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ABSTRACT

Novel Pattern Recognition Techniques for Improvadgét Detection in Hyperspectral
Imagery. (December 2009)
Wesam Adel Sakla, B.S., The University of Southbalma;
M.S., The University of South Alabama

Chair of Advisory Committee: Dr. Andrew Chan

A fundamental challenge in target detection indrgpectral imagery is spectral
variability. In target detection applications, we @rovided with a pure target signature;
we do not have a collection of samples that charaet the spectral variability of the
target. Another problem is that the performancstothastic detection algorithms such
as the spectral matched filter can be detrimentaffgected by the assumptions of
multivariate normality of the data, which are oftaalated in practical situations.

We address the challenge of lack of training dampy creating two models to
characterize the target class spectral variabilitye—first model makes no assumptions
regarding inter-band correlation, while the seconddel uses a first-order Markov-
based scheme to exploit correlation between bauvsiag these models, we present two
techniqgues for meeting these challenges—the kdrasdd support vector data
description (SVDD) and spectral fringe-adjusteahjoransform correlation (SFJTC).

We have developed an algorithm that uses the kbased SVDD for use in

full-pixel target detection scenarios. We have adged optimization of the SVDD



kernel-width parameter using the golden-sectiorrckealgorithm for unconstrained
optimization. We investigated a proper number @naturesN to generate for the
SVDD target class and found that only a small nundfdraining samples is required
relative to the dimensionality (number of bands)e \Wave extended decision-level

fusion techniques using the majority vote ruletfoe purpose of alleviating the problem

of selecting a proper value af’ for either of our target variability models. Wevka
shown that heavy spectral variability may causeT&HJased detection to suffer and
have addressed this by developing an algorithm dekgcts an optimal combination of
the discrete wavelet transform (DWT) coefficientstlee signatures for use as features
for detection.

For most scenarios, our results show that our S\éaged detection scheme
provides low false positive rates while maintainihggher true positive rates than
popular stochastic detection algorithms. Our resalso show that our SFJTC-based
detection scheme using the DWT coefficients canldyisignificant detection
improvement compared to use of SFJTC using thanadigignatures and traditional

stochastic and deterministic algorithms.
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CHAPTER |

INTRODUCTION

A. HSI Overview

Automatic target recognition (ATR) is a vital ammplex step in image
processing and exploitation. ATR has experiencgdifstant strides with the advent of
hyperspectral imaging (HSI) sensors. ATR systenmilshbe able to detect, classify,
recognize, and/or identify targets in an environtnghere the background is cluttered
and targets are at long distances and may be lpad&luded, degraded by weather, or
camouflaged. HSI may be defined as imagery taken over manytsgiBccontiguous
and spatially co-registered bands. HSI sensorsigegslenty of spectral information to
uniquely identify materials by their reflectanceesipa. A material’s reflectance
spectrum contains the reflectance values of themahts a function of wavelength. HSI
sensors generate images containing both spatialspedtral information that can be
used in remote sensing detection and classificaapplications. Although it is
theoretically possible for two completely differentterials to exhibit the same spectral
signature, targets in ATR applications are typicaflan-made objects with spectra that
differ considerably from the spectra of natural Kegound materialé.In contrast to

multispectral sensors, which measure reflectanteesat wide wavelength bands,

This dissertation follows the style Gfptical Engineering



hyperspectral sensors measure reflectance valuewmradw, contiguous wavelength
bands. Consequently, the richer information in hgpectral imagery has better potential

in ATR applications than multispectral imagery.

B. Target Detection Problem

The goal of target detection is to locate pixetsitaining a material whose
spectral composition is known. In HSI target detectapplications, the targets are
present sparsely throughout an image—they may atdou less than 1% of the total
pixels in a hyperspectral scene, rendering trauifiospatial processing techniques
impractical. Consequently, most HSI detection atbors exploit the spectral
information of the scene, an approach otherwisevknasnonliteral exploitationin the
HSI literature® One of the main challenges in HSI processingpiectral variability
which refers to the phenomenon that spectra obddreen samples of the same material
will never be identical.

While many detection algorithms have been develapeer the years, spectral
variability poses challenges for these algorith@srrent popular detection algorithms
such as the spectral matched filter (MF) and itsatians stochastically model the
background by using first and second order spestadilstics (i.e., mean and covariance)
estimated from the scene data. Although these astichdetectors are mathematically
tractable and can work well in some situations,ytla@e only optimal under the
assumption of the multivariate normality of the adathe quadratic Neyman-Pearson

detector requires the covariance matrix of thediactpss, which is not available if one is



given a single spectral signature obtained fromibealy?* The MF and adaptive
matched filter (AMF) algorithms assume that thegédrand background covariance
matrices are identical. In real-life scenarios, theltivariate normality assumption is
often violated because a hyperspectral image matagomultiple types of terrain, thus
causing detection performance to suffdfo increase detection performance with these
techniques, improvements to background models @rmadhieved by increasing the

multivariate normality of the data used to chamzeethe background.

C. Proposed Work
1. The support vector data description

Kernel methods have become increasingly popular in a variety aftgsn
recognition (PR) applications. The recently-devebbsupport vector data description
(SVDD) has its roots in statistical learning theanyd is an emerging non-parametric
approach for describing a set of dafaThe SVDD is connected with support vector
machines (SVMs) and is capable of providing aceudsscriptions of a dataset via the
use of kernels. The SVDD differs from the SVM imatht only considers samples
belonging to the class of interest in order to me\a tight boundary around the data.

The SVDD has been successfully applied in the sarfafacial expression
analysié, gene expression data clustetfhgmage retrieval, remote sensing image
classification”*> and HSI anomaly detectibi®> To our knowledge, the SVDD has not
been used in full-pixel target detection scenat@sause no training samples are

available to characterize the target class. Thikwall explore two different models for



generation of the target class training data injuwstion with the SVDD to perform
target detection in hyperspectral imagery and wiNestigate the corresponding

variables and parameters critical to successful B¥dbget detection.

2. Spectral fringe-adjusted joint transform corretati

Joint transform correlation has proven to be dacéfe detection technique in
optical PR application¥ The fringe-adjusted JTC (FJTC) technitfugields better
correlation peaks compared to other existing J@rgues. Recently, the 1-D spectral
fringe-adjusted joint transform correlation (SFJT€ghnique has been used effectively
for performing deterministic target detection inpkyspectral imager¥?. However, our
preliminary experiments show that the techniquefessif when significant spectral
variability is present in the target signatuté®ur work will focus on application of the
discrete wavelet transform (DWT) coefficients aatees for HSI target detection using

the SFJTC technique.

3. Organization of this dissertation

Chapter Il discusses the basics of HSI procesanithe associated challenges.
Chapter Il presents a collection of popular HSig& detection algorithms that are
found in the literature. In Chapter IV, we describe hyperspectral scenery used for the
experiments and provide the two models that we hasexd to generate the target
signatures used for our work. Chapter V providasnfdation of the SVDD and the

associated algorithms we have developed in accoedaith properly training an SVDD



for HSI target detection applications. The concegftslecision-level fusion are also
studied in connection with the SVDD. In Chapter Wk review the wavelet transform
and present the SFJTC algorithm. In connection whi wavelet transform and the
SEJTC algorithm, we provide the methodology andiltesobtained when using the
DWT coefficients for SFJTC-based detection. Thisludes our supervised training
algorithm for selecting a proper set of DWT coeéfids to use prior to detection.
Chapter VII presents the final results of our SVb&sed and SFJTC-based detection
algorithms on both data models. For comparisonhave generated the detection results
of the traditional detection algorithms presentadGhapter Ill. We summarize our

findings and provide conclusions and future di@tsifor research in Chapter VIII.



CHAPTER Il

HSI PROCESSING

A. Components of an HSI System

As shown in Figure 1, the basic parts of a hypmssgal imaging system include
the illumination source, the atmosphere, the imagedace, and the sensor. The
illumination source may be either passive or actikie sun is the source of illumination
in a passive system. In the mode of operation shoviaigure 1, solar energy propagates
through the atmosphere, where its intensity andtsgedistributions are modified. The
energy then interacts with the imaged surface nadgeaind is reflected and/or absorbed
by these materials. The reflected energy passds thasugh the atmosphere where it
may be further modified by the atmosphere befomching the sensor, where it is
captured and stored digitally.

HSI sensors, also calleshaging spectrometersre typically placed on satellites
or aircrafts and acquire digital images in a langenber of narrow, adjacent wavelength
(frequency) bands that typically span the visibtear-infrared, and mid-infrared
portions of the electromagnetic spectrum (0.4 -@13. HSI sensors capture the energy
reflected by the surface materials and measuréntbasity of energy in different parts
of the spectrum. The HSI sensor divides the imagethce into a number of contiguous
pixels. The size of each pixel, ground resolution cellis determined by the optics of

the sensor and the sensor altitude. The spatialutean of the sensor determines the size



of the smallest object that can be seen on theamurdf the earth by the sensor as a
distinct object separate from its surroundifddgure 2 illustrates the construction of a

typical hyperspectral image.

Figure 1. General concept of hyperspectral imaging

B. Radiance Domain Versus Reflectance Domain

It is vital to stress the difference betweeadiance domain spectra and
reflectancedomain spectra. Although the raw measurements sgd¢ime HSI sensor are
radiance values, we desire to obtain the spedfi@catance values—the ratio of reflected

energy to incident energy at each wavelength bamek reflectance spectrum, or



spectral signatureshows the fraction of incident solar energy tisateflected by a
material as a function of the wavelengtbf the energy® Conversion to the reflectance
domain normalizes the data since the propertieshefillumination source and the
atmospheric effects are removed. In practice, stighted atmospheric compensation
codes are used to obtain the reflectance spectram the radiance spectrum. The
atmosphere also limits which bands in the datauaedul because it selectively absorbs
radiation at particular wavelengths due to the gmes of oxygen and water vapor. The
signal-to-noise ratio (SNR) at these absorptiordbas very low; as a result, any useful
information about the reflectance spectrum is joRteflectance is a dimensionless
guantity that ranges in value from zero to oneeAthe data has been atmospherically
corrected, the resulting reflectance spectrum &mhepixel can be compared to spectra
of known materials available in “spectral libratiesIn this work, hyperspectral

signatures will be spoken of in the context of tmeflectance values.



Images acqued siultane cusly in many set of brightness values for a single raster
narrow, adjacent wavelength bands. cell position i the hyperspectral image.

A plot of brightness values
versus wavelength shows the
continuous spectrum for the

image cell, which can be uzed
to identify surface matenals.
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Figure 2. Construction of a typical hyperspectral inage?

C. Spatial Domain Versus Spectral Domain

Given that HSI sensors generate images contaibotg spatial and spectral
information, it is worthwhile to note some basiffeliences between image processing
exclusively in either of the domains. With spatiimain processing, information is
embedded in the spatial arrangement of pixelstwacadimensional (2-D) image. With
spectral domain processing, each pixel has a qgnelng spectrum that can be used to
identify materials in that ground resolution cdence, spatial processing exploits
geometrical shape information, while the spectmandin allows for processing one
pixel at a time. Also, spatial domain processinguiees very high spatial resolution to

identify objects by their shape, whereas spectmahaln processing only requires a
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single pixel since the spectral signature is usedéntify the object. The advantages of
spectral processing were evident in the early apptins of remote sensing that
involved mineral exploration, ground cover clagsifion, and crop health
characterizatiofl.In these applications, morphological informatiemot useful since the
various natural materials of interest do not havedetermined shapes. In practice,
hyperspectral sensors represent a deliberate tfde- which spatial resolution is
compromised for improved spectral resolution. latfahe data volume is greatly
reduced since data volume increases with the sqofaspatial resolution, but only

linearly with the number of spectral barfds.

D. The HSI Data Cube

Because both spectral and spatial informationoatained, HSI sensors provide
a three-dimensional (3-D) data structure known @sta cube If one extracts all the
pixels in a single ground resolution cell and pltite spectral values as a function of
wavelength, one obtains the spectral signaturéhtatr ground resolution cell. However,
if one extracts all the pixels in the same spedtaald, the result is a 2-D intensity image
showing the spatial distribution of reflectanceuwes of the scene for that particular
wavelength. Figure 3 gives an example of a data.cub

The spectral signatures in either the radianceefiectance domain can be

viewed as a scattering of points in a K-dimensidbatlidean space, denoted by,

where K is the number of spectral bands. Hencespleetral signature at each spatial
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location can be seen as a column vektofx,X,,...,%x]". To be physically

meaningful, radiance or reflectance componentoointake nonnegative values.

Imageata
single wavelength

" .

- §
| II

i 1

Figure 3. Data cube visualization showing spatialra spectral dimensions®
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Spatial dimension
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E. Classification Versus Detection

In the remote sensing community, hyperspectral gangprocessing has
applications irclassificationandtarget detectionThe goal of classification is to assign
the pixels in an input scene to one Kf classes. As with any pattern classification
algorithm, there must be a sufficient amount oinirey data for each of the classes. In
the context of classification, the natural criteriof performance is the minimization of
the probability of misclassification errafsThe goal in target detection is to search all
the pixels in the scene for the presence of a tafgeget detection can be formulated as
a binary classification problem, where each pigdhbeled atargetor background The
target class will be sparsely populated since the tartiets may be present in a scene

will only account for a very small fraction of thetal pixels. In contrast, theackground
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class refers to all the nontarget pixels in thenscand represents all of the specific

nontarget classes present in the scene.

F. Challenges in HSI Processing
1. Spectral variability

As discussed in the introduction, one of the digant challenges in HSI
processing is spectral variability, which referghie phenomenon that spectra observed
from samples of the same material will never batidal. In other words, spectra of the
same material are not fixed due to the inherenatians present in the material. Further
spectral variability is introduced by external fast such as atmospheric conditions,
sensor noise, and illumination variaticiis>

Interactions between incoming and reflected sefergy in the atmosphere can
contribute to spectral variability. For certain wéengths, these interactions reduce the
amount of incoming energy reaching the ground amthér reduce the amount of
reflected energy reaching the hyperspectral senaorphenomenon known as
absorption® For example, the presence of water vapor and nadioxide causes a
significant reduction in energy at 1,4m and 1.Qum, rendering these bands useless.
The effect ofscattering whereby light is scattered upward by the atmosgphalso
contributes to variability by distorting the energyident on the HSI sensor. Also,
variations between sensors and temporal changémvaénsors can introduce noise in

the measurements, leading to variability.
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For hyperspectral imaging, two factors relatedillomination that lead to
variability include illumination geometry and shadog. The amount of energy
reflected by an area on the ground depends onntioeiat of solar energy illuminating
the area, which in turn depends on émgle of incidencethe angle between the path of
the incoming energy and a line perpendicular to gheund surfacé® The angle of
incidence can vary as the sun’s height changes thélime of day and season or with
differences in the terrain surface (e.qg., flatloped). Shadows in an area can also distort
the reflected energy from a surface and thus dserd¢lae amount and intensity of
illumination for the affected pixels. Shadows candaused by clouds or other nearby

objects on the terrain.

2. Spectral mixing

Each pixel in a hyperspectral image corresponastarea of the earth’s surface
as captured by the imaging spectrometer. The dizbeoarea depends on the sensor
design and its height above the earth’s surfaces Jike, which can range from several
meters to several kilometers, defines spatial resolutiorof the hyperspectral image. If
the size of a chunk of the imaged surface is lamgaugh, it is possible for the spectrum
of a target to be combined with the spectrum ofitieal background, leading tonaixed
pixel. This is in contrast to aure pixe] whose spectrum is determined by only one
material, whether it is background or target. Hemwee have the distinction between a
full pixel target whose spectrum completely occspéepixel in an HSI image and a

subpixel target whose spectrum occupies only aigomf the pixel. The challenge
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presented by subpixel targets justifies nonlitergbloitation of the HSI data because
subpixel targets have no chance of being deteqtatiadly but they do have a chance of
being detected spectrally. While the detectabitifyfull pixel targets depends on the
spectral contrast between target and backgroueddeiectability of subpixel targets is
also dependent on the portion of the pixel occupigdhe target (fill factor), because it
determines the amount of background interferencéhenobserved target spectrgin.

Figure 4 shows the spectra of three materials wtiexethird material’'s spectrum is a

linear combination of the first two spectra.

3. Volume of data

The first two challenges that have been discussedmanifested during data
acquisition and affect both multispectral and hgpectral scenarios. As is the case,
these challenges can significantly hinder classiiien and detection rates. A third
problem in HSI is simply the volume of data presenthyperspectral datasets. In
essence, this challenge manifests itself afterddia has been acquired. Although the
increase in spectral resolution introduced by H&hssrs can improve the rate of
classification and detection, the sheer volumeaté dheavily increases the transmission
bandwidth and the computational complexity of pesieg the dat&" Furthermore, the
abundance of data poses a constraint on real-tnoeegsing of HSI data in military
detection applications. In military detection sago&involving ground targets, real-time

processing of HSI data is utilized for improvingttlefield situation awareness,
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decreasing sensor-to-shooter cycle time, and pirmyidtimely battle damage
assessmenfs.

To illustrate the magnitude of data involved irpagspectral imagery, consider
the following example. Suppose we have an HSI dabe with a spatial resolution of
512 x 512 pixels and a spectral resolution of 280ds. Assuming that 8 bits are used to
store the values of each band, this data cube psogimnately 52 megabytes (MB).
Storing, transmitting, and processing data of suelgnitude for each hyperspectral data
cube inevitably poses concerns for the designerblSif classification and detection

systems.
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Figure 4. lllustration of spectral mixing.2

G. Types of Target Detection Algorithms

Spectral target detection algorithms can be byoattssified intomatching

algorithms andanomaly detectioralgorithms. In the spectral matching approach, the
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spectral signature of the target is requiagariori, and the algorithm determines whether
a match exists between the spectral signaturdseo$dene pixels and the target spectral
signature. The target signature is usually obtaifredn a spectral library and is
sometimes referred to as theferencesignature. In anomaly detection scenariosano
priori information is used; the algorithm identifies gsagential target, each pixel whose
spectral signature does not fit a model of the llacaglobal backgroun& Anomaly
detection algorithms are more susceptible to falaems and less reliable than matching
algorithms since their performance is completeliedrined by the background model
parameter$®

Hyperspectral target detection algorithms havenla®veloped withstochastic
and deterministicapproaches. Stochastic approaches typically mibdehyperspectral
data with multivariate normal distributions and #ne most prevalent in the literature
because of their mathematical tractability and orable performance in practical
scenarios. Deterministic approaches make no assumsptegarding the nature of the
data and can also perform well, depending on tleetsg contrast between target and

background objects.
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CHAPTER 1lI

TRADITIONAL DETECTION ALGORITHMS

A. Stochastic Algorithms

Stochastic detection approaches must decide whattaeget is present in a pixel
based on its observed spectrumLetx =[X(A), X(4,),..., X(41,)], whereL is the number
of spectral bands. In fack can be treated as a multidimensional random veruitbr a
probability distribution where its number of dimemss equals the number of spectral
bands. The binary hypothesis test for the obsespedtrunx is as follows:

H,: target absent (background),

H,: target present (target),
where H, is commonly known as theull hypothesis andH, as thealternative
hypothesis. The binary nature of the problem foatiah can be viewed as a two-class
classification problem in the context of pattercagnition where the two classes are
backgroundandtarget In Bayesian decision theory, given knowledgehef ¢conditional
probability density functions (PDFs) of both clagsthe reasonable decision rule would
be to choose the class that is most probable elylilgiven the observed spectromt’
This concept is quantified by tH&elihood ratio test(LRT) A(x), the ratio of the

conditional PDFs of both classes:

_ p(x[H,)
N = 3.1
0= X1 hy) (-4
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If A(x) is larger than the threshold, the pixel is declared to be a target,

otherwise, it is declared background. For any gmerblem, the minimum probability of
error is achieved by the LRT decision rule. Thiskability of error is called thBayes

error rate and is the best that any LRT-based classifierazmeve. Unfortunately, in
practice, knowledge of the theoretical conditiongdlss densities p(x|H,)and
p(x|H,) is not available. Thus, stochastic approache®tection typically involve the

replacement of unknown density parameters withr tineaximum likelihood (ML)

estimates which are obtained directly from the data

1. Quadratic Neyman-Pearson detector

The most prevalent stochastic detector in therdlitee operates under the
assumption that the class conditional PDFs of @mekground and target classes follow
multivariate normal distributions. In a hyperspattimage, an observed spectrum
follows a multivariate normal distribution with meaector 4 = E(x) and covariance
matrix T =E[(x-#)(x—-4)"] denoted byx~ N(x)if its PDF is given by the
following:

1 L) T (x- )
p(x) = (zﬂ)L/2||—|l/2 € 2 (32)

where |I'| denotes the determinant of the covariance matfrixand the term

(x—= )" T (x-p) is known as theMahalanobisdistancé’. Under the multivariate
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normal assumption of the background and targessetasthe likelihood ratio may be

expressed as follows:

lro _ o \TEF -1fv _
ey [ 2T AT

A(X) (3.3)

(271)'L’2|F |‘1/2e‘%(x _:ub)T rb_l(x _/Jb)
b

where 4, and ', and 4 and I, denote the mean vectors and covariance matrices of
the background and target classes, respectivelier Aimplifying the expression in

equation (3.3) and rearranging terms, the likelthoatio may be expressed as follows:

A(x) = |rb|1,2 e><|0[l (7 A —ub)-E X = )T (-, )} (3.4)
|rt| 2 2

After taking the natural logarithm of both sidesla@iiminating constant terms, equation
(3.4) may be simplified to yield the following quatic Neyman-Pearson (NP)

detectof*:
1 T -1 1 T -1
D(x)=§(x-ﬂb) r (x-,ub)-—z(x—,ut) ro(x—u) (3.5)

which compares the Mahalanobis distances of thetigpectrumx from the means of
the two classes. The constant at the beginningjoateon (3.5) is often omitted in the

literature since it is only a scaling factor.

2. Matched filter

A further assumption imposed on the data lead$heowidely knownmatched

filter (MF). If one assumes that the background and tazgeariance matrices are
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identical, i.e.,, =, =T, the quadratic terms in equation (3.5) disappead the
expression can be simplified to the following:

D(X) =K (4 = 1) T (X~ 1), (3.6)
where « is a normalization constant. While the choice nof does not alter the

performance of the MF, it is typically chosen su:&:ialtD(,ut)=1.23 Thus, the MF

detector of equation (3.6) can be expressed asifsll

D|\/||: (X) - (M _lub)TT r__ll(x _”b) (37)
(4= 1) T (1~ )

3. Adaptive matched filter

The matched filter detector of equation (3.7)psimal in the Bayes sense when
the target and background classes follow multivarinormal distributions with a
common covariance matrix. While these constraieiad|to ease of mathematical
tractability, they are highly unlikely scenariosr fpractical HSI data. Practically
speaking, the true mean and covariance matricesirdo@own and must be estimated
from the actual data. Under the assumption of loebability of occurrence of targets,
we can compute the ML estimates of the backgrowrdrpeters from the entire HSI

data cube. Letx(n),n=1,2,.. ,N denote theN spectral vectors in an HSI data cube.

The ML estimates of the mean vector and covariamagix of the background are given

as follows:

n

1N "
=3 x() Oa, (3.8)
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F:%%[x(n)—}z}[x(n)—}z} or, (3.9)

Concerning the parameters of the target classypieally use a target spectral

signaturet from a library in place ofy, since there is no training data to calculgte

As stated before, the target and background clagssa® a common covariance matrix
whose ML estimate is given by equation (3.9). Thkeulting modifications of the
matched filter lead to thedaptive matched filteAMF) given by the following

expression:

A A1

Dy () = LZF) To (X~ 1) (3.10)

A A-1

(t=14,)" o (t— )

4. Constrained energy minimization

Another popular stochastic detection algorithminak the MF detector, is the

constrained energy minimizatid®EM) algorithm. Suppose we wish to design a linea
filter of the formy =c' x. The CEM filter operates by minimizing the totakegy of y
subject to the constraint thatt) =c't =1. The total energy of an HSI data cube is given

by the following:

=y
_— {%% x(n)xT(n)} c (3.11)

=c'Rg,
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where R is the sample correlation matrix of the data cubke solution of this

optimization problem leads to the following CEM eletor>

"1
t'R X
Deen (X) = ] (3.12)

t'R t

Note that the CEM detector of equation (3.12) bexorthe AMF detector of
equation (3.10) if we remove the mean of the daienfthe target and input signatures
and use the covariance matrix of the data instéateocorrelation matrix. Unlike the
NP and MF detectors, the CEM detector is not optiniurany Bayes sense since it is

not derived using a hypothesis t&%t.

B. Deterministic Algorithms
1. Spectral angle mapper

One of the earliest and most basic algorithms &temninistic HSI detection is
known as the spectral angle mapper (SAM) algorithet.tLdenote the target spectral
signature andx denote the input spectral signature. The SAM metreasures the

cosine of the angle between these two vectors atefirsed by the following:

Dsaw(X,t) = <—X > (3.13)

[l

where (LI is the dot product operator, afiil is the Euclidean length, o’ Inorm of a

t
|

vector. The values foDg,,, will range between zero and one since all the comapts of

the spectral vectors are positive. While the SAModthm is very convenient and
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straightforward in target detection applicationsonly performs well for targets having

well separated distributions with small dispersibns

2. Spectral information divergence

Spectral information divergence (SID) is an infatran-theoretic measure which
compares the similarity between two hyperspectighaures by measuring the
probabilistic discrepancy between thé&tit models each pixel signature as a muilti-

dimensional random variable and creates an assdc@bbability distribution for the

signature by normalizing its spectral histogramutity. Let x =[x, X,,..., X ]" be a

hyperspectral ~ signature with  probability vectorp=[p, p,,..., i]' Where

P, =X /i % . SID uses th&ullback-Leiblerinformation, orrelative entropy measure
1=1

between two hyperspectral signaturesand y with corresponding probability vectors

p andg given by the following:
_ < B
D(x|y) = ;1 o IOQ(EJ (3.14)
B |
Using the relative entropy measure defined by egouaf3.14), the SID between two

signaturesx and y is defined by the following:
SID(x, y) = D(x|| y) + D(y] x) (3.15)
Hence, SID uses the relative entropy between tignatures to capture the

spectral information provided by each pixel. Expmmtal results show that SID can

characterize spectral variability more effectivéign the SAM metrié’
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CHAPTER IV

EXPERIMENTAL DATA AND TARGET VARIABILITY MODELS

C. Raw HSI Data

Two of the data cubes in our experiments have la@eired using a CAZ
sensor that produces 36 spectral bands ranging 4&8mm to 965 nm with a spectral
resolution of 15 nm. The first data cube is vegetascenery with a spatial resolution of
200 x 200, and the second data cube is urban gcesithr a spatial resolution of 200 x
200. Visual range images of both scenes are showrfrigure 5 and Figure 6,
respectively.

Two other data cubes have also been acquired asiHYDICE® sensor. This
sensor operates in the Visible to Near Infrared IR)N\and Short-Wave Infrared (SWIR)
range of 400 nm to 2500 nm and is sampled to @8Rl spectral bands. As before, we
have both vegetative and urban scenes with spatialutions of 200 x 200 whose visual
range images are shown in Figure 7 and Figurespexively. The low SNR and water
absorption bands have been removed, leaving adbi#d3 bands and 172 bands for the

vegetative and urban scenes, respectively.



Figure 5. CASI vegetative scenery.
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Figure 6. CASI urban scenery.
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Figure 7. HYDICE vegetative scenery.
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Figure 8. HYDICE urban scenery.
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D. Synthetic Data Generation

In practice, it is difficult to obtain ground-th&d HSI imagery that contains
multiple real targets in low-probability target detion scenarios. The alternative is to
insert simulated targets in real HSI imagery. Fag purposes of testing the proposed
work in this dissertation, we have randomly sel@é@@0 pixels from each of the scenes
and replaced their signatures with “corrupted” $f@cignatures of a particular target
material. The randomly selected locations of thgets are fixed for all four scenes.
Figure 9 provides the truth mask showing the laretiof the inserted targets. Note that
200 pixels equals only half a percent of the 40fal scene pixels in each data cube,

thus simulating a low-probability target detectsmenario.

Figure 9. Truth mask showing locations of insertedargets.
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How are these targets generated? In this disggriave have investigated the
use of two unique models for generating the targetese models will be discussed in
the next section.

To account for the possibility of mixed pixel spaccorresponding to the
boundaries of targets in the scene, twenty (10%h®f200 signatures have been mixed
in abundance ratios from 50% to 95% usinglthear mixing mode(LMM). According
to the LMM, a mixed pixel spectrum is representex] aa linear combination of
endmember spectra. The weight, or fractional aboegla of each component
endmember spectrum is proportional to the areatbeaendmember covers in a mixed
pixel. For a hyperspectral scene with spectral bands, the scene signatures can be
represented as -dimensional feature vectors. The general LMM equais given by

the following®?
M
X=3 TS +W=Sr+w, (4.1)
k=1

where x is a mixed pixel spectruns,, k=1,...,M, are the endmember spectrg,are

the fractional abundances of the endmember speltrig, the number of endmembers,
and wis an L -dimensional error vector that accounts for eith@se or model-error. To
make the LMM physically meaningful, the nonnegayivand sum-to-one additivity

constraints are imposed on the endmember abundances
I, 2 O(nonnegativity,% 7, = 1( additivity (4.2)
k=1

The LMM in (4.1) with the constraints in (4.2) indwn as theonstrained linear mixing

model(CLMM).
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E. Simple Gaussian Model

In the first model that we have used for the gatien of inserted scene targets,
the signatures have been corrupted by drawing trem a multivariate Gaussian
distribution and are of the following form:

y.=t+n~N,[t,0°1] (4.3)

wherey.is a corrupted target signature,is the pure target signature, is additive

stochastic noise, and’is the per-band variance. The notatign- N, [,] denotes a
K-dimensional Gaussian distribution with mean vegioand covariance matrik . By
inserting the corrupted signatures that have bemrergted in this fashion, we have
introduced spectral variability into the scenese Thariances? that has been used in our
experiments has been varied to achieve SNRs of,8L@RIB, 12 dB, and 15 dB. The

SNR is defined here as the root mean square (R¥i®equre target signature divided

by the standard deviation of the noise and is ghsethe following:

SNR=1 1L (4.4)

Thus, for each original data cube, four data cutze® been generated with each
containing corrupted targets with a specific SNRnek, we have introduced differing
levels of spectral variability ranging from ligitt heavy variability—the SNR decreases
as the variability increases since the SNR is iselgr proportional too. In future
chapters, the data cubes will be referenced bgpctheisition sensor, the type of scenery,

and the SNR of the targets that have been insemtedthem. For instance, for the
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vegetative scene acquired using the CASI sensorenlie have inserted targets with a
SNR of 10 dB, we will refer to this data cube@A&SI_veg 10As another example, for
the urban scene acquired using the HYDICE senserawve have inserted targets with
a SNR of 10 dB, we will refer to this data cubeH¥DICE_urban_10Figure 10 —
Figure 25 show the differing levels of spectraliahility of the targets that have been
inserted into the scenes using the simple Gaussatel. In each of the figures, the pure
target signature is shown in black, while the gatest target signatures are shown in
blue. The pure target signatures used in the CAfsd dubes belong to a particular
material, while the pure target signatures usethenHYDICE data cubes belong to

another material.

F. Adaptive Gaussian Model based on First-order M&ov Model

In the simple model introduced above, the covagamatrix in (4.3) is diagonal,
thus ignoring any band-to-band correlation. Theosdcmodel that we will use in this
dissertation will also be based on a multivaria@u§sian distribution; however, the
covariance matrid- is not diagonal. The signatures in this modelairéhe following
form:

y. =t+n~N,[t,l] (4.5)
where y.is a corrupted target signature,is the pure target signatura, is additive

stochastic noise, and is the covariance matrix.
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In this model, we present a novel application @rkbv theory to the generation
of target signatures. A random sequemx¢r) is called g-order Markov sequence if the
conditional probability of x(n) given the entire past is equal to the conditional
probability of the lasp samples. This can be stated more formally asviclio

PN | (1), Xn-2),..]= AXn| Xrl),.., XA pQ (4.6)

To exploit spectral band-to-band correlation, wi# use a first-order Markov

model to generate the covariance matfixin (4.5). The pure target signatuteis

treated as a first-order stationary Markov sequemteording to this model, the
covariance matrix is defined as follows:
r=o0’MR 4.7)

whereR is the Toeplitz correlation matrix defined accaglito the first-order Markov

model®
B 1 0 ,02 . pK—l‘
p 1 p p
R=p> p 1 p p° (4.8)
p©F p 1 p
_pK—l ,02 Yo, 1

In (4.7), the constant® is the per-band variance that is introduced tarobthe level
of variability in the generated target signatureswae did in (4.3). As with the first

model, we have varied? to yield SNRs of 8 dB, 10 dB, 12 dB, and 15 dB.

In (4.8), the constanp represents the first-order correlation coefficidntour
work, we have estimateg using the correlation coefficients between adjabamds of

the scene. This is done in the following manner:
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1. Compute the correlation coefficient matrix of thegadcube. This yields a K x K
matrix, where K is the number of spectral bands.

2. Generate a vectarthat contains the correlation coefficients betwbandj and
the adjacent band 1. Hence, the vector has K-1 components.

3. Estimatepo by computing the mean of

Intuitively speaking, the reasoning behind usinfirst-order Markov model to
generate the covariance matrix is that it is a aeally safe assumption that the
reflectance values at bapavill closely resemble the reflectance valug-atbecause of
the increased spectral resolution of the HSI serBBecause the only information we
have concerning the target class is the pure tasigetaturet, we have adopted an

adaptive approach that uses the scene to estimatéigure 26 — Figure 41 show the

differing levels of spectral variability of the tgts that have been inserted into the
scenes using the first-order Markov-based Gaussiadel. Notice how the generated
signatures in this model are “smoother” than thgseerated according to the simple
model in (4.3). Once again, this is due to the gmes of band-to-band correlation using

the non-diagonal correlation matrix structure giue4.8).
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CHAPTER V

THE SUPPORT VECTOR DATA DESCRIPTION

A. Introduction

In this chapter, we provide the theoretical fraragwfor the kernel-based SVDD
and discuss the various parameters that shouldrsal tfor successful operation of the
SVDD. Section B provides the mathematical backgdofor the kernel-based SVDD.
Section C provides our algorithm for optimizing theerent SVDD parameter

In any supervised PR system, one should have siteesset of training samples
that are representative of the class to be detemtasfassified. According to the well
known Hughes phenomenprmas the number of dimensions increases, the numiber
training samples should increase exponentiallyrdeoto obtain reliable estimates of the
multivariate statisticd* This has long been a challenge with the use ofiketihood-
ratio based stochastic detectors presented in €hHptin target detection scenarios, we
do not have access to a collection of samples ctaiang the target class; we are
typically given a pure target signature that isaoi#d from a spectral library. In our
work, we will investigate the creation Nftraining samples pertaining to the target class
according to both target variability models disatssn Chapter IV. The number of
training sampleN and the variances® used in the generation of the training samples
are free parameters that will have an influencethentrained SVDD. These are free

parameters that are connected with our proposegéttenaining class algorithm and will
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be studied in sections D and E, respectively. 8eck will present the concepts of

decision-level fusion that will be utilized to allate the problem of choosing an

appropriateo? value in our SVDD-based detection scheme.

B. Theoretical Background

The support vector data description (SVDD) modeldass of data by fitting a
hypersphere with centexand radiusR around all or most of the samples. Assume that

we are given a set of training samglesi =1...N} . The SVDD aims to minimize the

volume of the hypersphere by minimizigf. The task then becomes minimization of

the following error functior:

F(Ra,§)=R+C¢, (5.1)

with the added constraints thabost of the training samplesx, lie within the
hypersphere. These constraints are postulatedlaw$o

Ix -af*sR?+&,i=1...,N (5.2)

The C parameter in (5.1) controls the tradeoff betweea volume of the

hypersphere and the number of target objects egjéttSince the training data may

contain outliers, thef, in (5.1) representlack variableghat relax the constraints. The

solution of (5.1) is obtained by solving the Lagyeam dual problem:

max ya, (4 )-3a3 6 ﬂ (5.3)
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subject to & a < C. After solving (5.3), only a subset of trainingrgales will satisfy
the equality given by (5.1). These are the with corresponding nonzespand are

called thesupport vectorssince they are the only samples needed to prothde
hypersphere boundary around the data.

For a new objecty to be considered as belonging to the SVDD, thearsgaf the
distance from the center of the sphereytanust be less than or equif. Hence,y is

deemed as belonging to the class when the followieguality is satisfied®
(yI¥)-22a(y )+ 2ag (% ) = R (5.4)

In many cases, fitting a hypersphere around th& idathe original feature space
does not provide a tight boundary. The nonlineasiva of the SVDD implicitly maps
the data from the input space to a higher-dimermdibfilbert feature space through a
mapping function®(x) . As a result, the problem becomes fitting a hypleese around
the data in the higher-dimensional feature spadeclwtranslates to a tighter, more
accurate description of the boundary in the origfieature spac®.In the nonlinear

SVDD, the inner productgx; [X;) found in (5.3) are replaced by a kernel function
K(x x;) satisfying Mercer's theoretn Accordingly, equation (5.4) becomes the
following:

K(yDy)-2xaK(y )+§ae} K(x )< R (5.5)

Several different choices of kernel functions £X%8e will use the well-known

Gaussian radial basis function (RBF) kernel. TheFRIBernel only has one free
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parameter to be tuned and is shown to yield tiglieundaries than other kernel
choices*#**The RBF kernel is given by the following:

K(x,y)=expt|x -y /s°) (5.6)
In (5.6),sis the free parameter that is adjusted to conltwltightness of the boundary
and is typically optimized through cross-validation®

Using the fact thaK y[y)=1 for the RBF kernel in (5.6), we can define a bias

term that incorporates all constant terms in equafb.5). The bias term is given by the

following:

b=1+Y aa K(x X )- R (5.7)

After incorporating the bias term of (5.7) into atjon (5.5) and some algebraic

manipulation, we have the following SVDD decisiamd¢tion:
b
svbOy) =sgn(z a Ky )_Ej (5.8)

Thus, an input signaturey is predicted to be a target if its output is pesitand

predicted to be background if its output is negativ

C. Optimization of the RBF Kernel Parameters

As shown in the previous section, use of the S the RBF kernel requires
selection of the free parameteZsands. In empirical trials of varying the value of C
between 0.001 and 0.1, we found that all valuesdetk identical results. In this

dissertation, we have used a value @£ 0.01. Proper tuning ofC is not critical in
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practical applications of the SVDB.On the other hand, the kernel paramsteas to be
carefully chosen for successful SVDD performanées is chosen too small, a large
number of support vectors will be selected, thuerditting the training samples. In
contrast, ifs is chosen too large, a relatively small numbeswbport vectors will be
selected, thus under fitting the training sampled allowing for a loose boundary for
the target clas$ In this section, we present a supervised PR algurifor the
optimization ofs and investigate the feasibility of efficient sdarmethods for its
optimization.

To begin, we constructed a setsofalues ranging from 0.01 - 2 in increments of
0.002, yielding 1000 total candidasevalues. Values above 2 were found to yield an
insufficiently small number of support vectors,dew to a poor description of the target
class. Thus, values above 2 are not consideredSYDD was trained using each
value and applied to an independent validatiorteesisting of 100 target signatures and
8000 background signatures. The 100 target sigemtare generated according to the
adaptive Gaussian model. 8000 pixels, 20% of thal tecene pixels, are randomly
selected from the scene and used as backgrounatsiga since targets occur with such
low probability. The ratio of 100 target signatutes8000 background signatures was
chosen to maintain a low probability scenario.

The detection results on the validation set weoermded for each trained SVDD.
Because target detection scenarios are essenialary decision problems, we have
recorded the SVDD detection results viaomfusion matri¥. Recall that the confusion

matrix has four entries: true positives (TP), éajmositives (FP), true negatives (TN),
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and false negatives (FN). Once the detection r®suHre obtained for each trained
SVDD, theF-statwas calculated. The F-stat is a measure of a tilmtetest’'s accuracy
that considers both th®ecisionandrecall of the test and is defined as folloWs:

E=920 precisionrecall

— (5.9)
precisiont+ recall
with the precision and recall given by the follogin
precision= ™ (5.10)
TP+ FP
recall -_° (5.11)
TP+ FN

In essence, we will be using the F-stat as oueabive function to assess the
detection results. Exhaustively searching for tpanoal s from 1000 total values is a
cumbersome process. In this section, we will stindybehavior of the F-stat values as a
function of s in various scenarios to assess the feasibilitysing an efficient search
algorithm for optimizings. Our approach will be the following:

1. Load one of the four possible HSI data cubes (e@ASI urban XX
CASI_veg_ XX HYDICE_urban_XX HYDICE_veg XX The SNR of the
inserted scene targets has no impact on the reSdénes with different target
SNRs (i.e.,CASI_urban_10versusCASI_urban_1pwill yield identical results
since the selection &fis not affected by the targets in the scenes—affescted

by the variability (SNR) of the generated trainseg and the validation set.
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2. Generate 100 SVDD training set signatures accortiinipe adaptive Gaussian

model. The varianceo? will be varied to achieve SNRs of 8 dB, 10 dB,dR,
and 15 dB.

3. Train an SVDD using each value of s and plot trstaf-as a function &

1. Linear search results for s on HSI scenes

In Figure 42 — Figure 45, we provide the resuftthe linear search fag on the
urban CASI scenery. It appears that in each chsel-{stat reaches a global maximum.
However, in the SNR = 15 dB and SNR = 12 dB casesgeral values of yield the
maximum. Notice that as the SNR of the target ingirset decreases (i.e., increasing
variability in the training set), the maximum valagéthe F-stat decreases. For each of
the target training set SNRs, Table 1 providesntg&imum value of F-stat, the number
of s values that yield the maximum value of F-stat, #ma corresponding range sf
values.

Figure 46 - Figure 49 provide the results of threedr search fos on the
vegetative CASI scenery. Once again, the F-stahe=aa plateau for certain valuessof
and declines afterwards. Table 2 summarizes thevi@hof the F-stat values as a
function of s for each target training set SNR. [€aB and Table 4 provide the
summaries of results for the urban and vegetativV®IEE scenery, respectively, while

Figure 50 - Figure 57 show the results of the lireearch fos on these scenes.
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Figure 44. Linear search fors for urban CASI scenery with training set SNR = 1QB.
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Figure 45. Linear search fors for urban CASI scenery with training set SNR = 8 @.
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Figure 46. Linear search fors for vegetative CASI scenery with training set SNR= 15 dB.
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Figure 47. Linear search fors for vegetative CASI scenery with training set SNR= 12 dB.
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Figure 48. Linear search fors for vegetative CASI scenery with training set SNR= 10 dB.
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Figure 49. Linear search fors for vegetative CASI scenery with training set SNR= 8 dB.
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Table 1. Behavior of F-stat values as a functiogsfof urban CASI scenery.

)

Training Set SNR (dB] Maximum F-stat Valjle Numb&Maximums| Range of
15 1 5 0.031-0.03
12 1 2 0.059, 0.061
10 0.97512 1 0.089
8 0.87923 1 0.137

Table 2. Behavior of F-stat values as a functiosfof vegetative CASI scenery.

b

|

Training Set SNR (dB] Maximum F-stat Valjle Numb&Maximums| Range of
15 1 25 0.031 -0.07
12 21 0.061-0.10
10 1 11 0.097 -0.11
8 1 5 0.151 - 0.159

Table 3. Behavior of F-stat values as a functiosfof urban HYDICE scenery.

Training Set SNR (dB] Maximum F-stat Valle Numb&Maximums| Range of
15 1 222 0.219 — 0.66
12 185 0.437 - 0.80
10 1 133 0.691 — 0.95
8 1 47 1.097 - 1.18

)

Table 4. Behavior of F-stat values as a functioafof vegetative HYDICE scenery.

B

Training Set SNR (dB] Maximum F-stat Valle Numb&Maximums| Range of
15 1 130 0.259 - 0.51
12 1 85 0.515 - 0.68
10 1 30 0.817 - 0.87
8 0.9706 1 1.245
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Figure 50. Linear search fors for urban HYDICE scenery with training set SNR = 15 dB.

0.9+

0.8+

0.7

F-stat
o
&

0.4+

0.3

0.2+

0.1}

Figure 51. Linear search fors for urban HYDICE scenery with training set SNR = 12 dB.
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Figure 52. Linear search fors for urban HYDICE scenery with training set SNR = 10 dB.
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Figure 53. Linear search fors for urban HYDICE scenery with training set SNR = 8dB.
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Figure 54. Linear search fors for vegetative HYDICE scenery with training set SRR = 15 dB.
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Figure 55. Linear search fors for vegetative HYDICE scenery with training set S\R = 12 dB.
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Figure 56. Linear search fors for vegetative HYDICE scenery with training set SRR = 10 dB.
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Figure 57. Linear search fors for vegetative HYDICE scenery with training set SNR = 8 dB.
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2. Analysis of linear search results for s

As seen in Table 1, the search results yield guanglobal maximum for SNRs
of 10 dB and 8 dB. In all of the scenes, the numifemaximums decreases as the
variability in the training set increases. Alsoinetthat the range of values that yield
the maximum F-stat value increases as the vatalilithe training set increases. For
the CASI sensor, the vegetative scenery has arlangmber ofs values yielding the
maximum F-stat value, as Table 2 shows. In faain@mue global maximum is not
reached for the vegetative CASI scenery. Concerriimg HYDICE scenery, a
considerably large number s¥alues produce the maximum F-stat value, as caebe
in Table 3 and Table 4. A unique global maximumreéached for the vegetative
HYDICE scenery with a target training set SNR aftB

Let us take a closer examination of the behavidhe F-stat objective function
with respect to the variation sf If we substitute the definitions f@recisionandrecall

from (5.10) and (5.11) into the equation for thet&t in (5.9), we obtain the following:

TP D( TP
_ . (TP+FP) {TP+ FN
F=207p . TP
(TP+FP) (TP+ FN)
TP
=2 12
D(TP+ FN)+(TP+ FP (512)
_ 2TP
2TP+ FP+ FN

After dividing the numerator and denominator ofl(.by 2TP, we obtain the

following:
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1
FP+FN
1+ ————
S
1

- (T—TP+FP)
E LI
TP

F =

(5.13)

where T = TP+ FN represents the total number of targets. We cahdusimplify the

expression forF in (5.13) by combining the variable terms in the@alinator to obtain

the following:
1
F= 5.14
1+G ( )
where
T-TP+ FP
G =Q (5.15)
2TP

We stated earlier that smaller valuessoivill overfit the training data, while
larger values of s will underfit the training dakéence, as ranges from small to large
values, the TPs will range from very small valuesatmaximum value. Similarly, the
FPs will range from very small values to a largéuga(as many as the number of
background pixels in the scene). Accordingly, Gl Wdve a minimum at some point.
Since the maximum number of TPs is givenbyand the minimum number of FPs is
zero, the smallest possible value of G is zeros&lrelationships are depicted in Figure

58.
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v

Figure 58. Relationships between TP, FP, and G.

Depending on the separability between the tangetbackground signatures, the
minimum (or minima) ofG may occur either at one distingtvalue or a range of
values. Figure 59 and Figure 60 show two extremsesan the first extreme case shown
in Figure 59, the minimum value of G is nonzerasithe target and background classes
are not completely separable. In this case, asmgalue yields the minimum value of
G. In the second extreme case shown in Figure 6@aGhes its lowest possible value of
zero indicating that the target and backgroundselssare completely separable. In this
case, a range of s values yields the minimum vafu&. The width of this range is

proportional to the amount of separability betwdentarget and background classes.
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Figure 59. Behavior of TP, FP, and G when target ahbackground classes overlap.
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Figure 60. Behavior of TP, FP, and G when target ahbackground classes are fully separated.
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Note that whenG reaches its absolute minimum value of zeffo,reaches its
maximum value of one. As the previous figures amtlets show and in light of our
previous discussion, the separation between taagdt background signatures in the
urban CASI scenery appears to be less than irhallother cases. In both HYDICE
scenes, the separation between target and backbsignatures appears to be large
based on the number of maximums obtained and thgerafs for each of the target
training set SNRs. Notice how the width of the @#ats decreases as the target training
set SNR decreases. As the variability of the tangahing set increases, the separation
between target and background class signaturegat®s, making the selection of

more crucial.

3. Impact of range of s on detection results

Performing an exhaustive linear search over aleagge of candidatevalues is
a time-consuming process. Our ultimate goal isnpley an efficient search algorithm
for finding the optimak. As we saw in the previous section, an exhaus@arch for s
yields unimodal behavior for the F-stat values daretion ofs. We also saw that, in
most cases, a range of s values yielded the maxiohjattive function value. In this
section, we first wish to gain insight into how thedection ofs within a particular range
of s values affects the detection results on our H&.deor each of the data cubes and
each of the target training set SNRs, we did tHeviang:

1. Trained an SVDD using the smallsstalue in the range.

2. Trained an SVDD using the mediaralue in the range.
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3. Trained an SVDD using the largestalue in the range.
4. Recorded the confusion matrices for all three cases

We have summarized the results of this procegadwiding the FPs and TPs of
detection for all three scenarios for each dateecaid target training set SNR. The
results are provided in Table 5 - Table 8. In eeelh we have recorded the number of
FPs (left) and TPs (right) for each detection sgend&ach cell will typically contain
three entries—the top entry corresponds to thedfEsSTPs using the smallest valuesof
the middle entry corresponds to the FPs and THgyube median value & and the
bottom entry corresponds to the FPs and TPs usmtatgest value & A cell that only
contains one entry indicates that a single valus mfoduced the global maximum for
that target training set SNR (see Table 1 - Tahle 4

As the results show, the number of TPs either nresnthie same or increasessas
increases from its smallest to largest values. @grees with our understanding that the
SVDD boundary expands ass increased. Along the diagonal entries, theetatigining
set SNR matches the SNR of the targets in the seenthese scenarios, any increase in
TPs as a function afdoes not appear substantial. Above the diagoriaksnthe target
training set variability is larger than the varidliof the targets in the scene—in these
scenarios, the increase in TPs as a functiors f even less dramatic. Below the
diagonal entries, the target training set varigbi less than the variability of the targets
in the scene—in these scenarios, the increase abPa function of is the most

dramatic.



Table 5. Impact of range sfon detection results for urban CASI scenery.

Training Set SNR (dB] 8 dB Scene 10dB Sce¢ne 13ck#he| 15 dB Scene
8 140/174 141/189 141/190 141/190
10 31/126 31/181 31/186 31/186
9/79 9/160 9/182 9/184
12 13/86 13/168 13/183 13/184
17/102 17/176 17/185 18/185
0/12 0/56 0/145 0/180
15 4/46 4/111 4/173 4/182
14/73 14/148 14/178 14/184

Table 6. Impact of range sfon detection results for vegetative CASI scenery.

Training Set SNR (dB] 8 dB Scene 10 dB Sce¢ne 13cdhe| 15 dB Scene

0/183 0/186 0/186 0/186

8 2/184 2/186 2/186 2/186
12/186 12/187 12/187 12/187

0/152 0/183 0/184 0/184

10 0/177 0/186 0/186 0/186
4/181 4/186 4/186 4/186

0/68 0/147 0/181 0/181

12 0/166 0/186 0/186 0/186
21/181 19/187 19/187 19/187

0/3 0/45 0/119 0/178

15 0/120 0/174 0/184 0/184
9/169 9/186 9/186 9/186
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Table 7. Impact of range sfon detection results for urban HYDICE scenery.

Training Set SNR (dB] 8 dB Scene 10dB Sce¢ne 13ck#he| 15 dB Scene

1/200 1/200 1/200 1/200

8 1/200 1/200 1/200 1/200
4/200 4/200 4/200 5/200

1/31 1/190 1/191 1/191

10 1/198 1/200 1/200 1/200
4/200 4/200 4/200 4/200

1/6 1/30 1/186 1/186

12 1/170 1/199 1/199 1/199
3/200 4/200 4/200 4/200

0/3 0/3 0/4 0/182

15 1/91 1/196 1/196 1/196
3/200 3/200 3/200 3/200

Table 8. Impact of range sfon detection results for vegetative HYDICE scenery

Training Set SNR (dB] 8 dB Scenje 10 dB Sc¢ne 13ckhe| 15 dB Scene

8 32/189 32/198 32/198 32/198
0/119 0/190 0/194 0/194
10 0/142 0/192 0/194 0/194
1/164 1/194 1/195 1/195
0/17 0/122 0/187 0/191
12 0/85 0/184 0/193 0/193
1/148 1/192 1/194 1/194
0/4 0/4 0/49 0/182
15 0/34 0/147 0/189 0/191
1/131 1/192 1/194 1/194
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The most significant finding in these resultshattit is advantageous to usesan
value closest to the largesvalue in the range &fvalues for a particular target training
set SNR. In doing so, we guarantee that we will im&ae the number of TPs, despite
the marginal increase in FPs as a result. Addilipneve can use an efficient search

algorithm for finding the optimad value, as will be discussed in the next section.

4. Exploration of an efficient search method for s

An optimization problem generally involves the miization or maximization of
an objective functionf (x) where x is either univariate or multivariate. If there amy
inequality or equality constraints that must bes§atl in the optimization, the process is
known as constrained optimizatign otherwise, the process isinconstrained
optimization In multimodalfunctions, we must consider the possibility oftblatcal and

global optima, as Figure 61 shows.

f(x) 4
Global Local
maximum maximum
X
Global
minimum Lo_cgl
minimum

Figure 61. Example of a multimodal function with lacal and global optima.
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In the previous section, the F-stat was our olyjedtinction that we attempted to
maximize as a function of our univarigg@arameter. Because we have no constraints to
satisfy in the process, our problem is one of ustramed optimization. We saw that the
F-stat exhibited unimodal behavior, but there tgjljc was not a unique global
maximum but rather a “plateau” of maxima. HoweVarther experiments revealed that
we could use as value corresponding to the right side of the @latas our optimas
value. In the next section, we provide background the golden-section search
algorithm that we have used for our univariate mst@ined optimization problem. We
then describe our algorithm for modifying this nwdhto compensate for the fact that a

single maxima does not always exist in our appbcadf the optimization o$.

a. The golden-section search algorithm

The golden-section search algorithm first requives initial guessesq and X,
that contain the maximum. Then, two interior poirfsand x, are chosen according to

thegolden ratioas follows®’

X =x+d (5.16)
X, =X, —d (5.17)

where
d =R~ X) (5.18)

In (5.18), Ris the golden ratio. For details concerning thewation of R, the reader is

encouraged to consult ref 37. Oneg and x, are chosen, the objective function is
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evaluated at these two points. fif{x) > f(x,), the domain ofx to the left of x, (from

X to X,) does not contain the maximum and can be elimihatben, x, becomes the
new x. If f(x,)> f(x), the domain ofx to the right ofx (from x, to x,) can be
eliminated. In this casex becomes the new,. These scenarios are shown in Figure

62, and Figure 63, respectively.

£ 4 Extremum
v Eliminate (maximum)
S
[
[
[ [
| [
[ [
[ [ |
| [ |
L I =
X d - X X
X, - d X,

Figure 62. Golden-section search forf(x ) > f(x,).*’
J(x) 4
| |
| |
I | |
| | |
I | |
| | |
| | | |
| | | R
X Xz Ky X, X

Old x, Old x,

Figure 63. Golden-section search forf(x, ) > f(x ).*’
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The benefit of using the golden ratio is that wendt need to recalculate all the

function values in the next iteration. ff(x)) > f(x,), then x, gets assigned as the new
X, value; otherwisex, gets assigned as the new value. The golden-section search
algorithm terminates when the following stoppingecion is satisfied:

X, —%|<e (5.19)

b. Novel utilization of the golden-search algorithm

Earlier, we concluded that choosingsavalue closer towards the largest value in
the range o$ values will provide desired detection resultsthis section, we present the
steps that we have taken to use the golden-sedgohithm in conjunction with our
requirements. The steps are as follows:

1. Generate the validation set consisting of 100 targignatures and 8000
background signatures as previously discussed.

2. Generate 100 SVDD training set signatures accorttinhe Adaptive Gaussian

model. The varianceo? will be varied to achieve SNRs of 8 dB, 10 dB,dR,
and 15 dB.

3. Run the golden search algorithm with=0 and x, = 2. Capture the value of the
objective functionF(s) = F,_, and the corresponding valise
4. Run the golden search algorithm again witl+ 5 and x, = 2. Capture the value

of the objective functiorf (s,) and the corresponding valisg.
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5. As long asF(s) = F,,,., step 4 is iteratively repeated with=s_, and x, =2.

This means that we are “walking along” the accdptaéinge of values, but we

want to keep traversing this range urii{s) starts to decrease.

6. If F(s)<F, setthe optimak value s, = 5,. This indicates that we have

axl
reached ams value that has produced an objective functionevghat is less than

F..c- This corresponds to awvalue that takes us beyond the desired range of
values. As a result, we have selected the moshrdead largest) s value that

yields F__, .

5. Conclusion

In this section, we have developed a method fdmuopation of the SVDD
kernel parametes. We first studied the behavior of the F-stat otoyecfunction over a
continuous range of s values to find that it exibiunimodal behavior. In many
instances, a range efvalues yielded the maximum F-stat value, and wmadothat this
was affected by the separability between the taaget background signature classes.
We also studied how selection®within the range o$ values affected detection results
and found that it was advantageous to pick theelgyvalue in the range. Accordingly,
we used the golden-section search algorithm for drbonstrained optimization as a
means of efficiently finding the optimalvalue. The algorithm was used in an iterative

fashion to locate the largestvalue in the range of acceptaBlealues.
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D. Impact of the Value ofN
1. Introduction

In this section, our goal is to determine a sight number of signatures to
generate for the SVDD target training class. Egrlwe mentioned theHughes
phenomenanwhich requires that the number of training sammp#hould increase
exponentially for the likelihood-ratio based algloms. Recall that the SVDD is a
boundary method for describing a class of datagtlelratic classifiers discussed earlier
make assumptions about the density of the datdremproceed to estimate the density
parameters (i.e., mean and covariance) from the thnce, an advantage to the use of
a support vector-based algorithm is the potentinlsmall sample-sizes for the training
sets with respect to the dimensionality of the d&v& will vary the value oN and
observe its effect to determine a value Nfthat provides acceptable detection
performance. Small values Nflead to faster training times. In contrast, lavgkies of
N are not desirable since the SVDD training timeeases quadratically witk.'*

In the previous section, we saw that, for our atgm that finds the optimas
parameter, an SVDD has to be trained and appliethtmdependent validation set for
each candidats value. The length of time it takes to train ead¢hthese SVDDs is
proportional to the number of target training sigmesN that we generate. If we can
train the SVDD with a relatively small number ofyisatures, we can substantially

decrease the total training time.
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2. Experiments

To assess the impactfon SVDD detection results, we will do the followin

1. Load one of four HSI data cubeSASI urban_10 CASI veg 10
HYDICE_urban_10HYDICE_veg_10We will use the data cubes containing
targets generated by the adaptive Gaussian model.

2. Generate the independent validation set consistihd00 generated target
signatures and 8000 randomly selected backgrougdatsires. The 100
generated target signatures are also generategl th&iradaptive Gaussian model

with SNR=10 dE to match the SNR of the scene targets.

3. GenerateN SVDD training set signatures according to the &depGaussian

model with SNR=10 dE to match the SNR of the scene targets. We wily Viae

value ofN from 10 samples to 200 samples in increments dihbis, the 5 new
samples that are generated at each iteration grendpd to the previously
generated samples.

4. Train an SVDD using each value fand apply it to the data cube. The optimal
s parameter is chosen using our algorithm from tleipus section.
For each data cube, we have plotted the totalib@itime as a function df. We

have also plotted the F-stat as a functioN &br the validation set and the scene.
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Figure 64. SVDD training time as a function olN for the CASI_urban_10 scene.
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Figure 65. Behavior of F-stat as a function o for the CASI_urban_10 scene.
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Figure 66. SVDD training time as a function oiN for the CASI_veg_10 scene.
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Figure 67. Behavior of F-stat as a function o for the CASI_veg_10 scene.
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Figure 68. SVDD training time as a function ol for the HYDICE_urban_10 scene.
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Figure 69. Behavior of F-stat as a function o for the HYDICE_urban_10 scene.
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Figure 70. SVDD training time as a function ol for the HYDICE_veg_10 scene.
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Figure 71. Behavior of F-stat as a function oN for the HYDICE_veg_10 scene.
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The results are shown in Figure 64 - Figure 71th&splots for the training times
show, we can see the quadratic behavidX &svaried. For example, in Figure 64, with
N =90, the total training time is ~8.78 s; fdf =135, the total training time is ~34.22
s. Hence, a 50% increase in the number of trais@gples led to almost a 400%
increase in the training time. This trend is unmiior exhibited across all four scenes,
except in a couple of instances where the optinoradf s allows for some of the
training times to deviate from the norm.

Let us examine the behavior of the F-stat objecfiinction for the CASI data
cubes. For theCASI _urban_10data cube in Figure 65, the F-stat exhibits simila
behavior for the validation set and scene. In ganére F-stat increases from the initial
training set size of 10 samples to a maximum va@nd 85 samples. Beyond 85
samples, the F-stat remains fairly constant forvidleation set at a value of ~0.98. For
the scene, the F-stat tapers around a maximum \Hlu®.89 and does not increase
beyond 85 samples. For tiBASI_veg 1G&Gcene in Figure 67, the F-stat again exhibits
similar behavior for the validation set and scehleboth cases, using the smallest
training set size of 10 samples yields an F-stédevaear the maximum. Also, at 15
samples, the F-stat drops for both cases. Beyondaniples, the F-stat reaches a
constant maximum value for the validation set azehs.

Let us now look at the F-stat behavior for the HEB data cubes. As Figure 69
shows, the F-stat remains nearly constant for a@lles ofN in both the validation set
and scene foHYDICE_urban_10For the validation set, the F-stat remains atrsstant

value of ~0.985. For the scene, beyond 70 sampihes,F-stat remains constant at
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~0.993—just shy of its maximum value of ~0.995. Hue HYDICE_veg_1Gscene in
Figure 71, the F-stat on the validation set remagerly constant as the values only vary
between ~0.995 and 1. For the scene, the F-staewvalange between ~0.972 and

~0.987. Beyond 60 samples, the F-stat for the sdeas not show any improvement.

3. Conclusion

In the CASI data cubes, the minimum number of dampequired to yield
acceptable detection performance is 85 and 70herurban and vegetative scenery,
respectively. The urban scene showed the mostufition in the F-stat value as a
function of N, indicating that this scene is more sensitivehi® tariation ofN. This is
consistent with what we saw earlier in the optimi@a of s in that the separability
between the target and background signatures feruttban CASI scenery is less
compared to the other scenes. For the HYDICE sgette results demonstrate that the
choice ofN is even less critical with the behavior of thet&semaining nearly constant
across all values df.. This lines up with our intuition from earlier semwe saw that the
HYDICE scenery exhibits large separability betwésmget and background signatures.

Our results regarding the selection of N have icov&d our notion that only a
relatively small number of training signatures isquired with respect to the
dimensionality (number of bands), thus eliminatthg Hughes phenomengoroblem.
Based on our results, we have seen that valuesnaad N = 20 samples and values as
high as N = 90 samples are sufficient for our SVBd¥ed detection scheme, depending

on the separability between target and backgroigrgires.
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E. Impact of the Value of o°
1. Introduction

In the generation of training signatures for thegét class, we must choose a
value of o2, regardless of the choice of target variabilitydab We mentioned that the
constanto” is the per-band variance that is introduced tdrobthe level of variability
in the generated target signatures. Small valuesrofmay prove insufficient for
capturing the true spectral variability of the &trglass; in contrast, large valuesaft
could allow background signatures to be capturetdhbytarget SVDD, thus generating
undesired false positives. In this section, we wile different values o> to explore

the impact on the detection process for both targeability models.

2. Experiments

To explore the impact otr® on the SVDD detection results, we will do the
following:
1. Load one of four HSI data cubesSASI urban_12 CASI veg 12
HYDICE_urban_12HYDICE_veg 12 corresponding to both target variability
models.

2. Generate 100 SVDD training set signatures accortbnigoth target variability

models. We will vary the value af”* to achieve SNRs of 8 dB, 10 dB, 12 dB,

and 15 dB.
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3. Generate the independent validation set consistihdl00 generated target
signatures and 8000 randomly selected backgrougmhtsires. The 100 target
signatures are generated using the correspondiggttaariability model with
values ofg” to achieve SNRs of 8 dB, 10 dB, 12 dB, and 15R&all that this
validation set is used to optimize thgparameter using the algorithm developed
earlier.

4. Train an SVDD using each value of and apply it to the data cube.

For each data cube, we have provided the detectsunlts in the form of
confusion matrices according to the respective evalfio® used to train the SVDD.
Table 9 - Table 24 show the impact af for all four scenes of the simple Gaussian
model. Table 9 - Table 12 show the impactodf on theCASI_urban_12lata cube. As
these tables show, the choiceat has a significant bearing on the detection resls

the value of o increases (i.e., the SNR decreases), the numbdtPsf and TPs
increases. In the scenario shown in Table 12 wtieréarget training set variability has
been underestimated, the TPR is terribly low in parison with the other scenarios. As
Table 13 - Table 16 show, the choice @t does not dramatically affect the detection
results for CASI_veg_12The number of FPs is slightly increased when tdrget

training set variability is significantly overestated as shown in Table 13.
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Table 9. Results 068ASI_urban_12vith SNR = 8 dB for simple Gaussian model.

Actual Background

—

Actual Targe

Predicted Backgroung 38458

8

Predicted Target

1342

192

Table 10. Results 08ASI_urban_12vith SNR = 10 dB for simple Gaussian model.

Actual Background

Actual Targét

Predicted Backgroung

39533

14

Predicted Target

267

186

Table 11. Results 08ASI_urban_12vith SNR = 12 dB for simple Gaussian model.

Actual Background

Actual Targét

Predicted Backgroung

39727

16

Predicted Target

73

184

Table 12. Results 08ASI_urban_12vith SNR = 15 dB for simple Gaussian model.

Actual Background

Actual Targét

Predicted Backgroung

39798

176

Predicted Target

2

24




Table 13. Results 08ASI_veg_12vith SNR = 8 dB for simple Gaussian model.

—

Actual Background Actual Targd

Predicted Backgroung 39760 13

Predicted Target 40 187

Table 14. Results 0BASI_veg_12avith SNR = 10 dB for simple Gaussian model.

Actual Background Actual Targét

Predicted Backgroung 39791 13
Predicted Target 9 187

Table 15. Results 08ASI_veg_1avith SNR = 12 dB for simple Gaussian model.

Actual Background Actual Targét

Predicted Backgroung 39791 13
Predicted Target 9 187

Table 16. Results 08ASI_veg_1avith SNR = 15 dB for simple Gaussian model.

Actual Background Actual Targét

Predicted Backgroung 39792 14
Predicted Target 8 186




Table 17. Results odYDICE_urban_12vith SNR = 8 dB for simple Gaussian model.

—

Actual Background Actual Targd

Predicted Backgroung 39798 0

Predicted Target 2 200

Table 18. Results odYDICE_urban_12vith SNR =10 dB for simple Gaussian model.

Actual Background Actual Targét

Predicted Backgroung 39798 0
Predicted Target 2 200

Table 19. Results ddYDICE_urban_12vith SNR =12 dB for simple Gaussian model.

Actual Background Actual Targét

Predicted Backgroung 39798 0
Predicted Target 2 200

Table 20. Results ddYDICE_urban_12vith SNR =15 dB for simple Gaussian model.

Actual Background Actual Targét

Predicted Backgroung 39798 0
Predicted Target 2 200




Table 21. Results adYDICE_veg_12vith SNR = 8 dB for simple Gaussian model.

—

Actual Background Actual Targd

Predicted Backgroung 39791 3

Predicted Target 9 197

Table 22. Results odYDICE_veg_12vith SNR = 10 dB for simple Gaussian model.

Actual Background Actual Targét
Predicted Backgroung 39800 6
Predicted Target 0 194

Table 23. Results odYDICE_veg_12vith SNR = 12 dB for simple Gaussian model.

Actual Background Actual Targét
Predicted Backgroung 39800 6
Predicted Target 0 194

Table 24. Results ddYDICE_veg_12vith SNR = 15 dB for simple Gaussian model.

Actual Background Actual Targét

Predicted Backgroung 39798 5
Predicted Target 2 195
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The impact ofo?on HYDICE_urban_12s shown in Table 17 - Table 20. As the

tables show, the different values of have no effect on the detection results. With

respect to thélYDICE_veg 12data cube, Table 21 - Table 24 show that the ehoic
o’ has only a slight effect on the detection results.

Table 25 - Table 40 show the impactaf for all four scenes using the adaptive
Gaussian model. Table 25 - Table 28 show the impaar®on CASI_urban_12As
these tables show, the choiceat has a significant bearing on the detection resils
the value ofo? increases (i.e., the SNR decreases), the numbkeothf FPs and TPs

increases. As Table 29 - Table 32 show, the choiice® does not dramatically affect

the detection results f@ASI_veg_12s it did withCASI_urban_12
The impact ofg® on HYDICE_urban_12s shown in Table 33 - Table 36. As

these tables show, the variation @f has a negligible effect on the detection results.

With respect to theHYDICE_veg_l2data cube, Table 37 - Table 40 show that the

choice ofg® can increase the number of FPs if it is choserhigh.



Table 25. Results oBASI_urban_12vith SNR = 8 dB for adaptive Gaussian model.

—

Actual Background Actual Targd

Predicted Backgroung 39623 10

Predicted Target 177 190

Table 26. Results 08ASI_urban_12vith SNR = 10 dB for adaptive Gaussian model.

Actual Background Actual Targét

Predicted Backgroung 39736 14
Predicted Target 64 186

Table 27. Results 08ASI_urban_12vith SNR = 12 dB for adaptive Gaussian model.

Actual Background Actual Targét

Predicted Backgroung 39785 15
Predicted Target 15 185

Table 28. Results 08ASI_urban_12vith SNR = 15 dB for adaptive Gaussian model.

Actual Background Actual Targét
Predicted Backgroung 39798 30
Predicted Target 2 170




Table 29.
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Results 0BASI_veg_12vith SNR = 8 dB for adaptive Gaussian model.

Actual Background

—

Actual Targe

Predicted Backgroung

39783

13

Predicted Target

17

187

Table 30.

Results 0BASI_veg_12vith SNR = 10 dB for adaptive Gaussian model.

Actual Background

Actual Targét

Predicted Backgroung

39799

14

Predicted Target

1

186

Table 31.

Results 0BASI_veg_12vith SNR = 12 dB for adaptive Gaussian model.

Actual Background

Actual Targét

Predicted Backgroung

39781

13

Predicted Target

19

187

Table 32.

Results 0BASI_veg_12vith SNR = 15 dB for adaptive Gaussian model.

Actual Background

Actual Targét

Predicted Backgroung

39789

13

Predicted Target

11

187
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Table 33. Results odYDICE_urban_12vith SNR = 8 dB for adaptive Gaussian model.

Actual Background

—

Actual Targe

Predicted Backgroung

39796

0

Predicted Target

4

200

Table 34. Results adYDICE_urban_12vith SNR = 10 dB for adaptive Gaussian model.

Actual Background

Actual Targét

Predicted Backgroung

39796

0

Predicted Target

4

200

Table 35. Results adYDICE_urban_12vith SNR = 12 dB for adaptive Gaussian model.

Actual Background

Actual Targét

Predicted Backgroung

39797

0

Predicted Target

3

200

Table 36. Results adYDICE_urban_12vith SNR = 15 dB for adaptive Gaussian model.

Actual Background

Actual Targét

Predicted Backgroung

39797

0

Predicted Target

4

200




Table 37. Results adYDICE_veg_12vith SNR = 8 dB for adaptive Gaussian model.

Actual Background Actual Targét

Predicted Backgroung 39766 1
Predicted Target 34 199

Table 38. Results adYDICE_veg_12vith SNR = 10 dB for adaptive Gaussian model.

Actual Background Actual Targét

Predicted Backgroung 39792 2
Predicted Target 8 198

Table 39. Results adYDICE_veg_12vith SNR = 12 dB for adaptive Gaussian model.

Actual Background Actual Targét

Predicted Backgroung 39793 2
Predicted Target 7 198

Table 40. Results adYDICE_veg_12vith SNR = 15 dB for adaptive Gaussian model.

—

Actual Background Actual Targd

Predicted Backgroung 39792 3
Predicted Target 8 197
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3. Conclusion

As we have seen, in some cases, the choicg®ofs critical for robust SVDD
detection performance. In other cases, it has gimarimpact. As we saw in section C
regarding the optimization of the parameter, the separation between the target class
signatures and the signatures of the backgroursdesais crucial. As we saw earlier, the
separation between target and background signatutee urban CASI scenery was less

than the other scenes. The results shown in Tabléable 12 and Table 25 - Table 28

confirm this notion. Aso? is increased for the training set, the SVDD exgaatlowing
more objects (both target and background signattwesnter the sphere.

In the other scenes, the larger separation betweeget and background

signatures allows for the results to be less seasio the choice ofr®. As shown in
Table 3 in section C, we saw that the urban HYDECEnery had the widest rangesof
values that yielded a global maximum. This was madication that the separation
between target and background signatures in tleiseswvas relatively large. The results

shown in Table 17 - Table 20 and Table 33 - TaBle@firm this notion as the choice

of o has virtually no effect on the detection results.
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F. Decision-level Fusion Via the SVDD and Parameat&/ariation

1. Introduction

As we saw in the last section, the choiceddf for the target training set has an
impact on the detection results, depending on thearstion between target and

background signatures. Because separability vadesss all types of scenes and targets,

the selection of an appropriate’ is difficult. Furthermore, we do not knoavpriori the
severity of the variability that is to be expectddhe targets that may be present in the
scenes.

In this section, we will investigate the use otiden-level fusion for alleviating

the problem of choosing a proper value @f. The next section provides the theory
behind the decision-level fusion techniques we wile. Section 3 provides some
experiments using decision-level fusion on somewfHSI data, and section 4 provides

our conclusions regarding the results.

2. Theoretical Background

A recent trend in the design of classificationtegs has been the use of
information fusion, or the combination of classifieFor data sets with complex and
highly nonlinear decision boundaries, a single sifas may not yield a desirable
classification rate. In the PR literature, it haei observed that the sets of misclassified
patterns do not overlap. This implies that différeriassifiers potentially offer

complementary information about the patterns toclassified, and their combination
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could prove useful® The combination of classifiers may occur at eittier data level,
feature level, or decision level stages of thesifas >’ Each classifier may use the same
representation (features) of the input patterntsrown representation of the input
pattern. An example of combination in the sameui@aspace would be neural network
designs having the same architecture but diffesefs of weights obtained through a
variety of training strategie¥.

A handful of strategies exist for combining thetpuis of each individual
classifier to form a single decisidfi* In decision-level fusionthe outputs (labels) of
each classifier are combined using a specific iylEding a single label for each input
pattern. In the context of target detection, twegdole labels exist—a O indicates that no

target is present (classy), while a 1 indicates that a target is preseras&ty). The
traditional rules for decision-level fusion incluttee AND, OR, and majority vote (MV)
scheme$! Using the AND rule, classy (target) is declared if all classifiers predict
class aj; otherwise, classy, (background) is declared. With the OR rule, clags
(target) is declared if at least one of the classfpredicts classy ; otherwise, classy,
(background) is declared. Using the MV scheme,sclas (target) is declared if a
majority of the classifiers predicts clasg; otherwise, classw, (background) is

declared. In the MV scheme, each classifier haaldmparing on the final decision.
We intend to extend the concept of decision-lefeedion of classifiers by
investigating the combination of detectors to ftatié SVDD-based target detection. It is

reasonable to expect that detector fusion will mlewobust detection, given that the
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fusion of classifiers has had successful applicaitiohyperspectral and remotely sensed

imagery?®*

3. Experiments

In this section, we will use decision-level fusiconcepts by training a collection

of SVDDs with different variance parameters$ for each of the target training sets. The
following enumerate the steps we have taken:

1. Load one of eight HSI data cube€ASI urban_10 CASI urban_12
CASI_veg 10 CASI veg 12 HYDICE urban_10, HYDICE urban_12
HYDICE_veg_10, HYDICE_veg_.1®/e will use the data cubes corresponding to
both target variability models.

2. Generate three SVDD training sets, each consistirfDO signatures according

to both target variability models. Each SVDD wiive a value ot to achieve
SNRs of 7 dB, 9 dB, and 11 dB. These SVDDs wilféspectively referred to as
SVDD_7SVDD_9andSVDD 11

3. Generate three independent validation sets comgigif 100 generated target
signatures and 8000 randomly selected backgroumgatsires. The 100
generated target signatures are generated usingcahnesponding target
variability model with values ot to achieve SNRs of 7 dB, 9 dB, and 11 dB.
Each validation set is used to optimize thparameter of the respective SVDD

training set. The values of 7, 9, and 11 were pseposelected to explore the
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impact of training sets with different levels ofriaility that do not identically
coincide with the SNRs of the inserted scene target

4. Train all three SVDDs and apply them to each datsec

5. Capture the detection results of each individuaD®Vas well as the decision-
level fusion detection results using the AND, ORJ &V schemes.

For sake of brevity, we have presented the rebyltsting only the FPs and TPs
for each detection scenario since the other twontiiss (TN and FN) are easily
calculated from the FPs and TPs. Table 41 - TaBlgrévide the results for the eight
data cubes corresponding to the simple Gaussiarlmetile Table 49 - Table 56 show
the results for the adaptive Gaussian model.

In these experiments, we are using data cubesioarg inserted targets with
SNRs of 10 dB and 12 dB. The 10 dB scene is usddatave may assess the decision
fusion results when the target variability in tleese (i.e., 10 dB) lies within the range of
the target variability of the individual trainingts (7 dB, 9 dB, and 11 dB). The 12 dB
scene is used so that we may assess the decision fesults when the target variability
in the scene (i.e., 12 dB) lies outside the rarfgd® target variability of the individual

training sets.
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Table 41. Decision-level fusion results foASI_urban_1G&cene for simple Gaussian model.
SvDD_7| SvDD_9 SvDD_1 AND OR MV
FPs 2959 682 94 94 2959 682
TPs 194 191 92 92 194 191

Table 42. Decision-level fusion results f0ASI_urban_12&cene for simple Gaussian model.
SvDD_7| SvDD_9 SvDD_11 ANP OR MV
FPs 2962 724 124 124 2962 724
TPs 194 191 185 185 194 191

Table 43. Decision-level fusion results f0ASI_veg_1@cene for simple Gaussian model.
SvDD_7| SvDD_9 SvDD_11 AND OR MV
FPs 94 9 9 9 94 9
TPs 187 187 187 181 187 187

Table 44. Decision-level fusion results f0ASI_veg_123cene for simple Gaussian model.
SvDD_7| SvDD 9 SvDD 1 AND OR MV
FPs 119 9 33 9 119 34
TPs 187 187 187 189 187 187
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Table 45. Decision-level fusion results fé¥ DICE_urban_1Gcene for simple Gaussian model.
SvDD_7| SvDD_9 SvDD_11 AND OR MV
FPs 8 8 7 7 8 8
TPs 200 200 200 200 200 200

Table 46. Decision-level fusion results féWDICE_urban_1Zcene for simple Gaussian model.
SvDD_7| svDD 9 SvDD 1 AND OR MV
FPs 2 2 2 2 2 2
TPs 200 200 200 200 200 200

Table 47. Decision-level fusion results fé¥ DICE_veg_1Gcene for simple Gaussian model.
SvDD_7| SvDD_9 SvDD_11 AND OR MV
FPs 161 0 0 0 161 0
TPs 198 194 194 194 198 194

Table 48. Decision-level fusion results f8¥ DICE_veg_12cene for simple Gaussian model.
SvDD_7| SvDD_9 SvDD_11 AND OR MV
FPs 163 2 0 0 168 2
TPs 198 195 194 194 198 195
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As Table 41 and Table 42 show, the level of valitgin the target training set
has a significant impact on the detection resultwy fCASI_urban_10 and
CASI_urban_12 Notice in Table 41 how using an underestimatedhitng set with
SVDD_11causes a sharp decline in the number of TPs. @b$ew the AND decision
rule leads to the lowest number of FPs and TP$adt it provides identical results to
the SVDD_11training set. In contrast, the OR decision rulelds both the highest
number of FPs and TPs—identical to tB&DD_7 training set. The MV scheme
provides a compromise between the two, yieldingstlime results &8VDD_9 For the
CASI_urban_1l12data cube in Table 42, the AND rule vyields thet laecision-level
fusion performance, mimicking the resultsDD_11

As we saw earlier, the vegetative CASI scenenpisas difficult and, hence, the
detection results do not significantly vary betwdle individual training sets. Once
again, for the vegetative CASI scenery results abl& 43 and Table 44, the AND
decision rule yields the lowest number of FPs aRd,the OR decision rule yields the
highest number of FPs and TPs, and the MV schemedas a compromise between the

FPs of the two.
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With respect to the urban HYDICE scenery, Tableadtdl Table 46 clearly

confirm the results from the previous section et variation ofg® has a negligible
impact on the detection results because of theivelg large separation between target
and background class signatures. Accordingly, #mstbn-level fusion results using all
three schemes are identical. The results shownableT47 and Table 48 for the
vegetative HYDICE scenery echo that of the otheenss in that the MV scheme
provides a robust balance on detection performarmn compared to the AND and OR
rules for fusion.

With respect to the results in Table 49 - TableuSéhg the adaptive Gaussian
model, similar trends are observed. The urban CA&nery shows the largest
fluctuation in detection results as a function lo¢ training set used, while the urban
HYDICE scenes are virtually unaffected by the lewElvariability in the training set.
Regarding the decision fusion results for the adaptGaussian model, the AND
decision rule yields the lowest number of FPs aRd,the OR decision rule yields the
highest number of FPs and TPs, and the MV schemedas a balance between the

two.
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Table 49. Decision-level fusion results foASI_urban_1&cene for adaptive Gaussian model.
SvDD_7| SvDD_9 SvDD_11 AND OR MV
FPs 297 57 26 26| 297 5¢
TPs 192 182 179 179 192 182

Table 50. Decision-level fusion results foASI_urban_12&cene for adaptive Gaussian model.
SvDD_7| svDD 9 SvDD 1 AND OR MV
FPs 314 121 29 29 314 1721
TPs 192 189 186 18q¢ 192 189

Table 51. Decision-level fusion results foASI_veg_1Gcene for adaptive Gaussian model.
SvDD_7| SvDD_9 SvDD_11 AND OR MV
FPs 25 1 0 0 25 1
TPs 187 186 186 186 187 186

Table 52. Decision-level fusion results foASI_veg_13cene for adaptive Gaussian model.
SvDD_7| SvDD_9 SvDD_11 AND OR MV
FPs 26 12 9 8 26 19
TPs 187 186 186 186 187 186
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Table 53. Decision-level fusion results fé¥DICE_urban_1Gcene for adaptive Gaussian model.

SvDD_7( SvDD_9 SvDD_11 ANp OR MV
FPs 2 2 2 2 2 2
TPs 200 200 200 200 200 200

Table 54. Decision-level fusion results fé¥DICE_urban_1Zcene for adaptive Gaussian model.

SVDD 7] SVDD 4 SVDD 1L ANP OR MV
FPs 12 4 4 4| 120 a4
TPs| 200 200 200 200 200 2¢0

Table 55. Decision-level fusion results fé¥DICE_veg_1Gcene for adaptive Gaussian model.

SvDD_7( SvDD_9 SvDD_11 ANp OR MV
FPs 61 5 0 0 61 5
TPs 199 198 192 192 199 198

Table 56. Decision-level fusion results fé¥DICE_veg_12cene for adaptive Gaussian model.

SvDD_7| SvDD_9 SvDD_11 ANp OR MV
FPs 72 10 9 9 72 14
TPs 199 198 198 198§ 199 198
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4. Conclusion

The experiments in this section have demonstritedutility of decision-level
fusion for our SVDD-based target detection scherAs. we mentioned in the
introduction, the purpose of our decision-levelidasapplication was the potential for
achieving robust detection performance without hgvio determine beforehand the
level of variability to be expected in the targktss. In all the data cubes, the AND rule
yielded the lowest numbers of FPs and TPs. Thislimp with our intuition since the
AND rule is conservative in the sense that it dalyels a signature as targealf of the
detectors label it as such. In contrast, the OR yiglded the highest numbers of both
FPs and TPs for all data cubes. Once again, thigugively expected since the OR rule
is liberal in the sense that it labels a signaasdarget if at leasine of the detectors
labels it as such. The MV scheme was able to mairtaelatively low number of FPs
with a high number of TPs for all data cubes, fhviding the desired balance between
the AND and OR rules. Accordingly, we will implenmtghe MV fusion rule in all future
experiments related to SVDD-based target detect@mapter VII will provide the
detection results of our SVDD-based detection sehemall data cubes corresponding

to both target variability models.
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CHAPTER VI

SPECTRAL FRINGE-ADJUSTED JOINT TRANSFORM CORRELATIO N

A. Introduction

In this chapter, we present the SFJTC technigdeeaplore the use of the DWT
as a pre-processing tool for SFJTC-based targeictiebh. Unlike the kernel-based
SVDD approach to target detection that we formulate Chapter V, the SFJTC
technique is a deterministic approach to targeedliein. Each pixel signature in the
hyperspectral data cube is compared to the taigedtsire to determine whether a match
exists. The basic premise of our work is that seteefficients generated from a desired
level of the DWT decomposition of the signaturesudti be used in place of the original
signatures for improved SFJTC-based detection.

Section B provides the mathematical framework hed SFJTC technique. In
section C, we describe the detection statistic tdation used to quantify the detection
process. Section D reviews the wavelet transforchdiscusses current applications of it
in the hyperspectral literature. In section E, w#l explore how use of the DWT
coefficients impacts the detection results on o&l KHcenery. Section F presents our
supervised training algorithm for selecting an wgati set of DWT coefficients for a

particular target and scene prior to detection.
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B. Theoretical Background

In a JTC technique, when the input pixel containy one spectral signature, the
correlation output produced includes three terrasstrong DC or zero-order term at the
center, flanked by a pair of cross-correlation ®iim the correlation array. The FITC
technique provides enhanced correlation performanmbere the joint power spectrum is
first modified by eliminating the zero-order terrasd then multiplied by a real-valued
filter known as thdringe-adjusted filtef FAF). Accordingly, this technique overcomes
the problem of zero-order correlation terms anddpoes sharp delta-function-like
peaks®

In the SFJTC technique, the referencex), and input,t(x) , spectral signatures
are situated on the x-axis with a distance of sspar of 2x,. The input joint signature

f (X) can be expressed as the follows:

FO)=r(x+ %) +t(x= %) (6.1)
After applying the Fourier transform to the expressn (6.1), we obtain the following

expression:
F(u) =|R(U)|exp[ jn (ulexp(jux )*+| T(U) exp[@ (u)lexpt jux (6.2)
where |R(u)|and [T(u)| are the amplitudes, ang (u)and g(u) are the phases of the

Fourier transforms of and t, respectively, andi is the frequency-domain variable. If

we take the magnitude Bf{u), we obtain thgoint power spectruniJPS) as given by the

following:
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IFW)|* =R+ Y +| R | T Y expl do( b-@( w2 yX
+|R(U| [ T(U[expl k@Y -@ () -2 ug]

(6.3)

In (6.3), the first two terms correspond to theozerder terms and the last two terms are
the desired cross-correlation components betweenefierence and input signatures. To
eliminate the zero-order terms, we include a Foyi@ane image subtraction technite
where the input-signature-only power spectrum dnadreference-signature-only power
spectrum are subtracted from the JPS found abdterwards, the modified JPS can be
expressed as follows:

1@ =|F @] ~[RI" [ TCY"

=|R(U|| T(U| expl {& (Y -@(Y+2 ug] + (6.4)
IR(U)| | T( U] expl f@(V - @ (Y -2 uy]

Classical JTC techniques yield large correlatimie $obes and large correlation
peak widths, leading to degraded detection perfoo@®“® To provide sharp
correlation peaks and small correlation side lobesmodified JPS in (6.4) is multiplied
by the FAF before performing the final inverse HReurtransform. The FAF is

characterized by the transfer function definedodisws:

H () =—2W

SEA L— (6.5)
B(u) +|R(U)

where A(u) and B(u) are either constants or functions of. When A(u) =1

and R(u)|2 > B(U, the FAF can be approximated as follows:

1

H(u)= >
R

(6.6)
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The last step of the SFJTC algorithm is an invdtearier transform of the

filtered, modified JPS, yielding the correlationtjmut:

C(x) = F{H(Y x| (Y[} (6.7)

A block diagram of the SFJTC algorithm is showrrigure 72.

Reference N Fourier | - Reference
sugnature Transform r—ﬂPower Spectrum
[]
JOINt el FOUMET ey Joint Power 5
signature Transform Spectrum (JPS -
" Unknown. Fourier N ‘Input Power -
input - Transform Spectrum
Fringe- adjusted |
Filter (FAF) |
. AR
— | Comelation | Inverse -
Post-processing output: . Fourier - '

) '!_’_ransferm

Figure 72. 1-D SFJTC algorithm.

C. Detection Statistic Formulation

As mentioned earlier, a hyperspectral scene iseesgpted as a 3-D data cube,

where the first two dimensions are spatial with rows andN. columns, and the third

dimension is spectral witli, bands. Thus, the scene contains a totallgk N pixels.
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In our work, we will use a pixel-based processipgpraach where pixeli,j) has a

corresponding hyperspectral signature vestorgiven as follows:

S, =[$,j @, i 2),... S (R T
(i=12,...N;,j=12,.. N

(6.8)
All of the signature vectors in the hyperspecimsge are subject to the SFIJTC
algorithm, and their correlation outpu@ ;(x) with the target spectral signature are
computed. Previous work has indicated that sole afs¢he largest value of the
correlation output, known as thpeak does not yield distinguishable correlation

performancé® As a result, we have computed a decision mdifor each pixeli, j)

defined by the following:

D =( peakj (6.9)
luclutter

where peak=max(C(X)and occurs at locatiorx=x___in C(x). The clutter in the

peak

correlation output consists of all values ©fx) excludingthe value atx it can be

peak?’

interpreted as a measure of noise in the correlaigput™ In (6.9), 1. represents

the average value of the clutter and is given leyfetiowing:

1
=— C(X 6.10
:uclutter Lc _1 j ,j;(peak ( ) ( )

where L. is the length of the correlation output vect¢x) .The exponentr in (6.9)

can be selected to adjust the range of values Ehatan take. In our work, we have
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empirically seta =0.25. The detection statistic given by (6.9) is morigatde than the

peaksince it uses more information from the correlatotput.

D. The Wavelet Transform
1. Introduction

The wavelet transform is a mathematical tool ferf@rming a multiresolution
analysis (MRA) of a signdl"*° Wavelets have had many successful applicatiodsiia
compressiorf, noise removat, and texture classificatiéh In the signal processing
arena, they are commonly used to represent a signtrms of its global features,
yielding the general shape of the signal, andatsll features, yielding the details that
make the signal unique. The wavelet transform hasnbdeveloped in both the
continuous and discrete domains—the continuous Matransform (CWT) and discrete
wavelet transform (DWT), respectively.

Wavelets have also been used in the exploitatidtSd data. Bruce and Li have
investigated the feasibility of derivative analysi§ hyperspectral signatures for
computing space-scale images and spectral fingespri The application of wavelet-
based feature extraction for the classificatioragficultural hyperspectral imagery has
been studied by Bruce, Koger, and’f.iThey show that the wavelet transform approach
is superior to conventional feature extraction radthin terms of overall classification
accuracy. The use of the DWT for dimensionalityuethn of HSI data has been
investigated by Kaewpijit, Le Moigne, and El-GhazaWThey show that the DWT is

superior to principal components analysis (PCA)dionensionality reduction and yields
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better or comparable classification accuracy on H&h, in addition to being more
computationally efficient than PCA. Bruce, Morgamd Larsen investigate the use of
the wavelet coefficients’ scalar energies as festdor use in a statistical classification
system of hyperspectral signals, particularly faogion the ability to classify subpixel

targets?®

2. The continuous wavelet transform

The continuous wavelet transform (CWT) of a sign@) is an inner product

betweenf (t) and the wavelet function, and is defined as foltows
W, f(a B =( fg,,)= [ f(O,,dt (6.11)
where(.,.) denotes the standard inner productl8(i). ¢, , is the complex conjugate

of ¢, ,, which is the family of wavelet functions thatist the following:

Wi (1) =iw(%j,a,bmm,a¢ 0 (6.12)

Jdl
The functiong/(t) must satisfy the followingdmissibility conditionin order to

qualify as a wavelet:

o 2
| FEOL e e (6.13)

W ld

where F ([J) denotes the Fourier transform, aadis the frequency-domain variable. The

admissibility condition implies two things. Firghe mother wavelet is oscillatory in

nature and has an average value of zero. Secomhibits “compact support” and
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decays exponentially. As a result of the continuscele and translation parameters
and b, the CWT is highly redundant. To alleviate theurdiancy, the wavelet series

was introduced, which is simply a discretizatiorttef CWT?®

3. The discrete wavelet transform

The DWT is a highly efficient alternative to th&\d that works by discretizing
the scale and translation parametarandb. A computationally fast implementation of
the wavelet transform is known as thkallat algorithm, which represents the wavelet
basis functions with a filter bank of low-pass dmgdh-pass filters that meet certain

constraint$® The general form of the 1-D DWT is shown in FigdBe

f[n] g[n] cD;

A

g[n] 4’@_>CD2
hin] : —cA,—>...

Figure 73. Recursive filtering diagram of the Malla algorithm for 1-D DWT.

The original signaf[n] is passed through low-pass and high-pass filtetis w
FIRs h[n] andg[n], respectively. The low-pass and high-pass filteefficients are

related by the following:
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glL-1-n]=(-2)"h[n] (6.14)
wherelL is the length of the filters. The filtered signale then decimated by a factor of
two, yielding the coefficients at the first levdl decomposition. At each decomposition
level, the outputs along the low-pass branch arewkn as theapproximation
coefficients, while the outputs along the high-pa&sanch are known as thaetail
coefficients. Multiple levels of decomposition arecuted by iteratively repeating the
filtering and dyadic decimation procedure on theragimation coefficients. The

process is repeate levels, and the approximation coefficient# and detall
coefficients cD;, jU{L,...,K} are known as the wavelet coefficients. The coieffits

are often concatenated into a single vector andtddroyw :

w =[cA cD, cQ ;... cOl (6.15)
Many different families of wavelets with varyingoperties are definetl.In this

work, we use the well-known Daubechies waveletsrdér 4 (Ib4).

E. Use of the DWT Coefficients for SFITC-based Dettion

In this section, our goal is to explore any perfance improvement by running
the SFJTC detection algorithm in the wavelet domaim do this, we will apply the
DWT to the input scene signatures and target sigeatand run the SFJTC algorithm
using the DWT approximation and detail coefficienfsthe signatures. By doing this,
we can assess the class separability of the DWificeats of the signatures relative to

the original signatures. We will also explore thiée& that the number of DWT
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decomposition levels has on the SFJTC detectiofopeance. At each decomposition
level, we will assess the impact of using particu@mbinations of the DWT
approximation and detail coefficients at that leaglwell as all of the DWT coefficients.
Table 57 shows the various combinations of DWT feciehts for decomposition levels
1 — 3. It should be noted that a large number ofIDmMbinations exist with respect to
the combinations ahdividual coefficients. The combinations in Table 57 aremynthe
various possibilities of grouping the contiguoussets ofapproximationand detail

coefficients at a particular decomposition level.

Table 57. DWT coefficient combinations for deconipos levels 1 — 3.

Level DWT Coefficient Combinations
1 CAy cACDy
2 CAy CACD; cAcD, cA,cD,cD,

CAs, CACD; CAGCDLCD,, CACDCD;
CAGCD,, CACD; CALCDCD, CALLDLCD,CD;

3

For a given scene and the associated target aignahe DWT coefficients are
generated using thdb4 wavelet at the desired decomposition leyelThe SFITC
detection algorithm is run using each DWT coefiitieombination in Table 57 of the
scene and target signatures. To quantify improvéraed compare performance in the
detection process, ROC curves are generated, andrétas under the ROC curves

(AUROCSs) are computed. For sake of brevity and evithloss of generality, only the



121

ROC curves corresponding @ASI_urban_10andHYDICE_urban_10or both target
variability models are provided.

We first applied the procedure to the scenes basdbe simple Gaussian model.
Table 58 and Table 59 provide the AUROCSs corresimgntb the ROC curves for the
detection results on the urban and vegetative Cg®hery, respectively. Similarly,
Table 60 and Table 61 provide the same data forutban and vegetative HYDICE
scenery. Each table provides the AUROCs of SFJTs@aetection using the original
signatures and the fourteen DWT coefficient comtooms listed in Table 57. Table 62 -
Table 65 correspond to the scenes based on théve&aussian model.

The results for the urban CASI scenery are shawrable 58. Notice that a total
of 56 DWT combinations are presented—14 combination each of the 4 data cubes.
For this scene, 50 out of 56 DWT combinations, 88.28% of the combinations,
provided either identical or improved AUROCs whempared to the AUROCSs using
the original signatures. Notice how DWT combinati®n(cA.cD,) does consistently
poorly across all four data cubes. The ROC cureesesponding t€ASI_urban_1@re

shown in Figure 74 and Figure 75.



Table 58. AUROCSs of DWT combinations on urban CA&nery using simple Gaussian model.

Index Features | CASI_urban_8 CASI_urban_2j0 CASI_urban_|12 CASI_urba
1 Original 0.2653 0.5393 0.9079 0.9947
2 cA 0.7059 0.9187 0.9857 0.9963
3 cAcD; 0.4331 0.7478 0.9494 0.9955
4 cA 0.7091 0.8465 0.9192 0.9652
5 cAxcD; 0.6577 0.8974 0.9789 0.9964
6 cAxcD, 0.2246 0.2361 0.2113 0.2416
7 cALD,CD, 0.6188 0.9032 0.9877 0.9982
8 chAs 0.9686 0.9910 0.9947 0.9956
9 cACD; 0.9090 0.9835 0.9956 0.9974
10 cA«cD,cD, 0.8752 0.9808 0.9959 0.9976
11 CACD,CD; 0.9367 0.9874 0.9959 0.9973
12 cAD, 0.9615 0.9878 0.9956 0.9965
13 cAscD; 0.9740 0.9915 0.9956 0.9963
14 CcACDCD, 0.9402 0.9898 0.9975 0.9981
15 | cAsCDsCD,CD; 0.7472 0.9599 0.9958 0.9987

122
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Figure 74. ROC curves of DWT level 1 and 2 coeffients onCASI_urban_10 with simple Gaussian model.
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Figure 75. ROC curves of DWT level 3 coefficientsroCASI_urban_10 with simple Gaussian model.
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Table 59. AUROCSs of DWT combinations on vegeta®AS| scenery using simple Gaussian model.

Index Features | CASI_veg_8 CASI_veg_10 CASI_veg[12 CASIl_vep 15
1 Original 0.3756 0.7779 0.9614 0.9916
2 cA 0.8273 0.9537 0.9888 0.9901
3 cAcD; 0.5806 0.8669 0.9714 0.9921
4 cA 0.8740 0.9562 0.9866 0.9903
5 cAxcD; 0.8610 0.9656 0.9899 0.9909
6 cACD, 0.2302 0.2678 0.2864 0.2417
7 cALD,CD, 0.8306 0.9584 0.9915 0.9916
8 chAs 0.9752 0.9848 0.9852 0.9852
9 cAcD; 0.9630 0.9894 0.9898 0.9898
10 cACD,cD, 0.9521 0.9890 0.9899 0.9899
11 CACD,CD; 0.9763 0.9893 0.9894 0.9894
12 cAD, 0.9838 0.9881 0.9882 0.9882
13 cAscD; 0.9862 0.9881 0.9881 0.9881
14 CACDsCD, 0.9779 0.9901 0.9901 0.9901
15 | cAscDsCD,CD; 0.9024 0.9876 0.9917 0.9917

The results for the vegetative CASI scenery amwshin Table 59. For this
scene, 42 out of 56 DWT combinations, or 75% of ¢bhenbinations, yielded either
identical or improved AUROCs when compared to thdROCs using the original
signatures. Once again, notice how DWT combinadidoA.cD;) consistently performs

poorly across all four data cubes.
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Table 60. AUROCSs of DWT combinations on urban HYBI€cenery using simple Gaussian model.

Index Features | HYDICE_ urban_8| HYDICE_urban_10 HYDICE_urban_[12 HEBIlurban_15
1 Original 0.3459 0.6991 0.9695 0.9999
2 cA 0.3881 0.7126 0.9806 1.0000
3 CACD, 0.4268 0.7218 0.9669 1.0000
4 cA, 0.7513 0.9308 0.9965 0.9999
5 cAcD; 0.8226 0.9898 0.9997 1.0000
6 cAcD, 0.9463 0.9988 0.9999 1.0000
7 cACD,CD; 0.7201 0.9505 0.9998 1.0000
8 chs 0.9691 0.9948 0.9993 0.9993
9 cAcD; 0.7962 0.9249 0.9734 0.9911
10 cAecD;cD, 0.8514 0.9775 0.9985 0.9988
11 CACD,CD; 0.9719 0.9999 1.0000 1.0000
12 cAcD, 0.9502 0.9894 0.9969 0.9971
13 cAscD; 0.9450 0.9945 0.9991 0.9994
14 CACDSCD, 0.9441 0.9930 0.9996 0.9997
15 | cAcDseD,CD; 0.9303 0.9963 0.9998 0.9998

For the urban HYDICE scenery, Table 60 shows 48abut of 56 combinations,
or 87.5% of the combinations, yielded either ideadtior improved AUROCs when
compared to the AUROCSs using the original signatuféhe ROC curves corresponding

to HYDICE_urban_1Gre shown in Figure 76 and Figure 77.
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Figure 76. ROC curves of DWT level 1 and 2 coeffients onHYDICE_urban_10 with adaptive Gaussian model.
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Table 61. AUROCSs of DWT combinations on vegetati¥DICE scenery using simple Gaussian model.

Index Features | HYDICE_veg_8 HYDICE veg_10 HYDICE_veg (12 HYDICE 1&g
1 Original 0.3179 0.5223 0.9279 0.9986
2 cA 0.5796 0.9296 0.9948 1.0000
3 CACD, 0.4791 0.7887 0.9795 0.9995
4 cA, 0.7515 0.9049 0.9712 0.9969
5 cAcD; 0.6120 0.9537 0.9999 1.0000
6 cAcD, 0.9189 0.9874 0.9987 0.9988
7 cACD,CD; 0.8351 0.9705 0.9972 0.9984
8 chs 0.9525 0.9926 0.9927 0.9927
9 cAcD; 0.8631 0.9899 0.9994 0.9995
10 cAcD;cD, 0.7964 0.9765 0.9992 0.9995
11 CACD,CD; 0.9441 0.9986 1.0000 1.0000
12 cAcD, 0.9137 0.9910 0.9927 0.9927
13 cAscD; 0.2398 0.2510 0.2514 0.2467
14 CACDSCD, 0.9968 1.0000 1.0000 1.0000
15 | cAscDscD,CD; 0.9761 0.9998 1.0000 1.0000

For the vegetative HYDICE scenery, Table 61 shadiat 48 out of 56
combinations, or ~85.71% of the combinations, \adlcither identical or improved
AUROCs when compared to the AUROCSs using the aaiggsignatures. Notice how

DWT combination 13¢AscDs3) does consistently poorly across all four dataesub



Table 62. AUROCSs of DWT combinations on urban CA&nery using adaptive Gaussian model.

Index Features | CASI_urban_8 CASI_urban_2j0 CASI_urban_|12 CASI_urba
1 Original 0.9967 0.9980 0.9980 0.9980
2 cA 0.9935 0.9965 0.9968 0.9968
3 cAcD; 0.9937 0.9969 0.9972 0.9972
4 cA 0.9424 0.9615 0.9668 0.9715
5 cAxcD; 0.9945 0.9970 0.9972 0.9972
6 cAxcD, 0.3185 0.2936 0.2588 0.2148
7 cALD,CD, 0.9975 0.9984 0.9984 0.9984
8 chAs 0.9890 0.9945 0.9954 0.9957
9 cACD; 0.9946 0.9972 0.9975 0.9975
10 cA«cD,cD, 0.9950 0.9974 0.9976 0.9976
11 CACD,CD; 0.9932 0.9970 0.9973 0.9974
12 cAD, 0.9904 0.9958 0.9965 0.9966
13 cAscD; 0.9916 0.9957 0.9962 0.9963
14 CcACDCD, 0.9958 0.9979 0.9981 0.9981
15 | cAsCDsCD,CD; 0.9974 0.9987 0.9987 0.9987

For the urban CASI scenery based on the adaptaugs$tan model,

shows that 10 out of 56 combinations, or 17.86%hef combinations, yielded either

130

Table 62

identical or improved AUROCs when compared to thdROCs using the original

signatures. As was the case with the urban andtatge CASI scenery based on the

simple Gaussian model, DWT combination &\D,) consistently performs poorly

across all four data cubes. The ROC curves correipg toCASI_urban_1@&re shown

in Figure 78 and Figure 79.
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Figure 78. ROC curves of DWT level 1 and 2 coeffients onCASI_urban_10 with adaptive Gaussian model.



132

Original
cA3

cAsc D1
cAsc D2

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

a1ey aAlISod aniy

False Positive Rate

T
|
|
—
|- - D -
| N ™ N N
| O 0 0 0o |
! = %9 %9 Y @ ,
4% a 0o o |-
= 0 O o o
! D ™m ™ ™ ™ !
! S < << !
” O o o o o ”
I I
| |
| |
| |
| |
[ 1 L
| | | | | |
| | | | | |
| | | | | |
| | | | | |
L 0 L _a___a____
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
= T - - /- - - -- - -"r- - - T1T---7---=
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| —— | |
| |
| |
| |
| |
| |

a1ey aAlISod aniy

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

False Positive Rate
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Table 63. AUROCSs of DWT combinations on vegeta@®AsS| scenery using adaptive Gaussian model.

y_15

Index Features | CASI_veg 8 CASI_veg_10 CASI_veg[12 CASI_ve
1 Original 0.9916 0.9916 0.9916 0.9916
2 cA 0.9891 0.9901 0.9901 0.9901
3 cAcD; 0.9919 0.9929 0.9929 0.9929
4 cA 0.9866 0.9902 0.9903 0.9903
5 cAxcD; 0.9909 0.9909 0.9909 0.9909
6 cA,cD, 0.3455 0.3626 0.2722 0.2101
7 cALD,CD, 0.9916 0.9916 0.9916 0.9916
8 chAs 0.9849 0.9852 0.9852 0.9852
9 cACD; 0.9897 0.9898 0.9898 0.9898
10 cA«cD,cD, 0.9898 0.9899 0.9899 0.9899
11 CACD,CD; 0.9894 0.9894 0.9894 0.9894
12 cAD, 0.9880 0.9882 0.9882 0.9882
13 cAscD; 0.9881 0.9881 0.9881 0.9881
14 CcACDCD, 0.9901 0.9901 0.9901 0.9901
15 | cAgcDsCD,CD; 0.9917 0.9917 0.9917 0.9917

Table 63 provides the results for the vegetati&SICscenery based on the

adaptive Gaussian model. Twelve out of the 56 coatlwns, or 21.43% of the

combinations, yielded either identical or improvRlROCs when compared to the

AUROCs using the original signatures. Yet again, DWombination 6 ¢A.cD,)

consistently performs poorly across all four dathes.
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Table 64. AUROCSs of DWT combinations on urban HYBI§cenery using adaptive Gaussian model.

Index Features | HYDICE_ urban_8| HYDICE_urban_10 HYDICE_urban_[12 HEBIlurban_15
1 Original 0.9715 0.9992 0.9999 1.0000
2 cA 0.7942 0.9910 1.0000 1.0000
3 CACD, 0.8662 0.9985 1.0000 1.0000
4 cA, 0.7458 0.9644 0.9972 0.9999
5 cAcD; 0.9752 0.9999 1.0000 1.0000
6 cAcD, 0.9772 0.9999 1.0000 1.0000
7 cACD,CD; 0.9516 0.9988 1.0000 1.0000
8 chs 0.8430 0.9816 0.9969 0.9993
9 cAcD; 0.8613 0.9544 0.9829 0.9916
10 cAecD;cD, 0.9220 0.9928 0.9988 0.9988
11 CACD,CD; 0.9835 0.9999 1.0000 1.0000
12 cAcD, 0.9193 0.9841 0.9968 0.9971
13 cAscD; 0.7589 0.9056 0.9776 0.9992
14 CACDSCD, 0.9527 0.9946 0.9997 0.9997
15 | cAcDseD,CD; 0.9675 0.9983 0.9998 0.9998

For the urban HYDICE scenery, Table 64 shows i8abut of 56 combinations,
or ~32.14% of the combinations, yielded either tamh or improved AUROCs when
compared to the AUROCSs using the original signaufiéhe urban HYDICE scenery
does not have a particular DWT coefficient comborathat performs poorly on any of
the data cubes. The ROC curves corresponding¥B®ICE_urban_10are shown in

Figure 80 and Figure 81.
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Table 65. AUROCSs of DWT combinations on vegetatiDICE scenery using adaptive Gaussian model.

Index Features | HYDICE_veg_8 HYDICE veg_10 HYDICE_veg (12 HYDICE 1&g
1 Original 0.9986 0.9986 0.9986 0.9986
2 cA 0.9962 1.0000 1.0000 1.0000
3 CACD, 0.9995 0.9995 0.9995 0.9995
4 cA, 0.9914 0.9965 0.9969 0.9969
5 cAcD; 1.0000 1.0000 1.0000 1.0000
6 cAcD, 0.9988 0.9988 0.9988 0.9988
7 cACD,CD; 0.9984 0.9984 0.9984 0.9984
8 chs 0.9893 0.9927 0.9927 0.9927
9 cAcD; 0.9992 0.9995 0.9995 0.9995
10 cAcD;cD, 0.9993 0.9995 0.9995 0.9995
11 CACD,CD; 0.9999 1.0000 1.0000 1.0000
12 cAcD, 0.9927 0.9927 0.9927 0.9927
13 cAscD; 0.3074 0.3330 0.3543 0.3324
14 CACDSCD, 1.0000 1.0000 1.0000 1.0000
15 | cAscDscD,CD; 1.0000 1.0000 1.0000 1.0000

For the vegetative HYDICE scenery shown in Tabk, 85 out of 56
combinations, or 62.50% of the combinations, yidldgther identical or improved
AUROCs when compared to the AUROCSs using the aalggignatures. As was the case
with the vegetative HYDICE scenery based on thepBmGaussian model, DWT
combination 13¢AscD3) does consistently poorly across all four dataesub

As the previous tables and figures have shownofiske DWT coefficients as
features can provide improved detection. Cleahy improvement is affected by the

model of target variability and the severity of iability of the targets in the scenes. In
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general, SFJTC detection using the original sigeataeteriorates as the variability of
the targets increases. However, particular comionsitof DWT coefficients provide
consistently reliable detection performance, relgssd of the severity of variability of
the scene targets. For the simple Gaussian modahmes of these DWT combinations
include combination 13fscDs) in Table 58 and Table 59, combination tAs;¢D1cDs3)

in Table 60, and combination 14A,cDscD,) in Table 61. For the adaptive Gaussian
model, examples of these DWT combinations incluol@knation 15 ¢AscDscD.cD;)

in Table 62 and Table 63, combination t2sD:cD3) in Table 64, and combination 14
(cAscDscD,) in Table 65.

By the same token, in some of the scenery, th@peas to be a particular DWT
coefficient combination that provides consistentlyor results on all the data cubes.
Examples of this include combination éA¢cD.) in Table 58, Table 59, Table 62, and
Table 63; these tables correspond to the urbanvegdtative CASI scenery for both
models, respectively. Similarly, another exampleludes combination 13AfscDs) in
Table 61 and Table 65 corresponding to the vegetatYDICE scenery for both
models, respectively.

As we have seen, results indicate that particddambinations of DWT
coefficients perform better than others. In the tns&ction, we will formulate an

algorithm for choosing an optimal combination ptiodetection.
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F. Selection of Optimal Combination of DWT Coeffieents
1. Procedure

The purpose of our training algorithm is to deteenthe best set of DWT
coefficients from Table 57 to use for SFJTC-base@ction on a scene. Given that the
training data should contain samples from bothtéinget and background classes, how
do we wisely select samples from both classes?

Concerning the target class, we are only giverui@ parget signature from a
library; we do not have samples that characterigespectral variability. As we did
earlier with the SVDD work, we will introduce spesdtvariability into the target class

by generatinglO0 signatures according to both target variabilitydels discussed in

Chapter IV. In both models, we will fix the valué a® to achieve a SNR of 10 dB to
ensure sufficient spectral variability. For the kgound class, we can safely use
random samples from the scene since targets oatdusuch low probability. Assuming

no a priori knowledge of the scene, we randomly se&20 pixels, 20% of the total

pixels, for use as our background training sampléswese 8100 signatures form the
training set for the supervised coefficient selattprocess. The ratio of 100 target
signatures to 8000 background signatures was chtsemimic a low probability

scenario in the training data. The SFJTC algoriisnrun between the training set
signatures and the pure target signature using efattte DWT combinations in Table
57. The DWT coefficient combination yielding thedast AUROC is selected as the

optimal combination for a given scene.
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2. Results

Let us take a detailed look at the comprehensarkings of the supervised
coefficient selection algorithm on the urban CA8érsery. In Table 66, the results are
shown for all four data cubes, where each coefiicicombination is ranked in

descending order along with its corresponding AUR®@Eric on the training data.

Table 66. Supervised selection rankings for urbA8IGcenery with simple Gaussian model.

Index Features | CASI_urban_8 CASI _urban_1j0 CASI_urban |12 CASI_urbai

1 Original 14 (0.4961) 14(0.4890) 14(0.4918) 14(0.4948)
2 A, 9 (0.9398) 9(0.9363) 9(0.9329) 9(0.9336)
3 CACD, 13(0.7490) 13(0.7434) 13(0.7453) 13(0.7435)
4 Ay 12(0.8636) 12(0.8599) 12(0.8589) 12(0.8601)
5 CALCD, 11(0.8934) 11(0.8889) 11(0.8868) 11(0.8883)
6 CcALCD, 15(0.1703) 15(0.1734) 15(0.1757) 15(0.1749)

7 CACD,CD; 10 (0.8966) 10(0.8936) 10(0.8921) 10(0.8934)

8 A 1(0.9976) 1(0.9971) 1 (0.9959) 1(0.9961)
9 CACD; 6 (0.9924) 6 (0.9910) 6 (0.9890) 6 (0.9898)
10 | cAcD.CD, 7 (0.9894) 7(0.9876) 7 (0.9855) 7 (0.9859)
IT | cAcCDeD; 5 (0.9948) 5(0.9937) 5(0.9915) 5(0.9920)
12 ACD, 4(0.9958) 4(0.9952) 4(0.9937) 3(0.9944)
13 ACD; 2(0.9975) 2 (0.9969) 2 (0.9958) 2(0.9957)
14 | cAcDLD, 3(0.9964) 3(0.9954) 3(0.9939) 4(0.9942)
15 | cAcDxcD,cD, | 8(0-9711) 8 (0.9685) 8 (0.9654) 8 (0.9658)

We can make several observations from Table 66t,Fhe optimal combination

on all four data cubes is DWT combination @), and the worst performing DWT
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combination is combination &4,cD,). In the previous section, we commented on how
DWT combination 6 consistently performed poorlysaveral scenes, and our algorithm
appropriately ranks this combination as such. Aisith the exception of a couple of
instances, the rankings are identical on all foattaccubes. Notice that the eight DWT
combinations pertaining to thé&'3evel decomposition, combinations 8 — 15, are eank
as the top 8 performing combinations. Figure 82wshthe 8000 randomly selected
signatures fromcasi_urban_10that form the background class training signatures
Figure 83 shows the spectral variability of the @Merated target signatures with the
pure target signature in bold.

Table 67 shows the comprehensive rankings of theersised coefficient
selection algorithm on the urban HYDICE sceneryngsihe simple Gaussian model.
Once again, the results are identical on all tha dabes with the exception of a couple
of instances. Again, the optimal combination férf@alir data cubes is DWT combination
8 (cAs). Figure 84 and Figure 85 show the randomly setediackground training
signatures and the generated target training sigestrespectively.

For sake of brevity, the selected optimal DWT @oefnt combinations for all of
the data cubes for both target variability modeéssummarized in Table 68 — Table 71.
For each data cube, the optimal DWT coefficient lomration is listed along with the
AUROC detection results using both the originalnsigres and the optimal DWT

coefficient combination.
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Table 67. Supervised selection rankings for urb¥DHKCE scenery with simple Gaussian model.

Index Features | HYDICE_ urban_8| HYDICE_urban_10 HYDICE_urban_[12 HEBIlurban_15
1 Original 14 (0.6395) 15(0.6400) 15(0.6366) 15(0.6393)
2 cA 13(0.6613) 13(0.6616) 13(0.6631) 13(0.6633)
3 CACD, 15(0.6389) 14(0.6406) 14(0.6369) 14(0.6399)
4 cA, 12(0.8985) 12(0.8994) 12(0.8990) 12(0.8995)
5 CACD, 7(0.9895) 7(0.9893) 7(0.9889) 7(0.9900)
6 cALCD, 3(0.9982) 3(0.9976) 3(0.9978) 3(0.9982)
7 cACD,CD; 10(0.9592) 10(0.9589) 10(0.9589) 10(0.9595)
8 cAs 1(0.9990) 1(0.9992) 1(0.9992) 1(0.9993)
9 cAcD; 11 (0.9090) 11(0.9093) 11(0.9091) 11(0.9132)

10 cAecD;cD, 9(0.9768) 9(0.9762) 9(0.9774) 9(0.9782)
11 CACD,CD; 2(0.9984) 2(0.9982) 2(0.9983) 2(0.9985)
12 cAcD, 6 (0.9946) 6(0.9942) 6(0.9944) 6(0.9952)
13 CACD; 8(0.9881) 8(0.9886) 8(0.9884) 8(0.9889)
14 CACDSCD, 4(0.9971) 4(0.9969) 4(0.9968) 4(0.9975)
15 | cAcDseD,CD; 5(0.9963) 5(0.9961) 5(0.9961) 5(0.9968)
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Table 68. Optimal DWT coefficient results on CASerery with simple Gaussian model.

Data Cube Optimal DWT Combination AUROC using | AURQC using

DWT Combination| Original Data
CASI_urban_15 8 (chy) 0.9956 0.9947
CASI_urban_12 8 (cAs) 0.9947 0.9079
CASI_urban_10 8 (cAs) 0.9910 0.5393
CASI_urban_8 8 (chy) 0.9686 0.2653
CASI_veg_15 8 (CAg) 0.9852 0.9916
CASI_veg_12 13 (cAscDy) 0.9881 0.9614
CASI_veg_10 8 (CAg) 0.9848 0.7779
CASI_veg_8 11 (cAscD,cDs) 0.9763 0.3756

Table 69. Optimal DWT coefficient results on HYDIGEenery with simple Gaussian model.

AUROC using | AUROC using
Data Cube Optimal DWT Combinatign
DWT Combination| Original Data
HYDICE_urban_15 8 (cAg) 0.9993 0.9999
HYDICE_urban_12 8 (cAy) 0.9993 0.9695
HYDICE_urban_10 8 (cA) 0.9948 0.6991
HYDICE_urban_8 8 (cAg) 0.9691 0.3459
HYDICE_veg_15 15 (cAscDscD,cDy) 1.0000 0.9986
HYDICE_veg_12 14 (cAscDscDy) 1.0000 0.9279
HYDICE_veg_10 15 (cAscDzcD,cDy) 0.9998 0.5223
HYDICE_veg_8 15 (cAscDscD,cDy) 0.9761 0.3179
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Table 70. Optimal DWT coefficient results on CASesery with adaptive Gaussian model.

AUROC using | AUROC using
Data Cube Optimal DWT Combinatign
DWT Combination| Original Data
CASI_urban_15 15 (cAscDscD,CDy) 0.9987 0.9980
CASI_urban_12 15 (cAscDscD,CDy) 0.9987 0.9980
CASI_urban_10 15 (cAscDscD,CDy) 0.9987 0.9980
CASI_urban_8 15 (cAscDscD,CDy) 0.9974 0.9967
CASI_veg_15 15 (cAscDscD,cDy) 0.9917 0.9916
CASI_veg_12 12 (cAscDy) 0.9882 0.9916
CASI_veg_10 15 (cAscDscD.CDy) 0.9917 0.9916
CASI_veg_8 15 (CAsCD5cD,CDy) 0.9917 0.9916

Table 71. Optimal DWT coefficient results on HYDIGEenery with adaptive Gaussian model.

AUROC using | AUROC using
Data Cube Optimal DWT Combinatign
DWT Combination| Original Data
HYDICE_urban_15 11 (cAscDscDy) 1.0000 1.0000
HYDICE_urban_12 11 (cAscDcD3) 1.0000 0.9999
HYDICE_urban_10 11 (cAscD;cD3) 0.9999 0.9992
HYDICE_urban_8 5 (cAcDy) 0.9752 0.9715
HYDICE_veg_15 2 (cA) 1.0000 0.9986
HYDICE_veg_12 2 (cA) 1.0000 0.9986
HYDICE_veg_10 2 (cA) 1.0000 0.9986
HYDICE veg_8 3 (CACDy) 0.9995 0.9986
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3. Conclusion

The results on the CASI scenery for the simple SSam model are shown in
Table 68. As the table shows, the improvement tea®n performance is proportional
to the severity of the variability. For the CASksery, the AUROC improvement is as
much as 70% and 60% f@ASI_urban_8and CASI_veg_8respectively. As Table 69
shows, the same trends hold for the HYDICE scemaryfar as the improvement in
detection performance. In fact, the AUROC improvetrie as much as 62% and 65%
for HYDICE_urban_8ndHYDICE_veg_8respectively.

The results using the adaptive Gaussian modedtayen in Table 70 and Table
71. In general, the SFJTC results using the origgsigmatures are already high and do
not degrade with increasing variability as is tlasec with the simple Gaussian model.
Regardless, the use of the SFIJTC technique witbghmal DWT combination provides
slightly increased or identical performance ontladl data cubes. The next chapter will
highlight these performance improvements by depictihe ROC curves of SFJTC-
based detection using the original signatures amel dptimal DWT coefficient

combinations.
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CHAPTER VII

FINAL DETECTION RESULTS AND COMPARISONS

In this chapter, we will present the results of 8&¥DD-based target detection
scheme on all data cubes corresponding to botlettaayiability models. We will also
provide the results of our SFJTC algorithm on atadcubes corresponding to both
target variability models. For the SVDD techniqtiee number of FPs and TPs will be
listed for each data cube. For the SFJTC algoritvm will provide the results in the
form of ROC curves and AUROCSs. For sake of comparisve will run the traditional
algorithms discussed in Chapter Il on all dataesulzorresponding to both target
variability models. The results for the traditiondétection algorithms will also be
provided in the form of ROC curves and AUROCSs. BecA provides the detection
results for the simple Gaussian model, while secBgrovides the detection results for

the adaptive Gaussian model.

A. Results with Simple Gaussian Model

1. SVDD performance comparisons

Here, we present the results of our SVDD-basedctien scheme on all data
cubes corresponding to the simple Gaussian mode. HPRs and TPRs will be
provided for each data cube. For sake of compariserprovide the TPRs of the AMF

and CEM stochastic detection algorithms correspundo the FPRs exhibited by the
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SVDD. This provides a means of directly comparinhg tletection algorithms since the
SVDD inherently performs binary classification, vehthe AMF and CEM outputs are
continuous values that must be thresholded to yteddfinal output labels. Table 72 —

Table 75 provide the detection results for all datbes.

Table 72. SVDD performance comparisons for urbaisC#enery using simple Gaussian model.

Data Cube SVDD FPR SVDD TPR AMF TPR | CEM TPR

CASI_urban_15 1.7085e-02 (680] 0.955 (19]) 0.705 (141) 0

CASI_urban_17 1.8191e-02 (724] 0.955 (19]) 0.730 (146) 0.045(9)

CAS| urban 10 1.7136e-02 (682] 0.955 (191

~

0.660 (132) 0.010[2)

CASI_urban_g| 1.4648e-02 (583] 0.295 (59) 0.680 (136) 0.215 (3)

Table 73. SVDD performance comparisons for vegetd@iAS| scenery using simple Gaussian model.
Data Cube SVDD FPR SVDD TPR AMF TPR | CEM TPR
CASI_veg_15 1.0050e-04 (4)| 0.930 (18¢) 0.825 (165) 0

CAS|_veg 17 8.2915e-04 (33) 0.935(187) 0.810(1§2) 0.020 [4)

CASI_veg_1q 2.2613e-04 (9)| 0.935(187) 0.715(143) 0.125 (p5)

CAS|_veg_8| 5.7789e-04 (23] 0.935 (187) 0.690 (138) 0.175 (B5)

As Table 72 and Table 73 show, the CEM detectigorahm does poorly on the
urban and vegetative CASI scenery. With the exoeptif CASI_urban_8the SVDD
provides a significant increase in the TPR compévetie AMF. The improvement is as

much as 29.5% and 24.5% in the urban and vegetsdsmery, respectively.
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Table 74. SVDD performance comparisons for urbabHOE scenery using simple Gaussian model.

Data Cube SVDD FPR SVvDD TPR AMFTPR CEM TRR
HYDICE_urban_15| 7-5377e-05(3) 1.000 (20¢) 0.900 (1§0) 0
HYDICE _urban_12| 5.0251e-05(2) 1.000 (204) 0.660 (132) 0
HYDICE_urban_10| 2-0101e-04 (8) 1.000 (20d) 0.860 (172) 0

HYDICE_urban_8 | 5.0251e-05 (2) 1.000 (20d)  0.465 (99) 0

Table 75. SVDD performance comparisons for vegetdifYDICE scenery using simple Gaussian model.
Data Cube SVDD FPR SVDD TPR AMFTPR CEMTPR
HYDICE_veg_15 5.2764e-04 (21} 0.990 (19§) 1.000 (240) 0.98 (196)

HYDICE veg 14 5.0251e-05(2)| 0.975(19§) 0.985(147) 0.940 (188)

HYDICE_veg_10 0 0.970 (194)| 0.750 (175) 0.585 (11}7)

HYDICE veg_8 0 0.300 (60) | 0.805 (161) 0.280 (58)

For the urban HYDICE scenery, the CEM algorithnesimiserably at such low
FPRs. As Table 74 shows, at extremely low FPRs,S¥MBD detects all targets and
provides as little as a 10% increase in the TPRaanthuch as a 54.5% increase in the
TPR when compared to the AMF. The CEM performsebetih the vegetative HYDICE
scenery, and both stochastic algorithms rival tegomance of the SVDD for the two
data cubes with the least variability. R8¥YDICE_veg_ 10the SVDD outperforms the
AMF and CEM by providing a 22% and 38.5% increasethe TPRs, respectively.
However, forHYDICE_veg_8the AMF outperforms the SVDD since the SVDD does

not seem to capture the large spectral varialpliesent in this data cube.
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2. SFJTC performance comparisons

In this section, we present the results of SFJ&ged detection using both the
original data and the optimal DWT coefficient comdttions for each data cube. For sake
of comparison, we have run the traditional stogha®sF and CEM algorithms as well
as the deterministic SAM and SID algorithms on dla¢a cubes and have captured the
AUROCs. For the ROC curves, the results of foued@n algorithms will be shown:
the AMF detector, the SID detector, the SFJTC tegleusing the original data, and the
SFJTC technique using the optimal DWT coefficieambination (SFJTC_DWT). By
doing this, our goal is to depict the performanigecences between the following:

1. The SFJTC techniques using the original data aadgtimal DWT coefficient
combination.

2. The SFJTC technique using the optimal DWT coeffitieombination and a
traditional stochastic algorithm (AMF) and deterisiit algorithm (SID).

Figure 86 - Figure 93 show the ROC curves cormedipg to the urban and
vegetative CASI scenery. Note that the range afesfor the horizontal axis depicting
the FPR may vary to highlight differences betweea algorithms where applicable.
Table 76 and Table 77 provide the AUROCSs of detector the traditional and SFJTC
algorithms on the urban and vegetative CASI scenfeigure 94 - Figure 101 are the
ROC curves corresponding to the urban and vegetatWDICE scenery. Table 78 and
Table 79 provide the AUROCSs of detection for treaditional and SFJTC algorithms on

the urban and vegetative HYDICE scenery.
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Table 76. SFITC AUROC comparisons for urban CA8hsty using simple Gaussian model.

Data Cube AMF CEM SAM SID SHITC SFJITC_DWT

CASI_urban_15 0.8386] 0.4286 0.2445 0.9981 0.99%7 0.9956

CASI_urban_17 0.8073| 0.4883 0.246] 0.9938 0.9079 0.9947

CAS|_urban_1d 0.7603| 04334 0.2648 0.9844 0.53p3 0.9910

CASI_urban_g| 0.7498| 0.471§ 02575 0.9239 0.26p3 0.9686

Table 77. SFJITC AUROC comparisons for vegetativ&sC#enery using simple Gaussian model.

Data Cube | AMF| CEM|[ SAM| SID| SFJTE SFJTC_DWT
CAS|_veg 1§ 0.9646[ 0.1646 03450 0.9915 0.9916 0.9852

CASI veg 14 0.9208[ 02893 0.350b 0.9915 0.9614 0.9881]

CAS|_veg_1q 0.9148[ 0.4930 0.346p 0.9915 0.77[/9 0.9848

CAS| veg 8| 0-8539| 0.4184 0351f 0.9934 0.37p6 0.9763

As Table 76 shows, the SFJTC_DWT technique yielas highest AUROC
values on all data cubes for the urban CASI scenBng ROC curves illustrate the
performance improvement in running SFJTC using DWET coefficients versus the
original data. The ROC curves also show that th&T€F DWT technique outperforms
the SID and AMF algorithms in progressively heaseenarios of spectral variability.
For the vegetative CASI scenery, the SID and SFIDWT techniques provide very
similar AUROC values. As shown by Table 77 and BR@C curves, the SID and
SFJTC_DWT results for the vegetative CASI scenegy fairly uniform on all data
cubes compared to the other algorithms. Again, ceotine improvement in the

SFJTC_DWT versus SFJTC using the original signatagevariability increases.
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Figure 94. SFJTC ROC curve comparisons foHYDICE_urban_15 using simple Gaussian model.
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Figure 95. SFITC ROC curve comparisons foHYDICE_urban_12 using simple Gaussian model.
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Figure 96. SFIJTC ROC curve comparisons foHYDICE
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Figure 97. SFIJTC ROC curve comparisons foHYDICE_urban_8 using simple Gaussian model.
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Figure 99. SFIJITC ROC curve comparisons foHYDICE_veg_12 using simple Gaussian model.
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Figure 100. SFJTC ROC curve comparisons foHYDICE_veg_10 using simple Gaussian model.
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Figure 101. SFJTC ROC curve comparisons foHYDICE_veg_8 using simple Gaussian model.
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Table 78. SFJITC AUROC comparisons for urban HYDECEnery using simple Gaussian model.
Data Cube AMF| CEM| SAM SID| SHITC SFJTC_DWT
HYDICE urban_15| 0.9947| 0.9419 0.946# 1.0090 0.99p9 0.9993

HYDICE_urban_12 0.9625| 0.9326 0.9464f 1.0000 0.9695  0.9993

HYDICE_urban_10] 0.9309| 0.9317 0.9468 09999 0.69p1 0.9948

HYDICE urban 8| 0-8485| 0.9350 0.9468 0.9928 0.3459 0.9691]

Table 79. SFJITC AUROC comparisons for vegetativédDHXYE scenery using simple Gaussian model.
Data Cube AMF CEM SAM SID SFIJTC SFJTC_DWT
HYDICE_veg_15 1.0000| 1.0000 0.695f 1.0090 0.9986 1.0000

HYDICE veg_14 0.9950| 0.9999 0.696p 1.0000 0.92/9 1.0000]

HYDICE_veg_1q 0.9309| 0.9939 0.6955 1.0000 0.52p3 0.9998

HYDICE veg_8| 0-9002| 0.9827 0.6991 0.9342 0.31f9 0.9761]

For the urban HYDICE scenery, all of the detectagorithms perform better
than they did for the CASI scenery. As Table 78wsothe SID and SFJTC_DWT
techniques perform similarly on this scenery, witle SID yielding slightly higher
AUROCSs on all the data cubes. For the vegetativ®HKE scenery, similar patterns are
observed, however the CEM also performs well andlaily to SID and SFIJITC_DWT,
even at heavier levels of spectral variability. ®mgain, the ROC curves illustrate the
magnitude in performance gains achieved as a resulinning SFJTC with the optimal

DWT coefficients rather than the original signature
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Table 80. Summary statistics of SFITC AUROC congpais for data based on simple Gaussian model.

Scenery AMF CEM SAM SID SFJTC SFJTC_DWI[T
0.7890 0.4555 0.2531 0.9738 0.6768 0.9875
Urban CASI
(0.0415) (0.0292) (0.0094) (0.0337) (0.3380) (0.0127)
0.9136 0.3414 0.3485 0.9915 0.7766 0.9836
Vegetative CASI
(0.0455) (0.1448) (0.0032) 0) (0.2835) (0.0051)
0.9342 0.9353 0.9463 0.9982 0.7536 0.9906
Urban HYDICE
(0.0627) (0.0046) (0.0001) (0.0036) (0.3036) (0.0145)
0.9565 0.9940 0.6967 0.9846 0.6917 0.9940
Vegetative HYDICE
(0.0490) (0.0083) (0.0017) (0.0309) (0.3258) (0.0119)
0.8983 0.6815 0.5612 0.9870 0.7247 0.9889
All
(0.0807) (0.3034) (0.2861) (0.0225) (0.2836) (0.0111)

Table 80 provides summary statistics of the AUR@&Eghe SFJTC techniques
and traditional algorithms. For each type of sceraard sensor, we have computed the
mean and standard deviation (shown in italics)hef AUROCSs for the corresponding
data cubes. We have also computed the mean ardhstfateviation of the AUROCSs for
all of the data cubes, as shown in the last roWadiie 80.

For the urban CASI scenery, the most difficult rerg, SFIJTC_DWT
outperforms the other algorithms with the largesamand smallest standard deviation
AUROC values. For the vegetative CASI scenery d&mdurban HYDICE scenery, the
SFJTC_DWT technique does second best, just shyhef $ID algorithm. The
SFJTC_DWT technique performs better than the SI® ramaining algorithms on the

vegetative HYDICE scenery. Over all of the scenesresponding to the simple
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Gaussian model, SFITC_DWT provides the largest A&HROC and smallest standard

deviation of AUROC values.

B. Results with Adaptive Gaussian Model
1. SVDD performance comparisons

Here, we present the results of our SVDD-basedctien scheme on all data
cubes corresponding to the adaptive Gaussian mAddiefore, for sake of comparison,
we provide the TPRs of the AMF and CEM stochastetedtion algorithms
corresponding to the FPRs exhibited by the SVDhl@&81 — Table 84 provide the

detection results for all data cubes.

Table 81. SVDD performance comparisons for urbaisC#enery using adaptive Gaussian model.

Data Cube SVDD FPR | SVDD TPRAMF TPR | CEM TPR
CAS|_urban_15 8.0402e-04 (32)| 0.925 (18§) 0.870 (114) 0
CASI_urban_17 3.0402e-03 (121} 0.945 (189) 0.885 (1{7) 0
CASI_urban_1¢ 1.4322e-03 (57)] 0.910 (183) 0.710 (142) 0
CAS|_urban_8| 2.8894e-03 (115] 0.825 (16%) 0.690 (138) 0

Table 82. SVDD performance comparisons for vegetd@fiAS| scenery using adaptive Gaussian model.

Data Cube SVDD FPR | SVDD TPRAMF TPR | CEM TPR
CAS| veg 19 2.5126e-05 (1) 0.930 (18¢) 0.910 (1§2) 0
CASI_veg_17 3.2663e-04 (13] 0.930 (18¢) 0.920 (1§4) 0
CAS|_veg_1d 2.5126e-05 (1) 0.930 (18¢) 0.785 (157) 0
CAS|_veg_8| 3.2663e-04 (13| 0.925 (18§) 0.825 (145) 0
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Table 83. SVDD performance comparisons for urbabHOE scenery using adaptive Gaussian model.

Data Cube FPRs TPRs AMF TPR CEM TRR
HYDICE_urban_15| 3.5176e-04 (14) 1.000 (20¢) 1.000 (2Q0) 0
HYDICE _urban_12| 1.0050e-04 (4)[ 1.000 (20Q) 0.995 (199) 0
HYDICE_urban_10| 5.0251e-05 (2)] 1.000 (20) 0.775 (155) 0

HYDICE_urban_8 | 2.0101e-04 (8)| 1.000(20Q) 0.860 (172) 0

Table 84. SVDD performance comparisons for vegetdtiYDICE scenery using adaptive Gaussian model.
Data Cube FPRs TPRs AMF TPR CEM THR
HYDICE_veg_15 4.0201e-04 (16} 0.990 (194) 1.000 (240) 1.000 (200)

HYDICE veg_14 2.5126e-04 (10 0.990 (198) 1.000 (240) 0.985 (197)

HYDICE veg_1q 1.2563e-04 (5)| 0.990 (194) 1.000 (2d0) 0.990 (198)

HYDICE veg 8| 1.0050e-04 (4)| 0.905 (18f) 0.995(199) 0.940 (188)

As Table 81 and Table 82 show, the SVDD is ablpravide low FPRs on the
order of 10e-03 and 10e-05 in the urban and vaget&ASI| scenery, respectively.
Once again, the CEM algorithm performs poorly ois cenery and cannot reliably
operate at such low FPRs. The SVDD provides a TReRease of as much as 20% and
10% in the urban and vegetative scenery, respégtive

For the urban HYDICE scenery, the CEM cannot dpeaa such low FPRs. As
we have mentioned before, the urban HYDICE scemerthe least difficult of the
hyperspectral imagery with respect to the separdbetween target and background
signatures. This is evident by the extremely lowRERand high TPRs. As Table 83

shows, the AMF performs just as well as the SVDDOhantwo data cubes with the least
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spectral variability. However, for the other twotalaubes, the AMF cannot maintain
high TPRs for the corresponding FPRs.

As Table 84 shows, the CEM algorithm is able tovpte reliably high TPRs on
the vegetative HYDICE scenery. For the first thosga cubes, all three algorithms
provide nearly identical TPRs. However, fdiYDICE_veg_8the AMF TPR is 10%

larger than the SVDD and 5.5% larger than the CEdrahm.

2. SFJTC performance comparisons

In this section, we present the results of SFJa&€et detection on the data cubes
corresponding to the adaptive Gaussian model. €iG02 — Figure 109 show the ROC
curves corresponding to the urban and vegetativ8IG&enery. Note that the range of
values for the horizontal axis depicting the FPRymary to highlight differences
between the algorithms where applicable. Tabler&b Bable 86 provide the AUROCs
of detection for the traditional and SFJTC algarighon the urban and vegetative CASI
scenery. Figure 110 — Figure 117 are the ROC cuwweegsponding to the urban and
vegetative HYDICE scenery. Table 87 and Table &¥ide the AUROCSs of detection

for the traditional and SFJTC algorithms on theanrbnd vegetative HYDICE scenery.
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Figure 102. SFITC ROC curve comparisons fo€CASI
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Figure 103. SFIJTC ROC curve comparisons fo€ASI _urban_12 using adaptive Gaussian model.
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Figure 104. SFIJTC ROC curve comparisons fo€ASI_urban_10 using adaptive Gaussian model.
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Figure 105. SFIJTC ROC curve comparisons fo€ASI_urban_8 using adaptive Gaussian model.
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Figure 106. SFITC ROC curve comparisons fo€ASI_veg_15 using adaptive Gaussian model.
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Figure 107. SFIJTC ROC curve comparisons fo€CASI_veg_12 using adaptive Gaussian model.
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Figure 108. SFIJTC ROC curve comparisons fo€CASI_veg_10 using adaptive Gaussian model.
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Figure 109. SFJTC ROC curve comparisons fo€CASI_veg_8 using adaptive Gaussian model.
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Table 85. SFITC AUROC comparisons for urban CA8hsty using adaptive Gaussian model.
Data Cube AMF| CEM| SAM SID| SHITC SFJTC_DWT
CASI_urban_15 0.9995| 0.3889 0.2464 0.9931 0.9980 0.9987|

CASI_urban_17 0.9923 0.405J 0.2518 0.99§1 0.99B0 0.9987

CAS|_urban_1d 0.9746| 0.415] 0262 0.9947 0.99B0 0.9987

CASI_urban_g| 0.9013| 0.453§ 0.2558 0.9847 0.99p7 0.9974

Table 86. SFJITC AUROC comparisons for vegetative&sCg#eenery using adaptive Gaussian model.
Data Cube AMF CEM SAM SID SFJTC SFJTC_DWT
CASI_veg_ 15 0.9998| 0.0957 0.3483 0.9915 0.9916 0.9917

CASI veg 14 0.9892| 0.0969 0.351] 0.9915 0.9916 0.9882

CAS|_veg_1q 0.9662[ 0.1377 03538 0.9915 0.9916 0.9917

CAS| veg 8| 0-9568] 0.2204 03765 0.9915 0.9916 0.9917,

As Table 85 shows, SFJTC_DWT provides a margimgdrovement over the
SFJTC technique using the original signatures. Whthexception oCASI_urban_15
SFJTC_DWT provides the largest AUROC values. TheCRsDrves shed more light
onto the performance of these detectors. For exgripjure 104 clearly shows that both
SFJTC techniques vyield steeper ROC curves thanStbeand AMF algorithms at
extremely low FPRs. For the vegetative CASI scentdtg AMF and SID algorithms
provide the largest AUROCSs for the two data cubéh Veast variability, while both
SFJTC techniques provide the largest AUROCS forttve data cubes with the most
spectral variability. As Table 86 shows, the Sli@oaithm and SFJTC techniques

provide the most consistent AUROCS on all the &gt CASI scenery.
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Figure 111. SFJTC ROC curve comparisons foHYDICE_urban_12 using adaptive Gaussian model.
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Figure 112. SFITC ROC curve comparisons foHYDICE_urban_10 using adaptive Gaussian model.
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Figure 113. SFJTC ROC curve comparisons foHYDICE_urban_8 using adaptive Gaussian model.
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Figure 114. SFJTC ROC curve comparisons foHYDICE_veg_15 using adaptive Gaussian model.
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Figure 115. SFIJTC ROC curve comparisons foHYDICE_veg_12 using adaptive Gaussian model.
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Figure 116. SFITC ROC curve comparisons foHYDICE_veg_10 using adaptive Gaussian model.
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Figure 117. SFIJTC ROC curve comparisons foHYDICE_veg_8 using adaptive Gaussian model.



175

Table 87. SFJITC AUROC comparisons for urban HYDHEEEnery using adaptive Gaussian model.
Data Cube AMF| CEM| SAM SID| SHITC SFJTC_DWT
HYDICE_urban_15/ 1.0000| 0.965§ 0.9468 1.00q0 1.00p0 1.0000

HYDICE_urban_12 0.9950[ 0.950] 0.945p 1.0040 0.9999 1.0000)

HYDICE_urban_10] 0.9780| 0.9342 0.946p 09999 0.99p2 0.9999

HYDICE urban 8| 0.9434| 0.906§ 0.945f 0.9840 0.9715  0.9752

Table 88. SFJITC AUROC comparisons for vegetativéDHOE scenery using adaptive Gaussian model.
Data Cube AMF CEM SAM SID SFJTC SFJTC_DWT
HYDICE_veg_15 1.0000| 1.0000 0.6948 1.0090 0.99B6 1.0000

HYDICE veg_14 1.0000 1.0000 0.697} 1.0040 0.99B6 1.0000]

HYDICE_veg_1d 1.0000[ 1.0000 0.6918 0.9847 0.99p6 1.0000

HYDICE veg_8| 1.0000| 0.9992 06926 0.9370 0.99p6 0.9995

As Table 87 shows, both SFJTC techniques and libealgorithm yield stellar
detection results for the first three data cubethefurban HYDICE scenery. For the data
cube with heaviest spectral variability, the Sipdes a slightly larger AUROC than
the SFJTC_DWT technique. Although the AMF and SFIDWT algorithms have
lower AUROCSs than the SID algorithm fétYDICE_urban_8 Figure 113 shows that
they yield steeper ROC curves at FPRs less thaqumal to one percent.

Both SFJTC techniques yield similar results fa&r Hegetative HYDICE scenery,
as shown in Table 88. The AMF algorithm yields petfdetection rates for all levels of
spectral variability, while the CEM and SID algbrits yield slightly lower AUROCSs.

With the exception of the SAM algorithm, all thegatithms yield superior results for
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the vegetative HYDICE scenery. For HYDICE_veg_& 8ID algorithm breaks down

compared to the AMF and SFJTC algorithms as shoavifigure 117 and Table 88.

Table 89. Summary statistics of SFITC AUROC conspais for data based on adaptive Gaussian model.

Scenery AMF CEM SAM SID SFJTC SFJTC_DWI[r
0.9669 0.4158 0.2542 0.9926 0.9977 0.9984
Urban CASI
(0.0450) (0.0276) (0.0069) (0.0047) (0.0006) (0.0006)
0.9780 0.1376 0.3576 0.9915 0.9916 0.9908
Vegetative CASI
(0.0199) (0.0585) (0.0128) 0) 0) (0.0018)
0.9791 0.9391 0.9460 0.9950 0.9926 0.9938
Urban HYDICE
(0.0256) (0.0252) (0.0002) (0.0100) (0.0141) (0.0124)
1.0000 0.9998 0.6940 0.9807 0.9986 0.9999
Vegetative HYDICE
0) (0.0004) (0.0027) (0.0299) 0) (0.0002)
0.9810 0.6231 0.5630 0.9900 0.9951 0.9957
All
(0.0277) (0.3738) (0.2836) (0.0153) (0.0071) (0.0067)

Table 89 provides the first and second-ordersttesi (mean, standard deviation)
of the AUROCs for the SFJTC techniques and tragticalgorithms. For the urban
CASI scenery, the most difficult scenery, SFJTC_DWltperforms the other
algorithms with the largest mean and smallest stahdeviation AUROC values. For
the vegetative CASI scenery, the SID and SFJTCristhgos provide the best results,
with the SFITC_DWT technique right behind them. therurban HYDICE scenery, the
SFJTC_DWT technique does second best, just shyefSiD algorithm. The AMF
algorithm and SFJTC_DWT technique perform bettantlthe SID and remaining

algorithms on the vegetative HYDICE scenery. Fomoélthe scenery corresponding to
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the adaptive Gaussian model, SFJTC_DWT is the fex$drmer, providing the largest

mean AUROC and smallest standard deviation of AUR@IGes.
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CHAPTER VIII

CONCLUSIONS

A. Summary

In this work, we have addressed the fundamentddlem of spectral variability
in HSI target detection. We have obtained scenemn ftwo different sensors in both
urban and vegetative environments to test our Eegavork.

In Chapter IV, we addressed the challenge of laickraining samples for the
target class by creating two unique models to chearae the target class spectral
variability. The first model makes no assumptioegarding inter-band correlation,
while the second model uses a first-order Markaosedascheme to exploit spectral band-
to-band correlation.

In Chapter V, we have developed a scheme thatthedsernel-based SVDD for
use in full-pixel target detection scenarios in H8le have created an algorithm that
addresses optimization of the SVDD kernel widthapagter s using the golden-section
search algorithm for unconstrained optimization. iMeestigated a proper number of
signatures N to generate for the SVDD target ciamkfound that only a small number
of training samples is required relative to the esionality (humber of bands). As a
result, the SVDD-based detection scheme is nouglddyy theHughes phenomendhat
can cause problems for the stochastic detectionckssification algorithms. We have

extended decision-level fusion techniques usingntagrity vote rule for the purpose of
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alleviating the problem of selecting a proper vabfe o for both of our target
variability models.

In Chapter VI, we have shown that spectral valitghhinay cause SFJTC-based
detection performance to suffer and have addregsedby developing an algorithm that
selects an optimal combination of the DWT coefiitge of the signatures for use as
features for detection for a particular scene amdget. Overall, use of the SFJTC
technique with the optimal DWT coefficient combioat provides increased or identical
performance on all the data cubes. In other wards,of the optimal DWT coefficients
as features does not negatively affect the detectisults in situations where the original
signatures perform well.

In Chapter VII, we compared the performance of 8MDD-based and SFJTC-
based detection schemes to the traditional stachastd deterministic detection
algorithms presented in Chapter Ill. In most cases,SVDD-based detection scheme
provides very low FPRs while maintaining higher BPtRan the stochastic AMF and
CEM algorithms, especially in scenarios of heagigectral variability. This holds true
for both the simple and adaptive Gaussian modelgagfet variability. For most
scenarios, our results show that our SVDD-baseédctien scheme provides low FPRs
while maintaining higher TPRs than the AMF and CEfldchastic detection algorithms.
Our results also show that our SFJTC-based deteciitheme using the DWT
coefficients yields the largest mean AUROC valued smallest standard deviation of
AUROC values compared to use of SFJTC using thggnai signatures and traditional

stochastic and deterministic algorithms.
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B. Recommendations for Future Work

We believe that future directions for the worktlis dissertation should include

the following:

Investigation of various values gf between 0 and 1 that explore, in more detail, the

impact of spectral band-to-band correlation using adaptive Gaussian model of

target variability.

* Investigation of Markov-based models that extengobd the first order for more
accurately capturing the spectral band-to-bandetation.

* In connection with the SVDD, the investigation @&rforming fusion of detectors at
thefeaturelevel rather than thdecisionlevel.

* Investigation of modification of the SVDD technigtieat would weight the training
samples according to a similarity criterion to theget signature.

« Investigation of use of the SVDD technique with aiage examplésfor potentially
increasing detection performance for difficult segn

* Investigation of the use of the SVDD technique vdtphisticated feature selection
algorithms that retain useful bands and discardaumt@d bands prior to detection.

 The investigation of alternative methods of comiwnithe individual DWT
approximation and detail coefficients for use aatdees for detection in SVDD-
based and SFJTC-based detection schemes.

» Investigation into the use of other wavelet fansilieor generating the DWT

coefficients of the hyperspectral signatures.
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