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ABSTRACT 

 

Development of Transgenic Livestock with Reduced Myostatin Expression Using RNA 

Interference. (December 2009) 

Kimberly Jean Tessanne, B.S., The Ohio State University; 

M.S., University of Wisconsin-Madison 

Chair of Advisory Committee: Dr. Mark Westhusin 

 

RNA interference (RNAi) is a means of regulating gene expression by targeting 

mRNA in a sequence-specific manner for degradation or translational inhibition.  Short 

hairpin RNAs (shRNAs) and short interfering RNAs (siRNAs) have been extensively 

employed for manipulating gene expression in a wide range of species. The goal for this 

research was to produce transgenic livestock in which myostatin, a negative regulator of 

muscle growth, has been targeted for silencing by RNAi. This would demonstrate the 

utility of RNAi for reducing gene expression in large animal species. To successfully 

target the myostatin gene for reduction, siRNAs were designed to target the both the 

bovine and caprine myostatin mRNA sequence. These were then tested for effectiveness 

in vitro using both an HEK 293T cell line expressing caprine myostatin as well as adult 

bovine muscle cells. The most effective siRNA, GDF8-1026, was cloned into a lentiviral 

plasmid and used to transduce bovine fetal fibroblasts for somatic cell nuclear transfer 

cloning as well as perivitelline injection of in vitro produced bovine embryos. To date, 

seven pregnancies have been established using these two methods.  
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Concern over the possibility of off-target effects associated with the expression 

of shRNAs in vivo prompted investigation into tissue-specific expression. Therefore, 

investigation into the use of a muscle-specific promoter to drive transgene expression 

was pursued. The bovine myogenin promoter and muscle creatine kinase (MCK) 

promoter were cloned into a lentiviral plasmid and evaluated in bovine fetal muscle cells 

and mouse C2C12 cells in vitro for their ability to drive GFP expression. Both promoters 

demonstrated an increase in GFP intensity at day nine of differentiation when compared 

to the nontransduced control.  

The retroviral basis of lentiviral plasmids has raised concern over the possible 

development of replication competent lentivirus (RCL). Therefore, analysis of tissues 

from recipients of lentivirus-treated embryos was performed to detect possible RCL. 

Tissues and blood serum were tested for RCL using p24 ELISA as well as qRT-PCR for 

the VSV-G gene. To date all tissues tested so far shown no evidence for RCL using these 

analyses. Analysis of offspring transgenic for an shRNA targeting myostatin will allow 

confirmation of RNAi as a useful tool for manipulating gene expression in large animal 

species. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

 Manipulation of gene expression in vivo has become invaluable in furthering our 

understanding of gene function and the role genes play in development and disease. The 

majority of this work has been, to date, in mice. This is primarily due to the ability to 

selectively target genes for silencing using homologous recombination, creating animals 

in which a gene is “knocked out”. However, it has become increasingly evident that 

larger animal models are also important for studying gene function and disease. 

Homologous recombination is relatively inefficient in larger species, revealing a need 

for an alternative tool for altering gene expression. RNA interference (RNAi) may fulfill 

this need, as it is conserved among all mammalian species and provides a manner of 

sequence-specific gene silencing.1,2 In addition, recent successes in delivery of shRNAs 

into livestock species not only demonstrates the utility of this mechanism for studying 

gene function but also opens up a new realm of transgenic animal development. RNAi, 

along with the advent of retroviral delivery of shRNAs into mammalian cells, holds 

promise for the development of large animal transgenics that could contribute both to 

agriculture and human medicine. 

  

____________ 
This dissertation follows the style of Gene Therapy. 
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RNA Interference  

RNAi is a means of regulating gene expression by targeting mRNA in a 

sequence-specific manner for degradation or translational inhibition. RNAi was first 

described in detail by Fire and Mello in C. elegans in 1998.3 Since then, the RNAi 

mechanism has been shown to be highly conserved among drosophila,4 fungi,5 plants,6 

and mammals.7 Short hairpin RNAs (shRNAs) and short interfering RNAs (siRNAs) 

have been extensively employed for manipulating gene expression in a wide range of 

species. Therefore RNAi has become a powerful genetic tool not only for understanding 

basic gene function but also in developing novel treatments for human disease. 

RNA interference was first discovered but not fully understood in work with 

petunias to improve flower color. Here, additional copies of a pigmentation gene were 

inserted in order to alter flower color.8 The expected outcome of this experiment was for 

the flowers to be deeper in color, but in fact most flowers were either variegated or white 

due to ”co-suppression”  of both the endogenous and added gene copies. The exact 

mechanism for this suppression was not known. Two years later, work to transform a 

Neurospora strain with genes for albinism resulted in a silencing of  endogenous copies 

of these genes. This observation was found to be related to the number of exogenous 

transcripts introduced and was termed “quelling”.5 Still, these examples of endogenous 

gene silencing were not fully comprehended until work by Fire and colleagues with C. 

elegans utilizing antisense RNAs to reduce gene expression.3 It was found that injection 

of the sense RNA strands, used as a control, also reduced gene expression . What was 

more surprising was that injection of both the antisense and sense strands together 
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resulted in greater gene repression than the use of either alone. Futher investigation into 

this mechanism led them to describe what is now known as RNA interference. 

 After its initial description, further investigation into this novel method of gene 

regulation has identified the general mechanisms behind RNAi. The process is invoked 

by the presence of double stranded RNA (dsRNA), which triggers the enzyme Dicer to 

cleave the RNA into short (21-25 nucleotide) pieces termed siRNAs.1 The siRNAs are 

then recognized and loaded into a complex called RISC (RNA-induced silencing 

complex), which unwinds and preferentially retains one of the strands. This single 

stranded siRNA strand guides the complex to its complimentary target transcript which, 

in mammals, triggers silencing by one of two methods. The first induces degradation of 

the transcript, initiated in part by the protein Argonaute 2.1,9 The second is translational 

inhibition due to physical blockage of translational machinery by the RISC complex.1,10  

About the same time that siRNA-induced silencing was being discovered, studies 

of larval development in C. elegans revealed another means of transcriptional gene 

silencing within the cell. However, unlike siRNAs that are produced within the 

cytoplasm, this trigger came initially from the nucleus. Found to be encoded by genes 

throughout the genome, these microRNAs (miRNAs) are transcribed first as long double 

stranded precursors (pre-miRs). Then, these precursors are processed by the enzyme 

Drosha to form pri-miRs, which are exported from the nucleus by Exportin-5.10,11 The 

pri-miRs are then recognized by Dicer and processed through the RNAi pathway. 

However, unlike siRNAs which are identical in sequence to their cognate mRNAs, 

miRNAs use 5-7 bp seed sequences to target the genes, most often in the 3’ UTR.12 This 
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base pairing is usually imperfect and may result in translational inhibition or target 

instability.10,11 This allows one miRNA to control expression of multiple mRNAs in a 

cell. Hundreds of miRNA genes have been identified since the first, lin-4, was found in 

C. elegans.13 These miRNA genes have been shown to play a role in numerous aspects 

of physiology, including muscle generation,14,15 cardiovascular disease,16 stem cells,17,18 

and cancer.19,20 

Soon after its discovery, the realization that RNAi could be a tool for studying 

gene expression became apparent. In C. elegans, it was shown that feeding worms 

bacteria that express siRNAs or simply soaking the worms in a solution containing 

siRNAs resulted in reduced expression of the target gene.21,22 However, in mammals, the 

use of RNAi to study functional genomics was initially inhibited due to the presence of 

an endogenous antiviral response induced by the presence of long double-stranded RNA 

(dsRNA).23 It was discovered that these dsRNA molecules activated protein kinase R 

(PKR) resulting in a general widespread reduction in gene expression through 

translational repression. Additional induction of RNase L was also found to occur, 

resulting in nonspecific RNA degradation.24  

Two methods of introducing siRNAs have been developed to bypass the 

endogenous interferon response in mammalian cells. The first utilizes chemically 

synthesized siRNA products (~21nt) that mimic the siRNAs produced by Dicer.25 These 

induce gene-specific silencing in mammalian cells and have become a useful tool for 

exploring gene function. However, their effects are usually transient. The second method 

involves the use of genome integrating vectors to deliver transgenes encoding 19-29 nt 
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inverted repeats joined by an intergenic loop sequence. When transcribed in vivo, these 

repeats anneal to form dsRNA molecules called shRNAs which mimic miRNAs and are 

processed in a similar manner by Drosha and Dicer to induce gene silencing.25-27  In 

addition, the transgenes are integrated into the genome of the cell, and therefore are 

replicated and inherited during mitosis. This allows for propagation of shRNA-induced 

silencing to the resulting daughter cells. Integration of the transgene is especially 

important when considering in vivo applications, where stable transgene expression is 

vital for consistent suppression of the target transcript in subsequent generations.  

 

Lentiviral Delivery of shRNAs 

The ultimate goal of many in vitro assays for manipulating gene expression is the 

transition to an in vivo application. In order to make this transition, stable and effective 

delivery and expression of the transgene is necessary. Multiple methods have been 

utilized for manipulating gene expression in vivo, including adenoviral and adeno-

associated vectors, plasmid DNA, and antisense RNAs.27,28 Although effective, 

expression of a transgene using these systems does not allow for genome integration, 

resulting ultimately in a localized and transient effect.26,27 Without integration, the 

transgene expression is not maintained throughout cell division, and this limits the 

usefulness of these methods in long-term experiments.26 This has led to the advent of 

retroviral vectors for transgene expression. Retroviral vectors are designed using 

elements from a naturally occurring retrovirus, such as human immunodeficiency virus 

(HIV), feline immunodeficiency virus (FIV), or equine infectious anemia virus (EIAV), 
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allowing them to enter the cell as RNA and then reverse transcribe into DNA and 

integrate into the genome.27 This integration, although not targeted, allows for stable 

transgene expression throughout the life of an animal. In addition, the ability to 

pseudotype recombinant viral particles using alternative glycoprotein capsids allows for 

incorporation in a wide range of cell types.27 A subclass of retroviruses, called 

lentiviruses, is of particular interest due to their ability to infect both dividing and 

nondividing cells. This allows for transgene delivery into a variety of differentiated cells, 

including neurons,29 cardiomycytes,30 and hepatocytes.31 Moreover, expression of the 

transgene in the F1 generation from transgenic animals produced using lentiviral vectors 

suggests a lack of silencing of the transgene in the germline.32 This is advantageous over 

other retroviral systems that have shown a lack of expression both in the F0 and F1 

generations.33  

Lentiviral vectors are designed using exogenous retroviral elements. However, to 

ensure safe and effective transgene delivery, all of the components that make the virus 

replication competent are removed, therefore allowing the production of a replication-

incompetent viral particle in vitro.34 Typically this is accomplished by co-transfection of 

separate plasmids each encoding the viral genes, the capsid protein, and the lentiviral 

expression cassette into an immortalized cell line. Lentiviral vectors also contain a self-

inactivating 3’ long terminal repeat (LTR) region that, when transferred to the 5’ LTR 

during reverse transcription and integration, results in transcriptional inactivation.35,36 

These precautionary measures are in place to ensure safe, stable, and efficient delivery of 

transgenes both in vitro and in vivo. Still, there is some trepidation regarding the use of 
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lentiviral vectors in both human therapeutics as well as transgenic animal production. 

Concerns are that recombination with wild-type viruses or endogenous retroviral 

elements may allow the integrated provirus genome to become a replication competent 

retrovirus (RCR). Development of RCR has been shown during production of murine 

retroviral vectors as well as amphotropic vectors.37,38 These RCRs were shown to 

contain sequences from endogenous retroviral elements present in the cell lines used for 

vector production. In addition, recombination between transfer and packaging plasmids 

during lentiviral particle production may also result in replication competent lentivirus 

(RCL).39 Therefore, tests to detect these potential RCL are necessary in order to ensure 

their safety in in vivo applications.  

Several different methods currently exist to test for potential RCL from HIV-

based lentiviral vectors. The first is a p24 ELISA assay that detects the presence of the 

p24 HIV antigen. Viral particles that may be produced from an HIV-based vector would 

be recognized as foreign, and an antigen would then be produced against the p24 viral 

protein. The p24 assay detects the presence of this antigen in serum. Work by Escarpe et 

al. (2003) showed that after amplification of potential RCL on a permissive cell line for 

6 passages, no p24 was detected.40 However, this assay, although effective at detection 

of p24 antigen, can fail to be sensitive enough when considering the fact that the 

presence of even one RCL particle must be detected if it is present. PCR-based methods 

to detect viral gene sequence (ie. gag, pol) integration into the genome as well as and 

vesicular stomatitis virus glycoprotein (VSV-G) have since been developed.40,41 VSV-G 
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is often used for pseudotyping recombinant viral particles.27 The PCR-based tests are 

more sensitive, and a combinatorial approach ensures RCL detection if it is present.  

One PCR-based test that has been developed detects the potential recombination 

between the gag gene in the lentiviral packaging vector (used in recombinant lentiviral 

production in vitro) and the psi packaging signal present in the lentiviral transfer 

cassette.41 Recombination between these two genes could potentially provide the 

integrated transfer cassette the ability to become replication competent. Sastry et al. 

developed PCR-based methods to detect any potential RCL from in vitro culture of cells 

three weeks post-transduction. Cells containing evidence of recombination between the 

gag gene in the lentiviral packaging vector and the psi signal present in the lentiviral 

cassette were found in 20 out of 21 tests, indicating transfer of gene sequence from the 

packaging plasmid to the transfer cassette. However, no evidence of RCL transfer was 

found when media from cells three weeks post-transduction was added to a naive 

permissive cell line, establishing that no replication-competent particles were made. A 

second PCR-based test, designed to detect the presence of the VSV-G gene in the host 

genome, indicates transfer to the host and evidence of replication, as this gene is only 

expressed during in vitro production of recombinant lentivirus.42 Of these same 21 

samples, one was found to be positive for VSV-G by comparison to positive and 

negative control samples. Again, no RCL transfer was detected on naive cells. The FDA 

is now recommending the use of these tests in order to monitor RCL in in vitro and in 

vivo applications that employ lentiviral vectors for transgene delivery. 
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 Delivery of RNAi using retroviral vectors represents a safe and stable system for 

expressing shRNAs in vivo. However, RNAi both in vitro and in vivo has also been 

shown to exhibit silencing not related to the target gene. This off-target silencing can 

interfere with cell survival and confound experimental gene expression data. In addition, 

off-target effects can have negative impacts in vivo.  

 

Off-target Effects of RNAi 

The use of RNAi as a means of gene manipulation has provided a valuable tool 

for research of mammalian gene expression in vitro and in vivo. However, the use of 

siRNAs and shRNAs has revealed that there can also be unintended off-target gene 

suppression. Such off-target silencing can confound gene expression data and in vivo has 

resulted in cytotoxic effects.43-45 According to a review by Svoboda et al., there are three 

main ways in which these off-target effects can occur in mammalian cells.24 These 

include 1) activation of endogenous antiviral response (interferon response), 2) seed 

sequence complimentarity, and 3) saturation of enzymes required for the RNAi pathway. 

All three are important to consider when designing an experiment involving the use of 

RNAi for gene silencing. 

Probably the most well-known means of off-target gene silencing in mammalian 

systems is activation of the interferon response. The interferon response is a mammalian 

cellular defense mechanism present to guard against invasion by foreign material, often 

viral RNA that is reverse transcribed into DNA prior to insertion into the host genome. 

The primary enzyme activated is PKR, which blocks cellular protein translation by 
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phosphorylating the translation initiation factor eIF2�. This results in a genomewide 

downregulation of gene expression.23,24 In addition, lack of a two nucleotide 3’ overhang 

on siRNAs introduced through transfection has been shown to trigger the interferon 

response through induction of the RNA helicase RIG-1.24 Activation of the interferon 

pathway can be avoided to an extent by the use of short (19-29 nt) double stranded 

RNAs with 3’ overhangs. However, induction of this response is not always eliminated, 

as interferon-stimulated gene expression, including PKR, has been shown after 

transfection of short siRNAs.23 

Another potential source of off-target silencing is through imperfect sequence 

homology with nontarget genes, resulting in suppression through the microRNA 

pathway. This pathway utilizes short regions of homology called seed sequences, often 

in the 3’UTR of mammalian genes.12 The siRNAs present in the cytoplasm of the cell 

and loaded into the RISC complex may also guide it to these unintended genes, 

annealing to them and causing translational repression of the mRNA. Examples of this 

kind of off-target gene suppression are numerous. Transfection of an siRNA designed to 

target the firefly luciferase gene upregulated expression of 1154 genes and 

downregulated 689 when measured using an Affymetrix genechip array.46 However, the 

concentration of siRNA transfected affected what genes were altered. Similarly, an 

siRNA targeting GFP was also shown to decrease expression of endogenous genes in 

vitro using both microarray and quantitative real-time PCR analysis (qRT-PCR).47 

Additionally, work using siRNAs targeting the MEN1 gene, a tumor suppressor gene, 

also reduced the expression of p21 and p53 protein levels in multiple cell lines.43 The 
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mRNA levels of the repressed genes were minimally altered, suggesting a translational 

inhibition indicative of the miRNA pathway.  

Saturation of the enzyme Dicer and proteins the compose the RISC complex can 

also lead to unintended gene silencing.24 The presence of excess siRNAs in the cell 

would alter endogenous miRNA processing and therefore control of gene expression. Yi 

et al. (2005) demonstrated that transfection of a construct expressing the exportin-5 

protein, which aid in the export of pre-miRs and expressed shRNAs out of the nucleus, 

increased processing of mir30a as well as in vitro transcribed shRNAs.48 This suggests 

that shRNA mediated RNAi-induced silencing may saturate the Exportin-5 gene, a key 

step in endogenous miRNA pathway. 

Off-target effects have also been reported with in vivo RNAi experiments using 

mice. Work evaluating sustained expression of shRNAs targeting the luciferase firefly 

gene in the livers of mice induced toxicity.49 Morbidity was associated with 

downregulation of miRNAs, suggesting inhibition of this pathway in the liver. 

Moreover, work to inhibit the Huntington’s disease (HD) gene in the mouse brain 

through expression of shRNAs was effective at reducing HD gene expression in vivo but 

also induced toxicity.50 The control shRNA, while resulting in no measurable decrease in 

HD, also induced toxicity. Interestingly, when the shRNAs targeting HD were instead 

expressed as an artifical microRNA, toxicity was greatly reduced.  These reports suggest 

it is important it is important to consider methods to reduce off-target effects of shRNA 

expression in vivo as well as in vitro.  
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 Although the majority of in vivo experiments like those discussed above have 

been to date in mice, it is becoming increasingly apparent that larger models may be 

necessary for some disorders. Demand for the development of larger animal models is 

growing, and these models may provide valuable insight into animal and human disease. 

 

Large Animal Research Models 

Mouse knockout models have provided valuable information to study a plethora 

of human disorders such as asthma,51 cardiovascular disease,52,53 fertility,54,55 and 

diabetes.56 Although mouse knockout models have provided insight into human genetic 

disorders, they often do not mimic the human form of the disease, making inferences 

difficult. In addition, mouse models are short lived and do not allow for longevity 

studies. Their inbred background is also not congruent with the heterogeneity of humans, 

and therefore effects that are seen in mouse models may not translate to human 

medicine.57 Work in breast cancer research has revealed the creation of a rat knockout 

model for breast cancer in which the BRCA1 and BRCA2 genes were silenced through 

random mutation followed by mutational screening.58 This is significant because rats can 

more closely model human cancers, and rat knockout models have been largely 

unsuccessful using more conventional methods. However, both homologous 

recombination and mutational screening techniques are inefficient and costly in larger 

animal models. Therefore there is a growing need of alternative methods for suppressing 

genes in species other than rodents. 
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Larger animal models have for the most part been discouraged due to the 

difficulty of genetic manipulations and increased maintenance costs. However, recent 

research is demonstrating the importance of these larger models.59 Body and organ size 

as well as blood volume more closely match humans than mouse models.59 Studies of 

retinal degeneration,60,61 hemophelia,60,62 and muscular dystrophy60,63 in dogs has 

become invaluable for human medicine. The canine model has become increasingly 

useful in modeling human genetic disorders, with more than 58% of genetic diseases in 

dogs having a human orthologue.57 Swine have also become a valuable large animal 

model for cardiovascular disease, as their coronary anatomy and cardiac conduction are 

similar to humans.64 Additionally, their heart size to body weight ratio is identical to that 

of humans.64 A swine model of cystic fibrosis has also been developed, allowing a more 

in depth investigation of this disease.65 Sheep models of intrauterine growth restriction 

(IUGR) have been developed, and their larger size has allowed for repeated samplings of 

uterine and fetal vasculature.66 The sheep IUGR model mimics many of the 

characteristics of the human form of this disorder, allowing for a greater understanding 

of its role during human pregnancy. 

In addition to creating animal models for studying human disease, large animal 

transgenics also have applications in gene therapy and xenotransplantation. Successful 

production of human therapeutics in the milk of  transgenic cattle,67 goats,68,69 and 

sheep70 has paved the way for new pharmaceutical production. The approval for the first 

recombinant human protein for treatment of a clotting disease isolated from the milk of 

transgenic goats has been reported this year.71 Additionally, work to inactivate genes 
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involved with human rejection of porcine transplants is ongoing as swine most closely 

match humans in the size and physiology of the heart and other organs.64,72 Successful 

production of transgenic pigs with a deletion of the alpha (1,3) galactosyl transferase 

(GalT) gene involved in organ rejection has now been reported.73 This may allow the 

production of organs for xenotransplantation without rejection.  

In addition to contributing to human disease, these models can also extend to 

agricultural species. Animals in which the prion protein (PrP) gene has been suppressed 

or deleted have been produced, providing potential resistance to scrapie and bovine 

spongiform encephalitis.74,75 The development of disease resistant animals could have a 

dramatic impact on agriculture, especially in developing countries. Moreover, transgenic 

dairy cattle have been created which produce the bacterial enzyme lysostaphin in their 

milk, protecting them from mastitis.76 Mastitis costs American dairy producers 

approximately two billion dollars annually.77 Therefore animals resistant to this disease 

would have a great impact in the US. 

Although there is an increasing demand for large animal transgenics, production 

of these animals is more difficult. Longer generation intervals mean higher maintenance 

and housing costs and more time waiting for evaluation of genetic manipulations. 

Traditional gene knockout strategies are very inefficient due to heterogeneity. However, 

in some agricultural species, reproductive techniques such as in vitro fertilization (IVF), 

embryo culture, somatic cell nuclear transfer, and micromanipulation have been 

extensively developed.78 These have allowed for the development of embryonic 

transgene delivery techniques such as lentiviral delivery and cloning of transgenic cell 
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lines to effectively create transgenics. Since gene knockout techniques fail to work 

efficiently in larger species, RNAi provides an opportunity for manipulation of gene 

expression. The universal nature of RNAi suggests an adaptability of this technique to 

larger organisms where traditional methods such as gene knockouts have been relatively 

unsuccessful.  

  

Development of Transgenic Livestock 

 In order to incorporate a transgene into a large animal species, several methods 

have been employed, including pronuclear injection,79 somatic cell nuclear transfer,73,80-

86 and retroviral transfer.75,87-93 Until recently, pronuclear injection was the method of 

choice for livestock species, where recombinant DNA was injected into the pronuclei of 

zygotes in order to incorporate the transgene into the genome of the developing 

embryo.79,94 However, the relatively low efficiency and requirement for breeding in 

order to obtain homozygous founders have prompted development of alternative 

methods for producing transgenic livestock. In addition, isolation and transformation of 

embryonic stem (ES) cells through homologous recombination have been used 

extensively for the production of transgenic mice.95,96 However, to date there have been 

no reports of ES cell isolation in livestock species, limiting its use to rodents at this time. 

The creation of “Dolly” and the advent of somatic cell nuclear transfer cloning 

provided an alternative means of transgenic animal production.97 With this method, 

adult-derived somatic cells, often skin fibroblasts, are first transformed to create a 

transgenic cell line which in turn is recombined with an enucleated oocyte.78 This 
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recombination produces a zygote in which all of the nuclear DNA is contributed by the 

transgenic cell. Therefore, embryos produced from this method are transgenic. A variety 

of cell types (ie. embryonic, fetal and adult) and methods of introducing the transgene 

have been used to date, the most recent of these being a retroviral vector. This method 

has been used successively to produce a variety of transgenic animals, including dog,91 

cat,92,93 pig,98,99 and cow.100 However, although these animals carry the transgene in all 

cells of their body and are capable of germline transmission, the drawbacks associated 

with SCNT also can complicate the creation of transgenic animals using this method.  

One obstacle in creating transgenic livestock using SCNT cloning is the low 

survival rate of cloned animals. Efficiencies of clone production in livestock range from 

only 1-5%.101,102 Most embryonic loss is early in gestation and in large part is believed to 

be due to the epigenetic misregulation of genes expressed in the fetus or placenta.103 In 

cattle, commonly seen defects include the complete absence or severe lack of 

placentome formation, with malformed caruncules and cotyledons often seen when they 

do develop to term as well as reduced vascularization.104 In addition, the phenomenon 

referred to commonly as large offpring syndrome is seen frequently in clones, most often 

with cattle. This results in increased fetal weight and can be accompanied by edema, 

hepatocephaly, and hydrocephalus.103,104  

Another method of creating transgenic livestock is retroviral gene transfer into 

oocytes and embryos prior to transfer. This method utilizes retroviral vectors, most often 

lentiviral vectors, in order to incorporate the transgene into the genome prior to cell 

division and subsequent development of the embryo. Infective recombinant lentivirus 
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can be injected into an oocyte or zygote prior to embryo transfer in order to get complete 

incorporation of the transgene into the embryo genome by the first cell division. This 

method was first reported in the production of transgenic swine by Hoffman et al. (2003) 

using lentiviral injection into in vivo derived one-cell embryos.88 The transfer of 

transduced zygotes resulted in six pregnancies and the birth of 46 offspring, 70% of 

which were confirmed transgenic. Analysis of tissues by fluorescence microscopy 

revealed transgene expression in all tissues. Further work with bovine oocytes and 

embryos demonstrated successful transduction of both and production of transgenic 

bovine offspring.100  

Lentiviral injection of oocytes or embryos, although successful at bypassing 

issues associated with cloning, requires a high titer of recombinant lentivirus (�109 

infectious units (IU)/mL) in order to obtain incorporation. Extremely small volumes of 

virus are injected, therefore the chance of a recombinant lentiviral particle actually 

entering the embryo is very small. However, analysis of integration site and number by 

Hofmann et al. showed that multiple integrations occurred, ranging from 1-20 copies of 

the transgene.88 This could be problematic in that integration into the genome is not 

targeted and could therefore potentially interrupt endogenous gene function. 

Additionally, incorporation of the lentiviral cassette after the first cell division may 

result in mosaic expression of the transgene, which would then require additional 

breeding to obtain germline transmission and complete transgenesis. Therefore timing of 

lentiviral infection is also important to producing a transgenic animal with this method. 
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However, this method, along with SCNT, provides a means of producing transgenic 

animals that may prove important additions to the agricultural and medical fields.  

 

Myostatin 

Myostatin, or Growth Differentiation Factor 8 (GDF8), is a negative regulator of 

muscle growth. In a mouse knockout model of myostatin, mice display a distinct 

increase in muscle mass and differentiation.105 Furthermore, breeds of cattle such as the 

Belgian Blue and Piedmontese, which display dramatically increased muscle mass, have 

been shown to possess mutations in the myostatin gene.106-108 Myostatin has been shown 

to be involved in the growth and differentiation of muscle and bone in humans,109 and 

has important implications for human health in developing therapeutics for muscle 

wasting diseases such as muscular dystrophy. This protein’s most notable effect is on the 

hypertrophy and hyperplasia of muscle fibers, both pre- and postnatally.  

Myostatin is a member of the TGFβ superfamily. It is first translated as a 

precursor protein consisting of a propeptide and a mature peptide joined by an RXRR 

cleavage site. Post-translational cleavage of this protein into the latent associated peptide 

(LAP) and mature forms followed by dimerization of both the LAP and the mature 

peptide and non-covalent binding of the two, forms the latent complex. This complex is 

then secreted by the cell. Proteolytic cleavage from the propeptide is required for the 

dimer to bind to its receptor, activin receptor type IIβ (and to a lesser extent II�), and act 

through the Smad 2/3 pathway.110 Regulation of action can occur through different 

binding proteins that in turn can inactivate myostatin. These include follistatin and 
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follistatin related gene (FRG) as well as metalloproteinases such as those in the BMP-

1/Tolliod family.111 In fact, the use of myostatin binding proteins has been employed to 

develop therapeutics for such muscle wasting disorders as muscular dystrophy (MD) and 

amyotrophic lateral sclerosis (ALS).112,113  

Myostatin is primarily expressed in skeletal muscle, and has been found to be 

expressed not only during development but throughout an animal’s adult life. In 1997, 

McPherron and colleagues reported the production of a myostatin knockout mouse.105 

This mouse displayed a similar phenotype to that seen with double muscled cattle 

breeds, which included a 200% increase in muscle hypertrophy and hyperplasia of 

muscle fibers. Soon after, mutations in the myostatin gene were found to be the cause of 

double muscling in Belgian Blue and Piedmontese cattle. Belgian Blue cattle were found 

to possess an 11 nucleotide deletion in the third exon which causes a frameshift and a 

mutant protein.106,108 Similarly, Piedmontese have also been found to have a mutation in 

the third exon, substituting a tyrosine for an invariant cysteine.106,107 To date, naturally 

occurring mutations causing inactivation of the myostatin gene have also been 

documented in sheep,114-116 dogs,117,118 and humans.109 In all cases, an extreme increase 

in muscle mass is observed. The double muscling phenotype in cattle, unlike the 

knockout mouse, has since been shown to result primarily from hyperplasia. 

Additionally, tissue-specific and postnatal knockouts of this gene in mice have shown 

that the underlying causes of this increase can vary. In a mouse overexpressing a 

dominant negative form of myostatin with the muscle creatine kinase (MCK) promoter, 

a increase in muscle mass of 35% was found, all due to hypertrophy.119 However, in a 
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Cre/lox knockout in which myostatin was inactivated postnatally, a similar increase in 

muscle was seen, but the source (hypertrophy vs. hyperplasia) was dependent on the 

muscle examined.120 In addition, it has been demonstrated in both mice and cattle that 

the effects of inactivating myostatin exhibit hemizygosity, with an approximate 50% 

increase in muscle mass with those carrying one inactivated copy of the gene.   

The cellular actions of myostatin have not been unequivocally established, but 

many in vitro studies have revealed insight into its action in the cell. Myostatin has been 

shown to have a negative effect on myoblast growth and differentiation in culture. When 

exogenous recombinant myostatin was added to C2C12 mouse muscle cells in culture, 

proliferation was inhibited in a dose-dependent fashion.121-123 Further analysis revealed 

that myostatin prevented the transition from the G1 to S phase of the cell cycle by 

upregulating p21, a cyclin-dependent kinase inhibitor, as well as inhibiting Cdk2. This 

inhibition was also shown to occur in fetal bovine myoblasts. However, once C2C12 

cells were switched to a low-serum media to induce differentiation, exogenous myostatin 

inhibited upregulation of myogenic factors such as MyoD and Myf5 as well as p21, 

delaying differentiation.123,124 This delay was shown to be reversible in culture. This 

suggests a role for myostatin in myoblast growth as well as muscle fiber formation.  

Experimental suppression of myostatin in vitro and in vivo also lends support to 

its role in muscle development. An antisense approach to inhibit endogenous myostatin 

in C2C12 cells also demonstrated a decrease in p21, leading to increased proliferation 

and a protection from apoptosis.123  In addition, overexpression of myostatin decreased 

MyoD as well as myogenin protein expression, whereas antisense reduction of myostatin 
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increased transcription of both genes. In vivo work expressing an shRNA targeting the 

myostatin gene in mice resulted in increased tibialis anterior weight when injected or 

electroporated into the muscle.125 Muscle fiber size was increased by 34%, and satellite 

cell number doubled.  

Myostatin has been found to regulate muscle development in part by the 

inhibition of muscle satellite cell recruitment during development as well as after injury. 

Satellite cells are myogenic progenitor cells, capable of both self-renewal and activation. 

Myostatin has been found to localize to Pax-7 positive satellite cells both in culture and 

alongside isolated muscle fibers.126,127 In a study of satellite cell activation in myostatin 

null mice versus wild type, a higher number of satellite cells from the knockout mice 

were activated to enter S phase of the cell cycle.126 In addition, steady state numbers of 

satellite cells in muscle fibers isolated from myostatin null mice were higher as assessed 

by migration in vitro and CD34 staining. Satellite cells isolated from mature wild type 

and myostatin null mice were also evaluated for their potential to withdraw from the cell 

cycle when induced to differentiate in culture.128 Addition of differentiation medium 

stimulated over two-thirds of wild type cells to withdraw from the cell cycle after 6 

hours, as measured by pulsing with BrdU. In contrast, over 50% of myostatin null cells 

still remained in S phase. Although their withdrawal was delayed, eventually these cells 

did enter differentiation within 48 hours. Increasing amounts of myostatin added to 

myostatin null satellite cells in culture also reduced proliferation to a rate consistent with 

wild type satellite cells, suggesting that myostatin helps to maintain satellite cell 

quiescence. 
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In order to demonstrate the effectiveness of RNAi as a means for gene 

suppression in animals other than mice, a gene with an established phenotype is 

desirable. Due to the effects of myostatin suppression in vitro and inactivation in vivo, it 

is reasonable to consider this gene as a model for this demonstration. If suppression of 

myostatin expression through RNAi is effective, the phenotype would be expected to be 

visual and similar to that of naturally occurring mutations. In addition, the effect of this 

reduction would not be expected to be lethal due to the viability of knockout animals. 

Therefore, this research focused on two aims. The first was the production of genetically 

modified cattle expressing an shRNA targeting the myostatin gene. In addition, the use 

of a lentiviral vector for delivering shRNAs led to the second aim of this research. In 

order to establish the safety of lentiviral vectors in production of transgenic livestock, 

animals serving as recipients of transgenic embryos were analyzed for evidence of RCL. 

Lack of RCL detection would reinforce the safety of using a lentiviral system to deliver 

transgenes for expression in vivo.  
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CHAPTER II 

IN VITRO SUPPRESSION OF MYOSTATIN 

 

Introduction 

RNAi has proved useful as a tool for manipulating gene expression in vitro as 

well as in vivo.11 In order to demonstrate the utility of RNAi in large animal species, the 

myostatin gene was chosen as a target. Myostatin mutations occur naturally in a number 

of species and result in a visible increase in muscle mass.109,114-118 In addition, a mouse 

knockout of the myostatin gene results in a similar phenotype.105 Therefore, targeting 

this gene in vivo through RNAi should not be lethal, and, if successful, the phenotype 

should be readily quantifiable.  

Myostatin is primarily expressed in skeletal muscle, and is expressed during 

development and throughout an animal’s adult life.110 In vitro studies using exogenous 

myostatin have shown that myostatin works in part by inhibiting myoblast proliferation 

through an increase in p21 levels.121 Additionally, a delay in myotube formation was 

seen when the same recombinant protein was added to C2C12 mouse cells in a low 

serum media designed to induce differentiation.124  

The bovine species was chosen because the phenotype of myostatin null 

mutations has already been well characterized.106 Therefore the effect of shRNA-

mediated suppression should be easy to evaluate. In addition, since the length of 

gestation in cows is long (270-290 days), the caprine model was also considered. Goats 

have a shorter gestation length (150 days) and are cheaper to maintain. In order to 
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effectively target the myostatin gene in vivo, siRNAs were designed against bovine and 

caprine coding sequences for myostatin. Resulting siRNA sequences were designed as 

97 bp oligonucleotides and cloned into a lentiviral plasmid. These shRNA cassettes were 

then tested for their ability to reduce myostatin expression in an HEK 293T cell line (an 

immortalized human cell line) transformed to express recombinant caprine myostatin.  

Four siRNA sequences were cloned into a lentiviral plasmid as shRNAs, and all 

four were found to effectively suppress caprine myostatin mRNA expressed in  HEK 

293T cells. To further test the most effective siRNA at targeting bovine myostatin 

mRNA, fetal and adult bovine muscle cells were isolated and characterized. Adult 

satellite cells were utilized for siRNA analysis using the most effective sequence,  and an 

80-95% reduction of bovine myostatin mRNA was achieved in primary bovine muscle 

cells. 

 

Materials and Methods 

siRNA design and cloning of shRNAs into the PEF-green lentiviral plasmid 

The bovine and caprine myostatin coding sequences were aligned using the 

ClustalW alignment program (www.clustalw.genome.ad.jp) and regions of sequence 

identity were identified. These regions were loaded into an siRNA design program at 

www.biopredsi.org. Resulting sequences were then checked for nonspecific targets using 

BLAST. Unique siRNA sequences were modified for cloning into the PEF-green 

lentiviral plasmid (Appendix A) by adding mir30 sequence on either side 

(http://katahdin.cshl.org:9331/homepage/siRNA/RNAi.cgi?type=shRNA). 
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Oligonucleotides were ordered (Integrated DNA Technologies) and amplified through 

PCR with primers (Appendix B) to add the remaining mir30 sequence as well as XhoI 

and EcoRI restriction enzyme recognition sites on the 5’ and 3’ ends, respectively. 

Amplifications were performed with 10X Pfx50 buffer, 2.5mM dNTPs, 25µM each 

forward and reverse primer, 0.5 units Pfx50 polymerase (Invitrogen), and 100ng oligo in 

a 50µl reaction. Cycling conditions consisted of an initial denaturing step at 95ºC for 3 

minutes, followed by 25 cycles of 95ºC for 30 seconds, 58ºC for 30 seconds, and 68ºC 

for 30 seconds. After a final extension of 68ºC for 5 minutes, products were run on a 2% 

agarose gel to check amplification and gel extracted using a gel extraction kit 

(QIAGEN). Restriction digests were set up with either 15.8µl purified PCR product or 

5µg of PEF-green plasmid, 10X NEB EcoR1 buffer, 1µl each EcoR1 and Xho1 enzyme 

(NEB), and bovine serum albumin (BSA) in a 20µl reaction. Digestions were carried out 

at 37ºC for 1 hour. After 45 minutes, 1µl of calf intestinal phosphatase (CIP) was added 

to the plasmid digestion to prevent recircularization of the plasmid. Digested plasmid 

was run on a 1.2% agarose gel and extracted using the QIAGEN gel extraction kit. 

Digested PCR products were purified using a gel extraction kit (QIAGEN) with the 

following alterations: 3X volume of QG buffer and 1X volume of isopropanol was added 

to the reaction before the entire volume was applied to the column. Products were 

quantified using a spectrophotometer. Ligations were performed using a 3:1 molar ratio 

of insert to vector with Quick ligase (NEB) in a 20µl reaction. Ligations were carried out 

at room temperature for 5 minutes and then put on ice. Ligated plasmids were 

transformed into Stbl2 chemically competent E. coli (Invitrogen) and plated onto agar 
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plates containing 25µg/mL zeocin and 50µg/mL ampicillin. Plates were incubated 

overnight at 30ºC. Colonies were plucked the following day and grown overnight in 

5mL LB broth with 25µg zeocin and 50µg ampicillin at 30ºC. Plasmids were purified 

using the QIAGEN Miniprep kit and eluted in 50µl water. Plasmids were digested as 

above with EcoR1 and Xho1 to check for insert, and positive preps were sent for 

sequencing. Plasmids confirmed through sequencing were labeled as PG (for the PEF-

green lentiviral plasmid) and the corresponding number of the siRNA that was cloned 

into it as an shRNA (ie. PG57 contains GDF8-57 expressed as an shRNA). Positive 

clones were grown in 50mL LB broth with 25µg zeocin and 50µg ampicillin overnight 

at 30ºC. Stocks were made in 15% glycerol and frozen at -80ºC. Plasmids were purified 

using the QIAGEN Midiprep kit, resuspended in 100µl water and stored at -20ºC.  

Cloning of caprine myostatin and production of HEK 293T cells expressing recombinant 

myostatin 

The caprine myostatin coding sequence was previously isolated from goat 

muscle cDNA and cloned into the pcDNA3.1 plasmid (Invitrogen). This coding  

sequence was then PCR amplified using primers designed to add EcoR1 and BamH1 

restriction sites on each end. PCR was performed using 10X PCR buffer, 10mM dNTPs, 

25µM each forward and reverse primer, 0.5µg plasmid, and 0.5 units PlatinumTaq HiFi 

polymerase (Invitrogen) in a 25µl reaction. PCR was carried out with an initial 

denaturing step of 95ºC for 3 minutes followed by 30 cycles of 95ºC for 30 seconds, 

55ºC for 30 seconds, and 72ºC for 1 minute. After a final extension at 72ºC for 10 

minutes, amplified product was run on a 2% agarose gel and gel extracted using the 
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QIAGEN gel extraction kit. The purified PCR product (5µl) and the pEIT lentiviral 

plasmid (5�g, Appendix A) were both digested using 10X NEB EcoR1 Buffer, 1µl each 

EcoR1 and BamH1 and BSA in a 20µl volume for 1 hour at 37ºC. Digested products ran 

on a 2% agarose gel, the appropriately sized bands were excised, and products were 

purified using the QIAGEN gel extraction kit. Products were eluted in 30µl water and 

quantified using a spectrophotometer. Ligations were performed using a 3:1 molar ratio 

of insert to vector with Quick ligase (NEB) in a 20µl reaction for 5 minutes at room 

temperature. Ligations were then put on ice and transformed into TOP10 chemically 

competent cells (Invitrogen). Transformed cells were plated on agar plates containing 

50µg ampicillin and incubated overnight at 37ºC. The following day colonies were 

plucked and grown in 5mL LB broth with 50µg ampicillin overnight at 37ºC. Plasmids 

were purified using the QIAGEN Miniprep kit and eluted in 50µl water. Plasmids were 

digested with EcoR1 and BamH1 to confirm insert.  

Recombinant lentivirus was produced as described by Miyoshi et al. (1998) using 

the pEIT lentiviral plasmid containing the caprine myostatin coding sequence.35 

Lentiviral plasmid (10µg) was co-transfected into HEK 293T cells along with 10µg 

pCMV R8.91 (packaging plasmid) and 1µg pMDG (plasmid expressing the VSV-G 

gene) in order to make recombinant lentivirus. Transfections were carried out in 100mm 

dishes that were 80-90% confluent. Plasmid DNA was combined with 36µl 2M CaCl2 in 

a 300µl volume, and then 300µl 2X Hepes Buffered Saline (HBS), pH 7.05 with 0.6% 

Dextran was added. Mixtures were vortexed and added dropwise to cells. Media was 

refreshed 18 hours later with DMEM/F12 with 10% fetal bovine serum and gentamicin 
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plus 10mM sodium butyrate. Supernatant was collected 48 hours later, centrifuged for 5 

minutes at 300 X g to pellet cellular debris, and filtered through a 0.45µm syringe filter. 

HEK 293T cells were transduced using media containing lentivirus plus 8�g/mL 

polybrene (hexadimethrine bromide) for 16-20 hours. Transgenic cells were confirmed 

using fluorescence microscopy to detect expression of the red fluorescent protein present 

in the pEIT plasmid (Appendix A). Transgenic cells were harvested for RNA using the 

RNeasy kit (QIAGEN)., and the Superscript III one-step kit (Invitrogen) was used to 

confirm myostatin mRNA expression.  

Transient transfection of PEF-green lentiviral plasmid constructs into HEK 293T cells 

expressing recombinant caprine myostatin  

 HEK 293T cells expressing recombinant caprine myostatin were plated into 6-

well plates at 90% confluence on the day of transfection. PEF-green lentiviral plasmid 

containing either an shRNA targeting myostatin or a nontargeting control shRNA (5µg) 

was combined with 6.3µl 2M CaCl2 in a 50µl volume, and then an equal volume of 2X 

HBS was added. Complexes were vortexed for 15 seconds prior to being added dropwise 

to cells. Media was refreshed 18 hours later. Transfection efficiencies were estimated 

using fluorescence microscopy to detect expression of GFP present in the PEF-green 

plasmid. Cells were maintained in culture for four days before being harvested for RNA 

isolation. 

Isolation and culture of primary bovine muscle cells 

 Fetal cells were isolated from approximately 60-90 day bovine fetuses as 

previously described with modifications.129 The muscles in the fore- and hindlimbs were 
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isolated using a scalpel, cut into 5-8mm pieces, and rinsed in PBS. Tissue sections were 

incubated in 0.25% Trypsin-EDTA in PBS at 37ºC with shaking for 40 min to 1 hour. 

The cells were then pelleted by centrifugation (5 minutes at 300 xg), supernatant was 

removed and cells were resuspended in DMEM/F12 supplemented with 15% FBS, 50 

�g/mL gentamicin and 2.5 mg/L amphotericin prior to transfer to 75mm2 flasks. During 

the initial myoblast isolation, recovered cells were preplated for 20 minutes at 37ºC to 

enrich for myoblast cells, and this enrichment was repeated at each subsequent passage. 

To induce fusion into myotubes, cells were switched to a low serum media to induce 

differentiation containing 2% horse serum. 

Satellite cells were isolated from adult muscle tissue explants as previously 

described with modifications.130 Skeletal muscle was obtained from a local 

slaughterhouse and trimmed to remove connective tissue. Pieces were rinsed briefly in 

chlorhexidene and then twice in DMEM/F12 with 15% FBS plus gentamicin and 

amphitericin. Tissue was plated in collagen-coated 25mm2 flasks, 3-4 pieces per flask. 

Media was refreshed one day later, and then flasks were maintained at 37ºC with 5% 

CO2. Satellite cells began migrating out of the explants 7-10 days later. At the first 

passage, cells were preplated for 20 minutes at 37ºC to enrich for myoblast cells, and 

this enrichment was repeated at each subsequent passage. Cells were cultured in 

DMEM/F12 with 15% FBS and gentamicin. To induce fusion into myotubes, cells first 

plated in fibronectin-coated wells and then switched to a low serum media containing 

2% horse serum. An alternative protocol was also used in which muscle fibers were 

isolated in DMEM/F12 with 15% FBS under a dissecting microscope using fine-tipped 
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forceps. Media with fibers was then pipetted several times through a 10mL serological 

pipette, pelleted by centrifugation (5 minutes at 300 xg), resuspended in fresh media, and 

plated on collagen-coated flasks. This also resulted in isolation of adult muscle satellite 

cells. 

Immunocytochemistry to characterize primary bovine muscle cells 

 Muscle cells were plated on glass cover slips at a density of 50,000 cells/slip in a 

24-well plate. Cover slips were first treated with concentrated (8M) HCl for 15 seconds 

and rinsed twice in distilled water in order to remove oils on the slide. Cells were 

cultured one day for labeling of proliferating cells, or grown to confluence and then 

differentiated for three days prior to labeling of myotubes. Cells were rinsed with PBS 

and fixed using cold methanol for 10 minutes. Then cells were permeabilized with 0.2% 

Triton X-100 in PBS for 30 minutes at 37ºC and then blocked overnight at 4ºC with 

blocking buffer. Blocking buffer consisted of 0.1% Triton X-100, 1% BSA, and 1% goat 

serum in PBS. Cells were labeled with the appropriate dilution of primary antibody in 

blocking buffer for 30 minutes at 37ºC: desmin (ab6322-100, 1:200). After three washes 

in blocking buffer for 10 minutes with rocking, the appropriate secondary antibody was 

diluted in 0.1% Tween-20 in PBS and added for 30 minutes at 37ºC. For desmin labeling 

an anti-mouse Alexa fluor antibody (either 568 or 488) was used at a dilution of 1:200. 

Coverslips were washed 3 times for 10 minutes each with rocking in 0.1% Tween-20 in 

PBS, then mounted on slides with DABCO and 20% glycerol plus Hoechst in PBS and 

sealed with clear nailpolish. Fluorescence intensity was compared to samples with no 

primary antibody added to control for background fluorescence. 
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Production of lentivirus with PEF-green lentiviral plasmid constructs and transduction 

of primary bovine muscle cells 

Recombinant lentivirus was produced as described by Miyoshi et al. (1998) using 

the PG1026 construct or a nontargeting construct.35 Lentiviral plasmid (10µg) was co-

transfected into HEK 293T cells along with 10µg pCMV R8.91 (packaging plasmid) and 

1µg pMDG (plasmid expressing the VSV-G gene) in order to make recombinant 

lentivirus. Transfections were carried out in 100mm dishes that were 80-90% confluent. 

Plasmid DNA was combined with 36µl 2M CaCl2 in a 300µl volume, and then 300µl 2X 

Hepes Buffered Saline (HBS), pH 7.05 with 0.6% Dextran was added. Mixtures were 

vortexed and added dropwise to cells. Media was refreshed 18 hours later with 

DMEM/F12 with 10% fetal bovine serum and gentamicin plus 10mM sodium butyrate. 

Supernatant was collected 48 hours later, centrifuged for 5 minutes at 300 xg to pellet 

cellular debris, and filtered through a 0.45µm syringe filter. Filtered supernatant was 

either used for transduction or aliquoted and frozen at -80ºC until needed. Concentrated 

lentivirus was produced by ultracentrifugation using a Beckman Model L8M80 

ultracentrifuge with an SW-28 rotor. Centrifugation was performed at 50,000 xg for 1.5 

hours at 4ºC, and recombinant lentivirus was resuspended in phophate buffered saline 

(PBS). Primary muscle cells were transduced using media containing lentivirus 

combined with 8�g/mL hexadimethrine bromide (polybrene). For transductions with 

concentrated lentivirus, a 10-fold dilution was first performed prior to media being 

added to muscle cells. Transductions were performed for either 6-8 hours or 16-20 

hours, and media was then refreshed. Transgenic cells were visualized using 
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fluorescence microscopy to detect expression of GFP present in the PEF-green plasmid. 

Transgenic cells were selected using puromycin (0.5�g/mL) for three days prior to being 

harvested for mRNA isolation using the RNeasy kit (QIAGEN). 

Transient transfection of siRNAs into bovine adult satellite cells 

 One day prior to transfection, early passage bovine adult satellite cells were 

plated at a density of either 40,000 (for proliferation) or 80,000 (for differentiation) 

cells/on fibronectin-coated 12-well plates. On the day of transfection, either 20nM or 

50nM of siRNA (GDF8-1026 or Cy3 control) was combined with 3.5�l 2M CaCl2 in a 

30µl volume, and then an equal volume of 2X HBS was added. Complexes were 

vortexed for 15 seconds prior to being added dropwise to cells. Media was refreshed 18 

hours later. For differentiation, DMEM/F12 plus 2% horse serum was added. 

Transfection efficiencies were based on Cy3 control fluorescence. Cells were maintained 

in culture for four days before being harvested for RNA isolation. 

RNA isolation and real-time quantitative PCR analysis 

 RNA was isolated from transient transfections and transductions mentioned 

above using the RNeasy kit (QIAGEN). Cells were lysed in 350µl RLT buffer with 1% 

betamercaptoethanol. The lysed cells were homogenized either by vortexing for 1 

minute or being drawn through a 20 gauge needle five times. After precipitation with 

70% ethanol, binding to the column by centrifugation and washing with RW buffer, an 

on-column DNase digestion was performed. After two washes with RPE buffer, RNA 

was eluted with 20µl DEPC-treated water. RNA was quantified using a 

spectrophotometer, and 0.5µg RNA was added to a 20µl reaction to synthesize cDNA 
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using either the qScript kit (Quanta Bio) or Superscript III cDNA Synthesis kit 

(Invitrogen). Quantitative real-time PCR (qRT-PCR) reactions were set up in triplicate 

using 10µl either Perfecta (Quanta Bio) or Power Sybr Green mastermix (Applied 

Biosystems), 5µl cDNA diluted first 10-fold, and 5µl primer mix (2µM). Cycling 

conditions were as follows: 95ºC for 10 minutes, 40 cycles of 95ºC for 10 seconds, 60ºC 

for 30 seconds, and 72ºC for 30 seconds. A melt curve analysis followed, with 

temperature increments of 0.3ºC from 65ºC to 95ºC. Primers for qRT-PCR were either 

taken from the literature or designed using Applied Biosystems Primer Express software. 

To determine primer efficiency, a relative standard curve was analyzed using a dilution 

series of the appropriate cDNA.  

Real-time PCR data analysis 

qRT-PCR data was analyzed using the ∆∆Ct method with comparison to 

GAPDH as an internal control. The difference between the average Ct value for GAPDH 

and the Ct values for each myostatin replicate was calculated, and then the difference 

between this and the maximum ∆Ct was calculated to obtain the ∆∆Ct for each replicate. 

These were then compared to the ∆∆Ct for the transgenic control replicate to determine 

fold change in mRNA levels. Mean fold change values were tested using one-way 

ANOVA with a Tukey test for differences between means. 
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Results 

Design and testing of shRNAs targeting bovine and caprine myostatin 

 Four shRNAs targeting both the bovine and caprine myostatin coding sequences 

were designed using the Biopredsi program, three of which align to the propeptide 

portion of the mRNA (bases 1-828) and one that aligns to the mature portion (bases 829-

1147). The sequences of the siRNAs are listed in Table 1. Each siRNA sequence was 

named for the gene they target (GDF8) and the position within the coding sequence that 

they begin (ie. GDF8-57 begins at base 57). These siRNAs were then analyzed using the 

BLAST program (NCBI) to check for specificity. All four were confirmed to target the 

myostatin gene in Bos taurus and Capra hircus. In addition these siRNAs were found to 

align to this gene in other species as well. These siRNA sequences were used to create 

shRNAs which were then amplified and cloned into the PEF-green lentiviral plasmid 

(Appendix A). This plasmid contains a GFP reporter to confirm expression as well as a 

puromycin gene for antibiotic selection of transgenic cells.  

 

Table 1  Sequences of siRNAs designed to target bovine and caprine myostatin 

siRNA Sense Strand 
GDF8-57 caguggaucugaaugagaatt 

GDF8-181 caguaaacuucgccuggaatt 
GDF8-545 gguacaagguauacuggaatt 

GDF8-1026 caaagaugucuccaauuaatt 
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Myostatin suppression in HEK293T-myo cells 

In order to test the effectiveness of the shRNAs targeting the myostatin gene, an 

immortalized human cell line (HEK 293T) was engineered to express the caprine 

myostatin gene. This cell line was then named 293T-myo. The four lentiviral plasmids 

encoding the siRNAs listed in Table 1 (PG57, PG181, PG545, and PG1026) as well as a 

transgenic control shRNA targeting the firefly luciferase gene (PGLUC) were 

transfected into the HEK 293T cells expressing recombinant caprine myostatin.  

 

 

Figure 1  HEK 293T cells expressing caprine myostatin as well as an shRNA targeting 

myostatin. Cells were first transduced with a lentivirus containing the caprine myostatin 

gene, then transfected with lentiviral plasmids containing shRNAs targeting either 

myostatin or a nonsense control shRNA. red = expression of caprine myostatin, green = 

PEF-green plasmid containing an shRNA targeting myostatin. 

 



 36 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

PG57 PG181 PG545 PG1026 PGLUC No
transfection

A
ve

ra
ge

 F
ol

d 
C

ha
ng

e

 

Figure 2  Suppression of myostatin mRNA in vitro. Average fold change in caprine 

myostatin mRNA as compared to GAPDH as an internal control after transfection with 

PEF-green plasmids. PG57, PG181, PG545, and PG1026: plasmids containing shRNAs 

targeting myostatin, PGLUC: plasmid containing a nonsense shRNA targeting 

luciferase, no transfection: baseline expression of myostatin in the HEK 293T cell line. 

 

Transfection efficiencies among wells and replicates were consistent and averaged 50-

60% as assessed by GFP fluorescence (Figure 1). Transfections were replicated twice 

and qRT-PCR analysis was performed on each experiment. All four shRNAs targeting 

the myostatin gene showed effective suppression of myostatin mRNA levels when 

compared to the transgenic control PGLUC (Figure 2). The amount of myostatin mRNA 

in 293T-myo cells with no transfection was not significantly different from cells 

transfected with PGLUC, confirming that the reduction was not due to transfection 
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alone.  One-way ANOVA revealed expression of myostatin mRNA in cells transfected 

with each shRNA targeting myostatin was significantly different from the transgenic 

control (P<0.05). Due to the fact that the level of myostatin expression in the 293T-myo 

cell line does not reflect physiological levels expressed in muscle, the most effective 

shRNA construct from this experiment, PG1026, was chosen for evaluation in primary 

muscle cells. 

Isolation and culture of primary bovine muscle cells 

In order to test the effectiveness of the PG1026 construct against endogenous 

expression of myostatin, primary bovine muscle cell cultures were established. Fetal 

bovine muscle cells were isolated from bovine fetal muscle tissue excised from 60-90 

day fetuses. Cells tended to be spindle-shaped but could not be visually distinguished 

from fibroblasts in culture (Figure 3). Since fibroblasts are always present in enzyme 

digestions of muscle due to connective tissue, cultures needed to be enriched for 

myoblasts versus fibroblasts. A technique termed preplating was utilized to enrich 

myoblast cultures, taking advantage of the fact that fibroblast cells attach more quickly 

than myoblasts.131 However, when cells that had adhered during the preplating treatment 

were cultured to confluence, myotube formation was seen. Therefore myoblasts were 

also present in these cultures. In addition to myotube formation, desmin labeling was 

also used to characterize these cells. Immunocytochemistry was performed in order to 

determine the extent of desmin positive cells. Desmin is a type III intermediate filament 

protein expressed in fetal myoblasts as well as adult myogenic precursors.126,132 Desmin 

labeling on primary bovine muscle cells cultures after preplating were >90% desmin 
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positive, indicative that this is in fact a fetal bovine myoblast population of cells (Figure 

4). 

 

               

           

Figure 3  Bovine primary muscle cells in culture. Primary cells isolated from either fetal 

bovine muscle (A), bovine adult muscle using the explant method (B), or from adult 

bovine muscle using the fiber isolation methods. 

 

Primary adult muscle cells were isolated from mature bovine muscle both 

through muscle fiber isolation and from explants cultured in vitro. Both methods resulted 

in a large proportion of muscle cells, however cells could be repeatedly harvested from 

explant cultures for up to two weeks after initial growth was seen. Muscle cells began 

migrating out of explant cultures and plating down after 7-10 days in culture. These cells 

grew more slowly than fibroblasts and were round to spindle shaped in appearance 

A) B) 

C) 
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(Figure 3B). When these cells were induced to differentiate in vitro, extensive myotube 

formation was seen, indicative that these were indeed myogenic cells. However, in order 

to characterize these cells, immunocytochemistry was utilized. Adult myogenic 

 

                                            

Figure 4  Immunocytochemistry on bovine primary muscle cells. A) 

Immunofluorescence labeling for desmin in bovine fetal muscle cells, B) labeling for 

desmin in adult bovine myotubes. red = desmin, blue = Hoescht nuclear counterstain. 

 

precursor cells express desmin as mononuclear cells, whereas satellite cells do not 

express desmin until they are fused into myotubes.126 Desmin labeling was negative in 

mononuclear cultures of these cells. However, when induced to differentiate, desmin 

labeling was strong and localized specifically to multinucleated myotubes, indicating 

that these cells are most likely satellite cells. Further attempts to label these cells with 

antibodies to myostatin and the differentiation factor Myf-5 were unsuccessful due to 

lack of an effective antibody for either bovine protein. 

 

 

A) B) 
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Transduction of primary bovine myoblasts 

 In order to test shRNA expression once it is stably integrated into the cell, 

recombinant lentivirus was produced (titer ~1X106 infectious units [IU]/mL) and used to 

transduce bovine fetal myoblasts in culture. This transgene expression is more reflective 

of expression in vivo, providing a more complete picture of the myostatin suppression 

expected in a transgenic animals expressing the shRNA construct. The highest 

percentage of GFP positive cells (~60%) was achieved with a 16-20 hour transduction 

with 8�g/mL polybrene. However, this also induced a large amount of cell death. Cells 

that did survive this manner of transduction had a high proportion of large, flat, 

senescent cells that ceased to proliferate.  In order to improve cell survival and maintain 

the proliferative state of these cells, the transduction time was reduced to 6-8 hours. 

Since the majority of retroviral infection should occur by this time point, a major 

reduction in efficiency was not expected based on previous experiments. As expected, 

transduction rates remained at 50-60%. In addition, cell survival and morphology 

improved, and myoblasts continued to proliferate after transduction. Addition of 

0.5µg/mL puromycin for three days resulted in cultures that were greater than or equal to 

90% GFP positive (Figure 5). GFP positive cells were cultured to confluence and 

induced to differentiate by addition of a low-serum media. As expected, myotube 

formation was seen in cultures of lentivirally transduced myoblasts, and some of these 

myotubes expressed GFP.  

 In order to improve transduction efficiency further, lentiviral particles were 

concentrated prior to addition to myoblast cultures. Concentration resulted in titers �109 
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IU/mL. As expected, a 16-20 hour transduction time resulted in a proportion of cells 

either dying or becoming senescent. However, transduction for 6-8 hours was successful 

at reducing this occurrence. In addition, initial transduction rates improved to 70-80% as 

determined by GFP expression. Cell morphology was also maintained, and when cells 

were grown to confluence and induced to differentiate, myotube formation was seen. 

However, multiple attempts to characterize myostatin expression in these cells after 

transduction using qRT-PCR failed, with Ct values >35 for all transduced samples 

regardless of the shRNA being expressed. The efficiency of transduction for adult  

 

              

Figure 5  Transduction of primary bovine fetal muscle cells. Cells were transduced with 

lentivirus made using the PG1026 lentiviral plasmid, then selected with puromycin for 3 

days. A) brightfield image, B) fluorescent image. 

 

muscle cells was also investigated. Unlike the fetal myoblasts, cell death and senescence 

were seen after transduction for both 16-20 hours as well as 6-8 hours. Proliferation 

ceased and cells did not differentiate after being switched to low serum media. Due to 

A) B) 
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the negative impact of transduction on these cells and the inability to evaluate mRNA 

levels afterwards, transfection experiments utilizing siRNAs were pursued instead. 

Evaluation of myostatin suppression in adult bovine muscle cells using siRNAs 

 Due to the inability to successfully detect myostatin suppression after 

transduction of primary muscle cells, an siRNA approach was investigated. The GDF8-

1026 siRNA or a nontargeting control Cy3-labeled siRNA was transfected into adult 

bovine muscle cells using the calcium phosphate transfection method. This resulted in a 

transfection efficiency of >90% as assessed by Cy3 fluorescence. Furthermore, little to 

no cell death or senescence was seen with this method. When switched to the low serum 

media, cells differentiated into multinucleated myotubes, with notable accumulation of 

the Cy3 label within these myotubes. Although not quantified, there appeared to be more  

 

               

Figure 6  Myotube development in adult bovine muscle cells transfected with siRNAs. 

Cells were transfected with 50nM siRNA, then allowed to proliferate and differentiate in 

culture for 4 days. A) GDF8-1026 siRNA, B) nontargeting control Cy3 siRNA. 

 

 

A) B) 
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abundant myotube development observed in wells transfected with the GDF8-1026 

siRNA versus those with the Cy3 control (Figure 6). Analysis by qRT-PCR revealed a 

dramatic decrease in myostatin expression in adult muscle cells transfected with the 

GDF8-1026 siRNA versus the Cy3 control for both the 20nM and 50nM concentrations, 

with suppression ranging from 80-95% (Figure 7). However, the level of myostatin 

mRNA in cells that were not transfected was significantly lower than that of the Cy3 

control. 
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Figure 7  Expression of bovine myostatin mRNA in primary adult muscle cells. Average 

fold change in bovine myostatin mRNA as compared to GAPDH as an internal control 

after transfection with either the GDF8-1026 siRNA (20nM or 50nM) or the 

nontargeting control Cy3 siRNA (20nM or 50nM). 
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Discussion 

 In order to demonstrate the utility of RNAi in a large animal species, the 

myostatin gene was chosen. However, due to the similarity of gene sequence between 

different species, the siRNAs designed to target the bovine and caprine myostatin gene 

sequences were found to also target this gene in a wide variety of animals. This further 

emphasizes the value of RNAi as a tool for manipulating gene expression. RNAi can 

potentially provide the ability to suppress the same gene across multiple species. In the 

case of the myostatin gene, suppression could prove to be a valuable agricultural tool, 

resulting in more meat production per animal. Additionally, siRNAs that also match 

human sequence may become valuable therapeutically for investigation into anti-

myostatin drug development to treat such disorders as muscular dystrophy and muscle 

wasting. Therefore once an effective siRNA is found in one species, it may also be 

effective in suppressing gene expression in other species if the siRNA sequence matches.  

The HEK 293T cells expressing recombinant myostatin provided a means of 

evaluating the effectiveness of the designed shRNAs without the need for manipulation 

of a difficult to transfect primary  cell line. In addition, it demonstrated effectiveness 

across species. However, the level of myostatin expression in these cells, while stable, 

was likely not physiological. In addition, the amount of plasmid DNA transfected was 

also not reflective of the normal cellular transcription level of shRNAs integrated using a 

lentiviral system. Therefore, there was still a need to demonstrate this same suppression 

in a primary cell line. This necessitated isolation and culture of primary muscle cells.  
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 Both fetal and adult muscle cells were successfully isolated from bovine muscle 

by modifying previously described protocols.129,130 Fetal myoblasts were confirmed 

through positive staining for the desmin protein with immunocytochemistry as well as 

myotube formation. A preplating protocol was used to enrich for myoblasts versus 

fibroblasts, as fibroblasts are expected to plate onto the flask quickly. However, it was 

found that this was only marginally effective as myotube formation was also seen in 

cultures derived from cells that had plated down onto the flask during the preplating 

treatment. This demonstrates the need for a more effective protocol for bovine myoblast 

enrichment. Fetal myoblasts were able to be maintained in culture up to passage five, 

when they tended to cease proliferation and spontaneously differentiate. Fetal myoblasts 

were also successfully cryopreserved, and these cells maintained their ability to 

proliferate and differentiate once thawed.  

Adult muscle cells were also successfully isolated from tissue explants as 

previously described.130 These muscle cells were postulated to be satellite cells through 

their lack of desmin staining in the proliferative state, but positive staining when 

differentiated into multinucleated myotubes. However, further attempts to characterize 

these cells failed. This was due to the difficulty in finding antibodies that react well with 

bovine proteins. Manipulation of adult satellite cells proved more difficult, as they 

would spontaneously differentiate in culture and did not cryopreserve well. Adult muscle 

cells also did not transduce efficiently and often became senescent when transduced. 

Various agents have been previously shown to be effective in transfecting primary 

muscle cells.133,134 When transfected using the calcium phosphate method, little to no 
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cell death or senescence was seen in adult satellite cell cultures. Cells continued to 

proliferate and differentiate after treatment. This allowed for evaluation of mRNA 

expression in bovine primary muscle cells. 

 Fetal myoblasts were effectively transduced using both raw and concentrated 

lentiviral particles using the 6-8 hour transduction. Longer transduction times resulted in 

visible cell death as well as the presence of senescent cells that would not proliferate or 

differentiate. Additionally, transduction of adult muscle cells gave a similar result 

regardless of the transduction time. Lentiviral transduction of primary muscle cells has 

been shown previously in mice135,136 and pigs.137 Work in mice to express a 

minidystrophin via lentiviral-mediated delivery resulted in greater than 90% transduction 

of both myoblasts as well as differentiated myotubes.136 However, somewhat lower 

transduction rates were found using porcine muscle cells.137 The supernatant that is 

harvested from lentivirus-producing cells is lower in nutrient content and has a notable 

acidic pH as indicated by media appearance. Since withdrawal of serum induces 

differentiation in confluent cultures of these cells, it is possible that the lentivirus 

containing media itself may be in part responsible for these effects. However, the 

addition of serum to raw supernatant lentivirus did not improve cell survival or 

morphology. In addition, concentrated lentivirus resuspended in fresh media also 

produced some cell death, albeit not as severe. Due to the high concentration of lentiviral 

particles, a higher rate of integration is possible and this could have interfered with 

cellular function. However, GFP fluorescence in these cells did not appear to be stronger 
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than those transduced with unconcentrated supernatant. Therefore, a higher rate of 

integration did not appear to be a factor.  

 Due to the difficulties in transducing both bovine fetal and adult myoblasts with 

lentivirus, an alternative method was pursued. Transfection of siRNAs had been 

previously shown to be effective in reducing myostatin expression in primary chicken 

myoblasts as well as mouse C2C12 cells.125,138 Transfection of adult muscle cells with 

siRNAs not only resulted in a high transfection efficiency, but cells also continued to 

proliferate and when induced, differentiate into multinucleated myotubes. Furthermore, 

analysis of myostatin mRNA concentrations in these cells by qRT-PCR revealed a 80-

95% reduction by GDF8-1026 when compared to the Cy3 control at both the 20nM and 

50nM concentrations. Thus, transfection with a myostatin specific siRNA effectively 

demonstrated depletion of myostatin mRNA in primary muscle cells. However, cells 

with no transfection had a significantly lower level of myostatin mRNA than those 

transfected with the Cy3 control (p<0.05). This discrepancy between the transfected and 

nontransfected control cannot be explained. However, if another control was performed 

in which no siRNA is added, this may help to determine whether this was an effect of 

transfection alone or possibly the Cy3 control siRNA.  

Although the siRNA sequences tested showed a reduction of myostatin mRNA, 

protein expression could not be analyzed. This was due to a lack of a reactive and bovine 

specific myostatin antibody for protein analysis. If an effective antibody is found, 

protein measurement based on either immunocytochemistry or Western blot would 

become an option. Due to its therapeutic value in human medicine, myostatin antibodies 
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have been purchased by various drug companies and withheld from use in academic 

research. In this project, four different antibodies (ab37254-50, ab996-50 [Abcam], 

MAB788 [R&D Systems], and sc-6884 [Santa Cruz Biotechnologies]) were tested using 

a Western blot. All of these were shown to be either nonreactive or nonspecific to bovine 

myostatin protein in skeletal muscle extracts. One of these (ab996-50) was also tested 

using immunocytochemistry on desmin-positive bovine fetal myoblasts, and labeling 

failed. However, the significant reduction in myostatin mRNA using siRNA GDF8-1026 

in the adult muscle cells was sufficient to demonstrate effective mRNA depletion using 

RNAi in vitro.  

 

Conclusions 

 The experiments described effectively demonstrated reduction of bovine and goat 

myostatin mRNA using siRNAs designed against regions of homology between these 

two species. These siRNA sequences were successful in suppressing mRNA expression 

both when introduced in vitro as an siRNA or when expressed from a lentiviral plasmid 

as an shRNA. A similar approach has been previously reported in mice, where an siRNA 

targeting the mouse myostatin gene was then incorporated as an shRNA into a lentiviral 

system for in vivo transgene delivery.125 Therefore this approach should be effective 

when transitioning from in vitro testing to an in vivo application in livestock. 

 Isolation of both fetal myoblasts and adult satellite cells from bovine skeletal 

muscle was successful as shown by immunocytochemistry and myotube development. 

Additionally, transduction of fetal myoblasts with recombinant lentivirus was 
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demonstrated. However, reduction of myostatin mRNA expression in transduced fetal 

myoblasts was unable to be measured using qRT-PCR. Improved primer design or 

increased sensitivity of detection through a Taqman assay may allow for evaluation of 

myostatin expression in these cells. It has previously been shown that myostatin mRNA 

levels are upregulated at the onset of differentiation in adult satellite cells.129 Efficient 

transduction of isolated satellite cells was unsuccessful. Transfection of an siRNA into 

these satellite cells, however, was effective and resulted in reduction of endogenous 

bovine myostatin mRNA.  

The siRNA sequence shown to be the most effective at suppressing myostatin 

mRNA in vitro, GDF8-1026, was chosen for evaluation in an in vivo setting using a 

recombinant lentiviral plasmid (PG1026). This will facilitate the transition of lentiviral-

mediated shRNA expression from in vitro testing to an in vivo application, allowing 

production of animals transgenic for reduced myostatin expression. 
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CHAPTER III 

ANALYSIS OF MUSCLE-SPECIFIC PROMOTERS FOR                        

LENTIVIRAL-MEDIATED shRNA EXPRESSION 

 

Introduction 

The ultimate goal of our in vitro experiments using RNAi was the translation to 

an in vivo application. However, expression of shRNAs in vivo has been shown to 

produce off-target effects. In work by Grimm et al. (2006), tissue-expression of shRNAs 

targeting the firefly luciferase gene in a mouse produced liver toxicity.49 Since these 

shRNAs did not target an endogenous gene, this was an unexpected result. Additionally, 

various microarray and qRT-PCR studies have shown silencing of off-target genes using 

RNAi.43,45-47 This has led to the investigation of methods to control shRNA expression 

so as to avoid these effects in vivo. One of these methods is tissue-specific expression. 

This is most useful when the target gene is expressed mainly in one tissue or organ. In 

the case of the myostatin gene, expression is localized primarily to skeletal muscle. 

Therefore, it presents an attractive target for application of this method. Tissue-specific 

expression of shRNAs may also increase the effectiveness of the transgenes in 

suppressing gene expression, and it may also be useful in therapeutic delivery.  

Muscle-specific expression has already been utilized in mice for delivering 

therapeutic agents. Expression of a mini-dystrophin protein using the muscle creatine 

kinase (MCK) promoter demonstrated an effective decrease in muscle atrophy in the 

mdx mouse model of muscular dystrophy.139 This promoter has been found to have 
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different expression patterns and quantitative expression levels depending on the size of 

the promoter sequence utilized when analyzed in vitro. In mice, progressive deletion of 

the MCK promoter from -3300 to -723 reduced quantitative expression in vivo but not 

specificity.140 However, when tested in myogenic cells, no difference was found in 

expression levels when analyzed using chloramphenicol acetyltransferase (CAT) fusion 

genes.141 Another example of muscle-specific expression of a transgene is the use of the 

myogenin promoter. When inserted into a lentiviral transfer vector that included a GFP 

reporter gene and used to generate transgenic mice, skeletal-muscle specific expression 

of GFP was found.32 In addition, myogenin expression is thought to be influenced by 

myostatin.123 Other muscle specific promoters have also been demonstrated to be 

effective, including the �-actin and myosin light chain.142,143 To this end, the bovine 

muscle-specific promoters driving MCK and myogenin were cloned from genomic DNA 

and tested for their ability to drive transgene expression in muscle cells in vitro. Both 

genes should be upregulated in differentiated skeletal muscle, ensuring transgene 

expression not only during development but throughout the animal’s life in a restricted, 

tissue specific manner. 

 

Materials and Methods 

Isolation and cloning of bovine muscle promoters 

 Promoter sequences were amplified from bovine genomic DNA using PCR. 

Reactions were performed using 2.5µl 10X amplification buffer, 10mM dNTP mix, 0.5 

units Taq polymerase, 0.5µl each 50µM forward and reverse primer, and 50-100ng 
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genomic DNA in a total volume of 25µl. Primer sequences for each promoter are listed 

in Appendix A. Cycling conditions were as follows: 95ºC for 5 minutes, 30 cycles of 

95ºC for 30 seconds, 57ºC for 30 seconds, and 72ºC for 45 seconds, and a final extension 

of 72ºC for 10 minutes. Products were run on a 1.8% agarose gel to confirm 

amplification, and bands of expected sizes for each promoter were excised and purified 

using the QiaQuick gel extraction kit (QIAGEN). Products were cloned into either the 

pGEM T-easy vector (Promega) or TOPO TA sequencing vector (Invitrogen) according 

to kit instructions and sequenced to confirm inserts. Once promoter sequences were 

verified, PCR was used to amplify and add Xba1 and Age1 restriction enzyme sites on 

the 5’ and 3’ ends for cloning into the G-Zeo lentiviral plasmid (Appendix A). Reaction 

and cycling conditions were as above. Restriction digestions were performed in order to 

remove the constitutive CMV promoter from the G-Zeo plasmid as well as to cut the 5’ 

and 3’ ends of each PCR product for cloning. Restriction digests were carried out with 

2�l NEB Buffer 4, 1�l each Xba1 and Age1 enzymes, BSA and either 10�l of purified 

PCR product or 5�g of plasmid in a 20�l reaction for 1.5 hours at 37ºC. Digested 

plasmid was run on a 1.2% agarose gel to separate the two bands, and the plasmid band 

was excised and purified as above. Digested PCR products were cleaned using the 

QiaQuick gel extraction kit with the recommended modifications for cleaning enzyme 

digestions (addition of 3X volume Buffer QG plus 1X volume isopropanol prior to 

loading onto the spin column). Ligation of the bovine myogenin promoter into G-Zeo 

was performed using the Quick ligase kit (NEB). Briefly, 50 ng digested plasmid was 

combined with insert in a 3:1 molar ratio (insert:vector) along with 2X Quick ligase 
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buffer and 1µl Quick ligase in a 20µl total volume. The ligation proceeded for 5 minutes 

at room temperature before being put on ice. The MCK promoter was ligated using 

100ng plasmid in a 6:1 molar ratio of insert to vector with Quick ligase. Ligated 

products, 5µl each, were then transformed into Stbl3 chemically competent cells and 

clones were isolated and confirmed as described in Chapter II. Confirmed constructs 

were labeled as G-Zeo Bmyog and G-Zeo BMCK (bovine myogenin and bovine muscle 

creatine kinase, respectively). 

Testing of bovine promoter activity in vitro 

 Recombinant lentivirus was produced as in Chapter II (Materials and Methods) 

using the G-Zeo Bmyog and G-Zeo BMCK plasmids. Medium containing lentiviral 

particles was aliquoted and either used fresh or frozen at -80ºC for future use. For this 

experiment, bovine fetal myoblasts (cultured in DMEM/F12 plus 15% FBS and 

gentamicin) and mouse C2C12 cells (cultured in DMEM-Glutamax plus 15% FBS and 

gentamicin) were utilized. Cells were plated in either 12- or 48- well plates at 

approximately 50% confluence the day of transduction. Muscle cells were transduced 

with recombinant lentivirus for each new muscle specific construct. Transductions were 

performed for either 6-8 hours or 16-20 hours as described in Chapter II. The 

transformed cells were allowed to proliferate for one day before being induced to 

differentiate using DMEM/F12 or DMEM-Glutamax plus 2% horse serum. 

Differentiation media was refreshed each day.  

The new promoters were cloned into G-Zeo so that they would drive GFP 

expression. Therefore, in order to test the effectiveness of the new construsts, primary 
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muscle cells were evaluated for timing and localization of GFP fluorescence beginning 

on day 1 post-differentiation using fluorescence microscopy. In addition, transduced 

muscle cells were evaluated for mean intensity of GFP fluorescence using a fluorometer. 

Medium was refreshed with PBS plus 2% FBS prior to being evaluated. Transductions 

were performed in either duplicate or triplicate, and wells were evaluated on days 1, 3, 5, 

7, and 9 post-differentiation for overall GFP fluorescence. 

Data analysis 

 Average fluorescence intensity was calculated for each sample and day of 

measurement. Means were tested using one-way ANOVA with a Tukey test for 

comparison between means.  

 

Results 

Isolation and cloning of bovine muscle-specific promoters 

 The bovine myogenin promoter (bases -7 to -1410) and muscle creatine kinase 

(MCK) promoter (bases -183 to -1764), in relation to the translational start site, were 

amplified from genomic DNA and cloned. The myogenin promoter sequence matched 

NCBI entry (AY882581) as well as upstream sequence as determined by comparison to 

bovine genomic sequence (BTA4). The MCK promoter was confirmed to match bovine 

genomic sequence upstream from the MCK gene (BTA18). These sequences were then 

cloned into the G-Zeo plasmid in place of the constitutive CMV promoter (Figure 8). 

Recombinant lentivirus was produced using the new constructs and used to transduce 
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bovine fetal myoblasts as well as C2C12 mouse myoblasts, an immortalized mouse 

muscle cell line. 

 

 

 

 

 

 

 

 

Figure 8  Map showing insertion of bovine muscle-specific promoters into the G-zeo 

lentiviral plasmid. Vector map showing the insertion site of the bovine myogenin and 

MCK promoters. 

 

Evaluation of promoter expression 

The myogenin gene is a differentiation factor induced at the time of cell cycle 

withdrawal.144 Therefore, expression of the transgene, GFP, should be induced at this 

time as well in muscle cells. To test this, cells were transduced with a lentivirus 

containing a GFP marker driven by the myogenin promoter. Images demonstrating 

timing of GFP expression are provided in Figure 9. One day post-differentiation, both 

bovine fetal muscle and C2C12 cells began to express GFP. These were presumably 

myoblasts that had been induced to differentiate. On day 3, myotube formation was seen 
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in bovine fetal muscle cells, and GFP expression was localized to these myotubes. 

C2C12 cells continued to fluoresce but had not yet completed differentiation. By day 5 

post-differentiation, long myotubes were visible in both cell types that expressed GFP. 

However, C2C12 cells that had not fused also displayed fluorescence. Analysis of 

fluorescence intensity using a plate reader revealed no difference between cells 

expressing GFP driven by the myogenin promoter or those without the transgene until  

 

 

  

 

 

 

 

 

 

 

 

 

Figure 9  Expression of GFP in fetal bovine myotubes. Cells were first transduced with 

lentivirus containing either the bovine myogenin promoter or the bovine MCK promoter 

driving GFP expression. Transduced cells were then differentiated in low serum media 

for 5 days. Images were taken on days 1, 3, and 5 post-differentiation. 

 

Day 1 

Day 3 

Day 5 

myogenin promoter MCK promoter 
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day 9 post-differentiation (Figure 10). On day 9, mean intensity in both bovine fetal 

muscle and C2C12 cells was significantly greater than that of the nontransgenic control 

(p<0.05) for both constructs.  

The MCK gene is a muscle-specific variant of creatine kinase upregulated in 

mature skeletal muscle cells.140 Although it was expected that this gene would also be 

upregulated at differentiation, this was not the case. GFP expression in bovine fetal 

muscle cells transduced with the lentivirus containing the MCK promoter began to be 

detected in cells as early as day 1 post-differentiation. However, intensity of GFP 

expression was lower at this timpoint than in cells expressing GFP from the myogenin 

promoter. In addition, although some myotubes became GFP positive as differentiation 

progressed, a large proportion of mononuclear GFP positive cells were seen throughout 

the time course (Figure 9). GFP expression was seen in myotubes as they developed but 

was not restricted to them. In C2C12 cells, a similar expression pattern to that of the 

bovine myogenin promoter was seen. Analysis of mean fluorescence intensity revealed a 

significant difference between transgenic and nontransgenic bovine fetal muscle and 

C2C12 cells at day 9 post-differentiation (p<0.05) (Figure 10).  
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Figure 10  Mean GFP intensity in fetal bovine and mouse C2C12 cells at day 9 post-

differentiation. Letters that are different from each other are significantly different 

(p<0.05). 
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Discussion 

 Expression of shRNAs for suppressing gene expression in vivo has been 

effectively demonstrated in a wide variety of species, including worms,3 plants,6 and 

mice.7 However, instances of off-target effects have been found in some cases.43,45-47,49 

When working with livestock species, it is important that any manipulation does not 

have a negative impact on the health or production of the animal. Therefore, in order to 

attempt to control for possible off-target effects, tissue-specific expression of the 

transgene was explored. Myostatin is almost exclusively produced in skeletal muscle.129 

Therefore, limiting shRNA expression to skeletal muscle should help prevent any 

potential toxicity or other effects of the transgene. In addition, effectiveness of the 

targeting shRNA expression may be increased as well.  

The two promoters analyzed here were chosen for their specificity as well as 

their ability to drive muscle-specific expression in mice. The myogenin promoter has 

been shown previously to localize GFP expression to the skeletal muscle of mice when 

used in a lentiviral system.32 In addition, myogenin is predicted to be a target of the 

myostatin protein.123 In vitro experiments showing an inhibition of differentiation by 

myostatin also showed an inhibition of differentiation factors, including myogenin 

protein.123 Inversely, inhibition of myostatin using antisense RNAs resulted in a 450-fold 

increase in myogenin transcript levels.123 Therefore, it is plausible that targeting 

myostatin through RNAi driven by this promoter may create a positive feedback loop. 

Decreased myostatin should in theory increase transcription of myogenin, and therefore 

a higher rate of promoter activation would be expected. The second promoter chosen 
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was the MCK promoter. This promoter has been well-documented in mouse experiments 

limiting transgene expression to skeletal muscle, even postnatal 

expression.120,139,140,145,146 Therefore, this promoter was expected to also be efficient in 

driving muscle-specific expression in bovine cells. 

A portion of the bovine myogenin promoter was found in GenBank (AY882581). 

However, initial testing with this portion revealed extremely weak expression of GFP. 

Therefore a larger portion was isolated, containing sequence upstream of the myogenin 

gene as compared to assembled bovine genomic sequence (BTA4). This bovine 

myogenin promoter localized GFP expression to myotubes effectively in bovine fetal 

myoblasts. Expression of GFP was first seen in presumptive differentiating cells on day 

1 post-induction, and this expression was then localized to multinucleated myotubes by 

day 3. Expression seemed to increase by day 5 post-differentiation. In C2C12 cells, GFP 

expression appeared fainter, which may be indicative that this promoter is less effective 

in mouse cells than bovine cells. No detectable increase in overall fluorescence was seen 

in either cell type when evaluated using the fluorometer until day 9 post-differentiation. 

However, a lack of sensitivity is thought to be partially responsible for this observation. 

Additionally, given that not all cells that are transduced express the myogenin gene (ie. 

nondifferentiating myoblasts, contaminating fibroblasts), this may not be an accurate 

measurement for induction of promoter expression. Therefore, more characterization of 

this promoter may be needed prior to its use in vivo.  

The bovine MCK promoter had not been previously characterized, and so bovine 

genomic sequence (BTA18) was used to isolate it from bovine genomic DNA. After 
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several attempts, anchoring the 5’ primer in the first exon prior to the translation start 

site allowed successful amplification of a 1.6 kb portion upstream. This promoter 

sequence was able to drive GFP expression. However, it did not appear to be limited to 

myotubes in either fetal myoblasts or C2C12 cells. This may be due to a lack of muscle-

specific or differentiation-specific elements or binding motifs. Johnson et al. (1989) 

characterized a 3.3 kb piece of the mouse MCK promoter, which has since been used to 

localize transgene expression to skeletal muscle.140 Progressive deletions from the 5’ end 

of the promoter sequence reduced expression of the transgene, indicating that perhaps a 

larger portion of this promoter may be needed. However, several reports using this 

promoter in mice show that a 1.35 kb portion is sufficient for muscle-specific 

expression.139,145 The majority of C2C12 cells that expressed GFP were also 

mononuclear, indicating that this gene may not be upregulated at differentiation as 

myogenin in vitro. Analysis of GFP intensity using a plate reader revealed a significant 

difference from the mean intensity of nontransgenic cells in bovine myoblasts at day 9 of 

differentiation. However, this difference was not as pronounced in C2C12 cells, as only 

one of the two constructs showed a significant difference. Further analysis of this 

promoter sequence is needed prior to use in in vivo applications. 

 

Conclusions 

 Both the bovine myogenin and MCK promoter sequences isolated and analyzed 

were successful in driving GFP expression in both bovine fetal muscle and C2C12 

mouse cell lines. However, similarities among treatment groups in mean intensity until 
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day 9 of differentiation demonstrates a need for further analysis of the promoter 

sequences utilized. In addition, the lack of GFP localization to differentiated cells using 

the MCK promoter supports this need. The development of a lentiviral vector using a 

muscle-specific promoter to drive transgene expression will aid in reducing possible off-

target effects when applying shRNA-mediated suppression of myostatin to a large 

animal model. 
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CHAPTER IV 

PRODUCTION OF TRANSGENIC ANIMALS WITH REDUCED            

MYOSTATIN EXPRESSION 

 

Introduction 

In Chapter II, it was demonstrated that shRNAs targeting the bovine myostatin 

gene were effective at suppressing both bovine and caprine myostatin mRNA expression 

in vitro. The most effective shRNA construct, PG1026, was chosen for further 

experiments. In order to demonstrate the effectiveness of gene suppression in vivo in a 

large animal model using RNAi, this construct was utilized for transgenic animal 

production. To ensure the transgene cassette was inserted into the genomic DNA using 

lentiviral-mediated transfer, two methods of transgenic embryo production were 

explored. The first utilized somatic cell nuclear transfer (SCNT) cloning with a bovine 

cell line transduced with a recombinant lentivirus prior to nuclear transfer. The second 

involved microinjection of concentrated recombinant lentivirus into the perivitelline 

space of bovine zygotes. 

Cloning using somatic cells as the nuclear donor has been used previously to 

produce a large number and variety of animals. Wilmut et al. produced the first sheep 

clone using a somatic cell, demonstrating that somatic cells are indeed capable of 

reprogramming back to a totipotent state.97 Since then, this method, combined with 

retroviral gene transfer, has been used successively to produce a variety of transgenic 

large animals, including dog,91 cat,93 cow100 and pig.84,99 Although inherently inefficient, 
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SCNT with a transduced cell line should therefore result in transgenic embryos for 

transfer and the production of a live transgenic offspring. 

 The second method involves the production of high-titer lentivirus that is 

microinjected into a zygote to transduce it directly. Although the use of a retrovirus to 

infect an embryo directly was initially described by Jaenisch et al. in 1975, it was 

abandoned for a number of years due to germline silencing.147 However, the 

development of vectors based on a lentivirus allowed germline transmission and 

expression of the transgene.32 This same method was used by Hofmann et al. (2003) to 

produce transgenic pigs.88 Tranduction of in vivo produced porcine zygotes with a 

lentiviral plasmid expressing eGFP resulted in 70% transgenic offspring as indicated by 

PCR analysis.88 Additional work by this lab revealed production of transgenic bovine 

embryos through transduction of both in vitro produced zygotes as well as denuded 

oocytes prior to IVF. Although a lower rate of transgenesis was found (45% vs. 92%) in 

bovine blastocysts produced through microinjection of zygotes versus that of oocytes, 

the necessary step of cumulus cell removal prior to injection of oocytes has been shown 

previously to lower fertilization rates.148,149 Therefore, production of transgenic animals 

through lentiviral transduction in this experiment was performed using microinjection of 

zygotes rather than mature oocytes, followed by IVF and in vitro culture.  
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Materials and Methods 

Production of transgenic embryos through SCNT 

 Recombinant lentivirus was produced as previously described (see Materials and 

Methods, Chapter II) using constructs PG1026 as well as a transgenic control PG5529. 

The shRNA in PG5529 targets the foot and mouth disease virus. Medium containing 

recombinant lentiviral particles was used to transduce a bovine fetal fibroblast cell line. 

This cell line had been previously utilized for SCNT cloning and shown to result in high 

pregnancy rates (personal communication, David Faber, TransOva Genetics). Cells were 

plated at 70-80% confluence in 6-well plates for transduction. One milliliter of lentivirus 

containing medium was combined with 8�g/mL polybrene and added to the cells for 16-

20 hours. Cells were cultured for two days, and once fluorescence was visualized cells 

were put under selection with puromycin. Cells were selected with 1µg/mL puromycin, 

and a 100% GFP positive population of cells was obtained after 3-4 days. Cells were 

then cryopreserved for future use. Transgenic cell lines were sent to ViaGen, Inc. in 

Austin, Texas to produce cloned blastocysts by somatic cell nuclear transfer. Blastocysts 

were either vitrified prior to transfer or transferred fresh into synchronized recipient 

cattle on day 7 of culture. Prior to transfer embryos were visualized for GFP 

fluorescence. Cows were ultrasounded after 35 days gestation to confirm pregnancy. 

Pregnant animals were then monitored every two weeks by ultrasound until day 120 of 

gestation, then checked every month by palpation.  
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Production of transgenic embryos by microinjection of zygotes with recombinant 

lentivirus 

Recombinant lentivirus concentration 

Recombinant lentivirus was produced as described (Materials and Methods, 

Chapter II) but with modifications for production and concentration of a large volume. 

For each lentiviral construct, HEK 293T cells were plated in six 100mm plates at 90% 

confluency on the day of transfection. Cells were transfected as in Chapter II, and 18 

hours later media was refreshed with 6mL OptiMEM media (Invitrogen) plus 10mM 

sodium butyrate per plate. Media was collected 48 hours later and harvested as described 

in Chapter II (Materials and Methods). Approximately 33mL lentiviral media was added 

to a Beckman thin-walled ultracentrifuge tube (part no. 344058), and 5mL of a 15% 

sucrose solution in PBS was layered on the bottom of each tube using a Pasteur pipette. 

Tubes were balanced using a scale and centrifuged in a Beckman Model L8M80 

ultracentrifuge using an SW28 rotor. Ultracentrifugation was done at 4ºC for 1.5 hours at 

a speed of 50,000 xg. Supernatant was removed and viral pellets were resuspended in 

35µl sterile PBS overnight at 4ºC. Concentrated virus was frozen at -80ºC in 5µl aliquots 

until needed.  

Determining lentiviral titer 

Recombinant virus was titered prior to use in order to ensure successful embryo 

transduction. HEK293T cells were plated at a density of 25,000 cells/well in a 48-well 

plate in the morning the day of transduction. That afternoon, cells were transduced with 

serial dilutions of concentrated lentivirus. Due to limited volumes of concentrated virus, 



 67 

serial dilutions of 0.1, 0.01, 0.001, and 0.0001 were used. All transductions were done 

with 8µg/mL polybrene. Media was refreshed 18 hours later and cells were maintained 

in culture for 3 days before evaluation. Titer was calculated as follows: 

 
{[(# cells plated) X (% GFP positive cells)]/(mL viral media)} X dilution factor 

 
Only concentrated virus with a titer at or above 1 X 109 IU/mL was used for 

microinjection of embryos.  

In vitro production of bovine embryos 

Bovine embryos were produced using in vitro fertilization as previously 

described with modifications.150 Mature oocytes were washed out of maturation media 

and twice through TL Hepes media before being washed in groups of up to 50 into 400µl 

of equilibrated fertilization media (Tyrode’s medium with 25 mM bicarbonate, 22 mM 

sodium lactate,1 mM sodium pyruvate and 6 mg/mL fatty acid-free BSA). Semen was 

thawed and sorted using a Percoll density gradient (2mL 45% v/v over 2mL 90% v/v 

Percoll). Semen was spun at 2000 rpm (need xg) for 20 minutes. Live motile sperm 

collected at the bottom of the gradient were washed once through 1mL fertilization 

media and concentrated by centrifugation at 2000 rpm for 5 minutes. Sperm was counted 

using a hemocytometer and diluted to the appropriate concentration in fertilization 

media. Fertilization was performed at a concentration of 1.5-2 million sperm/mL in a 

total of 500µl per well. To aid capacitation of the sperm, 20µl each of heparin (6µg/mL), 

and PH (penicillamine, 2mM and hypotaurine, 1mM) were added per well. Fertilized 

zygotes were removed from fertilization media 7.5 hours post-fertilization and vortexed 
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in TL Hepes with 5µg/mL hyaluronidase to remove cumulus cells. Embryos were 

washed into and injected in a 100mM sucrose solution in M199 Hanks Hepes media 

(Invitrogen). Perivitelline injections were performed with a micropipette using a steady 

flow into the perivitelline space for 10-20 seconds per embryo. Embryos were then 

cultured in groups of up to 50 embryos in 500µl Evolve bovine formulated culture media 

(Zenith Biotech) plus 4mg/mL probumin and 100µg/mL gentamicin. At day 7 of culture, 

blastocysts were evaluated for GFP fluorescence and either transferred into synchronized 

recipients or cryopreserved. Recipients were monitored for establishment of pregnancy 

after 35 days gestation to confirm pregnancy, and then monitored by ultrasound every 30 

days throughout gestation. 

Detection of incorporation of the transgene 

 In vitro produced embryos, recovered fetuses and placental tissue were analyzed 

for GFP expression using fluorescence microscopy. In addition, tissue samples were sent 

to Dr. Kenneth Cornetta’s laboratory at the University of Indiana Medical School, 

Indianapolis, Indiana. Genomic DNA was isolated using the QIAamp DNA mini kit 

(QIAGEN), and the DNA was analyzed for integration of the lentiviral cassette using 

qRT-PCR to amplify a portion of the 5’ LTR and psi packaging signal (Appendix B).41 

 

Results 

Production of transgenic embryos by somatic cell nuclear transfer 

 Cloning was performed by ViaGen, Inc., and 22 blastocysts were produced for 

each transgenic cell line. For each cell line, 10 blastocysts were cryopreserved through 
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vitrification by ViaGen (Austin, TX). The rest were transferred fresh into sychronized 

recipient cattle on day 7 of culture. These embryos were first visualized using a 

fluorescent microscope to confirm GFP expression. For the PG1026 cell line, all 12 

embryos were confirmed to be transgenic (Figure 11), whereas for the PG5529 line only 

9 of 11 (one was lost prior to transfer) were overtly GFP positive. A total of 8 recipients 

were used, with each animal receiving 2-3 embryos. Ultrasounds were performed on day 

42 of gestation, and 4 animals were confirmed pregnant, all with embryos produced from 

the PG1026 cell line. Three out of the four animals were found to be carrying multiple 

fetuses. At 60 days gestation, two of these animals were discovered to be reabsorbing the 

fetuses. One of these recipients was sacrificed at day 66, and three fetuses were 

recovered. At day 87, one of the remaining pregnancies was discovered to have aborted. 

However, one pregnancy is ongoing as of 230 days gestation. A second round of 

transfers with warmed vitrified embryos was performed, with 8/10 embryos expressing 

GFP for each cell line. At day 42 of gestation three animals were confirmed pregnant by 

ultrasound. However, two of the three appeared to be failing at that time. By 72 days 

gestation, all three pregnancies had reabsorbed.  

 Samples of fetal and placental tissue were collected from the recipient that was 

sacrificed at day 66 of gestation and analyzed using fluorescence microscopy. Of the 

three fetuses recovered at day 66 of gestation, one was dark in color and assumed to be 

dead. The other two were GFP positive, indicating their viability (Figure 12). Placental 
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Figure 11  Cloned transgenic bovine blastocysts expressing an shRNA targeting the 

myostatin gene. Blastocysts were produced through SCNT using a bovine fetal fibroblast 

cell line transduced with lentivirus expressing the PG1026 construct. A) brightfield 

image, B) fluorescent image. 

 

tissue from this pregnancy was also GFP positive. All three fetuses were size restricted 

for the day of gestation. Still, all of these fetuses were shown to be positive for the 

transgene cassette through qRT-PCR (Table 2). The placental tissue from each of these 

fetuses was also positive for the transgene cassette using qRT-PCR.  

 

Table 2  Analysis of bovine fetal tissues for presence of the lentiviral transgene 
 

 Placenta Amnion Fetus 
# analyzed 5 2 5 
# positive 4 1 3 

 

B) 

A) 
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Figure 12  Transgenic bovine cloned fetus and placental tissue. Fetus and tissue were 

collected at day 66 of gestation from a bovine recipient that received SCNT produced 

blastocysts. GFP expression is evident throughout the fetus (A) as well as placental 

tissue (B). 

 

Production of transgenic embryos through perivitelline lentiviral injection 

 In order to obtain high enough lentiviral titers for injection of bovine zygotes, the 

PGK-puromycin cassette was removed from the PEF-green lentiviral plasmid prior to 

recombinant lentivirus production (Appendix A). Antibiotic resistance 

genes are only needed for in vitro work and removal allowed for higher transcription 

rates and increased viral titer. Additionally, alteration of the viral culture media from 

1mM to 10mM sodium butyrate also improved viral titer. Sodium butyrate has been 

previously shown to increase recombinant viral titer.151 These two modifications allowed 

for consistent production of lentiviral titers >1 X 109 IU/mL after ultracentrifugation. 

 Presumptive zygotes were removed from culture media 7.5 hours post-

fertilization. Microinjection of lentivirus was performed between 8 and 10 hours post-

fertilization. The microinjection was performed early to attempt lentiviral integration 

A) B) 
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prior to the replication and division of DNA required for the first cellular division of the 

embryo. This would ensure that all cells produced would carry the transgene. However, 

almost all embryos produced through this method were found to have mosaic GFP 

expression at day 7 of culture when analyzed by fluorescent microscopy. As seen in 

Table 3, a total of 181 blastocysts were produced. Of these, 70 were transferred into 

synchronized recipient cows on day 7-8 of culture. GFP positive embryos were first 

chosen based on fluorescence, and then embryos were chosen for transfer out of this 

pool (Figure 13). Since GFP expression was sometimes weak at day 7 of culture, it is 

possible that some embryos transferred were not transgenic. When synchronized 

recipients were unavailable for transfer, embryos were instead cryopreserved. Since 

embryos must be of high quality in order to maintain viability after cryopreservation, 

only grade 1 and 2 embryos were chosen from those that were microinjected. GFP 

fluorescence was visualized prior to cryopreservation to ensure that the majority of 

embryos frozen were expressing the transgene. However, not all embryos cryopreserved 

were transgenic. A total of 88 embryos were cryopreserved, with 2-4 embryos were per 

straw.  Of these, 32 frozen embryos were thawed and transferred into synchronized 

recipient cattle, 2-4 embryos per recipient. To date, a total of nine pregnancies have been 

established with embryos microinjected with concentrated lentivirus. Of these, four are 

still ongoing, only one of which was established with frozen thawed embryos. 

 Two fetuses produced through lentiviral microinjection with recombinant 

lentivirus were recovered at day 78 of gestation from a pregnancy found to be failing via 

ultrasound. Both of these fetuses were small for gestational age, and one of the fetuses 
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showed obvious hemorrhaging. Neither fetus was positive for GFP expression using 

fluorescent microscopy, and both were found to be negative for incorporation of the 

transgene cassette through qRT-PCR (Table 2). However, the placental tissue from one 

of these fetuses was positive for transgene incorporation by qRT-PCR, as was the 

amionic tissue from this fetus (Table 2).  

 

                 

Figure 13  Trangenic in vitro-produced bovine blastocysts produced through 

perivitelline injection of lentivirus at the zygote stage. Zygotes were produced through 

IVF. Concentrated lentivirus (>1X109 IU/mL) was injected into the perivitelline space 8-

10 hours post-fertilization. Embryos were then cultured to the blastocyst stage in vitro. 

A) brightfield image, B) fluorescent image. 

 

 

 

 

A) B) 
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Table 3  Production and transfer of transgenic embryos using either somatic cell nuclear 

transfer or perivitelline injection of in vitro produced zygotes 

Method of production No. 
Blastocysts 
Produced 

No. 
Recipients 

No. 
Pregnant 
at Day 35 

Day 35 
Pregnancy 

Rate 

Day 90 
Pregnancy 

Rate 
cloning 44 14 7 50% 7% 

transferred fresh 23 8 4 50% 12.5% 
transferred frozen 20 6 3 50% 0% 

PV injection 181 21 9 43% 19% 
transferred fresh 38 10 5 50% 30% 

transferred frozen 32 11 4 36% 9% 
 

Discussion 

 A total of 5 pregnancies are currently ongoing with embryos produced using the 

two methods outlined for production of transgenic embryos. One of these was produced 

through SCNT cloning. Although this fetus has progressed to over 240 days gestation, 

pregnancy failure has been shown throughout gestation in recipients carrying cloned 

offspring.102 Efficiencies in the production of cloned livestock range from only 1-

5%.101,102 Therefore the pregnancy loss seen in this experiment was not unexpected. 

Most embryonic loss associated with cloned pregnancies is early in gestation and in 

large part is believed to be due to the epigenetic misregulation of genes expressed in the 

fetus or placenta.103 Commonly seen defects include the complete absence or severe lack 

of placentome formation, with malformed caruncules and cotyledons often seen when 

they do develop to term as well as reduced vascularization.104 Indeed, the lack of 

placentome formation seen in the placenta recovered at day 66 of gestation demonstrates 

this result. In addition, the phenomenon referred to commonly as large offpring 
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syndrome is seen frequently in clones, most often with cattle. This results in increased 

fetal weight and can be accompanied by edema, hepatocephaly, and hydrocephalus.103,104  

Another complication present in these pregnancies was the fact that the embryos, 

and therefore resulting fetuses expressed a transgene. It is possible that the lentiviral 

expression cassette integrated at a location in the genome of the cell that interrupted an 

essential gene or function. This could also have had a negative impact on pregnancy 

establishment and maintenance. In addition, the micromanipulation skills required 

(oocyte enucleation, cell injection, and fusion) and the number of fused oocytes needed 

in order to produce the desired number of blastocysts demonstrates the inefficiency of 

embryo production with this method.101,102 

Only 37of the 43 blastocysts transferred were positive for GFP expression. Four 

of the embryos not expressing GFP were produced using a cell line transduced with 

recombinant lentivirus containing an shRNA targeting the foot and mouth disease virus 

(PG5529). Although this cell line underwent selection using puromycin to establish a 

population of cells that was completely transgenic, it was later discovered that this cell 

line had not been completely transgenic prior to being used for SCNT. Therefore, this 

most likely resulted in the nontransgenic embryos. In addition, two of the warmed 

vitrified embryos produced using the cell line expressing the construct PG1026 were 

also negative for GFP. However, both of these embryos were of poor quality after 

thawing, which may have affected their GFP expression. 

The main advantage of this method, however, is that any animal produced should 

express the transgene in every cell of the body, including the germline. This is because 
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the initial DNA used for production of the embryo carried the transgene inserted through 

lentiviral-mediated gene transfer. This was confirmed in part through analysis of the 

placental and fetal tissues from fetuses that were recovered and analyzed using qRT-

PCR. Analysis of three fetuses by fluorescence microscopy revealed that two of these 

were positive for GFP expression (Figure 13). One of the fetuses not exhibiting 

fluorescence was thought to be dead at the time of collection and therefore not 

surprising. All three were found to contain the transgene cassette using qRT-PCR 

analysis, as was the placental tissue from each fetus (Table 2). 

Four pregnancies established were through transfer of day 7 IVF-produced 

embryos microinjected with a recombinant lentivirus produced with the construct 

PG1026 or the control construct PG5529. The transgenic status of these conceptuses was 

uncertain since GFP fluorescence was sometimes weak when visualized with a 

microscope. In addition, some of embryos produced by this method were thought to be 

mosiac in GFP expression using fluorescence microscopy. Therefore the animals 

produced by this method may not be completely transgenic. Still, the injections can be 

performed without an extreme amount of skill, requiring only a simple 

micromanipulation, unlike the complicated process of SCNT.  

In addition, pregnancies produced through IVF and lentiviral injection would not 

expected to suffer from those issues that cause early fetal losses in SCNT. Expected 

calving rates from cloned embryos is only 5-20% compared to 40-60% for fresh IVF-

produced embryos.152,153 Bovine IVF has an expected blastocyst production rate of 30%, 

and with an average of 77% of these expressing GFP (observed in this work), this would 
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still result in 69 transgenic blastocysts produced from 300 oocytes. Transfer of these into 

recipient cattle (3 embryos per recipient) would then result in an average of 12 offspring 

versus only 1-5 offspring with the same number of SCNT embryos.  

Although a higher number of pregnancies were established with transgenic 

embryos produced using lentiviral microinjection, there was a higher than expected 

amount of pregnancy loss in this experiment. However, half of the pregnancies that were 

lost were established with frozen thawed embryos, and a lower pregnancy rate has been 

associated with transfer of frozen thawed bovine embryos.152 Additionally, the fact that 

these embryos were transgenic may also play a role in this pregnancy loss. Integration of 

the transgene cassette is random, and the location and number of integrations may 

negatively affect fetal survival. Although minimal integrations are desirable, Hofmann et 

al. (2006) demonstrated up to 20 integrations using lentiviral microinjection in porcine 

embryos.154  

A possible problem with this method is the possibility that embryos produced 

could be mosaic for expression of the transgene. Currently the majority of the embryos 

produced to date have been observed to be mosaic in GFP expression using fluorescent 

microscopy. Additionally, the two fetuses recovered using this method were negative for 

GFP expression by fluorescence microscopy. Mosaic incorporation of the transgene 

could limit expression in the fetal cells or even isolate it to the placental tissue. 

Additionally, it has been shown that fetuses produced through lentiviral microinjection 

can exhibit some silencing of the transgene in the F1 generation.154 This would result in 

lack of transgene expression. However, since the transgene was not found to be 



 78 

incorporated into the fetal tissue by qRT-PCR, the first explanation is more plausible. 

Also, the placental as well as one of the amnionic samples was positive for the transgene 

through qRT-PCR, demonstrating transgene incorporation into extraembryonic fetal 

tissues. Perhaps if embryos are removed from fertilization media at an earlier timepoint, 

lentiviral transduction could occur sooner, allowing for incorporation of the transgene 

prior to DNA replication. Therefore, although cleavage rates might be reduced, the 

frequency of mosaic embryos should decrease. 

 

Conclusions 

 Both SCNT with transgenic cell line as well as lentiviral microinjection into the 

perivitelline space of zygotes were successful methods of transgenic embryo production. 

Cloning with a transgenic cell line resulted in a total of 37/43 transgenic blastocysts 

which were transferred into 14 recipients. Seven pregnancies were established by 

transfer of embryos produced through SCNT. One of these pregnancies was analyzed at 

66 days gestation, and both of the live fetuses recovered were transgenic. Another 

pregnancy is still ongoing. Lentiviral microinjection of zygotes produced a total of 181 

blastocysts, the majority of were confirmed to be transgenic through expression of GFP 

fluorescence. Transfer of 70 embryos into 21 synchronized recipients resulted in a total 

of nine pregnancies, four of which are still ongoing. Analysis of two fetuses recovered at 

78 days revealed a lack of GFP expression by fluorescence microscopy and absence of 

the transgene cassette by qRT-PCR. However, placental and amnionic tissue from one of 

these fetuses did contain the transgene cassette. Therefore this fetus could have been 
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mosaic for the transgene, with incorporation only into the cells that contribute to 

extraembryonic fetal tissues. Continued transfer of transgenic embryos using these 

methods should ensure production of animals transgenic for reduced myostatin 

expression through RNAi. 
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CHAPTER V 

REPLICATION COMPETENT LENTIVIRUS (RCL) ANALYSIS IN RECIPIENT 

ANIMALS OF TRANSGENIC EMBRYOS PRODUCED BY LENTIVIRAL 

TRANSFER 

 

Introduction 

Lentiviral-mediated transgene delivery provides a valuable tool for manipulating 

gene expression in vivo, as it allows the integration of transgenes into the genome for 

stable expression.27 However, the retroviral basis for these vectors has raised concern 

that recombination with wild-type viruses or endogenous retroviral elements may allow 

the integrated provirus genome to become replication competent.37,38 Safety measures 

that are currently used to ensure a replication-incompetent recombinant lentiviral particle 

is produced include a self-inactivating 3’ LTR and separation of viral genes (gag, pol) 

from the transfer cassette during in vitro production.35,36 However, low levels of 

recombination between the transfer and packaging plasmids during lentiviral particle 

production have been detected.41,42 Although this recombination was insufficient to 

produce a replication competent lentivirus (RCL), additional validation of lentiviral 

vectors is clearly needed.41 Therefore, a crucial step in implementing the use of these 

vectors in transgenic animal production as well as human therapeutics is confirming the 

lack of RCL production by lentiviral vectors. 

 There are various methods for detecting potential RCL. One is the use of the p24 

ELISA assay. This detects the presence of antigen to the p24 HIV capsid protein. This 
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can be used to test the serum isolated from blood, and a positive result would indicate 

the presence of an RCL in the animal’s system.40 In addition, any potential RCL present 

in either serum or in vitro cell culture media can be amplified using a permissive cell 

line to aid in detection.40 Other methods are PCR-based, which require strictly sterile 

conditions to prevent any false positive amplification. However, they can be much more 

sensitive in detection than an ELISA. One PCR target is amplification of VSV-G, which 

would indicate aberrant recombination during lentivirus production resulting in the 

ability of the lentiviral cassette to replicate and produce infective particles. Additionally, 

amplification of sequences such as gag or pol, which are normally not present in the 

transferred cassette, would indicate recombination between the packaging and transfer 

vectors during recombinant viral production. This recombination may indicate the ability 

of the transferred cassette to again become replication competent.  

 In order to evaluate the lentivirus in this experiment for possible RCL, animals 

that served as recipients for transgenic embryos were analyzed. This included both 

bovine and ovine recipients. Tissues and blood were collected from animals that were 

sacrificed and these were analyzed for RCL using both the p24 ELISA and qRT-PCR to 

detect VSV-G. In addition, when possible fetal and placental samples were also analyzed 

for the presence of RCL. A lack of detection in recipient animals will build confidence 

in the safety of using lentiviral-mediated transgene delivery in both transgenic animal 

production and human medicine. 
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Materials and Methods 

Production and transfer of transgenic embryos 

 Three methods were used for producing transgenic embryos for transfer. The first 

two were somatic cell nuclear transfer cloning with a transduced bovine fetal fibroblast 

cell line and microinjection of in vitro produced bovine zygotes with concentrated 

lentivirus (Chapter IV, Materials and Methods). The third was incubation of in vivo-

produced hatched ovine blastocysts in culture media containing infectious recombinant 

lentiviral particles. For ovine blastocyst infection, lentivirus was produced and 

concentrated in Dr. Thomas Spencer’s laboratory by Dr. Joanne Fleming using the pEIZ 

lentiviral plasmid. Concentrated lentiviral particles were resuspended in 20µl G2 v.5 

culture media (Vitrolife) and frozen until needed. In vivo produced ovine hatched 

blastocysts were flushed on day 8 from donor animals and incubated either 6 hours or 

overnight in 100µl drops of lentiviral media supplemented with 8µg/mL polybreen and 

overlayed with mineral oil. Following incubation, embryos were washed through G2 v.5 

culture media before being transferred into synchronized sheep recipients.  

Collection of tissues 

 Sheep that received transgenic blastocysts were euthanized at various stages of 

gestation (day 15-day 60) with Buthanasia (10cc) intravenously. Cow recipients were 

first anesthetized, then stunned with a captive bolt and insanguinated. Depending on day 

of gestation, either elongated conceptuses or fetuses were recovered when possible. In 

addition, placental tissue including both placentomal and interplacentomal regions were 

collected. Placental tissue was matched to the corresponding fetus when possible in the 
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case of multiple fetuses. Recipient tissues collected included blood, lung, lymph node, 

kidney, liver, mammary gland, ovary, skeletal muscle, spleen and uterus. Samples to be 

used for isolation of genomic DNA were cut into approximately 3-5mm pieces and one 

piece of tissue per sample was submerged in 0.5mL QIAGEN AllProtect reagent in a 

1.5mL centrifuge tube. Two tubes were collected for each sample, and one was sent to 

Dr. Kenneth Cornetta’s laboratory at the University of Indiana Medical School in 

Indianapolis, Indiana. The other was kept at -80ºC at the Reproductive Sciences 

Laboratory at Texas A&M University. Samples to be collected for RNA and protein 

analysis, two per tissue, were snap frozen in liquid nitrogen in a 1.2mL cryotube and 

then stored at -80ºC. Muscle and skin tissue were collected for cell culture and 

cryopreserved in DMEM/F12 media supplemented with FBS, gentamicin, and 10% 

dimethylsulfoxide. Blood samples were taken intravenously prior to sacrifice and 

collected in both serum and heparinized or EDTA-treated collection tubes. Additionally, 

cross-sectional samples were taken of both uterine and placental tissue and were 

preserved for future immunohistochemistry analysis by two methods. The first involved 

embedding the tissue in OCT reagent and floating on liquid nitrogen to harden. These 

samples were then kept at -80ºC until needed. The other was preservation in a 4% 

paraformaldehyde solution.  

Analysis of tissues for RCL 

  Blood and tissue samples collected in QIAGEN AllProtect reagent were sent on 

the day of collection overnight to Dr. Kenneth Cornetta’s laboratory. There, genomic 

DNA was isolated from both blood and tissues for PCR using the QIAmp DNA mini kit 
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(QIAGEN), and serum was isolated from whole blood for p24 ELISA analysis. 

Quantitative real-time PCR (qRT-PCR) was performed on genomic DNA to detect VSV-

G and the lentiviral cassette. Results were analyzed as previously described.41 

Immunohistochemistry  

 Uterine tissue cross-sections embedded in OCT reagent were cut on a cryostat to 

a thickness of 8�m. Slides were fixed with cold methanol for 10 minutes and then 

allowed to air dry. Sections were circled with a PAP pen and then rinsed 4-5 times in 

PBS with 0.3% Tween-20. Slides were shook dry and then incubated in 60�l blocking 

buffer (1:10 dilution of goat serum in PBS-Tween with 1% BSA plus glycerol) for one 

hour. Slides were rinsed in PBS-Tween and shaken dry before addition of the primary 

antibody. A primary antibody against GFP (mouse anti-GFP, catalog no.11814460001, 

1:200) or blocking buffer (no primary control) was added in a 60�l volume, and slides 

were incubated overnight at 4ºC. The next day, slides were rinsed in PBS-Tween 3 times 

for 10 minutes each. Secondary antibody, fluorescein-conjugated goat anti-rabbit IgG, 

was added in a 60�l volume (1:250, AlexaFluor 488 goat anti-rabbit IgG, Invitrogen), 

and slides were incubated for one hour. After rinsing 3 times in PBS-Tween and then in 

distilled water, a drop of Prolong Gold Antifade with DAPI (company) was added to 

each section before covering with a coverslip. Slides were sealed with clear nailpolish 

and stored overnight in the dark before imaging. Digital photomicrographs of 

immunofluorescence staining were evaluated by Dr. Kathrin Dunlap using an Axioplan 

2 microscope (Carl Zeiss, Thornwood, NY) interfaced with an Axiocam HR digital 

camera and Axiovision 4.1 software (Carl Zeiss). 



 85 

Results 

Analysis of fetuses 

 Fetuses from four bovine recipients were collected for analysis. At the time of 

tissue collection, samples of fetal and placental tissue were analyzed using fluorescence 

microscopy. A total of eight fetuses were recovered, six of which were produced through 

SCNT and two through lentiviral microinjection. Five of the fetuses produced through 

SCNT were found to be positive for the transgene cassette by qRT-PCR. Placental tissue 

from these same five fetuses, as well as placental and amnionic tissue from one of the 

fetuses produced through microinjection, were also positive for the transgene cassette 

through qRT-PCR (Table 3, Chapter IV). Blood was collected from three SCNT fetuses 

collected at day 105 of gestation, and blood serum was analyzed by p24 ELISA 

following amplification on the permissive cell line, C8166. Serum was negative for RCL 

by p24 analysis for all three fetuses (Table 4). In addition, all fetal and placental samples 

collected were analyzed by qRT-PCR for the presence of VSV-G and were negative 

(Table 4). 

 A total of nine fetuses and one conceptus was recovered from ovine recipients, 

and all of these were collected for analysis. One of the fetuses collected was a 

nontransgenic control fetus. The conceptus sample, taken at day 15 of gestation, was 

positive for GFP expression when visualized for fluorescence by microscopy (Figure 

14). In addition, placental samples taken from the other transgenic fetuses were also 

positive for GFP. However, placental tissues revealed a mosaic pattern of GFP 

expression, with both transgenic and nontransgenic cells present. Fetal tissue from  
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Table 4  Analysis of bovine and ovine recipients and fetuses for RCL using qRT-PCR to 

detect the VSV-G gene sequence and the p24 ELISA assay 

 
 # tested for 

VSVG 
# positive 
for VSVG 

# tested 
for p24 

# positive 
for p24 

Bovine 
Recipients 

4 0 3 0 

Bovine 
Fetuses 

8 0 3 0 

Ovine 
Recipients 

9 0 9 0 

Ovine 
Fetuses 

1 0 0 0 

 
 

                       

          

Figure 14  Transgenic ovine blastocysts and conceptus. (A,B) Blastocysts were hatched 

in vitro and incubated in culture media with recombinant lentivirus for 6 hours prior to 

transfer. A) brightfield image, B) fluorescent image. C) Ovine conceptus that was 

recovered at day 15 of gestation, fluorescent image. 

A) B) 

C) 
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transgenic fetuses were inconclusive for fluorescence by microscopy due to 

autofluorescence detection. One fetus to date has been analyzed for incorporation of the 

transgene cassette through qRT-PCR and was negative. However, the placental tissue 

was positive for the transgene cassette. This same fetus was also analyzed for VSV-G 

through qRT-PCR and was also negative (Table 4). All fetuses recovered were too small 

for blood to be collected for p24 ELISA analysis.  

Analysis of recipients 

A summary of the recipient data is listed in Tables 4 and 5. Thirteen out of the 

fourteen recipient animals, including both bovine and ovine, were analyzed using the 

p24 ELISA assay for presence of p24 antigen in the serum. No positive samples were 

found (all <12.5 pg/mL). Peripheral blood samples were analyzed using qRT-PCR for 

presence of VSV-G for all fourteen animals, and no positive samples were found when 

compared to appropriate positive and negative controls. To date, tissue samples have 

been analyzed as well for VSV-G for nine of the fourteen recipients, and no positive 

samples were found. However, one ovine recipient revealed positive incorporation of the 

transgene cassette in the placentomal tissue (Table 5). This is not unexpected as the 

placentome consists of both fetal and maternal tissues, and the fetal tissue was also 

positive for the transgene cassette. In addition, both bovine recipients had positive 

incorporation in uterine tissue. One of the bovine recipients showed a positive result for 

both the interplacentomal region as well as caruncular uterine tissue samples, whereas 

another only showed positive incorporation of the transgene cassette in the caruncular 

tissue (Table 5).  
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Table 5  Analysis of different tissues collected from bovine and ovine recipients for 

presence of the lentiviral transgene cassette  

 
 P

B 
Liver Lung Kidney Lymph 

Node 
Skeletal 
Muscle 

Mammary 
Gland 

Ovary Uterus Placentome Caruncle 

Bovine 
recipients  

4 4 4 4 4 4 4 4 4 0 1 

# 
positive 

0 0 0 0 0 0 0 0 2 0 1 

Ovine 
recipients 

9 5 5 5 5 5 5 5 5 1 0 

# 
positive 

0 0 0 0 0 0 0 0 0 1 0 

 
PB = peripheral blood 

 

Immunohistochemistry analysis was performed for presence of the GFP protein 

in one bovine sample of uterine tissue. This sample was from the recipient that carried 

three cloned transgenic fetuses. This tissue sample contained both placental and maternal 

uterine luminal epithelium and stroma. Staining with an anti-GFP antibody revealed the 

presence of GFP in the placental tissue as well as the syncitia formed between the 

placental trophectoderm and maternal luminal epithelial cells (Figure 15). However, no 

GFP was found in the uterine stroma in this sample. No placentomes were present in the 

sample, most likely due to the fact that the pregnancy was established with cloned 

embryos. 

 

 



 

 

Figure 15  Immunohistochemistry for GFP at the uterine and placental interface. Tissue was recovered from a cloned 

transgenic pregnancy at day 66 of gestation. Immunohistochemistry was performed using an antibody against the GFP 

protein. green = GFP, blue = DAPI nuclear counterstain. 
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Discussion 

 Detection of potential RCL is of vital importance for applications involving 

lentiviral-mediated gene transfer for both transgenic animal production as well as human 

gene therapies. The establishment of these lentiviral plasmids as being replication 

incompetent will instill confidence in the safety of using these vectors for therapeutics in 

human diseases as well as the production of transgenic livestock. This work focused on 

the detection of RCL both in the developing transgenic fetus as well the recipient female. 

Detection of RCL in either would indicate that the replication-incompetent viral cassette 

somehow regained the ability to replicate in vivo, raising concern for use of these vectors 

in transgenic livestock production. 

A total of eight fetuses were recovered from four bovine recipients. These fetuses 

were produced either by SCNT cloning with a cell line that was transduced with a 

recombinant lentivirus or through microinjection with recombinant lentivirus. None of 

the fetal samples were found to be positive for RCL using qRT-PCR for detection of 

VSV-G incorporation. Analysis of three fetuses recovered at day 105 of gestation using 

p24 ELISA also was  negative. Therefore no RCL was detected in these fetuses. 

 There were 9 conceptuses recovered from ovine recipients of hatched blastocysts, 

8 of which were incubated in culture media containing recombinant lentivirus. All 

embryos that were treated with the lentivirus were confirmed transgenic by fluorescence 

microscopy prior to transfer (Figure 14). The conceptus recovered at day 15 of gestation 

was expressing the transgene (Figure 14), and placental tissue from all of the remaining 

pregnancies were also expressing the transgene as confirmed by fluorescence 
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microscopy . Only one fetus has been analyzed to date using qRT-PCR for VSV-G. This 

fetus was found to be negative for VSV-G, indicating that no RCL was present in this 

animal. 

Of the four bovine recipients analyzed in this study, three were examined for the 

RCL using the p24 assay, and all three were negative. This further supports these 

plasmids as being replication-incompetent. Analysis of all four recipients by qRT-PCR 

revealed no incorporation of the transgene casssette in any of the tissues analyzed except 

for the uterine caruncular tissue. Two recipients were positive for the transgene cassette 

in this tissue; however, since both of the pregnancies carried by these recipients were 

failing and did not have a tight caruncular-cotylendonary connection, placental tissue 

remnants on the caruncle may have produced this result. All of the bovine recipients 

were negative for VSV-G by qRT-PCR, and three have been analyzed for p24 and 

deemed negative by comparison to positive and negative control samples. This supports 

the theory that the lentiviral constructs used in these experiments were replication-

incompetent. 

Ten ovine recipients were analyzed by p24 ELISA, and no positive samples were 

found. In addition, all of these recipients have been analyzed for VSV-G by qRT-PCR 

and no positive amplification has been detected. However, one uterine sample was found 

to be positive for transgene incorporation by qRT-PCR. Again, due to the fact that the 

placental sample in this animal was positive, residual tissue of any amount on the 

analyzed uterine tissue would have resulted in a positive amplification. Therefore this is 

most likely not due to the presence of an RCL in this animal.  
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Conclusions 

 In these experiments, animals that served as surrogates for transgenic embryos 

produced using a recombinant lentivirus were analyzed for the presence of RCL. In all 

cases analyzed to date, no evidence of RCL has been detected by both p24 ELISA and 

qRT-PCR analysis for VSV-G incorporation. Detection of the transgene in uterine tissue 

from two bovine recipients and one ovine recipient may reflect the sensitivity of qRT-

PCR based methods in amplifying any residual fetal tissue at the maternal-fetal interface.  

Although the analyses performed support our lentivirus as being replication 

incompetent, accumulation of additional samples is needed. Previous issues regarding 

the production of RCR during construction of retroviral vectors have prompted the FDA 

to recommend testing for RCL by the methods used in this experiment for any work 

involving lentivial vectors for transgene delivery. Safety in development of gene 

therapies as well as transgenic livestock production is imperative for the transition of this 

technology from the lab to practical applications in human medicine and animal 

agriculture. Further analyses need to be performed in order to build confidence in the use 

of these lentiviral vectors in transgenic research and livestock development.  
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CHAPTER VI 

SUMMARY 

 

The goal of this research was to reduce myostatin gene expression in livestock 

species using RNA interference, thereby demonstrating the usefulness of RNAi as a tool 

for manipulating gene expression in vivo. The in vitro experiments described effectively 

demonstrated a reduction of bovine and goat myostatin using siRNAs designed against 

regions of  sequence identity between these two species. The siRNAs were successful in 

suppressing mRNA expression both when introduced as an siRNA or when expressed 

from a lentiviral plasmid as an shRNA. The siRNA sequence shown to be the most 

effective at suppressing myostatin mRNA in vitro, GDF8-1026, was chosen for 

evaluation in an in vivo setting using a recombinant lentiviral plasmid (PG1026).  

The expression of shRNAs in vivo has been previously shown to sometimes 

cause off-target effects such as organ toxicity and reduced expression of nontarget genes. 

Therefore, the possibility of tissue-specific expression of shRNAs in vivo utilizing 

skeletal muscle-specific promoters was investigated. The bovine myogenin and MCK 

promoter sequences were isolated from genomic DNA and analyzed for their ability to 

drive GFP expression in both bovine fetal muscle and C2C12 mouse cell lines. Myotube 

specific expression of GFP was seen in bovine fetal muscle cells induced to differentiate 

after transduction with a construct containing the myogenin promoter. This same 

experiment with the MCK promoter also resulted in GFP expression in bovine fetal 

muscle cells but did not show myotube specific expression of GFP. A significant 
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difference in mean intensity of GFP in transduced cells when compared to the 

nontransgenic control on day 9 post differentiation confirmed the activity of these 

promoters in vitro. However, further characterization of these promoters needs to be 

performed prior to their use for in vivo expression of shRNAs in skeletal muscle. 

Two methods of transgenic animal production using lentiviral-mediated gene 

transfer were investigated in this work, SCNT with a transgenic cell line and 

microinjection of concentrated lentivirus into the perivitelline space of zygotes. Cloning 

resulted in a total of 43 blastocysts, 37 of which were confirmed to express GFP prior to 

embryo transfer. Transfer of these embryos into 14 synchronized bovine recipients 

established seven pregnancies, one of which is still ongoing. Lentiviral microinjection of 

zygotes produced a total of  181 blastocysts, the majority of were confirmed to be 

transgenic through expression of GFP fluorescence. Transfer into 21 synchronized 

recipients resulted in a total of 9 pregnancies, 4 of which are still ongoing. Analysis of 

fetuses from a cloned pregnancy terminated at 66 days revealed GFP expression in both 

fetal and placental tissues. Analysis of fetuses produced by lentiviral microinjection 

were negative for GFP expression by fluorescence microscopy as well as incorporation 

of the transgene cassette by qRT-PCR. However, placental and amnionic tissue from one 

of these fetuses was positive for incorporation of the transgene using qRT-PCR. 

Therefore this fetus was mosaic for the transgene.  

In the experiments outlined above as well as related experiments utilizing ovine 

recipients, animals that served as surrogates for transgenic embryos produced using a 

recombinant lentivirus were analyzed for the presence of RCL. In all cases analyzed to 
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date, no evidence of RCL has been detected by both p24 ELISA and qRT-PCR analysis 

for VSV-G incorporation. Detection of the transgene cassette in uterine tissue from two 

bovine recipients and one ovine recipient may reflect the sensitivity of qRT-PCR based 

methods in amplifying genomic DNA from any residual fetal tissue at the maternal-fetal 

interface. These results help confirm that the lentivirus used in these studies as being 

replication incompetent. However, further accumulation and testing of samples is 

needed.  
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APPENDIX A 

 

Maps of lentiviral plasmids used 

 

PEF-green lentiviral plasmid. LTR = long terminal repeat, RRE = rev response 

element, PGK = phosphoglycerate kinase promoter, EF1� = elongation factor 1 alpha 

promoter, eGFP = enhanced green fluorescent protein, miR = microRNA 30. 

 

                                           

 

pEIT and pEIZ lentiviral plasmids. LTR = long terminal repeat, RRE = rev response 

element, EF1� = elongation factor 1 alpha promoter, IRES = internal ribosomal entry 

site, Zsgreen and Tomato Red = fluorescent proteins. 

 

 

 

RRE IRES Zsgreen 3’ LTR EF1αααα 

MCS 

5’ LTR 

pEIZ 

RRE IRES Tomato Red 3’ LTR EF1αααα 

MCS 

5’ LTR 

5’ LTR  RRE  Zeocin  Puromycin  EF1αααα  3’ LTR  GFP  

miR5’  miR3’  

PGK  

pEIT 
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G-zeo lentiviral plasmid. LTR = long terminal repeat, RRE = rev response element, 

CMV = cytomegalovirus promoter, eGFP = enhanced green fluorescent protein, miR = 

microRNA 30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eGFP 5’ LTR RRE Zeocin CMV 3’ LTR 
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APPENDIX B 

Primer sequences used 

Gene/Promoter Primer Name Sequence Size 
shRNA 

 
5’miR30PCRxho1F cagaaggctcgagaaggtatattgctgttgacagtgagcg 197bp 

 3’miR30PCREcoR1F ctaaagtagccccttgaattccgaggcagtaggca 
 

 

goat, bovine 
myostatin 

GDF8_goat_bov_189F 
 

acttcgcctggaaacagctcctaa 417bp 

 GDF8_goat_bov_605R ataccagtgcctgggttcatgtca 
 

 

goat, bovine 
myostatin 

RT_GDF8_goatboc_605F 
 

tttggcagagcattgatgtga 121bp 

 RT_GDF8_goatbov_725R gggaaggttacagcaagatcatg 
 

 

bovine myostatin 
 

RT_GDF8_bov_309F cggctccttggaagacgat 64bp 

 RT_GDF8_bov_372R ctccgtgggcatggtaatg 
 

 

bovine GAPDH 
 

bov_GAPDH_forward ggcattctaggctacact 73bp 

 bov_GAPDH_reverse cgaaggtagaagagtgagt 
 

 

human GAPDH 
 

RT_gapdh_human_837F ccaggtggtctcctctgacttc 82bp 

 RT_gapdh_human_918R gtggtcgttgagggcaatg 
 

 

bovine myogenin 
promoter 

bov_myogpr_190F 
 

gtcagcagatgttggacaatggct 1404bp 

 bov_myogprom_372R 
 

ccatggatccagaagagacttgttcctgccacca  

bovine MCK 
promoter 

bov_mck_prom_2F 
 

ggacaggggtttgggttatc 1567bp 

 bov_MCKpr_16R 
 

tggaaggggctgtctgttatc  

lentiviral 
integration 

Lenti F acttgaaagcgaaagggaaac 145bp 

 
 

Lenti R cacccatctctctccttctagcc  
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