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ABSTRACT 

Numerical Modeling of Fracture Permeability Change in Naturally Fractured Reservoirs 

Using a Fully Coupled Displacement Discontinuity Method. (May 2010) 

Qingfeng Tao, B.S., China University of Geosciences; 

M.S., University of North Dakota 

Co-Chairs of Advisory Committee:  Dr. Christine A. Ehlig-Economides 
 Dr. Ahmad Ghassemi 

 

Fractures are the main flow channels in naturally fractured reservoirs.  Therefore 

the fracture permeability is a critical parameter to production optimization and reservoir 

management.  Fluid pressure reduction caused by production induces an increase in 

effective stress in naturally fractured reservoirs.   The change of effective stress induces 

fracture deformation and changes fracture aperture and permeability, which in turn 

influences the production.    Coupled interactions exist in the fractured reservoir: (i) fluid 

pressure change induces matrix deformation and stress change; (ii) matrix deformation 

induces fluid volume change and fluid pressure change; (iii) fracture deformation 

induces the change of pore pressure and stress in the whole field (the influence 

disappears at infinity); (iv) the change of pore pressure and stress at any point has an 

influence on the fracture and induces fracture deformation.  To model accurately the 

influence of pressure reduction on the fracture permeability change in naturally fractured 

reservoirs, all of these coupled processes need to be considered.   Therefore, in this 

dissertation a fully coupled approach is developed to model the influence of production 
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on fracture aperture and permeability by combining a finite difference method to solve 

the fluid flow in fractures, a fully coupled displacement discontinuity method to build 

the global relation of fracture deformation, and the Barton-Bandis model of fracture 

deformation to build the local relation of fracture deformation.   

The fully coupled approach is applied to simulate the fracture permeability 

change in naturally fracture reservoir under isotropic in situ stress conditions and high 

anisotropic in situ stress conditions, respectively.  Under isotropic stress conditions, the 

fracture aperture and permeability decrease with pressure reduction caused by 

production, and the magnitude of the decrease is dependent on the initial effective in situ 

stress.  Under highly anisotropic stress, the fracture permeability can be enhanced by 

production because of shear dilation.  The enhancement of fracture permeability will 

benefit to the production of oil and gas. 
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CHAPTER I                                                                                          

INTRODUCTION 

 

A large percent of oil and gas around the world are produced from naturally 

fractured reservoirs.  Naturally fractured reservoirs are found in essentially all types of 

lithologies including sand stones, carbonates, shales, cherts, siltstones, etc. (Aguilera, 

1995).   A natural fracture is “a naturally occurring macroscopic planar discontinuity in 

rock due to deformation or physical diagenesis” (Nelson, 1985).  Generally fractures are 

the main flow channels, and the matrix provides the main storage capacity. Some 

reservoirs, e.g. tight gas reservoirs, are not possible to produce without the existence of 

natural fractures (microfractures).   Therefore the fracture permeability is critical to the 

hydrocarbon production.  This chapter will start with an explanation of the problem and 

the objective of this research.  Next will be a review of the previous numerical methods 

on the modeling of deformable fractured reservoirs.  Finally there will appear a summary 

of the dissertation. 
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1.1 Problem and objective 
 

Warren and Root (1963) presented a dual-porosity model to represent naturally 

fractured reservoirs (Figure I-1).   The highly heterogeneous system was treated as a 

homogeneous system with two media – fractures and matrix.  Both the matrix and the 

fractures were characterized by two parameters – porosity and permeability.  

Pseudosteady state flow was assumed in the matrix, as well as an interporosity flow 

parameter for flow between matrix and fractures.  Later a dual-porosity model with 

transient flow in matrix for low permeability reservoirs was presented by De Swaan 

(1976), Najurieta(1980), Cinco and Samaniego(1982).  Both fracture permeability and 

matrix permeability were treated as constant during production and independent of stress 

and pressure.   In all of these cases, flow to the well was only via fractures. 

 

Figure I-1.  Dual-porosity model (Warren and Root, 1963). 
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In reality, reservoir pressure decreases with production for most cases, and the 

effective stress in the reservoir increases, and both fractures and matrix can deform with 

the increase of effective stress.  For hard rocks, the deformation due to normal stress 

change is small and can be neglected.  However, the deformation for weak rocks or 

fractured rocks can be large enough to change the reservoir properties and influence the 

production.  The dependence of formation permeability on pressure for a single porosity 

system has been investigated by Gray et al. (1963), Vairogs et al. (1971), Thomas and 

Ward (1972), Raghavan et al. (1972), Vairogs and Rhoades (1973), Samaniego et al. 

(1976, 1977), Jones and Owens (1980), Samaniego and Cinco-Ley (1989), Buchsteiner 

et al. (1993), Chin et al. (1998), and Davies and Davies (1999).  The pressure 

dependence of matrix permeability occurs as the porosity and connectivity of pores 

decrease with increase in effective stress.  But the permeability change in tight gas 

reservoirs mainly results from the closure of microcracks with the increase of effective 

stress (Ostensen, 1986).  

Generally fractures are more deformable than the matrix in a naturally fractured 

reservoir, and the permeability of fractures, not the matrix, dominates the flow behavior.  

Furthermore, fractures are more sensitive to pressure and stress change than the matrix, 

and the fracture deformation mechanism is much more complicated than matrix 

deformation.  The effect of stress on the aperture and permeability of a single fracture 

has been well investigated in laboratory by Iwai (1976), Goodman (1976), Bandis et al. 

(1983), and Barton et al. (1985).  Experimental data show a nonlinear relation between 
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normal stress and fracture closure.   Bandis et al. (1983) presented a hyperbolic formula 

to represent the normal stress–fracture closure relation.   For shear deformation 

experimental data show an approximately linear relation between shear stress and shear 

displacement before yielding, and then shows a complicated relation after yielding.  

Shear deformation can also induce fracture opening as the opposed asperities of a 

fracture slide over each other and cause an increase in aperture. Chapter III will 

elaborate on these mechanisms.  

In naturally fractured reservoirs, there are coupled interactions between porous 

matrix and fluid, as well as between fractures.  Biot (1941, 1956) developed a theory of 

poroelasticity for porous media saturated with incompressible fluid to account for the 

coupled diffusion–deformation mechanism.  Rice and Cleary (1976) extended the theory 

for porous media saturated with compressible fluid.  Biot’s theory of poroelasticity is a 

continuum theory for a porous medium consisting of an elastic matrix containing 

interconnected fluid-saturated pores.  The fluid diffusion in porous media induces porous 

matrix deformation (Figure I-2) and stress redistribution, and porous matrix deformation 

also induces fluid flow (Figure I-3) and fluid pressure redistribution. If there is a 

discontinuous surface (fracture) in the continuum porous media shown in Figure I-4, the 

deformation of the fracture (opening or closing) will induce the deformation of the 

porous matrix and also pore pressure change and fluid flow, which will be elaborated in 

Chapter II.   
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Figure I-2.  Illustration of the fluid flow in the interconnected pores in a porous matrix and the 
induced deformation of the porous matrix (influence of fluid flow on the matrix deformation). The 
dashed red line represents the boundary of the porous matrix before fluid injection/production.  

 

 

Figure I-3.  Illustration of the compression of a continuum porous matrix and the induced pore 
pressure change and fluid flow in the interconnected pores (influence of matrix deformation on the 
fluid flow and pore pressure change).  The dashed red line represents the boundary of the porous 
matrix before deformation.  

inflow 
expansion 

Matrix 
fluid 

compression 
outflow 

Matrix 
fluid 
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Figure I-4.  Illustration of a fracture in a fluid-saturated porous media. 

 

In a naturally fractured reservoir, there are many fractures in the porous medium.  

In addition to the interactions of fluid, porous matrix and fracture, there are interactions 

between fractures including mechanical deformation and fluid flow, which will be 

elaborated in Chapter II.  One fracture deformation will cause stress change in the field 

and induce deformation of other fractures (Crouch and Starfield, 1983, Curren and 

Carvalho, 1987, Cheng and Predeleanu, 1987, Carvalho, 1990).  The fluid injection or 

production from one fracture can also induce fluid pressure change in other fractures, as 

well as mechanical deformation.  Crouch and Starfield (1983) developed a displacement 

discontinuity method (DDM) to model the interactions between fractures and also the 

matrix fluid 

fracture 
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influence of fracture deformation on the stress redistribution in elastic nonporous media.  

Curren and Carvalho (1987), Cheng and Predeleanu (1987) and Carvalho (1990) 

developed a poroelastic DDM for fluid-saturated porous media with many discontinuous 

surfaces (fractures) in it.  The poroelastic DDM can be applied to model the coupled 

interactions of fractures, porous matrix and fluid in porous media with fractures.  This 

method has been applied to simulate the hydraulic fracturing in continuum porous media 

(Vandamme and Roegiers, 1990).  But the poroelastic DDM has not been applied to 

model the interactions of fracture, porous matrix and fluid in fractured porous media.   

The oil and gas production from naturally fractured reservoirs will induce the 

change in fracture aperture and permeability, thereby changing reservoir properties and 

influencing production.  The objective of this study is to develop an approach to 

investigate the change in fracture aperture and permeability in naturally fractured 

reservoirs.  This approach will consider the coupled interactions of porous matrix, fluid 

and fractures and the real mechanism of fracture deformation.   

1.2 Numerical methods for deformable fractured reservoirs 
 

Many researchers have investigated the deformation of fractures in fluid-

saturated fractured porous media using numerical methods (Asgian, 1988, 1989; Sun, 

1994; Chen and Teufel, 1997; Gutierrez and Makurat, 1997; Lewis and Ghasouri, 1997; 

Meng, 1998; Shu, 1999; Min et al., 2004; and Bagheri, 2006).  The numerical methods 

can be classified as continuum methods, the discrete element method, and the 

displacement discontinuity method.  The continuum methods treat the fractured media as 
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an equivalent continuum media for fluid flow model, or mechanical deformation, or both.  

The stress and pore pressure in the equivalent continuum media are solved by using a 

finite difference method (FDM) or a finite element method (FEM).   The discrete 

element method (DEM) treats matrix elements divided by fractures as discrete, and 

calculates the contact and deformation of the matrix element boundaries.   The 

displacement discontinuity method (DDM) is an indirect boundary element method.  The 

DDM gives an analytical solution for the influence of a fracture in a continuum media 

and then sums the influences of all fractures for a fractured media by the superposition 

method (refer to Chapter II for details).  

1.2.1 Continuum methods 
 

Lewis and Ghafouri (1997) developed a finite element dual porosity model.  

They modeled fluid flow using a dual porosity model – the fracture and matrix were 

treated as overlapping continuum media (Figure I-5).  Flow properties (fracture 

permeability, matrix permeability, etc.) were assumed to be independent of pore pressure 

and stress.  The fluid pressure change was uncoupled with the mechanical deformation 

of the fractured media.  The fractured media were treated as continuum elastic media.  

Fluid pressure change caused by production was solved separately from porous matrix 

deformation.  The effective stress change resulting from pore pressure change was 

derived using Terzaghi’s effective stress law (effective stress = total stress – fluid 

pressure).  Finally the deformation of fractured media was modeled according to the 

effective stress change.   
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Figure I-5.  Schematic representation of double porosity model (Lewis and Ghafouri, 
1997). 

 

Chen and Teufel (1997) presented a partially coupled method for deformable 

fractured media.  For fluid flow, the fractured media was assumed as a dual porosity 

model – fracture and matrix are two overlapping continuum media.   For geomechanics, 

the fractured media was assumed as continuum poroelastic media and the coupling 

between porous matrix and fluid was based on Biot’s theory of poroelasticity.  The 

fracture and matrix were virtually combined into one media with one combined porosity 

and compressibility in the mechanical model.   Therefore the fracture deformation was 

oversimplified as matrix deformation.  The fracture aperture and permeability was 

independent of pressure and stress.    Meng (1998) and Shu (1999) used similar models 

to model the coupled processes considering two fluid phases.   

Sun (1994) used a discrete fracture element approach to model the deformable 

fractured porous media.  Fluid flow was modeled in both the porous medium and a 

discrete fracture network.  The transient flow rate between fracture network and porous 

media was determined by the pressure gradient.   For the mechanical model, each 
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fracture was treated as equivalent elastic medium having the same stress-displacement 

relation as the fracture deformation.  The shear displacement and dilation of fracture was 

neglected, and only normal deformation was considered.  The coupling of fluid flow and 

mechanical deformation was based on Biot’s theory of poroelasticity.  The stress 

dependent fracture permeability was calculated according to the fracture aperture, which 

was idealized as a smooth fracture approximating the real rough fracture (Figure I-6).  

Bagheri (2006), and Bagheri and Setteri (2008) developed an equivalent 

continuum media for fractured porous media considering both fluid flow and a 

mechanical model.  For the fluid flow model, an element of fractured porous media was 

transformed to an element of equivalent continuum media with a tensor permeability to 

make the continuum media element have similar flow properties to the fractured medium 

element.  For the deformation model, the fractured medium was transformed to an 

equivalent continuum poroelastic medium with the same deformation characteristics as 

the fractured medium.  Only normal deformation of fractures was considered.  And only 

small fracture deformation was allowed in the model.  The fracture permeability and 

porosity was dependent on pressure and stress.   
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Figure I-6.  A real rough fracture in porous media and its idealized smooth fracture in two 
dimensions (Sun, 1994).  

 

1.2.2 Discrete element method (DEM) 
 

Gutierrez and Makurat (1997) combined a thermal reservoir fluid flow simulator 

code PROFHET (Propagation of fluid and heat) and a discrete element code UDEC 

(Universal distinct element code) to analyze the hydro-thermo-mechanical behavior of 

fractured hydrocarbon reservoirs.   Fluid flow was modeled in both the discrete fracture 

network and the porous matrix, and the interface flow rate was determined by pressure 

gradient between fracture and matrix.  The stress change induced by fluid flow was input 

into UDEC to calculate the fracture deformation.  The Barton-Bandis model of fracture 

deformation was applied.  The results from UDEC were not used to recalculate the fluid 
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flow.  The matrix in UDEC was defined as impermeable, which reduced the coupling of 

porous matrix and fluid described by Biot’s theory of poroelasticity.  

Min et al. (2004) used UDEC to model the effect of stress on fracture 

permeability for a fractured media (Figure I-7).  The matrix was assumed as 

impermeable and the fluid flow was only in the fracture network.  The fracture aperture 

changed with different stress loading according to the fracture deformation model.  They 

modeled the fracture aperture changes at various stress conditions including isotropic 

stress loadings of different magnitudes and anisotropic loadings of different magnitudes 

and ratios of the maximum principal stress to the minimum principal stress.  Then they 

modeled the flow rate through the fracture network with a fluid pressure loading.  After 

comparing with the Darcy’s flaw, the permeability for the fracture network was 

determined and the effect of stress on the permeability of fracture network was evaluated.   
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Figure I-7.  Geometry of fracture system in the DFN model (Min et al., 2004). 
 

1.2.3 Displacement discontinuity method (DDM) 
 

Asgian (1988, 1989) investigated the coupled fluid and porous matrix 

deformation in fractured media using an elastic DDM.  The elastic DDM (an indirect 

boundary element method) was developed (Crouch and Starfield, 1983) to model the 

deformation of elastic nonporous media containing discontinuous surfaces (fractures).   

The matrix was assumed as impermeable and fluid flow was only in fractures.  The fluid 

flow in fractures was coupled with the fracture deformation.  The fracture permeability 

was also dependent on the fracture aperture according to the cubic law and the fracture 
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aperture varied with the change of fluid pressure and effective stress.  This method 

allowed the fracture to deform in normal and shear with a large displacement.  But the 

matrix was assumed as impermeable in the elastic DDM, which limits its application in 

fractured hydrocarbon reservoirs where the matrix is the main storage.  

1.3 Summary of the dissertation 
 

Chapter I describes the problem to be solved and the objective of the study, and 

also critically reviews previously published methods.   Pressure reduction caused by 

production in naturally fractured reservoirs induces the effective stress change.  The 

effective stress change affects the reservoir properties, which in turn influences the 

production.   Up to now the effect of production on reservoir properties including fully 

coupled interactions of porous matrix, fluid and fractures in naturally fractured 

reservoirs, especially fracture permeability change, has not really been addressed.  The 

objective of this study is to develop an approach to investigate the change in fracture 

aperture and permeability in naturally fractured reservoirs. 

Chapter II describes the DDM including elastic DDM and fully coupled 

poroelastic DDM.  The elastic DDM gives the analytical solutions of induced stress and 

displacement at any point in a continuum elastic nonporous medium by a small thin 

discontinuous surface (fracture) with finite length and then sums the influences of all 

discontinuous surfaces (fractures) at any point using superposition.   The fully coupled 

DDM is based on Biot’s theory of poroelasticity.  The fundamental solutions for stress 

and pore pressure at any point induced either by a small discontinuous surface (fracture) 
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with finite length or by constant rate fluid injection/production to a line source (fracture 

at a well) are derived analytically.  At any point, the influences by all fractures due to 

displacement discontinuities or fluid injection/production can be obtained by the 

superposition method.  The fully coupled poroelastic DDM is verified using the classic 

pressurized crack problem.  Provided the stress and pore pressure change in the fractures 

in a fractured porous media, the fracture aperture change can be determined using the 

fully coupled poroelastic DDM. 

Chapter III describes the characteristics of fracture surfaces, the nonlinear 

Barton-Bandis model of fracture deformation, and the relation of fracture permeability to 

fracture aperture in rough fractures. In the nonlinear fracture deformation model, the 

relation of normal stress and fracture closure is represented by a hyperbolic formula.  

The relation of shear stress and shear displacement is linear before yielding and too 

complicated to represent using simple functions after yielding.  The model also includes 

shear dilation which is the fracture opening caused by shear displacement.  The fracture 

conductivity has a cubic relation to the effective hydraulic aperture but not the average 

mechanical aperture.  The effective hydraulic aperture is related with the average 

mechanical aperture using the parameter for the surface roughness of fracture.  

Chapter IV presents a new numerical method to determine the fluid pressure, 

fracture aperture change and stress change simultaneously by combining a finite 

difference method (FDM) for solving the diffusivity equation for fluid flow in fractures, 

a fully coupled displacement discontinuity method (DDM) to build the global relation of 

fracture deformation, and the nonlinear Barton-Bandis model of fracture deformation to 
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build the local relation of fracture deformation.  The fracture permeability changes with 

the fracture aperture change.  

Chapter V illustrates applications of the method described in Chapter IV under 

both isotropic in situ stress conditions and highly anisotropic in situ stress conditions.  

The increase of the compression stress induced by pressure depletion in naturally 

fracture reservoirs tends to reduce fracture aperture and permeability, but fracture slip 

caused by shear stress can increase fracture aperture and permeability due to shear 

dilation.   

Chapter VI gives conclusions of the dissertation and recommendations for future 

work.  
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CHAPTER II                                                                                          

DISPLACEMENT DISCONTINUITY METHOD 

 

The displacement discontinuity method (DDM) is an indirect boundary element 

method of solving linear elastic problems given the boundary conditions and assuming 

continuous stress and discontinuous displacement at the boundaries.  Crouch and 

Starfield (1983) developed an elastic DDM for elastic nonporous media and applied the 

elastic DDM to model the joint deformation and slip due to mining jointed rock.  In the 

fluid-saturated porous media, there are coupled processes between the porous matrix and 

fluid.  Both porous matrix deformation and fluid pressure change can cause 

redistribution of stress and fluid flux. Curran and Carvalho (1987), Cheng and 

Predeleanu (1987), and Carvalho (1990) presented a coupled DDM for fluid-saturated 

porous media and provided the fundamental solutions of stress, displacement and pore 

pressure induced by constant displacement discontinuities or continuous fluid 

injection/production along a line fracture in an infinite continuum porous medium 

saturated with a compressible singe-phase fluid.  The induced stress and pore pressure 

by the displacement discontinuities or fluid injection/production from all fractures in a 

porous medium are the sum of the fundamental solutions using superposition.  All 

fractures in an infinite fluid-saturated porous medium are treated as boundaries.  If the 

change of stress and pore pressure in all fractures in the fluid-saturated system are 

provided as boundary conditions, the displacement discontinuities and fluid 

injection/production rate in all fractures can be determined by solving a set of linear 
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equations established from the fully coupled DDM, and vice versa.   Therefore, the fully 

coupled DDM can be applied to investigate the change of fracture aperture and the 

interface flow rate between fracture and matrix (similar to the fluid injection/production 

rate from a fracture into the surrounded matrix) if the stress and pore pressure in all 

fractures in fractured porous media is provided.  A pressurized crack problem is 

provided as a case to verify the fully coupled DDM and show the coupled interactions 

between the fluid and porous matrix. 

This chapter will describe the elastic DDM in Section 2.1. Section 2.2 will 

provide the fully coupled poroelastic DDM. Section 2.3 will verify the fully coupled 

poroelastic DDM with an analytical solution, and Section 2.4 will provide conclusions of 

this chapter.  

2.1 Elastic DDM 
 

The elastic DDM is an indirect boundary element method to cope those problems 

involving pure elastic nonporous media containing thin fractures.  The elastic DDM is 

based on an analytical solution for the constant discontinuity of a displacement (e.g., a 

finite fracture segment) in an infinite elastic nonporous medium.  For an infinite elastic 

nonporous medium containing multiple fractures, the fractures are divided into N 

elemental segments with the displacement in each segment assumed to have a constant 

discontinuity.  At any point, the influence of displacement discontinuities from all 

fractures in the system can be obtained by summing the effects of all N elements using 

the fundamental analytical solutions.   
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Crouch and Starfield (1983) developed the fundamental solutions (Eq. (2-1)) of 

induced stresses at any point (x, y) for an infinite two-dimensional homogeneous and 

isotropic elastic nonporous medium containing a finite small thin fracture with constant 

normal and shear displacement discontinuities (Figure II-1).  The fracture length is 2a (a 

is the half length of fracture segment) and its center is located at (0, 0).  

The stress components, xxσ , yyσ , xyσ  at the field point (x, y) induced by the 

normal displacement discontinuity, Dn ,and Shear displacement discontinuity, Ds, are 

given by 
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where G is the shear modulus, and f  is a function of the position (x, y) of the field point 

relative to the center of the fracture and the half length of the fracture segment a given 

by: 

 
( ) ( )

( ) ( ) ( ) ( ) 
+++++−−−













+
−

−−
−=

2222 lnln

arctanarctan
14
1,

yaxaxyaxax

ax
y

ax
yyyxf

υπ , (2-2)  

 with Poisson’s ratio, υ. Note that in this dissertation SI units are used in all equations 

except for the specified equations, but oilfield units are shown in the results.  
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Figure II-1.  A small discontinuous segment in an infinite two-dimensional nonporous medium (after 
Crouch and Starfield, 1983). 
 

Following is an illustration of the elastic DDM method:    

The curvy fracture in a two-dimensional infinite nonporous medium shown in 

Figure II-2 is discretized into 5 segments and the influence of displacement 

discontinuities on an arbitrary field point (x, y) from the curvy fracture can be 

approximated by summing the influences from the 5 fracture segments on the point (x, y).   

x 

y 

+Dn +Ds 

2a 
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Figure II-2.  A curvy fracture discretized into 5 segments in an infinite two-dimensional nonporous 
medium. 

 

The fundamental solutions (Eq. (2-1)) are for a fracture segment parallel to the x-

axis and the center of the fracture segment located at (0, 0).  To apply the fundamental 

solutions, the field point (x, y) shown in Figure II-2 must be transformed into a local co-

ordinate system for the jth fracture segment with an angle βj with x-axis, as in Figure II-3.  

The x -axis of the local co-ordinate system is parallel to the orientation of the jth fracture 

segment.  The field point (x, y) is transformed to the local x , y co-ordinate. 
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where (xj, yj) is the midpoint of the jth fracture segment.  The induced stresses on the 

field point in the local x , y  co-ordinate system by the normal and shear displacement 

discontinuities of the jth fracture are: 
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The induced stresses on the field point (x, y) in the x, y co-ordinate system by the jth 

fracture segment are obtained by transforming the Eq. (2-4) from the local x , y  co-

ordinate system to the x, y co-ordinate system using the transformation formula (Crouch 

and Starfield, 1983). 
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The induced stresses on an arbitrary point (x, y) by the displacement discontinuities of 

the curvy fracture are approximated by superposition as the sum of the influences from 

all 5 fracture segments. 
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Figure II-3.  Local co-ordinate for the jth fracture segment in an elastic nonporous medium. 
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If the field point (x, y) coincides with the midpoint (xi, yi) of the ith fracture 

segment, the Eq. (2-4) are the induced stresses on the ith fracture segment by the normal 

and shear displacement discontinuities of the jth fracture segment in the local x , y  co-

ordinate system (Figure II-4).  The induced stresses on the ith fracture segment by the jth 

fracture segment can be transformed into normal and shear stresses to the ith fracture 

segment using the following formula. 
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The induced normal and shear stresses on the ith fracture segment by the normal and 

shear displacement discontinuities of all fracture segments are obtained by summing the 

solutions in Eq. (2-9). 
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Figure II-4.  Influence of jth fracture segment on the ith fracture segment in an elastic nonporous 
medium. 
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If the displacement discontinuities of the curvy fracture in the example shown in 

Figure II-2 are unknown variables, but the normal and shear stresses in the curvy 

fracture are known, the induced displacement discontinuities of the curvy fracture for the 

stresses on the fracture can be obtained by simultaneously solving the following 10 sets 

of linear equations (shown in matrix form) built from Eq. (2-11). 
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This method is for elastic nonporous media.  Next section will give the DDM in 

porous media saturated with compressible single-phase fluid.  

2.2 Fully coupled DDM for porous media saturated with a compressible single-phase 

fluid  

 

The interaction of fluid and porous matrix plays a key role in the matrix 

deformation and fluid flow in the fluid-saturated porous media.   The porous matrix 



 

 

27 

deformation causes pore pressure change, thereby causing pressure diffusion.  A 

disturbance in the pore pressure also causes deformation of the solid matrix.   Biot (1941) 

developed a theory of poroelasticity for a porous medium saturated with an 

incompressible fluid.  The theory of poroelasticity was extended to the porous media 

saturated with compressible fluid by Rice and Cleary (1976).  Based on the theory of 

poroelasticity, Carvalho (1990) gave the fundamental solutions of induced stress and 

pore pressure for a finite thin fracture segment with a fluid injection/production source in 

an infinite two-dimensional homogeneous and isotropic porous medium saturated with a 

compressible single-phase fluid.  The induced stress and pore pressure by a single long 

fracture or many fractures with fluid injection/production can be obtained by discretizing 

the fracture or fractures into N fracture segments and summing the influences of all N 

fracture segments.   If the induced stress and pore pressure in fractures are known, the 

normal and shear deformation of fractures and fluid injection/production rate (interface 

flow rate) in these fractures can be obtained by numerically solving a set of linear 

equations built from the fundamental solutions.   

This section will start from the constitutive equations of a porous medium 

saturated with a compressible single-phase fluid in subsection 2.2.1.  The constitutive 

equations give the relations of stress, pore pressure, strain and fluid volume changes.  

Then the pressure diffusion equation for flow in the porous medium will be given in 

subsection 2.2.2.  Based on the coupled constitutive equations and the pressure diffusion 

equation, the fundamental solutions of induced stress and pore pressure for a single finite 

thin fracture segment under constant displacement discontinuities or constant rate fluid 
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injection/production in an infinite two-dimensional homogeneous and isotropic porous 

medium saturated with a compressible single-phase fluid will be given in subsection 

2.2.3.  Subsection 2.2.4 will describe how superposition of the fundamental solutions 

enables consideration of a long fracture or many fractures, and the subsection 2.2.5 will 

give a method for determining the normal and shear fracture deformation and fluid 

injection/production rate given the time dependent stress and pore pressure in fractures.  

2.2.1 Constitutive equations of a porous medium saturated with a compressible single-

phase fluid 

       

The relation of stress to strain and pore pressure for a linear isotropic poroelastic 

medium is given by Biot’s theory of poroelasticity (Biot, 1941): 
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where σxx, σyy, σzz, σxy, σxz, and σyz are stress components and exx, eyy, ezz, exy, exz, and 

eyz are strain components of the porous medium, kke is the volumetric strain 

( zzyyxxkk eeee ++= ), p is the pore pressure, α is Biot’s poroelastic coefficient. Tensile 
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stress and strain are treated as positive in this dissertation.  The strain is defined 

according to the displacement: 
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where ux, uy and uz are the components of displacement of the porous medium along x, y 

and z direction, respectively.  The static solid is subject to the following force balance 

(Biot, 1941): 
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Combining Eqs. (2-13), (2-14) and (2-15) yields the Navier equation of poroelasticity: 
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      The total volumetric deformation ( kke ) of the porous medium consists of the 

pore space change ( pς ) and the deformation of the solid porous matrix ( sς ).   The 

deformation of the solid porous matrix is due to the fluid pressure and effective stress 

loading: 

(i) the effect of fluid pressure (the compression stress or strain is negative): 

 ( )φς −−= 11
s

s K
p  (2-17)  

(ii) the effect of effective stress loading 

 
s

kk
s K3

'

2
σς =  (2-18)  

where sK is the bulk modulus of the solid and φ  is the porosity.  The average effective 

stress ( 3/'
kkσ ) has the following relation with the volumetric strain and pore pressure 

(Carvalho, 1990): 
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where mK  (Km < Ks) is the bulk modulus of the porous matrix. Combining Eqs. (2-17) 

and (2-18), and substituting Eq. (2-19) result in the deformation of the solid porous 

matrix: 
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The pore space change is obtained by subtracting the deformation of the solid porous 

matrix from the total volumetric strain and using the definition of Biot’s coefficient, α, 

( sm KK /1−=α ): 
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pe φαας −+=  (2-21)  

2.2.2 Pressure diffusion in a porous medium 
        

The fluid mass balance equation in a porous medium (matrix) gives that the fluid 

flowing into/out is equal to the sum of the increase of fluid mass in the pore space and 

injected/produced fluid: 
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where fρ  is the fluid density, qx, qy, qz are the fluid flow rate components in x, y, z 

direction, respectively, fV is pore space, sq is the injection/production rate and t  is time.  

The fluid is compressible and the fluid density is pressure dependent: 
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where co is the fluid (for example oil) compressibility.   

In a unit volume porous media, the pore volume is φ, and the pore volume 

change is pς , and the RHS of Eq. (2-22) is rewritten as: 
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Assuming Darcy’s Law for fluid flow, 
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where k is the matrix permeability and assumed as homogeneous and isotropic, Ax, Ay, 

Az are the cross section areas in x, y, and z direction, respectively, and µ is the fluid 

viscosity. 

Substituting Eqs.(2-21), (2-23) and (2-25) into Eq. (2-24), neglecting the term with 

2)(
ix

p
∂
∂  (Lee et al., 2003) and assuming small change in the pore volume (noting that the 

cross section area for a unit volume is 1) yield: 
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where 
s

o K
c

M
φαφ −

+=
1 and M is the Biot modulus. In Eq. (2-26), the left side is the net 

flow rate into the unit porous medium from the boundaries, the first right term (
t
p

M ∂
∂1 ) 
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is the fluid volume change due to the pore pressure change, the second right term 

(
t

ekk

∂
∂α ) is the fluid volume change due to the effective stress change, and the final term 

( sq ) is a source term.  

2.2.3 Fundamental solutions for a single fracture segment in an infinite two-dimensional 

porous medium 

 

The fundamental solutions of poroelastic DDM include induced stress, 

displacement and pore pressure from both the pressure/flow rate disturbance and the 

displacement discontinuities. For a plane strain condition (three-dimensions are 

simplified to two-dimensions), there is a constant discontinuity in the media and also 

constant flow (injection or production) along a thin fracture with a length of 2a from t=0 

(Figure II-5).  The initial conditions are defined in Eq. (2-27) and the inner and outer 

boundary conditions are defined in Eqs. (2-28) and (2-29).  Since only the induced 

solutions for changes in stress, displacement and pore pressure are needed, the initial 

values of stress, displacement and pore pressure are set as zero.  

(i) The initial conditions are given by 
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(ii) Boundary conditions are given by 

                 Inner boundary: 
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where q0 is a unit flow rate (q0=1 m3/sec).  

                 Outer boundary: 
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Figure II-5.  A thin line fracture in an infinite two-dimensional elastic porous medium, and the line 
fracture starts from (-a,0) and ends at (a,0). 
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Using the initial and boundary conditions (Eqs. (2-27) – (2-29)), Eqs. (2-16) and 

(2-26) can be solved for separate inner boundary conditions – constant volume flow rate 

injection/production (ux(x, 0-)- ux(x, 0+)=0, uy(x, 0-)- uy(x, 0+)=0, qs =-2aq0) at the inner 

boundary and constant displacement discontinuity (DD) (ux(x, 0-)- ux(x, 0+)=Ds, uy(x, 0-)- 

uy(x, 0+)= Dn, qs =0) at the inner boundary (Carvalho, 1990).  The induced displacement, 

pore pressure and stress at any point (x, y) and time t by the constant volume 

injection/production rate and by the displacement discontinuities including normal and 

shear displacement discontinuities through the fracture segment are given in the 

Appendix A and Appendix B, respectively (Carvalho, 1990). The final fundamental 

solutions for poroelastic DDM are obtained by combining the solutions of the constant 

volume rate fluid injection/production and the constant displacement discontinuities in 

the fracture segment.  

           Induced pore pressure: 
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            Induced displacement: 
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             Induced stress: 
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where Dn and Ds are the normal and shear displacement discontinuity sources, and qint is 

the fluid source term in a fracture (interface flow rate between fracture and matrix), and 

the superscripts dn, ds and q denote normal displacement discontinuity source, shear 

displacement discontinuity source and fluid source, respectively.  The induced pore 

pressure, qp , displacement in x direction, q
xu  and in y direction, q

yu , stress components,  

q
xxσ , q

yyσ  and q
xyσ by the constant rate fluid injection/production from a fracture segment 

are listed in Appendix A.  The induced pore pressure, dnp  and dsp , displacement in x 

direction, dn
xu  and ds

xu , and in y direction, dn
yu and ds

yu , stress components, dn
xxσ , dn

yyσ , 

dn
xyσ , ds

xxσ , ds
yyσ and ds

xyσ  by the constant normal and shear discontinuous displacement of a 

fracture segment are listed in Appendix B.   

2.2.4 Solutions for multiple fracture segments in an infinite two-dimensional porous 

medium 

 

For a long fracture or many fractures in a porous medium saturated with a 

compressible single-phase fluid, the induced stresses and pore pressure can be 

approximated by summing the fundamental solutions for a system of fracture segments.  

Figure II-6 shows a porous medium containing a curvy fracture like the one in section 
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2.1 that was in a nonporous medium.  The curvy fracture is discretized into 5 fracture 

segments shown in Figure II-6.  To apply the fundamental solutions to the jth fracture 

segment, it is necessary to transform the x, y co-ordinates of the segment into the local x , 

y  co-ordinate system using the transformation formula in Eq. (2-3).  The pore pressure 

and stresses induced by the normal and shear displacement discontinuities and the fluid 

injection/production of the jth fracture segment in the local x , y  co-ordinate system 

(Figure II-7) are given in Eqs. (2-33) and (2-34), respectively.   

           Induced pore pressure: 
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Figure II-6.  A curvy fracture discretized into 5 segments in an infinite two-dimensional porous 
medium saturated with a single-phase fluid. 

 

The stresses induced by the jth fracture segment in the local x , y  co-ordinate system 

can be transformed to the x, y co-ordinate system using the transformation formula in Eq. 

(2-6).  Now the induced stresses from all 5 fracture segments can be obtained by 

superposition. (Eq. (2-7)).  As the pore pressure is a scalar, it is independent of the 

orientation of the co-ordinate system.  The induced pore pressure by the jth fracture in 

the x, y co-ordinate system is the same as that in the local x , y  co-ordinate system. 

 ),,(),,( tyxptyxp
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= , (2-35)  

And the induced pore pressure by the curvy fracture can be obtained by summing the 

induced pore pressure from all 5 fracture segments.  
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Figure II-7.  Local co-ordinate for the jth fracture segment in a porous medium. 
 

The normal and shear stresses induced on the ith fracture segment by the jth 

fracture segment shown in Figure II-8 are obtained by projecting the stresses in Eq. (2-

34) to the plane of the ith fracture using the formula in Eq. (2-8).  The normal and shear 

stresses and pore pressure induced on the ith fracture segment by the constant rate fluid 

injection/production and the constant normal and shear displacement discontinuities of 

the jth fracture are: 
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Figure II-8.  Influence of the jth fracture segment on the ith fracture segment in an elastic porous 
medium. 
 

The normal and shear stresses and pore pressure induced on the ith fracture segment by 

the constant rate fluid injection/production and constant normal and shear displacement 

discontinuities of all fracture segments are obtained by summing the solutions in Eq. (2-

37). 
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2.2.5 Determination of the fracture discontinuous displacement 
 

Up to now we have determined normal and shear stresses and pressure given 

discontinuous displacements in the fractures and fluid injection/production sources. 

However, the practical application may require determination of the fracture 

discontinuous displacement given stress and fluid pressure in fractures. Because the 

stress and pore pressure changes induced by the constant rate fluid injection/production 

and displacement discontinuities of fractures are a function of time, it is necessary to 

account for the time dependent changes.   For time dependent normal displacement 

discontinuity, Dn, shear displacement discontinuity, Ds, or injection/production flow rate 

(interface flow rate between fracture and matrix), qint, a time marching scheme like that 

shown in Figure II-9 is used to discretize the time dependent quantity into N constant 

steps and use superposition to account for each step change at the time it occurs.  The 

constant step source except for the first one does not start at the time zero (t=0). Thus a 

time shift is needed to apply the fundamental solution and the influence coefficients. For 

example, at time τξ , if constant ∆Dn(xj,yj,τξ), ∆Ds(xj,yj,τξ) and ∆qint(xj,yj,τξ) of the jth 

fracture segment are added, the induced stresses and pore pressure on the ith fracture 

segment at time t by the added sources will be : 
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where n

j
D
ξ

∆ , s

j
D
ξ

∆ and int

ξj
q∆ denote the increments of normal displacement 

discontinuity, shear displacement discontinuity and injection/production flow rate 

(interface flow rate) of the jth fracture segment at time τξ.  ( )ξτ−tA
ij
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ij
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 are the 

influence coefficients of jth fracture segment on the ith fracture element at time step ξ 

and defined in the Eq. (2-38).  The total induced stresses and pore pressure on the ith 

fracture segment at time t are obtained by summing the influences from all time steps.  
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where h is the time step index.  
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Figure II-9.  Time marching scheme, χ represents Dn, Ds or qint. 
 

If the induced stresses and pore pressure at all fracture segments shown in Figure 

II-6 are known, the step change of normal and shear displacement discontinuities and 

injection/production flow rate can be solved from τ0 to τξ. Firstly, at time τ0 (τ0=0), the 

induced stresses and pore pressure on the ith fracture segment from τ0 to τ1 are known, 

Eq. (2-42) is rewritten as Eq. (2-43) (note that there is only one time step).  

  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )∑∑∑

∑∑∑

∑∑∑

===

===

===

∆−+∆−+∆−=

∆−+∆−+∆−=

∆−+∆−+∆−=

5

1
int

0

01

5

1

0

01

5

1

0

011

5

1
int

0

01

5

1

0

01

5

1

0

011

5

1
int

0

01

5

1

0

01

5

1

0

011

j

jij

j
s

jij

j
n

jiji

j

jij

j
s

jij

j
n

jij

s

i

j

jij

j
s

jij

j
n

jij

n

i

qNDHDLp

qKDFDE

qCDBDA

τττττττ

τττττττσ

τττττττσ

 (2-43)  

One set of linear equations can be built from Eq. (2-43), and the increment of normal 

displacement discontinuity, shear displacement discontinuity and injection/production 

flow rate (interface flow rate) for all fracture segments at time τ0 can be solved from the 

set of linear equations. By the similar way, the step sources at other time steps can be 

χ(xj,yj,τ) 

∆χ(xj,yj,τ1) 
∆χ(xj,yj,τ0) 
 

∆χ(xj,yj,τξ) 

τ τ0  τ1 
 

τξ          t 
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solved.  For the last time step, the induced stresses and pore pressure at time t are known 

and the step sources before the step τξ are already solved, and only the last step sources 

are not known and need to be solved (2-44). 
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Another set of linear equations can be built from Eq. (2-44) and the increment of normal 

displacement discontinuity, shear displacement discontinuity and injection/production 

flow rate /interface flow rate for all fracture segments at time τξ can be solved from the 

set of linear equations.  The final normal and shear displacement discontinuities and 

injection/production flow rate (interface flow rate) of every fracture segment at time t 

can be obtained by summing all of these step increments.  
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2.3 Model verification 
 

It is difficult to find analytical solutions for most real problems.  Numerical 

methods have the advantage to solve the real problems sometimes with very complicated 

boundary conditions.  A few special problems with simple boundary conditions can be 

solved analytically, and these analytical solutions are very helpful to check and verify 

the numerical solution by the DDM.   Here, the DDM is applied to a line crack in an 

infinite medium. 

An infinitely thin line crack with a length of ∆L in an infinite elastic medium is 

subject to a constant pressure (tensile stress) p along the crack surfaces (Figure II-10).  

The normal relative displacement of the two crack surfaces (opening), wf , was solved by 

Sneddon (1951). 

 ( )
( )2

2

2/
11

L
x

G
Lpvwf ∆

−
∆−

=  (2-46)   

where 2/2/ LxL ∆≤≤∆− . 
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Figure II-10. A line crack with constant pressure loading. 
 

This problem can be solved using the DDM.  The line crack is separated into N 

segments, each of which represents an elemental displacement discontinuity.  And the 

displacement of every segment can be solved by applying the boundary conditions 

(constant pressure along the crack surfaces).    For a elastic nonporous medium with a 

shear modulus of 9.06×105 psi and a Poisson’s ratio of 0.2, there is an infinite thin line 

crack with a length of 39.37 in, and a constant injection pressure of 145 psi above the 

reservoir pressure (∆p = pinj – p0 = 145 psi) applied to the crack surfaces.  The original 

crack aperture is assumed as zero and the effective stress is zero. Figure II-11 shows that 

the crack width modeled using the DDM is consistent with the analytical solution.   
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Figure II-11. Comparison of the modeled crack width using elastic DD with the analytical solution. 
 

If the elastic porous medium is saturated with fluid, a constant fluid pressure 

applied to the crack surfaces will cause a transient crack opening.  In addition to the 

stress applied to the crack surfaces, there is also a fluid pressure applied to the pore 

pressure field in the porous medium.   It is common to separate the pressure application 

into two loading processes (Detournay and Cheng, 1988): (i) Mode I loading – normal 

stress loading; (ii) Mode II loading – pore pressure loading.  Mode I loading tends to 

open the crack.  But the opening of crack will cause a compression on the porous 

material around the crack.  At very early time stage, the fluid in the pores cannot move 

out and the porous material shows undrained behavior, and the pore pressure around the 

crack has an instant increase.  The induced pore pressure dissipates and decreases with 
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time until it reaches a drained stage with no pore pressure gradient.  The crack width 

increases when the poroelastic material changes from undrained stage at early time to the 

drained stage at long time as the pore pressure dissipates and the material around the 

crack becomes more “soft”.   Mode II loading tends to reduce the crack opening as the 

fluid flows into the porous material around the crack and increase the pore pressure 

which tends to cause an expansion of the porous material around the crack.  

Considering the Mode I and Mode II loading processes for the same crack and 

loading as before and poroelastic and fluid parameters listed in Table II-1, the crack 

shows a transient opening.  If only Mode I loading, the crack width increases with time 

and reaches a stable state at long time as in Figure II-12.  At short time, the crack opens 

as the crack in an elastic material with a Poisson’s ratio the same value as the undrained 

Poisson’s ratio in Figure II-13.  At long time,  it evolves to the drained stage with the 

opening as the crack in an elastic material with a Poisson’s ration the same value as the 

drained Poisson’s ratio in Figure II-13.    If only Mode II loading, the crack closes with 

time (Figure II-14) as the fluid flows from the crack into the adjacent formation.  The 

crack closure approaches its maximum values at infinite time when the pore pressure 

around the crack approaches the fluid pressure in the crack.   Figure II-15 shows the 

fracture closing at 1.91×105 hours, which is smaller than the opening induced by Mode I 

loading.   The crack still opens with the fluid injection with a constant pressure modeled 

by combining Mode I and Mode II loading.  The crack has an instant opening, and then 

the width reduces with time.  But the crack is still open at long time (Figure II-16).   The 

crack shows the same opening as the analytical solution for the undrained case (Figure 
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II-17).   But crack width reduces with time due to Mode II loading, and approaches a 

smaller opening at long time instead of approaching the analytical solution for drained 

stage (Figure II-17).   

 

Table II-1.  Parameters in the modeling of pressurized crack. 
 

Shear modulus G (psi) 8.6×105 

Possoin’s ratio υ 0.16 

Undrained Possoin’s ratio υu 0.31 

Matrix permeability (md) 0.8 

Matrix porosity φ 0.2 

Biot’s coefficient α 0.83 

Fluid viscosity µ (cp) 1 

Fluid compressibility (/psi) 2.9×10-6 
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Figure II-12. Mode I loading: the crack opens as a function of time at x=0.2 in. 
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Figure II-13. Comparison of the modeled crack openings at short time and long time with the 
analytical solutions for Mode I loading.  
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Figure II-14. Mode II loading: the crack closes as a function of time at x=0.2 in. 
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Figure II-15. The crack closing at t=1.91×105 hrs for Mode II loading.  
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Figure II-16. The crack width for Mode I +II loading at x=0.2 in. 
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Figure II-17. Comparison of the modeled crack openings at short time and long time with the 
analytical solutions for Mode I+II loading.  
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2.4 Chapter conclusions 
 

This chapter described the DDM including elastic DDM for nonporous media 

and fully coupled poroelastic DDM for porous media saturated with a compressible 

single-phase fluid.  The fully coupled DDM is based on Biot’s theory of poroelasticity. 

For an infinite elastic porous medium containing fractures, if the change of stress and 

pore pressure in these fractures are known, the fracture aperture change can be 

determined by using the fully coupled DDM.  In real situations, neither the change of 

stress in fracture nor fracture aperture change is known in the reservoir.  But many 

investigations have shown that there is a relation between the stress change and the 

fracture aperture change in fractures.   Chapter III will give the surface characteristics of 

fractures with rough surfaces and the relation of stress and fracture deformation.  The 

pore pressure change in the fractures is not known directly either.  Usually only the flow 

rate or fluid pressure in the well is known while producing from a fractured reservoir, 

the required fluid pressure change in fractures is determined using a numerical finite 

difference method (FDM) described in Chapter IV.  Finally the fracture aperture change 

due to production can be determined by combining the DDM, the constitutive model of 

fracture deformation and an FDM to determine the fluid pressure change in fractures. 
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CHAPTER III                                                                                                 

NONLINEAR DEFORMATION OF A SINGLE                                                  

ROUGH FRACTURE UNDER STRESS 

 

The fracture is also termed a joint in geology publications.  In this dissertation 

both fracture and joint describe two contacting rough surfaces with voids that are 

completely connected in three-dimensional space.  The rough fracture under stress will 

deform with the change of stress. There are three types of deformation – normal 

deformation, shear deformation and dilation.  The deformation for a single rough 

fracture has been studied by testing the stress–displacement relationship of natural or 

artificially fractures in laboratories (Goodman, 1976, Bandis et al., 1981, Bandis et al., 

1983, Sun et al., 1985, Boulon et al., 1993, Huang et al., 2002, Lee and Cho, 2002).  The 

constitutive model (Barton-Bandis model) for fracture deformation was presented based 

on the experimental results by Bandis et al. (1983) and Barton et al. (1985).    The 

empirical model only needs some basic fracture characteristic parameters, e.g. the joint 

roughness coefficient (JRC), the joint compressive strength (JCS) etc., which can be 

measured in laboratory.   The fracture deformation usually causes the fracture opening or 

closure, and changes the fracture aperture.  The “cubic law” which is derived from the 

fluid flow between two smooth plates is also applicable to calculate the hydraulic 

conductivity or permeability for closed rough fractures with a correction coefficient 

(Witherspoon et al., 1980).  Barton et al. (1985) presented a method to correlate the 

effective hydraulic aperture to the average mechanical aperture and the “cubic law” is 
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applicable using the correlated effective hydraulic aperture.  Consequently, the fracture 

permeability change caused by stress change also can be derived and analyzed.  

The chapter will start with the fracture surface characteristics in Section 3.1. 

Then Section 3.2 will give the relation between normal stress and normal deformation.  

Section 3.3 will show the mechanism of shear deformation and dilation, and also the 

relation between shear stress and shear displacement.  Section 3.4 will give the 

definitions for the effective hydraulic aperture and the average mechanical aperture, and 

how they are related to permeability.  Finally, the conclusions of this chapter will be 

given in section 3.5.  

3.1 Surface characteristics of a fracture 
  

The fracture deformation depends on the fracture surface characteristics.  The 

constitutive models need values for surface characteristics, such as JRC, JCS, 

unconfined compression strength (rock adjacent to the wall) (σc), residual friction angle 

(φr), etc.   JRC, JCS and φr are three key parameters in the Barton-Bandis joint model.  

Barton and Choubey (1977), and Barton (1982) developed methods to quantify these 

parameters for fractures. 

3.1.1 Joint compressive strength (JCS) 
 

The measurement of JCS is fundamentally important because it is largely the thin 

layers of rock adjacent to joint walls that control the strength and deformation properties 

of the rock mass as a whole (Barton and Choubey, 1977).  Usually for natural fractures, 
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JCS is much smaller than the strength of intact rock as the fracture surface is weakened 

by weathering (e.g. mechanical disintegration, chemical decomposition).  JCS can be 

measured by Schmidt Hammer Index test (Barton and Choubey, 1977).   Typical JCS 

values are listed in Table III-1. 

 

Table III-1.  Typical JCS values (ISRM, 1978). 
 
Grade Description Field identification JCS (MPa) 
S1 Very soft clay  Easily penetrated several inches by fist <0.025 
S2 Soft clay  Easily penetrated several inches by thumb 0.025-0.05 
S3 Firm clay  Can be penetrated several inches by thumb 

with moderate effort 
0.05-0.10 

S4 Stiff clay  Readily indented by thumb but penetrated 
only with great effort 

0.10-0.25 

S5 Very stiff clay  Readily indented by thumbnail 0.25-0.50 
S6 Hard clay  Indented with difficulty by thumbnail >0.50 
R0 Extremely weak 

rock 
Indented by thumbnail 0.25-1.0 

R1 Very weak rock  Crumbles under firm blows with point of 
geological hammer, can be peeled by a 
pocket knife 

1.0-5.0 

R2 Weak rock  Can be peeled by a pocket knife with 
difficulty, shallow indentations made by 
firm blow with point of  Geological hammer 

5.0-25 

R3 Medium strong  Cannot be scraped or peeled rock with a 
pocket knife, specimen can be fractured 
with single firm blow of geological hammer 

25-50 

R4 Strong rock  Specimen requires more than one blow of 
geological hammer to fracture it 

50-100 

R5 Very strong rock  Specimen requires many blows of 
geological hammer to fracture 

100-250 

R6 Extremely strong 
rock  
 

Specimen can only be chipped with 
geological hammer 

>250 

Note: Grades S1 to S6 apply to cohesive soils, for example clays, silty clays, and combinations 
of silts and clays with sand, generally slow draining. Discontinuity wall strength will generally 
be characterized by grades R0-R6 (rock) while S1-S6 (day) will generally apply to filled 
discontinuities.  
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3.1.2 Basic friction angle (φb) and residual friction angle (φr) 
 

φb is the friction angle for unweathered fracture and φr is for weathered fracture 

angle. The friction angle is defined as arctan (τpeak/σn), where τpeak is the shear stress 

required to initiate the fracture to slide under a normal stress σn. The friction angle 

between two rough surfaces (unweathered or weathered) can be measured by the tilt test 

shown in Figure III-1. The sample is tilted till the upper surface starts to slide.  The angle 

between the initial sliding surface and the horizontal surface is the friction angle.  The 

friction angle is an important parameter to predict the shear strength, thereby predicting 

the shear displacement, shear dilation, etc.  Friction angle values for most unweathered 

rocks lie between 25° to 35° and are listed in Table III-2 (Barton and Choubey, 1977).   

Under a high level of normal stress the rock beneath the weathered surface comes into 

effect and the residual friction angle φr approaches the basic friction angle φb.   However, 

under a low level of normal stress the residual friction angle φr is much lower than the 

basic friction angle φb. 

                                 

Figure III-1.  Tilt test on fractured sample. 
 

Friction angle 
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Table III-2.  Basic friction angles of various unweathered rocks obtained from flat and 
residual surfaces (Barton and Choubey, 1977). 
 
 Rock type      Moisture condition    Basic friction 

angle 
Reference* 

 
 
 
 
 
 

Sedimentary 
Rocks 

Sandstone  Dry  26--35 Patton, 1966 
Sandstone  Wet  25--33 Patton, 1966 
Sandstone  Wet  29 Ripley & Lee, 

1962 
Sandstone  Dry  31--33 Krsmanovid, 1967 
Sandstone  Dry  32--34 Coulson, 1972 
Sandstone  Wet  31--34 Coulson, 1972 
Sandstone  Wet  33 Richards, 1975 
Shale  Wet  27 Ripley & Lee, 

1962 
Siltstone  Wet  31 Ripley & Lee, 

1962 
Siltstone  Dry  31--33 Coulson, 1972 
Siltstone  Wet  27--31 Coulson, 1972 
Conglomerate  Dry  35 Krsmanovid, 1967 
Chalk  Wet  30 Hutchinson, 1972 
Limestone  Dry  31--37 Coulson, 1972 
Limestone  Wet  27--35 Coulson, 1972 

 
 
 
 
 

Igneous 
Rocks 

Basalt  Dry  35--38 Coulson, 1972 
Basalt  Wet  31--36 Coulson, 1972 
Fine-grained 
granite  

Dry  31--35 Coulson, 1972 

Fine-grained 
granite  

Wet  29--31 Coulson, 1972 

Coarse-grained 
granite  

Dry  31--35 Coulson, 1972 

Coarse-grained 
granite  

Wet  31--33 Coulson, 1972 

Porphyry  Dry  31 Barton, 1971b 
Porphyry  Wet  31 Barton, 1971b 
Dolerite  Dry  36 Richards, 1975 
Dolerite  Wet  32 Richards, 1975 

 
 
 

Metamorphic 
Rocks 

Amphibolite  Dry  32  Wallace et al., 
1970 

Gneiss  Dry  26--29  Coulson, 1972 
Gneiss  Wet  23--26  Coulson, 1972 
Slate  Dry  25--30  Barton, 1971b 
Slate  Dry  30  Richards, 1975 
Slate  Wet  21  Richards, 1975 

  * Refer to Barton and Choubey (1977) for specific references. 
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3.1.3 Joint roughness coefficient (JRC) 
   

In general the joint surface roughness can be characterized by waviness (large 

scale undulations which, if interlocked and in contact, cause dilation during shear 

displacement since they are too large to be sheared off) and by unevenness (small scale 

roughness that tends to be damaged during shear displacement unless the discontinuity 

wails are of high strength or the stress levels are low, so that dilation can also occur on 

these small scale features) (IRSM, 1978).  Barton and Choubey presented a method to 

describe the JRC and also presented a formula (Eq.3-1) to calculate the peak shear 

strength τpeak according to the JRC index. 

 

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σ

στ '10
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where σn′  is the effective normal stress and φr is the friction angle for weathered fracture.  

The JRC index can be measured by a tilt test or estimated by comparing with the profiles 

measured on other joints shown in Figure III-2 (Barton and Choubey, 1977). 
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Figure III-2.  Typical JRC values for joint samples of different roughness (Barton and Choubey, 
1977). 
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3.2 Normal deformation 
 

The two rough surfaces of a fracture are weaker and more deformable than intact 

rock.  The normal deformation of the two rough surfaces in response to the normal stress 

change across the fracture or fluid pressure change in the void space of the fracture has a 

direct important influence on the fracture aperture and fracture permeability.  The 

normal deformation of a fracture can be characterized by the relationship between the 

effective stress across the fracture and the fracture closure (the change of the average 

aperture of the fracture).   

Goodman (1976) measured the fracture closure as a function of normal stress on 

artificially induced tensile fractures in rock cores.  He measured the axial displacement 

of an intact rock core under axial stress and axial displacement of a rock core of the 

same size and an artificially induced tensile fracture perpendicular to the axis under the 

same axial stress.  The difference of the two displacements is the fracture closure.  

Fracture closure measurements were made for both mated fractures, for which the two 

surfaces of fracture were placed the same relative positions that they occupied before 

fracturing the core, and non-mated fractures, for which the two surfaces of fracture were 

rotated from their original positions relative to one another (Figure III-3).  The stress-

closure curves show high non-linearity, and the non-mated fracture has greater closure.    
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Figure III-3.  Measurements of the closure under normal stress of an artificially-induced tensile 
fracture in a rock core (Goodman, 1976). 

 

Bandis et al. (1983) have measured closure curves for a fracture under normal 

stress for a variety of natural and unfilled fractures with different degrees of weathering 

and roughness in slate, dolerite, limestone, siltstone and sandstone (Figure III-4 and 

Figure III-5).  They used the same method as Goodman used to determine fracture 

closure for natural fractures.  As expected, the fracture closures for weathered fractures 

(Figure III-5) were much greater than for fresh fractures (Figure III-4) under the same 

stress condition. With the increase of normal stress (σn), the stress–closure curves 

became gradually steeper and developed into virtually straight lines where the fractures 

have reached their fully closed state.  There was permanent deformation observed during 

the loading–unloading cycle.  Therefore the deformation characteristics of fractures also 

depend on the stress history of the fractures.   
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Figure III-4.  Normal stress (σn) vs closure curves for a range of fresh fractures in different rock 
types, under repeated loading cycles (Bandis et al., 1983). 
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Figure III-5.  Normal stress (σn) vs closure curves for a range of weathered fractures in different 
rock types under repeated loading cycles (Bandis et al., 1983). 
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Based on the experimental results Bandis et al. (1983) presented a hyperbolic 

function (Eq. (3-2)) to represent the normal stress–closure relationship. 

 
n

n
n Dbaa

D
−

=σ  (3-2) 

where Dn is the fracture closure, aa and b are constants.   Eq. (3-2) was rearranged into a 

linear form: 

 n
n

n DbaaD
−=

σ
 (3-3) 

aa and b can be obtained by using Eq. (3-3) to fit the measured normal stress–closure 

data, and Figure III-6) shows that Eq.(3-3) fits well with measured data.  When σn 

approaches infinity, the fracture closure approaches the maximum fracture closure Dnmax 

and Dnmax is equal to aa/b according to Eq. (3-3).   For extremely small normal stress 

(σn→0), the fracture closure will be small (Dn →0), and hence the initial normal fracture 

stiffness for σn→0 is defined: 
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Therefore Eq. (3-2) can be rewritten by substituting the two parameters initial normal 

fracture stiffness (Kni) and maximum fracture closure (Dnmax) for aa and b: 
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The normal stiffness (Kn) is then derived from Eq. (3-5) as a function of Dn or σn: 
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Bandis et al. (1983) also derived the empirical formulae for Dnmax (Eq. (3-8)) and Kni (Eq. 

(3-9)) in terms of JCS, JRC index and average fracture aperture (wf): 
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where A1, A2, B1, B2, C1, C2 and D are coefficients determined by fitting experimental 

data.  
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Figure III-6.  Linear plots of Dn/σn vs Dn for different fracture types, indicating good hyperbolic fit 
irrespective of the stress history and the loading mode (Bandis et al. 1983). 
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3.3 Shear deformation and dilation 
 

For a fracture under normal stress loading, the fracture will have a shear 

deformation if the shear stress (τ) is less than the peak shear strength (τpeak) and become 

instable and have a fast movement if τ exceeds τpeak.  However, for rough surfaces, the 

shear dilation caused by shear displacement may prevent the instability.  The typical 

shear stress–shear displacement curves have three stages, pre-peak, peak, and post-peak 

(Figure III-7).   

The peak shear strength is a critical parameter to predict the stability of fractures, 

faults or the initiation of nonlinear movement under anisotropic stress condition.  Barton 

(1976) presented a formula (Eq. (3-1)) to predict the peak shear strength τpeak according 

to the effective normal stress, the fracture surface roughness JRC, compression wall 

strength JCS and residual friction angle φr  based on large body of laboratory measured 

results under low effective normal stress (σn′<10MPa).  But the peak shear strength at 

high effective normal stress is independent of JRC, JCS, φr and even the rock type, and 

is only dependent on the effective normal stress.  Byerlee (1978) developed empirical 

formulae (Eqs. (3-10) and (3-11)) based on large body of experimental data on rocks 

including sandstone, limestone, granite, gabbro, etc.  

  MPannpeak 20085.0 '' <= σστ  (3-10) 

 MPaMPa nnpeak 20002006.050 '' <<+= σστ  (3-11) 
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According to the shear stress–shear displacement curves (Figure III-7), the pre-

peak curve can be approximated as a line.  The slope of the line is the pre-peak shear 

stiffness Ks: 

 
peaks

peak
s D

K
−

=
τ

 (3-12) 

where Ds-peak is the shear displacement when the shear stress reaches the peak value.  

The post-peak curve is very complicated and is often treated as a zero slope line, and the 

shear stiffness Ks is assumed as zero. 

When shearing of two rough surfaces occurs, the opposed asperities slide over 

each other and cause an increase in aperture.  The increase of fracture aperture induced 

by shear deformation was well investigated in laboratory by Bandis et al. (1981).  Figure 

III-8a shows the shear stress–displacement curves for different block size and Figure 

III-8b shows the corresponding aperture increase induced by the shear displacement at 

constant normal stresses.  The dashed lines show the dilation angle, which is defined as: 
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Figure III-7.  Shear stress – shear displacement for joints with different normal stress and JRC 
(Barton et al., 1985).  
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Figure III-8.  Cumulative mean shear stress---shear displacement (a) and dilation (b) curves (Bandis 
et al., 1981). 
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3.4 Fracture aperture and permeability 
 

Fracture aperture is the perpendicular distance between adjacent rock walls of a 

fracture.  The fracture deformation will change the fracture aperture, thereby changing 

the fracture permeability.  The relation of permeability and aperture for laminar flow 

through a pair of smooth parallel plates has been investigated and the cubic law was 

derived (Snow, 1965; Iwai, 1976).   The flow rate through the fracture (Figure III-9) is: 

  
dx
dpw

q f

µ12

3

−=  (3-14) 

Compared with Darcy’s law, the fracture permeability is: 
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Figure III-9.  Laminar flow through a pair of smooth parallel plates. 
 

The natural fracture is not completely open, and the surfaces are not smooth.  

Therefore, Eq. (3-15) cannot be applied to the natural fracture directly.  However, 

Witherspoon et al. (1980) found that the cubic law was still valid for partially closed 

fractures by laboratory investigations.  The investigated fracture aperture ranges from 

4µm to 250µm and the rock types include basalt, granite and marble.  The fracture 

wf x 

y 
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conductivity still has a cubic relation with the average fracture aperture.  But Eq. (3-15) 

requires a correction coefficient f to be valid for partially closed fracture.  

  
f

w
k f

f 12

2

=  (3-16) 

The correction coefficient in their investigation varied from 1.04 to 1.65.  

Barton et al. (1985) argued that Witherspoon et al. (1980) did not measure the 

real mechanical aperture, and that the aperture they used was an approximate hydraulic 

aperture.  Barton et al. (1985) still used Eq. (3-15) to relate fracture permeability to 

aperture, but substituted effective hydraulic fracture aperture for mechanical aperture.  

Based on published experimental data (Figure III-10), they developed an empirical 

formula to relate the hydraulic fracture aperture to mechanical aperture: 

 ( )2
5.2

/ eff
ef ww

JRCw =  (3-17) 

The unit of wef and wf is µm.    
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Figure III-10. Comparison of mechanical aperture and hydraulic aperture (Barton et al., 1985; 
Olson and Barton, 2001). 

 

3.5 Chapter conclusions 
 

This chapter described the characteristics of fracture surfaces, nonlinear Barton-

Bandis model of fracture deformation, and the relation of fracture permeability to 

fracture aperture in rough fractures.  In the nonlinear Barton-Bandis model of fracture 

deformation, the relation of normal stress and fracture closure is represented by a 

hyperbolic formula.  The relation of shear stress and shear displacement is linear before 

yielding and too complicated to represent using simple functions after yielding.  The 

model also includes shear dilation which is the fracture opening caused by shear 
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displacement.  The peak shear strength can be determined from the effective normal 

stress, JRC, JCS and friction angle.  The fracture permeability has a cubic relation to the 

effective hydraulic aperture but not the average mechanical aperture.  The effective 

hydraulic aperture is related with the average mechanical aperture using JRC.   

The next chapter will combine the DDM, the nonlinear Barton-Bandis model of fracture 

deformation, and an FDM to determine the pore pressure change in fractures and in turn 

to determine the change of fracture aperture and permeability due to production from a 

fractured reservoir.  
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CHAPTER IV                                                                                                   

MODELING OF THE FRACTURE APERTURE AND                         

PERMEABILITY CHANGE IN FRACTURED RESERVOIRS 

 

Throughout this study, the fractured reservoir is treated as a fracture network in a 

porous medium saturated with a compressible single-phase fluid. As in dual porosity 

models, the fracture network provides the main flow channels and the porous media 

provides the main storage media.  On production, the fluid flows from matrix to 

fractures, then in fractures to the well.  The fluid pressure change induces effective stress 

change and fracture aperture change, which in turn causes permeability changes in the 

fractures, the nature of which was addressed in the Chapter III.  The fracture 

permeability change in turn influences fluid flow.  Fluid flow in the fracture network is 

solved using a finite difference method (FDM).  The change of effective stress on the 

fractures induces fracture deformation including normal and shear deformation.  The 

fracture deformation also disturbs the stress distribution in the fracture network.  A new 

numerical method is developed in this chapter to determine the fluid pressure, fracture 

aperture change and stress change implicitly using an FDM to solve the diffusion 

equation for fluid flow in fractures, a fully coupled displacement discontinuity method 

(DDM) to determine the global fracture deformation relation, and the nonlinear Barton-

Bandis fracture deformation model to determine the local fracture deformation relation.   

This chapter will start with building and discretizing the equation for fluid flow 

in fracture network in Section 4.1.  And then Section 4.2 will describe a method for 
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combining the global and local relations between stress and displacement to fracture 

deformation.  Section 4.3 will present a new numerical method combining an FDM for 

the diffusivity equation governing fluid flow in fractures, a fully coupled DDM for 

determining the global fracture deformations, and a nonlinear fracture deformation 

model for determining the local fracture deformations.  In addition to the fully coupled 

method, an uncoupled method will be presented that saves computation time in cases 

where the effect of solid deformation on fluid flow is small.  Finally, Section 4.4 will 

give conclusions of this chapter.   

4.1 Fluid flow in the fracture network 
 

The apertures of real fractures vary in space (Figure IV-1) and the fluid flow 

inside is very complicated due to the rough surfaces.   But Witherspoon et al. (1980) 

verified that Darcy’s law is still valid and the rough fracture can be represented by a 

fracture with an average fracture aperture, as in Figure IV-2.  The one dimensional fluid 

material balance equation in the fracture including flow from the connected fractures and 

the interface flow from the connected matrices is given by 
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where ρf is the fluid density; qf is the flow rate in the fracture per unit formation 

thickness; qint is the interface flow rate per fracture length per unit formation thickness; 

∆L (given previously as 2a for the well fracture) is the length of fracture segment; qs is 

the production rate per unit formation thickness; n is the ratio of actual fracture void 
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volume (Vf) to the effective fracture void volume for fluid flow (Vef).  In Eq. (4-1), the 

left term, 
( )

x
q ff

∂
∂ ρ

 , is the net mass flow rate out of the fracture, the first right term, 

( )
t

Lwn ff

∂

∆∂ ρ
, is rate of fluid mass change in the fracture, the second right term, 

intqL fρ∆ , is the mass flow rate between fracture and the connected matrix, and the third 

right term, sf qρ , is a production term, for example for a producing well.     The flow 

rate in the fracture can be obtained by using Darcy’s law: 

 

Figure IV-1.  Fluid flow through a rough fracture. 
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where kf is the fracture permeability determined from the fracture aperture (3-15). 

Combining Eqs. (2-23) and (4-2), the net fracture flow rate term becomes: 
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Figure IV-2.  Fluid flow through an artificial fracture represented using average fracture aperture. 
 

The second term with squared pressure gradient multiplied by the small compressibility 

can be neglected (Lee et al., 2003), and the net fracture flow rate is approximated as: 
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The fluid mass change in the fracture includes two parts, one is due to fracture volume 

change and another one is due to fluid density change.  The fracture volume change is 

mainly from the fracture aperture change: 
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The fracture aperture change can be related with the fracture closure Dn: 
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Eq. (4-5) can be rewritten by substituting Dn for wf: 
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The fluid mass change due to fluid density change is: 
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Substituting Eq. (2-23) into Eq. (4-8) yields: 
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Combining Eqs. (4-1) – (4-9) yields the pressure diffusion equation: 
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In Eq. (4-10), the left term, 2

2

x
pwk ff

∂
∂

µ
, is the net flow rate in the fracture, the first right 

term, 
t
pLcwn of ∂
∂

∆ , is the fluid volume change due to fluid compression or expansion 

(fluid density change), the second right term, 
t

DLn n

∂
∂

∆  , is the fluid volume change due 

to fracture deformation, the third right term, intLq∆ , is the interface flow rate per 

formation thickness between fracture and the matrix, and the last term, sq , is the 

production rate per unit formation thickness. 

4.2. Mechanical coupling of fracture deformation 
 

In a fracture network, the change of stress and fracture deformation for any 

fracture obeys the constitutive relations for fracture deformation. There is a local relation 

for each fracture or fracture segment between its stress and deformation, and there are 

global relations for stress and fracture deformation among fractures in the fracture 

network.   
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4.2.1 Local relation between stress and displacement to fracture deformation 
 

For any fracture in the fracture network (Figure IV-3), the deformation must 

comply with the fracture deformation model.   The relation between effective normal 

stress change ∆σn′ and normal displacement ∆Dn of the ith fracture segment is:    

 
i

nn
ii

n DK ∆−=∆ 'σ  (4-11) 

The normal stiffness Kn is a coefficient which is dependent on the fracture closure (Eq. 

(3-6)) or stress (Eq. (3-7)).  The effective stress (tension is treated as positive) is defined 

as: 

 pnn ασσ +='  (4-12) 

where sm KK /1−=α  as before in Chapter II.  For a fracture, when the bulk modulus of 

system Km is much less than the solid bulk modulus Ks, the Biot coefficient becomes 

unity, and the effective stress is given by: 

 pnn +=σσ '  (4-13) 

Substituting Eq. (4-13) for effective stress in Eq. (4-11) yields (for each fracture 

segment): 
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The relation of shear stress change ∆σs and shear displacement ∆Ds is: 
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The shear stiffness is a constant before yielding and reduces to zero after yielding.  The 

normal deformation ∆Dn-dilation due to shear dilation is: 



 

 

83 

 ds
i
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The dilation angle is defined in Eq. (3-13).  Eq. (4-14) must be rewritten when the 

normal deformation induced by shear dilation is considered: 
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Figure IV-3.  Local relation of fracture deformation. 
 

4.2.2 Global relation between stress and displacement to fracture deformation 
 

In the fracture network with m fracture segments, there are interactions among 

fractures.  The stress change of the ith fracture segment is influenced by the deformation 

of all the fracture segments in the system.  For the elastic DDM (Eq. (2-11)), the change 

of normal and shear stresses of the ith fracture segment is related with the normal and 

shear deformation of all the fracture segments as: 

σn′ 
σs 
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For the poroelastic DDM, the interface flow rate between fracture and matrix also has an 

impact on the stress change.  Therefore, the change of normal and shear stresses of ith 

fracture segment depends on the interface flow rate in addition to the normal and shear 

deformation of all fracture segments according to Eq. (2-40). 
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The change of fluid pressure of ith fracture also depends on the interface flow rate, 

normal and shear deformation of all fracture segments according to Eq. (2-40).  
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4.3 Uncoupled and coupled solution methods 
 

The changes in fracture apertures due to production can be determined by solving 

the pressure diffusion equation in fracture network, the fracture deformation model for 

local stress—displacement relations and the DDM for global stress–displacement 

relations.  The result can be determined using an uncoupled method or a coupled 

solution method. The uncoupled method saves computation time and provides a suitable 



 

 

85 

approximation when the effect of solid deformation on fluid flow is small.  The 

uncoupled method first solves for the fluid pressure change from the diffusivity equation,   

and then uses the resulted fluid pressure change as a boundary condition to determine the 

fracture deformation by combining the constitutive equations for fracture deformation 

(Eqs.(4-15) and (4-17)) and stress–displacement relations from the elastic DDM (Eq. (4-

18)).  The coupled method simultaneously obtains the fluid pressure change, interface 

flow rate, fracture deformation by solving together the diffusivity equation (Eq. (4-10)), 

constitutive equations for fracture deformation (Eqs. (4-15) and (4-17)), and stress–

displacement relations from the poroelastic DDM (Eqs. (4-19) and (4-20)). 

4.3.1 Uncoupled method 
 

The change of normal fracture closure is related with the pore pressure change 

according to Eq. (4-14) by defining a fracture compressibility parameter cfr. 
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Substituting Eq. (4-21) into Eq. (4-10) yields: 
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where ct=co+cfr is the total compressibility.  Eq. (4-22) can be discretized for a given 

fracture network using an implicit finite difference method. 
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where m is total fracture elements, Cp is coefficient matrix, the subscript l+1 indicates 

new time level and the subscript l indicates the old time level, and 
i

sq  is the production 

from the ith fracture element.  The interface flow rate qint is an unknown and can be 

determined using an iterative method.  For every time step, the interface flow rate qint is 

assumed as zero for the first iteration step.  Then Eq. (4-23) can be solved to obtain the 

fluid pressure distribution in the fracture network.  The new fluid pressure in fractures 

can be taken as the boundary conditions for every matrix element (Figure IV-4) and the 

fluid flow between the matrix and fractures around it can be obtained by finite difference 

solution of the uncoupled diffusivity equation (Eq. (4-24)) in the matrix.   After the 

pressure distribution in the matrix is determined, the flow rate at the boundary between 

the matrix element and surrounding fractures can be obtained from Darcy’s law    
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where cmt is the total compressibility of fluid and matrix.  Then interface flow rate int

1i
q  is 

used to solve Eq. (4-23) in the second iteration.  A new interface flow rate int

2i
q  can be 

obtained as for the second iteration, and this process is repeated until the difference 

between successive interface flow rate values is smaller than the accuracy needed to the 

problem. At that point, the iteration terminates and the calculation begins for the next 

time step.  The pressure distribution at the last iteration is taken as the result for that time 

step.   
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Figure IV-4.  Interface flow rate between fracture and matrix. 
 

The effective stress change in a fracture resulting from changes in pore pressure 

and the total stress is illustrated in Figure IV-5.  The effect is that of a set of springs 

between two plates, and the stress acting on the springs represents the effective stress.   

The compression effective stress (-∆σn′) increases with the decrease of pore pressure (∆p) 

and the increase of compression total stress (-∆σn).  After the pressure change, ∆p, is 

solved for every time step, a set of linear equations for effective stress change is 

obtained by combining Eqs. (4-15), (4-17) and (4-18). 
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The normal and shear displacement for every time step can be obtained by solving the 

linear equation (4-25).    

 

Figure IV-5.  Illustration of effective stress change on fracture. 
 

After solving the fracture displacement, the fracture aperture and permeability 

are updated.  
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The fracture aperture at the new time step is determined by subtracting the fracture 

closure determined from the previous time step.  Then the fracture permeability is 

updated according to Eq. (3-15).  If the difference between mechanical hydraulic 

aperture is to be considered, Eq. (3-17) is used to convert the mechanical aperture into 

the hydraulic aperture to update the fracture permeability and diffusivity equation is 

modified to use the hydraulic aperture, wef,  instead of the mechanical aperture, wf, used 

in Eq. (4-10). 
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4.3.2 Coupled method 
 

The fluid pressure change induces fracture deformation and the fracture 

deformation also influences the fluid pressure distribution.  In the coupled method, the 

equations for fluid pressure, interface flow rate, and normal and shear fracture 

displacement are solved simultaneously.  

The poroelastic DDM solutions are both space and time dependent, and the 

fundamental solutions are based on constant displacement discontinuities and constant 

interface or source flow rates.  However, for practical applications, the displacement 

discontinuities and interface flow rates in Eqs. (4-19) and (4-20) are time dependent.  

The time marching scheme shown in Figure II-9 is used to allow source strengths (the 

displacement discontinuities and interface flow rate) to change with time.  Starting each 

boundary integration from an initial homogeneous status avoids the need for volumetric 

integration (Carvalho, 1990).  Therefore, all the previous increments of source strengths 

must be included while numerically integrating the effect of source strengths at each 

time step.  According to Eq. (2-44), the induced stress and pore pressure on the ith 

fracture segment by the increments of source strengths are: 
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 (4-28) 

where n

j
D
ξ

∆ , s

j
D
ξ

∆  and int

ξj

q∆ are the source strength increments for the jth fracture 

segment at the current time step, ξ;  n

jh

D∆ , s

jh

D∆  and int

jh

q∆ are the previous source 

strength increments of  for the jth fracture segment at time step h, which indexed from 1 

to ξ-1.  ( )h

ij
tA τ− , ( )h

ij
tB τ− , ( )h

ij
tC τ− , ( )h

ij
tE τ− , ( )h

ij
tF τ− , ( )h

ij
tK τ− , ( )h

ij
tL τ− , 

( )h

ij
tH τ− , and ( )h

ij
tN τ−  are the influence coefficients of jth fracture element on the ith 

fracture element at time step h as defined in Eq. (2-38). 

Using the same time discretization, the effective normal stress change (Eq. (4-17)) 

and shear stress change (Eq. (4-15)) in the ith fracture segment can be rewritten as: 
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where ( )tp
i

 is the fluid pressure in the ith fracture segment at time t and 0

i
p is the initial 

fluid pressure in the ith fracture segment.  Substituting Eq. (4-29) into Eq. (4-28), and 

substituting ( ) 0

ii
ptp −  for ( )tp

i
∆  in Eq. (4-28) yield: 
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The diffusivity equation (4-10) is discretized in space and time for a given 

fracture network using an implicit finite difference method like that given in Appendix C 

for a regular fracture network.  For the ith fracture segment at the time step, ξ,  

 ∑∑∑
=

−

==

−∆∆−∆=∆∆+∆∆−
ξξ
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τ
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0
intint
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)()(

h
s

ih

h

ihi

ff
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p qqLpLcwnqLDLntpC  (4-31) 

where 
ij

pC  is the fluid coefficient matrix.  The production rate from ith fracture segment 

s

ih
q  is also discretized in time in Eq. (4-31).   All left terms in Eqs. (4-30) and (4-31) are 

unknown and all right terms are known.  Appendix D gives an example matrix for the set 

of linear equations built from Eqs. (4-30) and (4-31) for a given fracture network. When 

the production rate and initial reservoir pressure are given, the normal and shear fracture 

displacement, interface flow rate, and fluid pressure can be obtained by solving the 

linear equation Eqs. (4-30) and (4-31).   Unlike for the uncoupled method, the interface  
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flow rate is solved implicitly, and there is no need for the FDM determination of the 

interface flow rate.  The treatment for fracture permeability is the same as that for the 

uncoupled method. 

4.4 Chapter conclusions 
 

This chapter presented a new numerical method to solve the fluid pressure, 

fracture aperture change and stress change simultaneously by combining a finite 

difference method (FDM) solution for the diffusivity equation for fluid flow in fractures, 

a fully coupled displacement discontinuity method (DDM) for the global relation of 

fracture deformation, and the Barton-Bandis fracture deformation model for the local 

relation of fracture deformation.  The fracture permeability changes with the fracture 

aperture change.  Applications of this method are shown in the next chapter.  
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CHAPTER V                                                                                                          

MODEL APPLICATIONS  

 

The coupled method described in Chapter IV applies when a single phase fluid is 

produced from a naturally fractured reservoir.   Pressure decrease causes effective stress 

change, thereby inducing fracture aperture and permeability change in the natural 

fractures.  The coupled method is applied to quantitatively predict the fracture aperture 

and permeability change during production under different in situ stress conditions for 

rock and fracture parameters that can be measured in laboratories and/or from 

production data.   

This chapter will illustrate that under isotropic stress conditions the effective 

stress increases with reservoir pressure drop, and fracture aperture and permeability 

decrease with time.   Further we will show that under highly anisotropic stress conditions, 

fracture aperture and permeability in some fractures may not decrease, or may even 

increase.    

This chapter will start with applications under isotropic in situ stress conditions 

in Section 5.1.  Next will be applications under high anisotropic in situ stress conditions 

in Section 5.2.  Finally chapter conclusions are in Section 5.3.  

5.1 Fracture aperture and permeability change under isotropic conditions 
 

In this section the coupled solution method is applied to a case under isotropic 

stress conditions.  The results of reservoir pressure change, stress change, fracture 



 

 

95 

aperture and permeability change are shown, and the interactions of these changes are 

discussed.  The influences of input rock and fracture properties on the results are also 

investigated.   

5.1.1 Parameters and assumptions 
 

In this section the fracture permeability change during production and its effect 

on transient wellbore pressure are investigated for a well with constant production rate 

(12.6 Res bbl/day) from a unit reservoir thickness of 3.28 ft (1 m) in a formation with a 

fracture network consisting of two sets of orthogonal vertical fractures surrounded by an 

effectively infinite porous medium as in Figure V-1.  The fracture permeability is 

calculated from the mechanical aperture using the cubic law for the ratio of hydraulic 

aperture to the mechanical aperture (wef/wf) assumed to be 1. (Cases for other ratios will 

be discussed later).  Only two-dimensional flow and deformation are considered, and 

change in the vertical direction is ignored.  The in situ stress field before production is 

assumed to be isotropic with compression set to 3045 psi. To better illustrate the 

geomechanic effects during production, the reservoir pressure is set very close to the in 

situ stress at 2900 psi.  The two joint parameters, initial normal stiffness and maximum 

closure, characterizing the normal deformation of fracture are 2.21×104 psi/ft and 0.0315 

in, respectively.  The nonlinear relationship between effective normal stress under 

compression and fracture closure is shown in Figure V-2.   The fracture aperture at the 

initial condition (zero effective normal stress) is assumed as 0.0315 in.  The fracture 

aperture under the initial in situ stress before production is assumed as 0.009 in for all 
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fractures. Other parameters are listed in Table V-1.  Because the fracture permeability 

dominates the reservoir permeability, changes in matrix permeability are neglected and 

assumed as constant during production.   

 

 

Figure V-1.  Well located at the center of a fractured field, which is surrounded by matrix rock of 
effectively infinite extent. 
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Figure V-2.  Nonlinear fracture normal deformation. 
 

Table V-1.  Rock and fracture parameters in the modeling. 
 

Area (ft2) 3281×3281 

Shear modulus G (psi) 8.555×105 

Possoin’s ratio υ 0.16 

Undrained Possoin’s ratio υu 0.31 

Matrix permeability (md) 0.8 

Matrix porosity φ 0.2 

Biot’s coefficient α 0.83 

Fluid viscosity µ (cp) 1 

Fluid compressibility (psi-1) 4.69×10-6 

Ratio of actual fracture volume to the 
effective fracture volume n 

10 

Fracture spacing S (ft) 310 
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5.1.2 Results for isotropic stress conditions 
 

Figure V-3 shows the reservoir pressure distribution after 360 days on production. 

In this case, the lowest pressure is 2635 psi, and the highest pressure is 2672 psi.   The 

fracture aperture declines with production as in Figure V-4.  The fracture intersected 

with the well has the maximum fracture closure with the aperture changing from 

9.02×10-3 in to 4.82×10-3 in. The aperture of a fracture on the boundary shows the 

minimum fracture closure change from 9.02×10-3 in to 5.5×10-3 in.  The effective normal 

stress increases with time.  The change of effective normal stress and fracture aperture 

for the facture intersected with well and for a boundary fracture with minimum change 

are shown in Figure V-5.  Figure V-6 shows that the fracture permeability calculated 

from the fracture aperture using the cubic law has the same trend as the aperture change, 

and changes from 4428 darcy to 1266 darcy at the well and from 4428 darcy to 1645 

darcy at the boundary.  The pressure in the fracture intersected with the well is assumed 

as the bottomhole pressure.  Figure V-7 compares the bottomhole pressure versus time 

behavior for the stress-dependent fracture permeability to that for the fixed fracture 

permeability case.  At early time stage while most of the fluid production from the 

fracture network is mainly driven by the contraction of fracture volume and fluid 

expansion, both the pressure drop and pressure derivative show a unit slope trend.  At 

the medium stage, the pressure derivative for the fixed fracture permeability case shows 

infinite-acting radial flow behavior, and the stress-dependent fracture permeability case 

shows a higher derivative level indicating lower reservoir permeability.  At the late stage, 
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both pressure drop and derivative behavior show the boundary of the fracture system. 

The late stage behavior is actually a transition to the infinite-acting radial flow trend for 

flow in the surrounding porous medium, as seen in Figure V-8.  But the pressure 

derivative for the stress dependent fracture permeability case still increases at very late 

stage showed in Figure V-8 because the fracture permeability decreases with production.  

 

Figure V-3.  Pore pressure distribution after 360 days production. 
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Figure V-4.  Fracture aperture declines with time. 
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Figure V-5.  Effective normal stress and fracture aperture change with time for the fracture 
intersected with well. 
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Figure V-6.  Fracture permeability declines with time. 
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Figure V-7.  Comparison of transient pressure behavior at bottom hole with constant production 
rate between fixed fracture permeability and stress-dependent fracture permeability case. 
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Figure V-8.  Comparison of transient pressure behavior at bottom hole with constant production 
rate between fixed fracture permeability and stress-dependent fracture permeability case for a long 
time production to show the flow behavior in the surrounded matrix rock. 
 

The next example shown in Figure V-9 compares the previous stress dependent 

fracture network case to that of a well producing from the unfractured porous medium.  

In this comparison the pressure of the fracture intersected by the well is assumed as the 

bottomhole pressure, and the pressure in a small square fracture element with cross 

section area equal to that of the well is used for bottomhole pressure for the well in the 

unfractured reservoir.  (For example, if the well radius is 0.328 ft, both the length and 

aperture of the fracture element is 0.581 ft.)  Because the fracture element is meant to 

represent the well, the fracture aperture and length are fixed during the production.  The 

comparison shows that the bottomhole pressure drops much less for the case with a 

fracture network.  The early time pressure derivative trends indicate that the effective 

permeability of the fracture system is much larger than that of the matrix for the case 

without any fracture. In late time the infinite-acting radial flow is the same for both cases.  
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Figure V-10 compares the previous stress dependent fracture network case to a 

well intersecting the only fracture in the reservoir.  The fractures and matrix properties 

are the same for the two cases, and the fracture length for the fracture intersected by the 

well is the fracture spacing (310 ft) in the fractured reservoir case.  Again, the 

bottomhole pressure drops much less for the fractured network case (Figure V-11). The 

infinite-acting radial flow behavior for both cases is the same in late time. 

 

0.1

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100 1000 10000

Time (hr)

dp
, d

p/
dl

nt
 (p

si
)

dp

dp/dlnt

dp

dp/dlnt

without fracture

fracture network

 

Figure V-9.  Comparison of transient pressure behavior at bottom hole with constant production 
rate between the case with a well connected with a fracture network and the case without any 
fracture. 
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Figure V-10. A well is intersected with a fracture in a non-fractured reservoir. 
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Figure V-11. Comparison of transient pressure behavior at bottom hole with constant production 
rate between the case with a well connected with a fracture network and the case with only one 
fracture in the reservoir. 
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Figure V-12 compares the previous stress dependent fracture network case to a 

well that does not intersect any natural fracture, with the well located at the center of the 

matrix element in the center of the fracture network.  Except for that the fracture spacing 

of 290 ft (adjusted to make the fracture network area the same as in the other cases), all 

other parameters are the same as the case in which the well is connected with the 

fracture network.   The bottomhole pressure drops much more compared with the case of 

a well connected with a fracture network (Figure V-13).  Initially the pressure derivative 

for the case of the well that does not intersect a fracture shows the trend for infinite-

acting radial flow in the matrix permeability. Later, when the pressure disturbance 

reaches the fracture network, the higher permeability in the fractures causes a leveling in 

the pressure change. At the late stage, for both cases the fracture network conducts the 

pressure disturbance to the outer matrix, and both cases have identical pressure 

derivative trends.   

From the perspective of pressure transient testing, the case with the well not 

intersecting the fracture network is quite intriguing because it exhibits apparent classic 

dual porosity behavior, but for the opposite reason from that usually applied for this 

response. The initial and final dual porosity trend is that of the matrix, and not that of the 

natural fractures, and the valley trend in the pressure derivative does not represent 

recharge from the matrix; instead, it represents the higher permeability natural fractures 

encountered before the pressure disturbance encounters the outer matrix with effectively 

infinite extent.  
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Figure V-12. A well is located at the center of a matrix in a fractured network surrounded by matrix 
rock. 
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Figure V-13. Comparison of transient pressure behavior at bottom hole with constant production 
rate between the case with a well connected with a fracture network and the case with a well at the 
center of a matrix in a fracture network. 
 

For the original stress dependent fracture network case as the fracture 

permeability declines with production, build up tests at different times show the change 

in the fracture network permeability.  Figure V-14 shows three successive simulated 

build ups tests, conducted at different times.  The rate history is listed in Table V-2.  The 

pressure derivative level is higher before the transition to the outer matrix behavior with 

successively later buildup tests because the reservoir permeability declines with 

production.  It is difficult to use a single buildup test to determine the rock and joint 

properties.  However, these examples show that any one buildup test may indicate 

whether the natural fracture system is stress sensitive, and manual history matching with 

multiple pressure buildup tests may enable quantification of rock and joint properties.       
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Figure V-14. Pressure derivative curves for successive build ups. 
 

Table V-2.  Production rate history. 
 

Duration 
(days) 

Production rate 
(Res bbl/day) 

5 12.6 

2 0 

30 12.6 

2 0 

360 12.6 

2 0 

 

5.1.3 Effect of initial effective normal stress 
 

The slope of the trend in Figure V-2 gives the normal fracture stiffness, which 

changes with the effective stress, from a small value at small effective stress to a rapidly 

increasing value at high effective stress. As such, the fracture is more deformable when 
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the reservoir pressure is close to the in situ stress than when there is a large contrast 

between them.  To study the influence of a higher stiffness, consider the same initial 

fracture aperture of 9.02×10-3 in and fracture permeability of 4428 darcy before 

production, but set the initial in situ stress to a value that increases the effective stress 

while all other properties remain same.  Figure V-15 shows the fracture permeability 

change at the well for different effective in situ stress conditions.  The influence of 

production on the fracture permeability change strongly depends on the initial effective 

stress condition, and decreases rapidly with increase in the effective in situ stress.  The 

fracture permeability only reduces 3.3% of the initial permeability of 4428 darcy for the 

case with an effective in situ stress of 1450 psi.  However fracture permeability loss for 

the case with an effective in situ stress of 145 psi is 84.7% of the initial permeability.  
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Figure V-15. Effect of initial effective in situ stress on the fracture permeability change. 
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5.1.4 Effect of ratio of hydraulic fracture aperture to mechanical fracture aperture 
 

        (wef /wf) 
  

The ratio of effective hydraulic fracture aperture to mechanical fracture aperture 

(wef/wf) is assumed as 1 in the above analysis.  This assumption is only valid for fractures 

with wide fracture apertures and smooth fracture surfaces.  The effective hydraulic 

fracture aperture wef is less than the mechanical fracture aperture wf, and the ratio wef/wf 

is dependent on wf and the joint roughness coefficient (JRC) (Eq. (3-17)).  

Figure V-16 compares cases with three different values for the wef/wf  ratio.  In 

each case, the maximum fracture closure is 0.0393 in, and the initial mechanical fracture 

aperture wf before production is 0.0131 in.  In addition, the fracture aperture without 

stress loading is assumed to be 0.0393 in and it is assumed to be reduced to 0.0131 in for 

all fractures due to the compression in the reservoir before production. All other 

parameters remain the same as in the previous examples.  Figure V-16 shows that the 

ratio wef/wf increases linearly with the increase of wf, the slope is a function of JRC and 

decreases with the decrease of JRC.  But the ratio wef/wf cannot exceed the limit value 1.  

Three cases are investigated for unit ratio wef/wf, JRC=10.2 and JRC=12, respectively.   

The fracture permeability is calculated from wef using cubic law (Eq. (3-15)) and updated 

with the change of wef during the simulation.   
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Figure V-16. The ratio wef/wf as a function of wf. 
 
 

For the same mechanical aperture, the hydraulic aperture and permeability for the 

case with JRC=12 is lower than the other two cases.  Consequently, the pressure drop for 

JRC=12 is higher than that in the other two cases, as seen in Figure V-17 and Figure 

V-18.  The higher pressure drop in turn causes higher mechanical aperture change seen 

in Figure V-19 leading to higher hydraulic aperture change seen in Figure V-20, and 

thereby the high permeability loss seen in Figure V-21.     
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Figure V-17. Bottom hole pressure declines with time for three cases: wef=wf, JRC=10.2 and 
JRC=12.   
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Figure V-18. Log-log plot of the pressure derivatives for three cases: wef=wf, JRC=10.2 and JRC=12.   
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Figure V-19. The mechanical aperture of fracture intersected with well changes with time for three 
cases: wef=wf, JRC=10.2 and JRC=12. 
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Figure V-20. The effective hydraulic aperture of fracture intersected with well changes with time for 
three cases: wef=wf, JRC=10.2 and JRC=12. 
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Figure V-21. The permeability of fracture intersected with well changes with time for three cases: 
wef=wf, JRC=10.2 and JRC=12. 
 

5.2 Fracture aperture and permeability change under high anisotropic in situ stress 
 

     conditions 
 

The examples in the previous section all assumed isotropic in situ stress 

conditions. This section considers anisotropic in situ stress conditions. The shear 

deformation of a fracture is approximately linear before yielding and is treated as linear 

here, as is characteristic of a constant shear stiffness value.  The shear stiffness is 

abruptly reduced to zero after yielding as in Figure V-22.  The yielding stress can be 

calculated using Eq. (3-1).  But the simplified formula given in Eq. (5-1) is used in this 

study to calculate the yielding stress according the effective normal stress and the 

internal friction angle. 

 inpeak φστ tan'=  (5-1) 
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where φi is the internal friction angle. For reservoirs already at the critical stress 

conditions the fractures are already yielded.  Therefore the fractures are very week and 

the shear stress disturbance can result in large shear deformation.  The shear deformation 

will induce some normal deformation by dilation.  
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Figure V-22. The relation of shear stress and shear displacement used in the modeling. 

 
 

In Figure V-23 a fractured reservoir with high anisotropic in situ stress (σ1=4350 

psi, σ3=3335 psi) has are two sets of fractures with an angle of 60°.  The shear stiffness 

before yielding is 3.7×105 psi/in,  the internal friction angle is 30°, the dilation angle is 

5°, the fracture spacing is 437 ft, and all other parameters are the same as those in the 

isotropic case listed in Table V-1.   All fractures are already yielded before production 

and the production with a constant rate of 12.6 Res bbl/day induces not only the normal 

deformation but also large shear deformation. Figure V-24 shows the direction and  
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magnitude of the shear displacement after 360 days production.  If the shear dilation 

induces more openness of the fracture than the closure induced by the increase of the 

effective normal stress, the fracture permeability will increase with production instead of 

reduction.   Figure V-25 shows the fracture permeability distribution after 360 days 

production.  There is still reduction of fracture permeability for those fractures in dark 

blue.  But the fracture permeability for other fractures increases compared with the 

initial fracture permeability of 4428 darcy. The fracture permeability and shear 

displacement are compared and show consistent increase (Figure V-26).   Figure V-27 

shows that the fracture permeability increases with production both for the fracture 

intersected by the well and for a fracture at the boundary with the maximum 

enhancement.  Figure V-28 shows the change and derivative of the bottomhole pressure, 

which also shows the enhancement of fracture permeability with production compared 

with the case of fixed fracture permeability.  Therefore, under highly anisotropic stress 

conditions production may increase the fracture permeability.    
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Figure V-23. Well located at the center of a fractured field under anisotropic stress field and the 
fractured network is surrounded by matrix rock. 
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Figure V-24. Shear displacement distribution after 360 days production for the case fractures are 
already yielded before production. The arrow represents the shear direction. 
 

 

Figure V-25. Fracture permeability distribution after 360 days production for the case fractures are 
already yielded before production. 
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Figure V-26. Distribution of fracture permeability and shear displacement (shown with arrows) 

after 360 days production for the case fractures are already yielded before production. 
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Figure V-27. Fracture permeability increases with production for the case the fracture are already 
yielded before production. 
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Figure V-28. Log-log plot of pressure drop and pressure derivative for the case in which the fracture 
permeability of most fractures are enhanced by production.  
 
 

In Figure V-26 the shear displacement and fracture permeability distribution are 

not symmetric to lines through the well and parallel to x and y directions.  For this case, 

neither the fracture network nor the fracture intersected with the well are symmetric.  

Before further comment on symmetries that do appear in this case, it is instructive to 

consider the example shown in Figure V-29 for a well producing from four fractures 

located at the center of the fracture network. In this case the resulting fracture network is 

symmetric about the well, and both the permeability and aperture changes are symmetric 

in x and y directions.  It is now apparent that the asymmetries in Figure 5-27 arise from 

the asymmetries in both inner and outer boundary conditions.  

In both cases permeability is enhanced in a similar way.  Those fractures at the 

top and bottom which incline toward inside of the fracture network have larger shear 

displacement, thereby inducing higher permeability. As the whole fracture network is 
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compressed and moves inside with the reduction of reservoir pressure and the direction 

of maximum principal stress (Figure V-23) tends to have a larger displacement than the 

direction of minimum principal stress.   

 
 
Figure V-29. Distribution of fracture permeability and shear displacement (shown with arrows) 
after 360 days production for the case with symmetric fracture network and production wells. 

 

5.3 Chapter conclusions 
 
 

This chapter provided applications of the method described in Chapter IV under 

isotropic in situ stress conditions and highly anisotropic in situ stress conditions.  

Fracture aperture and permeability decrease with pressure depletion in naturally 

fractured reservoirs under isotropic stress conditions, and the magnitude of the decrease 

is dependent on the initial effective in situ stress.  For low initial effective in situ stress 
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(the reservoir pressure is very close to the magnitude of stress), the normal stiffness is 

small if the initial normal stiffness is small, i.e., weak fractures.  The small change of 

reservoir pressure and effective stress can induce large fracture closure and permeability 

loss.  But for hard rock (high initial normal stiffness) or high effective in situ stress, the 

normal stiffness is large, and the changes in fracture aperture and permeability are small 

even for large reservoir pressure change.  For rough fractures, the effective hydraulic 

aperture is smaller than the average mechanical aperture.  If the difference is neglected, 

the influence of production on the fracture permeability reduction at isotropic stress 

conditions will be underestimated.  For highly anisotropic stress, the fractures can be at 

the critical stress condition and even a small change in the shear stress can induce large 

shear displacement.  As a result, the fracture aperture and permeability can be enhanced 

due to shear dilation while the reservoir pressure is declining.  
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CHAPTER VI                                                                                            

CONCLUSIONS AND RECOMMENDATIONS 

 

Production in naturally fractured reservoirs will cause reservoir pressure change, 

thereby changing the stress.  The stress change will change the fracture aperture and 

permeability, thereby influencing the production.   The coupled interactions exist in the 

fractured porous media: (i) fluid pressure change induces solid deformation and stress 

change; (ii) stress change induces fluid volume change and fluid pressure change; (iii) 

fracture deformation induces the change of pore pressure and stress in the whole field 

(the influence disappears at infinity); (iv) the change of pore pressure and stress at any 

point has an influence on the fracture and induces fracture deformation.  A method is 

developed in this study to consider all of these coupled processes to model the fracture 

aperture and permeability change during production in naturally fractured reservoirs.   

6.1 Conclusions 
 

The main contributions and conclusions from this study are summarized as 

follows: 

1. A method is developed to combine the fully coupled DDM with the Barton-

Bandis model of fracture deformation.  The fully coupled DDM gives the 

global fracture deformation and the Barton-Bandis fracture deformation 

model gives the local fracture deformation.  The combination of the fully 
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coupled DDM and the Barton-Bandis fracture deformation model makes 

every fracture deformation comply with both local and global relations.   

2. Fracture aperture and permeability decrease with pressure reduction caused 

by production in naturally fractured reservoirs under isotropic stress 

conditions, but the magnitude of the changes are dependent on the initial 

effective in situ stress.  For low initial effective in situ stress (the reservoir 

pressure is very close to the magnitude of stress), the normal stiffness is small 

if the initial normal stiffness is small, i.e., weak fractures.  The small change 

of reservoir pressure and effective stress can induce large fracture closure and 

permeability loss.  But for hard rock (high initial normal stiffness) or high 

effective in situ stress, the normal stiffness is large.  The change of fracture 

aperture and permeability is small even for large reservoir pressure change.  

Therefore, whether the reservoir is stress sensitive can be decided by 

laboratory tests on the properties of fractures and field tests of the in situ 

stress.  For stress sensitive fractured reservoirs, the method developed in this 

study can be applied to evaluate the change of fracture permeability during 

production and its influence on production.   

3. For rough fractures, the effective hydraulic aperture is smaller than the 

average mechanical aperture.  If the difference is neglected, the influence of 

pressure reduction caused by production on the fracture permeability 

reduction under isotropic stress conditions will be underestimated.  
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4. For highly anisotropic stress, the fractures can be at the critical stress 

condition, and a small change of the shear stress can induce large shear 

displacement.  The fracture aperture and permeability can be enhanced due to 

shear dilation while the reservoir pressure is decreasing.  

6.2 Recommendations 
 

The model is only for two-dimensional single-phase flow in a naturally fractured 

porous medium.  A three-dimensional model will be better to consider the influences 

from all three principal stresses – the maximum horizontal stress, the minimum 

horizontal stress and the vertical stress.  Single-phase flow rate is a simplified case for 

oil and gas reservoirs, and future work should consider two-phase or three-phase flow.    
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NOMENCLATURE 

 

α    =  Biot’s poroelastic coefficient 

β    =  Angle counterclockwise from the x-axis to fracture  
   segment. 

ij

γ  =  π/2+βi-βj 

φ     =   porosity 

φd     =   dilation angle 

φb    =   basic friction angle 

φi    =   internal friction angle 

φr    =   residual friction angle 

ρf     =   fluid density 

σ     =   stress tensor 

σc    =   shear strength 

σ′n   =   effective normal stress 

τ  =   shear strength 

τξ , τh =   step time 

τpeak  =   peak shear strength 

µ     =   fluid viscosity 

υ     =   Poisson’s ratio 

υu     =   undrained Poisson’s ratio 
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ζ p    =   pore space change 

ζ s    =   solid grain deformation 

∆L    =   fracture length 

a      =   half length of fracture segment 

aa, b  =   constants related with fracture normal deformation 

c      =   fluid diffusivity 

c0    =   cohesive strength 

cf     =   fluid compressibility 

cfr     =   fracture compressibility 

ct     =   total compressibility of fracture 

cmt   =   total compressibility of matrix 

e     =   strain tensor 

f (x,y)    =   a function defined in Eq. (2-2)  

( )yxf ,      =   a function defined in Eq. (2-5)  

k     =   permeability 

kf    =   fracture permeability 

n    =  Vef/Vf  

p    =  pore pressure 

q    =  flow rate 

qf    =  flow rate through fracture 

qint   =  interface flow rate between fracture and matrix /fluid  
   source 
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qs    =  injection/production rate 

t     =   time 

u   =   displacement 

v   =   interface flow 

wf  =    fracture aperture 

wef  =    effective hydraulic fracture aperture 

x,y  =   co-ordinate positions in the global co-ordinate system 

x , y     =  co-ordinate positions in the local co-ordinate system 

ij

A    =   influence coefficient for normal stress by the normal 
    displacement discontinuity defined in Eq. (2-10) for the  
   elastic DDM or in Eq. (2-38) for the poroelastic DDM  

ij

B    =   influence coefficient for normal stress by the shear  
   displacement discontinuity defined in Eq. (2-10) for the 
    elastic DDM or in Eq. (2-38) for the poroelastic DDM  

ij

C    =   influence coefficient for normal stress by fluid  
   source/interface flow rate defined in Eq. (2-38)  

D   =   fracture displacement  

Dn  =  normal fracture displacement 

Ds   =  shear fracture displacment 

Dnmax  =   maximum possible closure 

ij

E    =   influence coefficient for shear stress by the normal  
   displacement discontinuity defined in Eq. (2-10) for the  
   elastic DDM or in Eq. (2-38) for the poroelastic DDM  
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ij

F    =   influence coefficient for shear stress by the shear  
   displacement discontinuity defined in Eq. (2-10) for the 
    elastic DDM or in Eq. (2-38) for the poroelastic DDM  

G   =   shear modulus 

ij

H    =   influence coefficient for pore pressure by the shear 
    displacement discontinuity defined in Eq. (2-38)  

JCS  =  joint compressive strength 

JRC  =  joint roughness coefficient 

ij

K    =   influence coefficient for shear stress by fluid  
   source/interface flow rate defined in Eq. (2-38)  

Km  =   system bulk modulus 

Kni  =   initial normal stiffness 

Kn  =   normal stiffness 

Ks  =   shear stiffness or solid bulk modulus 

ij

L    =   influence coefficient for pore pressure by the normal 
    displacement discontinuity defined in Eq. (2-38)  

M  =   Biot Modulus 

ij

N    =   influence coefficient for pore pressure by fluid  
   source/interface flow rate defined in Eq. (2-38)  

S   =   fracture spacing 

Vf   =   actual fracture void volume or pore space 

Vef  =   effective fracture void volume for fluid flow 
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Subscripts 

0    =  initial 

ξ    =  current time step 

d    =  dilation 

ef    =  effective 

f    =  fluid or fracture 

fr    =  fracture 

h   =  index of time step 

i, j    =  index of fracture segment 

i    =  internal 

inj    =  injection 

int    =  interface 

kk    =  bulk value 

m   =  porous media system 

mt    =  total of the porous media system 

max    =  maximum 

n    =  normal  

o    =  oil  

p    =  pore space 

s    =  shear, solid/porous matrix, or source term 

x,y,z    =  co-ordinate direction in the global co-ordinate system 

x , y     =  co-ordinate direction in local co-ordinate system 
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Superscripts 

q    =  fluid injection source/interface flow rate between fracture 
    and matrix 

dn    =  normal displacement discontinuity source 

ds    =  shear displacement discontinuity source 

 

Over scripts 

ξ    =  Current time step 

h    =  index of time step 

i, j    =  index of fracture segment 
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APPENDIX A                                                                                              

FUNDAMENTAL SOLUTIONS FOR FLUID SOURCE 

 

Induced pore pressure qp , displacement qu  and stress qσ  by continuous unit fluid 

source along a line fracture segment. 
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            Induced stress: 
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APPENDIX B                                                                                          

FUNDAMENTAL SOLUTION FOR DISPLACEMENT                  

DISCONTINUITIES SOURCE 

 

1. Induced pore pressure, displacement and stress by the continuous unit normal 

displacement discontinuity along a line fracture segment. 
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  Induced stress: 
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where uv  is the undrained Poisson’s ratio. 

 

2. Induced pore pressure, displacement and stress by the continuous unit shear 

displacement discontinuity along a line fracture segment. 

          Induced pore pressure: 
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Induced displacement: 

 
( ) ( )

( )
a

a
e

r
yxx

r
y

xxu

u

u

ds
x

−


























+−








−
−

+
−

+












 −
−−

−
−=

−

222

'

'

2

11
1

1

lnarctan12
14
1

ξξυ
υυ

υ
υπ

ξ
 (B-8) 

 

    
( ) ( ) ( )

a

a
e

r
y

eErru

u

u

u

uds
y

−


























+−








−
−

++

















 −
+








+








−
−

+−−
−

−=

−

−

222

2

2

2
1

2

2

11
1

1

2
1

2
)(ln

1
ln21

14
1

ξξυ
υυ

ξ
ξ

υ
υυυ

υπ

ξ

ξ

 (B-9) 

          Induced stress: 
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APPENDIX C                                                                                       

COEFFICIENT MATRIX,
ij

pC , FOR FLUID DIFFUSION IN A REGULAR 

FRACTURE NETWORK 

 

For a regular fracture network with nc columns and nr rows, the fracture segment 

divided by the intersection points is the discretized fracture element.  The fracture 

segment is numbered according to the row (ir) and column (jc) as: 

 jcncirnf +×−= )1(  (C-1) 

where nf is the index of fracture segment in the discretized fracture network.  The 

fracture segments are divided into two types – type (a) and type (b) according to the 

orientation shown in Figure C-1.  For any fracture segment (i, j) of type (a), there are 6 

fracture segments directly connected with the segment and they are (i, j-1), (i, j+1), (i-1, 

j), (i+1, j), (i-1, j-1), (i+1, j+1) shown in Figure C-2.  For any fracture segment (i, j) of 

type (b), there are also 6 fracture segments directly connected with the segment and they 

are (i, j-1), (i, j+1), (i-1, j), (i+1, j), (i-1, j+1), (i+1, j-1) shown in Figure C-3.  Finally, 

for any fracture segment (i, j) of either type (a) or (b), the connected fracture segments 

can be expressed as (i, j-1), (i, j+1), (i-1, j), (i+1, j), (i-1, j-(-1)j+1×(-1)i+1), (i+1, j+(-

1)j+1×(-1)i+1).   

Using the Darcy’s law, the flow rate from the directly connected fracture 

segments to the fracture segment (i, j) can be calculated.  
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 From (i+1, j): 
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From (i-1, j-(-1)j+1×(-1)i+1): 
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 From (i+1, j+(-1)j+1×(-1)i+1): 
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where the superscript l+1 denote the new time step, a is the half length of fracture 

segment, kf is the fracture permeability, wf is the fracture aperture. a(i, j), kf(i, j) and wf(i, 

j) denote the half length, permeability and aperture of the fracture segment (i, j).  The net 

flow rate into the fracture segment (i, j) is: 

 2211 NSNSEWnet qqqqqqq +++++=  (C-8) 

Substituting Eqs. (C-2)-(C-7) into Eq. (C-8) yields: 
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The fluid volume change (the first right term in Eq. (4-10)) from the old time step l to 

new time step l+1 in the fracture segment is: 

 ( ) ( )( )jipjipCOE ll
c ,, 11 ++ −  (C-11) 

where  

 ( ) ( ) ofc cjiajiwnCOE ,,2=  (C-12) 

The fracture length ∆L is substituted by 2a in Eq. (C-11). 

Combining Eqs. (C-9) and (C-11), Eq. (4-10) for the fracture network in Figure C-1 is 

discretized into: 
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The index of fracture segment can be calculated from the row number and column 

number using Eq. (C-1).  Therefore, Eq. (C-13) is rewritten using the index of fracture 

segment.  
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Figure C-1.  A regular fracture network. 
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Figure C-2.  Discretization of type (a) fracture segment. 
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Figure C-3.  Discretization of type (b) fracture segment. 
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APPENDIX D                                                                                       

COMBINED SET OF LINEAR EQUATIONS IN MATRIX FORM FOR A 

REGULAR FRACTURE NETWORK 

 

 

Figure D-1.  A regular fracture network with indices of fracture segments. 
 

For the fracture network and discretized fracture segments shown in Figure D-1, 

a set of linear equations can be built from Eqs. (4-30) and (4-31), and the unknowns (p, 
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nD∆ , sD∆  and intq∆ ) for all fracture segments can be obtained by solving the following 

equations in matrix form.   
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