
ESTIMATING SEASONAL DRIVERS IN CHILDHOOD INFECTIOUS

DISEASES WITH CONTINUOUS TIME MODELS

A Thesis

by

GEORGE HENRY ABBOTT III

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2010

Major Subject: Chemical Engineering



ESTIMATING SEASONAL DRIVERS IN CHILDHOOD INFECTIOUS

DISEASES WITH CONTINUOUS TIME MODELS

A Thesis

by

GEORGE HENRY ABBOTT III

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Carl D. Laird
Committee Members, Mahmoud El-Halwagi

Juergen Hahn
Michael Pilant

Head of Department, Michael Pishko

May 2010

Major Subject: Chemical Engineering



iii

ABSTRACT

Estimating Seasonal Drivers in Childhood Infectious Diseases

with Continuous Time Models. (May 2010)

George Henry Abbott III, B.S.; B.A., University of North Texas

Chair of Advisory Committee: Dr. Carl D. Laird

Many important factors affect the spread of childhood infectious disease. To

understand better the fundamental drivers of infectious disease spread, several re-

searchers have estimated seasonal transmission coefficients using discrete-time mod-

els. This research addresses several shortcomings of the discrete-time approaches,

including removing the need for the reporting interval to match the serial interval

of the disease using infectious disease data from three major cities: New York City,

London, and Bangkok. Using a simultaneous approach for optimization of differential

equation systems with a Radau collocation discretization scheme and total variation

regularization for the transmission parameter profile, this research demonstrates that

seasonal transmission parameters can be effectively estimated using continuous-time

models. This research further correlates school holiday schedules with the transmis-

sion parameter for New York City and London where previous work has already been

done, and demonstrates similar results for a relatively unstudied city in childhood

infectious disease research, Bangkok, Thailand.
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CHAPTER I

INTRODUCTION

A. Motivation

There are two major perspectives from which can be seen the desire and benefits

of a reliable mechanistic model for the spread of infectious diseases. First, from a

scientific and research perspective, having a reliable mechanistic model will provide

improved understanding and identification of important factors affecting infectious

disease dynamics. The dynamics of infectious disease spread are not only dependent

on the characteristics of the disease itself, but also upon the social networks and

geographical landscape within which the disease spreads. Second, from a public

health perspective, having a long-term, quantitative, reliable, dynamic model could

allow prediction of outbreaks, better response planning, and improvement in public

health policy. Models such as these would ideally describe past system behaviour

and be capable of effective extrapolation with adjustments to system inputs, the

benefits of which will be felt the most within developing countries where infectious

diseases continue to be a major cause of suffering and mortality [1]. Meeting both

of these goals requires reliable estimation of disease model parameters and existing

case data. The work in this thesis builds upon existing work in estimation of seasonal

transmission parameters with discrete models to develop a sufficient framework for

efficient estimation of parameters using continuous differential equation models.

The desire to transition from previous discrete disease model estimation methods

to continuous-time disease model estimation methods primarily arises from trying

to address a few drawbacks and inherent assumptions contained within the former

The journal model is IEEE Transactions on Automatic Control.
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methods. These are several issues this work is concerned with:

• the creation of an estimation framework for continuous models with the flexi-

bility to allow the use of different modelling structures,

• the actual infection process of measles and chickenpox is a continuous process,

• previous estimation procedures for discrete-time models relied on a log-transform

that was specific to only that model [2],

• developing a estimation procedure that will handle data in its native format,

• developing an estimation procedure with the freedom to select a discretization

strategy, allowing the use of higher order estimation methods.

Since disease modelling relies heavily on recorded real-world case data as input,

a model which has the flexibility to use the data in its original form regardless of

the properties of the serial interval of the disease and the reporting interval of the

data itself is truly beneficial. Usually the recording interval is reduced to match the

serial interval of the infection, in the case of measles this is on average one biweek

or fourteen days and in the case of chickenpox the period averages approximately

twenty days [3]. Another benefit is that the transmission parameter is discretized

into the number of time points within the repeating seasonal time frame, in the case

of measles this results in a yearly periodic function discretized into twenty six points.

This proves to be very limiting if a finer discretization of the transmission parameter

is desired, however with a continuous disease model estimation, matching the serial

interval with the reporting interval is ideally unnecessary and allows for a greater and

variable number of discretization points in the transmission parameter function.
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B. Summary

Chapter I, Introduction, contains both the summary and motivation of this thesis.

Chapter II, Background, begins with an overview of the history of mathematical

infectious disease modelling techniques before going into the most commonly used

differential equation disease models, particularly compartment based disease models.

The next section then covers various techniques that are used to estimate and solve

dynamic differential equation systems.

Chapter III, Problem definition, explains the problem of formulating the contin-

uous time disease model. The first section explains the problem of discretizing the

differential equations with various methods. The second section explains the reason

for needing and options for using regularization on the transmission parameter func-

tion and calculation of the regularization parameter by use of the l-curve method.

The final section of this chapter covers the data sets used in the model estimations.

Chapter IV, Solution Approach, explains the formulation of the problem. It

discusses the use of orthogonal collocation on finite elements with Radau points as a

discretization technique. It further explains how and why total variation is used to

regularize the transmission parameter function. In the last section, it explains the

process of simulating artificially generated data sets first in order to arrive at the final

model which will be ready to use the true data sets as input.

Chapter V includes the results of the L-curve calculation, the infectious data fit,

and the resulting beta graphs are presented along with other important information.

Chapter VI presents the conclusions reached with developing the continuous-

time disease model, compares the beta functions to school holiday patterns within

the year, and proposes improvements and uses which may become the focus of future

research.
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CHAPTER II

BACKGROUND

The beginning of mathematical modelling of infectious diseases started in 1760 when

Daniel Bernoulli created and analyzed a model for smallpox [4]. However this model

was only capable of determining the variolation of healthy people with the small-

pox virus and it was not until the 20th century that deterministic epidemiological

models arose with Hamer [5]. Hamer formulated a discrete-time model which he

used to understand the spread of measles, and most believe that this was the first

use of the assumption that the new number of infectives per unit time (incidence)

is directly related to the product of the densities of the susceptibles and infectives.

Ross [6] used a differential equation model to understand the incidence and control

of Malaria. Soon afterwards, several papers concerning different deterministic epi-

demiology models were published [7, 8, 9, 10]. While these models were not able

to successfully predict when an outbreak might occur, they nonetheless were able to

be used in analyzing important characteristics of these infections. In the late 1920s

Kermack and McKendrick published an important result showing that an epidemic

outbreak can occur only if a threshold density of susceptibles is exceeded. If the

susceptible density is too low, then it is virtually impossible for the disease to de-

velop into an epidemic within a population [11, 12]. Throughout the 20th century

one can see from the many reviews of the literature how quickly the body of research

concerning infectious disease modelling has grown [13, 14, 15].

From the middle of the twentieth century on, mathematical epidemiology has

seemed to grow exponentially from its very basic beginnings in 1760. The publication

of Bailey [7] is considered by many in the field to be a significant historical marker

[1]. Many phenomena associated with different diseases have been incorporated into
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models such as: passive immunity, gradual loss of vaccine induced immunity, dis-

ease acquired immunity, different stages of infection, age structure, social and sexual

mixing groups, vaccination, quarantine, and chemotherapy [1].

A. Compartment-Based Disease Modeling

Compartment-based disease models separate the total population into the various

compartments based on the different disease stages. The most commonly used models

contain five types of compartments, but their inclusion and possible repetition within

the model is determined by the behavior of the disease. The common compartments

are M,S,E,I, and R. M is referred to as the maternal immunity compartment. This

first compartment contains young children who are temporarily immune to the disease

because of antibodies obtained from their mother. The second compartment listed is

S and contains the susceptibles of the population. Susceptibles are individuals who

have no passive maternal or genetic immunity to a disease and therefore are suscep-

tible to it. E is the exposed individuals. The exposed individuals were previously

in the susceptible category, but by some population mixing they came into contact

with an infected individual and are now considered as infected but not infectious.

That is, they contain the infection but are in the latent category where they cannot

yet spread it to others. The next compartment is the I compartment. This is la-

beled I because it houses all of the infected individuals who can spread the infection

to susceptible individuals. The final compartment is the R or recovered compart-

ment. This compartment represents individuals who have gained infection-acquired

immunity. However, it should be made clear that R is not necessarily a permanent

classification, but is determined by the dynamics of the infection itself. In general

the classification of the model is determined by the flow of the population from one
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compartment to another and here are just a few to consider: SIR, SEIR, MSEIR,

SIRS, SEIRS, SI, and SIS. [1]

These models can be used to provide crucial information about the diseases. One

of the most important values that these models are associated with is the basic re-

production number, R0. This value is defined as the average number of secondary

infections when one infected individual is introduced into a purely susceptible popu-

lation [16, 17]. Importantly, if R0 > 1 then the infection has the potential to invade a

population and, depending on other characteristics of the infection, may become an

epidemic. Therefore, the basic reproduction number is also sometimes referred to as

the threshold value of the infection, clearly indicating if the disease will die out or if

it has the potential to invade and persist.

In this research, the above compartmental framework is used to model the child-

hood diseases, measles and varicella zoster or chickenpox. Prior to widespread vacci-

nation, if someone became infected with measles or chickenpox and survived then they

attained lifelong infection-acquired immunity [3]. Therefore, three compartments are

necessary for the modelling of this infection: S, the susceptible, I, the people who ac-

quire the infection and can transmit it to others, and R the people who are resistant

either from vaccination or infection-acquired immunity. These three compartments

have been shown to capture the behavior of measles dynamics [2]. Since chickenpox

shares the same qualities of measles in being a childhood infectious disease where a

survivor attains life-long acquired immunity, the same model is used for capturing

chickenpox behavior as well. Equations 2.1 and 2.2 show this model.

dS

dt
=
−β(t)S(t)I(t)

N
+ µ(t)N (2.1)

dI

dt
=
β(t)S(t)I(t)

N
− γI(t) (2.2)
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Here in the above equations, S is the number of people in the susceptible com-

partment, and I is the number of people in the infected compartment. Notice that

there is no equation to describe dR/dt. Since the entire population, N , is equal to

the number of people in all of the compartments (or N = S+I+R) then the number

of recovered individuals can always be expressed by R = N − (S + I). Therefore, for

simplification of the model and calculations, dR/dt is omitted [1]. There are three

main parameters in this model: β(t), γ, and µ(t). The time varying parameter, β(t),

is called the contact rate or transmission parameter and represents the number of con-

tacts sufficient to spread the infection for a single person per unit time. The recovery

parameter, γ, can be understood physically as the inverse of the average period of

infection. The third and last parameter in this model is µ(t), the time varying birth

rate. It can clearly be seen that this model uses a similar assumption as Hamer [5].

Here, instead of the product of the densities, (I(t)/N)(S(t)/N), the numbers in each

compartment divided by the total population is used, I(t)S(t)/N , a term formed from

the use of the pseudo-mass action law [1]. This term is negative in (2.1) and positive

in (2.2) showing that these individuals move from the susceptible compartment into

the infective compartment. The second term in (2.1) explains the new entries into

the susceptible compartment. This is represented by µ(t)N , or birth rate times the

total population. Since measles is considered a childhood disease with life-long ac-

quired immunity, this is the only physical way to enter the susceptible compartment.

The second term in (2.2) is the recovery term. This is essentially accounting for the

infectives who pass through their infective period and recover from the disease. This

model assumes a constant population of N with a continuous input of births into the

S compartment. Since measles and chickenpox are rarely fatal and the average age of

infection is quite young, ≈ 5 years old for measles and ≈ 6 years old for chickenpox

[3], a death term is unnecessary for the S compartment. It is assumed that all deaths
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occur from the R compartment. Constant population is a reasonable assumption with

disease models when dealing with data that spans short time domains; however, this

assumption can be problematic when dealing with longer time domains.

It has long been recognized that seasonal patterns of measles transmission ap-

pear to be correlated with school holiday schedules. Soper [18] estimates transmission

rates from monthly incidence data for measles and asserts the possibility of a seasonal

pattern related to school terms. Fine and Clarkson [19] extend this idea and estimate

a time-varying profile for the transmission parameter using measles data for England

and Wales from 1950 to 1965. Even though incidence follows a biennial pattern of

alternating major and minor epidemics, their estimates of the time-varying transmis-

sion parameter are remarkably consistent from year to year. Furthermore, the yearly

pattern of the transmission parameter is loosely correlated with the school holiday

schedule.

The time-series SIR model developed in Finkenstädt and Grenfell [2] is a discrete

time model discretized over 26 biweeks in each year (consistent with the serial interval

for measles). This discrete time model allows for a temporally varying transmission

parameter with a period of one year (given 26 unique parameter values for β(τ)).

This pioneering work makes no strong assumption about the functional form of the

transmission parameter with the only restriction being yearly periodicity. Considering

measles incidence data from England and Wales, their results further strengthen the

evidence that measles transmission is indeed correlated with school terms.

Their discrete time model approach has several drawbacks. First, the model

is discretized over the serial interval of the disease, and this interval must agree

with the availability of the data. However, the data is often available at a different

timescale than the serial interval. Furthermore, the discrete time-series SIR model

has an additional parameter α in the incidence term (i.e. β(τ)Iαi Si), that is difficult
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to interpret physically. This term has been spoken of in Xia et al. [20] as an adjusting

term which accounts for the inherent errors of the discrete model, suggesting further

there is no need of it in the continuous model.

The goal is to extend these results and estimate seasonal transmission parameters

using a continuous time model by exploring different forms of regularization for the

transmission parameter and performing the estimation using data sets where the

reporting interval does not match the serial interval. The techniques necessary for

accomplishing this requires formulation and estimation of dynamic systems.

B. State and Parameter Estimation of Dynamic Systems

The general form for a continuous system can be written as,

ẋ = f(x, u, w, p) (2.3)

y = h(x, u, v, p). (2.4)

Here x is the state vector, u is the input vector, w is model noise, p is the parameter

vector, y is the output vector, and v is measurement noise. The two functions here, f

and h, are either linear or nonlinear. In the case of infectious disease model estimation

they are nonlinear.

1. Linear State Estimation

Linear State Estimation has two main categories which are described by how the data

is processed. If the data is estimated one data point at a time then it is referred to

as sequential state estimation, the most common technique being Kalman filtering

[21, 22]. Kalman filtering is specifically interested in determining the states of the

system over the entire time domain. It begins by taking an initial estimation and sys-
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tematically calculating the current state estimate with respect to the corresponding

measurement. Then through a series of calculations, the Kalman filter updates or im-

proves that state estimate to better fit the measurement. Then the updated estimate

is used to estimate the state for the next time value. Kalman filters can be formulated

for either discrete or continuous time systems. Kalman filtering approaches have also

been extended to nonlinear models.

The second category of linear state estimation is called Batch State Estimation

[22]. Here, the technique differs from sequential state estimation because of the

amount of information used to estimate the states at each iteration. Sequential state

estimation considers the data one point at a time, while batch considers equal-sized

subsets of the domain and optimizes the trajectory of the state for just that subset.

The basic strategy of this estimation technique is to run two simultaneous Kalman

filters across the subset. One runs forward in time and the other runs backward in

time. The estimations are then corrected with respect to both filters. While these

techniques are effective, it is difficult to handle constraints on the states.

2. Nonlinear State Estimation

A fundamental difference between linear and nonlinear problems is that unlike the

linear case, the stability of the nonlinear problem depends on the particular solu-

tion trajectory considered [23]. One very popular method for estimation of nonlinear

states is the extended Kalman filter, (EKF) [22, 24]. This method is based on lin-

earization and the assumption that the estimated state values are sufficiently close to

the true states [22]. The error dynamics are represented by a first-order Taylor series
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expansion. Therefore for the general model:

ẋ(t) = f(x(t), u(t), t) +G(t)w(t) (2.5)

ỹ(t) = h(x(t), t) + v(t) (2.6)

the functions f and h would be estimated as,

f(x(t), u(t), t) ∼= f(x̄(t), u(t), t) +

[
∂f

∂x

]

x̄(t)

[x(t)− x̄(t)] (2.7)

h(x(t), t) ∼= h(x̄(t), t) +

[
∂h

∂x

]

x̄(t)

[x(t)− x̄(t)] (2.8)

where x̄(t) is sufficiently close to x(t).

The extended Kalman filter structure for the state and output estimate is given

by [22],

˙̂x(t) = f(x̄(t), u(t), t) + F (x̄(t), t)[x̂(t)− x̄(t)]

+K(t) [ỹ(t)− h(x̄(t), t)−H(x̄(t), t)[x̂(t)− x̄(t)]]

(2.9)

ŷ(t) = h(x̄(t), t) +H(x̄(t), t)[x̂(t)− x̄(t)] (2.10)

where x̂(t) is the nominal state value (i.e. E{f(x(t), u(t), t)} = f(x̂(t), u(t), t)), x̄(t) is

the nominal a priori state vector, F ≡ ∂f/∂x from (2.7), H ≡ ∂h/∂x from (2.8), and

K(t) = P (t)HT (x̂(t), t)R−1(t) is the Kalman gain (P (t) is state-error covariance and

R(t) is measurement-noise covariance) [22]. This method can be reformulated for sev-

eral different models, and has been improved by applying local iterations linearizing

around the most recent estimates in the iterated extended Kalman filter. It has also

been formulated to fit discrete models, continuous models, and continuous-discrete

models where the model is continuous but the measurements are discrete [24]. The

advantage with using this method is that it is a computationally efficient ”one-step
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recursion,” however the disadvantages are that it is difficult to implement, tune, and

it is only reliable for systems which are linear on the timescale [25]. For the disease

estimation problem we have nonlinear-batch-constraints, the techniques listed so far

do not typically handle constraints.

C. Constrained Estimation Approaches

There is a class of methods for constrained dynamic systems. Rawlings and Mayne[25]

shows that when a dynamic system is modified to include constraints, it becomes a

nonlinear optimization problem with differential algebraic equation constraints, or

concisely DAE constraints. The estimation problem is explicitly formulated as an

optimization problem. The necessary methods can be grouped into two general cate-

gories, the indirect and the direct [26]. The indirect methods, also called variational

approach methods, are based on the solution of the first order necessary conditions for

optimality that are obtained from Pontryagins Maximum Principle [27]. For problems

without inequality constraints this give rise to a two-point boundary value problem

(TPBVP). This technique is often labeled “optimize-then-discretize,” since the opti-

mality conditions are applied to the original optimization formulation and then the

resulting system is discretized for solution. However, for more complicated prob-

lems with inequality constraints, the indirect method becomes increasingly difficult

[28]. The estimation model used in this research has several inequality constraints,

therefore this approach is unfavorable.

Direct methods are often labeled “discretize-then-optimize,” since they first dis-

cretize the original DAE formulation and then apply the optimality conditions to the

algebraic problem. The direct methods are further divided into two categories: se-

quential and simultaneous. In the sequential methods, only the control variables are
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discretized. They are typically represented in the formulation as piecewise polynomi-

als in what is known as the control variable parameterization methods. The goal of

the optimization is to find the coefficients of these polynomials. The integration is

solved in an inner loop while the control variable parameters are updated in an outer

loop using the NLP solver. The advantages of this method are that they are relatively

easy to construct and reliable DAE solvers are available. The disadvantages, however,

become more apparent when one realizes that multiple numerical integrations of the

DAE, along with the calculation of the derivatives, can become very time consuming

for large problems [26].

The main methods that will be used with these models are the simultaneous, or

direct transcription methods [29, 26]. These techniques completely discretize the state

and control variables using a higher order fixed-step discretization strategy. The main

feature of the simultaneous methods is that the solution of the DAE is converged si-

multaneously with the optimization problem, avoiding intermediate calculations and

unnecessary computational effort. While these techniques are more difficult to im-

plement, they can be very efficient. Furthermore, they allow direct enforcement of

constraints on the state and control variables at the same level of discretization as

the DAE system.

1. Discretization Methods

Using the direct simulation approach requires that the DAE be first discretized with

a fixed timestep. There are several methods to consider. The simplest method of

differential equation discretization is the explicit Euler or forward Euler method.

The first step is to determine a mesh over the time period of the simulation,

a = t0 < t1 < ... < tn−1 < tn = b (2.11)
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where a and b are the starting and ending points of the time domain respectively.

The nth step size is denoted and defined as hn = tn − tn−1. According to Ascher and

Petzold [23], the next step is to construct the state approximations x0, x1, ..., xn−1, xn,

with each xn intended to be an approximation of x(tn). The concept of the explicit

Euler method is to begin with the initial value, x0, then proceed to integrate the

model to each successive time step from the previous one (i.e. using xn−1 at tn−1 to

roughly calculate xn at tn),

xn − xn−1

hn
= f(tn−1, xn−1). (2.12)

It is important to note that the order of this method is highly dependent on the

step size of each hn, the smaller the step size the greater the accuracy. However, the

forward Euler method is only accurate to order 1 (i.e. error = O(h1))[23].

The explicit Euler method may violate the absolute stability requirement when

used to solve an IVP of a stiff equation, so the implicit Euler method was developed

as an alternative method to avoid violating the requirement [23]. The implicit is

derived the same way as the explicit but it is centered around the point tn instead of

tn−1, giving

xn − xn−1

hn
= f(tn, xn). (2.13)

This method is implicit since the unknowns appear on both sides of the equation.

However, since the equations will be converged as part of the constraints in the

optimization problem, this is not a serious complication.

While the implicit Euler strategy does provide more stability the numerical error,

it attains can be improved upon by other techniques. The Runge-Kutta methods are

ideal when a higher order of accuracy is desired without having to form the symbolic

derivatives of the Taylor series method. If the explicit and implicit Euler methods
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were to be reinterpreted as a quadrature, the methods would take on the form,

xn − xn−1 =

∫ tn

tn−1

x′(ζ)dζ (2.14)

where the explicit method approximates the area under the curve based on x′(tn−1)

and the implicit method uses x′(tn), also called the left and right Riemann sum,

respectively. For a better method, the midpoint of these two techniques may be

calculated and used to obtain the implicit method,

xn = xn−1 + hf

(
tn−1/2,

xn−1 − xn
2

)
(2.15)

To transform this technique into an explicit method, one may first use the explicit

Euler method (2.16), to approximate the value x̂n−1/2 before then substituting into the

implicit midpoint method (2.17), to arrive at something similar to the Runge-Kutta

method.

x̂n−1/2 = xn−1 +
h

2
f(tn−1, xn−1) (2.16)

xn = xn−1 + hf(tn−1/2, x̂n−1/2) (2.17)

This method has been shown to achieve an order of accuracy consistent with order 2

[23]. The classical fourth-order Runge-Kutta is an elaboration of (2.14), but utilizing

the Simpson’s quadrature estimation,

xn − xn−1 ≈
h

6
(x′(tn−1) + 4x′(tn−1/2) + x′(tn)) (2.18)

then the explicit estimation is used to find the approximate value for y′(tn−1/2). Giving
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the commonly known,

k1 = xn−1,

k2 = xn−1 +
h

2
f(tn−1, k1)

k3 = xn−1 +
h

2
f(tn−1/2, k2) (2.19)

k4 = xn−1 + hf(tn−1/2, k3)

xn = xn−1 +
h

6
(f(tn−1, k1) + 2f(tn−1/2, k2) + 2f(tn−1/2, k3) + f(tn, k4)).

While Runge-Kutta methods are highly stable and accurate, when using them with

DAEs one is often faced with order reduction, the causes of which are closely related

to the causes of order reduction for Runge-Kutta methods applied to stiff ODEs

[23]. Therefore a method more compatible with DAEs, such as collocation on finite

elements, should be explored.

Collocation methods can be shown to be equivalent to Runge-Kutta Methods

[23], but collocation will be further elaborated later in this text.
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CHAPTER III

PROBLEM DEFINITION

A. Model Formulation

The base estimation formulation used to motivate this research is given as,

min −L(·) (3.1)

s.t.
dS

dt
=
−β(τ)S(t)I(t)

N
+ µ(t)N (3.2)

dI

dt
=
β(τ)S(t)I(t)

N
− γI(t) (3.3)

dR

dt
= γI(t)− µ(t)N (3.4)

(3.5)

where S is the number of susceptibles, I is the number of infectives, and R is the

number of recovered individuals. The objective function,−L(·), is some measure of

fit for the data. The seasonal transmission parameter β(τ) is time varying, but will

be restricted to have a yearly periodicity; therefore, τ = t mod tyear with tyear being

the amount of time within one year. The birth rate, µ(t), is a known time-varying

input to the system. The population, N , and recovery rate, γ are known scalar

inputs. When formulating the objective function (measure of fit), it is important

to note the distinction between prevalence and incidence. In our case count data,

the number recorded is the incidence, or number of new cases which have arisen

within that specific recording period. However, the variable I in the model represents

prevalence, not incidence. The discrete time models did not have this issue. Since

they assumed that the recovery time was identical to the time discretization, they

blur the distinction between incidence and prevalence. Over a particular reporting

interval, the incidence is given by
∫ ti
ti−1

β(τ)I(t)S(t)dt. To include this feature in the
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optimization formulation, a new variable φ(t) that represents the cumulative incidence

at time t will be introduced. This can be easily implemented in the formulation by

adding the differential equation dφ/dt = β(τ)S(t)I(t)/N . Assuming data is reported

over intervals represented by a set of discretized points in time R, and using the

symbol Φ∗(ti) to refer to the number of reported cases in the interval ti−1 to ti, the

objective function can then be written as,

min
∑

i∈R:i>1

[(φ(ti)− φ(ti−1))− Φ∗(ti)]
2 . (3.6)

where φ(ti) − φ(ti−1) is the number of new cases simulated for the time interval of

(ti−1, ti).

The primary goal of this research is the estimation of the seasonal transmission

parameter, β(τ). Since β(τ) should have a yearly periodicity, one approach would be

to parameterize β(τ) using a trigonometric series. This could be problematic since

we expect β(τ) to have sharp changes during the year corresponding to the on/off

pattern of school term holidays. The plan of this research is to completely discretize

β(τ) along the time domain and then require that β(τ) be periodic (e.g. forcing

β(τ) = β(τ − 1 year) in the formulation. Because of the large number of degrees of

freedom that arise from discretizing β(τ), regularization may be necessary to produce

a well-posed estimation problem. This will be achieved by adding another term to

the objective function, 1
ρ
R(β). The regularization parameter ρ will be determined

by using the standard the L-curve method [30]. There are several different forms

which we can use for the regularization function of β(τ), most notably: Tikhonov,

Higher-Order Tikhonov, Total Variation, etc. [30]. The main focus will center on

total variation since the seasonal transmission parameter is believed to be correlated

with on/off holidays of the school year and total variation is known to allow for sharp

changes in the profile. This is believed to give a better representation of β(τ) than
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restricting it to a specific functional form like a polynomial or sine curve.

The final estimation formulation that will be used in this research is given as,

min
∑

i∈R:i>1

[(φ(ti)− φ(ti−1))− Φ∗(ti)]
2 +

1

ρ
Reg(β) (3.7)

s.t.
dS

dt
=
−β(τ)S(t)I(t)

N
+ µN (3.8)

dI

dt
=
β(τ)S(t)I(t)

N
− γI(t) (3.9)

dR

dt
= γI(t)− µN (3.10)

dφ

dt
=
β(τ)S(t)I(t)

N
. (3.11)

B. Regularization

Our system is nonlinear; however, to simplify the discussion here we adopt the nota-

tion used in Aster et al. [30] for linear systems. Here, G represents the model, m the

parameters, d the data, α the regularization parameter and ‖·‖2 the euclidean norm.

One of the more common regularization techniques is Thikhonov regularization. In

Tikhonov regularization, the goal is to choose from the solutions of ‖Gm−d‖2 ≤ δ the

one which also minimizes ‖m‖2. The reasons for selecting the minimum norm from

among those solutions can be adequately explained by the fact that any nonzero fea-

tures that appear in the regularized solution increase the norm of m. Those nonzero

features are necessary for the model to fit the data properly and by taking the mini-

mum of ‖m‖2, the assurance of not having any unneeded features in the regularization

is achieved. The following setup is the general form of the Tikhonov, or zeroth-order,

min ‖m‖2

‖Gm− d‖2 ≤ δ (3.12)
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It should be noted, when the value of δ increases, the set of feasible solutions to

the model expands, therefore causing the minimum of ‖m‖2 to decrease. If a plot is

produced comparing these two values, minimum norm of m versus δ, the resulting

shape would appear as the graph of the reciprocal function within the first quadrant.

Inversely, this same plot can be produced by an alternate formulation of Tikhonov,

min ‖Gm− d‖2

‖m‖2 ≤ ε. (3.13)

A third formulation involves taking both the residuals and the parameter norms

within the objective function and applying a weight to the parameter norm called the

regularization parameter, α.

min ‖Gm− d‖2
2 + α2‖m‖2

2 (3.14)

The euclidean norm has been modified to a least squares form and the parameter α

causes a dampening in the problem. Hence, the name for this scheme is the dampened

least squares problem. These three schemes can be shown to yield the same solution

with a proper choice of δ, ε, and α [30]. When plotted with an appropriate scale, the

curve of the optimum values of ‖Gm− d‖2 versus ‖m‖2 closely resembles the shape

of the letter ‘L.’ This is caused by the fact that ‖Gm− d‖2 strictly increases as a

function of the parameter α, and ‖m‖2 strictly decreases. Due to its characteristic

shape this curve is called the L-curve [31].

1. Higher-order Tikhonov Regularization

With the basic Tikhonov technique, only the euclidean norm of the parameter is

minimized. It is not always favorable to minimize the parameter directly and some-

times necessary to accomplish regularization through a different measure of m. With
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higher-order Tikhonov, it is desirable to regularize the first or second derivative of m.

Here the roughening matrix L is introduced. Within the model the time derivative of

m(t) is estimated by Lm. Typically Lm is defined to be a finite-difference derivative

approximation. Thus, since it is minimized, the solution of m favored will be rela-

tively flat in the case of regularizing the first derivative. Higher-order Tikhonov can

be formulated as a dampened least squares problem,

min ‖Gm− d‖2
2 + α2‖Lm‖2

2 (3.15)

where in the case of first-order Tikhonov regularization, the roughening matrix L is

defined as,

L =




−1 1 0 · · · 0

0 −1 1 · · · 0

... · · · ...

0 · · · −1 1 0

0 · · · 0 −1 1




. (3.16)

With second-order Tikhonov regularization, Lm should appropriately estimate the

second derivative of m. One possible L is defined as

L =




1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

... · · · ...

0 · · · 1 −2 1 0

0 · · · 0 1 −2 1




, (3.17)

where the solutions of m which are rough in the second derivative sense are penalized.

Note that here the roughening matrices are appropriate only for a one-dimensional

model; however, if the model is two- or three-dimestional, these roughening matrices
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are not appropriate. In those cases a finite difference to the Laplacian operator is

used [30].

2. Other Regularization Techniques

Bound constraint methods are appropriate for situations where bounds exits on the

maximum or minimum values of the model parameters. For example, in the case of

the transmission parameter β someone who is infected cannot take away the infection

from another individual, therefore it is a value that is inherently non-negative. The

formulation of this sort of least squares problem can take the structure of,

min ‖Gm− d‖2

m ≥ 0 (3.18)

where the bound makes sure that all values of m must remain nonnegative. This

problem formulation is commonly known as the nonnegative least squares problem

[32].

Another option for the bounded constraints is to constrain the m parameter in

both directions by specifying both a set of upper bounds u and a set of lower bounds l.

Again using the example of β this can be seen as a maximum on the number of people

that the infected individual comes into contact within the designated time frame. He

or she cannot infect more people than he or she comes into contact, therefore it is an

upper bound. This problem formulation is commonly called the bounded variables

least squares (BVLS) problem,

min ‖Gm− d‖2

m ≤ u (3.19)

m ≥ l
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There have been several algorithms for solving the BVLS problem which allow for

Tikhonov regularization with bounds [32].

The second major alternative to Tikhonov regularization is maximum entropy

regularization. The maximum entropy regularization approach can be seen in its

general form as,

max −
n∑

i=1

miln(wimi)

‖Gm− d‖2 ≤ δ (3.20)

m ≥ 0

According to Aster et al. [30], the term ”Maximum Entropy” comes from a Baysian

approach to selecting a prior probability distribution subject to the constraint
∑n

i=1 pi =

1 that maximizes the term −∑n
i=1 pilnpi, which has the same form as entropy. The

limitation of this formulation is that mi must always be strictly positive for all i so

that the logarithm is always defined. This method is widely applied in astronomical

image processing [33].

The final alternative regularization technique discussed here is total variation.

This functional form is most appropriate if the function to be regularized is believed

to exhibit discontinuous jumps. The formulation is as follows,

TV(m) =
n−1∑

i=1

|mi+1 −mi| (3.21)

= ‖Lm‖1 (3.22)

where ‖·‖1 is the 1-norm. Here, L is typically the same as that defined in (3.16). This

differs from the basic Tikhonov techniques because where they penalize discontinuities

and favor smoothness, the total variation penalizes all magnitude of change equally.

The formulation term for total variation can be added into the objective function in
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place of the other Tikhonov regularizations to arrive at the objective form,

min ‖Gm− d‖2
2 + α‖Lm‖1 (3.23)

Solution of this problem requires some manipulation since it is not in the typical form

of a least squares problem. Furthermore, in our case we have a constrained nonlinear

least squares problem. Reformulation of ‖Lm‖1 will be discussed later.

Motivation for choosing one regularization strategy over the other is mainly in-

fluenced by the desired or expected shape of the parameter profile. With childhood

diseases, the transmission parameter is believed to have discontinuous jumps between

high and low periods of transmission activity related to school term holidays. There-

fore, the total variation regularization is chosen for this work.

C. Data

This research uses both measles and chickenpox case count data, as well as birth rate

and population data from London, New York City, and Bangkok, Thailand. This

data is formatted and converted into appropriate *.dat files usable in AMPL [34].

These data have been selected for the following reasons:

• London and New York City measles have been studied by other authors and

students within our group, making them a good test bed for the new approach.

• These locations have different reporting intervals, and will provide insight as

to the reliability of this method when the reporting interval is longer than the

generation time.

• Bangkok has very different school holiday schedules from the other two cities.

This will allow us to determine if there is a strong correlation between school

terms and seasonal transmission as estimated from the continuous models.
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Table I. Data used for New York City, London, and Bangkok

Years Reporting Interval Tot. Time Reporting Fraction
New York Measles 1947-1963 30 days 16 years 1/10
London Measles 1944-1958 14 days 14 years 1/2.3
Bangkok Measles 1975-1985 30 days 10 years 1/100 - 4/100
New York Chickenpox 1944-1964 30 days 20 years 6/100 - 4/100
Bangkok Chickenpox 1985-1995 30 days 10 years 2/100 - 1/100

Details of these data sets are shown in Table I. The Bangkok data set is missing

records for the year 1979 so the objective is weighted to not include these points.

Also, within these data sets there is severe under reporting. For example, in the case

of New York City measles, approximately 1 in every 10 cases was reported.

In the discrete time models the data must be modified to fit the biweekly inter-

vals required by the model. With regards to the continuous time model the data is

unchanged and can be used in its original form with the reporting interval unaltered.
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CHAPTER IV

SOLUTION APPROACH

The estimation formulation given in equations (3.7) to (3.11) is a nonlinear opti-

mization problem with differential constraints. In Chapter II different techniques

for solving this class of optimization problem was discussed. Here, the simultane-

ous approach is adopted for efficiency even though there is additional complexity.

This section outlines the complete solution approach, beginning with the Radau col-

location for discretization of the differential constraints. Next we show an effective

reformulation of the non-differentiable regularization term, and present the full large-

scale nonlinear programming formulation used in this study. As with all non-convex,

nonlinear programming problems, an effective strategy for obtaining initial guesses

is critical. This initialization strategy is discussed, followed by the interior-point

solution approach used by Ipopt [35].

A. Problem Discretization and Formulation

1. Radau Collocation on Finite Elements

In order to transcribe the infinite dimensional dynamic problem to a finite dimensional

problem, this approach uses orthogonal collocation to discretize the differential and

algebraic equations. Radau collocation is used since it has almost the same order of

accuracy as Gauss collocation, is also A-stable and has stiff decay [23]. It has been

shown that this integration method is equivalent to a fully implicit Runge-Kutta

scheme [36]. Consider the general differential equation,

ẋ = f(x, u), x(0) = x0 (4.1)
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where x denotes the state variables, and u the control variables. The optimization

horizon is divided into Ne finite elements which each contain Nc collocation points,

ci ∈ [0, 1]. Radau collocation requires that the final collocation point be located

at the end of each finite element, cNc = 1. The time locations of each collocation

point can be defined as tij = ti + hicj where hi is the length of each finite element

and ti is the beginning time for each finite element. In order to attain the collocation

equations, introduction of the state variable and control variable estimation equations

is necessary. The state variable estimation equation is discretized as,

xNc+1(t) =
Nc∑

k=0

xikL
Nc+1
k

(
t− ti−1

hi

)
t ∈ [ti−1, ti], (4.2)

where LNc+1
k denotes the Lagrange interpolation polynomials of order Nc and xij are

parameters. The order of the Lagrange polynomials is increased one degree by adding

the point c0 = 0 to the set of collocation points within each finite element. The control

variables are discretized using the approximation,

uNc(t) =
Nc∑

k=0

uikL
Nc
k

(
t− ti−1

hi

)
t ∈ [ti−1, ti], (4.3)

where uij are parameters. It is now possible to write the collocation equations,

Nc∑

k=0

xikL̇
(Nc+1)
k (cj) = hif(xij, uij), (4.4)

defined ∀ : i ∈ {1..Ne} and j ∈ {1..Nc}. In order to enforce continuity between the

finite elements the constraint,

xi−1,Nc = xi,0 (4.5)

is also included. The variables x and u and the original differential formulation, (4.1)

are now replaced by the parameters xij and uij and the equality constraints (4.4) and

(4.5).
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This research employs a slightly different formulation for the Radau colloca-

tion equations as given by Bader and Ascher [37], that of the monomial-basis. The

difference arises in the estimation of x. Instead of approximating x directly, ẋ is

approximated by the Lagrange polynomials resulting in the state variable being an

approximation of the integral of the interpolation polynomials. However, despite this

slight difference the monomial-basis representation has also been shown to correspond

to a Runge-Kutta scheme [36]. Therefore the monomial-basis discretization scheme

for the above dynamic state variable would be,

x(t) = xi,0 + hi

Nc∑

k=0

LNc
k

(
t− ti−1

hi

)
ẋik (4.6)

remembering that xi,0 is the equivalent to the calculated parameter xi−1,Nc of the

previous finite element, and ẋik is the value of the first derivative in element i at

collocation point k. A similar scheme was used in the parameter estimation for low-

density polyethylene tubular reactors and can be found in Zavala and Bielger [38].

For the model used (3.7), the discretized form of the differential equations are,

Si,j = Si−1,3 + hi

Nc∑

k=0

ak,jṠi,k (4.7)

Ii,j = Ii−1,3 + hi

Nc∑

k=0

ak,j İi,k (4.8)

φi,j = φi−1,3 + hi

Nc∑

k=0

ak,jφ̇i,k, (4.9)

subject to the equality constraints,

Ṡi,j = − [β(τi−1) + cj(β(τi)− β(τi−1))]
Ii,jSi,j
N

+ µi,jN (4.10)

İi,j = [β(τi−1) + cj(β(τi)− β(τi−1))]
Ii,jSi,j
N

− γIi,j (4.11)

φ̇i,j = [β(τi−1) + cj(β(τi)− β(τi−1))]
Ii,jSi,j
N

. (4.12)
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The number of collocation points for each finite element has been chosen as Nc =

3, and the basis used for the calculation of the Lagrange interpolation polynomial is

the monomial basis. The values of β(τ) are discretized only at the finite element

boundaries and are assumed to be linear within each finite element. The subscripts

are always in order of: finite element number (i), collocation point (j or k). The

matrix ak,j in equation (4.13) is the evaluation of the Lagrange interpolation with the

monomial basis for the set of collocation points, cj = { 0.155051, 0.644949, 1} on the

normalized domain (0,1].

ak,j =




1.968155E−01 3.944243E−01 3.764031E−01

−6.553543E−02 2.920734E−01 5.124858E−01

2.377097E−02 −4.154875E−02 1.111111E−01




(4.13)

2. Total Variation Regularization

The parameter function β(τ) has been shown previously in the literature to have a

strong correlation with school holiday schedules [2]. Therefore the functional form of

the estimated profile must be allowed to be discontinuous and a Tikhonov regular-

ization technique is inappropriate. With this research a total variation approach is

employed so as to try and capture the school holiday schedule more clearly.

The foundational form of the total variation regularization term will be,

TV(β(τ)) =
n−1∑

i=1

|β(τi+1)− β(τi)| (4.14)

= ‖β(τ)‖1

Unfortunately the absolute value function has a discontinuous first derivative at the

value of zero, and there is a better way of formulating this regularization as a well-

defined problem achieving the the same solution. If two new variables are introduced
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into the problem, let us call them β+∆ and β−∆, then two equality constraints can

be added into the model with additional non-negativity constraints,

β∆
i = β(τi+1)− β(τi); (4.15)

β∆
i − β+∆

i + β−∆
i = 0; (4.16)

β+∆
i , β−∆

i ≥ 0; (4.17)

then the objective function term ‖β(τ)‖1 can be written as
∑nfe

i=1(β+∆
i + β−∆

i ). The

non-differentiability of the absolute value function is avoided while still keeping the

same solution method intact. β∆
i is unnecessary since it is only the definition of the

difference between two consecutive β(τ) terms, but is used for clarity and ease of

explanation. If β(τi+1) ≥ β(τi) then β∆
i ≥ 0, and similarly if β(τi+1) ≤ β(τi) then

β∆ ≤ 0. Therefore the difference variable, β∆
i , can be either positive or negative. The

second constraint (4.16), forces all of the positive values of β∆
i to be assigned to β+∆

i

and forces all of the negative values of β∆
i to be assigned to β−∆

i as a positive value,

hence when they are summed together in the regularization term of the objective

function the absolute value is preserved.

3. Full Estimation Formulation

Below is the full formulation of the nonlinear programming problem used for the

estimation.
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min

Nfe∑

i=1

[(φ(ti)− φ(ti−1))− Φ∗(ti)]
2 +

1

ρ

Nye∑

i=1

(β+∆
i + β−∆

i ) (4.18)

s.t. Ṡij = −[β(τi−1) + cj(β(τi)− β(τi−1)]
SijIij
N

+ µi (4.19)

İij = [β(τi−1) + cj(β(τi)− β(τi−1)]
SijIij
N
− γIij (4.20)

φ̇ij = [β(τi−1) + cj(β(τi)− β(τi−1)]
SijIij
N

(4.21)

Sij = Si−1,cp + h

Ncp∑

k=1

akjṠik (4.22)

Iij = Ii−1,cp + h

Ncp∑

k=1

akj İik (4.23)

φij = φi−1,cp + h

Ncp∑

k=1

akjφ̇ik (4.24)

S0j = S0 + h

Ncp∑

k=1

akjṠ1k (4.25)

I0j = I0 + h

Ncp∑

k=1

akj İ1k (4.26)

φ0j = h

Ncp∑

k=1

akjφ̇1k (4.27)

β∆
i = β(τi+1)− β(τi) (4.28)

β∆
i − β+∆

i + β−∆
i = 0 (4.29)

β+∆
i , β−∆

i ≥ 0 (4.30)

Sij, Iij, φij ≥ 0 (4.31)

Here i is the index for each finite element and j is the index for each colloca-

tion point. The variable Nfe is the total number of finite elements used within the

estimation, Nye is the number of finite elements contained within one year, and Ncp

is the number of collocation points used for each finite element. Equations (4.19)
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through (4.21) are the derivative functions. Equations (4.22) through (4.24) are the

collocation equations with akj being the various values of the collocation matrix and

h being the timestep.

B. Initialization of the NLP

For any nonlinear estimation it is very important to initialize the problem appropri-

ately. Initial conditions I0 and S0 are assumed along with reasonable values for the

model parameters. An Explicit Euler integration is used to initialize the state profiles

for I, S and φ. The mesh for the initialization is determined by the collocation points.

There are three points per finite element n each notated as

tn,1 = tn−1 + 0.155(tn − tn−1)

tn,2 = tn−1 + 0.645(tn − tn−1) (4.32)

tn,3 = tn−1 + 1.000(tn − tn−1) = tn

with tn−1 denoting the beginning of the interval and tn denoting the ending.

C. Primal-dual Interior-Point Algorithm for Large Scale NLP

The optimization package used to solve this model formulation, Ipopt [35], is an

implementation of a primal-dual interior-point algorithm with a filter line-search

method. An in depth description of the particulars of the algorithm along with com-

parisons against other interior-point codes for nonlinear programming can be found

in [35]. Briefly, this is an interior-point or barrier method for nonlinear program-

ming. The basic approach of a the method is explained with respect to the problem

formulation below.
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min
x∈Rn

f(x) (4.33)

s.t. c(x) = 0 (4.34)

x ≥ 0

The variable bounds are moved to the objective in the form of a barrier function

as shown in equation (4.35). This subproblem is approximately solved for each of a

sequence of barrier parameters µ converging to zero.

min
x∈Rn

ϕµ(x) = f(x)− µ
n∑

i=1

ln(x(i)) (4.35)

s.t. c(x) = 0

Equivalently, this method can be rewritten as a homotopy method to the primal-

dual equations (4.36) with the homotopy parameter, µ being driven to zero. It is

important to notice that when µ = 0 this homotopy method, coupled with the non-

negative constraints, becomes the Karush-Kuhn-Tucker conditions for the original

problem (4.33).

∇f(x) +∇c(x)λ− z = 0 (4.36)

c(x) = 0 (4.37)

XZe− µe = 0 (4.38)

Here, λ ∈ Rm and z ∈ Rn are the Lagrangian multipliers for the equality con-

straints (4.34) and the nonnegative bound constraints, x ≥ 0, respectively. To see a

more in depth discussion of the algorithm refer to Wächter and Biegler [35].
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CHAPTER V

RESULTS

Prior to performing the estimation using actual case data, numerous simulation stud-

ies were performed with varying patterns for β. Using simulated data aggregated

over each finite element for Φ∗, the estimation formulation was solved using Ipopt.

The formulation was able to correctly estimate both constant values of the trans-

mission parameter as well as sharply changing seasonal profiles. In addition, the

state variable profiles were also effectively reproduced. These studies were performed

using different finite element sizes to ensure the formulation would handle different

discretizations within the time domain. These simulation-estimation results verified

the appropriateness of the entire procedure for use with actual reported case data.

A. Measles

The data for cases of measles was obtained and analysed for the cities of New York,

London, and Bangkok.

Table II. Overall values for the measles model estimations of New York City,

London, and Bangkok

ρ FEa Rep. Fac. Tot. Var. Tot. Const. Obj. Val. CPU b

New York Measles 1 60 0.1083 8887 8764 1.817e+01 15.41
London Measles 2 78 0.43627 10147 9988 5.284e+01 2.52
Bangkok Measles 100 36 .012-.038 3391 3316 3.625e-01 1.32
a Finite elements per year.
b Times are reported in seconds.
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1. New York Measles 1947-1963

The selected timespan under consideration for New York City measles is 1947-1963.

This occurs during the pre-vaccination era for measles in this part of the United

States. During this time, measles case counts are reported monthly. The reporting

factor for New York during this time was assumed to be constant at a value of

approximately 1 in 10 cases (see Table II). A total of 60 finite elements was selected

per year, allowing 5 finite elements per reporting interval. Prior to presentation of

the final results, the estimation was run multiple times with different values of the

regularization parameter ρ. Figure 1 shows the resulting L-curve. This curve has a

pronounced corner corresponding to a value of ρ ≈ 1, and this value was used for all

results presented in this section.
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Fig. 1. The L-curve for New York measles used to determine ρM
NYC.
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a. Seasonal β(τ) Infectious Cases Results
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Fig. 2. Infectious cases results of the estimation for New York measles 1947-1963; (-

-) represents the estimation and (–) represents the historical data.

Figure 2 shows the profiles for the actual and estimated reported cases. The

estimated model is able to capture the biennial major-minor outbreak pattern that is

characteristic of measles in this era. The estimated profile for the seasonal transmis-

sion parameter can be seen in Figure 3. A very pronounced on/off pattern is observed

in the data that will be discussed further in the conclusions. The estimation was also

performed using different numbers of finite elements. Table III shows a comparison of

the solution times and objective values for different numbers of finite elements. Work

has also been done to compare the continuous estimation results against previous

results using a discrete-time model. These results can be found in Abbott III et al.
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[39].
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Fig. 3. β(τ) results for New York measles 1947-1963 (graph is normalized about its

mean).

The nonlinear programming formulation with 60 finite elements has over 8000

variables and constraints, however solution is very efficient, and the estimation for-

mulation itself only required 15.41 seconds to complete.
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Table III. Number of finite elements per year

versus CPU time for New York

City measles model

FE per year CPU time (sec)a Obj. Val.
12 1.2 1.8242e+01
24 3.464 1.8186e+01
36 5.56 2.8035e+01
48 8.992 1.8172e+01
60 15.41 1.8170e+01

a All problems were solved on a 3.0 GHz
Intel Xeon processor.

b. Estimation Without Periodicity Constraint

In order to further verify the seasonality in the transmission parameter, the estimation

was solved over the entire time domain with no assumption about periodicity of

β. Using 36 finite elements per year (chosen for a shorter calculation time) the

formulation contained 7,132 total variables, and 6,481 equality constraints, and solved

in a CPU time of 30.762 seconds. The resulting β(t) function from the entire time

domain was then plotted with each year superimposed, as can be seen in Figure 4.

It is remarkable that such a consistent yearly pattern emerges with no constraint on

the form of β(τ) other than the total variation regularization.
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Fig. 4. New York measles 1947-1963 nonseasonal β(t) estimation results (plotted as

years superimposed over each other).

2. London Measles 1944-1958

London measles from the pre-vaccination era has been the subject of much research

in the field of childhood infectious disease modelling [40, 19, 2, 18]. The time period

of 1944-1958 was chosen to give a substantial time frame within the pre-vaccination

era following the end of World War II.

The L-curve method was used to determine the regularization parameter, but

unlike the L-curve for New York City the “corner” is not very pronounced (see Figure

5). Table IV has been included to show the calculated values that make up the curve

of the graph. The value chosen for this estimation was ρ = 5, although it can be

argued that the values 4 through 6 are also valid. Selecting 3 finite elements per

reporting interval gives a total of 78 finite elements per year. The reporting interval
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Fig. 5. The L-curve for London measles used to determine ρLon.

for our London data during this time was two weeks. The biweek reporting interval

is fortunate for previous discrete time methods, since it allows the reporting and

the serial intervals to coincide. However, this is not necessary for our continuous

formulation.

Table IV. Data calculated for London L-curve graph

ρ 16 8 4 2 1 0.5 0.25
‖β(τ)‖1 6.12 4.98 3.55 2.62 1.74 1.28 1.09

Obj. Val. 50.84 50.94 51.20 51.53 52.15 52.75 53.31
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a. Seasonal β(τ) Infectious Cases Results

The estimated seasonal transmission parameter β(τ) for London can be seen in Figure

6. The data set is not as ideal as the New York data. Measles has a biennial major-

minor pattern near the end of the data series. However, near the beginning the pattern

appears annual. This is believed to be related to the birthrate. The reporting factor

was held constant with the value of 0.43627. The estimation formulation contained

a total of 10,147 variables and 9,988 equality constraints, and solved in only 2.52

seconds.
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Fig. 6. Infectious cases results of the estimation for London measles 1944-1958; (- -)

represents the estimation and (–) represents the historical data.

The estimated seasonal β(τ) profile can be seen in Figure 7. These results also

show a prominent pattern that is further discussed in the conclusions.
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Fig. 7. β(τ) results for London measles 1944-1958.

b. Estimation Without Periodicity Constraint

Again the estimation was performed for London without the periodicity requirement

(see Figure 8). The estimated transmission parameter profile has been plotted over

the time of one year with each year being superimposed over the other for ease of

comparison between years. The profiles for London are not as consistent as those for

New York, however a definite trough can be seen right before the beginning of the

fourth quarter of the year, close to the trough seen in the seasonal estimation of β(τ).
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Fig. 8. London measles 1944-1958 nonseasonal β(t) estimation results (plotted as years

superimposed over each other).

3. Bangkok Measles 1975-1985

While there are numerous publications using the London and New York data sets,

however, virtually no published research has been done using the Bangkok measles

data studied here. This offers a very unique opportunity to see if measles seasonality

is indeed dependent on school vacation periods.

The L-curve plot was generated for the Bangkok Measles recorded cases spanning

the years 1975-1985 (Fig. 9). Although the “corner” of this graph is quite pronounced

the values of ρ span a wide range of values from 1,000 to 100 (See Table V). The

value of ρ selected for this estimation is 100.
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Fig. 9. The L-curve for Bangkok measles used to determine ρM
Bkk.

Table V. The “corner” data for the

Bankok measles L-curve

graph

ρ 1000 100 10 1
‖β(τ)‖1 6.30 3.57 0.42 0.00

Obj. Val. 0.32 0.33 0.46 0.64

a. Seasonal β(τ) Infectious Cases Results

As with New York City, the recorded case data has a reporting interval of one month,

giving twelve data points for each year. Three finite elements were selected for each

reporting interval giving a value of 36 finite elements per year which approximately
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corresponds to 10.14 days per finite element. The estimation formulation had a

total amount of 3,391 variables, 3316 equality constraints, and solved to an objective

value of 3.625e-01 with a CPU time of only 1.32 seconds. The reporting factor was

assumed to be linear over the interval with the values ranging 0.012-0.038. It is

interesting to note is that even though the recorded cases do not have a definite

major-minor biennial pattern, the estimated model does in fact appear to present

those characteristics. The plot of the fit can be seen in Figure 10.
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Fig. 10. Infectious cases results of the estimation for Bangkok measles 1975-1985; (- -)

represents the estimation and (–) represents the historical data.

The estimated seasonal β(τ) for Bangkok measles can be found in Figure 11.

It is important to note the characteristics of this graph compared to the previous

two. This profile does not have the characteristic single trough around the third and

fourth quarter of the year as in previous results. Instead, this graph has two very
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pronounced troughs, one at the beginning of the second quarter of the year and the

second appearing in the later part of the fourth quarter. This implies that there

are two seasons where the infection has the opportunity to spread readily among the

population and two distinct times when the transmission of infection is slowed.
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Fig. 11. β(τ) results for Bangkok measles 1975-1985.

b. Estimation Without Periodicity Constraint

Again, the estimation was solved witout the yearly periodicity constraint. Figure 12

shows the transmission profile for each year superimposed on eachother. Even with

the missing data, the transmission parameter profiles are remarkably consistent.
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Fig. 12. Bangkok measles 1975-1985 nonseasonal β(t) estimation results (plotted as

years superimposed over each other).

B. Chickenpox

The data for cases of chickenpox was obtained and analysed for the cities of New

York and Bangkok.

Table VI. Overall values for the chickenpox model estimations of New York City and

Bangkok

ρ FEa Rep. Fac. Tot. Var. Tot. Const. Obj. Val. CPU b

New York Chickenpox 3 36 0.067-0.043 6631 6556 2.022e+00 1.16
Bangkok Chickenpox 16 36 .02-.01 3391 3316 4.850e-01 0.712
a Finite elements per year.
b Times are reported in seconds.
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1. New York Chickenpox 1944-1964

The time frame for our chickenpox data in New York City spans 20 years with a

monthly reporting interval. Again 3 finite elements were selected per reporting period

resulting in 36 finite elements per year. The L-curve is relatively clear and the value

of ρ corresponding to the “corner” is approximately 3, (see Figure 13). The reporting

factor was assumed to be linear beginning at 0.067 and decreasing down to 0.043 (see

Table VI). The data set used is within the era of pre-vaccination since a vaccine for

chickenpox was not developed until the mid 1990s.
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Fig. 13. The L-curve for New York chickenpox used to determine ρC
NYC.
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a. Seasonal β(τ) Infectious Cases Results

This formulation contains 6,631 total variables and 6,556 equality constraints, and

solved to an objective value of 2.022e+00 in a CPU time of 1.16 seconds. Chickenpox,

unlike measles, has yearly outbreaks of relatively the same magnitude with major-

minor neighboring outbreaks being the exception rather than the rule. The plot of

the fit can be seen in Figure 14. The fit follows the general trends of the outbreaks.

With the exception of the first outbreak, the estimated model accurately captures

when there is an increase or a decrease in each outbreak peak.
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Fig. 14. Infectious cases results of the estimation for New York chickenpox 1944-1964;

(- -) represents the estimation and (–) represents the historical data.

The seasonal β(τ) estimated for New York chickenpox can be seen in Figure 15.

The shape of this β(τ) is very reminiscent of the seasonal β(τ) for measles in both

New York and London. The only major difference is the length of the trough for this
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parameter lasting further into the fourth quarter of the year. This is quite interesting

because it could imply that the same factors that drive the transmission of measles

also drive the spread of chickenpox, at least with respect to the cities of New York

and London.
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Fig. 15. β(τ) results for New York chickenpox 1944-1964.

b. Estimation Without Periodicity Constraint

When the periodicity constraint on β(τ) was removed, the resulting estimates again

gave quite consistent results from year to year as seen in Figure 16. The shape of the

graphs is defined, and the trough of this graph seems to match up with the seasonal

transmission parameters for New York and London much more accurately, beginning

during the third quarter and ending before the fourth quarter. The formulation



51

properties for this estimation are: 9,368 total variables, 7,924 constraints, an objective

value of 1.8785e-02, and a CPU time of 15.93 seconds.
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Fig. 16. New York chickenpox 1944-1964 nonseasonal β(t) estimation results (plotted

as years superimposed over each other).
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2. Bangkok Chickenpox 1985-1995

Our available data for chickenpox in Bangkok spans ten years from 1985-1995 with

monthly case reporting. Again, 3 finite elements per reporting interval were selected

giving a total of 36 finite elements per year. The L-curve plot does not have a clear

value for ρ since there is not a clear “corner” (see Figure 17). The value judged to be

the best ρ for this estimation was 16. This value corresponds to the point (0.5936,

0.4479) on the plot, which is the point right as the curve starts to flatten out. The

motivation behind the choice of this point is to allow as much “fit” of the cases as

possible while also trying to get above the minimum regularization.
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Fig. 17. The L-curve for Bangkok chickenpox used to determine ρC
Bkk.
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a. Seasonal β(τ) Infectious Cases Results

Outlier elimination was performed on the two uncharacteristic points located around

reporting intervals 41 and 55, in order to have a more consistent data set for the

estimation. The reporting factor is assumed to be linear, decreasing from 0.02001

to 0.01011. The properties of the estimation formulation are as follows: 3,391 total

variables, 3,316 constraints, an objective value of 4.850e-01, and a CPU time of 0.712

seconds. The fit can be seen in Figure 18.
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Fig. 18. Infectious cases results of the estimation for Bangkok chickenpox 1985-1995;

(- -) represents the estimation and (–) represents the historical data.

The estimated seasonal β(τ) profile can be seen in Figure 19. This seasonal β(τ)

does not resemble the Bangkok seasonal parameter for measles. However, the trough

which appears in this function corresponds closely to the first trough of the seasonal
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measles transmission parameter for Bangkok.
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Fig. 19. β(τ) results for Bangkok chickenpox 1985-1995.

b. Estimation Without Periodicity Constraint

Again, the estimation was performed without the periodicity constraint on β(τ).

Looking at the graph in Figure 20, it can be easily seen that the general shape is

evident, and there are only a couple of years that do not match the trend. This could

be attributed to several different factors including noise in the model, inconsistent

measurements within the outlier intervals, or temporary changes in reporting proce-

dures. However, the general trend of this graph does correspond with the shape of the

seasonal transmission parameter giving greater confidence that the estimations are

reasonable despite the fact they do not match the measles transmission parameter.
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Fig. 20. Bangkok chickenpox 1985-1995 nonseasonal β(t) estimation results (plotted

as years superimposed over each other).
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CHAPTER VI

CONCLUSIONS

A. New York and London Seasonality

Previous literature concerning the seasonality of London measles has demonstrated a

correlation between the seasonal transmission parameter and school holiday schedules

[2]. The results of our continuous-time estimation also show this correlation not only

with London measles but also with New York measles and chickenpox.
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Fig. 21. Comparison of the graphs of β(τ) for (a) New York measles 1947-1963, (b)

London measles 1944-1958, (c) New York chickenpox 1944-1964.
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1. New York Measles 1947-1963

Traditionally, the American summer holiday lasts roughly from June to September,

or 0.42-0.67 in the normalized year scale. Looking at Figure 21 (a), one can see

that the summer break is reflected in the seasonal transmission parameter. During

the summer break, when school is not in session social interaction is decreased. The

seasonal β(τ) estimated is further justified by the results in Figure 22 which show

the mean (solid line) and standard deviation (dashed line) for the nonseasonal β(t)

estimation without the periodicity constraint.
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Fig. 22. New York measles 1947-1963 estimated β(t) without periodicity constraint;

(–) is the mean and (- -) is one standard deviation from the mean.
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2. London Measles 1944-1958

The vacations for London roughly occur, utilizing the normalized scale of the graphs,

at: 0.00-0.07 (continuation of winter break), 0.31-0.34 (two-week break), 0.57-0.69

(major summer holiday), 0.88-0.92 (two-week break), and 0.96-1.00 (beginning of

winter break) [2]. The major summer holiday of London also roughly corresponds to

the American summer holiday. In Figure 21 (b) and Figure 23, it can be seen that

the transmission parameter drops for each of these holidays.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
x 10

−4

Time in year

β
[d

ay
−1

]

Nonseasonal Beta Statistics for London Measles

Fig. 23. London measles 1944-1958 estimated β(t) without periodicity constraint; (–)

is the mean and (- -) is one standard deviation from the mean.

3. New York Chickenpox 1944-1964

Observing Figure 21 (c) for New York City chickenpox, this too captures the summer

school holiday, however it lingers longer into the fall school term, which may be
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attributed to the longer serial interval of chickenpox being approximately 21 days

as opposed to the serial interval of measles which is approximately 14 days. These

results are further shown in Figure 24.
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Fig. 24. New York chickenpox 1944-1964 estimated β(t) without periodicity constraint;

(–) is the mean and (- -) is one standard deviation from the mean.

B. Bangkok Seasonality

The data from Bangkok allows us to further verify that transmission parameters

in childhood infectious diseases are correlated with school holiday schedules since

Bangkok has a vastly different holiday schedule. The schools in Bangkok have two

major holidays. The first holiday occurs in March and lasts through April, (0.16-0.33),

and the second holiday lasts all of October, (0.75-0.92).
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Fig. 25. Comparison of the graphs of β(τ) for (a) Bangkok measles 1975-1985, (b)

Bangkok chickenpox 1985-1995.

1. Bangkok Measles 1975-1985

In Figure 25 (a) we see that the trough lingers past the end of each holiday before

returning to the high value. There are several possible reasons for this. First, report-

ing in Bangkok may be delayed compared with the other locations studied. Second,

this may be an inherent flaw in the model. Since the recovery rate is included in

the differential equation as a constant, −γI, it assumes an exponential distribution

of the recovery time which is not representative of the true disease dynamics within

the body. To remedy this one might incorporate a time-delay term instead of a con-

stant rate, or a more accurate distribution function. Despite this, the estimation still

exhibits strong correlation with the holiday schedule. The conclusions are further

justified by the results in Figure 26.
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Fig. 26. Bangkok measles 1975-1985 estimated β(t) without periodicity constraint; (–)

is the mean and (- -) is one standard deviation from the mean.

2. Bangkok Chickenpox 1985-1995

The seasonal transmission parameter for Bangkok chickenpox can be seen in Figure

25 (b). This is not what one would expect to see. The first holiday can clearly be seen,

but the second holiday is not apparent at all. Several factors may be contributing

to this. This deficiency could be the exponentially distributed recovery rate, the

longer serial interval of chickenpox, the quality of the data, or an invalid modeling

assumption. These factors might also attribute to the apparent averaging of the high

and low periods spanning 0.55-0.98. Similar results can be seen in Figure 27.

These results show that the school holiday schedule is strongly correlated with

the estimated transmission parameter profile for all of the data sets studied. This



62

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6
x 10

−4

Time in year

β
[d

ay
−1

]
Nonseasonal Beta Statistics for Bangkok Chickenpox

Fig. 27. Bangkok chickenpox 1985-1995 estimated β(t) without periodicity constraint;

(–) is the mean and (- -) is one standard deviation from the mean.

approach is also very efficient compared to previous methods. The MCMC method

employed by Cauchemez and Ferguson [41], while it was able to effectively estimate

seasonality patterns, took over 20 hours on a desktop computer for a single run. This

method is vastly more efficient. This work sets the stage for new development in

model estimation and optimization.

C. Future Work

This continuous-time model was formulated using an Explicit Euler method for initial-

ization, orthogonal collocation on finite elements with Radau points as a discretization

method for the ODEs, total variation regularization on the parameter, and an interior

point primal-dual filter search method for optimization of the objective. These meth-
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ods were chosen because they were believed to most effectively capture the estimation

goals.

The future work to consider would be to explore different discretization tech-

niques, both single-step and multi-step in order to evaluate the accuracy they might

offer in the estimation formulation. Various methods with increasing degrees of order

accuracy would give valuable insight as to the necessary degree of accuracy required

in estimation and future modeling efforts. A comparison of these methods might

also provide a good comparison of degree of accuracy versus time efficiency of the

calculation.

Regularization of the β(τ) is necessary to restrict the “shape” of the seasonal

transmission parameter function. This research assumed that the estimated profile

might be discontinuous, however, this might not prove to be the only case that accu-

rately keeps the case data. An exploration and comparison of various regularizations

of β(τ) would help understand the best representation of the yearly patterns of these

infections.

This work was based on one of the simplest seasonal transmission models possi-

ble, a seasonal SIR model. The SIR model contains several assumptions that might

not be valid for specific case studies. Fortunately the nonlinear programming formu-

lation presented is both flexible and efficient. Several model improvements should be

investigated, including different recovery functions and mixing assumptions.

This entire work assumed deterministic dynamics. It is remarkable that these

models can so effectively capture the observed state profiles. Nevertheless, in smaller

communities stochastic fadeout is evident and stochastic models must be considered.
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APPENDIX A

AMPL FILES OF THE ESTIMATION FORMULATION

The main *.run file

#------------------------------------------------------------------#
# AMPL routine for SIR disease model #
# George Abbott Fall 2009 #
# #
# 1 reset model (clean memory) #
# 2 set model name #
# 3 set data file #
# 4 set solver and options #
# 5 solve the optimization problem #
# 6 include any additional files needed #
# #
# #
#------------------------------------------------------------------#

reset ; # 1
model SIR_RCFE_LIbeta.mod ; # 2
data SIR_RCFE_LI.dat ; # 3

let beta[0] := P_BETA[1];
let beta[fepy] := P_BETA[1];

############### Initialization of the functions
for {n in ye diff {0}}
{

let beta[n-1] := P_BETA[n];
}

for {i in fe}
{

let h[i] := 1/nfe;
}

################ forward Euler method
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let inf[1,1] := inf_init_spec;
let sus[1,1] := sus_init_spec;
let phi[1,1] := 0;

let inf[1,2] := inf[1,1] + (cpoints[2]-cpoints[1])*time/nfe*
(beta[1]*inf[1,1]*sus[1,1]/P_POP - P_GAMMA*inf[1,1]);
let sus[1,2] := sus[1,1] + (cpoints[2]-cpoints[1])*time/nfe*
(-beta[1]*inf[1,1]*sus[1,1]/P_POP + P_BIRTHS[1]);
let phi[1,2] := phi[1,1] + (cpoints[2]-cpoints[1])*time/nfe*
(beta[1]*inf[1,1]*sus[1,1]/P_POP);

let inf[1,3] := inf[1,2] + (cpoints[3]-cpoints[2])*time/nfe*
(beta[1]*inf[1,2]*sus[1,2]/P_POP - P_GAMMA*inf[1,2]);
let sus[1,3] := sus[1,2] + (cpoints[3]-cpoints[2])*time/nfe*
(-beta[1]*inf[1,2]*sus[1,2]/P_POP + P_BIRTHS[1]);
let phi[1,3] := phi[1,2] + (cpoints[3]-cpoints[2])*time/nfe*
(beta[1]*inf[1,2]*sus[1,2]/P_POP);

for {i in fe diff{1} }
{
let inf[i,1] := inf[(i-1),1] + cpoints[1]*time/nfe*
(beta[(1+(i-2)mod(fepy))]*inf[(i-1),3]*sus[(i-1),3]/P_POP
- P_GAMMA*inf[(i-1),3]);
let sus[i,1] := sus[(i-1),1] + cpoints[1]*time/nfe*
(-beta[(1+(i-2)mod(fepy))]*inf[(i-1),3]*sus[(i-1),3]/P_POP
+ P_BIRTHS[i]);
let phi[i,1] := phi[(i-1),1] + cpoints[1]*time/nfe*
(beta[(1+(i-2)mod(fepy))]*inf[(i-1),3]*sus[(i-1),3]/P_POP);

let inf[i,2] := inf[i,1] + (cpoints[2]-cpoints[1])*time/nfe*
(beta[(1+(i-1)mod(fepy))]*inf[i,1]*sus[i,1]/P_POP - P_GAMMA*inf[i,1]);
let sus[i,2] := sus[i,1] + (cpoints[2]-cpoints[1])*time/nfe*
(-beta[(1+(i-1)mod(fepy))]*inf[i,1]*sus[i,1]/P_POP + P_BIRTHS[i]);
let phi[i,2] := phi[i,1] + (cpoints[2]-cpoints[1])*time/nfe*
(beta[(1+(i-1)mod(fepy))]*inf[i,1]*sus[i,1]/P_POP);

let inf[i,3] := inf[i,2] + (cpoints[3]-cpoints[2])*time/nfe*
(beta[(1+(i-1)mod(fepy))]*inf[i,2]*sus[i,2]/P_POP - P_GAMMA*inf[i,2]);
let sus[i,3] := sus[i,2] + (cpoints[3]-cpoints[2])*time/nfe*
(-beta[(1+(i-1)mod(fepy))]*inf[i,2]*sus[i,2]/P_POP + P_BIRTHS[i]);
let phi[i,3] := phi[i,2] + (cpoints[3]-cpoints[2])*time/nfe*
(beta[(1+(i-1)mod(fepy))]*inf[i,2]*sus[i,2]/P_POP);
}
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let inf_init := inf_init_spec;
let sus_init := sus_init_spec;
fix beta;

########################## start of solving

option solver ipopt ; # 4
solve ; # 5

unfix beta ; # 6
option solver ipopt ; # 7
solve ; # 8

#============= Beginning of the Matlab file output =============#
printf "cphi = [ " >SIR_results.m;
for {n in pe diff{1}}
{
printf "%f ", 0.1083*(phi[nep*n,ncp]-phi[nep*(n-1),ncp]) >SIR_results.m;
}
printf "];\n\n" >SIR_results.m;

printf "phi = [ " >SIR_results.m;
for {n in pe diff{1}}
{
printf "%f ", P_PHI[n] >SIR_results.m;
}
printf "];\n\n" >SIR_results.m;

printf "infected = [ " >SIR_results.m;
for {n in fe}
{
for {m in cp}
{
printf "%f ", inf[n,m] >SIR_results.m;
}
}
printf "];\n\n" >SIR_results.m;

printf "cumuphi = [ " >SIR_results.m;
for {i in fe}
{
printf "%f ", phi[i,ncp] >SIR_results.m;
}
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printf "];\n\n" >SIR_results.m;

printf "susceptible = [ " >SIR_results.m;
for {n in fe}
{
for {m in cp}
{
printf "%f ", sus[n,m] >SIR_results.m;
}
}
printf "];\n\n" >SIR_results.m;

printf "beta = [ " >SIR_results.m;
for {n in ye}
{
printf "%f ", beta[n] >SIR_results.m;
}
printf "];\n\n" >SIR_results.m;

printf "plot(phi,’r--’,’LineWidth’,2); hold on;
plot(cphi,’LineWidth’,2);xlabel(’Finite elements (36 per year)’);
ylabel(’Infected Individuals’);title(’Infected Cases for Rho = ’);
legend(’Recorded Data’,’This work’);" >SIR_results.m;
printf "\nfigure;plot(beta(1:length(beta)-1),’LineWidth’,2);hold on;
plot(betatrue,’r--’,’LineWidth’,2);xlabel(’Finite elements (36 per year)’);
ylabel(’Beta value per day’);title(’Beta for Rho = ’);
legend(’This work’,’Previous results’);" >SIR_results.m;

#===================-- end of the run file -===============#
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The model *.mod file

# ===================================================================
# Dynamic optimization formulation for SIR disease model
# by George Abbott Fall 2009
#
# ===================================================================

# define indexes and general variables

param nfe >= 1 integer;
param ncp >= 1 integer;
param pfe >= 1 integer;
param fepy >= 1 integer;
param years >=0;
param meas >=0;

# define mathematical model parameters

param time;
param P_POP;
param P_GAMMA;
param P_RHO;
param inf_init_spec;
param sus_init_spec;
param life_exp;
param nep;

# define dimensions for all indexed variables

set fe := 1..nfe ; # number of finite elements
set fewithzero := 0..nfe;
set cp := 1..ncp ; # number of collocation points
set ye := 0..fepy ordered; # number of finite elements per year
set pe := 1..pfe ; # number of elements for phi measurements
#set mfe := meas..nfe; # the specific finite elements for measure

param a{cp,cp} ; # collocation matrix
param h{fe} ; # finite element length, this is defined in the .run file
param timedom{0..nfe*ncp} ; # total number of collocation points
param INF_MEAS{1..nfe*ncp};
param P_BETA{ye diff {0}};
param P_INF_INIT{fewithzero};
param P_SUS_INIT{fewithzero};
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param P_BIRTHS{1..nfe*ncp};
param P_PHI{1..nfe};
param cpoints{cp};

# define the decision variables

var inf {fe,cp} >= 0;
var sus {fe,cp} >= 0;
var phi {fe,cp} >= 0;
var beta{ye} >= 0;
var dbeta{ye};
var betapos{ye} >= 0 ,:=0;
var betaneg{ye} >= 0 ,:=0;
var inf_init >= 0;
var sus_init >= 0;
var r_naught >= 0;
var average_age >= 0;

# states first order derivatives

var infdot{i in fe, j in cp} = (beta[(1+(i-1)mod(fepy))-1]
+cpoints[j]*(beta[(1+(i-1)mod(fepy))]
-beta[(1+(i-1)mod(fepy))-1]))*inf[i,j]*sus[i,j]/P_POP - P_GAMMA*inf[i,j];
var susdot{i in fe, j in cp} = -(beta[(1+(i-1)mod(fepy))-1]
+cpoints[j]*(beta[(1+(i-1)mod(fepy))]
-beta[(1+(i-1)mod(fepy))-1]))*inf[i,j]*sus[i,j]/P_POP + P_BIRTHS[i];
var phidot{i in fe, j in cp} = (beta[(1+(i-1)mod(fepy))-1]
+cpoints[j]*(beta[(1+(i-1)mod(fepy))]
-beta[(1+(i-1)mod(fepy))-1]))*inf[i,j]*sus[i,j]/P_POP;

# collocation equations

fecolI{i in fe diff{1},j in cp}: inf[i,j] = inf[i-1,ncp]+
time*h[i]*sum{k in cp} a[k,j]*infdot[i,k];
fecolS{i in fe diff{1},j in cp}: sus[i,j] = sus[i-1,ncp]+
time*h[i]*sum{k in cp} a[k,j]*susdot[i,k];
fecolP{i in fe diff{1},j in cp}: phi[i,j] = phi[i-1,ncp]+
time*h[i]*sum{k in cp} a[k,j]*phidot[i,k];

fecolI0{j in cp}: inf[1,j] = inf_init+time*h[1]*
sum{k in cp} a[k,j]*infdot[1,k];
fecolS0{j in cp}: sus[1,j] = sus_init+time*h[1]*



75

sum{k in cp} a[k,j]*susdot[1,k];
fecolP0{j in cp}: phi[1,j] = time*h[1]*
sum{k in cp} a[k,j]*phidot[1,k];

# Regularization of beta

defofdbeta{i in ye diff {0}}: dbeta[i] = beta[i] - beta[i-1];
equalityconst{i in ye}: dbeta[i] + betapos[i] - betaneg[i] = 0;
dbeta0: dbeta[0] = beta[0] - beta[last(ye)];
betacont: dbeta[0] = 0;

####### objective function...

minimize Error: (1/P_RHO)*sum{i in ye} (betapos[i] + betaneg[i])
+ sum {i in pe diff{1}} (0.1083*(phi[nep*i,ncp]-phi[nep*(i-1),ncp])
- P_PHI[i])^2/P_POP
;

#-- end of the *.mod file --
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