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ABSTRACT 

 

Robust Optimization of Nanometer SRAM Designs. (December 2009) 

Akshit Dayal, B.E., Delhi College of Engineering, University of Delhi; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Peng Li 

 

Technology scaling has been the most obvious choice of designers and chip 

manufacturing companies to improve the performance of analog and digital circuits. 

With the ever shrinking technological node, process variations can no longer be ignored 

and play a significant role in determining the performance of nanoscaled devices. By 

choosing a worst case design methodology, circuit designers have been very munificent 

with the design parameters chosen, often manifesting in pessimistic designs with 

significant area overheads.  

Significant work has been done in estimating the impact of intra-die process 

variations on circuit performance, pertinently, noise margin and standby leakage power, 

for fixed transistor channel dimensions. However, for an optimal, high yield, SRAM cell 

design, it is absolutely imperative to analyze the impact of process variations at every 

design point, especially, since the distribution of process variations is a statistically 

varying parameter and has an inverse correlation with the area of the MOS transistor. 

Furthermore, the first order analytical models used for optimization of SRAM memories 

are not as accurate and the impact of voltage and its inclusion as an input, along with 

other design parameters, is often ignored. 

In this thesis, the performance parameters of a nano-scaled 6-T SRAM cell are 

modeled as an accurate, yield aware, empirical polynomial predictor, in the presence of 

intra-die process variations. The estimated empirical models are used in a constrained 

non-linear, robust optimization framework to design an SRAM cell, for a 45 nm CMOS 

technology, having optimal performance, according to bounds specified for the circuit 

performance parameters, with the objective of minimizing on-chip area. This statistically 
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aware technique provides a more realistic design methodology to study the trade off 

between performance parameters of the SRAM. 

Furthermore, a dual optimization approach is followed by considering SRAM 

power supply and wordline voltages as additional input parameters, to simultaneously 

tune the design parameters, ensuring a high yield and considerable area reduction. In 

addition, the cell level optimization framework is extended to the system level 

optimization of caches, under both cell level and system level performance constraints. 
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I. INTRODUCTION 

1. MOTIVATION  

  In 1965 Intel co-founder Gordon E. Moore had described a law which would be a 

long term indicator of the technological development of the functional blocks of digital 

circuits. One of the most popular formulation of Moore’s law pertains to the transistors 

per IC and the projection that it would double every two years. Astoundingly, that law, 

according to recent [1] articles published by Intel, has maintained its relevance even till 

2007 and Moore’s Law remains an upper bound on the number of transistors that can be 

packed into a micro-processor. It is also the basis for International Technology Roadmap 

for semiconductors (ITRS) [2] to identify the challenges and demands the semiconductor 

industry is going to face over the next 15 years. Furthermore, with the advancement in 

lithographic techniques, the die-size of the microprocessors has progressively reduced 

over the years.  The sacrosanctity of moore’s hypothesis is maintained mainly due to the 

advancement in techniques used to scale the channel dimensions of MOS transistors, a 

technique known as Technology Scaling, which makes it possible to manufacture 

commercially viable, high performance microprocessors, containing millions of 

transistors and clocking at speeds, in excess of 3 GHZ.   

 

1.1 TECHNOLOGY SCALING 

  One of the most obvious ways of etching more number of transistors on a fixed 

size wafer is to reduce the dimensions of the transistors, or in popular lexicon, by 

technology scaling. Scaling of CMOS transistors in next generation technologies leads to 

improved performance, lower power consumption and increased transistor density. 

Typically, technology scaling has the following goals; these are well established in 

theory [3] and are not ad hoc. 

 
_____________________ 

This thesis follows the style of IEEE Transactions on Circuits and Systems  
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Reduce the delay by 30%, resulting in an increase in operating frequency of about 43%;  

a. Double transistor density; and  

b. Reduce energy per transition by about 65%, saving 50% of power, at a 43% 

increase in frequency. 

Motivated by the significant CMOS performance improvements enabled by 

technology scaling, has resulted in a larger on-chip memory for micro-processors, 

reducing read/write latency and faster, compact computing systems.  SRAMS, being 

faster and less power hungry than DRAMS, have always been the primary choice of 

primary on-chip memory like L1 and L2 caches in microprocessor. It is therefore used 

where either bandwidth or low power, or both, are principal considerations. SRAM is 

also easier to control (interface to) and generally more truly random access than modern 

types of DRAM [4]. Moreover SRAM based caches occupy nearly 50 % of on chip area 

in modern micro-processors, therefore, scaling of SRAMS greatly affects the 

performance of caches and is an important criterion, while evaluating the overall 

performance of micro-processors.  

Ideally, to ensure a high performing processor, on-chip cache should be as large 

as possible, capacity wise. Technology scaling is a godsend to designers and customers, 

which enables packing millions of transistors on a chip, the size of a small postal stamp, 

to ensure a high performing micro-processor and a significant on-chip memory storage 

capability.  Unfortunately, SRAM design is becoming increasingly challenging with 

each new technology node its impact on SRAM performance is described subsequently. 

 

1.2 NEGATIVE IMPACT OF TECHNOLOGY SCALING ON SRAM  

PERFORMANCE 

The scaling to deep sub-micron CMOS technologies brings with it many pitfalls 

which can potentially offset the gains due to scaling. One of the preferred methods of 

scaling is the constant electric field (supply voltage scaling) [3] as it gives lower-energy 

delay product thus the trade-off’s between performance and power consumption are 

minimal. However, this reduction in supply voltage results in increased sensitivity of 
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circuit parameters to process variations [5]. According to ITRS [2], the threshold voltage 

Vth variation for a 45 nm CMOS is going to be nearly 42 %, channel length variation , 

Lg, of 12 % and gate oxide thickness, Tox, variation of 4%.  

The dependence on process variations, degrades and limits circuit operations in 

the low voltage regime, particularly for SRAM cells where minimum sized transistors 

are used. The reduced geometry transistors are vulnerable to inter-die and intra-die 

process variations. Intra-die process variations include random dopant fluctuations 

(RDF), line edge roughness (LER) etc. This results in threshold voltage mismatch 

between the adjacent transistors in a memory cell giving asymmetric characteristics to 

the SRAM cell.  

As mentioned in [3], voltage scaling accompanies the reduction in MOS 

transistor dimensions, with the ever decreasing technological node. The reduction in 

voltage with the reducing technological node requires the commensurate scaling of 

threshold voltage, thus reducing the turn-on voltage for the MOS transistors. The 

cumulative effect of reduced voltage, threshold voltage and large process variations 

leads to increased memory failures such as read failure, write failure, hold failure, and 

access time failure. In addition, the reduced oxide thickness and the reduced 

Subthreshold voltage values, along with process variations contribute immensely 

towards the Subthreshold and gate leakage components of the total leakage in an SRAM 

cell, greatly degrading memory performance.  Since, most of the time SRAM memories 

are used to store and sustain data without being in the active mode of operation; it 

becomes imperative to control leakage power of SRAM’s in the static mode of 

operation, to limit the total power dissipated by on-chip memories. Thus, increasing 

battery life of mobile electronic gadgets, of which SRAM’s are an integral memory 

storage component.  

 

2. PRIOR WORK  

Significant time and effort has gone into optimization of digital/analog circuits. 

The basic idea of all circuit analysis procedures is to ensure a high performance of the 
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circuit while minimizing the computational cost, design overheads like area, leakage 

power etc, and finally to reduce the time and effort put in by the designer. Keeping these 

objectives, in mind the methodology followed by designers to optimally design a circuit 

are broadly categorized as following. 

 

2.1 NOMINAL/DETERMINISTIC DESIGN TECHNIQUES 

The Nominal or deterministic approach refers to the circuit design technique 

wherein parametric variations are not taken as a factor of consideration, when the circuit 

is designed. The trade offs between functionality is analyzed for every design point. The 

authors in [6] highlight one such approach for a 6-T SRAM cell which is used to 

determine initial cell design. The futility of this approach can be considered by a simple 

observation that one of the circuit performance parameters like Subthreshold current has 

an exponential dependence on threshold voltage Vth variation. Hence a small change in 

process parameters will result in a huge change in leakage current value [7]. The 

deterministic approach is very optimistic and can lead to a significant yield loss in sub 

100nm technologies where the variability plays a dominant role in determining circuit 

performance, thereby, rendering this method quite ineffective for sub 90 nm CMOS 

designs. 

 

2.2 WORST CASE ANALYSIS  

As the name suggests, worst case approach deals with analyzing the circuit 

performance at every worst case condition of its circuit performance parameters, 

individually. Traditionally, this has been the method of choice for designers for a 

number of years due to ease of design and minimal computational cost. In this method, 

designers consider the effect of process variations by assuming worst case device 

characteristics, usually 2-3 σ from the typical or nominal value and identify design 

problems arising as a result of parametric variations. The design is then verified with 

respect to the specifications and a redesign is done for the corner cases till all the 

specifications are met. However, the major problem with this method is that rarely does 
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design corners of circuit performance, occurs simultaneously. A case in point being the 

read and write margins of a SRAM cell. A design corner guaranteeing a good read 

stability can have extremely degraded write stability, as they are two contradictory 

performance criteria. The authors in [6] conclude that the worst case optimization 

approach for an SRAM memory cell, overestimates the underlying process variations, 

which leads to increased leakage power consumption. Furthermore, the settings of all 

threshold voltage, Vth, parameters to their worst case values (Nominal ±  3 σ) rarely 

occur in reality. Hence, this one-at-a-time corner analysis yields very pessimistic results, 

leads to over design and potentially increased area and leakage power over heads. 

 

2.3 MONTE-CARLO ANALYSIS 

Monte Carlo simulation is a method of simulation with unknown variables. In 

Monte Carlo simulation values for unknowns are randomly selected according to their 

statistical distribution. The process is repeated for a number of simulation runs, each 

with a new set of values for the unknowns. The distribution of the final results is taken to 

be representative of the behavior over the range of inputs. In circuit analysis, Monte 

Carlo simulation is a popular method of dealing with the large number of correlated and 

uncorrelated variables involved in circuit design. Process parameters can be 

characterized as a distribution of transistor behaviors giving the designer a large amount 

of data to deal with. Monte Carlo simulation allows all of these variables to be 

considered during simulation. Monte Carlo simulation is frequently used to give inputs 

to statistical timing software or to predict circuit yield and sensitivity. This method 

provides the most realistic estimate of true worst case performance of the circuit and 

serves as a benchmark against which all modeling and analysis techniques are tested for 

accuracy. In Monte-Carlo analysis the, the error in estimation reduces with the number 

of samples n as O(n
-1/2

). Thus the number of simulations, n,  needed to obtain a good 

accuracy is large and a Monte-Carlo based optimization method is too computationally 

demanding and time consuming [8].  
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2.4 STATISTICAL ANALYSIS 

The presence of parametric variations demands a more comprehensive approach 

to circuit design, without the inaccuracies, design time involved and computational 

overheads, as mentioned in previous sections. Statistical analysis for optimization deals 

with developing failure probability and yield prediction models for circuit performance 

parameters in the presence of process variation. They are then used to analyze the 

combined failure probability of the circuit performance parameters as a function of 

design parameters and process parameters.  

In the domain of statistical analysis, various methods for modeling the 

performance parameters exist. The can be broadly categorized as (a) analytical and (b) 

empirical models. The analytical models are generally first order approximations and 

lack in accuracy. However they can be used for initial analysis of the circuit. Empirical 

models, on the other hand can be any order. Higher the order, higher is the accuracy. The 

authors in [9] propose one such method to analyze the stability of SRAM cells in the 

presence of random fluctuations in the device parameters. According to their analysis, 

they develop linear models for the Read, write and access time models for circuit 

analysis. As an example the model for read noise margin (RNM) is shown in (1.1) 

      
( )

6

0
1

              (1.1)                                                            
i th i

i

RNM RNM k V
=

= + ∆∑  

However, the circuit performance parameters are seldom linear [10] and higher 

order models, along with the effects of other sources of random variations (like gate 

oxide thickness) needs to be analyzed, to optimally and accurately predict impact of 

parametric variations.  

The authors in [6] propose a similar approach for a 6-T SRAM cell, wherein all 

the performance models are considered linear and an expression for the mean and 

variance values are extracted from them. Moreover, they only consider the effect of 

Subthreshold leakage as their objective function, completely ignoring the effect of gate 

leakage. The approach outlined by [6] can lead to inaccurate results on three accounts. 
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Firstly, on the basis of linear empirical models, secondly, on ignoring gate leakage from 

the objective function and thirdly, by not considering other sources of parametric 

variations, which can have a significant impact on SRAM performance and stability. The 

impact of the second point can be analyzed from the fact that gate leakage, for sub 65 

nm technologies, contributes to nearly 45% of total device leakage [7]. 

Recently, the authors in [11] , [12] proposed an extremely elegant approach to 

SRAM circuit optimization, taking all the SRAM circuit performance parameters (read, 

write, access time and cell leakage) into account and also considering the effect of gate 

leakage component in the total cell leakage. However, their models donot consider other 

sources of variations as mentioned above. Furthermore, none of [6], [9], [11]-[14] 

consider the effect of varying the voltage source like cell voltage and wordline voltage, 

on performance of the SRAM memory cell. In effect the cell voltage can be taken as 

inputs along with the CMOS design parameters, in the optimization process to 

comprehensively analyze the SRAM memory cell performance.  

 

3. RESEARCH OBJECTIVES 

In view of the detrimental effects to technology scaling, it becomes increasingly 

difficult for circuit designers to design a reliable and robust SRAM memory cell, which 

has an optimum performance at every design point. The major driving point of this thesis 

is to develop a technology-aware design methodology which takes into account, the 

variation in process parameters at every design point. Thus a fast, yield-aware and robust 

flow would be formulated which optimizes the design of the SRAM memory cell to 

ensure a low failure probability of the cell, ensuring lower probability of read, write, 

hold and access time failures,  while simultaneously optimizing the on-chip area and 

reducing leakage current for every design.  

The performance parameters of a nano-scaled 6-T SRAM cell are modeled as an 

accurate, yield aware, empirical polynomial predictor, in the presence of intra-die 

process variations. The estimated empirical models are used in a constrained non-linear, 

robust optimization framework to design an SRAM cell, for a 45 nm CMOS technology, 
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having optimal performance, according to bounds specified for the circuit performance 

parameters, with the objective of minimizing on-chip area. This statistically aware 

technique provides a more realistic design methodology to study the trade off’s between 

the performance parameters of the SRAM. 

Furthermore, a dual optimization approach is followed by considering SRAM 

power supply and wordline voltages as additional input parameters, to simultaneously 

tune the design parameters, ensuring a high yield and considerable area reduction. In 

addition, the cell level optimization framework is extended to the system level 

optimization of caches, under both cell level and system level performance constraints. 

In view of the above discussion an ideal circuit optimization method is one which 

has lower computational cost, less design time and low overheads, while ensuring a high 

circuit performance and low failure probability. In this research proposal, a robust 

technology aware statistical optimization flow is presented to optimize a 6-T SRAM 

memory cell with 3 broad objectives in mind: 

a) To develop a yield aware optimization framework for a 6-T SRAM cell, with 

the Widths of the MOS transistors being the design variables, under the 

constraints of the failure probability of SRAM circuit performance 

parameters P(Ycell). The 5 SRAM performance parameters considered are 

Static Read Noise Margin, Static Write noise Margin, Read Access Time, 

Write access time and Leakage power dissipation. 

b) To develop a yield aware optimization framework for a tunable  6-T SRAM 

cell, with the dimensions of the MOS transistors, the cell Voltage supply and 

the Wordline voltages being the design variables, under the constraints of the 

failure probability of SRAM circuit performance parameters P(Ycell). The 5 

SRAM performance parameters considered are Static Read Noise Margin, 

Static Write noise, Read Access Time, Write access time and Leakage power 

dissipation. 
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c) The cell level optimization framework in (a) is extended to the system level 

optimization of caches, given the failure probabilities of cell level, P(Ycell), 

and system level performance constraints P(Ysystem). This would be achieved 

by modifying the CACHE performance analysis tool CACTI 5.2, developed 

by HP labs. The modified circuit parameters involves constraint evaluation at 

the cell level using circuit simulators like HSPICE and for a memory cache 

deploying those cells, using CACTI 5.2. 
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II. DESIGN PARAMETERS FOR SRAM MEMORY CELLS 

A memory unit in any electronic device should ensure extremely high reliability 

of operation and data storage. Thus, a memory cell must be designed very carefully for 

reliable operation while simultaneously ensuring a low overhead of on-chip area and 

power consumption. In a 6-T SRAM cell, there are three operation modes of which two 

are active (read and write operation) and one is passive (hold or the retention mode). In 

this section the design parameters for various operation modes of a 6-T SRAM memory 

cell are lucidly described. 

 

1. STANDBY LEAKAGE POWER 

Standby leakage power has become an important constraint in today’s processor 

design. According to the figures posted by International Technology Roadmap for 

Semiconductors (ITRS) in [2], the leakage power is set to become a dominant source of 

power dissipation in sub 90 nm technologies. With the technology node fast approaching 

the 45 nm mark, the leakage power is expected to dominate the dynamic switching 

power and account for more than 50% of the total chip power. As a result, Standby 

leakage power becomes an important constraint to be considered and controlled while 

designing digital circuits.  

With decreasing technology node, supply voltage is continually scaled to reduce 

the dynamic power dissipation. The continued voltage scaling offsets in lowered device 

speeds. To compensate this decrease, the threshold voltage, Vth, is reduced 

commensurately. The reduced Vth in turn has a large impact on standby leakage power of 

the device, thereby increasing the ratio of standby leakage power to the total leakage 

power. The major components of leakage power in current generation CMOS 

technologies are sub-threshold leakage and gate leakage. Sub-threshold leakage was 

typically the dominant component of leakage as ISub was a significant percentage of the 

total leakage current. As the gate length of MOSFET’s continued to be scaled down in 

the sub 100nm regime, gate oxide thickness have value of less than 20 Å. Consequently, 
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it yields in significant gate leakage current by various tunneling mechanisms, which 

have undesirable effects on standby current and memory operation.  

 

1.1 SUBTHRESHOLD LEAKAGE 

Subthreshold leakage or subthreshold drain conduction refers to the current that 

flows between the source and drain of a MOSFET when the gate-to-source voltage is 

below the threshold voltage (Vth). This region of operation of a transistor is also referred 

to as the subthreshold region of operation. The transistor is essentially considered to be 

turned “off”. The commonly used model of Subthreshold leakage current (ISub), through 

a transistor is [15] 

( )( ) / /
0

2 1.8
0

   1                                                                                (2.1)

                                                                   

gs th T ds T
V V V V V

Sub ds

ds T

I I e e

I V e

η

β

− −= −

=

0     

                                           (2.2)

  ( / )                                                                                              (2.3)  

 

 
ox eff eff

C W Lβ µ=

 

Where, Vgs  and Vds are the gate-to-source and drain-to-source bias voltages respectively, 

VT  is the Boltzmann constant, µ0 is the zero bias electron mobility, Cox  is the gate oxide 

capacitance, Weff  and Leff  are the effective transistor width and length respectively.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Subthreshold leakage components in a 6-T SRAM cell in the retention mode. 

Subthreshold Leakage Currents
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 In Fig. 2.1(a), the SRAM cell is operating in the retention mode, the node L stores a “1” 

and node R stores a “0”. The Wordline is turned off and the bit and bit-bar lines are 

precharged high.  The pull-up transistor PR, the pull down transistor NL and the access 

transistor AXR are turned “off” and contribute towards the Subthreshold leakage current 

of the circuit. 

1.2 GATE LEAKAGE 

Gate leakage is the other contributing factor towards the total standby leakage 

current of the memory cell, in the retention mode. Gate dielectric leakage current 

becomes a serious concern as sub-20Å gate oxide prevails in advanced CMOS 

processes. 

When the oxide thickness of a device is reduced there is an increase in the 

amount of carriers that can tunnel through the gate oxide, from the bulk silicon to the 

gate. For NMOS transistor the majority carriers are electrons and for PMOS transistors it 

is holes. This offsets itself in gate leakage current. Gate tunneling current as shown in 

Fig. 2.2 consists of three components: 

• Gate to source and gate to drain overlap current (Igso and Igdo). 

• Gate to channel (Igc), a part of which goes to the source (Igcs) and rest to the 

drain (Igcd). 

• Gate to substrate current (Igsb) 

 

 
Fig. 2.2.  Gate tunneling components in a MOSFET. 



 13

In bulk CMOS technology, the gate to substrate leakage current is several orders 

of magnitude lower than the overlap tunneling current and gate to channel current [16]. 

On the other hand, while the overlap tunneling current dominates the gate leakage in the 

“OFF” state, gate to channel tunneling dictates the gate current in the “ON” condition. 

Since the gate to source and gate to drain overlap regions are much smaller than the 

channel region, the gate tunneling current in the “OFF” state is much smaller than gate 

tunneling in the “ON” state [16]. The total gate leakage current Igate is linearly dependent 

on the area of the device and has an exponential relationship with oxide thickness. 

Consequently, with technology scaling and voltage scaling with sub 100 nm CMOS 

devices, there is a subsequent reduction in oxide thickness, which manifests itself in 

increased leakage current.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Gate Leakage components in the retention mode of the SRAM.  
 

The gate leakage current components of a 6-T SRAM memory cell are shown in 

Fig 2.3. As previously stated, the CMOS devices in the “ON” state would contribute 

more to gate leakage than in the “OFF” state. Also from fig 2, for the node L storing a 

“1”, pull-up transistor PL and the pull-down transistor NR of the cross-coupled inverters 

are in the “ON” state. Therefore, the gate leakage current components are predominant 

through these two MOS transistors. 
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2. STATIC NOISE MARGIN 

In Static Noise analysis, the inputs and outputs of the cross-coupled inverters in 

an SRAM or any other logic circuits are assumed to be DC signals, Fig 2.4. It is widely 

considered as a good measure to analyze the stability of a logic circuit [17], [18]. Static 

noise margin is defined as the unity gain points on the voltage transfer curve of a logic 

gate as illustrated in Fig 2.5.  

Some of the reliable methods for reliable static noise margin estimation, widely used in 

literature are  

• Unity small signal loop gain 

• Maximum Square method 

• Coincidence of the roots of the flip-flop equation 

• Jacobian of the Kirchhoff equations is zero 

For CMOS logic gates one of the most widely used criteria for accurately estimating 

static noise margin is the maximum square method [19]. In this method, the static noise 

margin is given by the sides of the largest square that can be inscribed in the normal and 

mirrored DC voltage transfer curves. This method will be used in this work, to estimate 

the Static noise margin for the read and write operation, of a 6-T SRAM cell.  

 

2.1 STATIC READ NOISE MARGIN (RNM) 

The read static noise margin is one of the most important criteria to analyze the 

performance during the read mode of the SRAM memory cell. The stability of a SRAM 

cell in read mode is characterized by RNM when the wordline is activated and the bit 

and bitbar lines are pre-charged high for the read mode. RNM is defined in [20] as the 

maximum DC noise voltage ( nV± ) that can be tolerated at the cell storage nodes L and R 

as shown in Fig 2.4, without the cell flipping its state. 

  As shown in Fig 2.4, the two DC noise voltage sources are placed in series with 

the cross coupled inverters, with the worst polarity at the internal nodes. Voltage source 

(Vn)i is used to model the DC noise source. For a perfectly symmetric SRAM cell Vn1 

and Vn2 are equal and are unequal for an asymmetric SRAM cell. 
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Fig. 2.4  Two cross-coupled inverters with static-noise voltage source Vn1 and Vn2 for a 6-T SRAM cell. 

 

In the latter case, the RNM is given by 

{ }1 2( ) min ,                                                                                       (2.4)asymmetric n nRNM V V=

RNM for a 6-T SRAM cell is calculated by measuring the sides of the largest square that 

can be inscribed in a butterfly curved, formed by drawing the voltage transfer curve 

(VTC) of Inv1 and the mirrored VTC of Inv2.  
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Fig 2.5 Read Static Noise Margin (RNM) for a symmetric 6-T SRAM cell. 
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The RNM value corresponds to the side of the smallest square of the two squares 

that can be inscribed. As stated above, the 2 square will have different dimensions for an 

asymmetric cell and dimensionally equal for a symmetric SRAM cell.  When Vn, as 

shown in Fig 2.5, is equal to RNM the VTC’s move horizontally and vertically until the 

stable point A and the meta-stable point B coincide. 

 

2.2 STATIC WRITE NOISE MARGIN (WNM) 

During the write operation, Fig 2.6, the value that has to be stored in the SRAM 

cell is reflected in the bit line voltage. If the node L is storing a value of “1” and a “0” 

has to be written to it during the write operation, in that case the bit line voltage is set to 

“0” before the wordline is pulsed high. If due to the switching activity of the cells in that 

column of the SRAM array, a voltage is induced in the bitline, due to capacitative 

coupling,  such that it fail to write a “0” to the node L, in that scenario a write failure 

occurs. Thus write margin is defined as the minimum voltage difference between the 

bitlines necessary to flip the activated cell. Alternatively, it can be understood as the 

Minimum Square that can be inscribed in the VTC of the cross coupled inverters, during 

a write operation as shown in Fig 2.6 and Fig 2.7. 
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Fig. 2.6 SRAM during a write operation. 
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Fig. 2.7 Write Noise Margin. Sides of the minimum sized square that can be inscribed in the VTC of the 

cross coupled inverters. 

 

3. READ ACCESS TIME  

The read access time is a measure of the SRAM operation during its read mode, 

to access the stored data and is one of the main timing criteria in memory circuits. The 

read access time is defined as the time required to produce a pre specified voltage 

difference the two bit-lines. The prespecified bit-differential is a fixed quantity which is 

dependent on the voltage sensing sensitivity of the sense amplifier. For a successful read 

operation, the bit-lines should have a voltage difference within the time period, during 

which the wordline is high (Twordline_read). The voltage differential is established in the 

bit-lines during the read operation, due to the cumulative pull down action of the access 

transistor and the pull down transistor of the SRAM for the node storing a 0.  

To ensure a write failure does not occur 

                                  Tread_access_time ≤ Twordline_read                                                         (2.5)        
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4. WRITE ACCESS TIME  

In addition to read access time, write access time is another important metric in 

the timing criteria of memory circuits. The write access time is a measure of memory 

speed during the write mode of the SRAM circuit. The write access time is defined as 

the time required to write a specified value to the SRAM cell, during the write operation, 

from the moment the wordline is activated. Thus the window of opportunity to complete 

a successful write is the width of the high-pulsed wordline voltage (Twordline_write).  

To ensure a write failure does not occur 

                                  Twrite_access_time ≤ Twordline_write                                                                         (2.6)          
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III. PROCESS VARIATIONS AND YIELD AWARE RESPONSE 

SURFACE MODELING 

 

1. MODELING PROCESS VARIATIONS 

 As the transistor continues to be scaled to finer feature sizes, it becomes 

increasingly difficult to control the process variations. The increasing fluctuations in 

manufacturing process have introduced unavoidable and significant uncertainty in circuit 

performance. There are two variation sources in digital circuits which induce variability, 

namely Inter-die variations and Inter-die process variations. Inter-die variations refer to 

the die-to-die variations occurring during the photo-lithographic wafer manufacturing 

process. The inter-die variation in a parameter, say gate oxide thickness, Tox, modifies 

the value of the parameter of all the transistors in a die in the same direction, which 

implies that the gate oxide thickness of all the transistors in a die either increase or 

decrease by the same value. This principally results in a spread of performance 

parameters such as access time delay and leakage but does not cause any mismatch 

between transistors.  

Intra-die variations on the other hand refer to the within-die variation of all the 

process parameters. The intra die variations shift the process parameters of different 

transistors within the same die in different direction. For instance, in the case of the 6-T 

SRAM cell, the gate oxide thickness of some transistors might increase and of others, 

might decrease.  Intra-die variations can be either systematic or random. If the source of 

intra die variation is systematic, then there is a distance dependent correlation between 

the process parameters of transistors. Thus, shift in the parameter of one transistor 

depends on the shift in the same parameter of a neighboring transistor.  Contrary to this 

is observed in random intra die variations, wherein, there is no proximity dependent 

correlation between parameters and shift in process parameters of neighboring 

transistors can be completely independent of each other. 
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The sources of inter-die and intra-die variations in process parameters includes 

channel length (Lg), channel width (W), gate oxide thickness (Tox), line edge roughness, 

threshold voltage (Vth), and random dopant fluctuation (RDF). These sources of 

variations result in a significant variation in the performance metrics of the SRAM. 

Hence, any constraint model developed to analyze the performance of a SRAM should 

consider the variability in process parameters and is more relevant as technology nodes 

begin to reach sub 90nm levels. Modeling and analyzing these random process variations 

to ensure manufacturability and improve yield has been identified as a top priority for 

today’s IC design problems. 

In general, parametric variation can be modeled as 

int int (3.1)                                              
total er ra

δ δ δ= +  

where, δinter is the inter-die variation and δintra is the intra-die variation. Since the present 

analysis is based on a single 6-T SRAM cell, only the effect of intra-die variations will 

considered.   The systematic intra-die variations does not result in large variations in 

transistors which are in close spatial proximity, especially so for the transistors in a 6-T 

SRAM cell. Thus the random effect of intra-die process variations would be a major 

contributing factor in the predictor model development, for the SRAM and would lead to 

mismatch in the transistors.  

Amongst the random sources of intra-die process variation, the ones considered 

for model development are gate oxide thickness variation (Tox) and variation in threshold 

voltage (Vth) due to random dopant fluctuation (RDF). According to ITRS [2, the total 

Vth 3σ variation, for the 45nm technology node is 42% and RDF accounts for 40% of it. 

Thus it is one of the major contributing factors for threshold voltage variation. Gate 

oxide thickness on the other hand is a relatively well controlled parameter; the T0x 

variation for the 45nm technology node for a MOSFET is 4 %.  

As mentioned before, the random effects of intra-die process variations are being 

considered in this work. Hence, the threshold voltage and gate oxide thickness of the 

MOSFET’s of a 6-T SRAM cell are going to be independent parameters and bear no 

correlation with each other. This principally means that the models developed will have 
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6 distinct and independent Vth and Tox values. To ensure a high yield, the range of 

distribution of the process variations is assumed to lie within the domain of values [-6σ, 

6σ]. 

 

2. VARIATION AWARE RESPONSE SURFACE MODELING 

In order to account for process variations, response surface models [21] are used 

to capture the circuit performance parameter variation, caused as a result of fluctuations 

inherent in die production process at the wafer fabrication labs. In statistics, response 

surface methodology (RSM) explores the relationships between several explanatory 

variables and one or more response variables. The thought behind this method is to 

perform a sequence of design experiments, by varying the input parameters, to obtain an 

optimal response. Thus, response surface modeling or RSM is a technique used to form 

the polynomial functions to predict the circuit performance in terms of design 

parameters, while simultaneously accounting for process variations.  

The application of Response surface modeling (RSM) in developing empirical 

predictor models for circuit parameters is explained in this section. For a fixed circuit 

topology, the circuit performance parameters, like Static Noise margin, Access Time and 

Leakage, are a function of design parameters, like Transistor channel widths, W, as well 

process parameters, like gate oxide thickness, Tox, and threshold-voltage, Vth. 

Mathematically, RSM can be represented as  

1 2    ( ) ( )                                              (3.2) Y F D F P= +  

Where, Y is the Predictor model of the parameters to be determined, F1(D) is the 

function of static variables and F2(P) is the function statistically varying parameters 

In the domain of digital\analog circuit the above equation; for a fixed topology circuit of 

m transistors; can also be more intuitively written in terms of dependent design variables 

and process variation as  

1 1 2 2 1 1 1

(3.3)

( , ,......., ) ( ,..., ; ,..., ; ,..., )    

                                                                                                                  
N N m th thm ox oxm g gm

Y F W W W F V V T T L L= + ∆ ∆ ∆ ∆ ∆ ∆

Where, YN is the Nth circuit performance parameter to be determined, F1N is a function of 
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widths of the m transistors in the circuit and F2N is the function of random process 

variables of the m transistors, like Vth, Tox, gate length Lg etc. 

A common methodology is followed during the process of determining the 

predictor model, which is outlined in the steps below.  

• Step 1: Fixing the design parameters 

During the optimization process, the design parameters are optimized and fixed 

during that iteration. The predictor models developed would only be a function of 

process variations/random variables, to account for any uncertain variation.  

Consequently, the Nth circuit performance parameter has the form 

      2 1 1 1  (3.4) ( ,..., ; ,..., ; ,..., )    
i

N th thN ox oxN g gNW fixed
Y F V V T T L L

=
= ∆ ∆ ∆ ∆ ∆ ∆  

 

• Step 2: Selecting the template and order for RSM  

A fixed template needs to be selected for the performance parameter, determined by 

the accuracy of the model required. For Circuit performance parameters that are 

linearly dependent on random variables, a linear model suffices, for nonlinear 

models a second order or higher model can be used depending on the accuracy of the 

template in estimating the circuit performance parameter Y. Generally, in nano-

scaled analog and digital circuits, the linear model is not sufficiently accurate. 

Hence, applying quadratic RSM or higher order RSM would improve the accuracy.  

Given a set of fixed design parameters, the Nth circuit performance can be 

approximated by [20] 

 Linear Model:    ( )           TY X B X C= +  

          QuadraticModel:  (3.5)( )                  T TY X X AX B X C= + +  

where X = [x1, x2,…, xm]T represents the process variations and m is the total number of 

variation process parameters,  

C ε R is the constant term, 

B ε RN represents the linear coefficients, 

A ε RNxN denotes the quadratic coefficients. 
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Higher Order Polynomials: 

2
0

0 0

(3.6)( )          .....               
m m m

i i ij i j ii i

i i j i

Y X a a x a x x a x
= < =

= + + + +∑ ∑ ∑  

• Step 3: Design of Experiment (DOE):  Sampling in the domain [-6σ, 6σ] of Xi , the 

process variations. 

It is apparent by now that a statistical modeling methodology needs to be followed to 

account for the process variations.  One problem that particularly arises is that the 

observed changes in a response variable, Y, may be correlated with, but not caused 

by, observed changes in individual factors, Xi (process variables). Simultaneous 

changes in multiple factors may produce interactions that are difficult to separate 

into individual effects. Observations may be dependent, while a model of the data 

considers them to be independent [22]. 

Design of Experiments or DOE is the possible way out of the aforementioned 

predicament without loss in reliability as well as saving the computational overhead 

involved. DOE is a method of effectively collecting experimental data at the 

effectively sampled points of the individual factors, Xi, in their domain    (-6σ to +6σ 

to ensure higher quality of the data points). In a designed experiment the data 

samples, at which the performance of the circuit is evaluated, is actively manipulated 

to improve the quality of the data and remove redundant information. A common 

goal of all designed experiments is to be parsimonious with respect to the number of 

sampled points while simultaneously ensuring sufficient information for high degree 

of accuracy in modeling of the circuit performance.  

Some common methods followed for deriving ideal sampling points for response Y 

are  

1. Full factorial designs 

2. Plackett-Burman designs 

3. Box-Wilson designs 

4. Box-Behnken designs 
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5. D-Optimal designs 

6. Random sampling   

 

The first 2 methods are ideal for linear RSM, while 3, 4 are ideal for quadratic RSM 

and 5 is best suited for models in which coefficients to be fitted are nonlinear, a case 

in point being a model for circuit performance estimation. 

Random sampling, generally, on the other hand fails to capture correlation between 

process parameters. This however, is not objectionable in the template used for 

RSM, in this research exploration. As stated previously in section (A), the effect of 

random intra-die process variations is taken into account, and the parameters, Xi, are 

totally random, independent variables and bear no correlation with each other.  

Hence, if the RSM used is quadratic, in equation (15) the coefficients of the cross 

terms xixj, aij would be zero. 

 

• Step 4: Solving the over-determined equation to find the coefficients, using suitable 

regression methods. 

Once the ideal sampled points (Xi) are selected, HSPICE simulations are run to 

determine the respective circuit performance parameter, YN. Using the set of sampled 

data 
~

i i
X , Y{ } , also can be referred to as the training data, the coefficients of the over 

determined equation is found out by suitable regression methods.  Since, all the 

models used for RSM for an SRAM are linear with respect to the coefficients, any 

linear regression method should suffice, which guarantees a good confidence interval 

for the estimated unknown variables.   

 

The methodology of formulating an empirical model is summarized in the flowchart Fig 

3.1 
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Fig 3.1 Flow chart depicting the response surface methodology flow used for circuit parameters. 

 

 

 

 

 

 

Step3: Design of Experiment (DOE):  

Sampling in the domain [-6σ, 6σ] of Xi , the process variations, for every circuit 

performance parameter Yi 

Step 4: Solving the over-determined equation. 

The over determined polynomial equation is solved for the sampled points {Xi, 

Yi} to find the coefficients, ai, using suitable regression methods. 

Step1: For every iteration, i,  Fixing the design parameters, {Si}.  

Where Si is the set of design variables for the i
th iteration. 

Step2: Selecting the template and order for RSM. 

Eg: Higher Order Polynomial for the response variable Y 

2
0

0 0

( )          .....
m m m

i i i i ij i j ii i

i i j i

Y X a a x a x x a x
= < =

= + + + +∑ ∑ ∑  

Where, Xi , Xj  are the process variable and ai is the unknown coefficient and Yi is the 

circuit performance parameter for the SRAM 



 26

IV. STATISTICAL  MODELING OF SRAM PERFORMANCE 

PARAMETERS 

This section describes the predictor models developed, for the performance 

metrics of a 6-T SRAM cell. The predictors are mathematical, empirical estimators 

formulated after the regression analysis of the over determined polynomial equation. 

These models are then used to determine the value of a performance metric of a circuit, 

without running further SPICE simulations, without loss in reliability and offering a 

SPICE like accuracy. The performance metrics for the 6-T SRAM cell described and 

estimated in this section are, Standby Leakage power, Static Noise margin (Read and 

Write), Dynamic Noise Margin (Read and Write) and Read access time. These models 

will form the main components in our optimization process. 

The models are developed in the presence of process variation, which manifests 

itself in device mismatch. Hence, all the models developed are characterized for an 

asymmetric 6-T SRAM cell. Also the distribution of process variations is assumed to be 

Gaussian. 

 

1. CELL LEVEL SRAM PERFORMANCE MODELING 

In this sub-section, models for cell level performance parameters of the SRAM 

memory are developed. Furthermore, the SPICE level simulations and the model 

predicted values are compared and are shown to have a very accurate fit with minimal 

relative error. 

 

1.1 STANDBY LEAKAGE CURRENT 

The figure 4.1 represents the SRAM memory cell in the standby/data retention 

mode. The cell is storing a “1” which is reflected in the value of the node L. Bitlines are 

precharged high and since the cell is not being accessed, wordline is pulsed low. The 

case shown in the figure represents the worst case leakage scenario as the bitlines are 

pulsed high, which contributes to leakage power through both Subthreshold and gate 

leakage. 
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Fig 4.1 SRAM cell during the data retention mode. This represents the worst case standby leakage, when 

the bitlines are pulsed high. 

 

Three dominant leakage paths can be identified in this scenario, whence the bitlines are 

set “high” 

• Leakage from bitlines to wordline 

• Leakage from bitlines to ground 

• Leakage from Power supply line to ground 

 

In the current section, each leakage component is analyzed in the presence of process 

variations and subsequently an empirical model is obtained, the accuracy of which is 

duly justified on the basis of actual HSPICE simulations. 

 

1.1.1 Subthreshold Leakage 

As stated previously, Subthreshold leakage or subthreshold drain conduction 

refers to the current that flows between the source and drain of a MOSFET when the 

gate-to-source voltage is below the threshold voltage (Vth). Thus “off” transistors are 

analyzed to compute the Subthreshold component of leakage.  
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From equations (4.1) (4.2) and (4.3), it is clear that ISub has an exponential 

dependence on threshold voltage (Vth) of the transistor. Furthermore, the transistor model 

used is a BSIM4 model, which describes Vth  as a function of various process parameters 

such as effective gate length, Leff, gate oxide thickness, Tox and doping concentration of 

the channel, Nsub [23]. According to ITRS [2], the total 3σ variability of Vth is nearly 

42% of the nominal value, of which random dopant fluctuation (RDF) in the channel of 

a transistor contributes to nearly 40% of the total Vth variability MOS device. Oxide 

thickness, Tox variability at the 45nm node has a 3σ value of 4%, according to ITRS [2]. 

Furthermore, Tox is a fairly well controlled parameter and more importantly, its effect on 

Isub is not significant as compared to other factors hence it can be safely ignored, while 

modeling Isub. Thus the empirical model for the Subthreshold leakage for an “off” 

transistor can be written as 

( )
0 (4.1) ( ) ( )                                                                    thF V

gateSub off
I I e

∆
=

 From circuit simulations, it was determined that a linear model for F(∆Vth_Nsub) 

sufficiently models ISub. The total subthreshold leakage current for the 6-T SRAM cell 

schematic shown in Fig 4.1 is given below. 

( ) 31 2 __ _
0 00 (4.2)

                                 

. . .                Vth nrVth nl Vth pr

pr axrsub nltotal
I I e I e I e

αα α − ∆− ∆ ∆= + +

Where, Inl0, Ipr0 and Iaxr0 are the Subthreshold leakage current contributors in the SRAM 

cell, without any process variation and ∆Vth_nl, ∆Vth_pr, ∆Vth_nr are the change in threshold 

voltage values of the respective transistors as shown in Fig 4.1. It should be noted in the 

figure that the transistors NL, PR and AXR are in the “off” state. Consequently, only 

these three (Ids)off currents need to be considered while modeling the Subthreshold 

leakage of a SRAM cell shown in Fig 4.1. The model above is general and can be 

extended to include other effects due to random variations. From equation (4.1), if gate 

length variation has to be taken into account it can be modeled as  

 
( ) ( )1 2   

0  (4.3)(                                                       ) ( )     gthF V F L

gateSub off
I I e

∆ + ∆
=  
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Where F1(∆Vth) and F2(∆Lg) are empirically determined models. 

 

1.1.2 Gate Leakage 

To develop an accurate model, which predicts gate leakage in the presence of 

process variation, the various leakage mechanisms and their impact in a MOSFET needs 

to be analyzed. The three major gate leakage components are Electro conduction-band 

(ECB) tunneling, Electron Valence-band tunneling (EVB) and Hole Valence band 

tunneling (HVB) [24]. Efforts on empirical gate leakage modeling as in [23] and [7] 

donot consider effect of random dopant fluctuation (RDF) and its effect on threshold 

voltage Vth, this as per analysis and HSPICE simulations, can lead to an incorrect model 

predictor. The authors in [18] derive an analytical intrinsic gate leakage model for a 

MOSFET with physical source/drain current partition which has been implemented in 

BSIM4 to a fair degree of accuracy.  According to their models the leakage current 

density, due to the three major gate leakage current components, in addition to gate 

oxide thickness, Tox, also has an exponential dependence to threshold voltage, Vth.  

The gate tunneling current density as a function of x, the distance from source to drain in 

the channel, is [24] 

( )

*

/ ( )/2 2

( )
0 (4.4)

.  .

                           

                            .                                                                    

ox oxsox
BT V V xB E

g ox oxs

B V x
g
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J e

− −−

−

≈ ≈

≡

Where Jg0 is the gate tunneling current density with Vds = 0, Voxs ≈ Vgs and B* = 

B.Tox/Voxs.  

V(x) is the voltage along the channel from source-to-drain and is approximately given by 

the expression 

( ) ( )( ) / 2 . /                   (4.5)                                                 gs gsth ds ds th
V x V V V V V V x≈ − − −

Where Vgs  is gate to source voltage, Vds is the drain to source voltage and x is the 

distance from source to drain, in the channel. 
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From (4.4) and (4.5) it is clear that gate leakage current has an exponential 

dependency on both threshold voltage Vth and gate oxide thickness Tox, vindicating our 

previous assumption and has shown to be true in our simulation results using HSPICE. 

Thus the gate leakage of a transistor can be modeled as  

( )  1 2  ( )
0 (4.6)            .                                                           oxthF V F T

Gate gateI I e
∆ + ∆

=

Here Igate0 is the gate leakage current of a transistor with no process variation. From 

analysis, it was found that both functions F1 and F2 are linear in ∆Vth and ∆Tox 

respectively. Thus the simplified model that can be used for an SRAM cell as shown in 

Fig 4.1 is 

( ) 3 41 2 _   __   _
0 0 (4.7)  .   .          

                               

Vth pl Tox plVth nr Tox nr

Gate nr pltotal
I I e I e

β ββ β ∆ − ∆− ∆ − ∆= +

Where, Inr0 and Ipl0 are the gate leakage current values for an SRAM memory cell 

without taking process variations into consideration. 

 

1.1.3 Total Leakage 

The total leakage current of an SRAM cell can be modeled as a sum of the major 

leakage components. 

( ) (4.8)                                                                          
Gateleak subtotal

I I I= +

Furthermore, as previously stated we are considering the Vth variation due to RDF, hence 

the Vth of different transistors in an SRAM cell are independent random variables [7]. 

Also according to [7] the Tox of different transistors in an SRAM cell are random 

variables.  

α1, α2, α3, β1, β2, β3, β4 are the fitting parameters which can be determined using 

nonlinear regression methods in MATLAB one example, which was used in this work, is 

the Gauss-Newton algorithm with Levenberg-Marquardt modifications, to guarantee a 

global convergence. The accuracy of the above model can be judged by the confidence 

interval of the fitted parameters αi, βi. 
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In Table 1, the fitting of the coefficients are found to be very good thus 

vindicating our assumptions. Furthermore, the distribution of logarithm of leakage 

current of the SRAM cell is non central Fig 4.2, thus the single lognormal approximation 

of sum of lognormals, for the total leakage current [7] is also not accurate when the 

number of lognormals to be added is few. 

 

 

TABLE I  

FITTED PARAMETERS USING NONLINEAR REGRESSION 

Coefficient Value of coefficient Confidence Interval 

β1 6.5912 6.3017    6.8806 

β2 1.1901 1.0901    1.2901 

β3 7.9052 7.8465    7.9639 

β4 0.7844 0.1727    1.3961 

α1 26.9242 25.6304   28.2180 

α2 26.4226 26.3937   26.4515 

α3 28.0944 27.5719   28.6168 

In statistics, a confidence interval (CI) is a particular kind of interval estimate of a population parameter. 

Instead of estimating the parameter by a single value, an interval likely to include the parameter is given. 

Thus, confidence intervals are used to indicate the reliability of an estimate. How likely the interval is to 

contain the parameter is determined by the confidence level or confidence coefficient. Increasing the 

desired confidence level will widen the confidence interval [25]. 
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Fig. 4.2 Non-central distribution of the logarithm of leakage current by derived by varying process 

variables, in HSPICE simulation. 

 

 

1.2 STATIC READ NOISE MARGIN (RNM) 

As stated before, the RNM is defined as the maximum DC noise voltage ( nV± ) 

that can be tolerated at the cell storage nodes without changing the stored bit. A positive 

value of RNM represents a stable read while a zero or negative value will result in a read 

failure. The effect of random variations on RNM value is characterized by varying 

individual Vth and Tox value of the MOS transistor constituting the SRAM cell between 

its ( 6
mean

µ σ±  )  values. The HSPICE based Monte-Carlo simulations, Fig 4.3, are based 

on a 45 nm CMOS technology BSIM4 model. A second degree polynomial trend line is 

made to fit the plotted sensitivities. The sensitivity based characterization is an important 

step in determining the order of the polynomial, which has to be chosen for response 

surface modeling, to accurately fit the circuit parameter. A second order trend line 
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accurately fits the characterized curve, thus for read noise margin, a second degree 

polynomial would model it to a fair degree of accuracy Fig 4.4 

 
Fig. 4.3 Distribution of RNM on varying process variables.  
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Fig 4.4 Characterization of RNM on varying Vth and Tox . 
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The Gaussian nature of the distribution of RNM Fig 4.3 and the second order 

nature of the characterization curve indicates that RNM for an SRAM can be modeled as 

a second order polynomial, which is a function of process variations. The model is 

represented below 

  (4.9)( )                                                                                     T T
RNM X X AX B X C= + +  

Where, 

1 6, 1, 6  ,  ... , ... ,
T

th th ox oxX V V T T = ∆ ∆ ∆ ∆   is the column vector of random variations 

11 12 1 12

22

12 1 12 12

.. .. ..

. .

. . .

. . .

. . .

.. .. .. ..

a a a

a

A

a a

 
 
 
 

=  
 
 
 
  

  is a 12x12 Matrix                                           

[ ]1 2 11 12, ,  .... ,  ,T
B b b b b=                                                                                            (4.10) 

RNM
C µ= , is the mean value of read noise margin for fixed Widths and lengths values 

of the MOS transistor and in the absence of process variations. 

Matrices A and B are the coefficients of second order and first order terms respectively, 

in the polynomial model predictor. They constitute the unknowns to be determined after 

response surface modeling and regression analysis. 

Since the random effects of intra-die process variations are independent in 

nature, the numbers of unknowns to be determined are reduced. Thus, the process 

variations in matrix X are independent and bear no correlation with each other. 

Consequently, the cross terms,
ij

a , in matrix A are zero and matrix A is a diagonal 

matrix. This greatly reduces computation overhead and results in a simple, accurate, pure 

quadratic model for read noise margin.  

Fig. 4.4 shows that RNM is most sensitive to Vth variation in the access transistor AXR, 

pull down transistor NR and to a lesser extent, to pull up transistor PL. To recapitulate, L 

is the node storing a “1” and R is the node storing a “0” in the SRAM cell Fig 4.1.  This 
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observation is quite expected as these “ON” transistors (PL and AXL), form a pull down 

path for the bit bar line (Fig 4.1). In order for the sense amplifier to detect the contents of 

the cell, a differential voltage needs to be created between the two bitlines.  The voltage 

division between these two transistors determines the magnitude of noise injected at the 

internal storage node during the read operation.  

A stronger NR and a weaker AXR results in a better RNM due to smaller read 

disturbance at node R. The drive strength of these transistors is directly proportional to 

(Vgs-Vth). Thus if Vth for NR decreases and Vth of AXR increases, the drive strength of 

NR increases and AXR decreases, resulting in better read stability. Fig 4.4 verifies 

experimentally the aforementioned theoretical analysis. 

 

1.3 STATIC WRITE NOISE MARGIN (WNM) 

The write noise margin is characterized in a similar way to read noise margin.  

The characterized curve is plotted by varying the Vth and Tox value of each transistor of 

the SRAM cell, independently. The Gaussian nature of WNM, Fig 4.5, and the second 

order nature of the characterized sensitivities, Fig 4.6, indicates that WNM can be 

modeled as a second order polynomial and a degree twelve function of random 

variations.  

The sensitivity curve based on HSPICE based simulations on a 45 nm CMOS 

process, shows that a second order trend line fits the write noise variation with the 

varying process parameters. Thus, a second order polynomial empirical estimator should 

suffice, without loss in accuracy. This is furthermore verified in fig 4.7 which plots the 

actual HSPICE simulation determined value and the model predicted value, for a set of 

points not used as training data in the original response surface modeling procedure.  

Mathematically it can be represented as second order function in the Euclidian space: 

( ) T T
WNM X X AX B X C= + +                                                                               (4.11) 
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Fig. 4.5 Monte-Carlo sampling of WNM on varying process variables.  
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Fig 4.6 Characterization of WNM on varying Vth and Tox.  
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Where X is a set of process variations, for every transistor in the SRAM memory cell, 

represented in the matrix form as 

1 6, 1, 6  ,  ... , ... ,
T

th th ox oxX V V T T = ∆ ∆ ∆ ∆   

WNM
C µ= , is the mean value of write noise margin for fixed Widths and lengths 

values of the MOS transistor and in the absence of process variations. 

11 12 1 12

22

12 1 12 12

.. .. ..

. .

. . .

. . .

. . .

.. .. .. ..

a a a

a

A

a a

 
 
 
 

=  
 
 
 
  

  is a 12x12 Matrix 

[ ]1 2 11 12, ,  .... ,  ,TB b b b b=  

   
Fig 4.7 Comparison of HPSICE predicted and polynomial predicted values using sample test points. 
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Since the random variations are independent of one another and cross terms,
ij

a , 

in matrix A are zero, the empirical model of write noise margin can be represented in a 

relatively simpler notation as in (4.12) 

( ) ( )
6 12

2 2

1 6

( ) +   WNM ii thi i thi ii oxi i oxi

i i

WNM X a V b V a T b Tµ
= =

= + ∆ + ∆ ∆ + ∆∑ ∑                             (4.12) 

Where, 

               iia  are the diagonal elements of matrix A 

               ib  are the elements of the column vector B 

 

1.4 READ ACCESS TIME  

During the read operation, the word line is activated for a pre specified time. If a 

read operation does not occur during that time, a read failure is said to have occurred. 

The HSPICE based Monte Carlo analysis of read access time, results in a non-central 

distribution. However, from Fig. 4.8 it is quite evident that the distribution of inverse of 

read access time is Gaussian. Hence, the inverse can be modeled as an nth order 

polynomial function of Gaussian variables. These Gaussian variables are process 

variations of a 6-T SRAM cell. The order n of the polynomial can be gauged by the 

characterization of Read access time as a function of process variations. The random 

variables are Gaussian and they are sampled in the [ ]6 ,6σ σ− range. The resultant 

variation in read access time is characterized in Fig. 4.9, by individually varying the 

random variables.  

A second order polynomial has a good fit with the threshold voltage variation 

data Fig 4.10, with a very small relative error ( 2%± ), indicating a good fit. 

Consequently, a second order polynomial can be used as a good and a reliable template 

to accurately statistically model the variations in inverse read access time. 

It can be mathematically represented as following 

1/ T T

readT X AX B X C= + +                                                                                 (4.13) 
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Fig 4.8 (a) Non-central distribution of read access time and (b) Gaussian distribution of inverse read 

access time. 
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Fig 4.9 Characterization of read access time on varying Vth and Tox of all the 6 transistors. 

 



 40

Where, 

Matrices A and B are the coefficients of the second order and first order terms 

respectively (specify equation number of A &B). 

C = 1/ readµ , is the inverse mean value of read access time in the absence of 

process variations. 

 
Fig 4.10 Comparison of HPSICE predicted and polynomial predicted values using sample test points and 

the distribution of relative error. 

 

1.5 WRITE ACCESS TIME  

For the write access time a linear model was chosen based on the model 

developed by the authors in [9]. The model is modified to include the contribution of 

oxide thickness variations to the total variability.  The template of the model is given 

below 

1/ T

WriteT B X=                                                                                                             (4.14)                
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Where,  

  [ ]1 2 11 12, ,  .... ,  ,
T

B b b b b=  

1 6, 1, 6 ,  ... , ... ,
T

th th ox ox
X V V T T = ∆ ∆ ∆ ∆   

Fig 4.11 depicts the fit between the model and HSPICE simulations indicating a good fit 

between the model and actual value. 

 

 
Fig 4.11 Model Vs HSPICE fit for write access time. 

 

 

2. STATISTICAL MODELING OF PERFORMANCE PARAMETERS FOR 

CACHES 

In the previous sub section, various circuit performance parameters were 

developed for the SRAM memory cell. The models take into account the variability in 
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threshold voltage and gate oxide thickness for the 45 nm CMOS technology. From 

various Monte-Carlo simulations, it was quite evident that the variability has a huge 

impact on the performance of the memory cell, for a fixed set of design parameters. The 

SRAM memory cells constitute the building blocks of on-chip L-1 and L-2 cache 

memory. Thus is becomes imperative to analyze the circuit performance of the on-ship 

cache memory, in the presence of process variations which might have a huge impact on 

its performance.  

In this sub section, polynomial empirical models are developed for Standby 

leakage power and Access time of the cache in the presence of variability. For the 

purpose of modeling them, a modified CACTI 5.2 [26], Cache performance tool, 

developed by HP labs is used. CACTI is an integrated cache and memory access time, 

cycle time, area, leakage, and dynamic power model. By integrating all these models 

together, users can have confidence that tradeoffs between time, power, and area are all 

based on the same assumptions and, hence, are mutually consistent. The tool is based on 

circuit assumptions in sync with modern design practices.  

However it assumes a fixed transistor, memory cell area and memory cell aspect 

ratio, for a particular technology node. Moreover, it does not consider the effect of 

process variations on the performance of caches. These inherent flaws in CACTI deem it 

unfit for analyzing realistic performance of the cache, and the circuit performance values 

reported by it quite meaningless, from the circuit designer’s perspective. This 

observation is quite pertinent for sub 90 nm CMOS technologies, where variability plays 

a major contributing factor in determining circuit performance. 

To adequately integrate these two important factors for the cache performance 

values at the system level, a flow is developed which integrates CACTI with a circuit 

simulator for determining actual performance values. The empirical models are then 

developed in MATLAB, based on the training data and the sampled values in the 

variability space. The models developed here form the basic building blocks of the 

nonlinear probability constraints, formulated during the optimization step.  
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2.1 CACHE LEAKAGE POWER  

The leakage power estimation of CACTI is quite simplistic. It considers the 

drain-to-source Subthreshold leakage current for all the transistors that are “OFF” with 

Vdd applied across their drain and source. This however does not take into account the 

gate leakage component of the total leakage dissipation or the inherent process 

variations.  

To get a picture of the modeling methodology used in this thesis, a brief 

overview of the cache total leakage power equation [26] used in CACTI is given below 

Pleak=Pleak_request_network + Pleak_reply_network + Pleak_mats                                     (4.15) 

Where, 

Pleak_mats is the total leakage current associated with the predecoding/decoding 

logic of all the mats (which are shared by all the subarrays of a single mat) and 

the total leakage power of the cells in the data array 

Pleak_request_network and Pleak_request_network is the leakage in the routing network from 

the Bank to the subarray of the cache  

In the modeling methodology used to model the cell level variability, the process 

variations are considered for the cells in the SRAM array. Thus the total leakage power 

of the cache can be simplistically represented as 

Pleak = Pleak_cells + Pinterconnects_periphery        (4.16) 

Where, 

Pinterconnects_periphery represents the leakage current value in the in the routing 

network from bank to the subarray and the peripheral logic unit of every 

subarray. 

In the presence of the process variations, the total standby leakage equation can be 

considered as 

( ) ( )_  int _   leak leak cells erconnects peripheryP X P X P= +  
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Where, 1 6, 1, 6 ,  ... , ... ,
th th ox ox

X V V T T = ∆ ∆ ∆ ∆   represents the variation space for the 

random variables of a 6-T SRAM cell.  Furthermore, the total leakage can be represented 

as a function of the total leakage current per cell. 

( )_  _ _ _ _ _

_ _ _ _ _

 

         

. ( )                                       (4.17)

( ) . ( )                                       

leak cells subarrys per data array leak mem cell

leak mem cell cells per subarray mem cell

P X N P X

P X N P X

=

=

_ _ _ _

_ _ _

 (4.18)

(4.19)

.                                                   

( ) . ( )                                                          

cells per subarray subarr rows subarr cols

mem cell dd leak per cell

N N N

P X V I X

=

=

_ _ _ _ _

         (4.20)

. .                                         (4.21) subarrys per data array banks subbanks mat in subbanksN N N N=

 

Here _ _ _subarrys per data arrayN  and _ _cells per subarrayN  are the number of subarrays per data array 

nd the number of SRAM cells per subarray. These values are evaluated on the fly by 

CACTI to achieve an optimum delay-power product [27]. 

The value of Ileak_per_cell consists of total leakage current components due to both 

gate tunneling component and Subthreshold leakage component and can be developed 

using the appropriate lognormal models described in the previous sub-section. The 

Ileak_per_cell is developed as a lognormal approximation of the total leakage current 

component of every transistor in that cell and the process variability parameters (Vth and 

Tox) associated with every transistor. Thus it is a lognormal leakage approximation of the 

total leakage current of a single cell. The same is represented below 

_ _ ( ) .T

leak per cellI X E U=                                                                                                 (4.22) 

6 3 5 71 2 4_ _ _ __ _ _. , , , , .
T

Tox pl Vth pr Vth nr Tox nrVth pl Vth nl Vth axr
E e e e e e e e

α α α αα α α∆ ∆ ∆ ∆∆ ∆ ∆ =                     (4.23) 

[ ]1 2 3 4 5,  ,  ,  ,  
T

U ζ ζ ζ ζ ζ=          (4.24) 

Where, 

i and  iζ α are parameters that have to be fitted using suitable non linear 

regression methods. 



 45

It should be noted from the discussion on leakage modeling in the previous section that 

gate leakage is computed for the “ON” transistors and the Subthreshold leakage 

component of current has negligible dependence on gate oxide thickness, Tox. 

The Monte-Carlo distribution of the logarithm of the total leakage power 

computed from the modified CACTI, for a 45 nm CMOS technology, is shown in Fig 

4.12, which predictable has a wide degree of variation and again highlights the fact that 

variation leakage plays a significant role in cache performance.  

 

 
Fig 4.12 Total cache leakage Power as evaluated by a modified CACTI 5.2 under the influence of process 

variations. 

 

The variation in leakage power for a L2- Cache simulated in CACTI 5.2, in the 

presence of process variation, shows a variation factor of 1400X from the minimum 

value to the maximum value and a factor of nearly 100X from the nominal value, as 

shown in table II. Thus the effect of variation is an important criteria and it is 
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incorporated in the modified version of CACTI by integrating it with a circuit simulator, 

while developing the framework for the performance analysis and optimization of 

memory at the system level. The figure 4.13 shows the fit between the model predicted 

and the one obtained by actual HSPICE simulations. 

 

Table II 

 LEAKAGE POWER OF A 45nm L-2 CACHE 

Cache Leakage Power (mW) 

Min Nominal (No variation) Max 

0.5078 mW 7.5 mW 721.3505 mW 

 

 
Fig 4.13 Total cache leakage power, a comparison between model evaluated and modified HSPICE-

CACTI setup. 
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2.2 CACHE ACCESS TIME 

Internally in CACTI, the total cache access time is evaluated by modeling the 

interconnects as pi models and replacing the on transistors by their parasitics, which are 

present in a look up table form.  The basic equation used by cacti is shown below 

_ _access request newtwork mat reply networkT T T T= + +         (4.25) 

Where, 

  request_network is the interconnect centric H-tree network to route the address 

  reply_network is used to route the data value accessed 

From the access time equations in [26], the Tmat is the delay caused due to the row 

predecoder, row decoder and the time taken by the cell to pull down the bitline. Since 

the performance modeling of the SRAM cell is considered, the variability in the SRAM 

cell would percolate to the total access time equations. 

Thus for the variability aware modeling framework, cache access time can be considered 

to constitute the following 

inerconnects+mat_decoding_logic( ) T ( )access bitlineT X T X= +  (4.26) 

 

Where, 1 6, 1, 6 ,  ... , ... ,
th th ox ox

X V V T T = ∆ ∆ ∆ ∆   represents the variation space for the 

random variables of a 6-T SRAM cell.  CACTI evaluates the total bitline delay by 

considering the wordline rise time [26]. The approach used in this section also considers 

the wordline rise time by evaluating the total capacitive loading of the wordline driver. 

The parasitics for the bitline peripheral circuit, namely Sense amplifier, Bitline and sense 

amplifier Muxes, and the isolation transistors for the sense amplifier, is derived from 

CACTI. These are then used as inputs for the response surface modeling methodology 

described previously, by integrating it with HSPICE. The template for the empirical 

polynomial estimator is the same as (mention equation number of 1/Tread) and is 

represented below.  

1
( )

T T

bitline

X AX B X C
T X

= + +                      (4.27) 
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Where, 

Matrices A and B are the coefficients of the second order and first order terms 

respectively, equations (4.9) and (4.10) 

C = 1/ bitlineµ , is the inverse nominal value of the bitline delay calculated by 

CACTI in the absence of process variations  

Fig 4.14 below shows a comparison between HSPICE determined value 

and model predicted value. The error distribution shows a good fit validating the 

accuracy of the model derived in this section 

 

 
Fig 4.14 Fit between RSM predicted model and CACTI-5.2 for Cache access time 
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V. IMPACT OF DESIGN PARAMETERS ON SRAM 

PERFORMANCE 

This section provides a basic intuition behind the optimization process and the 

effect of varying design parameters have on SRAM performance that avoids failure in 

operation. Another way to analyze performance is to look at various failure mechanisms 

in an SRAM cell and the impact deign parameters have on avoiding failure. Varying 

design parameters not only directly affect the circuit performance but also indirectly 

affect it due to the dependence of process variations on design parameters, specifically 

transistor widths. In this section the impact of transistor widths, bias voltage and 

wordline voltage is analyzed for a 6-T SRAM cell during normal modes of operation. 

 
Fig 5.1 A 6-T SRAM cell storing a “1”. 

 

During the read operation of the circuit shown in Fig 5.1, the bitlines bit and bit’ are set 

high and the cell is storing a “1” shown by the value at node “L”.  While during a write 

bit is set to “0” and bit’ is set to “1’. 

 

1. SIZING THE PULL-UP TRANSISTOR (WP) 

In the figure the pull up transistor Wpl is switched “ON” and pull up transistor 

Wpr is switched “OFF”. During a read operation Wpl helps in maintaining a “1” value at 
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the node L.  A larger value of Wpl provides a low resistance from bias voltage to the 

node L thus effectively shorting Vdd and node L, leading to a stable read operation, thus 

increasing the Wp value results in read stability. 

However, during a write operation i.e. writing a “0” to node L, sizing up the pull 

up, Wpl, leads to a degraded write operation as it resists the change in value at node “L”. 

This is due to the relative low resistance between node L and supply voltage Vdd. The 

voltage division between Wpl and Waxl during a write operation dictates that a smaller 

voltage drop should be between bit and node L and higher voltage drop between node L 

and power line. As transsitor “ON” resistance is inversely proportional to transistor 

width, the pull up Wpl should be weaker than access transistor Waxl to increase write 

ability.  

Pull up transistor sizing has no impact on the read access time value while for 

write access time; a stronger pull up degrades the write access time. The effective 

capacitance on node “L” during a write has a discharge path through access transistor 

Waxl and charge path through pull up transistor Wpl. For a shorter write access time, the 

discharge rate should be faster than the charging rate, hence the negative impact of 

increasing Wp on write access Time. 

 

2. SIZING THE ACCESS TRANSISTOR (WAX) 

During the read operation the discharge path is through access transistors Waxr 

and Pull down Wnr. Due to the voltage divider operation between them a stronger Waxr 

implies a smaller “ON” resistance for it, hence, a larger voltage drop between node R 

and bitline. For read stability, the voltage at node R should not rise above the trip voltage 

for inverter PL-NL to cause a flip in state, hence the resistance of access transistor Waxr 

should be much less than pull down Wnr, implying a weaker access transistor compared 

to the pull down. 

For read access time an increase in access transistor width is going to reduce the 

read delay due to the smaller value of “ON” drain-to-source resistance for it. This leads 
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to a decrease in the time constant value for the charging current resulting in reduced read 

access time. 

To ensure write ability the access transistor should be stronger than the pull up 

because of the voltage division action due to Wpl and Waxl, at node L as outlined in the 

previous subsection.  However, a stronger access transistor increases the discharge time 

for a write access resulting in increased write access time.  

 

3. SIZING THE PULL-DOWN TRANSISTOR (WN) 

The read stability of an SRAM can be ensured by making the Pull down 

transistor sufficiently stronger than the access transistor. This can be viewed from the 

above discussion or from Fig. 5.1. A stronger pull down Wnr ensures that the voltage 

division action in favor of node “R” storing a “0” by offering a low resistance path to 

ground. Thus, sizing up the pull down, not only offers improved read stability but also 

improves the read access time by decreasing the value of time constant for the discharge 

current.  

 

4. SUPPLY VOLTAGE VDD 

The supply voltage has a significant impact on the SRAM performance both 

during the read as well as the write operation. Increasing the value of Vdd during the read 

operation results in improved read stability as a larger voltage swing between the access 

transsitor and node L, is required to flip the state. The increased Vdd increase the 

charging current at the node L, hence a large value of discharge current is required to 

decreased the potential at node L. This however results in reduced write margin during 

the write operation due to the above stated fact and a larger discharge current is required 

to drain the capacitance at node L. 

 

5. WORDLINE VOLTAGE VWL 

Reducing the wordline voltage is effectively decreasing the drive current value of 

the access transistors of the SRAM as the reduced gate voltage results in reduced gate to 
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source voltage. Hence a reduced Vwl during a read operation improves read stability, 

however during a write it degrades write margin value. Thus circuit designers employ a 

dual supply techniques to lower the wordline voltage only during the read to improve the 

read stability while lowering supply voltage to curtail power requirements and improved 

write margins. 
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VI. PROBLEM FORMULATION AND DESIGN PROCEDURE 

In the previous section, an in-depth analysis was done on the circuit performance 

parameters of the SRAM memory cell. The modeling procedure of the performance 

parameters forms the backbone of the optimization flow and would be again revisited 

later in the section. The SRAM cell is a difficult circuit module to optimize due to the 

inherent analog nature of the circuit itself. The nonlinearities in the circuit performance 

parameters and their dependence on statistically varying random variables, further 

complicates the design process and is a challenging objective for the design procedure. 

The optimization flow methodology presented in this section serves to optimize the 

SRAM cell to maximize performance of the circuit in the presence of process variations.    

To fully understand the impact of process variations, a technology node needs to be 

selected where the process variations play a significant role. For this purpose a 45 nm 

CMOS technology, predictive technology model (PTM) for low-power applications 

(PTM LP), incorporating high-k/metal gate and stress effect [28], was selected. This 

section serves the purpose of describing the basic problem formulation to be utilized for 

the optimization of the SRAM cell, which would then be leveraged to the three research 

objectives mentioned. 

 

1. PROBLEM DESCRIPTION 

In this problem formulation the threshold voltage variation ∆Vth and gate oxide 

thickness, ∆Tox, for every transistor in the memory cell are taken into consideration, thus 

the intra-die random variations are comprehensively dealt with, in the design flow 

culminating in a comprehensive problem formulation.  

The distributions of the process variations are assumed to be Gaussian for the 

SRAM cell shown in Fig. 6.1. The simulations are run in HSPICE on a 45nm PTM 

model for metal gate/high-k CMOS, for low-power applications. The proposed design 

problem is formulated as a minimization problem. 
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Fig 6.1 A schematic of a 6-T SRAM memory cell. 

 

Minimize:                         ( )   
SRAM

f S Area=   

 

Subject to:  

                          

( )
min

(6.1)( , )   ( , )                                                          
i RNM i RNM

Yield S X Yield S X≥

        

( )
min

(6.2)( , )   ( , )                                                         
i WNM i WNM

Yield S X Yield S X≥

         

( )_ _ _ _ min
(6.3)( , )   ( , )                                  

i write access time i read access time
Yield S X Yield S X≥

       

( )_ _ _ _ min
(6.4)( , )   ( , )                                  

i write access time i write access time
Yield S X Yield S X≥

    

( )_ _ min 
(6.5)( , )   ( , )                                         

i leakage power i leakage power
Yield S X Yield S X≥

 



 55

The design parameters in the design space S are bound quantities represented by: 

min max (6.6)( ) ( )                                                                                             
j j j

S S S≤ ≤

 

Sj is the jth element in the set {S} 

Where, 

S is the set of design variables of the 6-T SRAM cell (Fig 6.1)  

{ },  ,  ,  ,  ,  
pl axl nl pr axr nr

S W W W W W W=  

1 6, 1, 6  ,  ... , ... ,
T

i th th ox ox
X V V T T = ∆ ∆ ∆ ∆  is the set of process variations for 

the ith iteration,  

f(S) is a differential real function and is the objective or the cost function of the 

minimization problem. 

For the dual optimization problem, where the Wordline and the Vdd voltages are 

taken as additional design parameters, along with the widths of the transistor, the set S 

can be modified as { },  ,  ,  ,  ,  , ,
pl axl nl pr axr nr WL ddS W W W W W W V V=  

The above stated problem is essentially a non-linear optimization problem with 

nonlinear constraints. The yield calculations pertains to the probability that the circuit 

performance parameter (γ ), is greater than its minimum threshold (say, minγ ).  

Alternatively, it can also be defined as the probability that the circuit 

performance parameter (ϕ ), is less than its maximum threshold (say, maxϕ ), set by the 

circuit designer.  

The two definitions of yield evaluation are shown below. 

min  (6.7)( )                                          Yield P γ γ= ≥                                               

max (6.8)( )                                           Yield P ϕ ϕ= ≤  

Thus, this framework provides a methodology to analyze the tradeoff between circuit 

performance parameters at the cell and system level, in the presence of intra-die process 

variations with the additional option to analyze the circuit performance in presence of 

voltage tunability. A similar problem formulation is used for the optimization 
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framework, the only difference is in the evaluation of the constraints and the objective 

function, but the underlining concept remains the same. 

 

2. STOCHASTIC DESIGN OPTIMIZATION 

The previous section describes the basic problem formulation which is used 

across in the different design optimization flows, to achieve the three research objectives 

mentioned previously. Here in this sub-section, the stochastic design flow would be 

developed in detail for the three different SRAM optimization problems, which form the 

research objectives, namely, 6-T SRAM memory cell, SRAM memory cell with dual 

voltage optimization and extension to system level CACHE performance optimization 

sub-problems. The main purpose is to include the information on device variability in a 

circuit optimization problem, for a mismatched asymmetric SRAM memory element. 

Here the empirical polynomial models of circuit performance parameters, described in 

the previous section would be used to calculate the yield values. The yield values, as 

mentioned in the problem formulations constitute the nonlinear constraints of the 

optimization problem.  

In Section 2.1 the optimization flow is presented for a 6-T SRAM cell, in section 

2.2 this flow is extended for a tunable circuit where the wordline voltage and Vdd are not 

constants and form a part of the design space along the widths of the transistor. In 

section 2.3 the cell level optimization flow methodology is extended to the system level 

optimization, where in the constraints of Cache performance are used to minimize its on 

chip area. 

 

2.1 CELL LEVEL OPTIMIZATION FOR A 6-T SRAM MEMORY CELL 

The problem formulation describes a non-linear constrained optimization 

problem. The objective function is continuous in the domain of S, the design space. The 

design space is bound by the constraints specified by the designer. A suitable cost 
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function is used for the minimization problem, using the layout of the SRAM cell [3], 

the total cell area is computed to be 

  (6.9)( ) .                                                                                                   cell cellArea W X Y=  

 (6.10)

 (

5 2 max(3 , ) 2max( , )                                                               

9 max(3 , ) max(3 , )                                                              

cell ax p n

cell p n ax

X W L L

Y W W L

λ λ

λ λ λ

= + +

= + + + 6.11)

 

Where  

λ  , is the minimum feature size of a technology  

[ Wp, Wax, Wn] and [ Lp, Lax, Ln] are the widths and lengths of the pull up, access 

and pull down transistors, respectively of the SRAM cell shown in Fig. 6.1  

 

The problem formulation described in the previous section is of the form 

 (6.12)min ( ),     . . ( ) 0,  c( ) 0                0                      
s

f s s t b s s s> = ∀ >  

This is a standard description of a Non linear programming (NLP) problem. Thus a non 

linear programming (NLP) optimization technique would form the working engine of the 

flow and a constrained algorithm is used to find a cell design which meets all the 

constraints on the cell performance parameters. A suitable NLP technique should be 

chosen, which is robust and guarantees an optimal or near optimal solution. Since the 

objective function is continuous as shown in equations (6.9)-(6.11), sequential quadratic 

programming or SQP would be an apt choice.  

SQP is one of the most popular and robust algorithms for nonlinear continuous 

optimization. The process can be seen as finding search direction toward optimum 

sequentially through minimizing the quadratic approximation of the Lagrangian function 

with the linear approximation of the constraints, as known as quadratic programming. 

This is the reason why the approach called sequential quadratic programming [29]. 

The corresponding Quadratic programming (QP) problem form of the NLP problem 

(equation 5.12) for the kth iteration is  
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 (6.13) 

 (6.14)    

 
1

( ) ( )                                                                 
2

( ) ( ) ( )                                                                   

 T T

k k k

T T

Q d f d d L

L f s c s b sλ µ

= ∇ + ∇

= + +

Where, 

 dk is the search direction obtained by solving the quadratic problem in 6.13. 

           ( )
k

Q d is the QP problem at the kth iteration of the constrained algorithm. 

          L  is the Lagrangian augment form, in which the NLP problem is converted to. 

The benefit of converting the NLP problem to a SQP problem is the linearization of the 

constraints and the optimization problem reduces to a one dimensional search problem. 

For the purpose of solving the SQP problem, any SQP solver can be utilized, which are 

easily available from various universities or in commercial software’s like MATLAB. 

The inputs to the constrained NLP algorithm are the widths of the Pull-up, 

Access and Pull down devices of the SRAM cell. The set of widths is chosen so that any 

combination of widths still results in an acceptable area-overhead for the memory design 

which constitutes the objective function for the constrained algorithm. The different 

steps of the algorithm are the following: 

a) Specify a suitable starting value for the parameters in the design space, i.e. 

choose an initial nominal value for the widths of the SRAM cell,                                                   

{ }0 0 0 0 0 00 ,  ,  ,  ,  ,  
pl axl nl pr axr nr

S W W W W W W= . 

In addition to the design variables, the standard deviation values (sigma value- 

σVth0 and σTox0); of the random variables (process variations), of the technology 

node in consideration; are taken as input parameters in the optimization 

framework. These values can be extracted from the ITRS roadmap and are 

reported in [2] for a minimum sized transistor of that technology node. 

b) Specify suitable values of the performance parameters of the SRAM cell, which 

forms the minimum threshold values, beyond which the circuit performance is 

unacceptable. The probability of no failure at these values would form the lower 

bound for the constrained nonlinear problem. 
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c) Calculate the σVth and σTox for the six transistors of the SRAM cell. From 

Pelgrom’s law [30], it is a well know fact that the mismatch parameters or the 

sigma values, scales with device area and is inversely proportional to the area. 

The sigma value of the threshold voltage for the ith transistor in the circuit and kth  

iteration is given by 

0 min      (6.15)
.

                                                  
.

k thi
thi k k

i i

V A
V

W L

σ
σ =

 

d) Evaluate the performance parameters and estimate the probability of no failure 

for the set of input design parameters, using empirical polynomial estimators. 

The method to formulate them was described in the previous section.  

e) Calculate the Jacobian, J, of the objective function, f, at the current value of 

widths, defined as: 

(6.16), ,                                                                                  
T

p ax n

f f f
J

w w w

 ∂ ∂ ∂
=  

∂ ∂ ∂  
          

    3 1:    and , ,p ax nf E E w w w S→ ∈         
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Where En defines the Euclidean space in which the problem is defined and S is 

the set of design parameters.  

The elements of the Jacobian matrix constitute the widths sensitivities of the 

objective function (equation 6.14) and are the inputs to the appropriate NLP 

method. They factored in evaluating the search direction (equation 6.13) to 

achieve the minimum value for the cost function (6.9). 

f) Calculate the Jacobian/Width sensitivities of the non linear constraints, required 

by the SQP solver as shown in equation (6.14), to evaluate the value of the search 

direction vector dk,, which further gives information as to which parameter in the 

design space has to be changed to minimize the objective function and satisfy the 

non linear constraints. 

g) If the constraints are not satisfied the solver evaluates the design parameters for 

the next iteration, Sk+1, based on the search direction value at the kth iteration and 

value of the design parameters at the present iteration (Sk
). Repeat steps (c) to (g). 

h) If constraints are satisfied and the minimum value of the objective function is 

reached, based on the termination criteria of the solver, Sk is the value of the 

design parameters for which the area is minimum and the non-linear constraints 

are satisfied.  
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2.2 DUAL-OPTIMIZATION OF A 6-T SRAM MEMORY CELL WITH 

VOLTAGE TUNABILITY 

The voltage tunability is based on multiple voltage levels The optimization flow 

for the tunable circuit is similar in implementation to section 2.1. The major difference is 

the expansion of the design space to include the cell voltage (Vdd) and wordline voltage 

(Vwl) of the SRAM cell. The cost function is the same and the SQP optimization 

methodology described in the previous section is used. The different steps in the 

constrained algorithm used are described below. 

 

a) The design parameters S0 and mismatch parameters (σVth0, σTox0) are taken as 

inputs to the optimization flow.  

{ }0 0 0 0 0 00 0 0,  ,  ,  ,  ,  ,  ,
pl axl nl pr axr nr dd wlS W W W W W W V V=  

b) Specify desired values of circuit performance parameters of the Tunable SRAM 

cell. 

c) Calculate the σVth and σTox for the 6 transistors of the SRAM cell using 6.15. 

d) Evaluate the yield values of the circuit performance parameters, the input to the 

yield evaluation routines are the widths and voltage values at that iteration. 

e) Calculate the widths sensitivities of the objective function. 

f) Evaluate the normalized sensitivities of the probability values to the parameters 

in the design space. The normalized sensitivity for the probability P with respect 

to the design parameter si is given by 6.17 

             
i

                    (6.17)
/

                                                                    
/

i iS S

P P P

s s s
=

∂ ∆
=

∂ ∆
 

g) If the constraints are not satisfied or optimum value of cost function is not 

achieved, update the value of the design parameters and go back to step (c).  

h) If constraints are satisfied and optimum value is reached, exit out of the iteration 

and the current value of the design parameters guarantee optimum circuit 

performance with minimized on chip area. 

The entire flow is summarized in Fig 6.2. 
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Fig. 6.2 Top level representation of the optimization loop of the NLP problem formulated. 

 

2.3 SYSTEM LEVEL OPTIMIZATION OF CACHES 

As stated in the section on modeling of system level performance parameters of 

Caches, the variability can cause the circuit performance to vary widely, rendering 

nominal design based performance analysis useless. For that purpose CACTI is modified 
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and integrated with a circuit simulator to update CACTI, on the fly, based on variability 

information supplied and cell performance simulated in HSPICE.  

 

2.3.1 SRAM System Level and Cell Level Performance Parameter Interactions 

To develop a CACTI based system level optimization framework for optimal 

design and reliable functioning of caches, the performance metrics for SRAM based 

memory elements are divided into two categories, cell level performance and system 

level performance parameters. Under the purview of reliable operation of the SRAM cell 

and hence the caches are Noise margin criterion. Noise margin, for read and write, of the 

SRAM cell determines the reliable performance of the cache without being cognizant of 

the overall design of the Cache. Simply put, if a cell flips due to noise injection, the 

whole column of cache is rendered inactive and nonuse able. In ECC memories a soft 

fault can be removed using efficient error correcting codes, but if it is a hard fault then 

the whole column has to be swapped, hence the idea of introducing redundancy in cache 

designs. Lower the failure probability lower in the redundancy. This directly implies a 

smaller on-chip area for the cache. Thus cell level parameters are of paramount 

importance while developing a system level optimization methodology. 

The system level performance parameters encapsulate the standby leakage power 

and Read access time of the cache.  Needless to say, both are very important 

performance parameters. With the faster processor designs being doled out by 

companies and SRAM based L-1 caches performing with the speed of the core, the read 

access time is a carefully controlled parameter and ultimately decided the overall system 

performance. The system level parameters are also directly or indirectly affected by cell 

level parameters. For instance the cache leakage power is a function of individual cell 

leakage current and the cache access time depends on the bitline delay in determining 

the memory cell access time.  

Thus a system level optimization framework having cell level deign parameters 

is but an obvious spillover of the optimization infrastructure built for the cell level, as 
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the overall performance of the cache is a direct consequence of system level and cell 

level memory performance parameters and the inherent interactions between them. 

 

2.3.2 System Level Optimization Methodology 

The objective function is again minimization of on chip area, a parameter which 

is evaluated based on equations (6.9)-(6.11).   The problem formulation remains the 

same as described in equations (6.1)-(6.8). The cell level performances are totally 

independent of the cache organization and system level design parameters like 

Associativity, Bank size, interconnect parasitics etc. and are based solely on the micro 

modeling of the SRAM cells in the cache. The cache design parameters can be easily 

integrated into the flow as they have a fixed combination of possible values, hence a 

lookup table methodology would ideally account for them. The optimization flow is 

explained below 

a) Input the design parameters S0, σVth0 and σTox0 to the optimizer setup 

b) Specify the optimum system level performance parameters for Standby leakage 

power, access time and cell level parameters for Static Noise margins (Read and 

Write) 

c) Evaluate the σVth and σTox for the 6 transistors of the SRAM cell using Pelgrom’s 

law. 

d)  Input the design space and the sampled variation space to modified CACTI-

HSPICE setup to perform Design of experiments for performance extraction.  

e) Evaluate the Yield values (Y) for the empirical models developed and the sub-

gradient of the Yield values to the design parameters. 

f) Input the design space to CACTI to evaluate the objective function at a particular 

value in the 3 dimensional design space.  

g) Use finite differencing to evaluate the sensitivities of the objective function to the 

widths. 

h) Input Cell area, its width sensitivity and sub gradient of Yield values to the 

Nonlinear programming (NLP) solver. 
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i) Check for optimality condition and check if constraints are satisfied, exit. If not 

satisfied update the design parameters based on the search direction used for the 

Sequential programming solver (SQP solver). 
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VII. EXPERIMENTAL RESULTS 

The statistical optimization was carried out on a 6-T SRAM memory cell design 

using a 45 nm CMOS technology based on a predictive technology model (PTM) for 

low-power applications (PTM LP), incorporating high-k/metal gate and stress effect 

[28]. The estimation of Vth and Tox mismatch is carried out using the pelgroms’s model 

described in the previous section. For solving the Non-Linear problem, as stated in the 

problem statement, a sequential quadratic programming (SQP) solver, DONLP2 [31] is 

used. DONLP2, the SQP solver developed by Dr. Spellucci's is a mixed SQP/ECQP-

method for general continuous nonlinear programming problems. This version allows a 

choice between exact and numerical gradients. Since the sub gradients were internally 

evaluated in the routines developed for yield evaluation, this solver was optimal for the 

present optimization flow methodology.  

In this section the impact of every design parameter on the failure probability of 

the 6-T SRAM memory performance is analyzed. This builds the foundation for 

understanding and developing an intuition for the statistical optimization results at the 

cell and system level. The general experimental setup is represented in Fig 7.1. 

 

1. SENSITIVITY ANALYSIS OF  SRAM PERFORMANCE YIELDS  

A) Impact of Transistor Widths  

The transistor widths of the cell (Wp, Wax, Wn) impacts the yield values in two 

significant ways. First, the nominal values of performance parameters of SRAMS (Static 

Noise Margin, Access Time and Leakage power) are a function of the transistor sizing 

and any change in widths is going to shift the nominal value. Second, according to 

pelgrom’s law the Vth variation is a function of the transistor area; hence any change in 

transistor widths is going to vary the probability distribution of process variables. Since, 

the SRAM circuit parameters are a function of Threshold voltage values, the widths 

impact the mean and variance of the statistical nature of the circuit parameters.  In Fig 
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7.2 (a), (b) and (c) the sensitivity analysis of SRAM performance with varying transistor 

widths is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.1 Experimental setup of the generalized optimization flow methodology.  

Fig. 7.2(a) shows that Static Noise Margin read (RNM) increase, WNM (Write Noise 

Margin) decreases and access time are not affected much by increasing the strength of 

the Pull up transistor Wp. The increase in the RNM value is due to the increase in the 

drive current value of the pull up transistor Idspl or the decrease in the Rds_on value of the  
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Fig 7.2 Effect of transistor widths on yield of SRAM performance. 

pull-up transistor, thus the voltage at node storing a “1” i.e. node L, closely follows that 

of Vdd the bias voltage of the cross-coupled inverters. Hence, it increases the noise that 

can be tolerated at that node, increasing RNM. Increasing the pull-up strength, however, 

has the exact opposite effect on WNM. To write a “0” at a node storing a “1” (node L), 

the discharge current is the difference of the current through the access transistor AXL 

and the Pull-up, PL, thus a stronger pull up decreases the discharge current. If noise is 

induced at the bitlines, it decreases the value of Vds of the access transistor, AXL, which 

further decreases the discharge current. Thus, with increasing pull up transistor strength 

less noise can be tolerated at the bitlines.  
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Increasing the strength of the access transistor increase its drive strength during 

both read and write operations hence decreasing the access time during read, 

furthermore, due to the increase in discharge current value of the node storing a “1”  

more noise can be tolerated at the bitlines. This leads to an increase in WNM with 

increasing width. The RNM, however, decreases due to the voltage division action due 

to the access and pull down resistances. This makes the node storing a “0” closely 

coupled with that of the bitline which has a value of “1”. This can lead to the flip in 

value of the cell, if the voltage at this node rises above a tolerance value. 

The increasing strength of the pull up transistor increase the drive strength of the 

pull down, hence the bitlines are discharged faster for the sense amplifier to notice a 

differential voltage between the bitlines, resulting in a faster access time. Also the 

increase in pull down transistor reduces the resistance of the pull down comparatively to 

the access transistor, thus node storing “0” is closely coupled with the ground voltage, 

improving RNM.  

With the background formulated above for the sensitivity of transistor 

dimensions to the Yield values of SRAM performance, the optimization results are 

presented in the following subsections. 

 

2. OPTIMIZATION RESULTS 

The simulations were carried out on a 45 nm CMOS technology, using PTM 

models. The input parameters to the optimizer were the widths and the sigma values of 

Vth and Tox. To have a comparative study between the three designs, the input values and 

the optimization targets have been kept the same in all the initial experimental runs, 

wherever a comparison is made. 

 

2.1 CELL LEVEL OPTIMIZATION 

The target values for the performance parameters used to evaluate the probability 

of NO failure are given below.  

a) Leakage Current :     1nA 



 70

b) Read Noise Margin:  0.19 V 

c) Write Noise Margin: 0.18 V 

d) Read Access Time:   0.9 ns 

e) Write Access Time:  0.5 ns 

The total number of iterations in the Sequential quadratic programming (SQP), method 

to evaluate the optimized design parameters was 19 and the total run time was 77.760 

x 310  seconds. 

 After a run of the optimization flow the Yield values for every performance 

parameter is compared with the optimized value in Table III. To evaluate the tradeoffs of 

the optimization process, the initial and optimized values of design parameters are 

presented in table IV 

 

Table III 

PERFORMANCE RESULTS OF CELL LEVEL OPTIMIZATION 

Performance Parameter Yield at Starting Point Yield for Statistically designed 

Cell 

Leakage Current 99.66 % 99.21 % 

Read Noise Margin 93.97 % 97.7 % 

Write Noise Margin 52.53 % 91.84 % 

Read Access Time 96.59 % 98 .43 % 

Write Access Time 99.94 % 100 % 

 

 

Table IV 

OPTIMIZED DESIGN PARAMETERS OF A SRAM CELL 

Design parameter Initial Value Optimized Value 

Pull Up Transistor Width 140 nm 75 nm 

Access Transistor Width 110 nm 117.9032 nm 

Pull Down Transistor Width 210 nm 218.4346 nm 

Cell Area 0.47590 2
mµ  0.47791 2

mµ  
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Fig 7.3 Yield Values for every iteration of the optimization process. 
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Fig 7.4 Cell area for every iteration of the optimizer. 
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The yield values and the cell area at every step of the optimization process are 

shown in Fig 7.3 and 7.4 respectively. Fig 7.5 gives a distribution of the transistor widths 

for each iteration. It is quite evident that there is a huge improvement in the reliability of 

the SRAM cell with nearly 40 % increase in the Yield of write noise margin and a 

minimal area penalty of 0.4 %.  It can be observed from Fig 6.3 that the write failure 

probability is quite high at the beginning mainly due to the stronger pull up as compared 

to the access transistor. At the end of the optimization process, there is a significant 

decrease in the Wp value and this is quite evident from Fig 6.2 as the yield values of 

WNM improve with sizing down the pull down transistor. The increase in variability due 

to decreased transistor dimensions can offset the gains achieved in area. Further 

improvement in cell reliability can be achieved but at the cost of relaxing the constraints 

given. However, the flow is robust enough to provide good values with every run. 

 

Fig. 7.5 SRAM transistor widths: pull-up (Wp), access (Wax) and pull-down (Wn) at every iteration of the 

optimizer run. 
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2.2 OPTIMIZATION OF A VOLTAGE TUNABLE SRAM CELL 

In a tunable 6-T SRAM cell, the voltages have been taken as tunable parameters 

and are additional design parameters in the optimization flow and the circuit setup is as 

in [32, 33]. To have a comparison basis with the optimization of an SRAM cell the target 

values and the initial widths have been kept the same as in the previous case. The 

optimization took 10 iterations to converge to a solution and the time consumed was 

39.03 x 310 seconds. The results are shown in tables V and VI.  

The tables below show that a reliable SRAM design can be achieved for the same 

target values as compared to the previous cell optimization. The additional tunable 

parameter i.e. voltage helps in designing a reliable cell with the yield of WNM 

increasing by as much as 48 % from the initial value to nearly 98 %. The only drawback 

is a 27 % increase in the cell area, from the initial value. But for circuits requiring a 

reliable and robust operation criterion, like on-chip memory in micro-processors, the 

area is a trade off for improved performance. The joint sizing and voltage tuning is a 

feature that enables the designer to achieve extremely good levels of noise reliability in 

addition to reduction in leakage power and dynamic power dissipation.  

Thus this dual optimization flow provides flexibility in design and highlights the tradeoff 

between reliability and area. Moreover, it designs a far more reliable SRAM cell than the 

one which considers only widths as design parameters in the optimization flow.  

However, this methodology does not always have an area penalty; the values are 

dependent on the target values set. 

 

Table V 

PERFORMANCE RESULTS OF A VOLTAGE TUNABLE SRAM CELL   

Performance Parameter Yield at Starting Point Yield-Statistically designed Cell 

Leakage Current 99.66 % 99.9 % 

Read Noise Margin 93.97 % 97.83 % 

Write Noise Margin 52.53 % 97.69 % 

Read Access Time 96.59 % 98 .45% 

Write Access Time 99.94 % 100 % 
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Table VI 

OPTIMIZED DESIGN PARAMETERS OF A VOLTAGE TUNABLE SRAM CELL 

Design parameter Initial Value Optimized Value 

Pull Up Transistor Width 140 nm 92.41 nm 

Access Transistor Width 110 nm 177.88 nm 

Pull Down Transistor Width 210 nm 300 nm 

Bias Voltage (Vdd) 1.1 Volts 1.0762 Volts 

Wordline Volatge (Vwl) 1.1 Volts 0.9719 Volts 

Cell Area 0.47590 2
mµ  0.6027 2

mµ  
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 Fig 7.6 Yield values for every iteration of the optimization process of a tunable SRAM cell. 

For some values a reduction in area is also possible. The yield values and the area for the 

above optimization are shown in fig 7.6 and 7.7. The transistor widths at every step of 

the optimization process are shown in Fig. 7.8. Fig. 7.9 depicts the variation in bias 

voltage and wordline voltage at every iteration. 
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Fig 7.7 Cell area for every iteration of the optimizer for a tunable SRAM cell. 

 
Fig. 7.8 SRAM transistor widths: pull-up (Wp), access (Wax) and pull-down (Wn) at every iteration of the 
optimizer run for a tunable SRAM cell. 

 
Fig. 7.9 SRAM voltages: supply voltage (Vdd) and wordline voltage (Vwl). 
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2.3 SYSTEM LEVEL OPTIMIZATION OF CACHES 

The system level optimization flow has a set of cell level constraints and system 

level constraints. Cache leakage power and cache access time constitute the system level 

constraints, while, RNM and WNM constitute the cell level constraints. The area 

estimation and the evaluation of the system level constraints is carried out by a modified 

CACTI 5.2 on a 45 nm technology node LSTP (low standby leakage power) device,  for 

a single port L-2 cache RAM operating at a fixed temperature.  

The system level design parameters initialized at the beginning of the simulation are  

• Number of Banks : 4 

• Set associatively : 2 way 

• RAM size : 4 MB 

Table VII 
PERFORMANCE RESULTS OF A L-2 CACHE RAM   

Performance Parameter 

For the L-2 Cache 

Yield at Starting Point Yield for Statistically Cache 

Leakage Power 98.45 % 99.12 % 

Read Noise Margin 93.97 % 96.01 % 

Write Noise Margin 52.53 % 94.39 % 

Read Access Time 97.22 % 99 .12% 

 

Table VIII 
OPTIMIZED DESIGN PARAMETERS OF A L-2 CACHE 

Design parameter Initial Value Optimized Value 

Pull Up Transistor Width 140 nm 79.1955 nm 

Access Transistor Width 110 nm 129.7791 nm 

Pull Down Transistor Width 210 nm 207.4264 nm 

Cell Area 34.282566 2
mm  34.027384 2

mm  
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The results above in tables VII and VIII, show a 0.8 % reduction in on chip area 

of an L-2 Cache RAM while simultaneously improving the RAM performance. The 

Yield value due to WNM increases by 42 %, due to RNM improves by 3 % and Leakage 

power and Cache access time improve by 1 %. Thus the optimization process leads to a 

far more reliable Cache design the initial design. The robust optimization procedure 

estimates the reliability in the presence of process variations at 45 nm. 

It is quite evident that a reduction in Pull up width and an increase in access 

transistor is the most prominent difference in design, as it leads to a better WNM, 

contributing in reducing the RAM failure probability.  
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VIII. FUTURE WORK 

Any SRAM cell that is designed should be stable to noise induced at the cell 

storage nodes, hence noise stability much be insured for the cell-level design. Existing 

optimization approaches achieves this goal by considering traditional static noise 

margins (SNMs) [6], [11]-[14]. With shrinking access cycle times and the advent of 

advanced read/write assist circuits, SRAM operations become increasingly dynamical in 

nature. As a result, SNMs are increasingly inappropriate for specifying cell stability. 

Hence, it becomes absolutely imperative that any SRAM optimizer/design should 

consider new dynamic noise margins (DNMs) [34, 35] to accurately predict the circuit 

performance in the presence of important nonlinear dynamics. The use of conventional 

SNMs can have a negative impact on overall cell failure probability with a significant 

area and leakage overhead.  

 

1. DYNAMIC VS STATIC  

In Static Noise analysis, the inputs and outputs of the cross-coupled inverters in 

an SRAM or any other logic circuits are assumed to be DC signals. It was widely 

considered as a good measure to analyze the stability of a logic circuit [17]-[18]. 

However, noise in digital circuits is seldom DC in nature. Various sources of noise in 

digital circuits include both external noise sources, pertinently, single event upsets 

(SEU’s) and on-chip noise sources, some of which include, power and ground network 

noises, capacitive coupling and noise injected by substrates.  The aforementioned 

sources of noise are transient and a DC noise model does not account for the time 

dependence of the noise signal. Traditionally, static stability analysis considers only the 

maximum amplitude of the voltage deviation an input node can tolerate. This myopic 

viewpoint, ignores a poignant fact that not all transient noise affecting a sensitive node 

of a logic gate, or in our case, an SRAM cell, will cause the state to flip. A range of 

noise signals can be identified which cause only a temporary disturbance of the internal 

node voltage without flipping the state. In order to decide, whether a transient noise is 

detrimental and affects a flip in state of a noise sensitive node depends not only on the 
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amplitude of the signal, but also its time duration.  

Input noise, even though its amplitude is greater than the static noise margin of 

the gate specified, might not cause a significant change in the voltage at the gate output 

[36]. As a result, static read noise analysis tends to be pessimistic and might lead to 

overdesign while the counterpart for write tends to be optimistic and might lead to write 

failures Hence, it becomes imperative to consider not only the amplitude of the injected 

noise, but its duration too. This transient nature of noise in logic circuits is defined as 

Dynamic noise analysis. Furthermore, static noise can be considered a subset of dynamic 

noise. In this alternative viewpoint, static noise can be equivalently described as a 

dynamic noise of infinite duration and constant amplitude, analogous to a unit step 

function. For SRAM based memory arrays, stability constraint is an essential design 

constraint. In sub-90nm technologies, the power minimization is achieved in lieu of 

reduced supply voltage. The supply voltage scaling reduces the design options available 

especially at sub-45nm technology nodes. Static noise Margin (SNM) based design 

furthermore limits the design options at the cost of reliability and possibly, at the cost of 

increased on chip area. SRAM stability using Dynamic noise margin (DNM) requires a 

complex transient stability analysis, but simultaneously, offers more flexibility to the 

design enabling, without compromising on reliability and accuracy.      

To develop the notion of dynamic stability of a 6-T SRAM cell, an important 

characteristic to be considered is the stability boundary also defined as a separatrix [34, 

35]. During the normal modes of operation of a SRAM cell during a read, if a transient 

noise perturbs the stable state across this boundary, the cell flips in state. While for a 

write, the transient noise affects the time to produce a state flip for a SRAM cell, thereby 

resulting in a write failure. For a perfectly symmetric SRAM cell, without any process 

variation this separatrix or stability boundary is a 45˚ line. Process variations introduce 

asymmetry into the SRAM cell due to device mismatch. Hence, the separatrix no longer 

remains a 45˚ line. In [34, 35], the authors come up with a nonlinear system theory to 

compute the separatrix for an asymmetric SRAM cell. The approach leads to a high level 

of SPICE like accuracy. In this paper their methodology to define our metrics for the 
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dynamic noise margins for the read and write operation of a 6-T SRAM cell. The 

empirical models for DNM are estimated by finding out the time duration for the SRAM 

cell to cross over the non linear separatrix, during the read and write operation. 

 

2. DYNAMIC NOISE MARGIN 

In section II we define the separatrix, a boundary between the stable and the 

unstable regions of SRAM operation in the presence of a transient noise source. The 

dynamic noise margin definition used by [34]-[36] estimate the dynamic noise margin in 

the time domain. In the presence of process variations the separatrix is not a 450 line, 

hence a good estimation needs to be done for noise analysis to guarantee accuracy. Here 

we estimate the transient nature of noise in the read and write operation modes of the 

SRAM by carrying out transient HSPICE simulation. We estimate the time it takes to 

cross the separatrix during the read and write operation [34, 35]. For a flip to take place 

the transient disturbance should be sustained longer than a minimum critical duration it 

takes for the operating point to cross the stability boundary. Based on the above 

definition derived from [35] we can model the dynamic noise margin for the read and 

write operation by estimating the time duration it takes to cross the metastable point on 

the separatrix.  

 

2.1 READ DYNAMIC NOISE MARGIN 

The read DNM is defined for a given wordline pulse width TR. Let Tacross be the 

time required for the transient state trajectory of the cell to reach the separatrix, or the 

stability boundary, of the hold mode, Fig 8.1 (a). The read DNM is mathematically 

defined as [33] 

,                                                                                                        (8.1)DNM R across RT T T= −

For a stable dynamic read operation , 0DNM RT ≥ , i.e. the transient noise pulse does not 

cause a state flip.  
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2.2 WRITE DYNAMIC NOISE MARGIN 

The write DNM is defined for a given wordline pulse width TW. Let Tacross be the 

time required for the transient state trajectory of the cell to cross the separatrix, to cause 

a state flip, Fig 8.1 (b). The read DNM is mathematically defined as [35] 

,                                                                                                          (8.2)DNM W W acrossT T T= −

For a stable dynamic write operation , 0DNM WT ≥ , i.e. the time it takes to cause a state flip 

is less than the wordline pulse width. 

We model the DNM for both read and write as second order polynomials, as a 

function of process variation, for response surface modeling and use the experimental 

setup in [35] for estimating the DNM value for both read and write.  

( )                                                                                     (8.3) T T
DNM X X AX B X C= + +  

WT

across
T

across
T

RT

R
V

L
V

R
V

READ MARGIN WRITE MARGIN

,DNM R across R
T T T= − ,DNM W W across

T T T= −

( ) b( ) a

Fig 8.1 (a) Read Dynamic Noise Margin, (b) Write Dynamic Noise Margin. 
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3. PRELIMINARY OPTIMIZATION RESULTS 

The same setup as that for static noise margin (SNM) based optimization is used 

for the dynamic case for a 6-T SRAM cell. Again the 45 nm CMOS PTM model is used 

for running HSPICE simulations. Here instead of considering the Static constraints, the 

dynamic constraints are considered. The target values for the SRAM performance are 

shown in Table IX 

 

 
Table IX 

PERFORMANCE THRESHOLD OF A 6-T SRAM CELL 

Leakage 

Current 

Dynamic Noise 

margin (Read) 

Dynamic Noise 

Margin (Write) 

Access Time 

(Read) 

Access Time 

(Write) 

0.8 nA 200ps 20 ps 700 ps 500ps 

 

3.1 SRAM CELL LEVEL OPTIMIZATION : DYNAMIC PERSPECTIVE 

This instance 3 of the optimization flow considers the dynamic noise constraints 

instead of the static noise constraints and the widths of the SRAM transistors are taken 

as the input design parameters in the current setup. The optimization results are 

highlighted in Table X. 

 

Table X 

OPTIMIZATION RESULTS FOR DYNAMIC CONSTRAINTS 

Performance Parameter Yield at Starting Point Yield for Statistically 

designed Cell 

Leakage Current 99.02 % 99.22 % 

Dynamic Noise Margin (Read) 100 % 99.97% 

Dynamic Noise Margin 
(Write) 

2.46 % 90.02% 

Read Access Time 96.59 % 99 .99 % 
Write Access Time 99.94 % 100 % 

Initial Area=0.47590 2
mµ , Optimized Area= 0.55334 2

mµ  
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We observe a significant improvement in the dynamic stability of the SRAM cell at the 

optimized point with the dynamic noise margin for the read operation increasing by as 

much as 87.5%. Thus our optimized cell has an area overhead but ensures a reliable 

operation with respect to dynamic constraints. 
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IX. CONCLUSIONS 

In this thesis, the performance parameters of a nano-scaled 6-T SRAM cell are 

modeled as an accurate, yield aware, empirical polynomial predictor, in the presence of 

intra-die process variations. The estimated empirical models are used in a constrained 

non-linear, robust optimization framework to design an SRAM cell, for a 45 nm CMOS 

technology, having optimal performance, according to bounds specified for the circuit 

performance parameters, with the objective of minimizing on-chip area. Leakage 

Performance parameters are approximated as sum of lognormals for accurately 

estimating the gate tunneling and Subthreshold component of leakage current.  

For a cell level optimization a significant improvement in the SRAM cell 

performance was observed with an insignificant area penalty. The reliability improved 

by as much as 39% from the nominal starting value. 

Furthermore, a dual optimization approach is followed by considering SRAM power 

supply and wordline voltages as additional input parameters, to simultaneously tune the 

design parameters, ensuring a high yield and considerable area reduction. This dynamic 

methodology provides extra degrees of freedom that can lead to a superior SRAM cell 

design with respect to reliability. The results achieved from this optimization prove the 

applicability of this method, with an improved yield for the noise margin levels by as 

much as 48 %.  Area penalty is significant in some cases, while a relaxed set of target 

values can reduce the area penalty or even lead to a decrease in area. 

In addition, the cell level optimization framework is extended to the system level 

optimization of caches, under both cell level and system level performance constraints. 

The cell level performance parameters have a significant impact on the total cache 

performance due to the inherent interaction between the cell level and system level 

parameters. Hence the optimization methodology uses a dynamic and robust design 

technique to consider both system and cell level parameters that governs optimal cache 

performance. The optimization process resulted in a reduction in area from the nominal 

value and a 42 % improved reliability in cache performance.  
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The statistically aware technique developed in this thesis provides a robust and a 

realistic design methodology to study the tradeoff between performance parameters of 

the SRAM with analysis for both cell level design and optimization of caches. 
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