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ABSTRACT 

 

Mechano-activated Electronic and Molecular Structures. (December 2009) 

Ke Wang, B.S., Lanzhou University; 

M.S., Peking University 

Co-Chairs of Advisory Committee: Dr. Hong Liang  
                                                                Dr. Winfried Teizer 

 

For centuries, researchers have been trying to achieve precise control and tailor 

materials properties. Several approaches, i.e., thermo-activation, electro-activation, and 

photo-activation, have been widely utilized. As an alternate and fundamentally different 

approach, mechano-activation is still relatively less-known. In particular, understanding 

the roles of mechano-activated electronic and molecular structures is yet to be achieved. 

This research contributes the fundamental understanding in mechanisms of 

mechano-activation and its effects on materials properties. Experimental investigation 

and theoretical analysis were involved in the present research. A methodology was 

developed to introduce the mechnao-activation and to study its subsequent effects. There 

are three major areas of investigation involved. First, the means to introduce mechano-

activation, such as energetic particle collision or a bending deformation (tensile force); 

Second, in-situ and ex-situ characterization using AFM, FTIR, UV-Vis, and XPS etc. 

techniques; Third, theoretical analysis through modified Lennard-Jones potentials in 

order to explain the behavior of materials under mechano-activation.   
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In the present research, experiments on a Diamond-Like Carbon (DLC) film, a 

Polyvinylidene Fluoride (PVDF) film, and the Silver-Crown Ether nanochains (Ag-NCs) 

were carried out. For DLC, the collision-induced transformation between hybridization 

states of carbon was confirmed, which also dominated the friction behavior of the film. 

For PVDF, results show that the applied tensile force induced the transformation of α, β, 

and γ crystalline phase. In addition, the transformation observed was time and direction 

dependent. For Ag-NCs, a new approach based on the mechanism of mechano-activation 

was developed for nanochain structure synthesis. Molecular dynamics simulation and 

experimental results revealed that the formation of Ag-NCs is a synergetic physical-

chemical procedure. Experimental results from DLC and PVDF were further used to 

validate the proposed potential, which brought new insight into the activation process. 

The current research achieves a precise control on engineering materials properties. The 

force-activated materials have wide applications in many areas, such as functional 

coating, sensing, and catalysis. 

In this study selected experiments have demonstrated the effects of mechano-

activation in different material systems (ceramic, polymer, metallic nano structure) and at 

different length scales. For the first time, a modified potential was proposed to explain 

the observed mechano-activation phenomena from the energy point of view. It was 

validated by experimental results of DLC and PVDF. The current research brings new 

understanding in mechano-activation and opens potential for its applications in tailoring 

materials properties. 
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CHAPTER I 

INTRODUCTION 

 

In the current research, a systematic study on the effects of mechano-activated 

electronic and molecular structures on material properties at different length scales was 

presented. This chapter introduces the necessary background for the area of electrons and 

electronic structures, mechanochemistry, and mechano-activation.  

 

1.1. Roles of Electrons and Electronic Structures  

During the activation processes, the excited electrons play important roles in 

guiding the reaction path, reaction rate, or the final products.  In order to elucidate the 

roles of activated electrons under mechano-activation, it is necessary to have a thorough 

understanding on electrons and the roles of electronic structures.  

 

1.1.1. History in the Study of Electrons 

The interaction between materials is primarily through the bonds between valence 

electrons which hold atoms together to form solid, liquid, and molecular states. Most 

material properties, such as electrical, optical, magnetic, and mechanical, depend on the 

electrons. The better we understand them, e.g., position and energy, the better we can 

design and utilize materials.  

The word “electron” origins from Greek “ēlectron” that means amber.1 It is a 

yellow fossilized resin of evergreen trees and was known as a natural plastic material to  

____________ 
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ancient Greeks. They found that when amber was rubbed by a dry cloth, it produced 

attraction that is now called static electricity.  In 1600s, William Gilbert invented the 

word “electric” from studying the same attraction phenomenon. Since then, the words 

“electricity” and “electron” have been wildly used.2,3 The milestones in the history of 

electron-related study are shown in the Figure 1.1.  

Although electric phenomena have been known for centuries, the study on 

electronic structure began in the 1890s with the discovery of an electron as a particle. In 

1896, Hendrik A. Lorentz first used the electron theory to interpret the splitting of 

spectral lines by a magnetic field4, which was discovered by his student, Pieter Zeeman. 

They concluded that radiation from atoms was due to negatively charged particles with a 

very small mass. One year later, J. J. Thomson5 discovered the electron in an experiment 

on ionized gases at the Cavendish Laboratory in Cambridge. Thomson’s results also 

confirmed that the electron is negatively charged, with a charge to mass ratio similar to 

that found by Lorentz and Zeeman. For their contribution, the Nobel Prize was awarded 

to Lorentz and Zeeman in 1902 and to Thomson in 1906.  

The continuous study on electrons brought fundamental improvement on the 

understanding of material and a series of Nobel Prizes. In 1923, Millikan6 won the Nobel 

Prize for his work on the elementary charge of electricity and the photoelectric effect. In 

1925, Frank and Hertz won the Nobel Prize for their discovery of the laws governing the 

impact of an electron upon an atom. Four years later, de Broglie won the Nobel Prize for 

his genius thought on the wave nature of electrons.  
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Figure 1.1. Milestones in the history of electron related study 
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Davisson and G.P. Thomson7 won the Nobel Prize for their experimental 

discovery of the diffraction of electrons by crystals in 1937. In 1955, Kusch’s work on 

precise determination of the magnetic moment of the electron won himself the Nobel 

Prize8. In 1981, Siegbahn9 received half of the Nobel Prize for his contribution to the 

development of high-resolution electron spectroscopy. Four years later, von Klitzing10 

won the Nobel Prize for the discovering of the Quantum Hall effect. Just after one year, 

in 1986 Ruska, Binning and Rohrer11 shared the Nobel Prize for their fundamental work 

in electron optics and for the design of the first electron microscope. In 1998, Laughlin, 

Stormer and Tsui12 shared the Nobel Prize for discovering the fractional Quantum Hall 

effect. Researchers believed that the further understanding on the activated electronic 

structures would open new avenue to control material properties.  

 

1.1.2. Roles of Electronic Structures 

Since the discovery of electrons in 1896, the theory of electrons and electronic 

structures has attracted great attention in materials related research. Researchers believe 

that understanding of materials and phenomena depends on our knowledge in electronic 

structure. Because electrons and nuclei are the fundamental building blocks that 

determine the nature of materials: atoms, molecules, bulk matter, and artificial structures. 

Electrons not only form the “quantum glue” that maintain materials in their respective 

states, but also electronic structures determine the various properties of material, such as 

electrical, optical, and magnetic properties.  
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Here the electronic structure does not limit to the arrangement of electrons in the 

shells of an atom. It includes the orbital or bond formed through the interactions between 

the electrons in the valence shell of atoms, such as σ bond and π bond.   

Carbon is a good example to elucidate the roles of electronic structures. As one of 

the most versatile elements in the periodic table, carbon virtually can form an infinite 

number of compounds. This is due to the various types of bonds or hybridization states it 

can form with other elements.  

For electron hybridization, sp2 and sp3 are two common types. For sp3 

hybridization, each of the carbon’s four valence electrons is assigned to a tetrahedrally 

structured hybrid orbital. It forms a strong σ bond with an adjacent atom and results in 

tetrahedral bonding arrangement, as the basic building block of diamond shown in the 

Figure 1.2.  For sp2 hybridization, three of four electrons are assigned to the equal lateral 

triangle hybrid orbital, which forms intra-layer σ bonds. The fourth electron has a p 

orbital that is normal to the σ bonding plane. The p orbital between adjacent planes can 

form weak π bond, such as the van der Waals bonding between layers of graphite.  

 

 

 

 

 

 

 

Figure 1.2. sp2 and sp3 hybridization of carbon 

sp2 sp3 
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In fact, graphite and diamond are two extreme examples of carbon. Graphite only 

contains sp2 hybridization and weak van der Waals bonding between its layers. It is soft 

and conductive. In the bulk, graphite is an anisotropic metal. For a single graphite plane 

(graphene), it is a zero band gap semiconductor. Diamond contains only sp3 hybridization 

which results in the strong, directional σ bond. It has a hardness of 100 GPa and is an 

insulator with wide band gap of 5.5 eV. Using carbon as an example, the roles of 

electronic structures in determining materials properties are apparent. 

 

1.2. Roles of Electrons and Electronic Structures  

 

1.2.1. Activation Methods 

There are four alternate ways to activate the energy states of electrons and 

molecules at surfaces and interfaces: thermo-activation, electro-activation, photo-

activation, and mechano-activation.13-17 As listed in Table 1.1., the first three are 

chemical activation methods that have been well studied and accepted. The fourth way is 

a physical activation method, mechano-activation, which is less known.  

Table 1.1. Activation methods 

Activation Methods 

Chemical Methods Thermo-Activation Electro-Activation Photo-Activation 

Physical Methods Mechano-Activation 
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1.2.1.1. Thermo-activation 

Thermo activation origins from the study of thermochemistry, which is generally 

concerned with energy exchanging in the form of heat. Thermo-activation initiates the 

interactions between atoms and molecules via heat.  

A study on tailoring the electronic structure of a bilayer graphene via potassium 

doping was reported by T. Ohta et al. 13 In the study, they synthesized the bilayer 

graphene thin film on insulating carbide and used the angle-resolved photoemission to 

characterize the electronic band structure. By carefully increasing the carrier 

concentration in each layer, changes in the Coulomb potential led to the modification of 

the band gap between valence and conduction bands. The gap was first open at the 

doping concentration of 0.005 e, then closed at the concentration of 0.0125 e, and finally 

opened again at the concentration of 0.035 e. The authors demonstrated that the 

occupation of electronic states near EF and the magnitude of the gap between the valence 

and conduction bands could be manipulated by controlling potassium doping. 

 

1.2.1.2. Electro-activation 

Electro-activation origins in electrochemistry that generally involves energy 

exchange with the transfer of electrons. Electro-activation initiated the interactions via 

means of transferring electrons between atoms or molecules under the application of an 

external voltage or through the release of chemical energy.  

An example on switchable, palindromically constituted bistable [3] rotaxane was 

given. It was designed and synthesized to mimic the function of a muscle. The columbic 
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repulsion between specific functional groups were initiated or reduced via electro-

chemical oxidation or reduction.  

Y. Liu et al. 14 designed and synthesized bistable [3] rotaxanes which has a pair of 

mechanically mobile rings encircling a single dumbbell. There were two energy favored 

positions for the two cyclobis(paraquat-p-phenylene) (CBPQT4+) rings. One was at 

tetrathiafulvalene (TTF) station, the other was at naphthalene (NP) station. By applying 

an electrical potential, the rings could move from TTF to NP station with an inter-ring 

distance change from 4.2 to 1.4 nm. Their work opened an avenue to control the nano 

scale mechanical movement of microbeams via electrochemical activation.  

 

1.2.1.3. Photo-activation 

Photo-activation origins in the study of photochemistry that generally involves the 

energy exchanging through light absorption. Photo-activation initiates the interaction 

between atoms or molecules via means of photon irradiation and absorption. An example 

on the photo-induced formation of electrically conductive thin palladium nanowires on 

DNA scaffolds was given.  

In the experiment, a photochemical method had been exploited for a fast synthesis 

of electrically conductive Pd nanowires.15 We found that the Pd nanowires growed as the 

UV irradiation time increases; without irradiation, no formation was detected. The EDS, 

TEM, and XRD results are given in the Figure 1.3. As shown in the Figure 1.2a and b, 

the average diameters of the Pd nanowires were 55-75 nm, and the average lengths were 

~3-5 µm.  The EDS analysis was used to determine the chemical composition of 

synthesized. The EDS spectrum consisted mainly of Pd, C, Cu, N, and P peaks.  
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Figure 1.3. (a) and (b) TEM images of Pd nanowires after UV photo-irradiation. (a) A 
bent single chain DNA-Pd nanowire, inset shows the selected area electron diffraction 

pattern indicated crystalline nature of the nanowire. (b) Pd nanowires synthesized with S 
value of 3. (c) Energy dispersive X-ray spectrum (EDS) of the DNA-Pd nanowires. (d) 

Powder X-ray diffraction pattern of the DNA-Pd nanowire15 
 

 

The C and Cu peaks came from the carbon-coated Cu TEM grid used for the 

analysis. The Pd peak came from the reduced Pd nanowire and the small P and N peaks 

came from the DNA. From the XRD result, the diffraction peaks originated from the 

{111}, {200}, {220}, {311}, and {222} planes were identified. The ratio of the 
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intensities of {200} and {111} diffraction peaks is higher than the conventional value, 

indicating that the nanowires were abundant in {110} planes and oriented parallel to the 

surface of the substrate.  

Based on the experimental results, we proposed that the mechanism of photo-

induced synthesis of Pd nanowires on DNA proceeds in three steps, as shown in the 

Figure 1.4. Initially, positively charged Pd (Ⅱ) ions formed a complex with DNA. Then 

Pd (Ⅱ) ions were reduced to Pd (0) and formed seeds on DNA scaffold under UV photo 

irradiation (260nm). The hydroxyl group of DNA in the deoxyribose sugar part might 

initiate the reduction of Pd (Ⅱ) to Pd (0) in the presence of UV photo irradiation. With 

time, the Pd seeds growed to form bigger Pd nanoparticles, then crosslinked to form Pd 

nanowires on the DNA template.  

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Proposed mechanism for the photo-induced formation of electrically 
conductive thin palladium nanowires on DNA scaffolds15 
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1.2.2. Mechano-activation 

Besides thermo-activation, electro-activation, and photo-activation, mechano-

activation is a fundamentally different way to excite the electronic or molecular 

structures. In most cases, a mechanical force will be involved in the excitation process, 

no matter it is via collision or bending deformation, or compression. It has been reported 

that a mechanical force can activate covalent bonds in polymers and result in chain 

scission18-21, guide reaction pathway,22 or facilitate the nanostructure fabrication16.    

The term “Mechanical Activation” was firstly introduced by Smékal in 1942. 23 It 

was assigned to a method for increasing the reaction activity of solids and, consequently, 

to accelerate solid phase reactions and to reduce the temperature of the subsequent 

thermal decomposition. “Mechano-Activation” was used later to compare with other 

activation methods. It has been confirmed that the mechano-activation is usually 

accompanied with changes in composition or micro structure.  

A prudential definition was made by Butyagin24 in 1984, where the mechano-

activation was defined as an increase of reaction ability due to the stable change in solid 

structure. He explained the effects of mechanical energy on solids from three aspects: 

structural disordering, structure relaxation and structure mobility.  

Juhász categorized the influence of mechano-activation from a different point of 

view, i.e., the primary and secondary processes. 25,26 The primary process would increase 

the reactivity of the substance, such as the increase of internal or surface energy. The 

extra energy introduced via mechano-activation could excite the atoms and molecules to 

a higher energy state, helped the system go over the energy barrier to initiate a reaction, 

and then consequently enhanced the reactivity. The secondary process took place 



 

 

12

spontaneously with the mechano-activation. It usually accompanied with structure 

rearrangements, which needed less energy than the primary one to initiate the process.    

 

1.3. Electron and Roles of Electronic Structure 

Besides thermochemistry, electrochemistry, and photochemistry, 

mechanochemistry is an alternative branch of chemistry. It deals with the chemical and 

physico-chemical changes of substances in all states of aggregation.   

The term “Mechanochemistry” was first introduced by Nobel Laureate Fridrich 

Wilhelm Ostwald (Nobel Prize in Chemistry 1909) in his book “Lehrbuch der 

Allgemeinen Chemie” (Textbook of General Chemistry). In which, he defined the 

mechanochemistry along with thermochemistry, electrochemistry, and photochemistry 

from the energy point of view as part of his effort to systemize chemical disciplines.  

From the first attempt by primitive to make fire using friction to the ignition of 

solid explosives via shock, the effects of mechanical force on the route of chemical 

reaction are part of the early experience of human being. People have realized that 

mechano-activation itself can lead to chemical consequences as thermo-activation, 

electro-activation, and photo-activation do. The milestones in the history of 

mechanochemistry are summarized in Table 1.2.  

 

 

 

 



 

 

13

 

Table 1.2. History of mechanochemistry 

Time Events 
371-286 B.C. The first written document on the mechanochemical preparation of 

mercury by Theophrastus of Eresus in his book “De Lapidibus”.   
16th century  Several examples of mechanochemistry were observed by Agricola 

during milling and metallurgical operations. 
19th century A mechanochemical process on the decomposition of silver chloride 

was reported by Faraday. 
Late 19th 
century 

Detailed studies on the decomposition of Ag, Hg, Pt, and Au halides 
during attrition in a mortar were documented by Carey Lea 

Early 20th 
century 

The term “Mechanochemistry” was first introduced by Ostwald. 

1920s Early mechanochemical study of organic macromolecules was 
carried out by Wanetig, Staudinger, Kauzmann, and Eyring. 

1941 Transformation between two dimorph of PbO under hydrostatic 
pressure was observed by Clark and Rowan. 

Since 1970s Single molecule or single bond studies 
 

The first mechanochemical reaction was reported by Theophrastus of Eresus 

(371-286 B.C.), a student of Aristotle, in his book “De Lapidibus” or “On Stones”. In this 

book, the following sentence was mentioned “Native cinnabar was rubbed with vinegar 

in a copper mortar using a copper pestle, then yielded a liquid metal of mercury.” It was 

the first written document of a mechanochemcial reaction. The mechanochemically 

induced reduction of mercury may follow the reaction:27-29 

                                          CuSHgCuHgS +→+  

When the native cinnabar is rubbed in a brass mortar with a brass pestle in the 

presence of vinegar, metallic mercury is obtained.  

 

(1.1) 
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In the medieval literature, only a few documents were found on the topic of 

mechanochemistry. Several examples of the mechanical action initiated chemical 

reactions during the milling and metallurgical operations were reported by Agricola.  

As a pioneer in electromagnetic theory and nano-material synthesis, Faraday also 

made his contribution to mechanochemistry. In 1820 he reported a mechanochemical 

process on the decomposition of silver chloride, as shown in equation 1.2. Later on, he 

also found that certain hydrated salts dehydrated spontaneously under mechanical 

treatments, such as using mortar or comminution.  

                                         222 ZnClAgZnAgCl +→+  

In the discipline of mechanochemistry, researchers usually regard Carey Lea as 

the first mechanochemist. He carried out detailed study on the decomposition of Ag, Hg, 

Pt, and Au halides during attrition in a mortar. When heated, he observed that AgCl 

melted and Hg2Cl2 sublimated without decomposition, but under the effect of stress both 

of them decompose with the formation of elementary metals and chlorine. The reactions 

probably proceed through the following courses: 

                                                
222

2

2
22

ClHgClHg
ClAgAgCl
+→
+→

 

For the first time, Lea experimentally proved the parallelism between the thermo-

activation, electro-activation, photo-activation, and mechano-activation on the silver 

halides. Early experimental mechanochemistry was focused on the decomposition of 

inorganic salts under the influence of mechanical force. Later on, the transformation of 

solids under mechano-activation attracted more interest. Clark and Rowan30 found that 

the transformation between two dimorph of PbO (massicot↔litharge) occurs during 

(1.3) 

(1.4) 

(1.2) 
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milling, where litharge and masscicot are the natural forms of lead oxide. Litharge has the 

internal tetragonal crystal structure and massicot has the orthorhombic form. They 

attributed the applied hydrostatic pressure to the litharge-massicot transformation.  

Substantial contribution on the mechano-activation phenomena in organic 

macromolecules has been made since the 1920s. Inspired by the needs of the paper 

industry, Wanetig31 studied the beneficial effect of grinding on cellulose’s solubility. He 

confirmed that the mechanical destruction of the macromolecule and creation of new 

hydrophilic groups via breaking valence bonds would make the paper pulp more 

solvable. Later on, Staudinger et al.19,32  proved that the reduction of the molecular 

weight of polymers was caused by the mechanically induced disruption of the valence 

bonds in the carbon chain under mastication. Their explanation was further refined by 

Kauzmann and Eyring.18 They suggested that the hemolytic cleavage of the C-C bonds in 

the backbone under a mechanical force is the real reason for the shortening of polymers.  

 From the end of 20th century, considerable attentions have been attracted on 

bimolecular reaction under mechano-activation, mechanochemical synthesis, 

mechanochemistry in a single molecule or single bond such as mechanical rupture forces 

of covalent bonds,33,34 metallic bonds,35,36 or coordinative bonds.37,38  

Meanwhile, researchers spent a lot of efforts on developing theories and models 

to explain the observed results. They are summarized in Table 1.3. 
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Table 1.3. Theories and models in mechanochemistry 

Time Theory or Model Authors 
1952, 1958 Hot-Spot Theory Bowden, Tabor,  and 

Yoffe39-41 
1967 Magma-Plasma Model Thiessen, Meyer, and 

Heinicke42 
1969, 1974 Dislocation and Phonon Theory Gutman, Bertenev, and 

Razumovskaya43,44 
1973 Theory of Short-Live Active Centers Butyagin45 

1984, 1986 Impulse Model Lyachov46 
 

 

The first trial was Hot-Spot Theory developed by Bowden, Tabor, and Yoffe.39-41 

In the experiment, a temperature raise of 1000K in an area of 1μm2 was found on the 

surface under a 10-4-10-3 s friction process.  They attributed this temperature increase as 

the cause of mechanically initiated reactions.    

In 1967, Thiessen et al.42 proposed the Magma-Plasma Model. In this model, a 

special plasmatic state formed by the emission of excited fragments of solid sample at the 

contact spot of collision. The temperature in those regions could reach more than 

10000K, which would enhance the local reactivity. But the plasmatic state had very short 

life time, usually less than 10-7 s.  

Gutman, Bertenev, and Razumovskaya43,44 brought up the Dislocation and 

Phonon Theory. According to this theory, the dislocations caused by the mechano-

activation could diffuse to the surface and consequently increase the chemical activities. 

At the same time, the motion of dislocations and the interaction between them was 

accompanied by the formation of phonons.  

Butyagin45 used the theory of Short-Live Active Center to explain the 

rearrangement of chemical bonds under mechanical treatments. New structures at the 
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surface caused by the mechano-activation were not able to stabilize in the 10-9-10-11 s of 

thermal excitation. For the stabilization and rearrangement of chemical bonds, a longer 

time of 10-4-10-7 s was required.  The decay of short-live centers depended on the 

relaxation processes.  

With the developing of mechano-activated synthesis, the Impulse Model was 

proposed by Lyakhov46 in order to interpret the kinetics of reactions observed in the ball 

milling process. The model was based on the time intervals of a stress field formation and 

its relaxation due to the impulse effect of milling balls on materials.   

To date, mechanochemistry has been an established field in material science and 

solid-state chemistry. But the research on mechano-activation has not been complete yet.  

As for the mechano-activation of polymers, the emergence and relaxation of stress fields 

in these systems have not been thoroughly studied. Little is known about the response of 

different phases in polymer under the influence of a mechanical force. In addition from 

the application point of view, effects of mechano-activated electrons on material 

properties at different length scales, e.g., crystal structure, phase transformation, and 

surface conductivity, have not been systematically discussed. Furthermore, an energy 

based theory on mechano-activation has not been developed yet.  

 

1.4. Summary 

In this chapter, basic understanding in mechanochemistry, mechano-activation, 

and the roles of electronic structures are introduced. It presents the contributions in 

experiment and theory that have been made in this area. However, effects of mechano-
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activation on material properties have not been carefully studied at different length 

scales. More importantly, in order to obtain the fundamental understanding on the roles 

of mechano-activated electronic or molecular structures in determining material 

properties, an explanation from the energy point of view is yet to be developed.  

In this study, we focused on the excitation of electronic or molecular structures 

under mechano-activation and the consequent effects on material properties. Both 

primary and secondary processes were carefully studied. For the primary process, the 

studies are focused on the collision-induced hybridization states transformation of carbon 

atoms in DLC. For the secondary process, the research is concentrated on the time-

dependent and anisotropic phase transformation induced by tensile force in PVDF. 

Detailed discussion will be provided in Chapter Ⅳ and Ⅴ. 

Following the introduction, the second chapter delivers the motivations and 

objectives of the present research as well as the methodology developed to achieve these 

objectives. The detailed study on the selected material systems is covered in chapters 

Ⅳ,Ⅴ, and Ⅵ. Theoretical analysis based on an energy diagram is provided in chapter 

Ⅶ. Finally, conclusions and recommendations for future works are given in chapter Ⅷ.   
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CHAPTER II 

MOTIVATION AND OBJECTIVES 

 

In Chapter I, we discussed the state-of-the-art of the mechano-activation and the 

basics of electronic structures. It is clear that there are needs to understand the 

mechanisms of mechano-activation process and its effects. In the present research, we 

propose to investigate the relationships between mechano-activated electronic/molecular 

structures and materials properties. Specifically, we will study the mechano-activation 

phenomena in the selected material systems. We propose a combined experimental and 

theoretical approach that is based on the energy diagram.   

There are two major objectives in this research. The first objective is to study the 

behavior of mechano-activated surface electrons through experimental examination. The 

second objective is to obtain fundamental understanding in the relationships between 

those activated electrons and materials properties. We will focus on the phase 

transformation at the atomic and molecular scales of thin films that are under mechano-

activation. The outcome of the research is expected to lead to discover new behaviors or 

phenomena and to open perhaps new areas of materials science.  Below are details 

addressing each of the objective:  

 

1) Experimental examination of mechno-activated electroninc and molecular 

structures 

Apart from thermo-activation, electro-activation, and photo-activation, mechano-

activation is a fundamentally different way to alter electronic and molecular structures, 
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trigger chemical reactions, and consequently modify materials properties. In this study, 

experiments will be conducted on three selected materials systems. These results will 

further our understanding in roles of mechano-activation in modifying materials 

properties. 

In order to achieve this objective, the materials will be carefully selected. The 

chosen materials are from different categories: Diamond-like Carbon (DLC), a ceramic; 

Polyvinylidene Fluoride (PVDF), a polymer; and Silver-Crown Ether nanochains (Ag-

NCs), metallic nanomaterial. The phenomena are at different length scales: the friction 

behavior of DLC at macro scale; transformation between phases of PVDF at micro scale; 

and the formation of Ag-NCs at nano scale. 

A methodology will be developed to induce mechano-activation and to study their 

effects. The approach includes three critical parts. First, the means to introduce mechano 

activation, such as ion collision or bending deformation introduced by special sample 

stand; Second, in situ and ex situ characterization, such as using AFM, FTIR, UV-Vis, 

XPS etc. An in situ characterization method for one sample could be an ex situ method 

for another sample. Third, theoretical analysis, such as spectrum deconvolution or multi-

body Lennard-Jones Potential calculation. The developed methodology has the 

adaptability to different material system and can serve as guidance for future study. 

 

2)   Theoretical analysis of mechano-activation 

As discussed in Chapter Ⅰ, section 1.3, from the early Hot-Spot Theory to the 

Impulse Model, researchers have paid tremendous efforts in understanding mechano-
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activation. The theories on activated electronic and molecular structures have been hardly 

reported.  

In this research, a modified interatomic/ intermolecular potential that includes the 

contribution of mechano-activation will be proposed. Using this modified potential, we 

will be able to describe the energy states under the influence of a mechanical force and 

examine the experimental results.    

More importantly, the validated potential would not only be able to explain the 

observed phenomena, but also bring new understanding in mechano-activation and opens 

potential for its applications in tailoring materials properties. 

  For the first time, we investigate the effects of mechno-activation on electronic 

and molecular structures. The research will bring insight from the fundamentals in 

relations of electronic structure and materials properties. The findings will broaden the 

scopes for future research as well as provide the guidelines for selection and design of 

materials for a broad spectrum of engineering applications.  

The next six chapters are organized in the following way: after a detailed 

description of experimental approaches, results are introduced. Discussions are divided 

into two major areas, DLC and PVDF, followed by a detailed theoretical analysis. The 

main dissertation ends with the summary and future recommendations.    
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CHAPTER III 

MATERIALS AND METHODS 

 

In this chapter, materials, characterization and analysis methods used in the 

dissertation research are discussed. Materials from different categories are chosen to 

study the mechano-activation process and its effects. Selected characterization and data 

analysis methods are presented.  

 

3.1. Materials 

 

3.1.1. Diamond-like Carbon 

Diamond-like carbon (DLC) is a metastable form of amorphous carbon which has 

similar properties like natural diamond, such as high mechanical hardness, wear resistant 

and chemical inertness. 47,48,49,50 These unique properties origin from a significant amount 

of sp3 hybridization of carbon contained in DLC.  

After hydrogen, helium, and oxygen, carbon is the fourth most abundant chemical 

element in the universe by mass. Its atomic number is 6 and has 4 valence electrons (2s, 

1p,1p, 1p). Carbon is able to exist in three hybridization states, sp3 (like carbon in C2H6), 

sp2 (like carbon in C2H4), and sp1 (like carbon in C2H2). Configurations of each 

hybridization states are shown in Figure 3.1. For sp3 hybridization, each of the carbon’s 

four valence electrons is assigned to a tetrahedrally structured hybrid orbital, which forms 

a strong σ bond with an adjacent atom and results in tetrahedral bonding arrangement. 
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For sp2 hybridization, three of four electrons are assigned to the equal lateral triangle 

hybrid orbital, which forms intra-layer σ bonds. The fourth electron has a p orbital that is 

normal to the σ bonding plane. The p orbital between adjacent planes can form weak π 

bond, such as the van der Waals bonding between layers of graphene. For sp1 

hybridization, two of four electrons form hybrid orbital along ± x-axis, and the other two 

electrons enter the formation of π bonds in y and z directions.51 The physical properties of 

carbon hybridization states are given in the Table 3.1.52  

 

Table 3.1. Carbon-carbon hybridization states and bond lengths 

 

 

 

 

 

 

 

 

Figure 3.1. Carbon-carbon hybridization states and bond 

 

Bond Hybrid Type Energy of Bond 
(kJ/mole) 

Bond Length (nm) 

C-C sp3 370 0.154 
C=C sp2 680 0.13 
C≡C sp1 890 0.12 

sp3 sp2 sp1 
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DLC is a metastable form of amorphous carbon containing both sp3 and sp2 

hybridization. The sp3 bonding of DLC contributes to some extreme properties similar to 

natural diamond, such as the hardness, elastic modulus and chemical inertness. 53-56    

The first fabrication of DLC thin film was reported in early 70s by Asienberg and 

Chaot using ion beam deposition. There are two types of DLC films being reported, 

hydrogenated amorphous carbon (a-C:H)56 and tetrahedral amphorous carbon (ta-C) 57. 

The major properties of amorphous carbon and other reference materials are given in 

Table 3.2.58-61 

 

Table 3.2. Comparison of major properties of amorphous carbons with natural diamond 
and graphite 

 

 sp3 (%) sp2 (%) H (%) Density 
(g/cm3) 

Hardness 
(GPa) 

Diamond58 100 0 0 3.515 100 
Graphite59 0 100 0 2.267  

ta-C60 80-88 12-20 0 3.1 80 
a-C:H61 40 60 30-40 1.6-2.2 10-20 

 

Due to its unique properties, DLC has been wildly used as protective coatings, as 

for drills, bits, magnetic storage disk62-64, and biocompatible coatings on parts such as 

replacement hip and knee joints, heart valves, and stents. 65-67   

In our experiment, a tetrahedral amorphous (ta-C) DLC film was deposited on 

52100 bearing steel disks using a PVD method. The coating had a surface roughness of 

about 30 nm in root mean square and contained less than 0.5 %at of hydrogen. 
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3.1.2. Polyvinylidene Fluoride (PVDF) 

Due to its unique piezo-, pyro-, and ferroelectric properties, polyvinylidene 

fluoride (PVDF) has been insensitively studied for its physical properties and 

applications.68-70  

As a member of thermoplastic fluoropolymer family, PVDF is a semicrystalline 

polymer that contains the mer unit of C2H2F2. It has the molecular weight about 105, 

which contains 2000 repeat units and has an extended length of 50 μm.  The physical 

properties of PVDF and other piezoelectric polymers and ceramics are given in Table 

3.3.71-72 

As a semi crystalline polymer, PVDF has five crystallographic forms, α, β, γ, δ 

and ε. The crystalline structures of α, β, γ, and δ, when projected onto a plane normal to 

the molecular axis, are shown in Figure 3.2. In all of them, the chains are packed in the 

unit cell in such a way that the dipoles associated with individual molecules are parallel 

one to the other, leading to the non-zero dipole moment of the crystal.  
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Table 3.3. Physical properties of PVDF and other piezoelectric materials 

 Structure Density 
(g/cm3) 

Piezoelectric 
Coefficient,  

d (pC/N) 

Pyroelectric 
Coefficient, 
p (μC/K m2) 

Max Use 
Temp 
(°c) 

 
 

PVDF71 

 
 

1.78 

 
 

d31=20-30 

 
 

30-40 

 
 

80 

 
 

PTrFE71 

 

 
 

      1.90 

 
 

    d31=15-30 

 
 

30-40 

 
 

90-100 

LZT72 
 

 7.5 d31=100-300 50-300  

Quartz72 
 

 2.7 d11=2   

PTrFE: Poly Vinylidene Fluoride-trifluoroethylene and Tetrafluoroethylene Copolymers 
LZT:  Lead Zirconate Titanate 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Crystal structures of  (a) β, (b) α, (c) δ, and (d) γ phases of PVDF 

(a) β-phase (orthorhombic) (b) α-phase (orthorhombic) 

(c) δ-phase (orthorhombic) (d) γ-phase (monoclinic) 
: Fluorine          : Carbon
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In β phase, all chains are oriented parallel to the y-axis of the unit cell with the 

dipoles pointing in the same directions, resulting in a noncentrosymmetric crystal. The 

net dipole moment along y-axis is 2.1 D.  

The arrangement of the molecules in α phase is such a way that it results in a 

centrosymmetric unit cell, which is antipolar. The molecular dipoles are antiparallel and 

there is no net dipole. δ phase has the similar crystal structure as  α phase, except that the 

center chain has the same orientation as the others. The unit cell is noncentrosymetric and 

it has net dipole moment of 1.3 D.  

For γ phase, the molecular chains are packed in parallel in the noncentrosymetric 

unit cell. Such an arrangement results in a net dipole moment that is smaller than β and δ 

phases.  

The transformation between polar and non-polar phases can be obtained under 

different experimental conditions such as applying tensile stress (α phase → β phase), 73,74 

poling under external electric fields (α phase → β and δ phase), 75-77 or annealing at high 

temperatures (α phase → γ and ε phase).78,79   Recently, we reported the time-resolved 

and anisotropic transformation between crystalline and amorphous phases in PVDF under 

the applied tensile force. 80   

It has been accepted that the electromechanical properties of PVDF, such as 

ferroelectricity, piezoelectricity, and pyroelectricity are originated from the alignment of 

the polarization domain. However, the fundamental understanding on the stress-induced 

phase transformation in micro-, nano-, and molecular length scale has yet to be achieved. 

An in situ characterization and analysis of small scale phase transformation is necessary 
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to identify the role of mechanical force and help to understand origin of the 

piezoproperties. 

Taking advantage of its electromechanical properties, light weight and the 

flexibility, PVDF has been used in various applications such as impact sensor, pressure 

switch, and medical probe. 72 As a critical part in keyboard, a 16 μm thin metalized polar 

PVDF film is able to sustain 15 million pushes without failure. 81
 

PVDF films (Measurement Specialties, USA) were used for this research. They 

were casted from solution to the thickness of 9 μm and 52 μm. During electrical poling, 

uni-axial stretching was applied at temperatures right below the melting point. This 

process disentangles chain packing of the molecules along the tensile direction.  

In order to apply a controlled force while doing the AFM and FTIR analysis, 

special sample stands were designed resembling a half-cylinder. The stand for the AFM 

has a radius of 6 mm and width of 6 mm. Another stand for the FTIR has a radius of 15 

mm and width of 15 mm, at the top a hole with diameter of 5 mm was purposely made to 

let the infrared light pass through. PVDF samples of 6 mm × 10 mm and 30 mm × 20 mm 

were assembled on to the round surface of the stands and placed under AFM and FTIR 

for characterization, respectively. Both samples were carefully mounted onto the stands 

to avoid extra tensile force, the ends of samples were fixed by using adhesive. Bending 

deformation was induced in longitudinal and transversal directions with respect to the 

initial chain orientation (stretching direction), as shown in Figure 3.3a and b. Under 

longitudinal deformation, the bending direction is along the original chain orientation. 

Under transversal deformation, the bending direction is perpendicular to the original 

chain orientation. 
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        Figure 3.3. Bending deformation introduced on PVDF film (a) longitudinal 
direction, (b) transversal direction 
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PVDF Film 

 

Chain Orientation 
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3.1.3. 18-Crown Ether-6 

“Crown Ethers” is the common name for a group of macrocyclic polyethers that 

consist of a ring containing several ether groups. Crown Ethers have 9 to 60 atoms 

including 3-20 oxygen atoms in the ring.82,83 The oxygen atoms are separated from each 

other by two carbon atoms. The repeating unit of Crown Ether is usually CH2CH2O. A 

schematic drawing of 18-Crown Ether-6 is given in Figure 3.4, where “18” stands for the 

total atoms in the ring and “6” represents the number of oxygen atoms in the ring. The 

physical properties of 18-Crown Ether-6 are listed in Table 3.4. 

 

 

 

 

 

 

 

 

 

Figure 3.4. 18-Crown Ether-6 (red: oxygen; white: hydrogen; gray: carbon) 
 
 
 

Table 3.4. Physical properties of 18-Crown Ether-6 

 Molecular 
Formula 

Molar Mass 
(g/mol) 

Density  
(g/cm3) 

Melting Point 
(°c) 

18-Crown Ether-6 C12H24O6 264.32 1.237 39-40 
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One of the remarkable properties of Crown Ethers is their ability to capture alkali, 

alkaline-earth and transition-metal cations on the basis of metal ion size. It was first 

discovered by Pedersen.82 He published the paper “Cyclic Polyethers and Their 

Complexes with Metal Salts” on the Journal of the American Chemical Society in 1967, 

which later on won him the Nobel Prize in chemistry in 1987. In the paper, he presented 

33 cyclic polyethers and proved that many of them have the unusual property to form 

relatively stable complexes with metal ions. The selectivity of Crown Ethers as 

complexing agents results from the definite size of the Crown Ether ring, which only 

accepts cations of comparable ionic radii. Table 3.5. provides the information about the 

ring size of several Crown Ethers and the ionic radii of complexable cations.84,85 18-

Crown Ether-6 has an estimated cavity diameter of 2.6-3.2 Å and is most suitable for 

complexing with K+, NH4
+, and Rb+ (ionic diameters 2.66, 2.86, and 2.94Å, 

respectively). 

 

Table 3.5. Crown Ether ring size and complexable cation size 

Crown Ethers and Their 
Ring Size 

Complexable Cations and Their Size 

 Diameter 
(Å) 

 Diameter 
(Å) 

 Diameter 
(Å) 

14-Crown-4 1.2-1.5 Li 1.36 Ag 2.52 
15-Crown-5 1.7-2.2 Na 1.94 Cs 3.34 
18-Crown-6 2.6-3.2 K 2.66 NH4

+ 2.86 
21-Crown-7 3.4-4.3 Rb 2.94 Ca 1.98 

 

It has been wildly accepted that the size match selectivity of Crown Ether is based 

on the ion-dipole interaction between the cation and the negative dipoles of the oxygen 

atoms in the ring.86  



 

 

32

3.2. Experimental Methods 

 

3.2.1. High Vacuum Analytical Tribometer 

Usually tribology tests are carried out in ambient conditions, several factors, 

especially the humidity will affect the tribo-behavior of the samples. In order to avoid the 

effect of water vapor, the high vacuum tribometer has been used. The high vacuum 

tribometer has been designed to provide controlled vacuum conditions or special gaseous 

environments. The system contains a vacuum chamber, tribometer, and other accessories, 

such as heating stage. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. High vacuum tribometer 
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In the experiment, we used the high vacuum analytical tribometer87 at Ecole 

Central de Lyon, as shown in Figure 3.5. The pin-on-disk tribometer is located at the 

center of the vacuum chamber and surface analytical tools are at the top. The vacuum 

chamber can achieve a pressure as low as 10-7 mPa.   The system was well designed to 

not only include the heating (up to 600°C) and cooling (down to 160°C) functions, but 

also equip with various characterization techniques, such as Scanning Electron 

Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), Auger Electron 

Spectroscopy (AES), and Mass Spectroscopy.  

The tribometer used is a reciprocating pin-on-disk friction tester. The disk is fixed 

on a vertical shaft attached to an XYZ manipulator. The XYZ manipulator is used to 

locate the disk position. A Linear Variable Differential Transformer (LVDT) has been 

developed to measure the force between 0.01 N and 5 N in the vertical direction 

(calibrated with standard weights). Another quartz force transducer is used to measure the 

force between 0.005N and 5 N horizontally. The pin moves in a linear reciprocating 

motion. The pin speed was fixed at a slow speed of 0.1 mm/sec. The friction data was 

collected in such a way that the friction at low speed towards the two ends of the friction 

track was not recorded.  

The integrated XPS consists of a VG 220i spectrometer using monochromatic 

Mg-Kα line for measurement. The emitted photoelectrons are detected using a 

hemispherical analyzer at a passing energy of 20 eV for the C 1s XPS peaks. The energy 

resolution of the instrument at 20 eV is 0.05 eV as estimated from the full width at half 

maximum of the XPS Ag 3d5/2 of a pure silver target. 
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In the experiment17, energetic Ar ions of 5 keV were generated using the ion gun 

integrated. The DLC samples were treated with energetic ions with different amount of 

time, 1 min and 10 min. After the treatment, the samples were characterized using XPS to 

analyze the carbon hybridization states change on the surface of DLC. Then the in situ 

friction tests were conducted by using the reciprocating pin-on-flat tribometer inside the 

same vacuum chamber.  

 

3.2.2. X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a quantitative spectroscopic technique 

that measures the elemental composition, empirical formula, chemical state and 

electronic states of the elements.88 As shown in Figure 3.6, the instrument consists of: a 

vacuum chamber, an X-ray source, an electron energy analyzer, and an electron detection 

system. A typical XPS spectrum is a plot of electron intensity versus (y-axis) the binding 

energy (x-axis). 

The measurement process involves the irradiation of a material with soft X-rays 

while simultaneously analyzing the photo-emitted electrons which escape from the top 

10s atomic layers of the sample surface. Figure 3.7. explains the principle of XPS. 

Without the incidence of X-ray, the electrons of carbon atom stay at ground state. With 

the incidence, the core electron (C 1s) will absorb the energy of the incident X-ray, then 

becomes much more energetic and emit from the subshell. By comparing the incident 

energy and the measured kinetic energy, we can get the binding energy of this core 

electron using Eq. (3.1).  
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Figure 3.6. Basic components of a monochromatic XPS system 

          

                                                           KB EhE −= υ  

Because each element has its own characteristic binding energy in the XPS 

spectrum, XPS is very accurate on identifying the element on the surface of the material 

being analyzed. More important, the same element in different chemical environment will 

have slightly different binding energy (shift of BE). For example, when carbon 

coordinates with metal to form carbide, C 1s has the binding energy between 280.8 eV 

and 283 eV; when carbon bonds with sulfur, C 1s has higher value between 285.5 eV  

and 287.4 eV. With this feature, the shape of measured spectra can be used to provide the 
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information of the chemical bonds and help to distinguish electronic states on the sample 

surface.   

 

 

 

 

 

 

 

 

 

Figure 3.7. Principle of XPS 

 

In the experiments15,16,89-92, the X-ray photoelectron spectroscopy (XPS) analysis 

was carried out using a Kratos Axis Ultra Imaging X-ray Photoelectron Spectrometer 

with monochromatic Al-Kα line (1486.7 eV). The instrument integrates a Magnetic 

Immersion Lens and Charge Neutralization System with a Spherical Mirror Analyzer, 

which provides real-time chemical state and elemental imaging using a full range of pass 

energies. The emitted photoelectrons were detected by the analyzer at a passing energy of 

20 eV with energy resolution of 0.05 eV.  The incident X-ray beam is normal to the 

sample surface and the detector is 45° away from the incident direction. The analysis spot 

on the sample is 0.4mm by 0.7mm, which can be adjusted. The collected data were 

referenced to C 1s with binding energy at 284.5 ± 0.1 eV. 
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3.3. Data Analysis Method 

 

3.3.1. XPS Spectrum Deconvolution 

XPS is a sensitive analytical tool to study the chemical states on the surface. It 

provides qualitative and quantitative information about the composition of the sample. By 

comparing the deconvoluted spectra, small differences in the binding energy of elements 

due to different chemical environments (chemical shifts) can be identified, which will 

help us quantify the surface composition, monitor the reaction progress, and further 

understand the mechanism.  

The devonvolution of a measured XPS spectrum usually contains the following 

steps:  

1) Select a spectrum to process. 

2) Define the deconvolution regions. 

3) Determine and apply the background. 

4) Identify possible components. 

5) Add and adjust deconvoluted components. 

6) Optimize the constrains and parameters of components.  

7) Output the results. 

 

For deconvolution process, a critical step is to choose and apply the background. 

It will help to subtract the contribution of the background noise to the spectrum. There 

are three approaches to determine the background from the literature: the linear method, 

the Shirley method, and the Tougaard method. In which Shirley background is the most 
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common one. For quantitative analysis of polymer spectra, the use of linear background 

is recommended. The Tougaard algorithm appears to be more successful for treating 

spectra from metallic systems, it helps to reveal the real peak area usually ignore by the 

other methods.  

After introducing the appropriate background function, we can use the maxima in 

the spectrum as the clue to the find the position of possible components. A more strict 

way to do that is via taking the second derivative of the original spectrum. During the 

deconvolution process, a series of components are generated and placed under the 

measured spectrum at proper binding energy. The initial line width, line shape, and 

intensity of each component are determined on the basis of different criteria.  

The natural line width is a direct refection of uncertainty for the life time of the 

core-hole system produced by the emission of photoelectrons. From the uncertainty 

Principle, the line width of each component can be expressed as: 

                                  )(101.4 15

eVhlinewidth
ττ

−×
==  

where h is Planck’s constant and τ is the core-hole lifetime. The core-hole lifetime is 

determined by the decay processes that follow the photoemission, like X-ray 

fluorescence, Auger process, and Coster-Kronig process.  

There are several contributions to the line width, but the associated line shapes are 

not the same. For our study, two basic line shape function are Gaussian and Lorentzian, 

where Gaussian distribution corresponds to repeated, independent measurements with 

random uncertainties, and Lorentzian distribution corresponds to resonant behavior, such 

as mechanical or electronic oscillation. In the real measurement, the Kα1,2 photon source 

(3.2) 
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line shape is essentially Lorentzian, while the overall distribution from the spectrometer 

is Gaussian. The overall line shape is a complex with Gauss-Lorentzian character. The 

Gauss-Lorentzian ratio depends on the relative contribution of the instrument. This ratio 

should be the same for all of the components in the same spectrum.  

The relative intensity of each component is strongly depends on the shell where 

electrons stay and the quantum numbers that label the energy states of electrons. First, the 

non-s-levels are doublets as a result of the spin-orbit coupling. Using the quantum 

numbers n, l, s, and j, we can distinguish electrons from one and another. Where n is the 

principle quantum number, l is the orbital angular momentum quantum number, s is the 

spin angular momentum quantum number (±1/2), and j is the total angular momentum 

quantum number (j=l+s). Thus for the non-s-level electrons, there is l>0. There are two 

possible states, “parallel” and “anti-parallel” of the spin and orbital angular momentum 

vectors. The relative intensities of these doublets are given by the ratio of their respective 

degeneracies (2j+1), as shown in Table 3.6. 

 

Table 3.6. Spin-orbit coupling and relative intensities of the doublets 

Subshell j values Area ratio 
s 1/2 - 
p 1/2, 3/2 1:2 
d 3/2, 5/2 2:3 
f 5/2, 7/2 3:4 

 

 

Comparing the sum of the deconvoluted components with the experimental 

results, we can get a measure of the goodness of deconvolution, and usually it is 
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expressed as the chi-squared by the least squares method. Now, most of the 

deconvolution software can do it automatically. By allowing the variation of parameters 

describing the binding energy position, line width, line shape, and intensity, the 

deconvolution process can be optimized with further iterations.  

 

Table 3.7. Comparison of the carbon element ratio 

 C 1s (C-C) C 1s (C-O) C 1s (Carbonate) 
Crown Ether Ring Open 63.4% 32.5% 4.1% 
Crown Ether Ring Close 48.2% 48% 3.8% 

Difference +15.2% -15.5% +0.3% 
 

 

In our research, the spectrum deconvolution was done using XPSpeak 4.1 

software, with Newton’s iteration method and 300 iterations. It was performed by using 

two main components (each being a mixture of Gaussian and Lorentzian) and by 

approximating the contribution of the background by the Shirley method. An example of 

18-Crown Ether-6 is given in the Figure 3.8. Figure 3.8a and b show the C 1s peak 

deconvolution results of 18-Crown Ether-6 with the ring open and close. For both 

samples, the first component corresponds to the carbonate, which may be resulted from 

absorbed CO2 during sliding; the second component corresponds to the C-O group of the 

ethylene oxide in the 18-Crown Ether-6; the third component corresponds to the 

hydrocarbon in the repeating ethylene oxide unit of the Crown Ether. With the 

deconvolution, we can clearly identify that the 18-Crown Ether-6 with open ring contains 

less C-O bonds than that of the one with close ring (15.5% less).  The quantified result is 

provided in Table 3.7. 
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Figure 3.8. Deconvolution results of 18-Crown Ether-6. (a) with ring close, (b) with ring  
open 

Ring Close  

(Ⅱ) 

Ring Open  

(Ⅱ) 

(a) 

(b) 
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CHAPTER IV 

COLLISION-INDUCED HYBRIDIZATION STATES TRANSFORMATION OF 

CARBON IN DIAMOND-LIKE CARBON (DLC)* 

 

In this chapter, the collision-induced hybridization states transformation of a 

diamond-like carbon (DLC) film and its effect on the friction behavior have been 

demonstrated. The carbon atom displacements were induced through their collisions with 

energetic argon ions. The changing ratio of sp2 and sp3 hybridization states of carbon 

dominates the film’s friction against the untreated DLC film.      

 

4.1. Diamond-like Carbon (DLC) 

For centuries, researchers have been trying to make a “forever” lasting material 

similar to diamond. The diamond-like carbon (DLC) has become promising to protect 

microelectromechanical systems (MEMS) with its ultra-smooth surface as a coating.93-95   

The DLC is a mixture of C atoms with sp2 and sp3 hybridizations.96  The sp3 bonding of 

DLC confers on it many of the beneficial properties of diamond itself, such as high 

mechanical hardness, chemical and electrochemical inertness. While the sp2 bonding 

control the electronic and optical properties.97 The ratio of sp2/sp3 carbon atoms is one of 

the most significant factors governing the properties of the DLC films. Hydrogen-free 

DLC with significant fraction of sp3 content is called tetrahedral amorphous carbons (ta-

C).57 

 
____________ 
*Reprinted with permission from “Effects of Energetic Ion Particles on Friction of 
Diamond-Like Carbon” by Ke Wang et al., 2007, Applied Physics Letters, 91,  
051918, Copyright 2009 American Institute of Physics. 
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Energetic ions, like Ar, have long been used to introduce damages in solids to 

study their radiation resistance in nuclear technology.98-102 Later on, they were wildly 

used in the deposition methods for solid thin films, like DLC.103 In the present study, we 

introduce energetic Ar ions to modify the electronic structures of carbon atoms on the 

DLC film surface.17 

 

4.2. Collisions between Ar Ions and DLC Hybridization States Transformation 

An experiment was conducted to study the effects of collision. Energetic Ar ions 

of 5KeV were generated using the integrated X-ray Photoelectron Spectroscopy (XPS) 

inside the vacuum chamber. The DLC samples were bombarded by the accelerated Ar 

ions with different amount of time (1 min and 10 mins). The XPS and friction tests were 

conducted in situ. The ex situ surface morphological analysis was carried out using an 

atomic force microscope. Further data analysis via multiple-peaks deconvolution of the C 

1s XPS peak was conducted to reveal the hybridization states of carbon atoms at the 

sample surface. 

The XPS analysis was carried out in situ for DLC films with different etching 

times before the friction test. Figure 4.1. shows the XPS C 1s peaks of DLC samples after 

1 min and 10 mins ion etching respectively, as well as the reference sample without ion 

etching. It was found that the binding energy of the measured spectra shifted towards 

small binding energy direction. From high to low, the values are 285.2eV (reference 

sample), 285.1eV (sample with 1 min etching), and 285eV (sample with 10 min etching) 
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respectively. The shift is potentially attributed to a change of carbon hybridization at the 

top surface and subsequently the binding energy of C 1s photo-emitted electrons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. XPS C 1s peaks of the DLC reference sample, samples after 1 min and 10 
mins ion etching 

 

 

The XPS can be used to acquire chemical information within tens of nanometers 

depth on a solid surface. The XPS’ sensitivity in chemical analysis stems mostly from its 

ability in resolving the chemical identity of the atoms from the measured binding 

energies.104 The line-shapes of C 1s peak gives information of the chemical bonds. Fitting 

the peak to suitable functions allows extraction of bonding information. 
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The spectrum deconvolution was done using XPSpeak 4.1 software, with 

Newton’s iteration method and 300 iterations. It was performed by using two main 

components (each being a mixture of Gaussian and Lorentzian) and by approximating the 

contribution of the background by the Shirley method, as shown in Figure 4.2. For our 

data, all spectra were defined as 20% Lorentzian and 80% Gaussian. The sp3 peak was 

fitted allowing both the full width at half maximum (FWHM) and the binding energy to 

vary, while the sp2 peak had a variable FWHM but a position fixed at (Esp3 - 0.5) eV.105 

The C-O peak was also fitted with a variable FWHM, but its binding energy was fixed at 

(Esp3 + 1.3) eV.  

In Figure 4.2, the first component is found at 284.7 ±0.1eV corresponding to sp2 

hybrid carbon atoms. The second is at 285.2 ±0.1eV corresponding to sp3 hybrid carbon 

atoms. The third peak of much smaller intensity at 286.5 eV is attributed to C-O 

contamination (C-OH or C-O-C species) due to air exposure. These results are in good 

agreement with those obtained by Diaz et al..106  The published results were acquired 

during deposition process while ours were obtained during etching. The full width at a 

half maximum (FWHM) of the C 1s spectra of the DLC films is about 1.4 eV, which is 

much larger than that of graphite (FWHM = 0.6eV), and that of diamond (FWHM = 

1.0eV).107 This is attributed to the bonding between environments and DLC film surface 

of mixed sp2 and sp3. It should be reminded that the XPS analysis is for the top few 

surface layers.  The ratios of sp3:sp2 from the XPS data fitting will represent the surface. 

The sp3 and sp2 hybridization carbon atom content was determined as the ratio of 

the corresponding peak area over the total C 1s peak. Consequently, the sp3:sp2 ratios can 

be calculated for each sample. Figure 4.2. shows the sp3:sp2 ratio as a function of Ar ion 



 

 

46

etching time. The sp3:sp2 ratio for sample after Ar ion etching for 10 mins is 1.61; The 

sp3:sp2 ratio for reference sample is 2.08; The sp3:sp2 ratio for sample after Ar ion etching 

for 1 min is 2.27, as shown in Table 4.1. The high sp3:sp2 ratio on the reference sample 

surface is due to hydrocarbon contaminants and adventitious carbon. It is known that this 

substance has a low friction less than 0.1. The contaminants were removed as seen in the 

reducing CO peak with etching time.  The top surface of the ta-C is eventually exposed 

giving the highest sp3:sp2 ratio (2.274). After etching for 10 minutes, the ta-C surface 

transformed to graphitic carbon. Under friction, it is seen that the smaller sp3:sp2 ratio, 

the lower friction coefficient. 

 

      Table 4.1. sp3/sp2 ratio of reference sample, samples after 1 min and 10 mins Ar ion 
etching 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample Etching 10 mins Reference Sample Etching 1 min 

sp3/sp2 1.61 2.08 2.27 
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Figure 4.2. Deconvolution of the XPS C 1s peaks of reference sample, samples after 1 
min and 10 mins ion etching 
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4.3. Surface Morphology Characterization  

Topographic images of each sample were observed by using an Atomic Force 

Microscope (Nano-R, Pacific Nanotechnology Inc., USA) in a close contact mode. 

Surface roughness data was acquired and analyzed using the NanoRule+ (Pacific 

Nanotechnology Inc., USA). Figure 4.3. shows the AFM images obtained after the Ar ion 

etching treatments. Surface roughness data are achieved by using NanoRule+, which are 

shown in Table 4.2. 

 
 Table 4.2. Surface roughness of reference sample, samples after 1 min and 10 mins Ar 

ion etching 

 
A: Surface roughness measurement of the reference sample and samples of 1 min and 10 mins Ar ion 
etching; B: Surface roughness of the reference sample and samples with 1 min and 10 mins Ar ion etching 
after friction test. 
 

 

The topography and roughness measurements show that as the etching time 

increases, the surface roughness increases accordingly. This increase, however, does not 

correlate with friction behavior. It means that the surface roughness shows no visible 

effects on sliding friction. The surface topography and profile image are shown in Figure 

4.3. The topography and roughness measurements were also conducted after friction 

tests. The AFM analysis was performed in the contact area of pin and disk and images are 

shown in Figure 4.4. Table 4.2. lists the surface roughness data. Results show that the 

Reference Sample Ar Ion Etching 1 Min Ar Ion Etching 10 
Mins 

 

A B A B A B 

Ra (nm) 17.1 ± 0.6 9.9 ± 0.2 21.9 ± 0.4 12.5 ± 0.2 25.1 ± 1.2 12.0 ± 0.8 
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surface morphology is changed in the contact area due to sliding. The reference keeps the 

lowest roughness among all.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 4.3. AFM images (80um x 80um) and side views were obtained after Ar ion 
etching treatments, (a) Reference sample without etching. (b) Etching 1 min. (c) Etching 

10 mins 
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Figure 4.4. AFM images (80um x 80um) and side views were obtained after friction tests, 
(a) Reference sample without etching. (b) Etching 1 min. (c) Etching 10 mins 
 

 

4.4. Friction Behavior of DLC Film with Ar Ion Collision  

The in situ friction tests were conducted by using the reciprocating pin-on-disk 

tribometer inside the same vacuum chamber. Figure 4.5. shows the in situ friction test 

results in ultrahigh vacuum (UHV). The initial friction coefficient of reference sample is 

at around 0.15. This is consistent with the observed friction coefficient value of ta-C 
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film.108 The friction coefficient of the sample after Ar ion etching for 1 min starts from 

0.3 and increases with the number of cycles. The friction coefficient of the sample of Ar 

ion etching for 10 mins has the lowest initial value 0.03 and it maintains the value till an 

abrupt change after the 16th cycle. Eventually the friction coefficient reaches the same 

level as the sample after 1 min ion etching. In both cases, the increase of the friction 

coefficient after certain cycles clearly indicated changes in the friction contact.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. In situ friction test results of reference sample, samples after 1min and 10 
mins ion etching 

 

Could friction and frictional heating induce graphitization? The effects of load 

and sliding speed on friction and graphitization of DLC have been reported by Liu et al. 

109,110 It was shown that there was no friction-induced graphitization of DLC when the 

sliding speed was lower than 60 mm/s at the load of 1 N. They reported that under the 
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condition of a low sliding speed and load, the graphitization was not observed after a 10 

km sliding distance. In the present work, we select the sliding speed at 0.1mm/s and the 

load at 1 N with a short sliding test (about 0.6 m). Hence with our test condition, friction-

induced graphitization is not expected. Thermally induced sp3 to sp2 phase transition has 

been reported to occur at ~500 K for DLC films during deposition.111-113 Recent 

theoretical study shows the transformation from ta-C to highly ordered sp2 material takes 

place at Tact=1,750 K.114 In the present work, this temperature is not likely to be reached 

under a low load and speed (1 N and 0.1 mm•s-1). In our experiments, the only variable is 

the etching time. The stable friction observed on the reference sample indicates that there 

is no phase transformation observed through either friction or frictional heating.  

In collision with the DLC film, the energetic Ar ions exchange momentum with 

carbon atoms and transfer their energy. If the introduced the energy is larger than the 

bonding energy between carbon atoms, the knock-on collision will cause the 

displacement of atoms and trigger the reconstruction on the sample surface. A 

comparison between the energy introduced by the collision and the bond strength of 

carbon will be given in Chapter VII.   

Overall, with 5 keV impact energies, the C network is sufficiently damaged on the 

surface that subsequent long-range reconstruction results in predominantly large graphitic 

sp2 structures. This leads to the formation of an amorphous sp2 rich layer on the surface 

of the film. Graphite-like sp2 structures have low shear strengths promoting low friction.  

 



 

 

53

4.5. Summary 

Using an in situ technique, we conducted analysis on a DLC film. The effects of 

collision on C 1s XPS spectra and the ratio between sp3 and sp2 hybrid carbon atoms of 

the DLC (ta-C) were evaluated. The C 1s spectra were deconvoluted into two well-

resolved contributions: one was sp2 bonded carbon (at 284.7 eV) and the other sp3 (at 

285.2 eV). The results were compared with frictional behavior. It was found that Ar ions 

roughened the DLC film. However, the roughness increase was not responsible for 

friction. In stead, we found that the friction of the DLC film against itself depends on the 

bonding configurations of C atoms. As the ratio of sp3 and sp2 hybridization decreases, 

increased number of C atoms at the interface undergoes phase transformation to form 

graphitic carbon. Consequently, the friction is reduced. The collision-induced 

hybridization states transformation of carbon in DLC was confirmed and its effect on the 

tribo-behavior of the film was further demonstrated. 
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CHAPTER V 

STRESS-INDUCED ANISOTROPIC PHASE TRANSFORMATION OF 

POLYVINYLIDENE FLUORIDE (PVDF)* 

 

The application of a mechanical stress can not only vary the hybridization states 

of atoms, but also can induce rearrangement of molecular structure and phase 

transformation. A mechanical force, such in a shear form, can alter the symmetry of a 

molecule or the arrangement of molecules115 and result in the structure transformation. 

Researchers have studied the decrease of the molecular weight of polymers under 

mastication or under condition of transient elongation flow. Comparing the molecular 

weight distribution of polymers, e.g., polystyrene, before and after mastication, the result 

clearly shows that the shortening of polymer chain was caused by the cleavage of C-C 

bonds in the backbone under an external force.116,117   

In this chapter, we investigate the time-dependent and anisotropic phase 

transformation of poly (vinylidene fluoride) (PVDF) under bending. Using combined 

techniques of an Atomic Force Microscope (AFM) and a Fourier Transform Infrared 

Spectroscope (FTIR), observation of surface morphology and phase transformation in 

time was made. Results showed that bending stress induces the transformation of 

amorphous, α, β, and γ crystalline phases. Specifically, the amorphous and α were 

transformed into the β phase when the bending force was applied. 

 

 ____________ 
*Reprinted with permission from “Time-Resolved, Stress-Induced, and Anisotropic 
Phase Transformation of a Piezoelectric Polymer” by Ke Wang et al., 2009, Applied 
Physics A, 95, 435-441, Copyright 2009 Springer. 
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5.1. PVDF and its Phase Transformation 

As a semicrystalline polymer, PVDF has five crystallographic forms, α, β, γ, δ 

and ε, only the latter four crystalline structures possess permanent dipole moment.118,119 

The dipoles associated with individual molecules are parallel to each other in the unit 

cell. In which, the β phase contains the largest dipole moment. It also exhibits the 

strongest piezo-, pyro, and ferroelectric properties.120,121 

Due to its unique piezo-, pyro- and ferroelectric properties, poly (vinylidene 

difluoride) (PVDF) has been intensively studied in its physical properties and 

applications.122-124 The polar phases can be obtained from non-polar α phase by different 

processes such as applying tensile stress (α phase → β phase), 73,74 poling under external 

electric fields (α phase → β and δ phase), 75-77 or annealing at high temperatures (α phase 

→ γ and ε phase).78,79  And the transformation between crystalline and amorphous phases 

also exists.125  

 

5.2. Effects of Applied Stress on Surface Morphology 

In the present work, we used an in situ approach to apply a mechanical force on a 

PVDF thin film. With applied bending force, we characterized the film with techniques, 

such as Atomic Force Microscopy (AFM) and Fourier Transform Infrared Spectroscopy 

(FTIR). The effects of stress on microstructure and its subsequent relaxation with time 

were investigated. Further analysis was conducted in order to correlate the phase 

transformation and the anisotropy behavior.  In the experiments, a special sample holder 
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was designed to apply the longitudinal and transversal bending deformation while doing 

the in situ AFM and FTIR measurements. 

Surface morphology and phase images of each deformed PVDF film were observed 

by using an Atomic Force Microscope (Nano-R, Pacific Nanotechnology Inc., USA) in 

close contact mode with Si3N4 tips. The scan rate was set at 0.5s/line and each scan took 

5 mins.   

The in situ AFM measurements of PVDF film (100um) under longitudinal 

bending deformation are shown in Figure 5.1. In the figures, the left are surface 

morphology images, and phase images , which were collected simultaneously with the 

topographical images, are given on the right. Phase image can map the local changes in 

material physical and mechanical properties. The initial AFM scan was performed on the 

samples as soon as bending was applied, i.e. T = 0 min. Maintaining the same bending 

deformation, dynamic AFM measurements was continued at a series of time, i.e., 6th min, 

13th min, 25th min, 35th min, 43rd  min, 61st min, and 68th min. Results are shown in 

Figure 5.1.  

Figure 5.1a is the reference sample prior to bending. The surface morphology 

(left) and phase (right) images are shown with a scanning area of 20 um x 20 um. The 

highest peak in the scanned region is 123.3nm. Immediately after the same sample was 

bent, the AFM scan was performed on a smaller area of 10 um x 10 um at the center 

region of 5.1a. Results are shown in Figure 5.1b displaying a peak with a height of 

750.51 nm. The phase image shows island-like structures. Comparing with Figure 5.1a, 

both the topographic and phase images confirm there is a drastic surface microstructure 

change due to bending deformation. This result indicates the surface structure 
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rearrangement of PVDF with the applied tensile force. In order to track the change, a 

series of scans were conducted at time (T) of 6th min, 13th min, 25th min, 35th min, 43rd 

min, 61st min, and 68th min. 

Figure 5.1c (10 um x 10 um) shows that after 6 mins, the upper island-like 

structures were dwindling, but the lower ones were enlarging. The fringes between those 

island-like structures are less distinctive than that in Figure 5.1b. In the phase image, two 

piles of “islands” came apart and the upper one eventually disappeared (Figures 5.1d-h).   

At the 13th min, shown in Figure 5.1d (10 um x 10 um), the upper island-like 

structures continued to shrink and the lower counterparts showed a decreasing trend. The 

fringes became clearer. The transformation in phase is clearly revealed by comparing the 

phase images of Figure 5.1c and Figure 5.1d. The rest of the AFM scans, given in Figure 

5.1e through Figure 5.1i, showed continued dwindling with time. As time went on, the 

surface morphology change was gradually relaxed. These results confirm the further 

structural relaxation after the tensile force applied. In order to eliminate the thermal drift 

in the piezoelectric scanner, six continuous AFM measurements on the reference sample 

(without bending deformation) were taken under the same experiment condition. Results 

show that the standard deviation of drift in Z direction is 5.63nm, which is much smaller 

than the height change observed in relative peak. Our results indicated that under 

deformation, PVDF sample underwent surface morphology and phase change. The 

change was time-dependent and possibly related to a phase transformation. We thus 

continued to verify this using the FTIR.    
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Figure 5.1. AFM scans of PVDF film under deformation at (a) reference sample without 
deformation; (b) at 0 min (Right after bending force applied); (c)  at 6th min; (d) at 13th 
min; (e) at 25th min; (f) at 35th min; (g) at 43rd min; (h) at 61st min; and (i) at 68th min. 

Left: Surface morphology images; Right: Phase images 
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Figure 5.1. Continued 
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Figure 5.1. Continued 

 

5.3. Time-dependent and Anisotropic Phase Transformation Induced by Stress 

FTIR experiments were conducted on PVDF films with longitudinal and 

transversal deformation induced at room temperature. In order to monitor the time-

evolution of microstructures, the measurements were conducted on the sample under 

longitudinal deformation at T (time) of 0 min, 19 min, and 37 min, as shown in Figure 

5.2.  

To examine the effect of the anisotropy of PVDF film on its response to bending 

deformation, another set of experiments were carried out on the same sample under 



 

 

61

transversal deformation at T (time) of 0 min and 20 min. Results are shown in Figure 5.3. 

FTIR absorbance spectra are given in the range of 400 – 1500 cm-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Comparison of FTIR results between (a) the 9um PVDF reference sample and 
sample with bending at T=0 min; (b) the 9um PVDF sample with bending at T=0 min and 

T=19 min; (c) the 9um PVDF sample with bending at T=19 min and T=37 min; (d) the 
9um PVDF sample with bending at T=37 min and the reference sample 
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The FTIR wave bands in the region from 400 to 1500 cm-1 provides the 

information on the conformational isomerism in the PVDF film, as α, β, γ phase. The 

characteristic bands of α phase were observed at 763, 615, and 490 cm-1. The absorption 

band at 763 cm-1 is related to a rocking vibration. 126 The band at 615 cm-1 is regarded as 

a mixed mode of CF2 bending and CCC skeletal vibration. 121,127  The 490 cm-1 band is 

related to bending and wagging vibrations of the CF2 group ascribed to the α phase. 128,129 

The β phase has three representative IR bands at 1431, 1286, and 840 cm-1, in which the 

band at 840 cm-1 is regarded as a mixed mode of CH2 rocking and CF2 asymmetric 

stretching vibration.130,131  

While the γ phase can be distinguished with its characteristic 1234 and 890 cm-1 

bands.77 Figure 5.2a shows the FTIR results of a sample prior to and after deformation. In 

the figure, the characteristic wave bands of α, β, and γ phases are identified and listed in 

Table 5.1. The phase transformation is highlighted in the circles and labeled with the 

corresponding phase, as shown in Figure 5.2a. It is observed that under bending 

deformation the absorbance intensity of α, β, γ phase increases. The increasing of β phase 

content is considered most obvious than others.  

 

Table 5.1. Characteristic wave bands of α, β, γ phase of 9um PVDF film observed in 
FTIR experiments 

 

 

 α Phase β Phase γ Phase 

Wave Number 
(cm-1) 

490 615 763 840 1286 1431 890 1234 
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Figure 5.3. FTIR results comparison between (a) the 9um PVDF reference sample and 
sample with transversal deformation at T=0 min; (b) the sample with transversal bending 
at T=0 min and T=20 mins; (c) the sample with transversal bending at T=20 mins and the 

reference sample 
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According to the FTIR results shown in Figure 5.2 and 5.3, there are two 

significant peaks at 1396 cm-1 and 1194 cm-1. Those peaks had been confirmed to be the 

amorphous and α phase. 132 Figure 5.3a shows that as β phase intensity increases at 1286 

cm-1 and 840 cm-1, the intensity of amorphous and α phase decreases at 1396 cm-1 and 

1194 cm-1. This indicates that there were phase transformation between amorphous and β, 

also α and β phase.   

FTIR result at the 20th min is shown in Figure 5.3b. Comparing with the result at 

T=0 min, the intensity decrease of β phase is the dominant change. The comparison 

between FTIR result at the 20th min and that of reference sample is given in Figure 5.3c. 

Differently from the result shown in Figure 5.2d, the spectra in Figure 5.3c at the 20th min 

are almost identical to the reference sample. It means the relaxation behavior of PVDF 

film is also anisotropic.  

The anisotropic behavior of PVDF film can be further confirmed by β phase 

fraction calculation. Based on Beer-Lambert law and the characteristic absorption 

coefficients of α (at 763 cm-1) and β (at 840 cm-1) phase, the β phase fraction )(βF is 

given as: 133,134 

                       
βα

β

βα

ββ
AA

A
XX

X
F

+
=

+
=

26.1
)(   

Where αX and βX are the mass fractions of α and β phases (mass 

percentage), αA is the absorption at 763 cm-1, βA is the absorption at 840 cm-1. The results 

are shown in Table 5.2 and Figure 5.4.  

 

(5.1) 
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Table 5.2. Variations of F(β) in PVDF film under longitudinal and transversal 
deformations 

 

 

Figure 5.4 shows the variations of )(βF  under different deformation. In both 

cases, )(βF increases as soon as the bending deformation applied. The upper curve is 

that under the longitudinal deformation and the lower is the transversal one. the only 

variable in this figure is the bending direction. As seen, under this bending condition, 

)(βF decreases with time. In both cases, the PVDF undergoes a relaxation process with 

slightly different behavior. For longitudinal deformation, the decrease was observed in 

the first 19 mins and continued for another 18 mins, then )(βF  was consent at the 37th 

min. The increase of )(βF is more pronounced in longitudinally deformed directions. It 

is needed to point out that )(βF at the 37th min is larger than that of the reference sample, 

which infers to the permanent phase transformation under longitudinal deformation. For 

transversal deformation, the decrease mostly took place at the first 20 mins and )(βF  

reduced to similar value of the reference sample.       

 

 

 

Longitudinal Deformation Transversal Deformation  

Reference T=0 
min 

T=19 
min 

T=37 
min 

Reference T=0 min T=20 
min 

)(βF  61.18% 65.33% 63.50% 63.28% 60.96% 61.87% 60.72% 
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Figure 5.4. Variations of F(β) in PVDF film under longitudinal and transversal 
deformations 

 

 

As mentioned in the Introduction, Butyagin explained the effects of mechanical 

energy on solids using three aspects: structural rearrangement, structure relaxation and 

structure mobility.135 These three aspects were all observed in this study. The apparent 

difference between the surface microstructure of samples with and without stress 

indicates the structural rearrangement. The time-dependent variation of the surface 
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morphology and FTIR spectrum further confirms the structure relaxation. The time-

evolved transformation between different phases of PVDF and the plotted-out variation 

of β phase demonstrates that the molecules of PVDF have higher mobility along the 

chain alignment than normal to it.  

Overall, the FTIR results have proven that the PVDF behaves anisotropically 

under stress.  It was found in phase transformation from amorphous to β, α to β phase and 

subsequent relaxation. The trend of the height change in AFM is coincident with that of 

phase transformation found in FTIR. Differently from the ceramic piezoelectric 

compounds, where small ionic groups change their dipole orientation by rotation and/or 

displacement, the dipoles in polymer system are coupled together by strong covalent 

bonds. The orientation change in the dipole moments requires cooperative motion of 

neighboring groups through large-scale conformational changes, which can be induced 

by external mechanical force. Consequently, it will change the surface morphology of the 

sample and affect the shape of FTIR spectrum. 

 

5.4. Summary 

In the present work, we use an in situ approach to apply a mechanical force on a 

PVDF thin film. With applied bending force, we characterized the film with techniques, 

such as Atomic Force Microscopy (AFM) and Fourier Transform Infrared (FTIR). The 

effects of stress on microstructure and time evolution of crystal structure, their (reverse) 

transformation were studied. We found evidence of bending-induced phase 

transformation. This transformation was anisotropic and affected surface morphology. 
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The surface roughness increased due to stress and subsequently reduced with time. Our 

study contributes to the understanding of the stress-induced phase transformation related 

piezoelectricity. 
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CHAPTER VI 

FRICTION-INDUCED FORMATION OF SILVER NANOCHAINS* 

 

Besides thermochemistry,136 electrochemistry,137 and photochemistry,138 the 

mechanochemistry is a fundamentally different branch of chemistry dealing with 

reactions. It has been reported that a mechanical force can activate covalent bonds in 

polymers and result in chain scission19,21,139,140 or guide reaction pathways.141 The effects 

of mechanical forces acting on a surface have been studied extensively for decades. In 

late 1960s, the polishing, i.e., mechanical sliding, was found to smoothen a surface 

through repacking its atoms.142 A friction force, due to sliding, has been found to trigger 

chemical reactions that differ from equilibrium ones.115,143 Mechanical forces result in the 

physical motion of an atom.144 The advantages of using mechanical forces are their 

superb controllability in either the direction or the amplitude. 

In this chapter, a mechanism of mechano-activation using a new approach to 

synthesize nanochain structures is presented. Silver nanochains (Ag-NCs) were fabricated 

through sliding Ag against itself in a Crown Ether (18-crwon ether-6) solution. 

Characterization results showed that the average size of the Ag nodules was 50 nm and 

the separation distance between nodules was around 10 nm.  

 

 

 

 

 

____________ 
*Reprinted with permission from “Formation of Silver Nanochins through    
Mechanoactivation” by Ke Wang et al., 2009, Journal of Physical Chemistry C, 113,  
8112-8117, Copyright 2009 American Chemical Society. 
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Molecular dynamics simulation and experimental results revealed that the 

formation of Ag-NCs was a synergetic physical-chemical process that involved three 

competing mechanisms: nucleation of nanoparticle Ag through wear; activation and 

breaking of covalent bonds through the sliding force; and oxidation and chain formation. 

 

6.1. Silver Nanostructures 

In recent years, low-dimensional materials (nano-wires, tubes, and chains, etc.) 

have attracted great attention due to their superior properties.145,146  Among those, silver 

(Ag) nanowires and nanochains are of great interests for their high electrical and thermal 

conductivity, biological inertness, and distinct surface plasmon resonance (SPR).  Ag 

nanostructures show promise for use in electronic, photonic, and opto-electronic devices. 

To date, synthesis of Ag nanowires and nanochains has been limited in the method of wet 

chemistry that involves surfactant and/or amphiphile for growth and anti-

agglomeration.147-150 Understanding of bonding mechanisms and of paths of selective 

growth in alternative crystallographic planes is yet to be achieved. New approaches, such 

as mechano-activation, are needed to understand the reaction mechanisms and to achieve 

precise control in fabrication of nanostructures.    

In the present work, we developed a mechano-activation approach to synthesize 

Ag nanochains (Ag-NCs). This approach not only allows the “control” of chemical 

reactions via mechanical forces, but also opens new avenues for fabricating chain-like 

nano-structures. 
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6.2. Synthesis of Ag-NCs through a Controlled Mechano-activation 

In the experiment, we used mechanical force to active chemical reactions of a 

template consisting of a well defined molecular structure, 18-Crown Ether-6, with Ag. 

The mechanical motion is found to promote the formation of Ag-NCs. The experiments 

were designed in such a way that an Ag pin slided on another fixed Ag pin in a reciprocal 

motion. The sliding length was 0.6 cm and applied static loads were 2N and 5N. The 

sliding speed was at 1 and 3 cm/sec respectively. The friction force between two pins 

generates Ag debris with different sizes. The sliding tangential force as friction is 

monitored through a piezo transducer. The energy induced through friction was 

controllable through applied force and sliding speed. The 18-Crown Ether-6 was 

dissolved into DI water to make a solution with a concentration of 37.5%wt. A drop of 

18-Crown Ether-6 solution was added between the sliding surfaces every 10 mins during 

the experiment. At room temperature, the sliding experiment lasted for 30 mins. The 

remained solution was carefully collected at the interface after the experiment.  

The samples for TEM and EDS were prepared by placing a drop of the collected 

solution onto a carbon-coated Cu grid followed by slow evaporation of the solvent at an 

ambient condition. 

The Transmission Electron Microscopy (TEM) results before and after sliding 

tests are shown in Figure 6.1. Four images are given here. Figure 6.1a is the Crown Ether 

before sliding. Figure 6.1b is the TEM image of the sample made at a speed of 3 cm/sec 

and under 5 N load. Under these conditions the length between nodules is 5 nm and the 

diameter of the nodules (dark spheres) is around 80 nm.  
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Figure 6.1. TEM images of samples, (a) before (pure 18-Crown Ether-6) and (b-d) after 
sliding. The EDS spectra are shown in Figures (e) and (f), (e) before and (f) after 

 

In order to determine the chemical compositions of Ag-NCs, we analyzed the 

nanochains using the Energy Dispersive X-ray Spectroscope (EDS) attached to the TEM 

at the location of the nodules and chains. Figures 6.1e and 6.1f show the results before 

(6.1e) and after (6.1f) sliding experiments. Before sliding, the 18-Crown Ether-6 
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composites copper, oxygen, and carbon. The Cu peak is from the TEM sample grid. The 

carbon and oxygen are from the Crown Ether. Figure 1f displays new peaks of Ag after 

sliding. These peaks are from nodules. Other studies on the nanochain structures of Si,151   

SiO2,152 Au,153  Ni,154 and Co155 had been reported. In those results, nanochains have 

much longer separation distances between nodules (>10 nm) than ours. The synthesis 

processes making them are more complicated than that presented in this research. 

TEM images of samples obtained under different test conditions are presented in 

Figure 6.2. Figures 6.2a and b are the TEM images of the sample obtained under the 2N 

load at the speed of 1cm/s. According to the figure, under this particular condition, the 

Ag-NCs have an average chain width 35-50 nm and nodules about 50 nm in diameter. In 

Figures 6.2c and d, the sample was obtained under the load of 2N and at the speed of 3 

cm/s. Here, the nanochains exhibit a network structure. The average width of the chains 

was about 30-40 nm in width with the nodule about 45 nm in diameter. It implies that a 

high speed decreases the chain length with more network connections than at a low 

speed. In Figures 6.2e and f, the sample was obtained under the load of 5N and a speed of 

1cm/s. Under high magnification, the Ag-NCs are found to be aggregated together. Such 

aggregation was less at high speeds (Figure 6.1.). Single nanochains were observed under 

the load of 5N and at the speed of 3 cm/s. Overall, the higher the applied load, the wider 

the chains. Furthermore, the higher the speed, the more the network connection. The size 

and shape of Ag-NCs were controllable through processing parameters.    
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Figure 6.2. TEM images of Ag-NCs obtained under different conditions. (a) and (b) 
1cm/s, 2N load; (c) and (d) 3cm/s, 2N load; (e) and (f) 1cm/s, 5N load 
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To understand the Ag-NCs formation mechanisms, X-ray Photoelectron 

Spectroscopy (XPS) analysis was carried out focusing on O 1s, Ag 3d and C 1s peaks. 

The collected data were referenced to C 1s with binding energy at 284.5 ± 0.1 eV.  

Figure 6.3a gives the survey spectrum. Figure 6.3b shows the O 1s XPS peak of 

the pure 18-Crown Ether-6 and of the Ag-NCs. Arbitrary units (Y-axis) are used here in 

order to compare the binding energies (X-axis). It is found that the binding energy (BE), 

which corresponds to the maximum peak of O 1s, shifts toward the low energy side; the 

values are 532 and 531.8 eV. The shift can be attributed to the existence of Ag-O bonds, 

which is confirmed by the deconvolution of the O 1s peak (details given in Figure 6.4.). 

The variance of BE is consistent with the charge transfer model that the BE of an element 

with high electronegativity shifts toward the low energy direction in its oxidation state.156 

The results indicate that Ag nanoparticles are linked to each other through Ag-O bonds 

and then form the chain structure.   

Figure 6.3c shows the Ag 3d XPS peak of the silver pin and of Ag-NCs. The peak 

at 374.6 eV corresponds to Ag 3d3/2; the peak at 368.6 eV corresponds to Ag 3d5/2. A 

close examination of the peak shape and position reveals two major differences. The Ag 

3d peaks for the Ag-Crown Ether sample are broadened and they are not symmetrical. 

Using spectral deconvolution (details given in Figure 6.4.), we found that there are two 

sets of overlapping components under the peak envelope. One set with a higher BE is 

attributed to the metallic Ag; the other set with lower BE is indicative of Ag-O bonds.  

Figure 6.3d shows the C 1s XPS peaks for the pure 18-Crown Ether-6 and of the 

Ag-NCs. From left to right, the first maximum peak corresponds to the C-C bond; the 

second to C-O. For Ag-NCs, we observe that the peak height of C-O bond is smaller and 
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that of C-C bonds is larger than the reference sample. The results from C 1s  peak 

deconvolution (details given in Figure 6.4.) show that the amount of carbon in C-O bonds 

decreased by 15.5%  and that in -C-C-  increased by 15.2%, similar in values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. XPS analysis of debris samples before and after sliding, (a) the O1s peak, (b) 
the C1s peak, (c) the Ag 3d peak and (d) the C1s peak 

 

Through further peak deconvolutions, the relative composition of individual 

element was determined based on the corresponding peak area and its sensitivity factor.  

(c) (d) 

(b) (a)
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The line-shapes of O 1s, C 1s and Ag 3d peak provided information of the chemical 

bonds. Fitting the peak to suitable functions allows extraction of bonding information. 

The curve fitting was done using the XPS peak 4.1 software, with Newton’s iteration 

method and 300 iterations. It was performed by using two main components (each being 

a mixture of Gaussian and Lorentzian) and by approximating the contribution of the 

background by using the Shirley method. 

Figures 6.4a and b show O 1s peak deconvolution results of pure 18-Crown Ether-

6 and of the Ag-NCs respectively. For the pure 18-Crown Ether-6, the first component 

corresponds to SiO2, which comes from the Si substrate used in the XPS measurement; 

the second corresponds to the C-O group, which origins from the Crown Ether. The full 

width at a half maximum (FWHM) for the C-O peak is 1.4eV (peak centered at 532eV) 

and for SiO2 1.5eV (peak centered at 533.1eV). Considering the resolution of the XPS of 

0.1eV, the FWHM of two bonds were quite similar.  

For the Ag-NCs, the first two components are the same as the reference sample, 

but a new component is observed at the low binding energy side which corresponds to the 

Ag oxidation. The FWHM for C-O peak is 1.5eV (peak centered at 531.8eV), and for 

SiO2 peak is 1.5eV (peak centered at 533.1eV); the FWHM for Ag oxide peak is 1.3eV 

(peak centered at 530.5eV), which is consistent with the published data.157,158  

Figures 6.4c and d show Ag 3d peak deconvolution results of Ag pin and Ag-

Crown Ether sample. For both samples, the first peak corresponds to Ag 3d3/2; the second 

corresponds to Ag 3d5/2. For the Ag pin, the FWHM of Ag 3d3/2 peak is 1 eV (peak 

centered at 374.6 eV), for Ag 3d5/2 1 eV (peak centered at 368.6 eV).  
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Figure 6.4. Deconvolution of O 1s peak, (a) before (pure 18-Crown Ether-6) and (b) after 
(Ag-NCs) sliding. Deconvolution of Ag 3d peak, (c) before (pure silver) and (d) after 
(Ag-NCs) sliding. Deconvolution of C 1s peak, (a) before (pure 18-Crown Ether-6) 

 
 

(a)

(c)

(e) (f)

(d)

(b)
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For the Ag-NCs, we have identified two sets of Ag 3d peaks. One set with a 

higher binding energy (BE) is attributed to metallic Ag, where the FWHM for Ag 3d3/2 

peak is 1.2 eV (peak centered at 374.6 eV), for Ag 3d5/2 1.2 eV (peak centered at 368.6 

eV). We attribute the broadening of peaks to the existence of Crown Ether. Another set 

with a lower BE is the indication of the presence of Ag-O bonds, where the FWHM for 

Ag 3d3/2 peak is 1.6 eV (peak centered at 373.6 eV), for Ag 3d5/2 1.6 eV (peak centered at 

367.5 eV).   

Figures 6.4e and f show the C 1s peak deconvolution results of same samples. For 

both samples, the first component corresponds to the carbonate which may be resulted of 

absorbed CO2 during sliding; the second component corresponds to the C-O group of the 

ethylene oxide in the 18-Crown Ether-6; the third component corresponds to the 

hydrocarbon in the repeating ethylene oxide unit of the Crown Ether.   

For the pure 18-Crown Ether-6, the FWHM of carbonate peak is 1.6eV (peak 

centered at 288.7eV), for C-O 1.3eV (peak centered at 286.1eV) and for hydrocarbon 

1eV (peak centered at 284.5eV).    

For Ag-NCs, the FWHM for carbonate peak is 1.8eV (peak centered at 288.3eV), 

for C-O 1.3eV (peak centered at 286.1eV) and for hydrocarbon 1.3eV (peak centered at 

284.5eV). The FWHM and center position of peaks are almost identical to those of the 

reference sample.  

The carbon atom content in different chemical environments can be determined as 

the ratio of the corresponding peak area after the deconvolution. Consequently, the 

change of hydrocarbon and C-O content can be calculated for each sample, as shown in 

Table 6.1. The results show that, due to the friction force, Ag-NCs contains less C-O 
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bonds than the reference sample (15.5% less). Furthermore, the same complex holds 

more hydrocarbon than the pure 18-Crown Ether-6 (15.2% more). It implies that with a 

friction force, a reaction breaking the C-O bonds in 18-Crown-6 ether was initiated. Due 

to the existence of Ag, the dangling oxygen bonds prefer to interact with Ag atoms 

through Ag-O bonds, which was confirmed by the Ag-O component in both O 1s and Ag 

3d XPS spectra of Ag-NCs.  

 

 Table 6.1. Comparison of the carbon element ratio in different functional groups groups 
between Ag-NCs (Crown Ether-Ag) and 18-Crown Ether-6 (Crown Ether) 

 

6.3. Theoretical Analysis on the Formation Mechanism of Ag-NCs 

Nanochain structures were observed under different conditions, as shown in 

Figures 6.1 and 6.2. The size of silver nodules, the separation distance between the 

nodules, and the shape of the networks indicate the controllability of the formation of 

AgNCs that has not been reported before.     

The chain-shape was related to the contact sliding. The formation of debris rolls, 

with small aspect ratio, during sliding has been reported in the wear of ceramics and 

coatings.138,159 Those rolls were mainly due to mechanical sliding. The oxidation of 

sliding materials by the surrounding oxidizing gases was found on the debris rolls.138 The 



 

 

81

size of rolls was dependent on the contact stress and sliding speed similar to what we 

have observed. The sliding motion promotes the formation of rolls. In the present 

research, continuous and long chains were formed rather than short ones as previous 

reported. The different between our work and reported results is apparently due to the 

reactivity of the dangling oxygen bonds in the broken -C-O-C- unit in 18-Crown Ethers-

6. In other words, there are mechanochemical interactions in our case. Indeed, TEM 

observation and XPS deconvoluion have proved that the 18-Crown Ethers-6 segments 

were reattached together, forming chains. The connecting joints were proven to be Ag 

nodules. Our experiments produced long rolls with organized structures that are different 

from previous reported of short ones without any identical structure.  

We estimate the amount of mechanical energy introduced through sliding. Using 

the most conservative condition, at 1cm/sec under the load of 2N, with the test time of 30 

minutes (1800 s), the average friction coefficient measured was 0.78. The total work done 

by friction was calculated as 28.2J.  

It has been accepted that in all friction, the vast majority of the energy goes into 

the production of heat. For instance, the energy needed for mechanical wear is less than 

10% of the frictional energy. Now we consider the energy needed to break Crown Ether. 

For every 150 μl 18-Crown Ether-6 solution (the amount used during tests), in order to 

break all the C-C and C-O bonds of all the molecules involved, the total energy needed is 

0.62 J. Here the bonding strength for C-O is 358 kJ/mol and for C-C is 346 kJ/mol. 

Comparing this with the input, it is seen that only 22% of the mechanical energy is used 

to break C-O and C-C bonds. The breaking of 18-Crown Ether-6’s ring structure is 
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illustrated in Figure 6.5. With sliding, segments of Crown Ether chains with different 

lengths are possible. 

Further analysis using molecular dynamics were conducted using the Materials 

Studio. The simulated possible molecular structures are shown in Figure 6.5. Here, the 

friction force introduces mechanical energy on the 18-Crown Ether-6 by rupturing the 

covalent bonds. The formation of Ag-O bonds takes place as soon as the ionized Ag 

appear. Note that the friction-induced-ionization of metal has been accepted.160 The 

effects of external forces on activation energy have been reported in polymers and metal 

oxides.161-163  In the present work, the continuous sliding (in reciprocal motion) generates 

Ag-NCs. The mechanical (sliding) force stimulates the reaction such that the chains are 

formed. Specifically, the mechanical force activates the covalent bonds and eventually 

breaks the 18-Crown Ether-6’s ring structure. The dangling oxygen bonds subsequently 

bind with Ag ions. The final size and shape of the Ag-NCs are dominated by the sliding 

process parameters, such as sliding speed and applied force. 
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Figure 6.5. Formation of Silver Nanochains 
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6.4. Summary 

In present work, a mechanochemical reaction was found in a sliding system of 

silver surfaces in 18-Crown Ether-6 leading to production of well-defined Ag-NCs. 

Molecular dynamic analysis indicated that the formation of such nanochains is 

energetically possible. The mechanical force not only activated the reaction, but also 

guided the reaction paths for the formation of Ag-NCs. The approach used here is a 

simple and cost-effective method to synthesize well controlled nanostructures. The 

friction force is found to provide silver ions through wear and to promote the formation 

of nanochains. The metallic nanochains have significant benefits for making 

nanoelectronic and optical devices. 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 6.6. Energy diagram for the formation of silver nanochains 
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CHAPTER VII 

MECHANISMS OF MECHANO-ACTIVATIONS 

 

As discussed in the introduction, extensive efforts have been spent to develop 

understanding in mechanochemistry. From the early Hot-Spot Theory to the Impulse 

Model, these developed theories and models have improved the understanding on the 

mechano-activation phenomena. However, fundamental explanation in basics of 

materials properties related to mechno-activation is still missing. In this chapter, we 

modified the Lennard-Jones potential in order to discuss effects of an external stress on 

the energy states of a pair of atoms or molecules. The L-J potential has been wildly used 

to describe the interaction between atoms or molecules. Comparing with the experimental 

results, it has been proved to have a good approximation. A simple physical model will 

be developed here. Experimental results from DLC and PVDF will be used to validate the 

proposed model.  

 

7.1. Lennard-Jones Potential 

For the potential function taken initially as the basis, it is desirable to satisfy the 

following conditions: 1) proximity to real atoms (accuracy), 2) applicability to different 

types of atoms or molecules (generality), and relative ease in carrying out the necessary 

numerical calculation (solvability). One empirical interatomic/intermolecular potential 

that can satisfy all these three conditions is the Lennard-Jones potential, especially for the 

multi-body interactions, it is the core potential.  
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The Lennard-Jones (L-J) Potential is used to describe the interactions between 

atoms or molecules. For a two-body system, the potential is wildly used in the following 

form164,165: 

                                                6)( −− −= rrrU n μλ                 

where r is the distance between the centers of two objects, λ and μ are the coefficients 

associated with the exchange repulsion force and the dispersion force, respectively. There 

are λ > 0, μ > 0, and n > 6.The L-J potential will converge to zero at the limit r→∞.  

The L-J potential contains two types of force acting in opposite directions. One is 

repulsive and is called the exchange repulsion force, while the other one is attractive and 

is called dispersion force.166 Compared the long range force, i.e., Coulomb force between 

charged particles, these two types of force are defined as short range forces, because they 

fall off at a much shorter distance than the Coulomb force does. Both of them diminish as 

the increase of r. Because n > 6, the decreasing rate of the dispersion force is always 

lower than that of the exchange repulsion force. Consequently, the net force between a 

pair of atoms or molecules is always weakly attractive at a large distance (longer than the 

equilibrium distance, r0).  As the distance decreases, the net force turns out to be strongly 

repulsive. This effect plays a critical role in determining the molecular conformation, 

since it prevents abnormal shortening of the distance.  

The first term in Eq. (7.1) describes the exchange repulsion force. As two atoms 

approaching each other, the electrons which enter the newly formed antibonding orbitals 

cause a strong repulsive force between the two atoms due to the exchange repulsion (the 

overlapping of electron orbitals).  

 (7.1) 
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The second term in the equation represents the attractive dispersion force. It 

origins from the interaction of induced dipole moments in the atoms. An atom is 

composed of a nucleus and electrons that move around the nucleus. Considering a long 

time average of trajectory, the mass center of electrons may coincide with that of the 

nucleus, but the nucleus and the electrons never occupy the same position as each other at 

a given moment. Hence the mass center of electrons does not necessarily coincide with 

that of nucleus at a given moment, and various patterns of momentary charge 

distributions may be formed within two interacting atoms in contact. In the absence of 

any restriction on the movement of electrons, the mass center of electrons of one atom is 

liable to occupy a position that is close to the nucleus of the other atom. As shown in the 

Figure 7.1., this oriented charge distribution (Figure 7.1a and b) is more favorable in 

energy than the oppositely oriented charge distribution (Figure 7.1c and d). Hence, the 

attractive distribution occurs with a higher probability than the repulsive distribution. 

Eventually, an attractive force acts between two atoms at a large distance (larger than the 

equilibrium distance).  

In the case where two atoms undergo collisions, the process is slightly different. 

As two atoms approach to each other, their electron clouds would experience deformation 

and cause the further deviation between the mass center of electrons and nucleus. The 

interaction between the induced dipole moments remains as attractive.   
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Figure 7.1. Dipoles orientation of two interacting atoms 

 

 

In addition, the quantum mechanical treatment based on the second-order 

perturbation theory shows that the energy gained by this dispersion force is inversely 

proportional to the sixth power of the distance between two atoms.167   

The net energy of interaction between two atoms is the sum of their energies 

leading to the attractive dispersion force and the repulsive exchange force. The energy is 

expected to depend on the distance by following the n-6 relation given by Eq. (7.1). 

In order to simplify the calculation, the distance dependent factor of the repulsive 

term in Eq. (7.1) with n=12 can be obtained by a single multiplication from that of the 

attractive term. With the simple ratio between the two indices (12 and 6), it is more 

efficient for the computation. In addition, after the potential had been applied in various 
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material systems, it was proved that 9 is too small and 15 is too large for the index. 

Choosing n=12, the L-J potential can be written as: 

                ])(2)[()( 60120
0

6

r
r

r
rUrrrU n −=−= −− μλ  

Where r0 is the equilibrium distance, that is defined as the distance at where the 

potential has its minimum value U0.  U0 is also the dissociation energy, which is defined 

as the energy required to move one of the atoms from the equilibrium position to infinite 

distance. 

An example of the 12-6 L-J potential between two interacting carbon atoms is 

given in the Figure 7.2. When the distance is within the equilibrium distance, the net 

force is repulsive; while the distance is larger than the equilibrium distance, the net force 

is attractive. At the equilibrium distance, there is no net force between two carbon atoms.  

 (7.2) 
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Figure 7.2. The 12-6 Lennard-Jones potential 

 

7.2. The Modified Lennard-Jones Potential 

During the mechano-activation process (collision for DLC and bending 

deformation for PVDF), the applied external force would introduce extra energy and 

change the shape of the L-J potential curve. It is necessary to modify the L-J potential 

accordingly. In the modified the L-J potential, extra term W is added to represent the 

energy introduced by the mechano-activation, as expressed in Eq. (7.3): 

r > r0  (Attractive)

r < r0  (Repulsive)

r = r0

r0: Equilibrium Distance     
U0: Minimum Potential c c
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0  

where the work introduced through activation can be expressed as  

                                                       ∫ ⋅= rdFW rr
 

With the extra work, the potential curve will deviate from its original plotting. 

The extra work is not only able to vary the equilibrium distance, change the minimum 

potential, but also can alter the shape of the potential curve. As shown in Eq. (7.4), the 

effect of this extra term would be a function of the external force. In our case, Eq. (7.4) 

can be further simplified upon considering the experimental conditions. 

In the experiments of PVDF, samples with 9 um thickness (T) were used. Both 

longitudinal and transversal bending deformation was applied using a special sample 

holder, a half-cylinder with a diameter (D) of 12 mm. Based on the geometry of the 

experimental set-up, as shown in the Figure 7.3, the strain caused by the tensile force can 

be calculated using Eq. (7.5). 

                                                    1)1/( −+≅ TDε  

The resulting strain in PVDF film at the top of the sample stand is 0.15%. 

Comparing with the published data168, the film is still in elastic regime under bending 

deformation. So the applied tensile can be regarded as a constant. Consequently Eq. (7.4) 

would be simplified as the product of the tensile force and the resulting displacement.  

 

 

 

 (7.3) 

 (7.4) 

 (7.5) 
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Figure 7.3. Experimental set-up for PVDF 

 

In the experiments of DLC, Ar ions and carbon atoms interact strongly for a short 

time during collision. The total momentum of the system remains conservative. The 

average force during collision can be used to describe the interaction. The work 

introduced through collision will be further simplified as the product of the average force 

and the resulting displacement. 

In the expression of the modified L-J potential, the displacement is defined as the 

difference between the equilibrium distance and the distance under external force. Thus 

the displacement caused by compressive force and tensile force would have different 

sign, which is positive for compressive force and negative for tensile force. Following the 

rule, the work done by a tensile force on the PVDF can be expressed as:   

                                                           rFW Δ⋅−= 0  

where F0 is the applied tensile force. 

For DLC, when the impact force is tensile, the work has the form:    

                                                           rFW c Δ⋅−= 0  

When the impact force is compressive, the work has the expression: 

 (7.6) 

 (7.7) 

D T 

Tensile Force 
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                                                            rFW c Δ⋅= 0  

where Fc0 is the force caused by collision. 

Using the simplified form, as shown in Eq. (7.6), (7.7), and (7.8), the modified L-

J potential for PVDF and DLC will be in the following format:  

For PVDF, 

 

 

For DLC (Tensile Force) 

 

 

 

For DLC (Compressive Force) 

 

 

 

7.2.1. Mechano-activated Potential in DLC 

Firstly, the modified L-J potential was applied to describe the interaction between 

two carbon atoms with and without force. When there is no activation, the interaction 

between two carbon atoms follows the normal L-J potential, as plotted in the Figure 7.4. 

In the calculation, a cutoff distance was selected to be 3 Å, which is larger than the 

second nearest-neighbor distance. Other higher order contribution would be neglected. 

For diamond structure, the nearest-neighbor distance is 1.54 Å and the second nearest-
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neighbor distance is 2.52 Å. For graphite, the nearest-neighbor distance is 1.42 Å and the 

second nearest-neighbor distance is 2.46 Å.169,170 The values of Uc0 and r0 were acquired 

from the Molecular Dynamics Simulation.169 Here we choose 711 kJ/mol (7.37 eV) for 

Uc0 and 1.54 Å for rc0. The corresponding energy barrier is 7.10 eV up to the cut off 

distance. 

 

 

 

 

 

 

 

 

 

 

Figure 7.4. The Lennard Jones (L-J) potential between two carbon atoms 

 

Under a tensile force, the interaction between two carbon atoms follows the 

modified L-J potential (Eq. (7.10)), as plotted in the Figure 7.5. The same values were 

used for Uc0 and r0. The magnitude of the tensile force is 0.5 nN, which is smaller than 

the measured C-C bond rupture force (2.6 ~ 13.4 nN).171 The corresponding energy 

barrier is 6.37 eV (U'c0), which is smaller than the value of the case without force. 
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Figure 7.5. The modified L-J potential between two carbon atoms (with tensile force) 
 

 

Under a compressive force, the interaction between two carbon atoms follows the 

modified L-J potential (Eq. (7.11)), as plotted in the Figure 7.6. For consistency, the 

magnitude of compressive force is also chosen as 0.5 nN. The corresponding energy 

barrier is 7.83 eV (U"c0), which has the largest value among these three cases (without 

force, with tensile force, and with compressive force). 
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Figure 7.6. The modified L-J potential between two carbon atoms (with compressive 
force) 

 

In comparison the potential with that with and without activation, under an 

external force, we are able to confirm that the applied force can deform the potential 

curve and alter the energy barrier, and consequently initiate a chemical change or 

physical-chemical exchange. The relationship between theses dissociation energies is:  

  

 

 

By plotting the potential curves together, we were able to compare them directly, 

as shown in the Figure 7.7. The applied forces not only deformed the shape of potential 

curves, but also shifted the equilibrium distance. Under a compressive force, this distance 
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(r"c0) became shorter. Under a tensile force, this distance (r'c0) became longer. The 

relationship between rc0, r'c0, and r"c0  is:  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7. Comparison between the potential curve of without force, with force (tensile), 
and with force (compressive) 

 

For the 3D case, as shown in the Figures 7.8, 7.9, and 7.10, more variables were 

needed to describe the distance change. For convenience, we choose the polar coordinates 

and set ρ and Z as variables. The interaction between the carbon atom at the top and the 

others can be calculated using Eq. (7.14)  
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When there is no activation, the interaction between the carbon atom at the top 

and others follows the normal L-J potential. The potential contour was then calculated 

based on the range of ρ (1~3 Å) and Z (0~2 Å), as plotted in the Figure 7.8. For 

consistency, we choose 711 kJ/mol (7.37 eV) for Uc0 and 1.54 Å for rc0. The same cut off 

distance (3 Å) was used for ρ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8. The L-J potential contour of a carbon atom in 3D case 
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With the activation, the interaction between the top carbon atom and its any other 

pair follows the modified L-J potential. The potential contours were calculated and 

plotted in the Figures 7.9 and 7.10, where the Figure 7.9 shows the result with a tensile 

force applied and Figure 7.10 shows that with a compressive force. The magnitude of the 

tensile or compressive force is 0.5 nN, that is smaller than the measured C-C bond 

rupture force.171 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9. The modified L-J potential contour of a carbon atom in 3D case (tensile force) 
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The calculated potential contours demonstrated the same trend as observed in the 

2D case. The tensile force would reduce the energy barrier and the compressive force 

would raise the same. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10. The modified L-J potential contour of a carbon atom in 3D case 
(compressive force) 

 

Considering the contribution of mechano-activation, the modified L-J potential 

was proposed to describe the effects of activation on the interaction between carbon 

atoms. The results demonstrated that a tensile force would reduce the energy barrier of 

the system; while a compressive force would raise the same. Consequently the tensile 

force would increase the reactivity of the system.  
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In the experiment, the incident Ar ions have the kinetic energy (5 keV) that is 

much larger than the bond strength between carbon atoms in diamond (7.37 eV) or 

graphite (5.43 eV). The carbon atoms on the surface could be directly removed during the 

collision.  It is necessary to point out that we did not consider the collision time during 

our modeling and experiments. We assumed that the mechanical force was induced at the 

moment when the collision was taking place. 

As shown in Figure 7.11, the system energy of the left structure can be displayed 

in an in-plane triangle structure, as shown in Figure 7.11, was calculated using the multi-

body L-J potential:  

 

 

where  

 

 

The in-plane triangle structure has the system energy of -3.31 Uc0 that is smaller 

than that of the left tetrahedral structure, -3.22 Uc0. The energy difference is 0.66 eV. 

With the removal of the carbon atom at top, the left structure would rearrange itself to the 

in-plane triangle structure. Because the latter geometry has lower system energy than the 

prior one, we should be able to observe a transformation from the sp3 hybridization 

(diamond structure) to sp2 hybridization (graphite structure) state during experiments.  
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Figure 7.11. System energy of the left tetrahedral structure and the in plane triangle 
structure 

 

In the experiments, this hybridization state transformation was clearly confirmed 

by the X-ray photoelectron spectroscopy characterization and analysis (details can be 

found in Chapter Ⅳ). The sample with excessive Ar ion bombardment has less content of 

sp3 hybridization state and more content of sp2 hybridization state than the other two 

samples (Table 4.1). These results are the evidence of the transformation from the sp3 

(diamond structure) to sp2 (graphite structure) state, as predicted by Eq. (7.10), (7.16), 

and (7.17).    

 

7.2.2. Mechano-activated Potential in PVDF 

PVDF has four common crystalline structures or phases, as designated α, β, γ, and 

δ, as shown in the Figure 3.2. The in-plane unit cell of α and β phase has the similar size, 

4.96 Å wide and 9.64 Å long for α phase, 4.91 Å wide and 8.58 Å long for β phase.172 

Based on the calculation by Su et al.,173 the formation of each phase requires different 

amount of  energy, as shown in the Table 7.1.  
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Table 7.1. Phases of PVDF and their relative formation energy 

Phase Structure Relative Energy/Carbon 
Atom (kcal/mol) 

α 

 

0 

β 

 
 

2.38 

 
 

 

As shown in the Figure 7.12, the formation of α phase takes less energy than that 

of β phase. With extra energy, the transformation between α and β phase would be 

initiated. 
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Figure 7.12. Energy-phase diagram of PVDF (α and β phase) 

 

A simple calculation on the work done by an applied tensile force was conducted. 

Under deformation, the resulting strain was 0.1%. The Young’s modulus of a PVDF film 

(with 9 μm thickness) is 3.2 × 109 Pa based on our measurement.80 For α phase, the area 

(A) of a unit cell is about 0.5 × 10-18 m2. Then for each unit cell, the tensile force can be 

calculated using Eq. (7.18) 

    

where E is the Young’s modulus of PVDF, σ is the tensile stress, A is the area of the unit 

cell, ε is the tensile strain. The tensile force has the magnitude of 1.6 pN.  

The PVDF is a polymer consisting of long chain molecules, which has an 

averaged length (l0) of 50 μm.174 Thus the work done by the tensile force can be 

calculated using Eq. (7.19) 

 

AEAF ⋅⋅=⋅= εσ  (7.18) 

ε⋅⋅=Δ⋅= 0lFlFW  (7.19) 

Energy 

Phases 
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where l0 is the average length of the chain, ε is the tensile strain. The work done 

by the tensile force is about 1.15 kcal/mol. It is compatible to the energy required to 

cause transformation between different phases in PVDF. 

The modified L-J potential can be applied to describe the interaction between the 

mer units in α and β phase. For α  and β phase, the in-plane unit cell has similar size. The 

equilibrium distances between mer units along the chain are different, i.e., 2.67 Å for α 

phase and 2.98 Å for β phase. There is a 0.31 Å difference between them. This difference 

indicates that under tensile force (along the chain direction), α phase would be easier to 

get extended than β phase. In experiments, researchers already reported the phase 

transformation in PVDF under electrical poling. But a clear explanation has not been 

given. Since in the experiment, the applied tensile force is along the chain direction, as 

shown in the Figure 7.13, we will focus on the effect of the applied tensile force on the 

potential curve of α phase.  

 

 

 

 

 

 

Figure 7.13. The applied tensile force (along the chain direction) in α phase 
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The results are shown in Figure 7.14, the applied tensile force would reduce the 

energy barrier and increase the equilibrium distance. For α phase, Uα0 (U0) is the 

minimum potential, rα0 is the equilibrium distance (2.67 Å).173 

 

 

 

 

 

 

 

 

 

 

Figure 7.14. Comparison between the potential curves of α phase. Without force (red), 
with tensile force (black) 

 

 

In the experiment, the PVDF film used contained different phases. To simplify the 

calculation, we choose a system that only contains α and β phase. The energy of the 

system can be expressed using the potential curve of α and β phase. Uβ0 is the minimum 

potential for β phase which is larger than Uα0 (U0), and rβ0 is 2.98 Å.173 
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The L-J potential curves of the system is given in Figure 7.15. There is a 

crossover at 2.88 Å between these two potential curves. It also clearly shows that when 

rα0 < r < 2.88Å, α phase has smaller system energy than β phase; while when 2.88Å < r < 

rβ0, β phase has smaller system energy than α phase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.15. L-J potential curves of α and β phase. α phase. α phase (black), β phase (red) 
 

 

Because the system always prefers to stay at the least energy states, the potential 

curve of the system would be the combination of α and β phase. When r < 2.88Å, it 

α phase

β phase 
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follows the potential of α phase; When r > 2.88Å, it follows the potential of β phase, as 

shown in the Figure 7.16. 

As shown in the Figure 7.16, the crossover between the potential curves created 

the energy barrier between the minimum energy between α and β phase. In this case, a 

finite activation energy (Ea) is required to surmount the energy barrier leading to the 

phase transformation between α and β phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.16. L-J potential curves of the system 
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As shown in the Figure 7.14, the energy barrier in α phase would be reduced 

under the tensile force. Thus for the system only contains α and β phase, the effect of the 

applied tensile force on the potential curve can be calculated using Eq. (7.22) and (7.23).  

 

 

 

 

A comparison between the potential curve of the system with and without force is 

given in the Figure 7.17. The results demonstrate that the tensile force is not only able to 

reduce the activation energy barrier between α and β phase, but also can raise the 

minimum potential in the potential plotting, as marked by the arrows in the Figure 7.17. 

The comparison demonstrates that the tensile force is able to excite the system (raising 

the minimum potential), reduce the activation barrier, and increase the reactivity of the 

system. Consequently, with the tensile force, it is clear that the possibility for the 

transformation between α and β phase would increase. Thus in the experiment, we would 

be able to observe the phase transformation while the tensile force applied on PVDF film. 
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Figure 7.17. Comparison between the potential curves of the system. without force (red), 
with tensile force (black) 

 

In the experiments, Fourier Transform Infrared Spectroscopy (FTIR) was used to 

identify the phase transformation while a tensile force was applied. The results clearly 

verified the transformation between α and β phase took place right after the force was 

applied. This is correlated well with the prediction from the modified L-J potential (Eq. 

(7.9), Eq. (7.20), and Eq. (7.23)).  
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7.3. Summary 

An empirical interatomic/intermolecular potential was introduced to describe the 

effects of mechano-activation in DLC. The potential was tested by comparing the 

activation energy as a function of the applied mechanical force for carbon atoms. The 

predicted transformation between sp3 and sp2 hybridization state was confirmed by the 

experiment. 

The proposed potential is then applied to study a more complicated system, PVDF 

(a polymer), which have several molecular arrangements or phases. The effects of the 

applied tensile force on the energy barrier were examined. Results were further linked to 

the energy required for the formation of each phase, which predicted the phase 

transformation in PVDF under the applied tensile force. It was further confirmed by the 

experimental results. 

Using the modified L-J potential, we were able to describe the energy states under 

the influence of a mechanical force. The effects of mechano-activation in DLC and 

PVDF were examined by the modified potential that was validated through experimental 

results. 

On the basis of an appropriate potential that contains the contribution from 

mechano-activation, we were able to describe the energy states under the influence of 

mechanical force. In light of the modified L-J potential, we examined the effect of the 

mechanical force from the energy point of view. The experimental results matched well 

with the proposed theory. 
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CHAPTER VIII 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

 

8.1. Conclusions 

The research presented in this dissertation focused on mechanisms of mechano-

activation and its effects on materials properties. Experimental investigation on selected 

materials, DLC (ceramic), PVDF (polymer, Ag-NCs (metallic nanostructures), were 

conducted. The effects of mechano-activation were characterized at different length 

scales. Theoretical analysis was carried out combining experiments which elucidates the 

mechano-activation process from the energy point of view. 

The following lists the major results of research. 

1. For DLC, results confirmed that the collision-induced transformation 

between hybridization states of carbon, and the changing ratio of sp2 and 

sp3 hybridization dominated the friction behavior of the film. With more 

graphitic carbon (sp2 hybridization) on the surface, the friction is reduced.  

2. For PVDF, results demonstrated that the applied tensile force induced the 

transformation of α, β, and γ crystalline phase. In addition, the 

transformation observed was time and direction dependent.  

3. For Ag-NCs, a new approach based on the mechanism of mechano-

activation was developed for nanochain structure synthesis. Molecular 

dynamics simulation and experimental results revealed that the formation of 

Ag-NCs is a synergetic physical-chemical procedure.  
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The above results proved that mechano-activation is an alternate method to excite 

electronic and molecular structures. Effects of mechano-activation on materials properties 

can be observed at different length scales. 

 

4. For the first time, the observed mechano-activation phenomena was 

elucidate from the energy point of view using the modified Lennard-Jones 

potential. It was found that the applied mechanical force is able to deform 

the potential curve which represents the interaction between two atoms 

and/or molecules altering dissociation energy. The proposed potential was 

successfully validated by the experimental results of DLC and PVDF. 

New understanding on mechano-activation was obtained. 

   

This research would not only bring insight into the understanding on the 

mechano-activation process, but also open new avenues for tailoring materials property 

and fabricating novel structures with precise control. The understanding obtained here 

would have significant impacts on materials science and the related industrial 

applications. 

 

8.2. Future Recommendations 

For future research, the following recommendations are suggested: 
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1. In the proposed theory, the potential was calculated in one unit structure. 

Further understanding would be able to obtain when more unit structures 

are included in calculation.  

2. The application of mechano-activation in nanoscience would be the next 

interesting research topic. The combination of them could not only open 

new avenues for the synthesis of nanomaterials, but also inspire novel 

approaches in the way to “force” a reaction.   
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