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ABSTRACT

Numerical Modeling of Fracture Permeability Change in Naturally Fractured Reservoirs
Using a Fully Coupled Displacement Discontinuity Method. (May 2010)
Qingfeng Tao, B.S., China University of Geosciences;
M.S., University of North Dakota

Co-Chairs of Advisory Committee: Dr. Christine A. Ehlig-Economides
Dr. Ahmad Ghassemi

Fractures are the main flow channels in naturally fractured reservoirs. Therefore
the fracture permeability is a critical parameter to production optimization and reservoir
management. Fluid pressure reduction caused by production induces an increase in
effective stress in naturally fractured reservoirs. The change of effective stress induces
fracture deformation and changes fracture aperture and permeability, which in turn
influences the production. Coupled interactions exist in the fractured reservoir: (i) fluid
pressure change induces matrix deformation and stress change; (ii) matrix deformation
induces fluid volume change and fluid pressure change; (iii) fracture deformation
induces the change of pore pressure and stress in the whole field (the influence
disappears at infinity); (iv) the change of pore pressure and stress at any point has an
influence on the fracture and induces fracture deformation. To model accurately the
influence of pressure reduction on the fracture permeability change in naturally fractured
reservoirs, all of these coupled processes need to be considered. Therefore, in this

dissertation a fully coupled approach is developed to model the influence of production



on fracture aperture and permeability by combining a finite difference method to solve
the fluid flow in fractures, a fully coupled displacement discontinuity method to build
the global relation of fracture deformation, and the Barton-Bandis model of fracture
deformation to build the local relation of fracture deformation.

The fully coupled approach is applied to simulate the fracture permeability
change in naturally fracture reservoir under isotropic in situ stress conditions and high
anisotropic in situ stress conditions, respectively. Under isotropic stress conditions, the
fracture aperture and permeability decrease with pressure reduction caused by
production, and the magnitude of the decrease is dependent on the initial effective in situ
stress. Under highly anisotropic stress, the fracture permeability can be enhanced by
production because of shear dilation. The enhancement of fracture permeability will

benefit to the production of oil and gas.
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CHAPTER |

INTRODUCTION

A large percent of oil and gas around the world are produced from naturally
fractured reservoirs. Naturally fractured reservoirs are found in essentially all types of
lithologies including sand stones, carbonates, shales, cherts, siltstones, etc. (Aguilera,
1995). A natural fracture is “a naturally occurring macroscopic planar discontinuity in
rock due to deformation or physical diagenesis” (Nelson, 1985). Generally fractures are
the main flow channels, and the matrix provides the main storage capacity. Some
reservoirs, e.g. tight gas reservoirs, are not possible to produce without the existence of
natural fractures (microfractures). Therefore the fracture permeability is critical to the
hydrocarbon production. This chapter will start with an explanation of the problem and
the objective of this research. Next will be a review of the previous numerical methods
on the modeling of deformable fractured reservoirs. Finally there will appear a summary

of the dissertation.

This dissertation follows the style of SPE Reservoir Evaluation and Engineering.



1.1 Problem and objective

Warren and Root (1963) presented a dual-porosity model to represent naturally
fractured reservoirs (Figure I-1). The highly heterogeneous system was treated as a
homogeneous system with two media — fractures and matrix. Both the matrix and the
fractures were characterized by two parameters — porosity and permeability.
Pseudosteady state flow was assumed in the matrix, as well as an interporosity flow
parameter for flow between matrix and fractures. Later a dual-porosity model with
transient flow in matrix for low permeability reservoirs was presented by De Swaan
(1976), Najurieta(1980), Cinco and Samaniego(1982). Both fracture permeability and
matrix permeability were treated as constant during production and independent of stress

and pressure. In all of these cases, flow to the well was only via fractures.

] Z
a - - o~

b

AN
VUGS MATRIX FRACTURE MATRIX FRACTURES
ACTUAL RESERVOIR MODEL RESERVOIR

Figure I-1. Dual-porosity model (Warren and Root, 1963).



In reality, reservoir pressure decreases with production for most cases, and the
effective stress in the reservoir increases, and both fractures and matrix can deform with
the increase of effective stress. For hard rocks, the deformation due to normal stress
change is small and can be neglected. However, the deformation for weak rocks or
fractured rocks can be large enough to change the reservoir properties and influence the
production. The dependence of formation permeability on pressure for a single porosity
system has been investigated by Gray et al. (1963), Vairogs et al. (1971), Thomas and
Ward (1972), Raghavan et al. (1972), Vairogs and Rhoades (1973), Samaniego et al.
(1976, 1977), Jones and Owens (1980), Samaniego and Cinco-Ley (1989), Buchsteiner
et al. (1993), Chin et al. (1998), and Davies and Davies (1999). The pressure
dependence of matrix permeability occurs as the porosity and connectivity of pores
decrease with increase in effective stress. But the permeability change in tight gas
reservoirs mainly results from the closure of microcracks with the increase of effective
stress (Ostensen, 1986).

Generally fractures are more deformable than the matrix in a naturally fractured
reservoir, and the permeability of fractures, not the matrix, dominates the flow behavior.
Furthermore, fractures are more sensitive to pressure and stress change than the matrix,
and the fracture deformation mechanism is much more complicated than matrix
deformation. The effect of stress on the aperture and permeability of a single fracture
has been well investigated in laboratory by Iwai (1976), Goodman (1976), Bandis et al.

(1983), and Barton et al. (1985). Experimental data show a nonlinear relation between



normal stress and fracture closure. Bandis et al. (1983) presented a hyperbolic formula
to represent the normal stress—fracture closure relation. For shear deformation
experimental data show an approximately linear relation between shear stress and shear
displacement before yielding, and then shows a complicated relation after yielding.
Shear deformation can also induce fracture opening as the opposed asperities of a
fracture slide over each other and cause an increase in aperture. Chapter I will
elaborate on these mechanisms.

In naturally fractured reservoirs, there are coupled interactions between porous
matrix and fluid, as well as between fractures. Biot (1941, 1956) developed a theory of
poroelasticity for porous media saturated with incompressible fluid to account for the
coupled diffusion—deformation mechanism. Rice and Cleary (1976) extended the theory
for porous media saturated with compressible fluid. Biot’s theory of poroelasticity is a
continuum theory for a porous medium consisting of an elastic matrix containing
interconnected fluid-saturated pores. The fluid diffusion in porous media induces porous
matrix deformation (Figure 1-2) and stress redistribution, and porous matrix deformation
also induces fluid flow (Figure 1-3) and fluid pressure redistribution. If there is a
discontinuous surface (fracture) in the continuum porous media shown in Figure 1-4, the
deformation of the fracture (opening or closing) will induce the deformation of the
porous matrix and also pore pressure change and fluid flow, which will be elaborated in

Chapter I1.



inflow

expansion

Figure 1-2. lllustration of the fluid flow in the interconnected pores in a porous matrix and the
induced deformation of the porous matrix (influence of fluid flow on the matrix deformation). The
dashed red line represents the boundary of the porous matrix before fluid injection/production.

outflow
compression

fluid

Figure 1-3. lllustration of the compression of a continuum porous matrix and the induced pore
pressure change and fluid flow in the interconnected pores (influence of matrix deformation on the
fluid flow and pore pressure change). The dashed red line represents the boundary of the porous
matrix before deformation.



matrix fluid

Figure 1-4. lllustration of a fracture in a fluid-saturated porous media.

In a naturally fractured reservoir, there are many fractures in the porous medium.
In addition to the interactions of fluid, porous matrix and fracture, there are interactions
between fractures including mechanical deformation and fluid flow, which will be
elaborated in Chapter 11. One fracture deformation will cause stress change in the field
and induce deformation of other fractures (Crouch and Starfield, 1983, Curren and
Carvalho, 1987, Cheng and Predeleanu, 1987, Carvalho, 1990). The fluid injection or
production from one fracture can also induce fluid pressure change in other fractures, as
well as mechanical deformation. Crouch and Starfield (1983) developed a displacement

discontinuity method (DDM) to model the interactions between fractures and also the



influence of fracture deformation on the stress redistribution in elastic nonporous media.
Curren and Carvalho (1987), Cheng and Predeleanu (1987) and Carvalho (1990)
developed a poroelastic DDM for fluid-saturated porous media with many discontinuous
surfaces (fractures) in it. The poroelastic DDM can be applied to model the coupled
interactions of fractures, porous matrix and fluid in porous media with fractures. This
method has been applied to simulate the hydraulic fracturing in continuum porous media
(Vandamme and Roegiers, 1990). But the poroelastic DDM has not been applied to
model the interactions of fracture, porous matrix and fluid in fractured porous media.
The oil and gas production from naturally fractured reservoirs will induce the
change in fracture aperture and permeability, thereby changing reservoir properties and
influencing production. The objective of this study is to develop an approach to
investigate the change in fracture aperture and permeability in naturally fractured
reservoirs. This approach will consider the coupled interactions of porous matrix, fluid

and fractures and the real mechanism of fracture deformation.

1.2 Numerical methods for deformable fractured reservoirs

Many researchers have investigated the deformation of fractures in fluid-
saturated fractured porous media using numerical methods (Asgian, 1988, 1989; Sun,
1994; Chen and Teufel, 1997; Gutierrez and Makurat, 1997; Lewis and Ghasouri, 1997;
Meng, 1998; Shu, 1999; Min et al., 2004; and Bagheri, 2006). The numerical methods
can be classified as continuum methods, the discrete element method, and the

displacement discontinuity method. The continuum methods treat the fractured media as



an equivalent continuum media for fluid flow model, or mechanical deformation, or both.
The stress and pore pressure in the equivalent continuum media are solved by using a
finite difference method (FDM) or a finite element method (FEM). The discrete
element method (DEM) treats matrix elements divided by fractures as discrete, and
calculates the contact and deformation of the matrix element boundaries. The
displacement discontinuity method (DDM) is an indirect boundary element method. The
DDM gives an analytical solution for the influence of a fracture in a continuum media
and then sums the influences of all fractures for a fractured media by the superposition

method (refer to Chapter 1l for details).

1.2.1 Continuum methods

Lewis and Ghafouri (1997) developed a finite element dual porosity model.
They modeled fluid flow using a dual porosity model — the fracture and matrix were
treated as overlapping continuum media (Figure 1-5). Flow properties (fracture
permeability, matrix permeability, etc.) were assumed to be independent of pore pressure
and stress. The fluid pressure change was uncoupled with the mechanical deformation
of the fractured media. The fractured media were treated as continuum elastic media.
Fluid pressure change caused by production was solved separately from porous matrix
deformation. The effective stress change resulting from pore pressure change was
derived using Terzaghi’s effective stress law (effective stress = total stress — fluid
pressure). Finally the deformation of fractured media was modeled according to the

effective stress change.
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Fractured Porous Porous Matrix continuum Fracture continuum
Media

Figure 1-5. Schematic representation of double porosity model (Lewis and Ghafouri,
1997).

Chen and Teufel (1997) presented a partially coupled method for deformable
fractured media. For fluid flow, the fractured media was assumed as a dual porosity
model — fracture and matrix are two overlapping continuum media. For geomechanics,
the fractured media was assumed as continuum poroelastic media and the coupling
between porous matrix and fluid was based on Biot’s theory of poroelasticity. The
fracture and matrix were virtually combined into one media with one combined porosity
and compressibility in the mechanical model. Therefore the fracture deformation was
oversimplified as matrix deformation. The fracture aperture and permeability was
independent of pressure and stress.  Meng (1998) and Shu (1999) used similar models
to model the coupled processes considering two fluid phases.

Sun (1994) used a discrete fracture element approach to model the deformable
fractured porous media. Fluid flow was modeled in both the porous medium and a
discrete fracture network. The transient flow rate between fracture network and porous

media was determined by the pressure gradient.  For the mechanical model, each
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fracture was treated as equivalent elastic medium having the same stress-displacement
relation as the fracture deformation. The shear displacement and dilation of fracture was
neglected, and only normal deformation was considered. The coupling of fluid flow and
mechanical deformation was based on Biot’s theory of poroelasticity. The stress
dependent fracture permeability was calculated according to the fracture aperture, which
was idealized as a smooth fracture approximating the real rough fracture (Figure 1-6).
Bagheri (2006), and Bagheri and Setteri (2008) developed an equivalent
continuum media for fractured porous media considering both fluid flow and a
mechanical model. For the fluid flow model, an element of fractured porous media was
transformed to an element of equivalent continuum media with a tensor permeability to
make the continuum media element have similar flow properties to the fractured medium
element. For the deformation model, the fractured medium was transformed to an
equivalent continuum poroelastic medium with the same deformation characteristics as
the fractured medium. Only normal deformation of fractures was considered. And only
small fracture deformation was allowed in the model. The fracture permeability and

porosity was dependent on pressure and stress.
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Figure 1-6. A real rough fracture in porous media and its idealized smooth fracture in two
dimensions (Sun, 1994).

1.2.2 Discrete element method (DEM)

Gutierrez and Makurat (1997) combined a thermal reservoir fluid flow simulator
code PROFHET (Propagation of fluid and heat) and a discrete element code UDEC
(Universal distinct element code) to analyze the hydro-thermo-mechanical behavior of
fractured hydrocarbon reservoirs. Fluid flow was modeled in both the discrete fracture
network and the porous matrix, and the interface flow rate was determined by pressure
gradient between fracture and matrix. The stress change induced by fluid flow was input
into UDEC to calculate the fracture deformation. The Barton-Bandis model of fracture

deformation was applied. The results from UDEC were not used to recalculate the fluid
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flow. The matrix in UDEC was defined as impermeable, which reduced the coupling of
porous matrix and fluid described by Biot’s theory of poroelasticity.

Min et al. (2004) used UDEC to model the effect of stress on fracture
permeability for a fractured media (Figure 1-7). The matrix was assumed as
impermeable and the fluid flow was only in the fracture network. The fracture aperture
changed with different stress loading according to the fracture deformation model. They
modeled the fracture aperture changes at various stress conditions including isotropic
stress loadings of different magnitudes and anisotropic loadings of different magnitudes
and ratios of the maximum principal stress to the minimum principal stress. Then they
modeled the flow rate through the fracture network with a fluid pressure loading. After
comparing with the Darcy’s flaw, the permeability for the fracture network was

determined and the effect of stress on the permeability of fracture network was evaluated.
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Figure 1-7. Geometry of fracture system in the DFN model (Min et al., 2004).

1.2.3 Displacement discontinuity method (DDM)

Asgian (1988, 1989) investigated the coupled fluid and porous matrix
deformation in fractured media using an elastic DDM. The elastic DDM (an indirect
boundary element method) was developed (Crouch and Starfield, 1983) to model the
deformation of elastic nonporous media containing discontinuous surfaces (fractures).
The matrix was assumed as impermeable and fluid flow was only in fractures. The fluid
flow in fractures was coupled with the fracture deformation. The fracture permeability

was also dependent on the fracture aperture according to the cubic law and the fracture
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aperture varied with the change of fluid pressure and effective stress. This method
allowed the fracture to deform in normal and shear with a large displacement. But the
matrix was assumed as impermeable in the elastic DDM, which limits its application in

fractured hydrocarbon reservoirs where the matrix is the main storage.

1.3 Summary of the dissertation

Chapter | describes the problem to be solved and the objective of the study, and
also critically reviews previously published methods.  Pressure reduction caused by
production in naturally fractured reservoirs induces the effective stress change. The
effective stress change affects the reservoir properties, which in turn influences the
production. Up to now the effect of production on reservoir properties including fully
coupled interactions of porous matrix, fluid and fractures in naturally fractured
reservoirs, especially fracture permeability change, has not really been addressed. The
objective of this study is to develop an approach to investigate the change in fracture
aperture and permeability in naturally fractured reservoirs.

Chapter 1l describes the DDM including elastic DDM and fully coupled
poroelastic DDM. The elastic DDM gives the analytical solutions of induced stress and
displacement at any point in a continuum elastic nonporous medium by a small thin
discontinuous surface (fracture) with finite length and then sums the influences of all
discontinuous surfaces (fractures) at any point using superposition. The fully coupled
DDM is based on Biot’s theory of poroelasticity. The fundamental solutions for stress

and pore pressure at any point induced either by a small discontinuous surface (fracture)
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with finite length or by constant rate fluid injection/production to a line source (fracture
at a well) are derived analytically. At any point, the influences by all fractures due to
displacement discontinuities or fluid injection/production can be obtained by the
superposition method. The fully coupled poroelastic DDM is verified using the classic
pressurized crack problem. Provided the stress and pore pressure change in the fractures
in a fractured porous media, the fracture aperture change can be determined using the
fully coupled poroelastic DDM.

Chapter 111 describes the characteristics of fracture surfaces, the nonlinear
Barton-Bandis model of fracture deformation, and the relation of fracture permeability to
fracture aperture in rough fractures. In the nonlinear fracture deformation model, the
relation of normal stress and fracture closure is represented by a hyperbolic formula.
The relation of shear stress and shear displacement is linear before yielding and too
complicated to represent using simple functions after yielding. The model also includes
shear dilation which is the fracture opening caused by shear displacement. The fracture
conductivity has a cubic relation to the effective hydraulic aperture but not the average
mechanical aperture. The effective hydraulic aperture is related with the average
mechanical aperture using the parameter for the surface roughness of fracture.

Chapter IV presents a new numerical method to determine the fluid pressure,
fracture aperture change and stress change simultaneously by combining a finite
difference method (FDM) for solving the diffusivity equation for fluid flow in fractures,
a fully coupled displacement discontinuity method (DDM) to build the global relation of

fracture deformation, and the nonlinear Barton-Bandis model of fracture deformation to
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build the local relation of fracture deformation. The fracture permeability changes with
the fracture aperture change.

Chapter V illustrates applications of the method described in Chapter IV under
both isotropic in situ stress conditions and highly anisotropic in situ stress conditions.
The increase of the compression stress induced by pressure depletion in naturally
fracture reservoirs tends to reduce fracture aperture and permeability, but fracture slip
caused by shear stress can increase fracture aperture and permeability due to shear
dilation.

Chapter VI gives conclusions of the dissertation and recommendations for future

work.
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CHAPTER Il

DISPLACEMENT DISCONTINUITY METHOD

The displacement discontinuity method (DDM) is an indirect boundary element
method of solving linear elastic problems given the boundary conditions and assuming
continuous stress and discontinuous displacement at the boundaries. Crouch and
Starfield (1983) developed an elastic DDM for elastic nonporous media and applied the
elastic DDM to model the joint deformation and slip due to mining jointed rock. In the
fluid-saturated porous media, there are coupled processes between the porous matrix and
fluid. Both porous matrix deformation and fluid pressure change can cause
redistribution of stress and fluid flux. Curran and Carvalho (1987), Cheng and
Predeleanu (1987), and Carvalho (1990) presented a coupled DDM for fluid-saturated
porous media and provided the fundamental solutions of stress, displacement and pore
pressure induced by constant displacement discontinuities or continuous fluid
injection/production along a line fracture in an infinite continuum porous medium
saturated with a compressible singe-phase fluid. The induced stress and pore pressure
by the displacement discontinuities or fluid injection/production from all fractures in a
porous medium are the sum of the fundamental solutions using superposition. All
fractures in an infinite fluid-saturated porous medium are treated as boundaries. If the
change of stress and pore pressure in all fractures in the fluid-saturated system are
provided as boundary conditions, the displacement discontinuities and fluid

injection/production rate in all fractures can be determined by solving a set of linear
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equations established from the fully coupled DDM, and vice versa. Therefore, the fully
coupled DDM can be applied to investigate the change of fracture aperture and the
interface flow rate between fracture and matrix (similar to the fluid injection/production
rate from a fracture into the surrounded matrix) if the stress and pore pressure in all
fractures in fractured porous media is provided. A pressurized crack problem is
provided as a case to verify the fully coupled DDM and show the coupled interactions
between the fluid and porous matrix.

This chapter will describe the elastic DDM in Section 2.1. Section 2.2 will
provide the fully coupled poroelastic DDM. Section 2.3 will verify the fully coupled
poroelastic DDM with an analytical solution, and Section 2.4 will provide conclusions of

this chapter.

2.1 Elastic DDM

The elastic DDM is an indirect boundary element method to cope those problems
involving pure elastic nonporous media containing thin fractures. The elastic DDM is
based on an analytical solution for the constant discontinuity of a displacement (e.g., a
finite fracture segment) in an infinite elastic nonporous medium. For an infinite elastic
nonporous medium containing multiple fractures, the fractures are divided into N
elemental segments with the displacement in each segment assumed to have a constant
discontinuity. At any point, the influence of displacement discontinuities from all
fractures in the system can be obtained by summing the effects of all N elements using

the fundamental analytical solutions.
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Crouch and Starfield (1983) developed the fundamental solutions (Eq. (2-1)) of
induced stresses at any point (x, y) for an infinite two-dimensional homogeneous and
isotropic elastic nonporous medium containing a finite small thin fracture with constant
normal and shear displacement discontinuities (Figure 11-1). The fracture length is 2a (a
is the half length of fracture segment) and its center is located at (0, 0).

(o}

The stress components, o o,, at the field point (x, y) induced by the

XX ! yy !

normal displacement discontinuity, D, ,and Shear displacement discontinuity, D, are

given by
2 3 2 3
aXX:2GDna£+y8£ +ZGD526f+yaf2
oy oy oxoy oxoy
2 3 3
o, =2GD, ??y]; - ygyz —-2GD, yaaa; (2-1)
3 2 3
o,y =—2GD,y of +2GD [8 f ya Zj
oxdy’ oy T oy

where G is the shear modulus, and f is a function of the position (x, y) of the field point
relative to the center of the fracture and the half length of the fracture segment a given
by:

y
X + a , (2_2)

(x—a)Iny/(x +y? +(x+a)l x+a)2+y2}

with Poisson’s ratio, v. Note that in this dissertation Sl units are used in all equations

f(x,y)= [y(arctan —_ _arctan

except for the specified equations, but oilfield units are shown in the results.
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Figure 11-1. A small discontinuous segment in an infinite two-dimensional nonporous medium (after
Crouch and Starfield, 1983).

Following is an illustration of the elastic DDM method:

The curvy fracture in a two-dimensional infinite nonporous medium shown in
Figure 11-2 is discretized into 5 segments and the influence of displacement
discontinuities on an arbitrary field point (x, y) from the curvy fracture can be

approximated by summing the influences from the 5 fracture segments on the point (x, y).
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Figure 11-2. A curvy fracture discretized into 5 segments in an infinite two-dimensional nonporous
medium.

The fundamental solutions (Eq. (2-1)) are for a fracture segment parallel to the x-
axis and the center of the fracture segment located at (0, 0). To apply the fundamental
solutions, the field point (X, y) shown in Figure 11-2 must be transformed into a local co-
ordinate system for the jth fracture segment with an angle 4 with x-axis, as in Figure 11-3.
The X-axis of the local co-ordinate system is parallel to the orientation of the jth fracture

segment. The field point (x, y) is transformed to the local X, y co-ordinate.

X =(x—x;)cos 8, +(y -y, )sin B,

(2-3)
y= —(x = X; )sin B + (y - yj)cosﬁj
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where (x;, y;) is the midpoint of the jth fracture segment. The induced stresses on the

field point in the local X, y co-ordinate system by the normal and shear displacement

discontinuities of the jth fracture are:

j j 2f 3F i ’ i -
oxx =2G Dn g‘ﬂ_/g +2G D, Za_f_—l—y ?f_z
oy oy Xy ° OXOy
J j 2f 3F j 3F
Oy = 2G Dy 8_12: - Vg —2G Ds y ? f_z (2'4)
oy oy OXOy
j j 3F i 2z .
Oy =26 Dy 2 f_2 +2G Ds gwg
5X8y @y ay
where
f(%,y)=———~ | y| arctan—Y— —arctan—~
47(1-v) X-a, X+a, (2:5)

—(Y—aj)lnwl(i—aj)z+y2 +(>T+aj)ln1/(>‘<+aj)2+72}

The induced stresses on the field point (x, y) in the x, y co-ordinate system by the jth
fracture segment are obtained by transforming the Eq. (2-4) from the local X, y co-
ordinate system to the x, y co-ordinate system using the transformation formula (Crouch

and Starfield, 1983).

i j j
Ox =0 C0S” B — oy SIN2f3; + oyysin’ B,

j j j j
oy =0oxsin’ B, + o SiN2p; + oy cos’ B (2-6)

j i j i
O xy :(JXX—UWJSIHIBJ' €oS f3; +0W(COSZ B _smzﬂj)
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The induced stresses on an arbitrary point (X, y) by the displacement discontinuities of

the curvy fracture are approximated by superposition as the sum of the influences from

all 5 fracture segments.

S ]
O :ZO-XX
=1

5
Oy = ZO-W
-1

2& A

(%;,yi)

(2-7)

Figure 11-3. Local co-ordinate for the jth fracture segment in an elastic nonporous medium.
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If the field point (x, y) coincides with the midpoint (x;, y;) of the ith fracture
segment, the Eq. (2-4) are the induced stresses on the ith fracture segment by the normal

and shear displacement discontinuities of the jth fracture segment in the local X, y co-

ordinate system (Figure 11-4). The induced stresses on the ith fracture segment by the jth
fracture segment can be transformed into normal and shear stresses to the ith fracture

segment using the following formula.
ij j U i
On =0 COS” y+ o SiNn2y'+oysin’y
(2-8)

i /R T N T S
0s =| ox— Oy [SinyCoSy—oxy| cos” y—sin®y

ij ij ij
where y :%+ B — B;, and on, osare the induced normal and shear stresses on the ith

fracture segment by the jth fracture segment. Combining Egs. (2-4) and (2-8) yields:

ij ij ij

j
on=ADn+BDs

(2-9)
TS N
Us:EDn+FDs
where
ij (2 F ij ij 3r ij 3F
A=2G 0 £+ cos® y—sin®y 78 Z—sinZyy €i2
| Y oy Xy
i i i 2F 3F i 3F i A2 F 3F
B=26|cos’ s 20 Ly O | siny 9 O0 gy O L g0 L
i oxXoy =~ oXoy X0y oy oy (2-10)

ii ii A3F ij ii 3F
E = 2Gy sin2y%+ cos’ y—sin’y | — f2
9% oxoy
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i i A2F 3f j i 2F 3F
F =2G|sin2y a_f +y ?fz —| cos® y—sin®y 8_1; +y%
OXoy = OXoy oy oy

The induced normal and shear stresses on the ith fracture segment by the normal and
shear displacement discontinuities of all fracture segments are obtained by summing the

solutions in Eqg. (2-9).

(2-11)

Figure 11-4. Influence of jth fracture segment on the ith fracture segment in an elastic nonporous
medium.
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If the displacement discontinuities of the curvy fracture in the example shown in
Figure I1-2 are unknown variables, but the normal and shear stresses in the curvy
fracture are known, the induced displacement discontinuities of the curvy fracture for the
stresses on the fracture can be obtained by simultaneously solving the following 10 sets

of linear equations (shown in matrix form) built from Eq. (2-11).

11 11 12 12 13 13 14 14 15 15 1

1
A B AB ABABAB | Dn On

11 11 12 12 13 13 14 14 15 15 1

1
EFEFEFEFEF]|Ds Os

21 21 22 22 23 23 24 24 25 25 2

2
A B AB ABABAB | Dn On

20 21 22 22 23 23 24 24 25 25 2

2
EFEFEFEFEF]|Ds Os

31 31 32 32 33 33 34 34 3 35 3

3
ABABABABAB |Dn| |on
-|° (2-12)

31 31 32 32 33 33 34 34 3 35 3

3
EFEFEFETFEF|Ds Os

41 41 42 42 43 43 44 44 45 45 4

4
A B ABABABAB Dn On

41 41 42 42 43 43 44 44 45 45 4

4
EFEFEFETFTEF|Ds Os

51 51 52 52 53 53 54 54 55 55 5

5
A B AB ABABAB | Dn On

51 51 52 52 53 53 54 54 55 55 5

5
EFEFETFETFE F)Ds Os

This method is for elastic nonporous media. Next section will give the DDM in

porous media saturated with compressible single-phase fluid.

2.2 Fully coupled DDM for porous media saturated with a compressible single-phase

fluid

The interaction of fluid and porous matrix plays a key role in the matrix

deformation and fluid flow in the fluid-saturated porous media. ~The porous matrix
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deformation causes pore pressure change, thereby causing pressure diffusion. A
disturbance in the pore pressure also causes deformation of the solid matrix. Biot (1941)
developed a theory of poroelasticity for a porous medium saturated with an
incompressible fluid. The theory of poroelasticity was extended to the porous media
saturated with compressible fluid by Rice and Cleary (1976). Based on the theory of
poroelasticity, Carvalho (1990) gave the fundamental solutions of induced stress and
pore pressure for a finite thin fracture segment with a fluid injection/production source in
an infinite two-dimensional homogeneous and isotropic porous medium saturated with a
compressible single-phase fluid. The induced stress and pore pressure by a single long
fracture or many fractures with fluid injection/production can be obtained by discretizing
the fracture or fractures into N fracture segments and summing the influences of all N
fracture segments. If the induced stress and pore pressure in fractures are known, the
normal and shear deformation of fractures and fluid injection/production rate (interface
flow rate) in these fractures can be obtained by numerically solving a set of linear
equations built from the fundamental solutions.

This section will start from the constitutive equations of a porous medium
saturated with a compressible single-phase fluid in subsection 2.2.1. The constitutive
equations give the relations of stress, pore pressure, strain and fluid volume changes.
Then the pressure diffusion equation for flow in the porous medium will be given in
subsection 2.2.2. Based on the coupled constitutive equations and the pressure diffusion
equation, the fundamental solutions of induced stress and pore pressure for a single finite

thin fracture segment under constant displacement discontinuities or constant rate fluid
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injection/production in an infinite two-dimensional homogeneous and isotropic porous
medium saturated with a compressible single-phase fluid will be given in subsection
2.2.3. Subsection 2.2.4 will describe how superposition of the fundamental solutions
enables consideration of a long fracture or many fractures, and the subsection 2.2.5 will
give a method for determining the normal and shear fracture deformation and fluid

injection/production rate given the time dependent stress and pore pressure in fractures.

2.2.1 Constitutive equations of a porous medium saturated with a compressible single-

phase fluid

The relation of stress to strain and pore pressure for a linear isotropic poroelastic

medium is given by Biot’s theory of poroelasticity (Biot, 1941):

19
O = ZG[exx +Eekk:| —ap

Oy = ZG[e +_L20ekk} —ap

wol
o, = ZG{eZZ + %ekk} —ap (2-13)
-2
o, =2Ge,,
o,, =2Ge,,
o, =2Ge,

Where Gy, Oyy, Gzz, Oxy, Oxz, aNd Gy, are stress components and €xy, eyy, €z, €xy, xz, and

ey, are strain components of the porous medium, e, is the volumetric strain

(e =€, +€,+¢€,), pis the pore pressure, « is Biot’s poroelastic coefficient. Tensile
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stress and strain are treated as positive in this dissertation. The strain is defined

according to the displacement:

ou,
eXX:
OX
ou
eyy:_y
oy
_auz
2z az
1(ou, au, (2-14)
e, =—| —=2+—=
Yo2loy  ox
1(ou, ou,
exz:_ +—
2\ 0z ox
1(du, au,
e,=—| —Lt+—=
o2l oy

where uy, Uy and u, are the components of displacement of the porous medium along x, y

and z direction, respectively. The static solid is subject to the following force balance

(Biot, 1941):

80_)0( + any + ao-xz — 0
OX oy 0z

0 0 0
T 1 S D g (2-15)
OX oy 0z

aO-xz + aayz a(Tzz — O
OX oy oz

Combining Egs. (2-13), (2-14) and (2-15) yields the Navier equation of poroelasticity:
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2 2 2 2 aZU 2
ou, o MXJ G (aux+ y+auz]_aa_p:0

G ZX + ZX + 2 + 2
OX oy 0z 1-2v| ox° oyox 0zox OX

ou, o4, ou 2y, o« 2
G| —t+—2r+—2L |+ S auX+ 2"+auz —a@:O (2-16)
1 oxoy oy® oLy
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The total volumetric deformation (e, ) of the porous medium consists of the
pore space change (¢,) and the deformation of the solid porous matrix (g,). The
deformation of the solid porous matrix is due to the fluid pressure and effective stress
loading:

(i)  the effect of fluid pressure (the compression stress or strain is negative):

Ga=p 1) (2-17)

S

(i) the effect of effective stress loading

O
— _kk
gs 2

- 2-18
e (2-18)

where K. is the bulk modulus of the solid and ¢ is the porosity. The average effective

stress (o, /3) has the following relation with the volumetric strain and pore pressure

(Carvalho, 1990):

O_l‘<k O';(X + O';/y + O';Z K,
e W 2 _Ke +—0 2-19
3 3 meu p ( )

S
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where K (Kn < Ky) is the bulk modulus of the porous matrix. Combining Egs. (2-17)

and (2-18), and substituting Eqg. (2-19) result in the deformation of the solid porous

matrix:

K K| K

K K
=g, +£{—m—(1—¢)} (2-20)
The pore space change is obtained by subtracting the deformation of the solid porous
matrix from the total volumetric strain and using the definition of Biot’s coefficient, «,

(a=1-K_IK,):

6y =ty +(@—g) (2-21)

S

2.2.2 Pressure diffusion in a porous medium

The fluid mass balance equation in a porous medium (matrix) gives that the fluid
flowing into/out is equal to the sum of the increase of fluid mass in the pore space and

injected/produced fluid:

_8(pqu)_a(pfqy)_a(pfq2)=a(prf)_pqu (2-22)

ox oy oz ot

where p, is the fluid density, g, qy, 0. are the fluid flow rate components in X, y, z
direction, respectively, V, is pore space, q,is the injection/production rate and t is time.

The fluid is compressible and the fluid density is pressure dependent:

apfch
8p o/’ f

(2-23)
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where ¢, is the fluid (for example oil) compressibility.
In a unit volume porous media, the pore volume is ¢, and the pore volume

change is ¢, and the RHS of Eq. (2-22) is rewritten as:

_a(pqu)_a(pfqy)_a(pfqz):¢a(pf)+ a(gp) (2-24)

o oy o a e %

Assuming Darcy’s Law for fluid flow,

__kA9p
§ u oxX
k
__KAap (2-25)
u oy
kA, op

L

y

where k is the matrix permeability and assumed as homogeneous and isotropic, Ay, Ay,
A; are the cross section areas in X, y, and z direction, respectively, and g is the fluid
viscosity.

Substituting Egs.(2-21), (2-23) and (2-25) into Eq. (2-24), neglecting the term with

(S—p)2 (Lee et al., 2003) and assuming small change in the pore volume (noting that the
X

cross section area for a unit volume is 1) yield:

2 2 2
kfo E)+8 E+a E) =i8—p+oz%—qS (2-26)
u\ox: oy° oz M ot ot
where $=¢Co + aK_¢ and M is the Biot modulus. In Eq. (2-26), the left side is the net

S

flow rate into the unit porous medium from the boundaries, the first right term (%ﬁ)

ot
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is the fluid volume change due to the pore pressure change, the second right term

(a%) is the fluid volume change due to the effective stress change, and the final term

(q,) is a source term.

2.2.3 Fundamental solutions for a single fracture segment in an infinite two-dimensional

porous medium

The fundamental solutions of poroelastic DDM include induced stress,
displacement and pore pressure from both the pressure/flow rate disturbance and the
displacement discontinuities. For a plane strain condition (three-dimensions are
simplified to two-dimensions), there is a constant discontinuity in the media and also
constant flow (injection or production) along a thin fracture with a length of 2a from t=0
(Figure 11-5). The initial conditions are defined in Eq. (2-27) and the inner and outer
boundary conditions are defined in Egs. (2-28) and (2-29). Since only the induced
solutions for changes in stress, displacement and pore pressure are needed, the initial
values of stress, displacement and pore pressure are set as zero.

(i) The initial conditions are given by

at t=0,vx,y =0 (2-27)



(i1) Boundary conditions are given by

Inner boundary:

ux(x,O’)—ux(x,O*): D,
aty=0,[x<a {u,(x0 )-u,(x0")=D

g, =—2a(,
where g is a unit flow rate (go=1 m®/sec).

Outer boundary:

— {uxzuyzo
at /x> +y®> >

Gxxzo-yy=6xy: p=0

34

(2-28)

(2-29)

Figure 11-5. A thin line fracture in an infinite two-dimensional elastic porous medium, and the line

fracture starts from (-a,0) and ends at (a,0).
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Using the initial and boundary conditions (Egs. (2-27) — (2-29)), Egs. (2-16) and
(2-26) can be solved for separate inner boundary conditions — constant volume flow rate
injection/production (ux(x, 0')- ux(x, 07)=0, uy(x, 0)- uy(x, 07)=0, gs =-2aqp) at the inner
boundary and constant displacement discontinuity (DD) (ux(x, 0')- ux(x, 07)=Ds, uy(x, 0')-
uy(X, 07)= Dy, gs =0) at the inner boundary (Carvalho, 1990). The induced displacement,
pore pressure and stress at any point (X, y) and time t by the constant volume
injection/production rate and by the displacement discontinuities including normal and
shear displacement discontinuities through the fracture segment are given in the
Appendix A and Appendix B, respectively (Carvalho, 1990). The final fundamental
solutions for poroelastic DDM are obtained by combining the solutions of the constant
volume rate fluid injection/production and the constant displacement discontinuities in
the fracture segment.

Induced pore pressure:
P(X,y,0) = P (X, ¥,1) D, + P (%, ¥,t) Dy + p*(X, ¥, 1) Qi (2-30)
Induced displacement:

U (%, Y, 1) = U (%, Y, 1) Dy + U (X, Y, 1) Dy + U (X, Y, 1) G
(2-31)

U, (X, Y,1) = Uy (X, y,8) D, + Uy (%, ¥, 1) Dy + Uy (X, ¥, ) Gy

Induced stress:
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o (% Y, 1) =0 (X,y,1) D, + o= (X, y,t) D, + ol (X, ¥,1) G,
oy, (%, Y,0) =0y (%, ¥,1) D, + 0y (X, ¥, 1) Dy + 0y, (X, Y1) Qe (2-32)

o, (X, Y, t) =05 (X, V,t) D, + o (X, ¥, 1) D, + o (X, ¥, 1) Oy

where D, and Ds are the normal and shear displacement discontinuity sources, and Qin; IS
the fluid source term in a fracture (interface flow rate between fracture and matrix), and
the superscripts dn, ds and q denote normal displacement discontinuity source, shear

displacement discontinuity source and fluid source, respectively. The induced pore

pressure, p?, displacement in x direction, uf and in y direction, uy , stress components,
oy oy, and oy by the constant rate fluid injection/production from a fracture segment

are listed in Appendix A. The induced pore pressure, p and p®, displacement in x

ds
y )

dn dn

direction, u" andu® w1 Oy s

X H

and in y direction, u‘y’” andug , stress components, o

d d
n GS

XX !

o

o 0;‘; and afys by the constant normal and shear discontinuous displacement of a

fracture segment are listed in Appendix B.

2.2.4 Solutions for multiple fracture segments in an infinite two-dimensional porous

medium

For a long fracture or many fractures in a porous medium saturated with a
compressible single-phase fluid, the induced stresses and pore pressure can be
approximated by summing the fundamental solutions for a system of fracture segments.

Figure 11-6 shows a porous medium containing a curvy fracture like the one in section
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2.1 that was in a nonporous medium. The curvy fracture is discretized into 5 fracture
segments shown in Figure 11-6. To apply the fundamental solutions to the jth fracture
segment, it is necessary to transform the x, y co-ordinates of the segment into the local X,
y co-ordinate system using the transformation formula in Eq. (2-3). The pore pressure
and stresses induced by the normal and shear displacement discontinuities and the fluid
injection/production of the jth fracture segment in the local X, y co-ordinate system
(Figure 11-7) are given in Egs. (2-33) and (2-34), respectively.

Induced pore pressure:

j i i j i j i
p(¥1 yvt) = pdn (Yv y’t) Dn+ pds (Xv y!t) Ds+ pq()_(’ y’ t) qint (2_33)
Induced stress:

j j j j j i j
67()_(! y,t) = Gdn ()_(l y! t) Dn+ US—;(Y, )_/,t) Ds+ Gf(ix()_(’ y,t) Qine

XX

] j

j j i j
T (X, ¥,t) Dot o (X, ¥,t) Ds+ ol (X, ¥, 1) Oy, (2-34)

Q -
3
~
£
<|
—
N

[

Q

j j i i i i j
o (X, V.t) =0y (X, ¥,1) Do+ oy (X, V,t) Ds+ g (X, V,1) Uiy
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(X1:y1)

Figure 11-6. A curvy fracture discretized into 5 segments in an infinite two-dimensional porous
medium saturated with a single-phase fluid.

The stresses induced by the jth fracture segment in the local X, y co-ordinate system
can be transformed to the x, y co-ordinate system using the transformation formula in Eq.
(2-6). Now the induced stresses from all 5 fracture segments can be obtained by
superposition. (Eq. (2-7)). As the pore pressure is a scalar, it is independent of the
orientation of the co-ordinate system. The induced pore pressure by the jth fracture in

the X, y co-ordinate system is the same as that in the local X, y co-ordinate system.

j j
p(x,y,t)=p(X,¥,1), (2-35)
And the induced pore pressure by the curvy fracture can be obtained by summing the

induced pore pressure from all 5 fracture segments.
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px,¥,1)= 3" (%, .0 (2-36)

j=

(X;:%5)

Figure 11-7. Local co-ordinate for the jth fracture segment in a porous medium.

The normal and shear stresses induced on the ith fracture segment by the jth
fracture segment shown in Figure 11-8 are obtained by projecting the stresses in Eg. (2-
34) to the plane of the ith fracture using the formula in Eq. (2-8). The normal and shear
stresses and pore pressure induced on the ith fracture segment by the constant rate fluid
injection/production and the constant normal and shear displacement discontinuities of

the jth fracture are:



where

ij ij

Al X, y,t

ij /i ij

Bl x,y,t

ij i i

C| x,y,t

ij i i

El x,y,t

ij /i) ij

F| x,y,t

ij (ij ij

K| X, y,t

ij i ij ij ]

O'n:ADn+BDs+C qint

u ij j ij ]

=E Dn+ F D:+ K qlnt

ij ij ] j ij ]

p= LDn+H Ds+N g,

Ij j i ij i 0 /i ij ij j i ij
=cos’y o (x ytj+sm27/o- (x ytj+sm Y Oy [x,y,tj
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ij ) ij ij ij ij ij ij
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| ij ij
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J-o

ij

x=(x —x, )cos 8, +(y, - y, Jsin 3,

ij

y= —(xi - xj)sin B+ (yi - yj)cosﬂj

!

j (2-38)

J

ij ij i i ij j ij ij ij i (i
=sinycosy| o x,y,t |- x ytj cos’ y sin yj d( ,
il ij J'd i ij u ij u J
=sinycosy| og| X, Y,t |- x,y,t cos 7/ sin’y
i i 0 i ij J' ijij
=sinycosy| od| X, y,t |- cos ;/ sin 7} ( Y,

40

(2-37)

(2-39)
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(X5.¥5)

Figure 11-8. Influence of the jth fracture segment on the ith fracture segment in an elastic porous

medium.

The normal and shear stresses and pore pressure induced on the ith fracture segment by

the constant rate fluid injection/production and constant normal and shear displacement

discontinuities of all fracture segments are obtained by summing the solutions in Eq. (2-

37).

j=1 j=1 j=1
[ 5 0 5 0 ] 5.0 ]
os=Y EDn+) FDs+> Kq, (2-40)
j=1 j=1 j=1



42

2.2.5 Determination of the fracture discontinuous displacement

Up to now we have determined normal and shear stresses and pressure given
discontinuous displacements in the fractures and fluid injection/production sources.
However, the practical application may require determination of the fracture
discontinuous displacement given stress and fluid pressure in fractures. Because the
stress and pore pressure changes induced by the constant rate fluid injection/production
and displacement discontinuities of fractures are a function of time, it is necessary to
account for the time dependent changes. For time dependent normal displacement
discontinuity, Dy, shear displacement discontinuity, Ds, or injection/production flow rate
(interface flow rate between fracture and matrix), Qin, @ time marching scheme like that
shown in Figure I1-9 is used to discretize the time dependent quantity into N constant
steps and use superposition to account for each step change at the time it occurs. The
constant step source except for the first one does not start at the time zero (t=0). Thus a
time shift is needed to apply the fundamental solution and the influence coefficients. For
example, at time 7z, if constant ADn(X;Y;j, 72), ADs(X;Yj,72) and Agine(Xj,yj, 7o) of the jth
fracture segment are added, the induced stresses and pore pressure on the ith fracture

segment at time t by the added sources will be :



43

5 ij

0= Alt—7,)ADn+ 3 Blt—7,)AD.+ 3 Cli—z,)Ad,,
i-1

j=t j=1

i ij ij

oo =Y Eft-7.) D+ Y Flt-7.)aDs+ Y K(t-r.)A0, (241)

=1 = i=1

ip:iﬂ(t—fg)Agn+ X ﬁ(t—fg)Aljés +il2](t—z'§)Aj(§im

i=1 i=1 i=1

j j¢ i
where AD., , ADs and Aq., denote the increments of normal displacement

int
discontinuity, shear displacement discontinuity and injection/production flow rate

- - - IJ ij
(interface flow rate) of the jth fracture segment at time z A(t—rg), B(t—rg),

ij ij ij ij ij ij

Clt-z.). Et-r.). Flt-.), Kl-z.), Lt-7.), Hlt—z.), and Nft—z.) are the
influence coefficients of jth fracture segment on the ith fracture element at time step &

and defined in the Eq. (2-38). The total induced stresses and pore pressure on the ith

fracture segment at time t are obtained by summing the influences from all time steps.

oll)=3 S At-7)AD.+Y Y Bl-r,)AD+Y ]

o)=Y YEt-5)AD.+Y Y Ft-5)aD+Y YK(-r)aq, (42

where h is the time step index.
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Figure 11-9. Time marching scheme, y represents Dy, Ds Or Qint.

If the induced stresses and pore pressure at all fracture segments shown in Figure
I1-6 are known, the step change of normal and shear displacement discontinuities and
injection/production flow rate can be solved from z to z: Firstly, at time 7, (7=0), the
induced stresses and pore pressure on the ith fracture segment from 7, to 7, are known,

Eq. (2-42) is rewritten as Eq. (2-43) (note that there is only one time step).

5 o s 0
On 2'1 Z -7, ADn+ZB TO)AIJ:)S+ZCJZ(2'1—TO)Aqum

j=1 j=1 j=1

i 5 j jo 5 i jo 5 j jo

os(z,)= z E(z, —7,) ADn +z F(z,—7,)ADs + Z K(z,—7,)AQ,, (2-43)
j=1 j=1 j=1

5 jo 5 ij jo 5 ij jo
p(rl)=z L(rl—ro) A Dn +Z H(z'l —TO)A Ds +z N(z'1 —z‘o) AQ,,
' =1 -1

One set of linear equations can be built from Eq. (2-43), and the increment of normal
displacement discontinuity, shear displacement discontinuity and injection/production
flow rate (interface flow rate) for all fracture segments at time z can be solved from the

set of linear equations. By the similar way, the step sources at other time steps can be
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solved. For the last time step, the induced stresses and pore pressure at time t are known
and the step sources before the step z:are already solved, and only the last step sources

are not known and need to be solved (2-44).

S At-r,) D+ 3 Blt—7,) A+ Cli—r,) AT, =

j=1 j=1 =1

i &1 5 jj jh &1 5 jh &1 5 jh

onlt)-D. DIAlt-7,) ADa=> Y Blt-7,)ADs=> > C(t-7,)Aqy,
h=0 j=1 h=0 j=1 h=0 j=1

ZS:L(t r,:)ADn+ZH(t r)AD+ S Nft-7,) A G, -

i sl 5 jj jh g1 5 jj jh g1 5 jj jh
pt)-> D Lt-7,) ADa=> D H(t-7,)ADs-> Y N(t-7,)Aq,,
h=0 j=1 h=0 j=L h=0 j=1

Another set of linear equations can be built from Eq. (2-44) and the increment of normal
displacement discontinuity, shear displacement discontinuity and injection/production
flow rate /interface flow rate for all fracture segments at time z: can be solved from the
set of linear equations. The final normal and shear displacement discontinuities and
injection/production flow rate (interface flow rate) of every fracture segment at time t

can be obtained by summing all of these step increments.
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j .
Ds=) AD:s (2-45)

2.3 Model verification

It is difficult to find analytical solutions for most real problems. Numerical
methods have the advantage to solve the real problems sometimes with very complicated
boundary conditions. A few special problems with simple boundary conditions can be
solved analytically, and these analytical solutions are very helpful to check and verify
the numerical solution by the DDM. Here, the DDM is applied to a line crack in an
infinite medium.

An infinitely thin line crack with a length of AL in an infinite elastic medium is
subject to a constant pressure (tensile stress) p along the crack surfaces (Figure 11-10).
The normal relative displacement of the two crack surfaces (opening), ws , was solved by

Sneddon (1951).

2
w, =LmRAL X (2-46)
G (AL/2)

where —AL/2<x<AL/2.
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it
LT

Figure 11-10. A line crack with constant pressure loading.

"’N

This problem can be solved using the DDM. The line crack is separated into N
segments, each of which represents an elemental displacement discontinuity. And the
displacement of every segment can be solved by applying the boundary conditions
(constant pressure along the crack surfaces).  For a elastic nonporous medium with a
shear modulus of 9.06x10° psi and a Poisson’s ratio of 0.2, there is an infinite thin line
crack with a length of 39.37 in, and a constant injection pressure of 145 psi above the
reservoir pressure (4p = pinj — Po = 145 psi) applied to the crack surfaces. The original
crack aperture is assumed as zero and the effective stress is zero. Figure I11-11 shows that

the crack width modeled using the DDM is consistent with the analytical solution.
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Figure 11-11. Comparison of the modeled crack width using elastic DD with the analytical solution.

If the elastic porous medium is saturated with fluid, a constant fluid pressure
applied to the crack surfaces will cause a transient crack opening. In addition to the
stress applied to the crack surfaces, there is also a fluid pressure applied to the pore
pressure field in the porous medium. It is common to separate the pressure application
into two loading processes (Detournay and Cheng, 1988): (i) Mode | loading — normal
stress loading; (ii) Mode Il loading — pore pressure loading. Mode | loading tends to
open the crack. But the opening of crack will cause a compression on the porous
material around the crack. At very early time stage, the fluid in the pores cannot move
out and the porous material shows undrained behavior, and the pore pressure around the

crack has an instant increase. The induced pore pressure dissipates and decreases with
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time until it reaches a drained stage with no pore pressure gradient. The crack width
increases when the poroelastic material changes from undrained stage at early time to the
drained stage at long time as the pore pressure dissipates and the material around the
crack becomes more “soft”. Mode Il loading tends to reduce the crack opening as the
fluid flows into the porous material around the crack and increase the pore pressure
which tends to cause an expansion of the porous material around the crack.

Considering the Mode | and Mode Il loading processes for the same crack and
loading as before and poroelastic and fluid parameters listed in Table 11-1, the crack
shows a transient opening. If only Mode | loading, the crack width increases with time
and reaches a stable state at long time as in Figure 11-12. At short time, the crack opens
as the crack in an elastic material with a Poisson’s ratio the same value as the undrained
Poisson’s ratio in Figure 11-13. At long time, it evolves to the drained stage with the
opening as the crack in an elastic material with a Poisson’s ration the same value as the
drained Poisson’s ratio in Figure 11-13.  If only Mode Il loading, the crack closes with
time (Figure 11-14) as the fluid flows from the crack into the adjacent formation. The
crack closure approaches its maximum values at infinite time when the pore pressure
around the crack approaches the fluid pressure in the crack. Figure 11-15 shows the
fracture closing at 1.91x10° hours, which is smaller than the opening induced by Mode |
loading. The crack still opens with the fluid injection with a constant pressure modeled
by combining Mode I and Mode Il loading. The crack has an instant opening, and then
the width reduces with time. But the crack is still open at long time (Figure 11-16). The

crack shows the same opening as the analytical solution for the undrained case (Figure
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11-17). But crack width reduces with time due to Mode Il loading, and approaches a

smaller opening at long time instead of approaching the analytical solution for drained

stage (Figure 11-17).

Table 11-1. Parameters in the modeling of pressurized crack.

Shear modulus G (psi) 8.6x10°
Possoin’s ratio v 0.16
Undrained Possoin’s ratio vy 0.31
Matrix permeability (md) 0.8
Matrix porosity ¢ 0.2
Biot’s coefficient a 0.83

Fluid viscosity p (cp) 1
Fluid compressibility (/psi) | 2.9x10®
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Figure 11-12. Mode I loading: the crack opens as a function of time at x=0.2 in.
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Figure 11-14. Mode 11 loading: the crack closes as a function of time at x=0.2 in.
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Figure 11-15. The crack closing at t=1.91x105 hrs for Mode 11 loading.
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Figure 11-16. The crack width for Mode | +11 loading at x=0.2 in.
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2.4 Chapter conclusions

This chapter described the DDM including elastic DDM for nonporous media
and fully coupled poroelastic DDM for porous media saturated with a compressible
single-phase fluid. The fully coupled DDM is based on Biot’s theory of poroelasticity.
For an infinite elastic porous medium containing fractures, if the change of stress and
pore pressure in these fractures are known, the fracture aperture change can be
determined by using the fully coupled DDM. In real situations, neither the change of
stress in fracture nor fracture aperture change is known in the reservoir. But many
investigations have shown that there is a relation between the stress change and the
fracture aperture change in fractures. Chapter 111 will give the surface characteristics of
fractures with rough surfaces and the relation of stress and fracture deformation. The
pore pressure change in the fractures is not known directly either. Usually only the flow
rate or fluid pressure in the well is known while producing from a fractured reservoir,
the required fluid pressure change in fractures is determined using a numerical finite
difference method (FDM) described in Chapter IVV. Finally the fracture aperture change
due to production can be determined by combining the DDM, the constitutive model of

fracture deformation and an FDM to determine the fluid pressure change in fractures.
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CHAPTER IlI
NONLINEAR DEFORMATION OF A SINGLE

ROUGH FRACTURE UNDER STRESS

The fracture is also termed a joint in geology publications. In this dissertation
both fracture and joint describe two contacting rough surfaces with voids that are
completely connected in three-dimensional space. The rough fracture under stress will
deform with the change of stress. There are three types of deformation — normal
deformation, shear deformation and dilation. The deformation for a single rough
fracture has been studied by testing the stress—displacement relationship of natural or
artificially fractures in laboratories (Goodman, 1976, Bandis et al., 1981, Bandis et al.,
1983, Sun et al., 1985, Boulon et al., 1993, Huang et al., 2002, Lee and Cho, 2002). The
constitutive model (Barton-Bandis model) for fracture deformation was presented based
on the experimental results by Bandis et al. (1983) and Barton et al. (1985).  The
empirical model only needs some basic fracture characteristic parameters, e.g. the joint
roughness coefficient (JRC), the joint compressive strength (JCS) etc., which can be
measured in laboratory. The fracture deformation usually causes the fracture opening or
closure, and changes the fracture aperture. The *“cubic law” which is derived from the
fluid flow between two smooth plates is also applicable to calculate the hydraulic
conductivity or permeability for closed rough fractures with a correction coefficient
(Witherspoon et al., 1980). Barton et al. (1985) presented a method to correlate the

effective hydraulic aperture to the average mechanical aperture and the *“cubic law” is
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applicable using the correlated effective hydraulic aperture. Consequently, the fracture
permeability change caused by stress change also can be derived and analyzed.

The chapter will start with the fracture surface characteristics in Section 3.1.
Then Section 3.2 will give the relation between normal stress and normal deformation.
Section 3.3 will show the mechanism of shear deformation and dilation, and also the
relation between shear stress and shear displacement. Section 3.4 will give the
definitions for the effective hydraulic aperture and the average mechanical aperture, and
how they are related to permeability. Finally, the conclusions of this chapter will be

given in section 3.5.

3.1 Surface characteristics of a fracture

The fracture deformation depends on the fracture surface characteristics. The
constitutive models need values for surface characteristics, such as JRC, JCS,
unconfined compression strength (rock adjacent to the wall) (o¢), residual friction angle
(&), etc. JRC, JCS and ¢ are three key parameters in the Barton-Bandis joint model.
Barton and Choubey (1977), and Barton (1982) developed methods to quantify these

parameters for fractures.

3.1.1 Joint compressive strength (JCS)

The measurement of JCS is fundamentally important because it is largely the thin
layers of rock adjacent to joint walls that control the strength and deformation properties

of the rock mass as a whole (Barton and Choubey, 1977). Usually for natural fractures,
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JCS is much smaller than the strength of intact rock as the fracture surface is weakened

by weathering (e.g. mechanical disintegration, chemical decomposition). JCS can be

measured by Schmidt Hammer Index test (Barton and Choubey, 1977). Typical JCS

values are listed in Table I11-1.

Table 111-1. Typical JCS values (ISRM, 1978).

Grade | Description Field identification JCS (MPa)

S1 Very soft clay Easily penetrated several inches by fist <0.025

S2 Soft clay Easily penetrated several inches by thumb 0.025-0.05

S3 Firm clay Can be penetrated several inches by thumb | 0.05-0.10
with moderate effort

S4 Stiff clay Readily indented by thumb but penetrated 0.10-0.25
only with great effort

S5 Very stiff clay Readily indented by thumbnail 0.25-0.50

S6 Hard clay Indented with difficulty by thumbnail >0.50

RO Extremely weak Indented by thumbnail 0.25-1.0

rock

R1 Very weak rock Crumbles under firm blows with point of 1.0-5.0
geological hammer, can be peeled by a
pocket knife

R2 Weak rock Can be peeled by a pocket knife with 5.0-25
difficulty, shallow indentations made by
firm blow with point of Geological hammer

R3 Medium strong Cannot be scraped or peeled rock with a 25-50
pocket knife, specimen can be fractured
with single firm blow of geological hammer

R4 Strong rock Specimen requires more than one blow of 50-100
geological hammer to fracture it

R5 Very strong rock | Specimen requires many blows of 100-250
geological hammer to fracture

R6 Extremely strong | Specimen can only be chipped with >250

rock geological hammer

Note: Grades S1 to S6 apply to cohesive soils, for example clays, silty clays, and combinations
of silts and clays with sand, generally slow draining. Discontinuity wall strength will generally
be characterized by grades RO-R6 (rock) while S1-S6 (day) will generally apply to filled
discontinuities.
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3.1.2 Basic friction angle (¢,) and residual friction angle (¢)

& is the friction angle for unweathered fracture and ¢ is for weathered fracture
angle. The friction angle is defined as arctan (zpeax/on), Where zea is the shear stress
required to initiate the fracture to slide under a normal stress on. The friction angle
between two rough surfaces (unweathered or weathered) can be measured by the tilt test
shown in Figure I11-1. The sample is tilted till the upper surface starts to slide. The angle
between the initial sliding surface and the horizontal surface is the friction angle. The
friction angle is an important parameter to predict the shear strength, thereby predicting
the shear displacement, shear dilation, etc. Friction angle values for most unweathered
rocks lie between 25° to 35° and are listed in Table I11-2 (Barton and Choubey, 1977).
Under a high level of normal stress the rock beneath the weathered surface comes into
effect and the residual friction angle ¢ approaches the basic friction angle ¢, However,
under a low level of normal stress the residual friction angle ¢ is much lower than the

basic friction angle ¢,.

Friction angle

Figure 111-1. Tilt test on fractured sample.
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Table I11-2. Basic friction angles of various unweathered rocks obtained from flat and
residual surfaces (Barton and Choubey, 1977).

Rock type Moisture condition Basic friction Reference”
angle
Sandstone Dry 26--35 Patton, 1966
Sandstone Wet 25--33 Patton, 1966
Sandstone Wet 29 Ripley & Lee,
1962
Sandstone Dry 31--33 Krsmanovid, 1967
_ Sandstone Dry 32--34 Coulson, 1972
Sedimentary | Sandstone Wet 31--34 Coulson, 1972
Rocks Sandstone Wet 33 Richards, 1975
Shale Wet 27 Ripley & Lee,
1962
Siltstone Wet 31 Ripley & Lee,
1962
Siltstone Dry 31--33 Coulson, 1972
Siltstone Wet 27--31 Coulson, 1972
Conglomerate Dry 35 Krsmanovid, 1967
Chalk Wet 30 Hutchinson, 1972
Limestone Dry 31--37 Coulson, 1972
Limestone Wet 27--35 Coulson, 1972
Basalt Dry 35--38 Coulson, 1972
Basalt Wet 31--36 Coulson, 1972
Fine-grained Dry 31--35 Coulson, 1972
granite
Fine-grained Wet 29--31 Coulson, 1972
Igneous granite
Rocks Coarse-grained | Dry 31--35 Coulson, 1972
granite
Coarse-grained | Wet 31--33 Coulson, 1972
granite
Porphyry Dry 31 Barton, 1971b
Porphyry Wet 31 Barton, 1971b
Dolerite Dry 36 Richards, 1975
Dolerite Wet 32 Richards, 1975
Amphibolite Dry 32 Wallace et al.,
1970
Gneiss Dry 26--29 Coulson, 1972
Metamorphic | Gneiss Wet 23--26 Coulson, 1972
Rocks Slate Dry 25--30 Barton, 1971b
Slate Dry 30 Richards, 1975
Slate Wet 21 Richards, 1975

* Refer to Barton and Choubey (1977) for specific references.
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3.1.3 Joint roughness coefficient (JRC)

In general the joint surface roughness can be characterized by waviness (large
scale undulations which, if interlocked and in contact, cause dilation during shear
displacement since they are too large to be sheared off) and by unevenness (small scale
roughness that tends to be damaged during shear displacement unless the discontinuity
wails are of high strength or the stress levels are low, so that dilation can also occur on
these small scale features) (IRSM, 1978). Barton and Choubey presented a method to
describe the JRC and also presented a formula (Eq.3-1) to calculate the peak shear
strength 7pea according to the JRC index.

o

T eac = O tan{JRC Iogm[‘]CSj+¢r} (3-1)
where oy, is the effective normal stress and ¢ is the friction angle for weathered fracture.
The JRC index can be measured by a tilt test or estimated by comparing with the profiles

measured on other joints shown in Figure 111-2 (Barton and Choubey, 1977).
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Figure 111-2. Typical JRC values for joint samples of different roughness (Barton and Choubey,
1977).
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3.2 Normal deformation

The two rough surfaces of a fracture are weaker and more deformable than intact
rock. The normal deformation of the two rough surfaces in response to the normal stress
change across the fracture or fluid pressure change in the void space of the fracture has a
direct important influence on the fracture aperture and fracture permeability. The
normal deformation of a fracture can be characterized by the relationship between the
effective stress across the fracture and the fracture closure (the change of the average
aperture of the fracture).

Goodman (1976) measured the fracture closure as a function of normal stress on
artificially induced tensile fractures in rock cores. He measured the axial displacement
of an intact rock core under axial stress and axial displacement of a rock core of the
same size and an artificially induced tensile fracture perpendicular to the axis under the
same axial stress. The difference of the two displacements is the fracture closure.
Fracture closure measurements were made for both mated fractures, for which the two
surfaces of fracture were placed the same relative positions that they occupied before
fracturing the core, and non-mated fractures, for which the two surfaces of fracture were
rotated from their original positions relative to one another (Figure I11-3). The stress-

closure curves show high non-linearity, and the non-mated fracture has greater closure.
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Figure 111-3. Measurements of the closure under normal stress of an artificially-induced tensile
fracture in a rock core (Goodman, 1976).

Bandis et al. (1983) have measured closure curves for a fracture under normal
stress for a variety of natural and unfilled fractures with different degrees of weathering
and roughness in slate, dolerite, limestone, siltstone and sandstone (Figure 111-4 and
Figure 111-5). They used the same method as Goodman used to determine fracture
closure for natural fractures. As expected, the fracture closures for weathered fractures
(Figure 111-5) were much greater than for fresh fractures (Figure I11-4) under the same
stress condition. With the increase of normal stress (o), the stress—closure curves
became gradually steeper and developed into virtually straight lines where the fractures
have reached their fully closed state. There was permanent deformation observed during
the loading—unloading cycle. Therefore the deformation characteristics of fractures also

depend on the stress history of the fractures.
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Based on the experimental results Bandis et al. (1983) presented a hyperbolic
function (Eq. (3-2)) to represent the normal stress—closure relationship.

D
=— -0 3-2
“" " aa-b D, (3-2)

where Dy, is the fracture closure, aa and b are constants. Eq. (3-2) was rearranged into a

linear form:

5 _aa-bD, (3-3)

O,

aa and b can be obtained by using Eqg. (3-3) to fit the measured normal stress—closure
data, and Figure I11-6) shows that Eq.(3-3) fits well with measured data. When oy,
approaches infinity, the fracture closure approaches the maximum fracture closure Dymax
and Dnmax is equal to aa/b according to Eq. (3-3). For extremely small normal stress
(on—0), the fracture closure will be small (D, —0), and hence the initial normal fracture
stiffness for op—0 is defined:

1
c,—0 = (3_4)
aa

Kni =ﬁ
D

n
Therefore Eq. (3-2) can be rewritten by substituting the two parameters initial normal
fracture stiffness (Kni) and maximum fracture closure (Dnmax) for aa and b:

o, = Kni Dn (3_5)
1-D,/D

nmax
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The normal stiffness (K,) is then derived from Eq. (3-5) as a function of D,, or o:

Kn = ao-n = Kni > (3'6)
8Dn (1_ I:)n / Dn max)
or
K, = aa” Kni (3_7)

" aDn ) [1_Un /(Kni Dnmax —I—Un)]2

Bandis et al. (1983) also derived the empirical formulae for Dymax (Eg. (3-8)) and Ky, (Eqg.

(3-9)) in terms of JCS, JRC index and average fracture aperture (ws):

f

D
D, = Al+B1(JRC)+ 01[3(:5} (3-8)
W

JCS

Wi

K, =A2+B2(JRC)+C2

(3-9)

where Al, A2, B1, B2, C1, C2 and D are coefficients determined by fitting experimental

data.
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3.3 Shear deformation and dilation

For a fracture under normal stress loading, the fracture will have a shear
deformation if the shear stress (7) is less than the peak shear strength (zpeax) and become
instable and have a fast movement if 7 exceeds zea. However, for rough surfaces, the
shear dilation caused by shear displacement may prevent the instability. The typical
shear stress—shear displacement curves have three stages, pre-peak, peak, and post-peak
(Figure 111-7).

The peak shear strength is a critical parameter to predict the stability of fractures,
faults or the initiation of nonlinear movement under anisotropic stress condition. Barton
(1976) presented a formula (Eq. (3-1)) to predict the peak shear strength zeax according
to the effective normal stress, the fracture surface roughness JRC, compression wall
strength JCS and residual friction angle ¢ based on large body of laboratory measured
results under low effective normal stress (c,'<10MPa). But the peak shear strength at
high effective normal stress is independent of JRC, JCS, ¢ and even the rock type, and
is only dependent on the effective normal stress. Byerlee (1978) developed empirical
formulae (Egs. (3-10) and (3-11)) based on large body of experimental data on rocks
including sandstone, limestone, granite, gabbro, etc.

Tpeac = 0.850, o, < 200MPa (3-10)

7. =50+0.60,  200MPa <o, <2000MPa (3-11)
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According to the shear stress—shear displacement curves (Figure 111-7), the pre-
peak curve can be approximated as a line. The slope of the line is the pre-peak shear
stiffness Ks:

K, = e (3-12)

Ds—peak
where Dspeax IS the shear displacement when the shear stress reaches the peak value.
The post-peak curve is very complicated and is often treated as a zero slope line, and the
shear stiffness K is assumed as zero.

When shearing of two rough surfaces occurs, the opposed asperities slide over
each other and cause an increase in aperture. The increase of fracture aperture induced
by shear deformation was well investigated in laboratory by Bandis et al. (1981). Figure
I11-8a shows the shear stress—displacement curves for different block size and Figure
I11-8b shows the corresponding aperture increase induced by the shear displacement at
constant normal stresses. The dashed lines show the dilation angle, which is defined as:

4 D, ]
¢, =tan [FJ (3-13)

S
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3.4 Fracture aperture and permeability

Fracture aperture is the perpendicular distance between adjacent rock walls of a
fracture. The fracture deformation will change the fracture aperture, thereby changing
the fracture permeability. The relation of permeability and aperture for laminar flow
through a pair of smooth parallel plates has been investigated and the cubic law was

derived (Snow, 1965; Iwai, 1976). The flow rate through the fracture (Figure 111-9) is:

W3
__Widp (3-14)
124 dx
Compared with Darcy’s law, the fracture permeability is:
W2
K, =—r 3-15
T (3-15)

— B ¥
— A

Figure 111-9. Laminar flow through a pair of smooth parallel plates.

The natural fracture is not completely open, and the surfaces are not smooth.
Therefore, Eq. (3-15) cannot be applied to the natural fracture directly. However,
Witherspoon et al. (1980) found that the cubic law was still valid for partially closed
fractures by laboratory investigations. The investigated fracture aperture ranges from

4um to 250um and the rock types include basalt, granite and marble. The fracture
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conductivity still has a cubic relation with the average fracture aperture. But Eqg. (3-15)

requires a correction coefficient f to be valid for partially closed fracture.

(3-16)

The correction coefficient in their investigation varied from 1.04 to 1.65.

Barton et al. (1985) argued that Witherspoon et al. (1980) did not measure the
real mechanical aperture, and that the aperture they used was an approximate hydraulic
aperture. Barton et al. (1985) still used Eq. (3-15) to relate fracture permeability to
aperture, but substituted effective hydraulic fracture aperture for mechanical aperture.
Based on published experimental data (Figure 111-10), they developed an empirical

formula to relate the hydraulic fracture aperture to mechanical aperture:

JRC?®

W, = 3-17
T F .

The unit of wer and ws is zm.
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Figure 111-10. Comparison of mechanical aperture and hydraulic aperture (Barton et al., 1985;

Olson and Barton, 2001).

3.5 Chapter conclusions

This chapter described the characteristics of fracture surfaces, nonlinear Barton-

Bandis model of fracture deformation, and the relation of fracture permeability to

fracture aperture in rough fractures. In the nonlinear Barton-Bandis model of fracture

deformation, the relation of normal stress and fracture closure is represented by a

hyperbolic formula. The relation of shear stress and shear displacement is linear before

yielding and too complicated to represent using simple functions after yielding. The

model also includes shear dilation which is the fracture opening caused by shear
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displacement. The peak shear strength can be determined from the effective normal
stress, JRC, JCS and friction angle. The fracture permeability has a cubic relation to the
effective hydraulic aperture but not the average mechanical aperture. The effective
hydraulic aperture is related with the average mechanical aperture using JRC.
The next chapter will combine the DDM, the nonlinear Barton-Bandis model of fracture
deformation, and an FDM to determine the pore pressure change in fractures and in turn
to determine the change of fracture aperture and permeability due to production from a

fractured reservoir.
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CHAPTER IV
MODELING OF THE FRACTURE APERTURE AND

PERMEABILITY CHANGE IN FRACTURED RESERVOIRS

Throughout this study, the fractured reservoir is treated as a fracture network in a
porous medium saturated with a compressible single-phase fluid. As in dual porosity
models, the fracture network provides the main flow channels and the porous media
provides the main storage media. On production, the fluid flows from matrix to
fractures, then in fractures to the well. The fluid pressure change induces effective stress
change and fracture aperture change, which in turn causes permeability changes in the
fractures, the nature of which was addressed in the Chapter IlIl. The fracture
permeability change in turn influences fluid flow. Fluid flow in the fracture network is
solved using a finite difference method (FDM). The change of effective stress on the
fractures induces fracture deformation including normal and shear deformation. The
fracture deformation also disturbs the stress distribution in the fracture network. A new
numerical method is developed in this chapter to determine the fluid pressure, fracture
aperture change and stress change implicitly using an FDM to solve the diffusion
equation for fluid flow in fractures, a fully coupled displacement discontinuity method
(DDM) to determine the global fracture deformation relation, and the nonlinear Barton-
Bandis fracture deformation model to determine the local fracture deformation relation.

This chapter will start with building and discretizing the equation for fluid flow

in fracture network in Section 4.1. And then Section 4.2 will describe a method for
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combining the global and local relations between stress and displacement to fracture
deformation. Section 4.3 will present a new numerical method combining an FDM for
the diffusivity equation governing fluid flow in fractures, a fully coupled DDM for
determining the global fracture deformations, and a nonlinear fracture deformation
model for determining the local fracture deformations. In addition to the fully coupled
method, an uncoupled method will be presented that saves computation time in cases
where the effect of solid deformation on fluid flow is small. Finally, Section 4.4 will

give conclusions of this chapter.

4.1 Fluid flow in the fracture network

The apertures of real fractures vary in space (Figure 1V-1) and the fluid flow
inside is very complicated due to the rough surfaces. But Witherspoon et al. (1980)
verified that Darcy’s law is still valid and the rough fracture can be represented by a
fracture with an average fracture aperture, as in Figure IVV-2. The one dimensional fluid
material balance equation in the fracture including flow from the connected fractures and

the interface flow from the connected matrices is given by

a(Pfo)_ alpnw,AL) i
ox - ot - ALpf it — P15 (4 1)

where px is the fluid density; g; is the flow rate in the fracture per unit formation
thickness; Qint s the interface flow rate per fracture length per unit formation thickness;
AL (given previously as 2a for the well fracture) is the length of fracture segment; qs is

the production rate per unit formation thickness; n is the ratio of actual fracture void
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volume (Vy) to the effective fracture void volume for fluid flow (V). In Eg. (4-1), the

0
left term, (’I;qu) , 1S the net mass flow rate out of the fracture, the first right term,
X
a(panfAL) _ : . .
—Q is rate of fluid mass change in the fracture, the second right term,

ALp,q,,, is the mass flow rate between fracture and the connected matrix, and the third
right term, p,q,, is a production term, for example for a producing well. The flow

rate in the fracture can be obtained by using Darcy’s law:

TAAT
o —AN l

v
X

Figure 1V-1. Fluid flow through a rough fracture.

K: w; op
= 4-2
4 == (4-2)

where k; is the fracture permeability determined from the fracture aperture (3-15).

Combining Egs. (2-23) and (4-2), the net fracture flow rate term becomes:

(4-3)

B OX

5(pqu) _pfkf Wi 52p_copfkf il (5_pj2
OX u  ox° y7,
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Figure 1V-2. Fluid flow through an artificial fracture represented using average fracture aperture.

The second term with squared pressure gradient multiplied by the small compressibility

can be neglected (Lee et al., 2003), and the net fracture flow rate is approximated as:

a(Pfo)_ pik; W, 52p
- 2 (4-4)
OX U OX

The fluid mass change in the fracture includes two parts, one is due to fracture volume

change and another one is due to fluid density change. The fracture volume change is
mainly from the fracture aperture change:
v,

ow
— " AL atf (4-5)

The fracture aperture change can be related with the fracture closure Dy:

ow; D

— n

4-6
p p (4-6)
Eqg. (4-5) can be rewritten by substituting D,, for w:

ov
AP

at at S

The fluid mass change due to fluid density change is:
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0
—=-N Wf ALE (4'8)

Substituting Eqg. (2-23) into Eq. (4-8) yields:

om ap
—=-nc.p,W,AL— 4-9
ot o/t ot (4-9)

Combining Egs. (4-1) — (4-9) yields the pressure diffusion equation:

Kew, 0%p
i ox

=nw;ALc, % —nAL aa[:” + ALQ, + (4-10)

o*p
ox? '

k.w
In Eq. (4-10), the left term, —— is the net flow rate in the fracture, the first right
y7]

term, nwaLcog—f, is the fluid volume change due to fluid compression or expansion

(fluid density change), the second right term, nAL aa[:” , is the fluid volume change due

to fracture deformation, the third right term, ALq,, , is the interface flow rate per
formation thickness between fracture and the matrix, and the last term, g, is the

production rate per unit formation thickness.

4.2. Mechanical coupling of fracture deformation

In a fracture network, the change of stress and fracture deformation for any
fracture obeys the constitutive relations for fracture deformation. There is a local relation
for each fracture or fracture segment between its stress and deformation, and there are
global relations for stress and fracture deformation among fractures in the fracture

network.



82

4.2.1 Local relation between stress and displacement to fracture deformation

For any fracture in the fracture network (Figure 1V-3), the deformation must
comply with the fracture deformation model. The relation between effective normal

stress change Aoy’ and normal displacement 4D, of the ith fracture segment is:

Ao, =-Kq.AD, (4-11)
The normal stiffness K, is a coefficient which is dependent on the fracture closure (Eq.

(3-6)) or stress (Eq. (3-7)). The effective stress (tension is treated as positive) is defined

as:
c,=0, +ap (4-12)
where o =1- K, /K as before in Chapter Il. For a fracture, when the bulk modulus of
system K, is much less than the solid bulk modulus K, the Biot coefficient becomes
unity, and the effective stress is given by:
c,=0,+p (4-13)
Substituting Eq. (4-13) for effective stress in Eq. (4-11) yields (for each fracture
segment):
Aot A p =K, A D, (4-14)
The relation of shear stress change Ao and shear displacement ADs is:
Aoy =K, AD, (4-15)
The shear stiffness is a constant before yielding and reduces to zero after yielding. The

normal deformation AD.gijation due to shear dilation is:
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A IDn—dila’[ion =-A IIDS tan ¢d (4'16)
The dilation angle is defined in Eq. (3-13). Eq. (4-14) must be rewritten when the

normal deformation induced by shear dilation is considered:

A&n+Ab:—kn(Abn+Abstan¢d) (4'17)

- &5

Figure IV-3. Local relation of fracture deformation.

4.2.2 Global relation between stress and displacement to fracture deformation

In the fracture network with m fracture segments, there are interactions among
fractures. The stress change of the ith fracture segment is influenced by the deformation
of all the fracture segments in the system. For the elastic DDM (Eqg. (2-11)), the change
of normal and shear stresses of the ith fracture segment is related with the normal and

shear deformation of all the fracture segments as:
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[ moio moij
Acy=) AADn+) BAD;s
j=1 j=1

(4-18)

A&s:i%Abn‘l‘iEAbs

j=1 j=1

For the poroelastic DDM, the interface flow rate between fracture and matrix also has an
impact on the stress change. Therefore, the change of normal and shear stresses of ith
fracture segment depends on the interface flow rate in addition to the normal and shear

deformation of all fracture segments according to Eq. (2-40).

N I A Ry R N
Acn=) AADn+)Y BAD:+> Cq,,
j=1 j=1 j=1
(4-19)
i moijoj LT moijj
Acs=) EADn+Y FADs+) Kay,
j=1 j=1 j=1

The change of fluid pressure of ith fracture also depends on the interface flow rate,

normal and shear deformation of all fracture segments according to Eq. (2-40).

AbziLAbn+ZHAbs+ZNdint (4-20)

4.3 Uncoupled and coupled solution methods

The changes in fracture apertures due to production can be determined by solving
the pressure diffusion equation in fracture network, the fracture deformation model for
local stress—displacement relations and the DDM for global stress—displacement
relations. The result can be determined using an uncoupled method or a coupled

solution method. The uncoupled method saves computation time and provides a suitable
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approximation when the effect of solid deformation on fluid flow is small. The
uncoupled method first solves for the fluid pressure change from the diffusivity equation,
and then uses the resulted fluid pressure change as a boundary condition to determine the
fracture deformation by combining the constitutive equations for fracture deformation
(Egs.(4-15) and (4-17)) and stress—displacement relations from the elastic DDM (Eq. (4-
18)). The coupled method simultaneously obtains the fluid pressure change, interface
flow rate, fracture deformation by solving together the diffusivity equation (Eqg. (4-10)),
constitutive equations for fracture deformation (Egs. (4-15) and (4-17)), and stress—

displacement relations from the poroelastic DDM (Eqgs. (4-19) and (4-20)).

4.3.1 Uncoupled method
The change of normal fracture closure is related with the pore pressure change
according to Eq. (4-14) by defining a fracture compressibility parameter c.

oD op
n = —W C _— 4'21
at fir 8t ( )

Substituting Eq. (4-21) into Eq. (4-10) yields:

k.w, 52
-t a—? =cnw, AL Zp +ALq,, +0, (4-22)

i OX o
where c=Co+Cy Is the total compressibility. Eq. (4-22) can be discretized for a given

fracture network using an implicit finite difference method.

m i

j i i i
Y. C,p"*=C;p'-ALqg,, —q, (4-23)
i=1
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where m is total fracture elements, C, is coefficient matrix, the subscript 1+1 indicates

i
new time level and the subscript | indicates the old time level, and g, is the production

from the ith fracture element. The interface flow rate i is an unknown and can be
determined using an iterative method. For every time step, the interface flow rate iy is
assumed as zero for the first iteration step. Then Eq. (4-23) can be solved to obtain the
fluid pressure distribution in the fracture network. The new fluid pressure in fractures
can be taken as the boundary conditions for every matrix element (Figure 1VV-4) and the
fluid flow between the matrix and fractures around it can be obtained by finite difference
solution of the uncoupled diffusivity equation (Eq. (4-24)) in the matrix.  After the
pressure distribution in the matrix is determined, the flow rate at the boundary between

the matrix element and surrounding fractures can be obtained from Darcy’s law

2 2
(5 p,o DJ:WCmta_P (4-24)

ox’  oy? k ot
- - -ge - - - Il -
where Cyy is the total compressibility of fluid and matrix. Then interface flow rate q,, is

i2
used to solve Eq. (4-23) in the second iteration. A new interface flow rate g,, can be

obtained as for the second iteration, and this process is repeated until the difference
between successive interface flow rate values is smaller than the accuracy needed to the
problem. At that point, the iteration terminates and the calculation begins for the next
time step. The pressure distribution at the last iteration is taken as the result for that time

step.
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Figure IV-4. Interface flow rate between fracture and matrix.

The effective stress change in a fracture resulting from changes in pore pressure
and the total stress is illustrated in Figure 1V-5. The effect is that of a set of springs
between two plates, and the stress acting on the springs represents the effective stress.
The compression effective stress (-Acy') increases with the decrease of pore pressure (Ap)
and the increase of compression total stress (-Acp). After the pressure change, Ap, is

solved for every time step, a set of linear equations for effective stress change is

obtained by combining Egs. (4-15), (4-17) and (4-18).
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m_ij ] m_ij i i i i i i
D AADw+) BADs+KnADn+Kntang,ADs=-Ap
j=1 j=1
(4-25)
moiji moio [ i
D EADn+) FAD:—KsADs=0

j=1 j=1
The normal and shear displacement for every time step can be obtained by solving the

linear equation (4-25).

Ao

Vo

Figure IV-5. lllustration of effective stress change on fracture.

After solving the fracture displacement, the fracture aperture and permeability

are updated.

wt = wi'f _AD: (4-26)
The fracture aperture at the new time step is determined by subtracting the fracture
closure determined from the previous time step. Then the fracture permeability is
updated according to Eq. (3-15). If the difference between mechanical hydraulic
aperture is to be considered, Eq. (3-17) is used to convert the mechanical aperture into
the hydraulic aperture to update the fracture permeability and diffusivity equation is

modified to use the hydraulic aperture, wes, instead of the mechanical aperture, ws, used

in Eq. (4-10).
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4.3.2 Coupled method

The fluid pressure change induces fracture deformation and the fracture
deformation also influences the fluid pressure distribution. In the coupled method, the
equations for fluid pressure, interface flow rate, and normal and shear fracture
displacement are solved simultaneously.

The poroelastic DDM solutions are both space and time dependent, and the
fundamental solutions are based on constant displacement discontinuities and constant
interface or source flow rates. However, for practical applications, the displacement
discontinuities and interface flow rates in Eqgs. (4-19) and (4-20) are time dependent.
The time marching scheme shown in Figure 11-9 is used to allow source strengths (the
displacement discontinuities and interface flow rate) to change with time. Starting each
boundary integration from an initial homogeneous status avoids the need for volumetric
integration (Carvalho, 1990). Therefore, all the previous increments of source strengths
must be included while numerically integrating the effect of source strengths at each
time step. According to Eq. (2-44), the induced stress and pore pressure on the ith

fracture segment by the increments of source strengths are:
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51 m ij jh s-1 m jj 51 m ij jh
+> D E(t-7,)ADa+ ZF(t—rhADs+ > K(t—7,)A0;,
h=0 j=1 h=0 j=1 h=0 j=1
Apt)=3 Lt ADn + S HE -7, ADs + SNt -2 A G,
j=1 j=1 j=1
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j¢
where ADn, ADs and AqInt are the source strength increments for the jth fracture

jh jh
segment at the current time step, &, ADn., ADs and AqInt are the previous source

strength increments of for the jth fracture segment at time step h, which indexed from 1

ij ij ij ij ij ij ij

to &1. At-z,), Blt-z,), Clt-z,), E(t-z,), F(t-7,), K(t-7,), Lit-7,),

ij ij
H(t-7,), and N(t—z,) are the influence coefficients of jth fracture element on the ith

fracture element at time step h as defined in Eq. (2-38).
Using the same time discretization, the effective normal stress change (Eq. (4-17))

and shear stress change (Eg. (4-15)) in the ith fracture segment can be rewritten as:
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where [I)(t) is the fluid pressure in the ith fracture segment at time t and bo is the initial
fluid pressure in the ith fracture segment. Substituting Eqg. (4-29) into Eq. (4-28), and

substituting ;I)(t)— i)o for A b(t) in Eq. (4-28) yield:

i 1]

p(t)+Zm:A(t r )ADn+}i( ADn+z Bt . )ADS+K tan ¢,A D

=1 j=1
m i i 1 mj o gl omoi jh
+Z(J3t—ré):]im—— ZA(t—rh)Abn— Zé(t—rh)Abs
j=1 h=0 j=1 h=0 j=1
-1 m jh i ¢-1  jh ¢-1  jh i
-3yl Th)qmt—Kn[ ADn+tan¢ ADs ]+ Py
h=0 -1 h=0 ;)
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j=1 j=1
-1 moij jh E-1omo jh -1 moij jh
> Y E(t-7,)AD: =D Y F(t-7,)ADs =Y D K(t-7,)0; (4-30)
h=0 j=1 h=0 j=1 h=0 j=1
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The diffusivity equation (4-10) is discretized in space and time for a given
fracture network using an implicit finite difference method like that given in Appendix C

for a regular fracture network. For the ith fracture segment at the time step, £,

m i i i i ¢l ih ¢ ih
D _C, p(t) NALADn+ALAGQ,, =nw,ALc, p(r.)—ALD Aq, —>.d, (4-31)
h=0 h=0

j=1
i
where C is the fluid coefficient matrix. The production rate from ith fracture segment

ih
g, is also discretized in time in Eq. (4-31). All left terms in Egs. (4-30) and (4-31) are

unknown and all right terms are known. Appendix D gives an example matrix for the set
of linear equations built from Egs. (4-30) and (4-31) for a given fracture network. When
the production rate and initial reservoir pressure are given, the normal and shear fracture
displacement, interface flow rate, and fluid pressure can be obtained by solving the

linear equation Egs. (4-30) and (4-31). Unlike for the uncoupled method, the interface
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flow rate is solved implicitly, and there is no need for the FDM determination of the
interface flow rate. The treatment for fracture permeability is the same as that for the

uncoupled method.

4.4 Chapter conclusions

This chapter presented a new numerical method to solve the fluid pressure,
fracture aperture change and stress change simultaneously by combining a finite
difference method (FDM) solution for the diffusivity equation for fluid flow in fractures,
a fully coupled displacement discontinuity method (DDM) for the global relation of
fracture deformation, and the Barton-Bandis fracture deformation model for the local
relation of fracture deformation. The fracture permeability changes with the fracture

aperture change. Applications of this method are shown in the next chapter.
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CHAPTER V

MODEL APPLICATIONS

The coupled method described in Chapter 1V applies when a single phase fluid is
produced from a naturally fractured reservoir. Pressure decrease causes effective stress
change, thereby inducing fracture aperture and permeability change in the natural
fractures. The coupled method is applied to quantitatively predict the fracture aperture
and permeability change during production under different in situ stress conditions for
rock and fracture parameters that can be measured in laboratories and/or from
production data.

This chapter will illustrate that under isotropic stress conditions the effective
stress increases with reservoir pressure drop, and fracture aperture and permeability
decrease with time. Further we will show that under highly anisotropic stress conditions,
fracture aperture and permeability in some fractures may not decrease, or may even
increase.

This chapter will start with applications under isotropic in situ stress conditions
in Section 5.1. Next will be applications under high anisotropic in situ stress conditions

in Section 5.2. Finally chapter conclusions are in Section 5.3.

5.1 Fracture aperture and permeability change under isotropic conditions

In this section the coupled solution method is applied to a case under isotropic

stress conditions. The results of reservoir pressure change, stress change, fracture
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aperture and permeability change are shown, and the interactions of these changes are
discussed. The influences of input rock and fracture properties on the results are also

investigated.

5.1.1 Parameters and assumptions

In this section the fracture permeability change during production and its effect
on transient wellbore pressure are investigated for a well with constant production rate
(12.6 Res bbl/day) from a unit reservoir thickness of 3.28 ft (1 m) in a formation with a
fracture network consisting of two sets of orthogonal vertical fractures surrounded by an
effectively infinite porous medium as in Figure V-1. The fracture permeability is
calculated from the mechanical aperture using the cubic law for the ratio of hydraulic
aperture to the mechanical aperture (Wes/Ws) assumed to be 1. (Cases for other ratios will
be discussed later). Only two-dimensional flow and deformation are considered, and
change in the vertical direction is ignored. The in situ stress field before production is
assumed to be isotropic with compression set to 3045 psi. To better illustrate the
geomechanic effects during production, the reservoir pressure is set very close to the in
situ stress at 2900 psi. The two joint parameters, initial normal stiffness and maximum
closure, characterizing the normal deformation of fracture are 2.21x10* psi/ft and 0.0315
in, respectively. The nonlinear relationship between effective normal stress under
compression and fracture closure is shown in Figure V-2. The fracture aperture at the
initial condition (zero effective normal stress) is assumed as 0.0315 in. The fracture

aperture under the initial in situ stress before production is assumed as 0.009 in for all



96

fractures. Other parameters are listed in Table V-1. Because the fracture permeability

dominates the reservoir permeability, changes in matrix permeability are neglected and

assumed as constant during production.

Matrix rock

SRRRHKS
SRS
RRRKKS

Matrix rock Matrix rock

Matrix rock

Figure V-1. Well located at the center of a fractured field, which is surrounded by matrix rock of
effectively infinite extent.
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Table V-1. Rock and fracture parameters in the modeling.

Area (ft)) 3281x3281
Shear modulus G (psi) 8.555x10°
Possoin’s ratio v 0.16
Undrained Possoin’s ratio vy 0.31
Matrix permeability (md) 0.8
Matrix porosity ¢ 0.2
Biot’s coefficient o 0.83
Fluid viscosity p (cp) 1
Fluid compressibility (psi™) 4.69x107
Ratio of actual fracture volume to the 10
effective fracture volume n

Fracture spacing S (ft) 310

97
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5.1.2 Results for isotropic stress conditions

Figure V-3 shows the reservoir pressure distribution after 360 days on production.
In this case, the lowest pressure is 2635 psi, and the highest pressure is 2672 psi. The
fracture aperture declines with production as in Figure V-4. The fracture intersected
with the well has the maximum fracture closure with the aperture changing from
9.02x10% in to 4.82x10° in. The aperture of a fracture on the boundary shows the
minimum fracture closure change from 9.02x107 in to 5.5x10 in. The effective normal
stress increases with time. The change of effective normal stress and fracture aperture
for the facture intersected with well and for a boundary fracture with minimum change
are shown in Figure V-5. Figure V-6 shows that the fracture permeability calculated
from the fracture aperture using the cubic law has the same trend as the aperture change,
and changes from 4428 darcy to 1266 darcy at the well and from 4428 darcy to 1645
darcy at the boundary. The pressure in the fracture intersected with the well is assumed
as the bottomhole pressure. Figure V-7 compares the bottomhole pressure versus time
behavior for the stress-dependent fracture permeability to that for the fixed fracture
permeability case. At early time stage while most of the fluid production from the
fracture network is mainly driven by the contraction of fracture volume and fluid
expansion, both the pressure drop and pressure derivative show a unit slope trend. At
the medium stage, the pressure derivative for the fixed fracture permeability case shows
infinite-acting radial flow behavior, and the stress-dependent fracture permeability case

shows a higher derivative level indicating lower reservoir permeability. At the late stage,
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both pressure drop and derivative behavior show the boundary of the fracture system.
The late stage behavior is actually a transition to the infinite-acting radial flow trend for
flow in the surrounding porous medium, as seen in Figure V-8. But the pressure
derivative for the stress dependent fracture permeability case still increases at very late
stage showed in Figure V-8 because the fracture permeability decreases with production.

p psi

— 2675

— 2670.
— 2665.
— 2660.

— 2655.

Well — 2650.

— 2645,
— 2640.
— 2635.
— 2630.

Figure V-3. Pore pressure distribution after 360 days production.
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Figure V-5. Effective normal stress and fracture aperture change with time for the fracture

intersected with well.
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Figure V-7. Comparison of transient pressure behavior at bottom hole with constant production
rate between fixed fracture permeability and stress-dependent fracture permeability case.
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Figure V-8. Comparison of transient pressure behavior at bottom hole with constant production
rate between fixed fracture permeability and stress-dependent fracture permeability case for a long
time production to show the flow behavior in the surrounded matrix rock.

The next example shown in Figure V-9 compares the previous stress dependent
fracture network case to that of a well producing from the unfractured porous medium.
In this comparison the pressure of the fracture intersected by the well is assumed as the
bottomhole pressure, and the pressure in a small square fracture element with cross
section area equal to that of the well is used for bottomhole pressure for the well in the
unfractured reservoir. (For example, if the well radius is 0.328 ft, both the length and
aperture of the fracture element is 0.581 ft.) Because the fracture element is meant to
represent the well, the fracture aperture and length are fixed during the production. The
comparison shows that the bottomhole pressure drops much less for the case with a
fracture network. The early time pressure derivative trends indicate that the effective
permeability of the fracture system is much larger than that of the matrix for the case

without any fracture. In late time the infinite-acting radial flow is the same for both cases.
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Figure V-10 compares the previous stress dependent fracture network case to a
well intersecting the only fracture in the reservoir. The fractures and matrix properties
are the same for the two cases, and the fracture length for the fracture intersected by the
well is the fracture spacing (310 ft) in the fractured reservoir case. Again, the
bottomhole pressure drops much less for the fractured network case (Figure V-11). The

infinite-acting radial flow behavior for both cases is the same in late time.
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Figure V-9. Comparison of transient pressure behavior at bottom hole with constant production
rate between the case with a well connected with a fracture network and the case without any
fracture.
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Figure V-11. Comparison of transient pressure behavior at bottom hole with constant production
rate between the case with a well connected with a fracture network and the case with only one

fracture in the reservoir.



105

Figure V-12 compares the previous stress dependent fracture network case to a
well that does not intersect any natural fracture, with the well located at the center of the
matrix element in the center of the fracture network. Except for that the fracture spacing
of 290 ft (adjusted to make the fracture network area the same as in the other cases), all
other parameters are the same as the case in which the well is connected with the
fracture network. The bottomhole pressure drops much more compared with the case of
a well connected with a fracture network (Figure VV-13). Initially the pressure derivative
for the case of the well that does not intersect a fracture shows the trend for infinite-
acting radial flow in the matrix permeability. Later, when the pressure disturbance
reaches the fracture network, the higher permeability in the fractures causes a leveling in
the pressure change. At the late stage, for both cases the fracture network conducts the
pressure disturbance to the outer matrix, and both cases have identical pressure
derivative trends.

From the perspective of pressure transient testing, the case with the well not
intersecting the fracture network is quite intriguing because it exhibits apparent classic
dual porosity behavior, but for the opposite reason from that usually applied for this
response. The initial and final dual porosity trend is that of the matrix, and not that of the
natural fractures, and the valley trend in the pressure derivative does not represent
recharge from the matrix; instead, it represents the higher permeability natural fractures
encountered before the pressure disturbance encounters the outer matrix with effectively

infinite extent.
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Figure V-13. Comparison of transient pressure behavior at bottom hole with constant production
rate between the case with a well connected with a fracture network and the case with a well at the
center of a matrix in a fracture network.

For the original stress dependent fracture network case as the fracture
permeability declines with production, build up tests at different times show the change
in the fracture network permeability. Figure V-14 shows three successive simulated
build ups tests, conducted at different times. The rate history is listed in Table V-2. The
pressure derivative level is higher before the transition to the outer matrix behavior with
successively later buildup tests because the reservoir permeability declines with
production. It is difficult to use a single buildup test to determine the rock and joint
properties. However, these examples show that any one buildup test may indicate
whether the natural fracture system is stress sensitive, and manual history matching with

multiple pressure buildup tests may enable quantification of rock and joint properties.
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Figure V-14. Pressure derivative curves for successive build ups.

Table V-2. Production rate history.

Duration Production rate
(days) (Res bbl/day)
5 12.6

2 0

30 12.6

2 0

360 12.6

2 0

5.1.3 Effect of initial effective normal stress

The slope of the trend in Figure V-2 gives the normal fracture stiffness, which
changes with the effective stress, from a small value at small effective stress to a rapidly

increasing value at high effective stress. As such, the fracture is more deformable when
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the reservoir pressure is close to the in situ stress than when there is a large contrast
between them. To study the influence of a higher stiffness, consider the same initial
fracture aperture of 9.02x10° in and fracture permeability of 4428 darcy before
production, but set the initial in situ stress to a value that increases the effective stress
while all other properties remain same. Figure V-15 shows the fracture permeability
change at the well for different effective in situ stress conditions. The influence of
production on the fracture permeability change strongly depends on the initial effective
stress condition, and decreases rapidly with increase in the effective in situ stress. The
fracture permeability only reduces 3.3% of the initial permeability of 4428 darcy for the
case with an effective in situ stress of 1450 psi. However fracture permeability loss for

the case with an effective in situ stress of 145 psi is 84.7% of the initial permeability.
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Figure V-15. Effect of initial effective in situ stress on the fracture permeability change.



5.1.4 Effect of ratio of hydraulic fracture aperture to mechanical fracture aperture

(WEf / Wf)

The ratio of effective hydraulic fracture aperture to mechanical fracture aperture
(Wes/wy) is assumed as 1 in the above analysis. This assumption is only valid for fractures
with wide fracture apertures and smooth fracture surfaces. The effective hydraulic
fracture aperture wes is less than the mechanical fracture aperture ws, and the ratio weg/ws
is dependent on ws and the joint roughness coefficient (JRC) (Eq. (3-17)).

Figure V-16 compares cases with three different values for the wei/ws ratio. In
each case, the maximum fracture closure is 0.0393 in, and the initial mechanical fracture
aperture ws before production is 0.0131 in. In addition, the fracture aperture without
stress loading is assumed to be 0.0393 in and it is assumed to be reduced to 0.0131 in for
all fractures due to the compression in the reservoir before production. All other
parameters remain the same as in the previous examples. Figure V-16 shows that the
ratio wes/Ws increases linearly with the increase of ws, the slope is a function of JRC and
decreases with the decrease of JRC. But the ratio wei/w; cannot exceed the limit value 1.
Three cases are investigated for unit ratio we/w;, JRC=10.2 and JRC=12, respectively.
The fracture permeability is calculated from wes using cubic law (Eg. (3-15)) and updated

with the change of wes during the simulation.
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Figure V-16. The ratio weg/ws as a function of wy.

For the same mechanical aperture, the hydraulic aperture and permeability for the
case with JRC=12 is lower than the other two cases. Consequently, the pressure drop for
JRC=12 is higher than that in the other two cases, as seen in Figure V-17 and Figure
V-18. The higher pressure drop in turn causes higher mechanical aperture change seen
in Figure V-19 leading to higher hydraulic aperture change seen in Figure V-20, and

thereby the high permeability loss seen in Figure V-21.
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Figure V-17. Bottom hole pressure declines with time for three cases: we=ws, JRC=10.2 and
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Figure V-18. Log-log plot of the pressure derivatives for three cases: we=w;, JRC=10.2 and JRC=12.
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Figure V-19. The mechanical aperture of fracture intersected with well changes with time for three
cases: We=ws, JRC=10.2 and JRC=12.
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Figure V-20. The effective hydraulic aperture of fracture intersected with well changes with time for
three cases: we=ws, JRC=10.2 and JRC=12.
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5.2 Fracture aperture and permeability change under high anisotropic in situ stress

conditions

The examples in the previous section all assumed isotropic in situ stress
conditions. This section considers anisotropic in situ stress conditions. The shear
deformation of a fracture is approximately linear before yielding and is treated as linear
here, as is characteristic of a constant shear stiffness value. The shear stiffness is
abruptly reduced to zero after yielding as in Figure VV-22. The yielding stress can be
calculated using Eq. (3-1). But the simplified formula given in Eq. (5-1) is used in this
study to calculate the yielding stress according the effective normal stress and the
internal friction angle.
=0, tang, (5-1)

T peak
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where ¢ is the internal friction angle. For reservoirs already at the critical stress
conditions the fractures are already yielded. Therefore the fractures are very week and
the shear stress disturbance can result in large shear deformation. The shear deformation

will induce some normal deformation by dilation.

tand; on’ [------ooooaeaoeoans

Ks

Shear stress

Shear displacement
Figure V-22. The relation of shear stress and shear displacement used in the modeling.

In Figure V-23 a fractured reservoir with high anisotropic in situ stress (c;=4350
psi, 03=3335 psi) has are two sets of fractures with an angle of 60°. The shear stiffness
before yielding is 3.7x10° psi/in, the internal friction angle is 30°, the dilation angle is
5°, the fracture spacing is 437 ft, and all other parameters are the same as those in the
isotropic case listed in Table VV-1. All fractures are already yielded before production
and the production with a constant rate of 12.6 Res bbl/day induces not only the normal

deformation but also large shear deformation. Figure VV-24 shows the direction and
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magnitude of the shear displacement after 360 days production. If the shear dilation
induces more openness of the fracture than the closure induced by the increase of the
effective normal stress, the fracture permeability will increase with production instead of
reduction.  Figure V-25 shows the fracture permeability distribution after 360 days
production. There is still reduction of fracture permeability for those fractures in dark
blue. But the fracture permeability for other fractures increases compared with the
initial fracture permeability of 4428 darcy. The fracture permeability and shear
displacement are compared and show consistent increase (Figure V-26). Figure V-27
shows that the fracture permeability increases with production both for the fracture
intersected by the well and for a fracture at the boundary with the maximum
enhancement. Figure V-28 shows the change and derivative of the bottomhole pressure,
which also shows the enhancement of fracture permeability with production compared
with the case of fixed fracture permeability. Therefore, under highly anisotropic stress

conditions production may increase the fracture permeability.
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Figure V-24. Shear displacement distribution after 360 days production for the case fractures are
already yielded before production. The arrow represents the shear direction.

ki darcy
‘ 11000.

\
A\ o
\

— 9000.

\ — 8000,

— 7000.
Well

V \ — 6000,

\ — 5000,
\ \ nitial kf=4428 darcy
\ 4000,

Figure V-25. Fracture permeability distribution after 360 days production for the case fractures are
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Figure V-26. Distribution of fracture permeability and shear displacement (shown with arrows)
after 360 days production for the case fractures are already yielded before production.
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Figure V-28. Log-log plot of pressure drop and pressure derivative for the case in which the fracture
permeability of most fractures are enhanced by production.

In Figure V-26 the shear displacement and fracture permeability distribution are
not symmetric to lines through the well and parallel to x and y directions. For this case,
neither the fracture network nor the fracture intersected with the well are symmetric.
Before further comment on symmetries that do appear in this case, it is instructive to
consider the example shown in Figure V-29 for a well producing from four fractures
located at the center of the fracture network. In this case the resulting fracture network is
symmetric about the well, and both the permeability and aperture changes are symmetric
in x and y directions. It is now apparent that the asymmetries in Figure 5-27 arise from
the asymmetries in both inner and outer boundary conditions.

In both cases permeability is enhanced in a similar way. Those fractures at the
top and bottom which incline toward inside of the fracture network have larger shear

displacement, thereby inducing higher permeability. As the whole fracture network is
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compressed and moves inside with the reduction of reservoir pressure and the direction
of maximum principal stress (Figure V-23) tends to have a larger displacement than the

direction of minimum principal stress.
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Figure V-29. Distribution of fracture permeability and shear displacement (shown with arrows)
after 360 days production for the case with symmetric fracture network and production wells.

5.3 Chapter conclusions

This chapter provided applications of the method described in Chapter IV under
isotropic in situ stress conditions and highly anisotropic in situ stress conditions.
Fracture aperture and permeability decrease with pressure depletion in naturally
fractured reservoirs under isotropic stress conditions, and the magnitude of the decrease

is dependent on the initial effective in situ stress. For low initial effective in situ stress
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(the reservoir pressure is very close to the magnitude of stress), the normal stiffness is
small if the initial normal stiffness is small, i.e., weak fractures. The small change of
reservoir pressure and effective stress can induce large fracture closure and permeability
loss. But for hard rock (high initial normal stiffness) or high effective in situ stress, the
normal stiffness is large, and the changes in fracture aperture and permeability are small
even for large reservoir pressure change. For rough fractures, the effective hydraulic
aperture is smaller than the average mechanical aperture. If the difference is neglected,
the influence of production on the fracture permeability reduction at isotropic stress
conditions will be underestimated. For highly anisotropic stress, the fractures can be at
the critical stress condition and even a small change in the shear stress can induce large
shear displacement. As a result, the fracture aperture and permeability can be enhanced

due to shear dilation while the reservoir pressure is declining.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Production in naturally fractured reservoirs will cause reservoir pressure change,
thereby changing the stress. The stress change will change the fracture aperture and
permeability, thereby influencing the production. The coupled interactions exist in the
fractured porous media: (i) fluid pressure change induces solid deformation and stress
change; (ii) stress change induces fluid volume change and fluid pressure change; (iii)
fracture deformation induces the change of pore pressure and stress in the whole field
(the influence disappears at infinity); (iv) the change of pore pressure and stress at any
point has an influence on the fracture and induces fracture deformation. A method is
developed in this study to consider all of these coupled processes to model the fracture

aperture and permeability change during production in naturally fractured reservoirs.

6.1 Conclusions

The main contributions and conclusions from this study are summarized as
follows:

1. A method is developed to combine the fully coupled DDM with the Barton-

Bandis model of fracture deformation. The fully coupled DDM gives the

global fracture deformation and the Barton-Bandis fracture deformation

model gives the local fracture deformation. The combination of the fully
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coupled DDM and the Barton-Bandis fracture deformation model makes
every fracture deformation comply with both local and global relations.
Fracture aperture and permeability decrease with pressure reduction caused
by production in naturally fractured reservoirs under isotropic stress
conditions, but the magnitude of the changes are dependent on the initial
effective in situ stress. For low initial effective in situ stress (the reservoir
pressure is very close to the magnitude of stress), the normal stiffness is small
if the initial normal stiffness is small, i.e., weak fractures. The small change
of reservoir pressure and effective stress can induce large fracture closure and
permeability loss. But for hard rock (high initial normal stiffness) or high
effective in situ stress, the normal stiffness is large. The change of fracture
aperture and permeability is small even for large reservoir pressure change.
Therefore, whether the reservoir is stress sensitive can be decided by
laboratory tests on the properties of fractures and field tests of the in situ
stress. For stress sensitive fractured reservoirs, the method developed in this
study can be applied to evaluate the change of fracture permeability during
production and its influence on production.

For rough fractures, the effective hydraulic aperture is smaller than the
average mechanical aperture. If the difference is neglected, the influence of
pressure reduction caused by production on the fracture permeability

reduction under isotropic stress conditions will be underestimated.



125

4. For highly anisotropic stress, the fractures can be at the critical stress
condition, and a small change of the shear stress can induce large shear
displacement. The fracture aperture and permeability can be enhanced due to

shear dilation while the reservoir pressure is decreasing.

6.2 Recommendations

The model is only for two-dimensional single-phase flow in a naturally fractured
porous medium. A three-dimensional model will be better to consider the influences
from all three principal stresses — the maximum horizontal stress, the minimum
horizontal stress and the vertical stress. Single-phase flow rate is a simplified case for

oil and gas reservoirs, and future work should consider two-phase or three-phase flow.
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NOMENCLATURE

Biot’s poroelastic coefficient

Angle counterclockwise from the x-axis to fracture
segment.

2+ -3

porosity

dilation angle

basic friction angle
internal friction angle
residual friction angle
fluid density

stress tensor

shear strength
effective normal stress
shear strength

step time

peak shear strength
fluid viscosity

Poisson’s ratio

undrained Poisson’s ratio
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pore space change

solid grain deformation
fracture length

half length of fracture segment
constants related with fracture normal deformation
fluid diffusivity

cohesive strength

fluid compressibility

fracture compressibility

total compressibility of fracture
total compressibility of matrix
strain tensor

a function defined in Eq. (2-2)
a function defined in Eq. (2-5)

permeability

fracture permeability
Vei/ V¢

pore pressure

flow rate

flow rate through fracture

interface flow rate between fracture and matrix /fluid
source



Qs

Dn
Ds

Dnmax

injection/production rate

time

displacement

interface flow

fracture aperture

effective hydraulic fracture aperture

co-ordinate positions in the global co-ordinate system

co-ordinate positions in the local co-ordinate system

influence coefficient for normal stress by the normal
displacement discontinuity defined in Eq. (2-10) for the
elastic DDM or in Eq. (2-38) for the poroelastic DDM

influence coefficient for normal stress by the shear
displacement discontinuity defined in Eq. (2-10) for the
elastic DDM or in Eq. (2-38) for the poroelastic DDM

influence coefficient for normal stress by fluid
source/interface flow rate defined in Eq. (2-38)

fracture displacement
normal fracture displacement
shear fracture displacment

maximum possible closure

influence coefficient for shear stress by the normal
displacement discontinuity defined in Eq. (2-10) for the
elastic DDM or in Eg. (2-38) for the poroelastic DDM
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Km
Kni
Kn

Ks

influence coefficient for shear stress by the shear
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displacement discontinuity defined in Eq. (2-10) for the

elastic DDM or in Eg. (2-38) for the poroelastic DDM

shear modulus

influence coefficient for pore pressure by the shear
displacement discontinuity defined in Eq. (2-38)

joint compressive strength

joint roughness coefficient

influence coefficient for shear stress by fluid
source/interface flow rate defined in Eq. (2-38)

system bulk modulus
initial normal stiffness
normal stiffness

shear stiffness or solid bulk modulus

influence coefficient for pore pressure by the normal
displacement discontinuity defined in Eq. (2-38)

Biot Modulus

influence coefficient for pore pressure by fluid
source/interface flow rate defined in Eq. (2-38)

fracture spacing
actual fracture void volume or pore space

effective fracture void volume for fluid flow



Subscripts

0

4

ef

fr

inj
int

kk

mt

max

X,Y,Z

bel
<

initial

current time step
dilation

effective

fluid or fracture
fracture

index of time step
index of fracture segment
internal

injection

interface

bulk value

porous media system

total of the porous media system

maximum

normal

oil

pore space

shear, solid/porous matrix, or source term
co-ordinate direction in the global co-ordinate system

co-ordinate direction in local co-ordinate system
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Superscripts

q = fluid injection source/interface flow rate between fracture
and matrix

dn = normal displacement discontinuity source

ds = shear displacement discontinuity source

Over scripts
& = Current time step
h = index of time step

I ] = index of fracture segment
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APPENDIX A

FUNDAMENTAL SOLUTIONS FOR FLUID SOURCE

Induced pore pressure p?, displacement u® and stress o by continuous unit fluid
source along a line fracture segment.
r’ =(x—x')2+y2 (A-1)

where X’ varies from —a to +a.

E,(x)= J.widu (A-2)
x U
f=—m (A-3)
2/ct
Induced pore pressure:
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Induced stress:

0 _apl-2v) —(x—x i_i+ 2
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APPENDIX B
FUNDAMENTAL SOLUTION FOR DISPLACEMENT

DISCONTINUITIES SOURCE

1. Induced pore pressure, displacement and stress by the continuous unit normal
displacement discontinuity along a line fracture segment.

Induced pore pressure:

o Gy, -v) {_ 2(x- X')(l_e—:z )} : (B-1)

2nar?(1-20)1-v,)

Induced displacement:
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Induced stress:
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where v, is the undrained Poisson’s ratio.

2. Induced pore pressure, displacement and stress by the continuous unit shear
displacement discontinuity along a line fracture segment.

Induced pore pressure:

a

ds _ G(Uu _U) ﬂ _aét :| -
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Induced displacement:
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APPENDIX C

ij
COEFFICIENT MATRIX,C, FOR FLUID DIFFUSION IN A REGULAR

FRACTURE NETWORK

For a regular fracture network with nc columns and nr rows, the fracture segment
divided by the intersection points is the discretized fracture element. The fracture
segment is numbered according to the row (ir) and column (jc) as:

nf =(ir-1)xnc+ jc (C-1)
where nf is the index of fracture segment in the discretized fracture network. The
fracture segments are divided into two types — type (a) and type (b) according to the
orientation shown in Figure C-1. For any fracture segment (i, j) of type (a), there are 6
fracture segments directly connected with the segment and they are (i, j-1), (i, j+1), (i-1,
D, (i+1, ), (i-1, j-1), (i+1, j+1) shown in Figure C-2. For any fracture segment (i, j) of
type (b), there are also 6 fracture segments directly connected with the segment and they
are (i, j-1), (i, j+1), (i-1, j), (i+1, ), (i-1, j+1), (i+1, j-1) shown in Figure C-3. Finally,
for any fracture segment (i, j) of either type (a) or (b), the connected fracture segments
can be expressed as (i, j-1), (i, j+1), (i-1, j), (i+1, j), (i-1, j-(-1)j+1><(-1)i+1), (i+1, j+(-
1Y (-1)™Y.

Using the Darcy’s law, the flow rate from the directly connected fracture

segments to the fracture segment (i, j) can be calculated.



Os, =

v, =

From (i, J-1):

p"(i,j-1)— p"'(i. )

qwﬂ{ -y, alij) }

koG, j—1) we (i, j-1) k() w(i,j)
From (i, j+1):

p"(i, j+1)— p"'(i. §)

Ak i+ wi i+ kG ) w, G i)

qE{ a(i,j+1)  _ a(ij) }

From (i-1, j):

p™(i-1,j)-p"(i.J)

~L§) we(i-17) kG, §) wj)

qm/{k(i ai-1j) ,  alij) }

From (i+1, j):

p"(i+1,j)- p"(i. )

i+1 ) w,(i+3 ) kG ) w,Gj)

qmﬂ{k( ai+1j) . alij) }

From (i-1, j-(-1)"™ x(-1)™Y):

pl+l(i _1’ J _ (_1)j+1(_1)i+1)_ p|+l(i, J)

ali-1,j—(-1)""(-1)™) a(i, j)

g {kf (-2 i - D™D W, (-1 - O ™)k, G w G, )

From (i+1, j+(-1)" x(-1)"™Y):

pl+l(i +l, J +(_1)j+l(_1)i+l)_ le(i, J)

|

ali+1, j+ (1) (-1)"") a(i, j)

g {kf (2 + D™ W 2 5+ DY)k, G Dw j)}
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(C-2)

(C-3)

(c-4)

(C-5)

(C-6)

(C-7)
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where the superscript I+1 denote the new time step, a is the half length of fracture
segment, ks is the fracture permeability, ws is the fracture aperture. a(i, j), ke(i, j) and wx(i,
J) denote the half length, permeability and aperture of the fracture segment (i, j). The net

flow rate into the fracture segment (i, j) is:
Onet = 0w T 0g + 05y +0ng + 052 + Ay (C-8)
Substituting Egs. (C-2)-(C-7) into Eq. (C-8) yields:

Opet =

COE,, p"*(i, j —1)+ COE. p"*(i, j +1)+ COE¢, p"™(i -1, j )+ COE,,p'*(i +1, j)
+COE,,p' (i =1, j — (-1) " (=1)"**)+ COE,, p" (i + 1, j + (~1)(=1)'*")
—(COE,, +COE, + COE, +COE,, + COE,, + COE,, )p""(i, )

(C-9)

(0= w(i,j-1) kG, §) wj)
1
{ a(i, j+1) . alig) }
k(i J+D) wi(i,j+1) kG, J) w(i, )
1
{ ai-1j) . aij)
k(=1 j) we(i-1§) kG, j) wi(i,j)|
1
{ ai+1, j) . alij)

ke(+L ) wo (i +15) koG, J) w, (i, j)

#{kf-,-aG’jl) ., alig) }

COE,, =

u

(C-10)
COE,, =

7
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COE,, = - : - 1_ —
ﬂ{ a('_—l,Jf(—l (1)) _ - ali, j) }
keli—2 - (D™D, (-1 § - (D)D) kG )w, (i, )
COE,, = 1

. ai+Lj+(--y")  alj) }
keli+2 J+CDHED ™ e 41§+ CDED™) kG Dw G )

The fluid volume change (the first right term in Eqg. (4-10)) from the old time step | to
new time step 1+1 in the fracture segment is:

COE, (p"*(i, j)- p"*(i. })) (C-11)
where

COE, =2nw, (i, j)a(i, j)c, (C-12)
The fracture length AL is substituted by 2a in Eq. (C-11).
Combining Egs. (C-9) and (C-11), Eq. (4-10) for the fracture network in Figure C-1 is
discretized into:

COE,, p'™(i, j —1)+ COE. p"*(i, j +1)+ COE,p'"™(i -1, j )+ COE,p' (i +1, j)
+COEq,p"(i—1, j - (-1)""*(=1)"* )+ COE,, p' (i +1, j + (-1) " (=1)'**)
—(COE,, +COE, +COE,, +COE,, + COE,, + COE,, + COE,)p'"(i, j)
=—COE_p'(i, j)-2na(i, j)AD, + 2a(i, j g, +aL

(C-13)
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The index of fracture segment can be calculated from the row number and column

number using Eq. (C-1). Therefore, Eq. (C-13) is rewritten using the index of fracture

segment.
nf nfy nflwl nf nfg nflgl nf nfgy nf|511 nf nfy; nflml nf nfg, ”flszl nf nfy, nlezl nf nf nlfl
+ + + + + + +
C,p+C,p"+C,p+C,p+C, p+C, p+C,p
(C-14)
nf nf  nf nf nf nf

:COEC p|+2naA Dn_zaqint_ qs
where

nf =(i-1)xnc+ j
nf, =@(-)xnc+j-1
nfe=(@{-1)xnc+ j+1
nfg, =(@{—-2)xnc+ j (C-15)
nfy, =ixnNc+ ]
nfg, =(@i—2)xnc+ j—(-1)""*(-)""*
nfy, =ixnc+ j+ (=1 (-1
nf nfy, nf nfg nf nfg,
C, =-COg, C, =-COE; C, =-COE
nf nfy; nf nfg,

nf nfy,
C, =-COE,, C, =-COE;, C, =-COE,, (C-16)

p p
nf nf

C, =COE, +COE, +COEy, + COE,, + COE,, + COE,, + COE,
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APPENDIX D
COMBINED SET OF LINEAR EQUATIONS IN MATRIX FORM FOR A

REGULAR FRACTURE NETWORK

Figure D-1. A regular fracture network with indices of fracture segments.

For the fracture network and discretized fracture segments shown in Figure D-1,

a set of linear equations can be built from Egs. (4-30) and (4-31), and the unknowns (p,
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AD,, AD, and Ag,, ) for all fracture segments can be obtained by solving the following

equations in matrix form.



11 1 11 1 11 1i 1,
1 A+Kn B+Kntan¢d C 0 A
11 11 1 11 1i 1i
0 E F-K;s K 0 E E
11 11 11 1i 1i
-1 L H N 0 L
11 1 1 Li
Cy -2na 0 2a - Co 0 0
’ ih i fl i oo
0 A B C 1 + Kn + Kntan g,
il il il ii ii i
0 E E K E F-K;s
il i1 il ii ii
0 L H N -1 L H
il ii i
Cop 0 0 0 C, -2na 0
: 25:6,1 25:6,1 25’6,1 : 25:6,i 25:6,i
0 A B 0 B
256,1 256,1 256,1 256,i 256,i
0 E F K 0 E F
256,1 256,1 256,1 256,i 256,i
0 L H N 0 L H
256,1 256,i
Co 0 0 0 Coy 0 0
where
i -1 moj jh -1 moj jh ¢-1
bDn=-> > Alt—7,)ADn—=> > B(t-7,)ADs= >
h=0 j=1 h=0 j=1 h=0
; &1 om i jh &l m i jh &t
bDs=-> D E(t-7,)ADs—-> > F(t-r,)ADs -
h=0 j=1 h=0 j=1 h=0
i i &1 mjj ih &1 om ih
b =—Po— Y, D L{t—7,)ADi=> D H(t-17,)ADs -
h=0 j=1 h=0 j=1
i i i ¢-1 jh ¢ ih
bp=2n W; acy p(rg)_ALquim _z s
h=0 h=0

1, 1,256 1,256 1,256
C 0 A B C
1i 1,256 1,256 1,256
K 0 B C
1i 1,256 1,256 1,256
N 0 L H N
1,256
0 C, 0 0 0
i:,i ) i,2:56 i,2:56 i,zzss
C 0 A B C
ii i,256 i,256 i,256
K 0 E F K
ii i,256 i,256 i,256
N 0 L H N
i i,256
2a Cy 0 0 0
25.6‘i ’ : 256,256: 256 256,256 25:6 2563256
C 1 A + K n B + K n tan ¢d C
256,i 256,256 256,256 256 256,256
K 0 - Ks K
256,i 256,256 256,256 256,256
N -1 N
256,256 256 256
0o - C o, -2na 0 2a
m_ij jh i (&l in ih
> C(t—7,)0;, — Ka| D ADn +tang, > ADs
j=1 h=0
m ij jh i ¢l in
D K(t-7,)0;, + Ks > ADs
j=1 h=0
E-1 o om ih
Z Z N (t Ty )q int
h=0 j=1

i

bDn
bD;
1
bq int
1
bp

bD,
bD.
bq_int

256
bD,

256

bDs

256

bq int

256

(D-1)

(D-2)
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