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ABSTRACT 

 

Miniature Hourglass Shaped Actuator Geometry Study Using a Finite Element 

Simulation. (May 2010) 

Roston Clement Elwell, B.S., California State Polytechnic University, Pomona 

Chair of Advisory Committee: Dr. Terry Creasy 

 

 This project investigated a miniature, hourglass-shaped actuator (MHA) and how 

its geometry affects performance. A custom, self-contained, finite-element simulation 

code predicts how each MHA deforms when pressurized internally.  

This analysis describes the MHA geometry‘s effects on four characteristics: a) 

work density b) mechanical advantage, c) work advantage and d) percent elongation. 

The first three characteristics are compared to a traditional actuator operating at the same 

pressure and elongation.  

A finite-element modeling code was tailored to study the MHA at 5 MPa internal 

pressure when 1) MHA height and side-wall thickness are constant and side-wall arc 

length varies; 2) MHA side-wall arc length and thickness are constant and the height 

varies; and 3) MHA side-wall thickness varies while height and side-wall arc length are 

fixed. Case 3 was studied using the MHA geometry with the highest work density found 

in either condition 1 or 2. 
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Peak mechanical advantage, 6.47, occurs in a constant height MHA—Case 1—

when the side-wall arc length is shortest. Highest elongation, 8.67%, occurs in the Case 

1 MHA with the longest side-wall arc length. Finally, under Case 3, work density 

reaches 0.434 MJ/m
3
 when the side-wall thickness is 1.9 mm. 

The MHA has potential for active structures because its work density is high—

higher than traditional actuators with the same elongation.  Their small elongations limit 

their use; however, much work remains to determine how MHAs might be arranged in a 

useful array. Never the less, morphing airfoils and other active structures might benefit 

from embedded MHAs. 
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1. INTRODUCTION 

1.1 Overview 

This study looked at Miniature Hourglass shaped Actuator (MHA) behavior 

based on the MHA‘s geometry to understand their capabilities and limits as synthetic 

nastic materials, which are promising replacements for traditional actuators. The finite-

element code surveyed three cases with varying MHA geometry. The MHA geometry is 

defined by five parameters: the arc angle, α; arc radius, r; arc wall thickness, t; the 

distance from the MHA‘s centerline to the center of the side-wall /end-wall intersection, 

R; and end thickness, T. Figure 1 identifies these parameters. 

 

Figure 1. Five parameters define the MHA‘s shape. The MHA geometry is defined by 

the arc angle, α, arc radius, r, arc wall thickness, t, the distance from MHA center line to 

the intersection of the center of side-wall with the MHA bottom , R, and end thickness, 

T. 

__________

 

This thesis follows the style of Advanced

 

Materials.

. 
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The MHA‘s structural material will affect the MHA‘s function, but materials 

selection is outside this study‘s scope. The baseline analysis here is directed toward 

nastic materials that use MHAs formed from a flexible thermoplastic. Because the MHA 

must operate reversibly for 100s to 1000s of cycles, the material model is linear elastic—

no plastic deformation occurs. The MHA structural material‘s elastic modulus is 2.0 

GPa, and its Poisson‘s ratio is 0.30. These material properties are similar to nylon, and 

McCutcheon
1
 used these properties in a previous study of fluid-solid interaction in an 

MHA material with an arbitrary geometry. These properties might not describe a specific 

material, but they are close to the properties of flexible thermoplastics.  

To create aircraft that perform better, it is necessary to advance the materials and 

systems used on aircraft The goal is to obtain a synthetic nastic material based on a 

machine-augmented composite (MAC) by embedding MHAs in a matrix to create a 

composite that is both actuator and structure to replace traditional actuation and 

structural systems that are discrete. By having the actuators embedded in the material it 

might be possible to create airfoils that are lighter and have many degrees of freedom. 

This increase in degrees of freedom comes from distributing microactuators in multiple 

orientations to increase the ways that actuated control system can actuate them. If there 

are enough actuators, an airfoil that‘s entire structure morphs might become possible. 

The actuator design investigated here uses internal pressure to inflate a long, 

miniature machine with an hourglass-shaped cross section, which called an MHA.  An 

isometric sketch showing the MHA geometry appears in Figure 2. 
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The finite element code that predicts MHA‘s response to internal pressure runs in 

Matlab. The code contains a mesh that generator specific to the MHA‘s geometry. The 

finite element model uses solid, continuum elements with an updated Lagrangian 

formulation. The elements are nine-node quadratic. The three-dimensional problem 

becomes two-dimensional by approximating the strain state as plane strain. This works 

because the miniature hourglass actuator is long in the out-of-plane direction, and 

because there is no load that induces strain out-of-plane. 

 

Figure 2. Isometric view of the undeformed MHA that is long in the out of plane 

direction. When pressurized, the side-walls move out and the cross-section elongates.  

 

The finite element code is unitless; the user must assure the input is in consistent 

units. Here, length is in millimeters (mm) and load in Newtons (N), which yields 

pressure and elastic moduli in megapascals (MPa).  
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1.2 Objective 

The program objectives are to 1) find the extremes in free strain, blocked stress, 

and work density available from the MHA profiles; and 2) to provide software that 

allows someone designing synthetic nastic materials a method to optimize the shape and 

material for a specific application within those extremes.  

For the MHA to be implemented in a valuable way it is important to understand 

the MHA performance and to have a way to compare it to other actuators. Throughout 

this study the MHA will be contrasted with a Comparable Traditional Actuator (CTA). 

A CTA is a typical hydraulic or pneumatic actuator operating with a force from the 

pressure that is equal to the force from the pressure acting on the end surface of the 

MHA. For the CTA the strain is limited to the strain of the MHA. See Figure 3 for an 

illustration of this concept.  

It is important to understand that the strain or percent elongation of the CTA CTA 

is limited to the strain or percent elongation that the MHA MHA can undergo. This is 

shown by the relation given in equation (1). 

 
CTA MHA   (1) 

The force in the CTA is equal to the 5 MPa internal pressure times the area of the of the 

MHA end surface, AMHA. This is reiterated in equation (2). 

 
CTA MHA MHAF P A  (2) 
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Figure 3. A Comparable Traditional Actuator (CTA) is a piston inside of a cylinder 

where the force from the pressure acting on the piston is equal to the force from pressure 

acting on the flat end surface of the Miniature Hourglass Shaped Actuator (MHA). The 

strain or percent elongation is set to be equal so that the work performed by each can be 

compared.  

 

It is valuable to be able to see were the MHA performance would lie compared to 

other actuators. Figure 4 recreated from Huber et al
2
 shows the actuation stress and 

actuation strain for many types of actuators. Different MHA geometries would lie on 

different places on this chart. The range for actuation stress would be from about 10
1
 to 

10
1.5

 MPa and the range for actuation strain would be about 10
-2

 to 10
-1

. This range is 

shown in Figure 4 as the square labeled MHA range. The actuation stress in the 

illustration is the blocked stress which means is the force an actuator can supply under 

no elongation and the actuation strain is the free strain or the elongation that the actuator 

can reach if it is allowed to freely expand. Unlike a hydraulic actuator and MHA cannot 

supply the blocked stress all the way to free strain. The force the MHA can supply 

decreases with elongation.  

CTA

MHA

MHAP

CTAP

AMHA
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Figure 4. Actuator performance chart (Recreated from Huber et al

2
 )  shows actuation 

stress – actuation strain relationship for many different kinds of actuators. The MHA 

would appear in the region labeled MHA Range.  
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2. LITERATURE REVIEW 

 

The research focus is to simulate small actuators that could be included in a 

structure, for example, a wing, to create a structure that morphs when the actuators fill 

with internal pressure.  Because the goal is shape-changing structure, a broad spectrum 

of literature is reviewed. The relevant literature starts with an introduction to 

multifunctional materials with natural and synthetic multifunctional materials 

summarized. The discussion of natural multifunctional materials includes both animal 

and plant structures. Then the discussion turns to synthetic multifunctional materials--

more specifically, shape changing and morphing materials—and ends with morphing 

wing concepts with potential MHA applications. This review provides a basis for 

discussing the miniature, hourglass-shape actuators.  

2.1 Multifunctional Materials 

Multifunctional materials must perform more than one function. They usually 

provide structure—to support loads—along with one or more additional functions. 

Multifunctional materials are found in nature; when studied, they can inspire synthetic 

multifunctional material design. Lee and Inman
3
 define multifunctional materials and 

provide a brief history that tells how this material class grew out of the previous smart, 

or intelligent material concept.  They state that a multifunctional material combines 

structural integrity with an abilities to actuate when stimulated, to sense the simulation, 

and to decide wheither it should respond. Some specific functionalities that could be 

added to conventional materials are vibration mitigation, power storage, crack 

remediation, and thermal management. Lee and Inman 
3
 also present their vision that 
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multifunctional materials could gain an increased ability to perform self-regulating and 

self-regenerating functions. These functions could be things like self-sensing, actuation, 

self-healing, self-cooling, and self-reconfiguration.  

Christodoulou and Venables 
4
 highlighted the wide spectrum of design 

opportunities for what could be revolutionary material systems in their overview of 

ongoing activity in multifunctional materials development. They also introduce some 

challenges in creating synthetic multifunctional materials. Defining a synthetic 

multifunctional material system as a structural material that is able to carry mechanical 

loads and to exhibit an additional function that contributes to system performance, they 

group them in four categories: structural power material systems; autosensing and 

actuating material systems; electromagnetic multifunctional material systems; and 

survivable damage-tolerant material systems. 

Multifunctional materials are an exciting and promising research area and 

advances in the ability to design and create these multifunctional materials will lead to 

advancements in industries that implement these materials. The aerospace industry is an 

obvious place because it continuously works to save weight, increase performance, and 

increase efficiency. As the technology gets better and implementation becomes 

available, these materials will reach a broader range of industries. 

2.1.1 Natural Multifunctional Materials 

 

Structures that use internal pressure to power movement are not new. Many 

plants use the turgor pressure generated by osmosis to power their movement. There are 

many structures in nature that change shape using internal pressure to create a localized 
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volume change that forces a shape change. Plants are a good example of how this works, 

so a brief overview of nastic motions and two example plants are presented.   

These are Mimosa pudica, which is called the sensitive plant, and Dionea 

muscipula—the Venus flytrap. Hill and Findlay 
5
 summarize plant movements and 

present examples. Figure 5, which was recreated from one given in their paper The 

Power of Movements in Plants: The Role of Osmotic Machines, shows grouped 

movements and specific examples.  

Figure 5. Hierarchy of the classification of plant movement with selected examples. The 

examples of single event movements discussed in greater detail are Dionea Trap and 

Mimosa Pulvini (Reproduced from Hill and Findlay 
5
).  

 

Burgert and Fratzl 
6
 present the actuation systems that enable plant movement. 

They organized movement into four mechanisms:  cell growth, turgor pressure, cohesion 

Plant Movement

Passive Active

Fruit, Spores, 

Pollen Dispersal Reversible Irreversible

Oscillatory 

Movements

Growth

Single Event 

Movements

Drosera Tentacles

Sparmania Stamens

Mimosa Pulvini

Dionea Trap

Utricularia Trap Door

Stylidium Column

Diurnal  Periods Shorter Periods

Stomata

Pulvini of:

Albizia, Mimosa, 
Samanea, Trifolium

Stomata

Desmodium Pulvini

Stylidium Column
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forces, and cell wall swell/shrink. Since turgor pressure is closest to the current study it 

is discussed in more detail. Turgor pressure uses a ―motor cells‖ to create the driving 

force for actuation. Motor cells deform elastically when filled with internal pressure. 

Two plants, Dionaea muscipula (Venus flytrap) and Mimosa pudica (sensitive plant), 

with a whole organ that is actuated with turgor pressure are presented here. Dionaea 

muscipula is the fastest known plant movement at 100 ms for leaf closure during the 

initial rapid stage that results from drastic volume changes of the leaf cell/tissue. 

Mimosa pudica has motor cells on one side of the pulvinus, which is a flexible hinge at 

the base of the leaf. These motor cells rapidly lose their turgor pressure upon stimulation 

causing a reduction in bending stiffness of the hinge allowing the leaf to fold and droop. 

In Burgent and Fratzl‘s 
6
 synopsis feastures some recent research in the area. The paper 

builds a case that these actuation systems from nature could be used to create 

biomimetic, nature-inspired, actuating composites. 

The Venus flytrap leaf is an example of a natural multifunctional material–the 

leaf structure–that has the ability to morph. Forterre et al 
7
 give a mechanical explanation 

for the rapid closure of the Venus flytrap (Dionaea Muscipula). The initial rapid closure, 

which takes about 100 ms, has an active biochemical component and a passive elastic 

component. An insect triggers closing by mechanically stimulating hairs. The leaf starts 

as a doubly-curved, i.e., curved in 2 orthogonal directions, leaf that is convex when open 

and then snaps to concave when closed. This snap-buckling closure starts out slowly; 

elastic energy is stored in the leaf over many hours as biochemical processes spring the 

trap. Closure is rapid when the leaf releases that energy. This morphing occurs more 
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rapidly than on-demand water movements can accomplish because of the quick release 

of elastic energy in the doubly curved leaf.   A study of the trap closure dynamics shows 

what happens inside the tissue during closing. Fagerberg and Allain 
8
 presented their 

finding in the paper ―A Quantitative Study of Tissue Dynamics During Closure in the 

Traps of Venus‘s Flytrap Dionaea Muscipula Elllis.‖ They present the process in three 

distinct stages: closure, appresion, and sealing. These stages occur in the order listed. 

Closure stage is rapid flexure of the trap margins and curvature of the trap‘s lobes 

toward each other. This stage is complete by about 1 second after the trigger hairs are 

stimulated. Next the traps become noticeably more concave and the trap margins come 

into contact during appresion, which goes for about 30 minutes after the trap was 

stimulation. During the final stage, sealing, the margins become tightly appressed and 

the lower region becomes more concave and a water tight chamber is formed. The shape 

change at each stage is attributed to changes in volume of different regions. 

Fagerberg and Allain‘s study used traps that were fully open and had never been 

triggered. The plants were raised in a green house for 5-10 years before being moved to 

a chamber with controlled temperature and light. The traps selected were similar in size. 

The tissue of the trap fell into five unique tissue groups. These groups are the upper 

epidermis, upper cortex, medullary, lower cortex, and lower epidermis. The upper 

epidermis faces skyward when the trap is open and becomes the inner surface after the 

trap sloses. The upper epidermis acts as a stomach lining during digestion. They 

analyzed the middle one-third of the trap, which they divided into three regions from the 

back–or mid rib–to the leading edge–or margin–of the trap. 
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 They described the volume changes with a nondimensionalized parameter called 

the Relative Importance. This was done so different-sized traps and different tissue 

groups could be compared directly.  The dynamics of tissue morphing and the tissue 

volume change responsible for closure in each stage was different.  In the capture phase, 

the rapid movement to a concave shape that bends inward comes from the medullary and 

cortical tissue enlarging near the trap‘s free edge. The tissue that increased volume the 

greatest was the lower cortical, which is the major contributor to inward curvature. This 

expansion was mostly normal to the trap‘s midrib.  

In the apression stage, the most significant tissues and region are the lower 

epidermal and cortical located in the third closet to the midrib–the back of the trap. 

Expansions in these tissues lead to further convexity. Finally, the sealing stage is mainly 

a consequence of tissue expansion in the lower epidermal tissue near the trap‘s edge and 

in the lower cortical and epidermal tissue in the traps‘s central region. The Venus flytrap 

demonstrates natural structural morphing through internal pressurization. This morphing 

occurs more rapidly than possible if only the water movements that control the 

anisotropic curvature changes could accomplish because the elastic energy stored 

buckling the doubly curved leaf is released quickly. 

The Mimosa pudica is another example with rapid plant movement achieved by 

changing turgor pressure in specific cells. Allen
9
 studied this seismonastic movement . 

His research goal was to explain the turgor pressure loss that occurs in the lower side of 

the pulvinus. This rapid plant movement, which is initiated by external stimuli, occurs in 

the lower side of the pulvinus at the base of the petiole, or leaf stock, in 1-2 seconds. 
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Allen
9
 proposed that the pulvinar reactivity might be determined by the difference in 

turgor pressure or K
+ 

or Cl
-
 ion concentration differences between upper and lower 

pulvinar. He hypothesized the effect not directly related to absolute concentrations of K
+ 

or Cl
-
 ion. 

Another attribute of the Mimosa pudica that inspires biomimetic structure design 

is the structural and functional properties of its folding geometry. Patil and Vaijapukar
10

 

studied this geometry to inspire new concepts for creating more efficient and optimum 

engineering structures  through using innovative folding. 

 Copying nature in engineered objects is called as biomimetics. On this subject 

Bar-Cohen
11

 wrote an overview. He discusses how nature has long functioned to initiate 

and motivate human innovation, and how replication of biological systems will continue 

to become more possible as science progresses. Nemat-Nasser et al
12

 give human skin as 

an example of a multifunctional material that can heal, sense, protect, and provide 

structure  simultaneously. Human bones present multifunctionality–they serve as 

structural support and as a manufacturing plant for blood cells. Meyers et al
13

 give sea 

spicules; the abalone shell; the conch shell; toucan and hornbill beaks; and the sheep 

grab exoskeleton as five biological material examples that are highly-structured and 

multifunctional composites. Srinivasan et al
14

 also discusses biomimetics and give three 

key characteristics of materials that can inspire design. These characteristics are 

multifunctionality, hierarchical organization, and adaptability. Multifunctionality is 

present in a tree root that acts as anchoring structure and as a conduit for nutrients. The 

tendon, with its intricate arrangement of material at different scales, illustrates 
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hierarchical organization. Adaptability is found in bones, with their ability to remodel to 

accommodate changes in load. Shrinivasan et al
14

 also give four examples of composites 

(wood, insect cuticle, bone, and mollusk shells) found in nature that can spur ideas and 

development of new and novel synthetic multifunctional materials.  

2.1.2 Synthetic Multifunctional Materials 

 

Synthetic multifunctional materials can perform more than one beneficial 

function. Some synthetic multifunctional materials provide structure and sensing 

capabilities. Lin and Sodano
15

 created an active fiber-reinforced composite by coating 

structural fibers a piezoceramic and embedding them in a polymer matrix. Curtis
16

 built 

composite materials with damage detection and damage location abilities by 

incorporating fiber optics into the material. This material is called Smart Structural 

Health Monitoring System. Another concept, presented by Seepersad et al
17

, is 

honeycomb materials designed to provide structure and tailored heat transfer 

characteristics for cooling.  

Kumar and McDowell
18

 have done work similar to Seepersad et al
17

. They 

studied how the mesostructure of two dimensional cellular structures can be tailored to 

achieve combine heat transfer and structural response optimally. This is done by varying 

the honeycomb‘s cell size, wall thickness, and cell topology. 

Christodoulou and Venables
4
 discuss four categories of multifunctional 

materials. Structural power materials systems are multifunctional materials that provide 

structure and act as a power source. They give four examples. The first is unmanned air 

vehicle powerfoils, which are a battery shaped like an airfoil. The next example is 



15 

 

 

powerfiber systems where the fiber batteries are embedded in the matrix and integrated 

into the reinforcing architecture as a rechargeable power source. Another is autophagous 

or self-consuming systems, which use the stress supporting structure as a fuel source. 

This is possible because, as the fuel is consumed, the structure weight decreases reduces 

the strength requirements. There are also four examples of autonomous sensing and 

actuating systems. Multifunctional electro-elastomers, which undergo extraordinary 

strains under applied voltage, are one illustration. Another instance is statically 

determinant structures called mechanotronics that, with a small number of deliberately 

placed actuators, can be flexed internally. Tensegrity structures are noted next. These 

structures are stiff bars connected by tensile elements that create an excellent shape-

adaptive structure. The final example is machine-augmented composites–composite 

structures with simple machines incorporated for added functionality.  

Structural materials that also serve as antennas comprise the electromagnetic 

multifunctional material systems. Survivable, damage-tolerant material systems are the 

last category and include both laminated multifunctional materials, which can contain a 

wide array of features, and autogenous or self-healing multifunctional materials. These 

self-healing materials usually arrest crack propagation with a thermoset matrix 

distributed in distinct phase regions. The common attribute throughout these examples is 

that they provide structure; the categories arise from the secondary function they 

perform. 

Giurgiutiu et al
19

 designed a synthetic nastic structure with embedded cylindrical 

microactuators in a polymer matrix. They sought to optimize the design variables that 
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described both the nastic material properties and geometry. Their optimization criterion 

was maximum actuation distance for a fixed actuation fluid volume. The actuation 

distance is a function of 8 master variables. They also built a case for the potential of 

synthetic nastic structures as high energy density materials by replicating nautral nastic 

structures. They want to mimic plants capable of localized-movement nastic motion that 

occurs in specialized motor cells. In this material biochemical reactions create cell 

volume changes, caused by water traveling in and out of these motor cells, that lead to 

overall tissue deformation. The changes in volume are not uniform and therefore cause 

deflection rather than overall uniform expansion. These motor cells that exhibit nastic 

motion in plants are a natural hydraulic actuator. 

2.2 Shape Changing and Morphing Materials 

A special class of synthetic multifunctional materials related to this study is 

shape changing and morphing materials. To change shape must be a way to apply the 

force and displacement necessary to do the work the shape change requires. These 

materials will be discussed based on their actuation method. The actuation methods are 

piezoelectric, shape memory alloys, and pneumatic. Hyer and Jilani
20

 created a 

rectangular, unsymmetric, laminated piezoceramic material, and tried to predict its 

behavior. Hassan
21

 developed shape-memory alloy, chiral-honeycomb cells that, when 

grouped together, make up a truss structures. Their objective was making a functional 

material that increases in volume. Hirai et al
22

 built pneumatic actuators composed of 

multiple elastic tubes that can achieve multiple motions by implementing various 
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pressurization schemes. The present work is an outgrowth of prior research with 

machine augmented composites. 

2.3 Machine-Augmented Composites  

Machine augmented composites incorporate small, simple machines in a matrix 

to achieve multifunctionality. Embedding small hourglass-shaped systems in a matrix 

material has previously been investigated by McCutcheon
1
, McCutcheon et al

23
, and 

Kim
24

 McCutcheon‘s work looked at the possibility of creating a material with high 

damping by using the embedded hourglass as a passive structure that dissipates energy 

by moving a viscous fluid. Kim
24

 also used MHAs as a passive damping system; 

however, he looked at increasing the damping of a composite material while maintaining 

its stiffness. The primary effect in damping was the additional free, highly sheared 

surfaces the hourglass shaped machines introduced. He also used a viscous fluid in the 

hourglass to increase energy dissipation. Compared to the work of Kim and 

McCutcheon, the contribution from the present work with MHAs is that this work 

considers the materials for active actuation, not for passive damping. Tang et al
25

 

incorporated a small four-bar linkage machine into a polyurethane matrix to create a 

machine augmented composite that converts a compressive load into shear. An active 

machine-augmented composite is one possible application for the miniature hourglass 

shaped actuators investigated in this study.  

2.4 Morphing Wings 

The morphing wing concept and the multiple ideas aabout how they might be 

designed, is of special interest to this research because that is the projects ultimate goal. 
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Morphing wings powered by internal pressure are discussed here. Active, pressurized 

MHAs might help achieve this goal. 

There are many ideas for creating a morphing wing structure. Thill et al
26

 

summarizes the concepts and ideas related to morphing wings that deal specifically with 

smooth and continuous morphing structures. These structures deform while carrying 

load. They cover concepts for wings structures that are stiff in the span, yet flexible in 

the chord direction. Thill et al
26

 groups the concepts into four categories. These 

categories are change in surface area, change in shape that is due to stiffness tailoring, 

change in shape that is due to stiffness change, and other mechanical morphing concepts.  

 The surface-area-change concepts include stretchable structures. Elastomers and 

auxetic, i.e., negative poisson‘s ratio, materials exemplify this concept. Deployable 

structures are surface-area-change structures. The example deployable structures are 

rollable/collapsible structures, foldable structures, inflatable structures, and 

overlapping/stacked/nested structures.  

The stiffness tailoring approach is presented with five examples. These examples 

are extreme anisotropic materials, multi-stable composites, segmented structures, folded 

inner skin structures, and multilayered skin structures. Shape memory materials--

including shape memory alloys, shape memory polymers, elastic memory composites, 

shape memory textiles, and magnetic shape memory materials—are one illustration of 

shape change enabled by stiffness tailoring. Another concept in this category is flexible 

matrix composites.  
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The final group referred to as morphing concepts is a broader category that 

includes mechanical ideas like the finger concept, belt rib concept, sliding rib/crossbar 

concept, eccentuator, and compliant structure. They are many concepts for morphing 

wing structures. Baker and Friswell
27

 propose a wing structure completely made from 

determinant truss members with some of the members replaced with actuators to deflect 

the structure without stressing other members. Inoyama et al
28

  explored distributing 

actuators throughout a wing structure to optimize actuator placement to achieve a 

morphing wing. There much work currently on creating a wing structure that 

continuously and smoothly transitions from an undeformed to a deformed configuration.  

The idea of using pneumatic pressure to create a morphing wing is not new. 

There is class of inflatable morphing wings. Cadogen
29

 discusses inflatable wings for 

unmanned aerial vehicles. Inflatable wings are studied because they can be deployed 

from a stowed volume that is much smaller than the working volume. Once deployed, 

the wing‘s performance might be increased by morphing them. The morphing wing 

would improve aerodynamics and eliminate mechanical actuation systems. Cadogen‘s
29

 

idea requires small embedded actuators. The options listed are piezoelectric, electro-

active polymers, shape memory alloys, pneumatic chambers, nastic cells, and distributed 

motor-actuator assemblies. Cadogan discusses three ideas for overcoming the major 

challenge of morphing a conventional rigid structure that must be stiff inherently.  These 

ideas are nastic structures, bump flatting, and trailing edge deflection. In the nastic 

structures concept the morphing is caused by the inflation of cylindrical tubes that are lie 

on the wings lower surface and are aligned parallel to the length of the wing. This 
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inflation reduces the wing‘s bottom surface length thus causing it to bend downward. 

This concept is a possible use for miniature hourglass shaped actuators.  

The work done by Yokozeki et al
30

 is a possible way to implement the miniature 

hourglass-shaped actuators. Yokozeki et al proposed corrugated composites for 

candidate for flexible wing structures. These are very flexible in the corrugated 

direction, which becomes the chord direction for the wing, but stiff in the perpendicular 

direction, which is the wing‘s span. These corrugated composites exhibit ultra-

anisotropic sitffness. A possible use for the MHA is that a MHAs could be placed in the 

corrugations. This would allow the material to flex depending on how the MHAs were 

pressurized. Pressurization of the MHAs on the top would cause the corrugated material 

to curve downwards; likewise, pressurization of lower MHAs would bend the structure 

upward. Pressurizing both top and bottom simultaneously would extend the chord and 

stiffen the structure. A schematic corrugated composite material appears in Figure 6. 

Figure 6. Illustration of a corrugate composite material. Corrugated composite material 

offer a possible platform where MHAs could be implemented. (Recreated from 

Yokoseki et al
30

).  
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 Leung and Guest
31

 investigated the placement of one linear actuator in an infinite 

kagome lattice.  The kagome lattice structure has potential for  active truss structures that 

integrate linear actuators into the structure. These kagome lattice structures, whose 

response depends substantially on the initial geometry, have high passive stiffness and 

low actuation resistance, which makes them a strong candidate for active structures. An 

MHA could be the linear actuator incorporated in the lattice. Figure 7  below shows a 

kegome lattice with one member circled where an actuator could be placed. There is the 

possibility that linear actuators could replace many members in the structure to create a 

structure that undergoes a complex deformation. 

Figure 7. Illustration of a kagome lattice structure with single truss member for possible 

actuator replacement circled. MHAs could replace truss members in a kagome lattice 

structure in a manner that creates a desired deformation when the MHAs are pressurized 

and elongate.  

 

 

 Similar to the work described previously with kagome lattices Inoyama et al
28

 

performed topology synthesis of distributed actuation systems for morphing wing 

structures. They used the uniform truss structure shown below in Figure 8. Then they 

developed an optimization process that takes a desired deformation and decides which 
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structural member should be one of the five types they use. The five types of members 

are inactive telescope, active telescope, actuator, frame, truss, and, void. An inactive 

telescope can support a moment and shear force but cannot support an axial force. An 

active telescope also supports a moment and shear force but it can supply an axial 

extension or contraction force. Third type of member is an actuator that supplies an axial 

extension or contraction force but cannot support a shear force or bending moment. Next 

is the frame member which can support all three: bending moment, shear force, and axial 

force. The truss member can only support an axial force. A void, the last type of 

member, which as its name suggest cannot support any load.  

 

Figure 8. Illustration of a truss structure for member placement optimization. The truss 

members can be any of the five types which are inactive telescope, active telescope, 

actuator, frame, truss, and, void.  In this truss structure the actuator member could be a 

MHA. (Recreated from Inoyama et al
28

). 

 

There are many possible applications were MHAs could be incorporated into a 

structure. MHAs could be integrated into any design where a miniature linear actuator is 

applicable such as corrugated composite materials, determinate truss structures, and 
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kagome lattices. These actuators could likely be used in parallel with extreme 

anisotropic materials.  

The present study considers one possible actuator. This study is not a 

comprehensive analysis of a morphing wing; it is an inquiry into the MHA response. The 

question considered is ―what are the tradeoffs associated with MHA performance within 

a design envelope defined by maximum possible deflection, mechanical advantage, and 

available work density. This makes the current study different from other work on 

morphing structures that investigate the entire structure without looking at the actuator 

separately.  
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3. FINITE ELEMENT CODE: A COMPLETE SELF-CONTAINED CODE 

FOR SPECIALIZED SIMULATION 

 

 The finite element code used to conduct this study runs in MatLab. It is a 

complete, self-contained code written for one purpose: model the MHA‘s deformation 

under an internal pressure. It contains the main program and many sub routines. These 

sub routines include a mesh generator, functions that create force and stiffness matrices, 

and boundary conditions. Each of these subroutines are discussed in detail. 

3.1 Code Operation 

 The program‘s main section accepts the user‘s input. This includes the 

parameters that describe the MHA geometry, the material properties, the mesh 

information, and control inputs for running the simulation. In the main section the global 

equations are built and solved. The main program calls several function, sends them 

variables and parameters, and collects the calculated information. This occurs for each 

for each load step and iteration. The main section‘s code appears in Appendix A. 

 The first functions is ―PressureSide,‖ which uses the element mesh information 

to create an array that states what elements have pressure applied to them and to what 

side it is applied. Appendix B contains this code.  

The second function is ―MHA_MESH_GENERATOR‖, which has its full code 

in Appendix C. This code is the mesh generator. This mesh generator is written for the 

MHA geometry specifically. It uses the input parameters that define the MHA geometry, 

places the nodes, and builds a mesh. The mesh generator also creates some important 

arrays used throughout the simulation. It creates a nodal connectivity array that states 
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what elements and local node numbers correspond to what global nodes. The degree of 

freedom connectivity array is similar to the nodal connectivity array and contains 

information on what global degree of freedom corresponds to what element and local 

node. The mesh generator also produces the total number of nodes, the number of 

elements, and an array containing both the x and y nodal coordinates. Finally, the mesh 

generator constructs four arrays that contain the global node numbers of nodes that lie on 

the MHA bottom surface, the MHA inner surface, the axis of x symmetry and the axis of 

y symmetry. Only one quadrant of the MHA is analyzed–there is axial symmetry in x 

and y directions. An example computational domain mesh appears in Figure 9. 

 The next two functions called deal with creating boundary conditions. The first, 

named ―BoundaryConditions,‖ which is presented Appendix D, uses the mesh 

generator‘s information about the nodes that lie on the MHA bottom surface and on the x 

and y axes of symmetry. It uses this information to create an array that contains all the 

global degrees of freedom that have applied boundary conditions and to create an array 

that contains those boundary conditions that are all initially set to zero. The boundary 

conditions that enforce symmetry remain at zero throughout the simulation. The second 

function, ―SteppedBottomDisplacementBC‖, creates an array containing the degrees of 

freedom along the bottom surface that will cause stepped displacement and an array 

containing values of those degrees of freedom. Initially set to zero,  these values will 

change at each displacement step. The arrays created by this function will copied at each 

displacement step into the arrays created previously. This code is in Appendix E. 
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Figure 9. Mesh of the MHA computational domain. Only one quadrant is meshed and 

used with symmetry boundary conditions to compute the MHA behavior. The bottom 

right quadrant is shown with both the x and y axes of symmetry.  

 

 Presented in Appendix F, ―ElementStiffness4UpdatedLagragian‖ is the next 

function called by the main program. This function creates the element stiffness 

matrices. It uses either the plane-stress or plane-strain assumption to create the element 

stiffness matrices. This function can use nine node quadratic elements only. 

―ElementForce4UpdatedLagragian,‖ which creates element force vectors, is the next 

function. It appears in Appendix G. This element force function uses a function 

presented in Appendix H, ―MHA_Pressure,‖ that calculates the forces on each nodes that 

subjected to the internal pressure. It calculates the magnitude and direction of forces 

from pressure using the nodal coordinates that describe the surface. Both the element 

force and stiffness functions use the interpolation function, which uses a function that 
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contains the gauss point weights and coordinates, for numerical integration. These 

functions appear in Appendix I and Appendix J respectively. 

The function ―MHA_Work‖ uses the MHA simulation results to calculate 

mechanical advantage, work advantage, percent elongation, MHA work density, and 

work density of a traditional actuator. This function, which uses the code from 

―MHA_Force‖ (Appendix K) that calculated the force on the MHA bottom, is contained 

in Appendix L. Appendix M lists the final function, ―MHA_FULL_COORDINATES‖ 

called by the main program. This function creates arrays that contain the nodal 

coordinates necessary to define the undeformed and deformed MHA nodes. These nodes 

can be plotted if necessary. 

The finite element simulation uses nine-node quadratic elements. These elements 

use the same interpolation functions to interpolate both the primary variables and the 

geometry so they are isoparametric elements. This is described in Reddy
32

. The element 

type used to simulate the MHA deformation are solid continua elements. The 

formulation used is the updated Lagrangian from Reddy
33

. The book by Cook
34

 and 

unpublished notes of Dr. Alan Palazzolo
35

 provided to the graduate course MEMA 647-

Theory of Finite Element Analysis during the summer of 2007, were referred to 

extensively in writing the MHA simulation code. The full three dimensional case is 

reduced to a two dimensional simulation by assuming plane-strain. This can be done 

because the MHA is sufficiently long in the out of plane direction, which is normal to 

the MHA cross section. In addition, there is no load that would create out-of-plane 

strain. This plane-strain assumption does not investigate what happens near the ends of 
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the MHA. It neglects any edge effect where the MHA is sealed. The MHA must be 

sealed to contain 5 MPa internal pressure; however this is done, it would create some 

end effects that are not captured by the plane-strain model.  

The internal pressure is applied normal to the MHA inner surface and as the 

MHA deforms the software recalculates the normal direction at every iteration and load 

step. The unit normal vector is calculated from the nodal coordinates according to the 

work of Gregory S. Payette
36

. Although this work follows the unpublished work of 

Payette, there are published articles on applying pressure boundary conditions on 

moving boundaries. These include the work Schweizerhof and Ramm
37

 and Simo et al
38

. 

To validate the finite element code, a study was performed that compared the 

analytical results from a fixed-fixed Euler-Bernoulli beam to the new finite element code 

results. To check the finite element code the deflection of a straight MHA side-wall was 

compared with an Euler-Bernoulli beam with the same geometry. The MHA side-wall 

was made straight by giving it a very large radius r equal to 2540 m (100,000 inches) 

and a small arc angle α equal to π/10,000. This yields a beam length equal to 798 mm 

(31.42 inch). Symmetry makes the computational domain only one half the original 

length. The beam thickness and depth are both 25.4 mm (1 in.) making the second 

moment of area about the neutral axis of the beam equal 3.47 cm
4
 (1/12 inch

4
).   

The boundary conditions at the end section are completely constrained. There is 

symmetry corresponding to the beam center. In addition, the two nodes that are at the 

edges of the side-wall base have both degrees of freedom set to zero. These boundary 

conditions create a fixed-fixed beam. The load is a uniform pressure. This load and 
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boundary conditions create the ―Fixed supports - uniform load‖ beam configuration 

shown in Table A-9 of Shigley
39

. The simulation results were compared to the relation 

for the maximum deflection given by Shigley is given in the equation (3) 

 
4

384
max

wl
y

EI
   (3) 

The beam receives a uniformly distributed load of 43.8 N/mm (250 lbs per inch). 

The beam‘s material properties are similar to steel with a 207 GPa (30 Mpsi) Young‘s 

modulus and a 0.25 Poisson‘s ratio. The beam simulation ran with the beam made into a 

two-dimensional plane-stress problem. The beam validation mesh appears in Figure 10. 

Figure 10. Mesh of quadrant used as the computational domain for code validation. The 

analysis code was validated for a fixed-fixed  beam. The mesh is one half of the beam 

with a symmetry boundary condition in the middle and is fixed at the other end. This 

geometry is created by making the arc radius very large and the arc angle very small.  
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The results support the code‘s validity. For a mesh with 24 elements along the 

length, 3 elements through the cross section, the finite element code results gave an 

6.393 mm (0.2517 inch). which is 0.78% less than the Euler-Bernoulli results that 

predicted a 6.444 mm (0.2537 inch) maximum deflection. These results are close and it 

is reasonable to believe that the Euler-Bernoulli result would predict a higher deflection 

because it does not account for any geometric, nonlinear stiffing effects. The results for 

the deformed and undeformed geometries appear in Figure 11. The deflections are 

relatively small compared to the deflections that the MHA will undergo, but, because the 

linear Euler-Bernoulli results would not be accurate for large deflections, they were 

compared with a small defection problem. This validation study provides evidence that 

the finite element code is working and yields reasonable results.  

Figure 11. Illustration of the validation beam before and after deformation. The whole 

MHA with straight side-walls is plotted but only one quadrant is used for the 

computation. The code result was only compared to Euler-Bernoulli beam solution for 

this small deflection.  
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3.2 Mesh Refinement Study 

 

A mesh refinement study was done to make sure that the results were not 

significantly affected by the number of degrees of freedom. Five meshes were studied 

starting with an 8x1, which is 8 elements along the beam and 1 element through the 

beam, that was repeatedly refined to 40x5. The results for the maximum deflection for 

these two meshes are 6.210 mm 0.2445 inches and 6.421 mm 0.2528 inches, 

respectively. This is only 3.4% difference between the coarse and a significantly more 

refined mesh. Only 0.16% difference was seen between the last refinement and the 

previous one. The full mesh refinement results appear in Table 1. 

Table 1. Summary of mesh refinement results in beam validation study. There is only a 

3.4% difference between the finest and coarsest meshes and only 0.16% between the last 

two mesh refinements.  

# of Elements 
Along the 

Beam 

# of Elements 
Through the 

Beam 
Δmax mm (in) 

8 1 6.210 (0.2445) 

16 2 6.358 (0.2503) 

24 3 6.393 (0.2517) 

32 4 6.411 (0.2524) 

40 5 6.421 (0.2528) 

 

These results are evidence that the simulation outcome is not significantly 

dependant on the size of the mesh. This is true because the results agree within an 

acceptable error level even when very different mesh sizes are used. 
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4. MINIATURE HOURGLASS SHAPED ACTUATOR CASE STUDIES:  

EFFECT OF GEOMETRY CHANGES 

 Three distinct cases are examined. The first, Case 1, looks at the effects of 

changing the MHA side-wall geometry while holding the MHA height constant. For 

Case 2, the arc length of the MHA side-wall is held constant while the shape is altered. 

In Case 3, the MHA geometry with the highest work density from Case 1 and Case 2 is 

used. The side-wall shape is held constant while its thickness is changed.  For each 

sample geometry within the three cases, a finite element simulation was performed to 

investigate the mechanical advantage, work advantage, percent elongation and work 

density are investigated and reported. 

After creating the MHA specific finite element mesh, the MHA simulation 

process begins with filling the MHA to an internal pressure of 5 MPa in five 1 MPa load 

steps while the ends of the MHA are constrained so that no expansion is allowed. These 

load steps are done to allow the solution to converge with less iteration, which makes the 

code run faster. At this point, the forces on all the nodes that lie on the MHA 

computational domain‘s bottom surface are summed and saved. This is the blocked force 

and the information needed to calculate mechanical advantage. The constraints are then 

removed and internal pressure causes the MHA to extend in two ways. First, the internal 

pressure acts on the top and bottom of the MHA causing it to extend along its height 

from the pressure acting in extension direction. Second, the internal pressure bends the 

MHA‘s side-walls. As the side-walls straighten, they push the top and bottom of the 

MHA. This increases the force beyond that from direct pressure alone. This increase is 
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called the mechanical advantage. Next, the MHA computational domain is allowed to 

expand in 0.02 mm steps, which corresponds to the full MHA expanding 0.04 mm. At 

each increment, the program checks whether the MHA side-wall begins to buckle out.  If 

this happens, the side-wall deflection no longer aids in the axial expansion, thereby 

hindering the MHA performance and rendering further simulation unnecessary. At this 

point, the simulation stops and saves the results from the previous expansion step—when 

the MHA side-wall was not buckled outward. For each displacement step, the forces on 

the MHA ends are computed and saved so that work can be calculated. The work density 

per unit length of the MHA is calculated by dividing the total work performed by the 

initial cross sectional area. The percent elongation is the MHA height at the last 

displacement step when the MHA side-walls are not buckled compared to the initial 

height. The work advantage is the total work performed divided by the work of a 

comparable traditional actuator. The following is a discussion of the simulation results 

for each case study.  

4.1 Case 1. Constant MHA Height 

In Case 1 the side-wall geometry changes because the arc angle, α and the arc 

radius, r, change. The MHA height stays constant because the product of the arc radius 

and the sine of half the arc angle is constant. This relationship is contained in the 

equation (4) 

  sin 10
2

r    (4) 

The arc angle α is the primary parameter that is varied and the arc radius r is then chosen 

to keep the MHA height constant at 24.0 mm. The interior height is 20 mm with the top, 
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bottom, and the side-walls each have a thickness of 2 mm. The arc angle and arc radius 

for each of the geometries in Case1 are in Table 2. 

Table 2. Arc angle, α and arc radius, r for Case 1 geometries. The arc angle is stepped 

by π/32 and the arc radius is calculated to keep the MHA height constant. 

α 11
32
  12

32
  13

32
  14

32
  15

32
  16

32
  17

32
  18

32
  19

32
  20

32
  21

32
  

r 19.45 18.00 16.79 15.76 14.89 14.14 13.50 12.94 12.45 12.03 11.66 

 

These arc angles were chosen because they go from a side-wall that is almost 

straight at α=11π/32 to a side-wall that is nearly a half circle at α=21π/32 in 12 steps. 

Between these two extremes are the geometries of interest.  

4.1.1 Case 1. Constant MHA Height Maximum Mechanical Advantage 

 The Case 1 MHA geometry, shown in Figure 12, that exhibits the highest 

mechanical advantage is α=11π/32 and r=19.45 mm. These parameters yield side-walls 

that are straighter than any other Case 1 geometry. The mechanical advantage results in a 

significantly large value of 6.47. This MHA high mechanical advantage happens because 

the shape of the MHA transfers some of the load to the ends. However, the total 

elongation for this case is small therefore making this geometry is unlikely to be useful 

except possibly in applications where large force and a very small displacement are 

needed. The work density is also determined to be a low value of 0.113 MJ/m
3
. Even 

though the force is high, the elongation is too small to achieve a significant work 

density. Even though the side-wall deformation is noticeable the elongation of the MHA 

is very small. 
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Figure 12. When the MHA has the shape shown with α=11π/32 and r=19.45 mm, the 

MHA produces the maximum mechanical advantage in Case 1. The dashed lines show 

the MHA‗s free displacement at 5 MPa internal pressure. The elongation is very small at 

only 0.67% of the MHA height.  

 

Figure 13 shows that the force stays high through the entire elongation of the 

MHA because the elongation is small. The total elongation was only four steps reaching 

an elongation of 0.16 mm or 0.67% of the MHA Height. The reason that the elongation 

stops long before the force goes to zero is that the side-walls start to buckle out. Despite 

the force per unit length remaining above 160 N/mm, this geometry would probably not 

be useful because of its small elongation. The total work density the MHA can perform 

is 0.113 MJ/m
3
. The comparable traditional actuator can only achieve a work density of 

0.018 MJ/m
3
 because the elongation and force are both small. 
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Figure 13. Force supplied by the MHA and CTA verse actuator displacement. This chart 

shows that a conventional actuator has a constant force through the MHA‘s displacement 

range. The best Case 1 MHA always has a larger force; however, the force drops 11 % 

with displacement.  

 

4.1.2 Case 1. Constant MHA Height Maximum Percent Elongation 

 

 The maximum percent elongation in Case 1, 8.67%, happened to be the highest 

percent elongation of any case studied. This MHA has an arc angle and radius of 

α=21π/32 and r=11.66 mm respectively which also gives it a 24.0 mm side-wall arc 

length, the longest of any MHA geometry. The geometry with and without deformation 

is presented in Figure 14. It should be noted this figure is actually a couple of 

displacement steps before the code stopped from side-wall buckling because the load 

went to zero before the side-walls buckled. This is not obvious by looking at Figure 14. 
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Figure 14. This Case 1 geometry, of α=21π/32 and r=11.66 mm, has the highest 

elongation percentage. This geometry produces an elongation of 2.08 mm which is 

8.67% of the MHA height when pressurized to 5MPa.  

 

Figure 15 displays how near the end of the elongation the force approaches zero 

which is expected for a MHA with high elongation. At high elongation all the force on 

the MHA internal top and bottom faces is balanced by force from the side-walls trying to 

spring back. This happens before the side-walls start to buckle out. The work density for 

this MHA is only slightly less than the maximum at 0.389 MJ/m
2
. Up until 

displacements greater than 1.65 mm, the force output is higher than the force supplied 

the comparable traditional actuator.  
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Figure 15. This force versus MHA displacement for the Case 1 geometry with the 

highest elongation shows a decline that almost reaches zero as the MHA gets fully 

extended. High elongation limits the MHA‘s force because the force drops rapidly as the 

hourglass extends.  

 

4.1.3 Case 1. Constant MHA Height Maximum Work Density 

 

 In Case 1, the MHA geometry that achieved the highest work density had an arc 

radius and angle of r=12.94 mm and α=18π/32 respectively. This geometry lies between 

the geometries of highest mechanical advantage and highest percent elongation which is 

expected because the ability to do work requires applying a force over a distance. The 

blocked force per unit length is 135 N/mm and the elongation is 0.67% or 1.60 mm. The 

geometry of this MHA along with the deformed geometry is illustrated in Figure 16, 

while the force versus displacement behavior is shown in Figure 17. 
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Figure 16. The Case 1 MHA with the maximum work density has an arc angle between 

the maximum force and maximum elongation shapes. This means that there is an 

optimum trade-off between force and displacement that generates the greatest possible 

work.  

 

 For this set of parameters a value 0.396 MJ/m
3
 of work density was calculated, 

while the comparable traditional actuator only exhibited a work density of 0.195 MJ/m
3
. 

Figure 17 shows that the force initially declines at a slower pace but then as the MHA 

expands and its sides get straighter the force begins to decline rapidly. At an elongation 

of 1.38 mm the force the MHA can exhibit falls below the force that the comparable 

traditional actuator can provide. Between a displacement of 1.44 mm and 1.48 mm the 

curve slope quickly gets steeper and then returns to the previous slope. The reason for 

this unknown but the simulation did reach a converged solution at every displacement 

step. 
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Figure 17. The Case 1 MHA with the best work density shows a force drop that is 

almost as large as the drop produced by the shape that obtains the greatest elongation. 

 

4.1.4 Case 1 MHA Mechanical Advantage and Work Density 

For the geometries in Case 1 the percent elongation shows an almost linear rise 

with increase in arc angle. This is likely due to the fact that as the arc angle increases the 

arc radius decreases, thereby increasing the side-wall curvature. This in turn makes it 

easier to straighten and allows the MHA to elongate. In addition, total the arc length 

increases from about 21 mm for the α=11π/32 case to 24 mm for the α=21π/32 

geometry, which increases the potential maximum elongation. Both the force and work 

advantage fall with the increase in arc angle displaying nearly the same behavior but for 

a different reason. The mechanical advantage falls because the more curved side-walls 

do not add addition force to the MHA ends as much as straighter side-walls. In the case 

of the larger arc angle side-walls the side-wall acts as a supporting arch which does not 

transfer much of the load to separating the two MHA ends. The work advantage falls 

because the as the elongation increases the work density of the Comparable Traditional 
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Actuator rises faster than the MHA work density. The results of Case 1 are shown in 

Figure 18.  

 

Figure 18. Force and work advantage along with % elongation plotted versus arc angle 

for a fixed MHA height. The Force and work advantage fall as the arc angle increases 

while the elongation increases.  

 

 When the MHA height is held constant the work density increases from a value 

of 0.113 MJ/m
3
 when α=11π/32 and r=19.45 mm to a maximum value of 0.396 MJ/m

3
 

when
 
α=18π/32 and r=12.94 mm. There is little difference in the work density from 

α=π/2 to α=21π/32 as can be seen in Figure 19. The work density of a comparable 

traditional actuator does change for every geometry case. This is because the main factor 

in its work density is the percent elongation. When comparing Figure 18 and Figure 19 it 

is clear that the percent elongation and the work density of a comparable traditional 

actuator increase following the same trend. These results are summarized in Table 3. 

The work density of a Comparable Traditional Actuator increases in a nearly 

linear fashion following the behavior of the MHA percent elongation increase. This 

happens because the CTA force is constant and equal to the force from pressure applied 

to the MHA top inner surface which is only a function of the MHA width based on the R 
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value assigned. This leads to a work increase that directly follows an increase in 

elongation. This is true for all MHA geometry cases. 

 

Figure 19. MHA and CTA work density plotted versus arc angle. When the MHA 

height is fixed, the work density rises to a maximum value at α=18π/32. The Comparable 

Traditional Actuator does not achieve the work density found for the MHA at each arc 

angle. 
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Table 3. Results for Case 1 analysis covered arc angles from 11π/32 to 21π/32 and had a constant MHA height of 24.0 mm.  

 

Arc 
Angle 

α  

Blocked 
Force 

(N/mm) 

Mechanical 
Advantage 

Work 
Advantage 

Elongation 
(mm) 

% 
Elongation 

Work 
Density 
(MJ/m3) 

Comparable 
Traditional 

Actuator Work 
Density (MJ/m3) 

11π/32 185 6.47 6.14 0.16 0.67 0.113 0.018 

12π/32 175 5.64 5.07 0.36 1.50 0.214 0.042 

13π/32 166 4.98 4.25 0.56 2.33 0.283 0.067 

14π/32 158 4.43 3.60 0.76 3.17 0.330 0.092 

15π/32 151 3.98 3.09 0.96 4.00 0.360 0.117 

16π/32 145 3.60 2.62 1.20 5.00 0.384 0.146 

17π/32 140 3.29 2.30 1.40 5.83 0.394 0.171 

18π/32 135 3.02 2.03 1.60 6.67 0.396 0.195 

19π/32 131 2.79 1.86 1.76 7.33 0.395 0.213 

20π/32 128 2.60 1.72 1.92 8.00 0.393 0.229 

21π/32 125 2.43 1.60 2.08 8.67 0.389 0.243 
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4.2 Case 2. Constant MHA Side-Wall Arc Length 

 This study was similar to Case 1 in that both the arc angle, α, and the arc radius, 

r, are varied. In this case, the product of the arc radius and the arc angle is held constant. 

This relationship is given in equation (5). 

 20r   (5) 

Holding the arc length constant at 20 mm allows the MHA height to vary from 23.0 mm 

for the geometry where α=11π/32  to 20.6 mm where α=21π/32. Table 4 below contains 

all the values of arc angles and arc radii for Case 2. 

Table 4. Arc angle and arc Radius for Case 2 geometries. The arc angle is stepped by 

π/32  and the arc radius is calculated to keep the MHA side-wall arc length constant. 

α 11
32
  12

32
  13

32
  14

32
  15

32
  16

32
  17

32
  18

32
  19

32
  20

32
  21

32
  

r 18.52 16.98 15.67 14.55 13.58 12.73 11.98 11.32 10.72 10.19 9.70 

 

 

4.2.1 Case 2. Constant MHA Side-Wall Arc Length Maximum Mechanical 

Advantage 

 As in the previous case, the maximum mechanical advantage is associated with a 

small total elongation of 0.28 mm which is only 1.22% of the MHA height. Even though 

this elongation is small it is significantly larger than the 0.16 mm seen in Case1. The 

reason that this Case 2 geometry could elongate more is that the arc length is 20.0 mm 

compared to the 21.0 mm in Case 1 which might be just enough difference to keep the 

side-wall from buckling out as early. As can be seen in Figure 20 this elongation is still 

very small. Interestingly the work density in this geometry is 0.173 MJ/m
3
 which is only 



45 

 

 

13% lower than the 0.199 MJ/m
3
 for the Case 2 geometry with the highest percent 

elongation. 

 

Figure 20. As in Case 1 the geometry of the MHA in Case 2 with the maximum 

mechanical advantage is the geometry with the straightest side-walls α=11π/32. The 

elongation is also small at on 1.22%.  

 

 Figure 21 shows that the MHA can elongate up to 0.28 mm with 7 displacement 

steps. This small elongation is typical of the MHA that produce the highest blocked 

mechanical advantages. In addition the work density achieved was calculated to be 0.173 

MJ/m
3
, approximately 5% higher than the Case 1 maximum mechanical advantage 

geometry. The blocked force of 166 N/mm, however, is lower than Case 1 which has a 

blocked force of 185 N/mm. The force per unit length drops from 166 N/mm to 118 

N/mm which is a decrease of 29%. It does, however, remain much higher than the 27.2 

N/mm of the Comparable Traditional Actuator. 
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Figure 21. For the Case 2 MHA with maximum mechanical advantage the blocked force 

is 166 N/mm that drops to 118 N/mm over a distance of 0.28 mm. Even though the force 

remains high the work density is low because it is limited by the small elongation.  

 

4.2.2 Case 2. Constant MHA Side-Wall Arc Length Maximum Percent Elongation 

 

 Figure 22 shows the elongation when the MHA expands the force the MHA can 

apply goes to zero. The specific MHA geometry studied here does not represent the true 

maximum elongation to side-wall buckling because at that displacement, the force the 

MHA could apply would be negative, meaning that the MHA had to be pulled apart to 

get to this point. It can be seen that even at the largest displacement with applied force, 

there was still insufficient elongation to cause buckling. The MHA could actually 

displace much more before the side-walls buckled out, but this would require it to be 

pulled. 
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Figure 22. The MHA geometry of Case 2 with the maximum percent elongation has an 

elongation of 5.62%. The elongation is not limited by the initiation of side-wall buckling 

but by the force that the MHA could supply dropping to zero.   

 

 The MHA geometry that gives the maximum percent elongation in Case 2 has an 

arc angle of α=21π/32 similar to that of the highest elongating geometry in Case 1. In 

Case 2 the arc radius is 9.70 mm compared to 11.66 mm in Case 1. This in turn gave 

Case 2 a smaller arc length of 20.0 m versus Case 1‘s 24.0 mm, which explains the 

lower  maximum percent elongation in Case 2 of 5.62% contrasted to the 8.67% in Case 

1. The same arc angle but a smaller radius in Case 2 leads to a larger side-wall curvature. 

This is interesting as the elongation during side-wall buckling is longer than in Case 1. 

However, at such elongations, the force that the MHA was able to apply went to zero 

before the side-walls began to buckle out rendering further MHA expansion valueless. 

Therefore, only the elongation with positive force was considered. 
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Figure 23. In Case 2 the MHA with maximum percent elongation has a blocked force of 

102 N/mm which decreases by 97% to 3.15 N/mm over an elongation of 1.16 mm. This 

force decrease is also more linear than other cases like because the side-walls never get a 

chance to straighten out.  

 

4.2.3 Case 2. Constant MHA Side-Wall Arc Length Maximum Work Density 

 

 For Case 2 the maximum work density MHA geometry is shown in Figure 24. 

Similar to the previous geometry in this simulation the force went to zero before side-

wall buckling occurred. The work density achieved by this Case 2 MHA geometry is 

0.294 MJ/m
3
. This work density is 48% higher than the maximum percent elongation 

work density and the elongation is only slightly less at 4.10% compared to 5.62%. The 

maximum work density geometry also has a blocked force of 140 N/mm which is only 

16% lower than the 166 N/mm exhibited by the maximum mechanical advantage 

geometry. 
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Figure 24. The MHA geometry of Case 2 with the maximum work density is only able 

to reach an elongation of 0.92 mm or 4.10% before the side-walls begin buckling out. 

This easier buckling that limits elongation is likely caused by a MHA that is taller than 

the Case 1 MHA. 

 

 Figure 25 below shows a smooth decline to a force that is very close to zero. 

Note that the decline is not as linear as the maximum mechanical advantage or the 

maximum percent elongation geometries. This is expected because both of these 

simulations show that as the force decreases approximately linearly as the side-wall 

curvature increases. This linear behavior is cause by the side-walls start to buckle 

outward early, before they get too close to straight, which prevent the force from 

declining sharply. 
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Figure 25. At an elongation of about 7.9 mm the MHA force drops below that of the 

CTA. This decline in force and an elongation of 4.10% yield a work density of 0.294 

MJ/m
3
 which is the lowest maximum work density of the 3 cases studied.  

 

4.2.4 Case 2 MHA Mechanical Advantage and Work Density 

  

The percent elongation first increases with an increase in arc angle at a sharp 

pace but then levels out at larger arc angles. Unlike Case 1 where the percent elongation 

continues to increase with an increase arc angle the Case 2 percent elongation only 

increases slowly after an arc angle of  α=14π/32. This is because in Case 1 the arc length 

continues to increase with an increase in arc angle. This is necessary to keep the MHA 

height constant. In Case 2, however, the arc length is fixed so the MHA height decreases 

with increase in arc angle. These factors allow the Case 1 MHAs percent elongation to 

be a stronger function of arc angle. The force and work advantage from Case 1 and Case 

2 follow similar trends and have similar values at the same arc angle. This shows that 

they are both more of a function of side-wall shape than side-wall arc length or MHA 

height. 
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Figure 26. The mechanical advantage, work advantage, and percent elongation for Case 

2 plotted against the arc angle show a trend similar to Case 1 where the force and work 

advantage decline and the percent elongation increase with an increase in arc angle.  

 

In Case 2, when the arc length is held constant instead of the height, the 

maximum work density occurs at α=14π/32 compared to α=18π/32 in Case 1. The work 

density as a function of arc angle is also very different for these two cases. As seen in 

Figure 27 the work density declines after the peak that occurs at α=14π/32 unlike in Case 

1 where the curve stays level for the geometries after the peak. In Case 2 the work 

density achieved by the comparable traditional actuator increases slowly at first but then 

levels off in contrast with Case 1 where it increases at a consistently nearly linear pace. 

A summary of Case 2 results is presented in Table 5. 

As discussed for Case 1 in Case 2 the work density of the Comparable 

Traditional Actuator in Case 2 follows the same trend as the percent elongation. Again 

this is because the work density is a function of the force and displacement and the force 

is fixed for the CTA. The reason the force is fixed is because it is set equal to the 

pressure acting on the top inner surface of the MHA. 
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Figure 27. The MHA and comparable traditional actuator work density for Case 2 

Plotted Against Arc Angle. The highest work density occurs at an arc angle of α=14π/32 

in Case 2 compared to α=18π/32 for Case 1. The MHA work is higher than the CTA 

work for all arc angles.  

 

 In Case 2 not only does the work density follow a much different trend but it 

never reaches values as large as that in Case 1. In Case 2 the maximum work density of 

0.294 MJ/m
3
 occurs at α=14π/32 which is the arc angle where the percent elongation 

begins to increase at a slower rate. In Case 1, where the percent elongation continues to 

increase at an almost constant rate, the maximum work density of 0.396 MJ/m
3
 occurs at 

a larger arc angle of α=18π/32.
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Table 5. Results for Case 2 analysis covered arc angles from 11π/32 to 21π/32 and had a constant MHA side-wall arc length of 

20.0 mm. 

Arc 
Angle α  

Blocked 
Force 

(N/mm) 

Mechanical 
Advantage 

Work 
Advantage 

Elongation 
(mm) 

% 
Elongation 

Work 
Density 
(MJ/m3) 

Comparable 
Traditional 
Actuator 

Work Density 
(MJ/m3) 

11π/32 166 6.10 5.29 0.28 1.22 0.173 0.033 

12π/32 157 5.37 4.11 0.52 2.27 0.256 0.062 

13π/32 148 4.76 3.14 0.76 3.35 0.292 0.093 

14π/32 140 4.26 2.57 0.92 4.10 0.294 0.114 

15π/32 133 3.85 2.36 0.96 4.32 0.286 0.121 

16π/32 126 3.50 2.09 1.04 4.73 0.276 0.132 

17π/32 120 3.21 1.91 1.08 4.96 0.263 0.138 

18π/32 115 2.96 1.75 1.12 5.21 0.250 0.143 

19π/32 110 2.75 1.59 1.16 5.47 0.234 0.147 

20π/32 106 2.57 1.50 1.16 5.54 0.218 0.146 

21π/32 102 2.42 1.40 1.16 5.62 0.199 0.142 
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4.3 Case 3. MHA Side-Wall Thickness Variation 

For Case 3 the geometry of α=18π/32 and r=12.94 mm was chosen from Case1 

because it was the geometry that achieved the highest work density. In Case 1 the side-

wall thickness t was equal to 2 mm so for Case 3 the side-wall thickness was varied 

between 1.6 mm and 2.4 mm in 0.1 mm steps. 

4.3.1 Case 3. MHA Side-Wall Thickness Variation Maximum Mechanical  

Advantage 

The maximum mechanical advantage in Case 3 of 3.11 occurs at a wall thickness 

of 1.6 mm. It is less than 6% greater than the lowest Case 3 mechanical advantage of 

2.94 at a wall thickness of 2.4 mm. Figure 28 shows the geometry of Case 3 maximum 

mechanical advantage. This MHA exhibits a blocked force per unit length of 142 N/mm 

which is 3.11 times larger than the force per unit length from the pressure acting on the 

MHAs top inner surface. It is able to accomplish 3.25 times more than the Comparable 

Traditional Actuator with a work density of 0.330 MJ/m
3
 and a percent elongation of 

3.17%. 
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Figure 28. This geometry with a side-wall thickness of 1.6 mm is the Case 3 MHA with 

the maximum mechanical advantage has the thinnest side-wall of any geometry studied. 

This allows it to expand more easily but the side-walls begin to buckle out easily as well.  

 

This geometry with t=1.6 mm is a very interesting one because the force actually 

goes up until the elongation stops. The thinner side-wall still adds the mechanical 

advantage and lets the MHA expand more easily. As the side-walls straighten they are 

able to transfer more force to the MHA ends making supplied force increase. This 

behavior is illustrated in Figure 29. The t=1.6 mm geometry is the only geometry 

discussed where this force increase occurs. 
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Figure 29. In this unique result the force increases with elongation by 10% and is the 

only geometry where this occurs. The side-wall thickness is 1.6 mm which is 20% 

thinner than the side-wall thicknesses in Case 1 and 2. This allows the MHA to expand 

more easily but the side-walls begin to buckle out at an elongation of only 3.17%.  

 

4.3.2 Case 3. MHA Side-Wall Thickness Variation Maximum Percent Elongation 

 

 Shown in Figure 30, the Case 3 geometry that elongates the most is the t=2.0 mm 

MHA. This is the same geometry of the maximum work density MHA of Case 2. The 

percent elongation is 6.67%. The mechanical advantage and work density are 3.02 and 

0.396 MJ/m
3
 respectively. The wall thickness effect on percent elongation is a result of 

when side-wall buckling occurs for thinner side-walls and a function of the side-wall 

bending stiffness for thicker side-walls. 

 The force and displacement curve for the Case 3 maximum percent elongation is 

shown in Figure 31. This curve shows a decline in force that is slow at first but then 

becomes sharper as the MHA elongates which is typical for all maximum elongation 

geometries considered. The force drops below the force a comparable traditional 

actuator could supply at an elongation of 1.38 mm. As seen for some of the previously 
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discussed geometries there is a sharper change in slope between the elongations of 1.44 

mm and 1.48 mm followed by a return to the previous curve trend. Again, the reason for 

this is unknown. 

 

Figure 30. When the side-wall thickness is 2.0 mm the MHA can expand by 1.6 mm or 

6.67% before the side-walls begin to buckle out. However, this does not create the 

highest work density for Case 3 because the force drops sharply.  

  

Figure 31. The force in the maximum percent elongation geometry in Case 3 drops from 

135.2 to 8.4 N/mm which is a drop of 94% even with a elongation of only 6.67%. Even 

though the elongation is only slightly more than the highest work density MHA the force 

drop is much larger.  
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4.3.3 Case 3. MHA Side-Wall Thickness Variation Maximum Work Density 

 

Case 3 had the MHA geometry with the highest work density at 0.434 MJ/m
3
. 

This occurred at a side-wall thickness of t=1.9 mm. However, a side-wall thickness of 

t=1.8 mm the work density is nearly as high at 0.433 MJ/m
3
. Suggesting that there might 

be some thickness between the two which demonstrates a slightly higher work density, 

this however was not investigated. Figure 32 shows this MHA geometry with the highest 

work density. This MHA geometry had an elongation of 5.83% and a blocked 

mechanical advantage of 3.04. It actually was able to elongate slightly less than the 

6.67% form Case 2 with the same arc angle and radius. Its wall thickness was slightly 

less which made the mechanical advantage higher than the 3.02 but also allowed the 

walls to buckle at a lower elongation. The combination of these factors still gave the 

t=1.9 mm MHA about a 10% higher work density.  

 

Figure 32. The free expansion of this MHA is stopped before the force reaches zero 

because the side-walls begin to buckle outward. When the MHA expansion is stopped 

the elongation is 1.4 mm or 5.83% and the force applied by the MHA is 65.7 N/mm.  
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 The geometry in Case 3 that yields the maximum work density has a wall 

thickness, arc angle, arc radius of t=1.9 mm, α=18π/32, and r=12.94 respectively. The 

work density is 0.434 MJ/m
3
 which is only slightly higher the

 
0.433 MJ/m

3
 predicted for 

the t=1.8 mm side-wall thickness. A characteristic that stand out is only one of the three 

maximum work density geometries whose force never drops below the force applied to 

the MHA‘s moving surface. This can be seen Figure 33
 
 below. Notice that the MHA 

data set never reaches the force shown for the comparable traditional actuator. Also the 

force does not drop off as quickly as other geometries when the MHA expands. It drops 

by more than 50% but this is less than many geometries. The MHA is still able to apply 

a force of over 60 N/mm when is reach its full expansion just before side-walls begin to 

buckle out. 

 

Figure 33. For the maximum work density geometry, t=1.9 mm, in Case 3 the MHA 

force declines by 52% but stays above the force for a CTA. This MHA elongates by 1.4 

mm which is 5.83% of its original height. The combination of elongation and force yield 

a high work density.  
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4.3.4 Case 3 MHA Mechanical Advantage and Work Density  

 

The results for the three geometries of maximum mechanical advantage, 

maximum percent elongation, and maximum work density have all been analyzed and 

presented here for all three cases. While this is not an exhaustive study on the effects the 

MHA geometry. It does, however, set forth a substantial foundation to start to 

understand what parameters can be optimized to affect various MHA responses. 

Illustrated in Figure 34 the mechanical advantage is almost independent of side-

wall thickness. This might be only true in the range of wall thicknesses studied. If the 

MHA side-wall is too thin it would not be stiff enough to help apply force as the MHA 

deformed and if it is too thick the internal pressure would not be able to deform the side-

wall therefore not transferring the load to the MHA ends. Second, the work advantage is 

also not a strong function of side-wall thickness. It decreases slightly as the thickness 

increases but levels out as the thickness further increases. On the other hand, the percent 

elongation is a strong function of the side-wall thickness. It is clearly seen in Figure 34 

that a wall thickness of 2.0 mm has the highest percent elongation of 6.67% which 

decreases to 3.17% for the 1.6 mm wall thickness and 4.67% for the 2.4 mm wall 

thickness. When the wall is thin, it bows out easily, limiting the elongation. Alternately 

if it is thick it is difficult to bend limiting elongation. 
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Figure 34. Although both decrease slightly with increase in side-wall thickness neither 

the force or work advantage is that dependant on side-wall thickness. Reaching a peak a 

t=2.0 mm the percent elongation is a strong function of side-wall thickness.  

 

The work density of MHA studied in Case 3, which is plotted in Figure 35, 

shows a large variation with side-wall thickness. The largest work density of 0.434 

MJ/m
3
 appears at a wall thickness of 1.9 mm which is negligibly higher than the work 

density of 0.433 MJ/m
3
 that a wall thickness of 1.8 mm can achieve. This is evidence 

that the actual maximum occurs somewhere between the two points but no more 

simulations were done to investigate it. The work density drops significantly in both 

directions. It falls to 0.211 MJ/m
3
 at t=2.4 mm and 0.330 MJ/m

3
 at t=1.6 mm. Again, the 

work density of the Comparable Traditional Actuator follows the percent elongation. 

Table 6 summarizes the results of Case 3. 
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Figure 35. The work density for Case 3 is a clear function of the side-wall thickness 

reaching a maximum at t=1.9 mm. Since the mechanical advantage is not that dependant 

on side-wall thickness the main contributor to this result is the percent elongation being 

a strong function of side-wall thickness.  

 

 An interesting thing to note is that from a change in side-wall thickness from 

t=1.9 mm to t=2.0 mm the work density decreases by 8.8% from 0.434 MJ/m
3
 to 0.396 

MJ/m
3
 even though the blocked forces are nearly equal at 137 N/mm compared to 135 

N/mm and the percent elongation increased from 5.83% to 6.67%. The reason for this 

drop in work density must then be a result of a quicker drop in force as the MHA 

elongates for the t=2.0 mm geometry. 
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Table 6. Results for Case 3 analysis which cover side-wall thicknesses from 1.6 to 2.4 mm with α=18π/32 and r=12.94 mm. 

Side-Wall 
Thickness 

(mm) 

Blocked 
Force 

(N/mm) 

Mechanical 
Advantage 

Work 
Advantage 

Elongation 
(mm) 

% 
Elongation 

Work 
Density 
(MJ/m3) 

Comparable 
Traditional 
Actuator 

Work 
Density 
(MJ/m3) 

1.6 142 3.11 3.25 0.76 3.17 0.330 0.102 
1.7 140 3.09 3.08 1.00 4.17 0.403 0.131 
1.8 138 3.06 2.83 1.20 5.00 0.433 0.153 
1.9 137 3.04 2.49 1.40 5.83 0.434 0.174 
2 135 3.02 2.03 1.60 6.67 0.396 0.195 

2.1 134 3.00 1.87 1.52 6.33 0.337 0.181 
2.2 132 2.98 1.81 1.36 5.67 0.287 0.158 
2.3 131 2.96 1.74 1.24 5.17 0.245 0.141 
2.4 129 2.94 1.70 1.12 4.67 0.211 0.124 
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5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

 The highest mechanical advantage occurs for the geometry with the smallest arc 

angle in both Case 1 and Case 2.  These geometries correspond to the MHAs with the 

straightest side-walls. The largest work advantage occurs for the same MHA geometries 

as the highest mechanical advantage. In Case 3 the mechanical advantage remains 

almost the same for all MHA side-wall thicknesses and the work advantage only 

decreases slightly with increase in wall thickness. In some configurations and cases they 

are stronger functions than in others. In both Case 1 and Case 2 the mechanical 

advantage declined with increasing arc angle. This means that the straighter side-walls 

transferred more of the force from pressure on them onto the ends of the MHA. This is 

obviously only true to a point. If the side-walls were completely straight they would not 

be able to push the MHA ends at all because they would bow out not straighten. The 

investigation done in this study did not simulate any MHAs with side-walls straight 

enough to see the decline mechanical advantage. In Case 3 the mechanical advantage is 

almost unchanged by changing the side-wall thickness. This supports the evidence given 

by the first two cases that the side-wall shape dominates MHAs ability to supply a force 

larger than the pressure acting on the inner end surface. 

The work advantage also followed the same trend as mechanical advantage in 

Case 1 and Case 2. This is for a different reason though. Since the elongation goes up as 

the arc angle increases the force becomes less dominate in the work MHA can perform. 

Also the work that the comparable actuator can achieve increases with the rise in 



65 

 

 

  

elongation. These two factors make the ratio of MHA work to the work of the 

comparable traditional actuator drop. In Case 3 the work advantage drops as with the 

drop in elongation. This is because drop in elongation affects the MHA work more than 

the work of the comparable traditional actuator. 

In Case 1 and Case 2 the geometries that achieve the maximum elongation are 

the two geometries that have the largest arc angle the smallest arc radius in each case. 

This allows the MHA to expand more before the side-walls buckle out. For these cases 

the force also gets close to zero before the elongation stops. This is important to note 

because the MHA might not be useable through the entire elongation if the force drops 

below the necessary force required. In Case 3 the MHA with the highest elongation 

occurs at a wall thickness of 2 mm. This is because thinner walls buckle out more easily 

and the thicker side-walls are more difficult to straighten during elongation. 

 For all MHA geometries the work density is higher than the comparable 

traditional actuator work density.  The geometries in Case 1 and Case 2 with the highest 

work density have arc angles between the arc angles that have the largest mechanical 

advantage and percent elongation. For every MHA the force it can supply decreases as it 

elongates. The MHAs with the highest work densities are all geometries that are able to 

display moderate force coupled with moderate elongation. 

From the study performed it is evident that all the performance characteristics of 

the MHA are a function of MHA geometry. In order for the MHA to be implemented in 

a successful and optimized design more work needs to be done to study the MHA 

behavior. Also, well defined design necessity would need to be developed so that a clear 
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picture of what needs to be optimized is available. The miniature hourglass shaped 

actuator has potential if its design can be refined and optimized for a specific low 

elongation high force application. 

5.2 Future Work 

The end goal is the design of arrays of MHAs that could be embedded in a matrix 

material to create multifunctional materials that can perform the task of being both the 

actuator and the structure. Design scheme needs to be done. Deformation analysis would 

be useful to figure out MHA placement inside the material. There must be a way to 

design, optimize and simulate the behavior of an MHA array. 

Experiments also need to be done to validate the predictions of the finite element 

code. Experiments would also allow more insight into issues that are not addressed with 

modeling such as: How to cap the ends to contain the internal pressure and see how this 

affects the MHA behavior, Can the MHA be manufactured reasonably easy, how much 

actuation time is required. 

Materials also need to be studied and optimized to get desirable MHA behavior. 

There is a possibility that some orthotropic material might allow the MHA to achieve 

better performance like longer elongation before side-wall bucking. The study done does 

not address any material issues, which forms a critical aspect of the functionality. In 

order to create a useful MHA many questions would need to be addressed. For example, 

is there a real material that can undergo the deformations and what material properties 

would make the MHA work best? A material study could be very extensive. 
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Modeling an axisymmetric instead of a plane strain MHA would be a valuable. 

This would change the geometry of the MHA from long to round. An axisymmetric 

MHA might allow the MHA to be incorporated in a wider range of designs. If it was 

modeled as axisymmetric end effects would be considered. An axisymmetric MHA 

could increase the number of possible applications where MHAs could be used, MHA 

modeled in this study. The axisymetric MHA geometry is shown in Figure 36. 

 

 

Figure 36. The axisymmetric MHA is a smaller unit that could be incorporated in a 

more complex array of actuators. An axisymmetric MHA also would not have any end 

effects because there is no need for a sealed end termination.  

 

 This study of how geometries changes affect the behavior of the miniature 

hourglass actuator provides a basis for comprehension of how to design the MHA with 

avenues for future works to explore. 
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APPENDIX A 

2D MINIATURE HOURGLASS ACTUATOR SIMULATION MAIN PROGRAM 

 
%                                                    Roston Elwell 

2/27/09 

 

%2D Miniature Hourglass Actuator Simulation 

clc 

clear all 

close all 

 

tic; 

 

%User Input 

Problem='Mechanical Advantage, Elongation, and Work of a 

pressurized MHA'; 

Discription='MHA with uniform internal pressure modeled in plane 

strain';  

 

%Material Properties 

Ey=2000;    %Young's Modulus 

v=0.3;      %Possion's Ratio 

SS=2;       %SS-State of Stress 1-Plane Stress  2-Plane Strain 3-

Axisymmetric 

Material=[Ey v SS]; 

 

%Geometry 

r=14.44;                        %radius of side wall arc 

t=2.0;                          %thickness of side wall 

alpha=16*pi/32;                 %arc angle 

R=(r*(1-cos(alpha/2))+t/2+.25); %1/2 HCE width or diameter 

T=2;                            %thickness of bottom 

d=1;                            %plane stress/strain thickness 

Geometry=[r t alpha R T d]; 

 

%Load 

p=5;            %uniform internal pressure 

UIG=0;          %U Intial Guess/starting point for all non-

specified primary variables 

DSS=.02;        %Displacement Step Size 

 

%Element Type Information 

%this program is only set up for ET=2, NDOFPN=2, and NNPE=9 do not 

change these inputs 

ET=2;           %Element Type:1 for linear 2 for quadratic 

NDOFPN=2;       %Number of Degrees Of Freedom Per Node 

NNPE=9;         %Number of Nodes Per Element 
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NGP=3;          %Number of Gauss Points in each direction to be 

used in full intergration 

ETI=[ET NDOFPN NNPE NGP]; 

 

%Element Mesh Information 

EMI(1)=24;      %Number of Elements Along Arc 

EMI(2)=4;       %Number of Elements Through Arc 

EMI(3)=9;       %Number of Elements Along Bottom 

EMI(4)=3;       %Number of Elements Through Bottom 

 

%Finite Element Method Information 

Epsilon=10E-4;  %Epsilon is the convergence tolerance 

MNI=10;         %MNI-maximum nuber of iterations for solution to 

converge 

NLS(1)=5;       %NLS(1)-Number of Load Steps for Situation 1 

NLS(2)=100;     %NLS(2)-Maximum Number of Load Steps for Situation 

2 

 

%End of User Input 

 

%create an array of element sides where internal pressure is 

applied 

[PSide]=PressureSide(EMI); 

 

%generate the mesh and corresponding arrays  

[NC,NCA,DOFCA,NE,TNN,NOAS,NOAR,NOHIS,NOHB]=MHA_MESH_GENERATOR(Geome

try,EMI); 

 

%create symmetry boundary condition arrays 

[DOFSPV,VSPV]=BoundaryCondition(NOAS,NOAR,NOHB); 

 

%create stepped displacement boundary condition arrays 

[DOFSBD,VSBD]=SteppedBottomDisplacementBC(NOHB); 

 

%This program is not set up to handle specified point loads 

 

%assign intial values 

U(1:TNN*NDOFPN,1)=UIG; 

NC_1=NC; 

 

%Situation Loop 

for Situation=1:2 

    %preallocate array for storing data for each situation and load 

step 

    if Situation==1 

        ConvergenceInformation1=ones(1,NLS(1)); 

        NC_Results1=zeros(TNN,2,NLS(1)); 

    end 

     

    if Situation==2 

        ConvergenceInformation2=ones(1,NLS(2)); 
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        NC_Results2=zeros(TNN,2,NLS(2)); 

        UYLS=zeros(NLS(2),1); 

        FYLS=zeros(NLS(2),1); 

    end 

     

%Load Step Loop 

LS=0; 

LoadStepLoopGo=1; 

while LS<NLS(Situation) && LoadStepLoopGo==1 

    LS=LS+1; 

        

    if Situation==1 %blocked displacement 

        P=LS*p/NLS(1); 

        ADOFSPV=horzcat(DOFSPV,DOFSBD); 

        VSBD(1:length(NOHB))=0; 

        AVSPV=horzcat(VSPV,VSBD); 

    end 

     

    if Situation==2 %stepped expansion 

        P=p; 

        ADOFSPV=horzcat(DOFSPV,DOFSBD); 

        VSBD(1:length(NOHB))=-DSS*LS; 

        AVSPV=horzcat(VSPV,VSBD); 

    end 

         

%Iteration Loop 

Iteration=0; 

IterationLoopGo=1; 

while Iteration<MNI && IterationLoopGo==1 

    Iteration=Iteration+1; 

    disp('Situation, Load Step, Iteration') 

    disp(Situation) 

    disp(LS) 

    disp(Iteration) 

  

%preallocating arrays for the coordinates and values of the global  

%stiffness matrix and force vecter 

IK=zeros(NE*(NNPE*NDOFPN)^2,1); 

JK=zeros(NE*(NNPE*NDOFPN)^2,1); 

VK=zeros(NE*(NNPE*NDOFPN)^2,1); 

Kcoordinate_count=0; 

IF=zeros(NE*NNPE*NDOFPN,1); 

VF=zeros(NE*NNPE*NDOFPN,1); 

Fcoordinate_count=0; 

 

%perform numerical integration on each of the elements 

for E=1:NE 

 

%Element Stiffness 

[KE]=ElementStiffnes4UpdatedLagrangian(E,NCA,DOFCA,NC_1,U,ETI,Mater

ial,d); 
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%Element Force 

[FE]=ElementForce4UpdatedLagrangian(E,NCA,DOFCA,NC_1,U,P,d,ETI,Mate

rial,PSide); 

 

%assemble global stiffness matrix as coordinates and values for 

creating a sparse matrix 

    for m=1:NNPE*NDOFPN 

        i=DOFCA(E,m); 

        for n=1:NNPE*NDOFPN 

            j=DOFCA(E,n); 

            Kcoordinate_count=Kcoordinate_count+1; 

            IK(Kcoordinate_count,1)=i; 

            JK(Kcoordinate_count,1)=j; 

            VK(Kcoordinate_count,1)=KE(m,n); 

        end  

    end  

     

%assemble the global force vector as coordinates and values for 

creating a sparse matrix 

    for m=1:NNPE*NDOFPN 

        i=DOFCA(E,m); 

        Fcoordinate_count=Fcoordinate_count+1; 

        IF(Fcoordinate_count,1)=i; 

        VF(Fcoordinate_count,1)=FE(m,1); 

    end %end m loop 

 

end %end E loop 

 

%create full global stiffness matrix for use in the post 

computation of nodal forces  

KG=sparse(IK,JK,VK); 

 

%create the codensed form of the global equations and solve 

%set the values of K and F in the rows and columns of the specified 

degrees 

%of freedom to zero so that they can be removed later  

for i=1:length(ADOFSPV) 

    for j=1:length(VK) 

        if IK(j,1)==ADOFSPV(i) || JK(j,1)==ADOFSPV(i) 

            VK(j,1)=0; 

        end 

    end 

    for j=1:length(VF) 

        if IF(j,1)==ADOFSPV(i) 

            VF(j,1)=0; 

        end 

    end 

end 
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%create a column vector for reordering the degrees of freedoms 

after the 

%the specified degrees of freedoms are removed. 

Rcount=0; 

Rorder=zeros(TNN*NDOFPN,1); 

for i=1:TNN*NDOFPN 

    if i~=ADOFSPV(1:length(ADOFSPV)) 

        Rcount=Rcount+1; 

        Rorder(i,1)=Rcount; 

    end 

end 

         

%create the global stiffness matrix and force vector with the rows 

and 

%columns of the specified degrees of freedom set to zero. 

KCZ=sparse(IK,JK,VK,TNN*NDOFPN,TNN*NDOFPN); 

FCZ=sparse(IF,1,VF,TNN*NDOFPN,1); 

 

%find all the nonzero entries in of KCZ and FCZ 

[IKC,JKC,VKC]=find(KCZ); 

[IFC,JFC,VFC]=find(FCZ); 

 

%reorder the sparse matrix coordinates so that there is not gaps 

where the 

%specified degrees of freedom were removed 

RIKC=zeros(length(VKC),1); 

RJKC=zeros(length(VKC),1); 

for i=1:length(VKC) 

    RIKC(i,1)=Rorder(IKC(i,1),1); 

    RJKC(i,1)=Rorder(JKC(i,1),1); 

end 

RIFC=zeros(length(VFC),1); 

for i=1:length(VFC) 

    RIFC(i,1)=Rorder(IFC(i,1),1); 

end 

 

%create the condensed from of the global stiffness matrix and force 

vector 

%as sparse matrices 

KC=sparse(RIKC,RJKC,VKC,TNN*NDOFPN-length(ADOFSPV),TNN*NDOFPN-

length(ADOFSPV)); 

FC=sparse(RIFC,1,VFC,TNN*NDOFPN-length(ADOFSPV),1); 

 

%solve for the incremental change in U 

deltaU=KC\FC; 

 

%reassemble U 

%substitute specified primary variables into U 

for i=1:length(ADOFSPV) 

    U(ADOFSPV(i),1)=AVSPV(1,i); 

end %end i loop 
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count=0; 

for i=1:TNN*NDOFPN 

    if i~=ADOFSPV(1,1:length(ADOFSPV)) 

        count=count+1; 

        U(i,1)=U(i,1)+deltaU(count,1); 

    end %end if 

end %end i loop 

 

%check if the Euclidean Norm is less than the convergence 

tolerance, Epsilon 

if Iteration~=1 

EnormN=0; 

EnormD=0; 

        for i=1:TNN*NDOFPN 

            EnormN=EnormN+(U(i,1)-U_1(i,1))^2; 

            EnormD=EnormD+(U(i,1))^2; 

        end %end i loop 

    Enorm=abs(sqrt(EnormN/EnormD)); 

     

                if Enorm<Epsilon 

                    IterationLoopGo=0; 

                    if Situation==1 

                    ConvergenceInformation1(1,LS)=Iteration; 

                    end 

                    if Situation==2 

                    ConvergenceInformation2(1,LS)=Iteration; 

                    end 

                else 

                    if Situation==1 

                    ConvergenceInformation1(1,LS)=0; 

                    end 

                    if Situation==2 

                    ConvergenceInformation2(1,LS)=0; 

                    end 

                    if Iteration==MNI 

                        LoadStepLoopGo=0; 

                    end 

                end 

end  

%save the U from the previous interation 

U_1=U; 

 

%create an array of and save the nodal coordinates of the previous 

%interation 

for n=1:TNN 

    NC_1(n,1)=NC(n,1)+U(2*n-1,1); 

    NC_1(n,2)=NC(n,2)+U(2*n,1); 

end 

 

for n=1:EMI(1); 
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    if NC_1(((n-

1)*(EMI(2)*2+1)+1),1)>=NC_1(((n)*(EMI(2)*2+1)+1),1); 

       IterationLoopGo=0; 

       LoadStepLoopGo=0; 

       LLS=LS-1; 

    end 

end 

 

end %end Iteration loop 

 

if Situation==1 && LS==NLS(1) 

    [Fy,Uy]=MHA_FORCE(KG,U,NOHB); 

    BUYLS=2*abs(mean(Uy)); 

    BFYLS=2*sum(Fy); 

end 

 

if Situation==2 

    [Fy,Uy]=MHA_FORCE(KG,U,NOHB); 

    UYLS(LS,1)=2*abs(mean(Uy)); 

    FYLS(LS,1)=2*sum(Fy); 

end 

    

if Situation==1 

    NC_Results1(1:TNN,1:2,LS)=NC_1; 

end 

if Situation==2 

    NC_Results2(1:TNN,1:2,LS)=NC_1; 

end 

 

end %end LS loop 

 

end %end Situation loop 

 

%create one array that contains the blocked displacement and force 

along 

%with dislacement and force for each expansion step  

UY=vertcat(BUYLS,UYLS(1:LLS,1)); 

FY=vertcat(BFYLS,FYLS(1:LLS,1)); 

 

%create arrays that store the solution of the miniature hourglass  

%actuator simulation  

[PFY,PUY,FA,WA,PE,UFE,UEF,WMHA,WCTA]=MHA_WORK(FY,UY,NC,p,EMI); 

 

%create arrays that contain the nodal coordinates of the undeformed 

and 

%deformed miniature hourglass actuator 

[UDINC,UDONC,DINC,DONC]=MHA_FULL_COORDINATES(NC,NC_Results2(:,:,LLS

),EMI); 

 

toc; 
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APPENDIX B 

PRESSURE SIDE 

A subroutine that creates an array containing the information of which regions elements 

will have pressure applied to their sides 

 
function [PSide]=PressureSide(EMI) 

 

NEAA=EMI(1); 

NETA=EMI(2); 

NEAB=EMI(3); 

NETB=EMI(4); 

 

PSide=zeros((NEAA*NETA+NETB*NETA+NEAB*NETB),1); 

ElementCount=0; 

for i=1:NEAA 

    for j=1:NETA 

        ElementCount=ElementCount+1; 

                

        if j==1 

        PSide(ElementCount,1)=4; 

        end 

    end 

end 

 

ElementCount=ElementCount+NETA*NETB; 

 

for i=1:NETB 

    for j=1:NEAB 

        ElementCount=ElementCount+1; 

                

        if i==1 

        PSide(ElementCount,1)=3; 

        end 

    end 

end 

     

end 
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APPENDIX C 

MHA MESH GENERATOR 

Creates a element mesh and all corresponding information for a given MHA geometry 

 
function [NC,NCA,DOFCA,NE,TNN,NOAS,NOAR,NOHIS,NOHB]=... 

                                           

MHA_MESH_GENERATOR(Geometry,EMI) 

 

r=Geometry(1); 

t=Geometry(2); 

alpha=Geometry(3); 

R=Geometry(4); 

T=Geometry(5); 

%d=Geometry(6); 

 

NE=EMI(1)*EMI(2)+EMI(4)*EMI(2)+EMI(3)*EMI(4);  %Number Of Elemets 

TNN=(EMI(1)*2)*(EMI(2)*2+1)+(EMI(4)*2+1)*... 

    (EMI(2)*2+1)+(EMI(3)*2)*(EMI(4)*2+1); 

%Calculating The Hourglass Geometry 

 

%Arc Bottom First Point Location 

a=1; 

b=-2*(r+t/2)*cos(pi-alpha/2); 

c=(r+t/2)^2-(r+t)^2; 

 

RAB1=R-(-b+sqrt(b^2-4*a*c))/(2*a); 

%ZAB1=T; 

 

%Arc Bottom Center Point Location 

RAB2=R; 

%ZAB2=T; 

 

%Arc Bottom Last Point Location 

a=1; 

b=-2*(r+t/2)*cos(alpha/2); 

c=(r+t/2)^2-(r)^2; 

 

RAB3=R+(-b-sqrt(b^2-4*a*c))/(2*a); 

%ZAB3=T; 

 

%Center Of Arc Location 

RCA=R+r*cos(alpha/2); 

ZCA=T+r*sin(alpha/2); 

 

%Arc Bottom Coordinates 

RAB(1:2*EMI(2)*2/2+1)=zeros; 

for i=1:EMI(2)*2/2 

    RAB(i)=RAB1+(RAB2-RAB1)/EMI(2)*2/2*(i-1); 
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    RAB(i+EMI(2)*2/2)=RAB2+(RAB3-RAB2)/EMI(2)*2/2*(i-1); 

    RAB(i+EMI(2)*2/2+1)=RAB3; 

end 

ZAB(1:2*EMI(2)*2/2+1)=T; 

 

 

%Nodal Coordinates In Arc Region 

Count=0; 

RC(1:TNN,1)=zeros; 

ZC(1:TNN,1)=zeros; 

for i=1:EMI(1)*2 

    for j=1:EMI(2)*2+1 

        Count=Count+1; 

        rt=(r+t/2-(j-1)*t/(EMI(2)*2+1-1)); 

        theta=atan((ZAB(j)-ZCA)/(RAB(j)-RCA))/(EMI(1)*2)*(i-1); 

        RC(Count,1)=RCA-rt*cos(theta); 

        ZC(Count,1)=ZCA-rt*sin(theta); 

    end 

end 

 

%Nodal Coordinates Along the Bottom of The Arc Region 

for j=1:EMI(2)*2+1 

    Count=Count+1; 

    RC(Count,1)=RAB(j); 

    ZC(Count,1)=ZAB(j); 

end 

 

%Nodal Coordinates In Bottom Arc Region 

for i=1:EMI(4)*2 

    for j=1:EMI(2)*2+1 

    Count=Count+1; 

    RC(Count,1)=RAB(j); 

    ZC(Count,1)=T-T/(EMI(4)*2)*i; 

    end 

end 

 

%Nodal Coordinates In Bottom Non-Arc Region 

for i=1:EMI(4)*2+1 

    for j=1:EMI(3)*2 

        Count=Count+1; 

        RC(Count,1)=RAB1/(EMI(3)*2)*(j-1); 

        ZC(Count,1)=T-T/(EMI(4)*2)*(i-1); 

    end 

end 

 

%Nodal and Degree of Freedom Connectivity Arrays 

ElementCount=0; 

NCA(1:NE,1:9)=zeros; 

for i=1:EMI(1)+EMI(4) 

    for j=1:EMI(2) 

        ElementCount=ElementCount+1; 
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        Nodes_r=2*EMI(2)+1; 

        NextNode=[2*Nodes_r 2*Nodes_r+2 2 0 2*Nodes_r+1 Nodes_r+2 1 

Nodes_r Nodes_r+1]; 

         

        for n=1:9 

            NCA(ElementCount,n)=2*(i-1)*Nodes_r+1+2*(j-

1)+NextNode(n); 

        end 

    end 

end 

 

for i=1:EMI(4) 

    for j=1:EMI(3) 

        ElementCount=ElementCount+1; 

        Nodes_r=2*EMI(3); 

        NextNode=[2*Nodes_r 2*Nodes_r+2 2 0 2*Nodes_r+1 Nodes_r+2 1 

Nodes_r Nodes_r+1]; 

         

        for n=1:9 

            

NCA(ElementCount,n)=(2*EMI(2)+1)*(2*(EMI(1)+EMI(4))+1)+2*(i-

1)*(Nodes_r+1)+1+2*(j-1)+NextNode(n)-2*(i-1); 

         

            if j==EMI(3) 

            NCA(ElementCount,2)=(2*EMI(1))*(2*EMI(2)+1)+1+2*(i-

1)*(2*EMI(2)+1)+2*(2*EMI(2)+1); 

            NCA(ElementCount,3)=(2*EMI(1))*(2*EMI(2)+1)+1+2*(i-

1)*(2*EMI(2)+1); 

            NCA(ElementCount,6)=(2*EMI(1))*(2*EMI(2)+1)+1+2*(i-

1)*(2*EMI(2)+1)+(2*EMI(2)+1); 

            end 

        end 

    end 

end 

 

DOFCA(1:NE,1:2*9)=zeros; 

for i=1:NE 

    for j=1:9 

        for k=1:2 

            DOFCA(i,(j-1)*2+k)=(NCA(i,j)-1)*2+k; 

        end 

    end 

end 

 

%Element Boundarys 

RE(1:NE,1:9)=zeros; 

ZE(1:NE,1:9)=zeros; 

for i=1:NE 

    for j=1:9 

        NodeOrder=[1 5 2 6 3 7 4 8 1]; 

    RE(i,j)=RC(NCA(i,NodeOrder(j)),1); 
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    ZE(i,j)=ZC(NCA(i,NodeOrder(j)),1); 

    end 

end 

 

%Nodes On Axis of Symmetry 

NOAS_Count=0; 

NOAS(1:(EMI(2)*2+1))=zeros; 

for i=1:EMI(2)*2+1; 

    NOAS_Count=NOAS_Count+1; 

    NOAS(NOAS_Count)=i; 

end 

 

%Nodes On Axis of Revolution 

NOAR_Count=0; 

NOAR(1:(EMI(4)*2+1))=zeros; 

for i=1:EMI(4)*2+1 

    NOAR_Count=NOAR_Count+1; 

    NOAR(NOAR_Count)=(2*EMI(2)+1)*(2*(EMI(1)+EMI(4))+1)+1+(i-

1)*(EMI(3)*2); 

end     

 

%Nodes On HCE Inner Surface 

NOHIS_Count=0; 

NOHIS(1:(EMI(1)*2+1+EMI(3)*2))=zeros; 

for i=1:EMI(1)*2+1 

    NOHIS_Count=NOHIS_Count+1; 

    NOHIS(NOHIS_Count)=1+(i-1)*(EMI(2)*2+1); 

end 

for i=1:EMI(3)*2 

    NOHIS_Count=NOHIS_Count+1; 

    NOHIS(NOHIS_Count)=(2*EMI(2)+1)*(2*(EMI(1)+EMI(4))+1)+i; 

end 

 

%Nodes On HCE Bottom 

NOHB_Count=0; 

NOHB(1:(EMI(3)*2+EMI(2)*2+1))=zeros; 

for i=1:EMI(3)*2 

    NOHB_Count=NOHB_Count+1; 

    

NOHB(NOHB_Count)=(2*EMI(2)+1)*(2*(EMI(1)+EMI(4))+1)+(EMI(3)*2)*(EMI

(4)*2)+i; 

end 

for i=1:EMI(2)*2+1 

    NOHB_Count=NOHB_Count+1; 

    NOHB(NOHB_Count)=(EMI(2)*2+1)*(2*(EMI(1)+EMI(4)))+i; 

end 

 

NC=[RC ZC]; 

 

end 
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APPENDIX D 

BOUNDARY CONDITION 

A subroutine that creates the necessary boundary condition information 

 
function [DOFSPV,VSPV]=BoundaryCondition(NOAS,NOAR,NOHB) 

 

DOFSPV_Count=0; 

L=length(NOAS)+length(NOAR)+length(NOHB)-1; 

DOFSPV=zeros(1,L); 

VSPV=zeros(1,L); 

for i=1:length(NOAS) 

    DOFSPV_Count=DOFSPV_Count+1; 

    DOFSPV(DOFSPV_Count)=NOAS(i)*2; 

    VSPV(DOFSPV_Count)=0; 

end 

 

for i=1:length(NOAR) 

    DOFSPV_Count=DOFSPV_Count+1; 

    DOFSPV(DOFSPV_Count)=NOAR(i)*2-1; 

    VSPV(DOFSPV_Count)=0; 

end  

 

for i=2:length(NOHB) 

    DOFSPV_Count=DOFSPV_Count+1; 

    DOFSPV(DOFSPV_Count)=NOHB(i)*2-1; 

    VSPV(DOFSPV_Count)=0; 

end 
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APPENDIX E 

STEPPED BOTTOM DISPLACEMENT BC 

A subroutine that creates an array containing the degrees of freedom along the MHA 

bottom that will undergo displacement steps 

 
function [DOFSBD,VSBD]=SteppedBottomDisplacementBC(NOHB) 

 

DOFSBD(length(NOHB))=zeros; 

VSBD(length(NOHB))=zeros; 

 

for i=1:length(NOHB) 

    DOFSBD(i)=2*NOHB(i); 

end 

     

     



85 

 

 

  

APPENDIX F 

ELEMENT STIFFNESS FOR UPDATED LAGRANGIAN 

A subroutine that creates the element stiffness matrices with the updated Lagrangian 

formulation 

 
function 

[KE]=ElementStiffnes4UpdatedLagrangian(E,NCA,DOFCA,NC,U,ETI,Materia

l,d) 

 

Ey=Material(1); 

v=Material(2); 

SS=Material(3); 

 

ET=ETI(1); 

NDOFPN=ETI(2); 

NNPE=ETI(3); 

NGP=ETI(4); 

 

%Plane Stress 

    if SS==1 

    C11_1=Ey/(1-v^2); 

    C12_1=Ey*v/(1-v^2); 

    C22_1=Ey/(1-v^2); 

    C66_1=Ey/(2*(1+v)); 

    end 

 

%Plane Strain 

    if SS==2 

    C11_1=Ey*(1-v)/((1+v)*(1-2*v)); 

    C12_1=Ey*v/((1+v)*(1-2*v)); 

    C22_1=C11_1; 

    C66_1=Ey/(2*(1+v)); 

    end  

 

K11L=zeros(NNPE); 

K12L=zeros(NNPE); 

K22L=zeros(NNPE); 

K11N=zeros(NNPE); 

 

for i=1:NNPE 

    for j=1:NNPE 

        for m=1:NGP 

            for n=1:NGP 

 

    [psi,dpsi_dxi,dpsi_deta,GPC,GPW]=Interpolation(ET,NGP,m,n); 

    [J11,J12,J21,J22,DetJ]=Jacobain; 

     

    dpsii_dx=(J22*dpsi_dxi(i)-J12*dpsi_deta(i))/DetJ; 
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    dpsij_dx=(J22*dpsi_dxi(j)-J12*dpsi_deta(j))/DetJ; 

    dpsii_dy=(-J21*dpsi_dxi(i)+J11*dpsi_deta(i))/DetJ; 

    dpsij_dy=(-J21*dpsi_dxi(j)+J11*dpsi_deta(j))/DetJ; 

 

    dxdy=DetJ*GPW(m)*GPW(n); 

                 

                 

K11L(i,j)=K11L(i,j)+d*(C11_1*dpsii_dx*dpsij_dx+C66_1*dpsii_dy*dpsij

_dy)*dxdy; 

K12L(i,j)=K12L(i,j)+d*(C12_1*dpsii_dx*dpsij_dy+C66_1*dpsii_dy*dpsij

_dx)*dxdy; 

K22L(i,j)=K22L(i,j)+d*(C66_1*dpsii_dx*dpsij_dx+C22_1*dpsii_dy*dpsij

_dy)*dxdy; 

 

 

    du_dx=0; dv_dx=0; du_dy=0; dv_dy=0; 

    for p=1:NNPE 

    du_dx=du_dx+U(DOFCA(E,(2*p-1)),1)*(J22*dpsi_dxi(p)-

J12*dpsi_deta(p))/DetJ; 

    dv_dx=dv_dx+U(DOFCA(E,(2*p)),1)*(J22*dpsi_dxi(p)-

J12*dpsi_deta(p))/DetJ; 

    du_dy=du_dy+U(DOFCA(E,(2*p-1)),1)*(-

J21*dpsi_dxi(p)+J11*dpsi_deta(p))/DetJ; 

    dv_dy=dv_dy+U(DOFCA(E,(2*p)),1)*(-

J21*dpsi_dxi(p)+J11*dpsi_deta(p))/DetJ; 

    end 

     

     

    sigmaxx_1=C11_1*(du_dx-(1/2)*(du_dx^2+dv_dx^2))+C12_1*(dv_dy-

(1/2)*(du_dy^2+dv_dy^2)); 

    sigmaxy_1=C66_1*(du_dy+dv_dx-(du_dx*du_dy+dv_dx*dv_dy)); 

    sigmayy_1=C12_1*(du_dx-(1/2)*(du_dx^2+dv_dx^2))+C22_1*(dv_dy-

(1/2)*(du_dy^2+dv_dy^2)); 

     

K11N(i,j)=K11N(i,j)+d*(sigmaxx_1*dpsii_dx*dpsij_dx+sigmaxy_1*(dpsii

_dy*dpsij_dx+dpsii_dx*dpsij_dy)+sigmayy_1*dpsii_dy*dpsij_dy)*dxdy; 

 

            end 

        end 

    end 

end 

K21L=K12L'; 

K22N=K11N; 

 

K=[(K11L+K11N) K12L;K21L (K22L+K22N)]; 

 

%rearrange the element stiffness matrix 

switch NNPE 

    case 4 

        N=[1 5 2 6 3 7 4 8]; 

    case 9 
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        N=[1 10 2 11 3 12 4 13 5 14 6 15 7 16 8 17 9 18]; 

end  

 

    KE=zeros(NNPE*NDOFPN,NNPE*NDOFPN); 

    for i=1:NNPE*NDOFPN 

        for j=1:NNPE*NDOFPN         

        KE(i,j)=K(N(i),N(j)); 

        end %end j loop 

    end %end i loop 

 

            function [J11,J12,J21,J22,DetJ]=Jacobain 

            %Jacobian evaluated at the Gauss points 

            J11=0; J12=0; J21=0; J22=0; 

                    for k=1:NNPE 

                    J11=J11+dpsi_dxi(k)*NC(NCA(E,k),1); 

                    J12=J12+dpsi_dxi(k)*NC(NCA(E,k),2); 

                    J21=J21+dpsi_deta(k)*NC(NCA(E,k),1); 

                    J22=J22+dpsi_deta(k)*NC(NCA(E,k),2); 

                    DetJ=J11*J22-J12*J21; 

                    end %end n loop      

            end %end Jacobian 

end 
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APPENDIX G 

ELEMENT FORCE FOR UPDATED LAGRANGIAN 

A subroutine that creates the element force matrices with the updated Lagrangian 

formulation 

 
function 

[FE]=ElementForce4UpdatedLagrangian(E,NCA,DOFCA,NC,U,P,d,ETI,Materi

al,PSide) 

 

Ey=Material(1); 

v=Material(2); 

SS=Material(3); 

 

ET=ETI(1); 

NDOFPN=ETI(2); 

NNPE=ETI(3); 

NGP=ETI(4); 

 

%Plane Stress 

    if SS==1 

    C11_1=Ey/(1-v^2); 

    C12_1=Ey*v/(1-v^2); 

    C22_1=Ey/(1-v^2); 

    C66_1=Ey/(2*(1+v)); 

    end 

 

%Plane Strain 

    if SS==2 

    C11_1=Ey*(1-v)/((1+v)*(1-2*v)); 

    C12_1=Ey*v/((1+v)*(1-2*v)); 

    C22_1=C11_1; 

    C66_1=Ey/(2*(1+v)); 

    end      

   

 

F1_11=zeros(NNPE,1); 

F2_11=zeros(NNPE,1); 

 

for i=1:NNPE 

    for m=1:NGP 

        for n=1:NGP 

             

        [psi,dpsi_dxi,dpsi_deta,GPC,GPW]=Interpolation(ET,NGP,m,n); 

        [J11,J12,J21,J22,DetJ]=Jacobain; 

 

        dpsii_dx=(J22*dpsi_dxi(i)-J12*dpsi_deta(i))/DetJ; 

        dpsii_dy=(-J21*dpsi_dxi(i)+J11*dpsi_deta(i))/DetJ; 
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        dxdy=DetJ*GPW(m)*GPW(n); 

            

        du_dx=0; dv_dx=0; du_dy=0; dv_dy=0; 

    for p=1:NNPE 

    du_dx=du_dx+U(DOFCA(E,(2*p-1)),1)*(J22*dpsi_dxi(p)-

J12*dpsi_deta(p))/DetJ; 

    dv_dx=dv_dx+U(DOFCA(E,(2*p)),1)*(J22*dpsi_dxi(p)-

J12*dpsi_deta(p))/DetJ; 

    du_dy=du_dy+U(DOFCA(E,(2*p-1)),1)*(-

J21*dpsi_dxi(p)+J11*dpsi_deta(p))/DetJ; 

    dv_dy=dv_dy+U(DOFCA(E,(2*p)),1)*(-

J21*dpsi_dxi(p)+J11*dpsi_deta(p))/DetJ; 

    end 

     

     

    sigmaxx_1=C11_1*(du_dx-(1/2)*(du_dx^2+dv_dx^2))+C12_1*(dv_dy-

(1/2)*(du_dy^2+dv_dy^2)); 

    sigmaxy_1=C66_1*(du_dy+dv_dx-(du_dx*du_dy+dv_dx*dv_dy)); 

    sigmayy_1=C12_1*(du_dx-(1/2)*(du_dx^2+dv_dx^2))+C22_1*(dv_dy-

(1/2)*(du_dy^2+dv_dy^2)); 

 

    

F1_11(i)=F1_11(i)+d*(dpsii_dx*sigmaxx_1+dpsii_dy*sigmaxy_1)*dxdy; 

    

F2_11(i)=F2_11(i)+d*(dpsii_dx*sigmaxy_1+dpsii_dy*sigmayy_1)*dxdy; 

 

        end 

    end 

end 

 

[F1_21,F2_21]=MHA_PRESSURE(P,E,NC,NCA,NGP,PSide); 

 

F=[(F1_21-F1_11);(F2_21-F2_11)]; 

 

 

switch NNPE 

    case 4 

        N=[1 5 2 6 3 7 4 8]; 

    case 9 

        N=[1 10 2 11 3 12 4 13 5 14 6 15 7 16 8 17 9 18]; 

end  

 

FE=zeros(NNPE*NDOFPN,1); 

for i=1:NNPE*NDOFPN 

    FE(i)=F(N(i)); 

end %end i loop 

 

            function [J11,J12,J21,J22,DetJ]=Jacobain 

            %Jacobian evaluated at the Gauss points 

            J11=0; J12=0; J21=0; J22=0; 

                    for k=1:NNPE 
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                    J11=J11+dpsi_dxi(k)*NC(NCA(E,k),1); 

                    J12=J12+dpsi_dxi(k)*NC(NCA(E,k),2); 

                    J21=J21+dpsi_deta(k)*NC(NCA(E,k),1); 

                    J22=J22+dpsi_deta(k)*NC(NCA(E,k),2); 

                    DetJ=J11*J22-J12*J21; 

                    end %end n loop      

            end %end Jacobian 

 

end 
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APPENDIX H 

MHA PRESSURE 

A subroutine that creates that calculates the direction and magnitude of the forces on the 

element sides from the pressure 

 
function [F1_21,F2_21]=MHA_PRESSURE(P,E,NC,NCA,NGP,PSide) 

 

F1=zeros(9,1); 

F2=zeros(9,1); 

 

if PSide(E,1)~=0; 

x=zeros(9); 

y=zeros(9); 

 

[GPC,GPW]=GaussPointCoordinateandWeight(NGP); 

 

for m=1:9 

    x(m)=NC(NCA(E,m),1); 

    y(m)=NC(NCA(E,m),2); 

end 

    for j=1:3 %Number of Nodes per Element side 

                 

            if PSide(E,1)==1; Nodes=[1 5 2]; eta=-1; end 

            if PSide(E,1)==2; Nodes=[2 6 3]; xi=1; end 

            if PSide(E,1)==3; Nodes=[3 7 4]; eta=1; end 

            if PSide(E,1)==4; Nodes=[4 8 1]; xi=-1; end 

                        

        for k=1:NGP 

              

            if PSide(E,1)==1; xi=GPC(k); end 

            if PSide(E,1)==2; eta=GPC(k); end 

            if PSide(E,1)==3; xi=GPC(k); end 

            if PSide(E,1)==4; eta=GPC(k); end 

 

 

                            psi(1)=(1/4)*(xi^2-xi)*(eta^2-eta); 

                            psi(2)=(1/4)*(xi^2+xi)*(eta^2-eta); 

                            psi(3)=(1/4)*(xi^2+xi)*(eta^2+eta); 

                            psi(4)=(1/4)*(xi^2-xi)*(eta^2+eta); 

                            psi(5)=(1/2)*(1-xi^2)*(eta^2-eta); 

                            psi(6)=(1/2)*(xi^2+xi)*(1-eta^2); 

                            psi(7)=(1/2)*(1-xi^2)*(eta^2+eta); 

                            psi(8)=(1/2)*(xi^2-xi)*(1-eta^2); 

                            psi(9)=(1-xi^2)*(1-eta^2); 

 

                            dpsi_dxi(1)=(1/4)*(2*xi-1)*(eta^2-eta); 

                            dpsi_dxi(2)=(1/4)*(2*xi+1)*(eta^2-eta); 

                            dpsi_dxi(3)=(1/4)*(2*xi+1)*(eta^2+eta); 
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                            dpsi_dxi(4)=(1/4)*(2*xi-1)*(eta^2+eta); 

                            dpsi_dxi(5)=-xi*(eta^2-eta); 

                            dpsi_dxi(6)=(1/2)*(2*xi+1)*(1-eta^2); 

                            dpsi_dxi(7)=-xi*(eta^2+eta); 

                            dpsi_dxi(8)=(1/2)*(2*xi-1)*(1-eta^2); 

                            dpsi_dxi(9)=-2*xi*(1-eta^2); 

 

                            dpsi_deta(1)=(1/4)*(xi^2-xi)*(2*eta-1); 

                            dpsi_deta(2)=(1/4)*(xi^2+xi)*(2*eta-1); 

                            dpsi_deta(3)=(1/4)*(xi^2+xi)*(2*eta+1); 

                            dpsi_deta(4)=(1/4)*(xi^2-xi)*(2*eta+1); 

                            dpsi_deta(5)=(1/2)*(1-xi^2)*(2*eta-1); 

                            dpsi_deta(6)=-(xi^2+xi)*eta; 

                            dpsi_deta(7)=(1/2)*(1-xi^2)*(2*eta+1); 

                            dpsi_deta(8)=-(xi^2-xi)*eta; 

                            dpsi_deta(9)=-2*(1-xi^2)*eta; 

 

 

        dx_dxi=0; 

        dy_dxi=0; 

        dx_deta=0; 

        dy_deta=0; 

 

for n=1:9 

    dx_dxi=dx_dxi+x(n)*dpsi_dxi(n); 

    dy_dxi=dy_dxi+y(n)*dpsi_dxi(n); 

     

    dx_deta=dx_deta+x(n)*dpsi_deta(n); 

    dy_deta=dy_deta+y(n)*dpsi_deta(n); 

end 

    

ds_dxi=sqrt(dx_dxi^2+dy_dxi^2); 

ds_deta=sqrt(dx_deta^2+dy_deta^2); 

 

if PSide(E,1)==1 %side where eta=-1 

    nx=dy_dxi/sqrt(dx_dxi^2+dy_dxi^2); 

    ny=-dx_dxi/sqrt(dx_dxi^2+dy_dxi^2); 

     

    F1(Nodes(j),1)=F1(Nodes(j),1)-P*psi(Nodes(j))*nx*ds_dxi*GPW(k); 

    F2(Nodes(j),1)=F2(Nodes(j),1)-P*psi(Nodes(j))*ny*ds_dxi*GPW(k); 

end 

 

if PSide(E,1)==2 %side where xi=1 

    nx=dy_deta/sqrt(dx_deta^2+dy_deta^2); 

    ny=-dx_deta/sqrt(dx_deta^2+dy_deta^2); 

     

    F1(Nodes(j),1)=F1(Nodes(j),1)-

P*psi(Nodes(j))*nx*ds_deta*GPW(k); 

    F2(Nodes(j),1)=F2(Nodes(j),1)-

P*psi(Nodes(j))*ny*ds_deta*GPW(k); 

end 
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if PSide(E,1)==3 %side where eta=1 

    nx=-dy_dxi/sqrt(dx_dxi^2+dy_dxi^2); 

    ny=dx_dxi/sqrt(dx_dxi^2+dy_dxi^2); 

        

    F1(Nodes(j),1)=F1(Nodes(j),1)-P*psi(Nodes(j))*nx*ds_dxi*GPW(k); 

    F2(Nodes(j),1)=F2(Nodes(j),1)-P*psi(Nodes(j))*ny*ds_dxi*GPW(k); 

end 

 

if PSide(E,1)==4 %side where xi=-1 

    nx=-dy_deta/sqrt(dx_deta^2+dy_deta^2); 

    ny=dx_deta/sqrt(dx_deta^2+dy_deta^2); 

     

    F1(Nodes(j),1)=F1(Nodes(j),1)-

P*psi(Nodes(j))*nx*ds_deta*GPW(k); 

    F2(Nodes(j),1)=F2(Nodes(j),1)-

P*psi(Nodes(j))*ny*ds_deta*GPW(k); 

end 

 

        end 

    end 

     

end 

    F1_21=F1; 

    F2_21=F2; 

end 
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APPENDIX I 

INTERPOLATION 

A subroutine that contains the interpolation functions and their derivatives 

 
function [psi,dpsi_dxi,dpsi_deta,GPC,GPW]=Interpolation(ET,NGP,m,n) 

 

[GPC,GPW]=GaussPointCoordinateandWeight(NGP); 

 

if ET==1 

 

xi=GPC(m); 

eta=GPC(n); 

 

psi(1)=(1-xi)*(1-eta)/4; 

psi(2)=(1+xi)*(1-eta)/4; 

psi(3)=(1+xi)*(1+eta)/4; 

psi(4)=(1-xi)*(1+eta)/4; 

 

dpsi_dxi(1)=-(1/4)*(1-eta); 

dpsi_dxi(2)=(1/4)*(1-eta); 

dpsi_dxi(3)=(1/4)*(1+eta); 

dpsi_dxi(4)=-(1/4)*(1+eta); 

 

dpsi_deta(1)=-(1/4)*(1-xi); 

dpsi_deta(2)=-(1/4)*(1+xi); 

dpsi_deta(3)=(1/4)*(1+xi);  

dpsi_deta(4)=(1/4)*(1-xi); 

    

end %end if linear elements 

 

%for quadratic elemnts 

if ET==2 

 

xi=GPC(m); 

eta=GPC(n); 

 

psi(1)=(1/4)*(xi^2-xi)*(eta^2-eta); 

psi(2)=(1/4)*(xi^2+xi)*(eta^2-eta); 

psi(3)=(1/4)*(xi^2+xi)*(eta^2+eta); 

psi(4)=(1/4)*(xi^2-xi)*(eta^2+eta); 

psi(5)=(1/2)*(1-xi^2)*(eta^2-eta); 

psi(6)=(1/2)*(xi^2+xi)*(1-eta^2); 

psi(7)=(1/2)*(1-xi^2)*(eta^2+eta); 

psi(8)=(1/2)*(xi^2-xi)*(1-eta^2); 

psi(9)=(1-xi^2)*(1-eta^2); 

 

dpsi_dxi(1)=(1/4)*(2*xi-1)*(eta^2-eta); 

dpsi_dxi(2)=(1/4)*(2*xi+1)*(eta^2-eta); 
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dpsi_dxi(3)=(1/4)*(2*xi+1)*(eta^2+eta); 

dpsi_dxi(4)=(1/4)*(2*xi-1)*(eta^2+eta); 

dpsi_dxi(5)=-xi*(eta^2-eta); 

dpsi_dxi(6)=(1/2)*(2*xi+1)*(1-eta^2); 

dpsi_dxi(7)=-xi*(eta^2+eta); 

dpsi_dxi(8)=(1/2)*(2*xi-1)*(1-eta^2); 

dpsi_dxi(9)=-2*xi*(1-eta^2); 

 

dpsi_deta(1)=(1/4)*(xi^2-xi)*(2*eta-1); 

dpsi_deta(2)=(1/4)*(xi^2+xi)*(2*eta-1); 

dpsi_deta(3)=(1/4)*(xi^2+xi)*(2*eta+1); 

dpsi_deta(4)=(1/4)*(xi^2-xi)*(2*eta+1); 

dpsi_deta(5)=(1/2)*(1-xi^2)*(2*eta-1); 

dpsi_deta(6)=-(xi^2+xi)*eta; 

dpsi_deta(7)=(1/2)*(1-xi^2)*(2*eta+1); 

dpsi_deta(8)=-(xi^2-xi)*eta; 

dpsi_deta(9)=-2*(1-xi^2)*eta; 

 

end %end if quadratic elements 

 

% 8 node serendipity element 

if ET==3 

     

xi=GPC(m); 

eta=GPC(n); 

 

psi(1)=-1/4*(1-xi)*(1-eta)*(1+xi+eta); 

psi(2)=-1/4*(1+xi)*(1-eta)*(1-xi+eta); 

psi(3)=-1/4*(1+xi)*(1+eta)*(1-xi-eta); 

psi(4)=-1/4*(1-xi)*(1+eta)*(1+xi-eta); 

psi(5)=1/2*(1-xi^2)*(1-eta); 

psi(6)=1/2*(1+xi)*(1-eta^2); 

psi(7)=1/2*(1-xi^2)*(1+eta); 

psi(8)=1/2*(1-xi)*(1-eta^2); 

 

dpsi_dxi(1)=xi/2-xi*eta/2+(eta^2)/4-eta/4; 

dpsi_dxi(2)=xi/2-xi*eta/2+(eta^2)/4-eta/4; 

dpsi_dxi(3)=xi/2+xi*eta/2+(eta^2)/4+eta/4; 

dpsi_dxi(4)=xi*(-1+eta); 

dpsi_dxi(5)=xi*(-1+eta); 

dpsi_dxi(6)=1/2-(eta^2)/2; 

dpsi_dxi(7)=-xi*(1+eta); 

dpsi_dxi(8)=-1/2+(eta^2)/2; 

 

dpsi_deta(1)=eta/2-(xi^2)/4+eta*xi/2-xi/4; 

dpsi_deta(2)=eta/2-(xi^2)/4+eta*xi/2-xi/4; 

dpsi_deta(3)=eta/2+(xi^2)/4+eta*xi/2+xi/4; 

dpsi_deta(4)=-1/2+(xi^2)/2; 

dpsi_deta(5)=-1/2+(xi^2)/2; 

dpsi_deta(6)=-(1+xi)*eta; 

dpsi_deta(7)=1/2-(xi^2)/2; 
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dpsi_deta(8)=(-1+xi)*eta; 

 

end %end if 8 node serendipity element 

 

end 
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APPENDIX J 

GAUSS POINT COORDINATE AND WEIGHT 

A subroutine that contains the Gauss point coordinates and weights 

 
function [GPC,GPW]=GaussPointCoordinateandWeight(NGP) 

 

%Gauss Point Coordinate and Weight Arrays 

 

switch NGP 

     

    case 1 

        GPC=(0.0); 

        GPW=(2); 

         

    case 2 

        GPC=[-1/sqrt(3) 1/sqrt(3)]; 

        GPW=[1 1]; 

     

    case 3 

        GPC=[-sqrt(3/5) 0 sqrt(3/5)]; 

        GPW=[5/9 8/9 5/9]; 

         

    case 4 

        GPC=[-sqrt((3+2*sqrt(6/5))/7) -sqrt((3-2*sqrt(6/5))/7) ... 

              sqrt((3-2*sqrt(6/5))/7) sqrt((3+2*sqrt(6/5))/7)]; 

        GPW=[(18-sqrt(30))/36 (18+sqrt(30))/36 (18+sqrt(30))/36 ... 

             (18-sqrt(30))/36]; 

    case 5 

        GPC=[-1/3*sqrt(5+2*sqrt(10/7)) -1/3*sqrt(5-2*sqrt(10/7)) 0 

... 

              1/3*sqrt(5-2*sqrt(10/7)) 1/3*sqrt(5+2*sqrt(10/7))]; 

        GPW=[(322-13*sqrt(70))/900 (322+13*sqrt(70))/900 128/225 

... 

             (322+13*sqrt(70))/900 (322-13*sqrt(70))/900]; 

          

    otherwise  

        disp(['No Gauss point cooridnates or weights are 

available'...  

              'for more than 5 Gauss points']) 

         

end 

 

end 
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APPENDIX K 

MHA FORCE  

A subroutine that calculates the force on the bottom surface of the MHA 

 
function [Fy,Uy]=MHA_FORCE(KG,U,NOHB) 

 

%Fx=zeros(length(NOHB),1); 

Fy=zeros(length(NOHB),1); 

Uy=zeros(length(NOHB),1); 

 

%find the force acting on the miniature hourglass actuator 

for i=1:length(NOHB) 

     

    %Fx(i,1)=KG(2*NOHB(i)-1,:)*U; 

    Fy(i,1)=KG(2*NOHB(i),:)*U; 

    Uy(i,1)=U(2*NOHB(i),1); 

     

end 

 

%none of the forces in the x direction are calculated 

 

end 
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APPENDIX L 

MHA WORK 

A subroutine that calculates the work density of the MHA along with its force and work 

advantages 

 
function 

[PFY,PUY,FA,WA,PE,UFE,UEF,WMHA,WCTA]=MHA_WORK(FY,UY,NC,p,EMI) 

 

%element mesh information 

NEAA=EMI(1); 

NETA=EMI(2); 

%NEAB=EMI(3); 

NETB=EMI(4); 

 

%find the all of displacements where the force is positive 

RFY=find(FY>0); 

PFY=FY(1:length(RFY),1); 

PUY=UY(1:length(RFY),1); 

 

%find the displacement u where the force is zero by linealy 

interpolation 

UFE=UY(length(RFY),1); 

PFY=vertcat(PFY,0); 

PUY=vertcat(PUY,UFE); 

 

%find the force on the MHA bottom 

RT=(NETA*2+1)*(NEAA*2)+1; 

LT=(NETA*2+1)*((NEAA+NETB)*2+1)+1; 

BL=2*(NC(RT,1)-NC(LT,1)); 

BF=BL*p; 

 

W=0; 

for i=1:length(PUY)-1 

    W=W+(PFY(i)+PFY(i+1))/2*(PUY(i+1)-PUY(i)); 

end 

 

%calculate the total outside area of the miniature hourglass 

actuator 

BR=(NETA*2+1)*((NEAA+NETB)*2+1); 

TR=NETA*2+1; 

OUA=4*(NC(BR,1)*NC(TR,2)); 

 

%calculate the work done by both the miniature hourglass actuator 

and a  

%compariable traditional actuator 

WMHA=W/OUA; 

WCTA=BF*UFE/OUA; 

 



100 

 

 

  

%the initial blocked force of both the miniature hourglass actuator 

and a  

%compariable traditional actuator  

FMHA=PFY(1,1); 

FCTA=BF; 

 

%find the force and work advantage 

FA=FMHA/FCTA; 

WA=WMHA/WCTA; 

 

%calculate the percent elogation 

PE=UFE/NC(1,2)*100; -This line is should be PE=UFE/(2*NC(1,2))*100; 

 

%calculate the elongation where the force of the miniature 

hourglass 

%actuator is equal to the force of the compariable traditional 

actuator  

if FA>1 && PFY(length(PFY-1),1)<FCTA 

    REFFY=find(PFY>FCTA); 

     

    UEF=PUY(length(REFFY),1)+(FCTA-PFY(length(REFFY),1))/... 

    ((PFY(length(REFFY)+1,1)-PFY(length(REFFY),1))/... 

        (PUY(length(REFFY)+1,1)-PUY(length(REFFY),1))); 

else 

    UEF=0; 

end 

 

end 
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APPENDIX M 

MHA FULL COORDINATES 

A subroutine that takes the coordinates of the computational domain and creates an array 

of coordinates for the whole MHA 

 
function [UDINC,UDONC,DINC,DONC]=MHA_FULL_COORDINATES(NC,NC_1,EMI) 

 

%element mesh information 

NEAA=EMI(1); 

NETA=EMI(2); 

NEAB=EMI(3); 

NETB=EMI(4); 

 

 

%find the nodes on the inner and outter sufaces 

IS2=zeros(NEAA*2+1,1); 

OS4=zeros(NEAA*2+1,1); 

for i=1:NEAA*2+1 

    IS2(i,1)=(NETA*2+1)*(NEAA*2)+1-(i-1)*(NETA*2+1); 

    OS4(i,1)=(NETA*2+1)*(NEAA*2+1)-(i-1)*(NETA*2+1); 

end 

 

OS3=zeros(NETB*2,1); 

for i=1:NETB*2 

    OS3(i,1)=(NETA*2+1)*((NEAA+NETB)*2+1)-(i-1)*(NETA*2+1); 

end 

 

OS2=zeros(NETA*2,1); 

for i=1:NETA*2 

    OS2(i,1)=(NETA*2+1)*((NEAA+NETB)*2)+i; 

end 

 

IS1=zeros(NEAB*2,1); 

OS1=zeros(NEAB*2,1); 

for i=1:NEAB*2 

    IS1(i,1)=(NETA*2+1)*((NEAA+NETB)*2+1)+i; 

    OS1(i,1)=(NETA*2+1)*((NEAA+NETB)*2+1)+(NEAB*2)*(NETB*2)+i; 

end 

 

IS=[IS1;IS2]; 

OS=[OS1;OS2;OS3;OS4]; 

 

%put the nodes on the inner surface in order  

ISx1=zeros(length(IS),1);ISx2=zeros(length(IS),1); 

ISx3=zeros(length(IS),1);ISx4=zeros(length(IS),1); 

ISy1=zeros(length(IS),1);ISy2=zeros(length(IS),1); 

ISy3=zeros(length(IS),1);ISy4=zeros(length(IS),1); 
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for i=1:length(IS) 

    n=length(IS)-i+1; 

    ISx1(i)=NC(IS(i,1),1); 

    ISx2(n)=NC(IS(i,1),1); 

    ISx3(i)=-NC(IS(i,1),1); 

    ISx4(n)=-NC(IS(i,1),1); 

    ISy1(i)=NC(IS(i,1),2); 

    ISy2(n)=2*NC(1,2)-NC(IS(i,1),2); 

    ISy3(i)=2*NC(1,2)-NC(IS(i,1),2); 

    ISy4(n)=NC(IS(i,1),2); 

end 

 

ISX=[ISx1;ISx2;ISx3;ISx4]; 

ISY=[ISy1;ISy2;ISy3;ISy4]; 

 

%put the nodes on the outter surface in order 

OSx1=zeros(length(OS),1);OSx2=zeros(length(OS),1); 

OSx3=zeros(length(OS),1);OSx4=zeros(length(OS),1); 

OSy1=zeros(length(OS),1);OSy2=zeros(length(OS),1); 

OSy3=zeros(length(OS),1);OSy4=zeros(length(OS),1); 

 

for i=1:length(OS) 

    n=length(OS)-i+1; 

    OSx1(i)=NC(OS(i,1),1); 

    OSx2(n)=NC(OS(i,1),1); 

    OSx3(i)=-NC(OS(i,1),1); 

    OSx4(n)=-NC(OS(i,1),1); 

    OSy1(i)=NC(OS(i,1),2); 

    OSy2(n)=2*NC(1,2)-NC(OS(i,1),2); 

    OSy3(i)=2*NC(1,2)-NC(OS(i,1),2); 

    OSy4(n)=NC(OS(i,1),2); 

end 

 

OSX=[OSx1;OSx2;OSx3;OSx4]; 

OSY=[OSy1;OSy2;OSy3;OSy4]; 

 

%find the inner surface nodal coordiates of the defoemed miniature 

%hourglass actuator 

DISx1=zeros(length(IS),1);DISx2=zeros(length(IS),1); 

DISx3=zeros(length(IS),1);DISx4=zeros(length(IS),1); 

DISy1=zeros(length(IS),1);DISy2=zeros(length(IS),1); 

DISy3=zeros(length(IS),1);DISy4=zeros(length(IS),1); 

 

for i=1:length(IS) 

    n=length(IS)-i+1; 

    DISx1(i)=NC_1(IS(i,1),1); 

    DISx2(n)=NC_1(IS(i,1),1); 

    DISx3(i)=-NC_1(IS(i,1),1); 

    DISx4(n)=-NC_1(IS(i,1),1); 

    DISy1(i)=NC_1(IS(i,1),2); 

    DISy2(n)=2*NC(1,2)-NC_1(IS(i,1),2); 
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    DISy3(i)=2*NC(1,2)-NC_1(IS(i,1),2); 

    DISy4(n)=NC_1(IS(i,1),2); 

end 

 

%find the outter surface nodal coordiates of the defoemed miniature 

%hourglass actuator 

DOSx1=zeros(length(OS),1);DOSx2=zeros(length(OS),1); 

DOSx3=zeros(length(OS),1);DOSx4=zeros(length(OS),1); 

DOSy1=zeros(length(OS),1);DOSy2=zeros(length(OS),1); 

DOSy3=zeros(length(OS),1);DOSy4=zeros(length(OS),1); 

 

for i=1:length(OS) 

    n=length(OS)-i+1; 

    DOSx1(i)=NC_1(OS(i,1),1); 

    DOSx2(n)=NC_1(OS(i,1),1); 

    DOSx3(i)=-NC_1(OS(i,1),1); 

    DOSx4(n)=-NC_1(OS(i,1),1); 

    DOSy1(i)=NC_1(OS(i,1),2); 

    DOSy2(n)=2*NC(1,2)-NC_1(OS(i,1),2); 

    DOSy3(i)=2*NC(1,2)-NC_1(OS(i,1),2); 

    DOSy4(n)=NC_1(OS(i,1),2); 

end 

 

DISX=[DISx1;DISx2;DISx3;DISx4]; 

DISY=[DISy1;DISy2;DISy3;DISy4]; 

DOSX=[DOSx1;DOSx2;DOSx3;DOSx4]; 

DOSY=[DOSy1;DOSy2;DOSy3;DOSy4]; 

 

%shift the deformed miniature hourglass actuator up so that all the 

%deformation is positive 

n=(NETA*2+1)*((NEAA+NETB)*2+1)+(NEAB*2)*(NETB*2)+1; 

MDISY=DISY-NC_1(n,2); 

MDOSY=DOSY-NC_1(n,2); 

 

%create arrays that contain both the x and y coordinates 

DINC=horzcat(DISX,MDISY); 

DONC=horzcat(DOSX,MDOSY); 

 

UDINC=horzcat(ISX,ISY); 

UDONC=horzcat(OSX,OSY); 

 

end 
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