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ABSTRACT

Transformation Induced Fatigue of

Ni-Rich NiTi Shape Memory Alloy Actuators. (December 2009)

Justin Ryan Schick, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Dimitris C. Lagoudas

In this work the transformation induced fatigue of Ni-rich NiTi shape mem-

ory alloys (SMAs) was investigated. The aerospace industry is currently considering

implementing SMA actuators into new applications. However, before any new appli-

cations can be put into production they must first be certified by the FAA. Part of

this certification process includes the actuator fatigue life. In this study, as-received

and polished flat dogbone SMA specimens underwent transformation induced fatigue

testing at constant loading. The constant applied loading ranged from 100 MPa to

200 MPa. Specimens were thermally cycled through complete actuation (above Af

to below Mf ) by Joule heating and environmental cooling. There were three cooling

environments studied: liquid, gaseous nitrogen and vortex cooled air. It was shown

that polished specimens had fatigue lives that were two to four times longer than

those of as-received specimens. Test environment was also found to have an effect

on fatigue life. Liquid cooling was observed to be corrosive, while the gaseous nitro-

gen and vortex air cooling were observed to be non-corrosive. The two non-corrosive

cooling environments performed similarly with specimen fatigue lives that were twice

that of specimens fatigue tested in the corrosive cooling environment. Transformation

induced fatigue testing of polished specimens in a non-corrosive environment at 200

MPa had an average fatigue life of 14400 actuation cycles; at 150 MPa the average

fatigue life was 20800 cycles and at 100 MPa it was 111000 cycles. For all specimens

constant actuation from the beginning of testing until failure was observed, without
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the need for training. Finally, a microstructural study showed that the Ni3Ti precip-

itates in the material were one of the causes of crack initiation and propagation in

the actuators.
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CHAPTER I

INTRODUCTION

Shape memory alloys (SMAs) exhibit unique thermal and mechanical properties that

have been extensively studied for over fifty years. While they have been well studied,

a push for industrial and commercial applications has only begun to grow in the

last 15 to 20 years. The ability of SMAs to recover large strains under thermal and

mechanical loading has led to the development of many applications in the biomedical,

oil, and aerospace industries[1, 2, 3, 4].

To date, most SMA research has been driven by the biomedical industry and its

applications, which take advantage of the pseudoelastic effect[1, 2]. The aerospace

industry, on the other hand, has taken a closer look at using SMAs for thermally

activated actuator applications. One of the first SMA aerospace applications that

went into production was a NiTi hydraulic line coupler on the Grumman F-14[4].

The SMA coupler was cooled under stress, fitted over the hydraulic line joint and

heated (under no stress) to seal the joint. More recent work has focused on taking

advantage of thermally cycled SMA actuators that will be employed for many re-

peated actuation cycles. Examples of initial attempts to incorporate SMA actuators

in aerospace applications include the DARPA Smart Wing project, which used a SMA

torque tube actuator toadjust the camber of a wing, and the DARPA SAMPSON F-

15 project, which used a bundle of SMA wires to rotate an inlet cowl to maximize

engine efficiency[5, 6]. The Boeing Company has also been investigating using SMA

torque tube and flexure beam actuators for its aerospace applications[7, 8]. Boeing

The journal model is International Journal of Engineering Science.
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has focused on using Ni-rich NiTi SMA actuators due to their cyclical stability. How-

ever, before these actuators can be put into production they must be certified by the

FAA, this includes the actuator fatigue life. This transformation induced fatigue life

is one of the most important design factors in SMA actuators and should be thoroghly

understood. To be certified by the FAA these SMA actuators must exhibit safe, con-

sistent performance for their operational life. To date, no study has been performed

on the transformation induced fatigue life of Ni-rich NiTi SMA actuators.

A. Fatigue of Shape Memory Alloys

SMAs perform work through a diffusionless, reversible transformation between the

austenite and martensite phases. This phase transformation is activated when either

stress and/or temperature are properly applied. When SMAs go through this phase

transformation from austenite to martensite under the application of stress and/or

temperature, a strain is generated; this is the transformation strain. As the SMA

transforms back from martensite to austenite this transformation strain is recovered.

Figure 1 (a) presents a SMA phase diagram. The two loading paths highlighted on this

diagram are the two most common methods of achieving the austenite⇔martensite

phase transformation. The first loading path (A) in Fig. 1 (a) is known as pseu-

doelastic loading, which initiates transformation by stress-inducing martensite. In

pseudoelastic loading, a specimen is heated to a temperature above the austenite

finish temperature (Af ) and loaded until stress induced martensite is formed. Upon

unloading, the SMA returns to the austenitic phase. The corresponding stress-strain

path is shown in Fig. 1 (b). The second loading path (B) shown in Fig. 1 (a) is

representative of a constant stress loading path that initiates transformation by ther-

mally inducing martensite. In this loading path, a specimen is subject to a constant
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applied stress and is thermally cycled between detwinned martensite and austenite,

the strain-temperature path is shown in Fig. 1 (c).

T
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Fig. 1. (a) SMA phase diagram, (b) pseudoelastic stress-strain plot and (c) thermal

tranformation strain-temperature plot

Repeating loading paths (A) or (B) leads to transformation induced fatigue of

SMAs. Transformation induced fatigue is considered low cycle fatigue because it

leads to the accumulation of plastic strain in the SMA, which causes failure at a

low number of cycles (104-105 cycles)[9]. As long as transformation is induced, both

loading paths exhibit this behavior. However, the pseudoelastic loading path is not

relevant for SMA actuator applications, so transformation induced fatigue testing for

actuators needs to by done through loading path (B). It should be noted that SMAs

do exhibit high cycle fatigue similar to that of conventional metals, as long as no

phase transformation is induced.
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B. Literature Review

The first fatigue study of NiTi SMAs was performed by Melton and Mercier in 1978,

when pseudoelastic fatigue tests were run on wire specimens with different marten-

site start temperatures[10]. This work was soon followed by that of McNichols and

Brookes, who studied the fatigue life of NiTi pseudoelastic springs. It wasn’t until

the early ’90s, when the medical industry began to push for less invasive medical pro-

cedures, that more focus was placed on the high cycle fatigue of SMAs. Equiatomic

NiTi, with its pseudoelastic effect, was found to have several ideal properties for less

invasive medical devices[2]. More needed to be understood on the high cycle fatigue

life of NiTi SMAs before they could be widely used in medical applications. A great

deal of pseudoelastic fatigue work was done by Tobushi and co-workers; they used

rotating-bending fatigue of wires to strain induce a phase transformation in both

tension and compression[11, 12, 13, 14]. In this series of works it was found that, if

the amount of applied stress/strain was low enough, only a rhombohedral-phase (R-

phase) transformation was induced and the SMAs would exhibit high cycle fatigue

(>107 cycles), however if a full phase transformation from austenite to martensite

was induced then low cycle fatigue was exhibited by the SMAs (<10(3) cycles). Pel-

ton, Gong and Duerig then performed fatigue tests on stent-like structures and found

that the actual application fatigue matched well with wire fatigue results from the

work done by Tobushi[15]. A work done on the pseudoelastic fatigue response of

dental drills also showed similar fatigue results to that of Tobushi and co-workers[16].

Another pseudoelastic application that has been recently investigated is vibrational

damping[17, 18, 19, 20]. While SMAs show potential for damping applications, their

fatigue life of 105 was closer to low cycle fatigue life and is two orders of magnitude

lower than what most damping applications will require (107 cycles).
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More recently the aerospace industry has begun to investigate how to use ther-

mally activated SMA actuators in future aircraft designs[5, 6, 7, 8, 21]. In these initial

works equiatomic NiTi has been studied as a potential actuator. The focus has pri-

marly been on characterizing the material for actuator design, including determining

the optimal material preparation, determining the number cycles to stabilization and

the actuation strain under various applied loads. However, these works fail to address

the transformation induced fatigue of the material. There have been few studies on

the transformation induced fatigue of NiTi actuators; one of the first was by Proft,

Melton and Duerig[22]. In this work the actuator properties of NiTi and NiTiCu were

compared, including fatigue life. From their initial work it was found that NiTiCu,

with its smaller thermal hysteresis, would make a better actuator material. This led

to more in-depth research on NiTiCu and its cyclical properties. David Miller per-

formed some of the first transformation induced fatigue testing of SMA actuators at

Texas A&M[23]. In this study an optimal heat treatment for the NiTiCu wire actua-

tors was determined and then fatigue tests were performed for partial and complete

actuation. Olivier Bertacchini then studied partial and complete transformation cy-

cles of NiTiCu wires[24]. From this work it was shown that partial transformation

cycling resulted in longer fatigue lives than complete transformation cycling. The

transformation induced fatigue life versus the applied stress results for Proft et al.,

Miller and Bertacchini are shown in Fig. 2.

However,De Araujo, Morin and Guenin studied actuation strain and accumulated

plastic strain versus applied stress of NiTiCu actuators and found that the actuator

properties degrated at higher applied stresses[25]. This study showed that at constant

applied loads of 175 MPa or more the properties of the NiTiCu wire actuators were

altered (actuation strain went down, accumulated plastic strain went up). Similar

results were found for equiatomic NiTi SMA actuators, where they were less cycli-
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Fig. 2. Applied stress vs. cycles to failure for NiTiCu and equiatomic NiTi[22, 23, 24]

cally stable at higher applied stresses, this is shown in Fig. 3 (A)[26]. From these

studies it was found that while NiTiCu and equiatomic NiTi are capable actuators,

they tend to develop large amounts of plastic strain under higher loads. Also, as

accumulated plastic strain increases over cycles, the actuation strain decreases. From

these results, studies were performed to improve the stability of SMA actuators with

techniques such as precipitate hardening[27, 28, 29]. It was found that Ni-rich NiTi

has precipitates in it that can improve material properties, including stabilization of

the actuation strain and limiting the accumulation of plastic strain, this is shown in

Fig. 3 (B). No studies have yet been performed on the transformation induced fatigue

of Ni-rich NiTi SMA actuators.

C. Research Objectives and Outline of Research

It can be seen from the literature review that there has no work done on the trans-

formation induced fatigue of Ni-rich NiTi SMAs. Aerospace companies are exploring

using SMAs in thermally activated actuator applications, and Ni-rich SMAs are being
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(A) (B)

Fig. 3. Strain vs. thermal cycles for (A) equiatomic NiTi actuator and (B) Ni-rich

NiTi actuator[26]

studied in particular due to their stable cyclic performance. While previous works

have studied the cyclic properties of Ni-rich SMA actuators, actuators were never

tested until failure. As a result, the main objective of this study is to conduct trans-

formation induced fatigue experiments for Ni-rich SMA actuators. In particular, the

Ni-rich SMA to be studied will be Ni60Ti40 (wt.%) (Ni55Ti45 (at.%)). This material

was chosen because it is currently being studied by the aerospace industry for use in

SMA actuator applications.

For this study, the actuators to be used will be flat dogbone specimens. Thermal

cycling of these SMA actuators involves heating and cooling the actuators under

stress to induce the phase transformation. Test specimens will undergo complete

transformation cycling (100% austenite ⇔ 100% martensite), while being subjected

to constant loading. To do this, all fatigue tests will be performed in an environment

that will be cooled below the SMA’s Mf temperature, while Joule resistive heating

will be used to bring the specimen temperature above Af . Two separate test frames

will be used to implement different cooling environments. One test frame will cool
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specimens by forced-convection with a circulating liquid bath of chilled ethylene-

glycol. The second test frame will use forced-convection of gaseous nitrogen, and

later vortex cooled air, to cool the specimens. A LabView program will be used to

control all tests and record all experimental data.

In Chapter II, the experimental setup and procedure will be described in detail. A

description of the two test frames used for this study will first be provided. Following

this, discussion will be provided on material selection and specimen preparation. An

in-depth description of the test procedure will then be given. Finally, the test matrix

and parameters to be studied will be detailed.

Chapter III will provide the fatigue testing experimental results and discussion.

A representative test result will be presented and discussed. Then, the results for

polished and as-received specimens will be described and analyzed to determine the

effects of surface finish on fatigue life. Next, the effects of environment for specimens

cooled with liquid, specimens cooled with gaseous nitrogen and specimens cooled with

vortex cooled air will be compared. Additional discussions will be made regarding

analysis of the actuation strain versus applied stress and the irrecoverable strain at

failure versus applied stress and cycles at failure. Finally, a study on the impacts of

microstructure will be presented.
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CHAPTER II

EXPERIMENTAL PROCEDURES

In Chapter I, a general introduction to SMAs and the fatigue of SMAs was given. The

current chapter will describe the experimental setup for fatigue testing as performed

in this study. This will include the details of the test setup, specimen preparation,

testing procedure, test parameters and fatigue test matrices.

LVDT

Applied 
Load

Coolant In

Coolant OutAluminum Frame

Plexiglass BathSpecimen

Kevlar Wire

Pulleys

Pump
Chiller

Fig. 4. Liquid cooled transformation fatigue test frame schematic

A. Experimental Setup

Two test frames have been developed and built at Texas A&M for the purpose of

performing transformation induced fatigue testing. While both test frames have sim-

ilar capabilities, they differ in the methods used to cool the specimens during testing.

The first test frame described has been used in previous studies[24, 30] and provides

forced fluid convection cooling with ethylene-glycol. The second test frame was de-

signed and built to perform comparably to the first, except that it implemented forced

gaseous nitrogen convection cooling, which was later replaced by vortex air cooling.
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These new cooling methods were implemented to reduce the possibility of a corrosive

environment during fatigue testing. The test frames are discussed in detail in the

following sections.

Plexiglass BathAluminum Test 
Frame

Pulleys

LVDTs

Solid State 
Relays

DC Power 
Supply

Computer

Thermocouples

Fig. 5. Liquid cooled transformation fatigue test frame setup

1. Liquid Cooling Fatigue Test Frame

A schematic of the first test frame is presented in Fig. 4 and an actual view of

the test setup is shown in Fig. 5. An aluminum test frame surrounds a plexiglass

bath containing a circulating chilled liquid (ethylene-glycol). The liquid ethylene-

glycol is cooled to 5◦C (41◦F) by a Kreonite water cooler and circulated through the

plexiglass bath by a pump system. The aluminum frame has fix points in the back

to secure the specimens in place during testing. The front of the frame has pulleys

to redirect the applied load so that it is in line with the specimens. The pulleys are

on bearings to minimize friction. Linear variable displacement transducers (LVDTs)

with 55 mm (2.17 in.) action arms are used to measure displacements during testing.
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To Fix 

Point

To 

Load

DC Power 

Supply +-

Test Environment � Maintained 

Below Mf Temperature

Forced Convection 

Cooling

Pressure Grips

Specimen

Fig. 6. Schematic of specimen within the cooling environment

Thermocouples are used to monitor the bath during testing and ensure the cooling is

consistent throughout testing. Kevlar ropes are used to connect the specimen to the

fix point, LVDT, and applied load. A Hewlett-Packard 6261B DC power supply is

used to resistively heat the specimen, and NTE Electronics solid state relays are used

to control when the resistive heating takes place. A schematic of the specimen in the

test setup, connected to the DC power supply, the fix point and the applied load is

presented in Fig. 6. LabView is used to control the test and collect data through a

National Instruments PCI-6035E DAQ card.

2. Gaseous Nitrogen Cooling Fatigue Test Frame

It was observed that testing in the liquid cooled environment left a residue on the

surface of the tested specimens and it was determined that this residue could be a

sign of a mildly corrosive environment. Therefore, a second frame was developed and

built at Texas A&M to use a less corrosive cooling environment.

A schematic of the new test frame is shown in Fig. 7 and an actual picture of
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LVDT

Applied 
Load

Aluminum Frame

Specimen Kevlar Wire

Pulley

Insulated Test 
Chamber

Gaseous Nitrogen 
Spray

Air Circulation Vent

Nitrogen 
Control 
Valve

Liquid 
Nitrogen 
Storage 

Tank

Chamber 
Exit Vent

Fig. 7. Gaseous nitrogen cooled transformation fatigue test frame schematic

the setup is shown in Fig. 8 (A). The selected cooling medium was gaseous nitrogen,

which allows for a much colder and dry testing environment (-15◦C vs. 5◦C in the

liquid cooled test frame). Another advantage of the gaseous nitrogen cooling system

is that nitrogen is stored at high pressure and when it is sprayed into the test chamber

it creates a positive pressure which drives out any moisture in the chamber. As a

result, the gaseous nitrogen cooling system creates an environment that is corrosion

free. Liquid nitrogen is stored in large dewars (240 L) at high pressure (1.55 MPa)

and is released by a LabView controlled cryogenic solenoid valve when needed. As

the liquid nitrogen expands into gas, it is sprayed into a 51 mm x 51 mm x 127 mm (2

in. x 2 in. x 5 in.) insulated chamber, a zoomed in view of the test chamber is shown

in Fig. 8 (B). The test specimen and grips are contained within this chamber. There

are holes at both ends of the chamber to allow for the kevlar rope to extend out and

connect the specimen to the fix point, LVDT, and applied load. An air circulation

system allows for even and efficient forced convection cooling of the specimen in the

chamber, this is shown in Fig. 8 (C). One thermocouple was placed in the chamber

to monitor the temperature during testing. The chamber temperature was set to

be -15◦C (5◦F) during testing. The gaseous nitrogen chamber was kept at a colder
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Nitrogen Storage Tank Air 
Circulation 

System

Specimen in 
Test Chamber

(A)
(B)

Gaseous 
Nitrogen 

Spray 
Tubes

(C)

Fig. 8. (A) Gaseous nitrogen cooled transformation fatigue test frame setup, (B) a

zoomed in view of the test chamber and (C) a schematic of the air circulation

system

temperature (-15◦C) than the liquid environment (5◦C) to compensate for the reduced

heat transfer capability of gaseous cooling. Thus, comparable fatigue cycle rates could

be maintained between the two test frames.

3. Vortex Air Cooling

To perform fatigue testing in the gaseous nitrogen cooled test frame was costly and

time consuming to maintain. One liquid nitrogen dewar stores enough gas for roughly

twenty-four hours of testing. With tests that last days at a time, it was logistically

difficult and expensive to swap tanks in and out daily without disrupting testing.

Another issue was the cryo-valve that controlled when the nitrogen was released

into the chamber. The valve was only rated for a certain number of open-close

actuations and would often malfunction during testing. To reduce cost and eliminate

any disruptions during testing a new form of cooling was implemented that achieved

the same non-corrosive results as the gaseous nitrogen.



14

This new test setup is identical to the gaseous nitrogen test setup except for

the cooling method. The new cooling method chosen was vortex air cooling. Vortex

generators work by taking compressed air and forcing it into a vortex. This vortex is

then separated into hot and cold flows which are vented out at the opposite ends of

the generator. The cold flow from the vortex generator is vented into the test chamber

for forced convection cooling. A schematic of the vortex generator is shown in Fig. 9.

All vortex generators used for this setup were acquired from ITW Air Management.

Fig. 9. ITW Air Management vortex generator schematic

There are several distinct advantages of the vortex cooling. The vortex generators

are easy to maintain and can run without interruption, as long as compressed air is

continuously applied. Compared to gaseous nitrogen the vortex setup is much cheaper

to maintain and run. Finally, the vortex cooling can achieve temperatures of -12◦C

to -15◦C and create a very turbulent environment for forced convection cooling. The

final vortex cooled air test frame is shown in Fig. 10. To prevent any moisture from

entering the test, an air dryer was added to the compressed air line before it enters

the vortex generators to eliminate moisture in the chamber. A plexiglass chamber

enclosing the entire test frame was added to eliminate any moisture buildup on the

outside of the test chamber.
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Fig. 10. (A) Vortex air cooled transformation fatigue test frame setup and (B) a close

up view of the test chamber

B. Material Selection

The selected material for this study is Ni60Ti40 (wt.%) (Ni55Ti45 (at.%)). It is one

of the Ni-rich NiTi SMA materials currently being studied for actuator use in the

aerospace industry because of its stable actuation response, even under increased

loading[26]. Also, by performing an aging heat treatment the transformation tem-

peratures of this material can be tailored for specific application needs. An initial

characterization of this material was conducted at Texas A&M and led to the deter-

mination of the optimal nickle content, heat treatment and specimen size that was

used in this study[31]. The heat treatment and specimen size will be discussed in

detail in the section on specimen preparation.
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C. Test Parameters and Transformation Induced Fatigue Test Matrices

In this study all specimens will undergo transformation induced fatigue for complete

actuation cycling. Tests will be conducted at constant stress levels of 100 MPa (14.5

ksi), 150 MPa (21.75 ksi) and 200 MPa (29.0 ksi) based on the level of stress that SMA

actuators are going to see in the applications mentioned in the introduction. First, the

effects of surface finish on the transformation induced fatigue life will be examined.

As-received specimens and polished specimens will be tested in the liquid cooling

fatigue test frame and the results compared; this test matrix is shown in Table I.

Next, the effects of environment on actuator performance and transformation induced

fatigue life will be studied. Polished specimens will undergo transformation induced

fatigue testing in the gaseous nitrogen cooled environment, the vortex air cooled

environment and the liquid cooled environment and the results will be compared.

The actuation strain versus applied stress and the total irrecoverable strain versus

applied stress and cycles at failure will also be compared for all polished specimens.

The test matrix for the gaseous nitrogen and the vortex cooled air fatigue tests is

shown in Table II.
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Table I. Test matrix - surface effects study

Material Test Surface Applied Number of

Environment Finish Stress MPa (ksi) Tests

100 (14.50) 4

Ni60Ti40 Liquid As-Received 150/21.75 4

200 (29.00) 4

100 (14.50) 4

Ni60Ti40 Liquid Polished 150/21.75 4

200 (29.00) 4

Table II. Test matrix - environmental effects study

Material Test Surface Applied Number of

Environment Finish Stress MPa (ksi) Tests

Gaseous 100 (14.50) –

Ni60Ti40 Nitrogen Polished 150/21.75 4

200 (29.00) 4

Vortex 100 (14.50) 2

Ni60Ti40 Cooled Polished 150/21.75 3

Air 200 (29.00) 3
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D. Specimen Preparation

Flat dogbone shaped specimens were used in this study. Dogbone actuators were

chosen, as opposed to wire actuators, because for transformation induced fatigue

testing they were easier to grip without creating any hot spots or stress concentrations

in the grips. Also, specimens were cut from large rectangular beam actuators and

to represent a similar cross-section during testing the specimens were cut as flat

dogbones. The specimen dimensions were dictated by two factors. The test frame in

69.85 mm 
(2.75 in.)

33.34 mm 
(1.3125 in.)

6.35 mm 
(0.25 in.)

1.27 mm 
(0.05 in.)

R = 6.35 mm 
(0.25 in.)

Thickness = 0.051 mm 
(0.02 in.)

Fig. 11. Dogbone test specimen geometry and dimensions

use was initially designed for small wire fatigue testing and therefore had load limit

restrictions. More importantly, one goal of this study was to perform transformation

induced fatigue testing quickly. In order to perform fatigue testing in a time frame of

days or weeks instead of months or years, the specimens needed to be small enough

to allow for rapid heat transfer. The faster heat can be added or removed from the

system, the quicker cycle times become. Specimen dimensions are shown in Fig. 11.

All specimens were accurately cut to the proper dimensions using electro discharge

machining (EDM).

A two stage heat treatment process was then performed on the Ni60Ti40 dogbones.

The first stage was a shape setting heat treatment of 1 hour at 850◦C (1562◦F) in a
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vacuum, followed by furnace cooling. The second stage was an aging heat treatment

at 450◦C (842◦F) for 20 hours followed by water quenching. By performing this

two stage heat treatment the transformation temperatures were optimized for the

testing capabilities of the fatigue test frames used in this study. The transformation

temperatures at zero-stress were measured by differential scanning calorimetry (DSC)

and are summarized in Table III.

Table III. DSC measured transformation temperatures for Ni60Ti40

Ms=24◦C (75◦F) As=48◦C (118◦F)

Mf=20◦C (68◦F) Af=59◦C (138◦F)

E. Surface Preparation

In the initial parametric study, specimens were cut by the waterjet method[31]. This

method was quickly abandoned as the test gauge cuts were observed to be irregular.

EDM was found to cut a more accurate test gauge and was used for all specimens

tested in the current study. The EDM method removes material by creating electro-

discharges between the working tool, usually copper, and the material work-piece.

The process vaporizes small amounts of material from the work-piece, which are

removed by the liquid dielectric in which the EDM process takes place. A “recast”

layer was developed along the surface of the material where it was cut by the electro-

discharging[32]. It was found that the material on the surface was first super-heated

by the cutting and then super-cooled by the liquid dielectric. This created a rough

surface that was covered in a recast layer of craters and cracks, see Fig. 12. The

cracks were created to relieve stress in the brittle recast layer when it was rapidly

cooled. The recast layer was found to be extremely Ni-rich and the oxide layer was
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found to be Ti-rich, consisting primarily of TiO2 and TiNiO3. A magnified view of

an EDM cut specimen is shown in Fig. 12. The measured depth of this oxide/Ni-rich

Oxide Layer

Recast Layer

HAZ

Bulk Ni60Ti40

Polishing to Here

Fig. 12. Magnified view of Ni60Ti40 oxide/recast layer

recast layer was found to be 15-25 µm (0.4-1.0x10−3 in.). Due to the extreme changes

in temperature, the material near the surface develops a “heat affected zone” (HAZ)

that is measured to reach a depth of 51 µm (2.0x10−3 in.) beyond the recast layer[33].

This heat affected zone must also be accounted for when preparing the specimens for

testing, as there could have been some microstructural changes to the material due to

the extreme temperature changes. It is necessary to removed these damaged layers,

so that the bulk fatigue properties of Ni60Ti40 can be accurately predicted.

A few polishing methods were explored, including electropolishing, sand blast-
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ing and mechanical polishing. It was difficult to achieve an even polish when us-

ing electropolishing on the rectangular cross-section of such small specimens. Also,

electropolishing was found to round-off the rectangular cross-section corners. The

specimen’s small size also eliminated sand blasting as an effective polishing method.

Through this process of elimination, mechanical polishing was chosen to remove the

damaged material from all specimens prior to testing. A reliable and repeatable me-

chanical polishing process was developed to remove 127 µm (5.0x10−3 in.) from all

test gauge surfaces. Removing the damaged material will ensure that the oxide layer,

the recast layer and the heat affected zone, a total of 76 µm (3.0x10−3 in.), would

be removed. An extra 51 µm (2.0x10−3 in.) was also removed to ensure that the

undamaged bulk material was reached.

Polishing Head

Custom Grips
Specimen

Fixed DREMEL

Specimen Sides 
to be Polished

Each Side: 
0.005 in. 
Removed

Fig. 13. Specimen side polishing setup
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(A) (B)250 µm 250 µm

Fig. 14. Specimen test gauge side (A) before polishing and (B) after polishing

The first stage in the polishing process was to polish the sides of the specimen

test gauge. A variable-speed DREMEL grinder was used to perform this task. The

DREMEL grinder was fixed into a stand to ensure that it always remained perpen-

dicular to the specimen surface. A specimen was then placed into custom grips that

only allowed 127 µm (5.0x10−3 in.) of the test gauge to protrude. The Dremel setup

and the custom grips can be seen in Fig. 13. The first 102 µm (4.0x10−3 in.) of mate-

rial were removed with a DREMEL 3/8 inch aluminum oxide grinding stone and the

final 25 µm (1.0x10−3 in.) were removed with a fine-finish 3/32 inch, 400-grit rubber

polishing bob. During all DREMEL polishes, the specimen was continuously sprayed

with water to remove any free material and to cool the specimen. Moving the exposed

surface of the entire test gauge of the specimen back and forth along the polishing

head was done by hand in slow, repeatable motions that applied a minimal amount of

force. Figure 14 shows the side of a specimen before and after polishing. It is noted

that grooves remain from the final polish on the specimen sides. This was a result of

the fact that the finest polishing bob that could be acquired for the DREMEL was as

400-grit polishing bob. These grooves were found to be inconsequential to the fatigue
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life. There are two primary reasons for this assumption. The first is that the grooves

run parallel to the applied stress, which makes them less likely to induce cracking.

Secondly, as will be shown in the results, all polished specimen failures were found to

initiate from the specimen face surfaces and not the specimen side surfaces.

Custom Specimen 
Holders w/Specimens

Holding Wheel

Specimen Faces to be 
Polished

Each Face: 0.005 in. 
Removed

RotoPol-31

RotoForce-4

Fig. 15. Disk polisher setup

The specimen faces were polished next. Figure 15 presents a picture of the

face polishing setup. A custom holder was developed that fixes the specimen in place

during polishing and prevents any bending or twisting of the specimens. The specimen

was placed into this holder, which was then placed into a large specimen holding wheel

for polishing. Two specimens can be properly polished in this holding wheel at a time.

The holding wheel was then attached to a Struers RotoForce-4 polishing control arm.
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(B) 250 µm(A) 250 µm

Fig. 16. Specimen face (A) before polishing and (B) after polishing (magnified)

The RotoForce-4 can control both the direction, applied force and the polishing time

on the specimens to ensure proper polishing process repeatability. For all polishing on

the RotoForce-4, a minimum force of 5 N was applied. The specimens were polished

with a Struers RotoPol-31, which contains the polishing disk and controls grinding

speed. 102 µm (4.0x10−3 in.) was first ground off using a 400-grit polishing disk. This

was followed by a step up to 1200-grit and then 2000-grit, which removed another

25 µm (1.0x10−3 in.) from each face. Finally, the specimens were given a mirror

quality finish with a 0.3 micron polishing solution. This finish ensures that there

are a minimum number of possible initiation points from which fatigue cracks can

progagate and that these small specimens can properly predict bulk material fatigue

properties. The as-received specimen face compared to the final polished face can be

seen in Fig. 16. A detailed step-by-step polishing procedure for both specimen sides

and faces is included in Appendix A.

Specimens that were polished were EDM cut to have an initial test gauge cross-

section of 0.76 mm (0.03 in.) thick by 1.52 mm (0.06 in.) wide. By oversizing the

specimens, 127 µm (5.0x10−3 in.) was removed from all faces and a damage free cross-
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section of 0.51 mm x 1.27 mm (0.02 inches x 0.05 inches) was achieved. Table IV

presents a comparison between the average test gauge width and thickness of the

specimens as-received and polished. The final thickness and width of the polished

Table IV. Specimen cross-section dimensions for pre/post polishing

As-Received Polished

Average 1.529 ± 0.025 mm 1.242 ± 0.051 mm

Width (0.060 ± 0.001 in.) (0.049 ± 0.002 in.)

Average 0.747 ± 0.000 mm 0.462 ± 0.025 mm

Thickness (0.029 ± 0.000 in.) (0.018 ± 0.001 in.)

test gauges are slightly below the target of 0.51 mm x 1.27 mm. However, the goal

of removing at least 127 µm from all sides was achieved and all damaged material

was removed from the specimens. In Fig. 17, the cross-sectional view of a polished,

untested specimen can be seen. When compared to Fig. 12, it can be seen that the

oxide/recast layers have been removed from all sides of the test gauge. Also, it can be

observed that all surfaces of the cross-section are smooth, thus illustrating the quality

of the finish created by the polishing.

F. Constant Load Transformation Induced Fatigue Testing and Data Acquisition

In this study the tests were designed to achieve complete thermal transformation of

the specimens. Specimens were placed into the test frame and fixed at one end to

the fix-point on the test frame by kevlar ropes. The other end was connected to the

LVDT and the constant applied load with another kevlar rope. The power source

providing the Joule heating was then connected to the steel specimen grips by way of
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250 µm

(A) (B)

(C) (D)

Fig. 17. Cross-sectional view of a polished specimen: (A) upper-left corner, (B) up-

per-right corner, (C) lower-left corner and (D) lower-right corner

small wires that would not interfere with specimen actuation. A picture of a specimen

in pressure grips is presented in Fig. 18.

LabView control program was then activated and the environment surrounding

the specimen was brought down to the desired temperature (5◦C for the liquid cooling,

-15◦C for the gaseous nitrogen/vortex cooling). At that point the specimen had

been cooled below the martensite finish temperature and, due to the applied load,

underwent detwinning. Specimen thermal cycling was then started and continued

until specimen failure.

Since it is not feasible to place a thermocouple on a specimen during test-

ing, LVDT displacement measurements were used to ensure complete actuation was

achieved during thermal cycling. All tests were performed under time controlled cy-

cles, with a set amount of time for heating and for cooling. Before any fatigue testing

was performed, several calibration tests were run to determine the proper heating and
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Fig. 18. Dogbone specimen in pressure grips

cooling times needed to achieve complete actuation (100% austenite⇔100% marten-

site). Calibrations were performed for each of the constant load levels in each of the

test environments studied in this work. This was done by heating the specimen until

it was measured by thermocouples to be above Af and no change in displacement was

measured by the LVDT and then allowing the test environment to cool the specimen

until the thermocouples showed that the specimen was below Mf and there was no

measured change in displacement. Generally, 1-3 seconds of heating were needed to

bring the specimens above the Af temperature, with an average of 2.5 volts and 22

amps applied. For cooling, 7-9 seconds were needed for the cooling environment to

bring specimens below the Mf temperature. Two position data points were taken

over each cycle, one at the end of heating (austenite position) and one at the end

of cooling (martensite position). A real-time displacement plot of one cycle from a

transformation induced fatigue test is shown in Fig. 19 (A), with the red square being

the measured austenite position and the blue circle being the measured martensite

position. Given that the LVDTs only measure position, each set of test data must

be rescaled by the first-cycle measured austenite position and then normalized into
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Fig. 19. (A) Real-time test displacement plot and (B) breakdown of strain points per

cycle

strain measurements by the following equations:

εA
i =

lAi − lA1
L0

(2.1)

εM
i =

lMi − lA1
L0

. (2.2)

Where εA is the strain in austenite, εM is the strain in martensite, l is the LVDT

measured position, L0 is the test gauge length and i is the cycle number. Figure 19 (B)

shows a cyclic breakdown of the strains for austenite and martensite. The actuation
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strain (εAct) for each cycle was calculated by

εAct
i = εM

i − εA
i . (2.3)

The total irrecoverable strain (εI) at each cycle can also be calculated. Because

the austenitic displacement measurement from the first cycle was used to rescale all

data, all elastic strains in the system (kevlar ropes, austenite response) were already

taken into account. This can be assumed because the applied stress on the actuator

is constant, thus the elastic strain is constant. The following equation was used to

calculate the total irrecoverable strain at each cycle until failure.

εI
i =

lAi − lA1
L0

(2.4)
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CHAPTER III

RESULTS AND DISCUSSION

In this chapter the data collected from the tests described in Chapter 2 will be pre-

sented and discussed. A representative test result will be shown and described in the

first section. Then, in the second section, the effects of surface finish on the fatigue

life will be studied. In the third section, the effects of environment on fatigue life

and actuator performance will be considered. The actuator performance relations

discussed in section two include the actuation strain compared to the applied stress

level and the irrecoverable strain at actuator failure compared to applied stress level

and cycles at failure. Finally, a brief discussion on microstructure and its effects on

the transformation induced fatigue will be presented in the fourth section.

A. Representative Test Results

As previously described, each fatigue test collects two displacement points per ther-

mal cycle, one in the austenite phase and one in the martensite phase. This is

performed at every cycle for the length of the test. Strains are then calculated from

the displacements and plotted versus test cycles. A set of representative test results

from the liquid cooled transformation induced fatigue test frame is shown in Fig. 20.

Figure 21 then presents a set of vortex cooled transformation induced fatigue test

results. All test results presented were tested under constant loading, performed

complete actuation cycles, and were cycled until failure. The three plotted curves

in each result represent the strain in martensite (εM , blue curve), strain in austenite

(εA, red curve), and the actuation strain (εAct, green curve). The martensitic strain
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Fig. 20. Liquid cooled transformation induced fatigue test results for (A) 200 MPa

constant load, (B) 150 MPa load and (C) 100 MPa load
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Fig. 21. Vortex air cooled transformation induced fatigue test results for (A) 200 MPa

constant load, (B) 150 MPa load and (C) 100 MPa load
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corresponds to the total strain in the system (irrecoverable + actuation + thermal)

and austenitic strain represents the total irrecoverable strain in the system(εI), as

shown by equation 2.4. The actuation strain is the difference between the strain in

martensite and the strain in austenite, this was shown by equation 2.3. It is observed

that the actuation strain remains constant throughout the life of the actuator, as

seen in both sets of representative results. Constant stability in the actuation strain,

without the need for extensive training, is not observed in NiTiCu or equiatomic NiTi

actuators[26, 31]. The representative results in Fig. 20 and Fig. 21 also present the

evolution of the irrecoverable strain over cycling. For all results the first 1000 cycles

show a large accumulation of irrecoverable strain. After the first 1000 cycles, how-

ever, the accumulated irrecoverable strain per cycle stabilizes and shows very little

accumulation until failure. When comparing the results from different applied stress

levels it is observed that as the applied load increases, so does the actuation strain

and the total irrecoverable strain. Also, as the applied load increases, the cycles to

failure decreases. Finally, it is noted that the fatigue lives in Fig. 21 are longer than

the fatigue lives in Fig. 20 for the same applied loads, which suggests that there is

an effect from the test environment. The effects of test environment will be discussed

later in this chapter.

B. Influence of Surface Finish on Transformation Induced Fatigue

All results presented in this section are from tests performed in the fatigue test frame

with the liquid (ethylene-glycol) cooled environment. Two sets of specimens were

studied, polished and as-received. The as-received specimens were unpolished with a

rough oxide layer, a recast layer and a heat affected zone covering all surfaces. The

polished specimens had a mirror quality surface finish with all oxide and recast layers
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removed. All specimens had the same cross sectional area, as described in Chapter 2.

In Fig. 22, the cycles to failure compared to applied stress are presented for

both polished and as-received specimens. From this plot it can be observed that the

polished specimens have a greater fatigue life than the as-received specimens. Also,

regardless of surface finish, the fatigue life decreases as the applied stress increases.
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Fig. 22. Transformation induced fatigue life vs. applied stress for as-received and pol-

ished specimen tests

Table V presents the average fatigue life of the specimens tested at each applied

stress level. This table shows that the average fatigue life for the polished specimens

is three to four times longer than that of the as-received specimens. The response of

the material is clearly affected by the rough, brittle and cracked oxide/recast layer,

as would be expected.
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Table V. Average fatigue life of as-received vs. polished specimens

Stress MPa (ksi) As-received Tests Polished Tests

200 (29.00) 2384±672 7268±2369

150 (21.75) 3676±396 13887±5306

100 (14.50) 8567±2304 35562±9854

100 µm

(A)

(B)

100 µm

Fig. 23. Fracture surfaces of (A) an as-received specimen (B) a polished specimen[31]

Figure 23 presents the facture face surface of an as-received specimen (A) and

a polished specimen (B), both tested under the same conditions. It is observed that

the as-received specimen has several cracks initiating from different surface locations.

It is these multiple cracks, initiating from the surface layer, that were identified as

the cause of premature failure in the as-received specimen. The polished specimen,

as shown in Fig. 23 (B), shows an improved response with only one crack initiation

point. The result is that the more crack initiation points there are in the material,
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the shorter the fatigue life.

C. Influence of Test Environment on Transformation Induced Fatigue

In this section the effects of test enviroment are investigated. It was observed that

polished specimens had a corroded surface after being tested in the liquid (ethylene-

glycol) environment. The surfaces of several specimens were viewed under an scanning

electron microscope (SEM) and one representative example is shown in Fig. 24. By

performing resistive Joule heating in a liquid, the liquid on the surface of the specimen

was transformed into an electrolyte every time electric current passed through the

specimen. The electrolyte reacted with the surface of the specimen and created

a brittle surface layer, which then cracked easily during actuation. The corrosion

caused by the electrolyte on the specimen surface can be seen in Fig. 24 (B). From

(A) (B) (C)

Fig. 24. Polished specimen surface (A) before testing, (B) after testing in liquid and

(C) after testing in gaseous nitrogen/vortex cooled air[31]

this observation it was determined that a non-corrosive testing environment needed

to be implemented. The chosen environment was gaseous nitrogen to allow for a
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Fig. 25. Transformation induced fatigue life vs. applied stress for all polished speci-

mens

cooler test environment, therefore comparable cycle times to the liquid cooling could

be achieved. In this way, the only variable that changed from the orginal test frame to

the new test frame was the cooling medium. A cheaper method than gaseous nitrogen

cooling was eventually implemented (vortex cooled air) for non-corrosive testing and

was shown to give comparable results.

All test results presented in this section are for specimens that have been pol-

ished. Figure 25 presents the cycles to failure compared to applied stress for liquid

cooled specimens, gaseous nitrogen cooled specimens and vortex air cooled specimens.

From this set of results it can be seen that the gaseous nitrogen and vortex cooled

tests exhibited similar fatigue life results. The non-corrosive cooling conditions also

demonstrated an improved fatigue life over the liquid cooling conditions. The aver-
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Table VI. Average fatigue life of all polished specimens

Stress MPa (ksi) Liquid Tests (Lower Bound) GN2/Vortex Tests (Lower Bound)

200 (29.00) 7268±2369 15473±5643

150 (21.75) 13887±5306 22576±7579

100 (14.50) 35562±9854 111180±0

age fatigue life test results are shown in Table VI. It can be seen that testing in a

non-corrosive environment increased the fatigue life two to three times that of testing

in a corrosive environment. Figure 24 (C) shows a representative SEM micrograph

of a gaseous nitrogen/vortex air cooled test specimen. When compared to the liquid

cooled specimen (B), the gaseous nitrogen/vortex air cooled specimen (C) is nearly

as clean as the untested polished specimen (A); this indicates that the gaseous nitro-

gen environment is non-corrosive. The reason that the corrosive environment tested

specimens failed before the non-corrosive environment tested specimens is that the

corrosion created a brittle layer which cracked easily and, as seen with the unpolished

specimens the more cracks that are initiated in the material the shorter the fatigue

life. The specimens tested in a non-corrosive environment did not develop this brittle,

easily cracked layer; had less crack initiation points and a longer fatigue life.

The actuation strain versus the applied stress is presented in Fig. 26. It is

observed that the actuation strain is not affected by the test environment and that it

increases as the applied stress increases; this response has been observed for Ni60Ti40

previously[34]. While this increase appears to be linear over the applied stresses

studied here, this is not the case. The more stress that is applied to the actuator

the more self-accommodated martensite that is reoriented parallel with the loading

direction. This reorientation of self-accommodated martensite will saturate at some
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Fig. 26. Actuation strain vs. applied stress for all polished specimens

applied stress and the increase in actuation strain will no longer be observed. For

this material, the martensite reorientation saturation results in an actuation strain of

1.4%.

In Fig. 27 (A) the total irrecoverable strain at failure plotted versus the applied

stress is presented. From this plot it is observed that as the applied stress on the

actuators increases the total irrecoverable strain at failure increases. It can also be

noted that the test environment does not have an effect on the total irrecoverable

strain at failure. Figure 27 (B) presents the total irrecoverable strain at failure versus

the number of cycles at failure. When comparing the irrecoverable strain to the

number of cycles it is difficult to make any correlation. To explain why there is

no apparent correlation Fig. 25 and Fig. 27 (A) need to be more closely studied.

In Fig. 25 cycles to failure increase as applied stress decreases, however there is a
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Fig. 27. Irrecoverable strain at failure for polished specimens vs. (A) applied stress

and (B) cycles at failure

spread in the fatigue life at each applied stress. For example, several actuators at

200 MPa have longer fatigue lives than actuators tested at 150 MPa and several

actuators at 150 MPa outperformed actuators at 100 MPa. Based on the trend that

irrecoverable strain increases as applied stress increases combined with the spread

in the fatigue lives leads to a lack or correlation for irrecoverable strain and cycles

at failure. Furthermore, there is a similar spread in the applied stress versus total

irrecoverable strain in Fig. 27(A). For a given applied stress the total irrecoverable

strain at failure has a range of 2%. This spread in the irrecoverable strain combined

with the spread in cycles at failure compounds the lack of correlation observed in

Fig. 27 (B).

D. Microstructural Observations

As noted in the previous section, a spread in the data was observed in Fig. 25 and

Fig. 27. While some experimental variation is expected, the dispersion of test results

was quite large. For example, the standard deviation of fatigue lives for all polished
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specimens ranged from ±30% to ±35%. Similarly, irrecoverable strain at failure at

different applied stress levels had standard variations of±20% to±30%. To determine

the cause for such dispersion in results, a study of the microstructure was performed.

A thorough study on the failure mechanisms of this material is provided in a colleagues

work[31] and will be discussed briefly in this section.
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Fig. 28. Characterization of precipitates using SEM[31]

The goal in processing Ni-rich NiTi SMAs for use as actuators was to use Ni-

rich precipitates to stabilize the material’s cyclic response, similar to precipitation

hardening in conventional alloys. The test results previously presented in Fig. 20

and Fig. 21 show that the precipitation hardening has an effect on performance; the

actuation strain for the material is shown to be constant from the beginning to the

end of testing and the total irrecoverable strain in the system is limited to less than

3%. In comparison, equiatomic NiTi, which does not have precipitation hardening,
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reaches irrecoverable strains of 5-10%. Also, as previously noted for equiatomic NiTi,

as irrecoverable strain increases over cycling the actuation strain correspondingly

decreases. This is where precipitation hardening demonstrates its value for SMA

actuators; actuation strain does not degrade as irrecoverable strain accumulates in

Ni-rich NiTi SMAs, and the accumulation of irrecoverable strain is limited to a small

amount. For this material two of the primary Ni-rich precipitates have been identified

by SEM characterization, as presented in Fig. 28. The needle-like precipitates are

Ni4Ti3, which assist transformation. The large bulky precipitates are Ni3Ti and have

been shown to not improve material performance.

Initial observations of the specimen surface found the material contained an

extremely large amount of the Ni3Ti precipitates. An untested specimen surface and

cross-section are presented in Fig. 29. It can be observed that not only are there

Rolling 
Direction

50 µm50 µm

Fig. 29. Untested specimen surface and cross-section



43

a lot of Ni3Ti precipitates, but they are also unevenly distributed with clustered

bands in line with the rolling direction. Upon examining the cross-section of the

specimen it can be seen that these bands of precipitates go through the thickness of

the specimen as well. A post-failure specimen surface was then analyzed and is shown

in Fig. 30. From this examination, it can be seen that the clustered Ni3Ti precipitates

Loading Direction

Crack 
Initiation 

Points

Fig. 30. Post-failure specimen surface

are acting as crack initiation points at the material surface, with cracks propagating

perpendicular to the applied load direction. Not only do these precipitates act as

initiation points, but they provide a path for cracks to propagate through the test

gauge thickness, ultimately leading to specimen failure, which is shown in Fig. 31. It

is the non-homogeneous distribution of Ni3Ti precipitates and small specimen cross-

section that are believed to cause such a scatter in the test results. For example,

if a specimen was cut from a region with a large clustering of Ni3Ti precipitates its
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Fig. 31. Crack initiation and propagation sites[31]

fatigue life will be severely decreased and its irrecoverable strain at failure will be

lower. On the other hand, if a specimen is cut from a region with less precipitates, its

fatigue life will be longer and its irrecoverable strain at failure will be higher because

there will be fewer crack initiation points that lead to premature failure. Due to the

small size of test specimens there is a greater chance for variation in the amount of

precipitates from specimen to specimen, and this will lead to a large spread in the

fatigue life results.
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CHAPTER IV

CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this work, the first comprehensive transformation induced fatigue study of the Ni-

rich SMA Ni60Ti40 (wt.%) was presented. Fatigue tests were performed for complete

thermal transformation cycles from above Af to below Mf , under various constant

applied stress levels. The fatigue life and material response, including the actuation

strain and irrecoverable strain, were studied. The effects of specimen surface finish

and test environment on fatigue were also studied and presented in this work.

The first comparison was made between as-received and polished specimen fa-

tigue lives. In this comparison, all specimens were tested in the fatigue test frame

that implemented liquid cooling to bring the temperature of the specimens below Mf

and Joule heating to raise the specimen’s temperature above Af . Next, the effects of

testing environment on fatigue life were addressed. A new test frame was designed

and built to have the same capabilities as the original, except for a change in the

cooling medium. The new test frame used gaseous nitrogen to cool the specimens,

while the old test frame used a liquid. While this new cooling method was effective,

it was expensive and difficult to maintain. A new non-corrosive cooling system was

implemented (vortex air cooling) and was found to perform comparably to gaseous

nitrogen. Finally, a study of specimen microstructure was performed in an effort to

determine the cause of crack initiation, crack propagation, and specimen failure[31].

In the fatigue life comparison of as-received and polished specimens, it was found

that the polished specimens had longer fatigue lives than those of the as-received

specimens. On average, the polished specimens had fatigue lives that were three to
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four times the fatigue lives of as-received specimens. As with conventional metal

fatigue, fatigue life increases as surface quality improves. The environment also has

an effect on the transformation induced fatigue, and this study found that the liquid

cooling created a corrosive environment, where as gaseous nitrogen and vortex cooling

were non-corrosive environments. Gaseous nitrogen and vortex cooled test results

were shown to perform similarly and had fatigue lives that were twice as long as

specimens tested in the liquid cooled environment. Despite the difference in test

environments, all tests showed a decrease in fatigue life as applied stress increases.

For example, the transformation induced fatigue polished specimens in a non-corrosive

environment at 200 MPa had an average fatigue life of 14400 actuation cycles, at 150

MPa the average fatigue life was 20800 cycles and at 100 MPa it was 111000 cycles.

The test environment was also found to not have an effect on either actuation strain

or total irrecoverable strain. Finally, it was observed for all fatigue results that there

was a standard deviation in the data of ±30% to ±35%.

To determine the cause of this spread, the micrstructure of the pre/post-failure

specimens was studied, and it was determined that Ni3Ti precipitates created during

the material processing and subsequent heat treatments were ultimately leading to

specimen failure. These precipitates were unevenly distributed throughout the ma-

terial and tended to be in clusters that were observed to go through the thickness of

tested specimens. Cracks would initiate on the surface of the specimens within these

clustered precipitates and then propagate through the thickness. Due to the small

size of the specimens, the volume fraction of precipitates is assumed to vary from

specimen to specimen. This variation of precipitate volume fraction may cause the

large spread observed in the fatigue life results.

This work has shown that Ni60Ti40 has stable actuation and limited irrecoverable

strain at various applied loads. In exhibiting these two properties this material can
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be accepted as a viable actuator for aerospace applications.Also, as long as applied

loads are ≤100 MPa (14.5 ksi) actuators have shown fatigue lives of up to 111000

actuation cycles in non-corrosive environments. This shows that the material can be

implemented into aerospace structures and perform reliably for operational lifetime

of the aircraft.

Finally, this study took the initial steps in creating a repeatable test methodology

for SMA actuator testing. To test small SMA actuators to get bulk material property

these actuators must be polished to ensure they do not have any surface effects.

Testing should be performed in a non-corrosive environment and vortex cooling has

been shown to be non-corrosive and just as effective as gaseous nitrogen cooling.

Vortex cooling was also cheaper and easier to maintain.

B. Future Work

While the fatigue life of Ni60Ti40 was extensively studied in this work, there is much

remaining to study in the area of transformation induced fatigue of SMAs. Achieving

a standard methodology for testing remains the ultimate goal. Steps that can now

be take include testing larger specimens and conducting spring-bias fatigue testing.

Testing specimens that are larger than the specimens used in this study will help

to determine if there is a size effect. This includes a better average distribution

of Ni3Ti precipitates from specimen to specimen. Conducting spring-bias fatigue

testing is important because most SMA actuator applications do not see constant

stress, instead these actuators see a variation in stress throughout the actuation

process. Thus, to better predict the fatigue life of true actuator systems testing

should be performed against a spring-bias load and not a constant load. Finally,

while Ni60Ti40 shows great potential as a stable actuator, recent research has shown
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that the Ni3Ti precipitates found in the matrix are the driving force behind the

material failure[31]. To improve material performance, a new processing technique or

heat treatment meathod needs to be developed for this material that limits the size

and amount of the Ni3Ti precipitates. Testing also needs to be performed on Ni-rich

SMAs with a lower Ni content, such as Ni57Ti43 or Ni56Ti44 (wt.%) to see how the

material performs and to see if a median can be found between limiting precipitate

driven failure, while still keeping stable actuator performance.
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APPENDIX A

STEP-BY-STEP POLISHING PROCEDURE

STEP 1: SPECIMEN SIDES (Thickness face of the test gauge)

1. Place specimen into the first set of custom grips, so that the specimen side extends

out (SIDE 1).

2. Place specimen holder down on the Dremel stand so that SIDE 1 is perpendicular

to the aluminum oxide grinding head.

3. Turn the Dremel on to level 3, with one hand use a squirt bottle to spray water

where the grinding head meets SIDE 1 and with the other hand slowly and gently

move SIDE 1 back and forth along the grinding head until SIDE 1 is flush with the

grips.

4. Take the specimen out of the grips and rotate it horizontally so that the left side

of the specimen is on the right and the right on the left always remembering to keep

SIDE 1 up, close the grips again.

5. Repeat step 3 to ensure an even polish on SIDE 1.

6. Switch the grinding head to the rubber polishing head and repeat steps 3-5 for

SIDE 1.

7. Place the specimen into the second set of custom grips, so that the side opposite

SIDE 1 is facing out of the grips (SIDE 2).

8. Repeat steps 2-6 for SIDE 2.

STEP 2: SPECIMEN FACES (Width face of the test gauge)

1. Place a specimen (sides already polished) into the custom specimen holder with

two-sided tape; this is done for two specimens at a time.
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2. Place the two specimen holders on opposite sides of the holder wheel. Connect the

holder wheel to the RotoForce-4 arm.

3. Place 400-grit disk onto the RotoPol-31 and set the RotoForce-4 to 5 N force and

counter-clockwise direction; polish for 20 seconds.

4. Change the RotoForce-4 polishing direction to the clockwise direction; polish for

20 seconds.

5. Take the holder wheel off the RotoForce-4 arm and spin the specimens around so

that each specimen’s left side is now the right and the right now the left; place the

holder wheel back onto the polishing arm.

6. Repeat steps 3-4. By rotating the specimen around, you ensure that an even polish

is achieved on each side.

7. Next, place a 1200-grit disk onto the RotoPol-31, set the RotoForce-4 for counter-

clockwise spin, 5 N force, and polish for 45 seconds.

8. Change the RotoForce-4 polishing direction to the clockwise direction; polish for

45 seconds.

9. Repeat step 5.

10. Repeat steps 7-8.

11. Repeat steps 7-10 using a 2000-grit grit disk.

12. Next, place a cloth polishing disk on the RotoPol-31; use a 6 micron diamond

polish. Set the RotoForce-4 to counter-clockwise spin; polish for 120 seconds.

13. Repeat step 12, setting the RotoForce-4 to a clockwise spin.

14. Repeat steps 12-13 using a 0.3 micron diamond polish.

15. Remove specimens from the custom holders and flip them so that the unpolished

face is exposed, secure them into the custom holders with two-sided tape and repeat

steps 2-14.
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