
DESIGN AND ANALYSIS OF

DYNAMIC THERMAL MANAGEMENT

IN CHIP MULTIPROCESSORS (CMPS)

A Dissertation

by

IN CHOON YEO

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2009

Major Subject: Computer Science

DESIGN AND ANALYSIS OF

DYNAMIC THERMAL MANAGEMENT

IN CHIP MULTIPROCESSORS (CMPS)

A Dissertation

by

IN CHOON YEO

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Eun Jung Kim
Committee Members, Valerie E. Taylor

Hank Walker
Peng Li

Head of Department, Valerie E. Taylor

December 2009

Major Subject: Computer Science

iii

ABSTRACT

Design and Analysis of

Dynamic Thermal Management in Chip Multiprocessors (CMPs). (December 2009)

In Choon Yeo, B.S., Dongguk University;

M.S., Dongguk University

Chair of Advisory Committee: Dr. Eun Jung Kim

Chip Multiprocessors (CMPs) have been prevailing in the modern microprocessor

market. As the significant heat is converted by the ever-increasing power density and

current leakage, the raised operating temperature in a chip has already threatened

the system’s reliability and led the thermal control to be one of the most important

issues needed to be addressed immediately in chip designs. Due to the cost and

complexity of designing thermal packaging, many Dynamic Thermal Management

(DTM) schemes have been widely adopted in modern processors.

In this study, we focus on developing a simple and accurate thermal model,

which provides a scheduling decision for running tasks. And we show how to design

an efficient DTM scheme with negligible performance overhead. First, we propose an

efficient DTM scheme for multimedia applications that tackles the thermal control

problem in a unified manner. A DTM scheme for multimedia applications makes soft

realtime scheduling decisions based on statistical characteristics of multimedia appli-

cations. Specifically, we model application execution characteristics as the probability

distribution of the number of cycles required to decode frames. Our DTM scheme

for multimedia applications has been implemented on Linux in two mobile processors

providing variable clock frequencies in an Intel Pentium-M processor and an Intel

iv

Atom processor. In order to evaluate the performance of the proposed DTM scheme,

we exploit two major codecs, MPEG-4 and H.264/AVC based on various frame res-

olutions. Our results show that our DTM scheme for multimedia applications lowers

the overall temperature by 4 ◦C and the peak temperature by 6 ◦C (up to 10 ◦C),

while maintaining frame drop ratio under 5% compared to existing DTM schemes

for multimedia applications. Second, we propose a lightweight online workload esti-

mation using the cumulative distribution function and architectural information via

Performance Monitoring Counters (PMC) to observe the processes dynamic workload

behaviors. We also present an accurate thermal model for CMP architectures to ana-

lyze the thermal correlation effects by profiling the thermal impacts from neighboring

cores under the specific workload. Hence, according to the estimated workload char-

acteristics and thermal correlation effects, we can estimate the future temperature of

each core more accurately.

We implement a DTM scheme considering workload characteristics and ther-

mal correlation effects on real machines, an Intel Quad-Core Q6600 system and Dell

PowerEdge 2950 (dual Intel Xeon E5310 Quad-Core) system, running applications

ranging from multimedia applications to several benchmarks. Experiments results

show that our DTM scheme reduces the peak temperature by 8% with 0.54% perfor-

mance overhead compared to Linux Standard Scheduler, while existing DTM schemes

reduce peak temperature by 4% with up to 50% performance overhead.

v

To my family

vi

ACKNOWLEDGMENTS

I am sincerely grateful to my advisor, Dr. Eun Jung Kim, for allowing me to

conduct research with her. I am constantly amazed by her extraordinary ability to

transform seeming unsolvable problems into a tractable form her infinite knowledge on

subject matters, and her relentless attention to detail. Her exceptional commitment to

research and strong demand for excellence have guided me this far. I am truly grateful

to her insightful advice, her encouragement and constant motivation throughout this

work.

I would also like to thank professors Valerie E. Taylor, Hank Walker, and Peng

Li for their service on my advisory committee. Their insightful comments and con-

structive criticism helped me improve my research. In addition, I am deeply grateful

to Dr. Kihwan Yum for giving me powerful advising during this study.

Furthermore, I would like to thank my friends and fellow students at Texas A&M

University for numerous discussions about various issues related to research and lives.

I sincerely thank current and former members of the High Performance Computer Lab

for being supportive of me during this work. I also want to thank Seung-Ryong Kang,

Young-Woo Ahn, Seung-Jin Sul for being great friends and for always being available

whenever I need their assistance and help. I also thank to Chih-Chun Liu for being a

great friend and for always being available whenever I need his assistance and help.

All my friends at Texas A&M University have helped me in various ways during the

years of my Ph.D. program. I thank them all, especially Sun-Hwan Jang, Jae-Woo

Seo, Yoon-Jin Kim, Gun-Hee Jo, Ja-Ryeong Koo, Baik-Song Ahn, Heung-Ki Lee, and

Ju-Young Jung.

Last, but not least, I would like to thank my parents and my family members

vii

for their continuous support and encouragement. I am especially grateful to my wife

for her endless support and love. Without her dedication and belief in me, this work

would have been impossible.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II BACKGROUND AND RELATED WORK 7

A. Dynamic Thermal Management in Single Core Architecture 7

B. Dynamic Thermal Management in Multicore Architecture . 8

III EFFECTIVE DYNAMIC THERMAL MANAGEMENT FOR

MPEG-4 DECODING . 12

A. Thermal Issues in Multimedia Applications 13

B. Overview of a Feedback Control 14

C. Advanced Feedback Controller Using GOP Information . . 17

D. Thermal Control Using GOP Information 20

E. DTM with the Advanced Feedback Controller 23

F. Experimental Results and Analysis 26

G. Conclusions . 27

IV THERMAL-AWARE SCHEDULING BASED ON STATIS-

TICAL CHARACTERISTICS OF MULTIMEDIA APPLI-

CATIONS . 29

A. The Problems of Multimedia Applications Processing . . . 31

B. The Workload of Multimedia Applications 33

C. Thermal-Aware Scheduling for Multimedia Applications . . 36

D. Application Characteristics Profiler for Multimedia Ap-

plications . 38

E. Experimental Environments 42

F. Experimental Results and Analysis 44

1. The effect on performance overhead and thermal

managements in Intel Pentium-M processor 44

2. The effect on performance overhead and thermal

managements in Intel Atom processor 47

G. Conclusions . 52

V PREDICTIVE DYNAMIC THERMAL MANAGEMENT FOR

MULTICORE SYSTEMS . 55

ix

CHAPTER Page

A. Predictive Thermal Model 57

1. The application-based thermal model in CMP systems 57

2. The core-based thermal model in CMP systems 60

3. The predictive thermal model 61

B. PDTM Scheduler . 62

C. Experimental Results and Analysis 66

1. Digital thermal sensor for Intel quad-core 67

2. Experimental results and analysis 68

D. Conclusions . 69

VI TEMPERATURE-AWARE SCHEDULER BASED ON THER-

MAL BEHAVIOR GROUPING IN MULTICORE SYSTEMS . . 70

A. Thermal Behavior Group 73

1. Thermal behavior groups based on the applica-

tions’ thermal pattern 74

2. The region of the thermal behavior group 77

B. Temperature-Aware Scheduler for Multicore Systems . . . 79

C. Experimental Results and Analysis 82

1. 4-core system . 83

2. 8-core system . 83

D. Conclusions . 84

VII A THERMAL MODEL BASED ON WORKLOAD CHAR-

ACTERISTICS USING CDF . 85

A. A Representative Workload Estimation Based on CDF . . 85

1. The definition of workload 86

2. The statistical representative to estimate workload . . 86

3. Thermal parameters in CMP systems 88

B. Thermal Mode Based on Workload 91

1. Prior thermal model of a single core 93

2. The thermal impacts contributed by different workloads 94

3. New T ′
ss according to thermal correlation 94

4. New b′ according to thermal correlation 96

5. Future temperature estimation model 97

C. A Proactive Correlation-aware Thermal Management . . . 100

1. System overview . 100

2. Thermal-aware thread scheduler (TATS) 102

D. Experimental Results and Analysis 104

x

CHAPTER Page

E. Conclusions . 107

VIII A THERMAL MODEL FOR CMPS CAPTURING WORK-

LOAD CHARACTERISTICS AND NEIGHBORING CORE

EFFECTS . 109

A. The Lumped Thermal RC Model 109

B. Workload-aware Thermal Model 111

C. Thermal Correlation Effects 115

D. Conclusions . 122

IX CONCLUSIONS AND FUTURE WORK 123

A. Conclusions . 123

B. Future Work . 124

REFERENCES . 126

VITA . 131

xi

LIST OF TABLES

TABLE Page

I Experimental systems description . 42

II The experimental multimedia data (Standard Definition) 43

III The experimental multimedia data (High Definition) 43

IV Environments parameters . 67

V A set of benchmarks list . 67

VI The result of thermal behavior group using K -means clustering

on 4-core system . 76

VII Experimental systems descriptions 82

VIII Each core’s respective Tss and thermal parameter b for a generated

example process with 100% workload running in the Intel Quad

Core Q6600 system . 92

IX The thermal parameter b and Tss according to workload in 4-core

system . 92

X Ttc and b according to thermal correlation profiled for core 1 96

XI The ratio of Tss for cores in an Intel Quad-Core processor 119

xii

LIST OF FIGURES

FIGURE Page

1 MPEG process with display buffers 14

2 Low complexity vs. high complexity scenes 18

3 Comparison with DTM and without DTM for frequency 25

4 Temperature comparison with and without DTM 26

5 Variance of temperature of high-complexity movies 28

6 Variance of temperature of mid- and low-complexity movies 28

7 The timing gap between decoding and displaying data using the

buffer management . 32

8 The workload of decoding and displaying multimedia data accord-

ing to several codecs and frame resolutions 34

9 TAS overview . 37

10 The cumulative distribution function (cdf) of decoding frames in

the multimedia application . 40

11 The frame drop of standard definition multimedia data encoded

by MPEG-4 and H.264/AVC in Intel Pentium-M processor 45

12 Resulting temperatures with feedback, frame, cycle counter, and

TAS in the standard definition multimedia data in Intel Pentium-

M processor (frame resolution : 800 X 600) 48

13 Resulting temperatures with feedback, frame, cycle counter, and

TAS in the high definition multimedia data in Intel Pentium-M

processor (frame resolution : 1280 X 720) 49

14 The frame drop of standard definition multimedia data encoded

by MPEG-4 and H.264/AVC in Intel Atom processor 50

xiii

FIGURE Page

15 Resulting temperatures with feedback, frame, cycle counter, and

TAS in the standard definition multimedia data in Intel Atom

processor (frame resolution : 800 X 600) 53

16 Resulting temperatures with feedback, frame, cycle counter, and

TAS in the high definition multimedia data in Intel Atom proces-

sor (frame resolution : 1280 X 720) 54

17 Real temperature of one core on running bzip2 benchmark 58

18 The calculation of ∆t (migration time) using ABTM 60

19 System overview . 63

20 PDTM utilizes ABTM and CBTM simultaneously to predict both

short-term and long-term future temperature for multicore 65

21 Comparisons among without DTM, HRTM, and PDTM using

libquantum benchmarks . 66

22 Comparisons among without DTM, HRTM, and PDTM using

bzip2 and libquantum benchmarks 66

23 Performance overhead : PDTM incurs only under 1% performance

overhead in average while running single benchmark 68

24 Tss according to SPEC CPU 2006 benchmark suite 72

25 Thermal behavior for Group A . 74

26 The application thermal behavior according to applications and cores 75

27 Slopes for the thermal pattern at runtime 78

28 DTM evaluations in 4-core system using test group 2 (bzip2 +

libquantum) . 81

29 The representative workload is 58% when the probability (ρ) is

0.7 in dynamic workload behavior . 88

30 Thermal effects by different workloads 92

xiv

FIGURE Page

31 The thermal range (∆T) using Tw
ss and Ttc to calculate T ′

ss for core 1 94

32 Validation of improved thermal model with workload estimation

and thermal correlation in static application. (Only core 1’s tem-

perature is drawn) . 99

33 Validation of new thermal model with fluctuant workload: whiling

playing the Transformer movie, the Mplayer software would gen-

erate two threads. One is the X windows daemon with stable

workload, and the other one is for decoding with fluctuant work-

load as shown above. 100

34 The difference of thermal control based on current temperature

and future temperature . 101

35 ProCATM system architecture . 102

36 DTM evaluation in Intel Quad Core Q6600 system for stable work-

load behaviors: libquantum + vacation 104

37 DTM evaluation in Intel Quad Core Q6600 for dynamic workload

behaviors: Multimedia . 106

38 An extended lumped thermal RC circuit model for a single core

in a CMP architecture . 111

39 Tss of SPEC CPU 2006 benchmarks 112

40 Temperature tracking using architectural information in SPEC

CPU integer benchmarks . 116

41 Temperature tracking using architectural information in SPEC

CPU floating-point benchmarks . 117

42 The extended thermal model for CMP architecture 118

43 The proposed platform . 120

44 The comparisons between the estimated temperature considering

workload characteristics and thermal correlation effects and the

measured temperature in a CMP architecture 121

1

CHAPTER I

INTRODUCTION

Chip Multiprocessors (CMPs) have become the main trend in the design of new gen-

eration processors. CMP architectures include several cores within one single die

area to increase their performance. Instead of pushing the limits of a processor’s

frequency, the demand for more capable microprocessors must be satisfied by other

methods. However, decreased chip size and increased power-density produces a signif-

icant amount of heat, threatens system performance and reliability, and even increases

power leakage. This heat dissipation is pushing the limits of current packaging tech-

nology and cooling solutions. Packages are designed for the worst typical behaviors

and rely on Dynamic Thermal Management (DTM) techniques to control tempera-

ture at runtime. Therefore, over the past decade, chip design trends have shift to

providing more effective thermal managements.

Brooks and Martonosi [1] state the key goals of DTM as: (1) providing inexpen-

sive hardware or software responses, (2) reliably reducing power, and (3) impacting

performance as little as possible. Although many hardware-based temperature con-

trol techniques, such as Dynamic Frequency and Voltage Scaling (DVFS) and clock

gating, have been proposed and applied in modern processors, the demand for more

efficient techniques is prevailing in modern microprocessors. [1, 2, 3, 4, 5, 6].

Although modern microprocessors can meet the computation requirement for

multimedia data, the high definition multimedia data requires high computations,

which converts into a huge amount of heat in modern embedded systems. Therefore,

it is critical to keep the temperature of microprocessors under safe limits at runtime.

The journal model is IEEE Transactions on Networking.

2

In DTM schemes for modern processors, DVFS is a common method to control tem-

perature. However, due to the nature of multimedia applications with different frame

sizes and types in data, it is not easy to match their QoS requirements while tempera-

ture is under control. There have been a handful of studies on thermal managements

for multimedia systems [7, 8, 9, 10, 4, 11]. However, according to our observations,

these schemes tend to overestimate or underestimate multimedia application require-

ments. Their results inevitably lead to manage operating temperature high or degrade

their performance. In order to compensate the tradeoff between QoS and tempera-

ture control, we derive application execution characteristics in various multimedia

codecs such as MPEG-4 and H.264/AVC. The application execution characteristics

can be represented by the probability distribution of cycle demand that is the num-

ber of cycles required to decode a frame. Using this representation, we estimate an

adequate processor speed to execute multimedia applications for decoding frames at

runtime. Then, we develop Thermal-Aware Scheduler (TAS) that takes optimal fre-

quencies to avoid thermal emergencies while minimizing performance degradations in

real environments. We experiment on Intels Pentium-M and Atom processors using

various multimedia data encoded by MPEG-4 and H.264/AVC. Compared to feed-

back control scheme [10], Frame-based scheme [12] and cycle counter-based scheduler

[13], TAS lowers average temperature by 6 ◦C and peak temperature by 10 ◦C or

more, with maximum 5% frame drop ratio.

In DTM schemes for CMP architectures, a thread migration has been proposed

to achieve thermal balance among cores without throttling the computation perfor-

mance in CMP architectures. However, several studies are reactive to the increased

chip temperature, while others, such as [4, 5], are proactive based on the predicted

future temperature. The proactive DTMs are more effective in temperature control

and preventing thermal emergencies, for they trigger the control schemes before the

3

core temperature reach the desired threshold. Since applications have used different

functional units that can affect operating temperature, the temperature difference

among applications can be up to 9 ◦C [2, 3]. In fact, the temperature difference be-

tween on-chip components can be as much as 10 ∼ 15 ◦C [3]. Also, all applications do

not result in the same heat dissipation pattern. In other words, there are significant

variations in the thermal characteristics of different applications [3, 4] and different

cores in the same chip.

Also, according to our observations, the temperature of a core varies by 2 ◦C to

16 ◦C depending on different levels of thermal correlation in a 4-core CMP system.

The temperature of a component is highly correlated with those of other components

in the same chip [14, 15, 16, 3]. The temperature model, capturing correlation effects

in a uniprocessor, cannot be directly applied to that of a CMP, due to their potential

heterogeneity where each core has an independent task to run. Furthermore, [14, 4]

have already reported the significant variations in the thermal behaviors of different

applications. Although there have been a handful of studies using simple workload

models, such as average workload and Instructions Per Cycle (IPC), these studies

measured the workload information offline for temperature managements [17, 18].

We believe that it is critical to develop an efficient and online application-based ther-

mal model for DTM which is applicable to real world applications that have dynamic

workload behaviors and distinct thermal contributions to the chip temperature. To

demonstrate the proposed DTM scheme’s scalability and efficiency, especially to sat-

isfy the demand of thermal control in the recent server environments, we implement

and evaluate our DTM scheme on real machines, an Intel Quad-Core Q6600 system

and Dell PowerEdge 2950 (dual Intel Xeon E5310 Quad-Core) system, running ap-

plications ranging from multimedia applications to several benchmarks. For several

applications with dynamic workload behaviors, experiments results show that our

4

DTM scheme reduces the peak temperature by 8% with 0.54% performance overhead

compared to Linux Standard Scheduler, while existing DTM schemes reduce peak

temperature by 4% with up to 50% performance overhead.

In summary, this thesis focuses on dynamic thermal managements in CMP ar-

chitectures with negligible performance overhead. Specifically, the contributions of

this thesis are follows:

• A near-optimal thermal management in various multimedia systems. We es-

timate multimedia applications’ thermal characteristics using statistical ap-

proaches to be suitable for various multimedia codecs. A thermal-aware sched-

uler for multimedia systems provides soft realtime performance guarantees with

statistical processor allocations.

• A better understanding of how the workload for running applications affects op-

erating temperature in CMP architectures. We define the dynamic workload for

running applications as a statistical function (cdf) and a workload characteris-

tics function w(t) at a given interval time [t − 1, t]. Also, the workload char-

acteristics function consists of a positive factor and negative factors obtained

by Performance Monitoring Counters (PMC). These analytical results provide

a statistical approach to understand the temperature variations influenced by

applications.

• Thermal correlation effects can explain how the heat transfer works in real CMP

products. Thermal models for CMP architectures should consider the heat trans-

fer among cores, which is defined as the thermal correlation effects. The ther-

mal model, capturing thermal correlation effects in a uniprocessor, cannot be

directly applied to the thermal model of CMP architectures due to the potential

heterogeneity where each core has an independent task to run. We provide an

5

extended thermal model based on thermal correlation effects in CMP architec-

tures.

• A measurement of temperature via Digital Thermal Sensor (DTS). In order to

estimate temperature through Digital Thermal Sensor (DTS) in CMP architec-

ture, we develop a specific device driver to access them at runtime. In a silicon

die of CMP, each core has a unique thermal sensor that triggers independently.

The trigger point of these thermal sensors is not programmable by software

since it is set during the fabrication of the processor [19].

• Application-Based Thermal Management. Basically, an Application-Based Ther-

mal Management (ABTM) consists of three major components: an application-

based thermal model, a future temperature estimation, and a thermal-aware

scheduler. We used a specific device driver for Linux to access the Digital Ther-

mal Sensor (DTS) and measure each core’s real temperature, and then used the

temperature information in the future temperature estimation. Also, we used an

application-based thermal model to exploit the thermal model according to each

application’s execution behavior. At the same time, the future temperature es-

timation utilizes the workload characteristics and thermal correlation effects to

estimate the future temperature and the time left until the temperature reaches

the migration threshold. Hence, the thermal-aware scheduler is able to react to

the thermal emergency appropriately using the estimated information.

The rest of the thesis is organized as follows. In Chapter II, we describe back-

ground and related work of this thesis. In Chapter III, we propose an efficient thermal

management for multimedia applications. We consider how the performance of a mul-

timedia system is affected by the complexity of scenes, and then we find an appropriate

frequency based on the information on scene complexity. In Chapter IV, we first derive

6

the applications’ characteristics in various multimedia applications by transmitting

MPEG-4 and H.264/AVC encoded by two different frame resolutions. By using those

applications’ characteristics, we estimate a frequency to execute multimedia applica-

tions which decode frames at runtime. In Chapter V, we present an advanced future

temperature prediction model for each core. This allows us to estimate the thermal

behavior considering both core temperature and applications temperature variations,

and to take appropriate measures to avoid thermal emergencies. In Chapter VI, the

proposed thermal-aware scheduler scheme utilizes an advanced future temperature

prediction model for each core to estimate different thermal behaviors and measures

the amount of time it takes for each core to reach the desired temperature threshold.

In Chapter VII, we further model thermal correlation effects by profiling the thermal

impacts from neighboring cores under the specific workload. Finally, in Chapter VIII,

we propose a thermal model based on thermal correlation effects and online workload

estimation using architectural information. In Chapter IX, we conclude this thesis

and discuss future work.

7

CHAPTER II

BACKGROUND AND RELATED WORK

In this chapter, we review prior work in the areas of dynamic thermal managements.

A. Dynamic Thermal Management in Single Core Architecture

Several schemes using architecture adaptation provide Dynamic Thermal Manage-

ment (DTM) solutions [1, 2]. Brooks and Martonosi suggested the fetch toggling

to avoid thermal limit using the stall of instruction fetching [1]. Heo, et al. trans-

formed the fetched computation into other duplicated unit during cooling down the

overheated unit [2]. However, these schemes cannot satisfy the workload deadline

in real-time. Especially, missed deadlines result in low performance in multimedia

systems.

Skadron, et al. suggested several thermal management schemes including temperature-

tracking [16], hybrid scheme [3], and feedback control [20, 10]. [16] used the temperature-

tracking scheme to manage temperature based on frequency scaling, localized tog-

gling, and computation migrations. [3] proposed a hybrid scheme combining fetch

gating and DVFS. Also, a feedback control configures temperature based on feedback

information [20, 10]. Since the approach introduced by Skadron, et al. does not take

into account the complexity of scenes for multimedia, it cannot avoid the degradation

of performance in multimedia applications with radical picture changes.

In [20], Mircea, et al. designed a thermal model using the thermal behavior,

thermal resistances, and thermal capacitances within functional blocks at the ar-

chitectural level. Many temperature researches have adopted this model. Althoug

thermal behavior can be detected at runtime, this requires specific hardware, such as

the built-in Performance Monitoring Counter (PMC) [21].

8

DTM schemes can be roughly grouped into two approaches: proactive schemes

[4, 22, 8, 9, 23, 7] and reactive schemes [20, 24, 10]. In proactive schemes, the results

of the previous task determine the speed of the multimedia system. Pouwelse, et al.

estimated the decoding time per frame based on the offline information on decoding

time and frame size [22, 8]. In [9], the Frame Data Computation Aware (FDCA) es-

timated the decoding time for incoming frames based on the information on decoding

macro blocks. However, their method did not require any pre-profile information. [4]

proposed predictive thermal management using profiled information, which showed

the maximum performance under the thermal constraints. [23] presented an offline

scheduling algorithm to save power with quality degradation.

In contrast, reactive schemes determine the speed of the system based on his-

torical information. [24] designed a user-level power management, in which daemons

configure the speed setting of the CPU using the characteristics of applications, such

as soft real-time, interactive, and batch program. Also, [20, 10] designed feedback

control in multimedia systems. Control modules change the level of frequency based

on the occupancy of the display buffer. In [7], Son, et al. suggested two schemes in-

cluding proactive and reactive. Their reactive scheme configured the frequency based

on delay and drop frame rate, while the proactive scheme determined the frequency

using the predicted decoding time based on the future GOP size. However, this

scheme needs a profiling process before decoding a GOP.

B. Dynamic Thermal Management in Multicore Architecture

Nowadays, several thermal control techniques [1, 3] via hardware-based mechanisms,

such as Dynamic Frequency Scaling (DFS), Dynamic Voltage Scaling (DVS), and

clock gating, have been proposed and applied in modern processors. However, these

9

DTM mechanisms belong to temporal thermal control and bring high execution per-

formance overhead. Therefore, as multicore systems become more popular, some

software-based spatial thermal control mechanisms, such as [6, 17, 5], have been

studied in a CMP system.

In [17], the proposed mechanism, called heat-and-run, has two key components:

SMT thread assignment and CMP thread migration. Within heat-and-run the SMT

thread assignment attempts to increase processor-resource utilization by co-scheduling

threads which use complementary resources. The CMP thread migration moves

threads away from overheated cores and assigns them to free SMT contexts on al-

ternate cores. This maintains throughput while cooling the overheated cores. They

evaluated their experiments in an extended Wattch simulator by running five threads

within four cores. Heat-and-run thread assignment (HRTA) and heat-and-run thread

migration (HRTM) achieve 9% higher average throughput than stop-go and 6% higher

average throughput than DVS. Moreover, [25] confirmed that when performance is

constrained by temperature, the performance gains brought by thread migration and

the importance of limiting the migration frequency to reduce performance overhead.

[17] proposed new migration method for temperature-constrained multicore in order

to exchange threads whenever the simultaneous occurrence of a cold and a hot core

is detected. The authors demonstrate that their method yields the same throughput

as HRTM, but requires much fewer migrations. However, the performance overhead

migrations cause is not further considered according to the application memory usage.

Mulas et al. show that the thread with less memory usage tends to migrate

easier than other threads, thus reducing the performance overhead caused by migra-

tions [6]. However, this study ignores the application workload behaviors are ignored.

That implies that sets of running threads will migrate without considering the differ-

ent thermal effects caused by various threads, while the core temperature reaches the

10

upper/lower temperature threshold. Furthermore, these studies are based on simu-

lated results, and neglect thermal correlation among cores. The power dissipated by

the rest of the chip is assumed to be negligible. Moreover, in this studies the migra-

tion action is triggered by the current temperature (when temperature is higher than

the maximum allowed temperature).

Kumar et al. provide using HybDTM, a methodology for fine-grained, coordi-

nated thermal management using both software (priority scheduling) and hardware

(clock gating) techniques. HybDTM estimates temperature by using a regression-

based thermal model based on Performance Monitoring Counters [26]. However,

HybDTM cannot effectively reduce overheat temperature without noticeable perfor-

mance overhead (9.9% performance overhead compared to cases without any DTM).

This is why Performance Monitoring Counters cannot solely estimate real temper-

ature. Also, both priority scheduling and clock gating generated high performance

overhead. Most importantly, these proposed thermal management mechanisms make

impractical assumptions and have only been evaluated by running benchmarks, which

have stable application workloads and thermal behaviors. For example, HRTA cannot

co-schedule threads without knowing the thread characteristics, such as Instructions

Per Cycle (IPC) information and execution resources.

Liu et al. propose an application level power management, called Chameleon, for

real-world user applications [24]. Chameleon consists of three components: (1) an OS

interface that can be used by power-aware applications to measure their CPU usage,

(2) a CPU scheduler that supports per-process CPU power settings and application

isolation, and (3) a speed adapter that maps the CPU speed settings to the nearest

speed supported by the hardware. However, the need for power-aware applications

is impractical, since each application’s source codes need to be modified. Otherwise,

LongRun is used for the legacy applications. Even though this work deals with

11

power management, it inspired us to develop a scalable DTM for the real-world case

and more specifically, to satisfy the demand for thermal control in the recent server

environment.

Michaud et al. confirm that when performance is constrained by temperature,

the performance gains from thread migrations [25]. It also demonstrates the impor-

tance of limiting the migration frequency to reduce performance overhead. Hence,

several advanced DTM studies [17, 18, 6] advocate providing thermal fairness and re-

ducing the peak temperature through temperature-aware thread migration schemes.

However, as presented in [3], an accurate and practical dynamic model of temperature

is needed to characterize accurately current and future thermal stress and applica-

tion dependent behavior, as well as to evaluate architectural techniques for managing

thermal effects. Moreover, estimating thermal behavior from the average of power

dissipation is unreliable. Therefore, we propose to each application’s thermal be-

havior by characterizing its workload through the statistic probability distribution

and online workload estimation based on architectural information through Perfor-

mance Monitoring Counters (PMC). Most importantly, Shang et al. introduce the

thermal correlation effects in the on-chip networks [27]. We are motivated to model

the thermal correlation effects from neighboring cores in the CMP systems from the

architecture level and further present an adaptive and scalable DTM based on the

thermal correlation effects for the CMP system.

12

CHAPTER III

EFFECTIVE DYNAMIC THERMAL MANAGEMENT FOR MPEG-4

DECODING

In this work, we present Dynamic Thermal Management (DTM) based on a Dy-

namic Voltage and Frequency Scaling (DVFS) technique for MPEG-4 decoding to

guarantee thermal safety while maintaining a quality of service (QoS) constraint. Al-

though many low-power and low-temperature multimedia playback techniques have

been proposed, most of them are impractical in real-time and have several restricting

assumptions. Multimedia data consists of several frames requiring different decoding

efforts. Since both temperature and performance of a multimedia system are affected

by the complexity of scenes, our main idea is to use the information on scene com-

plexity to find an appropriate frequency. In order to predict the complexity of the

current scene, we extract information from the previous group of pictures (GOP) us-

ing feedback control with a display buffer. Experimental results with twelve movies

show that our DTM scheme guarantees the threshold of temperature (70 ◦C) while

maintaining 0% frame miss ratio. Also, the proposed DTM scheme decreases the

average temperature by up to 13% without any additional hardware and playback

latency.

The main contributions of this research are summarized as follows:

• Our DTM scheme estimates multimedia application’s characteristics according

to the complexity of the scene using GOP information and frame drop ratio.

• DTM with the advanced feedback controller provides soft realtime performance

guarantees under thermal safety.

• Compared to the prior DTMs for multimedia applications such as feedback

13

control [10], Frame-based [12], the proposed DTM lowers temperature by 13% on

average when running MPEG-4 data under 5% frame drop ratio.

A. Thermal Issues in Multimedia Applications

Thermal issues are becoming critical in multimedia systems to achieve high reliability.

Although the speed of a modern microprocessor supports processing of the multimedia

data in real-time, a multimedia system consumes lots of power for computation and

cooling. General purpose computer systems consume over 25% of the power for energy

management such as air conditioning, backup cooling and power delivery systems [1].

However, portable battery-operated devices cannot afford such high cooling power.

Without sufficient cooling, embedded systems suffer from long-time overheating

and eventually cause the system to crash. However, reducing the voltage level causes

the overall performance to slow down. Therefore, the best solution to reduce energy

dissipation with dynamic voltage and frequency scaling (DVFS) techniques is to dy-

namically adjust the voltage scales, while maintaining the minimum required circuitry

to accommodate workloads within appropriate computation time and throughput con-

straints [12]. Multimedia data consist of different frames with different deadlines to

be displayed. MPEG frames are classified into three different coding types including

intra (I), predictive (P), and bi-directional (B) that consume various power/energy,

which leads to raise a different amount of temperature during decoding frames. In

addition, a wide variety of frame sizes make it difficult to predict power consumption

and to control temperature. Furthermore, since DVFS reduces the overall computa-

tion speed, it is likely to have some frames missing their deadlines. Therefore, it is

challenging to find a right speed to control system temperature without quality degra-

dation. In [10, 20], the authors suggested a feedback control from a display buffer

14

to find an adequate speed without quality degradation and to reduce the power con-

sumption of MPEG decoding. However, they did not concern thermal problems and

exploited only the buffer occupancy information that is not sufficient to control the

speed for both performance and temperature. We observe that the required decoding

time depends on the complexity of scenes that can be measured with the number of

frames in a group of pictures (GOP), and those frames in a GOP require similar com-

putation time for decoding. Therefore, the previous GOP information can be used to

predict the computation power of a current frame. We propose an efficient Dynamic

Thermal Management (DTM) scheme for a multimedia system to find an appropri-

ate frequency for the available decoding and display buffer based on an advanced

feedback control. Our scheme exploits the previous GOP information considering the

trade-offs between the quality of data and thermal safety using a frequency efficient

factor.

B. Overview of a Feedback Control

Read Blocks

Reconstruct MB

IDCT

Merge MB

Decoder thread

Dither frame

Display frame

Display thread

Display buffer for
decoded stream

Store frame

Read headers

Blocks/M
B

MB

Frame

Frame

Data Flow

Procedure
Flow

Control thread

Fig. 1. MPEG process with display buffers

Fig. 1 shows the details of decoding procedures used in [20, 10]. After reading

15

a stream in ‘Read headers’ and ‘Read Blocks’ steps, a decoder thread decodes macro

blocks at ‘Reconstruct MD’, ‘IDCT’, and ‘Merge MB.’ Finally, the decoder thread

puts the decoded frame into a buffer for display. Then a display thread performs the

steps of ‘Dither’ and ‘Display’ with the frames in the display buffer. The decoder

thread executes CPU-intensive operations, while the display thread just displays the

decoded frames. To obtain an adequate frequency for the decoding stream, a control

thread checks the state of the display buffer. With the high occupancy in the display

buffer, the control thread decreases the frequency, since the decoding elapsed time

with the current frequency is too much faster than the display elapsed time. On the

contrary, the low occupancy lets the control thread increase the frequency to meet

the deadline of each frame. Therefore, the performance (i.e., the deadline of frames)

should be considered in the low occupancy, while energy efficiency and thermal safety

also should be considered in the high occupancy of the display buffer. To fulfill these

two considerations, the control thread has to determine an optimal frequency without

QoS degradation. Frames should be decoded sequentially and displayed on the display

device with a constant playback interval denoted by tinterval. Although each frame can

be decoded at a different elapsed time due to computation variations, each decoded

frame in the display buffer are displayed at a uniform speed. To support the QoS

requirement, the adjusted frequency should satisfy the following Equation (3.1)[10]:

i
∑

k=1

Dk

i
≤ tinterval, 1 ≤ i ≤ n, (3.1)

whereDk is the decoding time for frame k, imeans the number of frames in the display

buffer, and n is the size of the display buffer. Note that for the consecutive frame, we

do not have any information about the required decoding time. Without the display

buffer, it is difficult to estimate the optimal frequency for decoding the frame. Also,

16

the display buffer with enough space for several frames can make a system determine

the optimal frequency without frame misses. Lu et al. uses a feedback controller to

adjust the frequency with the number of decoded frames in the display buffer within a

region specified by {Bl, Bh}, where Bl is the lower threshold for the number of frames

in the buffer and Bh is the higher threshold [10]. Using the feedback controller for

decoding frames in the display buffer assumes that the decoder speed is adequate

for decoding the frames as long as the number of the frames in the display buffer is

within the specified region. However, there are two serious problems in the feedback

controller with the display buffer. The first problem is that the feedback controller

using the display buffer does not satisfy the deadline of all frames. The frequency is

adjusted by the value based on the number of the frames in the display buffer within a

region specified by {Bl, Bh}. This problem occurs with the movies containing several

complicated scenes, such as Star Wars 3 and Terminator 3. For example, a high

frequency may be required even though the occupancy of the display buffer seems

to be sufficient to decode upcoming frames. In such cases, frames will be dropped if

the the optimal frequency is only derived from the display buffer occupancy. Before

decoding the next frame, we do not know how much time will be required for it.

Without a buffer, we must use the most conservative estimate to set the decoding

speed. But if there are some decoded frames already in the buffer between the decoder

and the display device, we can apply a predictive operating frequency to be close to

the optimum. Although the actual decoding time of the frames may vary greatly, its

effect on the real-time constraint is hidden by the display buffer. In our approach,

we always try to control the number of decoded frames in the buffer within a region

specified by {Bl, Bh}, where Bl is the lower threshold for the number of frames in the

buffer and Bh is the higher threshold. As long as the number of frames in the buffer

is within the specified region, we assume that the current decoder speed is the right

17

choice for decoding the frames; i.e. the average decode rate is equal to the display

rate. However, if the actual number of frames in the buffer becomes higher or lower

than the respective threshold, this means the current decoding speed is too fast or too

slow, respectively. We apply a formal feedback controller to pull the number of frames

back into the specified region by adjusting the decoding speed. The second problem is

that the feedback controller using the display buffer cannot control the temperature to

guarantee thermal safety. Without considering temperature constraints, the display

buffer decides the optimal frequency using only its occupancy. This is a very critical

problem in embedded systems, since most embedded systems do not have cooling

systems such as a fan.

C. Advanced Feedback Controller Using GOP Information

The previous feedback control scheme uses the occupancy of display buffer between

the decoder thread and the display thread to adjust the frequency of a processor to

avoid the buffer underflow and overflow. However, although the occupancy of the

display buffer is high, the frame may miss when the decoding time of the current

frame is longer than the total display time the decoded frames in the display buffer.

The relationship among the decoding time for each frame, the display interval and

the occupancy of the display buffer is defined in Equation (3.2). Let Di be a decoding

time of framei. The decoding time Di should be finished before all previous frames

in the display buffer will be presented. Otherwise, framei will miss its deadline.

Therefore,

Di < n · tinterval, (3.2)

where tinterval is the periodic display time in the display buffer and n is the occupancy

of the display buffer.

18

Low-Complexity Scenes
: I frame
: B or P frame

GOP timeGOP

GOP

GOP

GOP time
GOP GOP

High-Complexity Scenes
High Complexity scenes

Fig. 2. Low complexity vs. high complexity scenes

As shown in Fig. 2, the number of frames in a GOP decreases when pictures of

scenes change rapidly. A single GOP has several frames which consists of I, B, and

P frames. And for more complex scenes, the number of B and P frames decreases

while only a single I frame is allowed for any GOP. Since the display interval time

depends on frames per second (fps) and has a value between 25 msec and 30 msec,

we calculate Di of the frame that exceeds the display interval time, tinterval, in this

situation. Therefore, the scene complexity can be estimated by adding these Di values

in a GOP.

For example, let’s assume that frame fn should be displayed at time tn and fn+1

should be displayed at tn+1. When frame fn is ready to be displayed, there are four

frames from fn−3 to fn in the display buffer at time tn. Also assume that a decoding

time, Dn+1 of fn+1 and Dn+2 of fn+2 takes three times more than tinterval. Under

these circumstances, all frames (fn−3 ∼ fn+1) in the display buffer are displayed and

the buffer will be empty since the next frame (fn+2) has not been decoded. In this

case, the frame fn+2 is dropped. In order to avoid the future frames drop, the optimal

frequency of fn+2 should be determined at time time tn. However, it is difficult to

19

estimate the frequency for a future frame.

We propose a prediction scheme to find the adequate frequency using the in-

formation on decoding the previous GOP. According to our experiments, the frame

decoding time depends on the complexity of scenes, which continues to exist in several

consecutive frames. It means that frames in each GOP have similar complexity of

scenes. Therefore, since the GOP consists of several frames, we can predict the opti-

mal frequency of the current GOP using the information on the complexity of scenes

in the previous GOP. If the complexity of the previous GOP is high, the complexity

of the current GOP will be also high. Therefore, the complexity of the previous GOP

can be used as a weight factor to determine the frequency of the current GOP. The

weight factor (α) is calculated as follows:

α =

k
∑

i=1

XiDi

k
∑

i=1

Di

, 1 ≤ i ≤ k, (3.3)

where Di is the decoding time of the framei and Xi is the indicator which is 1 or 0.

With α, the new frequency can be calculated as in Equation (3.4). Let freqi be the

frequency of the decoding time of the framei. The frequency of the current frame

should be configured based on the number of previous frames which have taken less

time than the threshold time for displaying that frame.

freqi = (1− α) · freqbuf(i−1) + α · freqmax, (3.4)

where freqbuf(i−1) is the frequency value to be calculated by the feedback control based

on the occupancy of the display buffer. freqmax is the maximum frequency of the

processor. Hence, the complexity of scenes can be estimated by the weighting factor,

α. For example, if the previous GOP has twelve frames and three frames among

20

them have larger decoding time than the selected threshold value, α is calculated as

0.25. It implies that 75% of decoding time of frames in the previous GOP is decoded

within threshold and 25% decoding time of frames exceeds the threshold. According

to Equation (3.4), the frequency of the current frame is adjusted to handle the frames

with higher complexity based on the occupancy of the display buffer. Therefore,

the frequency for decoding the current frame is selected by the information of the

occupancy of the display buffer and the information of previous GOP. When the

higher complexity of the previous GOP is, the higher frequency of the current frame

is needed. Using this scheme, we can avoid the missed frames when the complexity

of scenes is increased suddenly.

D. Thermal Control Using GOP Information

Although many studies has been focused on the relationship between frequency and

power consumption, the relationship between frequency and temperature has to be

formulated to find out the optimal frequency within thermal safety. Therefore, we

consider a simple thermal model of the processor [28, 29] in that the relationship

between processor’s frequency and temperature is the basis for any frequency scaling

scheme. By modeling the power dissipation or by increasing the input power, more

precise models can be derived from this simple model [30].

We analyze Fourier’s Law of heat conduction where the rate of heating or cooling

is proportional to the difference in temperature between the object and the environ-

ment [30]. We define T (t) and P (t) as the temperature and the power at time t,

respectively. Then we can use the Fourier’s Law as the following [28, 29]:

T ′(t) = P (t)− bT (t), (3.5)

21

where b is a positive constant representing the power dissipation rate. Now, we define

freq(t) as the processor frequency at time t. The power consumption of a processor

is an increasing convex function of the frequency [28]. Most work assume that power

and processor frequency are relevant as follows [28]:

P (t) = a(freqγ(t)) (3.6)

for some constants a and γ > 1. With an assumption that T0 = 0 (The initial

temperature is the ambient one), through Equation (3.5), the solution to Equation

(3.6) can be presented as [30]:

T (t) =

∫ t

t0

a(freqγ(τ)e−b(t−τ))dτ + T0e
−b(t−t0). (3.7)

Then, for the variation of the temperature, we deal with two cases of the variation

at any point t [30]. The first case, when temperature is non-decreasing, by Equation

(3.5) and Equation (3.6), can be derived like the following.

freq(t) ≥ (
b(T (t))

a
)

1
γ . (3.8)

The other case, when temperature is non-increasing, can be expressed as follows:

freq(t) ≤ (
b(T (t))

a
)

1
γ . (3.9)

Therefore, we observe that scaling the frequency to change the temperature can be

performed for the desired direction. Finally, we derive the following equation if we

maintain the frequency constant at freq(t) = freqC during time interval [t0, t].

T (t) =
a(freqγ

c)

b
+ (T (t0)−

a(freqγ
c)

b
)e−b(t−t0). (3.10)

dT/dt = −b(T (t)−
a(freqγ

c)

b
) (3.11)

22

In addition, the temperature variation by the frequency is based on the equations

above (The initial temperature is 0. During [0, t], workload is executed at some fre-

quency level and there is no workload to be executed in the interval [t, t′]). Assuming

γ=3.0, we can obtain the thermal parameter values for a and b. The values of a and b,

are processor-specific but application-independent constants. Also, we can determine

the thermal parameters, while observing the heating and cooling curves when we run

an application which fully occupies the processor. After a long-time execution of the

application, the infinite steady-state temperature value T (∞) = Ts can be observed.

Setting T (t) = T and a(freqγ
c)/b = Ts , Equation (3.5) and (3.6) is transformed as

follows:

T = Ts + (Tinit − Ts)e
−bt, (3.12)

where Tinit is the initial temperature. Using Ts and sampling the temperature every

millisecond, the rate of increase is plotted against (T - Ts) at each point. The resulting

set of points is fitted to a straight line using least mean square error fitting. From

Equation (3.12), the slope of this straight line represents the value of b. We obtain

b = 0.016. By applying this value b to the relation, the value a is also obtained as

a = 3.0E − 28. We used the thermal model above for the simulation. With the

plotted temperature variations, we see the effects and decrease in temperature by the

suggested DTM for MPEG-4 decoding. All the plots are based on real experimental

data including the decoding times of each frame. There can be overestimation of

temperature computation, because there can be many short processor idle durations

even in the interval between the start and the finish of the decoding. We assume that

there is no processor idle duration in the decoding period for a frame. However, even

with this assumption, the relative temperature comparisons among four cases shows

that the GOP-based DTM can decrease the processor temperature overall. Although

23

the temperature variation by the 1.0 GHz static frequency decoding is shown for the

comparison, it is no good in terms of frame miss rate. We show the comparison of

the frame miss rate by each method in later section.

E. DTM with the Advanced Feedback Controller

To maintain the temperature under the thermal safety, we should use a DTM scheme

for the multimedia decoder. The new DTM scheme uses the accurate frequency from

the previous GOP frequency. In our scheme, we decide the threshold of temperature

to control the overall temperature during a decoder running. In order to decide the

temperature threshold, we need the occupancy of the display buffer which can indicate

the efficiency of the frequency for decoding the previous GOP.

e =

n
∑

i=1

Di

n · tinterval

, 0 < e ≤ 1, (3.13)

where Temergency is the maximum allowable temperature and is defined as 80 ◦C in our

experiments. And Tthreshold is the software threshold of temperature during decoding

MPEG-4 stream. Therefore, ∆T can be defined as the difference between an emer-

gency temperature and software temperature threshold. The software temperature

threshold is the factor that guarantees thermal safety. n is the total number of frames

in the display buffer and tinterval is the period of displaying the frames. The e is the

frequency efficient factor for decoding frames in the previous GOP only when Di is

equal to or less than tinterval. With the factor e, we decide the new software thresh-

old of temperature as shown in Algorithm (1). If Tcurrent exceeds Tthreshold, T
′
threshold

replaces Tthreshold, and freqmax is also replaced by freq[T ′
threshold]. Therefore, freqi

is determined to maintain the temperature under the thermal safety with Equation

(3.4) because the determined freqmax is smaller than the previous freqmax.

24

Algorithm 1 DTM algorithm

Require: Define Table[] for frequency according to threshold temperature

1: Determine a threshold temperature(Tthreshold).

2: i ← GOPi

3: for i = 1 to GOPmax do

4: Calculate e in GOPi−1

5: Estimate a current temperature(Tcurrent).

6: if Tcurrent > Tthreshold then

7: ∆T ← Temergency - Tthreshold

8: T ′
threshold ← Tthreshold + (1-e)·∆T

9: index ← index + 1

10: freqmax ← Table[index]

11: freqi ← (1-α)·freqi−1 + α·freqmax

12: else if Tcurrent < (Tthreshold - MIN) then

13: index ← index - 1

14: freqmax ← Table[index]

15: freqi ← (1-α)·freqi−1 + α·freqmax

16: end if

17: end for

25

0 100 200 300 400 500 600 700 800
700

800

900

1000

1100

1200

1300

1400

1500

1600

frames

F
re

qu
en

cy
 (

M
hz

)

Without DTM
With DTM

Fig. 3. Comparison with DTM and without DTM for frequency

For example, assuming Temergency to be 80 ◦C and Tthreshold to be 60 ◦C , ∆T is

calculated as 20 ◦C . If e is 0.75 and the current temperature is over the current soft-

ware temperature threshold, the new software temperature threshold can be adjusted

to 64 ◦C . As a result, freqmax is decreased to the next low frequency by Tthreshold.

In this example, freqmax is adjusted from 1600 Mhz to 1400 Mhz when Tthreshold

is changed. This new software temperature threshold makes freqmax decrease the

overall temperature. With this scheme, the adjusting temperature threshold can

guarantee to maintain the overall system temperature. Also, the processor frequency

can be efficiently adjusted at runtime, while taking into account the current thermal

condition and the previous frequency. Fig. 3 shows the difference of freqmax of the

case with DTM or without DTM. The DTM scheme can determine the lower fre-

quency than other DVFS schemes without managing temperature because freqmax is

changed through the temperature threshold. Fig. 4 shows the effect on the temper-

ature in comparison with DTM and without DTM. The proposed scheme prevents

the system temperature from reaching a dangerous level by controlling freqmax and

maintaining the temperature within the steady state.

26

0 200 400 600 800 1000 1200 1400 1600 1800
62

64

66

68

70

72

74

76

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

Without DTM
With DTM

Fig. 4. Temperature comparison with and without DTM

F. Experimental Results and Analysis

To demonstrate the benefits of our control algorithm, we compare three schemes

in terms of the number of missing frame, frames per second (fps) and the variance

of temperature. DYN-MB scheme stands for the feedback controller with the display

buffer, DYN-GOP scheme is the feedback controller with the display buffer and the in-

formation of GOP. Finally, DYN-DTM is the feedback controller based on the previous

GOP information with DTM. Although DYN-GOP and DYN-DTM use the information

of the previous GOP, only DYN-DTM supports the dynamic thermal management.

Fig. 5(a) and 5(b) describes the temperature variance in two movies, Star Wars 3

and Terminator 3, which have the higher-complexity data than any other movies. It

is observed that the DYN-DTM scheme controls the temperature more precisely than

the other two schemes. This is a reason why the thermal control in DYN-DTM uses

the efficiency of frequency and temperature threshold. Another noticeable result is

that DYN-DTM maintains the peak temperature to be at least 12% lower than other

benchmark schemes. As shown in Fig. 5(a), there are the high-complexity scenes in

the first part and the last part of this movie, while the middle part has relatively

27

lower complexity. Therefore, the DYN-DTM performs efficiently in the first and the last

parts while maintaining the software temperature threshold at 70 ◦C. Fig. 5(b) also

shows that DYN-DTM outperforms other two schemes even in multiple high-complexity

scenes that are located at the middle of the movie. As a result, the proposed DYN-DTM

scheme reduces the overall temperature up to 13% by using information from the pre-

viously decoded GOP and with dynamic thermal management. The most noticeable

merit from this scheme is that it prevents all frames from exceeding the threshold

temperature without dropping any frame at all.

G. Conclusions

In this work, we proposed a method to find a proper frequency using an advanced

feedback controller for the available decoding and display buffer based on the in-

formation of the previous GOP. Also, our scheme efficiently adjusts the frequency

using a frequency efficient factor, while keeping all frames from being dropped and

maintaining thermal safety. We have implemented the proposed scheme on Linux and

conducted benchmark testings. Experimental results prove that the proposed method

does not drop any frames while the temperature is kept under the threshold. In other

words, the proposed scheme suggests a solution for thermal constraints without any

quality degradation for MPEG-4 decoding.

28

(a) Star Sars 3 (b) Terminator 3

Fig. 5. Variance of temperature of high-complexity movies

(a) Under World 1 (b) Gilmore Girls

Fig. 6. Variance of temperature of mid- and low-complexity movies

29

CHAPTER IV

THERMAL-AWARE SCHEDULING BASED ON STATISTICAL

CHARACTERISTICS OF MULTIMEDIA APPLICATIONS

Dynamic Voltage and Frequency Scaling (DVFS) is a common method to control

temperature in microprocessors. However, due to the nature of multimedia applica-

tions with different frame sizes and types in data, it is not easy to match their QoS

requirements while temperature is under control. There have been handful studies on

temperature management for multimedia applications [7, 8, 9, 10, 4, 11]. However,

according to our observations, these schemes tend to overestimate or underestimate

multimedia application requirements, which could result in false, inevitably leading

to high operation temperature or performance degradation. In order to compensate

the tradeoff between QoS and thermal control, in this work, we first derive applica-

tion characteristics in various multimedia applications by transmitting MPEG-4 and

H.264/AVC encoded by two different frame resolutions. The application character-

istics can be represented by cycle demand, which is the number of cycles required

to decode a frame. Using this representation, we estimate an adequate processor

speed to execute multimedia application for decoding frames at runtime. Then, we

propose Thermal-Aware Scheduler (TAS) that takes optimal frequencies to avoid

thermal emergency while minimizing performance degradation in the embedded en-

vironments. To achieve this goal, TAS integrates DVFS feature into the traditional

soft real-time scheduler.

Also, TAS can be classified into hybrid schemes to be integrated proactive and re-

active approaches together. In the viewpoint of proactive approaches, TAS estimates

temperature parameters to get accurate information for temperature according to ap-

plications’ workload before running multimedia applications. Since those temperature

30

parameters are related to processor and work as architecture specific factors, future

temperature can be predicted more accurately using those temperature parameters.

In the viewpoint of reactive approaches, TAS utilizes cycle demand distribution as

application characteristics for multimedia applications, and those historical informa-

tion helps the optimal frequency be decided for decoding next frames. As a result,

TAS provides better solution to find the adequate frequency based on cycle demand

distribution and predict the future temperature using profiled thermal parameters ac-

cording to workload rather than using only one scheme between reactive and proactive

schemes.

We experimented on an Intel’s Pentium-M processor and Atom processor using

various multimedia data encoded by MPEG-4 and H.264/AVC. Compared to feedback

control DTM [10], Frame-based DTM [12] and cycle counter-based scheduler [31], TAS

lowers average temperature by 6 ◦C and peak temperature by 10 ◦C or more, with

maximum 5% frame drop ratio. Moreover, we also compare the predicted temperature

by application thermal behavior to the estimated temperature by thermal sensors in

Linux while playing movies.

The main contributions of this research are summarized as follows:

• We estimate multimedia applications’ thermal characteristics using statistical

approaches to be suitable for various multimedia codecs with only 2.5% error

on average.

• TAS provides soft realtime performance guarantees with statistical processor

allocations. Almost all deadlines of decoding and displaying frames in a lightly

loaded real environments, and bounds the deadline miss ratio under the application-

specific performance requirement (e.g., meeting 95% of deadlines) in a heavily

loaded environment.

31

• Compared to the previous DTMs such as feedback control [10], Frame-based [12],

and cycle counter scheduler [31], our proposed TAS lowers temperature by 10

◦C on average when decoding and displaying MPEG-4 and H.264/AVC data

under 5% frame drop ratio.

• Although other statistical DVFS algorithm [32, 33, 23] assume that the task

decoding frames requires high computation power for multimedia application

and the task for displaying decoded frames can be negligible, TAS exploits

all tasks related to multimedia applications at runtime and further reduces

operating temperature and the frame drops by considering both task-based and

system-based characteristics.

• We provide a hybrid estimated scheme with a reactive approach using statistical

cycle demand information and a proactive approach for system temperature

behavior with a certain workload.

A. The Problems of Multimedia Applications Processing

The display buffer with enough space for several frames can make a system determine

the optimal frequency without frame misses. Lu et al. uses a feedback controller to

adjust the frequency with the number of decoded frames in the display buffer within

a region specified by {Bl, Bh}, where Bl is the lower threshold for the number of

frames in the buffer and Bh is the higher threshold. Using the feedback controller

for decoding frames in the display buffer assumes that the decoder speed is adequate

for decoding the frames as long as the number of the frames in the display buffer is

within the specified region.

However, there are two serious problems in the feedback controller with the

display buffer. The first problem is that the feedback controller using the display

32

Fig. 7. The timing gap between decoding and displaying data using the buffer man-

agement

buffer does not satisfy the deadline of all frames. The frequency is adjusted by the

value based on the number of the frames in the display buffer within a region specified

by {Bl, Bh}. This problem occurs with the movies containing high complex scenes in

succession, such as Star Wars 3 and Terminator 3. For example, a high frequency may

be required even though the occupancy of the display buffer seems to be sufficient to

decode upcoming frames. In such cases, frames will be dropped if the the optimal

frequency is only derived from the display buffer occupancy. Also, since the occupancy

of the display buffer is not managed by accurate information such as the executed

cycle demand or workload, the feedback control scheme cannot provide a solution

to decode and display frames under thermal control. With the feedback control, an

optimal frequency can be adjusted by the buffer management, but it may overestimate

the necessary frequency estimation. As a result, the operating temperature can be

raised than what we expect.

As shown in Fig. 7, even if input for frame6 arrives at time, t6, display time for

frame6 is t9. Hence, the decoding time for frame6 is larger than the difference be-

33

tween t6 and t7. It means that the decoding task for frame6 needs high computation

power from the time, t6. Using the buffer management, however, the high frequency

for frame6 can be determined at time t8, due to consideration of buffer occupancy.

Therefore, it is infeasible for adjusting the frequency using only the buffer manage-

ment scheme. In order to determine the frequency more precisely for multimedia

applications, we use the cycle demand, C, to denote the minimum requirement cycle

to meet a frame deadline (it is determined by frames per second). The parameter

C represents application characteristics and can be explained by workload at run-

time. In this work, we can estimate the parameter C using statistical information by

Instructions Per Cycle (IPC) and the number of instructions for each frame execution.

The second problem is that the feedback controller using the display buffer can-

not control the temperature to guarantee thermal safety. Without considering tem-

perature constraints, the display buffer decides the optimal frequency using only its

occupancy. This is a very critical problem in embedded systems, since the most em-

bedded systems do not have cooling systems such as a fan. Therefore, a new approach

is required to control temperature without the quality degradation. Although an op-

timal frequency can be adjusted by the buffer management, it may overestimate the

required frequency. Since the response time for decoding task in the buffer manage-

ment is too long, it cannot provide an immediate solution for adjusting frequency.

B. The Workload of Multimedia Applications

Statistical approaches using DVFS have been proposed to deal with demand varia-

tions by considering the probability distribution of CPU demands of individual task.

Each task makes a scheduling decision to change CPU frequency using statistical in-

formation when a new task starts, and the the frequency is maintained into the same

34

50 55 60 65 70
0

10

20

30

40

50

60

70

80

90

100

time (sec)

w
or

kl
oa

d
(C

P
U

 u
til

iz
at

io
n)

CPU utilization for multimedia application

overall workload
decoder workload
display workload

(a) MPEG-4 data (800X600)

50 55 60 65 70
0

10

20

30

40

50

60

70

80

90

100

time (sec)

w
or

kl
oa

d
(C

P
U

 u
til

iz
at

io
n)

CPU utilization for multimedia application

overall workload
decoder workload
display workload

(b) H.264/AVC data (800X600)

50 55 60 65 70
0

10

20

30

40

50

60

70

80

90

100

time (sec)

w
or

kl
oa

d
(C

P
U

 u
til

iz
at

io
n)

CPU utilization for multimedia application

overall workload
decoder workload
display workload

(c) MPEG-4 data (1280X720)

50 55 60 65 70
0

10

20

30

40

50

60

70

80

90

100

time (sec)

w
or

kl
oa

d
(C

P
U

 u
til

iz
at

io
n)

CPU utilization for multimedia application

overall workload
decoder workload
display workload

(d) H.264/AVC data (1280X720)

Fig. 8. The workload of decoding and displaying multimedia data according to several

codecs and frame resolutions

35

speed for the whole job [33, 32, 23]. The main approach of TAS is based on these

statistical DVFS schemes, but differs from them for three reasons. First, TAS exploits

a simple calculation based online profiling to estimate the demand distribution from

Performance Monitoring Counters (PMC), while the other approaches use complex

estimation approaches or cycle counters to measure the cycle demand for each task.

Second, TAS estimates the overall frequency of multiple tasks related to multimedia

applications which consist of at least three tasks and each task requires their own

the cycle demand. Therefore, all related tasks in multimedia applications should be

considered for estimating proper frequency at runtime. In contrast, PACE assumes a

single task or treats all concurrent tasks as a joint workload [32]. Also, the estimation

based on the cycle counter in process control block (PCB) cannot provide accurate

characteristics of multimedia applications.

Finally, TAS supports the latest multimedia data format according to various

codecs and frame resolutions. Although the other researches have focused on MPEG-

4 codec and small frame resolutions such as 320 X 240 pixels or 640 X 272 pixels,

the latest multimedia data format encoded by H.264/AVC codec and high-definition

(HD) video frame resolutions supported by HDTV and blue-ray technology requires

much more complex computations for decoding frames, and their QoS should be

guaranteed in higher standards. The workload of decoding MPEG-4 multimedia data

with small frame resolution as shown in Fig. 8(a) requires small CPU computations,

but the workload of MPEG-4 data with large frame resolution as shown in Fig. 8(c)

requires relatively huge CPU computations. Also, much more CPU computations

should be provided for the multimedia data encoded by H.264/AVC, as shown in

Fig. 8(b) and 8(d). Since huge CPU computations mean that their works may raise

operating temperature and happen large frame drops, more accurate estimation of the

demanded cycles for multimedia applications according to various codecs and frame

36

resolutions should be required to guarantee QoS under thermal safety.

C. Thermal-Aware Scheduling for Multimedia Applications

Although the most thermal management schemes have been based on a coarse-grained

approach using feedback control of the display buffer, a fine-grained approach using

more accurate information of frame and GOP should be considered to find the optimal

frequency under thermal safety. Since the reactive schemes have used history informa-

tion, they cannot provide an immediate solution to avoid critical thermal conditions.

Also, the proactive schemes make some overhead to profile workload of multimedia

applications before their execution even if the future temperature can be predicted.

Moreover, unless temperature cannot be managed even in low temperature degree,

it is too late to be controlled when the overheat happens. Therefore, we need more

effective scheme which consists of both reactive and proactive schemes together.

In this work, we propose Thermal-Aware Scheduler (TAS) to integrate both

proactive and reactive schemes. With the proactive scheme, TAS estimates system

thermal characteristics according to workload before running multimedia applications.

Since the system thermal characteristics using thermal parameters are dependent on

a specific processor or architecture, the thermal characteristics can be measured by

the thermal model added the effect of workload. Moreover, since these temperature

parameters are determined by processor and architecture specific factors, the future

temperature can be predicted more accurately using the temperature parameters.

With the reactive scheme, we obtain the probability distribution of cycle demand at

runtime, which is the number of cycle required to decode a frame. The probability

distribution helps to make a decision of accurate frequency for decoding and displaying

frames in multimedia applications.

37

Fig. 9. TAS overview

As a result, these proactive and reactive schemes are used to determine an optimal

frequency for multimedia applications with negligible performance overhead while

controlling temperature.

As shown in Fig. 9, TAS is comprised of three components: an application char-

acteristics profiler as the reactive scheme, the thermal characteristics predictor as the

proactive scheme, and the optimal frequency adaptor. The application characteristics

profiler exploits Instruction Per Cycle (IPC) and the number of instructions for each

frame, and automatically derives the probability distribution of their cycle demands.

The temperature predictor based on application workload determines the temperature

parameters to predict the future temperature dynamically. The optimal frequency

adaptor adjusts the frequency based on information of application characteristics and

thermal parameters by workload. Our framework provides the efficient temperature

management solution through an integration of application characteristics based on

the cycle demand estimation, the thermal prediction based on the statistical charac-

teristics, and DVFS, which are performed by the application characteristics profiler,

38

the thermal characteristics predictor, and the frequency adaptor, respectively. We

describe the operations of each component in the following sections.

D. Application Characteristics Profiler for Multimedia Applications

The application characteristics profiler estimates the probability distribution of cycle

demands for decoding frames at runtime. We estimate the cycle demand distribution

to obtain more accurate multimedia computation requirements. Therefore, compared

to other thermal management schemes, we are able to guarantee the thermal safety

under the desired temperature without overestimation. Moreover, the performance

degradation can be minimized by avoiding underestimation. With these advantages,

the cycle demand distribution provides statistical performance guarantees [31], which

is sufficient for MPEG-4 and H.264/AVC with various frame resolutions under the

thermal control.

To estimate the cycle demand distribution of decoding frames at runtime, we

need two steps: the first step is to measure cycle usage measured by Instruction Per

Cycle (IPC) and the number of instructions in a fixed window size, and the second

step is to derive the probability distribution at runtime. Although the information

and estimation through offline profiling can be more accurate, offline profiling makes

the additional system overhead, and it is not feasible in multimedia applications which

has dynamic workload in each frame. In order to measure the cycle usage for decoding

frames at runtime, we exploit Performance Monitoring Counters (PMC) for Intel’s

Pentium-M and Atom processor, and implement a monitoring module for Instruction

Counter and IPC measurement [34]. As a decoding step executes, the executed cycles

are calculated by Equation (4.1).

Ci =
Ii

IPC i
, (4.1)

39

where Ci is the used cycles, Ii is the number of instruction for decoding a frame,

and IPCi is the value of IPC for decoding ith frame obtained by PMC. Next, we can

derive the probability distribution of cycle demands in a fixed window size, which is

equal to frames per second (fps). To do this, we use a profiling window to keep track

of the number of cycles consumed by n frames. Even though the parameter n can be

specified by the application, we set n to the number of fps. Let Cmin and Cmax be

the minimum and maximum numbers of cycles, respectively, in the window. In our

environments, Cmin and Cmax are assumed to be 1 million cycles and 10 million cycles

because the most multimedia applications requires meeting 96% of frame decoding

demands no more than 9 million cycles, and then 9 million cycles per frame is the

maximum requirement for decoding in multimedia applications [31]. We obtain a

probability density function (pdf) and a cumulative distribution function (cdf) using

following steps:

1. Let X be a continuous random variable and then a probability distribution or

probability density function (pdf) of X is a function f(x) such that for any two

numbers a and b with a ≤ b,

p(a ≤ X ≤ b) =

b
∫

a

f(x)dx. (4.2)

That is, the probability that X takes on a value in the interval [a, b] is the area

under the graph of the density function.

2. Using pdf p(x) in Equation (4.2), the cumulative distribution function (cdf)

F (x) of a discrete random variable X with P (x) is defined for every number x

by

F (x) = P (X ≤ x) =
∑

y≤x

p(y). (4.3)

40

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cycle demand distribution

cycles (millions)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

MPEG−4
H.264/AVC

Fig. 10. The cumulative distribution function (cdf) of decoding frames in the multi-

media application

3. We denote the cdf as F (x) for a random variable X as the number of cycles for

decoding a frame according to the pdf f(x) and probability p using Equation

(4.3) and (4.4),

P (Cmin ≤ X ≤ Cmax) =

Cmax
∫

Cmin

F (x)dx, (4.4)

where X in the interval [Cmin, Cmax] with the same sized groups and F (x) =

P (X ≤ x) =
∑

y≤x p(y). We refer to c0, c1, · · · , cn with the same size, 1 million,

as the group boundaries.

4. For decoding frames in multimedia application, we estimate the probability

P (Cmin ≤ X ≤ Cmax) in MPEG-4 and H.264/AVC, as shown in Fig. 10.

According to multimedia applications and codecs such as MPEG-4, H.264/AVC

with various frame resolutions, the decoding time and computational requirements are

different respectively. To satisfy a various computational requirements, a frequency

for decoding frames should be decided by the cycle demand based on the probability

requirements for decoding frames in the window. Specifically, let ρ be the probability

required for decoding frames in a window, and every decoding task for a frame needs

41

to meet the probability ρ of deadlines. In other words, every frame of the window

should meet its deadline with a probability ρ. To support this requirement, the Ck

cycles should be allocated to all decoding tasks in the same window, i.e.,

F (C) = P [X ≤ Ck] ≥ ρ. (4.5)

To determine this parameter Cρ for a task, we find Cx whose cumulative distri-

bution is at least ρ, i.e., F (Cx) = P [X ≤ Cx] ≥ ρ. Since we assume the probability

ρ is 0.96, we determine this Cx as the parameter Cρ. The demanded probability, ρb,

is different to allocated probability, ρa. Even though ρb is required to decode frames

on a window, allocated cycle should be split the range [Cmin, Cmax] into equal-sized

groups. Therefore, we determine a little more allocated cycle (Ca) and allocated

probability (ρa) by Equation (4.5). In order to get a frequency for decoding frames

at a given window, frequency, fd, can be obtained by Equation (4.6).

fd =
Cρ × fps

∆t
, (4.6)

where fd is a frequency for the cycle demand for decoding frames in the window, fps

is frames per second, and the time interval ∆t is 1 sec. The demanded number of

instructions shows the requirement of instructions are different according to frames.

By this observation, we can calculate the frequency (fd) by Equation (4.5) and (4.6).

We determine an optimal frequency by the number of instructions for decoding frames

using a real multimedia data, and then calculate the allocated instructions based on

cdf F (x).

Although we find an optimal frequency for decoding frames, the additional system

workload generated by the operating system such as scheduling overhead, file I/O

handling, and network monitoring should be considered to guarantee the performance

in real systems. The system workload occupies between 5% and 50% according to the

42

assigned frequency. Therefore, the optimal frequency (fd) for decoding frames should

be adjusted by including the system workload.

E. Experimental Environments

Since the thermal management is difficult to be simulated, we have implemented

and evaluated TAS in the real-world mobile products. To evaluate the scalability,

we conduct our experiments in two different systems as shown in Table I. For our

experiments, we have implemented Process Monitoring (PMON) and measured tem-

perature using ACPI on Linux. We used 16 multimedia data encoded by MPEG-4

and H.264/AVC, respectively, with various frame resolutions as shown in Table II and

Table III.

Also, we measured the number of instructions and IPC using the Performance

API (PAPI) based on performance counter in most major microprocessors [34]. These

counters exist as a small set of registers that count events, occurrences of specific sig-

nals related to the processor’s function. Monitoring these events facilitates correlation

between the structure of source/object code and the efficiency of the mapping of that

code to the underlying architecture.

In order to demonstrate the flexibility of TAS, we exploit for the experiments

Table I. Experimental systems description
System I System II

Processor Intel Pentium-M 730 Intel Atom N270
Memory Size 1 GB 1 GB

LCD resolution 1600 X 1200 1280 X 800
Maximum Frequency 1.6 Ghz 1.6 Ghz
Minimum Frequency 0.6 Ghz 0.8 Ghz

Scaling level 6 levels 4 levels
Operating System SUSE 11.1 SUSE 11.1

(Kernel Version: 2.6.27) (Kernel Version: 2.6.27)

43

Table II. The experimental multimedia data (Standard Definition)
Name Encoded Codec Title Frame resolution The number

of frames

SD-M1 MPEG-4 Star Wars III 800 X 600 10,000
SD-M2 MPEG-4 Terminator 3 800 X 600 10,000
SD-M3 MPEG-4 24 hours 800 X 600 10,000
SD-M4 MPEG-4 Eragon 800 X 600 10,000
SD-H1 H.264/AVC The heartbreak kid 800 X 600 4,000
SD-H2 H.264/AVC 300 800 X 600 4,000
SD-H3 H.264/AVC Apocalypto 800 X 600 4,000
SD-H4 H.264/AVC Beowulf 800 X 600 4,000

Table III. The experimental multimedia data (High Definition)
Name Encoded Codec Title Frame resolution The number

of frames

HD-M1 MPEG-4 Star Wars III 1280 X 720 10,000
HD-M2 MPEG-4 Terminator 3 1280 X 720 10,000
HD-M3 MPEG-4 24 hours 1280 X 720 10,000
HD-M4 MPEG-4 Eragon 1280 X 720 10,000
HD-H1 H.264/AVC The heartbreak kid 1280 X 720 4,000
HD-H2 H.264/AVC 300 1280 X 720 4,000
HD-H3 H.264/AVC Apocalypto 1280 X 720 4,000
HD-H4 H.264/AVC Beowulf 1280 X 720 4,000

44

based on various multimedia data with different frame resolutions in two different

platforms. For the application with fluctuant workload, we use Mplayer to execute

the ”Transformers” video clip. One should note that the Mplayer would generate

two threads during execution: one is the X windows deamon, which maintains about

30% workload, and the other thread is decoding frames whose workload is fluctuant

between 40% and 70%.

F. Experimental Results and Analysis

1. The effect on performance overhead and thermal managements in Intel

Pentium-M processor

Fig. 11 shows that the frame drop ratio of multimedia data encoded by MPEG-4

and H.264/AVC using different thermal management schemes in Pentium-M proces-

sor. Feedback control and frame-based control schemes are indicated feedback and

frame. Cycle counter-based scheduler and TAS are indicated cycle counter and

TAS. The feedback control scheme uses PI controller based on monitoring the oc-

cupancy of the display buffer [10]. Also, the frequency is linearly subdivided into

40 discrete levels, which is not true in real systems. Due to using linearly frequency

decisions, the actual frequency can be determined higher, and then operating temper-

ature can be managed in higher degrees compared to other schemes. But the frame

drop ratio can be reduced, as shown in Fig. 11, which implies that the frequency

decision of feedback control scheme overestimates the required frequency compared

to other schemes.

As compared to feedback control scheme, frame-based scheme makes a decision

of the optimal frequency by considering the frame-dependent (FD) part of the decod-

ing process whereas the frame-independent (FI) part of dithering and display steps

45

SD−M1 SD−M2 SD−M3 SD−M4
0

1

2

3

4

5

6

7

8

9

10

multimedia data

N
or

m
al

iz
ed

 fr
am

e
dr

op
s

The frame drops in Pentium−M (MPEG−4)

feedback
frame
cycle counter
TAS

(a) MPEG-4 (800 X 600)

SD−H1 SD−H2 SD−H3 SD−H4
0

1

2

3

4

5

6

7

8

9

10
The frame drops in Pentium−M (H.264/AVC)

multimedia data
N

or
m

al
iz

ed
 fr

am
e

dr
op

s

feedback
frame
cycle counter
TAS

(b) H.264/AVC (800 X 600)

HD−M1 HD−M2 HD−M3 HD−M4
0

1

2

3

4

5

6

7

8

9

10
The frame drops in Pentium−M (MPEG−4)

multimedia data

N
or

m
al

iz
ed

 fr
am

e
dr

op
s

feedback
frame
cycle counter
TAS

(c) MPEG-4 (1280 X 720)

HD−H1 HD−H2 HD−H3 HD−H4
0

1

2

3

4

5

6

7

8

9

10
The frame drops in Pentium−M (H264/AVC)

multimedia data

N
or

m
al

iz
ed

 fr
am

e
dr

op
s

feedback
frame
cycle counter
TAS

(d) H.264/AVC (1280 X 720)

Fig. 11. The frame drop of standard definition multimedia data encoded by MPEG-4

and H.264/AVC in Intel Pentium-M processor

46

decoded frames [12]. Although the FD time varies considerably depending on the

frame type, the FI time is nearly constant of the given frames. That implies that the

FI time depends on the frame resolution of the given movie stream, which is obvi-

ously constant for the same movie. Therefore, frame-based control scheme has higher

frame drop ratio in movies based on high definition frame resolutions (1280 X 720)

than the standard definition frame resolution (800 X 600), as shown in Fig. 11(c) and

Fig. 11(d). Also, they assume that there is no display buffer, i.e., a frame should be

decoded and displayed in a given time, determined by a frame rate. However, they do

not consider the system workload such as workload generated by operating system,

file I/O, and several daemon processes, since the system workload should be one of

factors to determine the optimal frequency in real systems. By the frequency deci-

sions based on FD and FI time information, operating temperature can be controlled

in lower levels compared to other schemes as shown in Fig. 12(e), Fig. 12(f), Fig.

12(g), Fig. 12(h), Fig. 13(e), and Fig. 13(g).

Cycle counter-based scheduler determines the proper frequency based on the

statistical information of several frames [31]. Specially, the approach for thermal con-

trol based on statistical information overcome the disadvantages of feedback control

and frame-based control scheme by estimating relatively the accurate cycle demand

for decoding frames. Moreover, the cycle counter-based scheduler prevents poten-

tial overheads from frequent changes in the frequency unlike the frame-based control

scheme. This is the reason why the cycle counter-based scheduler has superior thermal

management compared to the feedback control scheme, but the cycle counter-based

scheduler shows higher frame drop ratio than other schemes, as shown in Fig. 11(b)

and Fig. 11(d). The reason is that the cycle counter scheme takes no account of the

effect by the display task and the system workload. Therefore, their estimation for

the optimal frequency is underestimated due to insufficient information through the

47

cycle counter of only decoding task.

TAS is also based on the statistical information of several frames, but TAS takes

into account all tasks related to multimedia applications. By this approach, TAS has

an advantage of managing lower temperature while reducing frame drops in multime-

dia applications. Specially, the display task as well as the decoding task should be

treated as an important factor for the frequency decision in multimedia data based

on the high definition frame resolution (1280 X 720), as shown in Fig. 11(c) and Fig.

11(d). Therefore, TAS overcomes the disadvantage of cycle counter-based scheduler

and keeps up better performance compared to other schemes. Also, since more ac-

curate frequency can be determined in TAS, temperature can be lowered than other

schemes in almost all results, as shown in Fig. 12 and Fig. 13.

Compared to other schemes, TAS reduces the peak temperature by 6 ◦C with a

reduction of frame drops by average 22.9%. Although temperature managed by TAS

shows a little bit higher than by the frame-based control scheme, the frame drop ratio

is reduced up to 82.6% compared to the frame-based control scheme.

2. The effect on performance overhead and thermal managements in Intel Atom

processor

Intel Atom processor based on an entirely new microarchitecture was developed specif-

ically targeted performance and low power for the embedded system [35]. Also, since

the data transfer through low power optimized front side bus is faster than Intel’s

Pentium-M processor, operating temperature can lower compared to Intel Pentium-

M processor. Although temperature in Atom processor can be managed lower than

Pentium-M processor, the overall frame drop ratio of all experiments in Atom proces-

sor is higher than Intel Pentium-M processor, as a shown in Fig. 14. There are two

reasons: first, the scaling range for DVFS in Atom processor is smaller than Pentium-

48

0 50 100 150 200 250 300 350 400 450
55

60

65

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
is

us
)

feedback control
frame control
cycle counter
TAS

(a) Star Wars 3 (MPEG-4)

0 50 100 150 200 250 300 350 400 450
55

60

65

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(b) Terminator 3 (MPEG-4)

0 50 100 150 200 250 300 350 400 450

54

56

58

60

62

64

66

68

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(c) 24 hours (MPEG-4)

0 50 100 150 200 250 300 350 400 450
54

56

58

60

62

64

66

68

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(d) Eragon (MPEG-4)

0 50 100 150 200 250 300 350 400 450
54

56

58

60

62

64

66

68

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(e) Star Wars 3
(H.264/AVC)

0 50 100 150 200 250 300 350 400 450
54

56

58

60

62

64

66

68

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(f) Terminator 3
(H.264/AVC)

0 50 100 150 200 250 300 350 400 450
56

58

60

62

64

66

68

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(g) 24 hours (H.264/AVC)

0 50 100 150 200 250 300 350 400 450
56

58

60

62

64

66

68

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(h) Eragon (H.264/AVC)

Fig. 12. Resulting temperatures with feedback, frame, cycle counter, and TAS in the

standard definition multimedia data in Intel Pentium-M processor (frame res-

olution : 800 X 600)

49

0 30 60 90 120 150
52

54

56

58

60

62

64

66

68

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(a) The heartbreak kid
(MPEG-4)

0 30 60 90 120 150
56

58

60

62

64

66

68

70

72

74

76

78

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(b) Apocalypto (MPEG-4)

0 20 40 60 80 100

56

58

60

62

64

66

68

70

72

74

76

78

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(c) 300 (MPEG-4)

0 30 60 90 120 150
55

60

65

70

75

80

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(d) Beowulf (MPEG-4)

0 30 60 90 120 150
55

60

65

70

75

80

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(e) The heartbreak kid
(H.264/AVC)

0 30 60 90 120 150
55

60

65

70

75

80

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(f) Apocalypto
(H.264/AVC)

0 20 40 60 80 100
54

56

58

60

62

64

66

68

70

72

74

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(g) 300 (H.264/AVC)

0 30 60 90 120 150
50

55

60

65

70

75

80

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(h) Beowulf (H.264/AVC)

Fig. 13. Resulting temperatures with feedback, frame, cycle counter, and TAS in the

high definition multimedia data in Intel Pentium-M processor (frame resolu-

tion : 1280 X 720)

50

SD−M1 SD−M2 SD−M3 SD−M4
0

1

2

3

4

5

6

7

8

9

10
The frame drops in Atom (MPEG−4)

multimedia data

N
or

m
al

iz
ed

 fr
am

e
dr

op
s

feedback
frame
cycle counter
TAS

(a) MPEG-4 (800 X 600)

SD−H1 SD−H2 SD−H3 SD−H4
0

1

2

3

4

5

6

7

8

9

10
The frame drops in Atom (H.264/AVC)

multimedia data

N
or

m
al

iz
ed

 fr
am

e
dr

op
s

feedback
frame
cycle counter
TAS

(b) H.264/AVC (800 X 600)

HD−M1 HD−M2 HD−M3 HD−M4
0

1

2

3

4

5

6

7

8

9

10
The frame drops in Atom (MPEG−4)

multimedia data

N
or

m
al

iz
ed

 fr
am

e
dr

op
s

feedback
frame
cycle counter
TAS

(c) MPEG-4 (1280 X 720)

HD−H1 HD−H2 HD−H3 HD−H4
0

1

2

3

4

5

6

7

8

9

10
The frame drops in Atom (H.264/AVC)

multimedia data

N
or

m
al

iz
ed

 fr
am

e
dr

op
s

feedback
frame
cycle counter
TAS

(d) H.264/AVC (1280 X 720)

Fig. 14. The frame drop of standard definition multimedia data encoded by MPEG-4

and H.264/AVC in Intel Atom processor

M processor. Therefore, the overestimation or underestimation effects can be much

more serious than Pentium-M processor. The second is that the overall performance

of Atom processor is relatively lower than Pentium-M processor even with the same

frequency.

In the experiments for high definition multimedia data in Intel Pentium-M, tem-

perature control using the cycle counter-based scheduler and TAS show the best in

almost all results, as shown in Fig. 15 and Fig. 16. This is the reason why the

cycle counter-based scheduler and TAS determines more accurate frequency based on

the statistical information for the cycle demand to decode frames. However, cycle

51

counter-based scheduler can underestimate the required frequency for multimedia ap-

plications whenever the huge decoding time is required in high definition multimedia

data. Due to lack of overall estimation for decoding and display tasks, the under-

estimated frequency causes to increase performance overhead in the overall system.

Therefore, the frame drop ratio of cycle counter-based scheme is higher than the other

schemes, as shown in Fig. 14(c) and Fig. 14(d). Moreover, the inaccurate estimation

of frequency without the workload of displaying frames causes the frame drop ratio

bigger than other schemes. Also, since the cycle counter-based scheme depends on

the decoding time without any information for temperature, it is unable to predict

the future temperature or the thermal characteristics.

Compared to other schemes, TAS reduces the peak temperature by 6 ◦C with a

reduction of frame drops by average 27.3%. Although temperature managed by TAS

shows a little bit higher than by the frame-based control scheme, the frame drop ratio

is reduced up to 72.2% compared to the frame-based control scheme.

As a result, TAS derives statistical information by taking advantage of the cycle

demand obtained by IPC and the number of instructions. Based on the statistical

information for the previous frames, this scheme calculates the currently required

frequency as well as looking ahead to see if the future frequency should be increased

or decreased. This scheme can also adjust the frequency accordingly for movies with

rapid changes. The appropriate frequencies in different decoding time can be precisely

predicted with IPC and the number of instructions which depends on the processor.

Also, this leads TAS to operate in lower temperature levels than other thermal man-

agement schemes. TAS based on the application thermal characteristics lowers tem-

perature by about 4 ◦C in average and reduces about 6 ◦C in the peak temperature

compared to other previous thermal management schemes. Since TAS meets up to

5% frame drop ratios in multimedia applications, TAS outperforms the previous ther-

52

mal managements for multimedia applications such as the feedback control scheme,

the frame-based scheme, and the cycle counter scheduler.

G. Conclusions

In this work, we propose Thermal-Aware Scheduler (TAS) which uses both application

characteristics represented by the probability distribution of cycle demand to decode

a frame and the system thermal model augmented by the effect of workload. Our

experimental results show that the distribution of cycle demands in various codecs

affect temperature directly as an application workload. This implies that the overall

temperature can be predicted and controlled by the optimal frequency to decode

frames for any type of multimedia data. Also, TAS scheme explores the application

thermal characteristics based on statistical information of cycle demands, which can

estimate the future temperature within 2.5% prediction error in average compared

to the measured temperature by a thermal sensor. Therefore, TAS provides more

accurate estimation and more efficient temperature management compared to other

schemes such as the feedback control scheme, the frame-based scheme, and the cycle

counter scheme.

53

0 50 100 150 200 250 300 350 400
50

52

54

56

58

60

62

64

66

68

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(a) Star Wars 3 (MPEG-4)

0 50 100 150 200 250 300 350 400

52

54

56

58

60

62

64

66

68

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(b) Terminator 3 (MPEG-4)

0 50 100 150 200 250 300 350 400

52

54

56

58

60

62

64

66

68

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(c) 24 hours (MPEG-4)

0 50 100 150 200 250 300 350 400
52

54

56

58

60

62

64

66

68

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(d) Eragon (MPEG-4)

0 50 100 150 200 250 300 350 400
52

54

56

58

60

62

64

66

68

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(e) Star Wars 3
(H.264/AVC)

0 50 100 150 200 250 300 350 400
52

54

56

58

60

62

64

66

68

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(f) Terminator 3
(H.264/AVC)

0 50 100 150 200 250 300 350 400
50

52

54

56

58

60

62

64

66

68

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(g) 24 hours (H.264/AVC)

0 50 100 150 200 250 300 350 400
52

54

56

58

60

62

64

66

68

70

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(h) Eragon (H.264/AVC)

Fig. 15. Resulting temperatures with feedback, frame, cycle counter, and TAS in the

standard definition multimedia data in Intel Atom processor (frame resolution

: 800 X 600)

54

0 30 60 90 120 150
51

52

53

54

55

56

57

58

59

60

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(a) The heartbreak kid
(MPEG-4)

0 30 60 90 120 150
51

52

53

54

55

56

57

58

59

60

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(b) Apocalypto (MPEG-4)

0 20 40 60 80 100
52

53

54

55

56

57

58

59

60

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(c) 300 (MPEG-4)

0 30 60 90 120 150
52

53

54

55

56

57

58

59

60

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(d) Beowulf (MPEG-4)

0 30 60 90 120 150
52

54

56

58

60

62

64

66

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(e) The heartbreak kid
(H.264/AVC)

0 30 60 90 120 150
52

54

56

58

60

62

64

66

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(f) Apocalypto
(H.264/AVC)

0 20 40 60 80 100
53

54

55

56

57

58

59

60

61

62

63

64

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(g) 300 (H.264/AVC)

0 20 40 60 80 100 120 140 160
52

54

56

58

60

62

64

66

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

feedback control
frame control
cycle counter
TAS

(h) Beowulf (H.264/AVC)

Fig. 16. Resulting temperatures with feedback, frame, cycle counter, and TAS in the

high definition multimedia data in Intel Atom processor (frame resolution :

1280 X 720)

55

CHAPTER V

PREDICTIVE DYNAMIC THERMAL MANAGEMENT FOR MULTICORE

SYSTEMS

From this chapter, we introduce how to manage temperature in Chip Multiprocessors

(CMPs). CMPs have already been employed as the main trend in new generation

processors. CMPs includes multiple cores within one single die area to increase the

microprocessors’ performance. However, the increased complexity and decreased fea-

ture sizes have caused very high power density in modern processors. The power

dissipated is converted into heat and the processors are pushing the limits of pack-

aging and cooling solutions. The increased operating temperature potentially affects

the system reliability. Moreover, leakage power increases exponentially with operat-

ing temperature. Increasing leakage power can further raise the temperature resulting

in a thermal runaway [1]. Hence, there is a need to control temperature at all levels

of system design.

Recently, many hardware and software-based Dynamic Thermal Management

(DTM) [1, 3] techniques have been proposed in sense of that they, except [4], start to

control the temperature after the current temperature reaches the critical tempera-

ture threshold. DTM schemes can be characterized as temporal or spatial. Temporal

management schemes, such as Dynamic Frequency Scaling (DFS), Dynamic Voltage

Scaling (DVS), clock gating, slowdown the CPU computation to reduce heat dissi-

pation. Although they could effectively reduce temperature, they incur significant

performance overhead. On the other hand, spatial management schemes, such as

thread migration, can reduce the temperature without throttling the computation

[17]. However, neighboring thermal effect and the application thermal behavior are

not considered in prior works. Due to packaging technology in CMPs, the tempera-

56

ture of each core will be affected by other cores. The temperature differential between

cores can be as much as 10 ∼ 15 ◦C [3]. There are significant variations in the thermal

behavior among different applications [3, 4].

Motivated by these facts, we propose a Predictive Dynamic Thermal Manage-

ment (PDTM) in the context of multicore systems. Our PDTM scheme utilizes an

advanced future temperature prediction model for each core to estimate the thermal

behavior considering both core temperature and applications temperature variations,

and then take appropriate measures to avoid thermal emergencies. To the authors’

best knowledge, no prior attempt has been made to implement the temperature pre-

diction model along with the thermal-aware scheduling on a real four-core product

under Linux environment. The experimental results on Intel’s Quad-Core system

running two SPEC CPU 2006 benchmarks simultaneously show PDTM lowers tem-

perature by about 5% in average and reduces up to 3 ◦C in peak temperature with

only at most 8% performance overhead compared to Linux standard scheduler with-

out DTM. Moreover, to validate the presented PDTM, we also rebuilt HRTM [17],

and our PDTM outperforms HRTM in reducing average temperature by about 7%,

performance overhead by 0.15%, and peak temperature by about 3 ◦C, while running

single benchmark.

The main contributions of this work are summarized as follows:

• We propose an advanced future temperature prediction model for multicore

systems with only 1.6% error in average.

• We demonstrate that our scheme outperforms the existing DTM schemes (HRTM

and HybDTM) and provides thermal fairness among cores in a CMP system.

• The proposed PDTM incurs low performance overhead which is only 1% when

running single benchmark, and 8% when running two benchmarks simultane-

57

ously.

• Most importantly, there is no additional hardware unit required for our predic-

tion model and thermal-aware scheme. It means that our model and scheme

is scalable for all the multicore systems and can be applied to real-world CMP

products.

A. Predictive Thermal Model

In this section, we present a thermal model to predict the future temperature at

any point during the execution of a specific application. The model is based on our

observation that the rate of change in temperature during the execution of an applica-

tion depends on the difference between the current temperature and the steady state

temperature of the application1. Moreover, the thermal behavior is different among

applications. Since the system temperature is affected by both each application’s ther-

mal behavior and each processors’ thermal pattern, we define the application-based

thermal model and the processor-based thermal model in this work.

1. The application-based thermal model in CMP systems

The Application-based Thermal Model (ABTM) accommodates the short-term ther-

mal behavior in order to predict the future temperature in fine-grained. As shown

in Fig. 17, there are rapid temperature changes even when the workload is statically

100%. Specifically, this model first derives the thermal behavior from local inter-

vals (short term temperature reactions) and then predicts the future temperature by

incorporating this behavior into a regression based approach that is known as the

1The steady state temperature of an application is defined as the temperature the
system would reach if the application is executed infinitely.

58

0 50 100 150 200 250 300
55

60

65

70

75

80

85

90

time(sec)

te
m

pe
ra

tu
re

(C
el

si
us

)

Fig. 17. Real temperature of one core on running bzip2 benchmark

Recursive Least Square Method (RLSM). In the general least-squares problem, the

output of a linear model y is given by the linear parameterized expression

y = θ1f1(u) + θ2f2(u) + · · ·+ θnfn(u), (5.1)

where u = [u1 ,u2 ,· · · ,un] is the model’s input vector, f1,...,fn are known functions

of u, and θ1, θ2,...,θn are unknown parameters to be estimated. In our study, let the

input vector, u, and the output vector, y, be time units and working temperature

respectively. To identify the unknown parameters θi, experiments usually have to

be performed to obtain a training data set composed of data pairs (ui ;yi), i =

1,· · · ,m}. Expressed in matrix notation, the following equation can be obtained: Y

59

= Xθ where X is an m × n matrix:

X =





























f1(u1) · · · fn(u1)

...
...

...

f1(um) · · · fn(um)





























(5.2)

θ is a n × 1 unknown parameter vector:

θ = [θ1, θ2, ..., θn]T (5.3)

and Y is a n×1 output vector:

Y = [Y1, Y2, ..., Yn]
T (5.4)

If XTX is nonsingular, the least square estimator can be derived as

θ = (XTX)−1XTY, (5.5)

Denote the ith row of the joint data matrix [X : Y] by [XT
i : Yi]. Suppose that a

new data pair [XT
k+1 : Yk+1] becomes available as the (k + 1)th entry in the data set.

To avoid recalculating the least squares estimator using all input and output data

samples, let Pk = (XTX)−1 for the kth in Equation (5.5). Likewise, the recursive

least square method at (k + 1)th can be developed as

Pk+1 = Pk −
Pkxk+1x

T
k+1Pk

1 + yT
k+1Pkyk+1

, (5.6)

where yk+1 is the output vector and xk+1 is input vector of of fk+1.

θk+1 = θk + Pk+1xk+1(yk+1 − x
T
k+1θk) (5.7)

60

�� ���
������	�
����������
���
�������	�����
���
��� ��

��

������	�
��

����
�
�����������	�
�� �
�
��������	�
��

Fig. 18. The calculation of ∆t (migration time) using ABTM

where matrix P is an intermediate variable in the algorithm. Eventually, we get

future temperature, yn, by an application thermal behavior using the current θ vector.

Detailed descriptions of the Least Square Method and Recursive Least Square Method

can be found in the literatures [36]. With Equation (5.1), ABTM can predict future

temperature for an application as shown in Fig. 18.

2. The core-based thermal model in CMP systems

The heat transfer equations model the steady state temperature of systems with the

heat sources [37]. It has been observed in those models that the temperature changes

exponentially to the steady state starting from any initial temperature. In other

words, the rate of temperature change is proportional to the difference between the

current temperature and the steady state [37]. We initially assume that the steady

state temperature of the application is known. Later we will relax this constraint.

Let Tss be the steady state temperature of an application. Let T (t) represent the

temperature at time t and let Tinit be the temperature when an application starts

execution (T (0)=Tinit). The prediction model assumes that the rate of variations of

61

temperature is proportional to the difference between the current temperature and

the steady state temperature of the application [30]. Thus

dT

dt
= b× (Tss − T). (5.8)

Solving Equation (5.8) with T (0) = Tinit and T (∞)=Tss, we get

T (t) = Tss − (Tss − Tinit)× e
−bt (5.9)

where b is a processor-specific constant. The value of b is determined using Equation

(5.8) by observing heating and cooling curves corresponding to all SPEC CPU 2006

benchmarks on the core. Also, since the value of b is different to the amount of

workload, b should be determined by the workload on each processor. Running several

benchmarks, we obtained b = 0.009 when the workload is 100%. We precompute the

steady state temperature of an application offline. By rearranging Equation (5.9), we

get the steady state temperature Tss of the application.

Tss =
T (t)− Tinit × e

−bt

(1− e−bt)
(5.10)

Therefore, with Equation (5.9) and (5.10), we get the future temperature after time

t and the steady state temperature, Tss, of each core.

3. The predictive thermal model

Our approach, which towards characterizing the thermal contribution of individual

processor, uses ABTM and CBTM at runtime as the input for the overall thermal

model to directly estimate the future temperature. For each application, we ex-

ploit both short-term (ABTM) and long-term (CBTM) future temperature values

62

to prevent Ping-Pong effect2. The application-based temperature, Tapp, predicts the

transient variations in application temperature which includes the temperature con-

tribution at the running period on the core before being migrated into other core. On

the other hand, the core-based temperature, Tcore, is calculated with the aggregated

temperature by workload. The overall predictive temperature is then given as:

Tpredict = wsTapp + wlTcore (5.11)

where Tpredict is determined as the overall predictive temperature, ws is a weighting

factor of ABTM, and wl is a weighting factor of CBTM. Note that ws and wl should

be adjusted according to the application workload. Since the benchmarks we used in

this study maintain 100% workload in most time, we find that the optimal values for

ws and wl are 0.7 and 0.3 ,respectively, based on our experimental results. Instead

of iteratively calculating Tpredict, a predefined temperature trigger threshold provokes

the calculation. And after a certain core’s temperature has exceeded the temperature

trigger threshold, it detects processes that exceed the workload threshold and applies

appropriate ABTM. This approach can reduce the overheads from the prediction

calculations. In order to properly predict any future temperature, we need to know

∆t beforehand. This value is the time interval that is required for the current ABTM

to reach the temperature threshold of the next stage in Fig. 18.

B. PDTM Scheduler

The Linux standard scheduler is designed to compromise two opposing aspects: re-

sponse time and throughput. Interactive processes such as shell programming are

built to run in a satisfactory response time. On the other hand, CPU-intensive pro-

2A process can be migrated among several cores very frequently.

63

�������� �� �!��!"#�$��%#&%�� '((��)�!��&*+�%#�!"#�$�� $��#� ,��#*+�%#�!"#�$�� $��#�
-� ��!��&%)"#�.��& /�����!0%)"#�.��& Predictive DTM

Monitoring Future temperature

prediction model

Thermal-aware scheduler

1���2��#3�4�2��#
Fig. 19. System overview

grams needs to ensure throughput. To keep up with this corollary in multi-cores, a

certain process is rarely migrated into another core in Linux standard scheduler. This

is mainly because an active process uses running information like TLB for the process

through cache memory [38]. However, when the workload is noticeably unbalanced,

the Linux standard scheduler initiates process migrations despite migration overhead.

However, the Linux standard scheduler does not take the temperature behavior into

account. To resolve this issue, PDTM enables the scheduling policy to accommodate

the temperature behavior as well as workloads in a multicore environment.

Our PDTM mainly composes of three components as shown in Fig. 19. In

the monitoring part, the application workload (CPU utilization) is monitored for

application’s migration to balance workload by Linux standard scheduler. However,

it is not aware of temperature. PDTM uses Digital Thermal Sensor (DTS) to detect

temperature at runtime. The detected temperature information can be used in the

future temperature prediction model.

As shown in Algorithm (2), PDTM determines that migration is necessary when

64

Algorithm 2 PDTM scheduler algorithm

1: Tcur ← CalcT(processi)

2: for Tcur ≥ Tttt do

3: ∆tm ← ABTM−1(Ttmt)

4: for j = 1 to MAXcores do

5: Tcbtm ← CBTM(∆tm)

6: Tabtm ← ABTM(∆tm)

7: T [j] ← ωs·Tabtm+ωl·Tcbtm

8: end for

9: Migrated Core ← MIN CORE(T [])

10: Tpred ← MIN TEMP(T [])

11:

12: if Current Core 6= Migrated Core then

13: MIGRATION(processi → Migrated Core)

14: end if

15:

16: if Tpred ≥ Tpst then

17: Decrement priority(processi)

18: else

19: Increment priority(processi) until priority = 0

20: end if

21: end for

65

56789

:;<=;>?:@>;

:A<;
BCDEFGCDE

89HI8JGCDE
KLMN OPQRS TUVWXYUZ[Y\W]^\Z_`aKbcbd

Fig. 20. PDTM utilizes ABTM and CBTM simultaneously to predict both short-term

and long-term future temperature for multicore

the predicted temperature exceeds the migration threshold (Ttmt). When the current

temperature (Tcur) reaches the temperature trigger threshold (Tttt), ∆tm, the time to

which the migration threshold, is calculated by ABTM. PDTM begins to calculate the

future temperature via ABTM and CBTM for other cores after ∆tm. The core with

minimum value among future temperature (T []) is selected as new core for migration.

As shown in Fig. 20, the goal is to find the future coolest core after ∆tm with our

prediction. If the prediction temperature, Tpred is also larger than priority scheduling

temperature(Tpst), the priority of application should be adjusted as well as migration.

ABTM is capable of predicting the future temperature within the short-term

by tracking the application’s thermal behavior, and is recognized as a fine-grained

scheme. However, since frequent local temperature differences significantly affect

temperature predictions, this impairs the ability to predict thermal behaviors in the

long run. On the other hand, although CBTM lacks the ability to track each ap-

plication’s thermal behavior, this model is capable of foreseeing long-term thermal

behaviors by facilitating the workload constant and the current working temperature

of a core. This makes CBTM to be recognized as a coarse-grained scheme. In sum-

66

0 200 400 600 800
50

55

60

65

70

75

80

85

90

time(sec)

te
m

pe
ra

tu
re

(C
el

si
us

)

Core 1
Core 2
Core 3
Core 4

(a) Without DTM

0 200 400 600 800
50

55

60

65

70

75

80

85

90

time(sec)

te
m

pe
ra

tu
re

(C
el

si
us

)

Core 1
Core 2
Core 3
Core 4

(b) HRTM

0 200 400 600 800
50

55

60

65

70

75

80

85

90

time(sec)

te
m

pe
ra

tu
re

(C
el

si
us

)

Core 1
Core 2
Core 3
Core 4

(c) PDTM

Fig. 21. Comparisons among without DTM, HRTM, and PDTM using libquantum

benchmarks

0 200 400 600 800
50

60

70

80

90

100

time(sec)

te
m

pe
ra

tu
re

(C
el

si
us

)

Core 1
Core 2
Core 3
Core 4

(a) Without DTM

0 200 400 600 800
50

60

70

80

90

100

time(sec)

te
m

pe
ra

tu
re

(C
el

si
us

)

Core 1
Core 2
Core 3
Core 4

(b) HRTM

0 200 400 600 800
50

60

70

80

90

100

time(sec)
te

m
pe

ra
tu

re
(C

el
si

us
)

Core 1
Core 2
Core 3
Core 4

(c) PDTM

Fig. 22. Comparisons among without DTM, HRTM, and PDTM using bzip2 and

libquantum benchmarks

mary, PDTM takes the advantages of ABTM and CBTM in order to predict local

application thermal behaviors as well as tracking the core behavior. The accuracy of

our prediction model help determine the future coolest core for migration.

C. Experimental Results and Analysis

In order to estimate working temperature through Digital Thermal Sensor (DTS) for

multicore systems, we develop a specific driver to access them in runtime. In CMPs

silicon die, each core has a unique thermal sensor that triggers independently. The

67

Table IV. Environments parameters
Parameters values (◦ Celsius)

Initial Temperature 54
Trigger Threshold 60

Migration Threshold 70
Priority Scheduling Threshold 82

Table V. A set of benchmarks list
Benchmarks Temperature Memory Usage

perlbench+hmmer Low Low
perlbench+bzip2 Low High
libquantum+hmmer High Low
libquantum+bzip2 High High

trigger point of these thermal sensors is not programmable by software since it is set

during the fabrication of the processor [19]. In the experiments, we set temperature

trigger threshold as 60◦C to start PDTM, and the migration threshold as 70 ◦C to

migrate applications when the predicted temperature exceeds the migration threshold.

Also, priority scheduling threshold is 82 ◦C. When predicted temperature is reached

at priority scheduling threshold, the priority of application can be adjusted as lower

value. Our implementation parameters are provided in Table IV. All experiments are

tested under ambient temperature control and fixed fan speed.

1. Digital thermal sensor for Intel quad-core

In Intel’s Core Architecture, the DTS can be accessed by a Machine Specific Register

(MSR). The value in the MSR is an unsigned number and the unit is Celsius (◦C).

In MSR, we use IA32 THERM STATUS register in order to get temperature of each

core. Within the register, it uses 7 bits where the value of DTS is stored. We can get

temperature for four cores by Equation (5.12).

Tcore = Tjunction −DTSvalue (5.12)

68

0
0

200

400

600

800

1000

1200

1400

1600
PERFORMANCE OVERHEAD

Benchmark

tim
e

(s
ec

)

perlbmk bzip2 gcc mcf gobmk hmmer sjeng libqt h264ref astar

w/o DTM
HybDTM
HRTM
PDTM

Fig. 23. Performance overhead : PDTM incurs only under 1% performance overhead

in average while running single benchmark

Tjunction is a manufactural value by Intel.

2. Experimental results and analysis

To demonstrate PDTM, we conduct the experiments with a single SPEC2006 bench-

mark and a set of two SPEC2006 benchmarks as shown in Table V. Running the single

benchmark, the presented PTDM can decrease 8% temperature in average (Fig. 21),

and reduces up to 5 ◦C in the peak temperature with only under 1% performance

overhead compared to Linux standard scheduler without DTM, as shown in Fig. 23.

Running two benchmarks simultaneously, PDTM can even lower about 10% temper-

ature in average and reduces up to 3 ◦C in peak temperature while running a set of

benchmarks with only under 8% performance overhead compared to Linux standard

scheduler without DTM, as shown in Fig. 22. It means PDTM can be more effec-

tive to control temperature than Linux standard scheduler when temperature and

workload is higher.

In order to verify our scheme, we also rebuilt HybDTM [26] (the software scheme-

changing priority) and HRTM [17] on Quad-Core system. HybDTM uses the priority-

based scheme and HRTM uses the migration-based scheme. HybDTM scheme relies

69

on the hardware performance counter, while HRTM relies on the current tempera-

ture information. The experimental results show that PDTM outperforms HRTM

in reducing average temperature by about 7%, performance overhead by 0.15%, and

the peak temperature by about 3 ◦C. In addition, the future temperature prediction

model provides more accurate prediction with only less than 1.6% error; on the other

hand, the estimation model, introduced in HybDTM, has at most 5% average error.

The main reason of the accuracy in the prediction model is that we consider not only

the core-based temperature at each core, but also the application thermal behavior.

Therefore, PDTM is capable to manage the temperature fairness and control the

overall temperature lower than other schemes even in the CPU-intensive situation.

D. Conclusions

In this work, we propose the Predictive Dynamic Thermal Management (PDTM) with

an advanced future temperature prediction model for multicore systems, and imple-

ment PDTM on Intel Quad-Core with a specific device driver to access the Digital

Thermal Sensor. We demonstrate that our scheme is able to reduce the overall tem-

perature and provide thermal fairness among four cores. The proposed temperature

prediction model can provide more accurate prediction and more efficient temperature

management by using ABTM and CBTM with lower performance overhead compared

to other schemes (HRTM and HybDTM). Most importantly, there is no additional

hardware unit required for our prediction models and scheduler.

70

CHAPTER VI

TEMPERATURE-AWARE SCHEDULER BASED ON THERMAL BEHAVIOR

GROUPING IN MULTICORE SYSTEMS

While manufacturing technology continues to improve reducing the size of packages,

the physical limits of semiconductor-based microelectronics have become a major de-

sign concern. Due to the demand of more capable microprocessors, some methods,

such as instruction-level parallelism (ILP) and thread level parallelism (TLP), have

been proposed and employed in the modern processors. Moreover, multiple inde-

pendent CPUs become a common solution to increase the system’s overall TLP in

the current market. A combination of increased available space due to the refined

manufacturing processes and the demand for increased TLP is the logic behind the

creation of Chip multiprocessors (CMPs).

Instead of pushing the limits of processor’s frequency, the demand for more ca-

pable microprocessors must be satisfied by other methods. However, due to the

decreased chip size and increased power-density, the power has been converted into

significant heat and threaten the system performance, reliability, and even increased

the power leakage. The great heat dissipation is pushing the limits of current pack-

aging technology and cooling solution. Packages are designed for worst typical be-

havior and rely on Dynamic Thermal Management (DTM) techniques to control the

temperature. Therefore, the chip design trend has been shifted to provide better

power-efficiency, lower power-density, and more effective thermal management in the

recent decade.

In this work, we propose a proactive thermal-aware scheduler (TAS) that ex-

ploits this variability in the context of multicore systems. TAS scheme utilizes an

advanced future temperature prediction model for each core to estimate different ther-

71

mal behaviors and measure the time duration before each core reaching the desired

temperature threshold. Therefore, the appropriate measurements would be triggered

to avoid thermal emergency based on the measured results. Although the proactive

schemes have be proposed in [4, 5], the scheme in [4] is only applicable to the context

of multimedia applications, since it predicts the temperature of the next frame based

on the profile of the past frames; on the contrary, the scheme in [5] fails to consider

the difference of temperature increasing pattern in different cores, because the steady

state temperature and thermal parameter b are impractically assumed to be the same

in each core within a single chip. Most importantly, in [5], the authors propose to

migrate tasks from a potentially overheated core to the future coolest core based on

the temperature prediction results. However, we believe that the target core of task

migration should be determined by the core which needs longest time period to reach

the predefined temperature threshold, because the temperature of the coolest can be

increased faster than others due to the thermal correlation effects and its own thermal

increasing pattern.

Therefore, we propose a simple and accurate prediction model to profile the ap-

plication’s thermal behavior and classify them into several groups offline, and then

measure the time duration before reaching the desired temperature threshold for each

core. The proposed temperature-aware scheduler is scalable to any current multicore

model and architecture with on-chip thermal sensors that can be accessed at the soft-

ware level. Eventually, we exploit and implement the advanced future temperature

prediction model with the TAS strategy in the Intel Quad-Core Q6600 system. Ex-

periments were conducted under CPU-intensive SPEC CPU 2006 benchmark, TAS

maintains the system temperature below a given threshold by the proposed prediction

model. Moreover, we demonstrate that TAS scheme based on simple parameters can

control the tradeoffs between throughput and thermal fairness. Compared to tradi-

72

pearl bzip2 gcc mcf gobmk hmmer sjeng libq. h264ref astar xalanch
60

65

70

75

80

85

90

95

100

SPEC CPU 2006 benchmarks

T
em

pe
ra

tu
re

 (
C

el
si

us
)

core 1
core 2
core 2
core 4

Fig. 24. Tss according to SPEC CPU 2006 benchmark suite

tional schedulers employed in conjunction with DTM techniques, the temperature-

aware scheduler can achieve higher throughput while maintaining QoS guarantees for

soft real-time tasks with marginal loss in fairness among the best-effort tasks.

The main contributions of this work are summarized as follows:

• We classify the applications’ thermal behavior groups using K -means clustering

method with the steady state temperature.

• We propose an efficient temperature-aware scheduler in multicore systems and

implement it in Intel Quad-Core Q6600 and two Quad-Core Intel Xeon E5310

processors systems. We demonstrate that our scheme is able to successfully

reduce the overall temperature and provides the thermal fairness among cores.

• Most importantly, there is no additional hardware unit required for our temperature-

aware scheduler. Our scheme is applicable to any multicore environment in

real-world CMP products seamlessly.

73

A. Thermal Behavior Group

In this section, we propose how to classify the thermal behavior group by Tss. Also,

we introduce how to predict the future temperature and the time duration before

reaching the predefined threshold using the thermal parameter b and the thermal

behavior groups. we discuss about the advanced future temperature prediction model

for each core to estimate the different application thermal behaviors and measure the

time duration before each core reaching the desired temperature threshold. Based

on the prediction results, the appropriate measures are triggered to avoid thermal

emergency. Instead of being reactive to the current temperature, the temperature

control techniques should be triggered if the core is predicted to be overheated in the

near future to more effectively control temperature under the desired temperature

threshold. Although the proactive schemes have been proposed in [4, 5], the scheme

in [4] is only applicable to the context of multimedia applications, since it predicts

the temperature of the next frame based on the profile of the past frames; on the

contrary, the scheme in [5] fails to consider the difference of temperature increasing

pattern in different cores, because the steady state temperature and the thermal

parameter b are impractically assumed to be the same in each core within a single

chip. Most importantly, in [5], the authors propose to migrate tasks from a potentially

overheated core to the future coolest core based on the temperature prediction results.

However, we believe that the target core of task migration should be determined by the

core which needs longest time period to reach the predefined temperature threshold,

because the temperature of the coolest can be increased faster than others due to the

thermal correlation effects and its own thermal increasing pattern.

74

0 50 100 150 200 250 300 350
50

55

60

65

70

75

80

85

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

Thermal behavior for group A

400.perlbench
401.bzip2
403.gcc
456.hmmer

Fig. 25. Thermal behavior for Group A

1. Thermal behavior groups based on the applications’ thermal pattern

As shown in Fig. 24, Tss of each benchmark suite is different from each other, although

all of their CPU utilizations are almost 100%. In order to manage temperature

at runtime, the accurate applications’ thermal behavior should be necessary. We

observe Tss and the thermal parameter b, Tss value is more sensitive than the thermal

parameter b to different thermal behaviors of applications. As shown in Fig. 25, the

applications’ thermal patterns are similar if their Tss are analogous. In this research,

we classify SPEC CPU 2006 benchmark applications with Tss value as several thermal

behavior groups using a K -means clustering method. The K -means clustering method

is an algorithm to cluster n objects based on attributes into k partitions, k < n. It is

similar to the expectation-maximization algorithm for mixtures of Gaussians in that

they both attempt to find the centers of natural clusters in the data. It assumes

that the object attributes form a vector space. The objective it tries to achieve is to

75

0 50 100 150 200 250 300 350 400
55

60

65

70

75

80

85

90

95

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

Application thermal behaviors according to applications

400.perlbench
462.libquantum

(a) Running two applications on
the same core

0 100 200 300 400 500 600 700 800 900
50

55

60

65

70

75

80

85

90

95

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

Application thermal behaviors according to cores

core 1
core 3

(b) Running one application on
the different cores

Fig. 26. The application thermal behavior according to applications and cores

minimize the total intra-cluster variance, or, the squared error function as follow:

V =

k
∑

i=1

∑

xj∈Si

(xj − µi)
2 (6.1)

where there are k clusters Si, i = 1, 2, ..., k, and µi is the centroid or mean point of

all the points xj ∈ Si. As our preliminary experiments for eleven SPEC CPU 2006

benchmarks, k = 5 is the optimal value to classify applications as thermal behavior

group as shown in Table VI.

For example, 400.perlbench, 401.bzip2, 403.gcc, and 456.hmmer applications

can be classified as the same group (Group A) that has a similar thermal pattern

and Tss, as shown in Fig. 25. As our preliminary results, each Tinit in Group A is

different in four applications, but Tinit cannot affect application’s thermal pattern

and their Tss.

76

Table VI. The result of thermal behavior group using K -means clustering on 4-core system

SPEC CPU Core 1 Core 2 Core 3 Core 4

Applications Tss Tss Tss Tss k = 2 k = 3 k = 4 k = 5 k = 6 GROUP

400.perlbench 83 ◦C 77 ◦C 74 ◦C 77 ◦C 1 3 2 5 3 A

401.bzip2 83 ◦C 77 ◦C 73 ◦C 77 ◦C 1 1 2 5 3 A

403.gcc 84 ◦C 76 ◦C 74 ◦C 77 ◦C 1 1 2 5 3 A

429.mcf 84 ◦C 80 ◦C 76 ◦C 78 ◦C 1 1 1 3 4 D

445.gobmk 82 ◦C 77 ◦C 73 ◦C 76 ◦C 1 1 2 1 6 C

456.hmmer 84 ◦C 77 ◦C 73 ◦C 77 ◦C 1 1 2 5 3 A

458.sjeng 83 ◦C 76 ◦C 72 ◦C 76 ◦C 1 3 2 1 6 C

462.libquantum 92 ◦C 84 ◦C 81 ◦C 84 ◦C 2 3 2 4 1 E

464.h264ref 83 ◦C 74 ◦C 72 ◦C 74 ◦C 1 3 4 2 5 B

473.astar 84 ◦C 79 ◦C 74 ◦C 77 ◦C 1 1 1 3 4 D

483.xalanchbmk 83 ◦C 74 ◦C 73 ◦C 76 ◦C 1 4 2 2 2 B

77

2. The region of the thermal behavior group

By the previous thermal equations [30], we obtain

T (t) = Tss − (Tss − Tinit) · e
−bt (6.2)

Using Equation (6.2) and our measurements, we can obtain Tss and b using the

following steps:

1. We first run each SPEC CPU 2006 benchmark suite on each core until the

temperature is not changed anymore to obtain the respective steady state tem-

perature.

2. Then, we calculate the thermal parameter b by accessing the real temperature

from the Digital Thermal Sensor (DTS) within a core using Equation (6.2).

Using Equation (6.2), we calculate thermal parameter, b, as shown in Equation

(6.3).

b = −
log Tss−T (t)

Tss−Tinit

t
, (6.3)

where Tss is the steady state temperature, Tinit is the initial temperature, and T (t)

is the current temperature at time t. As a result in Fig. 26(a), the thermal curve

is different according to which application works. Moreover, even though the same

application is running, the thermal pattern is also different according to which core

is used as in Fig. 26(b).

While we exploit the steady state temperature value, Tss, for clustering, we need

to find another metrics for the classification of a new application at runtime. Since the

Tss value is not available before reaching the steady state, we use only the measured

temperatures while applications running. In our observation, the thermal pattern can

78

time

Temperature

Tinit

Tss

steep

region
gentle region flat region

(a)

(b)

(c)

Fig. 27. Slopes for the thermal pattern at runtime

be divided by three regions as shown in Fig. 27. Each region has a different thermal

slope that can affect the temperature increasing rate at a given time.

As shown in Fig. 27, the slope (a), (b), and (c) are different according to the time

t. To calculate the slope for operating temperature, we can use a simple equations as

follows:

Si =
T (i+ ∆t)− T (i)

∆t
, (6.4)

where Si is the slope of the application’s thermal pattern for ith region, T (i) is

the previous temperature, and T (i + ∆t) is the current temperature. Also ∆t is a

predefined time interval. Using the current temperature and the slope value, we can

estimate an application’s current region at runtime. As mentioned above, applications

in the same thermal group have similar the thermal pattern, and the slope of regions in

the same group is also similar. Based on those slope values and the thermal behavior

groups, a temperature-aware scheduler estimates more accurate future temperature,

and provide more effective dynamic thermal management.

79

B. Temperature-Aware Scheduler for Multicore Systems

Since Linux standard scheduler is not aware of operating temperature for cores in

multicore environments, we propose a temperature-aware scheduler that exploits this

variability in the context of multicore systems. Although the proactive schemes have

been proposed in [5], the scheme in [5] fails to consider the difference of temperature

increasing pattern in different cores, because Tss and the thermal parameter b are

impractically assumed to be the same in each core within a single chip. Most impor-

tantly, in [5], the authors propose to migrate tasks from a potentially overheated core

to the future coolest core based on the temperature prediction results. However, we

believe that the target core of task migration should be determined by the core which

needs the longest time period to reach the predefined temperature threshold, because

temperature of the coolest can be increased faster than others due to the thermal

correlation effects and applications’ thermal behaviors. Each core’s and the applica-

tion’s thermal behavior is different by Tss and the thermal parameter b. Therefore,

the migrating task from a potential overheated core to the coolest core is unnecessary

and improper.

As shown in algorithm (3), we first profile Tss of applications offline, and then

classify them as thermal behavior groups using K -means clustering method. When-

ever an application starts to run, the slope of the application is calculated after

triggering a start threshold. According to an execution time, t, it is possible that

this application can be classified into which thermal behavior group. As a result, we

acquire Tss and thermal parameter b for the application from this thermal behavior

group at runtime. Based on these Tss and thermal parameter b, a temperature-aware

scheduler starts to predict each core’s future temperature and the time period before

reaching the desired temperature threshold. If the estimated time period is less than

80

Algorithm 3 Temperature-Aware Scheduler based on Grouping for Multicore Sys-

tems

1: Classification Tss into the thermal behavior group by K-means clustering

2: Tcur ← Access(DTST emperature)

3: slopet ← Calculate(Tcur, Tprev) at the time, t

4: Thermal Groupi ← Find(slopet, t) for applicationi

5: Tss ← Get(Thermal Groupi)

6: b ← Get(Thermal Groupi)

7: for Tcur ≥ Tgate do

8: for j = 1 to MAXcores do

9: Calculate timeperiodest in Current CORE

10: if time periodest ≤ 2 sec then

11: Target Core ← Longest time CORE(T [])

12: MIGRATION(processi → Target Core)

13: end if

14: end for

15: end for

2 seconds, it means the cores are going to be overheated in the near future, and the

task migration should be triggered. The migration target core is determined by which

other core needs the longest time to reach the desired temperature threshold. Then,

all the tasks on the potentially overheated core can be migrated to the target core to

balance the heat within multicore environments.

81

0 100 200 300 400 500 600 700 800
50

55

60

65

70

75

80

85

90

95

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

Linux Standard Scheduler

Core 1
Core 2
Core 3
Core 4

(a) Standard Scheduler

0 100 200 300 400 500 600 700 800
45

50

55

60

65

70

75

80

85

90

95

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

Thermal−Balancing Policy

Core 1
Core 2
Core 3
Core 4

(b) Thermal-Balancing Policy

0 100 200 300 400 500 600 700 800
50

55

60

65

70

75

80

85

90

95

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

PDTM

Core 1
Core 2
Core 3
Core 4

(c) Predictive DTM

0 100 200 300 400 500 600 700 800
50

55

60

65

70

75

80

85

90

95

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

Temperature−Aware Scheduler

Core 1
Core 2
Core 3
Core 4

(d) Temperature-Aware Scheduler

Fig. 28. DTM evaluations in 4-core system using test group 2 (bzip2 + libquantum)

82

Table VII. Experimental systems descriptions

System I System II

Cores 4 cores 8 cores

Processor Intel Quad-Core two Intel Quad-Core

Q6600 Xeon E5310

Memory 1 GB 1 GB

OS SUSE 10.3 RedHat Enterprise 4

C. Experimental Results and Analysis

In order to demonstrate the applicability of our temperature-aware scheduler for

various applications, we utilize several thermal behavior groups classified by K -means

clustering method. In this work, we used twelve applications in SPEC CPU 2006

benchmark suite for profiling. In our experiments, we choose bzip2 and libquantum in

SPEC CPU 2006 benchmark, vacation from STAMP benchmark [39]. We select bzip2

and libquantum because they are CPU-intensive. Also, vacation is a client/server

travel reservation system benchmark that is appropriate to present the demand of

thermal control in the server systems.

To compare with other schemes, we also rebuild the Predictive Dynamic Thermal

Management (PDTM) [5] and Thermal Balancing Policy (TBP) [6] in our systems.

All experiments in this work is under the ambient temperature control, and the speed

of cooling fan is also fixed.

83

1. 4-core system

To verify a temperature-aware scheduler for 4-core system, two applications run

simultaneously. As shown in Fig. 28, compared to Linux Standard Scheduler, a

temperature-aware scheduler reduces peak temperature up to 8 ◦C. However, PDTM

reduce the peak temperature by 2 ◦C, while TBP is increased by 2 ◦C. For the per-

formance overhead evaluation, the temperature-aware scheduler presents less than

12% performance overhead, and PDTM has 8% compared to the Linux Standard

Scheduler, while TBP incurs 35%. Since the temperature-aware scheduler finds the

longest core instead of the coolest core under thermal threshold, our scheme reduces

the number of migration while providing better thermal-balancing for cores compared

to other DTMs. Therefore, the temperature-aware scheduler based on thermal be-

havior grouping provides the better effectiveness in temperature control for multicore

systems.

2. 8-core system

In 8-core system, the temperature-aware scheduler outperforms PDTM and TBP in

both temperature control effectiveness and efficiency. The temperature-aware sched-

uler reduces peak temperature by 5 ◦C with 7.52% performance overhead compared

to Linux Standard Scheduler, while PDTM and TBP reduce peak temperature by 4

◦C and 13.2% performance overhead and 2 ◦C and 35% performance overhead, respec-

tively. Although TBP also decreases the peak temperature and presents smoother

thermal pattern compared to Linux Standard Scheduler, TBP causes impractically

huge performance overhead. Moreover, the exchanged threads cannot effectively re-

duce core 1’s temperature. Since PDTM is not aware of the different thermal effects

contributed by running applications, PDTM cannot accurately predict future tem-

84

perature and react in time. Therefore, PDTM fails to control the temperature under

the desired level.

D. Conclusions

In this work, we propose a temperature-aware scheduler based on thermal behavior

grouping in multicore systems. To classify applications according to the thermal

behavior, we use Tss value as a classification feature in K -means clustering method.

We observe that among thermal parameter b and Tss, Tss is more proper to explain

the application’s thermal pattern. The proposed temperature-aware scheduler finds

a core which takes the longest time to reach a temperature threshold instead of the

coolest core for process migrations. To verify the temperature-aware scheduler, we

implement it on two multicore systems such as a 4-core (Intel Quad-Core Q6600)

and 8-core (two Quad-Core Intel Xeon E5310 processors) systems. We demonstrate

that the temperature-aware scheduler is able to reduce the overall temperature and

provide the thermal fairness among cores. Also, the temperature-aware scheduler

can provide more accurate prediction and more efficient temperature management

by using the thermal behavior grouping and the method to find the longest core

with lower performance overhead compared to other schemes such as Linux Standard

Scheduler, Thermal-Balancing Policy, and Predictive DTM.

85

CHAPTER VII

A THERMAL MODEL BASED ON WORKLOAD CHARACTERISTICS USING

CDF

In this work, we propose a Proactive Correlation-Aware Thermal Management (Pro-

CATM) that incorporates three main components: a representative workload estima-

tion, a future temperature estimation model and a thermal-aware thread scheduler.

The representative workload estimation utilizes the workload probability distribution

to measure each running thread-level workload behavior locally and core-level work-

load behavior within each core globally. The representative workload is estimated

using the cumulative distribution function (cdf) at runtime. Thus, the thermal im-

pacts contributed by various threads are distinguished by the estimated representative

workload. We further model the thermal correlation by profiling the thermal impacts

from neighboring cores under the specific workload. Once the thermal behavior of

each running thread is obtained and the thermal correlation is modeled for the neigh-

bor cores, the future temperature estimation model can then estimate each core’s

future temperature by taking both the thermal behaviors and the thermal correlation

into account. Therefore, based on the estimated future temperatures, the thermal-

aware thread scheduler moves the running thread from the possible overheated core

to the future coolest core (migration), or reduce the processor resources (priority

scheduling) while migration is not possible within multicore systems to avoid thermal

emergency and provide thermal fairness with negligible performance overhead.

A. A Representative Workload Estimation Based on CDF

In this section, we introduce a statistical model to estimate workload. To capture

the dynamic workload change, first we define workload with an execution time infor-

86

mation for a given time inverval, then we model a representative workload through

a cumulative distribution function (cdf) and standard deviation based on workload

history information.

1. The definition of workload

An application consists of a sequence of instructions to be executed. Execution time

(tapp) of the application can be represented in terms of Cycles Per Instruction (CPI),

the number of instructions being executed, and the CPU frequency as follows: [40]:

tapp =
IC · CPI

fc

, (7.1)

where IC is the dynamic instruction count, CPI is the average number of cycles per

instruction, and fc is the operating frequency. Therefore, we can define workload

(Wapp) by the execution time of the application, tapp. Although Linux kernel provides

CPU utilization, we exploit Performance Monitoring Counters (PMC) [34] to measure

tapp more accurately in our experiments.

2. The statistical representative to estimate workload

Instead of using simple average of Wapp, we attempt to use a representative workload

that can capture the system dynamics at runtime. In this study, we propose to derive

the representative workload from a cumulative distribution function (cdf) of Wapp

and its standard deviation. We denote the cdf as F (x) for a random variable X for

Wapp according to a probability density function (pdf), f(x), and probability p using

Equation (7.2)

P (Wmin ≤ X ≤Wmax) =

W max
∫

W min

F (x)dx, (7.2)

87

where X is in the interval [Wmin,Wmax] and F (x) = P (X ≤ x). And Wmin implies

that there is no workload in the system and Wmax implies 100% workload, respec-

tively. To satisfy a various computational requirements, the representative should be

decided by the probability requirements for application workload, Wapp, in a given

time period. Specifically, let ρ be the probability required for application workload

in a given time period. In our observations, even dynamic workload of applications

can be defined as the representative workload by a probability ρ as follow:

P [X ≤ Wapp] ≥ ρ. (7.3)

As shown in Fig. 29, we can exploit the representative workload using cdf when

playing a multimedia application. Moreover, in order to distinguish the threads with

stable workload behaviors from those with highly unstable workload behaviors, the

standard deviation, denoted as σ, is considered. In this study, we classify the threads

with σ less than 7.0 as the threads with stable workload behaviors in our systems.

Therefore, we use ρ = 0.5 to represent these stable threads’ workload and ρ = 0.7

to represent those threads with highly unstable workload behaviors for the thermal

safety in the cdf.

ρ =











0.5 if σ < 7.0, stable workload,

0.7 if σ ≥ 7.0, dynamic workload

. (7.4)

Here, we consider the thread-level workload estimation as local, while core-level

workload estimation as global. For global workload estimation, the overall workload in

a single core is also monitored at runtime. The same as the thread-level, the concepts

of σ and ρ are also adopted in the core-level. Thus, the representative workload

for each core will be used to estimate the future temperature as explained in the

next section, and the different thermal effects contributed by different threads could

88

0 20 40 60 80 100 120 140 160
30

40

50

60

70

80

90

time (sec)

w
or

kl
oa

d
(%

)
Dynamic Workload Behavior

(a) Dynamic workload behaviors

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

workload (%)

pr
ob

ab
ili

ty

Cumulated Distribution Function (cdf)

(b) The representative workload calcu-
lated by cdf

Fig. 29. The representative workload is 58% when the probability (ρ) is 0.7 in dynamic

workload behavior

also be distinguished by the representative workloads if there are multiple threads

running in a single core. Moreover, to effectively control the temperature with less

performance overhead, we set 30% as the workload threshold. That implies that the

ProCATM would only control those threads with workloads higher than 30%, because

the threads with workloads under 30% only affect the temperature at most 2 ◦C in

our systems.

3. Thermal parameters in CMP systems

In order to provide a thermal model of a processor, we should consider the relationship

between temperature and workload of applications on the processor. By modeling the

power dissipation, more precise models can be derived from a simple model [30]. We

analyze Fourier’s Law of heat conduction where the formula states that the rate of

heating or cooling is proportional to the difference in temperature between the object

and the environment [30]. We define T (t) and P (t) as temperature and power at time

89

t, respectively. Then we can use the Fourier’s Law as the following [41, 29]:

T ′(t) = P (t)− bT (t), (7.5)

where b is a positive constant representing the power dissipation rate. Now, we define

f(t) as processor frequency at time t. Since the power consumption of a processor is an

increasing convex function of the frequency, power consumption can be represented by

frequency [41]. Most studies assume that power and processor frequency are relevant

to the followings:

P (t) = a(fα(t)), (7.6)

for some constant a and α > 1. With an assumption that T0 = 0 (the initial temper-

ature is the ambient one), the solution of Equation (7.5) using Equation (7.6) can be

presented as follows:

T (t) =

∫ t

t0

P (τ)e−b(t−τ)dτ + T0e
−b(t−t0), (7.7)

T (t) =

∫ t

t0

a(frα(τ)e−b(t−τ))dτ + T0e
−b(t−t0). (7.8)

Then, for the variation of temperature, we deal with two cases of the variation at any

point t [30]. First, the case that temperature is non-decreasing, by Equation (7.5)

and Equation (7.6), can be derived like the following:

f(t) ≥ (
b(T (t))

a
)

1
α . (7.9)

Then, the case that temperature is non-increasing can be expressed like the follow.

fr(t) ≤ (
b(T (t))

a
)

1
α . (7.10)

90

Therefore, we can observe that scaling the frequency to change temperature can be

performed for the desired direction. Finally, We can derive the following Equation if

we maintain the frequency constant at f(t) = fc during the time interval at [t0, t].

T (t) =
a(fα

c)

b
+ (T (t0)−

a(fα
c)

b
)e−b(t−t0), (7.11)

dT

dt
= −b(T (t)−

a(fα
c)

b
). (7.12)

where fc is the current frequency on the processor. In order to determine thermal

parameters, a and b, we assume α = 3.0 [41], and then we can obtain the values

for a and b. Although the values of a and b are processor-specific, b is more relative

to application’s workload at runtime. Because b can be affected by executed cycles

for applications. When we run an application infinitely with the maximum CPU

utilization and observe the heating and cooling curves, thermal parameters can be

determined by using Equation (7.11). After a sufficient time of execution in the

maximum CPU utilization, the infinite steady-state temperature value T (∞) = Tss

can be observed. By setting T (t) = T and a(fα
c)

b
= Tss, Equation (7.11) is transformed

as follows:

T = Tss + (Tinit − Tss)e
−bt, (7.13)

dT

dt
= −b(T − Tss), (7.14)

where Tinit is the initial temperature.

Using Tss and sampling the temperature every millisecond, from Equation (7.14),

the rate of increase, dT/dt, is plotted against (T − Tss) at each point. The resulting

set of points is fitted to a straight line using least mean square error fitting. From the

Equation (7.14), the slope of this straight line represents the value of b. In order to

measure a and b more accurately, we should know the meaning of those values. The

91

change in temperature is based on individual component’s thermal resistance and

capacitance in specific processors [20]. To obtain current and future temperatures,

we should take account for thermal resistance Rth and thermal capacitance Cth, while

changing in temperature from Told to Tnew over a time interval ∆t like Equation (7.15).

Tnew = P ·Rth + (Told − P · Rth)e
−∆t

Rth·Cth , (7.15)

where Rth is thermal resistance and Cth is thermal capacitance. With Equation (7.15)

and (7.11), we can derive the thermal parameters a and b as follows:

a =
1

Cth

, b =
1

Rth · Cth

(7.16)

By Equation (7.16), the thermal parameter a is represented as thermal capacitance

Cth. Thermal capacitance is defined as the amount of thermal energy required to

raise temperature of one mole of material by 1 Kelvin and can be measured at con-

stant volume or at constant pressure [29]. Therefore, this value is practically constant

in the same material. In contrast, the thermal parameter b is related to an appli-

cation’s workload. This is because the thermal resistance is in inverse proportional

to the power consumption. Hence, characterizing the workload behavior is critical

for distinguishing the different threads’ thermal effects. As shown in Fig. 30, the

workload dominates the temperature change in a core. Therefore, it is important to

characterize an application’s workload in thermal control.

B. Thermal Mode Based on Workload

In this section, we propose a proper thermal model for CMPs to estimate future

temperature considering thermal correlation among neighboring cores.

92

0 50 100 150
51

51.5

52

52.5

53

53.5

54

54.5

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

Thermal effect by different workloads

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Fig. 30. Thermal effects by different workloads

Table VIII. Each core’s respective Tss and thermal parameter b for a generated exam-

ple process with 100% workload running in the Intel Quad Core Q6600

system

Core 1 Core 2 Core 3 Core 4

b 0.0199 0.0175 0.0169 0.0181

Tss 78 ◦C 72 ◦C 68 ◦C 71 ◦C

Table IX. The thermal parameter b and Tss according to workload in 4-core system

Core 1 Core 2 Core 3 Core 4

Workload (%) b Tss b Tss b Tss b Tss

20% 0.0139 59 ◦C 0.0092 58 ◦C 0.0053 52 ◦C 0.0065 57 ◦C

40% 0.015 64 ◦C 0.0058 62 ◦C 0.0085 57 ◦C 0.0065 58 ◦C

60% 0.0187 68 ◦C 0.0092 65 ◦C 0.0078 61 ◦C 0.0113 63 ◦C

80% 0.0179 73 ◦C 0.0164 70 ◦C 0.0165 67 ◦C 0.0138 68 ◦C

100% 0.0199 78 ◦C 0.0175 72 ◦C 0.0169 68 ◦C 0.0181 71 ◦C

93

1. Prior thermal model of a single core

The heat transfer equations are introduced to model the steady state temperature

of systems with heat sources in [37]. With those heat transfer equations, Wang and

Bettati present that the rate of temperature change is proportional to the differ-

ence between the current temperature and the steady state in [30]. Let Tss be the

steady state temperature of an application. Then, we denote T (t) as the temperature

at time t and Tinit as the initial temperature when an application starts execution

(T (0)=Tinit). Thus,

dT

dt
= b× (Tss − T). (7.17)

where b is a thermal parameter. Solving Equation (7.17) with T (0) = Tinit and T (∞)

= Tss, we can obtain

T (t) = Tss − (Tss − Tinit)× e
−bt (7.18)

Using Equation (7.18) and our measurements, we can obtain Tss and b using following

steps:

1. We first run an application with 100% workload for a long time, and then

measure the steady sate temperature (Tss) when temperature is not changed

any more.

2. We calculate the thermal parameter b by measure temperature through Digital

Thermal Sensor (DTS) within the core using Equation (7.18).

As the result, we obtain each core’s respective value b and Tss for the generated

process in Table VIII by executing a generated process with 100% workload in each

core individually. Therefore, once the thermal parameter b and the steady state

temperature are obtained, we can estimate the core’s future temperature (T (t)) after

time t by Equation (7.18). We can notice that each core’s thermal parameter b and

94

Fig. 31. The thermal range (∆T) using Tw
ss and Ttc to calculate T ′

ss for core 1

Tss are different even though the cores are within the same package as shown in Table

VIII. Moreover, we have observed that Tss and thermal parameter b are different

according to the workload in each core, as well as thermal correlation effect among

neighboring cores in the CMP systems. Therefore, we are motivated to improve

the prior thermal model by including the workload behavior and thermal correlation

concepts.

2. The thermal impacts contributed by different workloads

In the real world applications, the workload is fluctuant, and each core’s Tss and b

are changed by the variance of workload at runtime. Therefore, by running processes

with several different workloads on each core, we observe the relationship between

workload and thermal parameter b, as well as Tss in Table IX.

3. New T ′
ss according to thermal correlation

We classify new T ′
ss into two parts: Tw

ss (according to its own workload), and Ttc (a

thermal correlation affected by neighboring cores’ temperature). Thus, we calculate

95

new T ′
ss according to own workload by the following Equation (7.19).

T ′
ss = Tw

ss + Ttc. (7.19)

First, we can obtain Tw
ss from Table IX. Since neighboring cores’ temperature is

relative to their own workloads, Ttc should also consider each cores’ workloads as well

as their temperature. As shown in Fig. 31, the thermal range of core 1 is determined

by the thermal correlation effect from core 2, core 3, and core 4 in our 4-core system.

In order to calculate the T ′
ss for core 1, we develop Equation (7.20) to obtain Ttc to

model the thermal correlation impact from other cores.

Ttc =
n

∑

i=2

∆T ×Wi, (7.20)

where ∆T is the thermal range between core 1’s temperature with and without ther-

mal correlation from neighboring cores. Wi is each core’s representative workload

estimated. For example, there are 4 threads with different workloads running on each

core individually in the 4-core system (Core 1 : 100%, Core 2 : 50%, Core 3 : 30%,

Core 4 : 20%). We first obtain Tw
ss as 78 ◦C and b as 0.0199 from Table IX. Then,

we calculate the thermal correlation effect from each neighboring core with 100%

workload, as shown in Table X.

Therefore, by Equation (7.19) and (7.20), the T ′
ss can be obtained by the follow-

ing:

96

Table X. Ttc and b according to thermal correlation profiled for core 1

Ttc b

Only Core1 (100%) 78 ◦C 0.0199

Core1 (100%) + Core2 (50%) 85 ◦C 0.0246

Core1 (100%) + Core3 (30%) 84 ◦C 0.0195

Core1 (100%) + Core4 (20%) 83 ◦C 0.0176

T ′
ss = 78 + (85− 78)× 50%

+ (84− 78)× 30%

+ (83− 78)× 20%

= 84.3 (◦ C)

In above example, the calculated T ′
ss (84.3 ◦C) is higher than the original Tss

(78 ◦C). The difference between these values represents thermal correlation effect, Ttc

(6.3 ◦C), among neighboring cores.

4. New b′ according to thermal correlation

Also, in order to advance the new b′ by considering the thermal correlation effect, we

define b′ as b′ = bw + btc and develop the following equations (7.21) and (7.22):

btc =

n
∑

i=2

∆b×Wi (7.21)

b′ = bw + (btc ×
(T ′

ss − Tcur)

(T ′
ss − Tinit)

), (7.22)

97

where bw is determined according to own workload and btc is thermal parameter

affected by neighboring cores. And Tcur is current temperature and Tinit is initial

temperature. In Equation (7.21), ∆b is the difference between core 1’s thermal pa-

rameter b with and without thermal correlation by neighboring cores. In contrast

with T ′
ss, thermal parameter b′ is changeable according to current temperature (Tcur).

Therefore, even if the thermal parameter b′ can be changed by current temperature

and thermal correlation, b′ determines only temperature increase rate.

5. Future temperature estimation model

In this section, we propose a new thermal model to estimate future temperature for

each application in CMPs. We focus on obtaining both new T ′
ss and new thermal

parameter b′ according to the estimated workload and profiled thermal correlation

impacts.

The original thermal models for estimating the future temperature at time t is

improved from Equation (7.18) to the following Equation (7.23) for a specific core

with workload estimation and thermal correlation by neighboring cores.

T ′(t) = T ′
ss − (T ′

ss − Tinit)× e
−b′t

T ′(t) = Tw
ss + Ttc − (Tw

ss + Ttc − Tinit)× e
−(bw

tc+(btc×
(T ′

ss−Tcur)

(T ′
ss−Tinit)

))×t
(7.23)

In order to validate our new thermal model, we conduct several experiments

running some applications with different workload. The estimated future tempera-

ture for core 1 through our new thermal models are compared with the monitored

temperature by the Digital Thermal Sensor in Fig. 32. As shown in Fig. 32, the

estimated future temperature by the improved thermal models is very accurate, espe-

cially within the first 200 seconds, which is much longer than enough to react against

98

to the increasing temperature.

Moreover, in order to demonstrate that the improved thermal models can be

effective even under the fluctuant workload, we also evaluate our thermal models by

executing multimedia data, which generates two individual threads. We first calcu-

late the representative workload through the cumulative distribution function (cdf),

and then estimate temperature by considering both the representative workload and

the thermal correlation in the equations above. The result of workload estimation

by cdf is shown in Fig. 33(a), and the estimated temperatures compared with the

monitored real temperature is shown in Fig. 33(b). Thus, the results also demon-

strate the accuracy of our improved thermal models under fluctuant workloads con-

sidering both workload and thermal correlation from neighboring cores. Also, since

thermal control based on current temperature may overheat by physical nature of

temperature.as shown in Fig. 34(b). In order to overcome this problem, we propose

thermal control based on future temperature as shown in Fig. 34(b). Therefore, the

proposed Future Temperature Estimation Model estimates each core’s future temper-

ature (Test) for its individual steady state temperature according to the application

and core representative workloads (Wapp rep,Wcore rep) estimated by Representative

Workload Estimation (RWE). The estimated future temperature is validated against

the measured temperature for actual processors with Digital Thermal Sensors (DTS),

with an average error of 2.4%. Eventually, the time duration (∆t) before the tem-

perature reaches the migration threshold can be calculated and passed to TATS for

thread control along with (Test). (The detailed explanations will be brought in the

following sections.) Therefore, instead of blindly migrating all the running threads

or rescheduling all their priorities, the proposed ProCATM is able to adaptively cope

the threads according to their different thermal effects, based on their representative

workloads and neighboring thermal correlation effects. Consequently, ProCATM can

99

0 100 200 300 400 500
50

55

60

65

70

75

80

85

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

100% workload (Core 1) + 50% workload (Core 2)

measured temperature
estimation temperature

(a) 100% (Core 1) + 50% (Core 2)

0 100 200 300 400 500
50

55

60

65

70

75

80

85

time (sec)
te

m
pe

ra
tu

re
 (

C
el

si
us

)

30% workload (Core 1) + 70% workload (Core 3)

measured temperature
estimation temperature

(b) 30% (Core 1) + 70% (Core 3)

0 100 200 300 400 500
55

60

65

70

75

80

85

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

40% (Core 1) + 60% (Core 2) + 70% (Core 3) + 50% (Core 4)

measured temperature
estimation temperature

(c) variable workloads on all cores

0 100 200 300 400 500
55

60

65

70

75

80

85

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

80% (Core 1) + 20% (Core 2) + 50% (Core 3) + 90% (Core 4)

measured temperature
estimation temperature

(d) variable workloads on all cores

Fig. 32. Validation of improved thermal model with workload estimation and thermal

correlation in static application. (Only core 1’s temperature is drawn)

100

0 50 100 150 200 250 300
30

40

50

60

70

80

90

time (sec)

w
or

kl
oa

d
(%

)
Workload estimation by cdf

mesured workload
estimated workload by cdf

(a) Workload

0 50 100 150 200 250 300
55

60

65

70

75

80

85

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

Estimated temperature by workload and thermal correlation

measured temperature
estimated temperature

(b) Temperature

Fig. 33. Validation of new thermal model with fluctuant workload: whiling playing

the Transformer movie, the Mplayer software would generate two threads.

One is the X windows daemon with stable workload, and the other one is for

decoding with fluctuant workload as shown above.

control the temperature at a desired level with negligible performance overhead.

C. A Proactive Correlation-aware Thermal Management

In this section, we introduce the system design and architecture of the proposed

ProCATM. Moreover, we present how Thermal-Aware Thread Scheduler (TATS) uti-

lizes the workload behavior and thermal correlation information to achieve thermal

balancing and lower the peak temperature.

1. System overview

Basically, a Proactive Correlation-Aware Thermal Management (ProCATM) con-

sists of three major components: Representative Workload Estimation (RWE), Fu-

ture Temperature Estimation Model (FTEM) and Thermal-Aware Thread Scheduler

101

(a) Based on current temperature

(b) Based on future temperature

Fig. 34. The difference of thermal control based on current temperature and future

temperature

102

Fig. 35. ProCATM system architecture

(TATS). As shown in Fig. 35, we depict the system architecture on a 4-core (In-

tel Quad Core Q6600 processor) machine. We developed a specific device driver for

Linux to access Digital Thermal Sensor (DTS) for monitoring each core’s tempera-

ture, and temperature information would be used in the FTEM. As mentioned before,

RWE is used to exploit the representative workload in both thread and core levels

to present each application’s workload behavior, while FTEM utilizes the representa-

tive workload and thermal correlation information to estimate the future temperature

(Test) and the time duration (∆t) before temperature reaches the migration thresh-

old. Hence, the TATS is able to react against to the thermal emergency appropriately

using the estimated information. In the following section, we discuss about the TATS

in details.

2. Thermal-aware thread scheduler (TATS)

To guarantee the thermal safety, Thermal-Aware Thread Scheduler (TATS) con-

sists of two schedulers: the priority scheduler and migration scheduler. Basically,

103

when current temperature reaches the trigger threshold, the RWE starts to moni-

tor the application’s workload behavior and calculate the representative workloads

through cdf for the running thread and core. Hence, the core representative work-

load (Wcore rep) and application representative workload (Wapp rep) can be utilized in

the FTEM. In FTEM, the time duration (∆t) before reaching migration threshold

can be estimated based on the profiled T ′
ss and b′ for different workloads. According

to the ∆t, TATS migrates the running threads from the possible overheated core to

another core. Here, since a thread under 30% workload affects the core tempera-

ture at most 2 ◦C in our observations, TATS deals with the threads with workload

higher than 30% to reduce the performance overhead. In TATS, migration can be

adopted in most cases, unless all the cores’ temperature reaches the priority schedul-

ing threshold. In this case, TATS should utilize the priority scheduler to adjust the

nice value in the Linux process scheduler to reduce the thread’s priority and increase

the cooling time, because migration cannot effectively reduce the core temperature

if all the core temperatures are near the maximum allowable temperature. Also, we

ignore the difference of performance overhead caused by migrating threads with dif-

ferent memory usages, because we observe that the migration performance overhead

is dominated by the thread suspending and restarting processes in the Linux kernel,

rather than the different memory usage. For example, by comparing the libquantum

benchmark and a generated transaction thread, the difference of migration overhead

is just 0.0346 millisecond, although both of them maintain almost 100% workload,

but the generated transaction thread has about 51% memory usage in Linux kernel,

while the libquantum has only around 3% memory usage.

Therefore, by considering the thermal effect of different workloads and the ther-

mal correlation, TATS is able to effectively reduce the peak temperature of each core

and achieve thermal balancing with ignorable performance overhead.

104

0 100 200 300 400 500 600 700 800 900
50

55

60

65

70

75

80

85

90

95

100

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

TEST GROUP 2 (STANDARD)

Core 1
Core 2
Core 3
Core 4

(a) Standard Scheduler

0 100 200 300 400 500 600 700 800 900
50

55

60

65

70

75

80

85

90

95

100

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

TEST GROUP 2 (TBP)

Core 1
Core 2
Core 3
Core 4

(b) Thermal-Balancing Policy

0 100 200 300 400 500 600 700 800 900
55

60

65

70

75

80

85

90

95

100

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

TEST GROUP 2 (PDTM)

Core 1
Core 2
Core 3
Core 4

(c) Predictive DTM

0 100 200 300 400 500 600 700 800 900
50

55

60

65

70

75

80

85

90

95

100

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

TEST GROUP 2 (TCDTM)

Core 1
Core 2
Core 3
Core 4

(d) ProCATM

Fig. 36. DTM evaluation in Intel Quad Core Q6600 system for stable workload behav-

iors: libquantum + vacation

D. Experimental Results and Analysis

In this section, the detailed experimental environment and results would be brought,

along with the analysis of the efficiency and effectiveness of the proposed ProCATM.

To compare the effectiveness and efficiency of the proposed ProCATM, we also

rebuild the Predictive Dynamic Thermal Management (PDTM) [5] and Thermal Bal-

ancing Policy (TBP) [6] in our systems. All the experiments in this work are under

ambient temperature control, and the speed of cooling fan is also fixed.

As shown in Fig. 36, all the DTMs have lower peak temperature compared to

105

the Linux Standard Scheduler in 4-core system. Compared to the Linux Standard

Scheduler, both ProCATM and PDTM reduce the peak temperature by 3.13%, while

TBP is reduced by 2.08%. For the performance overhead evaluation, the ProCATM

and PDTM present less than 0.46% performance overhead compared to the Linux

Standard Scheduler, while TBP incurs 6.64%. This is also the reason why the tem-

perature in TBP does not decrease obviously after executing 600 seconds. Since there

are only two threads running in the system, the thermal correlation effect is minor.

Moreover, both of the treads maintain 100% workload stably, and the difference of

thermal behaviors can be ignored. Therefore, PDTM presents the similar effectiveness

in thermal control compared to ProCATM.

As shown in Fig. 37, we first notice that ProCATM presents a smoother temper-

ature pattern, and provides better thermal fairness by having narrower temperature

gaps among all cores in multimedia applications. ProCATM reduces the peak temper-

ature by 1.35% compared to Linux Standard Scheduler, while both TBP and PDTM

increase the peak temperature by 1.35%. Since there is only one non CPU-intensive

multimedia application executed simultaneously, the temperature decrease in the pro-

posed ProCATM is minor. In PDTM, the temperature pattern seems to be similar

to the pattern of the Linux Standard Scheduler; however, the temperature of core 3

and core 4 in PDTM is higher than in Linux Standard Scheduler, because PDTM

tends to migrate the threads into core 3 and core 4. Although PDTM rarely migrates

the threads into core 1, some system threads can be assigned to core 1. Since the

Tss and thermal value b are higher, core 1 is more sensitive in temperature changing.

Therefore, the system threads still keep core 1 in higher temperature, although the

multimedia threads are running on core 3 and core 4. On the contrary, the core 1’s

temperature in TBP is even higher than in Standard Scheduler. Besides the higher

Tss and b of core 1, TBP trigger threads exchange while the thresholds are reached.

106

0 50 100 150 200 250 300
50

55

60

65

70

75

80

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

TEST GROUP 4 (STANDARD)

Core 1
Core 2
Core 3
Core 4

(a) Standard Scheduler

0 50 100 150 200 250 300
50

55

60

65

70

75

80

time (sec)
te

m
pe

ra
tu

re
 (

C
el

si
us

)

TEST GROUP 4 (TBP)

Core 1
Core 2
Core 3
Core 4

(b) Thermal-Balancing Policy

0 50 100 150 200 250 300
50

55

60

65

70

75

80

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

TEST GROUP 4 (PDTM)

Core 1
Core 2
Core 3
Core 4

(c) Predictive DTM

0 50 100 150 200 250 300
50

55

60

65

70

75

80

time (sec)

te
m

pe
ra

tu
re

 (
C

el
si

us
)

TEST GROUP 4 (TCDTM)

Core 1
Core 2
Core 3
Core 4

(d) ProCATM

Fig. 37. DTM evaluation in Intel Quad Core Q6600 for dynamic workload behaviors:

Multimedia

107

Therefore, even though the thread in core 1 are exchanged out to avoid increasing core

1’s temperature, the thread exchanged into core 1 still can potentially keep increasing

the core 1’s temperature. Therefore, the thermal safety cannot be guaranteed in TBP.

E. Conclusions

In this work, to avoid thermal emergencies and provide thermal fairness in CMP

systems, we propose and implement an adaptive and scalable run-time thermal man-

agement scheme, called a Proactive Correlation-Aware Thermal Management (Pro-

CATM), on the real-world CMP products. Since the significant variations in the

thermal behaviors among different applications and the severe thermal correlation

effect among multicores are ignored by all the prior DTM works. We suggest to char-

acterize each application’s distinct thermal behavior by applying a cumulative distri-

bution function into the application workload and a proper thermal model for CMP

systems to analyze the thermal correlation effect by profiling the thermal impacts

from neighboring cores under the specific workload. Thus, the future temperature

of each core can be more accurately estimated for adopting an appropriate reaction

against the thermal emergency through the proposed ProCATM. To demonstrate the

scalability and effectiveness, we implement and evaluate the proposed ProCATM in

Intel Quad Core Q6600 processor system running grouped multimedia application

and benchmarks. According to the experimental results, ProCATM reduces the peak

temperature by up to 9.09% in our 4-core system with only 2.28% performance over-

head compared to the Linux standard scheduler.

108

Algorithm 4 SWETM algorithm

1: while Tcurr < Tthreshold do

2: Calculate CDF (Wapp) {according to the S.D.}

3: Calculate CDF (Wcore) {according to the S.D.}

4: T ′
ss ← CDF (Wcore)

5: ∆t ← Calculate WhenOverheated(Tlimit, T
′
ss)

6: for i = 1 to App Num (running within that core) do

7: if ∆t ≤ Response T ime and Wappi >Workload Threshold then

8: for j = 1 to Core Num do

9: Wfj ← Wappi + Wcorej

10: T ′
ssj ← CDF (Wfj)

11: Tfj ← FTEM (T ′
ssj,∆t)

12: if (Tfj - Tlimit) < 1 then

13: Action ← PRIOTIRY SCHEDULING

14: else

15: Action ← MIGRATION

16: end if

17: end for

18: T igger Control(Action)

19: end if

20: end for

21: end while

109

CHAPTER VIII

A THERMAL MODEL FOR CMPS CAPTURING WORKLOAD

CHARACTERISTICS AND NEIGHBORING CORE EFFECTS

Skadron et al. first proposed an architectural thermal model for microprocessors,

HotSpot [16], which constructs a multi-layer lumped thermal RC network to model

the heat dissipation path from the silicon die through the cooling package to the am-

bient. In HotSpot, the silicon die is partitioned into functional blocks based on the

floorplan of the microprocessor, with a thermal RC network connecting the blocks.

However, due to the complexity of component block level thermal models and insuf-

ficient physical information extracted from floorplans in modern processors, it is not

feasible to design a thermal model according to the hottest chip block. Therefore, we

need a high-level thermal model that capture the thermal effect incurred by applica-

tion behavior and can be managed by operating systems according to applications’

runtime behavior.

A. The Lumped Thermal RC Model

In this section, we explain a lumped thermal RC model to capture thermal character-

istics of processors as well as external cooling effects such as fans or cooling packages.

We assume that the speed of external fans is static to be used as a constant in a

thermal model. We apply Fourier’s Law of heat conduction, which states that the

cooling rate is proportional to the difference in temperature between the object and

the environment. Hence, the heating rate is proportional to the difference between the

current temperature and the steady state temperature reachable by the input power

that is the heat source for processors. We define T (t) and P (t) to be the temperature

and the power consumption at time t, respectively. Then, we formulate the Fourier’s

110

Law as the follows [41, 28]:

T ′(t) =
P (t)

C
− b · T (t), (8.1)

where b is a positive constant that represents the power dissipation rate, which is the

inverse of time, τ = R · C. The parameters R and C are the thermal resistance and

capacitance, respectively, and represent thermal characteristics of the chip. The heat

transfer equations are introduced to model the steady state temperature of systems

with heat sources in [37]. With those heat transfer equations, Wang and Bettati

present that the rate of temperature change is proportional to the difference between

the current temperature and the steady state in [30]. Let Tss be the steady state

temperature of an application. Then, we denote T (t) as the temperature at time t

and Tinit as the initial temperature when an application starts execution (T (0)=Tinit).

Thus,

dT

dt
= b× (Tss − T). (8.2)

where b is a thermal parameter. Solving Equation (8.2) with T (0) = Tinit and T (∞)

= Tss, we can obtain

T (t) = Tss − (Tss − Tinit)× e
−b·t (8.3)

Fig. 38 shows the thermal RC circuit model for a single core in a CMP architec-

ture. We assume that the initial temperature is Tinit, i.e., T (t0) = Tinit. The core’s

temperature at time t (Tc(t)) is calculated using a lumped thermal RC model [16, 42]

and expressed as follows.

Tc(t) = Rc · Pc · (1− e
−bc·t) +Rp · Pp · (1− e

−bp·t) + Tinit,c (8.4)

where Tinit,c and Tinit,p are the initial temperatures of the core and the package,

respectively, Rc and Rp are the thermal resistances of the core and the package,

111

Fig. 38. An extended lumped thermal RC circuit model for a single core in a CMP

architecture

respectively, and bc and bp are the thermal parameters of the core and the package,

respectively. Also, Pc and Pp are the average power consumption of the core and the

package at time interval t, respectively. The above approximation is derived from the

fact that the thermal time constant of the core, τc = Rc · Cc, is much smaller than

that of the package, τp = Rp · Cp [42]. The thermal parameter values (Rc, Rp, bc, bp)

in Equation (8.4) are determined from the temperature curve of a SPEC CPU 2006

benchmark.

We obtain the thermal parameters using nonlinear regression analysis provided

by the SPSS statistics tool.

B. Workload-aware Thermal Model

Although the temperature of a core can be calculated by a lumped thermal RC

model as shown in Equation (8.4), this model cannot provide the temperature varia-

tions caused by running applications. The temperature variations can be affected by

individual functional blocks as mentioned in Hotspot [16], but it is difficult to obtain

detail information of the cores at runtime. Therefore, we need to find new metrics

to explain the thermal effects by workload in running applications. We propose a

112

pearl bzip2 gcc mcf gobmk hmmer sjeng libq. h264ref astar xalanch
60

65

70

75

80

85

90

95

100

SPEC CPU 2006 benchmarks

T
em

pe
ra

tu
re

 (
C

el
si

us
)

core 1
core 2
core 2
core 4

Fig. 39. Tss of SPEC CPU 2006 benchmarks

workload-aware thermal model capturing more accurate workload characteristics of

applications based on the architectural information. First, we approximate the steady

state temperature (Tss) using only thermal parameters of the cores. And then, a

workload estimation factor that describes workload characteristics is calculated from

a regression analysis using the variance of Tss in running eleven SPEC CPU 2006

benchmarks. Using the workload estimation factor, we estimate temperature affected

by workload characteristics of applications. In Equation (8.4), the steady state tem-

perature (Tss) can be represented when t becomes ∞.

Tc(∞) = Rc · Pc +Rp · Pp.

Tss ≈ Rc · Pc. (8.5)

Since Rp ·Pp for the package is much smaller than Rc ·Pc for the core and Rp and Pp

are dependent on processor specifications, we approximate Tss considering only the

effect of cores, as shown in Equation (8.5).

We first run SPEC CPU 2006 benchmarks on each core until the temperature

does not change anymore to obtain the respective steady state temperature. As shown

in Fig. 39, Tss of each SPEC CPU 2006 benchmark is different from each other,

113

although their CPU utilizations are almost 100%. To represent various workload

characteristics that affect Tss, we add a workload estimation factor (wx) describing

workload characteristics for an application x as shown in Equation (8.6).

Tss(x) = wx · Rc · Pc, (8.6)

where Tss(x) is the steady state temperature of an application x. To estimate wx,

we use the architectural information provided by Performance Monitoring Counters

(PMC) which are a set of special-purpose registers built in modern microprocessors

to store the counts of hardware-related activities within computer systems [19]. We

use two counters in PMC; the number of accumulated cycles of functional blocks

monitoring active clock cycles and the number of completed memory transactions

monitoring memory transactions at runtime. ”Unhalted CPU Cycle” counter is used

as an indicator for a CPU-intensive work and ”Bus Transactions Memory” counter

as an indicator for a Memory-intensive work. However, ”Bus Transactions Memory”

counter does not provide how much memory is used for running applications. To

provide more sufficient information about the memory characteristics of applications,

the memory usage measured by the kernel is used, too. We define the workload

estimation factor wx(t) for a running application x during a time interval [t− 1, t], as

shown in Equation (8.7).

wx(t) = α · C(t) + β ·M(t) + γ ·N(t), (8.7)

where C(t) is the unhalted clock cycle, M(t) is the number of completed memory

transactions, and N(t) is the memory usage during a time interval [t − 1, t]. We

observed that C(t) works as a positive factor in temperature variations, while M(t)

and N(t) work as negative factors. After running four integer and floating-point

benchmarks in SPEC CPU 2006 benchmarks, we obtain α, β, and γ of each core

114

using a linear regression. For example, α, β, and γ of core 1 can be calculated to

3.28E−005, −4.28E−007, and−8.36E−006, respectively, in SPEC CPU 2006 integer

benchmarks. In the case of floating-point benchmarks, α, β, and γ of core 1 can be

calculated to 2.58E−005, −2.35E−009, and −9.85E−006, respectively. Compared

to integer benchmarks, temperature variation of floating-point benchmarks is less

affected by architecture information. Since α, β, and γ of each core are obtained by

Tss in Equation (8.6) before running applications, the workload characteristics can be

described by the variance of C(t), M(t), and N(t) at runtime, as shown in Equation

(8.7). Using these three parameters, we can derive a thermal model as follows.

Tc(t) = wx(t) · Rc · Pc · (1− e
−bc·t) +Rp · Pp · (1− e

−bp·t) + Tinit,c, (8.8)

where Tc(t) is the core temperature at time t, Tinit,c is the initial temperatures of

the core. Also, bc and bp are the thermal parameters for the core and the package

and wx(t) is a workload estimation factor of a running application x. As shown

in Equation (8.8), we estimate temperature using a workload-aware thermal model

including workload characteristics of each application and the thermal parameters of

the package as well as those of the cores.

To investigate how three factors affect temperature in running applications, we

compare the actually measured temperature and the estimated temperature using

bzip2 integer benchmark and lbm floating-point benchmark in SPEC CPU 2006

benchmarks. The estimated temperature using only active CPU cycles shows huge

estimation error compared to the measured temperature as shown in Fig. 40(a) and

41(a). The thermal model using active clock cycles, the memory transactions, and

the memory usage shows more accurate temperature estimations, as shown in Fig.

40(d) and 41(d). Since our workload-aware thermal model considers a positive factor

(active clock cycles) and negative factors (the memory transactions and the mem-

115

ory usage), the results show more accurate temperature estimations regardless of a

workload type such as CPU-intensive or Memory-intensive applications.

C. Thermal Correlation Effects

In this section, we develop a thermal correlation model for a CMP architecture based

on the lumped thermal RC model in the lumped thermal RC model. The thermal

model in a CMP architecture is composed of multiple nodes, one for each core in

the package. The heat transfer conduction between neighboring cores is modeled by

connecting them with a thermal resistance, as shown in Fig. 42. Each node is also

connected to a current source, which models its power consumption, and this power

is dissipated as heat with uniform power consumption. To calculate the thermal

correlation effects among neighboring cores, we define the thermal correlation factor

(ψ) that can be represented as a factor to estimate operating temperature affected by

each core’s own Tss and the amount of heat transfer from neighboring cores. Hence,

we calculate the temperature increase ratio (Γ) of Tss as shown in Equation (8.9).

Γi(j) =
(TE

ss,i(j) − Tinit,i)

(Tss,i − Tinit,i)
=

∆TE
ss,i(j)

∆Tss,i

(8.9)

where Γi(j) is the ratio of temperature incremental change of Tss between the steady

state temperature (Tss,i) for core i and the overall steady state temperature (TE
ss,i(j))

for core i including the heat transfer from core j, and Tinit,i is the initial temperature

of core i. Γ1(2) is 1.207 in Table XI, which implies that the overall Tss of core 1 is

raised by 20.7% compared to Tss for only core 1 without any heat transfer. Therefore,

we can define the thermal correlation factor of core i (ψi(j)) by heat transfer from core

j as follows:

ψi(j) = Γi(j) − 1, (8.10)

116

0 100 200 300 400 500
50

55

60

65

70

75

80

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

measured temperature
estimated temperature

(a) Using only active CPU cycles

0 100 200 300 400 500
45

50

55

60

65

70

75

80

time (sec)
T

em
pe

ra
tu

re
 (

C
el

si
us

)

measured temperature
estimated temperature

(b) Using cycle and memory usage

0 100 200 300 400 500
50

55

60

65

70

75

80

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

measured temperature
estimated temperature

(c) Using cycle and memory transactions

0 100 200 300 400 500
45

50

55

60

65

70

75

80

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

measured temperature
estimated temperature

(d) Using active CPU cycles and the
memory transactions

Fig. 40. Temperature tracking using architectural information in SPEC CPU integer

benchmarks

117

0 100 200 300 400 500 600 700
45

50

55

60

65

70

75

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

measured temperature
estimated temperature

(a) Using only active CPU cycles

0 100 200 300 400 500 600 700
45

50

55

60

65

70

75

time (sec)
T

em
pe

ra
tu

re
 (

C
el

si
us

)

measured temperature
estimated temperature

(b) Using cycle and memory usage

0 100 200 300 400 500 600 700
45

50

55

60

65

70

75

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

measured temperature
estimated temperature

(c) Using cycle and memory transactions

0 100 200 300 400 500 600 700
45

50

55

60

65

70

75

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

measured temperature
estimated temperature

(d) Using active CPU cycles and the
memory transactions

Fig. 41. Temperature tracking using architectural information in SPEC CPU floating–

point benchmarks

118

Fig. 42. The extended thermal model for CMP architecture

where ψi(j) is the thermal correlation factor between cores i and j.

To derive the thermal model for a CMP architecture, each core’s thermal vari-

ations can be expressed with the same approach as the approximation suggested for

the single core.

As shown in Equation (8.11), the temperature of core i can be approximated

using core i’s thermal parameters and the thermal correlation factor (ψ). Also, we

can estimate the temperature for core i using workload estimation factor (w(t)) for

cores and the thermal correlation effects from other cores as follows:

Ti(t) = w(t) · Ri · Pi · (1− e
−bi·t) +Rp · Pp · (1− e

−bp·t) + Tinit,i

+

n
∑

j=1,j 6=i

ψi(j) · Tj(t), (8.11)

where Ri and bi are the thermal resistance and thermal parameter for core i, re-

119

Table XI. The ratio of Tss for cores in an Intel Quad-Core processor

Γ1 Γ1(2) Γ1(3) Γ1(4)

core 1 1.000 1.207 1.034 1.17

Γ2 Γ2(1) Γ2(3) Γ2(4)

core 2 1.000 1.080 1.040 1.000

Γ3 Γ3(1) Γ3(2) Γ3(4)

core 3 1.000 1.000 1.000 1.037

Γ4 Γ4(1) Γ4(2) Γ4(3)

core 4 1.000 1.034 1.034 1.069

spectively, Rp and bp are thermal resistance and thermal parameter for the package,

respectively, ψ is the thermal correlation factor, w(t) is the workload estimation fac-

tor of core i, and Ti(t) is temperature of core i at time t. This final model uses

the workload-aware thermal model and the thermal correlation effects in a CMP

architecture. Unlike prior studies that use simulations to evaluate their own mod-

els, we implement and evaluate our thermal model in a 4-core (Intel Quad Core

Q6600) system. To evaluate our thermal model capturing workload characteristics

and the thermal correlation effects, we developed a specific device driver for Linux

to access the Digital Thermal Sensor (DTS) for monitoring each core’s temperature

for Intel microarchitecture. Also, we developed monitoring and estimation tasks to

capture architectural information via Performance Monitoring Counters (PMC) and

perform estimating workload characteristics at runtime. As shown in Fig. 43, we

show the overall prototype implementation and measurement setup for our experi-

ments. This diagram depicts different aspects of our implementation that correspond

120

Fig. 43. The proposed platform

to determine workload characteristics and online thermal tracking in a real-product.

To verify the thermal model, we profile thermal parameters and a workload estima-

tion factor of each core using four integer and floating-point benchmarks in SPEC

CPU 2006 benchmarks. After profiling, we compare the temperature predicted by

our thermal model with the measured temperature, as shown in Fig. 44. The es-

timated temperature shows above 97 % temperature prediction accuracy compared

to an actual temperature measurement of each core, when two libquantum integer

benchmark and lbm floating-point benchmark in SPEC CPU 2006 benchmarks run

on cores 1 and 2 simultaneously. When three libquantum integer benchmark and lbm

floating-point benchmark in SPEC CPU 2006 benchmarks run on cores 1, 3, and

4, the thermal model estimate temperature more accurately compared to an actual

temperature measurement, as shown in Fig. 44(b) and 44(d), respectively. Although

we show only two results due to space limitations, the average temperature prediction

accuracy of the thermal model is above 92% while we test the thermal model with

seven integer and floating-point SPEC CPU 2006 benchmarks.

121

0 100 200 300 400 500 600 700 800
50

55

60

65

70

75

80

85

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

Running applications on Core 1 and Core 2

measurement
estimation

(a) Running libquantum SPEC CPU 2006
integer benchmark on Core 1 and Core 2

0 100 200 300 400 500 600 700 800
50

55

60

65

70

75

80

85

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

Running applications on Core1, Core3, and Core4

measurement
estimation

(b) Running libquantum SPEC CPU 2006
integer benchmark on Core 1, Core 3, and
Core 4

0 200 400 600 800 1000 1200
45

50

55

60

65

70

75

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

measurement
estimation

(c) Running lbm SPEC CPU 2006
floating-point benchmark on Core 1 and
Core 2

0 100 200 300 400 500 600 700
45

50

55

60

65

70

75

time (sec)

T
em

pe
ra

tu
re

 (
C

el
si

us
)

measurement
estimation

(d) Running lbm SPEC CPU 2006
floating-point benchmark on Core 1, Core
3, and Core 4

Fig. 44. The comparisons between the estimated temperature considering workload

characteristics and thermal correlation effects and the measured temperature

in a CMP architecture

122

D. Conclusions

As increasing power density with technology advance, the thermal control in CMPs

has been a critical issue for improving system reliability. In this work, we propose

a more accurate thermal model capturing workload characteristics and the thermal

correlations among neighboring cores in a CMP architecture. The thermal model

estimates temperature using a lumped thermal RC model enhanced with a workload

estimation factor approximated by a regression analysis and the thermal correlation

effects factors that describe the amount of heat transfer from neighboring cores. To

estimate workload characteristics of running applications, we use active CPU cycles

and the number of completed memory transactions provided by Performance Moni-

toring Counters (PMC), and the memory usage by the kernel.

To demonstrate the scalability and effectiveness of our thermal model, we im-

plement and evaluate it in a 4-core (Intel Quad Core Q6600) system running integer

and floating-point SPEC CPU 2006 benchmarks. As the experimental results, our

thermal model shows above 92% temperature prediction accuracy, compared to an

actual temperature measurement of each core. In the future work, we will develop

Dynamic Thermal Management (DTM) for CMPs exploiting accurate temperature

prediction provided by our thermal model.

123

CHAPTER IX

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the major results of this thesis and discuss future

directions of this work.

A. Conclusions

In Chapter III, we propose an efficient thermal management for multimedia applica-

tions considering performance of a multimedia system affected by the complexity of

scenes, and then we find an appropriate frequency based on the information on scene

complexity.

In Chapter IV, we first derive application characteristics in various multimedia

applications by transmitting MPEG-4 and H.264/AVC encoded by two different frame

resolutions. By using this applications’ characteristics, we estimate a processor speed

to execute multimedia application for decoding frames at runtime.

In Chapter V, we presents an advanced future temperature prediction model for

each core to estimate the thermal behavior considering both core temperature and

applications temperature variations and take appropriate measures to avoid thermal

emergencies.

In Chapter VI, the proposed TAS scheme utilizes an advanced future temperature

prediction model for each core to estimate different thermal behaviors and measure

the time left until each core reaches the desired temperature threshold.

In Chapter VII, to avoid thermal emergencies and provide thermal fairness in

CMP systems, we propose and implement an adaptive and scalable run-time thermal

management scheme, called a Proactive Correlation-Aware Thermal Management

(ProCATM), on the real-world CMP products.

124

Chapter VIII presents a thermal model based workload characteristics of running

applications. We propose the thermal model based on thermal correlation effects and

online workload estimation using architectural information via Performance Monitor-

ing Counters (PMC).

B. Future Work

Chip Multiprocessors (CMPs) have been pervasive in modern processor designs, and it

is likely that the demand for management temperature under thermal safety in a CMP

architecture will remain very high. In order to solve the dilemmatic tradeoff between

an efficient thermal management and performance degradation in CMP architecture,

we would like to expand this work to cover real CMP products such as 4-core system

(Intel Q6600 Quad-Core) and 8-core system (two Intel Xeon E5310 Quad-Core) that

are increasingly used in high-performance system. This involves addressing issues

associated with efficient overlay self-reconfiguration and maintenance, load balancing

among servers in the network, and optimal selection of servers or paths for streaming

services. We also have interest in studying online workload estimation of running

applications in real environments.

In addition, we have further interest in applications’ execution behaviors, which

can directly affect temperature in a CMP architecture. As the speed of processors

increases and the complexity of a chip becomes higher, the thermal management in

a CMP architecture can become very susceptible to application execution behavior

because it is difficult to capture it at runtime. Therefore, we need a metric to rep-

resent applications’ execution behaviors. Although our work succeeded at designing

accurate online workload estimation and modeling the thermal correlation effects for

Dynamic Thermal Management (DTM), new technologies have introduced such as

125

CPU hotpulgging and individual Dynamic Voltage and Frequency Scaling of each

core in a CMP architecture, and then their integrations can be required to be applied

into DTM in future work.

126

REFERENCES

[1] D. Brooks and M. Martonosi, “Dynamic Thermal Management for High-

Performance Microprocessors,” in Proc. IEEE HPCA, pp. 171–182, 2001.

[2] S. Heo, K. Barr, and K. Asanovic, “Reducing Power Density through Activity

Migration,” in Proc. IEEE ISLPED, pp. 217–222, 2003.

[3] K. Skadron, “Hybrid Architectural Dynamic Thermal Management,” in Proc.

IEEE DATE, pp. 10–15, 2004.

[4] J. Srinivasan and S. Adve, “Predictive Dynamic Thermal Management for Mul-

timedia Applications,” in Proc. ACM ICS, pp. 109–120, 2003.

[5] I. Yeo, C. C. Liu, and E. J. Kim, “Predictive Dynamic Thermal Management

for Multicore Systems,” in Proc. ACM DAC, pp. 734–739, 2008.

[6] F. Mulas, M. Buttu, M. Pittau, S. Carta, D. Atienza, A. Acquaviva, L. Benini,

and G. D. Micheli, “Thermal Balancing Policy for Streaming Computing on

Multiprocessor Architectures,” in Proc. IEEE DATE, pp. 734–739, 2008.

[7] D. Son, C. Yu, and H. N. Kim, “Dynamic Voltage Scaling on MPEG Decoding,”

in Proc. IEEE ICPADS, pp. 633–640, 2001.

[8] J. Pouwelse, K. Langendoen, and H. Sips, “Dynamic Voltage Scaling on a Low-

Power Microprocessor,” in Proc. ACM MOBICOM, pp. 251–259, 2001.

[9] B. Lee, E. Nurvitadhi, R. Dixit, C. Yu, and M. Kim, “Dynamic Voltage Scaling

Techniques for Power Efficient Video Decoding,” the EUROMICRO Journal,

vol. 51, no. 10-11, pp. 633–652, 2005.

127

[10] Z. Lu, J. Lach, M. Stan, and K. Skadron, “Reducing Multimedia Decode Power

using Feedback Control,” in Proc. IEEE ICCD, pp. 489–496, 2003.

[11] I. Yeo, H. K. Lee, K. H. Yum, and E. J. Kim, “Effective Dynamic Thermal

Management for MPEG-4 Decoding,” in Proc. IEEE ICCD, pp. 623–628, 2007.

[12] K. Choi, K. Dantu, W. C. Cheng, and M. Pedram, “Frame-based Dynamic

Voltage and Frequency Scaling for a MPEG Decoder,” in Proc. IEEE ICCAD,

pp. 732–737, 2002.

[13] W. Yuan and K. Nahrstedt, “Reduced energy decoding of MPEG streams,”

ACM Trans. Computer System, vol. 24, no. 3, pp. 292–331, 2006.

[14] K. Skadron, M.Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tar-

jan, “Temperature-Aware Microarchitecture: Modeling and Implementation,”

ACM Trans. Architecture and Code Optimization, vol. 1, no. 1, 2004.

[15] M. R. Stan, K. Skadron, M. Barcella, W. Huang, K. Sankaranarayanan, and

S. Velusamy, “HotSpot: a Dynamic Compact Thermal Model at the Processor

Architecture Level,” Microelectronics Journal: Circuit and Systems, vol. 1, no.

1, 2003.

[16] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tar-

jan, “Temperature-Aware Microarchitecture,” in Proc. IEEE ISCA, pp. 2–13,

2003.

[17] M. D. Powell, M. Gomaa, and T. N. Vijaykumar, “Heat-and-Run: Leveraging

SMT and CMP to Manage Power Density Through the Operating System,” in

Proc. ACM ASPLOS-XI, pp. 260–270, 2004.

128

[18] J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger, and P. Bose, “Thermal-

Aware Task Scheduling at the System Software Level,” in Proc. IEEE ISLPED,

pp. 213–218, 2007.

[19] “Intel 64 and IA-32 Architectures Software Developer’s Manual,”

http://www.intel.com/products/processor/manuals/ (Accessed on 01-07-10).

[20] K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-Theoretic Techniques and

Thermal-RC Modeling for Accurate and Localized Dynamic Thermal Manage-

ment,” in Proc. IEEE HPCA, pp. 17–28, 2002.

[21] K.-J. Lee and K. Skadron, “Using Performance Counters for Runtime Tem-

perature Sensing in High-Performance Processors,” in Proc. IEEE IPDPS, pp.

232–237, 2005.

[22] J. Pouwelse, K. Langendoen, R. Lagendijk, and H. Sips, “Power-Aware Video

Decoding,” in 22nd Picture Coding Symposium, 2001.

[23] M. Mesarina and Y. Turner, “Reduced energy decoding of MPEG streams,”

Multimedia System, vol. 9, no. 2, pp. 202–213, 2003.

[24] X. Liu, P. Shenoy, and M. Corner, “Chameleon: Application Level Power Man-

agement with Performance Isolation,” in Proc. ACM MULTIMEDIA, pp. 839–

848, 2005.

[25] P. Michaud, A. Seznec, D. Fetis, Y. Sazeides, and T. Constantinou, “A Study

of Thread Migration in Temperature-Constrained Multicores,” ACM Trans. Ar-

chitecture and Code Optimization, vol. 4, no. 2, 2007.

[26] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha, “HybDTM: A Coordinated

Hardware-Software Approach for Dynamic Thermal Management,” in Proc.

129

ACM DAC, pp. 548–553, 2006.

[27] L. Shang, L.-S. Peh, A. Kumar, and N. K. Jha, “Thermal Modeling, Charac-

terization and Management of On-Chip Networks,” in Proc. IEEE MICRO, pp.

67–78, 2004.

[28] N. Bansal, T. Kimbrel, and K. Pruhs, “Speed Scaling to Manage Energy and

Temperature,” Journal of ACM, vol. 54, no. 1, pp. 1–39, 2007.

[29] J. Sergent and A. Krum, Thermal Management Handbook, Columbus, USA,

McGraw-Hill, 1998.

[30] S. Wang and R. Bettati, “Reactive Speed Control in Temperature-Constrained

Real-Time Systems,” in Proc. IEEE ECRTS, pp. 73–95, 2006.

[31] W. Yuan and K. Nahrstedt, “Energy-Efficient Soft Real-Time CPU Scheduling

for Mobile Multimedia Systems,” in Proc. ACM SOSP, pp. 149–163, 2003.

[32] J. R. Lorch and A. J. Smith, “Improving Dynamic Voltage Scaling Algorithms

with PACE,” in Proc. ACM SIGMETRICS, pp. 50–61, 2001.

[33] F. Gruian, “Hard real-time scheduling for low-energy using stochastic data and

DVS processors,” in Proc. IEEE ISLPED, pp. 46–51, 2001.

[34] PAPI, “Performance API,” Available from http://icl.cs.utk.edu/papi (Accessed

on 01-07-10).

[35] Intel, “Intel Atom Processor,” http://www.intel.com/products/processor/atom

(Accessed on 01-07-10).

[36] X. Chen, “Recursive Least-Squares Method with Membership Functions,” in

Proc. IEEE Machine learning and Cybernetics, pp. 1962–1966, 2004.

130

[37] F. Kreith and M. S. Bohn, Principles of Heat Transfer, Monterey, USA,

Brooks/Cole Publishing Company, 2000.

[38] D. Bovet and M. Cesati, Understaning the Linux Kernel, Sebastopol, USA,

O’Reilly Media, Inc, 2005.

[39] C. C. Minh, “STAMP - Stanford Transactional Applications for Multi-

Processing,” Available from http://stamp.stanford.edu/ (Accessed on 01-07-10).

[40] J. Li and J. F. Martinez, “Power-Performance Implications of Thread-level Par-

allelism on Chip Multiprocessors,” in Proc. IEEE ISPASS, pp. 124–134, 2005.

[41] N. Bansal, T. Kimbrel, and K. Pruhs, “Dynamic Speed Scaling to Manage

Energy and Temperature,” in Proc. IEEE FOCS, pp. 520–529, 2004.

[42] R. Rao and S. Vrudhula, “Performance Optimal Processor Throttling under

Thermal Constraints,” in Proc. IEEE CASES, pp. 257–266, 2007.

131

VITA

In Choon Yeo received his B.S. in computer engineering from Dongguk University,

Korea, in 1995 and his M.S. in computer engineering from Dongguk University, Korea,

in 1997. He graduated with a Ph.D. in computer science and engineering from Texas

A&M University in December 2009.

During 1997-2004, he worked as a system engineer for Sindoricoh in Korea. His

research interests include high-performance energy-efficient computer architectures,

Dynamic Thermal Management (DTM) and Dynamic Power Management (DPM)

on Multicore, compiler and hardware support for dynamic optimizations, virtual ma-

chines, and binary instrumentation. He may be contacted at:

Department of Computer Science and Engineering

Texas A&M University

College Station, TX 77843-3112

