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ABSTRACT 

 

Deriving a Framework for Estimating Individual Tree Measurements with Lidar for Use 

in the TAMBEETLE Southern Pine Beetle Infestation Growth Model. (December 2009) 

Jared Dee Stukey, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Sorin C. Popescu 

 

 The overall goal of this study was to develop a framework for using airborne 

lidar to derive inputs for the SPB infestation growth model TAMBEETLE. The specific 

objectives were (1) to estimate individual tree characteristics of XY location, individual 

bole height (IBH), diameter at breast height (DBH), length of crown (CrHT), and age for 

use in TAMBEETLE; (2) to estimate individual tree age using lidar-estimated height and 

site index provided by the United States Department of Agriculture (USDA) Natural 

Resources Conservation Service (NRCS) Soil Survey Geographic Database (SSURGO); 

and (3) to compare TAMBEETLE simulation results using field measurements and lidar-

derived measurements as inputs. Diameter at breast height, individual bole height, and 

crown length were estimated using lidar with an error for mean measurements at plot 

level of 0.16cm, 0.19m, and 1.07m, respectively. These errors were within root mean 

square error (RMSE) for other studies at the study site. Age was estimated using the site 

index provided by SSURGO and the site index curves created for the study area with an 

RMSE of 4.8 years for mean plot age. Underestimation of tree height by lidar and error 

in the site index curve explained 91% of the error in mean plot age.  TAMBEETLE was 
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used to compare spot growth between a lidar-derived forest map and a forest map 

generated by TAMBEETLE, based on sample plot characteristics. The lidar-derived 

forest performed comparably to the TAMBEETLE generated forest. Using lidar to map 

forests can provide the large spatial extents of the TAMBEETLE generated forest while 

maintaining the spatially explicit forest characteristics, which were previously only 

available through field measurements. 
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1. INTRODUCTION 

 

1.1 Background 

 The Southern Pine Beetle (SPB), Dendroctonus frontalis Zimmermann 

(Coleoptera: Scolytidae), is the most destructive pest to the logging industry, causing 

$2.5 billion in pine timber loss every year (Coulson et al., 2004). The SPB targets 

loblolly (Pinus taeda), shortleaf (Pinus echinata), and slash (Pinus elliottii) pine species, 

which are the dominant species for logging in the southern United States. Loblolly, the 

SPB’s preferred host, dominates 45% (13.4 million ha) of the commercial forest land in 

the southern United States (Schultz, 1999). The forestry industry is a large portion of the 

southeastern region’s economy. In 1996, the southern forestry industry directly 

employed more than 550,000 people and had product shipments exceeding $100 billion. 

Another SPB epidemic outbreak could stifle the region’s economy. 

 In response to overwhelming losses from SPB outbreaks in the early 1970s, the 

U.S. Department of Agriculture (USDA) began the Expanded Southern Pine Beetle 

Research and Applications Program (ESPBRAP) in 1975, as a well-funded, five year 

initiative (Clarke, 2003). The Integrated Pest Management (IPM) for Bark Beetles of 

Southern Pines followed ESPBRAP as another five year initiative (Clarke, 2003). 

ESPBRAP and IPM generated several models for predicting SPB outbreaks and their 

impacts, with the majority of SPB models used today linked to this time period. 

____________ 

This thesis follows the style of Remote Sensing of Environment. 
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The models developed under ESPBRAP and IPM can be generally grouped into 

five categories (Turnbow et al., 1983; as cited by Saterlee, 2002): 

1. Stand Hazard Models – to predict the likelihood of SPB outbreak in a stand. 

2. Stand Risk Models – to predict the likelihood of an existing infestation to 

spread. 

3. Spot Growth Models – to predict the development and spread of an existing 

infestation over time. 

4. Stand Growth and Yield Models – to predict timber yield at rotation age, 

accounting for expected SPB damage. 

5. Economic Models – to predict economic gains or losses from salvage or other 

treatment. 

 When considering SPB impacts on forests, research usually focuses on modeling 

infestation growth (category 3) (Feldman et al., 1980; Satterlee, 2002) or rating the 

hazard/risk of stands to infestation (categories 1 and 2) (Hicks, 1980; Lorio et al., 1982; 

Mason & Bryant, 1984; Billings et al., 1985). This research focuses on spot growth. 

 Spot growth models are either regression-based or mechanistic biophysical 

models. Regression-based models used correlations to predict number of trees killed. For 

example, Hedden and Billings (1979) used the ratio of the basal area of new trees killed 

per day to the basal area of active trees at initial visit or the basal area of active trees at 

day 30 to the basal area of active trees at initial visit to predict loss. TAMBEETLE and 

SPBMODEL are two examples of mechanistic models. TAMBEETLE uses individual 

tree characteristics as input whereas SPBMODEL uses stand conditions. The use of 
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individual tree characteristics by TAMBEETLE allows it to represent infestation growth 

spatially. This study focuses on the mechanistic spot growth model TAMBEETLE 

because it is able to use individual tree characteristics as inputs and is a spatial model. 

 Coulson et al. (1989) describe TAMBEETLE, created by Feldman et al. (1980), 

as “a mechanistic model of population dynamics of D. frontalis occurring in forest 

stands.” Mechanistic models are sometimes viewed as overly complex because they 

require an intensive knowledge of SPB ecology; however, if the postulations behind the 

model are accurate, the model can be viable outside of the original data (Hain, 1980). 

Along with the SPB ecology, TAMBEETLE needs the forest stand conditions to model 

infestation growth. The required forest structure inputs are individual tree characteristics 

of XY location, diameter at breast height (DBH), length of crown (CrHT), individual 

bole height (IBH), and tree age. Although TAMBEETLE was included as a component 

of the model base for the Southern Pine Beetle Decision Support System (SPBDSS) 

(Saunders et al., 1985), the extensive data requirements needed to initialize 

TAMBEETLE limit its utility in forest management practices (Coulson et al., 1989). 

 Technological advances since the creation of TAMBEETLE, specifically in 

Light Detection and Ranging (lidar) sensors, could expand its utility in forest 

management practices by estimating individual tree characteristics more efficiently than 

field measurements, while maintaining comparable accuracy. Lidar is a relatively new 

remote sensing tool that measures distance from the sensor by taking the product of the 

speed of light and the time required for an emitted laser pulse to travel to a target object 

and return to the sensor (Lim et al., 2003). The ability to estimate individual tree 
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characteristics with lidar could make it an indispensible tool for deriving inputs for SPB 

models.  

 Lidar has been used to estimate most of the individual tree measurements needed 

for TAMBEETLE. Popescu et al. (2002) created a software package, TreeVaW, which 

uses a varying local maxima filter on lidar data to automatically identify individual trees 

and their height and crown diameter. A more detailed description of TreeVaW can be 

found in Popescu and Wynne (2004) and Popescu et al. (2004). Popescu and Zhao 

(2008) used TreeVaW to identify individual tree heights and crown diameters for 94 

pine trees with a root mean square error (RMSE) of 1.38 and 1.68 meters, respectively. 

Aside from tree height, DBH is the most common tree measurement used to calculate 

potential growth, volume, and yield of stands. With the knowledge that DBH is highly 

correlated with tree height and crown diameter, Popescu (2007) obtained DBH through 

regression of TreeVaW derived tree height and crown diameter, resulting in a small 

RMSE of 4.9 cm (approximately 18% of the DBH for all measured trees).  

 Crown base height (CBH) is another measurement successfully estimated with 

lidar. Holmgren and Persson (2004) used 0.5m height bins (vertical “slices” of the 

canopy space above ground) and defined the CBH as the point above the highest height 

bin with less than 1% of non-ground points. Popescu and Zhao (2008) also used height 

bins to define CBH. A pseudo waveform, as defined by Blair and Hofton (1999), was 

created by placing a cylinder, with a radius defined by TreeVaW, around the tree and 

plotting the frequency of lidar points in each height bin. Popescu and Zhao defined CBH 

at an inflection point in the pseudo waveform curve, resulting in an RMSE of 2.0m. 
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 Age is most often determined through either plot planting data or a time series of 

aerial imagery (Moan, 2008). Heo et al. (2006) used image differencing techniques on a 

time series of satellite images to validate age in an inventory geographic information 

system (GIS) database. While this was not a complete solution for inventory verification, 

Heo et al. were able to offer a list of tracts with potential age-discrepancy to be field 

verified. Lefsky et al. (2005) also used historical satellite imagery to determine stand age 

by detecting stand replacement through image processing techniques developed and 

verified by Cohen et al. (1998; 2002). Sivanpillai et al. (2006) estimated managed 

loblolly pine stand age through multivariate regression of Landsat ETM+ reflectance 

values with an R²-value of 0.78 and RMSE of 2.89 years. The stands in the Sivanpillai et 

al. study ranged from 2 to 26 years of age.  

 Using lidar is not the most obvious method of determining tree age. Farid et al. 

(2006) used lidar to differentiate three age classes of individual cottonwood trees 

(young, mature, and old) in a riparian area. Differences in tree structure (height, crown 

diameter, and canopy cover) measured with lidar allowed Farid et al. to differentiate 

between age classes.  

 Although a search of literature did not reveal any studies estimating age through 

the use of lidar-derived height, in theory it is possible to use height to estimate age 

through the combined use of lidar and auxiliary data. Age can be related to height 

through site index, the most common measure of forest site quality. Site index is a 

relative measure of site quality based on the height of dominant trees at a specific age. 

The United States Department of Agriculture (USDA) Natural Resources Conservation 
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Service (NRCS) Soil Survey Geographic (SSURGO) Database provides site index as an 

attribute of each soil type. Estimating individual tree age using the SSURGO site index 

and lidar-estimated tree height could prove more useful than estimating stand age 

through historical satellite imagery for calculating forest growth and yield. 

 

1.2 Objectives 

 The overall goal of this study was to develop a framework for using airborne 

lidar to derive inputs for the SPB infestation growth model TAMBEETLE. More 

specific objectives were to: 

1. Derive input layers for TAMBEETLE with lidar, including:  tree location, 

individual bole height (IBH), diameter at breast height (DBH), length of crown 

(CrHT), and age;  

2. Use lidar-estimated height and SSURGO site index to estimate individual tree 

age; and 

3. Compare TAMBEETLE simulation results using field measurements and lidar-

derived measurements as inputs. 
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2. MATERIALS AND METHODS 

 

2.1 Study Area 

Because it is an excellent example of SPB habitat, an area east of Huntsville, TX, 

USA was chosen as the study site. In addition to its representation of SPB habitat, an 

abundance of research has been conducted on the site, providing lidar data, QuickBird 

multispectral imagery, and in situ data (Mutlu et al., 2007; Popescu, 2007; Zhao and 

Popescu, 2007; Griffin et al., 2008; Popescu and Zhao 2008; Zhao et al., 2009). The 

study area is 47.15 square kilometers, within latitude of 30° 39’ 36” and 30° 44’ 12” N 

and longitude of 95° 24’ 57’’ and 95° 21’ 33” W. It contains pine stands, pine-hardwood 

mixed stands, and hardwood stands, all in various stages of development. The study area 

consists of both private land and the Sam Houston National Forest, representing a full 

range of management intensities. Along with forests, an urban interface and open fields 

are also present in the study area. The topography is characterized by gentle slopes with 

a mean elevation of 85m, with a minimum of 62m, and a maximum of 105m. The study 

area is shown in Figure 1. 
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Figure 1. The study area is located in east Texas and is shown in the false color 

composite of a QuickBird (DigitalGlobe, Inc.) image.  

 

 

2.2 Lidar Data and Multispectral Imagery 

 Lidar data were collected in March 2004 (leaf-off) by M7 Visual Intelligence of 

Houston, Texas, with a Leica-Geosystems ALS40 lidar sensor. The system recorded first 

and last return per pulse, with a reported accuracy of 20-30cm horizontal and 15cm 

vertical. Nineteen north-south flight lines and twenty-eight east-west flight lines were 

flown at a mean altitude of 1000m above ground level using a ±10° swath from nadir, 

resulting in an average swath width of 350m, with an average of 2.6 laser hits per m². 
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M7 Visual Intelligence also provided a digital elevation model (DEM) derived from the 

lidar data using a proprietary package. A digital surface model (DSM) was created by 

using the highest laser hits per 0.5m x 0.5m cell and interpolating to characterize the top 

surface, using techniques described by Popescu and Wynne (2004). Before any 

calculations were performed, a canopy height model (CHM) was created by subtracting 

the DEM from the DSM and then interpolated to 2.5m. 

 QuickBird (DigitalGlobe, Inc.) orthorectified, multispectral imagery of the study 

area was acquired during the 2004 leaf-off season with a spatial resolution of 2.5m. The 

imagery was used to differentiate between pine and other land cover types (deciduous 

trees, fields, and urban). 

 

2.3 Ground Reference and Soil Data 

 Two sets of field data were collected. The first set of field data was collected 

between May and July 2004 on randomly selected 0.004ha (0.01 acre) plots and 0.04ha 

(0.1 acre) circular plots. Height, crown width, IBH, DBH, species, and Kraft crown class 

were measured for each tree. Tree height and crown base height (CBH) (defined as the 

lowest live branch) were measured using a Vertex Forester hypsometer. Crown width 

was calculated by averaging the radii measured from the bole of a tree in each cardinal 

direction. DBH was measured using a diameter tape. Crown class was determined as one 

of four Kraft classes, i.e., dominant, co-dominant, intermediate, and overtopped (USDA 

Forest Service FIA National Core Field Guide, 2005, p. 78). 
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 Individual tree coordinates were calculated according to trigonometric relations 

using the geographic coordinates of plot centers and the azimuth and distance of tree 

boles relative to the plot center. These were measured with a Differential GPS, a Suunto 

compass (KB-14), and the vertex hypsometer, respectively. The mapped tree locations 

refer to boles, not treetops, which may deviate from tree boles.  

 The second set of field data was collected in October 2009 in order to assess tree 

age. Previous plots were revisited to measure height, DBH, and take core samples. Core 

samples were taken at breast height with an increment borer for 3 trees per plot. A total 

of 30 trees were cored, 22 trees in plots with a site index of 21.3 and 8 trees in plots with 

a site index of 24.4. The trees selected were of average height for the dominant and co-

dominant trees in the plot. Annual rings were counted in each core sample to determine 

tree age at breast height. Age at breast height was converted to total age by adding years 

according to the SSURGO site index reference curve (Coile and Schumacher, 1953), as 

seen in Table 1. 
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Table 1 

Number of years added to age at breast height to account for the time it took the tree to 

reach breast height for each site index 

Site Index  Age-to-Breast-Height Factor 

15.2  6 

21.3  4 

24.4  3 

25.6  3 

27.4  3 

 

 

 SSURGO data for the study area was obtained from the Soil Data Mart on the 

USDA NRCS website (http://soildatamart.nrcs.usda.gov, accessed on September 5, 

2009). Spatial and tabular data were downloaded and queried for the site index. Site 

indices for the study area were used to create a vector dataset and then converted to 

raster at 2.5m resolution. The base age for the site index is twenty-five years. The 

SSURGO site index was created using soil properties outlined in Coile and Schumacher 

(1953), which are based on the site index curves in USDA Miscellaneous Publication 50 

(Anonymous, 1929). 

 

2.4 Pine Classification 

 To differentiate pines from other land use and land cover, a rule-based 

classification was performed on a fused QuickBird and lidar dataset. The fused dataset 
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consisted of six bands: blue, green, red, and near-infrared reflectance bands from the 

QuickBird image; normalized difference vegetation index (NDVI) was calculated from 

the QuickBird image; and the lidar CHM. NDVI was calculated as defined by Baret and 

Guyot (1991): 

)(
)(

RNIR
RNIR

NDVI
+

−
=          (1) 

where NIR is the near-infrared reflectance value and R is the red reflectance value for a 

given pixel. 

 The classification was created using two rules. The first rule separates trees from 

non-trees by setting a minimum height requirement of 3.0m. This minimum height 

requirement was adjusted down from 5.0m (minimum height needed to be classified as a 

tree according to the United States Environmental Protection Agency (EPA) Multi-

Resolution Land Characteristics Consortium (MRLC) National Land Cover Data 2001 

(NLCD 2001) class definitions (http://www.epa.gov/mrlc/definitions.html#2001, 

accessed October 20, 2009), to allow for the underestimation of tree height due to lidar 

not intercepting the exact treetop, based on RMSE of 1.38m as reported by Popescu and 

Zhao (2008). The second rule separates pines from hardwoods (and any urban structures  
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over 3.0m) by setting a minimum NDVI value of 0.35 to be considered a pine tree. The 

threshold for NDVI was determined through trial and error to achieve the greatest 

separability between pines and other land cover for the study area. In summary, this 

classification defines pine trees as being over 3.0m and having an NDVI value of 0.35.  

 

2.5 Tree Location, Height, and DBH 

 To start TAMBEETLE an input text file with tree location, IBH, DBH, CrHT, 

and tree age is needed. TreeVaW allows the user to define the relationship of height to 

crown radii based on field data if available. Equation (2) illustrates the relationship 

between crown diameter and height achieved through regression of the field-measured 

pine trees in the study area: 

)301.0(033.0 HCD +−=         (2) 

where CD is crown diameter and H is height.  

 TreeVaW was run on the CHM to generate a list of trees with their location, 

height, and crown radii. TreeVaW identified 976,064 pine trees after non-pines had been 

removed. This satisfied the first need of TAMBEETLE, tree location. Figure 2 illustrates 

the identification of individual trees in TreeVaW. 

 

 



 14

 

Figure 2. Subset of the CHM with the location of TreeVaW identified trees (shown with 

pink crosses) and crown diameter (yellow circle).  
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 DBH is highly correlated with tree height and crown diameter. Through 

regression, Popescu (2007) was able to estimate individual tree DBH with a small 

RMSE of 4.9cm, approximately 18% of the average DBH for this study area. DBH was 

calculated using the line of best fit reported in Popescu (2007): 

HCDDBH 22.116.0 ++−=         (3) 

where CD is crown diameter and H is lidar-derived height. 

 

2.6 Individual Bole Height and Length of Crown 

 Total tree height is equal to the sum of IBH and CrHT. IBH is the length of the 

tree stem to crown base, while CrHT is from crown base to the top of the tree. Therefore, 

CBH had to be estimated before IBH and CrHT could be calculated. 

Crown base height was determined by creating a vertical profile for each tree and 

was defined at the height where a sudden drop in frequency of lidar hits occurred, as 

outlined by Popescu and Zhao (2008). The vertical frequency profile was created by 

dropping a cylinder with a radius defined by TreeVaW over each identified tree. CBH 

was defined at the height corresponding to the first inflection point after the frequency 

curve reaches its maximum, as shown in Figure 3. 
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Figure 3. (top) 3D representation of lidar points for a single tree(Popescu and Zhao, 

2009) (bottom) and pseudo waveform used to delineate crown base height (CBH).  

CBH 
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 CBH was used as the value for IBH. CrHT was calculated by subtracting CBH 

from total tree height as illustrated in the following equation: 

CBHHCrHT −=          (4) 

where H is total tree height and CBH is crown base height. 

 

2.7 Tree Age 

 Tree age was determined using the site index provided by SSURGO data. 

SSURGO’s site index is based on Coile and Schumacher’s (1953) methods for 

estimating site quality of land based on soil characteristics alone. Their methods use the 

site index curves outlined in the USDA Miscellaneous Publication 50 (Anonymous, 

1929).  

 A site index guide curve (Figure 4) was created from the trees located in plots 

with a site index of 21.3 meters (70 feet) at 25 years as outlined in Avery and Burkhart 

(2002). The resulting site index curve had an R² of 0.94 with an RMSE of 1.3m 

(approximately 6.3% of field measured height) following the line of best fit: 

924.15)(788.10ˆ −= xLny          (5) 

where ŷ  is height in meters and x is age in years. 
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Figure 4. Site index guide curve of site index of 21.3 meters with base age of 25 years 

derived from field measured height and age. 

 

 An anamorphic family of curves was created by transforming the guide curve for 

each site index (Figure 5.). The study area contained site indices of 15.2, 21.3, 24.4, 

25.6, and 27.4 meters (50, 70, 80, 84, and 90 feet, respectively). Equation (6) shows the 

transformation of the guide curve for each site index: 

)
3.21

924.15
)()

3.21
788.10

((ˆ −= xLnSIy        (6) 

where SI is site index. 
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Figure 5. Anamorphic site index family of curves for the study area. 

 

 

To estimate age from height, Equation (6) must be algebraically rearranged: 

)
*)

3.21
788.10

(

))*)
3.21

924.15
((

(
SI

SIy

ex

+

=         (7) 

where e is the base of the natural logarithm, 2.71828182845904. 

The prediction performance of Equation (7) was assessed using the field 

measured age corrected for age-to-breast height and age predicted using field measured 

height. Equation (7) was also tested using average plot age using lidar-derived heights 

against average plot age from the field measurements. 

Two tree age datasets were created using Equation (7). Individual tree age was 

determined by using the equation with each tree’s lidar-derived height and 
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corresponding SSURGO site index. Equation (7) is only considered valid for trees up to 

an age of 100 years. Trees that received an age over 100 from the equation were set to 

100 years.  

 

2.8 TAMBEETLE 

 Two TAMBEETLE simulations were performed on four stands (Figure 6), for a 

total of eight simulations. One set of simulations was run using a forest generated by 

TAMBEETLE using field-measured plot characteristics of pine BA and the means and 

standard deviations of DBH and IBH. The other set of simulations were run using the 

lidar-derived forest. Aside from forest structure measurements, TAMBEETLE needs 

information on attack date (day of year 1-365), attack stage, attack end date, and day of 

year reemergence ended for previously infested trees. Simulations began on day 151 

(May 31) with 15 trees under active attack, 5 trees in brood stage, and 3 trees already 

dead. This ensured a successful infestation was established in the plot during the peak 

season for SPB infestation. The simulations were run for 30 days and daily records were 

kept for number of trees actively under attack, in brood, and a cumulative total of dead 

trees. 
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Figure 6. The location of the four zones in which TAMBEETLE spot growth simulations 

were run to assess the performance of lidar-derived forest attributes when compared to 

TAMBEETLE-generated forest. 
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3. RESULTS AND DISCUSSION 

 

3.1 Diameter at Breast Height 

 DBH is the most frequently used tree measurement used to predict growth, 

volume, yield, and forest potential. While DBH is not able to be directly measured with 

lidar as height is, lidar-derived estimates correlated well with field-measured DBH. 

Popescu (2007) reported a small RMSE of 4.9cm, approximately 18% of the average 

DBH of all measured trees. The estimates of DBH for this study area are not unexpected. 

Persson et al. (2002) also used lidar-estimated height and crown diameter of Norway 

spruce and Scots pine to estimate DBH, resulting in an RMSE of 3.8cm. 

 

3.2 Individual Bole Height and Length of Crown 

 IBH and CrHT measurements depend on accurate estimates of CBH. Popescu 

and Zhao (2008) estimated CBH for the study area with an RMSE of 2.0m. Along with 

other studies (Holmgren & Persson, 2004; Riano et al., 2004; Andersen et al., 2005), 

Popescu and Zhao (2008) overestimated CBH. An overestimated CBH and 

underestimated tree height leads to a smaller CrHT. These estimation errors make IBH 

proportionally larger to total tree height. 
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3.3 Age 

Age for pine trees in the study area was calculated using Equation (7) with lidar-

estimated height and SSURGO site index.  Figure 7 illustrates individual tree age 

derived from lidar-estimated height for the entire study area. 

Linear regression analysis demonstrated a good fit for predicting individual tree 

age based on tree height for field measured trees with Equation (7). The transformed 

logarithmic regression model resulted in RMSE of 5.8 years (approximately 16.5% of 

mean age for field measured trees) with R² of 0.9168 (Figure 8.). The RMSE resulting 

from predicting age from height is much greater than that of predicting height from age. 

Transformation of the nonlinear logarithmic regression model for predicting height from 

age to predicting age from height introduced bias, as outlined in Sprugel (1983). The 

bias introduced caused an overestimation of age. 

 Average lidar-derived plot age was then compared to average field plot age. Five 

years was subtracted from the age corrected to include age-to-breast-height so that age in 

2004 could be compared. Again, linear regression showed high correlation between 

predicted age and field age, this time predicting age with lidar-estimated height. The 

linear regression model resulted in an R² of 0.9873 (Figure 9) and an RMSE of 4.8 years 

(approximately 15.3% of the field measured age). Predicted age using lidar-estimated 

height tended to underestimate height. This is expected with the noted underestimation 

of tree height with lidar data; however, this underestimation also overpowers the bias 

created when transforming Equation (6) to predict age based on height. 
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Figure 7.  A 5x5m resolution image of tree age derived using site index curves and lidar-

derived height. Areas in black were not classified as pine trees. 
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Figure 8. Field measured age corrected to include age-to-breast height vs. age predicted 

from field measured height. 
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Figure 9. Linear regression of average age predicted using lidar-estimated height vs. 

average field age in 2004 for ten plots. 

 

When the RMSE of 1.38m for lidar derived tree height for the study area is 

considered, RMSE for age predicted using lidar-estimated height decreases to 1.93 years 

(6.2% of average field measured age).  Lidar-estimated height only explains some of the 

error. The error in the original logarithmic regression model used as the site index curve 

(RMSE of 1.3m) also contributes to the underestimation of tree height. When the error in 

both the lidar-estimated height and original site index curve are considered, RMSE is 4.2 

years, explaining 91% of the error.   

Another source of error is the way site index curves are created.  Average site 

quality in the sample data needs to be the same for all age classes for the guide curve to 

be reliable.  The guide curve in this study was created using trees from within the 
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SSURGO site index of 21.3 to limit this error.  While this error was controlled as much 

as possible, the nature of anamorphic curves (common shape across all site indices) is a 

weakness in itself.  The shape of a site index curve can vary with site quality, with 

higher-quality lands generally exhibiting more pronounced sigmoid shapes and lower-

quality lands producing height-growth patterns that are “flatter” (Avery and Burkhart, 

2002). 

Using a time series of satellite imagery to determine stand age through 

disturbance detection (Lefsky et al., 2005; Heo et al., 2006) is the most popular remote 

sensing technique to determine stand age.  This technique can be employed for even 

aged stands, but is not effective in uneven aged stands or stands older than the satellite 

imagery available.  Using lidar-estimated tree height and SSURGO site index allows age 

to be estimated for individual trees in an uneven aged stand and stands that have not had 

a disturbance during the time period satellite imagery is available.  

In contrast to Farid et al. (2006), which grouped 84 individual cottonwood trees 

into three age classes through statistical analysis of tree height and crown diameter, this 

study estimated individual tree age based on lidar-estimated tree height and SSURGO 

site index for close to 1 million pine trees.  Aside from tree height, Farid et al. (2006) 

benefited from the significant differences in crown shape, canopy cover, and stand 

characteristics among age classes.  As pine trees age, crown shape, canopy cover, and 

stand characteristics do not change significantly enough to be used to help determine 

age.  Also, age varies greatly for trees of the same height in different site indices, which 

is important to note in large study areas.  Using lidar-estimated tree height and SSURGO 
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site index can provide a more exact individual tree age than just age class and is also 

viable for larger study areas. 

 

3.4 Plot Characteristics 

 The ability to estimate tree characteristics with lidar is illustrated in Table 2. 

Overestimation of minimums can be attributed to lidar only detecting dominant and co-

dominant trees while field measurements included intermediate and overtopped trees. 

Mean and median IBH are underestimated, which is unexpected due to the consistent 

overestimation of CBH in previous studies. Although there is some overestimation of 

IBH, it well within RMSE of 2.0m of CBH for the study area. All of the mean, max, and 

median statistics fall within the expected RMSE for that variable. Age for both the field-

measured and lidar-estimated pine trees was estimated with Equation (7), attributing 

differences in age to height discrepancies between the lidar-estimated and field-

measured heights. 
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Table 2   

Descriptive statistics of field inventory data and lidar-derived inventory data for pine 

trees on a plot 

 2004 Field-Measured Pine Trees Lidar-Measured Trees 
 DBH 

(cm) 
CrHT 
(m) 

IBH 
(m) 

Age DBH 
(cm) 

CrHT 
(m) 

IBH 
(m) 

Age 

Mean 24.22 5.24 11.30 20 24.38 5.43 10.23 19 

Max 28.20 6.83 13.11 24 29.90 8.70 13.28 21 

Min 15.00 2.68 9.75 16 20.17 2.00 7.50 16 

Median 24.90 5.64 11.16 21 24.47 4.95 10.50 19 

 

 

3.5 TAMBEETLE Simulations 

 TAMBEETLE simulations were run on 4 zones, each having a different forest 

structure. Zone West is unmanaged, having many stands of differing tree densities, 

height, DBH, and age. It also has a small percentage of hardwoods concentrated along a 

creek bed that passes through the zone. Zone Central is a young, even aged, pure pine 

stand with a high tree density. Zone Southeast is a pine dominated, yet mixed forest, 

composed of older, larger pine trees and hardwoods. Zone Thinned is an intensely 

managed pre-commercial aged forest that has had row thinning performed on it. 

 Two simulations were run per stand, one using a TAMBEETLE randomly 

generated forest using field plot measurements as inputs and another using individual 

tree measurements derived from lidar as inputs. The TAMBEETLE randomly generated 

forest was used because in situ plots were too small to get useful information from 
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TAMBEETLE simulations. TAMBEETLE can use pine BA, mean DBH, standard 

deviation of DBH, mean IBH, and standard deviation of IBH from field data to generate 

a forest for spot growth simulations. Table 3 shows the field-measured plot 

characteristics used by TAMBEETLE to generate the random forests. 

 

Table 3 

Field-measured plot characteristics used by TAMBEETLE to generate random forests 

Zone Pine BA 
m²/ha 

Mean DBH 
(cm) 

DBH Std. 
Dev. (cm) 

Mean IBH 
(m) 

IBH Std. 
Dev. (m) 

West 25.25 35.53 24.21 10.64 4.99 

Central 27.16 23.13 6.32 10.31 1.7 

Southeast 14.03 34.25 22.75 11.95 6.07 

Thinned 27.03 26.94 4.36 10.97 1.24 

 

 

 Although Zone Thinned has been managed with techniques to reduce pine basal 

area, it has the second highest pine basal area. This can be attributed to a very dense 

planting strategy.  

 The first outcome analyzed when comparing the TAMBEETLE forests to the 

lidar forests was the total number of trees killed. Table 4 shows the number of trees 

killed during the first 30 days of an infestation per zone for the TAMBEETLE generated 

and lidar-derived forests, as well as the difference between the numbers of trees killed 

for the different forest types.  
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Table 4 

Number of trees killed per zone for TAMBEETLE and lidar forests in the first 30 days 

of infestation simulations 

Zone Forest Type Trees Killed Difference 

West 
TAMBEETLE 25 

-5 
Lidar 30 

Central 
TAMBEETLE 23 

12 
Lidar 11 

Southeast 
TAMBEETLE 24 

0 
Lidar 24 

Thinned 
TAMBEETLE 25 

17 
Lidar 8 

 

 

 These statistics alone are misleading. In TAMBEETLE, trees that are in the 

brood and active stages are guaranteed to die. The guaranteed total number of trees 

killed when trees in the brood and active stages at the end of the first 30 days of 

infestation simulations are included is depicted in Table 5. 
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Table 5 

Total trees killed when brood and active stage trees are added to the trees killed in the 

first 30 days of an infestation 

Zone Forest Type Trees Killed Brood Active Total Difference 

West 
TAMBEETLE 25 4 9 38 

7 
Lidar 30 0 1 31 

Central 
TAMBEETLE 23 7 19 49 

13 
Lidar 11 3 22 36 

Southeast 
TAMBEETLE 24 0 0 24 

0 
Lidar 24 0 0 24 

Thinned 
TAMBEETLE 25 8 16 49 

11 
Lidar 8 4 26 38 

 

 

 Investigating the number of trees in each stage at the end of the first 30 days of 

the infestation simulation can establish a trend of whether the infestation is just starting 

to grow, continuing to spread rapidly, or declining. Table 5 indicates that the infestation 

in zone West is still active in the TAMBEETLE generated forest, while the infestation in 

the lidar forest has subsided. The infestation for both types of forests have quit growing 

in zone Southeast, killing the same number of trees. For zones Central and Thinned, the 

infestation grew more slowly in the lidar-derived forest than in the TAMBEETLE-

generated forest.  

 While TAMBEETLE is able to generate a random forest that matches average 

plot characteristics, it cannot give a true representation of forest conditions because it 
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does not account for non-habitat, which can slow or halt an infestation. If an infestation 

outgrows the original spatial extent of the TAMBEETLE-generated forest, 

TAMBEETLE expands the forest using the same stand characteristics, allowing the 

infestation to grow indefinitely. Stand characteristics can change abruptly. The next 

stand in the path of the infestation is accurately represented should an infestation 

outgrow the stand where it originated in a lidar-derived forest, instead of having a 

continuation of initial stand conditions used to model the infestation growth. This is 

possible because lidar data can be used to estimate individual tree characteristics for the 

entire spatial extent of the data. 
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4. CONCLUSIONS 

 The main objective of this study was to produce a lidar-derived forest consisting 

of individual tree attributes of location, diameter at breast height, individual bole height, 

length of crown, and age. Results of this study show that lidar data can be used to derive 

individual tree characteristics.  The framework used to derive biophysical parameters for 

individual trees with lidar in this study can be applied to other models which are 

dependent on individual tree measurements. 

Age was estimated using lidar with the site index provided by the SSURGO data 

and site index curves derived from field work. Although lidar data represents only one 

point in time, knowing tree age and site index allows estimates of tree height to be made 

for the coming years. Because tree height can be used to estimate other tree 

characteristics, yearly lidar data acquisitions are not needed. Using lidar data to derive 

age also provides the benefits of estimating age of trees in uneven aged stands and stands 

that have not had disturbances since satellite imagery has become available.  This 

method of deriving age can be useful for deriving crown bulk density and growth and 

yield modeling, for which age is an important variable to both. 

 The differences between the lidar-derived forest and TAMBEETLE generated 

forest in the simulations can be accredited to randomness of the TAMBEETLE 

generated forest and spatially explicit lidar-derived forest. Lidar-derived forests can 

provide the large spatial extents of the TAMBEETLE generated forest while maintaining 

the spatially explicit forest characteristics previously only available through field 

measurements. The lidar-derived forest needs to be tested against large areas of field-
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measured stands. Although the small size of the in situ plots (0.04ha and 0.004ha) 

limited the testing of the lidar inputs in TAMBEETLE, the accuracy of individual tree 

estimations should translate into a lidar-derived forest comparable to true stand 

conditions.  

 The benefit of lidar data is the ability to derive individual tree attributes from it 

for the entire area covered by the data. The individual tree characteristics needed for this 

study were calculated for each of the 976,064 pine trees identified, which would not be 

possible to do with field work. The ability to derive individual tree attributes for the 

entire spatial extent of the data goes far beyond field observations, which merely sample 

a limited number of plots and extrapolate to the desired extent, and also surpasses aerial 

and satellite imagery in the number of forest characteristics that can be estimated from it. 
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