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ABSTRACT 

 

A Process Integration Approach to the Strategic Design and  

Scheduling of Biorefineries. (December 2009) 

René Davina Elms, B.S.; B.S.; MS., Texas A&M University 

Chair of Advisory Committee: Dr. Mahmoud M. El-Halwagi 

 

This work focused upon design and operation of biodiesel production facilities in 

support of the broader goal of developing a strategic approach to the development of 

biorefineries.  Biodiesel production provided an appropriate starting point for these 

efforts.  The work was segregated into two stages. 

 

Various feedstocks may be utilized to produce biodiesel, to include virgin vegetable oils 

and waste cooking oil. With changing prices, supply, and demand of feedstocks, a need 

exists to consider various feedstock options.  The objective of the first stage was to 

develop a systematic procedure for scheduling and operation of flexible biodiesel plants 

accommodating a variety of feedstocks.  This work employed a holistic approach and 

combination of process simulation, synthesis, and integration techniques to provide: 

process simulation of a biodiesel plant for various feedstocks, integration of energy and 

mass resources, optimization of process design and scheduling, and techno-economic 

assessment and sensitivity analysis of proposed schemes.  An optimization formulation 
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was developed to determine scheduling and operation for various feedstocks and a case 

study solved to illustrate the merits of the devised procedure. 

 

With increasing attention to the environmental impact of discharging greenhouse gases 

(GHGs), there has been growing public pressure to reduce the carbon footprint 

associated with fossil fuel use. In this context, one key strategy is substitution of fossil 

fuels with biofuels such as biodiesel. Design of biodiesel plants has traditionally been 

conducted based on technical and economic criteria.  GHG policies have the potential to 

significantly alter design of these facilities, selection of feedstocks, and scheduling of 

multiple feedstocks. The objective of the second stage was to develop a systematic 

approach to design and scheduling of biodiesel production processes while accounting 

for the effect of GHG policies. An optimization formulation was developed to maximize 

profit of the process subject to flowsheet synthesis and performance modeling equations. 

The carbon footprint is accounted for through a life cycle analysis (LCA). The objective 

function includes a term reflecting the impact of the LCA of a feedstock and its 

processing to biodiesel. A multiperiod approach was used and a case study solved with 

several scenarios of feedstocks and GHG policies. 

. 
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CHAPTER I 

 

INTRODUCTION 

 

The National Renewable Energy Laboratory (NREL) defines a biorefinery as ‘a facility 

that integrates conversion processes and equipments to produce fuels, power, and 

chemicals from biomass.’ (NREL, 2009)   Analogous to the refining of oil into its 

constituent components, biomass feedstocks are refined into what are referred to as 

building block components for direct use or conversion into subsequent products.  

(Kamm & Kamm, 2004, Kamm et al., 2006) Biomass feedstocks include trees, grasses, 

agricultural crops, agricultural residues, animal wastes, and municipal solid waste.  The 

building blocks components of these feedstocks are carbohydrates, lignin, proteins, fats, 

and in smaller quantities, special substances such as vitamins, dyes, and flavors. 

(Fernando et al., 2006; Kamm & Kamm, 2004)  Facility configurations, sizes, and 

potential products are varied, ranging from a simple facility with few processes 

producing a small number of products, to the large integrated biorefinery employing 

numerous processes and producing a variety of chemicals, fuels, and power. 

 

Currently, many chemicals, fuels, and forms of energy are generated from finite, non-

renewable resources.  Requisite to long-term sustainable economic growth and  

____________ 
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availability of these products are utilization of sustainable resources. (Kamm et al., 

2006) Biorefineries provide a new opportunity and frontier for sustainable manufacture 

of many existing products, as well as generation of a sustainable, innovative, and 

potentially revolutionary cadre of new chemicals, fuels, and energy sources.  

 

Accompanying this opportunity are a host of new challenges, such as those related to 

increased competition for renewable yet finite resources, complexity of the raw 

materials, and de-centralized production of resources. Development of new processes 

and technologies will be necessary, as well as management of new logistical issues and 

adaptations for local and regional implementation. (Narodoslawsky et al., 2008)  In 

addition, existing and future government environmental policies will impact design, 

operation, and profitability, playing a major role in effective decision-making. 

 

Traditional process development and improvement approaches are limited in many 

respects. These approaches are time and money intensive, have a limited range of 

applicability, do not assure acquisition of solutions close to the optimum, which are 

sometimes intuitively non-obvious, and do not shed light on global insights and key 

characteristics of the process or problem. (El-Halwagi, 2006)  For the full potential of 

the biorefinery concept to be realized, a holistic, methodical, and strategic approach to 

development and addressing the associated challenges is essential.  Process integration 

provides a powerful alternative approach to traditional methods via systematic, 

fundamental, and generally applicable techniques. 
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It was decided to focus upon design and operation, fundamental activities to the viability 

of any facility.  Biodiesel production provided an appropriate starting point for these 

efforts.   In recent years, due to increasing oil costs, decreasing petroleum resources, and 

environmental concerns, renewable fuels have acquired great interest and attention.  At 

present, biodiesel and ethanol are the two most predominate forms of biofuels in the 

market.  As mentioned previously, fuel is one type of biorefinery product.  A biodiesel 

production facility represents a biofuel-focused biorefinery of relatively simple form, 

producing biodiesel as the main product and glycerol as a by-product. In addition, 

biodiesel production is a likely potential component of large-scale integrated 

biorefineries. 

 

1.1 Dissertation Overview 

 

CHAPTER II presents background information and a review of literature pertaining to 

biodiesel. 

 

CHAPTER III outlines the overall goal of the work; the development of a systematic 

decision-making approach for market sensitive scheduling and design of a biodiesel 

production process.  The approach used involved decomposing the work into two stages.  

Therefore, the formal problem statement is presented to reflect this approach. 
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CHAPTER IV describes the first stage of the work, development of a systematic 

procedure for scheduling and operation of flexible biodiesel plants accommodating a 

variety of feedstocks.   Presented are the results of a process simulation of a base-case 

design for a multiple feedstock biodiesel plant, integration of energy and mass resources, 

optimization of process design and scheduling, and techno-economic assessment and 

sensitivity analysis of proposed production schemes. The developed optimization 

formulation to determine scheduling and operation for multiple feedstocks is presented 

as well as the results of a case study. 

 

CHAPTER V describes the second stage of the work, development of a systematic 

approach to the design and scheduling of biodiesel production processes while 

accounting for the effect of GHG policy.  The resulting optimization formulation is 

presented, as well as the results of a case study utilizing several scenarios of feedstocks 

and GHG policies.  The GHG policy utilized is a carbon subsidy. 

 

CHAPTER VI outlines the major conclusions for each of the two stages and the work as 

a whole, as well as recommendations for future work. 
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CHAPTER II 

 

BACKGROUND AND LITERATURE REVIEW - BIODIESEL 

 

Diesel fuels serve an important role in an industrial economy, to include utilization for 

industrial and agricultural transport as well as operation of essential agricultural 

equipment. (Meher et al., 2006) Biodiesel is a renewable alternative fuel for diesel 

engines composed of methyl esters of long-chain fatty acids, or Fatty Acid Methyl Esters 

(FAME), that can be used in existing engines and offers similar power to petroleum 

diesel. (EPA, 2002)  Many food and non-food feedstock options exist for biodiesel, to 

include virgin and recycled vegetable oils, animal fats, and tallow.  

 

2.1 Biodiesel History 

 

Rudolph Diesel received a patent in 1893 for his diesel engine, with subsequent 

exhibition of a workable engine in 1897.  A variety of vegetable oils, including peanut 

and hemp oil served as fuel for Diesel’s engines. In the 1920s, manufacturers began 

altering their engines to run on petroleum diesel, a less viscous fuel. Prior to this, 

vegetable oil was the fuel source for diesel engines. (Demirbas, 2008)   

 

The first report of what we refer to today as biodiesel appeared in a Belgian patent 

granted to G. Chavanne in 1937, in which the use of ethyl esters of palm oil as a diesel 
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fuel is described and the use of methyl esters of other oils discussed.  (Knothe, 2001) 

Subsequently, the first use of biodiesel occurred in South Africa in the Belgian Congo 

prior to World War II in heavy-duty vehicles. (Knothe, 2001; Demirbas, 2008)   

 

The basic method by which biodiesel is produced, transesterification or alcoholysis, 

dates back to at least 1846 when Rochieder produced glycerol by ethanolysis of castor 

oil. (Formo, 1954) The majority of processes currently utilized in production of biodiesel 

were developed in the 1940s.  These efforts were not related to fuel production, rather to 

soap production. Specifically, it was desired to develop a more straight-forward method 

for extraction of glycerol.  Due to munitions needs during World War II, glycerol was in 

high demand for production of explosives. (Van Gerpen, 2005)  Glycerol was obtained 

by converting oils and fats to methyl esters, then separating the insoluble glycerol 

backbone via settling or centrifugation. Via reaction with alkali, soap was produced from 

the glycerol-free methyl esters.  This work is explained in a series of patents (Bradshaw, 

1942; Bradshaw & Meuly, 1942, 1944; Allen & Kline, 1945; Arrowsmith & Ross, 1945; 

Dreger, 1945; Keim, 1945; Percy, 1945; Trent, 1945a, b) such as the ‘saponification via 

methylation of fat with high direct glycerine recovery’ described in US Patent 2,271,619. 

(Bradshaw, 1942; Bradshaw & Meuly, 1942)  The patents were granted to researchers 

employed by two companies producing soap at that time, E.I. DuPont and Colgate-

Palmolive-Peet.  
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Substantial research related to the use of esters of fatty acids as a possible fuel source did 

not take place until the late 1970s and 1980s.  This surge of research activity was due to 

increased interest in alternative fuels as a result of high petroleum prices. Direct use of 

vegetable oils as a fuel was proposed and investigated, but was found to be challenging 

because of its greater viscosity when compared to diesel fuel. (Peterson et al., 1983; Fuls 

et al., 1984; Ryan et al., 1984)  Other issues included oil thickening, crankcase oil 

dilution, and injector and piston deposits. To reconcile these issues, focus shifted to 

investigation of the conversion of the vegetable oils to alkyl esters as a means by which 

to reduce the viscosity and improve fuel properties in enable direct use in diesel engines.  

 

2.2 US Biodiesel Production and Capacity 

 

In recent years, biodiesel has received much interest as an alternative to petroleum-based 

diesel. Interest has increased due to a variety of social and economic issues.  As can be 

seen in Figure 2.1, demand for biodiesel has increased steadily since 1999, experiencing 

a 300% increase from 2004 to 2005 following implementation of the Biodiesel Tax 

Incentive. (National Biodiesel Board, 2009a)  This incentive provides a tax credit in the 

amount of $1 per gallon of biodiesel produced.  Currently, legislation providing 

extension of this credit beyond the current expiration of December 31, 2009 is under 

consideration. (U.S. Congress, 2009) 
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Figure 2.1: Estimated US Biodiesel Production by Fiscal Year for 1999-2008 (Source: 

National Biodiesel Board, 2009a) 

 

 

 

As of Jan 25, 2008, the National Biodiesel Board reported 171 biodiesel plants were 

operational, as seen in Figure 2.2.  (National Biodiesel Board, 2008)  In June 2009, 173 

biodiesel production facilities were reported as actively marketing biodiesel in the US.  

The total annual production capacity for these facilities is 2.69 billion gallons per year.  

Currently, 30 production plants are either under construction or expanding existing 
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operations, representing a potential increase in biodiesel production capacity of 427.8 

million gallons per year. (National Biodiesel Board, 2009b) 

 

Figure 2.2: Map of U.S. Commercial Biodiesel Production Plants as of Jan 25, 2008 

(Source: National Biodiesel Board, 2008) 

 

 

 

 

2.3 Comparison of Biodiesel and Petroleum-based Diesel 

 

Biodiesel can be used in existing engines with no or minor modifications and offers 

similar power to petroleum diesel. (EPA, 2002)  Pure biodiesel (B100) provides 
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approximately 90-95% of the energy contained in petroleum-based diesel and has 

various benefits and advantages as compared to petroleum diesel. (EPA, 2002; Lotero et 

al., 2005)  Overall, benefits and advantages, as well as interests, associated with 

biodiesel appear to fall into 3 categories; 1.)  sustainable energy, 2.) domestic energy 

independence, and 3.) environmental benefits. (Sheehan et al., 1998; Fukuda et al., 2001; 

Demirbas, 2003; Van Gerpen, 2005; Marchetti et al., 2007; Demirbas, 2008) 

 

There are numerous renewable food and non-food feedstock options, including recycled 

or waste cooking oil.  Virgin and used vegetable oils, animal fat, and tallow can be used 

as feedstock sources.  In addition, feedstocks utilized for biodiesel production are 

available domestically, enabling some reduction of the use of imported oil sources to 

provide fuel for diesel engines.  In order to utilize a domestic fuel source, among other 

reasons, in 2005 the U.S. Navy began using biodiesel in all its non-tactical diesel 

vessels. (Arny, 2005) 

 

Biodiesel is considered to contribute less to climate change than traditional fossil-based 

fuels, since the carbon in the oil or fat feedstock predominately originated from CO2 in 

the air. As compared to petroleum-based diesel, biodiesel reduces the net gain in CO2 

emissions by 78%. (Sheehan et al., 1998) In addition, diesel engines operating with 

biodiesel have a lower emission profile than when utilizing traditional diesel fuel, to 

include reduced emissions of CO and unburned hydrocarbons (Sheehan et al., 1998; 
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Carraretto et al., 2004; Van Gerpen, 2005; Hill et al., 2006; Demirbas, 2009a), as well as 

a 47% reduction in tailpipe emissions of particulate matter (Sheehan et al., 1998). 

 

Biodiesel’s oxygen content of 10-11%, as opposed to 0% for petroleum-based diesel, 

leads to more complete combustion, and hence lower emissions of CO, particulates, and 

visible smoke. (Carraretto et al., 2004; Lotero et al., 2005) In addition, biodiesel 

provides for a reduction in noxious fumes and odors.  (Demirbas, 2003) Biodiesel 

produces no sulfur emissions and due to this characteristic is being used as an additive to 

ultra low sulfur diesel (ULSD). 

 

Other advantages include a higher cetane number (CN), and its non-toxic and non-

flammable nature. (Demirbas, 2003; Lotero et al., 2005; Demirbas, 2008)  CN provides a 

metric as to the ignition quality of diesel fuels, with a higher CN value indicating a 

shorter ignition delay. Biodiesel has a higher flash point, 100-170oC as compared to 60-

80oC for traditional diesel. (Demirbas, 2003; Lotero et al., 2005; Demirbas, 2008) 

 

Disadvantages of biodiesel include a higher cloud point (CP) and pourpoint (PP), higher 

NOx emissions, and often a higher price. (Demirbas, 2003; Carraretto et al., 2004; 

Demirbas, 2008)  As parameters related to low temperature usage of a fuel, CP and PP 

indicate the temperatures at which wax first appears when a fuel is cooled and at which 

the amount of wax out of solution is significant enough to gel the fuel, respectively. 
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(Demirbas, 2008) Therefore, the higher CP and PP for biodiesel indicates its usage is 

more limited with respect to cooler weather and geographic regions. 

 

Usage of B100 has been reported to increase NOx life cycle emissions by 13%, with 

most of this increase being attributable to increases in NOx tailpipe emissions. (Sheehan 

et al., 1998)  Typically, biodiesel is more expensive than conventional diesel.  The 

difference in price ranges from approximately $0.30 to over $1.00.   In recent years, this 

price differential has drastically decreased at times when spikes in crude oil cost have 

occurred, causing a resultant increase in petroleum diesel price. (DOE, 2007a, b, 2008a, 

b, 2009a, b) 

 

2.4 Feedstocks 

 

Biodiesel can be produced from oil, fat, or grease sources. (Fukuda, 2001; Van Gerpen, 

2005; Demirbas & Karslioglu, 2007; Marchetti et al., 2007; Demirbas, 2008)  These 

sources can be categorized as virgin (fats/oils not previously used) or recycled (fats, oils, 

grease used previously for another purpose.) (Ginder, 2004) Virgin sources can be 

attained from both plants and animal sources (cattle, swine, poultry, fish.)   

 

Potential vegetable oil feedstocks include refined or crude soy (predominate in the U.S.), 

rapeseed (predominate in Europe) (Peterson & Scarrah, 1984), canola (Singh et al., 

2006), olive (Nelson et al., 1996; Dorado et al., 2004), sunflower (Siler-Marinkovic & 
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Tomasevic, 1998), palm (Kalam & Masjuki, 2002; Leevijit et al.; 2008) jatrohpa (Shah 

et al., 2004), camelina (Frohlich & Rice, 2005), and many more (Fukuda et al., 2001; 

Van Gerpen, 2005; Demirbas & Karslioglu, 2007; Marchetti et al., 2007; Demirbas, 

2008).  Typically, no pretreatment is needed for refined oil, but they are a more 

expensive feedstock. Animal (cattle, swine, poultry, fish) derived feedstock sources 

include renderings and tallow. Even extracted fat from meat and bone meal has been 

utilized as a feedstock. (Nebel & Mittelbach, 2006) These sources are less expensive, but 

have a higher free fatty acid (FFA) content, requiring pretreatment prior to use for 

biodiesel production.   

 

  Another interesting feedstock option is provided by corn-based ethanol production.  

Distillers dried grain (DDG) is a major by-product of such production, and is typically 

utilized as animal feed.  DDG contains corn oil, which can be removed to produce a 

higher-protein animal feed and corn oil that is available for biodiesel production. 

(Jessen, 2006) 

 

Recycled or waste oil, often referred to as waste cooking oil (WCO), can be either 

vegetable or animal derived.  Examples include used restaurant cooking oil, yellow 

grease, and trap grease.  These sources are typically inexpensive, but have higher FFA 

content and require pretreatment.  Also, although utilized in food production, use of 

WCO as a feedstock does not impact availability or supply of a food resource. 

 



 14

More recently, oil from algae has received much attention as a potential feedstock. When 

deprived of nitrogen, algae shifts from converting CO2 into sugars and proteins to 

producing mostly oil. (Sharma & Singh, 2009) Lipids from microalgal oil have been 

successfully used to produce biodiesel. (Miao & Wu, 2006)  Emerging technology and 

successes in genetic engineering efforts to significantly increase lipid content of 

microalgae appear to provide good potential for microalgae to develop as a viable 

biodiesel feedstock. (Huang et al., 2009; Gouveia & Oliveira, 2009) 

 

Various factors and considerations come into play with regards to biodiesel feedstock 

selection, to include: 

1. Cost 

2. Chemical content of feedstock 

3. Variability in quality 

4. Regular availability of the feedstock 

5. Flexibility to increase supply of feedstock 

6. Cost of transport and pretreatment 

7. Regional availability (e.g. palm in tropical regions) 

8. Regional agricultural and political requirements (e.g. EU’s iodine value parameter 

eliminates use of soy) 

 

It is generally stated that feedstock cost contributes the most to biodiesel production 

cost. (Singh et al., 2007; Sharma & Singh, 2009)  Brown and yellow greases usually 
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have the lowest cost per unit of feedstock. These sources are typically recycled products 

from frying conducted in restaurants or food manufacturing facilities. As of 2004, costs 

for yellow grease have been identified as ~$0.10 per pound, with some variability. 

(Ginder, 2004) Prices for virgin animal fats (lard, poultry fat, beef tallow) are lower than 

virgin plant based sources, but higher than recycled feedstocks. Virgin plant feedstocks 

could include soy, palm, rapeseed, sunflower, corn, cottonseed, canola oils, and many 

others.  Historically, soy and sunflower have had the lowest price levels with other 

vegetable oils being 15-25% more expensive. (Ginder, 2004) 

 

The chemical content (fatty acid content and profile) of a feedstock is extremely 

important and can vary greatly from one type of feedstock to another. These differences 

become even more critical to examine when considering production utilizing multiple 

feedstocks. In addition, there can be variations in content and profile within the same 

feedstock type. The least amount of variation is likely to be found in plant based virgin 

feedstocks, with animal-based products next. Obviously, recycled feedstocks have the 

most potential variability from lot to lot. Keeping variability in quality of the resultant 

biodiesel to an absolute minimum is crucial in maintaining biodiesel as a viable 

alternative fuel in the marketplace.  A comparison of feedstock types can be seen in 

Table 2.1. 
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Table 2.1: Feedstock Comparison Chart 

(Source: Ginder, 2004) 

 

Biodiesel 

Feedstock 

Cost/Unit Supply/Growth 

Flexibility1

Content/Quality 

Variability 

Degree of 

Pretreatment

Required 

Virgin plant based 

(soy, corn, palm, 

etc.) 

Moderate 

To high 

Supply can be 

Expanded 

 

Low variability Modest 

Virgin animal 

based 

(lard, tallow, 

chicken 

Fat, fish oil) 

Moderate Fixed (dependent 

on meat, poultry, 

fish, demand & 

processing) 

Low to moderate 

variability 

Modest 

To high 

Recycled 

(yellow grease, 

brown grease) 

Low Fixed (dependent 

on restaurant, 

fryer activity) 

High variability High 

     
1 Ability to expand total supply available in response to price increases from demand 

shifts. 
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2.5 Biodiesel Production Methods 

 

There are various alternatives for biodiesel production. At present, the most common 

method for biodiesel production is the transesterification reaction of triglycerides with 

methanol in the presence of a catalyst to produce methyl esters of fatty acids.  The 

predominate feedstocks currently utilized for production are soybean oil (U.S.) and 

rapeseed oil (Europe). These esters can be used in neat form, or mixed with traditional 

diesel fuel to create a blend. Typically, methanol is utilized due to its lower cost and its 

small molecular mass. (Demirbas & Karslioglu, 2007) Other production methods include 

1.) pyrolysis, 2.) blending, and 3.) emulsification. (Demirbas & Karslioglu, 2007; Meher 

et al., 2006) The literature is dominated by research related to transesterification with 

pyrolysis receiving some additional recent attention (Meher et al., 2006) and emerging 

methods including the use of supercritical CO2. (Fukuda et al., 2001; Varma & Madras, 

2007; Demirbas, 2009b) 

 

2.6 Transesterification 

 

Transesterification, or alcoholysis, is a reaction in which the alcohol from an ester is 

displaced by another alcohol.  This is similar to hydrolysis, with alcohol being utilized 

instead of water. (Fukuda et al., 2001)  Triglycerides are reacted with an alcohol to 

produce glycerol and esters.  The overall stoichiometric transesterification reaction using 

methanol can be seen in Figure 2.3. The reactants are triglyceride, which is composed of 
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a glycerol backbone with 3 attached fatty acids, and methanol. Resulting products of the 

reaction are glycerol and methyl esters (biodiesel). 

 

Figure 2.3: Overall Transesterification Reaction 

 

 

 

 

The transesterification reaction occurs in a 3-step process consisting of sequential 

reversible reactions shown in Figure 2.4.  (Freedman et al., 1986; Noureddini & Zhu, 

1997; Fukuda et al., 2001; Marchetti et al., 2007)  The triglyceride is typically reacted 

with an excess of alcohol (here methanol) in the presence of a catalyst to produce 

glycerol and methyl esters (the biodiesel).   In the first step, a fatty acid is removed from 

the triglyceride to produce a diglyceride and an ester. In the second steps, a fatty acid is 

removed from the diglyceride to produce a monoglyceride and an ester.  In the final step, 

the remaining fatty acid is removed from the monoglyceride to produce yet another ester 

and glycerol.   
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Figure 2.4: Transesterification Reactions of Glycerides with Methanol 

 

 

 

The most pertinent process variables for transesterification are (Freedman et al., 1984, 

1986; Fukuda et al., 2001; Demirbas & Karslioglu, 2007; Demirbas, 2008): 

1.) Ratio of alcohol to oil 

2.) Reaction temperature 

3.) Oil used 

4.) Type of catalyst 

5.) Amount of catalyst 
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As can be seen from the overall reaction depicted in Figures 2.3 and 2.4, the 

stoichiometric relation between the alcohol and triglyceride, or oil, is 3:1.  However, 

typically an excess of alcohol is used to shift the reactions towards the products.  

Freedman and colleagues (1984) studied the effect of the molar ratio of alcohol to oil on 

the yield of esters during transesterification, as well as reaction temperature, degree of 

refinement of the feedstock oil, and type of catalyst.  Among their observations, the 

transesterification reaction went to completion in 1 hour at 60oC, and took 4 hours at 

32oC.  In terms of alcohol-to-oil ratio, Freedman, et al. found significant quantities of 

unreacted triglycerides and partially reacted di- and monoglycerides were present when 

the ratio was too low.  The maximum conversion to esters was observed at a ratio of 6:1. 

 

Freedman and colleagues (1984) confirmed previous observations from others that the 

moisture and free fatty acid content of the feedstock oil were important to maximizing 

yields.  They reported a good yield could be obtained with a maximum value for the free 

fatty acid (FFA) content of the oil of 0.5%.  Otherwise, ester yields were drastically 

reduced by formation of soap.  Saponification, or soap formation, occurs when a base 

catalyst reacts with FFAs to form soap and water, which itself hinders ester yields. 

(Lotero et al., 2005)  In order to avoid these issues, pretreatment prior to 

transesterification is necessary to reduce FFA content to the appropriate level. 

 

The catalyst type utilized for transesterification is so important that typically the process 

is categorized according to this factor.  Since the use of alkali catalysts facilitate a 
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reaction rate that is 4000 times faster than when the same amount of an acidic catalyst is 

used (Formo, 1954), the most common industrial process for biodiesel production 

employs basic catalysts.  NaOH, KOH, and NaOCH3 are examples of utilized catalysts.  

NaOH and KOH are commonly used since they are typically inexpensive. (Akoh et al., 

2007) NaOCH3 is more effective than NaOH when using soybean oil, with 

approximately equal conversion values for a 6:1 alcohol-to-oil molar ratio for 1%wt 

NaOH and 0.5%wt NaOCH3. (Freedman et al., 1986)  For transesterification of beef 

tallow, NaOH has been reported to be a better catalyst than NaOCH3. (Ma et al., 1998)  

As mentioned previously, moisture must be kept to a minimum when using basic 

catalysts, otherwise saponification occurs, hindering ester yields. 

 

Acids that have been utilized for transesterification include sulfuric, phosphoric, 

hydrochloric, and organic sulfonic acids.  Acid-catalyzed transesterification proceeds 

much more slowly than alkali-catalyzed transesterification.  But, an acid catalyst is not 

greatly affected by a high FFA or moisture content, and is therefore appropriate for use 

with less refined feedstock oils such as waste cooking oil and greases. (Freedman et al., 

1984; Lotero et al., 2005)  In addition, an acid catalyst simultaneously facilitates 

esterification, conversion of FFA to esters, and transesterification. (Lotero et al., 2005)  

Therefore, development of acid-catalyzed transesterification processes for effective 

conversion of low-cost feedstocks has received attention. (Zhang et al., 2003a, b; Lotero 

et al., 2005; Zheng et al., 2006; West et al., 2007)  Additional challenges related to acid 
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catalyst use include the necessity of higher reaction temperatures than for alkali-

catalysts, environmental issues, and greater equipment corrosion. (Lotero et al., 2005) 

 

Enzymatically-catalyzed transesterification has been demonstrated and reported. (Nelson 

et al., 1996; Fukuda et al., 2001; Shah et al., 2004; Akoh et al., 2007)   Advantages as 

compared to chemical catalysts include less energy usage, ease of glycerol removal, no 

saponified products or sensitivity to moisture of feedstocks, lower reaction temperatures, 

and less waste production. The primary disadvantages that must be overcome to make 

this form of transesterification a viable option for biodiesel production include high 

catalyst production cost and enzyme inactivation by methanol with resulting loss of ester 

yield. (Fukuda et al., 2001; Akoh et al., 2007) 

 

2.6.1 Pretreatment of Less Refined Feedstocks 

 

As mentioned previously, due to their insensitivity to feedstock FFA and moisture 

content, acid catalysts are appropriate for use with less refined feedstock oils such as 

waste cooking oil and greases. (Freedman et al., 1984; Lotero et al., 2005)  But, due to 

the disadvantages associated with the use of these catalysts, a 2-step catalyzed process 

was pursued and developed for production of biodiesel from less refined feedstock oils. 

(Lepper & Friesenhagen, 1986, 1987)  In this process, an acid catalyst is utilized in the 

first step, or pretreatment, to convert FFAs to esters.  During the second step, an alkali 

catalyst is employed to convert the glycerides into esters.  This method enables minimal 
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use of the acid catalyst, and therefore minimizes issues related to corrosion, safety, and 

environmental concerns, while making use of its capability to convert the troublesome 

FFA content.  The second step takes advantage of the reaction speed and conversions 

characteristic of an alkali catalyst.  This 2-step method has become the most common 

means for processing waste cooking oil and other less refined feedstocks with higher 

free fatty acid content. (Canakci & Van Gerpen, 2001, 2003; Zhang, 2003a, b; Wang et 

al., 2006, 2007) 

 

2.7 Process Models  

 

Various process flow scenarios and models have been explored utilizing various 

catalysts, feedstocks, and operating conditions.  A generalized process flow schematic 

for biodiesel production via transesterification is show in Figure 2.5.  The catalyst, 

alcohol, and feedstock oil are combined and mixed in a reactor for transesterification.  

The resulting mixture predominately contains the esters (biodiesel), crude glycerol, and 

alcohol.  Following the reaction, the glycerol is removed from the esters and undergoes 

refining to yield glycerol and alcohol.  The esters, or biodiesel, undergoes refining to 

remove alcohol from the reaction.  In addition, acid is utilized to neutralize the 

remaining catalyst and split any formed soap. (Van Gerpen, 2005)  The acid reacts with 

the soap to form a FFA and salt residue.  Water washing is used to remove any 

remaining catalyst, soap, salts, alcohol, or glycerol from the final biodiesel product. 
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Figure 2.5: Simplified Process Flow for Biodiesel Production via Transesterification 

 

 

 

 

Zhang et al. (2003a) developed a HYSYS-based process simulation model to provide a 

technological evaluation of 4 different biodiesel production facility designs for vegetable 

oil and WCO feedstocks.  It was reported that an alkali-catalyzed process for virgin oil 

required the fewest and smallest process units, but had the highest raw material cost.  

Utilizing WCO as a feedstock decreased the raw material cost and it was found that an 

acid-catalyzed process for WCO was technically feasible and with less complexity than 

the alkali-catalyzed process. 
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In a subsequent paper by Zhang and colleagues (2003b), evaluation of the economic 

feasibility of the 4 designs presented by Zhang et al. (2003a) was described.  The alkaki-

catalyzed process for virgin oil processing had the lowest fixed capital cost.  The acid-

catalyzed process using WCO was the most economically feasible design.  It was also 

reported that plant capacity, feedstock price, and biodiesel selling price were the most 

significant factors affecting the economic viability of a facility. 

 

Tapasvi and associates (2005) developed a spreadsheet-based process model for 

evaluating economic feasibility studies of biodiesel production from crude soybean oil.  

The process modeled was continuous and utilized stirred-tank reactors, alkali catalysis, 

and methanol.  Reported user-defined parameters include transesterification reaction 

efficiency, quantity of crude oil to be processed per day, the methanol:triglyceride molar 

ratio, and the FFA content of the crude oil. 

 

A computer model for a biodiesel production facility utilizing ASPEN PLUS process 

simulation software was constructed to provide estimation of capital and production 

costs for a soybean oil feedstock with a preliminary level of detail. (Haas et al., 2006)  

Annual biodiesel production capacity was set at 10M gallons per year.  

Transesterification was accomplished with methanol via alkali-catalysis, modeled as a 

continuous reaction in stirred tank reactors, with overall reaction efficiency of 99%.  It 

was reported that feedstock cost was the single greatest contributor to cost. 
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West and colleagues (2007) reported simulation and case studies related to continuous 

biodiesel production with a solid acid catalyst, sulfated-zirconia, in a fixed bed reactor.  

The vegetable oil feedstock was presumed to contain 5% FFA, the conversion set at 

90.4%, and biodiesel production rate of 8000 tonnes/yr.  Several sensitivity analyses 

were conducted.  In terms of the effect of reaction conversion on after tax rate of return 

(ATROR), it was found that the ATROR for the given process becomes negative for a 

conversion less than 83%.  Plant capacity was observed to have a linear effect on the 

ATROR. Economy-of-scale was supported.  For example, an increase in the feedstock 

flowrate of 100 kg/h resulted in an increase of the ATROR by 12 percentage points. 

 

Myint (2007) and Myint and El-Halwagi (2009) reported results of process design, 

analysis, and optimization of soybean oil-based biodiesel production.  Four possible 

configurations were developed and simulated using ASPEN Plus to study different post-

transesterification separation sequences.   Based on performance and economic criteria, 

one scenario was selected for further development.  In this scenario, biodiesel and 

glycerol separation was performed first, followed by methanol removal, then water 

washing of the biodiesel.  Next, mass and energy integration was performed and capital 

cost estimation completed using ICARUS software, and a profitability analysis 

performed.  In agreement with previous studies, it was observed that feedstock cost was 

the single most significant contributor to production costs – 90% of the total annualized 

cost.   It was also observed that payback period and return on investment quickly 

decreased with increasing soybean oil cost. 
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CHAPTER III 

 

PROBLEM STATEMENT 

 

While the majority of domestic biodiesel production utilizes soybean oil as the sole or 

primary feedstock, there are multiple incentives to identify additional feedstocks. 

Among these incentives, competition with food resources and fluctuating prices.   An 

increase in the cost of soybean oil will occur as its use in biodiesel production and other 

products increases.  Sustainability and profitability of biodiesel will require attaining the 

capability to quickly and efficiently shift to/co feed more readily available and more 

economical feedstocks.  To facilitate this capability, study of the techno-economics of 

feedstock options and integration of feedstock flexibility into the design and scheduling 

of biodiesel production facilities is needed. 

 

In addition, due to the increase in environmental-centered interests, the advent of GHG 

policy development and implementation has the potential to affect the profitability of 

biodiesel production.  So far, this factor has not been routinely considered in design or 

scheduling of biodiesel production. This work endeavors to begin satisfying this fissure 

via investigate of one potential GHG policy option with a systems approach rooted in 

true design consideration, with the goal of providing relevant information for both 

policy-makers and biodiesel producers related to the associated impacts on the financial 

viability of production.  
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The overall goal of this work is develop a systematic decision-making approach for 

market sensitive strategic scheduling and design of a biodiesel production process with 

the objective of increasing efficiency of biodiesel production facilities.  

The approach taken involves decomposition of the problem into two stages.  Stage one 

involved development of a systematic procedure that can determine feedstock selection, 

usage and scheduling, and process modifications, and pre-treatment selection and design 

so as to maximize the process profit.  Stage two involved development of a systematic 

procedure that is market-sensitive and can determine process design, feedstock selection 

and scheduling, and requisite greenhouse gas subsidies so as to maximize the process 

profit. 

 

The problem addressed in this work can be formally stated as follows: 

 

Given is a biodiesel production facility of given design and production capacity. The 

process uses a certain feedstock. Available for consideration, a number (Nf) of 

alternative feedstocks that may be used in conjunction with or in lieu of the current 

feedstock. 

  



 29

3.1 Stage 1  

 

It is desired to develop a systematic procedure for the retrofitting and scheduling of the 

facility to enable the use of the alternative feedstocks while maintaining the same 

production level and quality. 

  

Related challenges involved in addressing the problem include answering the following 

questions: 

• Which feedstock(s) should be used? How much should be fed to the process? 

Should feedstocks be processed separately or co-fed? When? 

• What retrofitting changes are needed?  

• How should the process operation be scheduled? 

 

The problem is stated as follows:  

Given a continuous process with, 

 

• A set of pre-treatment units U = {u|u = 1, 2, …, NT}. Each pre-treatment unit, u, 

has a set of input streams INPUTu = {iu|iu = 1,2,…, Nu
in} and a set of output 

streams OUTPUTu = ju|ju = 1,2,…,Nu
out}.  Input stream iu has a flowrate of  

and composition of component q of .  Output stream j

ui
F

q,iu
X u has a flowrate of  

and a composition of component q of . 

uj
G

q,ju
Y
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• A set of common process units V = {v|v = 1, 2, …, NPU}. Each pre-treatment 

unit, v, has a set of input streams INPUTv = {iv|iv = 1,2,…, Nv
in} and a set of 

output streams OUTPUTv = jv|jv = 1,2,…,Nv
out}.  Input stream iv has a flowrate of 

and composition of component q of .  Output stream j
vi

F q,iv
X v has a flowrate of 

and a composition of component q of . 
vj

G q,jv
Y

• A set of product discharges for the process P = {p|p = 1, 2, …, Np}. 

• A set of waste discharges for the process W = {w|w = 1, 2, …, Nw}. 

• A set of intermediate streams B = {b|b = 1, 2, …, Nb} that are redirected back 

into the process. Input stream ib has a flowrate of and composition of 

component q of .  Output stream j

bi
F

q,i b
X b has a flowrate of and a composition 

of component of . 

bj
G

q,jb
Y

• A given decision-making time horizon (th).  Within this horizon, the variations in 

the market conditions are anticipated and expressed in terms of time-dependent 

changes in quanties and prices of supply (feedstocks, reagents, etc.) and demand 

(products and byproducts). 

 

 

3.2 Stage 2 

 

It is desired to develop a systematic procedure for the design, operation, and scheduling 

of the facility with and without carbon subsidies. 



 31

Related challenges involved in addressing the problem include answering the following 

questions: 

• What is the optimal flowrate of each feedstock? 

• How should the flowrate of each feedstock be scheduled? 

• Should the feedstocks be co-fed or utilized separately? 

• How should the process design and scheduling be adjusted under different 

economic conditions (e.g. feedstock price?) 

• Is there a need for a carbon subsidy to insure a minimum return on investment of 

the process for certain feedstocks?  If so, what is the appropriate level of subsidy 

needed for each feedstocks and what is the impact of varying such subsidies? 

 

The problem is stated as follows:  

Given a continuous process with, 

 

• A certain level of CO2 emitted per ton feedstock to produced biodiesel, . 2CO
feedstockE

• A set of pre-treatment units U = {u|u = 1, 2, …, NT}. Each pre-treatment unit, u, 

has a set of input streams INPUTu = {iu|iu = 1,2,…, Nu
in} and a set of output 

streams OUTPUTu = ju|ju = 1,2,…,Nu
out}.  Input stream iu has a flowrate of  

and composition of component q of .  Output stream j

ui
F

q,iu
X u has a flowrate of  

and a composition of component q of . 

uj
G

q,ju
Y
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• A set of common process units V = {v|v = 1, 2, …, NPU}. Each pre-treatment 

unit, v, has a set of input streams INPUTv = {iv|iv = 1,2,…, Nv
in} and a set of 

output streams OUTPUTv = jv|jv = 1,2,…,Nv
out}.  Input stream iv has a flowrate of 

and composition of component q of .  Output stream j
vi

F q,iv
X v has a flowrate of 

and a composition of component q of . 
vj

G q,jv
Y

• A set of product discharges for the process P = {p|p = 1, 2, …, Np}. 

• A set of waste discharges for the process W = {w|w = 1, 2, …, Nw}. 

• A set of intermediate streams B = {b|b = 1, 2, …, Nb} that are redirected back 

into the process. Input stream ib has a flowrate of and composition of 

component q of .  Output stream j

bi
F

q,i b
X b has a flowrate of and a composition 

of component of . 

bj
G

q,jb
Y

• A given time horizon (th) for decision-making.  Within this time horizon, the 

variations in the market conditions are anticipated and expressed in terms of 

time-dependent changes in prices and quantities of supply (reagents, feedstocks, 

etc.) and demand (products and byproducts). 
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CHAPTER IV 

 

STAGE 1: OPTIMAL SCHEDULING AND OPERATION OF BIODIESEL 

PLANTS WITH MULTIPLE FEEDSTOCKS*

 

4.1 Summary 

 

Various feedstocks may be utilized to produce biodiesel.  These include soybean, palm, 

sunflower, jatropha, rapeseed, and safflower oils, as well as waste oil from the food 

industry. With changing prices, supply, and demand of feedstocks, a need exists to 

consider various feedstocks options for biodiesel production.  The objective of this work 

is to develop a systematic procedure for scheduling and operation of flexible biodiesel 

plants accommodating a variety of feedstocks.  This work employs a holistic approach 

and a combination of process simulation, synthesis, and integration techniques to 

provide:  

1. Process simulation of a biodiesel plant for various feedstocks,  

2. Integration of energy and mass resources,  

3. Optimization of process design and scheduling,  

4. Techno-economic assessment and sensitivity analysis of proposed schemes.  

                                                 
* Part of this chapter is reprinted with permission from Elms, R.D., El-Halwagi, M.M. (2009) “Optimal 
Scheduling and Operation of Biodiesel Plants with Multiple Feedstocks” Int. J. Process Systems 
Engineering. 1(1). pp.1-28., Copyright 2009 by Inderscience Publishers. DOI: 
10.1504/IJPSE.2009.027998. 
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An optimization formulation is developed to determine scheduling and operation for 

various feedstocks. A case study is solved to illustrate the merits of the devised 

procedure. 

 

4.2 Introduction 

 

The global objective of process development and improvement is to develop and apply 

systematic procedures to design and operate optimal processes that operate ‘faster, 

better, cheaper, safer, and greener.’  Traditional approaches to tackle this objective 

include brainstorming among experienced engineers, heuristics based on experience-

based rules, or evolutionary techniques (i.e. copy or adaptation of a previous design.)   

These traditional approaches are weak and limited in many respects.  They are money 

and time intensive, unable to enumerate the infinite alternatives that exist for a given 

problem, do not assure acquisition of solutions close to the optimum, which are often 

non-obvious, are limited in applicability, do not promote novel or groundbreaking ideals, 

and of notable importance, do not provide global insight into the process of interest (El-

Halwagi, 2006). 

 

In light of the limitations inherent to traditional approaches, an alternative approach is 

needed to accomplish process related goals effectively, efficiently, and without the 

aforementioned limitations.  Needed are techniques that are systematic, fundamental, 

and generally applicable in nature.  Due to recent advances, this is possible through 
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process integration and its vital components, process synthesis and process analysis.  

Process integration is a ’holistic approach to process design, retrofitting, and operation, 

which emphasizes the unity of the process.’ (El-Halwagi, 2006) Process synthesis 

involves known or given process inputs and outputs, and unknown process structure and 

parameters.  Process analysis involves given inputs and structure, with unknown or 

undefined process outputs.  Of specific importance is targeting, one of the most powerful 

components of process integration.  Targeting is the identification of performance 

benchmarks for the whole process ahead of detailed design.  Specific performance 

targets include profitability improvement, yield enhancement, resource (mass and 

energy) conservation, pollution prevention/waste minimization, and safety improvement. 

(El-Halwagi, 2006)  These techniques are now ready to be utilized for the development 

of emerging fields such as the design of integrated biorefineries and facilities producing 

biofuels, such as biodiesel. 

 

Biodiesel is a renewable fuel consisting of esters of lower alcohol and fatty acids, or 

Fatty Acid Methyl Esters (FAME).  The fatty acids are typically derived from vegetable 

oil, animal fat, or tallow.  Biodiesel can be used in existing engines and offers similar 

power to petroleum diesel. (EPA, October 2002) Benefits of and interest in biodiesel can 

be roughly segregated into three main categories: 1.) sustainable energy, 2.) 

environmental responsibility, and 3.) domestic energy independence.   Biodiesel is a 

renewal fuel source, with many food and non-food feedstock options, to include waste 

oil (cooking).  In light of finite and diminishing fossil fuel resources, biodiesel provides 
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a means by which to reduce dependence on fossil fuels and replace usage of some of this 

finite source with a renewal fuel option.  In terms of environmental issues, biodiesel 

abounds with benefits when compared to its petroleum-based counterpart.  For example, 

as compared to petroleum-based diesel, biodiesel reduces the net gain in CO2 emissions 

by 78%, in addition to a 47% reduction in tailpipe emissions of particulate matter 

(Sheehan et al., 1998). Biodiesel produces no sulfur emissions and due to this 

characteristic is being used as an additive to ultra low sulfur diesel (ULSD). 

 

As a result of the aforementioned benefits, there has been a growing interest in biodiesel. 

U.S. demand for biodiesel has steadily increased since 1999 and experienced a 300% 

increase (from ~25 to 75 million gallons per year) from 2004 to 2005 after 

implementation of the Biodiesel Tax Incentive.  2007 U.S. Biodiesel sales reached 450 

million gallons, and current US capacity was reported in January 2008 as 2.24 billion 

gallons per year (National Biodiesel Board, 2007, 2008).  New plant construction and 

existing plant expansions appear to add another 1.26 billion gallons of annual capacity in 

2008-2009. Of interest, the U.S. Navy, the largest consumer of diesel in the world, in 

2005 began using biodiesel in all its non-tactical diesel vessels (Arny, 2005). 

 

Biodiesel can be produced from virgin oils as well as recycled/waste oil. Virgin oils can 

be either vegetable or animal derived. Potential vegetable oil feedstocks include refined 

or crude soy (predominate in the U.S.), rapeseed (predominate in Europe), canola, 

sunflower, palm, jatropha, camelina, and many more.  Typically, no pretreatment is 
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needed for refined oil, but they are a more expensive feedstock. Animal derived 

feedstock sources include renderings and tallow. These sources are less expensive, but 

have a higher free fatty acid (FFA) content, requiring pretreatment prior to use for 

biodiesel production.  Recycled or waste oil, referred to as waste cooking oil (WCO) by 

some, can be either vegetable or animal derived.  Examples include used restaurant 

cooking oil, yellow grease, and trap grease.  These sources are typically inexpensive, but 

have higher FFA content and require pretreatment. 

 

There are various alternatives for biodiesel production. Several pathways exist, such as 

the use of microemulsions and pyrolysis, with new emerging methods including use of 

supercritical CO2.  But currently, by far, biodiesel is predominately produced via 

transesterification.  The overall triglyceride transesterification reaction using methanol 

can be seen in Figure 4.1.  The transesterification reaction is accomplished by reacting 

the triglyceride with an excess of alcohol (here methanol) in the presence of a catalyst to 

produce glycerol and methyl esters (the biodiesel). 
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Figure 4.1: Overall Transesterification Reaction 
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4.3 Motivation and Problem Statement 

 

While the majority of biodiesel is being produced using soybean oil as the primary 

feedstock, there are several incentives to identify additional feedstocks. These include 

competition with food resources and the fluctuating prices.   As the use of soy for 

biodiesel production, as well as for other existing and future products, increases, its cost 

will rise.  In order to ensure the sustainability and profitability of biodiesel, the 

capability to quickly and efficiently shift to (or co-feed) available and more economical 

feedstocks is essential.  To accomplish this, we need to 1.) study the techno-economics 

of many feedstock options, and 2.) integrate feedstock flexibility into design and 

scheduling of the biodiesel production facilities. The overall goal of this work is develop 

a systematic decision-making approach for market sensitive strategic scheduling and 
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design of a biodiesel production process. The problem to be addressed in this can be 

formally stated as follows: 

 

Given is a biodiesel production facility of given design and production. The process uses 

a certain feedstock. Available for consideration a number (Nf) of alternative feedstocks 

that may be used in conjunction with or in lieu of the current feedstock. It is desired to 

develop a systematic procedure for the retrofitting and scheduling of the facility to 

enable the use of the alternative feedstocks while maintaining the same production level 

and quality.  

 

There are several challenges involved in addressing the problem. These include 

answering the following questions: 

• Which feedstock(s) should be used? How much should be fed to the process? 

Should feedstocks be processed separately or co-fed? When? 

• What retrofitting changes are needed?  

• How should the process operation be scheduled? 

 

The problem is stated as follows:  

Given a continuous process with, 

• A set of pre-treatment units U = {u|u = 1, 2, …, NT}. Each pre-treatment unit, u, 

has a set of input streams INPUTu = {iu|iu = 1,2,…, Nu
in} and a set of output 

streams OUTPUTu = ju|ju = 1,2,…,Nu
out}.  Input stream iu has a flowrate of  

ui
F
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and composition of component q of .  Output stream jq,iu
X u has a flowrate of 

 and a composition of component q of . 
uj

G q,ju
Y

• A set of common process units V = {v|v = 1, 2, …, NPU}. Each pre-treatment 

unit, v, has a set of input streams INPUTv = {iv|iv = 1,2,…, Nv
in} and a set of 

output streams OUTPUTv = jv|jv = 1,2,…,Nv
out}.  Input stream iv has a flowrate of 

and composition of component q of .  Output stream j
vi

F q,iv
X v has a flowrate of 

and a composition of component q of . 
vj

G q,jv
Y

• A set of product discharges for the process P = {p|p = 1, 2, …, Np}. 

• A set of waste discharges for the process W = {w|w = 1, 2, …, Nw}. 

• A set of intermediate streams B = {b|b = 1, 2, …, Nb} that are redirected back 

into the process. Input stream ib has a flowrate of and composition of 

component q of .  Output stream j

bi
F

q,i b
X b has a flowrate of and a composition 

of component of . 

bj
G

q,jb
Y

• A given decision-making time horizon (th).  Within this horizon, the variations in 

the market conditions are anticipated and expressed in terms of time-dependent 

changes in quanties and prices of supply (feedstocks, reagents, etc.) and demand 

(products and byproducts). 

 

It is desired to produce a systematic procedure that can determine feedstock selection, 

usage and scheduling, and process modifications, and pre-treatment selection and design 

so as to maximize the process profit. 
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Figure 4.2: Source Sink Flowchart 
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4.4 Approach 

 

The following simplifying assumptions were made: 

• The decision-making time horizon is discretized into Nt periods.  This leads to a 

set of operation periods defined as PERIODS = {t|t= 1,2, …,Nt}.  Within each 

time period, the process operates at steady-state. In addition, only intra-period 

integration is allowed. (No storage, integrations, or exchange of streams over 

more than one period.)  

• Process modifications are limited to two options: 

a) Manipulation of certain design and operating variables for each unit 

within specific ranges 

b) Addition of new pretreatment units 

 

4.4.1 Structural Representation 

 

A source-sink structural representation of the problem is selected to allow for inclusive 

portrayal of the various potential configurations of interest. Figure 4.2 depicts a 

schematic of the structural representation.  Outputs from the pretreatment units are split 

into fractions.  These fractions include ones assigned to inputs of the common process 

units, assigned to inputs of pretreatment units, discharged as wastes, and ones discharged 

as final product streams.  Each common process unit discharges several outputs as well. 

Outputs from the common process units are split into fractions.  These fractions include 
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ones discharged as final products, and ones assigned to return back into the process as 

process inputs (intermediates).   

 

4.4.2 Mathematical Formulation 

 

4.4.2.1 Pretreatment Units 

 

The mass balance for the pretreatment unit u during period t: 

 

∑∑ =
u

u

u

u
i

,i
j

,j FG tt     tu,∀       (4.1) 

The qth component balance for unit u during period t is expressed as: 

 

( )∑∑ +=
u

uuu

u

u
i

tq,u,tq,,i,itq,,j
j

,j Net_GenX*FY*G tt tuq ,,           ∀    (4.2) 

 

Where the index, t, in the flowrate and composition terms refer to the time period over 

which the flowrates and compositions are considered.  The performance model for unit u 

is expressed by a set of algebraic equations: 

 

),...2,1,N1,2,...,j:Y,(G out
uu,,j,j uu Componentstqt Nq ==   

)o ,d ,,...2,1 , N1,2,...,i:X,(F tu,tu,
in
uu,,i,iu uu Componentstqt Nqf ===  tqiu u ,,,∀  (4.3) 
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4.4.2.1.1 Splitting of source ju

 

The flowrate assigned from source ju to destination iv during period t is referred to 

as and the flowrate from source jtij vu
g ,, u to destination iu during period t is referred to 

as . The flowrate from the jtij uu
g ,, u

th source goes to other pretreatment units, to the 

common processing units, to final product streams, and to waste streams. Therefore, the 

material balance for the splitting of source ju is given by: 

 

∑∑∑∑∑ +∑++=
w

twj
p

tpj
v i

tij
u i

tijtj uu

v

vu

u

uuu
wpggG ,,,,,,,,,  tju u ,,∀  (4.4)  

 

where  is the flowrate assigned from jtpju
p ,, u to the pth product stream and  is the 

flowrate from j

twju
w ,,

u to the wth waste stream.  

The total flowrate of the pth product from the NT pretreatment units in period t is 

expressed as: 

 

∑∑=
u j

tpj
T

tp
u

u
pP ,,,      tp,∀     (4.5) 

 

and the qth component material balance for the pth product stream coming from the NT 

pretreatment units: 
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∑∑=
v j

tqjtpj
T

tqp
T

tp
u

uu
YpZP ,,,,,,, **    tqw ,,∀    (4.6) 

The total flowrate of the wth waste stream from the NT pretreatment units during period t 

is expressed as: 

 

∑∑=
u j

twj
T

tw
u

u
wW ,,,      tw,∀     (4.7) 

 

and the qth component material balance for the wth waste stream coming from the NT 

pretreatment units: 

∑∑=
u j

tqjtwj
T

tqw
T

tw
u

uu
YwZW ,,,,,,, **    tqw ,,∀    (4.8) 

 

4.4.2.1.2 Mixing of the split flowrate before iv
th input to vth common process unit 

 

The iv
th input to the vth common process unit consists of contributions from streams 

exiting the pretreatment units and from intermediate streams recycled from the common 

process units themselves. The flowrate assigned from intermediate source jb to 

destination iv during period t is referred to as . Then, for the mixing of the split 

flowrate before the i

tij vb
r ,,

v
th input to the vth common process unit, the material balance and qth 

component balance during period t are expressed as: 

 

∑∑ ∑∑+=
u j b j

tijtijti
u b

vbvuv
rgF ,,,,,      tiv v ,,∀  (4.9) 
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∑∑ ∑∑+=
u j b j

tqjtijtqjtijtqiti
u b

bvbuvuvv
YrYgXF ,,,,,,,,,,, ***   tqiv v ,,,∀  (4.10) 

 

4.4.2.2 Common Process Units 

 

The mass balance equation for common process unit, v, during period t is expressed as: 

 

∑∑ =
v

v

v

v
i

,i
j

,j FG tt         tv,∀   (4.11) 

 

The qth component balance for common process unit v during period t is expressed as: 

 

( )∑∑ +=
v

vvv

v

v
i

tq,v,tq,,i,itq,,j
j

,j Net_GenX*FY*G tt               tvq ,,∀  (4.12) 

 

and the unit performance equation for the vth common process unit is expressed as: 

 

),...2,1,N1,2,...,j:Y,(G out
vv,,j,j vv Componentstqt Nq ==   

)o ,d ,,...2,1 , N1,2,...,i:X,(F tv,tv,
in
vv,,i,iv vv Componentstqt Nqf ===  tqiv v ,,,∀  (4.13) 
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4.4.2.2.1 Splitting of the jv
th stream leaving the vth common process unit 

 

There are Nw waste streams and NP product streams leaving the process, and NB 

intermediate streams being rerouted back into the process.  Each output stream jv from a 

common process unit is split into several flowrates, some are assigned to waste outlets, 

some to product streams, and some to intermediate streams that will be recycled back 

into the process.  The flowrate assigned to the wth waste stream is referred to as , 

the flowrate assigned to the p

twjv
w ,,

th product stream is referred to as , and the flowrate 

assigned to the b

tpjv
p ,,

th intermediate stream is referred to as .  Therefore, the material 

balance for the splitting of the j

tbjv
r ,,

v
th stream is expressed as: 

 

∑∑∑ ++=
b

tbj
p

tpj
w

twjtj vvvv
rpwG ,,,,,,,    tjv v ,,∀   (4.14) 

The flowrate of the wth waste stream from the NPU common process units is given by: 

 

∑∑=
v j

twj
PU

tw
v

v
wW ,,,       tw,∀    (4.15) 

 

and the qth component material balance for the wth waste stream from the NPU common 

process units  is given by: 

 

∑∑=
v j

tqjtwj
PU

tqw
PU

tw
v

vv
YwZW ,,,,,,, **     tqw ,,∀   (4.16) 
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The flowrate of the pth product stream from NPU common process units is given by: 

 

∑∑=
v j

tpj
PU

tp
v

v
pP ,,,       tp,∀    (4.17) 

 

and the qth component material balance for the pth product stream from the NPU common 

process units  is given by: 

 

tqj
v j

tpj
PU

tqp
PU

tp v

v

v
YpZP ,,,,,,, ** ∑∑=     tqp ,,∀   (4.18) 

 

The flowrate of the bth intermediate stream from the NPU common process units is given 

by: 

 

      ∑∑=
v j

tbj
PU

tb
v

v
rR ,,, tb,∀    (4.19) 

 

The qth component material balance for the bth intermediate stream from the NPU 

common process units is given by: 

 

tqj
v j

tbj
PU

tqb
PU

tb v

v

v
YrZR ,,,,,,, ** ∑∑=     tqb ,,∀   (4.20) 
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4.4.2.3 Product Streams 

 

The flowrate of the pth product out of the process is given by: 

∑∑∑∑ +=+=
v j

tpj
u j

tpj
PU

tp
T

tptp
v

v

u

u
ppPPP ,,,,,,,    tp,∀               (4.21) 

 

The qth component material balance for the pth product stream from the process is given 

by: 

 

∑ ∑∑∑ +=+=
u v j

tqjtpj
j

tqjtpj
PU

tqp
PU
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T

tqp
T

tptqptp
v
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tqp ,,∀                          (4.22) 

4.4.2.4 Waste Streams 

 

The flowrate of the wth waste stream out of the process is given by: 

 

∑∑∑∑ +=+=
v j

twj
u j

twj
PU

tw
T

twtw
v

v

u

u
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The qth component material balance for the wth waste stream from the process is given 

by: 
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4.4.2.5 Intermediate Streams Recycled Back into the Process 

 

4.4.2.5.1 Mixing of the split flowrate before the ib
th input to the intermediate block 

 

The ib
th input to the intermediate block consists of contributions from streams exiting the 

common process units. The flowrate assigned from source jv to destination ib during 

period t is referred to as .Then, for the mixing of the split flowrate before the itij bv
r ,, b

th 

input to the intermediate block, the material balance and qth component balance during 

period t are expressed as: 

 

tij
j

ti bv

v

b
rF ,,, ∑=      tib b ,,∀    (4.25) 

tqjtij
j

tqiti vbv

v

bb
YrXF ,,,,,,, ** ∑=    tqib b ,,,∀    (4.26) 

 

4.4.2.6 Intermediate Block 

 

The mass balance equation for the intermediate block during time t is given by: 
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∑∑ =
b

b

b

b
i
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,j FG tt       tb,∀     (4.27) 

 

The qth component balance for the intermediate block during time t is given by: 

 

( )∑∑ =
b

bbb

b

b
i
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4.4.2.6.1 Splitting of the jb
th stream leaving the intermediate block 

 

The flowrate assigned from source jb to destination iv during period t is represented by 

.  Therefore, the material balance for the splitting of source jtij vb
r ,, b is given by: 

 

∑∑=
v

vbb
i

tij
v

tj rG ,,,      tbjb ,,∀    (4.29) 

 

4.4.3 Constraints 

 

The design and operating constraints for the pretreatment units and the common process 

units are:  

max
,

min
utuu ddd ≤≤          (4.30) 

          (4.31) max
,

min
vtvv ddd ≤≤
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max
,

min
utuu ooo ≤≤          (4.32) 

and   

max
,

min
vtvv ooo ≤≤          (4.33)

   

The product demand and composition constraints are expressed as: 

Demand
tptp PP ,, ≤            (4.34) 

The flowrate and composition constraints for the iu
th input to the process unit are given 

by:  

max
,

min
uuu itii FFF ≤≤          (4.35) 

and 

          (4.36) max
,,,

min
, qitqiqi uuu

XXX ≤≤

 

The flowrate and composition constraints for the iv
th input to the vth common process 

unit are given by:  

max
,

min
vvv itii FFF ≤≤          (4.37) 

and 

max
,,,

min
, qitqiqi vvv

XXX ≤≤          (4.38) 
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4.4.4 Objective Function 

 

The overall basis of the optimization formulation to maximize gross profit can be 

represented as revenue minus the cost of feedstocks and reactants, process operating 

cost, and pretreatment costs (if applicable): 

 

 

 

To express it mathematically, a multi-period representation will be used. Let us consider 

a decision-making horizon th which is discretized into a number (Nt) of time intervals. 

This discretization may be uniform (e.g., monthly or quarterly) or event-based (e.g., to 

correspond to harvesting times or availability of feedstocks). The index t is used to 

represent the time intervals. As mentioned in the problem statement, there are (Nf) 

feedstock alternatives with an index (f). As such, the objective function is given by: 

 

etreatment

t
ttf

t f

feedstock
tftp

t p

product
tp TACPOCFCPC Pr

,,,, * −−∗− ∑∑∑∑∑  (4.39) 

 

where  is the unit selling price of product p during period t, Pproduct
tpC , p,t is the production 

rate of product p during time t,  is the cost of feedstock f during period t, Ffeedstock
tfC , f,t is 

the feed rate of feedstock f during time t, and POCt represents the process operating cost 
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excluding feedstocks (e.g., utilities, labor, waste treatment, etc.) during period t.  The 

term TACPretreatment is the total annualized cost of retrofitted pretreatment, which is 

defined as the sum of the annualized fixed costs (AFC) and the annual operating cost 

(AOC) and is expressed as:  

 

∑ ∑∑ +=
t f

etreatment
tff

f
f AOCAFCI Pr

,
ntPretreatme *TAC       (4.40) 

 

where If is a binary integer variable designating the presence or absence of the fth 

feedstock and is determined through the following constraint: 

 

ftf
t

tf IFF *max
,, ≤∑    f∀       (4.41) 

Where is an upper bound on the allowable flowrate of feedstock f.  When the 

flowrate is positive, the value of I

max
,tfF

f is forced to be one. Otherwise, it takes the value of 

zero. 

 

The previous constraints are developed for the various feedstocks and time intervals. The 

foregoing expressions presented comprise the mathematical program for the problem.  

The resulting formulation is a mixed integer nonlinear program (MINLP).  This program 

can be solved in order to identify the optimal scheduling, process modifications and 

selection, as well as design of the pretreatment units and common process units. If the 

process models are linearized (which is a reasonable approach if the operation and 
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design changes are kept close to the nominal conditions), then the program becomes a 

mixed integer linear program (MILP). One of the advantages of the presented 

formulation is the flexibility and allowance for use of actual process and cost 

information.  In addition, the decision-maker is able to make individual and custom 

choices pertaining to the type of collected information and the level of sensitivity and 

accuracy desired. 

 

4.5 Case Study 

 

A base-case design is considered for the processing of soybean oil to produce 40 

MMPGY biodiesel via transesterification. The design is based on the configuration 

proposed by Myint (2007). Available for consideration is an additional feedstock: waste 

cooking oil. Therefore, the analysis will be conducted for the scheduling of two 

feedstocks, 1.) virgin refined soybean oil, and 2.) waste cooking oil (WCO) (50% FFA).  

Calculations are based upon an 8000 hour work year. The process flowsheet for base 

case is shown in Figure 4.3. Transesterification was accomplished by reacting soy oil 

with an excess of methanol in the presence of NaOH.  The reaction occurred at 60oC for 

a duration of 1 hour, with a conversion of 0.97. The alcohol to triglyceride ratio was 6:1 

and the soy oil was presumed to have no more than 0.5% free fatty acid content. 

(Freedman et al., 1984, 1986)  Following transesterification, the glycerol was removed 

and subsequently purified. After glycerol removal, methanol was removed from the 

biodiesel, and the biodiesel was washed with water.  The base-case design for processing  
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Table 4.1: Mass Flow of Selected Components for the ASPEN Simulation 

 

      Mass Flow     
      (lb/hr)     

Description Stream Biodiesel Glycerin Triglycerides Methanol Water 
  Index        

Reactor S1 0 0 0 8094 0 
Input S2 0 0 37279 0 0 

Reactor Output S3 36326 3761 1118 4169 0 
Glycerol Purification S4 0 0.003 0.001 3185 0 

Output S5 0 3761 1.822 7.335 0 
Methanol Distillation S6 trace Trace trace 972 0 

Output S7 36326 0.113 1117 4.278 0 
Water Washing S8 0 0.113 0 3.551 5373 

Output S9 36326 Trace 0 0.721 31 
 

 

of a single feedstock to produce 40 MMPGY biodiesel via transesterification was 

simulated using ASPEN Plus. The resulting biodiesel had a purity of 99.2%, and 

glycerol a purity of 98.5%.  Table 4.1 shows mass flow information for biodiesel, 

glycerin, triglycerides (feedstock), methanol, and water in selected streams.  Table 4.2 

provides information concerning the hot and cold streams and the total cooling and 

heating utilities. 

 

Next, mass integration was performed to conserve resources, specifically water and 

methanol. Heat integration was performed via the pinch analysis technique was carried 

out to minimize the heating and cooling utilities. Details on the steps involved in these 

procedures can be found in literature (El-Halwagi, 2006; 1997). Results of integrating 
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the base-case design yielded operating cost savings of ~$8,800,000/yr.  Heat integration 

was conducted via an algebraic approach to calculate the minimum heating and cooling 

utilities.  Resultant savings are shown in Table 4.3. Since pure methanol is obtained from 

distillation, the methanol exiting distillation was recycled back to the reactor unit.  This 

decreased the amount of fresh methanol needed (after start-up) to half of the pre-

integrated amount, yielding savings of almost $8,000,000/yr. (See Table 4.3). Discharge 

water from the biodiesel production process was treated by single stage  

 

Table 4.2: Supply and Target Temperature, Δ Enthalpy, and Specific Heat Values for 

ASPEN Simulation Hot and Cold Streams 

 

  Supply Temp Target Temp Δ Enthalpy Specific Heat 
  (oF) (oF) (103 Btu hr-1) (103 Btu hr-1 oF-1) 
Hot Streams      
HEX4 140 77 1436.00 22.79 
HEX8 470 77 8704.00 22.15 
HEX11 303 77 578.00 2.56 
MET-DIST1 
(Condenser) 62 61 37647.00 37647.00 
MET-DIST2 
(Condenser) 62 61 11800.00 11800.00 
REACT1 140 139 36901.00 36901.00 
  Total Cooling Utility 97066.00   
          
Cold Streams      
HEX1 133.9 140 45.00 7.38 
HEX2 77 140 871.00 13.83 
HEX5 77 140 769.00 12.21 
HEX6 77 140 44888.00 712.51 
HEX7 77 140 1137.00 18.05 
MET-DIST1 (Reboiler) 468 469 10564.00 10564.00 
MET-DIST2 (Reboiler) 302 303 11307.00 11307.00 
  Total Heating Utility 69581.00   
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Table 4.3: Savings from Process Integration 

 

 Savings ($/yr) 
Heat Integration 763,350 
Methanol Integration 7,976,000 
Water Integration 23,300.00 

Total Savings from Integration =  $8,762,650 / yr 

 

Reverse Osmosis (El-Halwagi, 1997).  Of the water discharged from the process, 40% 

could be recycled with the other 60% sent to wastewater treatment.   The savings 

obtained are shown in Table 4.3. 

 

4.5.1 Economic Analysis 

 

4.5.1.1 Estimation of Capital and Operating Costs 

 

Capital costs were developed from literature-based values brought up to scale for a 40 

MMGPY process, then updated to 2007 dollars by use of the Chemical Engineering 

Plant Cost Index (CEPCI). (Chemical Engineering Plant Cost Index, 2004, 2007, 2008; 

Tyson et al., 2004; You et al., 2008; Zhang, 2002; Zhang et al., 2003a) Due to its 

significant contribution to capital costs, the transesterification reactor was sized and 

priced separately. Capital cost estimation for the waste cooking oil included 

pretreatment-related costs.  Operating costs were developed  
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by use of literature values (Tyson et al., 2004; You et al., 2008; Zhang, 2002; Zhang et 

al., 2003a, b), standard rules of thumb, and current raw material costs. 

 

Next, an economic analysis is carried out.  Metrics used for economic analyses include 

Annual Profit, Payback Period (PBP), and Return on Investment (ROI).  Values were 

calculated as seen below. 

• Annual Profit = Annual Sales – Annualized Fixed Cost (AFC) – Annualized Operating Cost 

(AOC)  

• Payback Period (PBP) = Fixed Capital Investment/(Annual Sales – AOC) 

• Return on Investment (ROI) = (Annual Profit/Total Capital Investment)*100% 

 

Annual Profit, PBP, and ROI were calculated for single-feedstock 40 MMGPY biodiesel 

production facilities using virgin soy bean oil and waste cooking oil (50% FFA). All 

three of these metrics were calculated as a function of respective feedstock price and 

biodiesel selling price.  Twenty feedstock prices were used, as well as three biodiesel 

selling prices (current, (current - $0.50), (current + $0.50)).  In addition, sensitivity 

analysis was conducted to investigate the effect of the selling price of glycerol (current, 

(2*current), (current/2), $0.00) on the economic viability of the given process. The 

capital costs for 40 MMGPY biodiesel production with and without pretreatment 

capability are shown in Table 4.4. Raw material costs and related sources are shown in 

Table 4.5.  It should be noted that taxes and the biodiesel tax incentive are not explicitly 

accounted for in these calculations. 
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Table 4.4: Capital Costs for Biodiesel Production (40 MMGPY) 

with and without Pretreatment 

 

 Without Pretreatment With Pretreatment 
Fixed Capital Investment 
(FCI) 

$17,779,000 $22,479,000 

Annualized Fixed Cost 
(AFC) 

$2,072,000/yr $2,972,000 

 

 

Table 4.5: Raw Material Costs 

 

Material Cost 
($/lb) 

NaOH 1.26 

Methanol 0.24 

HCl 0.60 

Refined Soy Oil 0.49 
Waste Cooking Oil 
(50% FFA) 

0.034 

 

 

Table 4.6 contains the relevant operating costs.  Additional annual operating costs 

related to pretreatment of the WCO amount to $2,118,000/yr. ($0.05/gal biodiesel) 

(Tyson et al., 2004). Values for the Annual Operating Cost (AOC), minus feedstock 

cost, are shown with and without pretreatment.  Feedstock cost is not included in this 

table, since it is varied in the economic analyses.  For reference, at current prices, and for 
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the given process, annual feedstock costs for refined soy oil and WCO (50% FFA) 

amount to $152,387,000/yr and $20,820,000/yr, respectively.  At the current price for 

refined soy oil, it is quickly seen that feedstock cost by far dominates operating costs. 

 

Table 4.6: Operating Costs for Integrated Biodiesel Production (40 MMGPY) 

 

 Annual Cost ($/yr) 

Operating Labor 768,000 
Supervisory Labor 80,000 
Maintenance 533,000 
Utilities (w/o electricity) 1,868,000 
Electricity 21,000 
Raw Materials 
(minus feedstock) 

13,700,000 

Annual Operating Cost 
(minus feedstock) 

16,970,000 

Annual Operating Cost 
with Pretreatment 
(minus feedstock) 

19,089,000 

 

 

As shown in Table 4.7, the base-case “current” price of biodiesel was selected to be 

$3.38/gal, the value reported in the October 2007 issue of the DOE’s Clean Cities 

Alternative Fuel Report.  (DOE, 2007b)  As described previously, analyses were 

conducted using three prices of biodiesel; the current price, the current price less $0.50, 

and the current price plus $0.50.  These values were $2.88/gal, $3.38/gal, and $3.88/gal. 
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Table 4.7: Product Selling Prices 

 

Product Price Date Source 
Biodiesel (B100) $3.38/gal October 2007 DOE Alternative 

Fuel Report 
Glycerol (non-kosher) $0.98/lb April 2008 CLP Chemical 
 

 
Results of the annual profit, payback period, and ROI calculations when using soy oil as 

the feedstock are shown in Figures 4.4-4.6, which show annual profit, payback period, 

and ROI as a function of soy oil cost and biodiesel price, respectively.   

 

 

Figure 4.4: Annual Profit for a 40 MMGPY Biodiesel Facility as a Function of Soy Oil 

Cost ($/lb) and 3 Different Biodiesel Prices. (Glycerol is at the current value of $0.98/lb) 
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For all of these graphs, glycerol is at the current value of $0.98/lb.  In Figure 4.4, it can 

be seen that for the ‘current’ biodiesel price of $3.38/gal and the current soy oil price of 

$0.49/lb, the annual profit is $3,300,000, just short of the break-even point.  In addition, 

under these same conditions, the ROI is 14% (Figure 4.6) and the payback period 3 years 

(Figure 4.5).  In Figure 4.5, it can also be seen that the payback period appears to 

approach infinity between $0.50 and $0.55.  At the higher biodiesel price of $3.88/gal, 

the annual profit is ~8 times greater, having a value of $24,500,000.  At the higher 

biodiesel price, the payback period is much less, 0.67 years, and the ROI (134%) almost 

an order of magnitude greater. 

 

Figure 4.5: Payback Period for a 40 MMGPY Biodiesel Facility as a Function of Soy 

Oil Cost ($/lb) and 3 Different Biodiesel Prices. (Glycerol is at the current value of 

$0.98/lb) 
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Figure 4.6: Return on Investment for a 40 MMGPY Biodiesel Facility as a Function of 

Soy Oil Cost ($/lb) and 3 Different Biodiesel Prices. (Glycerol is at the current value of 

$0.98/lb) 

 

 

Conversely, the lower biodiesel price (at the current soy oil cost) results in a non-

economically viable process.  With the given conditions, the profitability of the process 

when using soy oil appears to be very sensitive to both soy oil cost and biodiesel price.  

A small increase in either the soy oil cost, or a decrease in biodiesel price make this 

process non-viable economically.  In recent years, the price of soy oil was much lower, 

making for a much more profitable process using soy oil.  Hence, the overwhelming use 

of soy oil as a biodiesel feedstock.  But, recently, even in the last 12 months, soy oil 
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prices have risen substantially.  This buttresses the need to obtain market-sensitive 

feedstock flexibility in biodiesel production. 

 

Figure 4.7: Annual Profit for a 40 MMGPY Biodiesel Facility as a Function of WCO 

Cost ($/lb) and 3 Different Biodiesel Prices. (Glycerol is at the current value of $0.98/lb) 

 

 

 

Results of the annual profit, payback period, and ROI calculations when using WCO as 

the feedstock are shown in Figures 4.7-4.9 which illustrate the annual profit, payback 

period, and ROI as a function of WCO cost and biodiesel price, respectively.  For all of 

these graphs, glycerol is at the current value of $0.98/lb.  In Figure 4.7, it can been seen 

that for the ‘current’ biodiesel price of $3.38/gal and the current WCO price of 
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$0.034/lb, the annual profit is $132,000,000, more than 5 times than that for soy oil.  For 

these same conditions, the payback period is 0.14 yrs, and the ROI 590%.  Even at the  

 

 

Figure 4.8: Payback Period for a 40 MMGPY Biodiesel Facility as a Function of WCO 

Cost ($/lb) and 3 Different Biodiesel Prices. (Glycerol is at the current value of $0.98/lb) 
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Figure 4.9: Return on Investment for a 40 MMGPY Biodiesel Facility as a Function of 

WCO Cost ($/lb) and 3 Different Biodiesel Prices. (Glycerol is at the current value of 

$0.98/lb) 

 

 

 

lower biodiesel price, annual profit for the WCO process does not reach a break-even 

point until the feedstock price is above $0.20/lb.  For the current and high biodiesel 

prices, the break-even points occur at $0.25/lb and $0.28/lb, respectively.  When WCO 

is the feedstock, all 3 of the biodiesel prices result in a much more profitable process 

than when soy oil is the feedstock.  With the given conditions, even with the additional 

costs related to pretreatment, WCO appears to be a much more economical feedstock. 
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It should be noted that profit, PBP, and ROI were calculated based upon the assumption 

that selling price will remain the same during the time period of consideration.  Whereas 

in a competitive fuel market, a potential decrease in production cost, such as one 

resulting from $8,800,000 in process integration-based savings or use of a drastically 

less costly feedstock, might eventually result in a decreased biodiesel selling price. 

 

 
Figure 4.10: Glycerin Price Sensitivity – Annual Profit for 40 MMGPY Biodiesel 

Facility as a Function of Soy Oil Cost ($/lb) and Glycerin Price. (Biodiesel price is at the 

current value of $3.38/gal) 

 

 



 70

Figures 4.10 and 4.11 show the sensitivity of annual profit to glycerin price for soy oil 

and WCO, respectively (with the biodiesel price at $3.38).  At half of the current 

glycerin price ($0.49/lb), the break-even point occurs at a soy oil cost of $0.45/lb.  When 

no revenue can be accrued via glycerin sales (glycerin at $0.00/lb), the break-even point 

occurs at a soy oil cost of $0.40/lb.  For WCO, at half of the current glycerin price, the 

break-even point occurs at a feedstock cost of $0.23/lb.  With no revenue from glycerin  

 

 

Figure 4.11: Glycerin Price Sensitivity – Annual Profit for 40 MMGPY Biodiesel 

Facility as a Function of WCO Cost ($/lb) and Glycerin Price. (Biodiesel price is at the 

current value of $3.38/gal) 
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sales when using WCO, the break-even point occurs at a feedstock cost of $0.20.  

Therefore, under the given conditions, the viability of the process when using soy oil, is 

dependent upon glycerin sales. As can be seen in Figure 4.10, even a drop in glycerin 

price of less than 50% results in a non-profitable process.  In contrast, with the WCO, 

even with no glycerin-based revenue, the process has an annual profit of over 

$100,000,000.  Therefore, under the given conditions and with the ‘current’ biodiesel 

price, the profitability of a WCO-based process is less sensitive to changes in glycerin 

price than a soy-based process. 

 

4.5.2 Scheduling Results 

 

Feedstock scheduling results were obtained for 2 scenarios related to the case study 

outlined previously.  Both scenarios were developed for a large city, such as Houston, 

TX, having a population of 3,000,000.  It was assumed that the monthly biodiesel 

production was the annual production divided by 12, or ~3.5 million gallons/month.  

Availability of WCO was determined by use of the annual per capital WCO production 

of 10 gal WCO/person/year.  It was assumed that no limit existed on the availability of 

refined soy oil.  WCO availability (tons) for both scenarios can be seen in Table 4.8.    
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Table 4.8: Available WCO in tons for Feedstock Scheduling Scenarios 1 & 2 

And Monthly Refined Soy Oil Cost for Scenario 2 

 

Month Available WCO Refined Soy Oil  
  (ton) Cost: Scenario 2 
    ($/lb soy oil) 

January 3630 0.497 
February 4537.5 0.20 

March 5445 0.20 
April 5445 0.20 
May 7260 0.20 
June 14520 0.21 
July 21780 0.21 

August 14520 0.21 
September 9075 0.22 

October 7260 0.22 
November 4537.5 0.22 
December 10890 0.22 

 

 

In the first scenario, the WCO (50% free fatty acid content) cost remained stable at 

$0.034/lb ($0.249/gal) and the refined soy oil cost remained stable at $0.497/lb.  The 

resulting Feedstock Schedule for Scenario 1 can be seen in Figure 4.12. 

 

In the second scenario, the WCO (50% free fatty acid content) cost remained stable at 

$0.102/lb ($1.50/gal) and the refined soy oil cost fluctuates.  The monthly refined soy oil  

cost for Scenario 2 can be found in Table 4.8.  The resulting Feedstock Schedule for 

Scenario 2 can be seen in Figure 4.13. 
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Scenario 1 is approximately congruent with the current market situation.  The cost of 

WCO is much lower than refined soy oil.  Even when the cost of pretreatment is factored  

 

Figure 4.12: Amount (tons) per month of WCO and soy oil feedstocks scheduled 

in the production of biodiesel in order to maximize the gross profit. Scenario 1: 

40 MMGPY facility in a city having a population of 3,000,000;  

$0.034/lb WCO (50% FFA), $0.497/lb refined soy oil. 

 

 

into manufacturing, it is much more beneficial to you use WCO than soy oil.  Therefore, 

all of the available WCO is used every month and the remaining requisite feedstock is 
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brought up to volume by soy oil.  It is interesting to note that with soy oil at a cost of 

$0.497/lb, WCO cost would need to increase 700% ($0.24/lb WCO) for the combined 

WCO feedstock and pretreatment costs to equate to the soy oil feedstock cost per gallon 

of biodiesel. 

 

During Scenario 2, the WCO cost is increased 300% as compared to the Scenario 1 cost.  

During January, the soy oil cost retains the same value as during Scenario 1.  February 

sees a drastic drop in the soy oil cost to $0.20/lb, simulating a situation such as a sudden 

glut in the market or decrease in demand.  This feedstock cost is maintained for 3 more 

months, then begins to slowly rise to $0.21/lb for June through August, and to $0.22/lb 

for September through December.  In February, when the soy oil cost drops to $0.20/lb, 

the use of soy oil becomes more favorable and is the sole feedstock processed until the 

soy oil cost rises to $0.22/lb in September.  At this point, once again, all of the available 

WCO is utilized, with the remaining requisite feedstock being brought to volume by soy 

oil.  

 

Finally, given the fluctuations in petroleum prices, it is important to consider the impact 

on biodiesel economics. As mentioned previously, crude oil prices can change 

drastically and unexpectedly. There are two main components of biodiesel production 

that could be affected by a sudden shift in crude oil price; operating cost and fuel selling 

price. An increase in crude oil price would predominately impact facility operating cost 

via a corresponding increase in the utility cost of the process. In the presented case 
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study, the dominant operating cost is the price of the feedstock which is significantly 

larger than the utility cost. A change in crude oil price could proportionately impact the 

selling price of petroleum-based diesel. Even with a diesel selling price of $2/gal, the  

 

 

Figure 4.13: Amount (tons) per month of WCO and soy oil feedstocks scheduled 

in the production of biodiesel in order to maximize the gross profit. Scenario 2: 

40 MMGPY facility in a city having a population of 3,000,000; $0.102/lb WCO 

(50% FFA), a fluctuating refined soy oil cost, as seen in Table 4.8. 
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lower biodiesel selling price of $2.58 is reasonable. This reduction in revenue may be 

offset if the cost of feedstock is kept low. An example is the case of using WCO as a 

feedstock. It is interesting to note that more than a 300% increase in the WCO cost 

would be required before biodiesel production would not be profitable at a selling price 

of $2/gal bioidiesel. 

 

One of the key components of this work was the study of sensitivity of biodiesel 

production profitability to feedstock in order to provide insight toward biodiesel 

production that is more robust and resilient to market-changes and therefore more 

capable of sustaining a presence in the energy marketplace. The results presented 

previously and this discussion supports further the need for and benefit of such work. 

 

4.6 Conclusions 

 

A systematic procedure is being developed for the analysis and scheduling of biodiesel 

production facilities with multiple feedstocks.  A base-case design has been developed 

for converting soybean oil to biodiesel via transesterification at a scale of 40 MMGPY.  

The process has been simulated using ASPEN Plus in order to identify mass and energy 

flows and basic sizing of key process equipment.  Process integration techniques have 

been applied to conserve mass and energy resources, resulting in $8,800,000 in annual 

savings.  A techno-economic analysis for the given process has shown that at the current 

soy oil cost and the ‘current’ biodiesel price of $3.38/gal, when using soy oil as a 
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feedstock, the annual profit is $3,300,000, the break-even point ~$0.52/lb, the payback 

period 3 yrs, and the ROI 14%.  At a biodiesel price of $3.88/gal, the annual profit is ~8 

times greater ($24,500,000), the payback period is much less (0.67 years), and the ROI 

(134%) almost an order of magnitude greater.  A drop in the biodiesel price to $2.88/gal 

makes the process non-viable economically. 

 

A similar approach was adopted for converting WCO to biodiesel, with differing results 

from the related techno-economic analysis.  In contrast to the soy oil analyses, under the 

given conditions, WCO as a feedstock results in a more profitable process.  At the 

current WCO cost and ‘current’ biodiesel price of $3.38/gal, the annual profit is 

$132,000,000, the break-even point $0.25/lb WCO, the payback period 0.14 yrs, and the 

ROI 590 %.  Even at a lower biodiesel price ($2.88/gal), the process still has an annual 

profit of $110,000,000, 33 times greater than for soy oil at a biodiesel price of $3.38/gal. 

 

Glycerin sensitivity analyses demonstrate under the given conditions and with the 

‘current’ biodiesel price, the profitability of a WCO-based process is less sensitive to 

changes in glycerin price than a soy-based process.  The viability of the process when 

using soy oil, is dependent upon glycerin sales, with even a drop in glycerin price of less 

than 50% resulting in a non-profitable process.  In contrast, even with no glycerin-based 

revenue, the process when using WCO offers a profitable operation as long as the price 

of the feedstock is kept low. 
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Feedstock scheduling results for 2 scenarios involving a 40 MMGPY biodiesel facility 

utilizing WCO and soy oil feedstocks in a large city (3,000,000 population) were 

obtained.  Scenario 1 was congruent with the current market situation, with WCO 

feedstock cost being much lower than that for soy.  It was demonstrated that under these 

conditions, all available WCO would be utilized prior to utilization of soy oil, and that a 

700% increase in WCO cost would be necessary for the two feedstock costs to equate, 

including taking into account pretreatment costs.  Scenario 2 involved a 300% increase 

in WCO feedstock cost and a sudden drop in soy oil cost.  The initial lower soy oil cost 

placed it as the favored and sole feedstock utilized.  A subsequent small increase in the 

soy oil cost resulted in WCO again becoming the favored feedstock.   
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CHAPTER V 

 

STAGE 2: DESIGN AND SCHEDULING WITH INCORPORATED CO2 

SUBSIDY OF BIODIESEL PLANTS WITH MULTIPLE FEEDSTOCKS*

 

5.1 Summary 

 

With the increasing attention to the environmental impact of discharging greenhouses 

gases, there has been a growing public pressure to reduce the carbon footprint associated 

with the use of fossil fuels. In this context, one of the key strategies is the substitution of 

fossil fuels with biofuels such as biodiesel. The design of biodiesel production facilities 

has traditionally been carried out based on technical and economic criteria. Greenhouse 

gas (GHG) policies (e.g., carbon tax, subsidy) have the potential to significantly alter the 

design of these facilities, the selection of the feedstocks, and the scheduling of multiple 

feedstocks. The objective of this stage is to develop a systematic approach to the design 

and scheduling of biodiesel production processes while accounting for the effect of GHG 

policies in addition to the technical, economic, and environmental aspects. An 

optimization formulation is developed to maximize the profit of the process subject to 

flowsheet synthesis and performance modeling equations. Furthermore, the carbon 

footprint is accounted for through a life cycle analysis (LCA). The objective function 

                                                 
* Part of this chapter is reprinted with permission from Elms, R.D., El-Halwagi., “The Effect of 
Greenhouse Gas Policy on the Design and Scheduling of Biodiesel Plants with Multiple Feedstocks.” 
Clean Technologies and Environmental Policy, in press. Copyright 2009 by Springer Science + Business 
Media. DOI: 10.1007/s10098-009-0260-1. www.springeronline.com, 

http://www.springeronline.com/
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includes a term which reflects the impact of the LCA of a feedstock and its processing to 

biodiesel. A multiperiod approach is used to discretize the decision making horizon into 

time periods. During each period, decisions are made on the type and flowrate of the 

feedstocks as well as the associated design and operating variables. A case study is 

solved with several scenarios of feedstocks and GHG policies. 

 

5.2 Introduction 

 

5.2.1 Biodiesel 

 

Interest in biodiesel as a renewable and more environmentally friendly alternative to 

petroleum based diesel has increased over the last 10 years, with demand increasing 

steadily since 1999. The advent of the Biodiesel Tax Incentive saw a 300% increase in 

biodiesel demand from 2004 to 2005.  Current US biodiesel production capacity is 2.61 

billion gallons, with 460 million gallons sold during the 2007 fiscal year. (National 

Biodiesel Board, 2007, 2008) 

 

Biodiesel consists of esters of lower alcohol and fatty acids, or Fatty Acid Methyl Esters 

(FAME).  Currently, triglyceride transesterification is the primary production method.  

The triglyceride is reacted with excess alcohol in the presence of a catalyst to yield 

glycerol and methyl esters. Various food and non-food feedstock options can be utilized, 

such as vegetable oil, animal fat, or tallow.  Both virgin oils and recycled/waste oil can 
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be used as feedstock sources. Examples of vegetable-based feedstock oils include soy, 

rapeseed, canola, sunflower, palm, jatropha, camelina, and many more.  Restaurant 

cooking oil, yellow grease, and trap grease are typical examples of recycled or waste oil 

feedstock sources.  These sources are less expensive, but have a higher free fatty acid 

(FFA) content, requiring pretreatment prior to use for biodiesel production.  Recycled or 

waste oil, referred to as waste cooking oil (WCO) by some, can be either vegetable or 

animal derived.  Examples include used restaurant cooking oil, yellow grease, and trap 

grease.  These sources are typically inexpensive, but have higher FFA content and 

require pretreatment.  Currently, soy is the predominate feedstock oil source in the US, 

with rapeseed being the predominate source in Europe. 

 

5.2.2 Environmental Benefits 

 

In recent years, the subject of climate change has received much attention and interest.  

In particular, the mitigation of CO2 production from use of petroleum-based fuels via 

replacement with renewable fuel options has been a main focus.  Biodiesel offers a 

means by which to simultaneously reduce reliance on fossil fuels and environmental 

impact of fuel usage.  Biodiesel has many environmental benefits when compared to its 

petroleum-based counterpart.  (Demirbas, 2009a; Carraretto et al., 2004, Sheehan et al., 

1998)   Among these benefits are reduction of emissions of unburned hydrocarbons, 

CO2, CO, sulfates, and particulate matter. (Demirbas, 2009a; Sheehan et al., 1998) Of 
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particular interest here, a reduction of 78% in the net gain of CO2 emissions is obtained 

by using biodiesel as opposed to petroleum-based diesel. (Sheehan et al., 1998)  

 

5.2.3 Life Cycle Analysis and Biodiesel 

 

Life cycle analysis is an evaluation of the environmental burdens of an entity during its 

life cycle in order to provide a measure of its environmental impact. (DeBenetto & 

Klemes, 2009; Smith et al., 2007; Sheehan et al., 1998)  Environmental and energy flows 

to and from the environment during the product life cycle can be assessed from the 

production of the raw materials through the end usage of the product. (DeBenetto & 

Klemes, 2009; Smith et al., 2007; Carraretto et al., 2004; Sheehan et al., 1998)  The main 

steps in LCA are identification of goals and definition of scope, inventory analysis, 

impact assessment, and interpretation. (DeBenetto & Klemes, 2009) Various approaches 

and models for accomplishing LCA exist.  Three of the most widely utilized models 

include greenhouse gases, regulated emissions, and energy use in transportation 

(GREET), economic input-output life cycle assessment (EIO-LCA), and SimaPro.  

GREET was developed by Argonne National Lab to provide for assessment of 

environmental impacts of using traditional and alternative transportation fuels. (Wang 

1999, 2000)  This model is process-based and focuses upon energy consumption and air 

emissions, utilizing EPA and other U.S. governmentally-derived data. (Miller & Theis, 

2006)  The EIO was originally developed by Leontief (1986) and provides a framework 

to model the interplay of sectors within an economy, quantifying economic 
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contributions, air emissions, and energy and water consumption.  Hendrickson et al. 

(2006) coupled the EIO models with LCA.  The basis of the EIO-LCA model is the 1992 

U.S. Department of Commerce commodity input-output matrix of the U.S. economy, 

utilizing data from a variety of sources. (Miller & Theis, 2006)  SimaPro, a software 

package developed by Pré Consultants, consists of modules of process-based data 

arranged by the user.  Data from both U.S. and European sources are utilized, with most 

environmental impacts available for analysis. (Miller & Theis, 2006) 

 

Recently, the sustainability and environmental benefit of large scale biofuel production 

has been questioned in light of emerging research pertaining to indirect and direct land 

use change. (Panchelli & Gnansounou, 2008; Searchinger et al., 2008; Majer et al., 

2009)  Several studies have begun to investigate and report the more intricate 

relationship between biofuel-related carbon savings, land conversion, feedstock type, 

and type of land utilized for feedstock growth. (Fargione et al., 2008; Panchelli & 

Gnansounou, 2008; Searchinger et al., 2008; Majer et al., 2009)  Such work has ellicted 

review and discussion of the appropriate system boundaries needed to accurately assess 

the life cycle and environmental impacts of biofuels. 

 

Various studies have been conducted concerning the life cycle of biodiesel.  One of the 

longest and most comprehensive studies has been reported by Sheehan and colleagues 

(1998) concerning soy-based biodiesel.  A study of biodiesel life cycle energy balances 

from soybean and canola feedstocks was conducted by Smith et al. (2007)   LCA results 
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for biodiesel produced from other feedstocks, palm oil-based (Thamsiriroj & Murphy, 

2009; Reijnders and Huijbregts, 2008; Wicke et al., 2008) and rapeseed-based (Lopez et 

al., 2009; Thamsiriroj & Murphy, 2009),  have also been reported.  

 

5.2.4 Greenhouse Gas Policy Options 

 

5.2.4.1 Carbon Tax 

 

A carbon tax is a tax on carbon dioxide and other greenhouse gas emissions, with 

taxation of greenhouse gas emissions other than carbon dioxide typically expressed in 

terms of their equivalence to carbon dioxide. The impetus behind carbon taxation and 

the other policy options to be enumerated is protection of the environment and slowing 

of climate change via reduction of carbon dioxide emissions.  Implementation can occur 

by taxation of fossil fuel usage in proportion to their carbon content.  Purported 

advantages to such a policy are its simplicity and ease of implementation. (GAO, 2008) 

 

 

5.2.4.2 Cap and Trade  

 

A cap and trade program is a market-based policy tool utilized to provide environmental 

protection.  The program institutes an overall cap on emissions that enumerates a 

maximum amount of emissions permitted from sources (those producing the emissions) 
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included in the program.  Allowances, or individual authorizations, to emit a specific 

amount of a pollutant is determined by the program regulating authority.  The sum of the 

allowances is equal to the level of the cap.  Compliance is achieved by each source 

relinquishing allowances that equate to their actual emissions. Allowances can be bought 

or sold or reserved for future use (banked.)  A source of emissions can lower their 

emissions in order to have allowances to trade, sell, or bank.  Or, a source can continue 

producing emissions above their allowance holdings and purchase allowances to cover 

excess emissions.  Each source has the flexibility to determine and/or adjust its strategy 

for compliance without government review or approval.  From an environmental 

perspective, an advantage of this policy is a strict limitation on total emissions.  Among 

potential disadvantages, the grandfathering of existing businesses at the time of 

implementation creates a potentially inequitable situation for development of new 

competitors.  (GAO, 2008) 

 

5.2.4.3 Carbon Subsidies 

 

Subsidies can be implemented in various forms.  Direct subsidies are the most simple 

form, involving a direct monetary transfer to the recipient, such as an agency outlay.  

The definition of indirect subsidies is extremely broad and is capable of encompassing 

many different forms, such as tax relief.  Direct subsidies will be of focus in this 

investigation. A potential advantage of such a policy tool is transparency, while potential 

disadvantages being market distortion and production of inefficiencies. (GAO, 2008) 
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GHG policy may take various forms, but the general effect on biodiesel profitability 

should be the same, whether the framework is something akin to a subsidy, tax credit, or 

carbon permitting such as with a cap and trade scheme.   A subsidy would provide a 

direct payment, a tax credit diminishes tax liability, and under a cap and trade scenario, 

operating costs pertaining to emissions permits would not be necessary or lessened.  The 

extent of resultant assistance provided to the producer, and therefore the impact on 

profitability, will differ according to the policy form and details.  Overall, regardless of 

form and details, the goal of the policy is to provide an economic benefit to biodiesel not 

given to petroleum-based diesel, thereby encouraging production by decreasing the 

existing disparity in production costs between the two. 

 

The overarching questions to be addressed by this work lie at the interface of enhancing 

the performance of the process (which is desirable from the manufacturer’s perspective) 

and incorporating the impact of GHG policies on process design and scheduling (which 

is desirable from the policy maker’s viewpoint). Specifically, the paper addresses the 

following questions: 

- How should a biodiesel production facility be designed to optimize economic 

objectives? 

- When more than one feedstock is considered for the process, how should the 

multiple feedstocks be scheduled? 

- If there is a carbon tax/credit, how does that impact process design and 

scheduling? 
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While the objectives of the manufacturer and the regulator are not necessarily aligned, 

the paper endeavors to develop a systematic approach as a framework for reconciling the 

different objectives on a consistent basis.  

 

5.3 Motivation and Problem Statement 

 

Due to the increase in environmental-centered interests, it was desired to investigate the 

effects of potential GHG policy on the profitability of biodiesel production.  Various 

policies have been proposed and discussed in recent years.  This work strives to 

investigate some of these options with a systems approach rooted in true design 

consideration, with the goal of providing relevant information for both policy-makers 

and biodiesel producers related to the associated impacts on the financial viability of 

production and provide analysis of related challenges or issues that need to be addressed.  

The value of such information to policy-makers is related to developing and formulating 

GHG policy decisions that will provide the desired incentive and/or outcome, while the 

value to producers is related to informed promotion of desired policies and/or 

preparation for policy enactment. The problem to be addressed in this can be formally 

stated as follows: 

 

Given is a biodiesel production facility of given design and production capacity.  The 

process can utilize Nf  alternative feedstocks. It is desired to develop a systematic 



 88

procedure for the design, operation, and scheduling of the facility with and without 

carbon subsidies. 

 

Relevant challenges and questions associated with addressing the problem include: 

• What is the optimal flowrate of each feedstock? 

• How should the flowrate of each feedstock be scheduled? 

• Should the feedstocks be co-fed or utilized separately? 

• How should the process design and scheduling be adjusted under different economic 

conditions (e.g. feedstock price?) 

• Is there a need for a carbon subsidy to insure a minimum return on investment of the 

process for certain feedstocks?  If so, what is the appropriate level of subsidy needed 

for each feedstocks and what is the impact of varying such subsidies? 

 

The problem is stated as follows:  

Given a continuous process with, 

 

• A certain level of CO2 emitted per ton feedstock to produced biodiesel, . 2CO
feedstockE

• A set of pre-treatment units U = {u|u = 1, 2, …, NT}. Each pre-treatment unit, u, 

has a set of input streams INPUTu = {iu|iu = 1,2,…, Nu
in} and a set of output 

streams OUTPUTu = ju|ju = 1,2,…,Nu
out}.  Input stream iu has a flowrate of  

ui
F
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and composition of component q of .  Output stream jq,iu
X u has a flowrate of 

 and a composition of component q of . 
uj

G q,ju
Y

• A set of common process units V = {v|v = 1, 2, …, NPU}. Each pre-treatment 

unit, v, has a set of input streams INPUTv = {iv|iv = 1,2,…, Nv
in} and a set of 

output streams OUTPUTv = jv|jv = 1,2,…,Nv
out}.  Input stream iv has a flowrate of 

and composition of component q of .  Output stream j
vi

F q,iv
X v has a flowrate of 

and a composition of component q of . 
vj

G q,jv
Y

• A set of product discharges for the process P = {p|p = 1, 2, …, Np}. 

• A set of waste discharges for the process W = {w|w = 1, 2, …, Nw}. 

• A set of intermediate streams B = {b|b = 1, 2, …, Nb} that are redirected back 

into the process. Input stream ib has a flowrate of and composition of 

component q of .  Output stream j

bi
F

q,i b
X b has a flowrate of and a composition 

of component of . 

bj
G

q,jb
Y

• A given time horizon (th) for decision-making.  Within this time horizon, the 

variations in the market conditions are anticipated and expressed in terms of 

time-dependent changes in prices and quantities of supply (reagents, feedstocks, 

etc.) and demand (products and byproducts). 

 

It is desired to produce a systematic procedure that is market-sensitive and can determine 

process design, feedstock selection and scheduling, and requisite greenhouse gas 

subsidies so as to maximize the process profit. 
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5.4 Approach 

 

The following simplifying assumptions were made: 

 

• The decision-making time horizon is discretized into Nt periods.  This results in a 

set of operation periods defined as PERIODS = {t|t= 1,2, …,Nt}.  Within each 

time period, the process is operating at steady-state. In addition, only intra-period 

integration is allowed. (Therefore, no storage, integrations, or exchange of 

streams occurs over more than one period.)  

• Only two options are available for process modifications: 

a.) Adjustment of select design and operating variables for each unit within 

explicit ranges 

b.) Addition of new pretreatment units 

 

5.4.1 Structural Representation 

 

To permit broad depiction of the assorted possible relevant configurations, a source-sink 

structural representation of the problem was chosen. Outputs from the pretreatment units 

are divided into different fractionated streams.  These fractionated streams are allocated 

to inputs of the common process units, to inputs of pretreatment units, discharged as 

wastes, or discharged as final product streams.  Each common process unit also 

discharges multiple outputs. As with the pretreatment units, outputs from the common  
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Figure 5.1: Source Sink Flowchart - Carbon Dioxide Emissions Included 
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process units are divided into fractionated streams.  These fractionated streams are 

discharged as final products, discharged as final product, or allocated to return back into 

the process as process inputs (intermediates). Figure 5.1 depicts a schematic of the 

structural representation. The CO2 emissions from the uth pretreatment unit and vth 

common process unit are indicated with dashed arrows and quantified as and , 

respectively. 

2CO
uE 2CO

vE

 

5.4.2 Mathematical Formulation 

 

5.4.2.1 Carbon Dioxide Emissions  

 

Figure 5.2 gives an overview of the CO2 life cycle for soy biodiesel.  Each block could 

contain components facilitating either CO2 sequestration or emission, hence the arrows 

pointing both downward and upward.  The net CO2 emission for each step in the process 

is shown in symbolic form.  The sum of these terms equate to , the CO2CO
soyE 2 emitted per 

ton of soy oil used as a feedstock to produce biodiesel. 

 

BDuseCO
soy

tBDtransporCO
soy

BDprodCO
soy

oilextCO
soy

seedPTCO
soy

harvestingCO
xoy

growthCO
soy

CO
soy EEEEEEEE ,,,,,,, 22222222 ++++++=  

           (5.1) 

The CO2 emitted per ton of waste cooking oil (WCO) used as a feedstock to produce 

biodiesel is referred to as .  The flowrate of soy oil feedstock into the process over 2CO
WCOE
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Figure 5.2: Soy Biodiesel CO2 Life Cycle Overview 

 

 

 
time t is referred to as , and the flowrate of WCO feedstock into the process over 

time t is referred to as .  For a given production rate of biodiesel , the total 

quantity of CO

tsoyF ,

tWCOF , tBDP ,

2 emitted over time period t for biodiesel produced using soy oil and/or 

WCO as feedstock inputs is given by: 

 

∑ ∑∑∑ +=
t t WCO

CO
WCOtWCO

soy

CO
soytsoy

CO
BD EFEFE 222 ** ,,        (5.2) 
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For a given production rate of petroleum-based diesel , the total quantity of COtDP , 2 

emitted over time period t for diesel produced is referred to as .  For a given 

subsidy for reduction of CO

2CO
DE

2 emissions ($/ton CO2 reduced), , the total subsidy 

attained for biodiesel produced from soy oil and/or WCO feedstocks is given by: 

2COS

 

2222 *)( COCO
BD

CO
D

CO SEETS −=        (5.3) 

 

5.4.2.2 Pretreatment Units 

 

for the pretreatment unit u during period t, the mass balance is given by: 

∑∑ =
u

u

u

u
i

,i
j

,j FG tt     tu,∀       (5.4) 

The unit u during period t, the qth component balance is expressed as: 

( )∑∑ +=
u

uuu

u

u
i

tq,u,tq,,i,itq,,j
j

,j Net_GenX*FY*G tt tuq ,,           ∀    (5.5) 

In equation 5, the index, t, in the flowrate and composition terms refer to the time period 

over which the compositions and flowrates are considered.  The performance model for 

unit u is expressed by a set of algebraic equations: 

),...2,1,N1,2,...,j:Y,(G out
uu,,j,j uu Componentstqt Nq ==

   )o ,d ,,...2,1 , N1,2,...,i:X,(F tu,tu,
in
uu,,i,iu uu Componentstqt Nqf ===

tqiu u ,,,∀    (5.6) 
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5.4.2.2.1 Splitting of source ju 

 

The flowrate allocated from source ju to destination iv during period t is designated 

as and the flowrate from source jtij vu
g ,, u to destination iu during period t is designated 

as . The flowrate from the jtij uu
g ,, u

th source is disseminated to other pretreatment units, to 

the common processing units, to final product streams, and to waste streams. Therefore, 

for the splitting of source ju , the material balance is: 

 

∑∑∑∑∑ +∑++=
w

twj
p

tpj
v i

tij
u i

tijtj uu

v

vu

u

uuu
wpggG ,,,,,,,,,  tju u ,,∀  (5.7)  

 

where  represents the flowrate assigned from jtpju
p ,, u to the pth product stream and 

 represents the flowrate from jtwju
w ,, u to the wth waste stream.  

 

The total flowrate of the pth product from the NT pretreatment units in period t is given 

by: 

 

∑∑=
u j

tpj
T

tp
u

u
pP ,,,      tp,∀     (5.8) 

 

For the pth product stream coming from the NT pretreatment units, the qth component 

material balance is given by: 



 96

∑∑=
v j

tqjtpj
T

tqp
T

tp
u

uu
YpZP ,,,,,,, **    tqw ,,∀    (5.9) 

 

The total flowrate of the wth waste stream from the NT pretreatment units during period t 

is given by: 

 

∑∑=
u j

twj
T

tw
u

u
wW ,,,      tw,∀     (5.10) 

For the wth waste stream coming from the NT pretreatment units, the qth component 

material balance is given by: 

 

∑∑=
u j

tqjtwj
T

tqw
T

tw
u

uu
YwZW ,,,,,,, **    tqw ,,∀    (5.11) 

 

5.4.2.2.2 Mixing of the split flowrate prior to iv
th input to vth common process unit 

 

The iv
th input to the vth common process unit is composed of contributions from streams 

departing the pretreatment units and from intermediate streams recycled from the 

common process units themselves. The flowrate allocated from intermediate source jb to 

destination iv during period t is designated as . The material balance and qtij vb
r ,,

th 

component balance during period t for the mixing of the split flowrate before the iv
th 

input to the vth common process unit, are given by: 

∑∑ ∑∑+=
u j b j

tijtijti
u b

vbvuv
rgF ,,,,,      tiv v ,,∀  (5.12) 
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∑∑ ∑∑+=
u j b j

tqjtijtqjtijtqiti
u b

bvbuvuvv
YrYgXF ,,,,,,,,,,, ***   tqiv v ,,,∀  (5.13) 

 

5.4.2.3 Common Process Units 

 

For common process unit v, during period t, the mass balance equation is: 

 

∑∑ =
v

v

v

v
i

,i
j

,j FG tt         tv,∀   (5.14) 

 

For common process unit v, during period t, the qth component balance is: 

 

( )∑∑ +=
v

vvv

v

v
i

tq,v,tq,,i,itq,,j
j

,j Net_GenX*FY*G tt               tvq ,,∀  (5.15) 

 

For the vth common process unit, the unit performance equation is: 

 

),...2,1,N1,2,...,j:Y,(G out
vv,,j,j vv Componentstqt Nq ==   

)o ,d ,,...2,1 , N1,2,...,i:X,(F tv,tv,
in
vv,,i,iv vv Componentstqt Nqf ===  tqiv v ,,,∀  (5.16) 
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5.4.2.3.1 Splitting of the jv
th stream leaving the vth common process unit 

 

Nw waste streams and NP product streams leave the process. NB intermediate streams are 

rerouted back into the process.  Each output stream jv from a common process unit is 

split into several flowrates, with some allocated to waste outlets, some to product 

streams, and some to intermediate streams that will be subsequently recycled back into 

the process.  The flowrate assigned to the wth waste stream is designated as . The 

flowrate allocated to the p

twjv
w ,,

th product stream is designated as . The flowrate 

allocated to the b

tpjv
p ,,

th intermediate stream is designated as .  Therefore, for the 

splitting of the j

tbjv
r ,,

v
th stream, the material balance is given by: 

 

∑∑∑ ++=
b

tbj
p

tpj
w

twjtj vvvv
rpwG ,,,,,,,    tjv v ,,∀   (5.17) 

 

From the NPU common process units, the flowrate of the wth waste stream is: 

 

∑∑=
v j

twj
PU

tw
v

v
wW ,,,       tw,∀    (5.18) 

 

For the wth waste stream from the NPU common process units, the qth component material 

balance is expressed as: 
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∑∑=
v j

tqjtwj
PU

tqw
PU

tw
v

vv
YwZW ,,,,,,, **     tqw ,,∀   (5.19) 

 

From NPU common process units, the flowrate of the pth product stream is: 

 

∑∑=
v j

tpj
PU

tp
v

v
pP ,,,       tp,∀    (5.20) 

 

For the pth product stream from the NPU common process units, the qth component 

material balance is: 

 

tqj
v j

tpj
PU

tqp
PU

tp v

v

v
YpZP ,,,,,,, ** ∑∑=     tqp ,,∀   (5.21) 

 

From the NPU common process units, the flowrate of the bth intermediate stream is: 

 

      ∑∑=
v j

tbj
PU

tb
v

v
rR ,,, tb,∀    (5.22) 

 

For the bth intermediate stream from the NPU common process units, the qth component 

material balance is: 

 

tqj
v j

tbj
PU

tqb
PU

tb v

v

v
YrZR ,,,,,,, ** ∑∑=     tqb ,,∀   (5.23) 
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5.4.2.4 Product Streams 

 

For the pth product out of the process, the flowrate is: 

 

∑∑∑∑ +=+=
v j

tpj
u j

tpj
PU

tp
T

tptp
v

v

u

u
ppPPP ,,,,,,,    tp,∀               (5.24) 

For the pth product stream from the process, the qth component material balance is: 

 

∑ ∑∑∑ +=+=
u v j

tqjtpj
j

tqjtpj
PU

tqp
PU

tp
T

tqp
T

tptqptp
v

vv

u

uu
YpYpZPZPZP ,,,,,,,,,,,,,,,,, **)*()*(*  

tqp ,,∀                  (5.25) 

 

5.4.2.5 Waste Streams 

 

For the wth waste stream out of the process, the flowrate is: 

 

∑∑∑∑ +=+=
v j

twj
u j

twj
PU

tw
T

twtw
v

v

u

u
wwWWW ,,,,,,,   tw,∀       (5.26) 

 



 101

For the wth waste stream from the process, the qth component material balance is: 

 

∑ ∑∑∑ +=+=
u v j

tqjtwj
j

tqjtwj
PU

tqw
PU

tw
T

tqw
T

twtqwtw
v

vv

u

uu
YwYwZWZWZW ,,,,,,,,,,,,,,,,, **)*()*(*  

tqw ,,∀            (5.27) 

 

5.4.2.6 Intermediate Streams Recycled Back into the Process 

 

5.4.2.6.1 Mixing of the split flowrate prior to the ib
th input to the intermediate block 

 

The ib
th input to the intermediate block is composed of contributions from streams 

departing the common process units. The flowrate allocated from source jv to destination 

ib during period t is designated as . The material balance and qtij bv
r ,,

th component balance 

during period t for the mixing of the split flowrate prior to the ibth input to the 

intermediate block, are given by: 

 

tij
j

ti bv

v

b
rF ,,, ∑=       tib b ,,∀   (5.28) 

tqjtij
j

tqiti vbv

v

bb
YrXF ,,,,,,, ** ∑=     tqib b ,,,∀   (5.29) 
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5.4.2.7 Intermediate block 

 

For the intermediate block during time t, the mass balance equation is: 

 

∑∑ =
b

b

b

b
i

,i
j

,j FG tt        tb,∀    (5.30) 

 

For the intermediate block during time t, the qth component balance is: 

 

( )∑∑ =
b

bbb

b

b
i

tq,,i,itq,,j
j

,j X*FY*G tt               tbq ,,∀   (5.31) 

 

5.4.2.7.1 Splitting of the jb
th stream leaving the intermediate block 

 

The flowrate allocated from source jb to destination iv during period t is designated as 

.  Therefore, the material balance for the splitting of source jtij vb
r ,, b is expressed as: 

 

∑∑=
v

vbb
i

tij
v

tj rG ,,,       tbjb ,,∀   (5.32) 
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5.4.3 Constraints 

 

The operating and design constraints for the pretreatment units and the common process 

units are given by:  

 

max
,

min
utuu ddd ≤≤          (5.33) 

          (5.34) max
,

min
vtvv ddd ≤≤

max
,

min
utuu ooo ≤≤          (5.35) 

and   

max
,

min
vtvv ooo ≤≤          (5.36)

   

The product composition and demand constraints are given by: 

 

Demand
tptp PP ,, ≤            (5.37) 

 

For the iu
th input to the process unit, the flowrate and composition constraints are 

expressed as:  

 

max
,

min
uuu itii FFF ≤≤          (5.38) 

 

and 
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          (5.39) max
,,,

min
, qitqiqi uuu

XXX ≤≤

 

For the iv
th input to the vth common process unit, the flowrate and composition 

constraints are expressed as:  

 

max
,

min
vvv itii FFF ≤≤          (5.40) 

 

and 

 

max
,,,

min
, qitqiqi vvv

XXX ≤≤          (5.41) 

 

The subsidy constraint is given by: 

 

max,min, 222 COCOCO SSS ≤≤  

 

As various potential feedstocks are agricultural products, a seasonality dimension may 

impact related constraints.  Also, the resilience of some crops to certain storage scenarios 

may vary.  Some feedstocks may be more prone to deterioration and degradation with 

time and/or environmental conditions related to time of year.  Therefore, additional 

constraints would be necessary for utilization of such feedstocks. 
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5.4.4 Objective Function 

 

Because of the generic nature of the devised approach and the associated optimization 

formulation, various objective functions may be used. For instance, the fixed capital 

investment may be annualized through a linear depreciation or amortized using a cash 

flow scheme which accounts for the time value of money. Also, the economic impact of 

a GHG policy may be modeled through a cap-and-trade scheme or a carbon subsidy. 

Consequently, the objective function may be described in numerous ways using the same 

proposed framework. For instance, the following optimization formulation is posed to 

maximize gross profit given by revenue minus the cost of feedstocks and reactants, 

process operating cost, and pretreatment costs (if applicable), plus the respective CO2 

reduction subsidy: 

 

 

 

In terms of mathematical expression, a multi-period representation is used. Considering 

a given decision-making horizon th that is discretized into a number (Nt) of time 

intervals, the discretization may be uniform (e.g., monthly or quarterly) or event-based 

(e.g., to correspond to availability of feedstocks or crop harvesting times). The time 

intervals are represented by the index t. There exist (Nf) feedstock alternatives with an 

index (f). Therefore, the objective function is expressed as 
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2Pr
,,,, * COetreatment

t
ttf

t f

feedstock
tftp

t p

product
tp TSTACPOCFCPC +−−∗− ∑∑∑∑∑

           

           (5.42) 

 

where  is the unit selling price of product p during period t, Pproduct
tpC , p,t is the production 

rate of product p during time t,  is the cost of feedstock f during period t, Ffeedstock
tfC , f,t is 

the feed rate of feedstock f during time t, and POCt represents the process operating cost 

excluding feedstocks (e.g., utilities, labor, management, waste treatment, etc.) during 

period t.  As previously defined, the total subsidy attained is referred to as .  The 

term TAC

2COTS

Pretreatment is the total annualized cost of retrofitted pretreatment. This is defined 

as the sum of the annualized fixed costs (AFC) and the annual operating cost (AOC) and 

is given by:  

 

∑ ∑∑ +=
t f

etreatment
tff

f
f AOCAFCI Pr

,
ntPretreatme *TAC       (5.43) 

 

If is a binary integer variable designating the presence or absence of the fth feedstock and 

is determined through the following constraint: 

 

ftf
t

tf IFF *max
,, ≤∑    f∀       (5.44) 
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max
,tfF is an upper bound on the allowable flowrate of feedstock f.  When the flowrate is 

positive, the value of If is forced to a value of one. Otherwise, it will take a value of zero. 

 

The previously outlined constraints are developed for the various feedstocks and time 

intervals. The mathematical program for the problem is composed of the foregoing 

expressions and is a mixed integer nonlinear program (MINLP).  This program can be 

solved in order to identify process modifications and selection, the optimal feedstock 

scheduling, design of the pretreatment units and common process units, and requisite 

carbon subsidy for attainment of a certain level of profitability. If the process models are 

linearized (which is reasonable if the operation and design changes are maintained close 

to the nominal conditions), then the program can be solved as a mixed integer linear 

program (MILP). 

 

5.5 Case Study 

 

Three different biodiesel production scenarios or cases were considered.  Two 

feedstocks, refined soy oil and WCO (50% FFA)), were utilized to produce B100. All 

three cases were based upon 40 MMGPY biodiesel production with a biodiesel selling 

price of $2.88/gal.  This selling price represents a value inbetween diesel and biodiesel 

selling prices over the last several months. (DOE, 2008b; 2009a, b)  The cases 

investigated were: 
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1.) Biodiesel production using only refined soy oil as feedstock 

2.) Biodiesel production using only WCO as feedstock 

3.) Biodiesel production using multiple feedstocks (refined soy oil and 

WCO) 

 

An overview of the three cases can be seen in Table 5.1.  The soy oil feedstock price was 

set at $0.49/lb, a high price seen in recent years. The WCO feedstock price was set at 

$0.20/lb, a value much higher than current prices.  The intent was to simulate a scenario 

in which demand, and therefore also price, had increased.  In Case 3, 15 MMGPY of 

biodiesel was produced using WCO as a feedstock, with the remaining volume of 

biodiesel being produced using soy oil.  This quantity of WCO-based biodiesel was 

determined using the available feedstock for a scenario consisting of a large city with a 

population of ~3 million people, producing ~10 gal of WCO/person/year. It was 

assumed that no limit existed on the availability of refined soy oil. 

 

 
Facility design was based upon a biodiesel production configuration proposed by Myint 

(2007) and Myint and El-Halwagi (2009), as shown and discussed in CHAPTER IV. To  

review, the facility produces 40 MMPGY biodiesel via transesterification. Calculations 

are based upon an 8000 hour work year. Transesterification was accomplished by 
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Table 5.1: Cases for 40 MMGPY Biodiesel Production 

 

Case Description Feedstock and Price 
1 All Soy Feedstock Soy, $0.49/lb 
2 All WCO Feedstock WCO (50% FFA), $0.20/lb 
3 Multiple Feedstocks 

(15 MMGPY WCO-
based biodiesel) 

Soy, $0.49/lb 
WCO (50% FFA), $0.20/lb 
 

 

 

reacting the feedstock oil with an excess of methanol in the presence of NaOH.  The 

reaction occurred at 60oC for a duration of 1 hour, with a conversion of 0.97. The 

alcohol to triglyceride ratio was 6:1 and the soy oil was presumed to have no more than 

0.5% free fatty acid content. (Freedman et al., 1986, 1984)  Following 

transesterification, the glycerol was removed and subsequently purified. After glycerol 

removal, methanol was removed from the biodiesel, and the biodiesel was washed with 

water.  The process products are biodiesel with a purity of 99.2% and glycerol with a 

purity of 98.5%.  Mass and heat integration were conducted for the facility and is 

reflected in costing.  For the facilities utilizing WCO (Cases 2 and 3,) pretreatment 

capability was added to the facility design. 

 

5.5.1 Estimation of Capital and Operating Costs 

 

Costing for the 40 MMGPY biodiesel (B100) production facility was developed, as 

previously described in CHAPTER IV. In short, capital costs were developed from 
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literature-based values brought up to scale for a 40 MMGPY process, then updated to 

2007 dollars by use of the CEPCI. (Zhang, 2002; Zhang et al., 2003b; Chemical 

Engineering Plant Cost Index, 2004, 2007, 2008; Tyson et al., 2004; You et al., 2008)  

Due to its significant contribution to capital costs, the transesterification reactor was 

sized and priced separately.  Capital cost estimation for the waste cooking oil included 

pretreatment-related costs.  The facilities in both Cases 2 and 3 were developed to have 

the capability to produce all 40 MMGPY biodiesel using WCO as a feedstock.   

 

Operating costs were developed by use of literature values (Zhang, 2002; Zhang et al., 

2003b; Tyson, et al., 2004; You et al., 2008), standard rules of thumb, and current raw 

material costs.  Additional annual operating costs related to pretreatment of the WCO 

amount to $2,118,000/yr. ($0.05/gal biodiesel) (Tyson et al., 2004).  

 

The capital costs and the Annual Operating Cost (AOC) minus feedstock cost, are shown 

in Table 5.2, with and without pretreatment.  Feedstock cost is not included in the AOC, 

since its value varies in each of the three cases.  Raw material costs are shown in Table 

5.3. 
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Table 5.2: Capital and Operating Costs for Biodiesel Production (40 MMGPY)  
with and without Pretreatment 

 

 Without Pretreatment With Pretreatment 

Fixed Capital Investment 
(FCI) 

$17,779,000 $22,479,000 

Annualized Fixed Cost 
(AFC) 

$2,072,000/yr $2,972,000/yr 

Annual Operating Cost 
(AOC) minus feedstock 
cost  

$16,970,000/yr $19,089,000/yr 

 

 

Table 5.3: Raw Material Costs 

Material Cost 
($/lb) 

NaOH 1.26 

Methanol 0.24 

HCl 0.60 

Refined Soy Oil 0.49 
Waste Cooking Oil 

(50% FFA) 
0.20 

 

 

5.5.2 Estimation of CO2 Emissions 

 

CO2 emissions were estimated using information reported by Sheehan and colleagues  

(1998) with regards to life cycle CO2 emissions for petroleum-based diesel and soy-

based biodiesel, and are shown in Table 5.4.  Values were from ‘cradle’ through end-
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use.  It was assumed that soy growth occurred on existing agricultural land and no 

potential indirect land use change effects were considered or taken into account.  For 

WCO-based biodiesel, CO2 emissions prior to biodiesel production were set to zero, 

since WCO is a waste product with the original pre-used oil produced for an unrelated 

use.  For the purposes of this case study, the assumption is made that any emissions 

resulting from differences in biodiesel production from soy oil and WCO are negligible.  

 

 

Table 5.4: CO2 Emissions for Biodiesel Produced from Soy Oil and WCO 

 

Reduction of CO2 Emissions when 
Compared to Petroleum-based 

Diesel 
 

Feedstock g CO2 
emitted/ 

lb feedstock 

g CO2 emitted/ 
gal biodiesel 

g CO2 reduced/
lb feedstock 

g CO2 reduced/ 
gal biodiesel 

Soy 266.05 2048.62 968.74 7459.27 
WCO 
(50% FFA) 

74.25 1143.52 543.14 8364.38 

 

 

5.6 Results 

 

The profitability of the three cases and potential CO2 subsidies were investigated.  For 

each of the three cases, the annual profit was determined, as well as the annual profit 

corresponding to a 15% return on investment (ROI).  In addition, the CO2 subsidies 

needed for each case to facilitate the respective 15% ROI values, were ascertained. 
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Annual profit and ROI were defined as shown below.  The selling price utilized for 

glycerol (non-kosher) was $0.98/lb, a value obtained from CLP Chemical in April 2008. 

 

• Annual Profit = Annual Sales – Annualized Fixed Cost (AFC) – Annualized Operating Cost 

(AOC)  

• Return on Investment (ROI) = (Annual Profit/Total Capital Investment)*100% 

 

Table 5.5 shows annual profit, annual profit corresponding to a 15% ROI, and subsidy 

values corresponding to facilitating a 15% ROI for each of the 3 cases. 

 

 
Table 5.5: Annual Profit, Annual Profit Corresponding to a 15% ROI, and Related 

Subsidies for a 15% ROI 
 

Case Annual Profit  
($/yr) 

Annual Profit 
corresponding to 15% 

ROI  
($/yr) 

Subsidy to facilitate 
15% ROI  

($/ton CO2 reduced) 

1 -15.5M 2.67M 56 
2 -22.6M 3.37M 71 
3 -9.88M 3.37M 39 

 

 

A loss occurs for all three considered cases, with Case 2 (all WCO) having the largest 

loss of ~$22.6M/yr, and Case 3 (multiple feedstock) the smallest loss of ~$9.88M/yr.  

The calculated CO2 subsidies needed to facilitate a 15% ROI ranged from $39/ton CO2 
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reduced for Case 3 to $71/ton CO2 reduced for Case 2.  These values are similar to 

subsidies seen in Europe.   

 

Under the given conditions, this approach gives the range of subsidies needed to 

promote biodiesel production from soy oil and/or WCO at a certain level.  The results 

indicate that if it is desired to promote WCO usage as a feedstock, a larger subsidy (by 

$15/ton CO2 reduced) will be needed than to promote soy.  In addition, from these 

results, the insight is gained that the multi-feedstock scenario needs the least amount of 

assistance to be viable. 

 

5.7 Conclusions 

 

A systematic approach is being developed for the design and scheduling of biodiesel 

production processes taking into account the effect of GHG policies, in addition to the 

economic, technical, and environmental aspects of production.  Traditionally, technical 

and economic factors have dominated design and scheduling considerations. The new 

approach presented here allows for inclusion of a previously neglected component, GHG 

policy, which has the potential to significantly affect design and scheduling of such 

facilities. Inclusion of this additional facet provides a robust, flexible, and market-

sensitive decision-making tool for both policy-makers and producers. 
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This approach and the related formulation inherently contain enough flexibility to allow 

for utilization from various perspectives and for variance of a number of variables, 

including market-sensitive entities. In terms of the case study presented here, feedstock 

costs were fixed and related subsidies calculated for a desired level of ROI, thereby 

investigating potential requisite subsidies for promotion of biodiesel production.  The 

same formulation can be utilized to investigate the effect of an arbitrary subsidy on 

various design and scheduling scenarios.  Another powerful facet of this approach is the 

ease of inclusion of market variances from the perspective of feedstock cost, fuel selling 

price, and even capital cost. 

 



 116

CHAPTER VI 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

This work focused upon design and operation of biodiesel production facilities in 

support of the broader goal of developing a strategic approach to the development of 

biorefineries.  Biodiesel production afforded a fitting initiation point for the work due to  

biodiesel’s position and presence in the alternative fuel market.  In addition, a biodiesel 

production facility represents a biorefinery of relatively simple form, and is a likely 

component of future large-scale integrated biorefineries. 

 

The fundamental framework of a systematic decision-making approach was developed 

for market sensitive strategic scheduling and design of a biodiesel production process.  

The first stage of the work resulted in a systematic procedure for determining feedstock 

selection, usage and scheduling, process modification, and pre-treatment selection and 

design so as to maximize the process profit.  A base-case design was developed for 

converting soybean oil to biodiesel via transesterification at a scale of 40 MMGPY.  The 

process was simulated using ASPEN Plus in order to identify mass and energy flows and 

basic sizing of key process equipment.  Process integration techniques were applied to 

conserve mass and energy resources, resulting in $8,800,000 in annual savings.   
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The second stage of the work resulted in a procedure for determining process design, 

feedstock selection and scheduling, and requisite greenhouse gas subsidies so as to 

maximize the process profit.  Traditionally, technical and economic factors have 

dominated design and scheduling considerations. The new approach presented here 

allows for inclusion of a previously neglected component, GHG policy, which has the 

potential to significantly affect design and scheduling of such facilities. Inclusion of this 

additional facet provides a robust, flexible, and market-sensitive decision-making tool 

for both policy-makers and producers.  This approach and the related formulation 

inherently contain enough flexibility to allow for utilization from various perspectives 

and for variance of a number of variables, including market-sensitive entities. 

 

Case studies provided demonstration of the efficacy of the developed approach, as well 

as insights for the specified conditions.  During the first stage, a techno-economic 

analysis for the given process showed that at the current soy oil cost of $0.49/lb and the 

‘current’ biodiesel price of $3.38/gal, when using soy oil as a feedstock, the annual profit 

is $3,300,000, the break-even point ~$0.52/lb, the payback period 3 yrs, and the ROI 

14%.  At a biodiesel price of $3.88/gal, the annual profit is ~8 times greater 

($24,500,000), the payback period is much less (0.67 years), and the ROI (134%) almost 

an order of magnitude greater.  A drop in the biodiesel price to $2.88/gal makes the 

process non-viable economically. 
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In contrast to the soy oil analyses, WCO as a feedstock resulted in a more profitable 

process.  At the current WCO cost ($0.34/lb) and ‘current’ biodiesel price of $3.38/gal, 

the annual profit is $132,000,000, the break-even point $0.25/lb WCO, the payback 

period 0.14 yrs, and the ROI 590 %.  Even at a lower biodiesel price ($2.88/gal), the 

process still has an annual profit of $110,000,000, 33 times greater than for soy oil at a 

biodiesel price of $3.38/gal. 

 

Glycerin sensitivity analyses demonstrate under the given conditions ($0.49/lb soy oil, 

$0.034/lb WCO) and with the ‘current’ biodiesel price of $3.38/gal, the profitability of a 

WCO-based process is less sensitive to changes in glycerin price than a soy-based 

process.  The viability of the process when using soy oil, is dependent upon glycerin 

sales, with even a drop in glycerin price of less than 50% resulting in a non-profitable 

process.  In contrast, even with no glycerin-based revenue, the process when using WCO 

offers a profitable operation as long as the price of the feedstock is kept low. 

 

Feedstock scheduling results demonstrated that for the given conditions and WCO 

feedstock cost being much lower than that for soy, all available WCO would be utilized 

prior to utilization of soy oil.  Also, it was observed that a 700% increase in WCO cost 

would be necessary for the two feedstock costs to equate, including taking into account 

pretreatment costs.    For a scenario involving a 300% increase in WCO feedstock cost 

with a simultaneous sudden drop in soy oil cost to $0.20/lb, the lower soy oil cost placed 
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it as the favored and sole feedstock utilized.  But, a subsequent small increase in the soy 

oil cost to $0.21/lb resulted in WCO again becoming the favored feedstock.   

 

One of the key outcomes of this work was the study of sensitivity of biodiesel 

production profitability to feedstock in order to provide insight toward biodiesel 

production that is more robust and resilient to market-changes and therefore more 

capable of sustaining a presence in the energy marketplace. The results presented 

support further the need for and benefit of such work.  

 

During the second stage of the work, the profitability of three different biodiesel 

production cases and potential CO2 subsidies were investigated.  For a 15% ROI and 

feedstock costs of $0.49/lb soy and $0.20/lb WCO, a loss occurred for all three cases 

considered (all soy, all WCO, multiple feedstock - soy and WCO).  Case 2 (all WCO) 

exhibiting the largest loss at a value of ~$22.6M/yr.  Case 3 (multiple feedstock) had the 

smallest loss with a value of $9.88M/yr.  Therefore, under the conditions utilized for the 

case study, all three cases would require a subsidy to be economically viable.  The 

calculated CO2 subsidies requisite to providing a 15% ROI were $39/ton CO2 for Case 3 

(multiple feedstock), $56/ton CO2 for Case 1 (all soy), and $71/ton CO2 reduced for 

Case 2 (all WCO).  These values are similar to subsidies seen in Europe.   

 

Under the given conditions, this approach gives the range of subsidies needed to 

promote biodiesel production from soy oil and/or WCO at a certain level.  The results 
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indicate that if it is desired to promote WCO usage as a feedstock, a larger subsidy (by 

$15/ton CO2 reduced) will be needed than to promote soy.  In addition, from these 

results, the insight is gained that the multi-feedstock scenario needs the least amount of 

assistance to be viable. 

 

One of the major contributions provided by this work is the application of inclusion of 

scheduling issues into design of biodiesel plants.  Standard design procedures neglect the 

inclusion or consideration of scheduling issues.  Facility operators must work with the 

constraints inherent to the facility design when determining scheduling.  As a result, 

unneeded initial capital expenditures for unused/underused equipment or the added 

expense of subsequent requisite retrofitting are a possibility.  In addition, profitability 

might not be optimized due to inability to process a less expense or more optimal 

feedstock.  Not only do the procedures developed facilitate well informed decision-

making for retrofitting of existing facilities to achieve feedstock flexibility, they also 

serve as a robust tool for grassroots facility design.  In addition, novel inclusion of GHG 

issues into design and scheduling provides another layer of procedural robustness and 

utility to the user, whether the perspective of interest is policy or production-related. 

 

Although these efforts focused upon and provided insights and conclusions related to 

biodiesel production, the significance of the work resides in the broad applicability of 

the developed procedures and formulations.  Development was conducted in as 

generalized a form as possible to facilitate utilization with other products and facilities, 
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as well as provide a baseline platform for further development. The procedure can be 

readily adapted for other biofuels, bioproducts, and/or biorefinery concepts, or even 

serve as a component or module of a larger framework for development of a multi-

faceted integrated biorefinery.  Overall, the major contribution provided is the 

development of a generally applicable and systematic procedure for analysis, design and 

scheduling of biorefineries and the related optimization formulations, which will aid 

such facilities in terms of sustainability and economic viability by incorporating 

feedstock flexibility, market-sensitive scheduling, and effects of GHG policy. 

More widespread utilization of biomass as a feedstock, whether for biodiesel or other 

fuels and products, introduces issues for consideration that were previously unnecessary.    

As mentioned previously, one of the incentives for exploring and incorporating 

feedstock flexibility is competition with food resources.  It should be noted that if 

desired, the developed model contains enough flexibility to allow for inclusion of a 

constraint to limit feedstock usage of food sources.  The food versus fuel issue is a prime 

example of the unique challenges associated with development of the biorefinery 

concept.  Although important and essential, profitability is not the only relevant metric 

for guiding design and operation of such facilities. Sustainability or sustainable design 

does not simply equate to consideration of environmental concerns or environmentally-

conscious design.  In order to effectively realize and maintain the potential of biomass 

resources to meet existing and new needs, related efforts will require assiduous and 

methodical consideration of and attention to a larger sphere of both influence and 

impact.  Some related issues include the aforementioned issue of food versus fuel, 
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indirect and direct  land use change, water usage, biodiversity-friendly agricultural 

practices, and land management,  

\ 

The following topics are recommended for future work: 

 

• Optimal plant size and location: tradeoffs between economy of scale and 

transportation of feedstock and products. Also, environmental implications (more 

efficient production versus GHG emissions associate with transportation).  

Procedural development for managing logistical issues for local and regional-specific 

implementation. 

• Design and scheduling for a more complex facility, such as a biorefinery producing 

interdependent products where a waste or by-product of one desired product serves 

as the feedstock for another product.  

• Design under uncertainty (e.g., fluctuation in feedstock cost and selling price of 

products.) 

• LCA for various biofuel production pathways and impact on land global climatic 

issues. 

• Detailed analysis of impact of different types of GHG policies on biofuel production 

pathways, and selection of feedstocks and products. 
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NOMENCLATURE 

In order of appearance: 

FAME = fatty acid methyl esters 

B100 = diesel fuel comprised of 100% biodiesel 

ULSD = ultra low sulfur diesel 

CN = cetane number 

CP = cloud point 

PP = pour point 

FFA = free fatty acid 

DDG = dried distiller’s grain 

WCO = waste cooking oil 

ATROR = after tax rate of return 

Nf = number of feedstock alternatives, f 

f = index for feedstock alternatives 

U = a set of pretreatment units 

u = index for pretreatment units 

NT = number of pretreatment units, u 

INPUTu = the set of input streams for pretreatment unit, u 

iu = index to represent input streams for pretreatment unit, u 

Nu
in = number of input streams for pretreatment unit, u 

OUTPUTu = the set of output streams for pretreatment unit, u 

jv = index to represent output streams for pretreatment unit, u 
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Nu
out = number of output streams for pretreatment unit, u 

ui
F = Flowrate of input stream iu

q,iu
X = composition of component q in input stream iu 

uj
G = Flowrate of output stream ju

q,ju
Y = composition of component q in output stream ju 

V = a set of common process units 

v = index for common process units 

NPU = number of common process units, v 

INPUTv = the set of input streams for common process unit, v 

iv = index to represent input streams for common process unit, v 

Nv
in = number of input streams for common process unit, v 

OUTPUTv = the set of output streams for common process unit, v 

jv = index to represent output streams for common process unit, v 

Nv
out = number of output streams for common process unit, v 

vi
F = Flowrate of input stream iv

q,iv
X = composition of component q in input stream iv 

vj
G = Flowrate of output stream jv

q,jv
Y = composition of component q in output stream jv 

P = a set of product discharges 

p = index for product discharges 

Np = number of product discharges, p 
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W = a set of waste discharges 

w = index for waste discharges 

Nw = number of waste discharges 

B = a set of intermediate streams that are redirected back into the process 

b = index for intermediate streams that are redirected back into the process 

Nb = number of intermediate streams that are redirected back into the process 

ib = index to represent input stream for the ‘intermediate block’ 

bi
F = Flowrate of input stream ib 

q,i b
X = composition of component q in input stream ib 

jb = index to represent output stream for the ‘intermediate block’ 

bj
G = Flowrate of output stream jb

q,jb
Y = composition of component q in output stream jb 

th = decision-making time horizon 

Nt   = number of time intervals or periods, t 

t = time interval or period 

PERIODS = a set of operation intervals or periods 

Net_Gen u,q,t = net generation of component q in pretreatment unit u during period t 

Ncomponents = number of components, q 

tud , = vectors describing the design variables of unit u during period t 

ou,t = vectors describing the operating variables of unit u during period t 

tij vu
g ,,  = assigned from source ju to destination iv during period t 
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tij uu
g ,,  = flowrate from source ju to destination iu during period t 

tpju
p ,,  = flowrate assigned from ju to the pth product stream during period t 

twju
w ,,  = flowrate from ju to the wth waste stream during period t 

T
tpP ,  = total flowrate of the pth product from the NT pretreatment units in period t 

T
tqpZ ,,  = composition of component q in the pth product stream coming from the NT 

pretreatment units during period t 

T
twW ,  = flowrate of the wth waste stream from the NT pretreatment units during period t 

T
tqwZ ,,  = composition of component q in the wth waste stream coming from the NT 

pretreatment  units during period t 

tij vb
r ,,  = flowrate assigned from intermediate source jb to destination iv during period t 

Net_Gen v,q,t = net generation of component q in common process unit v during period t 

tvd , = vectors describing the design variables of unit v during period t 

ov,t = vectors describing the operating variables of unit v during period t 

twjv
w ,,  = flowrate assigned from output stream jv to the wth waste stream during period t 

tpjv
p ,,  = flowrate assigned from output stream jv to the pth product stream during period t 

tbjv
r ,,  = flowrate assigned from output stream jv to the bth intermediate stream during 

period t 

PU
twW ,  = flowrate of the wth waste stream from the NPU common process units 
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PU
tqwZ ,, = composition of component q in the wth waste stream coming from the NPU 

common process units during period t 

PU
tpP ,  = total flowrate of the pth product from the NPU common process units in period t 

PU
tqpZ ,,  = composition of component q in the pth product stream coming from the NPU 

common process units in period t 

PU
tbR ,  = flowrate of the bth intermediate stream from the NPU common process units 

during period t 

PU
tqbZ ,,  = composition of component q in the bth intermediate stream from the NPU 

common process units during period t 

tpP ,  = flowrate of the pth product out of the process 

tqpZ ,,  = composition of component q in the pth product stream out of the process during 

period t 

twW ,  = flowrate of the wth waste stream out of the process during period t 

tqwZ ,,  = composition of component q in the wth waste stream out of the process during 

period t 

tij bv
r ,,  = flowrate assigned from source jv to destination ib during period t 

maxmin , uu dd  = minimum and maximum vectors describing the design variables of unit 

respectively 
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maxmin, vv dd  = minimum and maximum vectors describing the design variables of unit v, 

respectively 

maxmin , uu oo  = minimum and maximum vectors describing the operating variables of unit u, 

respectively 

maxmin, vv oo  = minimum and maximum vectors describing the operating variables of unit 

respectively 

Demand
tpP ,  = Demand for product p during period t 

maxmin,
uu ii FF  = minimum and maximum flowrate for the iuth input to pretreatment unit u, 

respectively 

max
,

min
, , qiqi uu

XX  = minimum and maximum composition of component q for the iu
th input to 

pretreatment unit u, respectively 

maxmin,
vv ii FF  = minimum and maximum flowrate for the ivth input to common process unit 

v, respectively 

max
,

min
, , qiqi vv

XX  = minimum and maximum composition of component q for the iv
th input to 

pretreatment unit v, respectively 

product
tpC ,  = unit selling price of product p during period t 

Pp,t = production rate of product p during time t 

feedstock
tfC ,  = cost of feedstock f during period t 

Ff,t = feed rate of feedstock f during time t 
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POCt = process operating cost excluding feedstock cost (e.g., utilities, labor, waste 

treatment, etc.) during period t 

TACPretreatment = total annualized cost of retrofitted pretreatment 

AFC = annualized fixed cost 

AOC = annual operating cost 

If = a binary integer variable designating the presence or absence of the f th feedstock 

tfF ,  = flowrate of feedstock f during period t 

max
,tfF = upper bound on the allowable flowrate of feedstock f 

MINLP = mixed integer non-linear program 

MILP = mixed integer linear program 

MMGPY = millions of gallons per year 

PBP = payback period 

ROI = return on investment 

FCI = fixed capital investment 

GHG = greenhouse gas 

LCA = life cycle analysis 

GREET = greenhouse gases, regulated emissions, and energy use in transportation 

EIO-LCA = economic input-output life cycle assessment 

2CO
feedstockE = CO2 emissions for a given feedstock 

2CO
uE = CO2 emitted by pretreatment unit, u 

2CO
vE = CO2 emitted by common process unit, v 



 130

growthCO
soyE ,2 = CO2 emitted for growth of soy feedstock 

harvestingCO
xoyE ,2 = CO2 emitted for harvesting of soy feedstock 

seedPTCO
soyE ,2 = CO2 emitted for soy feedstock seed processing and transport 

oilextCO
soyE ,2 = CO2 emitted for soy feedstock oil extraction 

BDprodCO
soyE ,2 = CO2 emitted for biodiesel production from soy feedstock 

tBDtransporCO
soyE ,2 = CO2 emitted transport of biodiesel produced from soy feedstock 

BDuseCO
soyE ,2 = CO2 emitted during use of biodiesel produced from soy feedstock 

2CO
soyE = CO2 emitted per ton of soy oil used as a feedstock to produce biodiesel 

2CO
WCOE  = CO2 emitted per ton of WCO used as a feedstock to produce biodiesel 

tsoyF , = flowrate of soy oil feedstock into the process over time t 

tWCOF , = flowrate of WCO feedstock into the process over time t 

tBDP , = a given production rate of biodiesel over time t 

2CO
BDE = the total quantity of CO2 emitted over time period t for biodiesel produced using 

soy oil and/or WCO as feedstock inputs 

tDP , = a given production rate of petroleum-based diesel over time t 

2CO
DE = the total quantity of CO2 emitted over time period t for production of petroleum-

based diesel 

2COS = subsidy for reduction of CO2 emissions ($/ton CO2 reduced) 
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2COTS = total subsidy attained for biodiesel produced from soy oil and/or WCO 

feedstocks 

max,min, 22 , COCO SS = minimum and maximum CO2 subsidy, respectively 
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