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ABSTRACT 

Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation. (December 2009) 

Daegil Yang, B.S., Kookmin University 

Chair of Advisory Committee: Dr. Maria A. Barrufet 

 

Society’s growing demands for energy results in rapid increase in oil 

consumption and motivates us to make unconventional resources conventional resources. 

There are enormous amounts of heavy oil reserves in the world but the lack of cost 

effective technologies either for extraction, transportation, or refinery upgrading hinders 

the development of heavy oil reserves. 

One of the critical problems with heavy oil and bitumen is that they require large 

amounts of thermal energy and expensive catalysts to upgrade. This thesis demonstrates 

that electron beam (E-Beam) heavy oil upgrading, which uses unique features of E-

Beam irradiation, may be used to improve conventional heavy oil upgrading. E-Beam 

processing lowers the thermal energy requirements and could sharply reduce the 

investment in catalysts. The design of the facilities can be simpler and will contribute to 

lowering the costs of transporting and processing heavy oil and bitumen.   

E-Beam technology uses the high kinetic energy of fast electrons, which not only 

transfer their energy but also interact with hydrocarbons to break the heavy molecules 

with lower thermal energy. 

In this work, we conducted three major stages to evaluate the applicability of E-

Beam for heavy oil upgrading. First, we conducted laboratory experiments to investigate 

the effects of E-Beam on hydrocarbons. To do so, we used a Van de Graff accelerator, 

which generates the high kinetic energy of electrons, and a laboratory scale apparatus to 

investigate extensively how radiation effects hydrocarbons. Second, we studied the 

energy transfer mechanism of E-Beam upgrading to optimize the process. Third we 

conducted a preliminary economic analysis based on energy consumption and compared 

the economics of E-Beam upgrading with conventional upgrading. 
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The results of our study are very encouraging. From the experiments we found 

that E-Beam effect on hydrocarbon is significant. We used less thermal energy for 

distillation of n-hexadecane (n-C16) and naphtha with E-Beam. The results of 

experiments with asphaltene indicate that E-Beam enhances the decomposition of heavy 

hydrocarbon molecules and improves the quality of upgraded hydrocarbon. From the 

study of energy transfer mechanism, we estimated heat loss, fluid movement, and 

radiation energy distribution during the reaction. The results of our economic evaluation 

show that E-Beam upgrading appears to be economically feasible in petroleum industry 

applications. 

These results indicate significant potential for the application of E-Beam 

technology throughout the petroleum industry, particularly near production facilities, 

transportation pipelines, and refining industry.  
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CHAPTER I 

INTRODUCTION 

 

One of the greatest challenges facing our continued use of petroleum as we 

transition to a balanced use of various energy sources is that the largest remaining 

reserves of petroleum are made of molecules that are large and difficult to upgrade. For 

example, three oil sand areas (Athabasca, Cold Lake, and Peace River) in Canada 

contain an estimated 172.2 billion bbl of remaining reserves (Elliot 2008). However, 

limitations on current extraction, refining, and upgrading technologies limit production 

and development to 1% of heavy oil deposits worldwide (Yan 2002; Dickenson 1997).   

Minimum upgrading implies reducing the oil viscosity without adding costly 

solvents to facilitate transportation. The most severe and common upgrading method is 

to break down heavier molecules to obtain higher quality products such as gas oil and 

gasoline, which requires a substantial amount of thermal energy and expensive catalysts. 

Current upgrading methods based on thermo-catalytic-cracking (TCC) require very large 

capital investments, high operating costs, and vast and complex facilities, and also 

resulted in chronic bottlenecks. The biggest limitation is that any TCC-based upgrading 

expends the equivalent of about one third of the energy of the oil processed, with the 

energy taking the form of steam and heat (Zhussupov 2006; Raseev 2003).  

Many laboratories all over the work have conducted research on the radiation 

chemistry of hydrocarbons since the mid-1920s. In 1965, Salvoy and Falconer used a 

VDG E-Beam generator and a gamma ray machine to show that the effects of irradiation 

of n-hexadecane (n-C16) are apparently independent of source and dose rate. Wu et al. 

(1997) conducted n-C16 radiation thermal cracking (RTC) with gamma rays and found 

that radiation enhances the cracking process. Recent research of polymer cracking with 

E-Beam (Miao et al. 2009) found that irradiating polymer causes main chain scission at  

_________________ 
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doses below 200 kGy. 

By using a viscous, high paraffin, high sulfur content crude under a very high 

dose rate (1~4 kGy/s) for a RTC experiment, Zaykina et al. (2001, 2002, 2004, 2004) 

observed sulfur content reduction, isomerization, and polymerization. In addition, 

Zaykina’s group (2004) conducted RTC of bitumen and observed an increase in 

isoparaffins and light oil yield with a slight reduction of aromatic components. The 

greatest problem during thermal cracking arises from reactions involving aromatic feed 

since aromatic compounds in the feed have a very high tendency to undergo 

polycondensation reactions that results in coke formation (Simanzhenkov, 2003).  

However, their reports lack important information such as descriptions of the 

experimental procedures, dose calibration, and sample size. Furthermore, they used 

samples from Kazakhstan and the Caspian area only and, samples from other areas may 

produce different results. Therefore, discerning a rigorous cause-and-effect relationship 

in radiation experiment requires well-defined oil samples.  

Zaykin et al. (2003) also analyzed energy consumption of hydrocarbon chain 

cracking reactions for different types of processing. They reported that radiation thermal 

processing saves a significant amount of energy compared to conventional thermal 

processing methods. However, they did not describe the system with which they 

evaluated the energy consumption. Their previous paper (Zaykin et al. 2003) described a 

layout of hydrocarbon enhancement electron-beam technology (HEET). However, the 

paper did not provide details of the process mechanisms, operating condition, and 

specification of the facility.  

Zaykin’s recent paper (2008) verified the theoretical concept of low-temperature 

radiation-induced cracking of liquid hydrocarbon through radiation cracking 

experiments. However, the reported dose rate is too high and there is no description of 

the experiments and oil samples.  

Using some of experimental data, Zhussupov (2006) evaluated the economic 

feasibility of E-Beam upgrading and compared it with conventional upgrading. However, 

his work has several simplifications and lots of uncertainties.  
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1.1 Objective 

The main objective of this research is to investigate the effects of E-Beam 

irradiation on hydrocarbons and evaluate economics and potential applications of E-

Beam technology throughout petroleum industry.  

1.1.1 Investigation of E-Beam Irradiation on Hydrocarbons 

In this study, we will investigate the effects of radiation on hydrocarbons in order 

to resolve the unknowns and to clarify the ambiguity of the experimental results of 

previous works.  

To analyze accurately the fundamental behavior of E-Beam radiation on 

hydrocarbons, we will study pure n-C16, a naphtha cut, a combination of a well-defined 

hydrocarbon groups, and asphaltene to evaluate the effect radiation on heavy and very 

viscous components. In the experiments, we will change experimental conditions and 

setup to evaluate the effects of E-Beam radiation under different temperature, radiation 

exposure, and residence time. 

It is very important to estimate how much energy absorbed in the system during 

the experiment. Therefore, it is essential to study energy transfer mechanism of the 

process. To estimate the energy transfer mechanism in the system, we will conduct two 

simulations: heat transfer simulation using computational fluid dynamics (CFD), and 

radiation transport Monte-Carlo simulation. 

1.1.2 Potential Applications and Economic Evaluation 

 With the results we obtained from the laboratory investigation, we will propose 

potential applications of this technology. In addition, we will introduce an available 

industrial scale E-Beam machine which can be used for the potential application. Using 

the specification of the machines and our experimental results, we will conduct 

preliminary economic evaluation to compare E-Beam upgrading and conventional 

upgrading based on the energy used in each process. 
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1.2 Literature Review 

1.2.1 Heavy Oil Background 

The global energy trend forecasts point to an increasing demand of fossil fuel 

over the next decades. However, the crude oil share in the total primary energy supply 

will remain around 35% until 2030 (Saniere et al. 2007). Thus, the remaining 65% of the 

energy supply must come from other non-conventional resources such as tar sands, 

extra-heavy oil, and oil shale. Tremendous amounts of heavy oil resources are available 

in the world. Fig. 1.1 shows the total world oil reserves, and  indicates that heavy oil, 

extra heavy oil, and bitumen make up about 70% of the world’s total oil resources of 9 

to 13 trillion bbl (Alboudwarej et al. 2006). In addition, conventional oil reserves are 

depleting. Fig. 1.2 shows that crude oils have become heavier and sour, with the 

likelihood of further deteriorating quality. 

 

 

 

 

 

Fig. 1.1—Total world oil reserves (Source: Alboudwarej et al. 2006). 
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Fig. 1.2—US refinery input quality from 1984 to 2002 and USGC refinery input quality per day 

from 1985 to 2015.  (USGC: US gulf coast refinery, HiTAN: high toxic acid number) 

 

Making those unconventional oil reserves profitable requires an increased focus 

on technology that make the exploitation of heavy crude oil economically viable. To 

accomplish this, we must develop cost-effective ways to upgrade the heavy oil by 

removing sulfur, water, salts, and other impurities, decreasing the density, and/or 

reducing the viscosity (Agrell et al. 2007). 

Heavy oils are characterized by low H/C ratios, high viscosities, and high 

concentrations of metals and hetero-atoms, such as sulfurs and nitrogen (Wangen et al. 

2007).  In the petroleum industry, crude oils are classified based on viscosity and API 

gravity. Fig. 1-3 shows the classification of crude oils (Khan 2007). From the figure, we 

can consider crude oils with API gravity lower than 20 and viscosity higher than 100 cp 

as heavy crude oils.  
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Fig. 1.3—Typical crude oil viscosity and API ranges for conventional to extra heavy oil (Khan 2007).  

 

The following is a brief discussion about some specific problems that heavy oil 

poses for the E&P and the Refining industry. As discussed earlier, transportation 

problems exist with heavy oils because of their high viscosity. The current methods 

available to transport heavy oil include dilution, partial upgrading, and insulation or 

warming of pipelines (Koppel et al. 2002; Argillier et al. 2005; Veith 2007), though 

these methods are expensive. In addition, the high sulfur content of heavy oil causes 

pipeline corrosion which is a major cause of pipeline failures. The easiest way to remove 

sulfur is field upgrading using cracking methods (Khan 2007). Therefore, a promising 

alternative for the heavy oil transportation problem is to apply cost effective field 

upgrading technology. The refining side also has several problems because of the high 

aromaticity, high molecular weight, and high heteroatom content of heavy oil (Yasar 

2001). Thus, refining heavy oil requires excessive thermal energy. For catalytic 

processes, very expensive catalysts must be used, though these may become poisoned or 

inactive, and will increase the complexity of the operation. Another problem is that it 

requires many large-scale facilities. Therefore, conventional upgrading must be 

improved by applying new innovative technology to resolve these problems in both the 

E&P and Refining industry.  
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1.2.2 Hydrocarbon Upgrading 

Upgrading is converting heavy crude oil into light, higher value crude or into 

valuable transportation fuels. There are several technologies available to do this. The 

most common upgrading technologies are thermal cracking (TC) base technologies such 

as visbreaking, and delayed and fluid coking (Lott et al. 2005). During cracking, larger 

molecules break down to smaller molecules via C–C bond cleavage, which happens with 

free-radical chain reactions. Fig. 1-4 illustrates the main chemical reactions during 

hydrocarbon-hexadecane thermal cracking. During the cracking, larger molecules break 

down to smaller molecules via C–C bond cleavage, initiated by free-radical formation. 

Free radicals are molecular species with unpaired electrons that have a highly reactive 

nature.  

 

Fig. 1.4—Main chemical reactions during n-C16 thermal cracking.  The n-C16 molecule breaks into 

two free radicals and many different chemical reactions initiated by the free radicals. 

 

In case of radiation thermal cracking of hexadecane, C-H dissociation is one of 

the predominant processes. Hydrogen atoms produced from C-H dissociation easily 

undergo hydrogen abstraction leading to H2 formation and can produce alkene products 

(Wu et al. 1997). Fig. 1.5 illustrates several reactions that lead to hydrogen formation 

and olefin formation by radiation process.  

 

(Radical formation) 

(H abstraction) 

(Radical decomposition) 
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Fig. 1.5—Main chemical reactions during n-hexadecane radiation thermal cracking that produce 

hydrogen (Salvoy et al. 1965). 

 

1.2.3 Radiation Background 

The energy of an electron is usually measured in electron volts (eV). An electron 

volt is the energy acquired by one electron at a potential difference of 1V. Electrons 

passing through neutral material excite and ionize atoms, so that they can also emit 

energy (Turner 1986). When a charged particle interacts with a medium, it produces an 

ionization event or ion pair production. Electrons may interact either with the Coulomb 

field of the nucleus of an atom or with the electron shell in elastic or non-elastic 

interactions. When the energetic electrons interact with the electrons of the absorbing 

material in non-elastic interaction they slow down, and ionization or excitation of the 

absorbing material results. In the course of elastic scattering, the direction of interaction 

is determined by the energy of the electrons and the nature of the absorbing material 

(Foldiak 1981). Stopping power is the expectation value of the rate of energy loss per 

unit of path length x by a charged particle of type Y and kinetic energy T, in a medium of 

atomic number Z (Attix 1986). Mathematically, it is expressed as 

 
ZTYdx

dT

,,









,………………………………………………….…………. (1.1) 

The typical unit of stopping power is MeV/cm or J/V ( )/10602.1/1 11 mJcmMeV  . 

If we divide the stopping power by the density  of the absorbing medium, it results in a 

quantity called the mass stopping power which is expressed as 










dx

dT


,………………………………………………….……………... (1.2) 
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The typical unit for mass stopping power is MeV cm
2
/g or Jm

2
/kg.  

 The range R is a charged particle of an electron of a given energy in a given 

medium; it is the expectation value of the path length x that it follows until it comes to 

rest (Attix 1986). Due to the stochastic nature of interactions, two electrons of identical 

initial energy will not have identical path lengths (Braby 2008). A similar but not 

identical quantity is called the CSDA (continuously slowing down approximation) range 

(Beger and Seltzer 1983).  The CSDA range is defined as  














0

0

1
T

CSDA dT
dx

dT
R


,…………………………………….…………. (1.3) 

where 0T  is the starting energy of the electron. 

If 








dx

dT


is given in MeVcm

2
/g and dT is MeV, then CSDAR  is given in g/cm

2
. 

Absorbed dose, defined by radiation energy per unit mass, is a measure of that 

part of the energy transferred to the irradiated material that results in the formation of 

ions and excited molecules. In other words, it is the energy absorbed in unit mass of a 

material that can generate chemical or physical change in the irradiated material. The 

absorbed dose is determined by the characteristics of the radiation field and the 

composition of the stopping material (Woods 1994).  

Absorbed dose is the expectation value of the energy imparted to the matter per 

unit mass (Attix 1986). The unit for this is J/kg or kJ/kg which, according to the 

International Standard (SI), is given the special name gray (Gy) or kilo gray (kGy). If we 

have one kilogram of stone and if this stone received radiation energy equal to 1 kilo 

joule, the radiation dose for this stone is 1 kGy (Yang 2009). 

Radiation technology is used in many different fields for different purposes (Fig. 

1.6). For food treatment and safety, such as food pasteurization, we use a dose range of 

0.1~3kGy. For Gemstone coloring, we use very high dose range above 1500 kGy. We 

also receive radiation doses in our common life. Natural background radiation is around 

3 miligray per year. So, each individual gets around 3 miligray yearly. In comparison, a 
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hospital CT scan produces a dose of around 10 miligray. As a reference, the radiation 

dose we used for our asphaltene experiment is around 3.1 kGy.  

 

. 

Fig. 1.6—Radiation dose range for specific treatment. 

 

Dosimetry is the study of the physical quantities of concern for radiation 

applications and for radiation protection. The goal of dosimetry for health physics 

application is to evaluate the potential consequences of a radiation exposure. To do this 

we need to determine the dose at a control volume within the object exposed (a part of 

the person’s body). In our application (hydrocarbon upgrading) our specific location is 

the entire volume of hydrocarbon in the reactor since we want to upgrade the entire 

sample placed in the reactor using E-Beam radiation.  

The following discussion helps to clarify the concept of radiation energy.  In 

radiation dosimetry, radiation energy is categorized into two parts, dose and kerma 

which are based on energy imparted and energy transferred. The energy imparted is 

defined as, 
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QRR outin  , ..……..…………………………………………….. (1.4) 

where inR  is the radiant energy incident on the volume and outR  is the radiant energy 

emerging from the volume. Q is the sum of all changes (decreases: positive sign, 

increases: negative sign) of the rest mass energy of nuclei and elementary particles in 

any nuclear transformations which occur in the volume. An example is shown in Fig. 1.7. 

A -ray hv1 is emitted by a radioactive atom in V. The photon (hv1) undergoes pair 

production, giving kinetic energy T1 to the electron T2 to the positron. Both are 

annihilated and the resulting two photons (0.511 MeV each) are shown escaping from V.  

Then the energy imparted () is,  = 0-1.022 MeV + Q 

where Q = hv1 – 2m0c
2
 + 2m0c

2
 = hv1 

hv1
T1

T2

e+

e_

hv=0.511 MeV

hv=0.511 MeV

Control

Volume

 

Fig. 1.7—Example involving-ray emission, pair production, and positron annihilation (Attix, 1983). 

 

  is a stochastic quantity. The expectation value of , termed the mean energy  , is a 

non-stochastic quantity. We should remember that   is specific to the material of the 

absorber as well as radiation.   is usually expressed in Joules (J).  Now we can express 

the absorbed dose as follows:  

dm

d
D


 , ..……..…………………………………………………………. (1.5) 
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Kerma is the quotient of trdE  by dm. trdE is the sum of the initial kinetic energies of all 

the charged ionizing particles liberated by uncharged ionizing particles in a material of 

mass dm.  Kerma, K, is defined as 

dm

dE
K tr  (J/kg) , ..……..…………………………………………….…. (1.6) 

The Kerma is expressed in the same units as dose.  From the concepts of dose and kerma, 

we can derive very important concepts which make dose measurement more convenient. 

K is relatively easy to calculate but probably impossible to measure. D is relatively easy 

to measure but difficult to calculate. This is because we are able to calculate how much 

radiation energy transferred to a target material but we cannot calculate how much of the 

transferred energy was absorbed by the target material without measuring it. Under very 

special circumstances (Radiation equilibrium and charged particle equilibrium), D=K.  

Fig. 1.8 shows a set of circumstances in which charged particle equilibrium can occur. 

Electron e2 enters the control volume with a kinetic energy T equal to that carried out by 

electron e1. If e1 then emits an x-ray hv1, e2 will also emit an identical x-ray hv2 (Braby 

2008).  

e2

e1

T

T

e'1

e'2

Control

Volume

 

Fig. 1.8—Circumstance when CPE exists in a control volume (Braby 2008). 

 

We used a concept of charged particle equilibrium (CPE) to measure dose.  If CPE exists, 

then                 
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 en

c

CPE

KD , ..……..…………………………………………….. (1.7) 

where   (energy fluence) is defined by energy per unit area (J/m
2
), and 











en  is the 

energy absorption coefficient.   

Now we use this concept for measuring the absorbed dose. When we have CPE 

in the air,  

 
aircair KD   , ..……..………………………………………………….. (1.8) 

Therefore, exposure, which is the absolute volume of the total charge of the ions of one 

sign produced in the air when all the electrons in the air of mass dm are completely 

stopped, is calculated from 











air
air

W

e
DX  (C/kg), ..……..……………………………………….. (1.9) 

airW  is the energy required to generate a positron and an electron, also called an ion pair 

(Attix 1986).  

where 
CJeVJ

electronC

pairionpieV

e

Wair /97.33/10602.1
/10602.1

)..(./97.33 19

19



 


 

Now, let’s calculate dose from the above concepts. Suppose we have the 

following condition in our farmer ion type chamber, the most common chamber 

designed for absolute photon and electron dosimetry with therapy dosemeters (Fig. 1.9).  

 

Fig. 1.9—Schematic of farmer ion chamber. 1 mg is mass of air in the chamber. 
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From the given condition, we can calculate the dose rate of the machine.  As 

mentioned before the energy to produce an ion pair is pieVWair ./97.33 . Since 1 

Coulomb is 18102415.6  electrons then one electron is 1910602.1  Coulomb. Thus, the 

number of electrons produced in the chamber per second is 

11188 1051207.51024151.610831.8  IC  

Radiation energy absorbed in the ion chamber is the energy required to produce a pair of 

electrons multiplied by the number of produced electrons.  

sec/1087245.11051207.5)/(97.33 1311 eVelectroneV   

Since 1 Joule is eV181024151.6  the energy rate is  

 

 

Therefore, the absorbed dose rate is  

 

 

This is the absorbed dose rate (nominal dose) for this machine. If we run this 

machine for one hour, the absorbed dose measured in the chamber would be 

kGysskGy 96.123600)/3(  . This is the reference dose that is then used to measure 

and quantify the absorbed dose of other media since this is the only accurate way of 

measuring radiation dose with the current technique. However, this is not an absorbed 

dose for a different media where charged particle equilibrium is not valid. Therefore, in 

our experimental setup, the absorbed dose in hydrocarbons can be calculated by 

matching the reference dose data and Monte-Carlo simulation. 
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1.3 Summary 

 

Chapter I presents the background and literature review for this research. 

Chapter II presents methodology for this research. First, we described the facility 

we used for our experiment. Then, we explained some important techniques and 

concepts used to measure and calibrate the radiation dose, followed by descriptions of 

the experimental setup, procedure, and results. 

Chapter III presents the simulation study of the E-beam upgrading process, 

which shows the energy distribution, energy loss, and amount of energy deposited 

during the process.  

Chapter IV presents potential applications and the economic feasibility of this 

technology.  

Chapter V presents the conclusions, recommendations, and possible extensions 

of this work. 
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CHAPTER II 

LABORATORY INVESTIGATION 

 

 In this work, we used a Van de Graff accelerator to generate the high kinetic 

energy of electrons. We also set up a laboratory scale apparatus to investigate 

extensively the radiation effects on hydrocarbons. Using the E-Beam machine and the 

apparatus, we conducted two parallel experiments, one with radiation and the other 

without radiation. To analyze the fundamental behavior of E-Beam radiation on 

hydrocarbons accurately, we evaluated three oils of increasing complexity—pure n-C16, 

a naphtha cut, a combination of a well-defined hydrocarbon groups, and an asphaltene-

sample provided from TOTAL Petrochemicals U.S.A. in order to see the radiation 

effects on heavy and very viscous hydrocarbons. 

2.1 Description of E-Beam Accelerator and Operation 

2.1.1 E-Beam Machine 

A Van de Graff or VDG (Fig. 2.1) is an electrostatic accelerator which produces 

a beam of fast (high kinetic energy) electrons in continuous mode. VDG is a versatile 

research tool because it provides a steady-state beam with good energy regulation 

(Humphries 1986). This machine is able to accelerate electrons to selected energy levels 

between 0.75 MeV and 2MeV. In this experiment, we accelerated electrons to 1.35 MeV 

since this is chosen to be the ideal energy level for the continuous operation of this 

machine. This is a relatively low level of kinetic energy compared to other industrial 

scale accelerators, which can produce 10 MeV of electrons. The main mechanism of this 

machine is based on the mechanical transfer of charge from the ground to the high 

voltage terminal (Chao et al. 1999). Fig. 2.2 shows the configuration of the main parts of 

a Van De Graff electrostatic accelerator. Electrons generated by corona discharge or 

physical rubbing in gas are sprayed on to a moving belt. 
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Fig. 2.1—Van De Graff accelerator (VDG) at Texas A&M University. 

 

A DC-power generator is used as an electron source. The plastic rubber moving belt has 

a high dielectric strength and is immersed in an insulating gas at high pressure. The 

moving belt transports the sprayed electrons or charges to a high voltage metal terminal 

where the charge is collected upon contact with a metal comb of needles. The charge is 

then accelerated back to the ground (Humphries, 1986). 

 

 

 

Fig. 2.2—Schematics of main parts Van De Graff accelerator (Wilson 2001). 
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2.1.2 Van De Graff (VDG) Tune Up 

We decided to upgrade the VDG machine (Kim and Fortes Da Silva 2008) to 

achieve higher doses and robust operation. The following items were repaired or 

replaced.  

Motor Driven Belt. This transports the electrons from the ground to the high 

voltage terminal, thereby charging the terminal to the desired voltage (Fig. 2.3). It was 

properly cleaned with lint free paper and its static tension (200 lb) was adjusted to 

reduce flapping and slippage to a practical minimum within the operating pressures of 

the pulley bearings. 

Corona Discharge. This is the belt charge unit that draws electrons from the 

ground by means of an electronic circuit and sprays them onto the moving belt by an 

arrangement of corona points (Fig. 2.3). Those points were found to be quite dirty 

because of the dust formed from using the belt. The corona needles were cleaned. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3—Motor driven belt and corona discharge. 

 

 

Corona 

Belt 
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Column. This supports the high voltage terminal, provides an alleyway for the 

belt, and maintains a uniform potential gradient from the high voltage terminal to the 

ground. We checked the resistances of the resistors and found that one of the glass 

spacers was cracked. We used a specific epoxy adhesive with very low conductivity-

reactivity and high mechanical strength to repair it.  

Cathode head. This is the heart of the machine, taking the electrons from the 

high voltage terminal and emitting them into the accelerator tube. We found that the 

cathode we were using was very old and had some extraneous particles. Therefore, we 

replaced it with a new one. Fig. 2.4 shows cathode head, new cathode, and old cathode. 

 

 

Fig. 2.4—Cathode head, new cathode, and old cathode. 

 

Accelerator tube. Using an electrostatic field, this accelerates the electrons to an 

energy level determined by the voltage of the high voltage terminal, focuses them into a 

beam, and carries them through the tube extension to the exit beam window. Fig. 2.5 

shows the accelerator column and the accelerator tube inside of the column. We found a 

broken part of the tube. Therefore, we replaced it with new accelerator tube.   

Cathode Head New cathode Old Cathode 
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Fig. 2.5—Accelerator tube is located in the accelerator column.  Electrons generated from the 

cathode are accelerated by the electrostatic field of the tube. 

 

In summary, among all the upgrading procedures, the critical works were done 

by the replacement of the accelerator tube and its cathode, which can lead to higher 

electron output, and therefore higher dose rates. The machine now has a new cathode, 

which allows a higher current rate up to 14 Amps, and new accelerator tube. Also, the 

machine is very robust and can operate continuous experiments.   

2.2 Dose Measurement and Calibration 

In chapter I, we discussed about the fundamentals of dose measurement. For 

measuring and calibrating the doses used in our experiment, we created a step by step 

procedure. The steps we used to estimate the radiation dose are: 

 E-Beam distribution measurement and calibration 

 E-Beam measurement using a farmer ion chamber  

 Dose calibration and measurement using radiochromic film 

 Matching data of the farmer ion chamber and radiochromic film 

 Estimate overall dose deposited in the liquid by matching experimental 

data and Monte-Carlo simulation data 
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2.2.1 E-Beam Distribution Measurement and Calibration 

The main purpose of this step is to check the distribution of the E-Beam passing 

through the exit beam window. If the distribution is not centered we modify the path of 

the E-Beam using the bending magnet. Fig. 2.6 describes this step in detail. We attached 

GAFCHROMIC®  HD-810 radiochromic film (RCF) directly to the exit beam window 

of the machine. The RCF changes its color due to the exposure to the E-Beam and the 

intensity of the E-Beam is proportional to the color change of the film. Darker blue color 

indicates an E-Beam composed of dense electrons.    

 

 

Fig. 2.6—RCF is directly attached to the exit beam window to check E-Beam distribution. When E-

Beam passes through the RCF it changes the color of RCF. Darker blue color area of the RCF 

indicates that E-Beam passed through that area. 

2.2.2 E-Beam Measurement Using a Farmer-Type Ion Chamber  

As mentioned earlier, the radiation dose of E-Beam is measured with a farmer-

type ion chamber (Markus Chamber, Type 23343). The Markus chamber is a well-known 

electron chamber widely used throughout the world. Developed by Prof. Markus at Göttingen 

University, Germany, it was the first high-performance ionization chamber for precise dose 

measurements of high-energy electron beams in radiation therapy. Its small sensitive volume and 

its waterproof construction make this chamber suitable for dose distribution measurements in a 

water phantom (Direct Scientific 2009). The underlying assumption for this measurement 

technique is that charged particle equilibrium (CPE) exists. In our experiment, however, 
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charged particle equilibrium is not valid since the electrons coming in to the reactor 

(aluminum can) cannot fully penetrate the fluid. The limited penetration depth of the E-

Beam results in electrons coming in to the reactor stopping somewhere in the reactor’s 

hydrocarbons.  

Therefore, if we use this technique to report the radiation dose for the 

hydrocarbons in the reactor it cannot accurately represent the radiation energy absorbed 

in the hydrocarbons. However, we can use the number that we get from this technique as 

a reference nominal dose since this is the only accurate way of measuring and 

quantifying radiation dose using the current technique. Using this reference dose we are 

able to conduct radiation transport Monte-Carlo simulation to estimate the radiation dose 

distribution in the hydrocarbons, or average dose.  Fig. 2.7 shows the Markus chamber. 

This chamber has a volume of 0.055cc and measures a maximum dose of 50 Gy. We 

connected the chamber to the exposure meter (Fig. 2.8) and operated the E-Beam 

machine until the gauge indicated the maximum number. 

 

 

Fig. 2.7—The Markus chamber has volume of 0.055cc and measure maximum dose of 50Gy. The 

membrane material is polyethylene of 0.03 mm thickness. The guard ring borders the measuring 

volume. 
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Fig. 2.8—Exposure meter measures exposure in the Markus chamber and provides measured value 

in röntgen (R). 1 R is kgC /1058.2 4  

  

Fig. 2.9 shows the parallel plate transmission ion chamber directly attached to 

the exit beam window. The ion chamber measures the charge C resulting from electrons 

passing through it.  Point P is the location of the Markus chamber.  

 

 

Fig. 2.9—Location of the Markus ion chamber (Point P) and the parallel plate transmission ion 

chamber (Zhussupov 2006). 
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From the control room, we operate and monitor the accelerator (Fig. 2.10) and 

read the charge measured from the parallel plate transmission ion chamber.  We used 9V 

batteries connected in series to supply voltage to the parallel plate transmission ion 

chamber. 

 

Fig. 2.10—Counter panel located in the control panel reads charge of electrons passing through the 

parallel plate transmission ion chamber. 

 

After measuring the dose with the Markus chamber, we made a linear relation 

between the measured radiation dose and the charge measured from the parallel plate 

transmission ion chamber attached to the exit beam window (Fig. 2.11).   Since we can 

measure a maximum dose of 50 Gy with the Markus chamber, extrapolating a higher 

dose requires extending the linear relation. Therefore, with the linear relation (Fig. 2.11) 

we were able to estimate a higher dose by reading the counter of the transmission ion 

chamber.  
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Fig. 2.11—Linear relation between radiation dose measured from the Markus chamber (Farmer-

type ion chamber) and counter measured transmission ion chamber. With this relation we can 

extrapolate the relation after 50 Gy. 

 

2.2.3 Dose Calibration and Measurement using Radiochromic Film 

In the previous step we set up a linear relation between the transmission ion 

chamber and the Markus chamber to estimate radiation dose at point P. We can then 

estimate dose at any point in which we are interested. We used GAFCHROMIC®  HD-

810 (radiochromic film) to measure conveniently radiation dose in any area (Fig. 2.12). 

We attached several pieces of film inside the wall of the aluminum container to measure 

the dose. Especially, one film was placed in the same position where we placed the 

Markus chamber (farmer-type ion chamber). Therefore, we were able to set up a linear 

relation between the dose and the optical density of radiochromic film.  
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Fig. 2.12—Location of RCF and Marcus chamber (Famer ion chamber) (Kim and Yang 2009). 

 

2.2.4 Matching Data of the Markus Chamber (Farmer ion chamber) and 

Radiochromic Film (RCF) 

When electrons pass through the radiochromic film (RCF) they increase the 

optical density of RCF. We then can convert the optical density of RCF to dose (Fig. 

2.13) with the linear relation between the counter of the transmission ion chamber and 

the radiation dose (Fig. 2.11). When we measure the optical density of RCF using a 

spectrophotometer it is important to start measuring it about 48 hours after the end of 

irradiation since this is the minimum saturation time of RCF.  

 

 

Fig. 2.13—Dose estimated from linear relation of the Markus chamber (a) can be compared with 

optical density of RCF (b). New linear relation (b) makes it possible to estimate radiation dose with 

RCF. 
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2.2.5 Estimate Overall Dose Deposited in the Liquid by Matching Measured Data 

and Monte-Carlo Simulation Data 

 Even though we are able to estimate the radiation dose at a point of our interest, 

we cannot estimate average dose in the object where the charged particle equilibrium 

(CPE) is not valid. To resolve this problem we estimated the average dose in the object 

by matching the measured data with the Monte-Carlo simulation data. Fig. 2.14 shows 

the radiation dose distribution of the hydrocarbon sample from Monte-Carlo simulation. 

Notice that the dose in each layer is not uniform since the penetration of electrons in the 

hydrocarbon is limited. From the Markus chamber and RCF, we estimated the radiation 

dose of measuring points located on the outer and inner wall of the reactor. Using 

Monte-Carlo simulation, we determined the radiation dose distribution in the control 

volume (Fig. 2.14). Then we inputted the value of the measured dose into the geometry 

of Monte-Carlo simulation code. After inputting the value into the code, we ran the 

simulation and the computer will automatically calculate the average dose of the entire 

control volume by integrating the dose distribution in each layer.   

 

Fig. 2.14—Radiation dose distribution of asphaltene generated from Monte-Carlo simulation (top 

view) (Kim and Yang 2009). 
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2.3 Experimental Setup and Procedure 

Fig. 2.15 describes the experimental setup for distillation of n-C16 and naphtha 

and cracking of asphaltene. An aluminum alloy reactor (oil container) is located on a 

heater that is placed in front of an E-Beam accelerator (VDG accelerator). The 

distillation unit is connected to the reactor, and the two thermocouples measure vapor 

temperature and copper base (bottom of the reactor) temperature. Since the bottom of the 

reactor is not flat we used a custom-made copper base which precisely fit the bottom of 

the reactor and inserted a thermocouple to measure the bottom temperature. The 

temperature data is transported to the data acquisition module every 10 seconds. A 

sampling bag is connected to a distillation unit to collect the non-condensable gases 

produced during the experiment.  

Fig. 2.16 shows experimental setup for n-C16 and naphtha reflux. The setup is 

similar to Fig. 2.15 but the main difference is that we used a reflux condenser to keep 

fluid in the reactor. After the experiment we collected the liquid sample in the reactor for 

chemical analysis.  

 

 

Fig. 2.15—Experimental setup for distillation of n-C16 and naphtha and cracking of asphaltene. 
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Fig. 2.16—Experimental setup for reflux of n-C16 and naphtha. 

2.3.1 Design of Reactor 

 The objective of this work was to evaluate the effective radiation delivery in two 

different oil containers: aluminum can and glass flask. We measured the doses in several 

points of an aluminum can and a glass flask using the same measurement method used 

for dose calibration. To measure the effective delivery of the radiation dose we placed 

pieces of radiochromic film at the outside and inside the aluminum can and flask to 

determine the energy loss caused by differences in thickness and density. From the 

measurement, we found that the dose measured inside of the aluminum can is about 4% 

less than the one outside. However, the dose measured inside the glass flask is only 1/4 

of the outside dose. This is because the thickness of the flask is 10 times that of the 

aluminum can. The result is that 3/4 of the radiation energy is absorbed or scattered at 

the wall of the flask. This is the main reason for choosing an aluminum can for the 

reactor since its wall thickness is very thin (0.2 mm), and allows transfer of  most of the 

radiation energy to the inside of the reactor without the electrons losing a substantial 

amount of kinetic energy. We procured approximately 4000 12-oz aluminum cans and 



 

 

30 

4000 8-oz aluminum cans provided from the Crown Beverage Packaging Company of 

Mississippi.    

2.3.2 Reactor Design Change 

Throughout the course of our experiences, we made modifications to achieve an 

optimum reactor design. The main problems of the previous reactor (Fig. 2.17) were 

reproducibility and leaking. It used an expensive silicon rubber stopper to connect the 

reactor and the distillation unit. In addition, the silicon rubber stopper was glued to the 

aluminum can using a high temperature silicon gasket maker. Once we use a reactor for 

an experiment we had to make a new reactor with a new silicon rubber stopper. 

Furthermore, even though the aluminum can and the silicon rubber were glued together, 

vapor frequently leaked through the glued area.  

 

 

Fig. 2.17—Previous reactor design (Daniyar Zhusspov 2006).  

 

The new design of the reactor included using a custom-made pyrex glass helmet 

which has a 24/40 female joint (Fortes Da Silva 2008). We covered the open top of the 

aluminum can with the glass helmet so we were able to insert the male 24/40 joint of the 
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distilling condenser into the female joint. The biggest concern in this design was leaking 

from the contact area between the glass helmet and the open top of the aluminum can. 

To solve this problem a thermal resistant silicon material was used to make a gasket and 

placed in between them. However, this did not work well; the silicon gasket started 

deforming as the temperature approached the high boiling point of n-C16 (287
o
C). We 

then replaced silicon gasket with a thermal resistant rubber gasket. This gasket is 

designed to seal better than the silicon gasket. However, leaking started again as the n-

C16 reached its BP.  Fig. 2.18 shows the leaking of n-C16 when using a silicon and rubber 

gasket. 

 

Fig. 2.18—Deformation of silicon and rubber gasket results in leakage of n-C16 in the reactor. 

Therefore, the result shows that silicon and rubber gasket cannot stay with boiling temperature of 

n-C16. 
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 To resolve the problems with the sealing gasket, we found new sealing materials 

called ―style-760‖ which can function effectively up to 700
 o

C. The sealing gasket was 

then custom-made by Fluid Sealing Products Ltd (Fig. 2.19). However, this material was 

not very rubber-like so it required enough vertical pressure to seal the contact area. As a 

result, we arranged a special setup for the reactor to provide uniform vertical pressure to 

the helmet (Fig. 2.20) and then tried the leaking test again. However, at very high 

temperatures (500
o
C of copper base temperature), the aluminum can started collapsing 

due to thermal stress and vertical stress, causing leakage. Therefore, we concluded that 

the gasket sealing method is not appropriate for sealing hydrocarbons with a high boiling 

point.  

 

Fig. 2.19—Custom made gasket “style -760” can stay with maximum temperature of 700 
o
C. 
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Fig. 2.20—Custom made apparatus provides uniform pressure to seal the gasket in the contact area. 

However, aluminum can start collapsing when the fluid reaches high temperature because of 

thermal stress. 

  

 Another solution we proposed was to seal the contact area with a high temperature 

sealant. We found special sealing silicon sealant with very good thermal resistance (up 

to 400
o
C). We glued the contact area with the silicon sealant (Fig. 2.21). Finally, we 

were able to prevent leaks at high temperatures.  However, there was a problem with the 

glass helmet reactor design. In the reactor design, the inside of glass helmet must be 

glued to the open top of an aluminum can. Therefore, contamination of feedstock by the 

sealant material will be possible especially when distilling or cracking hydrocarbons at 

very high temperature. During the previous leaking test with n-C16, small amounts of 

sealant material were found in the residue of the n-C16. 
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Fig. 2-21— High temperature silicon sealant is glued in the contact area. However, fluid in the 

reactor may contact with the sealant and get contaminated by the sealant. 

 

A solution for this problem was to custom-make a  glass joint which precisely fit 

the open top of aluminum can and then glue the outside of the contact area (Fig. 2.22) 

(Fortes Da Silva 2008). In the center of the customized glass joint, we connected 24/40 

female glass joint into which we insert the male joint of the distilling condenser. As a 

result, contamination of the sealant material did not appear. The advantages of using the 

new reactor design include: (1) No contamination of sealant material since it is glued 

outside of contact area, (2) The curing time of the high temperature sealant is faster, and 

(3) It is easy to disassemble or reuse the glass.  
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Fig. 2.22—Glass insert is perfectly fit to the aluminum can and high temperature resistant sealant is 

glued in the contact area. 

2.3.3 Reactor Leaking Test 

The purpose of leaking test is to check for any leakage during the experiment. 

Closure of the material balance and accurate component analysis are necessary for this 

process. Therefore, it is very important that there is no leakage during the experiments.     

 The following is the procedure for a leaking test.  

1) Weigh the empty reactor and collector.  

2) Weigh the reactor with feedstock.  

3) Obtain the weight of the sample by difference. ( containerfeedstockcontainerfeedstock mmm   )   

4) After the distillation test, weigh the mass of the feedstock left in the reactor and the 

mass collected in the collector  

5) Weigh the condensates in the condenser. 

7) Check mass balance 
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Mass balance= 
)( ondistillatibeforefeedstock

leftfeedtockscondensateyieldcollected

m

mmm



 
 

8) Acceptable leaking test result is mass balance range of 99% ~ 100% 

*Gases produced during the experiment are collected using a sampling bag however the 

mass of gases is too little so it can be ignored. 

 Table 2.1 shows an example of leaking test of hexadecane. We observed that 

some liquid drops remained in the condenser walls after collecting the liquid sample. 

This is because the low temperature of the condenser wall made the fluid more viscous 

to flow.  

Table 2.1—Mass balance calculation of leaking test result. 

 

2.3.4 Insulation of Reactor 

The purpose of insulation was to minimize heat loss during the experiment. Since 

the reactor we used in the experiment was made of an aluminum can which has a very 

thin wall thickness, a substantial amount of heat loss occurred during the distillation 

process. Insulation of the reactor would minimize this heat loss. We determined the final 

design of an insulation jacket after several tests conducted for the purpose of minimizing 

errors and reducing variability. The custom made insulation jacket, as indicated in Fig. 

2.23 minimizes heat losses substantially. The insulation material, Waletex tape 

manufactured by Wale Apparatus, can withstand a temperature up to 2400
o
F (1316

o
C).    

Weight of collector, g 66.97

Weight of reactor, g 213.69

Weight of reactor + 100ml n-C16, g 281.58

Weight of n-C16, g 67.89

Weight of collector + yield, g 97.28

Weight of reactor + residual oil, g 250.82

Weight of yield, g 30.31

Weight of residual oil, g 37.13

Mass balance, % 99.3
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Fig. 2.23—Insulation of aluminum can is made of custom made pyrex glass cover and glass fiber. 

 

2.4 N-Hexadecane Experiment  

N-hexadecane is a very good model hydrocarbon for evaluating radiation effect 

on hydrocarbons since it is a pure component and a reference component of diesel. We 

used 99% n-C16 purchased from Sigma-Aldrich and conducted three experiments: 

radiolysis, distillation, and reflux. The main reason for using n-C16 for our first 

experiment was to compare our experimental results with the most recent n-C16 radiation 

experiment (Wu et al. 1997). 

2.4.1 N-Hexadecane Radiolysis  

We conducted liquid n-C16 radiolysis to investigate the effect of E-Beam 

irradiation at ambient temperature and atmospheric pressure. We prepared 2ml amber 

vials from VWR (P.N: 66030-084) which have non-hydrocarbon reactive septum inside 

the cap. Each amber vial was filled with 1ml n-C16. We conducted two different 

experiments. First, we irradiated vials with a nominal dose of 500 Gy. Then we 

irradiated vials with a nominal dose of 1kGy (Fig. 2.24).  Nominal dose is a theoretical 
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dose that we can measure at a point of our interest where electrons can penetrate. If our 

point of interest is a fluid volume inside a reactor then the dose absorbed in the entire 

volume of the fluid is always less than the nominal dose.  

 

 

Fig. 2.24—2 ml of vial containing 1 ml of pure n-C16 is irradiated by electron beam. 

 

We analyzed the composition of irradiated and non-irradiated samples using gas 

chromatography-mass spectrometry (GC-Mass) to observe the radiation effect on 

hydrocarbon. From the sample analysis, we found that the component distribution and 

composition of each irradiated and non-irradiated sample is identical. This result 

indicates that there was no composition change in irradiated n-C16 compared with non-

irradiated n-C16. Because the radiation dose was very low no composition change of the 

n-C16 occurred. Furthermore, the reported dose is a nominal dose which means the 

average dose in the n-C16 is even lower, since the glass wall of the vial substantially 

reduces the kinetic energy of electrons entering into the n-C16. The density of the glass 

vial is approximately 2.3 g/cm
3
, and the CSDA range of pyrex glass material when 1.35 

MeV of an electron strikes the material is approximately 0.75 g/cm
2 

(ESTAR 2009). 

This means that the electrons had already used a substantial amount of their kinetic 

energy to pass through the wall of the vial. Therefore, because our machine generates an 

1 ml of n-C16 
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E-Beam of relatively low kinetic energy we had to use a thin wall reactor to deliver more 

electrons. 

2.4.2 N-Hexadecane Distillation Experiment  

We poured 80 ml of n-C16 into the reactor, and measured the total mass of the 

reactor. After building the distillation setup described earlier (Fig. 2.15), we turned on 

the heater, fixing 500
o
C as the target copper base temperature. Simultaneously, we began 

irradiating. The distilled vapor was condensed by the condenser and then sent to the 

collector. The gas sampling bag (SKC foil bag) collected the non-condensable gas 

sample created during the experiment. We kept constant condenser temperature, 23
o
C 

using water circulation pump. Since melting point of n-C16 is 18
o
C we found that 23

o
C is 

optimum condenser temperature to effectively collect the condensed liquid sample. We 

conducted two experiments, identical except for the fact that one was exposed to E-

Beam radiation (Fig. 2.25a) while the other was not (Fig. 2.25b). We compared the 

results of each experiment to determine the radiation effect on the hydrocarbons.  The 

absorbed dose for n-C16 radiation distillation was 0.35 kGy. 

 

 

Fig. 2.25—Experiment (a): VDG machine is not operated; no electrons are provided.  Experiment 

(b): VDG is operated; electrons are provided to the reactor.  

 

a b 
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N-C16 is a single hydrocarbon component which has a boiling point of 287
o
C. In 

this experimental setup, when the n-C16 in the reactor reaches its boiling point, it begins 

to vaporize. The distilled vapor is condensed then due to heat transfer in the condenser 

and the distillate is collected. Fig. 2.26 shows the distillation time of the thermal 

distillation and the radiation thermal distillation experiment.  Fig. 2.26 indicates that the 

time to distill 80 ml of hexadecane is different in the two experiments. The experiment 

using radiation takes a shorter time to distill n-C16. This result illustrates that there was a 

radiation effect on the n-C16 that makes it achieve its boiling point more quickly. This is 

a significant finding because it suggests a way of minimizing the energy required to 

upgrade heavy oil since radiation energy provides a synergetic effect that lowers thermal 

energy needed to upgrade or refine oils. The very small energy of the absorbed radiation 

dose (0.35 kGy) made a big difference in distillation time. Also, this is a reliable result 

since we used pure n-C16 for our experiment; n-C16 is a single component hydrocarbon 

liquid that is not complex compared to multicomponent hydrocarbons. From the gas 

sample analysis using the GC-Mass, we analyzed and compared the components of the 

non-condensable gas samples after distillation with and without E-Beam. We found 

hydrogen content in the gas sample from the E-Beam experiment. However, no 

hydrogen was found in the gas sample that was not exposed to E-Beam radiation. 

Generally, C-H dissociation requiers a high thermal energy (Wu et al. 1997). However, 

C-H dissociation is the predominant reaction in hydrocarbon radiolysis. With the effect 

of electron beam radiation, C-H dissociation was easily occurred during the experiment. 

In addition, more olefins were formed in the gas sample with E-Beam than the one 

without E-Beam. Therefore, the results of the sample analysis, hydrogen and olefin 

formation, indicate that the electrons with high kinetic energy struck the n-C16 and 

transferred their energy by ionizing radiation during the radiation thermal distillation. 
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TD&RTD Distillation Time Comparison
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Fig. 2.26—Distillation Time Comparison:  Distillation time to distill 80 ml of hexadecane with E-

Beam radiation is 25% faster than the non radiation experiment (TD: Thermal Distillation, RTD: 

Radiation Thermal Distillation). 

 

Experimental result comparison with reference  

In 1997, the radiation effect on thermal cracking of n-C16 was studied by several 

researchers at the University of Tokyo (Wu et al. 1997). They conducted radiation 

thermal cracking of liquid phase and gas phase n-C16 using cobalt 60 -radiation in the 

temperature range of 300~400
o
C. The results of our experiments were compared to the 

results from the University of Tokyo. Comparison between our experimental results and 

another experiment conducted using a different experimental setup and radiation source, 

might provide useful insights.  

Wu et al. conducted RTC at 330
o
C which indicates that their operation pressure 

was higher than our pressure (atmospheric pressure). According to the following PVT 

analysis using PVT SIM, we estimated the vapor pressure for the Japanese experiment as 

45~50 psia (Fig. 2.27). Therefore, we found that our experiment was conducted under 

very conservative conditions compared to Wu’s experimental work. Table 2.2 shows a 

comparison of the two experimental conditions.   
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    Fig. 2.27—n-C16 Pressure temperature curve generated from PVT sim. 

Table 2.2—Comparison of two experimental conditions. 

 

 

We compared H2 formation in our experiment and Wu’s experiment. Since C-H 

dissociation is a unique feature of hydrocarbon radiolysis we were able to evaluate the 

Yang et al. 2008 Wu et al. 1997

Feedstock n-Hexadecane 99% n-Hexadecane 99%

Volume of C16, ml 80 5

Process Radiation Assisted Distillation Cracking using an ampule

Temperature, 
o
C 287

o
C 330

o
C

Pressure, psia 14.6 45~50

Process Time, min 26 336

Radiation Source Electron Beam g-ray (cobalt 60)

Dose Rate, Gy/h 808 460

Dose, Gy 350 2576

626oF (330oC): RTC Temp of 
Japanese EXP.

 

625
o
F (330

o
C): RTC Temperature 

of Wu et al. 1997 
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efficiency of each experiment by comparing H2 generation. We calculated the H2 

formation rate constant of our results and Wu’s results. The following assumptions were 

made when conducting the calculation.  

1) Volume of gas per volume of liquid in Wu’s result is proportional to the volume of 

gas per volume of liquid in our result. 

W uLiquid

Gas

Yangliquid

Gas

V

V

V

V





























, ..…….…………………….…………………….. (2.1) 

2) Gases are mostly composed of methane (more than 95%).  

3) Molar volume of gas is measured at standard condition (60
o
F and 14.7psia).   

From Wu’s experimental results, the mass of the gas is 4% of the total mass of 

the liquid and gas mixture. Since mass does not change the mass of gas is 4% of the 

mass of the initial n-C16 liquid. Since we assumed that most of the gases are composed 

primarily of methane, the density and molar volume of the gas can be obtained from the 

methane density and methane molar volume at standard condition. Using the density and 

mass of the gas, the volume of gas collected in Wu’s RTC experiment can be calculated. 

Then, using the volume of liquid and gas from Wu’s experiment and the volume of 

liquid from our experiment, the volume of gas collected from the our experiment can be 

calculated from the first assumption above. We determined the hydrogen formation rate 

constant by using the following equation.  

16

2

2

C

H

H
n

n
K


  (lbmol/hr/lbmol of n-C16) , ..……..…………………………….. (2.2) 

where 
2Hn is moles of hydrogen produced per hour. 
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V
n


 , ..…………………………………………………………....… (2.3) 

  22 % HgasH molnn  , ..…………………………………………………..… (2.4) 

where 
2

%)( Hmol  is mol percent of hydrogen in the gas sample which we determined 

from the gas chromatography analysis.  
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We determined moles of gas from 

   
gas
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gas
Vm

V
n    , ……..…………………………………………………..…….. (2.5) 

where the volume of gas produced from our experiment is, 
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  ,…. ..……..……..…............………..………. (2.6) 

As mentioned previously, we used a very conservative approach when comparing our 

experiment with Wu’s since the vapor pressure of our experiment is 3~4 times less than 

Wu’s work. Table 2.3 shows the result of our calculation. We found that the rate 

constant for our experiment is 20 times higher than Wu’s. This result indicates that the 

E-Beam effect on hydrocarbon is more efficient than the -ray effect.  

Table 2.3—H2 rate constant calculation result 

 

 

 

2.5 Naphtha Experiment 

2.5.1 Naphtha Distillation Experiment  

Naphtha is a distillation cut with a boiling point range from 32
o
C to 145

o
C and 

carbon number ranging from C4 to C9. It consists of more than 50 components, and the 

naphtha was provided by TOTAL Petrochemicals research and technology center. We 

used the same experimental setup (Fig. 2.15) used for the n-C16 experiment and poured 

Yang et al. 2008 Wu et al. 1997

nC16, lbmole 5.88E-04 3.77E-05

Vgas, m
3 3.68E-03 2.28E-04

ng, lbmole 3.32E-04 2.13E-05

nH2, lbmole 2.98E-07 9.63E-10

KH2, lbmole/h/lbmole of C16 1.17E-03 5.90E-05
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100 ml of naphtha into the reactor. Then, we conducted a 1-hour thermal distillation 

(TD) and radiation thermal distillation (RTD) experiment since this is the optimum time 

for collecting enough distillation yield and residual sample. The temperature of copper 

base of the reactor was 180
o
C, and the absorbed dose for the radiation experiment was 

0.64 kGy. 

 Fig. 2.28 and Fig. 2.29 show the vapor temperature profiles of the naphtha 

experiment with radiation and without radiation, respectively. By comparing the two 

graphs we can see that the vapor temperature of the radiation distillation experiment is 

higher than the one without radiation. Therefore, we can anticipate that the amount of 

distilled yield from the RTD experiment will be more than the yield from the TD 

experiment.  

 

 

Fig. 2.28—Vapor temperature profiles of three TD experiments.  
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Fig. 2.29—Vapor temperature profiles of three RTD experiments.  

 

Table 2.4 shows a summary of TD and RTD experiments. The average distilled 

yield of the RTD experiment increased by 17.5% compared to the TD experiment.  

 

 

 

 

 

 

 

 

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

0:00 0:14 0:28 0:43 0:57 1:12

Te
m

p
e

ra
tu

re
, o

C

Time, Hour:Minute

RTD1

RTD2

RTD3

RTD1

RTD3

RTD2



 

 

47 

Table 2.4—Summary of TD and RTD experimental results (Distillate: liquid yield collected from the 

condenser during the distillation. Residue: liquid sample remained in the reactor after the 

distillation finished). 

 

*Average increase in yield = %5.17100
40.0

40.047.0







TD

TDRTD

Y

YY
 

 

How can we account for this increase in vapor temperature? The experimental 

conditions for each experiment are identical except that we provided electrons for the 

radiation experiment. Fig. 2.30 shows the average vapor temperature profiles of the TD 

and RTD experiments. The difference between the two temperature profiles began 10 

minutes after the experiment began and peaked (15
o
C) at the end of the experiment.   

 

Mass of 

distillate, g

Mass of 

residue,g

Fraction of 

yield, g

Estimated absorbed 

dose, kGy

TD1 26.84 39.95 0.40 -

TD2 27.74 39.89 0.41 -

TD3 26.32 40.4 0.39 -

Avg. 26.97 40.08 0.40 -

Std. dev.(s) 0.587 0.228 0.006 -

RTD1 30.71 37.33 0.45 0.64

RTD2 31.17 35.62 0.47 0.69

RTD3 32.17 34.86 0.48 0.72

Avg. 31.35 35.94 0.47 0.68

Std. dev.(s) 0.609 1.033 0.012 0.033



 

 

48 

 

Fig. 2.30—Average vapor temperature profile of TD and RTD. The higher temperature profile 

suggests that exothermic reactions take place during RTD. The  average absorbed Dose for RTD is 

0.68 kGy. 

 Using the concepts of heat energy and dose, we can set up three equations to 

estimate the increase in vapor temperature that is attributable to radiation energy. In the 

equation,  

 TmcQ p , ……………………………………………………………… (2.7) 

Q  is the heat energy added to the substance due to ionizing radiation. 

m
D


 , ..…….………………………………………………………………. (2.8) 

D  is the absorbed dose and  is the radiation energy deposited in the substance.  

Since we want to know the increase in temperature due to radiation energy, Q . 

Therefore, the increase in temperature is,  
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 , …………………………………..……………….. (2.9)   

From this calculation, we can see that 0.68 kGy of radiation energy, when 

converted to heat, can cause a maximum temperature increase of 0.3
o
C.  

The values that we used for the calculation are very conservative, so the actual 

increase in temperature from radiation energy is somewhat lower than 0.3
o
C. This is 

because we had a change in the volume of naphtha (a moving boundary) during 

distillation so the electrons that would otherwise hit the upper area of the liquid phase 

naphtha could no longer transfer their entire radiation energy because the liquid phase 

naphtha that occupied that area vaporized. The density of vapor phase naphtha is much 

lower than that of liquid phase naphtha. Therefore, the high kinetic energy of electrons 

allow them to penetrate the vapor phase naphtha with the result that very little energy 

transfer occurred in the area of the vapor phase naphtha. In the case of the liquid phase 

naphtha, most of the electrons entering to the naphtha were absorbed. 

However, even the value 0.3
o
C, which we consider as the maximum T  which 

can be achieved from the perfect energy transfer from the E-Beam radiation, is much 

lower than the increase in vapor temperature, 15
o
C.  

We analyzed liquid and gas samples of naphtha TD1 and RTD1 and compared 

the composition of each sample. Table 2.5 shows the result of the gas sample analysis, 

illustrating that the gas components generated from each TD1 and RTD1 are 

approximately the same. The only significant difference is that the formation of 

hydrogen in RTD is higher than that in TD which resulted from the radiation effect on 

C-H dissociation.  
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Table 2.5—Gas sample analysis of naphtha experiment indicates that component distributions of 

TD1 and RTD1 samples are relatively similar except for the composition of hydrogen. RTD1 

produces 1.6 times more hydrogen than TD1. 

 

 

Table 2.6 shows the composition of the liquid naphtha sample. The table 

indicates that distillate of RTD1 has higher aromatics and less iso-parafins; apparently 

the  RTD1 sample contains more undesirable components and less desirable components. 

However, the comparison is based on different distillate and residue. Since we collected 

more naphtha distillate from RTD1 it is evident that the compositions of TD1 and RTD1 

are different. Therefore, we had to recombine the distillate and residue of each TD1 and 

RTD1 sample and recalculate a new component distribution after recombination.  

Table 2.6—Composition of hydrocarbon groups in each sample. Distillate is collected yield from the 

distillation and residual is rest of naphtha remained in the reactor after the experiment. Control 

sample: no heat and no radiation. 

 

Group, wt% Control
TD1 

Distillate

RTD1 

Distillate

TD1 

Residue

RTD1 

Residue

Aromatics 8.05 1.93 2.70 15.37 16.01

Iso-Paraffins 35.15 43.50 41.69 28.88 28.97

Naphthenes 19.22 8.66 11.46 28.81 28.57

Olefins 0.09 0.44 0.38 0.00 0.00

Paraffins 37.50 45.48 43.78 26.94 26.46

Total 100 100 100 100 100

Component, mol% TD1 RTD1

hydrogen 3.82 6.21

carbon dioxide 0.26 0.52

iso-butane 0.00 0.00

n-butane 2.39 2.46

iso-pentane 55.13 53.25

n-pentane 38.19 37.57

cis-2-butene 0.22 0.00

Total 100 100
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Table 2.7 shows the component distribution of the naphtha control, naphtha TD1, 

and naphtha RTD1 samples. As mentioned previously, we recombined the distillate and 

residue of TD1 and RTD1 samples to obtain a new overall composition and compared 

this result with the control sample, to which we did not apply any heat or radiation. 

Recombination calculation can be conducted using the composition of distillate and 

residue obtained from GC-Mass. In case of C6 in aromatic group, recombined 

composition is calculated from 

   

rd

rCdC

MM

MrwtMdwt
C
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%%
6

, …………………………………. (2.10)
 

   where  
6

% Cdwt
 
and  

6
% Crwt are weight percent of aromatic C16 distillate and residue 

respectively. Md and Mr are mass of distillate and mass of residue. Table 2.7 indicates 

that the component distributions of the control, TD1, and RTD1 samples are about the 

same which means that no composition change took place during the experiment. The 

only difference is the higher amount of distillate collected from RTD1. Therefore, what 

we observed from this experiment is that we obtained a higher vapor temperature profile 

from RTD, which indicates that the additional energy generated from the radiation effect 

on hydrocarbon increased vapor temperature. However, it did not change the 

composition of hydrocarbons. Fig. 2.31 shows the reaction velocity constants for the 

decomposition of hydrocarbons. K1 is the reaction velocity constant and this is calculated 

from 

xa

a

t
K


 ln

1
1 , ………………………………………………………... (2.11) 

where t, a, x are time (sec), percentage of material in feed stock (a=100 for pure 

feedstock), and percentage of material that disappears during the reaction time t.  

This graph indicates that decomposition of lighter hydrocarbons requires a higher 

temperature. Therefore, in our experimental setup, if we want to achieve a higher 

composition change of naphtha, such as cracking, to obtain lighter components, we need 

to either increase thermal energy or increase the amount of radiation absorbed in the 

hydrocarbon.  The results of our naphtha experiment show that some of the lighter 
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components in naphtha usually reach their boiling points before the end of the 

experiment, and could not be irradiated during the entire experiment. This means that it 

is difficult for a naphtha sample to absorb a higher dose. To resolve this problem we 

proposed a reflux experiment which keeps all the liquid naphtha in the reactor during the 

entire experiment.  

Table 2.7—Comparison of naphtha control sample and recombined naphtha TD1 and RTD1 

samples show that component distribution of each sample is similar. 

 

Control

Sample

wt% wt% wt%

6 1.42 1.37 1.34

7 4.30 4.21 4.25

8 2.81 4.36 4.32

4 0.07 0.00 0.06

5 9.40 8.91 9.03

6 11.06 10.64 10.35

7 7.74 7.50 7.55

8 6.21 6.48 6.28

9 0.95 1.26 1.54

5 0.96 0.90 0.90

6 6.46 6.31 6.15

7 9.73 9.38 9.45

8 2.44 3.28 3.35

9 0.87 0.89 0.87

Olefins 5 0.07 0.06 0.18

4 2.32 1.99 2.09

5 11.61 11.02 11.21

6 9.80 9.53 9.23

7 7.17 6.95 7.05

8 3.57 3.91 3.78

9 1.05 1.05 1.04

Total 100 100 100.02

Paraffins

Group
TD1 RTD1Carbon

Number

Aromatics

I-Paraffins

Naphthenes
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Fig. 2.31—Reaction velocity constants for the decomposition of hydrocarbons and petroleum 

fractions into various production (Nelson 1958). 
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Since the same amount of heat used in the two experiments (TD and RTD), we 

can estimate the additional energy generated from naphtha RTD that increased the 

distilled yield. We used the concept of enthalpy of vaporization. The heat used to 

vaporize each component is the integration of change in enthalpy multiplied by the 

change in the number of moles:   

 
n

n
vapi

o

dnHQ )(
, …………………………………………………............... (2.12) 

Here, n0 is the initial number of moles in the new phase and n is the final total number of 

moles in the new phase. We used the composition of liquid sample from GC-Mass to 

determine n and conducted a PVT simulation to calculate the enthalpy of vaporization 

for each component.  Therefore, the total heat of vaporization is calculated from the sum 

of each iQ : 

 itotal QQ , …………….………………………………………................. (2.13) 

In the case of TD1 and RTD1, we found that totalQ  of RTD1 is 13.4% higher than that of 

TD1 (Qtotal of TD1: 9.4 kJ, Qtotal of RTD1: 10.6 kJ) and is similar to the increase in the 

distilled yield of RTD1, which is 12.5%. 

 

Naphtha distillation with higher exposure 

Another experiment we did with naphtha was a higher exposure experiment. 

During the previous naphtha experiment, we observed that a substantial amount of 

electrons struck the pyrex glass cover of the insulation jacket, thus losing most of their 

energy through scattering (Fig. 2.32). In order to achieve higher exposure, we removed 

the insulation jacket so the jacket would not block electrons. This allowed more 

electrons to enter the hydrocarbons, and we recorded the resulting radiation effect. 
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Fig. 2.32—Pyrex glass cover of the reactor blocks electrons coming in to the reactor (a). When 

electrons hit the thin wall of the reactor they can penetrate without loss of their kinetic energy (b).   

 

Fig. 2.33 shows the result of the naphtha higher exposure experiment. As that 

figure shows, the difference between the vapor temperature profiles of the radiation and 

non-radiation experiments is higher than the difference recorded in previous experiment 

(Fig. 2.30).  
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Fig. 2.33—Vapor temperature profile of higher exposure experiment indicates that difference 

between TD and RTD is higher than lower exposure experiment. Absorbed Dose for RTD is 

0.89kGy. 

 We observed a 29.4% increase of distilled yield (Table 2.8) with radiation which 

illustrates that the radiation effect is proportional to the exposure. Therefore, when we 

have more electrons entering the hydrocarbons, radiation effect on hydrocarbons will 

increase. 

Table 2.8—Summary of experiment indicates that RTD experiment obtained 29.4% more radiation 

dose compare to previous experiments (0.68kGy).  

 

*Increase in yield = %4.29100
34.0

34.044.0







TD

TDRTD

Y

YY
 

Mass of

distillate, g

Mass of

residue,g

Fraction

of yield, g

Estimated absorbed

dose, kGy

TD 22.97 44.33 0.34 -

RTD 29.87 67.35 0.44 0.89

TD 

RTD 
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We made a comparison of the two different sets of naphtha experiments, lower 

exposure and higher exposure (Fig. 2.34). With the vapor temperature data of the two 

naphtha experiments (TD and RTD of lower exposure and TD and RTD of higher 

exposure) we made a graph that shows T  with time. T  is the difference between the 

vapor temperature of RTD and the vapor temperature of TD. The graph indicates that 

T  of the higher exposure experiment is higher than that of the lower exposure 

experiment. Average T  is 9
o
C and 12

o
C, for the lower exposure and higher exposure 

experiments.  
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Fig. 2.34—T is the difference between vapor temperature with radiation and without radiation. 

Average T of higher exposure experiment is 25% higher than lower exposure experiment. Higher 

exposure resulted in higher temperature increase. 

 

2.6 Asphaltene Experiment  

The asphaltene content in a heavy oil sample plays a dominant role in 

determining its high viscosity. The strong attractive interactions among the asphaltene 
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particles at high asphaltene contents cause the heavy oil viscosity to increase 

dramatically (Luo et al. 2007). Therefore, it is important to investigate how E-Beam 

upgrading effectively converts asphaltene into better quality hydrocarbons. 

Asphaltene is an extremely heavy and viscous product and it is almost solid at 

ambient temperature (Fig. 2.35). We used the same experimental apparatus (Fig. 2.16) 

that we used for the n-C16 and naphtha experimenst and conducted asphaltene cracking. 

The main difference between this experiment and the previous n-C16 and naphtha 

experiments is the cracking process. Since asphaltene has very heavy molecules we 

cannot collect distillates without breaking the heavy molecules. We used 22g of 

ashphaltene and conducted paralleled experiments for 2 hours with 500
o
C of copper base 

temperature to crack the heavy asphaltene molecules. The light oils (distillates) from 

each cracking experiment were collected. We then compared the amount of yield (Table 

2.9 and 2.10) and the component distribution of the liquid sample from GC-Mass. The 

absorbed dose for radiation thermal cracking (RTC) was around 3.1~3.2 kGy. We 

conducted three sets of TC and RTC experiments.  

 

 

Fig. 2.35—Asphaltene sample at atmospheric condition 
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Table 2.9—Results of two hours of TC and RTC experiments with 500
o
C of copper base 

temperature. 

 

 

From the comparison, we observed that the amounts of distillate for the three 

RTC experiments are similar (standard deviation: 0.064g). On the other hand, the TC 

experiments show uneven distribution for the mass of collected light oil sample 

(standard deviation: 0.312g). Even though we are encouraged by the fact that we 

collected more light oil from RTC experiments, the standard deviation of the TC results 

is too high. Therefore, we decided to ignore the first set of experiments for better 

comparison of the experimental results (Table 2.10).  

 

 

 

 

 

 

 

 

 

Mass of 

distillate, g

Mass of 

residue,g

Fraction of 

yield

Estimated absorbed 

dose, kGy

TC1 0 22 0.00 -

TC2 0.73 21.27 0.03 -

TC3 0.56 21.44 0.03 -

Avg. 0.43 21.57 0.02 -

Std. dev.(s) 0.312 0.312 0.014 -

RTC1 1.09 20.91 0.05 3.1

RTC2 0.92 21.08 0.04 3.1

RTC3 0.87 21.13 0.04 3.2

Avg. 0.96 21.04 0.04 3.13

Std. dev.(s) 0.094 0.094 0.004 0.047
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Table 2.10—Results of TC and RTC experiments without the first set of experiment. 

 

*Average increase in yield = %39100
65.0

65.090.0







TD

TDRTD

Y

YY
 

The Table 2.10 indicates that the average increase in yield of the RTC samples 

compared to the TC samples is around 39%. In addition, the GC-Mass analysis results 

(Table 2.11 and Table 2.12) show that the RTC samples contain more light components 

compared to the TC samples. These results indicate that cracking of asphaltene is 

enhanced with E-Beam irradiation. In addition, the formation of aromatics and 

isoparaffins (Table 2.11) indicates that the hydrocarbon quality of the RTC samples is 

better than that of the TC samples. The RTC samples have less aromatic components and 

higher isoparaffin components than the TC samples. As mentioned earlier, aromatic 

compounds in hydrocarbons have a very high tendency to undergo polycondensation 

reactions that lead to coke formation. Coke formation decreases the yield of the desired 

gasoline and other light oil fractions (Simanzhenkov, 2003).  Fig. 2.36 is an example of 

polycondensation reaction, and indicates that molecules of some products from thermal 

cracking reactions can sometimes be larger than feed molecules (Simanzhenkov, 2003). 

 

 

 

Mass of 

distillate, g

Mass of 

residue,g

Fraction of 

yield

Estimated absorbed 

dose, kGy

TC1 0.73 21.27 0.03 -

TC2 0.56 21.44 0.03 -

Avg. 0.65 21.36 0.03 -

Std. dev.(s) 0.069 0.069 0.003 -

RTC1 0.92 21.08 0.04 3.1

RTC2 0.87 21.13 0.04 3.2

Avg. 0.90 21.11 0.04 3.15

Std. dev.(s) 0.020 0.020 0.001 0.041
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Table 2.11—Average molecular weight and API gravity of each sample indicate that the RTC 

sample is lighter than the TC sample. In addition, there is significant decrease in the formation of 

aromatic components in the RTC sample compared to the TC sample. In terms of isoparaffin 

formation, the RTC sample contains 38% more isoparaffins than the TC sample which indicates the 

strong enhancement of isomerization. 

 

 

 

 

Fig. 2.36—Polycondensation reaction of aromatic compounds. 

 

On the other hand, isoparaffins are very valuable components in hydrocarbons 

since they have a high octane rating. The octane rating determines the quality or 

resistance of gasoline and other fuels to the knocking ―detonation‖ in spark-ignition 

internal combustion engines. Isomerization converts straight-chain paraffins to their 

branched-chain counterparts the component atoms of which are the same but are 

arranged in a different geometric structure. This conversion yields high octane 

hydrocarbon components.  

 

TC1 RTC1 TC2 RTC2

Avg. MW 98.60 84.89 99.02 82.03

Avg. API 65.19 79.90 65.85 83.30

Aromatics, mol% 9.17 3.65 9.21 3.13

I-Paraffins, mol% 25.85 57.13 27.09 63.89
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Table 2.12—Components distribution of TC and RTC samples indicate that RTC sample have more 

light components compare to TC samples. 

 

Group
Carbon 

Number

   TC1      

 mol%

 RTC1 

mol%

  TC2   

mol%

  RTC2 

mol%

Aromatics 6 1.27 0.84 1.31 0.75

7 1.29 0.76 1.38 0.62

8 5.00 1.74 5.12 1.84

9 0.91 - 1.40 0.23

10 0.70 0.32 - -

I-Paraffins 4 0.12 - 0.15

5 0.92 43.92 1.00 55.64

6 2.89 2.15 3.07 1.96

7 5.15 3.36 5.68 3.10

8 10.49 6.32 10.74 4.39

9 5.74 1.38 5.75 0.39

10 0.55 - 0.71 -

Naphthenes 5 0.42 0.39 0.44 0.24

6 1.53 1.08 1.64 1.03

7 2.71 1.25 2.51 1.07

8 5.59 2.88 5.17 1.44

9 1.83 0.68 1.83 0.64

10 0.71 - - -

Olefins 4 1.22 0.48 1.31 0.69

5 4.18 7.21 3.72 3.58

6 7.45 4.65 7.46 4.31

7 5.88 2.36 4.94 1.32

8 2.25 0.42 2.88 0.32

9 - - 0.15 -

10 0.41 - 0.34 -

Paraffin 3 0.38 0.34 0.52 0.40

4 1.21 0.75 1.37 0.88

5 3.52 2.21 3.37 2.48

6 5.53 3.73 5.74 3.47

7 7.77 5.03 8.04 4.09

8 6.41 3.89 6.69 3.22

9 3.23 1.56 3.04 1.48

10 0.29 - 0.69 0.27

11 0.12 - 0.15 -

Unidentified 2.20 - 1.74 0.20

Total 100 100 100 100
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2.7 N-hexadecane and Naphtha Reflux Experiment 

The main purpose of a reflux experiment is to achieve a higher and a uniform 

radiation dose by controlling residence time of fluid, because previous distillation 

experiments resulted in different radiation doses to the yield and residue. For example, 

when we conducted RTD of naphtha for one hour, approximately 70% of the mass of the 

naphtha stayed in the reactor which means that only 70% of the naphtha was irradiated 

for one hour. Then the rest of naphtha (30%) which was already distilled and collected 

had not been irradiated for one hour. Therefore, we had to modify the experimental 

procedure that would allow the radiation dose to effect the entire fluid evenly. After 

some discussion, we proposed an E-Beam reflux experimental setup (Fig. 2.16) since 

this would not allow fluid distillation. Using the apparatus, we conducted a reflux 

experiment with n-C16 and naphtha and analyzed the component distribution of the 

irradiated samples from GC-Mass.  

2.7.1 N-Hexadecane Reflux Experiment  

 We used a reflux experimental setup (Fig. 2.16) and reduced the sample size to 

50 ml in order to achieve higher radiation dose. Therefore, we expected to see the 

composition change of hydrocarbon molecules (cracking) caused by E-Beam irradiation. 

After building the experimental setup, we turned on the heater which fixing 500
o
C as the 

target copper base temperature, and started irradiating at the same time. The n-C16 liquid 

stayed in the reactor for the two hours of the experiment, with the vaporized n-C16 

condensing and dropping back into the reactor, a phenomenon called reflux. At the end 

of the experiment we collected liquid samples from the reactor for chemical analysis 

(GC-Mass). The absorbed dose for the n-C16 radiation experiment was 2.4 kGy. 

Table 2.13 and Table 2.14 show the component distribution of the liquid n-C16 

sample after the experiment. The tables indicate that the component distribution of the 

TC and RTC samples were similar except for slight differences of C17+. RTC samples 

have slightly higher C17+ components which illustrate that polymerization reactions were 

taking place during the E-Beam thermal cracking of hexadecane. During the RTC, n-C16 
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breaks into free radicals and these radicals initiate chain reactions. The chain reactions 

not only generate lighter components but also generate heavier components due to 

polymerization.  

Table 2.13—Comparison of component distribution for two hours of TC and RTC experiments. 

Radiation dose for the three RTC experiments was 2.4 kGy. 

 

 

Table 2.14—Average component distribution of TC and RTC samples indicate that polymerization 

was taken place during RTC of n-C16. 

 

  

Zaykin’s group in 2004 also conducted radiation thermal cracking of highly 

paraffinic oil. They observed the high polymerization rate and low olefin content in 

products of radiation processing. They reported that alkyl radicals initiate polymerization 

and isomerization in heavy paraffin fractions. Therefore, degradation reactions compete 

with the reverse reactions of chain addition of alkyl radicals to the olefins.  

We discussed the method of minimizing polymerization caused by alkyl radicals 

and found that 2,2,6,6-tetramethyl-piperidine-N-oxyl (Tempo) is a good inhibitor to 

suspend polymerization since it is able to capture alkyl radicals during the reaction. Fig. 

2.37 shows the reaction of Tempo with alkyl radicals. During the reaction, propagating 

Carbon

Number

TC

wt%

Std. dev.

(s)

RTC

wt%

Std. dev.

(s)

C5~C15 0.20 0.03 0.17 0.05

C16 99.34 0.01 96.16 2.82

C17+ 0.46 0.04 3.68 2.85

Total 100 100

Carbon

Number

TC1

wt%

RTC1

wt%

TC2

wt%

RTC2

wt%

TC3

wt%

RTC3

wt%

C5~C15 0.23 0.24 0.12 0.13 0.24 0.15

C16 99.35 99.42 99.39 92.55 99.29 96.50

C17+ 0.42 0.35 0.49 7.32 0.46 3.36

Total 100 100 100 100 100 100
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alkyl radicals are in dynamic equilibrium with the Tempo with the equilibrium constant 

k. A minimum temperature of 110
o
C is required to shift the equilibrium to the left 

(Toube and Schmidt-Naake 2001). However, if the reaction takes place at a very high 

temperature, the reversed reaction is favored which leads to the release of trapped alkyl 

radicals from the Tempo.  

 

 

Fig. 2.37—During polymerization, the propagating alkyl radical 
R is in dynamic equilibrium with 

the Tempo (kc = combination rate; kd = dissociation rate). 

 

In our n-C16 experiment, the reaction temperature reaches 287
o
C and the 

temperature of the copper base (bottom of the reactor) reaches 500
o
C.  Therefore, it is 

evident that we are going to have reversed reactions that release a substantial amount of 

trapped alkyl radicals. This is the main reason for not selecting Tempo for a radical trap. 

However, if we reduce the sample size in order to achieve a higher radiation dose in the 

hydrocarbons then we may not need a high temperature to initiate C-C bond 

decomposition. This also creates ideal conditions for using Tempo to trap alkyl radicals.  

2.7.1 Naphtha Reflux Experiment  

Table 2.15 shows the experimental conditions for a naphtha reflux experiment. 

In this experiment we set two different temperatures for the copper base: 230
o
C and 

327
o
C. The reason for setting two different temperatures was that we wanted to find the 

optimum temperature for maximizing the radiation effect on hydrocarbon. From the 
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hexadecane experiment, we found that C-H dissociation was enhanced by using E-Beam. 

However, it might result in a negative effect such as polymerization. Therefore, it is very 

important to find the optimum conditions which minimize the use of heat and radiation 

and maximize the upgrading of hydrocarbons.  

We used the same experimental setup and sample size of the n-C16 reflux 

experiment. At the end of the experiment we collected liquid samples from the reactor 

for chemical analysis. The absorbed dose for naphtha radiation distillation was 2.6 KGy.  

Table 2.15—Experimental conditions for naphtha reflux experiment. 

 

  

Table 2.16 shows the results of the naphtha gas sample analysis. RTC result of 

reflux#1 indicates that more hydrogen and iso-pentane were produced during the 

experiment. Even though the quantity was not substantial, it showed that hydrogen 

increased by 40% in RTC1 compared to TC1. So, we can expect that we may collect 

more olefins from RTC1. In terms of iso-pentane, its composition increased 2.5 times 

compared to its composition in TC1. In the result of reflux#2, both TC2 and RTC2 

produced more hydrogen than reflux#1. However, the quantities of hydrogen produced  

from TC2 and RTC2 are almost the same. This may indicate that the radiation effect on 

naphtha at high temperatures is not significant since both TC and RTC provide similar 

results.  

 

 

 

 

TC1 RTC1 TC2 RTC2

Heater Temp.,
 o

C 300 300 400 400

Copper Base Temp.,
o
C 230 230 327 327

Radiation Dose, kGy 0.0 2.6 0.0 2.6

Reation Time, hr 0 2 0 2

Initial Mass, g 33.9 33.9 33.9 33.9
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Table 2.16—Naphtha gas sample components conducted at two different temperatures. Reflux#1 

was conducted at 230
o
C of copper base temperature. Reflux #2 was conducted at 327

o
C.  

Experimental time for each TC and RTC experiment was two hours.  

 

 

We also analyzed liquid samples of both reflux#1 and reflux#2 using GC-Mass. 

Fig. 2.38 indicates that RTC1 has lighter components than TC1. API of RTC1 and TC1 

is 68.7 and 65.5 respectively. Fig. 2.38 shows that the biggest difference in the 

composition of TC1 and RTC1 is C5 formation.  Therefore, E-Beam enhanced cracking 

of naphtha produced lighter components of naphtha molecules, especially pentane. From 

the gas sample analysis of reflux#1, we obtained 2.5 times more iso-pentane formation 

in gas sample of RTC1 than that of TC1. It is apparent that more iso-pentane formation 

generated from the gasification of iso-pentane occurred after cracking of naphtha. Fig. 

2.39 shows the component distribution of reflux#2.  The trend of the component 

distribution of the reflux#2 experiment is similar to the previous result of the reflux#1 

component, mol% TC1 RTC1 TC2 RTC2

hydrogen 0.63 0.89 18.58 18.52

nitrogen/carbon monoxide - - - -

methane 0.42

carbon dioxide 0.22 0.29 6.07 1.70

ethylene

ethane 0.49 1.30

propane 0.12 0.85 2.03

propylene 0.33

iso-butane 1.08 6.06

n-butane 32.23 18.10 35.07

trans-2-butene 0.38

1-butene 0.29

isobutylene

cis-2-butene 1.70

iso-pentane 35.06 88.30 28.06 19.53

n-pentane 30.66 29.18 21.85

1,3-butadiene

Total 100.00 100.00 100.00 100.00

Reflux #1 Reflux #2
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experiment. However, the difference between TC2 and RTC2 is not significant. 

Therefore, the E-Beam effect on cracking of naphtha is less efficient at high 

temperatures. This is because polymerization and cracking might take place 

simultaneously at high temperatures, a situation which we already experienced with the 

n-C16 reflux experiment.  
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Fig. 2.38—Component distribution of TC1 and RTC1 sample indicates that cracking of liquid 

naphtha was enhanced by E-Beam irradiation. 
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Fig. 2.39—Component distribution of TC2 and RTC2 sample indicates that cracking of liquid 

naphtha was taken placed during the experiment. However, radiation effect on hydrocarbon is not 

significant which means E-Beam radiation is not very efficient when we break naphtha molecules at 

high temperature. 

  

Table 2.17 and Table 2.18 show the composition of hydrocarbon groups in the 

naphtha samples. The results indicate that aromatic contents were reduced with E-Beam 

irradiation. From the asphaltene cracking experiment, we already observed that E-Beam 

significantly reduced aromatic components. Therefore, it is more apparent that reduction 

of aromatic contents is one of the unique features of E-Beam irradiation. As for olefin 

formation, the RTC sample has higher olefin formation, which we already expected from 

the gas sample analysis since the RTC sample has a higher hydrogen formation. Even 

though the quantity is not substantially higher, the RTC samples have slightly higher iso-

paraffins and paraffins.  
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Table 2.17— Component distribution of TC and RTC samples indicate that RTC experiments 

generate more light components. In addition, radiation effect on cracking of naphtha is more 

efficient at lower temperature. 

 

 

 

 

Group
Carbon 

Number

TC1       

mol%

RTC1  

mol%

TC2    

Mol%

RTC2  

Mol%

Aromatics 6 1.39 1.82 1.92 1.90

7 5.42 4.81 5.19 5.04

8 5.92 4.35 4.72 4.54

9 0.34 0.09 0.09 0.13

I-Paraffins 5 2.16 5.21 2.66 3.59

6 10.30 12.16 12.50 12.43

7 8.98 7.85 8.39 8.17

8 8.67 6.33 6.85 6.65

9 3.59 2.50 2.70 2.61

10 0.15 0.10 0.11 0.11

Naphthenes 5 0.74 1.19 1.13 1.09

6 7.21 7.53 7.97 7.83

7 11.66 9.98 10.72 10.45

8 2.87 2.18 2.35 2.28

9 1.07 0.68 0.74 0.72

Olefins 5 0.04 0.14 0.08 0.11

6 0.02 0.04 0.04 0.03

Paraffin 4 - - - -

5 5.03 10.47 7.77 8.85

6 9.85 11.04 11.58 11.40

7 8.55 7.20 7.74 7.53

8 4.81 3.52 3.82 3.69

9 1.24 0.85 0.92 0.89

Unidentified - - - - -

Total 100 100 100 100
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Table 2.18—Composition of hydrocarbon groups in each sample shows that E-Beam reduces 

aromatic contents and increases olefins formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group
TC1       

mol%

RTC1  

mol%

TC2     

mol%

RTC2  

mol%

Aromatics 13.06 11.06 11.93 11.61

I-Paraffins 33.85 34.13 33.21 33.54

Naphthenes 23.55 21.56 22.92 22.36

Olefins 0.06 0.18 0.12 0.14

Paraffin 29.48 33.08 31.83 32.35
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CHAPTER III 

ENERGY TRANSFER SIMULATION 

 

Measuring radiation in fluid is more complicated than measuring radiation in 

solid objects because fluid moves during the reaction. Furthermore, if we provide heat 

during the process, the fluid moves more rapidly because of convection. In addition, the 

fluid density changes when we provide thermal energy because of thermal expansion. If 

some light components in crude oil vaporize during the radiation thermal or thermal 

process then the vapor and liquid phases will coexist in the system during the reaction, 

making it difficult to measure the accurate amount of radiation deposited in the fluid.  

 In this work, we conducted heat transfer and radiation transport simulation of n-

C16 reflux experiment to estimate the amount of heat and radiation energy deposited in 

the fluid.  

 We collected simulation data from laboratory n-C16 reflux experiments. For 

thermal cracking, a heat transfer simulation was conducted using the computational fluid 

dynamics method. In the case of radiation thermal cracking, we used the results of the 

heat transfer simulation to conduct a Monte-Carlo radiation transport simulation. 

Because of the complexity of the process, we made some engineering approximations. 

3.1 Heat Transfer Simulation 

 In this work, we used ANSYS CFX to conduct a heat transfer simulation. 

ANSYS CFX is a computational fluid dynamics (CFD) code well known for its high 

performance. Researchers around the world have applied it to solve a variety of fluid 

problems for over 20 years. With the highly parallelized solver, this code can solve 

many physical models such as laminar, turbulent, incompressible, fully compressible, 

isothermal, and non-isothermal with heat transfer by conduction, convection, and 

radiation. Since it has been used in the industry for a long time, it has superior bi-

directional connections to all major CAD systems such as CATIA, Pro-E, and Solid 
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Works. Therefore, any sophisticated geometry can be analyzed with ANSYS CFX. In 

ANSYS CFX, the set of equations that describe the processes of momentum, heat, and 

mass transfer, known as the Navier-Stokes equations are solved by the finite volume 

technique (ANSYS CFX Manual). In addition, we used PVT SIM, a powerful fluid 

property program made by CalSep, to generate all the necessary fluid properties.   

Fig. 3.1 shows the experimental setup of the n-C16 reflux experiment designed 

from CATIA V5. An aluminum alloy reactor covered with insulation material and pyrex 

glass is located on a heater that is placed in front of an E-Beam accelerator (VDG 

accelerator). Water with a temperature of 23
o
C is circulated from a water tank to pyrex 

glass 1) to maintain a consistent temperature during the reaction. N-C16 begins in the 

liquid phase and vaporizes after reaching its boiling point.  

 

 

Fig. 3.1—Reflux experimental setup 
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The vapor phase n-C16 will then reach to the condenser filled with water and will 

condense. The condensed n-C16 will become n-C16 liquid droplets and fall into the liquid 

phase region. Therefore, pressure buildup caused by the thermal expansion of the n-C16 

vapor would not occur in this system since the vapor is condensed by the condenser.  

Fig. 3.2 shows copper base’s temperature profile during the n-C16 reflux 

experiment. We used this profile to compute the heat flux at the bottom of the reactor. 

The copper base’s temperature increases with time until the temperature reaches up to 

500
o
C, which takes approximately 17 minutes. After 17 minutes, the copper base 

temperature remains almost constant (500
o
C) throughout the rest of the experiment. 

From the experiment, we found n-C16 vaporization begins after about 17 minutes. 

Therefore, we considered the time range from 0 to 17 minutes as a single phase period. 

From 17 to 20 minutes phase transition occurs because the n-C16 vaporizes. After 20 

minutes, the system stays as a two-phase region where liquid and vapor co-exist. We 

divided our heat transfer simulation into two simulation conditions: single phase heat 

transfer from time 0 to 20 minutes and multiphase heat transfer after 20 minutes. In the 

case of the single phase heat transfer, the experimental results indicate (Fig. 3.2) that the 

temperature of the copper base increases with time. Therefore, we set this condition as 

transient, since the temperature changes with time. Once the copper base temperature 

reaches the targeted temperature (approximately 20 minutes) it ceases to change with 

time. Therefore, we set this condition as steady state. 

 



 

 

75 

0

100

200

300

400

500

600

0:00 0:14 0:28 0:43 0:57 1:12 1:26 1:40 1:55 2:09

Time, hr:min

T
e
m

p
e
ra

tu
re

, o
C

Phase transition

zone: 17~20 min.

MultiphaseSingle phase

 

Fig. 3.2—Copper base (bottom of the reactor) temperature increases with time up to 17 minutes 

after the experiment. Then it becomes constant during the rest of experiment. 

 

3.1.1 Single Phase Heat Transfer 

Table 3.1 shows the simulation conditions of a single phase heat transfer. The 

simulated time for the single phase heat transfer is 1200 seconds. Since the aluminum 

alloy reactor is covered with both insulation material and pyrex glass, the boundary 

condition of the wall is insulation. Fig 3.3 shows the control volume and its three 

boundaries (wall, bottom, and top). We selected a point in each boundary and compared 

the results from each point after the simulation. The boundary condition (B.C.) of the 

bottom is heat flux from the heater. The top of the fluid contacts with air resulting in 

fluid heat loss. The liquid phase n-C16 is initially at room temperature (23
o
C) and has no 

fluid movement (the velocity of the liquid in the x, y, and z directions is zero). 
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Table 3.1—Simulation condition of single phase heat transfer 

 

    

Fig. 3.3—Control volume of n-C16 single phase heat transfer. 

 

Boundary Conditions at the Wall 

The wall of the reactor is insulated. Therefore, calculation of the heat flow rate 

should consider all the insulated materials. We calculated heat flow rate in the wall using   

TUAq  ,……………….………………………………………………… (3.1) 

where U is overall coefficient of heat transfer that is calculated from 


















airalcanpyrexfiber
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hhhh
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1111
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,.……………………………… (3.2) 

The heat transfer coefficient of each component is calculated using 

 
 io

wall
dd

k
h


 ,.…………………………………………………………. (3.3) 

Simulation Time 1200 sec

B.C. of Wall Insulated with fiber glass and pyrex glasss

B.C. of Bottom  

B.C. of Top

Initial Condition

Heat flux from the heater

Heat loss from air

23
o
C of n-C16 liquid 
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where k is the thermal conductivity of each wall material and do and di are inner and 

outer diameter of each wall. Table 3.2 shows the values that we computed for the 

boundary conditions.  

Table 3.2—Values for computing the boundary conditions at the wall. 

 

 

Boundary Conditions at the Bottom 

At the bottom of the reactor, we placed a heater to provide thermal energy. 

Therefore, the boundary condition of the bottom is heat flux provided from the heater. 

To estimate the heat flux from the heater, we first calculated the approximate heat 

energy using following equation.  

 TmCQ p  ,………………………………………………………………. (3.4) 

We then calculated the heat flow rate using  

tQq / , ..………………………………………………………………….. (3.5) 

Since we know the area of the bottom, the heat flux at the bottom is  

Aq / , ..……..……………………………………………………………….. (3.6) 

 

 

 

 

 

 

 

 

k, W/mmK h, W/mm
2
K do-di, mm

Pyrex glass cover 1.10E-03 3.67E-04 3

Glass fiber insulation 4.00E-05 1.33E-05 3

Aluminum alloy can 1.75E-01 8.75E-01 0.2

Air - 5.00E-06 -
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The heat flux value we calculated from the above equations is an estimated value. To 

determine the heat flux more accurately, we inserted the estimated heat flux value into 

our simulation model to generate a temperature profile of n-C16. Then, we compared the 

temperature profile with the temperature profile of the n-C16 experiment. If the 

simulation result is lower than the experimental result, then we increased the estimated 

heat flux. If the temperature profile of the simulation is higher than the experimental 

result, then we decreased the estimated heat flux. After the computation work, we found 

that the simulated heat flux of 14000 W/m
2
 closely matched the results of the n-C16 

reflux experiment. 

 

Boundary Conditions at the Top 

The top of the liquid n-C16 has contact with air. Therefore, we used the heat 

transfer coefficient of natural convection of air to estimate the heat loss.  

 

Thermodynamics Properties 

The Redlich Kwong (R-K) equation of state (EOS), first published in 1949, is 

considered one of the most accurate two-parameter corresponding states EOS (ANSYS 

manual). This EOS is useful and convenient since it only requires fluid properties that 

users already know.  Aungier (1995) modified the R-K EOS by adding an additional 

parameter c so that the equation provides much better accuracy near the critical point 

(ANSYS manual). ANSYS CFX uses this modified R-K EOS, which is expressed as   

)(

)(

bVV

Ta

cbV

RT
P

mmm 



 , ..……..…………..……………………………. (3.7)   

where Vm is molar volume and a, b, and c are parameters. The parameters are 

determined by  

n

cT

T
aa













 0

, ..……..………………………………………………………... (3.8)  

where n is  

n = 0.4986 + 1.2735 + 0.4754
2 

,…………………………………………... (3.9) 
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To calculate specific heat capacity (Cp) we used the Redlich Kwong polynomial, defined 

as  

   
4

5

3

4

2

321/ TaTaTaTaaRC p  , ..……..…………………………….. (3.13) 

where R is the gas constant and T is temperature. We used PVT SIM to determine the 

coefficients of the above equation. 

 

Simulation Results 

Fig. 3.4 shows the temperature profiles n-C16 at three different locations. Since 

we computed constant heat flux for a simulation condition the bottom temperature 

increases with time. After 20 minutes the n-C16 reaches its boiling point of 287
o
C. The 

temperature profiles of the wall and top are the same as that of the copper base because 

of convection. Fig. 3.5 shows that the density the n-C16 decreases with time. This is 

because the volume of the n-C16 increases due to thermal expansion. The density profiles 

of the wall and top are also almost the same as the profile of the bottom.  
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Fig. 3.4—Bottom temperature of n-C16 increases with time and reaches to the boiling point of n-C16. 

Temperature profiles of wall and top also have same profiles as the bottom. 
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Fig. 3.5—Density profile of n-C16 at the bottom decreases with time. Density of wall and top are 

almost same as the bottom. 
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Fig. 3.6 shows the velocity vectors and streamlines of the liquid phase n-C16 

caused by the buoyancy effect. Fig. 3.6 indicates a case where fluid convection is driven 

by a pressure gradient and buoyancy forces (ANSYS Manual). The buoyancy is driven 

by variations of density which have a number of causes. In the case of single phase and 

single component heat transfer, the main cause is local temperature variations. For our 

simulation, the buoyancy force is   

 gF ref  ,……………………………………………………………. (3.14) 

Since we added heat at the bottom, the resulting thermal expansion lowered the 

density of the n-C16. The lighter n-C16 liquid then rose due to the enhanced buoyancy 

and mixed with other fluids of lower temperature. Therefore, Fig. 3.6 illustrates the 

movement of the n-C16 liquid during the convection that occurred during our experiment.  

 

 

Fig. 3.6—velocity vectors and streamlines of liquid phase n-C16. 
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Fig. 3.7 indicates the heat flux profiles of the wall and at the top of the n-C16 

control volume. The heat flux of the bottom had already been determined from the 

previous calculation. For the bottom heat flux, we computed a constant heat flux of 

14000 W/m
2
. As for the mid-point heat flux, we took into account the several insulation 

materials and computed the overall heat transfer coefficient. Regarding the top area of 

the control volume, we considered the heat loss from the natural convection of the air. 

Fig. 3.7 shows that the wall heat flux at mid point is higher than the heat flux at the top. 

This means we reduced heat loss at the wall using insulation.    

 

Fig. 3.7—Heat flux profile at the middle and the top of n-C16 decreases with time. By using the 

insulation, heat loss was reduced at the wall. 
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3.1.2 Multiphase Heat Transfer 

Table 3.3 and Fig. 3.8 show the simulation conditions and control volume of the 

multiphase heat transfer. Since the bottom temperature of this condition is constant 

(500
o
C) we set this condition as steady state. Boundary condition of the wall is as same 

as the single phase heat transfer. In the case of the bottom boundary condition, we set a 

constant bottom temperature of 500
o
C. Since the n-C16 liquid and vapor coexist, the 

initial condition for this simulation was n-C16 liquid and vapor at the boiling point of n-

C16. 

Table 3.3—Simulation condition of multi-phase heat transfer. 

 

 

 

 

Fig. 3.8—Control volume of multi-phase heat transfer. 

Simulation Time

B.C. of Wall Insulated with fiber glass and pyrex glasss

B.C. of Bottom  

B.C. of Top

Initial Condition

Constant temperatuer, 500
o
C

Heat loss from condenser, 23
o
C

287
o
C of liquid and vapor phase n-C16 

Steady State
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Boundary Condition at the Top 

During the reflux experiment, vaporized n-C16 condenses after reaching the 

condenser. We added water of 23
o
C to the condenser using a water pump. The condenser, 

thus maintains a constant temperature during the experiment. The condensed n-C16 vapor 

makes liquid drops. When the size of the droplets reaches a certain size, the droplets fall 

to the bottom of the reactor and vaporize again. Therefore, condensation and 

vaporization occur continuously during the experiment. For the simulation we set a fixed 

top temperature of 23
o
C.  

 

Initial Condition 

The initial condition of the fluid was 287
o
C with a mixture of liquid and vapor. 

The volume fraction of the liquid phase and vapor phase n-C16 is 35% and 65%, 

respectively. The volume of liquid n-C16 increased compared to the initial volume of the 

single phase heat transfer due to the  thermal expansion of the liquid phase n-C16.  

 

Fluid Details and Models 

Table 3.4 shows the fluid details of n-C16 vapor and liquid. Since we conducted a 

multiphase heat transfer simulation, we needed fluid information for both vapor and 

liquid. In addition, we used several parameters and models to simulate the transport 

phenomena of multiphase fluid (Table 3.5).  

Table 3.4—Fluid details of n-C16 vapor and liquid. 0.1 mm of vapor particle diameter is a typical 

size for diesel fuel injection (Wai K. Cheng 2008). N-C16 (cetane) is the main component of diesel fuel.   

 

 

 

n-C16 Vapor n-C16 Liquid

Dispersed Fluid Continuous Fluid

Mean Diamter: 0.1 mm Fluid Buoyancy Model: density difference

Fluid Buoyancy Model: density difference
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Table 3.5—Necessary parameter and models for simulation. Surface tension coefficient of n-C16 was 

obtained from Enginnering Software Database Service. 

 

 

 

The following are discussions of four commonly-used models.   

1) Interphase Transfer 

Each fluid possesses its own flow field and the fluids interact via interphase 

transfer terms. In the heterogeneous multiphase model, there is one solution field for 

each separate phase. Transported quantities interact via interphase transfer terms. For 

example, two phases may have separate velocity and temperature fields, but there will be 

a tendency for these to come to equilibrium through interphase drag and heat transfer 

terms (ANSYS Manual). We used the particle model for interphase transfer because this 

model is available when one of the phases is continuous fluid (liquid) and the other is 

dispersed fluid (vapor).  

 

2) Momentum Transfer 

For momentum transfer, we needed to compute the drag force since this option 

applies to all morphology pair combinations. We tried several drag force models and 

found that the Grace model provided more realistic simulation results in terms of density 

distribution and fluid velocity vector profiles than the other drag force models. ANSYS 

CFX automatically takes into account spherical particle and spherical cap limits and 

dense fluid particle effects (ANSYS Manual).  

 

Surface Tension Coeff. 0.0275 N/m

Interphase Transfer Particle Model

Momentum Transfer Drag Force: Grace

Two Resistance

Fluid 1 heat transfer: Zero Resistance

Fluid 2 heat transfer: Ranz Marshall Model

Mass Transfer Thermal Phase Change Model

Heat Transfer 
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3) Heat Transfer 

We used a two-resistance model to calculate the fluid specific heat transfer 

coefficient since this model applies to both the particle and mixture models. Since it is 

possible on one side of the phase interface to specify a zero resistance condition which is 

equivalent to an infinite specific heat transfer coefficient, we set zero resistance for 

fluid1.  For fluid2, we set Ranz-Marshall, which is the most well tested correlation. The 

Ranz-Marshall correlation (ANSYS CFX Manual) is 

3.05.0 PrRe6.02 Nu  , ..……..………………………………………. (3.15) 

where the range of Reynolds number and Prandtl number are,  

200Re0  , 250Pr0   ,.…………………………………..………. (3.16) 

Since our simulation is a multiphase simulation, the temperature of the liquid phase n-

C16 stays at 287
o
C with a corresponding Prandtl number of 72. We assumed that the 

Reynolds number of the fluid is less than 200 since the fluid velocity is very low. The 

only force acting on the fluid movement is buoyancy.   

 

4) Mass Transfer 

We used a thermal phase change model since it describes the change induced by 

interphase heat transfer. This can be used to simulate evaporation and condensation, or 

melting and solidification. 

 

Simulation Results  

N-C16 multiphase consists of both liquid phase and vapor phase n-C16. Since this 

is a reflux simulation, the temperature of the n-C16 will not exceed its boiling point of 

287
o
C. This is because when the vaporized n-C16 reaches the condenser, the condenser 

removes heat from the vaporized n-C16. Therefore, cracking of n-C16 is less likely take 

place during the n-C16 reflux. Fig. 3.9 shows the temperature distribution of the n-C16 

multiphase heat transfer simulation. Mostly, the temperature of the vapor and liquid 

stays at the boiling point of n-C16. The top of the reactor has a low temperature 

distribution because of condensation. The bottom part has a high temperature profile 



 

 

88 

since we fixed it at 500
o
C. From the temperature profile of the bottom, we can estimate 

that a minor amount of n-C16 thermal cracking might be possible during the reflux mode. 

We found from our laboratory analysis of n-C16 reflux that a little thermal cracking took 

place during that experiment which resulted in the creation of some lighter components. 

 

 

Fig. 3.9— Temperature distribution of n-C16 multiphase simulation indicates that vapor and liquid 

phase of n-C16 stay at almost same temperature (287 
o
C). 

 

Fig. 3.10 indicates the density distribution of the n-C16 multiphase simulation. 

All the liquid and vapor n-C16 are stratified by their density. These results were fed to the 

Monte Carlo N-Particle (MCNP) code to simulate radiation entering an area the density 

of which is not uniform. Therefore, we were able to estimate a more realistic radiation 

dose in the fluid. 
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Fig. 3.10—Density distribution of liquid and vapor phase n-C16 shows that multiphase n-C16 is 

layered by its density. Upper part of n-C16 mostly consists of vapor phase n-C16 and bottom part is 

liquid phase n-C16. 

 

Fig. 3.11 and Fig. 3.12 show the velocity vector of n-C16 vapor and liquid which 

describe the movement of the vapor and liquid phase n-C16. From the result, we 

estimated how fast the vapor and liquid phases move during the experiment and the 

possible direction of the fluid when they move. We can then use this information to 

estimate the radiation dose more reliably. By comparing Fig. 3.12 and Fig. 3.13, we 

found that the velocity of the vapor is about three times that of the liquid.  
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Fig. 3.11— Velocity vectors of n-C16 vapor. Compare to the velocity of n-C16, velocity of vapor is 

approximately three times faster than liquid. 
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Fig. 3.12— Velocity vectors of n-C16 liquid. 
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Fig. 3.13 shows heat flux in the control volume of n-C16. Even though the system 

receives thermal energy from the heater it also loses its energy through heat loss to the 

outside air. 

 

Fig. 3.13—Heat flux distribution in the control volume. Negative convention indicates heat loss. 

Positive convention means heat flux from the heater. Largest heat loss occurs on the top of the 

control volume.  

3.1.3 Validation of Simulation 

 Validation examines if the conceptual models, computational models as 

implemented into the CFD code, and computational simulation agree with real world 

observations (NASA 2008). The strategy is to identify and quantify error and uncertainty 

through comparison of simulation results with experimental data.  
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 Experimental data is the observation of the ―real world‖ in some controlled 

manner. By comparing the CFD results to experimental data, one hopes that there is a 

good agreement, which increases confidence that the physical models and the code 

represent the "real world" for this class of simulations. However, the experimental data 

contains some level of error. This is usually related to the complexity of the experiment 

(NASA 2008).  

 In our n-C16 reflux simulation, we matched the time to reach the boiling point of 

n-C16 to the experiment. Also, we found from our multi-phase simulation that the 

temperature distribution of the control volume stays at almost same temperature (287
o
C). 

During the n-C16 reflux, since vaporization and condensation taken place simultaneously 

it wouldn’t be happened that the temperature of the n-C16 increase beyond its boiling 

point (287
o
C) without the increase in pressure.  

Measuring the temperature outside of glass wall and the top of the reactor using 

thermocouples is a good way of comparing the experimental data to the simulation data. 

To locate several thermocouples in the reactor, it will require some modification of the 

reactor design.  

 For validating simulation of fluid with multi-components, we may need to 

measure the vapor temperature profile of the reflux experiment. However, vapor 

temperature measurement wouldn’t be unstable because of the turbulence occurred 

during the reflux phenomena.  

3.2 Radiation Transport Monte-Carlo Simulation 

 In this study, Kim (2009) used the Monte Carlo N-Particle, Version 5 (MCNP-5) 

developed at the Los Alamos National Laboratory (Brown 2003). This code is capable of 

simulating coupled electron-photon problems using a three dimensional combinatory 

geometry system.  

 Using the code, Kim simulated irradiation of n-C16 in the aluminum can reactor 

with the Van de Graff E-Beam accelerator. The simulated E-Beam source is a parallel 

plane large enough to cover the target. The electrons were emitted in a plane and 
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distributed evenly within the scan angle. The target was positioned 30 cm in front of the 

exit beam window, and the density of n-C16 was taken from the heat transfer simulation 

(Yang 2009). Fig. 3.14 shows the input geometry for the single phase simulation. 

According to the result of heat transfer simulation, the height of n-C16 is 2.35 cm at a 

volume of 80 ml. In the multiphase simulation, n-C16 is distributed throughout the entire 

aluminum can. 

 

Fig. 3.14— Input geometry for n-C16 Monte Carlo simulation. Electron beam (1.35 MeV) was tilted 

22.5 degree from the horizontal line. E-Beam entrance window starts from 1.7 cm above the bottom.  

 

Generally, Monte Carlo simulation results represent an average of the 

contribution from many histories sampled during the course of the problem. Therefore, a 

total of 10
6
-10

7
 histories were used in our simulation to reduce the statistical uncertainty 

to about 5% or less. The total sampled histories were generated from the probability of 

electron path in the n-C16. Fig. 3.15 shows the paths of an electron in n-C16 as a 

probabilistic example. Fig. 3.16 shows the real paths of electrons through irradiated solid 

media.  
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Fig. 3.15— Path of an electron in n-C16 sample (probabilistic example). 

 

 

Fig. 3.16— Electron paths of irradiated sample (source: Stoneridge Engineering). 

 

Single phase simulation result 

As mentioned earlier, since the volume of n-C16 increased due to thermal 

expansion, the height of the n-C16 liquid in the reactor increased with the heating time 

(Fig. 3.17). All four curves show the same tendency; doses measured from the interface 

surface to 0.5 cm below the surface have the main portion of the absorbed dose, and then 
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they decrease significantly until they reach zero. This means the main radiation 

interaction occurs between the surface of the n-C16 and 0.5 cm below the surface.  
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Fig. 3.17—Dose in n-C16 at single phase for 1.35 MeV electron beams of heating times.  

 

Fig. 3.18 shows the dose distribution of the n-C16 at the surface after 10 minutes 

of heating and irradiation. Almost one fourth of the area has doses of more than 0.7 kGy, 

because that portion of the area is only directly exposed to the entering electrons. The 

remaining area receives some dose due to electron scattering, though the dose is quite 

low. 

Glass cover area  
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Fig. 3.18—Dose of n-C16 at 10 minutes of heating time (surface layer: 2.35 cm above the bottom).  

Highest radiation dose occurs at the electron shooting zone (red area). 

 

Fig. 3.19 shows the radial doses (0
o
, 90

o
, 180

o
, and 270

o
) from the center of Fig. 

3.18.  At 90
o
, Kim found regions of short build-up, fast-falling dose, and slow linear 

decreasing dose. Doses at 0
o
 and 180

o
 are almost the same as each other. However, the 

slope up to 1.56 cm is lower than the one between 1.56 cm and 3.12 cm because the 

former area is open to entering electrons and the latter one is the area covered by the 

glass cover. In addition, the doses at 0
o
 and 180

o
 are higher than the ones at 270

o
, where 

electrons were partially blocked by the upper glass cover. 
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Fig. 3.19—Radial doses from the center at the surface. 
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In the middle layer, just under the lower glass cover window, the doses only exist 

within 0.69 cm from the outside of the circle (Fig. 3.20), which results mainly from the 

scattering of electrons. There is no dose in the rest of the area.  
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Fig. 3.20—Dose of n-C16 at 10 minutes of heating time (middle layer).  

 

Multiphase simulation result 

Fig. 3.21 shows the average densities from the heat transfer simulation and their 

corresponding doses from the Monte Carlo simulation at the same position. The 

maximum dose is 2.08 kGy at 3.95 cm from the bottom, where the fluid density is low 

(0.16 g/cm
3
) and the region is fully exposed to the E-Beam. The glass cover decreased 

the kinetic energy of the electrons dramatically; slopes of the dose curve at 1.7 cm and 

5.7 cm, the lower and upper limit of the glass cover window, are significantly large.  
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The dose below 1.7 cm gradually decreases to zero as it approaches to 0.7 cm. 

Even though the glass cover absorbed most of the electrons’ kinetic energy, some 

electrons still reached 1.0 cm below the lower window. Below that, there is no radiation 

dose because the high-density copper base (8.94 g/cm
3
) prevented electrons from 

reaching the n-C16 inside the aluminum can. 

 Between 5.7 cm and 7.0 cm, the dose also decreases gradually. Its slope, 

however, is not as steep as the one mentioned above because electrons more easily 

penetrate the low density region of the n-C16 and also scatter easily. Above 7.0 cm, the 

dose increases again with the help of electrons entering the shoulder region of the can, 

and continues to increase as it approaches the aluminum can’s maximum height of 8.4 

cm. The radiation in this setup has a greater effect on the low density region than the 

high density region. 
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Fig. 3.21—Density and dose vs. vertical distance from the bottom of 8 oz aluminum can. This dose 

distribution is at 1 hr of irradiation time, when the total average dose is 0.67 kGy.  
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Fig. 3.22 shows the density distribution obtained from the heat transfer 

simulation and the corresponding dose distribution of the n-C16 at 2.0 cm (a), 4.0 cm (b), 

and 6.0 cm (c) from the bottom of the aluminum can. The highest dose occurred in the 

middle layer (4.0 cm from the bottom). More detailed discussion of dose distribution in 

the three layers is followed.  

 

 

Fig. 3.22—Density distribution from heat transfer simulation and corresponding dose distribution 

of n-C16 at 2.0 cm (a), 4.0 cm (b), and 6.0 cm (c) from the bottom of the aluminum can. 
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Fig. 3.23 shows dose distribution at 2 cm, just above the lower glass window (1.7 

cm). The penetration depth is 1.21 cm, which is quite larger than the penetration depth of 

electrons in water (0.3 cm), which was exposed to the same electron kinetic energy. This 

is due to the low density of the n-C16 (0.46 g/cm
3
) at that region. 
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Fig. 3.23—Dose distribution of n-C16 at 2.0 cm from the bottom of the aluminum can. 

 

Electrons entering regions of low density (0.16 g/cm
3
) penetrate into the n-C16 

slightly more than halfway (Fig. 3.24). However, the rest of the region does not receive 

any radiation because the upper glass cover blocks electrons which would otherwise 

reach the region. The area behind the window of the glass cover shows the highest dose. 
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Fig. 3.24—Dose distribution of n-C16 at 4.0 cm from the bottom of the aluminum can. 

 

Unlike the above cases, dose is distributed in the entire layer at the distance of 

6.0 cm (Fig. 3.25). Electrons entering the shoulder region can reach the very back of the 

aluminum can due to the low density of the n-C16. Using the glass cover resulted in the 

area with the highest dose shifting inward. This case (at 6 cm from the bottom) has an 

average dose that is lower than the average of the other two cases.  
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Fig. 3.25—Dose distribution of n-C16 at 6.0 cm from the bottom of the aluminum can. 

 

These three dose distributions are good examples of whole dose distribution of n-

C16. However, n-C16 moving in a fluid state in a Monte Carlo simulation requires a huge 

amount of computing time to obtain a reliable result, and is almost impossible given 

currently available super computing power. This problem may be solved by post-

processing of non-movement simulation results (e.g. random movement of n-C16 within 

the irradiation area). However, since we know the trend of fluid movement and velocity 

of fluid from the heat transfer simulation we can estimate the residence time of the fluid 

with limited penetration depth, which provides better ideas for estimating the average 

dose more accurately.  
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CHAPTER IV 

POTENTIAL APPLICATION AND ECONOMIC FEASIBILITY 

 

4.1 Potential Applications  

4.1.1 E-Beam Partial Upgrading Facility  

The high viscosity of heavy oil causes transportation problems. Today, partial 

upgrading technologies are used to make upgraded synthetic oil after heavy oil 

production. This is a highly energy-intensive process since it requires breaking large 

hydrocarbon molecules of heavy oil. The radiation effect on hydrocarbons from the use 

of E-Beam upgrading technology can minimize thermal energy consumption and the use 

of expensive catalysts. Fig. 4.1 shows a conceptual design of an E-Beam field upgrading 

facility. After the production of heavy oil by a thermal recovery method, we send the 

heavy oil to the field upgrading facility and provide E-Beam radiation to the oil to break 

heavy molecules. During this time the heavy oil may have enough thermal energy to 

initiate free radical chain reactions since it is produced from a thermal recovery process. 

As a result, the heavy oil is able to initiate C-C bond decomposition with E-Beam. After 

upgrading the heavy oil, we send the upgraded oil to the distillation facility to obtain a 

certain range of distillation cut such as a naphtha, light gas oil, and vacuum gas oil. Then 

we can obtain synthetic crude oil which we can send to a refinery for further processing. 

This facility is able to promote higher profit from heavy oil production.  
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Fig. 4.1—Conceptual design of E-Beam field upgrading facility (batch system). Heavy crude oil is 

upgraded by E-Beam and upgraded oil sent to distillation facility to make synthetic crude oil. LGO 

stands for light gas oil and VGO stands for vacuum gas oil. 

4.1.2 Pipeline Heavy Oil Upgrading 

Fig. 4.2 shows a conceptual design of pipeline heavy oil upgrading (Yang et al. 

2009). Two E-Beam machines are located near the heavy oil pipelines, and the machines 

generate electrons. These electrons enter the heavy oil inside of the pipeline and break 

hydrocarbon molecules which then generate lighter components. These lighter 

components make the heavy oil lighter for easy transportation. The number of machines 

to be used depends on the power of a machine and the kinetic energy of the electrons 

generated from the machine. To deliver electrons to the heavy oil effectively, we should 

design a special window for the E-Beam shooting area. 
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Fig. 4.2 — Electrons with high kinetic energy are generated by two E-Beam machines. These 

electrons enter heavy oil and break the heavy molecules of the heavy oil. 

 

4.1.3 Refining Industry 

In the refining industry, we can use this technology to lower the thermal energy 

consumption in the distillation column. From the naphtha experiments, we found that E-

Beam increases the vapor temperature of naphtha.  

In addition, we can reduce the amount of undesirable components and create the 

most demanded components. Our asphaltene experiment indicated that E-Beam 

significantly reduces aromatic content. From our experiments with naphtha and n-C16 we 

found that E-Beam creates more olefins when compared with conventional methods. 

Olefin is a very valuable chemical in the petroleum industry. Especially, ethylene, part 

of the olefin group, is very expensive, and the ethylene market is huge in petrochemical 

industry.  The asphaltene experiment also indicated that E-Beam enhances isomerization 

of hydrocarbons. In the petrochemical industry, many isomerization techniques have 
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been developed because of the industrial importance of isomerization reactions. 

Therefore, we will be able to create new techniques to generate isomers at lower cost.   

4.2 Machine and Operation Cost 

Fig. 4.3 shows a currently used industrial-scale E-Beam machine for waste water 

treatment. This machine is able to process 10,000 bbl of waste water for 24 hours of 

operation with 3.1 kGy of absorbed dose. Since the machine is very durable, 24 hours of 

continuous operation is possible. Only 2 to 3 days of maintenance time is required for 

one year of continuous operation.  

 

 

Fig. 4.3—Industrial scale E-Beam machine. It is able to process 10,000 bbl of oil per day with 

absorbed dose of 3.1 kGy. 

. 
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In addition, the cost of the machine, including installation and shielding, is not 

very expensive (Table 4.1). Assume that we are upgrading heavy oil with the same 

absorbed dose (3.1 kGy) used for waste water treatment. Then, we can theoretically 

calculated radiation energy transferred to the fluid per day which can be calculated by 

tPE Beamtr  , …………….………………………………………................. (4.1) 

where Etr is radiation energy transferred to the fluid, PBeam is Beam power of the 

machine, and t is the process time in second. If we consider the efficiency of the process, 

we are able to obtain process volume to irradiate heavy oil with 3.1 kGy of radiation 

dose which is 10000 barrel per day. Using the specification of the machine and 

electricity cost in Texas, we estimated the process cost in cents per bbl. Here, we 

computed the average electricity cost in Texas to estimate the operation cost for one year 

of continuous operation. From the calculation, the E-Beam operation cost to upgrade 1 

bbl of heavy oil is only 3 cents (Table 4.2). 

Table 4.1—Specification of an industrial scale E-Beam machine. 

 

a. Absorbed Dose: 3.1 kGy 

 

 

 

 

 

 

 

 

Electron Kinetic Energy, MeV 2.5

Beam Power, kW 100

Beam Current, mA 50

Total Power Consumption, kW 148

Power Efficiency, % 68

Process Volume, bbl/day
a 10000

Total Cost, Million USD 1.35
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Table 4.2—E-Beam operation cost to upgrade one barrel of heavy oil. 

 

a. Electricity price for industrial use 

 

Fig. 4.4 shows the cost of using the E-Beam operation to process a barrel of 

heavy oil with different absorbed doses. We can find that the operation cost is 

proportional to the absorbed dose. Thus, we can increase the radiation energy to enhance 

the radiation effect, though this will increase the operation cost. We need to find the 

optimum doses for the numerous upgrading processes utilized within the petroleum 

industry. 

E-Beam Operation Cost with Different Dose

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

E
-B

e
a

m
 O

p
e

ra
ti

o
n

 C
o

s
t,

 $
/b

b
l

20 kGy

10 kGy

5 kGy

3.1 kGy

 

Fig. 4.4—Operation cost of E-Beam is proportional to dose. 

 

Operation Time, hr/day 24

Daily Electricity Consumption, kWh 3552

Elecricity Cost in TX
a
, cents/kWh 8.08

Daily Electricity Cost, $ 287

Yearly Electricity Cost, $ 103321

Operation Cost, cents/bbl 3
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4.3 Economic Comparison of E-Beam Upgrading and Conventional Upgrading 

Visbreaking is a mild thermal cracking to reduce viscosity and sulfur content of 

heavy oil. The processing cost of this method is relatively lower than other upgrading 

methods. With our asphaltene experimental results, we compared the process cost of E-

Beam upgrading with conventional visbreaking. Table 4.3 shows average energy 

consumption for a coil type visbreaking. Using the natural gas price in Texas, we 

converted the amount of thermal required to upgrade 1 bbl of heavy oil to energy cost. 

The result is 73 cents per bbl. 

Table 4.3—Average energy consumption for a conventional visbreaking and converted money value. 

 

 

 

 

From the asphaltene experiments, we observed that RTC increased the amount of 

light oil by 39%. Since we had a lighter RTC sample compared to the TC sample, we 

estimated a 50% increase in volume with RTC. Therefore, with RTC we are able to get 

50% more light oil compared to conventional visbreaking. Fig. 4.5 and Fig. 4.6 show the 

energy cost of a coil type visbreaking and E-Beam upgrading, respectively. The main 

assumption for this energy cost calculation is that each process used the same heat flux, 

so that the only difference between them is the E-Beam operation cost for the E-Beam 

upgrading. To generate the same amount of light oil created from RTC, the visbreaking 

(Fig. 4.5) needs to increase the volume of heavy oil by 50%. So, the energy cost for 

upgrading 1.5 bbl of heavy oil is 110 cents per unit light oil. Fig. 4.6 shows the energy 

Avg. Energy Consumption
a
, 0.14

MMBtu/bbl

Natural Gas Price in TX
b
, 5.35

$/MMBtu

Thermal Energy Converted to 73

Cost, cents/bbl
aAverage energy consumption 
 based on estimated utility 

 Source: DOE   
bGas price for industrial use 

 Source: EIA 2009 
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cost of E-Beam upgrading. Since this process upgrades 1 bbl of heavy oil, the energy 

cost of this process is the sum of the thermal energy and E-Beam operation cost. 

Therefore, with E-Beam processing we can reduce the upgrading cost by 31%. In 

addition, we obtain better quality of light oil with E-Beam processing.    

Energy Cost: 1.5 bbl x 73 cents/bbl=110 cents/Unit LO

Heatflux

1.5 bbl of

Heavy Oil

Light Oil

(LO)

Residue

 

Fig. 4.5—The energy cost to upgrade a certain amount of unit oil from conventional visbreaking can 

be calculated with the energy consumption data of visbreaking (Table 4.3). 

 

 

             Energy Cost: 1bbl x (73 cents/bbl + 3 cents/bbl)=76 cents/Unit LO

Heatflux

E-Beam

1 bbl of

Heavy Oil

Light Oil

(LO)

Residue

 

Fig. 4.6—The energy cost to upgrade a certain amount of unit oil from E-Beam upgrading can be 

calculated with the energy consumption data of visbreaking (Table 4.3) and E-Beam operation cost 

(Table 4.2). 
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CHAPTER V 

CONCLUSIONS 

 

5.1 Conclusions 

The parallel experiments conducted with n-C16, naphtha, and asphaltene indicate 

that radiation effects on hydrocarbons are significant. 

 In the naphtha distillation, we found that E-Beam irradiation may have caused 

exothermic reactions and these reactions increased the heat of vaporization, resulting in a 

higher vapor temperature profile and distilled yield. In addition, we observed that 

radiation effect on naphtha distillation is proportional to the amounts of electrons 

absorbed in the fluid.  

The results of the asphaltene experiment (the lighter RTC sample and higher 

isoparaffin formation) show that C-C bond decomposition and isomerization are 

enhanced with E-Beam irradiation. In addition, the lower aromatics content in the RTC 

sample indicates a significant reduction of aromatic components during E-Beam 

irradiation.  

From the result of the reflux experiment conducted with n-C16, we found that C-

C bond cleavage and polymerization take place simultaneously during the chain 

reactions. The polymerization reaction can be reduced using a special procedure such as 

radical trapping using Tempo, and it will require modification of the experimental set up. 

Another reflux experiment with naphtha indicated that E-Beam broke hydrocarbon 

molecules in the naphtha and generated lighter components. In addition, this reaction 

generated more olefins from C-H dissociation.  

The energy transfer simulation of E-Beam upgrading of the multiphase and 

single phase n-C16 is a valuable initiative which researchers have never tried before. 

With the heat transfer simulation, we estimated heat loss, fluid movement, and density 

distribution during the reaction.  



 

 

114 

Using the density distribution data from the heat transfer simulation, we 

conducted a radiation simulation to estimate accurately the radiation dose in the fluid. 

From the simulation, we found that insulating an aluminum can using glass fiber and a 

pyrex glass cover minimizes heat loss, though it prevents many electrons from entering 

the fluid.  

Under multiphase conditions, we found that the system has much heat loss 

because of the condenser (cooling load) so it is unlikely that cracking of fluid occurs 

during the reflux. 

From the Monte-Carlo simulation, we found that the penetration depth of E-

Beam is limited. However, even though the penetration of electrons in the fluid is very 

low, we are able to distribute the radiation dose evenly through convection of the fluid.  

The simulation study makes possible the optimization of conditions for 

laboratory experiments and industrial-scale design of the process. 

The inexpensive operating cost of the E-Beam machine (3 cents per barrel) 

indicates that the application of E-beam technology is economically feasible. This new 

technology will enable upgrading of heavy oil without excessive thermal energy 

consumption or use of catalysts, resulting in higher profits from heavy oil production.  

 

5.2 Challenges and Recommendations  

In E-Beam upgrading, since the main source for the process is the high kinetic 

energy of E-Beam, it is important to deliver effectively many electrons to the 

hydrocarbons. However the main challenge for the delivery of electrons is the 

penetration depth. The penetration of E-Beam is disproportional to the density of the 

media. Therefore, if we shoot electrons through a highly dense media, such as a steel 

pipe, the penetration depth of electrons will be very low. Because electrons are charged 

particles, they interact with, and transfer their energy to, all the atoms in the media, and 

stop moving once they lose their energy. A possible solution in pipeline heavy oil 

upgrading is to make a special thin window in the E-Beam shooting area.    
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In order to improve the penetration of E-Beam, we can increase the kinetic 

energy of electrons so these electrons can travel longer distances. However, in 

accordance with IAEA guidelines for avoiding radioactivity we have a limited range of 

kinetic energy of E-Beam to 10 MeV. If we use the very high kinetic energy of electrons, 

the reaction may possibly generate neutrons.  

Even though we use a machine that can generate 10 MeV of electrons, the 

efficiency is not good. This is because the efficiency of E-Beam machines decreases as 

the kinetic energy of the electrons generated by the machine increases. Using machines 

that generate electrons that have high kinetic energy therefore, would not be economical 

since it consumes so much energy.  

  Estimating accurately the dose distribution in the fluid with convection is very 

difficult. A possible solution we proposed and conducted is a coupled heat transfer and 

radiation transport simulation. To develop this approach, we need to find a way to 

compute fluid movement in the MCNP code without huge amounts of computation time.  

Finding major process mechanisms are very important since we have to quantify 

certain energy ranges with this new process, such as the amount of radiation energy 

required for a certain type of upgrading. This work will help us compute chemical 

reactions in our simulation.    

All our experimental setups are based on batch systems. However, we need to 

conduct experiments under continuous flowing systems for more practical industrial 

applications. To do so we need to conduct simulation studies to pre-design the process 

before building up experimental apparatus. These simulations can provide the best 

residence times, desirable geometry, and operating temperature constrained to fluid 

characteristics. 
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NOMENCLATURE 

Gy      = Gray (J/kg) 

=  Energy imparted by ionizing radiation (kJ) 

inR      = The radiant energy incident on the volume (J) 

outR     = The radiant energy emerging from the volume (J) 

Q     = The sum of all changes of the rest mass energy of nuclei and elementary 

particles in any nuclear transformations which occur in the volume (J). 

D        = Absorbed dose (kJ/kg) 

D       = Absorbed dose rate (Gy/sec) 

K        = Kerma (J/kg) 

cK      = Collision kerma (J/kg) 

       = Energy fluence (J/m
2
) 



 en    = Energy absorption coefficient 

X       = Exposure (C/kg) 

airW    = Energy required to generate a pair of positron and electron (33.97 eV/i.p) 

2HK   =  Hydrogen formation rate constant (lbmol/hr/lbmol) 

2Hn    =  Moles of hydrogen produced per hour 

16Cn    =  Moles of n-C16 

16CM  =  Molecular weight of n-C16 

gasn    =  Moles of gas produced 

gasV    =  Volume of gas produced (m
3
) 

gasVm = Molar volume of gas produced (m
3
/mol) 

Q     =  Heat energy (kJ) 

m       =  Mass of sample (g) 
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cp           =  Specific heat capacity under constant pressure (J g
–1

 K
–1 

)
 
 

GC     =  Gas chromatography  

RTD   =  Radiation thermal distillation 

TD      =  Thermal distillation 

RTC   =  Radiation thermal cracking 

TC      =   Thermal cracking 

MeV  =   Mega electron volt 

Avg. MW = Average molecular weight  

Avg. API  = Average API gravity 

Wt% = %WGT= Weight percent 

)(vapH  =  Enthalpy of vaporization 

iQ      = Heat used for a vaporization of each component 

totalQ  = Total heat of vaporization 

U       = Overall coefficient of heat transfer (W/mm
2
K) 

A       = Area (m
2
) 

H       = Heat transfer coefficient (W/mm
2
K) 

K       = Thermal conductivity (W/mmK) 

q       = Heat flow rate (W) 

Aq /  = Heat flux (W/m
2
) 

R       = Gas constant (8.314472 JK
-1

mol
-1

) 

T       = Temperature (Kelvin) 

      = Acentric factor 

CT     = Critical temperature (Kelvin) 

CP     = Critical pressure (Pa) 

cv     = Critical molar volume (m
3
/mol) 

F    = Buoyancy force  

 g    = Gravity 

 Nu  = Nusselt number 
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Re  = Reynolds number 

Pr   = Prandtl number 
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