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ABSTRACT 

 

Novel Pattern Recognition Techniques for Improved Target Detection in Hyperspectral 

Imagery. (December 2009) 

Wesam Adel Sakla, B.S., The University of South Alabama; 

M.S., The University of South Alabama 

Chair of Advisory Committee: Dr. Andrew Chan 

  

 A fundamental challenge in target detection in hyperspectral imagery is spectral 

variability. In target detection applications, we are provided with a pure target signature; 

we do not have a collection of samples that characterize the spectral variability of the 

target. Another problem is that the performance of stochastic detection algorithms such 

as the spectral matched filter can be detrimentally affected by the assumptions of 

multivariate normality of the data, which are often violated in practical situations. 

  We address the challenge of lack of training samples by creating two models to 

characterize the target class spectral variability—the first model makes no assumptions 

regarding inter-band correlation, while the second model uses a first-order Markov-

based scheme to exploit correlation between bands. Using these models, we present two 

techniques for meeting these challenges—the kernel-based support vector data 

description (SVDD) and spectral fringe-adjusted joint transform correlation (SFJTC). 

 We have developed an algorithm that uses the kernel-based SVDD for use in 

full-pixel target detection scenarios. We have addressed optimization of the SVDD 
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kernel-width parameter using the golden-section search algorithm for unconstrained 

optimization. We investigated a proper number of signatures N to generate for the 

SVDD target class and found that only a small number of training samples is required 

relative to the dimensionality (number of bands). We have extended decision-level 

fusion techniques using the majority vote rule for the purpose of alleviating the problem 

of selecting a proper value of 2σ  for either of our target variability models. We have 

shown that heavy spectral variability may cause SFJTC-based detection to suffer and 

have addressed this by developing an algorithm that selects an optimal combination of 

the discrete wavelet transform (DWT) coefficients of the signatures for use as features 

for detection. 

 For most scenarios, our results show that our SVDD-based detection scheme 

provides low false positive rates while maintaining higher true positive rates than 

popular stochastic detection algorithms. Our results also show that our SFJTC-based 

detection scheme using the DWT coefficients can yield significant detection 

improvement compared to use of SFJTC using the original signatures and traditional 

stochastic and deterministic algorithms. 
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CHAPTER I 

INTRODUCTION 

A.  HSI Overview 

 Automatic target recognition (ATR) is a vital and complex step in image 

processing and exploitation. ATR has experienced significant strides with the advent of 

hyperspectral imaging (HSI) sensors. ATR systems should be able to detect, classify, 

recognize, and/or identify targets in an environment where the background is cluttered 

and targets are at long distances and may be partially occluded, degraded by weather, or 

camouflaged.1 HSI may be defined as imagery taken over many spectrally contiguous 

and spatially co-registered bands. HSI sensors provide plenty of spectral information to 

uniquely identify materials by their reflectance spectra. A material’s reflectance 

spectrum contains the reflectance values of the material as a function of wavelength. HSI 

sensors generate images containing both spatial and spectral information that can be 

used in remote sensing detection and classification applications. Although it is 

theoretically possible for two completely different materials to exhibit the same spectral 

signature, targets in ATR applications are typically man-made objects with spectra that 

differ considerably from the spectra of natural background materials.2 In contrast to 

multispectral sensors, which measure reflectance values at wide wavelength bands,  

____________ 
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hyperspectral sensors measure reflectance values at narrow, contiguous wavelength 

bands. Consequently, the richer information in hyperspectral imagery has better potential 

in ATR applications than multispectral imagery. 

B.  Target Detection Problem 

 The goal of target detection is to locate pixels containing a material whose 

spectral composition is known. In HSI target detection applications, the targets are 

present sparsely throughout an image—they may account for less than 1% of the total 

pixels in a hyperspectral scene, rendering traditional spatial processing techniques 

impractical. Consequently, most HSI detection algorithms exploit the spectral 

information of the scene, an approach otherwise known as nonliteral exploitation in the 

HSI literature.3 One of the main challenges in HSI processing is spectral variability, 

which refers to the phenomenon that spectra observed from samples of the same material 

will never be identical. 

 While many detection algorithms have been developed over the years, spectral 

variability poses challenges for these algorithms. Current popular detection algorithms 

such as the spectral matched filter (MF) and its variations stochastically model the 

background by using first and second order spectral statistics (i.e., mean and covariance) 

estimated from the scene data. Although these stochastic detectors are mathematically 

tractable and can work well in some situations, they are only optimal under the 

assumption of the multivariate normality of the data. The quadratic Neyman-Pearson 

detector requires the covariance matrix of the target class, which is not available if one is 
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given a single spectral signature obtained from a library.2,3 The MF and adaptive 

matched filter (AMF) algorithms assume that the target and background covariance 

matrices are identical. In real-life scenarios, the multivariate normality assumption is 

often violated because a hyperspectral image may contain multiple types of terrain, thus 

causing detection performance to suffer.4 To increase detection performance with these 

techniques, improvements to background models can be achieved by increasing the 

multivariate normality of the data used to characterize the background.5 

C.  Proposed Work 

1.  The support vector data description 

 Kernel methods6 have become increasingly popular in a variety of pattern 

recognition (PR) applications. The recently-developed support vector data description 

(SVDD) has its roots in statistical learning theory and is an emerging non-parametric 

approach for describing a set of data.7,8 The SVDD is connected with support vector 

machines (SVMs) and is capable of providing accurate descriptions of a dataset via the 

use of kernels. The SVDD differs from the SVM in that it only considers samples 

belonging to the class of interest in order to provide a tight boundary around the data. 

 The SVDD has been successfully applied in the areas of facial expression 

analysis9, gene expression data clustering10, image retrieval11, remote sensing image 

classification12,13, and HSI anomaly detection14,15. To our knowledge, the SVDD has not 

been used in full-pixel target detection scenarios because no training samples are 

available to characterize the target class. This work will explore two different models for 
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generation of the target class training data in conjunction with the SVDD to perform 

target detection in hyperspectral imagery and will investigate the corresponding 

variables and parameters critical to successful SVDD target detection. 

2. Spectral fringe-adjusted joint transform correlation 

 Joint transform correlation has proven to be an effective detection technique in 

optical PR applications.16 The fringe-adjusted JTC (FJTC) technique17 yields better 

correlation peaks compared to other existing JTC techniques. Recently, the 1-D spectral 

fringe-adjusted joint transform correlation (SFJTC) technique has been used effectively 

for performing deterministic target detection in hyperspectral imagery.18 However, our 

preliminary experiments show that the technique suffers when significant spectral 

variability is present in the target signatures.19 Our work will focus on application of the 

discrete wavelet transform (DWT) coefficients as features for HSI target detection using 

the SFJTC technique. 

3.  Organization of this dissertation 

 Chapter II discusses the basics of HSI processing and the associated challenges. 

Chapter III presents a collection of popular HSI target detection algorithms that are 

found in the literature. In Chapter IV, we describe the hyperspectral scenery used for the 

experiments and provide the two models that we have used to generate the target 

signatures used for our work. Chapter V provides formulation of the SVDD and the 

associated algorithms we have developed in accordance with properly training an SVDD 
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for HSI target detection applications. The concepts of decision-level fusion are also 

studied in connection with the SVDD. In Chapter VI, we review the wavelet transform 

and present the SFJTC algorithm. In connection with the wavelet transform and the 

SFJTC algorithm, we provide the methodology and results obtained when using the 

DWT coefficients for SFJTC-based detection. This includes our supervised training 

algorithm for selecting a proper set of DWT coefficients to use prior to detection. 

Chapter VII presents the final results of our SVDD-based and SFJTC-based detection 

algorithms on both data models. For comparison, we have generated the detection results 

of the traditional detection algorithms presented in Chapter III. We summarize our 

findings and provide conclusions and future directions for research in Chapter VIII. 
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CHAPTER II 

HSI PROCESSING 

A.  Components of an HSI System 

 As shown in Figure 1, the basic parts of a hyperspectral imaging system include 

the illumination source, the atmosphere, the imaged surface, and the sensor. The 

illumination source may be either passive or active; the sun is the source of illumination 

in a passive system. In the mode of operation shown in Figure 1, solar energy propagates 

through the atmosphere, where its intensity and spectral distributions are modified. The 

energy then interacts with the imaged surface materials and is reflected and/or absorbed 

by these materials. The reflected energy passes back through the atmosphere where it 

may be further modified by the atmosphere before reaching the sensor, where it is 

captured and stored digitally. 

 HSI sensors, also called imaging spectrometers, are typically placed on satellites 

or aircrafts and acquire digital images in a large number of narrow, adjacent wavelength 

(frequency) bands that typically span the visible, near-infrared, and mid-infrared 

portions of the electromagnetic spectrum (0.4 – 2.5mµ ). HSI sensors capture the energy 

reflected by the surface materials and measure the intensity of energy in different parts 

of the spectrum. The HSI sensor divides the imaged surface into a number of contiguous 

pixels. The size of each pixel, or ground resolution cell, is determined by the optics of 

the sensor and the sensor altitude. The spatial resolution of the sensor determines the size 
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of the smallest object that can be seen on the surface of the earth by the sensor as a 

distinct object separate from its surroundings.2 Figure 2 illustrates the construction of a 

typical hyperspectral image. 

 

Figure 1.  General concept of hyperspectral imaging.3 

B.  Radiance Domain Versus Reflectance Domain 

 It is vital to stress the difference between radiance domain spectra and 

reflectance domain spectra. Although the raw measurements seen by the HSI sensor are 

radiance values, we desire to obtain the spectral reflectance values—the ratio of reflected 

energy to incident energy at each wavelength band. The reflectance spectrum, or 
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spectral signature, shows the fraction of incident solar energy that is reflected by a 

material as a function of the wavelength λ of the energy.20 Conversion to the reflectance 

domain normalizes the data since the properties of the illumination source and the 

atmospheric effects are removed. In practice, sophisticated atmospheric compensation 

codes are used to obtain the reflectance spectrum from the radiance spectrum. The 

atmosphere also limits which bands in the data are useful because it selectively absorbs 

radiation at particular wavelengths due to the presence of oxygen and water vapor. The 

signal-to-noise ratio (SNR) at these absorption bands is very low; as a result, any useful 

information about the reflectance spectrum is lost.3 Reflectance is a dimensionless 

quantity that ranges in value from zero to one. After the data has been atmospherically 

corrected, the resulting reflectance spectrum for each pixel can be compared to spectra 

of known materials available in “spectral libraries”2. In this work, hyperspectral 

signatures will be spoken of in the context of their reflectance values. 
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Figure 2. Construction of a typical hyperspectral image.21 

C.  Spatial Domain Versus Spectral Domain 

 Given that HSI sensors generate images containing both spatial and spectral 

information, it is worthwhile to note some basic differences between image processing 

exclusively in either of the domains. With spatial domain processing, information is 

embedded in the spatial arrangement of pixels in a two-dimensional (2-D) image. With 

spectral domain processing, each pixel has a corresponding spectrum that can be used to 

identify materials in that ground resolution cell. Hence, spatial processing exploits 

geometrical shape information, while the spectral domain allows for processing one 

pixel at a time. Also, spatial domain processing requires very high spatial resolution to 

identify objects by their shape, whereas spectral domain processing only requires a 
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single pixel since the spectral signature is used to identify the object. The advantages of 

spectral processing were evident in the early applications of remote sensing that 

involved mineral exploration, ground cover classification, and crop health 

characterization.3 In these applications, morphological information is not useful since the 

various natural materials of interest do not have predetermined shapes. In practice, 

hyperspectral sensors represent a deliberate trade-off in which spatial resolution is 

compromised for improved spectral resolution. In fact, the data volume is greatly 

reduced since data volume increases with the square of spatial resolution, but only 

linearly with the number of spectral bands.22 

D.  The HSI Data Cube 

 Because both spectral and spatial information are obtained, HSI sensors provide 

a three-dimensional (3-D) data structure known as a data cube. If one extracts all the 

pixels in a single ground resolution cell and plots the spectral values as a function of 

wavelength, one obtains the spectral signature for that ground resolution cell. However, 

if one extracts all the pixels in the same spectral band, the result is a 2-D intensity image 

showing the spatial distribution of reflectance values of the scene for that particular 

wavelength. Figure 3 gives an example of a data cube. 

 The spectral signatures in either the radiance or reflectance domain can be 

viewed as a scattering of points in a K-dimensional Euclidean space, denoted by Kℜ , 

where K is the number of spectral bands. Hence, the spectral signature at each spatial 
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location can be seen as a column vector 1 2[ , , , ]TKx x x= …x . To be physically 

meaningful, radiance or reflectance components can only take nonnegative values. 

 

Figure 3. Data cube visualization showing spatial and spectral dimensions.3 

E.  Classification Versus Detection 

 In the remote sensing community, hyperspectral image processing has 

applications in classification and target detection. The goal of classification is to assign 

the pixels in an input scene to one of K  classes. As with any pattern classification 

algorithm, there must be a sufficient amount of training data for each of the classes. In 

the context of classification, the natural criterion of performance is the minimization of 

the probability of misclassification errors.2 The goal in target detection is to search all 

the pixels in the scene for the presence of a target. Target detection can be formulated as 

a binary classification problem, where each pixel is labeled as target or background. The 

target class will be sparsely populated since the targets that may be present in a scene 

will only account for a very small fraction of the total pixels. In contrast, the background 
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class refers to all the nontarget pixels in the scene and represents all of the specific 

nontarget classes present in the scene. 

F.  Challenges in HSI Processing 

1.  Spectral variability 

 As discussed in the introduction, one of the significant challenges in HSI 

processing is spectral variability, which refers to the phenomenon that spectra observed 

from samples of the same material will never be identical. In other words, spectra of the 

same material are not fixed due to the inherent variations present in the material. Further 

spectral variability is introduced by external factors such as atmospheric conditions, 

sensor noise, and illumination variations.2,3,20 

 Interactions between incoming and reflected solar energy in the atmosphere can 

contribute to spectral variability. For certain wavelengths, these interactions reduce the 

amount of incoming energy reaching the ground and further reduce the amount of 

reflected energy reaching the hyperspectral sensor—a phenomenon known as 

absorption.20 For example, the presence of water vapor and carbon dioxide causes a 

significant reduction in energy at 1.4 mµ  and 1.9 mµ , rendering these bands useless. 

The effect of scattering, whereby light is scattered upward by the atmosphere, also 

contributes to variability by distorting the energy incident on the HSI sensor. Also, 

variations between sensors and temporal changes within sensors can introduce noise in 

the measurements, leading to variability. 
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 For hyperspectral imaging, two factors related to illumination that lead to 

variability include illumination geometry and shadowing. The amount of energy 

reflected by an area on the ground depends on the amount of solar energy illuminating 

the area, which in turn depends on the angle of incidence: the angle between the path of 

the incoming energy and a line perpendicular to the ground surface.20 The angle of 

incidence can vary as the sun’s height changes with the time of day and season or with 

differences in the terrain surface (e.g., flat or sloped). Shadows in an area can also distort 

the reflected energy from a surface and thus decrease the amount and intensity of 

illumination for the affected pixels. Shadows can be caused by clouds or other nearby 

objects on the terrain. 

2.  Spectral mixing 

 Each pixel in a hyperspectral image corresponds to an area of the earth’s surface 

as captured by the imaging spectrometer. The size of the area depends on the sensor 

design and its height above the earth’s surface. This size, which can range from several 

meters to several kilometers, defines the spatial resolution of the hyperspectral image. If 

the size of a chunk of the imaged surface is large enough, it is possible for the spectrum 

of a target to be combined with the spectrum of the local background, leading to a mixed 

pixel. This is in contrast to a pure pixel, whose spectrum is determined by only one 

material, whether it is background or target. Hence, we have the distinction between a 

full pixel target whose spectrum completely occupies a pixel in an HSI image and a 

subpixel target whose spectrum occupies only a portion of the pixel. The challenge 
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presented by subpixel targets justifies nonliteral exploitation of the HSI data because 

subpixel targets have no chance of being detected spatially but they do have a chance of 

being detected spectrally. While the detectability of full pixel targets depends on the 

spectral contrast between target and background, the detectability of subpixel targets is 

also dependent on the portion of the pixel occupied by the target (fill factor), because it 

determines the amount of background interference on the observed target spectrum.23 

Figure 4 shows the spectra of three materials where the third material’s spectrum is a 

linear combination of the first two spectra. 

3.  Volume of data 

 The first two challenges that have been discussed are manifested during data 

acquisition and affect both multispectral and hyperspectral scenarios. As is the case, 

these challenges can significantly hinder classification and detection rates. A third 

problem in HSI is simply the volume of data present in hyperspectral datasets. In 

essence, this challenge manifests itself after the data has been acquired. Although the 

increase in spectral resolution introduced by HSI sensors can improve the rate of 

classification and detection, the sheer volume of data heavily increases the transmission 

bandwidth and the computational complexity of processing the data.24 Furthermore, the 

abundance of data poses a constraint on real-time processing of HSI data in military 

detection applications. In military detection scenarios involving ground targets, real-time 

processing of HSI data is utilized for improving battlefield situation awareness, 
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decreasing sensor-to-shooter cycle time, and providing timely battle damage 

assessments.25 

 To illustrate the magnitude of data involved in hyperspectral imagery, consider 

the following example. Suppose we have an HSI data cube with a spatial resolution of 

512 x 512 pixels and a spectral resolution of 200 bands. Assuming that 8 bits are used to 

store the values of each band, this data cube is approximately 52 megabytes (MB). 

Storing, transmitting, and processing data of such magnitude for each hyperspectral data 

cube inevitably poses concerns for the designers of HSI classification and detection 

systems. 

 

Figure 4. Illustration of spectral mixing.21 

G.  Types of Target Detection Algorithms 

 Spectral target detection algorithms can be broadly classified into matching 

algorithms and anomaly detection algorithms. In the spectral matching approach, the 
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spectral signature of the target is required a priori, and the algorithm determines whether 

a match exists between the spectral signatures of the scene pixels and the target spectral 

signature. The target signature is usually obtained from a spectral library and is 

sometimes referred to as the reference signature. In anomaly detection scenarios, no a 

priori  information is used; the algorithm identifies as a potential target, each pixel whose 

spectral signature does not fit a model of the local or global background.23 Anomaly 

detection algorithms are more susceptible to false alarms and less reliable than matching 

algorithms since their performance is completely determined by the background model 

parameters.26 

 Hyperspectral target detection algorithms have been developed with stochastic 

and deterministic approaches. Stochastic approaches typically model the hyperspectral 

data with multivariate normal distributions and are the most prevalent in the literature 

because of their mathematical tractability and reasonable performance in practical 

scenarios. Deterministic approaches make no assumptions regarding the nature of the 

data and can also perform well, depending on the spectral contrast between target and 

background objects. 
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CHAPTER III 

TRADITIONAL DETECTION ALGORITHMS 

A.  Stochastic Algorithms 

 Stochastic detection approaches must decide whether a target is present in a pixel 

based on its observed spectrumx . Let 1 2[ ( ), ( ), , ( )]Lx x xλ λ λ= …x , whereL is the number 

of spectral bands. In fact, x  can be treated as a multidimensional random vector with a 

probability distribution where its number of dimensions equals the number of spectral 

bands. The binary hypothesis test for the observed spectrumx is as follows: 

 0H :  target absent (background), 

 1H :  target present (target), 

where 0H  is commonly known as the null hypothesis and 1H  as the alternative 

hypothesis. The binary nature of the problem formulation can be viewed as a two-class 

classification problem in the context of pattern recognition where the two classes are 

background and target. In Bayesian decision theory, given knowledge of the conditional 

probability density functions (PDFs) of both classes, the reasonable decision rule would 

be to choose the class that is most probable or likely, given the observed spectrumx .27 

This concept is quantified by the likelihood ratio test (LRT) ( )Λ x , the ratio of the 

conditional PDFs of both classes: 
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 If ( )Λ x  is larger than the threshold η , the pixel is declared to be a target, 

otherwise, it is declared background. For any given problem, the minimum probability of 

error is achieved by the LRT decision rule. This probability of error is called the Bayes 

error rate and is the best that any LRT-based classifier can achieve. Unfortunately, in 

practice, knowledge of the theoretical conditional class densities ( )0p | Hx and 

( )1p | Hx  is not available. Thus, stochastic approaches to detection typically involve the 

replacement of unknown density parameters with their maximum likelihood (ML) 

estimates which are obtained directly from the data.23 

1.  Quadratic Neyman-Pearson detector 

 The most prevalent stochastic detector in the literature operates under the 

assumption that the class conditional PDFs of the background and target classes follow 

multivariate normal distributions. In a hyperspectral image, an observed spectrum x  

follows a multivariate normal distribution with mean vector ( )E xµ =µ =µ =µ =  and covariance 

matrix [( )( ) ]TE= − −x xµ µµ µµ µµ µΓΓΓΓ  denoted by ( , )N∼x µµµµ ΓΓΓΓ if its PDF is given by the 

following: 
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where ΓΓΓΓ  denotes the determinant of the covariance matrix ΓΓΓΓ  and the term 

1( ) ( )T −− −x xµ µµ µµ µµ µΓΓΓΓ  is known as the Mahalanobis distance27. Under the multivariate 
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normal assumption of the background and target classes, the likelihood ratio may be 

expressed as follows: 
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where bµµµµ  and bΓΓΓΓ  and tµµµµ  and tΓΓΓΓ  denote the mean vectors and covariance matrices of 

the background and target classes, respectively. After simplifying the expression in 

equation (3.3) and rearranging terms, the likelihood ratio may be expressed as follows: 
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After taking the natural logarithm of both sides and eliminating constant terms, equation 

(3.4) may be simplified to yield the following quadratic Neyman-Pearson (NP) 

detector23: 

 1 11 1
( ) ( ) ( ) ( ) ( )

2 2
T T

b b b t t tD − −= − − − − −x x x x xµ µ µ µµ µ µ µµ µ µ µµ µ µ µΓ ΓΓ ΓΓ ΓΓ Γ  (3.5) 

which compares the Mahalanobis distances of the input spectrum x  from the means of 

the two classes. The constant at the beginning of equation (3.5) is often omitted in the 

literature since it is only a scaling factor. 

2.  Matched filter 

 A further assumption imposed on the data leads to the widely known matched 

filter (MF). If one assumes that the background and target covariance matrices are 
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identical, i.e., b t= =Γ Γ ΓΓ Γ ΓΓ Γ ΓΓ Γ Γ , the quadratic terms in equation (3.5) disappear, and the 

expression can be simplified to the following: 

 1( ) ( ) ( ),T
t b bD κ −= − −x xµ µ µµ µ µµ µ µµ µ µΓΓΓΓ  (3.6) 

where κ  is a normalization constant. While the choice of κ  does not alter the 

performance of the MF, it is typically chosen such that ( ) 1tD =µµµµ .23 Thus, the MF 

detector of equation (3.6) can be expressed as follows: 
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3.  Adaptive matched filter 

 The matched filter detector of equation (3.7) is optimal in the Bayes sense when 

the target and background classes follow multivariate normal distributions with a 

common covariance matrix. While these constraints lead to ease of mathematical 

tractability, they are highly unlikely scenarios for practical HSI data.2 Practically 

speaking, the true mean and covariance matrices are unknown and must be estimated 

from the actual data. Under the assumption of low-probability of occurrence of targets, 

we can compute the ML estimates of the background parameters from the entire HSI 

data cube. Let ( ), 1,2, ,n n N= …x  denote the N spectral vectors in an HSI data cube. 

The ML estimates of the mean vector and covariance matrix of the background are given 

as follows: 
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 Concerning the parameters of the target class, we typically use a target spectral 

signature t  from a library in place of tµµµµ  since there is no training data to calculate tµµµµ . 

As stated before, the target and background classes share a common covariance matrix 

whose ML estimate is given by equation (3.9). The resulting modifications of the 

matched filter lead to the adaptive matched filter (AMF) given by the following 

expression: 
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4.  Constrained energy minimization 

 Another popular stochastic detection algorithm, akin to the MF detector, is the 

constrained energy minimization (CEM) algorithm. Suppose we wish to design a linear 

filter of the form Tc=y x . The CEM filter operates by minimizing the total energy of y  

subject to the constraint that( ) 1Tc= =y t t . The total energy of an HSI data cube is given 

by the following: 
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where R

^

 is the sample correlation matrix of the data cube. The solution of this 

optimization problem leads to the following CEM detector:3 
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 Note that the CEM detector of equation (3.12) becomes the AMF detector of 

equation (3.10) if we remove the mean of the data from the target and input signatures 

and use the covariance matrix of the data instead of the correlation matrix. Unlike the 

NP and MF detectors, the CEM detector is not optimum in any Bayes sense since it is 

not derived using a hypothesis test.23 

B.  Deterministic Algorithms 

1.  Spectral angle mapper 

 One of the earliest and most basic algorithms for deterministic HSI detection is 

known as the spectral angle mapper (SAM) algorithm. Let t  denote the target spectral 

signature and x  denote the input spectral signature. The SAM metric measures the 

cosine of the angle between these two vectors and is defined by the following: 

 
,

( , ) ,SAMD =
x t

x t
x t

 (3.13) 

where ,⋅ ⋅  is the dot product operator, and ⋅  is the Euclidean length, or L2 norm of a 

vector. The values for SAMD  will range between zero and one since all the components of 

the spectral vectors are positive. While the SAM algorithm is very convenient and 
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straightforward in target detection applications, it only performs well for targets having 

well separated distributions with small dispersions.2 

2.  Spectral information divergence 

 Spectral information divergence (SID) is an information-theoretic measure which 

compares the similarity between two hyperspectral signatures by measuring the 

probabilistic discrepancy between them.28 It models each pixel signature as a multi-

dimensional random variable and creates an associated probability distribution for the 

signature by normalizing its spectral histogram to unity. Let 1 2[ , , , ]TKx x x= …x be a 

hyperspectral signature with probability vector 1 2[ , , , ]TKp p p= …p  where 

1
/

K

j j l
l

p x x
=

= ∑ . SID uses the Kullback-Leibler information, or relative entropy, measure 

between two hyperspectral signatures x  and y  with corresponding probability vectors 

p  and q  given by the following: 
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Using the relative entropy measure defined by equation (3.14), the SID between two 

signatures x  and y  is defined by the following: 

 ( , ) ( ) ( )SID D D= +x y x y y x  (3.15) 

 Hence, SID uses the relative entropy between two signatures to capture the 

spectral information provided by each pixel. Experimental results show that SID can 

characterize spectral variability more effectively than the SAM metric.29 
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CHAPTER IV 

EXPERIMENTAL DATA AND TARGET VARIABILITY MODELS 

C.  Raw HSI Data 

 Two of the data cubes in our experiments have been acquired using a CASI30 

sensor that produces 36 spectral bands ranging from 433 nm to 965 nm with a spectral 

resolution of 15 nm. The first data cube is vegetative scenery with a spatial resolution of 

200 x 200, and the second data cube is urban scenery with a spatial resolution of 200 x 

200. Visual range images of both scenes are shown in Figure 5 and Figure 6, 

respectively. 

 Two other data cubes have also been acquired using a HYDICE31 sensor. This 

sensor operates in the Visible to Near Infrared (VNIR) and Short-Wave Infrared (SWIR) 

range of 400 nm to 2500 nm and is sampled to yield 203 spectral bands. As before, we 

have both vegetative and urban scenes with spatial resolutions of 200 x 200 whose visual 

range images are shown in Figure 7 and Figure 8, respectively. The low SNR and water 

absorption bands have been removed, leaving a total of 193 bands and 172 bands for the 

vegetative and urban scenes, respectively. 
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Figure 5. CASI vegetative scenery. 
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Figure 6.  CASI urban scenery. 
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Figure 7.  HYDICE vegetative scenery. 
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Figure 8.  HYDICE urban scenery. 
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D.  Synthetic Data Generation 

 In practice, it is difficult to obtain ground-truthed HSI imagery that contains 

multiple real targets in low-probability target detection scenarios. The alternative is to 

insert simulated targets in real HSI imagery. For the purposes of testing the proposed 

work in this dissertation, we have randomly selected 200 pixels from each of the scenes 

and replaced their signatures with “corrupted” spectral signatures of a particular target 

material. The randomly selected locations of the targets are fixed for all four scenes. 

Figure 9 provides the truth mask showing the locations of the inserted targets. Note that 

200 pixels equals only half a percent of the 40000 total scene pixels in each data cube, 

thus simulating a low-probability target detection scenario. 

 

Figure 9.  Truth mask showing locations of inserted targets. 
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 How are these targets generated? In this dissertation, we have investigated the 

use of two unique models for generating the targets. These models will be discussed in 

the next section.  

 To account for the possibility of mixed pixel spectra corresponding to the 

boundaries of targets in the scene, twenty (10%) of the 200 signatures have been mixed 

in abundance ratios from 50% to 95% using the linear mixing model (LMM). According 

to the LMM, a mixed pixel spectrum is represented as a linear combination of 

endmember spectra. The weight, or fractional abundance, of each component 

endmember spectrum is proportional to the area that the endmember covers in a mixed 

pixel. For a hyperspectral scene with L  spectral bands, the scene signatures can be 

represented as L -dimensional feature vectors. The general LMM equation is given by 

the following:32 

 
1

,
M

k k
k

τ
=

= + = +∑x s w S wττττ  (4.1) 

where x  is a mixed pixel spectrum, ks , 1, ,k M= … , are the endmember spectra, kτ  are 

the fractional abundances of the endmember spectra, M is the number of endmembers, 

and w is an L -dimensional error vector that accounts for either noise or model-error. To 

make the LMM physically meaningful, the nonnegativity and sum-to-one additivity 

constraints are imposed on the endmember abundances: 

 
1

0( ), 1( )
M

k k
k

nonnegativity additivityτ τ
=

≥ =∑  (4.2) 

The LMM in (4.1) with the constraints in (4.2) is known as the constrained linear mixing 

model (CLMM). 
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E.  Simple Gaussian Model 

 In the first model that we have used for the generation of inserted scene targets, 

the signatures have been corrupted by drawing them from a multivariate Gaussian 

distribution and are of the following form: 

 [ ]2
c KN ,σ= + n ~ Iy t t  (4.3) 

where cy is a corrupted target signature, t  is the pure target signature, n  is additive 

stochastic noise, and 2σ is the per-band variance. The notation [ ]KN ,∼x µµµµ ΓΓΓΓ  denotes a 

K-dimensional Gaussian distribution with mean vector µµµµ  and covariance matrix ΓΓΓΓ . By 

inserting the corrupted signatures that have been generated in this fashion, we have 

introduced spectral variability into the scenes. The variance 2σ  that has been used in our 

experiments has been varied to achieve SNRs of 8 dB, 10 dB, 12 dB, and 15 dB. The 

SNR is defined here as the root mean square (RMS) of the pure target signature divided 

by the standard deviation of the noise and is given by the following: 

 

2

1

1 K

i
iK

SNR
σ

==
∑ t

 (4.4) 

 Thus, for each original data cube, four data cubes have been generated with each 

containing corrupted targets with a specific SNR. Hence, we have introduced differing 

levels of spectral variability ranging from light to heavy variability—the SNR decreases 

as the variability increases since the SNR is inversely proportional to σ . In future 

chapters, the data cubes will be referenced by the acquisition sensor, the type of scenery, 

and the SNR of the targets that have been inserted into them. For instance, for the 
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vegetative scene acquired using the CASI sensor where we have inserted targets with a 

SNR of 10 dB, we will refer to this data cube as CASI_veg_10. As another example, for 

the urban scene acquired using the HYDICE sensor where we have inserted targets with 

a SNR of 10 dB, we will refer to this data cube as HYDICE_urban_10. Figure 10 – 

Figure 25 show the differing levels of spectral variability of the targets that have been 

inserted into the scenes using the simple Gaussian model. In each of the figures, the pure 

target signature is shown in black, while the generated target signatures are shown in 

blue. The pure target signatures used in the CASI data cubes belong to a particular 

material, while the pure target signatures used in the HYDICE data cubes belong to 

another material. 

F.  Adaptive Gaussian Model based on First-order Markov Model 

 In the simple model introduced above, the covariance matrix in (4.3) is diagonal, 

thus ignoring any band-to-band correlation. The second model that we will use in this 

dissertation will also be based on a multivariate Gaussian distribution; however, the 

covariance matrix ΓΓΓΓ  is not diagonal. The signatures in this model are of the following 

form: 

 [ ]c KN ,= + n ~y t t ΓΓΓΓ  (4.5) 

where cy is a corrupted target signature, t  is the pure target signature, n  is additive 

stochastic noise, and ΓΓΓΓ  is the covariance matrix. 
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Figure 10. CASI_veg_8 scene targets generated using simple Gaussian model. 

 

Figure 11. CASI_veg_10 scene targets generated using simple Gaussian model. 
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Figure 12. CASI_veg_12 scene targets generated using simple Gaussian model. 

 

Figure 13. CASI_veg_15 scene targets generated using simple Gaussian model. 
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Figure 14. CASI_urban_8 scene targets generated using simple Gaussian model. 

 

Figure 15. CASI_urban_10 scene targets generated using simple Gaussian model. 
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Figure 16. CASI_urban_12 scene targets generated using simple Gaussian model. 

 

Figure 17. CASI_urban_15 scene targets generated using simple Gaussian model. 
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Figure 18. HYDICE_veg_8 scene targets generated using simple Gaussian model. 

 

Figure 19. HYDICE_veg_10 scene targets generated using simple Gaussian model. 
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Figure 20. HYDICE_veg_12 scene targets generated using simple Gaussian model. 

 

Figure 21. HYDICE_veg_15 scene targets generated using simple Gaussian model. 
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Figure 22. HYDICE_urban_8 scene targets generated using simple Gaussian model. 

 

Figure 23. HYDICE_urban_10 scene targets generated using simple Gaussian model. 
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Figure 24. HYDICE_urban_12 scene targets generated using simple Gaussian model. 

 

Figure 25. HYDICE_urban_15 scene targets generated using simple Gaussian model. 
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 In this model, we present a novel application of Markov theory to the generation 

of target signatures. A random sequence x(n)  is called a p-order Markov sequence if the 

conditional probability of x(n)  given the entire past is equal to the conditional 

probability of the last p samples. This can be stated more formally as follows: 

 [ ( ) | ( 1), ( 2),...] [ ( ) | ( 1),..., ( )],P x n x n x n P x n x n x n p n− − = − − ∀  (4.6) 

 To exploit spectral band-to-band correlation, we will use a first-order Markov 

model to generate the covariance matrix ΓΓΓΓ  in (4.5). The pure target signature t  is 

treated as a first-order stationary Markov sequence. According to this model, the 

covariance matrix is defined as follows: 

 2σ= ⋅RΓΓΓΓ  (4.7) 

where R is the Toeplitz correlation matrix defined according to the first-order Markov 

model:33 
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 (4.8) 

In (4.7), the constant 2σ  is the per-band variance that is introduced to control the level 

of variability in the generated target signatures as we did in (4.3). As with the first 

model, we have varied 2σ  to yield SNRs of 8 dB, 10 dB, 12 dB, and 15 dB. 

 In (4.8), the constant ρ  represents the first-order correlation coefficient. In our 

work, we have estimated ρ  using the correlation coefficients between adjacent bands of 

the scene. This is done in the following manner: 
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1. Compute the correlation coefficient matrix of the data cube. This yields a K x K 

matrix, where K is the number of spectral bands. 

2. Generate a vector r  that contains the correlation coefficients between band j and 

the adjacent band j+1 . Hence, the vector has K-1 components. 

3. Estimate ρ  by computing the mean of r . 

 Intuitively speaking, the reasoning behind using a first-order Markov model to 

generate the covariance matrix is that it is a reasonably safe assumption that the 

reflectance values at band j will closely resemble the reflectance value at j-1 because of 

the increased spectral resolution of the HSI sensor. Because the only information we 

have concerning the target class is the pure target signature t , we have adopted an 

adaptive approach that uses the scene to estimate ρ . Figure 26 – Figure 41 show the 

differing levels of spectral variability of the targets that have been inserted into the 

scenes using the first-order Markov-based Gaussian model. Notice how the generated 

signatures in this model are “smoother” than those generated according to the simple 

model in (4.3). Once again, this is due to the presence of band-to-band correlation using 

the non-diagonal correlation matrix structure given in (4.8). 
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Figure 26. CASI_veg_8 scene targets generated using adaptive Gaussian model. 

 

Figure 27. CASI_veg_10 scene targets generated using adaptive Gaussian model. 
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Figure 28. CASI_veg_12 scene targets generated using adaptive Gaussian model. 

 

Figure 29. CASI_veg_15 scene targets generated using adaptive Gaussian model. 
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Figure 30. CASI_urban_8 scene targets generated using adaptive Gaussian model. 

 

Figure 31. CASI_urban_10 scene targets generated using adaptive Gaussian model. 
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Figure 32. CASI_urban_12 scene targets generated using adaptive Gaussian model. 

 

Figure 33. CASI_urban_15 scene targets generated using adaptive Gaussian model. 
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Figure 34. HYDICE_veg_8 scene targets generated using adaptive Gaussian model. 

 

Figure 35. HYDICE_veg_10 scene targets generated using adaptive Gaussian model. 
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Figure 36. HYDICE_veg_12 scene targets generated using adaptive Gaussian model. 

 

Figure 37. HYDICE_veg_15 scene targets generated using adaptive Gaussian model. 



 49 

 

Figure 38. HYDICE_urban_8 scene targets generated using adaptive Gaussian model. 

 

Figure 39. HYDICE_urban_10 scene targets generated using adaptive Gaussian model. 
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Figure 40. HYDICE_urban_12 scene targets generated using adaptive Gaussian model. 

 

Figure 41. HYDICE_urban_15 scene targets generated using adaptive Gaussian model. 
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CHAPTER V  

THE SUPPORT VECTOR DATA DESCRIPTION 

A.  Introduction 

 In this chapter, we provide the theoretical framework for the kernel-based SVDD 

and discuss the various parameters that should be tuned for successful operation of the 

SVDD. Section B provides the mathematical background for the kernel-based SVDD. 

Section C provides our algorithm for optimizing the inherent SVDD parameter s. 

 In any supervised PR system, one should have access to a set of training samples 

that are representative of the class to be detected or classified. According to the well 

known Hughes phenomenon, as the number of dimensions increases, the number of 

training samples should increase exponentially in order to obtain reliable estimates of the 

multivariate statistics.34 This has long been a challenge with the use of the likelihood-

ratio based stochastic detectors presented in Chapter III. In target detection scenarios, we 

do not have access to a collection of samples characterizing the target class; we are 

typically given a pure target signature that is obtained from a spectral library. In our 

work, we will investigate the creation of N training samples pertaining to the target class 

according to both target variability models discussed in Chapter IV. The number of 

training samples N and the variance 2σ  used in the generation of the training samples 

are free parameters that will have an influence on the trained SVDD. These are free 

parameters that are connected with our proposed target training class algorithm and will 
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be studied in sections D and E, respectively. Section F will present the concepts of 

decision-level fusion that will be utilized to alleviate the problem of choosing an 

appropriate 2σ  value in our SVDD-based detection scheme. 

B.  Theoretical Background 

 The support vector data description (SVDD) models a class of data by fitting a 

hypersphere with center a and radius R  around all or most of the samples. Assume that 

we are given a set of training samples{ , 1 }i i N= …x . The SVDD aims to minimize the 

volume of the hypersphere by minimizing 2R . The task then becomes minimization of 

the following error function:8 

 i( , , ,2
i

i
F R R Cξ ξ+ ∑) =a  (5.1) 

with the added constraints that most of the training samples ix  lie within the 

hypersphere. These constraints are postulated as follows: 

 
2 2 , 1, ,i iR i Nξ− ≤ + = …x a  (5.2) 

 The C  parameter in (5.1) controls the tradeoff between the volume of the 

hypersphere and the number of target objects rejected.35 Since the training data may 

contain outliers, the iξ  in (5.1) represent slack variables that relax the constraints. The 

solution of (5.1) is obtained by solving the Lagrangian dual problem: 

 { }
,

max ( ) ( )
i

i i i i j i j
a i i j

a a a⋅ − ⋅∑ ∑x x x x  (5.3) 
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subject to 0 ia C≤ ≤ . After solving (5.3), only a subset of training samples will satisfy 

the equality given by (5.1). These are the ix  with corresponding nonzeroia and are 

called the support vectors since they are the only samples needed to provide the 

hypersphere boundary around the data. 

 For a new object y  to be considered as belonging to the SVDD, the square of the 

distance from the center of the sphere to y  must be less than or equal 2R . Hence, y  is 

deemed as belonging to the class when the following inequality is satisfied:35 

 2

,
( ( ( )i i i j i j

i i j
) - 2 a ) a a R⋅ ⋅ + ⋅ ≤∑ ∑y y y x x x  (5.4) 

 In many cases, fitting a hypersphere around the data in the original feature space 

does not provide a tight boundary. The nonlinear version of the SVDD implicitly maps 

the data from the input space to a higher-dimensional Hilbert feature space through a 

mapping function ( )Φ x . As a result, the problem becomes fitting a hypersphere around 

the data in the higher-dimensional feature space, which translates to a tighter, more 

accurate description of the boundary in the original feature space.8 In the nonlinear 

SVDD, the inner products ( )i j⋅x x  found in (5.3) are replaced by a kernel function 

( )i jK ⋅x x  satisfying Mercer’s theorem6. Accordingly, equation (5.4) becomes the 

following: 

 2

,
( ( ( )i i i j i j

i i j
K )- 2 a K ) a a K R⋅ ⋅ + ⋅ ≤∑ ∑y y y x x x  (5.5) 

 Several different choices of kernel functions exist. We will use the well-known 

Gaussian radial basis function (RBF) kernel. The RBF kernel only has one free 
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parameter to be tuned and is shown to yield tighter boundaries than other kernel 

choices.8,12,35 The RBF kernel is given by the following: 

 
2 2( , ) exp( / )K s= − −x y x y  (5.6) 

In (5.6), s is the free parameter that is adjusted to control the tightness of the boundary 

and is typically optimized through cross-validation.12,14 

 Using the fact that (K )= 1⋅y y  for the RBF kernel in (5.6), we can define a bias 

term that incorporates all constant terms in equation (5.5). The bias term is given by the 

following: 

 2

,
1 ( )i j i j

i j
b a a K R= + ⋅ −∑ x x  (5.7) 

After incorporating the bias term of (5.7) into equation (5.5) and some algebraic 

manipulation, we have the following SVDD decision function: 

 ( ) sgn (
2i i

i

b
SVDD a K )

 = ⋅ −∑ 
 

y y x  (5.8) 

Thus, an input signature y  is predicted to be a target if its output is positive and 

predicted to be background if its output is negative. 

C.  Optimization of the RBF Kernel Parameter s 

 As shown in the previous section, use of the SVDD with the RBF kernel requires 

selection of the free parameters C and s. In empirical trials of varying the value of C 

between 0.001 and 0.1, we found that all values yielded identical results. In this 

dissertation, we have used a value of C = 0.01. Proper tuning of C is not critical in 
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practical applications of the SVDD.35 On the other hand, the kernel parameter s has to be 

carefully chosen for successful SVDD performance. If s is chosen too small, a large 

number of support vectors will be selected, thus over fitting the training samples. In 

contrast, if s is chosen too large, a relatively small number of support vectors will be 

selected, thus under fitting the training samples and allowing for a loose boundary for 

the target class.8,14 In this section, we present a supervised PR algorithm for the 

optimization of s and investigate the feasibility of efficient search methods for its 

optimization. 

 To begin, we constructed a set of s values ranging from 0.01 - 2 in increments of 

0.002, yielding 1000 total candidate s values. Values above 2 were found to yield an 

insufficiently small number of support vectors, leading to a poor description of the target 

class. Thus, values above 2 are not considered. An SVDD was trained using each s  

value and applied to an independent validation set consisting of 100 target signatures and 

8000 background signatures. The 100 target signatures are generated according to the 

adaptive Gaussian model. 8000 pixels, 20% of the total scene pixels, are randomly 

selected from the scene and used as background signatures since targets occur with such 

low probability. The ratio of 100 target signatures to 8000 background signatures was 

chosen to maintain a low probability scenario. 

 The detection results on the validation set were recorded for each trained SVDD. 

Because target detection scenarios are essentially binary decision problems, we have 

recorded the SVDD detection results via a confusion matrix36. Recall that the confusion 

matrix has four entries:  true positives (TP), false positives (FP), true negatives (TN), 
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and false negatives (FN). Once the detection results were obtained for each trained 

SVDD, the F-stat was calculated. The F-stat is a measure of a detection test’s accuracy 

that considers both the precision and recall of the test and is defined as follows:36 

 2
precision recall

F
precision recall

⋅= ⋅
+

 (5.9) 

with the precision and recall given by the following: 

 
TP

precision
TP FP

=
+

 (5.10) 

 
TP

recall
TP FN

=
+

 (5.11) 

 In essence, we will be using the F-stat as our objective function to assess the 

detection results. Exhaustively searching for the optimal s from 1000 total values is a 

cumbersome process. In this section, we will study the behavior of the F-stat values as a 

function of s in various scenarios to assess the feasibility of using an efficient search 

algorithm for optimizing s. Our approach will be the following: 

1. Load one of the four possible HSI data cubes (e.g., CASI_urban_XX, 

CASI_veg_XX, HYDICE_urban_XX, HYDICE_veg_XX). The SNR of the 

inserted scene targets has no impact on the results. Scenes with different target 

SNRs (i.e., CASI_urban_10 versus CASI_urban_15) will yield identical results 

since the selection of s is not affected by the targets in the scenes—it is affected 

by the variability (SNR) of the generated training set and the validation set. 
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2. Generate 100 SVDD training set signatures according to the adaptive Gaussian 

model. The variance  2σ  will be varied to achieve SNRs of 8 dB, 10 dB, 12 dB, 

and 15 dB. 

3. Train an SVDD using each value of s and plot the F-stat as a function of s. 

1.  Linear search results for s on HSI scenes 

 In Figure 42 – Figure 45, we provide the results of the linear search for s on the 

urban CASI scenery. It appears that in each case, the F-stat reaches a global maximum. 

However, in the SNR = 15 dB and SNR = 12 dB cases, several values of s yield the 

maximum. Notice that as the SNR of the target training set decreases (i.e., increasing 

variability in the training set), the maximum value of the F-stat decreases. For each of 

the target training set SNRs, Table 1 provides the maximum value of F-stat, the number 

of s values that yield the maximum value of F-stat, and the corresponding range of s 

values. 

 Figure 46 - Figure 49 provide the results of the linear search for s on the 

vegetative CASI scenery. Once again, the F-stat reaches a plateau for certain values of s 

and declines afterwards. Table 2 summarizes the behavior of the F-stat values as a 

function of s for each target training set SNR. Table 3 and Table 4 provide the 

summaries of results for the urban and vegetative HYDICE scenery, respectively, while 

Figure 50 - Figure 57 show the results of the linear search for s on these scenes. 
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Figure 42. Linear search for s for urban CASI scenery with training set SNR = 15 dB. 
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Figure 43. Linear search for s for urban CASI scenery with training set SNR = 12 dB. 
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Figure 44. Linear search for s for urban CASI scenery with training set SNR = 10 dB. 
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Figure 45. Linear search for s for urban CASI scenery with training set SNR = 8 dB. 
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Figure 46. Linear search for s for vegetative CASI scenery with training set SNR = 15 dB. 
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Figure 47. Linear search for s for vegetative CASI scenery with training set SNR = 12 dB. 
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Figure 48. Linear search for s for vegetative CASI scenery with training set SNR = 10 dB. 
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Figure 49. Linear search for s for vegetative CASI scenery with training set SNR = 8 dB. 
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Table 1. Behavior of F-stat values as a function of s for urban CASI scenery. 

Training Set SNR (dB) Maximum F-stat Value Number of Maximums Range of s 

15 1 5 0.031 – 0.039 

12 1 2 0.059, 0.061 

10 0.97512 1 0.089 

8 0.87923 1 0.137 

 
 
 

Table 2. Behavior of F-stat values as a function of s for vegetative CASI scenery. 

Training Set SNR (dB) Maximum F-stat Value Number of Maximums Range of s 

15 1 25 0.031 – 0.079 

12 1 21 0.061 – 0.101 

10 1 11 0.097 – 0.117 

8 1 5 0.151 – 0.159 

 

 

 

Table 3. Behavior of F-stat values as a function of s for urban HYDICE scenery. 

Training Set SNR (dB) Maximum F-stat Value Number of Maximums Range of s 

15 1 222 0.219 – 0.661 

12 1 185 0.437 – 0.805 

10 1 133 0.691 – 0.955 

8 1 47 1.097 – 1.189 

 

 

 

Table 4. Behavior of F-stat values as a function of s for vegetative HYDICE scenery. 

Training Set SNR (dB) Maximum F-stat Value Number of Maximums Range of s 

15 1 130 0.259 – 0.517 

12 1 85 0.515 – 0.683 

10 1 30 0.817 – 0.875 

8 0.9706 1 1.245 
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Figure 50. Linear search for s for urban HYDICE scenery with training set SNR = 15 dB. 
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Figure 51.  Linear search for s for urban HYDICE scenery with training set SNR = 12 dB. 
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Figure 52. Linear search for s for urban HYDICE scenery with training set SNR = 10 dB. 
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Figure 53. Linear search for s for urban HYDICE scenery with training set SNR = 8 dB. 
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Figure 54. Linear search for s for vegetative HYDICE scenery with training set SNR = 15 dB. 
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Figure 55. Linear search for s for vegetative HYDICE scenery with training set SNR = 12 dB. 
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Figure 56. Linear search for s for vegetative HYDICE scenery with training set SNR = 10 dB. 
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Figure 57. Linear search for s for vegetative HYDICE scenery with training set SNR = 8 dB. 
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2.  Analysis of linear search results for s 

 As seen in Table 1, the search results yield a unique global maximum for SNRs 

of 10 dB and 8 dB. In all of the scenes, the number of maximums decreases as the 

variability in the training set increases. Also notice that the range of s values that yield 

the maximum F-stat value increases as the variability in the training set increases. For 

the CASI sensor, the vegetative scenery has a larger number of s values yielding the 

maximum F-stat value, as Table 2 shows. In fact, a unique global maximum is not 

reached for the vegetative CASI scenery. Concerning the HYDICE scenery, a 

considerably large number of s values produce the maximum F-stat value, as can be seen 

in Table 3 and Table 4. A unique global maximum is reached for the vegetative 

HYDICE scenery with a target training set SNR of 8 dB. 

 Let us take a closer examination of the behavior of the F-stat objective function 

with respect to the variation of s. If we substitute the definitions for precision and recall 

from (5.10) and (5.11) into the equation for the F-stat in  (5.9), we obtain the following: 

 

( ) ( )

( ) ( )

( ) ( )

2

2

2

2

TP TP

TP FP TP FN
F

TP TP

TP FP TP FN

TP

TP FN TP FP

TP

TP FP FN

⋅
+ +

= ⋅
+

+ +

= ⋅
+ + +

=
+ +

 (5.12) 

After dividing the numerator and denominator of (5.12) by 2TP , we obtain the 

following: 
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 (5.13) 

where T TP FN= +  represents the total number of targets. We can further simplify the 

expression for F in (5.13) by combining the variable terms in the denominator to obtain 

the following: 

 
1

1
F

G
=

+
 (5.14) 

where 

 
( )

2

T TP FP
G

TP

− +
=  (5.15) 

 We stated earlier that smaller values of s will overfit the training data, while 

larger values of s will underfit the training data. Hence, as s ranges from small to large 

values, the TPs will range from very small values to a maximum value. Similarly, the 

FPs will range from very small values to a large value (as many as the number of 

background pixels in the scene). Accordingly, G will have a minimum at some point. 

Since the maximum number of TPs is given by T  and the minimum number of FPs is 

zero, the smallest possible value of G is zero. These relationships are depicted in Figure 

58. 
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Figure 58. Relationships between TP, FP, and G. 
 

 
 
 Depending on the separability between the target and background signatures, the 

minimum (or minima) of G  may occur either at one distinct s value or a range of s 

values. Figure 59 and Figure 60 show two extreme cases. In the first extreme case shown 

in Figure 59, the minimum value of G is nonzero since the target and background classes 

are not completely separable. In this case, a single s value yields the minimum value of 

G. In the second extreme case shown in Figure 60, G reaches its lowest possible value of 

zero indicating that the target and background classes are completely separable. In this 

case, a range of s values yields the minimum value of G. The width of this range is 

proportional to the amount of separability between the target and background classes. 
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Figure 59. Behavior of TP, FP, and G when target and background classes overlap. 

 

Figure 60. Behavior of TP, FP, and G when target and background classes are fully separated. 
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 Note that when G  reaches its absolute minimum value of zero, F  reaches its 

maximum value of one. As the previous figures and tables show and in light of our 

previous discussion, the separation between target and background signatures in the 

urban CASI scenery appears to be less than in all the other cases. In both HYDICE 

scenes, the separation between target and background signatures appears to be large 

based on the number of maximums obtained and the range of s for each of the target 

training set SNRs. Notice how the width of the plateaus decreases as the target training 

set SNR decreases. As the variability of the target training set increases, the separation 

between target and background class signatures decreases, making the selection of s 

more crucial. 

3.  Impact of range of  s on detection results 

 Performing an exhaustive linear search over a large range of candidate s values is 

a time-consuming process. Our ultimate goal is to employ an efficient search algorithm 

for finding the optimal s. As we saw in the previous section, an exhaustive search for s 

yields unimodal behavior for the F-stat values as a function of s. We also saw that, in 

most cases, a range of s values yielded the maximum objective function value. In this 

section, we first wish to gain insight into how the selection of s within a particular range 

of s values affects the detection results on our HSI data. For each of the data cubes and 

each of the target training set SNRs, we did the following: 

1. Trained an SVDD using the smallest s value in the range. 

2. Trained an SVDD using the median s value in the range. 



 72 

3. Trained an SVDD using the largest s value in the range. 

4. Recorded the confusion matrices for all three cases. 

 We have summarized the results of this process by providing the FPs and TPs of 

detection for all three scenarios for each data cube and target training set SNR. The 

results are provided in Table 5 - Table 8. In each cell, we have recorded the number of 

FPs (left) and TPs (right) for each detection scenario. Each cell will typically contain 

three entries—the top entry corresponds to the FPs and TPs using the smallest value of s, 

the middle entry corresponds to the FPs and TPs using the median value of s, and the 

bottom entry corresponds to the FPs and TPs using the largest value of s. A cell that only 

contains one entry indicates that a single value of s produced the global maximum for 

that target training set SNR (see Table 1 - Table 4). 

 As the results show, the number of TPs either remains the same or increases as s 

increases from its smallest to largest values. This agrees with our understanding that the 

SVDD boundary expands as s is increased. Along the diagonal entries, the target training 

set SNR matches the SNR of the targets in the scene—in these scenarios, any increase in 

TPs as a function of s does not appear substantial. Above the diagonal entries, the target 

training set variability is larger than the variability of the targets in the scene—in these 

scenarios, the increase in TPs as a function of s is even less dramatic. Below the 

diagonal entries, the target training set variability is less than the variability of the targets 

in the scene—in these scenarios, the increase in TPs as a function of s is the most 

dramatic.  
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Table 5. Impact of range of s on detection results for urban CASI scenery. 

Training Set SNR (dB) 8 dB Scene 10 dB Scene 12 dB Scene 15 dB Scene 

8 140/174 141/189 141/190 141/190 

10 31/126 31/181 31/186 31/186 

12 

9/79 

13/86 

17/102 

9/160 

13/168 

17/176 

9/182 

13/183 

17/185 

9/184 

13/184 

18/185 

15 

0/12 

4/46 

14/73 

0/56 

4/111 

14/148 

0/145 

4/173 

14/178 

0/180 

4/182 

14/184 

 
 
 

Table 6. Impact of range of s on detection results for vegetative CASI scenery. 

Training Set SNR (dB) 8 dB Scene 10 dB Scene 12 dB Scene 15 dB Scene 

8 

0/183 

2/184 

12/186 

0/186 

2/186 

12/187 

0/186 

2/186 

12/187 

0/186 

2/186 

12/187 

10 

0/152 

0/177 

4/181 

0/183 

0/186 

4/186 

0/184 

0/186 

4/186 

0/184 

0/186 

4/186 

12 

0/68 

0/166 

21/181 

0/147 

0/186 

19/187 

0/181 

0/186 

19/187 

0/181 

0/186 

19/187 

15 

0/3 

0/120 

9/169 

0/45 

0/174 

9/186 

0/119 

0/184 

9/186 

0/178 

0/184 

9/186 

 



 74 

Table 7. Impact of range of s on detection results for urban HYDICE scenery. 

Training Set SNR (dB) 8 dB Scene 10 dB Scene 12 dB Scene 15 dB Scene 

8 

1/200 

1/200 

4/200 

1/200 

1/200 

4/200 

1/200 

1/200 

4/200 

1/200 

1/200 

5/200 

10 

1/31 

1/198 

4/200 

1/190 

1/200 

4/200 

1/191 

1/200 

4/200 

1/191 

1/200 

4/200 

12 

1/6 

1/170 

3/200 

1/30 

1/199 

4/200 

1/186 

1/199 

4/200 

1/186 

1/199 

4/200 

15 

0/3 

1/91 

3/200 

0/3 

1/196 

3/200 

0/4 

1/196 

3/200 

0/182 

1/196 

3/200 

 

 

 

Table 8. Impact of range of s on detection results for vegetative HYDICE scenery. 

Training Set SNR (dB) 8 dB Scene 10 dB Scene 12 dB Scene 15 dB Scene 

8 32/189 32/198 32/198 32/198 

10 

0/119 

0/142 

1/164 

0/190 

0/192 

1/194 

0/194 

0/194 

1/195 

0/194 

0/194 

1/195 

12 

0/17 

0/85 

1/148 

0/122 

0/184 

1/192 

0/187 

0/193 

1/194 

0/191 

0/193 

1/194 

15 

0/4 

0/34 

1/131 

0/4 

0/147 

1/192 

0/49 

0/189 

1/194 

0/182 

0/191 

1/194 
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 The most significant finding in these results is that it is advantageous to use an s 

value closest to the largest s value in the range of s values for a particular target training 

set SNR. In doing so, we guarantee that we will maximize the number of TPs, despite 

the marginal increase in FPs as a result. Additionally, we can use an efficient search 

algorithm for finding the optimal s value, as will be discussed in the next section. 

4. Exploration of an efficient search method for s 

 An optimization problem generally involves the minimization or maximization of 

an objective function ( )f x  where x  is either univariate or multivariate. If there are any 

inequality or equality constraints that must be satisfied in the optimization, the process is 

known as constrained optimization; otherwise, the process is unconstrained 

optimization. In multimodal functions, we must consider the possibility of both local and 

global optima, as Figure 61 shows. 

 

Figure 61. Example of a multimodal function with local and global optima. 
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 In the previous section, the F-stat was our objective function that we attempted to 

maximize as a function of our univariate s parameter. Because we have no constraints to 

satisfy in the process, our problem is one of unconstrained optimization. We saw that the 

F-stat exhibited unimodal behavior, but there typically was not a unique global 

maximum but rather a “plateau” of maxima. However, further experiments revealed that 

we could use an s value corresponding to the right side of the plateau as our optimal s 

value. In the next section, we provide background for the golden-section search 

algorithm that we have used for our univariate unconstrained optimization problem. We 

then describe our algorithm for modifying this method to compensate for the fact that a 

single maxima does not always exist in our application of the optimization of s. 

a. The golden-section search algorithm 

 The golden-section search algorithm first requires two initial guesses lx  and ux  

that contain the maximum. Then, two interior points 1x  and 2x  are chosen according to 

the golden ratio as follows:37 

 1 lx x d= +  (5.16) 

 2 ux x d= −  (5.17) 

where 

 ( )u ld R x x= ⋅ −  (5.18) 

In (5.18), R is the golden ratio. For details concerning the calculation of R , the reader is 

encouraged to consult ref 37. Once 1x  and 2x  are chosen, the objective function is 
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evaluated at these two points. If 1 2( ) ( )f x f x> , the domain of x  to the left of 2x  (from 

lx  to 2x ) does not contain the maximum and can be eliminated. Then, 2x  becomes the 

new lx . If 2 1( ) ( )f x f x> , the domain of x  to the right of 1x  (from 1x  to ux ) can be 

eliminated. In this case, 1x  becomes the new ux . These scenarios are shown in Figure 

62, and Figure 63, respectively. 

 

Figure 62. Golden-section search for 
1 2

f(x ) > f(x ) .37 

 

Figure 63. Golden-section search for 
2 1

f(x ) > f(x ) .37 
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 The benefit of using the golden ratio is that we do not need to recalculate all the 

function values in the next iteration. If 1 2( ) ( )f x f x> , then 1x  gets assigned as the new 

2x  value; otherwise, 2x  gets assigned as the new 1x  value. The golden-section search 

algorithm terminates when the following stopping criterion is satisfied: 

 u lx x ε− <  (5.19) 

b. Novel utilization of the golden-search algorithm 

 Earlier, we concluded that choosing an s value closer towards the largest value in 

the range of s values will provide desired detection results. In this section, we present the 

steps that we have taken to use the golden-search algorithm in conjunction with our 

requirements. The steps are as follows: 

1. Generate the validation set consisting of 100 target signatures and 8000 

background signatures as previously discussed. 

2. Generate 100 SVDD training set signatures according to the Adaptive Gaussian 

model. The variance  2σ  will be varied to achieve SNRs of 8 dB, 10 dB, 12 dB, 

and 15 dB. 

3. Run the golden search algorithm with 0lx =  and 2ux = . Capture the value of the 

objective function 1 max( )F s F=  and the corresponding value 1s . 

4. Run the golden search algorithm again with 1lx s=  and 2ux = . Capture the value 

of the objective function 2( )F s  and the corresponding value 2s . 
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5. As long as max( )iF s F= , step 4 is iteratively repeated with 1l ix s−=  and 2ux = . 

This means that we are “walking along” the acceptable range of s values, but we 

want to keep traversing this range until ( )iF s  starts to decrease. 

6. If max( )iF s F< , set the optimal s value 1opt is s−= . This indicates that we have 

reached an s value that has produced an objective function value that is less than 

maxF . This corresponds to an s value that takes us beyond the desired range of s 

values. As a result, we have selected the most recent (and largest) s value that 

yields maxF . 

5. Conclusion 

 In this section, we have developed a method for optimization of the SVDD 

kernel parameter s. We first studied the behavior of the F-stat objective function over a 

continuous range of s values to find that it exhibited unimodal behavior. In many 

instances, a range of s values yielded the maximum F-stat value, and we found that this 

was affected by the separability between the target and background signature classes. 

We also studied how selection of s within the range of s values affected detection results 

and found that it was advantageous to pick the largest s value in the range. Accordingly, 

we used the golden-section search algorithm for 1-D unconstrained optimization as a 

means of efficiently finding the optimal s value. The algorithm was used in an iterative 

fashion to locate the largest s value in the range of acceptable s values. 
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D.  Impact of the Value of N 

1.  Introduction 

 In this section, our goal is to determine a sufficient number of signatures to 

generate for the SVDD target training class. Earlier, we mentioned the Hughes 

phenomenon, which requires that the number of training samples should increase 

exponentially for the likelihood-ratio based algorithms. Recall that the SVDD is a 

boundary method for describing a class of data; the quadratic classifiers discussed earlier 

make assumptions about the density of the data and then proceed to estimate the density 

parameters (i.e., mean and covariance) from the data. Hence, an advantage to the use of 

a support vector-based algorithm is the potential for small sample-sizes for the training 

sets with respect to the dimensionality of the data. We will vary the value of N and 

observe its effect to determine a value of N that provides acceptable detection 

performance. Small values of N lead to faster training times. In contrast, large values of 

N are not desirable since the SVDD training time increases quadratically with N.14 

 In the previous section, we saw that, for our algorithm that finds the optimal s 

parameter, an SVDD has to be trained and applied to an independent validation set for 

each candidate s value. The length of time it takes to train each of these SVDDs is 

proportional to the number of target training signatures N that we generate. If we can 

train the SVDD with a relatively small number of signatures, we can substantially 

decrease the total training time. 
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2.  Experiments 

 To assess the impact of N on SVDD detection results, we will do the following: 

1. Load one of four HSI data cubes—CASI_urban_10, CASI_veg_10, 

HYDICE_urban_10, HYDICE_veg_10. We will use the data cubes containing 

targets generated by the adaptive Gaussian model. 

2. Generate the independent validation set consisting of 100 generated target 

signatures and 8000 randomly selected background signatures. The 100 

generated target signatures are also generated using the adaptive Gaussian model 

with 10SNR dB=  to match the SNR of the scene targets. 

3. Generate N SVDD training set signatures according to the adaptive Gaussian 

model with 10SNR dB=  to match the SNR of the scene targets. We will vary the 

value of N from 10 samples to 200 samples in increments of 5. Thus, the 5 new 

samples that are generated at each iteration are appended to the previously N 

generated samples. 

4. Train an SVDD using each value of N and apply it to the data cube. The optimal 

s parameter is chosen using our algorithm from the previous section. 

 For each data cube, we have plotted the total training time as a function of N. We 

have also plotted the F-stat as a function of N for the validation set and the scene.  
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Figure 64. SVDD training time as a function of N for the CASI_urban_10 scene. 
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Figure 65. Behavior of F-stat as a function of N for the CASI_urban_10 scene. 
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Figure 66. SVDD training time as a function of N for the CASI_veg_10 scene. 
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Figure 67. Behavior of F-stat as a function of N for the CASI_veg_10 scene. 
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Figure 68. SVDD training time as a function of N for the HYDICE_urban_10 scene. 
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Figure 69. Behavior of F-stat as a function of N for the HYDICE_urban_10 scene. 
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Figure 70. SVDD training time as a function of N for the HYDICE_veg_10 scene. 
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Figure 71. Behavior of F-stat as a function of N for the HYDICE_veg_10 scene. 
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 The results are shown in Figure 64 - Figure 71. As the plots for the training times 

show, we can see the quadratic behavior as N is varied. For example, in Figure 64, with 

90N = , the total training time is ~8.78 s; for 135N = , the total training time is ~34.22 

s. Hence, a 50% increase in the number of training samples led to almost a 400% 

increase in the training time. This trend is uniformly exhibited across all four scenes, 

except in a couple of instances where the optimization of s allows for some of the 

training times to deviate from the norm. 

 Let us examine the behavior of the F-stat objective function for the CASI data 

cubes. For the CASI_urban_10 data cube in Figure 65, the F-stat exhibits similar 

behavior for the validation set and scene. In general, the F-stat increases from the initial 

training set size of 10 samples to a maximum value around 85 samples. Beyond 85 

samples, the F-stat remains fairly constant for the validation set at a value of ~0.98. For 

the scene, the F-stat tapers around a maximum value of ~0.89 and does not increase 

beyond 85 samples. For the CASI_veg_10 scene in Figure 67, the F-stat again exhibits 

similar behavior for the validation set and scene. In both cases, using the smallest 

training set size of 10 samples yields an F-stat value near the maximum. Also, at 15 

samples, the F-stat drops for both cases. Beyond 70 samples, the F-stat reaches a 

constant maximum value for the validation set and scene. 

 Let us now look at the F-stat behavior for the HYDICE data cubes. As Figure 69 

shows, the F-stat remains nearly constant for all values of N in both the validation set 

and scene for HYDICE_urban_10. For the validation set, the F-stat remains at a constant 

value of ~0.985. For the scene, beyond 70 samples, the F-stat remains constant at 
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~0.993—just shy of its maximum value of ~0.995. For the HYDICE_veg_10 scene in 

Figure 71, the F-stat on the validation set remains nearly constant as the values only vary 

between ~0.995 and 1. For the scene, the F-stat values range between ~0.972 and 

~0.987. Beyond 60 samples, the F-stat for the scene does not show any improvement. 

3.  Conclusion 

 In the CASI data cubes, the minimum number of samples required to yield 

acceptable detection performance is 85 and 70 for the urban and vegetative scenery, 

respectively. The urban scene showed the most fluctuation in the F-stat value as a 

function of N, indicating that this scene is more sensitive to the variation of N. This is 

consistent with what we saw earlier in the optimization of s in that the separability 

between the target and background signatures for the urban CASI scenery is less 

compared to the other scenes. For the HYDICE scenery, the results demonstrate that the 

choice of N is even less critical with the behavior of the F-stat remaining nearly constant 

across all values of N. This lines up with our intuition from earlier since we saw that the 

HYDICE scenery exhibits large separability between target and background signatures. 

 Our results regarding the selection of N have confirmed our notion that only a 

relatively small number of training signatures is required with respect to the 

dimensionality (number of bands), thus eliminating the Hughes phenomenon problem. 

Based on our results, we have seen that values as low as N = 20 samples and values as 

high as N = 90 samples are sufficient for our SVDD-based detection scheme, depending 

on the separability between target and background signatures. 
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E. Impact of the Value of 2σ  

1.  Introduction 

 In the generation of training signatures for the target class, we must choose a 

value of 2σ , regardless of the choice of target variability model. We mentioned that the 

constant 2σ  is the per-band variance that is introduced to control the level of variability 

in the generated target signatures. Small values of 2σ  may prove insufficient for 

capturing the true spectral variability of the target class; in contrast, large values of 2σ  

could allow background signatures to be captured by the target SVDD, thus generating 

undesired false positives. In this section, we will use different values of 2σ  to explore 

the impact on the detection process for both target variability models. 

2.  Experiments 

 To explore the impact of 2σ  on the SVDD detection results, we will do the 

following: 

1. Load one of four HSI data cubes—CASI_urban_12, CASI_veg_12, 

HYDICE_urban_12, HYDICE_veg_12, corresponding to both target variability 

models. 

2. Generate 100 SVDD training set signatures according to both target variability 

models. We will vary the value of 2σ  to achieve SNRs of 8 dB, 10 dB, 12 dB, 

and 15 dB. 
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3. Generate the independent validation set consisting of 100 generated target 

signatures and 8000 randomly selected background signatures. The 100 target 

signatures are generated using the corresponding target variability model with 

values of 2σ  to achieve SNRs of 8 dB, 10 dB, 12 dB, and 15 dB. Recall that this 

validation set is used to optimize the s parameter using the algorithm developed 

earlier. 

4. Train an SVDD using each value of 2σ  and apply it to the data cube. 

 For each data cube, we have provided the detection results in the form of 

confusion matrices according to the respective value of 2σ  used to train the SVDD. 

Table 9 - Table 24 show the impact of 2σ  for all four scenes of the simple Gaussian 

model. Table 9 - Table 12 show the impact of 2σ  on the CASI_urban_12 data cube. As 

these tables show, the choice of 2σ  has a significant bearing on the detection results. As 

the value of 2σ  increases (i.e., the SNR decreases), the number of FPs and TPs 

increases. In the scenario shown in Table 12 where the target training set variability has 

been underestimated, the TPR is terribly low in comparison with the other scenarios. As 

Table 13 - Table 16 show, the choice of 2σ  does not dramatically affect the detection 

results for CASI_veg_12. The number of FPs is slightly increased when the target 

training set variability is significantly overestimated as shown in Table 13. 
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Table 9. Results on CASI_urban_12 with SNR = 8 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 38458 8 

Predicted Target 1342 192 

 

 

 

Table 10. Results on CASI_urban_12 with SNR = 10 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39533 14 

Predicted Target 267 186 

 

 

 

Table 11. Results on CASI_urban_12 with SNR = 12 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39727 16 

Predicted Target 73 184 

 

 

 

Table 12. Results on CASI_urban_12 with SNR = 15 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39798 176 

Predicted Target 2 24 
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Table 13. Results on CASI_veg_12 with SNR = 8 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39760 13 

Predicted Target 40 187 

 

 

 

Table 14. Results on CASI_veg_12 with SNR = 10 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39791 13 

Predicted Target 9 187 

 

 

 

Table 15. Results on CASI_veg_12 with SNR = 12 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39791 13 

Predicted Target 9 187 

 

 

 

Table 16. Results on CASI_veg_12 with SNR = 15 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39792 14 

Predicted Target 8 186 
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Table 17. Results on HYDICE_urban_12 with SNR = 8 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39798 0 

Predicted Target 2 200 

 

 

 

Table 18. Results on HYDICE_urban_12 with SNR = 10 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39798 0 

Predicted Target 2 200 

 

 

 

Table 19. Results on HYDICE_urban_12 with SNR = 12 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39798 0 

Predicted Target 2 200 

 

 

 

Table 20. Results on HYDICE_urban_12 with SNR = 15 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39798 0 

Predicted Target 2 200 
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Table 21. Results on HYDICE_veg_12 with SNR = 8 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39791 3 

Predicted Target 9 197 

 

 

 

Table 22. Results on HYDICE_veg_12 with SNR = 10 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39800 6 

Predicted Target 0 194 

 

 

 

Table 23. Results on HYDICE_veg_12 with SNR = 12 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39800 6 

Predicted Target 0 194 

 

 

 

Table 24. Results on HYDICE_veg_12 with SNR = 15 dB for simple Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39798 5 

Predicted Target 2 195 
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 The impact of 2σ on HYDICE_urban_12 is shown in Table 17 - Table 20. As the 

tables show, the different values of 2σ  have no effect on the detection results. With 

respect to the HYDICE_veg_12 data cube, Table 21 - Table 24 show that the choice of 

2σ  has only a slight effect on the detection results. 

 Table 25 - Table 40 show the impact of 2σ  for all four scenes using the adaptive 

Gaussian model. Table 25 - Table 28 show the impact of 2σ on CASI_urban_12. As 

these tables show, the choice of 2σ  has a significant bearing on the detection results. As 

the value of 2σ  increases (i.e., the SNR decreases), the number of both FPs and TPs 

increases. As Table 29 - Table 32 show, the choice of 2σ  does not dramatically affect 

the detection results for CASI_veg_12 as it did with CASI_urban_12. 

 The impact of 2σ  on HYDICE_urban_12 is shown in Table 33 - Table 36. As 

these tables show, the variation of 2σ  has a negligible effect on the detection results. 

With respect to the HYDICE_veg_12 data cube, Table 37 - Table 40 show that the 

choice of 2σ  can increase the number of FPs if it is chosen too high. 
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Table 25. Results on CASI_urban_12 with SNR = 8 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39623 10 

Predicted Target 177 190 

 

 

 

Table 26. Results on CASI_urban_12 with SNR = 10 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39736 14 

Predicted Target 64 186 

 

 

 

Table 27. Results on CASI_urban_12 with SNR = 12 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39785 15 

Predicted Target 15 185 

 

 

 

Table 28. Results on CASI_urban_12 with SNR = 15 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39798 30 

Predicted Target 2 170 
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Table 29. Results on CASI_veg_12 with SNR = 8 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39783 13 

Predicted Target 17 187 

 

 

 

Table 30. Results on CASI_veg_12 with SNR = 10 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39799 14 

Predicted Target 1 186 

 

 

 

Table 31. Results on CASI_veg_12 with SNR = 12 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39781 13 

Predicted Target 19 187 

 

 

 

Table 32. Results on CASI_veg_12 with SNR = 15 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39789 13 

Predicted Target 11 187 
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Table 33. Results on HYDICE_urban_12 with SNR = 8 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39796 0 

Predicted Target 4 200 

 

 

 

Table 34. Results on HYDICE_urban_12 with SNR = 10 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39796 0 

Predicted Target 4 200 

 

 

 

Table 35. Results on HYDICE_urban_12 with SNR = 12 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39797 0 

Predicted Target 3 200 

 

 

 

Table 36. Results on HYDICE_urban_12 with SNR = 15 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39797 0 

Predicted Target 4 200 
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Table 37. Results on HYDICE_veg_12 with SNR = 8 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39766 1 

Predicted Target 34 199 

 

 

 

Table 38. Results on HYDICE_veg_12 with SNR = 10 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39792 2 

Predicted Target 8 198 

 

 

 

Table 39. Results on HYDICE_veg_12 with SNR = 12 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39793 2 

Predicted Target 7 198 

 

 

 

Table 40. Results on HYDICE_veg_12 with SNR = 15 dB for adaptive Gaussian model. 

 Actual Background Actual Target 

Predicted Background 39792 3 

Predicted Target 8 197 
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3.  Conclusion 

 As we have seen, in some cases, the choice of 2σ  is critical for robust SVDD 

detection performance. In other cases, it has a marginal impact. As we saw in section C 

regarding the optimization of the s parameter, the separation between the target class 

signatures and the signatures of the background classes is crucial. As we saw earlier, the 

separation between target and background signatures in the urban CASI scenery was less 

than the other scenes. The results shown in Table 9 - Table 12 and Table 25 - Table 28  

confirm this notion. As 2σ  is increased for the training set, the SVDD expands, allowing 

more objects (both target and background signatures) to enter the sphere. 

 In the other scenes, the larger separation between target and background 

signatures allows for the results to be less sensitive to the choice of 2σ . As shown in 

Table 3 in section C, we saw that the urban HYDICE scenery had the widest range of s 

values that yielded a global maximum. This was an indication that the separation 

between target and background signatures in this scene was relatively large. The results 

shown in Table 17 - Table 20 and Table 33 - Table 36 confirm this notion as the choice 

of 2σ  has virtually no effect on the detection results. 
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F.  Decision-level Fusion Via the SVDD and Parameter Variation 

1.  Introduction 

 As we saw in the last section, the choice of 2σ  for the target training set has an 

impact on the detection results, depending on the separation between target and 

background signatures. Because separability varies across all types of scenes and targets, 

the selection of an appropriate 2σ  is difficult. Furthermore, we do not know a priori the 

severity of the variability that is to be expected of the targets that may be present in the 

scenes. 

 In this section, we will investigate the use of decision-level fusion for alleviating 

the problem of choosing a proper value of 2σ . The next section provides the theory 

behind the decision-level fusion techniques we will use. Section 3 provides some 

experiments using decision-level fusion on some of our HSI data, and section 4 provides 

our conclusions regarding the results.  

2.  Theoretical Background 

 A recent trend in the design of classification systems has been the use of 

information fusion, or the combination of classifiers. For data sets with complex and 

highly nonlinear decision boundaries, a single classifier may not yield a desirable 

classification rate. In the PR literature, it has been observed that the sets of misclassified 

patterns do not overlap. This implies that different classifiers potentially offer 

complementary information about the patterns to be classified, and their combination 
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could prove useful.38 The combination of classifiers may occur at either the data level, 

feature level, or decision level stages of the classifier.27 Each classifier may use the same 

representation (features) of the input pattern or its own representation of the input 

pattern. An example of combination in the same feature space would be neural network 

designs having the same architecture but different sets of weights obtained through a 

variety of training strategies.38 

 A handful of strategies exist for combining the outputs of each individual 

classifier to form a single decision.38,39 In decision-level fusion, the outputs (labels) of 

each classifier are combined using a specific rule, yielding a single label for each input 

pattern. In the context of target detection, two possible labels exist—a 0 indicates that no 

target is present (class 0ω ), while a 1 indicates that a target is present (class 1ω ). The 

traditional rules for decision-level fusion include the AND, OR, and majority vote (MV) 

schemes.27 Using the AND rule, class 1ω  (target) is declared if all classifiers predict 

class 1ω ; otherwise, class 0ω  (background) is declared. With the OR rule, class 1ω  

(target) is declared if at least one of the classifiers predicts class 1ω ; otherwise, class 0ω  

(background) is declared. Using the MV scheme, class 1ω  (target) is declared if a 

majority of the classifiers predicts class 1ω ; otherwise, class 0ω  (background) is 

declared. In the MV scheme, each classifier has equal bearing on the final decision. 

 We intend to extend the concept of decision-level fusion of classifiers by 

investigating the combination of detectors to facilitate SVDD-based target detection. It is 

reasonable to expect that detector fusion will provide robust detection, given that the 
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fusion of classifiers has had successful application in hyperspectral and remotely sensed 

imagery.40-42 

3.  Experiments 

 In this section, we will use decision-level fusion concepts by training a collection 

of SVDDs with different variance parameters 2σ  for each of the target training sets. The 

following enumerate the steps we have taken: 

1. Load one of eight HSI data cubes—CASI_urban_10, CASI_urban_12, 

CASI_veg_10, CASI_veg_12, HYDICE_urban_10, HYDICE_urban_12, 

HYDICE_veg_10, HYDICE_veg_12. We will use the data cubes corresponding to 

both target variability models. 

2. Generate three SVDD training sets, each consisting of 100 signatures according 

to both target variability models. Each SVDD will have a value of 2σ  to achieve 

SNRs of 7 dB, 9 dB, and 11 dB. These SVDDs will be respectively referred to as 

SVDD_7, SVDD_9, and SVDD_11. 

3. Generate three independent validation sets consisting of 100 generated target 

signatures and 8000 randomly selected background signatures. The 100 

generated target signatures are generated using the corresponding target 

variability model with values of 2σ  to achieve SNRs of 7 dB, 9 dB, and 11 dB. 

Each validation set is used to optimize the s parameter of the respective SVDD 

training set. The values of 7, 9, and 11 were purposely selected to explore the 
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impact of training sets with different levels of variability that do not identically 

coincide with the SNRs of the inserted scene targets. 

4. Train all three SVDDs and apply them to each data cube. 

5. Capture the detection results of each individual SVDD as well as the decision-

level fusion detection results using the AND, OR, and MV schemes. 

 For sake of brevity, we have presented the results by listing only the FPs and TPs 

for each detection scenario since the other two quantities (TN and FN) are easily 

calculated from the FPs and TPs. Table 41 - Table 48 provide the results for the eight 

data cubes corresponding to the simple Gaussian model, while Table 49 - Table 56 show 

the results for the adaptive Gaussian model. 

 In these experiments, we are using data cubes containing inserted targets with 

SNRs of 10 dB and 12 dB. The 10 dB scene is used so that we may assess the decision 

fusion results when the target variability in the scene (i.e., 10 dB) lies within the range of 

the target variability of the individual training sets (7 dB, 9 dB, and 11 dB). The 12 dB 

scene is used so that we may assess the decision fusion results when the target variability 

in the scene (i.e., 12 dB) lies outside the range of the target variability of the individual 

training sets. 
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Table 41. Decision-level fusion results for CASI_urban_10 scene for simple Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 2959 682 94 94 2959 682 

TPs 194 191 92 92 194 191 

 

 

 

Table 42. Decision-level fusion results for CASI_urban_12 scene for simple Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 2962 724 124 124 2962 724 

TPs 194 191 185 185 194 191 

 
 
 

Table 43. Decision-level fusion results for CASI_veg_10 scene for simple Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 94 9 9 9 94 9 

TPs 187 187 187 187 187 187 

 

 

 

Table 44. Decision-level fusion results for CASI_veg_12 scene for simple Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 119 9 33 9 119 33 

TPs 187 187 187 187 187 187 
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Table 45. Decision-level fusion results for HYDICE_urban_10 scene for simple Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 8 8 7 7 8 8 

TPs 200 200 200 200 200 200 

 

 

 

Table 46. Decision-level fusion results for HYDICE_urban_12 scene for simple Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 2 2 2 2 2 2 

TPs 200 200 200 200 200 200 

 

 

 

Table 47. Decision-level fusion results for HYDICE_veg_10 scene for simple Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 161 0 0 0 161 0 

TPs 198 194 194 194 198 194 

 

 

 

Table 48. Decision-level fusion results for HYDICE_veg_12 scene for simple Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 163 2 0 0 163 2 

TPs 198 195 194 194 198 195 

 

 

 

 



 106 

 As Table 41 and Table 42 show, the level of variability in the target training set 

has a significant impact on the detection results for CASI_urban_10 and 

CASI_urban_12. Notice in Table 41 how using an underestimated training set with 

SVDD_11 causes a sharp decline in the number of TPs. Observe how the AND decision 

rule leads to the lowest number of FPs and TPs. In fact, it provides identical results to 

the SVDD_11 training set. In contrast, the OR decision rule yields both the highest 

number of FPs and TPs—identical to the SVDD_7 training set. The MV scheme 

provides a compromise between the two, yielding the same results as SVDD_9. For the 

CASI_urban_12 data cube in Table 42, the AND rule yields the best decision-level 

fusion performance, mimicking the results of SVDD_11. 

 As we saw earlier, the vegetative CASI scenery is not as difficult and, hence, the 

detection results do not significantly vary between the individual training sets. Once 

again, for the vegetative CASI scenery results in Table 43 and Table 44, the AND 

decision rule yields the lowest number of FPs and TPs, the OR decision rule yields the 

highest number of FPs and TPs, and the MV scheme provides a compromise between the 

FPs of the two. 
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 With respect to the urban HYDICE scenery, Table 45 and Table 46 clearly 

confirm the results from the previous section that the variation of 2σ  has a negligible 

impact on the detection results because of the relatively large separation between target 

and background class signatures. Accordingly, the decision-level fusion results using all 

three schemes are identical. The results shown in Table 47 and Table 48 for the 

vegetative HYDICE scenery echo that of the other scenes in that the MV scheme 

provides a robust balance on detection performance when compared to the AND and OR 

rules for fusion. 

 With respect to the results in Table 49 - Table 56 using the adaptive Gaussian 

model, similar trends are observed. The urban CASI scenery shows the largest 

fluctuation in detection results as a function of the training set used, while the urban 

HYDICE scenes are virtually unaffected by the level of variability in the training set. 

Regarding the decision fusion results for the adaptive Gaussian model, the AND 

decision rule yields the lowest number of FPs and TPs, the OR decision rule yields the 

highest number of FPs and TPs, and the MV scheme provides a balance between the 

two. 
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Table 49. Decision-level fusion results for CASI_urban_10 scene for adaptive Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 297 57 26 26 297 57 

TPs 192 182 179 179 192 182 

 

 

 

Table 50. Decision-level fusion results for CASI_urban_12 scene for adaptive Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 314 121 29 29 314 121 

TPs 192 189 186 186 192 189 

 

 

 

Table 51. Decision-level fusion results for CASI_veg_10 scene for adaptive Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 25 1 0 0 25 1 

TPs 187 186 186 186 187 186 

 

 

 

Table 52. Decision-level fusion results for CASI_veg_12 scene for adaptive Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 26 12 9 8 26 13 

TPs 187 186 186 186 187 186 
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Table 53. Decision-level fusion results for HYDICE_urban_10 scene for adaptive Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 2 2 2 2 2 2 

TPs 200 200 200 200 200 200 

 

 

 

Table 54. Decision-level fusion results for HYDICE_urban_12 scene for adaptive Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 12 4 4 4 12 4 

TPs 200 200 200 200 200 200 

 

 

 

Table 55. Decision-level fusion results for HYDICE_veg_10 scene for adaptive Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 61 5 0 0 61 5 

TPs 199 198 192 192 199 198 

 

 

 

Table 56. Decision-level fusion results for HYDICE_veg_12 scene for adaptive Gaussian model. 

 SVDD_7 SVDD_9 SVDD_11 AND OR MV 

FPs 72 10 9 9 72 10 

TPs 199 198 198 198 199 198 
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4.  Conclusion 

 The experiments in this section have demonstrated the utility of decision-level 

fusion for our SVDD-based target detection scheme. As we mentioned in the 

introduction, the purpose of our decision-level fusion application was the potential for 

achieving robust detection performance without having to determine beforehand the 

level of variability to be expected in the target class. In all the data cubes, the AND rule 

yielded the lowest numbers of FPs and TPs. This lines up with our intuition since the 

AND rule is conservative in the sense that it only labels a signature as target if all of the 

detectors label it as such. In contrast, the OR rule yielded the highest numbers of both 

FPs and TPs for all data cubes. Once again, this is intuitively expected since the OR rule 

is liberal in the sense that it labels a signature as target if at least one of the detectors 

labels it as such. The MV scheme was able to maintain a relatively low number of FPs 

with a high number of TPs for all data cubes, thus providing the desired balance between 

the AND and OR rules. Accordingly, we will implement the MV fusion rule in all future 

experiments related to SVDD-based target detection. Chapter VII will provide the 

detection results of our SVDD-based detection scheme on all data cubes corresponding 

to both target variability models. 
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CHAPTER VI 

SPECTRAL FRINGE-ADJUSTED JOINT TRANSFORM CORRELATIO N 

A.  Introduction 

 In this chapter, we present the SFJTC technique and explore the use of the DWT 

as a pre-processing tool for SFJTC-based target detection. Unlike the kernel-based 

SVDD approach to target detection that we formulated in Chapter V, the SFJTC 

technique is a deterministic approach to target detection. Each pixel signature in the 

hyperspectral data cube is compared to the target signature to determine whether a match 

exists. The basic premise of our work is that select coefficients generated from a desired 

level of the DWT decomposition of the signatures should be used in place of the original 

signatures for improved SFJTC-based detection. 

 Section B provides the mathematical framework of the SFJTC technique. In 

section C, we describe the detection statistic formulation used to quantify the detection 

process. Section D reviews the wavelet transform and discusses current applications of it 

in the hyperspectral literature. In section E, we will explore how use of the DWT 

coefficients impacts the detection results on our HSI scenery. Section F presents our 

supervised training algorithm for selecting an optimal set of DWT coefficients for a 

particular target and scene prior to detection. 
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B.  Theoretical Background 

 In a JTC technique, when the input pixel contains only one spectral signature, the 

correlation output produced includes three terms:  a strong DC or zero-order term at the 

center, flanked by a pair of cross-correlation terms in the correlation array. The FJTC 

technique provides enhanced correlation performance, where the joint power spectrum is 

first modified by eliminating the zero-order terms and then multiplied by a real-valued 

filter known as the fringe-adjusted filter (FAF). Accordingly, this technique overcomes 

the problem of zero-order correlation terms and produces sharp delta-function-like 

peaks.43  

 In the SFJTC technique, the reference, ( )xr , and input, ( )xt , spectral signatures 

are situated on the x-axis with a distance of separation of 02x . The input joint signature 

( )xf can be expressed as the follows: 

 0 0( ) ( ) ( )x x x x x= + + −f r t  (6.1) 

After applying the Fourier transform to the expression in (6.1), we obtain the following 

expression: 

 0 0( ) ( ) exp[ ( )]exp( ) ( ) exp[ ( )]exp( )r tF u R u j u jux T u j u juxφ φ= + −  (6.2) 

where ( )R u and ( )T u  are the amplitudes, and ( )r uφ and ( )t uφ  are the phases of the 

Fourier transforms of r and t , respectively, and u  is the frequency-domain variable. If 

we take the magnitude of( )F u , we obtain the joint power spectrum (JPS) as given by the 

following: 
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2 2 2

0

0

( ) ( ) ( ) ( ) ( ) exp[ { ( ) ( ) 2 }]

( ) ( ) exp[ { ( ) ( ) 2 }]

r t

t r

F u R u T u R u T u j u u ux

R u T u j u u ux

φ φ

φ φ

= + + − +

+ − −
 (6.3) 

In (6.3), the first two terms correspond to the zero-order terms and the last two terms are 

the desired cross-correlation components between the reference and input signatures. To 

eliminate the zero-order terms, we include a Fourier plane image subtraction technique44, 

where the input-signature-only power spectrum and the reference-signature-only power 

spectrum are subtracted from the JPS found above. Afterwards, the modified JPS can be 

expressed as follows: 

 

2 2 2 2

0

0

( ) ( ) ( ) ( )

( ) ( ) exp[ { ( ) ( ) 2 }]

( ) ( ) exp[ { ( ) ( ) 2 }]

r t

t r

I u F u R u T u

R u T u j u u ux

R u T u j u u ux

φ φ

φ φ

= − −

= − + +

− −

 (6.4) 

 Classical JTC techniques yield large correlation side lobes and large correlation 

peak widths, leading to degraded detection performance.45,46 To provide sharp 

correlation peaks and small correlation side lobes, the modified JPS in (6.4) is multiplied 

by the FAF before performing the final inverse Fourier transform. The FAF is 

characterized by the transfer function defined as follows: 

 2

( )
( )

( ) ( )

A u
H u

B u R u
=

+
 (6.5) 

where ( )A u  and ( )B u  are either constants or functions of u . When ( ) 1A u =  

and
2

( ) ( )R u B u≫ , the FAF can be approximated as follows: 

 2

1
( )

( )
H u

R u
≈  (6.6) 
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 The last step of the SFJTC algorithm is an inverse Fourier transform of the 

filtered, modified JPS, yielding the correlation output: 

 
21( ) { ( ) ( ) }x F H u I u−= ×C  (6.7) 

 A block diagram of the SFJTC algorithm is shown in Figure 72. 

 

Figure 72. 1-D SFJTC algorithm. 

C.  Detection Statistic Formulation 

 As mentioned earlier, a hyperspectral scene is represented as a 3-D data cube, 

where the first two dimensions are spatial with RN  rows and CN  columns, and the third 

dimension is spectral with BN  bands. Thus, the scene contains a total of R CN N×  pixels. 
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In our work, we will use a pixel-based processing approach where pixel ( , )i j  has a 

corresponding hyperspectral signature vector ,i js  given as follows: 

 , , , ,[ (1), (2), ( )]

( 1,2, , , 1,2, , )

T
i j i j i j i j B

R C

s s s N

i N j N

=

= =

s …

… …
 (6.8) 

 All of the signature vectors in the hyperspectral image are subject to the SFJTC 

algorithm, and their correlation outputs , ( )i jC x  with the target spectral signature are 

computed. Previous work has indicated that sole use of the largest value of the 

correlation output, known as the peak, does not yield distinguishable correlation 

performance.18 As a result, we have computed a decision metric D  for each pixel ( , )i j  

defined by the following: 

 
clutter

peak
D

α

µ
 

=  
 

 (6.9) 

where max( ( ))peak C x= and occurs at location peakx x= in ( )C x . The clutter in the 

correlation output consists of all values of ( )C x  excluding the value at peakx ; it can be 

interpreted as a measure of noise in the correlation output.44 In (6.9), clutterµ represents 

the average value of the clutter and is given by the following: 

 
,

1
( )

1
peak

clutter
j j xC

C x
L

µ
≠

=
− ∑  (6.10) 

where CL  is the length of the correlation output vector ( )C x .The exponent α  in (6.9) 

can be selected to adjust the range of values that D  can take. In our work, we have 
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empirically set 0.25α = . The detection statistic given by (6.9) is more reliable than the 

peak since it uses more information from the correlation output. 

D.  The Wavelet Transform 

1.  Introduction 

 The wavelet transform is a mathematical tool for performing a multiresolution 

analysis (MRA) of a signal.47-49 Wavelets have had many successful applications in data 

compression50, noise removal51, and texture classification52. In the signal processing 

arena, they are commonly used to represent a signal in terms of its global features, 

yielding the general shape of the signal, and its local features, yielding the details that 

make the signal unique. The wavelet transform has been developed in both the 

continuous and discrete domains—the continuous wavelet transform (CWT) and discrete 

wavelet transform (DWT), respectively. 

 Wavelets have also been used in the exploitation of HSI data. Bruce and Li have 

investigated the feasibility of derivative analysis of hyperspectral signatures for 

computing space-scale images and spectral fingerprints53. The application of wavelet-

based feature extraction for the classification of agricultural hyperspectral imagery has 

been studied by Bruce, Koger, and Li.54 They show that the wavelet transform approach 

is superior to conventional feature extraction methods in terms of overall classification 

accuracy. The use of the DWT for dimensionality reduction of HSI data has been 

investigated by Kaewpijit, Le Moigne, and El-Ghazawi.55 They show that the DWT is 

superior to principal components analysis (PCA) for dimensionality reduction and yields 
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better or comparable classification accuracy on HSI data, in addition to being more 

computationally efficient than PCA. Bruce, Morgan, and Larsen investigate the use of 

the wavelet coefficients’ scalar energies as features for use in a statistical classification 

system of hyperspectral signals, particularly focusing on the ability to classify subpixel 

targets.56 

2.  The continuous wavelet transform 

 The continuous wavelet transform (CWT) of a signal( )f t  is an inner product 

between ( )f t and the wavelet function, and is defined as follows: 

 *
, ,( , ) , ( ) ,a b a bW f a b f f t dtψ ψ ψ

+∞

−∞
= = ∫  (6.11) 

where .,.  denotes the standard inner product on 2( )L ℜ . *
,a bψ  is the complex conjugate 

of ,a bψ , which is the family of wavelet functions that satisfy the following: 

 ,

1
( ) , , , 0a b

t b
t a b a

aa
ψ ψ − = ∈ℜ ≠ 

 
 (6.12) 

 The function ( )tψ  must satisfy the following admissibility condition in order to 

qualify as a wavelet: 

 
2

( ( ))F t
d

ψ

ω
ω

+∞

−∞

< ∞∫  (6.13) 

where ( )F ⋅  denotes the Fourier transform, and ω  is the frequency-domain variable. The 

admissibility condition implies two things. First, the mother wavelet is oscillatory in 

nature and has an average value of zero. Second, it exhibits “compact support” and 
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decays exponentially. As a result of the continuous scale and translation parameters a  

and b , the CWT is highly redundant. To alleviate the redundancy, the wavelet series 

was introduced, which is simply a discretization of the CWT.48 

3.  The discrete wavelet transform 

 The DWT is a highly efficient alternative to the CWT that works by discretizing 

the scale and translation parameters a  and b . A computationally fast implementation of 

the wavelet transform is known as the Mallat algorithm, which represents the wavelet 

basis functions with a filter bank of low-pass and high-pass filters that meet certain 

constraints.48 The general form of the 1-D DWT is shown in Figure 73. 

 

Figure 73. Recursive filtering diagram of the Mallat algorithm for 1-D DWT. 

 

 The original signal [ ]nf  is passed through low-pass and high-pass filters with 

FIRs [ ]nh and [ ]ng , respectively. The low-pass and high-pass filter coefficients are 

related by the following: 

f[n] cD1 g[n] 2 

h[n] 2 cA1 g[n] 2 

h[n] 2 

cD2 

cA2 … 
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 [ 1 ] ( 1) [ ]nL n n− − = −g h  (6.14) 

where L is the length of the filters. The filtered signals are then decimated by a factor of 

two, yielding the coefficients at the first level of decomposition. At each decomposition 

level, the outputs along the low-pass branch are known as the approximation 

coefficients, while the outputs along the high-pass branch are known as the detail 

coefficients. Multiple levels of decomposition are executed by iteratively repeating the 

filtering and dyadic decimation procedure on the approximation coefficients. The 

process is repeated K  levels, and the approximation coefficients KcA and detail 

coefficients , {1, , }jcD j K∈ …  are known as the wavelet coefficients. The coefficients 

are often concatenated into a single vector and denoted by w : 

 [ ]K K K -1 1cA cD cD cD= …w  (6.15) 

 Many different families of wavelets with varying properties are defined.49 In this 

work, we use the well-known Daubechies wavelets of order 4 (db4). 

E.  Use of the DWT Coefficients for SFJTC-based Detection 

 In this section, our goal is to explore any performance improvement by running 

the SFJTC detection algorithm in the wavelet domain. To do this, we will apply the 

DWT to the input scene signatures and target signatures and run the SFJTC algorithm 

using the DWT approximation and detail coefficients of the signatures. By doing this, 

we can assess the class separability of the DWT coefficients of the signatures relative to 

the original signatures. We will also explore the effect that the number of DWT 
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decomposition levels has on the SFJTC detection performance. At each decomposition 

level, we will assess the impact of using particular combinations of the DWT 

approximation and detail coefficients at that level as well as all of the DWT coefficients. 

Table 57 shows the various combinations of DWT coefficients for decomposition levels 

1 – 3. It should be noted that a large number of DWT combinations exist with respect to 

the combinations of individual coefficients. The combinations in Table 57 are simply the 

various possibilities of grouping the contiguous subsets of approximation and detail 

coefficients at a particular decomposition level. 

 
 
 

Table 57. DWT coefficient combinations for decomposition levels 1 – 3. 

Level DWT Coefficient Combinations 

1 cA1, cA1cD1 

2 cA2, cA2cD1, cA2cD2, cA2cD2cD1 

3 
cA3, cA3cD1, cA3cD1cD2, cA3cD1cD3 

cA3cD2, cA3cD3, cA3cD3cD2, cA3cD3cD2cD1 

 

 

 

 For a given scene and the associated target signature, the DWT coefficients are 

generated using the db4 wavelet at the desired decomposition level j. The SFJTC 

detection algorithm is run using each DWT coefficient combination in Table 57 of the 

scene and target signatures. To quantify improvement and compare performance in the 

detection process, ROC curves are generated, and the areas under the ROC curves 

(AUROCs) are computed. For sake of brevity and without loss of generality, only the 
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ROC curves corresponding to CASI_urban_10 and HYDICE_urban_10 for both target 

variability models are provided. 

 We first applied the procedure to the scenes based on the simple Gaussian model. 

Table 58 and Table 59 provide the AUROCs corresponding to the ROC curves for the 

detection results on the urban and vegetative CASI scenery, respectively. Similarly, 

Table 60 and Table 61 provide the same data for the urban and vegetative HYDICE 

scenery. Each table provides the AUROCs of SFJTC-based detection using the original 

signatures and the fourteen DWT coefficient combinations listed in Table 57. Table 62 - 

Table 65 correspond to the scenes based on the adaptive Gaussian model. 

 The results for the urban CASI scenery are shown in Table 58. Notice that a total 

of 56 DWT combinations are presented—14 combinations for each of the 4 data cubes. 

For this scene, 50 out of 56 DWT combinations, or ~89.28% of the combinations, 

provided either identical or improved AUROCs when compared to the AUROCs using 

the original signatures. Notice how DWT combination 6 (cA2cD2) does consistently 

poorly across all four data cubes. The ROC curves corresponding to CASI_urban_10 are 

shown in Figure 74 and Figure 75. 
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Table 58. AUROCs of DWT combinations on urban CASI scenery using simple Gaussian model. 

Index Features CASI_urban_8 CASI_urban_10 CASI_urban_12 CASI_urban_15 

1 Original 0.2653 0.5393 0.9079 0.9947 

2 cA1 0.7059 0.9187 0.9857 0.9963 

3 cA1cD1 0.4331 0.7478 0.9494 0.9955 

4 cA2 0.7091 0.8465 0.9192 0.9652 

5 cA2cD1 0.6577 0.8974 0.9789 0.9964 

6 cA2cD2 0.2246 0.2361 0.2113 0.2416 

7 cA2cD2cD1 0.6188 0.9032 0.9877 0.9982 

8 cA3 0.9686 0.9910 0.9947 0.9956 

9 cA3cD1 0.9090 0.9835 0.9956 0.9974 

10 cA3cD1cD2 0.8752 0.9808 0.9959 0.9976 

11 cA3cD1cD3 0.9367 0.9874 0.9959 0.9973 

12 cA3cD2 0.9615 0.9878 0.9956 0.9965 

13 cA3cD3 0.9740 0.9915 0.9956 0.9963 

14 cA3cD3cD2 0.9402 0.9898 0.9975 0.9981 

15 cA3cD3cD2cD1 0.7472 0.9599 0.9958 0.9987 
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Figure 74. ROC curves of DWT level 1 and 2 coefficients on CASI_urban_10 with simple Gaussian model. 
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Figure 75. ROC curves of DWT level 3 coefficients on CASI_urban_10 with simple Gaussian model. 
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Table 59. AUROCs of DWT combinations on vegetative CASI scenery using simple Gaussian model. 

Index Features CASI_veg_8 CASI_veg_10 CASI_veg_12 CASI_veg_15 

1 Original 0.3756 0.7779 0.9614 0.9916 

2 cA1 0.8273 0.9537 0.9888 0.9901 

3 cA1cD1 0.5806 0.8669 0.9714 0.9921 

4 cA2 0.8740 0.9562 0.9866 0.9903 

5 cA2cD1 0.8610 0.9656 0.9899 0.9909 

6 cA2cD2 0.2302 0.2678 0.2864 0.2417 

7 cA2cD2cD1 0.8306 0.9584 0.9915 0.9916 

8 cA3 0.9752 0.9848 0.9852 0.9852 

9 cA3cD1 0.9630 0.9894 0.9898 0.9898 

10 cA3cD1cD2 0.9521 0.9890 0.9899 0.9899 

11 cA3cD1cD3 0.9763 0.9893 0.9894 0.9894 

12 cA3cD2 0.9838 0.9881 0.9882 0.9882 

13 cA3cD3 0.9862 0.9881 0.9881 0.9881 

14 cA3cD3cD2 0.9779 0.9901 0.9901 0.9901 

15 cA3cD3cD2cD1 0.9024 0.9876 0.9917 0.9917 

 

 

 
 The results for the vegetative CASI scenery are shown in Table 59. For this 

scene, 42 out of 56 DWT combinations, or 75% of the combinations, yielded either 

identical or improved AUROCs when compared to the AUROCs using the original 

signatures. Once again, notice how DWT combination 6 (cA2cD2) consistently performs 

poorly across all four data cubes.  
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Table 60. AUROCs of DWT combinations on urban HYDICE scenery using simple Gaussian model. 

Index Features HYDICE_urban_8 HYDICE_urban_10 HYDICE_urban_12 HYDICE_urban_15 

1 Original 0.3459 0.6991 0.9695 0.9999 

2 cA1 0.3881 0.7126 0.9806 1.0000 

3 cA1cD1 0.4268 0.7218 0.9669 1.0000 

4 cA2 0.7513 0.9308 0.9965 0.9999 

5 cA2cD1 0.8226 0.9898 0.9997 1.0000 

6 cA2cD2 0.9463 0.9988 0.9999 1.0000 

7 cA2cD2cD1 0.7201 0.9505 0.9998 1.0000 

8 cA3 0.9691 0.9948 0.9993 0.9993 

9 cA3cD1 0.7962 0.9249 0.9734 0.9911 

10 cA3cD1cD2 0.8514 0.9775 0.9985 0.9988 

11 cA3cD1cD3 0.9719 0.9999 1.0000 1.0000 

12 cA3cD2 0.9502 0.9894 0.9969 0.9971 

13 cA3cD3 0.9450 0.9945 0.9991 0.9994 

14 cA3cD3cD2 0.9441 0.9930 0.9996 0.9997 

15 cA3cD3cD2cD1 0.9303 0.9963 0.9998 0.9998 

 

 

 

 For the urban HYDICE scenery, Table 60 shows that 49 out of 56 combinations, 

or 87.5% of the combinations, yielded either identical or improved AUROCs when 

compared to the AUROCs using the original signatures. The ROC curves corresponding 

to HYDICE_urban_10 are shown in Figure 76 and Figure 77. 
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Figure 76. ROC curves of DWT level 1 and 2 coefficients on HYDICE_urban_10 with adaptive Gaussian model. 
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Figure 77. ROC curves of DWT level 3 coefficients on HYDICE_urban_10 with adaptive Gaussian model. 
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Table 61. AUROCs of DWT combinations on vegetative HYDICE scenery using simple Gaussian model. 

Index Features HYDICE_veg_8 HYDICE_veg_10 HYDICE_veg_12 HYDICE_veg_15 

1 Original 0.3179 0.5223 0.9279 0.9986 

2 cA1 0.5796 0.9296 0.9948 1.0000 

3 cA1cD1 0.4791 0.7887 0.9795 0.9995 

4 cA2 0.7515 0.9049 0.9712 0.9969 

5 cA2cD1 0.6120 0.9537 0.9999 1.0000 

6 cA2cD2 0.9189 0.9874 0.9987 0.9988 

7 cA2cD2cD1 0.8351 0.9705 0.9972 0.9984 

8 cA3 0.9525 0.9926 0.9927 0.9927 

9 cA3cD1 0.8631 0.9899 0.9994 0.9995 

10 cA3cD1cD2 0.7964 0.9765 0.9992 0.9995 

11 cA3cD1cD3 0.9441 0.9986 1.0000 1.0000 

12 cA3cD2 0.9137 0.9910 0.9927 0.9927 

13 cA3cD3 0.2398 0.2510 0.2514 0.2467 

14 cA3cD3cD2 0.9968 1.0000 1.0000 1.0000 

15 cA3cD3cD2cD1 0.9761 0.9998 1.0000 1.0000 

 

 

 

 For the vegetative HYDICE scenery, Table 61 shows that 48 out of 56 

combinations, or ~85.71% of the combinations, yielded either identical or improved 

AUROCs when compared to the AUROCs using the original signatures. Notice how 

DWT combination 13 (cA3cD3) does consistently poorly across all four data cubes. 
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Table 62. AUROCs of DWT combinations on urban CASI scenery using adaptive Gaussian model. 

Index Features CASI_urban_8 CASI_urban_10 CASI_urban_12 CASI_urban_15 

1 Original 0.9967 0.9980 0.9980 0.9980 

2 cA1 0.9935 0.9965 0.9968 0.9968 

3 cA1cD1 0.9937 0.9969 0.9972 0.9972 

4 cA2 0.9424 0.9615 0.9668 0.9715 

5 cA2cD1 0.9945 0.9970 0.9972 0.9972 

6 cA2cD2 0.3185 0.2936 0.2588 0.2148 

7 cA2cD2cD1 0.9975 0.9984 0.9984 0.9984 

8 cA3 0.9890 0.9945 0.9954 0.9957 

9 cA3cD1 0.9946 0.9972 0.9975 0.9975 

10 cA3cD1cD2 0.9950 0.9974 0.9976 0.9976 

11 cA3cD1cD3 0.9932 0.9970 0.9973 0.9974 

12 cA3cD2 0.9904 0.9958 0.9965 0.9966 

13 cA3cD3 0.9916 0.9957 0.9962 0.9963 

14 cA3cD3cD2 0.9958 0.9979 0.9981 0.9981 

15 cA3cD3cD2cD1 0.9974 0.9987 0.9987 0.9987 

 

 

 

 For the urban CASI scenery based on the adaptive Gaussian model, Table 62 

shows that 10 out of 56 combinations, or 17.86% of the combinations, yielded either 

identical or improved AUROCs when compared to the AUROCs using the original 

signatures. As was the case with the urban and vegetative CASI scenery based on the 

simple Gaussian model, DWT combination 6 (cA2cD2) consistently performs poorly 

across all four data cubes. The ROC curves corresponding to CASI_urban_10 are shown 

in Figure 78 and Figure 79. 
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Figure 78. ROC curves of DWT level 1 and 2 coefficients on CASI_urban_10 with adaptive Gaussian model. 
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Figure 79. ROC curves of DWT level 3 coefficients on CASI_urban_10 with adaptive Gaussian model. 
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Table 63. AUROCs of DWT combinations on vegetative CASI scenery using adaptive Gaussian model. 

Index Features CASI_veg_8 CASI_veg_10 CASI_veg_12 CASI_veg_15 

1 Original 0.9916 0.9916 0.9916 0.9916 

2 cA1 0.9891 0.9901 0.9901 0.9901 

3 cA1cD1 0.9919 0.9929 0.9929 0.9929 

4 cA2 0.9866 0.9902 0.9903 0.9903 

5 cA2cD1 0.9909 0.9909 0.9909 0.9909 

6 cA2cD2 0.3455 0.3626 0.2722 0.2101 

7 cA2cD2cD1 0.9916 0.9916 0.9916 0.9916 

8 cA3 0.9849 0.9852 0.9852 0.9852 

9 cA3cD1 0.9897 0.9898 0.9898 0.9898 

10 cA3cD1cD2 0.9898 0.9899 0.9899 0.9899 

11 cA3cD1cD3 0.9894 0.9894 0.9894 0.9894 

12 cA3cD2 0.9880 0.9882 0.9882 0.9882 

13 cA3cD3 0.9881 0.9881 0.9881 0.9881 

14 cA3cD3cD2 0.9901 0.9901 0.9901 0.9901 

15 cA3cD3cD2cD1 0.9917 0.9917 0.9917 0.9917 

 

 

 

 Table 63 provides the results for the vegetative CASI scenery based on the 

adaptive Gaussian model. Twelve out of the 56 combinations, or 21.43% of the 

combinations, yielded either identical or improved AUROCs when compared to the 

AUROCs using the original signatures. Yet again, DWT combination 6 (cA2cD2) 

consistently performs poorly across all four data cubes.  
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Table 64. AUROCs of DWT combinations on urban HYDICE scenery using adaptive Gaussian model. 

Index Features HYDICE_urban_8 HYDICE_urban_10 HYDICE_urban_12 HYDICE_urban_15 

1 Original 0.9715 0.9992 0.9999 1.0000 

2 cA1 0.7942 0.9910 1.0000 1.0000 

3 cA1cD1 0.8662 0.9985 1.0000 1.0000 

4 cA2 0.7458 0.9644 0.9972 0.9999 

5 cA2cD1 0.9752 0.9999 1.0000 1.0000 

6 cA2cD2 0.9772 0.9999 1.0000 1.0000 

7 cA2cD2cD1 0.9516 0.9988 1.0000 1.0000 

8 cA3 0.8430 0.9816 0.9969 0.9993 

9 cA3cD1 0.8613 0.9544 0.9829 0.9916 

10 cA3cD1cD2 0.9220 0.9928 0.9988 0.9988 

11 cA3cD1cD3 0.9835 0.9999 1.0000 1.0000 

12 cA3cD2 0.9193 0.9841 0.9968 0.9971 

13 cA3cD3 0.7589 0.9056 0.9776 0.9992 

14 cA3cD3cD2 0.9527 0.9946 0.9997 0.9997 

15 cA3cD3cD2cD1 0.9675 0.9983 0.9998 0.9998 

 

 

 

 For the urban HYDICE scenery, Table 64 shows that 18 out of 56 combinations, 

or ~32.14% of the combinations, yielded either identical or improved AUROCs when 

compared to the AUROCs using the original signatures. The urban HYDICE scenery 

does not have a particular DWT coefficient combination that performs poorly on any of 

the data cubes. The ROC curves corresponding to HYDICE_urban_10 are shown in 

Figure 80 and Figure 81. 
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Figure 80. ROC curves of DWT level 1 and 2 coefficients on HYDICE_urban_10 with adaptive Gaussian model. 
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Figure 81. ROC curves of DWT level 3 coefficients on HYDICE_urban_10 with adaptive Gaussian model. 
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Table 65. AUROCs of DWT combinations on vegetative HYDICE scenery using adaptive Gaussian model. 

Index Features HYDICE_veg_8 HYDICE_veg_10 HYDICE_veg_12 HYDICE_veg_15 

1 Original 0.9986 0.9986 0.9986 0.9986 

2 cA1 0.9962 1.0000 1.0000 1.0000 

3 cA1cD1 0.9995 0.9995 0.9995 0.9995 

4 cA2 0.9914 0.9965 0.9969 0.9969 

5 cA2cD1 1.0000 1.0000 1.0000 1.0000 

6 cA2cD2 0.9988 0.9988 0.9988 0.9988 

7 cA2cD2cD1 0.9984 0.9984 0.9984 0.9984 

8 cA3 0.9893 0.9927 0.9927 0.9927 

9 cA3cD1 0.9992 0.9995 0.9995 0.9995 

10 cA3cD1cD2 0.9993 0.9995 0.9995 0.9995 

11 cA3cD1cD3 0.9999 1.0000 1.0000 1.0000 

12 cA3cD2 0.9927 0.9927 0.9927 0.9927 

13 cA3cD3 0.3074 0.3330 0.3543 0.3324 

14 cA3cD3cD2 1.0000 1.0000 1.0000 1.0000 

15 cA3cD3cD2cD1 1.0000 1.0000 1.0000 1.0000 

 

 

 

 For the vegetative HYDICE scenery shown in Table 65, 35 out of 56 

combinations, or 62.50% of the combinations, yielded either identical or improved 

AUROCs when compared to the AUROCs using the original signatures. As was the case 

with the vegetative HYDICE scenery based on the simple Gaussian model, DWT 

combination 13 (cA3cD3) does consistently poorly across all four data cubes. 

 As the previous tables and figures have shown, use of the DWT coefficients as 

features can provide improved detection. Clearly, the improvement is affected by the 

model of target variability and the severity of variability of the targets in the scenes. In 
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general, SFJTC detection using the original signatures deteriorates as the variability of 

the targets increases. However, particular combinations of DWT coefficients provide 

consistently reliable detection performance, regardless of the severity of variability of 

the scene targets. For the simple Gaussian model, examples of these DWT combinations 

include combination 13 (cA3cD3) in Table 58 and Table 59, combination 11 (cA3cD1cD3) 

in Table 60, and combination 14 (cA3cD3cD2) in Table 61. For the adaptive Gaussian 

model, examples of these DWT combinations include combination 15 (cA3cD3cD2cD1) 

in Table 62 and Table 63, combination 11 (cA3cD1cD3) in Table 64, and combination 14 

(cA3cD3cD2)  in Table 65. 

 By the same token, in some of the scenery, there appears to be a particular DWT 

coefficient combination that provides consistently poor results on all the data cubes. 

Examples of this include combination 6 (cA2cD2) in Table 58, Table 59, Table 62, and 

Table 63; these tables correspond to the urban and vegetative CASI scenery for both 

models, respectively. Similarly, another example includes combination 13 (cA3cD3) in 

Table 61 and Table 65 corresponding to the vegetative HYDICE scenery for both 

models, respectively. 

 As we have seen, results indicate that particular combinations of DWT 

coefficients perform better than others. In the next section, we will formulate an 

algorithm for choosing an optimal combination prior to detection. 
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F.  Selection of Optimal Combination of DWT Coefficients 

1.  Procedure 

 The purpose of our training algorithm is to determine the best set of DWT 

coefficients from Table 57 to use for SFJTC-based detection on a scene. Given that the 

training data should contain samples from both the target and background classes, how 

do we wisely select samples from both classes? 

 Concerning the target class, we are only given a pure target signature from a 

library; we do not have samples that characterize its spectral variability. As we did 

earlier with the SVDD work, we will introduce spectral variability into the target class 

by generating 100 signatures according to both target variability models discussed in 

Chapter IV. In both models, we will fix the value of 2σ  to achieve a SNR of 10 dB to 

ensure sufficient spectral variability. For the background class, we can safely use 

random samples from the scene since targets occur with such low probability. Assuming 

no a priori knowledge of the scene, we randomly select 8000 pixels, 20% of the total 

pixels, for use as our background training samples. These 8100 signatures form the 

training set for the supervised coefficient selection process. The ratio of 100 target 

signatures to 8000 background signatures was chosen to mimic a low probability 

scenario in the training data. The SFJTC algorithm is run between the training set 

signatures and the pure target signature using each of the DWT combinations in Table 

57. The DWT coefficient combination yielding the largest AUROC is selected as the 

optimal combination for a given scene. 
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2.  Results 

 Let us take a detailed look at the comprehensive rankings of the supervised 

coefficient selection algorithm on the urban CASI scenery. In Table 66, the results are 

shown for all four data cubes, where each coefficient combination is ranked in 

descending order along with its corresponding AUROC metric on the training data. 

 
 

Table 66. Supervised selection rankings for urban CASI scenery with simple Gaussian model. 

Index Features CASI_urban_8 CASI_urban_10 CASI_urban_12 CASI_urban_15 

1 Original 14 (0.4961) 14 (0.4890) 14 (0.4918) 14 (0.4948) 

2 cA1 9 (0.9398) 9 (0.9363) 9 (0.9329) 9 (0.9336) 

3 cA1cD1 13 (0.7490) 13 (0.7434) 13 (0.7453) 13 (0.7435) 

4 cA2 12 (0.8636) 12 (0.8599) 12 (0.8589) 12 (0.8601) 

5 cA2cD1 11 (0.8934) 11 (0.8889) 11 (0.8868) 11 (0.8883) 

6 cA2cD2 15 (0.1703) 15 (0.1734) 15 (0.1757) 15 (0.1749) 

7 cA2cD2cD1 10 (0.8966) 10 (0.8936) 10 (0.8921) 10 (0.8934) 

8 cA3 1 (0.9976) 1 (0.9971) 1 (0.9959) 1 (0.9961) 

9 cA3cD1 6 (0.9924) 6 (0.9910) 6 (0.9890) 6 (0.9898) 

10 cA3cD1cD2 7 (0.9894) 7 (0.9876) 7 (0.9855) 7 (0.9859) 

11 cA3cD1cD3 5 (0.9948) 5 (0.9937) 5 (0.9915) 5 (0.9920) 

12 cA3cD2 4 (0.9958) 4 (0.9952) 4 (0.9937) 3 (0.9944) 

13 cA3cD3 2 (0.9975) 2 (0.9969) 2 (0.9958) 2 (0.9957) 

14 cA3cD3cD2 3 (0.9964) 3 (0.9954) 3 (0.9939) 4 (0.9942) 

15 cA3cD3cD2cD1 8 (0.9711) 8 (0.9685) 8 (0.9654) 8 (0.9658) 

 
 

 
 We can make several observations from Table 66. First, the optimal combination 

on all four data cubes is DWT combination 8 (cA3), and the worst performing DWT 
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combination is combination 6 (cA2cD2). In the previous section, we commented on how 

DWT combination 6 consistently performed poorly on several scenes, and our algorithm 

appropriately ranks this combination as such. Also, with the exception of a couple of 

instances, the rankings are identical on all four data cubes. Notice that the eight DWT 

combinations pertaining to the 3rd level decomposition, combinations 8 – 15, are ranked 

as the top 8 performing combinations. Figure 82 shows the 8000 randomly selected 

signatures from casi_urban_10 that form the background class training signatures. 

Figure 83 shows the spectral variability of the 100 generated target signatures with the 

pure target signature in bold. 

 Table 67 shows the comprehensive rankings of the supervised coefficient 

selection algorithm on the urban HYDICE scenery using the simple Gaussian model. 

Once again, the results are identical on all the data cubes with the exception of a couple 

of instances. Again, the optimal combination for all four data cubes is DWT combination 

8 (cA3). Figure 84 and Figure 85 show the randomly selected background training 

signatures and the generated target training signatures, respectively. 

 For sake of brevity, the selected optimal DWT coefficient combinations for all of 

the data cubes for both target variability models are summarized in Table 68 – Table 71. 

For each data cube, the optimal DWT coefficient combination is listed along with the 

AUROC detection results using both the original signatures and the optimal DWT 

coefficient combination. 
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Figure 82. Randomly selected scene signatures used as background training data for CASI_urban_10. 

5 10 15 20 25 30 35

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Band

R
ef

le
ct

an
ce

 

Figure 83. Generated target training signatures for CASI_urban_10. 
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Table 67. Supervised selection rankings for urban HYDICE scenery with simple Gaussian model. 

Index Features HYDICE_urban_8 HYDICE_urban_10 HYDICE_urban_12 HYDICE_urban_15 

1 Original 14 (0.6395) 15 (0.6400) 15 (0.6366) 15 (0.6393) 

2 cA1 13 (0.6613) 13 (0.6616) 13 (0.6631) 13 (0.6633) 

3 cA1cD1 15 (0.6389) 14 (0.6406) 14 (0.6369) 14 (0.6399) 

4 cA2 12 (0.8985) 12 (0.8994) 12 (0.8990) 12 (0.8995) 

5 cA2cD1 7 (0.9895) 7 (0.9893) 7 (0.9889) 7 (0.9900) 

6 cA2cD2 3 (0.9982) 3 (0.9976) 3 (0.9978) 3 (0.9982) 

7 cA2cD2cD1 10 (0.9592) 10 (0.9589) 10 (0.9589) 10 (0.9595) 

8 cA3 1 (0.9990) 1 (0.9992) 1 (0.9992) 1 (0.9993) 

9 cA3cD1 11 (0.9090) 11 (0.9093) 11 (0.9091) 11 (0.9132) 

10 cA3cD1cD2 9 (0.9768) 9 (0.9762) 9 (0.9774) 9 (0.9782) 

11 cA3cD1cD3 2 (0.9984) 2 (0.9982) 2 (0.9983) 2 (0.9985) 

12 cA3cD2 6 (0.9946) 6 (0.9942) 6 (0.9944) 6 (0.9952) 

13 cA3cD3 8 (0.9881) 8 (0.9886) 8 (0.9884) 8 (0.9889) 

14 cA3cD3cD2 4 (0.9971) 4 (0.9969) 4 (0.9968) 4 (0.9975) 

15 cA3cD3cD2cD1 5 (0.9963) 5 (0.9961) 5 (0.9961) 5 (0.9968) 
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Figure 84. Randomly selected scene signatures used as background training data for HYDICE_urban_10. 
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Figure 85. Generated target training signatures for HYDICE_urban_10. 
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Table 68. Optimal DWT coefficient results on CASI scenery with simple Gaussian model. 

Data Cube Optimal DWT Combination 
AUROC using 

DWT Combination 

AUROC using 

Original Data 

CASI_urban_15 8 (cA3) 0.9956 0.9947 

CASI_urban_12 8 (cA3) 0.9947 0.9079 

CASI_urban_10 8 (cA3) 0.9910 0.5393 

CASI_urban_8 8 (cA3) 0.9686 0.2653 

CASI_veg_15 8 (cA3) 0.9852 0.9916 

CASI_veg_12 13 (cA3cD3) 0.9881 0.9614 

CASI_veg_10 8 (cA3) 0.9848 0.7779 

CASI_veg_8 11 (cA3cD1cD3) 0.9763 0.3756 

 

 

 

Table 69. Optimal DWT coefficient results on HYDICE scenery with simple Gaussian model. 

Data Cube Optimal DWT Combination 
AUROC using 

DWT Combination 

AUROC using 

Original Data 

HYDICE_urban_15 8 (cA3) 0.9993 0.9999 

HYDICE_urban_12 8 (cA3) 0.9993 0.9695 

HYDICE_urban_10 8 (cA3) 0.9948 0.6991 

HYDICE_urban_8 8 (cA3) 0.9691 0.3459 

HYDICE_veg_15 15 (cA3cD3cD2cD1) 1.0000 0.9986 

HYDICE_veg_12 14 (cA3cD3cD2) 1.0000 0.9279 

HYDICE_veg_10 15 (cA3cD3cD2cD1) 0.9998 0.5223 

HYDICE_veg_8 15 (cA3cD3cD2cD1) 0.9761 0.3179 
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Table 70. Optimal DWT coefficient results on CASI scenery with adaptive Gaussian model. 

Data Cube Optimal DWT Combination 
AUROC using 

DWT Combination 

AUROC using 

Original Data 

CASI_urban_15 15 (cA3cD3cD2cD1) 0.9987 0.9980 

CASI_urban_12 15 (cA3cD3cD2cD1) 0.9987 0.9980 

CASI_urban_10 15 (cA3cD3cD2cD1) 0.9987 0.9980 

CASI_urban_8 15 (cA3cD3cD2cD1) 0.9974 0.9967 

CASI_veg_15 15 (cA3cD3cD2cD1) 0.9917 0.9916 

CASI_veg_12 12 (cA3cD2) 0.9882 0.9916 

CASI_veg_10 15 (cA3cD3cD2cD1) 0.9917 0.9916 

CASI_veg_8 15 (cA3cD3cD2cD1) 0.9917 0.9916 

 

 

 

Table 71. Optimal DWT coefficient results on HYDICE scenery with adaptive Gaussian model. 

Data Cube Optimal DWT Combination 
AUROC using 

DWT Combination 

AUROC using 

Original Data 

HYDICE_urban_15 11 (cA3cD1cD3) 1.0000 1.0000 

HYDICE_urban_12 11 (cA3cD1cD3) 1.0000 0.9999 

HYDICE_urban_10 11 (cA3cD1cD3) 0.9999 0.9992 

HYDICE_urban_8 5 (cA2cD1) 0.9752 0.9715 

HYDICE_veg_15 2 (cA1) 1.0000 0.9986 

HYDICE_veg_12 2 (cA1) 1.0000 0.9986 

HYDICE_veg_10 2 (cA1) 1.0000 0.9986 

HYDICE_veg_8 3 (cA1cD1) 0.9995 0.9986 
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3. Conclusion 

 The results on the CASI scenery for the simple Gaussian model are shown in 

Table 68. As the table shows, the improvement in detection performance is proportional 

to the severity of the variability. For the CASI scenery, the AUROC improvement is as 

much as 70% and 60% for CASI_urban_8 and CASI_veg_8, respectively. As Table 69 

shows, the same trends hold for the HYDICE scenery as far as the improvement in 

detection performance. In fact, the AUROC improvement is as much as 62% and 65% 

for HYDICE_urban_8 and HYDICE_veg_8, respectively. 

 The results using the adaptive Gaussian model are shown in Table 70 and Table 

71. In general, the SFJTC results using the original signatures are already high and do 

not degrade with increasing variability as is the case with the simple Gaussian model. 

Regardless, the use of the SFJTC technique with the optimal DWT combination provides 

slightly increased or identical performance on all the data cubes. The next chapter will 

highlight these performance improvements by depicting the ROC curves of SFJTC-

based detection using the original signatures and the optimal DWT coefficient 

combinations. 
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CHAPTER VII 

FINAL DETECTION RESULTS AND COMPARISONS 

 

 In this chapter, we will present the results of our SVDD-based target detection 

scheme on all data cubes corresponding to both target variability models. We will also 

provide the results of our SFJTC algorithm on all data cubes corresponding to both 

target variability models. For the SVDD technique, the number of FPs and TPs will be 

listed for each data cube. For the SFJTC algorithm, we will provide the results in the 

form of ROC curves and AUROCs. For sake of comparison, we will run the traditional 

algorithms discussed in Chapter III on all data cubes corresponding to both target 

variability models. The results for the traditional detection algorithms will also be 

provided in the form of ROC curves and AUROCs. Section A provides the detection 

results for the simple Gaussian model, while section B provides the detection results for 

the adaptive Gaussian model. 

A. Results with Simple Gaussian Model 

1. SVDD performance comparisons 

 Here, we present the results of our SVDD-based detection scheme on all data 

cubes corresponding to the simple Gaussian model. The FPRs and TPRs will be 

provided for each data cube. For sake of comparison, we provide the TPRs of the AMF 

and CEM stochastic detection algorithms corresponding to the FPRs exhibited by the 
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SVDD. This provides a means of directly comparing the detection algorithms since the 

SVDD inherently performs binary classification, while the AMF and CEM outputs are 

continuous values that must be thresholded to yield the final output labels. Table 72 – 

Table 75 provide the detection results for all data cubes. 

 
 

Table 72. SVDD performance comparisons for urban CASI scenery using simple Gaussian model. 

Data Cube SVDD FPR SVDD TPR AMF TPR CEM TPR 

CASI_urban_15 1.7085e-02 (680) 0.955 (191) 0.705 (141) 0 

CASI_urban_12 1.8191e-02 (724) 0.955 (191) 0.730 (146) 0.045 (9) 

CASI_urban_10 1.7136e-02 (682) 0.955 (191) 0.660 (132) 0.010 (2) 

CASI_urban_8 1.4648e-02 (583) 0.295 (59) 0.680 (136) 0.215 (43) 

 

 

 

Table 73. SVDD performance comparisons for vegetative CASI scenery using simple Gaussian model. 

Data Cube SVDD FPR SVDD TPR AMF TPR CEM TPR 

CASI_veg_15 1.0050e-04 (4) 0.930 (186) 0.825 (165) 0 

CASI_veg_12 8.2915e-04 (33) 0.935 (187) 0.810 (162) 0.020 (4) 

CASI_veg_10 2.2613e-04 (9) 0.935 (187) 0.715 (143) 0.125 (25) 

CASI_veg_8 5.7789e-04 (23) 0.935 (187) 0.690 (138) 0.175 (35) 

 

 

 

 As Table 72 and Table 73 show, the CEM detection algorithm does poorly on the 

urban and vegetative CASI scenery. With the exception of CASI_urban_8, the SVDD 

provides a significant increase in the TPR compared to the AMF. The improvement is as 

much as 29.5% and 24.5% in the urban and vegetative scenery, respectively. 
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Table 74. SVDD performance comparisons for urban HYDICE scenery using simple Gaussian model. 

Data Cube SVDD FPR SVDD TPR AMF TPR CEM TPR 

HYDICE_urban_15 7.5377e-05 (3) 1.000 (200) 0.900 (180) 0 

HYDICE _urban_12 5.0251e-05 (2) 1.000 (200) 0.660 (132) 0 

HYDICE_urban_10 2.0101e-04 (8) 1.000 (200) 0.860 (172) 0 

HYDICE_urban_8 5.0251e-05 (2) 1.000 (200) 0.465 (93) 0 

 

 

 

Table 75. SVDD performance comparisons for vegetative HYDICE scenery using simple Gaussian model. 

Data Cube SVDD FPR SVDD TPR AMF TPR CEM TPR 

HYDICE_veg_15 5.2764e-04 (21) 0.990 (198) 1.000 (200) 0.98 (196) 

HYDICE_veg_12 5.0251e-05 (2) 0.975 (195) 0.985 (197) 0.940 (188) 

HYDICE_veg_10 0 0.970 (194) 0.750 (175) 0.585 (117) 

HYDICE_veg_8 0 0.300 (60) 0.805 (161) 0.280 (56) 

 
 
 
 For the urban HYDICE scenery, the CEM algorithm does miserably at such low 

FPRs. As Table 74 shows, at extremely low FPRs, the SVDD detects all targets and 

provides as little as a 10% increase in the TPR and as much as a 54.5% increase in the 

TPR when compared to the AMF. The CEM performs better on the vegetative HYDICE 

scenery, and both stochastic algorithms rival the performance of the SVDD for the two 

data cubes with the least variability. For HYDICE_veg_10, the SVDD outperforms the 

AMF and CEM by providing a 22% and 38.5% increase in the TPRs, respectively. 

However, for HYDICE_veg_8, the AMF outperforms the SVDD since the SVDD does 

not seem to capture the large spectral variability present in this data cube. 
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2. SFJTC performance comparisons 

 In this section, we present the results of SFJTC-based detection using both the 

original data and the optimal DWT coefficient combinations for each data cube. For sake 

of comparison, we have run the traditional stochastic AMF and CEM algorithms as well 

as the deterministic SAM and SID algorithms on the data cubes and have captured the 

AUROCs. For the ROC curves, the results of four detection algorithms will be shown:  

the AMF detector, the SID detector, the SFJTC technique using the original data, and the 

SFJTC technique using the optimal DWT coefficient combination (SFJTC_DWT). By 

doing this, our goal is to depict the performance differences between the following: 

1. The SFJTC techniques using the original data and the optimal DWT coefficient 

combination. 

2. The SFJTC technique using the optimal DWT coefficient combination and a 

traditional stochastic algorithm (AMF) and deterministic algorithm (SID). 

 Figure 86 - Figure 93 show the ROC curves corresponding to the urban and 

vegetative CASI scenery. Note that the range of values for the horizontal axis depicting 

the FPR may vary to highlight differences between the algorithms where applicable. 

Table 76 and Table 77 provide the AUROCs of detection for the traditional and SFJTC 

algorithms on the urban and vegetative CASI scenery. Figure 94 - Figure 101 are the 

ROC curves corresponding to the urban and vegetative HYDICE scenery. Table 78 and 

Table 79 provide the AUROCs of detection for the traditional and SFJTC algorithms on 

the urban and vegetative HYDICE scenery. 



 152 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

AMF

SID

SFJTC

SFJTC-DWT

 

Figure 86. SFJTC ROC curve comparisons for CASI_urban_15 using simple Gaussian model. 
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Figure 87. SFJTC ROC curve comparisons for CASI_urban_12 using simple Gaussian model. 
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Figure 88. SFJTC ROC curve comparisons for CASI_urban_10 using simple Gaussian model. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

AMF

SID

SFJTC

SFJTC-DWT

 

Figure 89. SFJTC ROC curve comparisons for CASI_urban_8 using simple Gaussian model. 
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Figure 90. SFJTC ROC curve comparisons for CASI_veg_15 using simple Gaussian model. 
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Figure 91. SFJTC ROC curve comparisons for CASI_veg_12 using simple Gaussian model. 
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Figure 92. SFJTC ROC curve comparisons for CASI_veg_10 using simple Gaussian model. 
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Figure 93. SFJTC ROC curve comparisons for CASI_veg_8 using simple Gaussian model. 
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Table 76. SFJTC AUROC comparisons for urban CASI scenery using simple Gaussian model. 

Data Cube AMF CEM SAM SID SFJTC SFJTC_DWT 

CASI_urban_15 0.8386 0.4286 0.2445 0.9951 0.9947 0.9956 

CASI_urban_12 0.8073 0.4883 0.2461 0.9938 0.9079 0.9947 

CASI_urban_10 0.7603 0.4334 0.2643 0.9824 0.5393 0.9910 

CASI_urban_8 0.7498 0.4716 0.2575 0.9239 0.2653 0.9686 

 

 

 

Table 77. SFJTC AUROC comparisons for vegetative CASI scenery using simple Gaussian model. 

Data Cube AMF CEM SAM SID SFJTC SFJTC_DWT 

CASI_veg_15 0.9646 0.1646 0.3450 0.9915 0.9916 0.9852 

CASI_veg_12 0.9208 0.2893 0.3509 0.9915 0.9614 0.9881 

CASI_veg_10 0.9148 0.4930 0.3466 0.9915 0.7779 0.9848 

CASI_veg_8 0.8539 0.4184 0.3516 0.9914 0.3756 0.9763 

 

 

 

 As Table 76 shows, the SFJTC_DWT technique yields the highest AUROC 

values on all data cubes for the urban CASI scenery. The ROC curves illustrate the 

performance improvement in running SFJTC using the DWT coefficients versus the 

original data. The ROC curves also show that the SFJTC_DWT technique outperforms 

the SID and AMF algorithms in progressively heavier scenarios of spectral variability. 

For the vegetative CASI scenery, the SID and SFJTC_DWT techniques provide very 

similar AUROC values. As shown by Table 77 and the ROC curves, the SID and 

SFJTC_DWT results for the vegetative CASI scenery are fairly uniform on all data 

cubes compared to the other algorithms. Again, notice the improvement in the 

SFJTC_DWT versus SFJTC using the original signatures as variability increases. 
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Figure 94. SFJTC ROC curve comparisons for HYDICE_urban_15 using simple Gaussian model. 
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Figure 95. SFJTC ROC curve comparisons for HYDICE_urban_12 using simple Gaussian model. 
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Figure 96. SFJTC ROC curve comparisons for HYDICE_urban_10 using simple Gaussian model. 
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Figure 97. SFJTC ROC curve comparisons for HYDICE_urban_8 using simple Gaussian model. 
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Figure 98. SFJTC ROC curve comparisons for HYDICE_veg_15 using simple Gaussian model. 
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Figure 99. SFJTC ROC curve comparisons for HYDICE_veg_12 using simple Gaussian model. 
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Figure 100. SFJTC ROC curve comparisons for HYDICE_veg_10 using simple Gaussian model. 
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Figure 101. SFJTC ROC curve comparisons for HYDICE_veg_8 using simple Gaussian model. 
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Table 78. SFJTC AUROC comparisons for urban HYDICE scenery using simple Gaussian model. 

Data Cube AMF CEM SAM SID SFJTC SFJTC_DWT 

HYDICE_urban_15 0.9947 0.9419 0.9464 1.0000 0.9999 0.9993 

HYDICE_urban_12 0.9625 0.9326 0.9464 1.0000 0.9695 0.9993 

HYDICE_urban_10 0.9309 0.9317 0.9463 0.9999 0.6991 0.9948 

HYDICE_urban_8 0.8485 0.9350 0.9463 0.9928 0.3459 0.9691 

 

 

 

Table 79. SFJTC AUROC comparisons for vegetative HYDICE scenery using simple Gaussian model. 

Data Cube AMF CEM SAM SID SFJTC SFJTC_DWT 

HYDICE_veg_15 1.0000 1.0000 0.6957 1.0000 0.9986 1.0000 

HYDICE_veg_12 0.9950 0.9998 0.6966 1.0000 0.9279 1.0000 

HYDICE_veg_10 0.9309 0.9939 0.6955 1.0000 0.5223 0.9998 

HYDICE_veg_8 0.9002 0.9822 0.6991 0.9382 0.3179 0.9761 

 

 

 

 For the urban HYDICE scenery, all of the detection algorithms perform better 

than they did for the CASI scenery. As Table 78 shows, the SID and SFJTC_DWT 

techniques perform similarly on this scenery, with the SID yielding slightly higher 

AUROCs on all the data cubes. For the vegetative HYDICE scenery, similar patterns are 

observed, however the CEM also performs well and similarly to SID and SFJTC_DWT, 

even at heavier levels of spectral variability. Once again, the ROC curves illustrate the 

magnitude in performance gains achieved as a result of running SFJTC with the optimal 

DWT coefficients rather than the original signatures. 



 162 

Table 80. Summary statistics of SFJTC AUROC comparisons for data based on simple Gaussian model. 

Scenery AMF CEM SAM SID SFJTC SFJTC_DWT 

Urban CASI 

0.7890 

(0.0415) 

0.4555 

(0.0292) 

0.2531 

(0.0094) 

0.9738 

(0.0337) 

0.6768 

(0.3380) 

0.9875 

(0.0127) 

Vegetative CASI 

0.9136 

(0.0455) 

0.3414 

(0.1448) 

0.3485 

(0.0032) 

0.9915 

(0) 

0.7766 

(0.2835) 

0.9836 

(0.0051) 

Urban HYDICE 

0.9342 

(0.0627) 

0.9353 

(0.0046) 

0.9463 

(0.0001) 

0.9982 

(0.0036) 

0.7536 

(0.3036) 

0.9906 

(0.0145) 

Vegetative HYDICE 

0.9565 

(0.0490) 

0.9940 

(0.0083) 

0.6967 

(0.0017) 

0.9846 

(0.0309) 

0.6917 

(0.3258) 

0.9940 

(0.0119) 

All 

0.8983 

(0.0807) 

0.6815 

(0.3034) 

0.5612 

(0.2861) 

0.9870 

(0.0225) 

0.7247 

(0.2836) 

0.9889 

(0.0111) 

 

 

 

 Table 80 provides summary statistics of the AUROCs for the SFJTC techniques 

and traditional algorithms. For each type of scenery and sensor, we have computed the 

mean and standard deviation (shown in italics) of the AUROCs for the corresponding 

data cubes. We have also computed the mean and standard deviation of the AUROCs for 

all of the data cubes, as shown in the last row of Table 80. 

 For the urban CASI scenery, the most difficult scenery, SFJTC_DWT 

outperforms the other algorithms with the largest mean and smallest standard deviation 

AUROC values. For the vegetative CASI scenery and the urban HYDICE scenery, the 

SFJTC_DWT technique does second best, just shy of the SID algorithm. The 

SFJTC_DWT technique performs better than the SID and remaining algorithms on the 

vegetative HYDICE scenery. Over all of the scenes corresponding to the simple 



 163 

Gaussian model, SFJTC_DWT provides the largest mean AUROC and smallest standard 

deviation of AUROC values. 

B. Results with Adaptive Gaussian Model 

1. SVDD performance comparisons 

 Here, we present the results of our SVDD-based detection scheme on all data 

cubes corresponding to the adaptive Gaussian model. As before, for sake of comparison, 

we provide the TPRs of the AMF and CEM stochastic detection algorithms 

corresponding to the FPRs exhibited by the SVDD. Table 81 – Table 84 provide the 

detection results for all data cubes. 

 
 

Table 81. SVDD performance comparisons for urban CASI scenery using adaptive Gaussian model. 

Data Cube SVDD FPR SVDD TPR AMF TPR CEM TPR 

CASI_urban_15 8.0402e-04 (32) 0.925 (185) 0.870 (174) 0 

CASI_urban_12 3.0402e-03 (121) 0.945 (189) 0.885 (177) 0 

CASI_urban_10 1.4322e-03 (57) 0.910 (182) 0.710 (142) 0 

CASI_urban_8 2.8894e-03 (115) 0.825 (165) 0.690 (138) 0 

 

 

 

Table 82. SVDD performance comparisons for vegetative CASI scenery using adaptive Gaussian model. 

Data Cube SVDD FPR SVDD TPR AMF TPR CEM TPR 

CASI_veg_15 2.5126e-05 (1) 0.930 (186) 0.910 (182) 0 

CASI_veg_12 3.2663e-04 (13) 0.930 (186) 0.920 (184) 0 

CASI_veg_10 2.5126e-05 (1) 0.930 (186) 0.785 (157) 0 

CASI_veg_8 3.2663e-04 (13) 0.925 (185) 0.825 (165) 0 
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Table 83. SVDD performance comparisons for urban HYDICE scenery using adaptive Gaussian model. 

Data Cube FPRs TPRs AMF TPR CEM TPR 

HYDICE_urban_15 3.5176e-04 (14) 1.000 (200) 1.000 (200) 0 

HYDICE _urban_12 1.0050e-04 (4) 1.000 (200) 0.995 (199) 0 

HYDICE_urban_10 5.0251e-05 (2) 1.000 (200) 0.775 (155) 0 

HYDICE_urban_8 2.0101e-04 (8) 1.000 (200) 0.860 (172) 0 

 

 

 

Table 84. SVDD performance comparisons for vegetative HYDICE scenery using adaptive Gaussian model. 

Data Cube FPRs TPRs AMF TPR CEM TPR 

HYDICE_veg_15 4.0201e-04 (16) 0.990 (198) 1.000 (200) 1.000 (200) 

HYDICE_veg_12 2.5126e-04 (10) 0.990 (198) 1.000 (200) 0.985 (197) 

HYDICE_veg_10 1.2563e-04 (5) 0.990 (198) 1.000 (200) 0.990 (198) 

HYDICE_veg_8 1.0050e-04 (4) 0.905 (181) 0.995 (199) 0.940 (188) 

 

 

 

 As Table 81 and Table 82 show, the SVDD is able to provide low FPRs on the 

order of 10e-03 and 10e-05 in the urban and vegetative CASI scenery, respectively. 

Once again, the CEM algorithm performs poorly on this scenery and cannot reliably 

operate at such low FPRs. The SVDD provides a TPR increase of as much as 20% and 

10% in the urban and vegetative scenery, respectively. 

 For the urban HYDICE scenery, the CEM cannot operate at such low FPRs. As 

we have mentioned before, the urban HYDICE scenery is the least difficult of the 

hyperspectral imagery with respect to the separation between target and background 

signatures. This is evident by the extremely low FPRs and high TPRs. As Table 83 

shows, the AMF performs just as well as the SVDD on the two data cubes with the least 
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spectral variability. However, for the other two data cubes, the AMF cannot maintain 

high TPRs for the corresponding FPRs. 

 As Table 84 shows, the CEM algorithm is able to provide reliably high TPRs on 

the vegetative HYDICE scenery. For the first three data cubes, all three algorithms 

provide nearly identical TPRs. However, for HYDICE_veg_8, the AMF TPR is 10% 

larger than the SVDD and 5.5% larger than the CEM algorithm. 

2. SFJTC performance comparisons 

 In this section, we present the results of SFJTC-based detection on the data cubes 

corresponding to the adaptive Gaussian model. Figure 102 – Figure 109 show the ROC 

curves corresponding to the urban and vegetative CASI scenery. Note that the range of 

values for the horizontal axis depicting the FPR may vary to highlight differences 

between the algorithms where applicable. Table 85 and Table 86 provide the AUROCs 

of detection for the traditional and SFJTC algorithms on the urban and vegetative CASI 

scenery. Figure 110 – Figure 117 are the ROC curves corresponding to the urban and 

vegetative HYDICE scenery. Table 87 and Table 88 provide the AUROCs of detection 

for the traditional and SFJTC algorithms on the urban and vegetative HYDICE scenery. 



 166 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

AMF

SID

SFJTC

SFJTC-DWT

 
 

Figure 102. SFJTC ROC curve comparisons for CASI_urban_15 using adaptive Gaussian model. 
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Figure 103. SFJTC ROC curve comparisons for CASI_urban_12 using adaptive Gaussian model. 
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Figure 104. SFJTC ROC curve comparisons for CASI_urban_10 using adaptive Gaussian model. 
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Figure 105. SFJTC ROC curve comparisons for CASI_urban_8 using adaptive Gaussian model. 
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Figure 106. SFJTC ROC curve comparisons for CASI_veg_15 using adaptive Gaussian model. 
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Figure 107. SFJTC ROC curve comparisons for CASI_veg_12 using adaptive Gaussian model. 
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Figure 108. SFJTC ROC curve comparisons for CASI_veg_10 using adaptive Gaussian model. 
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Figure 109. SFJTC ROC curve comparisons for CASI_veg_8 using adaptive Gaussian model. 
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Table 85. SFJTC AUROC comparisons for urban CASI scenery using adaptive Gaussian model. 

Data Cube AMF CEM SAM SID SFJTC SFJTC_DWT 

CASI_urban_15 0.9995 0.3889 0.2464 0.9951 0.9980 0.9987 

CASI_urban_12 0.9923 0.4052 0.2518 0.9951 0.9980 0.9987 

CASI_urban_10 0.9746 0.4151 0.2629 0.9947 0.9980 0.9987 

CASI_urban_8 0.9013 0.4538 0.2558 0.9857 0.9967 0.9974 

 

 

 

Table 86. SFJTC AUROC comparisons for vegetative CASI scenery using adaptive Gaussian model. 

Data Cube AMF CEM SAM SID SFJTC SFJTC_DWT 

CASI_veg_15 0.9998 0.0957 0.3483 0.9915 0.9916 0.9917 

CASI_veg_12 0.9892 0.0969 0.3517 0.9915 0.9916 0.9882 

CASI_veg_10 0.9662 0.1377 0.3538 0.9915 0.9916 0.9917 

CASI_veg_8 0.9568 0.2204 0.3765 0.9915 0.9916 0.9917 

 

 

 

 As Table 85 shows, SFJTC_DWT provides a marginal improvement over the 

SFJTC technique using the original signatures. With the exception of CASI_urban_15, 

SFJTC_DWT provides the largest AUROC values. The ROC curves shed more light 

onto the performance of these detectors. For example, Figure 104 clearly shows that both 

SFJTC techniques yield steeper ROC curves than the SID and AMF algorithms at 

extremely low FPRs. For the vegetative CASI scenery, the AMF and SID algorithms 

provide the largest AUROCs for the two data cubes with least variability, while both 

SFJTC techniques provide the largest AUROCS for the two data cubes with the most 

spectral variability. As Table 86 shows, the SID algorithm and SFJTC techniques 

provide the most consistent AUROCs on all the vegetative CASI scenery. 
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Figure 110. SFJTC ROC curve comparisons for HYDICE_urban_15 using adaptive Gaussian model. 
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Figure 111. SFJTC ROC curve comparisons for HYDICE_urban_12 using adaptive Gaussian model. 
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Figure 112. SFJTC ROC curve comparisons for HYDICE_urban_10 using adaptive Gaussian model. 
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Figure 113. SFJTC ROC curve comparisons for HYDICE_urban_8 using adaptive Gaussian model. 
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Figure 114. SFJTC ROC curve comparisons for HYDICE_veg_15 using adaptive Gaussian model. 
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Figure 115. SFJTC ROC curve comparisons for HYDICE_veg_12 using adaptive Gaussian model. 
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Figure 116. SFJTC ROC curve comparisons for HYDICE_veg_10 using adaptive Gaussian model. 
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Figure 117. SFJTC ROC curve comparisons for HYDICE_veg_8 using adaptive Gaussian model. 
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Table 87. SFJTC AUROC comparisons for urban HYDICE scenery using adaptive Gaussian model. 

Data Cube AMF CEM SAM SID SFJTC SFJTC_DWT 

HYDICE_urban_15 1.0000 0.9656 0.9463 1.0000 1.0000 1.0000 

HYDICE_urban_12 0.9950 0.9501 0.9459 1.0000 0.9999 1.0000 

HYDICE_urban_10 0.9780 0.9342 0.9460 0.9999 0.9992 0.9999 

HYDICE_urban_8 0.9434 0.9066 0.9457 0.9800 0.9715 0.9752 

 

 

 

Table 88. SFJTC AUROC comparisons for vegetative HYDICE scenery using adaptive Gaussian model. 

Data Cube AMF CEM SAM SID SFJTC SFJTC_DWT 

HYDICE_veg_15 1.0000 1.0000 0.6948 1.0000 0.9986 1.0000 

HYDICE_veg_12 1.0000 1.0000 0.6974 1.0000 0.9986 1.0000 

HYDICE_veg_10 1.0000 1.0000 0.6913 0.9857 0.9986 1.0000 

HYDICE_veg_8 1.0000 0.9992 0.6925 0.9370 0.9986 0.9995 

 

 

 

 As Table 87 shows, both SFJTC techniques and the SID algorithm yield stellar 

detection results for the first three data cubes of the urban HYDICE scenery. For the data 

cube with heaviest spectral variability, the SID provides a slightly larger AUROC than 

the SFJTC_DWT technique. Although the AMF and SFJTC_DWT algorithms have 

lower AUROCs than the SID algorithm for HYDICE_urban_8, Figure 113 shows that 

they yield steeper ROC curves at FPRs less than or equal to one percent. 

 Both SFJTC techniques yield similar results for the vegetative HYDICE scenery, 

as shown in Table 88. The AMF algorithm yields perfect detection rates for all levels of 

spectral variability, while the CEM and SID algorithms yield slightly lower AUROCs. 

With the exception of the SAM algorithm, all the algorithms yield superior results for 
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the vegetative HYDICE scenery. For HYDICE_veg_8, the SID algorithm breaks down 

compared to the AMF and SFJTC algorithms as shown in Figure 117 and Table 88. 

 
 

Table 89. Summary statistics of SFJTC AUROC comparisons for data based on adaptive Gaussian model. 

Scenery AMF CEM SAM SID SFJTC SFJTC_DWT 

Urban CASI 

0.9669 

(0.0450) 

0.4158 

(0.0276) 

0.2542 

(0.0069) 

0.9926 

(0.0047) 

0.9977 

(0.0006) 

0.9984 

(0.0006) 

Vegetative CASI 

0.9780 

(0.0199) 

0.1376 

(0.0585) 

0.3576 

(0.0128) 

0.9915  

(0) 

0.9916  

(0) 

0.9908 

(0.0018) 

Urban HYDICE 

0.9791 

(0.0256) 

0.9391 

(0.0252) 

0.9460 

(0.0002) 

0.9950 

(0.0100) 

0.9926 

(0.0141) 

0.9938 

(0.0124) 

Vegetative HYDICE 

1.0000  

(0) 

0.9998 

(0.0004) 

0.6940 

(0.0027) 

0.9807 

(0.0299) 

0.9986  

(0) 

0.9999 

(0.0002) 

All 

0.9810 

(0.0277) 

0.6231 

(0.3738) 

0.5630 

(0.2836) 

0.9900 

(0.0153) 

0.9951 

(0.0071) 

0.9957 

(0.0067) 

 

 

 

 Table 89 provides the first and second-order statistics (mean, standard deviation) 

of the AUROCs for the SFJTC techniques and traditional algorithms. For the urban 

CASI scenery, the most difficult scenery, SFJTC_DWT outperforms the other 

algorithms with the largest mean and smallest standard deviation AUROC values. For 

the vegetative CASI scenery, the SID and SFJTC algorithms provide the best results, 

with the SFJTC_DWT technique right behind them. For the urban HYDICE scenery, the 

SFJTC_DWT technique does second best, just shy of the SID algorithm. The AMF 

algorithm and SFJTC_DWT technique perform better than the SID and remaining 

algorithms on the vegetative HYDICE scenery. For all of the scenery corresponding to 
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the adaptive Gaussian model, SFJTC_DWT is the best performer, providing the largest 

mean AUROC and smallest standard deviation of AUROC values. 
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CHAPTER VIII 

CONCLUSIONS 

A. Summary 

 In this work, we have addressed the fundamental problem of spectral variability 

in HSI target detection. We have obtained scenery from two different sensors in both 

urban and vegetative environments to test our proposed work. 

 In Chapter IV, we addressed the challenge of lack of training samples for the 

target class by creating two unique models to characterize the target class spectral 

variability. The first model makes no assumptions regarding inter-band correlation, 

while the second model uses a first-order Markov-based scheme to exploit spectral band-

to-band correlation. 

 In Chapter V, we have developed a scheme that uses the kernel-based SVDD for 

use in full-pixel target detection scenarios in HSI. We have created an algorithm that 

addresses optimization of the SVDD kernel width parameter s using the golden-section 

search algorithm for unconstrained optimization. We investigated a proper number of 

signatures N to generate for the SVDD target class and found that only a small number 

of training samples is required relative to the dimensionality (number of bands). As a 

result, the SVDD-based detection scheme is not plagued by the Hughes phenomenon that 

can cause problems for the stochastic detection and classification algorithms. We have 

extended decision-level fusion techniques using the majority vote rule for the purpose of 
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alleviating the problem of selecting a proper value of 2σ  for both of our target 

variability models. 

 In Chapter VI, we have shown that spectral variability may cause SFJTC-based 

detection performance to suffer and have addressed this by developing an algorithm that 

selects an optimal combination of the DWT coefficients of the signatures for use as 

features for detection for a particular scene and target. Overall, use of the SFJTC 

technique with the optimal DWT coefficient combination provides increased or identical 

performance on all the data cubes. In other words, use of the optimal DWT coefficients 

as features does not negatively affect the detection results in situations where the original 

signatures perform well. 

 In Chapter VII, we compared the performance of our SVDD-based and SFJTC-

based detection schemes to the traditional stochastic and deterministic detection 

algorithms presented in Chapter III. In most cases, our SVDD-based detection scheme 

provides very low FPRs while maintaining higher TPRs than the stochastic AMF and 

CEM algorithms, especially in scenarios of heavier spectral variability. This holds true 

for both the simple and adaptive Gaussian models of target variability. For most 

scenarios, our results show that our SVDD-based detection scheme provides low FPRs 

while maintaining higher TPRs than the AMF and CEM stochastic detection algorithms. 

Our results also show that our SFJTC-based detection scheme using the DWT 

coefficients yields the largest mean AUROC values and smallest standard deviation of 

AUROC values compared to use of SFJTC using the original signatures and traditional 

stochastic and deterministic algorithms. 
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B.  Recommendations for Future Work 

 We believe that future directions for the work in this dissertation should include 

the following: 

• Investigation of various values of ρ  between 0 and 1 that explore, in more detail, the 

impact of spectral band-to-band correlation using our adaptive Gaussian model of 

target variability. 

• Investigation of Markov-based models that extend beyond the first order for more 

accurately capturing the spectral band-to-band correlation. 

• In connection with the SVDD, the investigation of performing fusion of detectors at 

the feature level rather than the decision level. 

• Investigation of modification of the SVDD technique that would weight the training 

samples according to a similarity criterion to the target signature. 

• Investigation of use of the SVDD technique with negative examples8 for potentially 

increasing detection performance for difficult scenery. 

• Investigation of the use of the SVDD technique with sophisticated feature selection 

algorithms that retain useful bands and discard unwanted bands prior to detection. 

• The investigation of alternative methods of combining the individual DWT 

approximation and detail coefficients for use as features for detection in SVDD-

based and SFJTC-based detection schemes. 

• Investigation into the use of other wavelet families for generating the DWT 

coefficients of the hyperspectral signatures. 
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