42 95 92.06
1,112 90 112.78 1,42 94 93.76 1,7 76 91.99

The pre-selection scheme described above yielded 127 SNPs. Including the disease

node, I therefore entered 128 variables into the graphical model analysis, and obtained the

most important cliques using the algorithm described in Section 4.8. I then selected the best
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150 cliques in terms of the number of times they were formed in 100 runs of the algorithm

described in Section 4.8. Amongst those 150 cliques, I ranked the cliques that contained

the disease node according to the metric of predictive ability as defined above.

I then used the 10 cliques with best predictive ability to obtain conditional probabil-

ities for the phenotype status given combinations of the genotypes corresponding to those

cliques. Table 17 shows the cliques with best predictive ability obtained for different prior

and parameter settings. Table 18 contains the names of the SNPs that appeared in the

cliques in Table 17.

Table 18: Names of some important SNPs

SNP Index SNP Name
4 rs9442372
7 rs788160

13 rs9812051
14 rs6437394
27 rs2395175
28 rs660895
29 rs9275224
42 rs6458368
45 rs213212
58 rs3132332
64 rs10501396
88 rs7194895
91 rs2567494
92 rs4267379
98 rs4534931

106 rs2238663
109 rs503084
112 rs6063641

Each observation in the validation sample was then classified for different threshold

values of these conditional probabilities. The results of this out of sample cross-validation

are provided in Table 19. If there was a lower order interaction and higher order interaction

containing the lower order interaction in the list of the 10 cliques with the highest predictive

ability, I used only to higher order interaction to compute the classification probabilities.
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Table 19: Cross-validation results for SNP data. The left-most column shows the threshold
probability for out of sample classification. For each prior and parameter setting, the left
column shows the percentage of subjects that could be classified with these probabilities,
and the right column shows the misclassification error rate for those individuals.

Threshold % Local (c = 1) Local (c = 2) Local (c = 3)
99 33.18 2.74 30.91 2.94 32.73 2.78
95 54.09 4.20 50.45 5.41 49.09 4.63
90 65.00 8.39 60.45 7.52 59.54 6.87
80 78.64 13.29 77.27 12.35 73.18 10.56
70 89.09 18.37 84.55 15.05 86.36 14.74
60 93.64 20.87 91.36 16.92 95.00 18.66
50 100 21.82 100 19.09 100 21.82

Threshold % MoM (τ1 = 0.174) MoM(τ1 = 0.348) MoM(τ1 = 0.696)
99 34.54 3.94 39.09 3.49 40.00 2.27
95 52.73 6.89 60.00 10.61 60.00 8.33
90 65.91 9.65 68.64 10.60 70.45 12.26
80 76.82 13.02 81.36 16.20 79.55 14.29
70 84.54 16.13 87.73 17.62 89.09 19.39
60 92.73 19.61 95.45 19.05 95.00 21.05
50 100 21.36 100 21.36 100 22.73
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CHAPTER VI

SUMMARY AND DISCUSSION

This chapter summarizes the work presented in this dissertation. I have extended the work

of Johnson (2005) and used Bayes’ factors in model selection. Bayes’ factors computed

from the LRS have several advantages. The theoretical framework for defining Bayes’

factors is well established. These Bayes’ factors require setting just one prior parameter

and standard criteria for setting this value are available. Furthermore, a model selection

methodology based on Bayes’ factors can be extended directly to non-linear models.

Expressions for these test-based Bayes’ factors are simple. Bayes’ factors can be

extended to model selection algorithms which involve simultaneous comparisons of a large

number of models. The clustering method and graphical model method based on Bayes’

factors computed from LRS performs well in both appropriate simulated and real examples.

The clustering method presented in this dissertation can be easily extended to thou-

sands of genes. This method is appropriate for gene expression data in which one expects

each gene to participate in interactions with only a few other genes. The graphical model

method is more appropriate for SNP data where one expects a more complex association

structure between the SNPs and the disease. For such data, clustering-type methods tend

to propose very big models which are not practically feasible or supported by most model

selection criteria.

Although it is currently not computationally possible to infer a network of one-half

million SNPs, my method can be used to infer the local network structure around individual

nodes (SNP or disease). Moreover, if interest lies in predicting disease status, my pre-

selection method combined with my graphical model method, can be used to obtain a good

set of predictors. The results of a cross-validation study confirm this assertion.
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APPENDIX A

DERIVATION OF BAYES’ FACTORS

Let Zn denote the LRS. Since it is hard to integrate a non-central χ2 density, I employ a

d-dimensional column vector of random variables with a multivariate normal distribution.

Let Y denote a random vector: Zn
D→ Z = Y ′Y . Since the interest lies in the asymptotic

distribution of Zn, it is sufficient to obtain a result for the distribution of Z. I obtain the

marginal (with respect to the parameters) density of Z, denoted as fZ in the following way.

1. I first integrate the density of Y with respect to the alternative prior densities in equa-

tion (2.16) and equation (2.18).

2. Then transforming Y to W = Y 2 = {Y 2
1 , . . . , Y 2

d }, I obtain the density of W .

3. Finally, I use the convolution formula to obtain a density for Z, denoted as hZ .

Then the density hZ can be shown to be the same as the density fZ by application of

Fubinis’ theorem (Resnick 1999) twice: first to interchange the order of integration and

the convolution and then to interchange the order of the integration and the transformation.

With the introduction of the random vector Y , the above test of hypotheses in equation

(2.12) vs. equation (2.13) could be seen as asymptotically equivalent to the following test

Y ∼ Nd

[
C̄

1
2
11δ

Y , Id

]
(A.1)

H ′
1 : δY = 0 (A.2)

against the alternative

H ′
2 : δY = δ (A.3)
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Here, C̄
1
2
11 denote a symmetric matrix so that C̄

1
2
11C̄

1
2
11 = C̄11. This matrix is guaranteed

to exist because the matrix C̄11 is symmetric and positive-definite. The introduction of the

random vector Y enables me to use the results from the linear model case (Johnson and

Rossell 2010) and extend them directly to calculate the Bayes’ factor based on likelihood

ratio statistic in the following way. I first apply a non-local alternative prior to the vector

δ to calculate the marginal distribution of Y under the alternative. Then I compute the

marginal distribution of Z under the null and the alternative. Knowing the marginal null and

alternative distributions, the Bayes’ factor could hence be computed. Let’s for illustration,

consider the case in which the default MoM prior is applied to δ. We will later show that

the result is readily obtained for default iMoM priors as well.

Let C̄
− 1

2
11 =

(
C̄

1
2
11

)−1

. To use the results from the derivations for the linear model

case (Johnson and Rossell 2010), we substitute C̄
1
2
11 for X and δ for θ1. The following

subsitutions are obtained as consequence: C̄
−1
11 for Σ, δ̂ = C̄

− 1
2

11 Y for θ̂1, and Y ′Y for

θ̂
′
1Σ

−1θ̂1. Therefore, the likelihood of the pseudo-data under the alternative is obtained as

follows:

f (Y |δ) =
1

(2π)
d
2

exp

[
−1

2
(Y − C̄

1
2
11δ)′(Y − C̄

1
2
11δ)

]
=

1

(2π)
d
2

exp

[
−1

2
(δ̂ − δ)′C̄11(δ̂ − δ)

]
=

f(δ̂|δ)∣∣C̄11

∣∣ 12 (A.4)

Given the prior in (2.16), the marginal density of Y under the alternative is obtained as:
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f2 (Y ) =

∫
f (Y |δ) πM (δ) dδ

=

∫
f
(
δ̂|δ
)

πM (δ) dδ∣∣C̄11

∣∣ 12 (A.5)

=
µk

k−1∏
i=0

(d + 2i)

1

(1 + nτ)k+ d
2

1

(2π)
d
2

exp{− Y ′Y

2(nτ + 1)
} (A.6)

As the numerator of the left hand side of (A.5) above has been derived as part of computa-

tions for the linear model result (Johnson and Rossell 2010), the right hand side of (A.6)

can be directly obtained from it. Also, µk is the kth raw moment of the χ2
d(λ) distribution

where λ = nτ
(1+nτ)

Y ′Y .

To get the Bayes’ factor, we need to determine the distributions of Z = Y ′Y un-

der the null and alternative hypothesis. Noting that both the null and alternative distribu-

tions depend on Y through terms involving Y ′Y , the Bayes’ factor could be derived in a

straightforward fashion. Formally speaking, let Y ∼ g(Y ′Y ). Then transforming Y to

W = Y 2 = {Y 2
1 , . . . , Y 2

d }, we obtain the density of W as:

fW (W ) =

{ [∏
i

1√
Wi

]
g(W ′1), Wi ≥ 0 ∀i

0, otherwise
(A.7)

Here, 1 is a column vector of ones. Let set Az be defined as Az ≡ {fW (W ) > 0}
⋂
{W ′1 =

z}. Now, transforming from W to W ∗ ≡ {W ′1, W2, . . . ,Wd}, the determinant of the Ja-

cobian of the monotonic transformation is 1. The distribution of Z = W ′1 could thus be

obtained in a straightforward fashion as below:
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fZ(z) =

∫
fW ∗(z, W2, . . . ,Wd) dW2 . . . dWd

=

∫
Az

fW (W )dW = g(z)

∫
Az

[∏
i

1√
Wi

]
dW (A.8)

The result in (A.8) leads to the following interesting observations:

1. Under both the null and the alternative, the distribution of Z is of the form of fZ(z) =

g(z) · h(z). The latter multiplier, h(z) is the same irrespective of the form of the

function g(·).

2. The multiplier term can be determined by observing that the density Nd (V ;0; Id)

depends only on terms involving V ′V . So, the function h(z) can be obtained readily

by comparing a χ2
d density to Nd (V ;0; Id) with z substituted for V ′V . Specifically,

h(z) =

1

Γ( d
2)2d/2

zd/2−1 exp
(
− z

2

)
1

(2π)d/2 exp
(
− z

2

) =
πd/2

Γ
(

d
2

)zd/2−1 (A.9)

3. In the test of interest, both the null and alternative marginal distributions of Y depend

only on Y ′Y . Because the multiplier h(·) appears in both the null and alternative

distributions of Z, the Bayes’ factor could be obtained directly by replacing the term

Y ′Y by Zn in the densities under the null and alternative distributions and divid-

ing them. Therefore, the Bayes’ factor in favor of the alternative against the null is

obtained as:

BF (2|1) =
µ∗k

k−1∏
i=0

(d + 2i)

1

(1 + nτ)k+ d
2

exp{1

2

nτ

(nτ + 1)
Zn} (A.10)

where µ∗k is the kth raw moment of the χ2
d(λ

∗) distribution where λ∗ = nτ
(nτ+1)

Zn.
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4. Note that the result in (A.10) would be obtained if we substitute for θ̂
′
1Σ

−1θ̂1 by Zn

in the Bayes’ factor result for the linear model case (Johnson and Rossell 2010).

We can do this because the MoM prior in (2.16) produces a marginal density for Y

that depends only on Y ′Y . Suppose instead of using the MoM prior in (2.16), the

following iMoM prior were applied to δ:

πI (δ) = cI

[
δ′C̄11δ

nτ

]− ν+d
2

exp

[
−
(

δ′C̄11δ

nτ

)−k
]

(A.11)

where

cI =

∣∣∣∣C̄11

nτ

∣∣∣∣1/2
k

Γ (ν/2k)

Γ (d/2)

πd/2
(A.12)

Again comparing to the linear model case (Johnson and Rossell 2010), the marginal

density of Y under the alternative depends only on Y ′Y . Hence, the Bayes’ factor

under this iMoM alternative prior could be written down directly as:

BF (2|1) =

(
2

nτ

)d/2
kΓ (d/2)

Γ
(

ν
2k

) Ez

[(
nτ
z

)(ν+d)/2
exp{−(nτ/z)k}

]
exp{−1

2
Zn}

(A.13)

where z ∼ χ2
d(Zn).

5. With the MoM prior and k = 1, the marginal density of Z under the alternative is:

f2 (Z) =
1

d

(
d +

nτ

1 + nτ
Z

)
1

(1 + nτ)1+ d
2

1

(2π)
d
2

exp{− Z

2(nτ + 1)
} πd/2

Γ
(

d
2

)zd/2−1 (A.14)

=
exp{− z

2(1+nτ)
}

(1 + nτ)


[

1

Γ( d
2)

z
d
2−1

{2(1+nτ)}
d
2

]
+

nτ

[
1

Γ(1+ d
2)

z
d
2

{2(1+nτ)}
d
2 +1

]
 (A.15)
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This is a mixture of scaled χ2
d and χ2

d+2 distributions. Comparing this to the result

with local priors, which yields a scaled χ2
d under the alternative, it could be seen that

the accelerant for the Bayes’ factor under the null, as seen in Figure 2, comes from

the latter part of the mixture.
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