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ABSTRACT 

Visualization of Ant Pheromone Based Path Following. (December 2009) 

Benjamin Sutherland, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Frederic Parke 

 

This thesis develops a simulation and visualization of a path finding algorithm based on 

ant pheromone paths created in 3D space. The simulation is useful as a demonstration of 

a heuristic approach to NP-complete problems and as an educational tool for 

demonstrating how ant colonies gather food. An interactive real time 3D visualization is 

built on top of the simulation. A graphical user interface layer allows user interaction 

with the simulation and visualization. 
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INTRODUCTION 

Many classical computer science problems are classified as NP-complete, which means 

that no known method short of computing and comparing all possible solutions is 

guaranteed to find the optimal solution. Exhaustive comparisons can be computationally 

expensive and not feasible to perform. Consequently, heuristic algorithms have been 

developed for many of these tasks to find near-optimal solutions. Many heuristic 

approaches have been created using aspects of natural systems as a basis. One such basis 

involves ant behavior. 

Ants sustain their nest through constant food scouting and retrieval expeditions. These 

expeditions involve older, less valuable workers scouting the terrain near their nest for 

food. Once food is found, the worker walks back to the nest using as direct a route as 

possible. This is done using a combination of path integration (a.k.a. dead reckoning) 

and cues from the sun’s position [Wehner 2003]. On these return trips to their nest, the 

successful ants lay down a path of pheromones, or chemical signals, which attract other 

workers to follow this path. As other ants return from their gathering, they lay down 

pheromone paths as well. While ants will likely follow an existing pheromone path, they 

are not guaranteed to do so, and are less likely to do so if the path strays too far from the 

ant’s own sense of dead reckoning. In the long term, this behavior chemically 

“highlights” the shortest path towards the goal, since ants traversing a shorter path will 

lay down a stronger cumulative pheromone path over time than those traversing a longer 

path. This behavior, combined with pheromones evaporating over time, allows the most 

successful path to a goal to become more attractive while other paths become less 

attractive.1 

The project described in this thesis was to develop and visualize an algorithm based on 

an abstraction of ant path finding, creation, and following (henceforth referred to as 

“pathing”). Users may experiment with the algorithm and its visualization through the 

                                                
1
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manipulation of certain variables, interactively learning about the relationship between 

the variables and the algorithm’s behavior. 

Problem Statement 
This project is an abstracted three-dimensional simulation and visualization of goal-

based path finding, creation, and following based on ant behavior. This simulation’s 

visual layer is intended to be appealing and informative. The simulation and 

visualization are interactive and run on Windows, OS X, and Linux systems. 

Significance 
The insights gained from abstractions and adaptations of ants’ ability to organize and 

efficiently gather food can be useful for a number of human applications, mostly in areas 

of finding a shortest path or adding error-correction to existing algorithms. Ant pathing 

ideas have led to heuristic algorithms for several NP-complete problems, including the 

Traveling Salesman Problem [Dorigoa and Gambardellab 1997], Job Shop Scheduling 

[Zhang et al. 2006], and communications routing [Di Caro and Dorgio 1998]. 

This project seeks to facilitate understanding of the pathing basis of these algorithms 

through visual demonstration. The visualization gives real-time visual feedback 

regarding the effects of changing variables in the simulation. 

This visual simulation could also be used as a teaching tool showing how ants interact 

with their environment and how they work together as a group to solve a shared 

problem. The program may also show how humans can benefit from understanding and 

adapting the ants’ behavior in ways like those described above.  
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PRIOR WORK 

Ants’ influence has been felt since ancient times. Ants are referenced in ancient scripts 

such as the Talmud (Proverbs 6:6), the works of the ancient philosopher Pliny, and the 

Roman writer Claudius Aelianus. These references are mostly in relation to their tireless 

work gathering food and returning it to their nest. Formalized study of ants seems to 

have begun in the eighteenth century when William Gould published the first recognized 

myrmecological paper [Gould 1747]. Ants’ use of pheromones to guide their pathing 

behavior was discovered by E. O. Wilson in 1958 [Hölldobler and Wilson 1990]. In the 

1990s Jean-Louis Deneubourg showed that the pathing behavior of ants could be used to 

find an approximation of the shortest path between two points [Beckers et al. 1994].  

Deneubourg’s insight paved the way for computational analysis of ant pathing. Dorigoa 

and Gambardellab adapted ant pathing to find an algorithm for the Traveling Salesman 

Problem (TSP) [Dorigoa and Gambardellab 1997]. Instead of allowing the ants full 

freedom of movement, ants were only allowed to follow lines between cities, and ants 

could only visit cities they had not visited before. Over time, a near-optimal path 

emerges. Using the TSP abstraction of ant pathing as a basis, an ant-based Job Shop 

Scheduling algorithm [Zhang et al. 2006] was developed at Sun Yat-Sen University. The 

algorithm works in a manner similar to the TSP, with cities replaced by jobs and 

distance by time. Researchers from the University of Brussels worked on creating 

robust, error-correcting communications routing based on ant pathing [Di Caro and 

Dorgio 1998], a specialization of the ant TSP. 

SimAnt [Wright and McCormick 1991] is a game based on ant behaviors. Players 

control a single ant in an ant colony, searching for food and battling other nests’ ants. 

The player can also control some basic colony attributes like reproduction rate and total 

number of ants in the colony, as in Figure 1. Players can switch which ant they control, 

and manually lay down basic pheromone paths. SimAnt is not a true simulation, 

however, as most nest activity requires at least some user interaction.  
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Figure 1: The Surface and Map views of SimAnt, along with two of its Nest Control 
screens (lower left, lower center) and a “death” animation (center). (1991, Maxis 
Software) 

MacLennan developed a rudimentary simulation of ant pheromone behavior modeled 

using the simulation engine NetLogo [MacLennan 2008], as shown in Figure 2. This 

simulation is based on the Resnick model of simulated ant behavior [Resnick 1994; 

Wilensky 1998]. In this simulation, ants operate on a low-resolution square board and 

display some pheromone following behavior. Basic obstacle-avoidance is also included. 

Unfortunately, the ants in this simulation don’t behave very well unless they are close to 

the nest, limiting the simulation’s effectiveness. Furthermore, it makes use of a “nest 

scent” pheromone to guide the ants back to the nest, following the Resnick model 
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[MacLennan 2008; Resnick 1994; Wilensky 1998]. This phenomenon does not naturally 

occur. Still, this simulation demonstrates the basic principles well. 

 

Figure 2: A NetLogo-based pheromone simulation. 

Tatsuya Nakamura created the framework for a 3D interactive video game based around 

the idea of ants as a mafia family [Nakamura 2006]. The player operates as a member of 

this “ant mob”, building up the family’s fortune throughout the game. As part of this 
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game, non-playable character ants exhibit simulated pathing behaviors. These ants 

forage for food and lay down pheromone paths in a greatly simplified, simulation of real 

ants’ behavior. Pheromone simulation is not a critical part of this game, so the 

simulation is not very realistic, relying on some pre-processing of each game level and 

storing information to which ants would not normally have access. 

More recent studies on the ants themselves include studies on ants’ ability to find their 

nest through path integration [Wehner 2003], even in three dimensions [Grah et al. 

2005]. Some preliminary work has been done to create a simulation of ant pathing using 

miniature robots as ant surrogates [Beckers et al. 1994]. 
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GOALS AND OBJECTIVES 

To judge the success of this project, some measurable objectives are needed. These 

objectives should both clarify the expectations of the project and allow for an objective 

analysis of the successful achievement of the project’s intended goals. 

This simulation is not meant to explicitly mimic ant behavior or any natural process, so 

natural limitations such as the ground plane are not included. The simulation and 

visualization are extended into a three-dimensional space instead of being limited to a 

terrain. The 3D nature of the simulation allows for a less restricted simulation 

environment. The resulting visualization is more informative and visually interesting 

than a 2D visualization would be.  

For this project to be considered satisfactory, it must meet the following objectives: 

• The simulation must depict pheromone-based path creation and optimizing 

behavior similar to that exhibited by many ant species. 

• The simulated ants must be able to: 

o Walk semi-randomly away from their nest to find food 

o Recognize and acquire food 

o Lay a pheromone path from a food source back to their nest 

o Determine the location of their nest based on path integration 

o Follow existing paths 

o Avoid obstacles 

• The simulation’s results should be displayed graphically in a manner that depicts 

the simulation in an intuitive, visually appealing way. 
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• The visualization and simulation should react to user input in real-time. 

• The visualization should be able to be displayed stereoscopically on systems with 

stereoscopic capability.  

• Through the graphical user interface (GUI), users should be able to: 

o Control their viewing position and angle, allowing them to see areas of 

interest 

o Turn on visual elements of interest while disabling visual elements of less 

interest 

o Interact with simulation parameters in real-time, such as pheromone 

evaporation rate 

o Change visual attributes such as ant history trail length 

o Add objects, food sources, and pheromone paths at any time 

o Manipulate the location of obstacles in 3D space via mouse control 

o Save and restore the simulation state 

• The file created by saving the simulation state must be human readable and 

should be easily editable. 

• The application created must be cross-platform, able to work on Windows, 

Linux, and OS X systems. 

Please note that some of these requirements, such as visual appeal and ease-of-use, 

are not objective and could only be verified through user studies. These goals will 

not be tested as user studies are beyond the scope of this project. Still, a concerted 

effort must be made to achieve them.  
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METHOD 

The pathing simulation developed is not of any particular ant species, or of real ants at 

all. Rather, the simulation is of an algorithm based on an abstracted aspect of ant 

behavior. Real world ant behaviors and the simulated approximations are described in 

the sections below. 

Ants 
Real ants may move along any surface they can hold onto, a sort of constrained 3D 

space. In this simulation, however, ants are not constrained to walking on surfaces. The 

simulated ants may be thought of as “actors” in 3D space with full 3D motion 

capabilities having the desire to find food for their nest. 

The simulated ants do not have any memory beyond their previous few steps and a 

general understanding of their nest’s location. Neither do the ants have any memory or 

understanding of the simulated world space beyond their immediate surroundings and 

the information they receive from pheromones [Beckers et al. 1992]. In the absence of a 

pheromone path, each ant operates independently, choosing a direction away from the 

nest and wandering away from it searching for food. Eventually, the ant will return to the 

nest if it has not found food, and search again. Ants do not share any information 

regarding unsuccessful searches, so other ants may duplicate previous searches. 

Food Sources 
An ant’s primary objective in this simulation is to find food and return it to the nest as 

quickly as possible. Like real ants, these simulated ants are able to sense food from a 

small distance away. The larger the food source, the greater its attraction strength, and 

therefore the farther away the ants can be and still sense the food. Once the ants sense 

the food, they will walk to it, take some, and begin walking back to the nest. 
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Pheromone Paths 
Depending on their species, real ants can lay down 10 to 20 different pheromones – 

chemical behavioral indicators. Pheromones are most ant species’ primary form of 

communication. Different pheromones in varying amounts relay different signals for 

ants, such as following a path, avoidance, panic, and aggression [Hölldobler and Wilson 

1990]. For the purposes of this simulation, only the pheromone indicating a path to a 

food source is simulated. When an ant finds a food source, it lays a sequence of chemical 

points in space from the food source back to the nest on as direct a route as the ant can 

manage. As with the simulated ant movements, all pathing is unconstrained in 3D space. 

When the simulated ant finds food and no pheromone path exists, the ant will forge its 

own. If a path already exists, the ant will likely follow it. The ant may diverge from this 

path if its understanding of the nest location is sufficiently divergent from the path 

direction and the existing path is not particularly strong. Subsequent ants may follow 

either path or create their own based on the strength of the path and its relative 

directness, as in Figure 3. The more closely aligned a pheromone path is to the ant’s 

understanding of where its nest is based on path integration, the more likely ants will 

take it. This likelihood reduces the number of ants that will take other paths or create 

their own. Over time, a single, nearly optimal path will emerge from these multiple 

paths, with the other paths fading away from disuse. 
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Ants may encounter an existing pheromone path while they are leaving their nest or 

searching for food. If an ant encounters a path when leaving the nest, it will follow the 

path away from the nest. If the ant encounters the path while searching for food, it will 

follow whichever direction is the least deviation from its previous course.  

 

Figure 3: Two pheromone paths are shown, one longer than the other. The two pink 
lines are the same length, visually demonstrating that shorter pheromone paths allow for 
faster transit between nest and food than longer paths. This will cause shorter paths to 
strengthen and longer paths to fade away over time. 
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Figure 4: From top left to lower right: 
(A) Nest (red square), food (green circle), and obstacle (black ring) at simulation start. 
(B) Ants (pink dots) exit the nest searching for food. 
(C) An ant finds food, heads back towards its nest as directly as it can based on its path 
integration, laying down a pheromone path (grey line). 
(D) Other ants join the ant on its path, while one ant has strayed, making its own path. 
(E) The newer path turns out to be the shorter path, causing it to be strengthened by the 
ants while the longer path becomes less popular. 
(F) The shortest path emerges, and becomes strong enough that no ants will deviate 
from it.  

Obstacles 
Obstacles can be placed anywhere in space by the user during the simulation. These 

obstacles may impede the ant’s movement, blocking previously established pheromone 

paths. Ants following a pheromone path that becomes obstructed by an object will create 

new paths around the object over time, eventually finding a new best path, as in Figure 

4. If the obstacle is then removed, the ants will again create new paths, eventually 

reverting back to a more optimal path. 
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IMPLEMENTATION 

The world described in the Method section is simulated in discrete time steps. At each 

time step, all objects in the simulation are updated (except those explicitly defined as 

having a different update schedule in this section) based on the state of the world in the 

previous time step. Time steps are not coupled to frame rate – the rate at which a new 

visual image is calculated – allowing both the simulation and visualization to run 

without having to wait on each other. The radius ants can explore away from their nest 

may be defined at the beginning of the simulation via an input file. The program then 

determines the size of the octree – a data structure designed to hold sparse 3D data – 

necessary to make an appropriately spaced pheromone grid.  

Ants 
Upon leaving the nest, each simulated ant determines a random starting vector. The ant 

moves away from the nest in a semi-random walk in that direction. Slight deviations in 

heading are allowed between time steps, emulating real ants’ movement, which is more 

of a directional wander than purely random [Hölldobler and Wilson 1990]. The ant will 

wander until either finding a food source or reaching the defined search radius limit. In 

either case, the ant will endeavor to return to the nest as directly as possible. If the ant 

has found a food source, it will pick up food and lay down a pheromone path on its 

return to the nest. 

Real ants use a combination of path integration, landmark recognition, and sun position 

to determine location relative to the nest. In this simulation, since there is no sun and few 

landmarks, ants use path integration to return to the nest. Path integration is essentially a 

summation of the total vector distance moved since leaving the nest, and will therefore 

always lead back to the nest. Ants in this simulation have perfect memory of their 

previous positions. This gives them perfect path integration in the simulation, which 

does not occur in real life. Some previous position jitter has been added to the simulation 

to better reflect real ants’ behavior. 
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The three basic ant options (leave/return to nest, move randomly, follow path) are 

combined to produce an ant’s behavior at any given point. The combination is achieved 

by combining the result of each option multiplied by a weighting factor for each. The 

weighting of each option was tuned iteratively, and has no basis in reality beyond 

matching observed ant behavior. The specific numbers used to tune the behavior mean 

nothing outside of the code, so the numbers will not be reproduced here. In general, 

however, ants are always most interested in following pheromone paths. If they have 

food, the ants prioritize returning to the nest over random movement, but may still make 

detours based on errors in their dead reckoning. If the ants have no food, they emphasize 

their semi-random walk over moving away from or returning to the nest.  

Ant simulations based on the Resnick model [MacLennan 2008; Resnick 1994; 

Wilensky 1998] use a second pseudo-pheromone to help the ants find their way back to 

their nest.  This “nest scent” is a simple way to get the ants to return to the nest, but it 

has no basis in reality. 

The simulated ants have a maximum lifespan. When they exceed this lifespan, they die 

and a new ant is spawned at the nest. The lifespan is many times longer than a traversal 

from the nest to the ant’s exploration range and back should take. This only becomes 

relevant in the rare instance when an ant has become hopelessly lost or stuck on or in an 

obstacle. 

Each simulated ant may display a visual history of its last few movements as a trail. This 

history trail should not be confused with a pheromone path, as it has no effect on the 

simulation, and is a visual effect purely for the benefit of the viewer. Blue trails are 

exploring ants, red trails are ants returning to the nest after an unsuccessful search, and 

green trails are generated by ants returning with food. The user may control the length of 

the history trails shown or disable this function entirely. 
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Figure 5: Various ant history trails (solid lines) shown along with pheromone paths 
(dots). 

Nests 
The user may define multiple nests in the world space. Each nest has its own maximum 

number of ants, ant spawning rate, and exploration radius. A separate worldwide ant 

limit also exists. Nests cannot spawn more ants if the worldwide limit has been reached, 

even if its own limit has not been reached. All these variables are initialized in the 

simulation setup file. 

Ants from different nests do not interact with each other in any way, and ants will not 

follow another nest’s pheromone paths. 

Pheromone Paths 
When a simulated ant has found a food source, it lays a sequence of chemical points in 

space from the food back to the nest on as direct a route as it can manage, as in Figure 5. 
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In the simulation, pheromone points are floating-point values (denoting strength) in 

space stored in an octree structure. Most of the space is empty, since few paths exist at 

any one time. Consequently, using an octree or similar structure reduces memory usage 

over a normal 3D array. 

As they are created, pheromone points are stored at the nearest set of spatial coordinates 

available in the octree. For example, if the grid size is 0.1 units, something at point 

[10.235, 6.778, 12.901] would be stored in the position [10.2, 6.8, 12.9]. This is referred 

to as discretization.  

Each pheromone point has a radius of attraction based on its strength. At each time step 

a simulated ant aggregates all the pheromone points it detects. It ignores pheromone 

points it has just passed. This prevents it from getting stuck on a point of high attraction. 

If the ant has just exited its nest, it senses around itself for pheromones. If no pheromone 

points are in its sensing vicinity, it continues its semi-random walk looking for food. If 

pheromone points are detected, the ant picks a movement vector which best fits the 

aggregated points. The ant will then follow this path, at each time step finding the 

greatest concentration of forward-facing pheromone and heading in that direction 

(Figure 6). If the ant has food with it, it will add its own pheromone to each of the grid 

points it passes through, strengthening them, as it returns to the nest. Pheromone points 

dissipate over time at a user-controllable rate. When a pheromone point dissipates below 

a certain threshold, it is culled from the octree structure. 
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Figure 6: From top to bottom: 
(A) The nest (left), food (right), and pheromone path between the two. Thickness denotes 
strength of pheromones. 
(B) An ant emerges from its nest, senses all around itself (red circle) for the greatest 
pheromone concentration, and begins moving in that direction. 
(C) The ant moves along the path, ignoring the pheromones it has passed as it decides 
where to go.  

In the absence of an existing pheromone path, the ant makes its way to its nest as 

directly as possible. Like real ants, however, these simulated ants are not aware of their 

nest’s exact location. As previously stated and in [Grah et al. 2005; Wehner 2003], real 

ants use path integration and cues from the sun to determine the location of their nest. 

This behavior is simulated by adding the ant’s previous movements together to create a 

resultant vector between the ant’s current position and its nest. A small jitter is added to 

each movement to simulate ant’s imperfect memory. As a real ant approaches its nest, it 
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adjusts its heading back towards the nest based on visual cues. This is simulated by 

retuning the ants path memory to become more accurate as it approaches its nest. 

If a pheromone path already exists near the food source, the ant’s path back generally 

follows this path. As the ant follows this path, it lays down its own pheromones, 

reinforcing the path. It is possible, however, for the ant to break away from this path and 

attempt to find its own way. The likelihood of this action is based on the strength of the 

pheromone path and its perceived directness to the nest. The weaker the established path, 

the more likely it is that the ant will break away from the established path to create its 

own. Subsequent ants will choose between the existing paths or creating their own. The 

more direct a path is, the faster ants can traverse it. The quicker ants can traverse a path 

in a given time interval, the more it will be reinforced. Therefore, over time, the shortest 

of the paths will be the one in use. 

Additional pheromone paths may be manually placed by the user by interactively 

defining start and end points. The program creates a line of pheromone points in between 

these points.  

Food Sources 
Each food source has a position and strength upon which its attraction radius is based. 

Any ant within the food’s detection radius will approach and find the food. The ant then 

returns to its nest, laying down a pheromone path along the way. Food sources may be 

placed at any time during the simulation by the user and may be one of three types: 

• Constant: have a constant strength, do not decay 

• Timed: have an initial strength and decay over time, eventually disappearing 

• Finite: have an initial strength that is diminished each time an ant contacts it, the 

same way a food source is depleted by ants carrying it back to their nest piece by 

piece. 
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Food sources can be thought of as goals if one wanted to further abstract this program’s 

use for simulation of multi-node pathing, but for the purposes of the current simulation it 

is unnecessary to consider this abstraction. 

Obstacles 
The user may add obstacles at any time at any location in simulation space. Obstacles 

are defined as triangulated polygonal objects specified using OBJ-format files, a 

standard 3D object format. To guarantee efficient and accurate handling each obstacle 

should be a single closed-surface convex object. Other object types may work, but could 

lead to undesirable behavior such as ants getting stuck in minor concavities. 

Obstacles are handled in one of two ways. If the obstacle is not interfering with a 

pheromone path, ants will occasionally bump into it or wander around, on, or near it, but 

will not penetrate it. If the obstacle blocks a path an ant is currently following, the ant 

will perform a semi-random walk along the surface of the object. Possible steps that 

have the smallest angle of deflection from the original path are weighted more heavily in 

an attempt to re-link with the path in the most efficient manner possible. If the ant cannot 

detect pheromone after continuing in the same direction it has been walking for a few 

time steps, it will then resort to dead reckoning toward its current goal. As the ant moves 

around this obstacle it releases a smaller amount of pheromone (if it is returning to the 

nest), creating a path that quickly fades away. This smaller amount will draw other ants 

toward the potential solution but make them more willing to try other paths, allowing 

them to more quickly find a near-optimal path over a short distance than with the regular 

pheromone amount. Once a clear path to the goal is found, either by finding an existing 

path or by having a clear dead-reckoning vector towards the nest, the ant resumes its 

previous pheromone-laying activity (laying none if it has no food, or laying the regular 

amount if it was headed back to the nest with food).  

Initialization File 
Defining the simulation world and simulation setup is managed through an initialization 

input file. Global variables such as the time step and the maximum number of ants 
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allowed may be set, as well as the placement and setting of parameters of nests, food 

sources, objects, ants, and pheromone points. All commands are in human-readable 

format, with a keyword to the left of the equal sign and associated data to the right. 

Initializing pheromone points by hand may be tedious given the large number of points 

needed to construct a path, and is not recommended. Instead, the user may load a new or 

previously saved scene and use the previously mentioned pheromone path creation tool, 

then save the results when satisfied. 

#world parameters 
 
Default time step = 0.002 
Maximum ants = 150 
 
Current position = 0 0 0 
Ant history length = 15 
Exploration radius = 120 
Ant spawning rate = 1 
Nest = make 
 
Food amount = 50 
Current position = 50 50 50 
Food = make 
 
Current position = -70 20 -50 
Food = make 
 
Current position = 20 20 20 
Object size = 5 
#Object initial rotation = 0 0 0 
Load object = objs/dodecahedron.obj 
 

Figure 7: An example input file. Lines beginning with “#” are comments. 

The values associated with each parameter are remembered during file input, so similar 

parameters need not be repeated for multiple objects. If no value for a parameter is 

specified in the input file, the program will provide a default value. For example, in 

Figure 7 above the food amount for the first food source is set to 50, and as no food 
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amount is set for the second source, it defaults to 50. When all the attributes have been 

changed to their desired value for an object, the ‘make’ keyword is used to actually 

create the object. The user may include comment lines by beginning them with the “#” 

symbol. The simulation world state can be saved or restored at any time using the UI. 

The saved state file is in the same user-readable format as the initialization file, allowing 

easy editing of the state.  

 

Visualization 
Visual images of the simulation are rendered in real-time using OpenGL. These images 

have a minimalist, pseudo-retro computer graphics feel, as in the movie TRON [Miller 

and Lisberger 1982], with bright solid colors and sharp lines. Ants are represented by a 

single point in 3D space, with an optional “history trail”, highlighting the ant’s previous 

steps. 

A pheromone path is displayed as a series of semi-transparent points in space. These 

points must be rendered in order of farthest to nearest in space relative to the camera 

because of the way OpenGL handles transparent objects. The points are therefore sorted 

from back to front using the octree structure. At each level of the octree, the octants (a 

space divided in half in each dimension, creating 8 smaller spatial areas) are sorted by 

distance to the camera, from greatest to least. When a node is reached, it is inserted into 

a doubly-linked list in order of distance. The location of the last inserted object is stored 

for faster insertion times, since the next object to insert is likely to be adjacent to the 

currently selected node. While constructing this list has a worst-case runtime of O(n2) 

(since it is an insertion sort), the presorting used by the octree structure allows an 

average runtime of O(n log(n)). This list is generated every eight simulation time steps 

(or when the camera moves) and is cached for display. Regenerating the list in this 

manner was a compromise between appearance and speed. Updating at every time step 

slowed down the simulation considerably, and offered little visual improvement over 
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caching. Updating at every time step is necessary when moving the camera, lest items 

get out of order. 

Users have the ability to turn on or off visibility of all the parts of the visualization in 

order to focus on specific aspects of interest. Disabling visibility of part of the 

visualization does not affect the underlying simulation. 

 
Figure 8: The program's main window, showing a view of the 3D ant world on the right 
and interactive controls on the left. 

Graphical User Interface (GUI) 
The GUI was created using the Qt windowing toolkit [Nokia 2008]. Qt is a cross-

platform, open-source application and user interface (UI) framework. It consists of a 

series of libraries through which programmers can quickly and easily create an 

application. 



23 

 

The interface for this simulation is made up of three parts; the UI sidebar, the menu bar 

at the top of the main window (on Windows and Linux) or at the top of the primary 

monitor (on OS X), and mouse interaction through the simulation viewing window, as 

shown in Figure 8. Using mouse interaction, the user can move around in the scene, add 

pheromone paths, and manipulate obstacles (as in Figure 9) directly in the 3D simulation 

space. 

  

Figure 9: Obstacles may be moved through mouse interaction. The user clicks-and-
holds on the object and drags it from its initial position (left) to its desired location 
(right). 

Other interaction options use the UI sidebar (as shown in Figure 8), the menu bar (as 

shown in Figure 10), or both. From the side bar, users may toggle the visibility of 

aspects of the simulation, control pheromone evaporation rates, history lengths, pause 

the simulation, and add objects and food sources. From the menu bar, all the visibility 

toggles are available as well as the ability to save and load the simulation and an option 

to hide the sidebar, allowing the visualization panel to take up the whole window. 

Keyboard shortcuts are provided where applicable, as shown in Figure 10.  

The mouse wheel changes the depth of the mouse action plane. All mouse interactions 

with objects in the simulation take place on this plane. 
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All inputs have immediate effect on the simulation.  

 

Figure 10: The menu bar, its submenus, and each action's corresponding key command. 
(On Linux and Windows systems, the control key is the modifier instead of the command 
key). 

Stereoscopic Display 
On capable systems, the visualization can be displayed stereoscopically. This allows 

better immersion into the simulated space, as well as an immediate, intuitive 

understanding of the 3D space in which the ants operate.  

Qt’s QGL layer determines whether the system is stereo-capable. If the system is 

capable, the program will switch into stereo mode. In this mode, two cameras are used, 

one for the left eye image, the other for the right eye. These cameras are linked just as a 

person’s two eyes behave, in that they are a set distance apart and focus on a common 

point. Each camera renders to a different frame buffer image, allowing the graphics 

drivers and hardware to handle the specifics of displaying two separate points of view. 

Since each frame must be rendered twice per frame, the update rate may be lower on 

stereo capable systems. 

No 3D mouse (also known as a spaceball) support is implemented. All camera 

operations perform in the same manner in both stereo and regular (mono) camera modes, 

with the addition that the mouse action plane is also the plane on which the two cameras 

focus. 
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PROBLEMS ENCOUNTERED 

As with any complex programming project, unexpected complications and problems 

arose throughout the development process. Below are the major problems encountered 

and their solutions. 

Pheromone Discretization Problems 

Path spatial preference 
Ants creating paths heading to the “left” (if one is using the initial camera placement) 

will create one or two paths to and from food, and stay mostly linear. Ants heading 

“right”, however, create many interweaving paths (Figure 11). While both behaviors 

should be possible in the simulation, neither behavior should be prioritized based on 

direction. 

 

Figure 11: Path creation behavior was dependent on the direction ants were traveling. 

The pheromone point discretization was originally placing pheromone points slightly 

below and to the right (in screen space) of the ant, causing ants returning to the nest on 

the left half of the screen to essentially chase their own paths. This was found to be 

because the discretization function was acting as a floor function, rounding each spatial 

location to its lowest set of coordinates. The solution was to add a small constant offset 

(1/2 the distance between potential spatial locations) to the spatial coordinates when the 
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discretized pheromone points were converted from their storage location back into 3D 

space coordinates. This offset moves the pheromone point to the center of its storage 

location instead of putting it at a corner. 

Path holes 
Late in the simulation’s development, pheromone points suddenly became much more 

sparse in the scene. Large gaps were visible in the paths, but the ants were still behaving 

as if the points existed (Figure 12). The problem was diagnosed as a display-related 

issue, but was difficult to isolate.  

  

Figure 12: Pheromone points are sparse (left) before fixing the problem (right). 

The simulation’s visualization engine must sort the pheromone points by distance from 

the camera. The initial method used the Standard Template Library’s (STL) map type to 

quickly sort each octree level by distance. The map type requires that each data point 

have a “key” data value and one or more data values associated with the “key”. While 

not explicitly mentioned in the STL’s documentation, the map type requires unique 

identifiers and doesn't allow the use of the “double” data type as its “key” value. The 

“key” value for the pheromones (it’s distance to the camera) was converted into an 

integer, creating many potential duplicate values, which were therefore not being added 

to the sorting list. Once this limitation was discovered, the sorting algorithm was 

changed to use the STL type multimap, which operates similarly to the STL’s map type 
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but allows for doubles to be used, and allows for multiple elements to have the same 

key.  

Path snapping 
Ants would only create paths in straight lines at multiples of 45-degree angles – due 

West, Northwest, North, etc., as in Figure 13. Ants not making or following paths 

operated freely in space. The error was eventually found to be that when the ant’s 

previous step was discretized, a pheromone point was occasionally placed ahead of the 

ant’s end position. That point would then be followed in the current time step, increasing 

the likelihood the ant would continue in the same line. This linearity would “snap” in 45-

degree increments, so that if the nest traversal was more direct by traversing a different 

45-degree orientation, the ant would switch to that orientation. The obvious solution was 

to prevent the discretization of the line from creating a pheromone point ahead of the 

ant’s end position for each time step. 

 

Figure 13: The pheromone path from nest to food source with the “path snapping” 
problem unresolved, with a solid line showing the optimal path, which is taken once this 
problem was resolved. 
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Path Backblow 
Ants with food would occasionally overshoot the nest a little, laying a bit of pheromone 

down as they did. Over time, this alternate path would become more attractive than 

returning to the nest, so all ants would follow this new path, leading to the behavior 

shown in Figure 14. 

  

Figure 14: The path (grey squares) blows back and grows past the nest (red square). 

The solution involved two parts. First, a “ceiling” value was implemented for each 

pheromone value, meaning that ants could not lay down pheromones at a level above 

this value. This has a basis in reality since too much pheromone in an area will indicate 

panic [Grah et al. 2005], a state we are not attempting to invoke in this simulation. The 

second part of the solution was to increase the ant’s attraction to their nest as they get 

closer to it. Previously, the ants were attracted by a constant amount, which, while 

simple, was producing unrealistic behavior. This increased attraction meant that once the 

ants get near enough to their nest to “see” it, they prefer going to their nest rather than 

following the pheromone paths. 

Object Collisions 

Edges 
When object collisions were first introduced to the simulation, ants following a 

pheromone path that traversed the object’s surface would not successfully cross sharp 

polygon boundaries, instead retreating back along the pheromone path in the opposite 

direction (Figure 15).  
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Figure 15: Ants were unable to cross sharp polygonal edges. 

The ants were emitting pheromones along their path, which could lead to pheromone 

points being created inside the object when the ant’s movement was discretized. While 

this behavior would occasionally cause problems on polygonal faces (see below), the 

main problem was when trying to cross polygonal edges. Ants would almost never 

successfully navigate a polygonal edge. The solution was to detect if a pheromone point 

was being created on the other side of a polygon. To do this, a line segment is 

constructed between the current position and the potential pheromone point placement. 

If the line segment intersects a polygon, the potential pheromone point is inside the 

polygonal object, and therefore invalid. The pheromone position is rotated 180 degrees 

using the ant’s current position as the origin before being placed in the scene. This has 

the twofold benefit of keeping pheromones outside of objects and moving the 
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pheromone path slightly off the object’s surface, preventing the ant from grazing a 

polygonal edge. 

Faces 
A related problem is that ants traveling along a pheromone path would collide with a 

polygonal object’s face. The ants would then reverse their path, doubling back along the 

pheromone path (Figure 16). 

 

Figure 16: Ants would collide with a polygon face and turn around. 

This problem required a two-part solution. Creating pheromone points inside of objects 

made the problem more prevalent, but fixing that problem (as described in the Edges 

subsection) did not solve the Faces problem, only made it less likely to occur. When an 

ant hit a polygonal face while following a pheromone path, it still reversed course. The 

problem turned out to be that the computed vector for bouncing off the polygon used the 
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nest’s position, not the vector towards it, as a component. Fixing this error caused the 

aberrant behavior to disappear. 
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RESULTS AND CONCLUSIONS 

Simulating ants’ behavior would seem straightforward, as there are relatively few rules 

they have to follow, especially in a simplified world such as this simulation. While the 

broad strokes of the simulation were fairly straightforward to implement, tweaking the 

priorities of the ants (for example, how aggressively they followed paths vs. trying to get 

back to their nest via dead reckoning) to best simulate the desired behavior took many 

iterations to refine. While numbers extracted from reality would have been preferable, 

quantifying such concepts from observed data is beyond the scope of this project. Also, 

the behavior exhibited by the simulated ants seems to closely imitate real-life ant 

behavior, and is therefore considered qualitatively accurate. 

In unrestricted 3D space, which this simulation provides by default, the ants have little 

trouble returning to the nest after finding their food. The most interesting pathing occurs 

when multiple obstacles obstruct the direct path (see Figure 17). 

 

Figure 17: More objects obstructing the ants' path make for more interesting 
pathfinding. 
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The pseudo-random nature of the simulated ants’ movements virtually guarantees that no 

two simulation runs will be identical. Once an ant has found a food source, however, the 

simulation runs in a fairly predictable pattern. Ants will be more likely to follow the path 

the first ant created as the path gets stronger. 

The initial randomness of the simulation makes reliably demonstrating some behaviors 

difficult. This may limit the effectiveness of the program as a teaching tool. Fortunately, 

the ability to save, reload and edit simulation states allows greater demonstrative control. 

The user can save a state that nearly fits the desired state, increasing the chance that the 

desired state will happen soon, or save a state that already exhibits a desired behavior 

(ants moving along a pheromone path, for example). The user could even manually edit 

the saved state to display exactly the desired state once the saved state file is loaded. 

The ants’ unpredictable nature can also slow down the debugging process, as it may take 

many runs to recreate a problematic behavior. Using saved states likely to cause the 

behavior decreases debugging time. 

Ants’ behavior, as mentioned in the Implementation section, is achieved by tuning the 

three primary ant “options” to create different behaviors for searching and returning with 

or without food. These behaviors were developed through iterative tuning. A slight 

change in one of the options can create a significant change in the resulting behavior. As 

such, the option tuners are not made available for users’ modification. 

When placing an obstacle in the way of an established path, the ants immediately adjust 

their path around the object. If the obstacle suddenly appears in space (instead of being 

moved into place) ants occupy, the ants will become trapped inside the object until their 

life runs out and a new ant leaves the nest. When an object obstructing a path is moved 

out of the way of the path, the generation of a shorter path is not guaranteed to occur. If 

the existing path is sufficiently strong, ants will not deviate from it, so the existing path 

will stay in place.  
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Stereoscopic visualization was found to be more important to the project than first 

anticipated. While the ants operate in a 3D environment, screen space for most 

computers is still essentially 2D. Consequently, the ants seem to operate on the viewing 

plane instead of the 3D space they are actually in. When viewing the scene 

stereoscopically, the actual 3D operational space becomes instantly obvious. This 

provides a more compelling, easily understandable experience than is provided on a 

traditional monitor. 

An octree was a sub-optimal choice of data structure for the pheromone points. The 

pheromone point sorting algorithm takes the majority of the processing time for the 

display generation. While caching the sorted pheromone points alleviated this somewhat, 

a better solution might be to use a data structure better suited to both storing data and 

displaying it from arbitrary viewpoints in space, such as a KD-tree or a Binary Space 

Partition tree. 

Most programming errors encountered during development stemmed from the 

discretization of pheromone points, specifically in the conversion from spatial 

coordinates to octree storage locations. More thorough testing of the pheromone point 

class, especially discretization edge cases, at early development stages would likely have 

decreased the development time used dealing with these problems. 

Developing the application using the Qt framework made cross-platform programming 

easier than trying to adapt the program for multiple operating systems independently. Qt 

handles most of the system-specific programming calls, allowing a programmer to 

concentrate on the more interesting and unique aspects of the program. Furthermore, Qt 

has robust support for OpenGL, so that most system-specific graphics calls are handled 

by Qt as well. These factors lead to less time being spent on lower-level system-specific 

programming and more time with the actual simulation.  
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FUTURE WORK 

This project uses a single algorithm to handle all aspects of the simulation. Work could 

be done to create several different simulation algorithms and allow easy swapping 

between them. This would allow direct comparison of several simulation algorithms, 

instead of just the differences obtained by adjusting variables of a single algorithm. 

Currently, ants are only guaranteed to successfully traverse convex obstacles. Work 

could be done to improve obstacle avoidance logic to expand the range of valid 

obstacles. Additionally, ants could be restricted to movements along a surface based on a 

terrain file. 

This simulation could also be used as a test-bed for robots using pheromone-based 

behavior for exploration. The robots’ and pheromone paths’ behavior could be tested in 

this simulation before being programmed into the robots themselves, allowing quick 

initial simulations and culling of less useful operating parameters. 

Pheromone points could be stored in a manner more efficient for display than the current 

octree structure, greatly speeding up render times. 

Work could be done to make the algorithm a more realistic simulation of ant behavior. 

This might result in a more effective educational tool for the behavior of real ants rather 

than a simulation loosely based on ants. Some interesting additions could be: 

• Detection of other nests and the addition of ant nest interaction, leading to 

potential nest skirmishes 

• The addition of poisonous foods, with different methods of killing (instant, time-

delay, trophallaxis delay) 

• Addition of environment visualization techniques such as sun position 

• Simulation of nest dynamics such as birthing rates 
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Alternately, work could be done to further abstract or repurpose this simulation, perhaps 

adapting it to other NP-complete problems and visualizing results in real-time. For 

example, instructing ants to touch all food sources before returning to the nest would 

create a simulation of the Traveling Salesman Problem. This could in turn be used as a 

basis for both packet routing and Job Shop Scheduling. 

To better facilitate further work in this area, a compressed file containing all files related 

to this code has been submitted as a supplement to this document. Please refer to 

supplement pathing.zip for code and executable files. 
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