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ABSTRACT 

 

Mechanical Flow Response and Anisotropy in Ultra-fine Grained Magnesium and Zinc 

Alloys. (December 2009) 

Majid Al Maharbi, B.E., Sultan Qaboos University, Al-Khod, Oman; 

M.S., Arizona State University 

Chair of Advisory Committee: Dr. Ibrahim Karaman 

 

Hexagonal closed packed (hcp) materials, in contrast to cubic materials, possess 

several processing challenges due to their anisotropic structural response, the wide 

variety of deformation textures they exhibit, and limited ductility at room temperature. 

The aim of this work is to investigate, both experimentally and theoretically, the effect 

os severe plastic deformation, ultrafine grain sizes, crystallographic textures and number 

of phases on the flow stress anisotropy and tension compression asymmetry, and the 

mechanisms responsible for these phenomena in two hcp materials: AZ31B Mg alloy 

consisting of one phase and Zn-8wt.% Al that has an hcp matrix with a secondary face-

centered cubic (fcc) phase.  Mg and its alloys have high specific strength that can 

potentially meet the high demand for light weight structural materials and low fuel-

consumption in transportation. Zn-Al alloys, on the other hand, can be potential 

substitutes for several ferrous and non-ferrous materials because of their good 

mechanical and tribological properties. Both alloys have been successfully processed 

using equal channel angular extrusion (ECAE) following different processing routes in 
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order to produce samples with a wide variety of microstructures and crystallographic 

textures for revealing the relationship between microstructural parameters, 

crystallographic texture and resulting flow stress anisotropy at room temperature. For 

AZ31B Mg alloy, the texture evolution during ECAE following conventional and hybrid 

ECAE routes was successfully predicted using visco-plastic self-consistent (VPSC) 

crystal plasticity model. The flow stress anisotropy and tension-compression (T/C) 

asymmetry of the as received and processed samples at room temperature were 

measured and predicted using the same VPSC model coupled with a dislocation-based 

hardening scheme. The governing mechanisms behind these phenomena are revealed as 

functions of grains size and crystallographic texture. It was found that the variation in 

flow stress anisotropy and T/C asymmetry among samples can be explained based on the 

texture that is generated after each processing path. Therefore, it is possible to control 

the flow anisotropy and T/C asymmetry in this alloy and similar Mg alloys by 

controlling the processing route and number of passes, and the selection of processing 

conditions can be optimized using VPSC simulations. In Zn-8wt.% Al alloy, the hard 

phase size, morphology, and distribution were found to control the anisotropy in the flow 

strength and elongation to failure of the ECAE processed samples. 
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CHAPTER I 

INTRODUCTION 

 

Hexagonal closed packed (hcp) materials, in contrast to cubic structured ones, are 

scientifically interesting due to their anisotropic behaviors and to the wider variety of 

deformation textures they exhibit. They usually have more deformation modes than 

body-centered cubic (bcc) or face-centered cubic (fcc) materials but lower number of 

independent systems. Therefore, they usually have limited ductility compared to cubic 

materials because of the lack of sufficient independent slip systems to accommodate 

plastic deformation. The high number of possible deformation mechanisms in these 

materials ranging from slip to twinning systems, also, makes it very challenging to 

model and predict their behaviors. There has been lot of attention, recently, in studying 

these materials like Titanium (Ti), Zirconium (Zr), Beryllium (Be) and Magnesium (Mg) 

alloys as structured materials for aerospace, biomedical, nuclear and other engineering 

applications. 

 Although these materials have the same crystal structure (hcp structure), their 

deformation mechanisms are not always the same. The c/a ratio, which is the ratio of the 

hcp lattice parameters, c and a, dictates these governing mechanisms, and, hence their 

behaviors during plastic deformation and their evolved textures. It is believed that the 

distinct texture evolutions of these materials are due to the combined effect of c/a ratio  
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and the fact that different hcp metals deform by different slip and/or twinning modes 

[1]which in turn are somehow affected by c/a ratio. This is why, historically, hcp 

materials have been categorized in terms of c/a ratio. As an example of the influence of 

c/a ratio, in metals with / 3c a < , the common {1012} twin is activated by c-axis 

tension. Therefore, during compression (or cold or hot rolling) grains are favorably 

oriented for this twin if their axis is perpendicular to the compression axis; and twinning 

reorients the c-axis of the twin nearly parallel to the compression axis (or normal of the 

rolled plate) [2]. This is the major reason behind the basal or near basal textures of rolled 

hcp metals [3]. On the other hand, in metals with / 3c a > , excluding Zn, this primary 

twin is activated by compression along c-axis. Mg has a c/a ratio of about 1.624 which is 

very close to the theoretical value of 8 / 3  calculated by assuming spherical atoms 

having radius R equals to a/2.  

1.1 Motivations 

In our group, Ti and Zr alloys have been processed to improve their mechanical 

properties, and, their flow stress anisotropy and texture evolution during plastic 

deformation have been studied [4-8]. The flow stress anisotropy and tension 

compression asymmetry of other materials such as ultrafine grained (UFG) copper [9, 

10] have also been studied by our group. The texture evolution and flow stress 

anisotropy of these hcp structured alloys have, also, been successfully predicted using a 

visco-plastic self-consistent (VPSC) crystal plasticity model. Motivated by the success in 

processing these hard to deform hcp alloys using equal channel angular extrusion 
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(ECAE), and, in predicting their texture evolution and flow stress anisotropy, the present 

dissertation focuses on an Mg alloy as a single-phase hcp alloy and a Zinc-Aluminum 

alloy as a two-phase alloy having an hcp matrix. 

1.1.1 Magnesium alloys 

Mg and its alloys have high specific strength and hence are gaining interest in 

many industrial and research communities for structural materials that can potentially 

meet the high demand for low fuel-consumption. However, frequent observations of low 

ductility and relatively low strength present great concern and limitation. Mg alloys, like 

any materials with an hcp crystal structure, has a limited number of easy-to-activate 

independent slip systems.  Moreover, because of the anisotropic nature of the slip and 

twinning modes used by Mg to accommodate plastic deformation, they tend to develop 

texture under deformation.  Texture and the relatively large differences in the activation 

stresses between the different slip modes lead to highly anisotropic mechanical 

properties.  This means that the material can be relatively strong (but brittle) when tested 

in one direction, but low in strength (and relatively ductile) when tested in another.  

However, in some instances, highly anisotropic deformation can give these alloys an 

advantage over other more isotropic structural materials, such as in blast protection 

applications. Therefore, an understanding of the relationship between deformation 

texture, micro-scale slip and twinning activity, and macro-scale anisotropic flow 

behavior is vital for controlled synthesis (processing routes and parameters) of material 

for specific application needs.   
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Concerning the flow stress anisotropy and tension-compression asymmetry of 

Mg alloys, there is a lack of investigation of these behaviors in literature. There are few 

studies that tackled the flow stress anisotropy in tension or compression but not tension-

compression asymmetry, and they are done on alloys that have conventionally extruded 

[11, 12], plate [13] and one ECAE texture [14]. It is well known that the crystallographic 

texture and grain morphology of materials evolve with strain path changes and 

magnitude. Both, texture and grain morphology can influence the mechanical response 

of the materials. Therefore, a detailed investigation that involves processing the material 

following different ECAE routes and up to different number of ECAE passes along with 

modeling is required to fully understand the deformation mechanisms of these alloys and 

the influence of texture, and grain size and morphology on these mechanisms. The 

reasons behind selecting ECAE to process these alloys in this work are presented later in 

this chapter.   

1.1.2 Zinc-aluminum alloys 

In addition to studying the ultra-fine grained (UFG) AZ31B Mg, a zinc-

aluminum two phase alloy, in which aluminum-rich secondary hard phase embedded in a 

zinc-rich hcp matrix, will also be ECAE processed in order to refine the microstructure 

and introduce UFG microstructures in the alloy. The effect of the size and morphology 

of the second hard phase, on the mechanical behaviors and flow stress anisotropy of this 

alloy is investigated.  

Several Zn-Al alloys were investigated and processed using ECAE including: 

ZA-40 [15], ZA-27 [16], ZA-22 [17, 18], ZA-12 [19], ZA-8 [20] and ZA-5 [21] (digits 
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in the alloy designations indicate their approximate Al content in weight. ZA represents 

Zinc-Aluminum). Most of these studies have reported an increase in strength of the as-

cast alloys after the first ECAE pass due to the reported microstructural refinement and 

the elimination of as-cast dendritic structure, but they also reported some notable 

decrease after further ECAE passes, even in some cases, to lower values than the as-cast 

strength levels. To the best of the our knowledge, there is no clear understanding of why 

strength levels drop with further ECAE in the presence of the microstructural 

refinement. In addition, the effects of the composition and morphology of the hard 

second phase on the flow response of ECAE processed materials were not investigated. 

Therefore, one of the goals of the present dissertation is to improve the room 

temperature tensile properties of the ZA-8 (Zn-8%Al) alloy using lower temperature 

ECAE processing than those previously reported, and to reveal the mechanisms for such 

possible changes, if any, in these properties. In order to mechanically rationalize these 

improvements in tensile properties after ECAE and to reveal the effect of different 

processing routes on these properties, a detailed investigation was carried out focusing 

on the composition, strength levels and morphology of the two constitutive phases.  

1.2 Objectives 

Upon the above discussion, the objectives of this study can be summarized as 

follows: 

1. Process AZ31B Mg alloys using equal channel angular extrusion following 

different processing routes, temperatures and up to different number of 

ECAE passes.  
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2. Identify the influence of the starting textures on microstructural and texture 

evolution during ECAE.  

3. Investigate the mechanical behavior of ECAE processed AZ31B alloy by 

determining flow stress anisotropy and tension-compression asymmetry as 

functions of processing routes and number of passes. 

4. Identify the influence of texture and grain size and morphology on flow stress 

anisotropy and tension-compression asymmetry.  

5. Predict the texture evolution during ECAE process of the AZ31B alloy using 

a visco-plastic self consistent (VPSC) crystal plasticity model in order to 

fully understand the governing mechanisms leading to the wide variety of 

deformation textures on this alloy. 

6. Predict flow stress anisotropy of the unprocessed and ECAE processed alloy 

using the same VPSC model coupled with dislocation-based hardening 

formulation. 

7. Improve the mechanical properties of the two-phase Zn-8wt.%Al alloy by 

refining the microstructure and homogeneously distribute the hard second 

phase in the hcp matrix using ECAE.  

8. Explain the reported softening of ECAE processed zinc-aluminum alloys and 

understand the softening mechanisms.  

9. Identify the effects of the presence of second hard phase on the anisotropy of 

the Zn-Al alloys on their flow stress anisotropy.  
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1.3 Methods of Approach 

In order to reach these objectives, a combination of experimental and modeling 

investigations have been carried out for the two alloys studied in this dissertation. They 

are listed here for each alloy separately although ECAE processing was used to process 

and understand the behaviors of both alloys. 

 1.3.1 Magnesium alloy 

In order to pursue the goal of understanding the behavior of Mg alloys and hence, 

hcp metals and alloys in general, a systematic study is carried out on an AZ31B Mg 

alloy to link texture evolution, microstructural evolution, and dynamic recrystallization 

(DRX) to slip activity during severe plastic deformation (SPD).  To achieve this 

fundamental understanding the AZ31B Mg alloy was processed using equal channel 

angular extrusion (ECAE) [22]. ECAE has been utilized to severely deform metals and 

alloys in order to refine the grains and hence improve strength and ductility. This grain 

refinement depends on several ECAE parameters like the extrusion temperature and 

speed, the number of passes and the processing path or routes. The possibility of multi-

pass processing following different processing routes that ECAE offers makes it the best 

processing technique to achieve the goals of this dissertation. The billet can be rotated 

about its extrusion axis between consecutive passes and hence subjected to different 

shearing patterns. Therefore, these ECAE routes and number of passes usually lead to 

different microstructural [23] and texture evolution [24] after ECAE. This wide variety 

of deformation textures is what needed to satisfy the goals of this dissertation.  
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Therefore, the AZ31B alloy is ECAE processed at 200 ºC starting with two 

different crystallographic textures for up to four ECAE passes following different 

processing routes A, C, E and BC to vary the relative contributions of different slip 

modes (basal, prismatic, pyramidal <c+a>). This processing results in many processed 

samples in addition to the as received sample. An ECAE simulation model [25, 26] built 

on the visco-plastic self-consistent (VPSC) crystal plasticity scheme [27] is used to 

predict the relative activities of the aforementioned hcp slip modes, and the texture and 

grain morphology evolution associated with each ECAE test. It is demonstrated that 

texture, grain elongation, and the amount of DRX are highly dependent on the starting 

texture and differences can be correlated with the relative activity of each slip system 

during ECAE.  

Regarding the flow stress anisotropy and tension-compression asymmetry of Mg 

alloys, a detailed investigation that involves the above mentioned processing along with 

modeling is required to fully understand the deformation mechanisms of these alloys and 

the influence of texture, and grain size and morphology on these mechanisms. The 

results of this study are presented in Chapter IV of this dissertation. It is found that the 

variation in flow stress anisotropy and tension-compression asymmetry among the 

samples can be explained based on the texture that is generated after each processing 

path. The influence of texture and grain size on the mechanical response and, hence, the 

anisotropy and asymmetry of these alloys is also compared and weighted. In order to do 

that, the alloy is also processed using several thermo-mechanical hybrid routes that 

utilize ECAE, in order to refine the grain size even more while preserving the texture. 
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The hybrid routes produce at least two distinct cases each one of them has samples that 

share similar texture but have different grain sizes and morphologies. Those cases are 

beneficial for weighing the influence of grain sizes and morphology on mechanical 

behaviors while eliminating texture effects. Chapter V focuses on the degree of influence 

of both texture and grain size and morphology on the flow stress anisotropy and tension 

and compression asymmetry of AZ31B Mg alloy.  

In order to fully understand and explain the anisotropic behavior of Mg alloys, 

one of the goals of this dissertation is to predict the stress-strain response of ECAE 

processed AZ31B Mg alloy. This goal is achieved by using the aforementioned VPSC 

polycrystalline model coupled with a dislocation-based hardening law which is 

presented in Chapter II. The dislocation-based hardening parameters are first determined 

by fitting the stress-strain responses of unprocessed alloy along different directions. 

Those parameters are materials properties that describe the evolution of critical resolved 

shear stresses (CRSS) of each deformation mode, dislocation density and other 

microstructural characteristics of plastic deformation. The stress-strain response of the 

ECAE processed samples along different direction under tension and compression is 

then be predicted using the same parameters. These predictions are presented in Chapter 

VI of this dissertation.  

1.3.2 Zinc-aluminum alloy 

In this dissertation, the Zn-8wt.%Al two-phase zinc-aluminum alloy has been 

subjected to severe plastic deformation via equal channel angular extrusion (ECAE). The 

alloy is successfully extruded at homologous temperatures around 0.5 Tm through 
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various strain paths and magnitudes. Multi-pass ECAE processing following different 

routes led to the elimination of the as-cast dendritic microstructure and formed a 

structure of elongated, ribbon shaped phases. Monotonic tensile tests are conducted at 

room temperature along the longitudinal axis of the ECAE samples in addition to the 

directions parallel and perpendicular to the long axis of the elongated hard eutectoid 

phase particles in order to reveal the effect of microstructural morphology on the 

anisotropic flow response. The flow strength levels increase significantly after the first 

ECAE pass, and then saturated at a slightly higher value after the subsequent passes in 

route BC.  

In addition, possible mechanisms responsible for the reported softening upon 

further ECAE are revealed. Despite the relative chemical homogenization between the 

hard and soft phases, the size and distribution of the hard phase in the matrix are found 

to be the dominant factor controlling the flow response of the present two-phase zinc-

aluminum alloy after ECAE. The hard phase size, morphology, and distribution are also 

found to control the anisotropy in the flow strength and elongation to failure of the 

ECAE processed samples. Notable flow softening with increasing number of ECAE 

passes, a general observation for the ECAE processed Zn-Al alloys with Al content more 

than 12%, is lacking in the present alloy which was attributed to the hardening effect of 

the fine eutectoid particles in the eutectic matrix overcoming the softening effect of 

deformation-induced chemical homogenization. The results concerning the Zn-Al alloys 

are presented in Chapter VII. 
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In addition to the above mentioned main chapters. Chapter II presents some 

background about current alloys, ECAE process and VPSC model. It also includes a 

literature review of previous studies related to the current study. More materials details 

and experimental procedures are presented in Chapter II. At the end of this dissertation, 

the main conclusions and suggestion for future works are included in Chapters VIII and 

IX, respectively.  
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CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

 

In this chapter, a brief background on the materials studied in this dissertation 

and the equal channel angular extrusion (ECAE) process used to process them. A 

literature review of related previous studies is conducted and presented in this chapter.  

2.1 Equal Channel Angular Extrusion 

Equal channel angular extrusion is a severe plastic deformation technique 

invented by Segal in 1981 [22] and have been used extensively to process materials 

since then. During ECAE, the materials are processed by simple shear at the intersecting 

plane of two channels that have the same cross-section and make an angle φ between 

them (see Figure 2.1.b). The billet is pushed into the upper channel and exited out of the 

bottom channel. Because the two channels have the same cross-section the billet will 

have the same dimensions and hence the process can be repeated to increase the total 

imposed strain. The effective Von Misses imposed strain during each pass depends on 

the die angle φ and it is given by the following equation for the sharp angle die [28]: 

2 cot
3

ε φ=                        (2.1) 

After N passes the equivalent imposed strain may be expressed in a general form 

by the following relationship [29, 30]: 

2cot cosec
2 2 2 23N

N φ ψ φ ψε ψ⎡ ⎤⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
                  (2.2) 
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ψ is the angle outlined by the arc of curvature at the point of intersection (Figure 2.1.b). 

It follows that this general expression in equation (2.2) reduces to equation (2.1) 

multiplied by number of passes N if  ψ = 0.  

ED

FD

LD

ED

FD

LD

(a) (b)
 

Figure 2.1 (a) Schematic illustration of typical ECAE process: The X, Y and Z plane 

denote the extrusion plane, flow plane and longitudinal plane respectively [31]. (b) 

Schematic demonstrating the simple shear that the representative material element goes 

through during the process. ED, LD and FD are the extrusion, longitudinal and flow 

directions which are the directions perpendicular to the extrusion, longitudinal and flow 

planes, respectively. φ is the die angle and ψ is the curvature angle ranging from 0° for 

sharp die and 90°.  

 

In addition to the possibility of multi-pass processing, ECAE also offers the 

possibility of processing the material through different processing routes. The billet can 
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be rotated about its extrusion axis between consecutive passes and hence subjected to 

different shearing patterns. Therefore, these ECAE routes usually lead to different 

microstructure [23] and texture evolution [24] after ECAE. There are four known 

conventional ECAE routes: A, BA, BC and C. In route A, the billet is continually 

processed without rotation. In route BA, the billet is rotated by +90° then -90° after each 

pass. In route BC, the billet is always rotated by 90° before each successive pass. In route 

C, the billet is rotated by 180° between passes. These four conventional routes are 

illustrated in Figure 2.2. Combination of these routes can also be used. For example, the 

hybrid route E which is used in this study is a combination of route C and BC, where the 

billet is rotated by 180 and 90° before the even and odd-numbered passes, respectively.  

 

 

Figure  2.2 The four conventional processing routes in ECAE [32]. 
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ECAE has been utilized to severely deform metals and alloys in order to refine 

the grains and hence improve strength and ductility. This grain refinement depends on 

several ECAE parameters like the extrusion temperature and speed, the number of passes 

and the die’s angle. As mentioned above, the total imposed strain is dependent on the die 

angle φ through equations (2.1) and (2.2). It follows from those equations that smaller 

angle leads to higher amount of imposed strain. It was also shown by Horita et al. [33] 

that smaller die angle [90 – 115°] leads to high volume fraction of high angle grain 

boundaries compared to larger die angles.  

2.2 Hexagonal Closed-packed Materials and Magnesium Alloys 

Mg and its alloys have high specific strength and hence are gaining interest in 

many industrial and research communities for structural materials that can potentially 

meet the high demand for low fuel-consumption. However, frequent observations of low 

ductility and relatively low strength present great concern and limitation. Mg alloys have 

a hexagonal close-packed (hcp) crystal structure and hence a limited number of easy-to-

activate independent slip systems.  Moreover, because of the anisotropic nature of the 

slip and twinning modes used by Mg to accommodate plastic deformation, they tend to 

develop texture under deformation.  Texture and the relatively large differences in the 

activation stresses between the different slip modes lead to highly anisotropic 

mechanical properties.  This means that the material can be relatively strong (but brittle) 

when tested in one direction, but low in strength (and relatively ductile) when tested in 

another.  However, in some instances, highly anisotropic deformation can give these 

alloys an advantage over other more isotropic structural materials, such as in blast 
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protection applications. Therefore, an understanding of the relationship between 

deformation texture, micro-scale slip and twinning activity, and macro-scale anisotropic 

flow behavior is vital for controlled synthesis (processing routes and parameters) of 

material for specific application needs.   

2.2.1 Deformation mechanisms in Mg 

At room temperature, the two dominant deformation modes in Mg alloys are 

basal slip and {1 012}  tensile twinning [11, 34-36].  Because these two modes alone 

cannot accommodate an arbitrary deformation according to the von Mises [37] or Taylor 

[38] criteria, non-basal slip systems are needed.  The non-basal slip systems sharing the 

same <a> Burgers vector, prismatic slip and pyramidal <a> slip have higher critical 

resolved shear stresses (CRSS) than basal slip. Pyramidal <a> slip is considered 

crystallographically equivalent to a combination of cross slip from basal to prismatic 

<a> and vice versa [1, 39].  Unlike these slip modes, the non-basal slip system, 

pyramidal <c+a> slip, plays an important role, providing shear deformation parallel to 

the c-axis [40-42] and a sufficient number of slip systems to fulfill the Taylor criterion.  

Pyramidal <c+a> slip is associated with the largest Burgers vector, the smallest 

interplanar spacing, the narrowest dislocation width and the lowest “ease of glide” [1, 

43], and a “zonal” character of its core [44, 45].  Therefore the CRSS of this non-basal 

slip mode is also relatively high in comparison with basal slip.   Because of their high 

CRSS values, prismatic slip and pyramidal <c+a> slip are reported to occur mostly in 

regions of high stress concentration, such as grain boundaries and twin interfaces [1, 46-
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49]. As a result of the limited number of independent deformation modes, the high ratios 

of CRSS values between the active slip modes, and the directional nature of  { }1012  

twinning, which can be even easier to activate than basal slip in Mg [50]. Mg alloys are 

expected to develop strong deformation textures, and hence, high flow stress anisotropy 

and tension-compression asymmetry.  

Because of the insufficient independent slip systems and the difficulty of 

activating some of them, twinning is observed in polycrystalline Mg. There are two main 

twinning systems in Mg alloys: tensile  11102}1{10
--
>< and compressive 

 21101}1{10
--

>< twins which accommodate c-axis extension and contraction, 

respectively [1, 51]. Due to the lack of sufficient number of independent slip systems, 

twinning is important as relaxation mechanism and can contribute to satisfy the Taylor 

condition of five independent deformation systems [52]. However, Brown et al. [53] 

proposed that tensile twinning contribute as a half independent deformation mode due to 

its unidirectional nature.  The }2110{
−

 tensile twinning in hcp materials is described as 

follows: 

1 {1012}K
−

= , 2 {1012}K
−

= , 1 1011η
−

=< > , 2 1011η
− −

=< >                 (2.3) 

0
3 ( / )

( / ) 3
c a

c a
γ = −           (2.4) 

Where K1, K2, η1 and η2 are the twinning parameters, and, c and a are the hcp 

lattice constants. For the materials with c/a < √3, like Mg (c/a = 1.624), the direction of 
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shear is [1011]
−

, and the twinning occurs under tension parallel to the c-axis or under 

compression perpendicular to the c-axis [54]. The twinning shear from equation (2.4) is 

0.1289 and thus, the maximum tensile strain that twinning may accommodate is only 

0.065 [34] not including double-twinning. 

The interaction between prismatic or basal slip dislocations and a }2110{
−

 twin or 

a }1211{
−

compressive twin is repulsive in Mg [1]. Therefore, the activation of slip or 

twinning during plastic deformation may result in pile up of dislocation that causes local 

stress concentrations. This stress concentration may enhance the process of twin 

nucleation and also twin growth [46]. Furthermore, twins can act as effective barriers 

against slip dislocation. These effects of dislocation and twin interactions are found to be 

more pronounced in hcp materials [46]. Therefore, it is extremely important to take these 

interactions into account in interpreting the mechanical behavior of Mg and its alloys. As 

a summary, the slip systems as well as the twinning system that are observed in Mg 

alloys are schematically shown in Figure 2.3.  
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Figure  2.3 Schematic of slip and twinning systems observed in Mg alloys. 

 

2.2.2 Equal channel angular extrusion of magnesium alloys and dynamic 

recrystallization 

To overcome some of the limitations of Mg alloys, several processing techniques 

have been utilized. One such processing technique is equal channel angular extrusion 

(ECAE) which has been extensively used to increase the strength and ductility of many 

materials by refining the microstructure via severe plastic deformation. As discussed in 

section 2.1, ECAE is a very efficient grain refining technique. Moreover, ECAE is, 

currently, the only severe plastic deformation method that is able to produce different 

kinds of crystallographic textures on the same materials by using different processing 

routes, number of passes and die angles. Therefore, several Mg alloys have been 
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processed using (ECAE). Due to their hexagonal close-packed (hcp) structure and hence 

their limited ductility, Mg alloys are usually processed at high temperatures. Since they 

have relatively low melting temperature, the homologous temperature is relatively high 

for these alloys, therefore, dynamic recovery and recrystallization take place during 

processing and hence, decrease the efficiency of ECAE or other SPD processing in grain 

refinement and improvement of mechanical properties. Mukai et al. [55] were the first to 

report ductility improvement in AZ31 alloy after eight ECAE passes at 200 °C following 

route BC, as can be seen in Figure 2.4. The tested sample exhibited remarkable strain 

hardening and a large uniform elongation to failure (about 45%) when tested parallel to 

the extrusion direction (ED) [55]. They attributed the improvement in ductility to the 

equal distribution of the basal poles with respect to both the extrusion and normal 

directions of the ECAE processed sample. However, this equal distribution of basal 

planes should not be assumed as randomization of strong extruded texture [14]. Agnew 

et al. [14] repeated the same processing on a conventionally extruded AZ31B alloy and 

found that despite the fact that the volume fractions of grains having basal poles parallel 

or perpendicular to the extrusion axis are quite low, the texture is in fact strong. They 

found that the texture strength was increased from 1.7 multiple of random distribution 

(mrd) in the conventional extrusion to about 2.3 mrd in the ECAE processed alloy. The 

texture of the AZ31 alloy ECAE processed by Agnew et al. [14] is shown in Figure 2.5. 

It is important to note that Mukai et al. [55] and Agnew et al. [14] have annealed the 

ECAE processed samples to increase the grain size to that of as conventionally extruded 

samples. This annealing might contribute to the high improvement in ductility. 
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Moreover, comparing the response of conventionally extruded sample and that of ECAE 

processed, it is clear that the governing mechanisms are different in the two samples. 

They strain harden because of slip and twinning, respectively. Barnett [12] concluded 

from the study of tensile twinning, that this type of twinning increase the uniform 

elongation of the sample and therefore, increase its elongation to failure. Therefore, 

more comprehensive studies need to be conducted to understand the effects of ECAE on 

the ductility of Mg alloys.  

 

 

Figure  2.4 X-ray diffraction spectra of (a) directly extruded AZ31 Mg alloy and (b) the 

ECAE processed and annealed AZ31 alloy. (c) Nominal stress-strain response of AZ31 

alloy after direct extrusion and after annealing following ECAE [55]. 
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Motivated by this remarkable increase in ductility, several Mg alloys have been 

processed using ECAE including pure Mg [56-58], AZ31 [14, 59-61], AZ60 [59], AZ61 

[62], AZ80 [59], ZK60 [59], WE43 [59] and Mg-3.3%Li [63]. Figure 2.6 summarizes 

the results of ECAE studies on Mg alloys to improve their strength and ductility. 

 

 

Figure  2.5 Pole figures (equal area projection) show the crystallographic textures in: (a) 

conventionally extruded, (b) ECA processed and (c) annealed AZ31B as determined by 

neutron diffraction [14]. The extrusion axes are to the right. 
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Figure  2.6 A summery of ECAE studies on improving the mechanical properties of Mg alloys. Solid and hollow symbols 

represent yield and ultimate stresses, respectively. 
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In most of the aforementioned studies, ECAE processing of Mg alloys was 

carried out at temperatures of 200 oC or above, which for Mg are sufficiently high 

homologous temperatures that can potentially trigger dynamic recrystallization (DRX). 

It is well known that DRX occurs most readily in materials in which recovery is slow, 

e.g. in materials of medium or low stacking fault energy (SFE). The SFE of magnesium 

is relatively high especially for prismatic and pyramidal  (about 32-36 mJ/m2 for basal 

plane [64, 65], 265 mJ/m2 for prismatic [64] and 344 mJ/m2 for pyramidal [64]) stacking 

faults,  and therefore, it is expected to soften by dynamic recovery rather than 

recrystallize. However, Ion et al. [66] found that DRX indeed takes place during high 

temperature deformation of Mg and this they ascribed to the constraints imposed by the 

lack of easily activated slip systems rather than the effect of SFE. Since DRX leads to 

new strain-free grains, it can be undesirable for achieving high yield strength in Mg 

alloys. In order to prevent or limit DRX, the material should be deformed at the lowest 

possible temperature at least at the final stages of processing. However, DRX can also be 

utilized to introduce fine grains in the materials before further processing at lower 

temperatures. It has been found that AZ31B can be ECAE processed at relatively low 

temperatures following higher temperature processing [67, 68]. This is partially because 

of the fine DRX grains introduced during the initial high temperature processing stages 

stimulating additional deformation mechanisms such as grain boundary sliding [69, 70], 

which can help reduce shear localization and enhance formability at low temperatures.  

Jin et al. [71] indeed showed that it is necessary to process AZ31B alloy at low 

temperature after high temperature ECAE in order to prevent dynamic recovery and 
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DRX and hence to preserve dislocations in the interior of grains and at the grain 

boundaries. They ECAE processed the alloy at 180 °C for one pass following four 

ECAE passes via route BC at 225 °C. This reduction in processing temperature was 

found to be very effective in preventing dynamic recovery (see Figure 2.7) and hence 

increasing the yield strength of the alloy to 231 MPa from 152 MPa of that processed by 

five passes at 498K.  Xia et al. [60], also, ECAE processed AZ31B alloy in two steps but 

to a higher number of passes using a 120o angle die. They processed the alloy up to four 

passes via route BC at 150 oC with 0.2 mm/min extrusion speed followed by four passes 

following route BC at 100 oC with the same speed. A grain size of 0.2-0.5 μm was 

achieved. However, there was no report on the mechanical properties of the processing 

at temperature lower than 200 oC other than microhardness which was increased after the 

low temperature processing. The most recent multi-step ECAE processing of Mg alloys 

is the study of Ding et al. [67] in which AZ31 alloy was extruded following four 

sequential steps: (1) four passes at 200 oC following route A; (2) four passes at 150 oC 

following route A; (3) two passes at 125 oC following route A; and (4) two passes at 115 

oC following route A with rotating the billets by 180o between steps (1), (2) and (3), and 

by 90o between steps (3) and (4). They achieved a yield and ultimate tensile strengths of 

372 MPa and 445 MPa, respectively along ED. No mechanical properties were reported 

along other billet directions. 
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Figure 2.7 The TEM micrographs of (a) as-received AZ31 Mg alloy; the same alloy (b) 

after ECAE at 498 K for five passes; and (c) after two-step ECAE: 498 K for four pases 

following route BC and one pass at 453 K [71]. 

 

2.2.3 Flow stress anisotropy and tension-compression asymmetry of ECAE processed 

Mg alloys 

Agnew et al. [14] investigated the effects of texture on the flow stress anisotropy 

of AZ31B processed by ECAE by running tensile tests along various billet orientations. 

They found that the flow response is highly anisotropic and the flow stress and 

hardening behavior can be rationalized in terms of the strong crystallographic texture 

induced by ECAE processing (See Figure 2.8). This study however, was carried out only 

on materials ECAE processed up to 8 passes via route BC. No study has been carried out 

to date to measure or predict the evolution of flow stress anisotropy, along different 

directions, as a function of the number of ECAE passes following different processing 

routes. Moreover, there is a lack of tension-compression asymmetry studies of these 
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alloys after ECAE processing. It is believed that amount of twinning activated during 

plastic deformation of Mg alloys will determine the degree of tension-compression 

asymmetry [52, 54, 72].  Therefore, one of the goals of this dissertation is to investigate 

the effects of twinning in both flow stress anisotropy and compression asymmetry by 

studying the mechanical behavior of several samples having different crystallographic 

textures.  

 

 

Figure  2.8 Tensile tests results from the AZ31B ECAE processed samples having a 

variety of orientations with respect to the ECAE processed bar shown in the upper left 

corner. Basal pole figure of the sample which is ECAE processed up to eight passes 

following route BC and then annealed is shown on the upper right corner [14]. 
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2.3 Zinc-aluminum Alloys as Two-phase HCP Materials 

Zn-Al alloys are gaining increasing attention as potential substitutes for several 

ferrous and non-ferrous materials because of their good mechanical and tribological 

properties [73-77]. They have widely been used in bearings because of their excellent 

wear and damping properties, higher castability and lower energy requirement, and 

benefiting from superplasticity that some of these alloys, with ultrafine-grained 

structure, exhibit [17, 18, 78]. Zn-Al foundry alloys have several advantages over other 

commonly used casting alloys based on iron, aluminum and copper. For example their 

machinability is better than cast iron; they are harder and stronger than aluminum and 

much cheaper than copper.  

 Figure 2.9 shows the binary phase diagram of Zn-Al showing the Zn - 8wt.% Al 

which is the alloy investigated in this dissertation. Zn - 8wt.% Al alloy lies left side of 

the eutectic composition in the Al-Zn phase diagram where the primary phase is β which 

exists as numerous small and particulate dendrites in an eutectic matrix above the 

eutectoid temperature of 275 °C [79]. Upon cooling below the eutectoid temperature, the 

β phase decomposes into α and η giving its lamellar structure. Therefore, the 

microstructure of the as-cast alloy consists of a dendritic structure with eutectoid 

dendrites (fine α + η lamellae) dispersed in a eutectic matrix (α + η phase)  
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Figure  2.9 Phase diagram of Zn-Al alloys showing the Zn-wt.% Al alloy. 

 

Zn-Al alloys, however, have inferior strength and poor ductility at low 

temperatures, and dimensional instabilities at elevated temperature [19, 80] that limit 

their use in some engineering applications. Several approaches have been reported to 

overcome these drawbacks such as addition of silicon [81], heat treatments [82, 83] and 

reinforcement with non-metallic compounds [84]. Recently, many attempts have been 

undertaken to improve the mechanical properties of Zn-Al alloys with the introduction 

of ultrafine grains (UFG) using ECAE [16-21]. 

2.3.1 Severe plastic deformation of Zn-Al alloys using equal channel angular extrusion 

Kumar et al. [18] found that the maximum grain refinement in ZA22 can be 

achieved after the first ECAE pass. Furukawa et al. [17] also processed this (ZA22) alloy 

using two severe plastic deformation techniques: high-pressure torsion (HPT) and ECAE 

in order to find the most effective technique. Figure 2.10 shows the transmission electron 
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microscopy micrographs (TEM) in as received condition and after HPT and ECAE 

processing up to an equivalent strain of ~ 8. As can be seen in the TEM micrographs, 

submicron grain sizes can be introduced using ECAE and HPT in the eutectoid ZA22 

alloy. After eight ECAE passes at 100 °C following route BC, the grains are elongated 

and there are agglomerates of Al-rich and Zn-rich grains with very limited mixing. On 

the other hand, after HPT, the grains are equiaxed and there is some mixing of the two 

phases. They attributed this limited mixing of the two phases in ECAE to the low 

pressure required in ECAE compared to HPT.  

 

(a)

(b) (c)

(a)

 

Figure 2.10 Microstructure of Zn-22wt.%Al (a) in as received condition where the 

bright and dark grains are Al-rich and Zn-rich, respectively, (b) after 8 ECAE passes and 

(c) after high pressure torsion [17]. 
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Several Zn-Al alloys were investigated and processed using ECAE including: 

ZA-40 [15], ZA-27 [16], ZA-22 [17, 18], ZA-12 [19], ZA-8 [20] and ZA-5 [21]. Most of 

these studies have reported an increase in strength of the as-cast alloys after the first 

ECAE pass due to the reported microstructural refinement and the elimination of as-cast 

dendritic structure, but they also reported some notable decrease after further ECAE 

passes, even in some cases, to lower values than the as-cast strength levels. Figure 2.11 

represents the evolution of the strength levels of different Zn-Al alloys with the number 

of ECAE passes.  To the best of the our knowledge, there is no clear understanding of 

why strength levels drop with further ECAE in the presence of the microstructural 

refinement. In addition, the effects of the composition and morphology of the hard 

second phase on the flow response of ECAE processed materials were not investigated. 

Therefore, one of the goals of the present dissertation is to improve the room 

temperature tensile properties of the ZA-8 alloy using lower temperature ECAE 

processing versus those previously reported, and to reveal the mechanisms for such 

possible changes, if any, in these properties. In order to mechanically rationalize these 

improvements in tensile properties after ECAE and to reveal the effect of different 

processing routes on these properties, a detailed investigation was carried out focusing 

on the composition, strength levels and morphology of the two constitutive phases.  
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

 

Figure 2.11 Evolution of strength levels with the number of ECAE passes, of (a) ZA5 

[21], (b) ZA12 [19], (c) ZA27 [16] and (d) ZA40 [15]. 

 

2.4 Visco-plastic Self-consistent Crystal Plasticity Modeling 

In addition to the experimental investigation, attempts to predict texture and 

grain morphology evolution during ECAE of AZ31B Mg alloy have been carried out. A 

visco-plastic self-consistent (VPSC) crystal plasticity model has been used to predict the 

texture and grain morphology as well as stress-strain response of this alloy. In this 

section, a brief introduction about this model is presented and for more details the 

readers are directed to the following references: Lebensohn and Tome´ [27] and Texture 

and Anisotropy, chapter 11 by Tome´ and Canova [85]. 
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The basis of any plasticity model is the interaction of the grain with its 

surrounding. There are many modeling approaches that try to relate the grains with the 

polycrystalline aggregates. Full constraint (FC) approach or what is previously known as 

Taylor-Bishop-Hill assumption [38, 86] imposes the same deformation to every grain 

regardless of its anisotropy and therefore, the surrounding dictate the grain deformation 

[27]. Relaxed constraint (RC) [87] formulation, on the other hand, allows for some of the 

strain components to differ from the average ones. Relaxation in this approach is based 

on grain shape and stress continuity and not in relative stiffness of grain and matrix.  

The visco-plastic self-consistent (VPSC) approach, however, treats each grain as 

an ellipsoidal visco-plastic inclusion embedded in and interacting with effective medium 

represented by the average response of all the grains. This treatment of each grain allows 

local equilibrium and compatibility to be satisfied, while maintaining computational 

efficiency [25]. Grains are paired at random at the beginning of the simulation and made 

to co-rotate to meet the strain compatibility at the grain boundaries using the so-called 

grain co-rotation scheme [88].  

The effect of twinning on the texture evolution was treated inside the VPSC 

model using the so-called Predominant Twin Reorientation (PTR) scheme [89] in which 

the grain is fully reoriented when the most active twin system inside the grain reaches a 

threshold value. The PTR scheme has been replaced recently by a more realistic model 

called Composite Grain (GC) approach first presented by Proust et al. [90]. In CG 

approach, the twinned grain is considered as composite grain consisting of layers of 

twins and matrix (Figure 2.12). The CG approach, hence, allows accounting for the 



 

 

34

directional barriers that specific twins poses to specific dislocations via a Hall-Petch 

(HP) effect [91].  

 

 

Figure 2.12 Schematic of the Composite Grain (CG) model implemented in VPSC to 

model twinning, showing morphology and orientation of twins and matrix, and 

indicating the parameters of the CG model [91]. 

 

2.4.1VPSC modeling of ECAE process 

The ECAE process used in this study was performed using a 90° die. A 

representation of the process with the reference coordinate systems used in the ECAE 

modeling is shown in Figure 2.13. According to the simple shear model of ECAE the 

velocity gradient of simple shear in the plane of symmetry (1’-2’-2’ reference system in 

Figure 2.13) is given by: 

   
0 0

' 0 0 0
0 0 0

L
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     (2.5) 



 

 

35

Where γ
i

 is the constant applied strain rate. In global coordinate system 1-2-3, equation 

(2.5) is expressed as follow 

   
1 1 0

' 1 1 0
2

0 0 0
L γ

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

i

     (2.6) 

This velocity gradient describes tension in 1 (ED), compression in 2 (LD) and 

rigid body rotation about 3 (FD) [92]. 

 

φ = 90°

1’

2:LD

1:ED
3’, 3:FD

2’

φ = 90°

1’

2:LD

1:ED
3’, 3:FD

2’

 

Figure  2.13 Reference coordinate systems used in the ECAE process showing the 

deformation of a square by simple shear at the intersection plane of the channels. 

 

The aforementioned ECAE velocity gradient was obtained by assuming 

ideal simple shear. In reality, however, ECAE deformation can neither be described as a 

single shear along a single plane or as homogeneous [93]. In most cases, plastic 
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deformation during ECAE takes place in a broad zone whose shape depends on contact 

friction, material flow response, back-pressure, extrusion rate and die design [93].  

2.4.2 Dislocation-based hardening model 

The threshold stress, τs, describes the resistance for activation that the 

deformation modes experience at it usually increases with deformation (strain). The 

evolution of τs of each deformation mode is usually described by hardening functions. 

The most used of these functions is Voce hardening law which is characterized by the 

evolution of the threshold stress with the accumulated shear strain of each grain of the 

form 

0
1 1

1

( ) 1 exp
ss s s s

o s

θτ τ τ θ
τ

⎛ ⎞⎛ ⎞
= + + Γ − −Γ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

�    (2.7) 

where s

s
γΓ = Δ∑  is the accumulated shear in the grain, and, τ0, θ0, θ1 and (τ0 + τ1) are 

the initial critical resolved shear stress (CRSS), the initial hardening rate, the asymptotic  

hardening rate and the back-extrapolated CRSS, respectively.  

 A recent single crystal constitutive hardening law for multiple slip and twinning 

modes was developed by Beyerlein and Tome [94]. For each slip mode α, a dislocation 

population is evolved explicitly as a function of temperature and strain rate through 

thermally-activated recovery and debris formation. This dislocation-based hardening law 

was implemented to predict compressive stress-strain response of clock-rolled pure Zr 

[94] and to investigate the twin growth mechanisms in Mg single crystals [50].  
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The shear increment dγα for each slip mode α is a straightforward sum of the 

shears of all slip systems contained in mode α at each time increment dt: 

s

s
d dtα

α

γ γ
∈

=∑
i

                  (2.8) 

where  

    0
: sign( : )

( , )

n
s

s s

s
c

m m
T

σγ γ σ
τ ε

=
i i

i      (2.9) 

This flow rule introduces a critical strength t
cτ  that depends on the local 

microstructure encountered by the dislocations. Equations (2.8) and (2.9) are also used to 

describe the kinematics of twinning in which t
cτ  is the directional threshold required to 

propagate the twin system t β∈ . The exponent n is set high, n=20, so that slip or 

twinning is activated only when the resolved shear stress closely approaches the critical 

strength.  

Work hardening is linked to the evolution of dislocations, their interactions with 

each other, and with barriers in the microstructure. Therefore, the critical strength or slip 

resistance of each slip s α∈ , s
cτ  evolves as follows: 

           
s
HPdebforest

s
c τττττ ααα +++= 0  ,    s α∈                             (2.10) 

where 0
ατ  is the initial slip resistance which depends on slip mode α, solute density, and 

T and ε
i

. The second and third terms on the right hand side of equation 2.10 represent 

the work hardening due to dislocation interactions. The last term, s
HPτ , is the barrier 
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effect provided by grain or twin boundaries whichever constrains the mean free path of 

dislocations more.  

An evolution model for dislocation density developed by Essman and Mughrabi 

[95] and further developed by Mecking and Kocks [96] was used to describe the 

dislocation density evolution and it is expressed as follow: 

                             1 2 ( , )k k T
α

α α α α
α

ρ ρ ε ρ
γ
∂

= −
∂

i
               (2.11) 

where 2kα  is calculated as follow:  
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where χ is an interaction parameter between 0.1 and 1.0, b is the Burger vector, D is a 

proportionality factor of unit of stress, g is normalized stress-independent activation 

energy and k is the gas constant. The third term on the RHS of equation 2.10 which is 

the contribution of ρdeb is expressed as follow 

1logdeb deb deb
deb

k b
b

α α
α

τ μ ρ
ρ

⎛ ⎞
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⎝ ⎠
    (2.13) 

Where kdeb is a material-independent constant determined to be 0.86 [97] and ρdeb 

evolves with plastic strain as follow 

  , ,  and  rem
deb tot deb

deb

nbq f f A b
l

α α
α α α

α
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ρρ ρ
γ

∂
∂ = = ≈

∂∑    (2.14) 

where A=Q0+Q1ln(1+T/Q3).   
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Therefore, the resistance to slip of each system s α∈  evolves from a zero-strain 

value calculated to be: 

0 0( 0) ( )   s
c

g

bT HP b s
d

α
α α α ατ γ τ μ χμ ρ α= = + + ∀ ∈    (2.15) 

assuming no twins are present and the amount of debris is negligible, to a final value of  

0 ,

1( ) log   s deb
c debs PTS

mfp deb

kbT HP b s
d b
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α αβ α α
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CHAPTER III 

EXPERIMENTAL PROCEDURES 

 

 In this chapter, the materials investigated in this work are listed in more details. 

The detailed experimental procedures are presented for each material separately. Lists of 

all processing and characterization experiments are also included in this chapter.  

3.1 Materials 

In this study, two alloys have been studied for the flow stress anisotropy and 

tension-compression asymmetry of hexagonal closed packed (hcp) materials. They were 

processed using thermomechanical processing in order to produce variety of samples 

that have different microstructures and crystallographic textures. The first alloy is an 

AZ31B Mg alloy (2.5-3.5 wt.% Al, 0.7-1.3 wt.% Zn, 0.2-1.0% Mg and balance-Mg) 

obtained from a hot rolled plate. This Mg alloy is the most widely available commercial 

alloy. It has been selected for this study because it is the most used Mg alloy in 

engineering applications and because it exists as one-phase which make it easier to study 

and model. The second alloy is Zn-8wt% Al (or shortly ZA-8) alloy obtained from as 

cast ingots having a nominal composition of 8.32% Al, 1.11% Cu, 0.024% Mg, 0.006% 

Fe, 0.0028% Pb, 0.001 Sn, less than 0.001% Cd in weight and balance Zn. This alloy 

was selected because it is a two-phase alloy having an hcp matrix. In addition to this 

matrix, it has a second hard phase Al-rich phase which has a face centered cubic 

structure. Therefore, flow anisotropy study was conducted on this alloy with respect to 
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the orientation of the second hard phase. Detailed experimental procedures for both 

alloys are listed in the following sections. 

3.2. Themomechanical Processing of AZ31B Mg Alloy Using Equal Channel 

Angular Extrusion  

Material billets with a cross-section of 25 mm × 25 mm and a length of 150 mm 

were machined from the hot rolled AZ31B. The billets were ECAE processed with an 

extrusion rate of 0.075 mm/s at 200 °C isothermally in the presence of 30 MPa back-

pressure. These ECAE parameters were found, after many trials, to be necessary to 

process the alloy up to four ECAE passes without shear localization or major cracks. A 

die having a sharp 90o corner angle was used. The hot rolled sample had a strong basal 

texture aligned with the plate normal. In order to reveal the effects of starting texture on 

microstructure and texture evolution during ECAE, the billets were processed with basal 

poles parallel to either the extrusion direction (ED) or the flow direction (FD). Figure 3.1 

shows the schematics of the two processing conditions with hexagonal unit cell 

representing the orientation of the majority of the grains. Figure 3.1 also presents the 

starting textures in the die coordinate frame for both cases. These two processing 

conditions will be called 1A-I and 1A-II, respectively in the remaining of the text. 

Second and fourth ECAE passes were also conducted, to see the effects of ECAE routes 

on texture and to produce samples having different textures than those obtained after the 

first ECAE pass, on additional billets following the well established conventional ECAE 

routes A, C, E and BC, with a starting textures the same as 1A-I before the first pass. In 

route A, the billet is reinserted into the die without any rotation, but in routes C and BC, 
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the billet is rotated about its extrusion axis by 180° and 90°, respectively, before the 

successive pass. Route E is a combination of the routes C and BC, where the billet is 

rotated around its extrusion axis by 180° before even-numbered passes and by 90° 

before odd-numbered passes. In addition to these rotations dictating the route, there is 

also unavoidable 90° rotation of the billet about its flow direction when it is inverted 

back to the vertical insertion orientation before the following pass. Details on the ECAE 

processing in general are presented in Chapter II. ECAE parameters for all passes were 

the same as those of 1A-I and 1A-II. These will be designated as xY-I, where x is the 

number of passes conducted on the billet, Y is the route designation (A, C, BC or E) and 

I represents the starting texture of basal poles parallel to the ED as shown in Figure 

3.1.a. All billets were heated to the processing temperature of 200 °C for 20 minutes 

before the first pass and 15 minutes before additional passes. They were water quenched 

directly after each pass. All extrusions conducted on AZ31B alloy are listed in Table 3.1. 
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(a)                                                                                   (b) 

Figure 3.1 Schematics of the two extrusion cases, (a) 1A-I: the starting basal poles are 

parallel to the ED and (b) 1A-II: the basal poles are parallel to the FD. 

 

Table 3.1 A list of ECAE experiments carried out on AZ31B and ZK60A Mg alloys. 

Route 1 

pass 

2 

passes 

4 

passes 

ECAE parameters Number of 

Billets Temperature 

(°C) 

Speed 

(mm/s) 

Back-

Pressure 

(MPa) 

A 1A 2A 4A 200 °C 0.075 30 4 

C 2C 4C 200 °C 0.075 30 3 

BC 2BC 4BC 200 °C 0.075 30 3 

E  4E 200 °C 0.075 30 2 

Total Number of billets 12 
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3.2.1 Microstructural characterization of as received and processed AZ31B alloy 

Optical microscopy and crystallographic texture measurements were performed 

on the samples cut from the fully deformed region of the billets with surfaces parallel to 

the flow plane which is perpendicular to flow direction (FD) (Figure 3.1). Texture 

measurements were carried out using X-ray diffraction with a Bruker AXS D8 Discover 

Diffractometer with Cu-Kα radiation at 40 kV and 40 mA. For optical microscopy, the 

samples were mechanically polished down to 0.1 μm and etched using a solution that is 

composed of 10 mL acetic acid, 4.2 g picric acid, 10 ml H2O and 70 ml ethanol. The 

optical micrographs were taken using a Keyence VHX-600K digital microscope.  

3.2.2 Mechanical testing of as received and processed AZ31B alloy 

Dog-bone shaped tension specimens with nominal gage dimensions of 

8 mm × 3 mm × 1.5 mm and rectangular prism compression specimens with nominal 

dimensions of 4 mm × 4 mm × 8 mm were prepared using wire electrical discharge 

machining (EDM) from the fully deformed region of the extruded billets (see Figure 

3.2). All samples were polished using 600 grit size carbide paper to get rid of EDM 

surfaces. The tension and compression tests were performed at room temperature along 

the three orthogonal directions of the ECAE billets: ED, FD and longitudinal direction 

(LD) as shown in Figure 3.2. The experiments were conducted under strain rate control 

with a rate of 5 × 10-4 s-1. At least three compression and tension specimens were used to 

validate the repeatability of the experiments. A list of all characterization and testing 

experiments performed on as received and processed AZ31B Mg alloy are listed in 

Table 3.2. 
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Figure 3.2 Schematic showing the tension and compression samples cut along the three 

orthogonal directions in the ECAE processed AZ31B Mg alloy: extrusion direction 

(ED), longitudinal direction (LD) and flow direction (FD). 

 

Table 3.2 Details of the processing and characterization experiments conducted on 

AZ31B Mg alloys. 

Route 

A 
1starting with <0002>//ED
2starting with <0002>//FD

C E BC 
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3.3 Thermomechanical Processing of Zn-8wt.% Al Alloy Using Equal Channel 

Angular Extrusion 

The material billets with a cross section of 25 mm × 25 mm and a length of 150 

mm were cut from as-cast ZA-8 ingot. The billets were extruded using an ECAE die 

having a sharp 90o corner angle at an extrusion rate of 0.25 mm/s, reported in the 

literature, for up to eight passes following various processing routes listed in Table 3.3. 

The eight passes were selected because it was found in our previous works on bcc [98], 

fcc [9] and hcp [5] single phase materials that eight passes are necessary to assure high 

volume fraction of high-angle grain boundaries and stable mechanical response. 

Processing temperatures were 80 or 100 oC (corresponding to the homologous 

temperatures of 0.52 to 0.55 Tm), the lowest possible temperatures for extrusion of this 

alloy without cracking after eight passes. The billets were kept in the die at the extrusion 

temperature for 30 minutes before the first pass and 15 minutes before the subsequent 

passes. They were water quenched directly after each pass. 
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Table 3.3 A list of ECAE and characterization experiments conducted on Zn-8wt.% Al 

alloy. 

Extrusion 

Route 

Material 

Composition 

(wt. %) 

Initial 

Condition

Extrusion 

temperature

Extrusion 

Rate 

(mm/s) 

Characterization 
OM: Optical Microscopy 

WDS: Wavelength Dispersive 

Spectroscopy 

MH: Vickers Micro-Hardness 

T: Tension 

8C Zn-Al (8%) As-Cast 80 °C 0.254 OM WDS MH T 

8BC Zn-Al (8%) As-Cast 100 °C 0.254 OM WDS MH T 

8E Zn-Al (8%) As-Cast 100 °C 0.254 OM - - T 

8BA Zn-Al (8%) As-Cast 100 °C 0.254 OM - - T 

8 BC Zn-Al (8%) As-Cast 100 °C 0.254 OM - - T 

8 BC Zn-Al (8%) As-Cast 80 °C 0.254 OM WDS MH T 

8E Zn-Al (8%) As-Cast 80 °C 0.254 OM - T 

16 BC Zn-Al (8%) As-Cast 100 °C 0.254 OM - T 

1 BC Zn-Al (8%) As-Cast 80 °C 0.254 OM WDS MH T 

2 BC Zn-Al (8%) As-Cast 80 °C 0.254 OM WDS MH T 

 

3.3.1 Microstructural characterization of as received and processed Zn-8wt.% Al alloy 

The microstructural evolution of the ZA-8 alloy was monitored using optical 

microscopy and scanning electron microscopy (SEM). The samples were obtained by 

sectioning the processed billets parallel to their flow plane, and then prepared using 

standard metallographic techniques down to 0.05 μm aluminum powder. The specimens 
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were then etched using nital solution composed of 1 mL nitric acid and 100 mL H2O. 

The optical micrographs were taken using a Keyence VHX-600K digital microscope. 

The SEM micrographs were taken using Cameca SX50 electron micrsocpe. 

Wavelength Dispersive Spectroscopy (WDS) and microhardness measurements 

were carried out on the mechanically polished samples, down to 0.05 μm aluminum 

powder, cut from the as-cast and processed billets parallel to the flow plane.  

Microhardness measurements were carried out at a load of 200 mN. The compositional 

analyses were carried out on a four spectrometer Cameca SX50 electron microprobe at 

an accelerating voltage of 15 kV at a beam current of 10 nA. 

3.3.2 Mechanical testing of as received and ECAE processed Zn-8wt.% Al alloy 

For room temperature tension experiments, flat dog bone shaped tension samples 

with a gage section of 2.0  × 3.0 × 8.0 mm3 were cut from the homogeneously deformed 

volume [99] using wire electrical-discharge machining (EDM) having their tensile axes 

parallel to the extrusion direction. In the 1A, 2BC and 8BC ECAE samples, tension 

specimens were also cut parallel and perpendicular to the long axis of the elongated hard 

eutectoid phase particles or bands. Tension tests were carried out at room temperature on 

an MTS test frame at a strain rate of 5 × 10-4 s-1. A contact extensometer with 8 mm 

gauge length was used to measure the strain. Three to four companion specimens were 

tested to confirm the repeatability of the experiments.  
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CHAPTER IV 

FLOW STRESS ANISOTROPY AND TENSION COMPRESSION 

ASYMMETRY OF ECAE PROCESSED AZ31B MG ALLOY  

 

AZ31B Mg alloy is ECAE processed starting with two different crystallographic 

textures and up to two ECAE passes following routes A, C and BC. A visco-plastic self-

consistent (VPSC) crystal plasticity model is used to predict texture and grain 

morphology evolution during ECAE. Simulation of ECAE process using VPSC model 

helps understand the governing deformation mechanisms and the effects of these 

mechanisms on the resulting microstructure and texture. It is demonstrated that dynamic 

recrystallization during high temperature ECAE is highly dependent on the starting 

texture with respect to the die geometry and hence to the slip systems activated during 

ECAE. The crystallographic texture of the processed samples also depends on the 

starting texture and the rotation of the billet between successive passes, i.e. ECAE 

routes. The evolved texture after ECAE is found to be the main reason responsible for 

flow stress anisotropy and tension-compression asymmetry.  

4.1 Microstructure Evolution  

As can be seen in Figure 4.1.a, the starting material has an average grain size of 

25 µm. The grains size is still not uniform throughout the specimen. As expected for hot 

rolled Mg plate, it has strong basal texture in which basal poles are parallel to the normal 

direction of the plate.  
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Figure 4.1 (a) The microstructure, (b) grain size distribution, and (c) texture of the 

starting AZ31B Mg alloy. 
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The optical micrographs of the processed samples taken from the flow plane of 

the billets of 1A-I and 1A-II are shown in Figure 4.2. The grains in the 1A-II sample are 

elongated and have an inclination angle of about 25-29° from the extrusion direction. A 

theoretical inclination angle of 26.6° from the ED has been calculated after the first 

ECAE pass of crystalline materials [23]. Two dynamically recrystallized and deformed 

regions are indicated in Figure 4.2. As shown, DRX took place in both cases but it is 

more prevalent in 1A-I. In 1A-II, we observe “necklace” type DRX starting in which 

small DRX grains are located along the grain boundaries of larger deformed grains.  

Figure 4.2 clearly indicates that starting texture has a substantial effect on DRX, grain 

morphology, and grain size.  

 

50 μm50 μm50 μm50 μm

DRX grains

deformed grains
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                      (a)                                                                 (b) 

Figure 4.2 Optical micrographs of AZ31B ECAE samples processed  starting with basal 

poles (a) parallel to the extrusion direction (1A-I) and (b) parallel to the flow direction 

(1A-II). The extrusion direction is to the right. 
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Figure 4.3 shows the microstructure of samples after the second pass of (a) 2A-I 

(b) 2C-I and (c) 2BC-I. The grain morphologies developed in the 2A-I and 2C-I samples 

are similar to those in the 1A-I sample.  It appears, however, that they have a higher 

amount of DRX than the 1A-I sample, although it is difficult to extract the exact volume 

fractions of DRX and non-DRX regions from these OM images.  In contrast, the grain 

morphologies in 2BC-I sample (Figure 4.3,c) are unlike those developed after the first 

pass (1A-I).  In fact, they appear to be similar to those of the 1A-II sample in shape but 

finer. Also, unlike 2A-I and 2C-I, the amount of DRX in 2BC-I is not significantly 

different than that of 1A-I, suggesting that most of the DRX observed in the 2BC-I 

sample may have taken place during the previous pass.  

4.2 Crystallographic Texture  

Figure 4.4 shows the measured basal and prismatic pole figures of the first-pass 

AZ31B 1A-I and 1A-II samples. Starting texture I or II had a pronounced effect on the 

texture developed after one extrusion.  In 1A-I, the grains have their c-axes more or less 

distributed about the LD with two peaks, one located about 5° clockwise from the LD 

and the other about 33° away, counter-clockwise, as shown in Figure. 4.4.a. The position 

of the two peaks at the rim of the pole figure indicates that the basal plane normals of 

most grains are almost perpendicular to the FD and the ED, but, the secondary peak 

makes an angle of about 57° from the ED On the other hand, in the 1A-II sample the c-

axes of most of the grains are spread around the FD towards a pole that makes 20-30° 

angle with LD counterclockwise. 
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Figure 4.3 Optical micrographs of AZ31B ECAE samples processed starting with basal poles parallel to the extrusion 

direction and up to two ECAE passes following route (a) A (2A-I), (b) C (2C-I) and (c) BC (2BC-I). 
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In spite of their differences, textures of 1A-I and 1A-II both have a strong 

alignment of the basal poles approximately 20° to 30° from the LD.  This is a common 

feature in one-pass textures of many HCP materials regardless of the c/a ratio [4, 26, 

100-104]. Yapici and Karaman [4] found that other hcp materials, such as pure Zr, pure 

Be and Ti-6Al-4V alloy, have a similar texture evolution as AZ31B alloy, but without 

the basal peak split. Later it was proposed in [26, 100, 103] that this similarity is due to 

the prevalence of basal slip during ECAE processing. In the case of 1A-II, the alignment 

process is incomplete due to the influence of the starting texture. Yet the resulting 

texture is quite similar to one observed in Zr [103] with the same starting texture.  

The basal and prismatic pole figures of the 2A-I, 2C-I and 2BC-I samples are 

shown in Figure 4.5. For the second pass, the effect of ECAE route on texture evolution 

can be examined.  As shown, the 2A-I and 2C-I textures have many features similar to 

those of the 1A-I texture.  For instance, they are centro-symmetric and most of the basal 

poles are aligned about the LD into two peaks. The important difference, however, is the 

angle between these two maxima.  As indicated, the angles between the two peaks are 

32° and 62° for the 2A-I and 2C-I cases, respectively. The 2BC-I texture is strikingly 

different than those of 2A-I and 2C-I.  The symmetry found in 1A-I, 2A-I, and 2C-I is 

lost.  In this case, the 90° rotation of the billet about its ED before the second pass in 

route BC orients the basal poles parallel to near FD similar to the starting texture of case 

II.  Accordingly, it is not surprising that the 2BC-I texture is similar to the 1A-II texture.  
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After one pass ECAEStarting Texture 

(0002)(1010) (0002)(1010)

ED
LDExtrusion

Direction
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Direction

38°

30°  

Figure 4.4 Prismatic and basal pole figures of starting and ECAE processed AZ31B Mg 

alloy after one ECAE pass with two different initial textures. (a) In the 1A-I case, most 

grains have c-axes parallel to LD. There is also a secondary peak in the basal pole figure 

making an angle of about 35° about LD. (b) In the 1A-II case, the basal poles are more 

spread around FD towards a pole that makes a 27° angle with LD. 
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Figure 4.5 Basal and prismatic pole figures for (a) 2A-I (b) 2C-I and (c) 2BC-I samples. 

The starting texture of all these cases is similar to the one shown in Figure 6.a. The split 

between the peaks in the basal pole figures of 2A-I and 2C-I samples is measured as 29° 

and 65°, respectively. 
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4.3 Mechanical Flow Response  

 It is well known that Mg and Mg alloys exhibit plastic anisotropy and tension-

compression asymmetry as a result of texture and the strong dependence of deformation 

mechanisms on crystal orientation.  In this section, the effect of texture changes as a 

result of starting texture, number of ECAE passes, and route on room temperature plastic 

anisotropy in tension and compression are reported.   

As a basis of comparison, the mechanical response of the as-received material 

was determined. The initial texture of the sample had a strong basal texture.  

Consequently the flow anisotropy and tension-compression asymmetry in the as-

received material is found to be significant. The as-received specimens yielded at 158 

and 58 MPa in tension along the in-plane (IP) and through-thickness (TT) directions, 

respectively. In compression however, the specimens yielded earlier along the IP 

direction with a 0.2% proof stress value of 69 MPa compared to 126 MPa through the 

thickness (see Figure 4.6 and Table 4.1).  
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Figure 4.6 Room temperature tensile (solid lines) and compressive (dashed lines) 

responses of as-received, hot rolled AZ31B alloy along the two plate directions: In-plane 

(IP) and through-thickness (TT). 
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Table 4.1 Mechanical properties of ECAE processed AZ31B Mg alloy under tension 

and compression including the standard deviation. The number before the billet label 

indicates the number of passes, I represent the starting texture of basal poles parallel to 

the extrusion direction and II represent the starting texture of basal poles parallel to the 

flow direction. (IP: In-plane, TT: Through-Thickness, ED: Extrusion Direction, LD: 

Longitudinal Direction, FD: Flow Direction, SD: Stress Differential). 

Billet Direction 

Tension Compression 
SD 
(%) 

0.2% proof 
stress 
(MPa) 

UTS 
(MPa) εf 

0.2% proof 
stress 
(Mpa) 

UTS 
(MPa) 

As 
Received 

IP 158.5 
± 1.5 

290 
± 3.0 

0.158 
± 0.015 

69.0 
± 1.4 

307 
± 3.5 -78.7 

TT 58.5 
± 0.5 

319 
± 5.0 

0.149 
±0.012 

126.0 
± 2.6 

295 
± 5.5 73.2 

1A-I 

ED 143 
± 10 

298 
± 11 

0.152 
±0.018 

133.5 
± 1.5 

336.5 
±0.5 -6.52 

LD 100 
± 4.1 

256.5 
± 0.5 

0.112 
±0.001 

119 
± 24 

286 
± 21 17.45 

FD 222 
± 1 

328.5 
± 1.5 

0.191 
± 0.002 

147.5 
± 0.5 

378.5 
± 0.5 -40.32 

1A-II 

ED 150.5 
± 0.5 

255.5 
± 13.5 

0.061 
± 0.016 

137 
±8 

269 
±3 -9.39 

LD 103 
±0 

258 
±9 

0.109 
±0.012 

102.5 
±1.5 

272 
±2 -0.49 

FD 135.5 
±2.5 

304.5 
±4.5 

0.1315 
±0.0085 

136 
±5 

343.5 
±0.5 0.37 

2A-I 

ED 144 
±2 

283 
±0 

0.1055 
±0.0005 

148 
±9 

296 
±13 2.74 

LD 128 
±2 

238 
±6 

0.092 
±0.002 

135.5 
±6.5 

290 
±20 5.69 

FD 246 
±0 

321 
±1 

0.158 
±0.009 

182 
±6 

436 
±7 -29.91 

2C-I 

ED 82.5 
±0.5 

237.5 
±7.5 

0.151 
±0.014 

114 
±13 

224 
±4 32.06 

LD 102 
±2 

195 
±1 

0.1115 
±0.0005 

122 
±3 

240 
±15 17.86 

FD 261 
±4 

347 
±0 

0.162 
±0.024 

193 
±2 

442 
±2 -29.96 

2BC-I 

ED 166 
±22 

291 
±28 

0.119 
±0.047 

181 
±10 

270 
±0 8.65 

LD 114 
±2 

239 
±1 

0.120 
±0.006 

134 
±4 

290 
±16 16.13 

FD 147 
±0 

314 
± 8 

0.169 
±0.022 

162 
±2 

377 
±6 9.71 
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The plastic anisotropic properties of the material changed after ECAE 

processing.  Table 4.1 lists the 0.2% proof stresses, ultimate tensile strength (UTS), and 

strain-to-failure of all the samples tested.  From the table it is readily apparent that that 

the plastic anisotropy and T-C asymmetry in yield strength are significantly lower in the 

1A-II sample than 1A-I sample and overall lower in the 2BC-II sample than the 2A-II 

and 2C-II samples.  For instance, the 0.2% proof stresses of the 1A-I samples along the 

LD, ED and FD are 100, 143 and 222 MPa in tension and 119, 134 and 148 MPa in 

compression, respectively.  The 0.2% proof stresses of the 1A-II samples along LD, ED 

and FD are 103, 150 and 135 MPa in tension and 103, 137 and 136 MPa in compression, 

respectively.  In addition to the anisotropy in yield strength, the hardening behavior of 

the samples when tested along the three orthogonal directions are also notably different. 

The remainder of this section is dedicated to relating the observed hardening behavior of 

these responses to the textures generated after ECAE.    

The true tensile and compressive stress-strain responses of 1A-I and 1A-II are 

shown in Figure 4.7. In tension, the 1A-I samples exhibited higher tensile yield strength 

and subsequently lower work hardening at the later stage of deformation when tested 

along the FD and ED than those that were tested along the LD. Such directional 

dependence can be associated with the activation of tensile twinning.  Recall in Figure 6 

the textures after one-pass ECAE 1A-I, wherein most of the grains in this sample had the 

basal poles aligned with LD and almost perpendicular to ED and FD. Because tension 

along LD places most of the grains in c-axis tension, it will be accommodated mostly by  

tensile{1 010} twining [50, 105, 106]. The strain hardening behavior observed along LD 
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is characteristic of the activation of twins, i.e. a plateau region with a relatively steady 

flow stress (or low hardening rate) [12, 50, 105-107] followed by an upward curvature 

with a high hardening rate. This kind of hardening behavior is not seen in the ED or FD 

tensile responses, two tests which do not place the crystals in c-axis tension and hence 

would not favor tensile twinning.  Instead, the alloy exhibits a typical reduction in strain 

hardening rate with increasing strain associated with slip-dominated deformation.  

Incidentally tension along the ED and FD of the 1A-I sample is comparable to in-plane 

tension of hot rolled plate or sheet, possessing also a strong basal texture, in which basal 

slip and prismatic slip accommodate most of the deformation [108].   

Due to the directionality of twinning, compression testing produces the opposite 

responses than those resulting from tension testing.  As shown in Figure 4.7, the 

increasing hardening rate associated with twinning is observed when the alloy is 

compressed along the ED and FD but not along the LD. Since the basal poles are spread 

close to the LD in the 1A-I texture, it is likely that compression along the LD activated 

mainly basal and pyramidal <c+a> slip. In addition, the samples yield earlier in tension 

compared to compression when tested along the LD, and the opposite is the case when 

tested along ED and FD. Apparently, the activation of tensile twins makes the samples 

yield at a lower stress level, at least for the present ECAE cases.   
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Figure 4.7 Room temperature tension (solid lines) and compression (dashed lines of AZ31B alloy ECAE processed starting 

with basal poles parallel to (a) Extrusion direction (1A-I) and (b) Flow direction (1A-II).  
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As a result of differences in texture development after ECAE between the 1A-I 

and 1A-II samples, the tensile and compressive responses in the 1A-II sample are 

different from those of the 1A-I sample. The most obvious and significant observation is 

that 1A-II processing results in a much lower flow stress anisotropy and tension-

compression (T/C) asymmetry than the 1A-I case.  For instance, in the case of LD 

testing, T/C asymmetry is almost negligible. The reduction in directional dependence 

can be attributed to the more diffuse texture developed in the 1A-II sample than 1A-I 

sample.  This is an important finding because it shows the possibility of controlling flow 

stress anisotropy and T/C asymmetry through careful selection of starting texture before 

ECAE while also refining the grain size simultaneously.  

The hardening response of the 1A-II samples in all tension and compression tests 

exhibited an interval of increasing strain hardening rate with strain that signifies 

deformation twin activity.  The only exception is the ED tensile response.  Based on the 

texture of the 1A-II sample (Fig. 4.4.b), it is clear that uni-axial compressive loading in 

the ED, FD, and LD or tensile loading in the FD and LD of the 1A-II sample places 

some fraction of the crystals in c-axis tension, promoting {1 012}  twinning.  ED 

tension, on the other hand, places most of the c-axis in compression making it 

impossible to activate {1 012} twinning.   

The true tensile and compressive responses of the 2A-I, 2C-I and 2BC-I  samples 

are shown in Figure 4.8 and the mechanical properties extracted from these curves are 

listed in Table 4.1.  Like the first-pass cases, the trends in the flow stress anisotropy and 

T/C asymmetry in the two-pass cases can be correlated with the texture that develops 
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after two-pass ECAE.  In both the 2A-I and 2C-I sample textures, most of the basal 

planes normals are perpendicular to the FD testing direction.  Consequently the 2A-I and 

2C-I samples have almost the same mechanical response along the FD in both tension 

and compression. In both cases, FD tension is likely accommodated by basal slip and FD 

compression mainly by tensile twinning.  In contrast, due to the difference in basal pole 

orientations with respect to the ED and LD directions between the 2A and 2C sample 

textures, their responses along the ED and LD are not the same.  For instance since the 

basal poles in the 2C-I sample make an almost 45° angle with ED, which maximizes the 

resolved stresses on the basal planes, ED tension in the 2C-I sample should favor more 

basal slip activity and hence explain the lower flow stress observed in this test than that 

in the ED tension test of the 2A-I sample. Moreover, because of the similar orientation 

of basal poles with respect to both the ED and LD directions in the 2C sample, there is 

little difference between the ED and LD responses whether in tension and compression.  

Because neither maximum is oriented well for tensile twinning, the T/C asymmetry 

along the ED and LD is also small.  Similar to the 1A-II samples, the 2BC-I samples 

demonstrate overall lower flow anisotropy and T/C asymmetry due to the more 

randomly distributed basal poles in the 2BC-I texture in comparison to the textures of the 

2A-I and 2C-I samples.  
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Figure 4.8 Room temperature true tension (solid lines) and compression (dashed lines) of AZ31B ECAE samples processed up 

to two passes following route (a) A (2A-I), (b) C (2C-I), and (c) BC (2BC-I).  
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4.4 Discussion of Results 

The microstructure and crystallographic texture of ECAE processed samples are 

found to be highly dependent on the initial grain orientation with respect to the die 

geometry. The microstructure of the 1A-I and 1A-II samples, for example, are 

completely different in terms of the grain morphology and the amount of DRX. This 

should be because of the different deformation modes active during these two ECAE 

cases. In order to correlate the microstructural evolution with the governing deformation 

mechanisms, the ECAE process was simulated using a visco-plastic self-consistent 

(VPSC) crystal plasticity model. The VPSC model can predict theoretically the activity 

of several different deformation modes to achieve a particular deformation texture.  

4.4.1 Texture prediction 

Texture evolution, grain morphology, and DRX during ECAE processing were 

shown to depend significantly on the starting texture, number of passes (one or two), and 

route (A, BC, or C).  The observed differences in these microstructural properties are 

related to the relative activities of the various slip modes activated during each 

deformation path.  To determine the variation in slip during each ECAE test the ECAE 

simulation model in [24-26], which incorporates the visco-plastic self-consistent (VPSC) 

crystal plasticity scheme, was applied.  In these prior works the model formulation, 

extensions to severe plastic strain deformation, the applied ECAE shearing, and 

treatment of the rigid body rotations between ECAE passes are described. 
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The same material model is used to simulate ECAE continuously up to two 

passes for a given starting texture and ECAE route and to predict the evolution of four 

slip modes, texture, and grain morphology without adjustment of any parameters. The 

simulation begins by importing the starting texture in one of two orientations I or II as 

shown in Figure. 3.1. The initial texture is represented by 1000 discrete orientations and 

the grains are initially spherical. The CRSS values to activate each slip mode are 

constant and are normalized by the CRSS value for basal slip.  They are assigned values 

of 1.0, 6.0, 8.0 and 8.0 for basal <a>, pyramidal <c+a>, pyramidal <a> and prismatic slip 

<a>, respectively, which are the same as those first reported in Agnew et al. [59].  It 

should be mentioned that although this set of CRSS values may work for AZ31, even up 

to four passes [104], a significantly different set has been characterized for another Mg 

alloy (ZK60) at different grain sizes [102].   

Figures 4.9 and 4.10 show respectively the first-pass and second-pass basal pole 

figures predicted from the model.  In all cases the agreement is excellent, which 

indicates that the relative activities of basal, pyramidal <a> and <c+a>, and prismatic 

slip are on average over the entire material are well predicted.  In the 1A-I case, the 

calculated texture has the 38o angle between the two basal peaks as well as the correct 

location of the two peaks. Also, the predicted 27o orientation of the basal peak from LD 

in the 1A-II basal pole figure is in good agreement with the experimental one. Likewise 

the variation of the angles between the two maxima in basal pole figures of 2A-I and 2C-

I was successfully predicted. Moreover, in case of 2BC-I, the predicted location of the 
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basal pole peaks with respect to the billet directions agrees well with the experimental 

results.  

It is important to note that despite the assumptions of homogeneous effective 

medium (HEM) in the self-consistent approach, the agreement between the predicted 

and measured texture is good. This could be attributed to the fact that the AZ31B Mg 

alloy at such high processing temperature of 200 °C is very dilute. Moreover, the strong 

texture observed in as received and processed samples reduces the inhomogeneity of the 

matrix. Therefore, an HEM can be assumed in which each grain see the same strain rate 

tensor and interact with the same representative medium.  
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Figure 4.9 Predicted basal pole figures of AZ31B Mg alloy processed via one ECAE 

pass starting with basal poles parallel to (a) the extrusion direction (1A-I), and (b) 

parallel to the flow direction (1A-II). 
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Figure 4.10 Predicted basal pole figures of AZ31B Mg alloy processed via two ECAE 

passes starting with basal poles parallel to the extrusion direction and following route (a) 

A (2A-I), (b) C (2C-I) and (c) BC (2BC-I). 

 

It is important to note that twinning and DRX were not included in the model and 

in spite of their absence, the model is effective in forecasting texture evolution up to two 

passes.  This may indicate that twinning did not occur or was negligible in contribution 

and as support, has not been reported to take place during processing at 200 °C [59].  

Effective texture predictions without accounting for DRX have been also reported earlier 

[102, 104].  

It should be emphasized that while constant CRSS values may be suitable for 

texture prediction, they generally are not for predicting the evolution of the material 

response during ECAE and subsequent stress-strain response of the processed billets.  

Plastic anisotropy is more sensitive than texture to details of microstructural evolution 

(e.g., amount of DRX, grain size, dislocation density accumulation, substructure 

development).  Modeling the mechanical flow response of ECAE material in this case 
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would require evolving the CRSS for each slip system according to thermally activated 

storage of dislocations, as was done in [26, 50, 91].  Accounting in particular for the 

temperature dependence in hardening response is critical since processing took place at a 

significantly different temperature (200 °C) than subsequent testing (room temperature). 

The present model, however, is sufficient to accurately predict texture evolution during 

ECAE as a function of starting texture and ECAE route, and should be beneficial for 

simulation-based selection of thermo-mechanical processing parameters to obtain a 

desired texture. Since texture is the main determining factor for the plastic anisotropy in 

Mg alloys as clearly shown in Section 4.3, starting texture and ECAE parameters can be 

selected carefully with the help of the present model to reach highly anisotropic or 

weakly anisotropic end material.  

4.4.2 Deformation mechanisms during ECAE 

Effective texture predictions can provide insight on the relative contributions of 

slip as a function of deformation path.  Figures 4.11 and 4.12 show the relative activities 

of the aforementioned slip modes for the one-pass and two-pass ECAE cases, 

respectively. In all cases, basal slip was the most active and pyramidal <a> slip was 

negligible or inactive.  However, each test differed substantially in the amount of non-

basal slip activity of pyramidal <c+a> slip and prismatic slip.  During both 1A-I and 1A-

II, most of deformation is accommodated only by basal slip. However unlike 1A-I, 

during 1A-II, pyramidal <c+a> and prismatic slip were also active (Figure 4.12.b).  In 

the second passes of the 2A-I and 2C-I extrusions, most of the deformation is 

accommodated by basal slip and secondly by pyramidal <c+a> slip.  The difference in 
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the location of their maxima may be explained by the deformation stage at which <c+a> 

slip is active.  As shown in Figure 4.12.a, during 2A-I, <c+a> slip was active in the first 

20% and last 40% of the strain but during 2C-I, it was only active in the first 50% of the 

strain.  It is possible that activity of pyramidal <c+a> slip in the last stage of ECAE 

deformation brought the two basal peaks closer together in the 2A-I texture.  In the 

second pass of the 2BC-I extrusion we find the most prismatic slip activity.  
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Figure 4.11 Predicted relative activities of the considered deformation modes for one 

ECAE pass starting with basal poles parallel to (a) the extrusion direction (1A-I), and (b) 

parallel to the flow direction (1A-II). 
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Figure 4.12 Predicted relative activities of slip systems during the second ECAE pass starting with basal poles parallel to the 

extrusion direction, and following route (a) A (2A-I), (b) C (2C-I) and (c) BC (2BC-I). 
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The slip modes activated can be explained by the orientation of the entry texture 

with respect to ECAE shearing.  The starting orientation of case I places the crystals in a 

favorable orientation for basal slip with respect to the ECAE shearing and consequently 

in the 1A-I extrusion, almost all plastic deformation is accommodated by the basal slip.  

The starting orientation of case II, however, orients most of the crystals well for 

prismatic slip.  As this is a relatively hard mode, deformation in 1A-II triggers the 

activity of basal, pyramidal <c+a> and prismatic slip.  The entry texture for the second 

passes depends on the texture developed after the first pass, in this case 1A-I.  The 1A-I 

had two maxima.  No rotation and the 180° rotation around the axis of the billet before 

the second ECAE pass in route A and C, respectively, align the concentration of basal 

poles of one peak parallel to the ED similar to the case I starting texture.  The other peak 

is placed at an angle of 33° counterclockwise and clockwise about LD in route A and C, 

respectively.  These crystals are oriented well for pyramidal <c+a> slip in both cases, but 

due to the difference in the location of their second peak with respect to ECAE shearing, 

the evolution of pyramidal <c+a> slip in 2A and 2C is not the same.  Before the second 

ECAE pass, the rotation of the billet by 90° around its ED in route BC aligns the basal 

poles parallel to FD similar to the starting texture before the 1A-I extrusion but with a 

secondary peak making an angle of about 30° from the FD.  As in the 1A-II extrusion, 

this ‘hard’ orientation activates all three slip systems but due to some distribution of 

orientations ~20-30° from the FD more prismatic slip is promoted.   
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4.4.3 Effect of prismatic slip on dynamic recrystallization during ECAE  

It is well known that DRX occurs most readily in materials in which recovery is 

slow, e.g. in materials of medium or low stacking fault energy (SFE). The SFEs in 

magnesium depend on the slip plane:  about 32-36 mJ/m2 for the basal plane [64, 65], 

265 mJ/m2 for the prismatic plane [64] and 344 mJ/m2 for the pyramidal plane [64].  

Therefore recovery by DRX can be associated with deformations involving basal slip 

while recovery by dynamic recovery (and lack of DRX) can be associated with active 

prismatic and pyramidal slip.  Alternatively Ion et al. [66] ascribed DRX during high 

temperature deformation of Mg to the constraints imposed by the lack of easily activated 

slip systems rather than the effect of SFE.   

Of the two non-basal slip systems important in Mg deformation, it is probable 

that the activity of prismatic slip, more so than pyramidal <c+a> slip, moderates the 

amount of DRX.  Barnett [109] found that the amount and progress of DRX was 

sensitive to changes in crystal orientation in relation to the compression axis of the 

deformed Mg alloy.  In that study, the lowest recrystallized volume fraction occurred 

when prismatic slip was the most prevalent.  It has also been reported that prismatic slip 

tends to relax the structure [49] and therefore, activity of prismatic slip could act as a 

relaxation mechanism, which lowers the amount of internal stress and hence the 

available energy for DRX.   

The present results suggest prismatic slip during ECAE influenced the amount of 

DRX during ECAE of Mg.  In the 1A-II and 2BC-I cases, where prismatic slip is favored 

and active throughout the extrusion, a lower volume fraction of DRX is observed, 
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supporting the findings of Barnett [109]. Most of the DRX seen in the 2BC-I sample 

probably took place during the first ECAE pass 1A-I, which deformed primarily by basal 

slip.   

4.4.4 Effect of prismatic slip on evolution of grain morphology 

Grain morphologies can also be extracted from the simulations.  The ellipsoidal 

grain shape is predicted to evolve according to the slip activity, crystal orientation, strain 

level, interactions with surrounding anisotropic, homogeneous medium, and strain path 

experienced by each individual grain.  The distribution of the ratio of the major axes (a) 

to the minor axis (b), a/b, of the deformed ellipsoid for all 1000 grains used in the 

simulation are plotted in Figures 4.13 and 4.14. Figure 4.13 compares the predicted 

distribution of the ratio a/b between the two first-pass cases, and Figure 4.14 compares 

the calculated a/b distribution between the three routes after the second ECAE pass.  

Also shown in these figures are the experimental averages of the a/b ratio obtained by 

measuring about 100 grains from each sample. In good agreement with the 

measurement, the model predicts higher grain elongations in the 1A-II case than the 1A-

I case. Also consistent with the measurements, the model predicts that grains in the 2BC-

I sample are more elongated than the grains in both the 2A-I and 2C-I samples. Although 

the average a/b ratio of the 2A-I and 2C-I samples is the same, the latter distribution is 

bi-modal, as can be seen in Figure 4.14.b. The a/b ratio distribution for the 2BC-I sample 

is also bi-modal (Figure 4.14.c).  The higher variability in the grain shape calculated for 

the 2C-I and 2BC-I samples than for the 2A-I samples can be validated by the lower 

magnification optical micrographs shown in Figure 4.15.  The microstructure of the 2A-I 
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sample as seen in Figure 15.a is more uniform than that of the 2C-I and 2BC-I samples in 

Figure. 4.15.b and 4.15.c, respectively.  Evidently the latter two deformed samples have 

a wider range of grain shapes, in agreement with the prediction.  

Qualitatively good agreement in grain shape evolution between the model and 

measurement suggests that the activity of prismatic slip tends to elongate the grains. 

Unlike 1A-I, 2A-I, and 2C1, simulations of 1A-II and 2BC-I processing predict 

pronounced prismatic slip activity throughout the deformation.  The grains in the 1A-II 

and 2BC-I posses a similar, highly variable shape (a/b) distribution and are more 

elongated than those in 1A-I, 2A-I, and 2C-I.   

4.5. Flow Stress Anisotropy and Tension-compression Asymmetry 

Tension-compression asymmetry in yield strength can be quantified by the 

following stress differential (SD) [110] which is given by 

                                        
( )

0.5 ( )

c t
y y

c t
y y

SD
σ σ
σ σ
−

=
× +

                  (4.1) 

where t
yσ  and c

yσ  are yield strengths in tension and compression.  The SD ratio for all 

cases are listed in Table 4.1 and plotted as functions of number of passes in Figure 4.16.  

As shown T/C asymmetry was reduced from the as-received to the processed material.  

For a given direction, the SD ratios are generally higher for the 1A-I, 2A-I, and 2C-I 

samples than 1A-II and 2BC-I samples.   
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Figure 4.13 The predicted distribution of grain ellipsoidal ratio (grain major to minor axes ratio (a/b)) for the two one-pass 

ECAE cases: (a) starting with basal poles parallel to extrusion direction (1A-I) and (b) starting with basal poles parallel to flow 

direction (1A-II). The polynomial fits and the experimental and predicted average (a/b) ratio of the two cases. 
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Figure 4.14 Predicted distribution of ellipsoidal grain major to minor axes ratio (a/b) for the three two-pass ECAE cases 

starting with basal poles parallel to extrusion direction and following route (a) A (2A-I), (b) C (2C-I) and (c) BC (2BC-I).. (d) 

The polynomial fits, and, the experimental and predicted average of (a/b) ratio of the three two-pass ECAE cases. 
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Figure 4.15 Lower magnification optical micrographs of AZ31B ECAE samples processed starting with basal poles parallel to 

the extrusion direction and up to two ECAE passes following route (a) A (2A-I), (b) C (2C-I) and (c) BC (2BC-I) . The 

extrusion direction is to the right. 
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Figure 4.16 Evolution of stress differential (SD) ratio with number of ECAE passes of 

the as received (AR) sample and the samples of two-passes ECAE following the three 

routes: A, C and BC, along the three orthogonal directions of the billets: extrusion 

direction (ED), longitudinal direction (LD) and flow direction (FD). 

 

Likewise beyond yield, the stress-strain behaviors of the 1A-I, 2A-I and 2C-I 

samples exhibited higher flow stress anisotropy and tension-compression asymmetry 

along the three orthogonal directions than the 1A-II and 2BC-I samples.  A notable 

exception was the ED and LD responses of the 2C-I sample; while the T/C asymmetry in 

ED and LD yield strengths were high (Figure 4.16), the T/C asymmetry in flow stress 

was low.   

Note that in some load directions, the yield strength and ultimate tensile strength 

(UTS) of the second-pass material are stronger, while in others they are weaker than the 
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first-pass material. Therefore, although ECAE does not necessarily strengthen the 

material uniformly, it can be used to either enhance or reduce plastic anisotropy. 

As discussed in section 4.3, the different characteristics in flow stress anisotropy 

and tension-compression asymmetry in the processed Mg alloys can be explained by 

considering the textures that develop as a result of the starting texture and the straining 

path imposed when going from one pass to another during ECAE process and from 

ECAE shearing to uniaxial testing. The strong orientation dependence with respect to the 

sense and direction of loading can be attributed to the ease of {1 012} twinning and the 

high ratio of CRSS between the slip modes in Mg alloys. Assuming a CRSS criterion for 

slip and twinning, the CRSS values were characterized via single crystal model of pure 

Mg tested in various orientations [50].  The two easiest modes were tensile twinning (1 

MPa) and basal slip (4 MPa) in comparison with for prismatic (12.5 MPa) and pyramidal 

<c+a> slip (63.2 MPa).  The relative ease and directionality of twinning causes the 

stress-strain response to be highly sensitive to orientation of the c-axis with respect to 

tensile stress states generated under the applied loading.  The relative ease of basal slip 

leads to flow responses highly dependent on the orientation of shearing with respect to 

the orientation of the basal slip planes. In the crystallographic textures of 1A-I, 2A-I and 

2C-I, the orientation of the basal poles with respect to the FD is similar. Therefore, the 

stress-strain responses of these three cases along FD in tension and compression are 

identical, except that the 1A-I sample yields at slightly lower stress level than those of 

2A-I and 2C-I which might be due to differences in the grain size and the volume 

fraction of DRX grains between one and two pass cases. However, the orientation 
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distribution of the basal poles with respect to ED and FD in the 2C-I sample is more 

diffuse than those in the 1A-I and 2A-I in samples and therefore the flow anisotropy and 

tension-compression asymmetry between the ED and FD tests are lower in the former.  

Compared to these three cases, the basal poles in the 1A-II and 2BC-I samples are 

distributed more randomly and hence the flow stress anisotropy is lower.   

4.6 Summary of Observations 

A systematic study on an AZ31B Mg alloy was conducted to achieve a basic 

understanding of the relationship between slip activity and the evolution of texture and 

grain microstructure during ECAE through the studies of only the two passes. Changes 

in slip activity during the first pass were invoked by changing the orientation of the basal 

poles of the strong initial texture with respect to the die. The slip activity during the 

second pass was altered by applying different routes. AZ31B alloy was successfully 

ECAE processed starting with two different initial grain orientations with respect to the 

die geometry and up to two passes following routes A, C and BC. The texture evolution 

during ECAE was successfully predicted using a VPSC crystal plasticity model in order 

to understand the relationship between the initial grain orientation and the ECAE texture 

evolution. The room temperature mechanical responses of the processed samples 

revealed the significance of the crystallographic texture on flow stress anisotropy and 

tension-compression asymmetry. The main findings of this study can be summarized as 

follow:  

1. Basal slip was the most active slip mode and pyramidal <a> slip was 

negligible in all ECAE cases.  
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2. The initial grain orientation (initial texture) with respect to the die orientation 

significantly affects the evolution of texture, dynamic recrystallization, and 

grain morphology during ECAE due to different amounts of non-basal slip 

activity. 

3. The activity of prismatic slip during ECAE significantly reduces the amount 

of dynamic recrystallization because the prismatic slip activity acts as a 

relaxation mechanism that reduces the stored energy and hence, the 

likelihood of DRX.  

4. A secondary basal peak and its location in the basal pole figure can 

significantly influence the slip activities during ECAE, and hence, the 

evolving texture. This can be seen clearly in the 2A-I and 2C-I cases. 

5. Flow stress anisotropy and tension-compression asymmetry in the three 

orthogonal direction of the billets is significantly influenced by the starting 

texture and route. The difference can be explained based on the concentration 

and orientation of the basal poles in the post-ECAE texture with respect to 

testing direction and sense of loading. It is shown that the more random the 

distribution of the basal poles, the lower the flow anisotropy and tension-

compression asymmetry.  
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CHAPTER V 

EFFECTS OF CRYSTALLOGRAPHIC TEXTURE OF AZ31B MG ALLOY ON 

FLOW STRESS ANISOTROPY AND TENSION-COMPRESSION ASYMMETRY  

 

As a continuation of the study of flow stress anisotropy and tension-compression 

asymmetry (T/C) discussed in Chapter IV, the pure influence of the crystallographic 

textures on the anisotropy and asymmetry of the hexagonal closed packed AZ31B Mg 

alloy will be discussed in this chapter. In order to eliminate the possible effects of grain 

size and morphology on the anisotropy and asymmetry, the alloy is ECAE processed up 

to four passes following four different routes. The resulted microstructures of processed 

samples are much more uniform than those discussed in the previous chapter. The grains 

in all four samples are equiaxed. All four samples have uniform microstructures with a 

grain size in the order of 3-5 μm. The textures of the processed samples were also 

predicted using the aforementioned visco-plastic self-consistent (VPSC) crystal 

plasticity model for further evaluation of its capabilities in ECAE texture prediction. A 

comparison between the flow behavior of these uniformly structured samples and those 

presented in the previous chapter is also conducted in order to isolate the influence of 

grain size and morphology, if any, in this behavior.  
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5.1 Microstructures 

Figure 5.1 shows the optical micrographs of the four samples discussed in this 

chapter which were processed up to four ECAE passes following routes A, C, E and BC. 

Figure 5.2 shows the grain size distribution of these samples. To be consistent with the 

same terminology used for one and two-pass sample, the four-pass samples will be 

labeled as 4A-I, 4C-I, 4E-I and 4BC-I. The grain size distributions were calculated by 

measuring the size of about 300 – 400 grains from different micrographs individually, 

covering most of well defined grains.  It is very clear, from micrographs and grain size 

distributions, that route BC produces the most uniform microstructure with the smallest 

grain size of about 2.7 μm. Samples processed following routes A and C have close 

grain sizes but 4C-I sample is slightly more inhomogeneous as can be seen clearly form 

the broader grain size distribution (Figure 5.2.b) as well as from its optical micrographs 

(Figure 5.1.b). The as-received sample (hot rolled plate) has a grain size of about 25 μm 

as can be seen from Figure 4.1. After four ECAE passes at 200 °C, a grain size in the 

order of 4 μm was achieved. This refinement could be because of the continuous 

shearing of the grains as expected during ECAE and because of dynamic 

recrystallization which has been observed very clearly during one and two ECAE passes 

of the same material and processing temperature and starting with the same texture.  
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Figure 5.1 Optical micrographs of AZ31B ECAE samples processed up to four ECAE 

passes and following routes (a) A (4A-I), (b) C (4C-I), (c) E (4E-I) and (d) BC (4BC–I). 
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Figure 5.2 Grain size distribution of AZ31B ECAE samples processed up to four ECAE 

passes and following routes (a) A (4A-I), (b) C (4C-I), (c) E (4E-I) and (d) BC (4BC–I). 

 

5.2 Crystallographic Texture Evolution and Prediction 

Starting from the same initial texture in which basal poles were parallel to the 

extrusion directions, the four routes yielded four different textures after 4 passes. The 

experimental basal pole figures as well as the VPSC predicted ones of 4A-I, 4C-I, 4E-I 

and 4BC-I samples are shown in Figure 5.3. Similar to the texture of 1A-I and 2A-I 

samples shown in Chapter IV, the 4A-I basal pole figure has two basal peaks that are 

oriented along and about 30-40° from LD. The angle between the two peaks is about 30-
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35°. In 4C-I sample the split of the two basal peaks increases to 60-64° compared to the 

split in 2C-I sample.  

In order to further evaluate the visco-plastic self-consistent (VPSC) crystal 

plasticity model, it has also been used to predict the texture evolution up to four ECAE 

passes following the four different routes. The simulation was started from the same 

initial discrete texture of the experimental one in which basal poles are parallel to the 

extrusion axis during ECAE (Figure 3.2.a). The simulation was continuous, i.e. the 

starting texture of each pass is the predicted texture of the previous pass. For these 

predictions,  the same parameters used to predict the first and second ECAE texture 

where only possible slip modes at 200 °C have been considered in the simulation 

without twinning, and relative critical resolved shear stresses (CRSS) values of 1.0, 6.0, 

8.0 and 8.0 for basal <a>, pyramidal <c+a>, pyramidal <a> and prismatic slip, 

respectively, have been used. Interestingly, despite the dynamic recrystallization (DRX) 

that takes place during 200° ECAE and the fact that DRX was not taken into account in 

the VPSC simulation, the agreement between the predicted and experimental texture is 

acceptable for all routes as can be seen from Figure 5.3 The DRX grains in Mg alloys, 

usually, keep the same orientation of the parent grains [111]. This might explain the 

good agreement between the experimental and predicted textures in the presence of 

DRX.  

5.3 Mechanical Response 

The responses of the four ECAE samples: 4A-I, 4C-I, 4E-I and 4BC-I in tension 

and compression are shown in Figure 5.4. The first observation from these curves is the 
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Figure 5.3 Predicted and measured basal pole figures of AZ31B Mg alloy processed via 

four ECAE passes starting with basal poles parallel to extrusion directions and following 

route (a) A (4A-I), (b) C (4C-I), (c) E (4E-I) and (d) BC (4BC-I). 

 

similar behavior of 4C-I, 4E-I and 4BC-I samples along both ED and LD in tension and 

compression. These three samples yield at almost the same stress and strain harden in the 

same way when tested along ED and LD. The same thing can be said about the 

hardening behavior along FD of these three samples; however, the yield stress of 4C-I 

sample in tension is higher than that of 4E-I and 4BC-I samples. In compression, the four 

samples yield almost at the same stress value of about 150 MPa when tested along FD. 

Along this direction (FD), the four samples exhibited lower compressive yield strength 

and higher work hardening compared to tension.   

The 4A-I sample exhibited the higher flow stress anisotropy and tension 

compression asymmetry as clearly seen in Figure 5.4.a. In this sample, most grains have 
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basal poles aligned with or 30-35° away from LD, and almost perpendicular to ED and 

FD. Therefore, the deformation during tension along LD will be accommodated mostly 

by tensile twinning [12, 112]. The strain hardening behavior observed along LD is an 

evidence of the activation of twins, i.e. a plateau region with relatively steady stress [12] 

or low hardening coefficient followed by an upward curvature with a high hardening 

rate. This kind of hardening behavior is not seen when the alloy is pulled along ED or 

FD. Instead, the sample exhibits typical downward hardening curvature associated with 

slip dominated deformation. Tension along ED and FD is similar to in-plane tension of 

hot rolled plate (Figure 4.5) or sheet in which basal and prismatic slip accommodate 

most of the deformation [108]. Interestingly, during compression of this sample, the 

hardening associated with twinning is observed when the alloy is compressed along ED 

and FD but not along LD. Compressing the sample along LD can be estimated as a 

through-thickness compression (TTC) of a hot rolled plate or sheet since the basal poles 

are almost aligned with LD similar to the normal direction of a hot rolled plate. During 

this compression (along LD), the material deforms mainly via basal and pyramidal 

<c+a> slip [112]. Moreover, this sample (4A-I sample) yields earlier in tension than in 

compression when tested along LD and the opposite are true when tested along ED and 

FD. It can also be seen in Figure 5.4.a that the hardening behavior is also different in 

tension and compression along the same direction, again due to the activated 

deformation mechanisms and thus, ECAE texture.  
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Figure 5.4 Tensile (solid lines) and compressive (dashed lines) true response of AZ31B alloy ECAE processed up to four 

passes following route (a) A (4A-I), (b) C (4C-I), (c) E (4E-I) and (d) BC (4BC-I) .   



 

 

91

This phenomenon of opposite hardening behavior in tension and compression is 

also seen from the response of the other three samples, 4C-I, 4E-I and 4BC-I when tested 

along FD. Moreover, the T/C asymmetry of these samples is very high along this 

direction and almost negligible along ED and LD. This can be attributed to the 

orientation of the basal poles with respect to these three directions as can be seen in 

Figure 5.3. In all samples, basal poles are almost perpendicular to FD because of the 

existence of the basal peaks closer to the rim of the pole figure. But they make an angle 

of 30-42° from LD and hence 60-48° from ED. This might explain the higher T/C 

asymmetry along FD than along ED or FD especially in the last three samples.  

5.4 Low Temperature Processing of AZ31B Mg Alloy 

As discussed in Chapter IV, 200 °C processing of AZ31B Mg alloy triggers 

dynamic recovery and recrystallization very easily. These phenomena, tends to soften 

the materials. Therefore, low temperature processing after the initial high temperature 

processing is necessary to prevent dynamic recovery and recrystallization. The 

advantages of these processing over conventional ECAE routes include the flexibility to 

produce certain deformation textures that are not possible with conventional ECAE 

routes after the same amount of imposed strain.  
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Table 5.1 Mechanical properties of ECAE processed AZ31B Mg alloy under tension 

and compression. The number before the billet label indicates the number of passes, and 

the letter represents the ECAE route. (IP: In-plane, TT: Through-Thickness, ED: 

Extrusion Direction, LD: Longitudinal Direction, FD: Flow Direction, SD: Stress 

Differential). 

billet Direction Tension Compression SD 
(%) 0.2% 

proof 
stress 
(MPa) 

UTS 
 

(MPa) 

0.2% 
proof 
stress 
(MPa) 

UTS 
 

(MPa) 

As 
Received 

IP 158.5 
± 1.5 

290 
± 3.0 

69.0 
± 1.4 

307 
± 3.5 -78.7 

TT 58.5 
± 0.5 

319 
± 5.0 

126.0 
± 2.6 

295 
± 5.5 73.2 

 
 

4A 

ED 146.35 
±11.6 

328.55 
±1.85 

108 
±2.0 

326.6 
±3.5 -30.2 

LD 127.1 
±0.85 

306.8 
±27.1 

182.75 
±4.25 

310.4 
±3.0 35.9 

FD 243.8 
±0.3 

314 
±2.35 

149.25 
±4.45 

419.5 
±0.5 -48.1 

 
 

4BC 

ED 83.91 
±3.0 

262.9 
±13.6 

100 
±1 

211.6 
±7.2 17.5 

LD 98.5 
±0.1 

249.3 
±4.03 

99.25 
±11.75 

276 
±4.0 0.8 

FD 170.7 
±1.62 

308.11 
±2.89 

140 
±5 

341.15 
±3.75 -19.8 

 
 

4C 

ED 78.86 
±6.26 

251.4 
±5.4 

78.75 
±1.65 

189.2 
±3.8 -0.1 

LD 78.1 
±1.2 

189 
±17.65 

62.4 
±12.1 

221.3 
±20.9 -22.3 

FD 239.3 
±10.5 

312.7 
±33.4 

143.1 
±4 

441.7 
±8.3 -50.3 

 
 

4E 

ED 74.75 
±8.25 

268 
±4 

86.6 
±8.6 

186.2 
±4.45 14.7 

LD 81.59 
±2.61 

213.78 
±1.19 

82.6 
±2.3 

216.6 
±4.8 1.2 

FD 183.5 
±4.8 

303.6 
±3.6 

142 
±3 

322 
±27.3 -25.5 
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The AZ31B Mg alloy was processed using thermo-mechanical hybrid routes that 

include ECAE at different temperatures. Here, the results of two of these hybrid routes 

are presented because of their relevance of the discussion of this chapter. Starting with 

initial texture similar to texture I used for the cases presented in Chapter IV and this 

chapter. In this texture, the basal poles are oriented parallel to the extrusion direction 

during the first ECAE pass as shown in Figure 3.1.a. The as-received hot rolled billet 

was, first, annealed at 350 °C for 8 hours and canned in nickel can. Then the Ni cans was 

ECAE processed following route A at 200 °C for two passes with extrusion speed of 

2.54 mm/s. It was then rotated by 180° (like in route C) about its extrusion axis. Two 

more passes were performed following route A but at a temperature of 150 °C with 

extrusion speed of 0.8 mm/s. The can is then rotated one more time by 180° around its 

extrusion axis. The fifth pass was performed at 125 °C at extrusion speed of 0.25 mm/s. 

Back-pressure of about 35 MPa This processing case will be designated as 5H-I 

representing the number of passes, the use of a hybrid route and the initial starting 

texture. Another AZ31B billet was processed inside a Ni can too, but for seven passes at 

different temperatures and extrusion speeds. It was also processed in three steps as 

follow: (1) four passes following route A at 200 °C with extrusion speed of 2.54 mm/s, 

(2) two passes following route A at 150 °C and (3) One pass at 125 °C with extrusion 

speed of 0.08 mm/s. This case will be called as 7H-I. The reasoning of such processing 

path is beyond the subject of this dissertation and details about the hybrid processing 

will be published soon by Foley et al.   
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The optical micrographs of the 5H-I and 7H-I samples are shown in Figure 5.5. 

An average grain size of about 2 μm is achieved, with the presence of submicron grain 

sizes, after those hybrid routes. The measured prismatic and basal pole figures are shown 

in Figure 5.6, and the predicted basal pole figures are shown Figure 5.7. The simulation 

of all passes, despite the different processing temperatures, was performed using the 

VPSC model with the same parameters used for all aforementioned cases. Interestingly, 

the resulting textures of the two hybrid cases fall on the same categories as those of route 

A and C cases. These categories will be presented later in section 5.5.2. 

 

 

Figure 5.5 Optical micrographs of AZ31B sample ECAE processed following the 

hybrid route (a) 5H-I sample and (b) 7H-I sample.  
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Figure 5.6 Prismatic and basal pole figures of AZ31B sample processed following (a) 

5H-I and (b) 7H-I hybrid routes. The numbers in these labeling indicates the number of 

ECAE passes I represents the type of initial starting texture in which basal pole.   
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Figure 5.7 Predicted basal pole figures of AZ31B sample processed following (a) 5H-I 

and (b) 7H-I hybrid routes. The numbers in these labeling indicates the number of ECAE 

passes and I represents the type of initial starting texture in which basal pole. 
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Figure 5.8 The mechanical response of the AZ31B Mg samples processed via the hybrid 

route (a) 5H and (b) 7H. 

 

5.5 Discussion of Results 

5.5.1 Tensile twinning and tension-compression asymmetry 

The evolution of the stress differential (SD) [113] for all cases is listed in Table 

5.1 and plotted as a function of ECAE routes in Figure 5.9. The mechanical responses of 

the 4E-I and 4BC-I samples are very close to each other due to their similar textures as 

can be seen from the basal pole figures in Figure 5.3. The T/C asymmetry of the two 

samples along the three orthogonal directions is the same (see Figure 5.8). For these two 

samples, the T/C asymmetry is negligible.  
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Figure 5.9 The stress differential ratio of as-received along the two plate directions, and 

as ECAE processed up to four passes following routes A, BC, C and E.  

 

Another clear observation from Figure 5.9 is that SD is always negative along the 

FD, i.e., the compressive yield strength is lower than the tensile one along this direction 

for all four cases. The basal poles of most grains in all four samples are aligned 

perpendicular to the FD because of the location of the basal peaks closer to the rim of the 

pole figure. Compression along FD will, then, activate tensile twinning similar to in-

plane compression (IPC) of the hot rolled plate or sheet. The strain hardening behavior 

observed along FD in compression is, also, evidence of the activation of twins, i.e. a 

plateau region with relatively steady stress [12] or low hardening coefficient followed by 

an upward curvature with a high hardening rate. This strain hardening behavior is 
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observed in all four samples however, sample 4A-I and 4C-I have higher hardening rate 

than 4E-I and 4BC-I samples. This is because that the amount of grains that have c-axis 

perpendicular to the compression direction (FD) is higher in the former. Therefore, they 

have higher Schmid factors of basal slip than those of 4E-I and 4BC-I samples. This will 

result in a high amount of twinning to compensate for the lack of basal slip and hence 

higher amount of T/C asymmetry as can be clearly seen in Figure 5.9. The influence of 

tensile twinning on T/C asymmetry is also the cause of high positive SD value (35.9%) 

along LD of the 4A-I sample. Along this direction, the 4A-I sample has lower 

compressive yield strength, because of the activity of tensile twins, than its tensile yield 

stress.    

5.5.2 Different microstructures and similar textures 

From the inspection of Figure 4.4 and 4.5  showing the textures of 1A-I, 2A-I, 

2C-I (or 2E-I) and 2BC-I, Figure 5.3 showing the textures of four-pass samples and 

Figure 5.6 showing the textures of the hybrid route samples, the textures of all cases can 

be classified in three categories: (1) Texture A, which has two basal peaks close to each 

other and close to LD, and it includes 1A-I, 2A-I, 4A-I and 7H-I samples, (2) Texture C, 

which has two peaks separated by 60-65° and they make and angle of about 45° from 

ED and FD, and it includes 2C-I, 4C-I and 5H-I samples, and (3) Texture BC, in which 

basal poles are aligned along a pole making an angle of about 27-38° from LD, and it 

includes 2BC-I, 4E-I and 4BC-I. The mechanical response in tension and compression of 

the samples in each category, except for hybrid routes samples, are similar to each other 

regardless of their microstructures (see Figures 5.4 for the mechanical response of the 
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four-pass samples and Figure 4.7 and 4.8 for the response of one- and two-pass 

samples). In Texture A category, for example, samples 1A-I and 2A-I have bimodal 

microstructures that consist of large grains in the order of 20 μm and very fine 

dynamically recrystallized (DRX) grains, while the microstructure of 4A-I sample is 

more uniform with an average grain size of 4 μm. The same thing can be said about the 

samples in the other two categories where one and two ECAE passes produce bimodal 

structures and four passes make the microstructure more uniform.  

As a continuation of the effects of tensile twinning on T/C asymmetry, the 

activity of tensile twinning during compression along FD of Texture A samples should 

be emphasized. The 1A-I sample has the lowest compressive yield strength among the 

Texture A samples (1A, 2A and 4A) along FD. As discussed earlier, all three samples 

yielded under compression, along this direction, as a result of the activation of tensile 

twinning. The SD values along FD of 1A-I, 2A-I and 4A-I samples are -40, -30 and -

48%, respectively. Samples 2A-I and 4A-I yielded in tension almost at the same stress 

value despite the observed microstructural difference. Therefore, the higher value of SD 

of 4A sample is because of its lower compressive yield strength and hence its higher 

ease of twinning. 

5.5.3 Slip and twinning dependence on grain size 

Figure 5.10 shows the mechanical response in tension and compression along the 

flow direction (FD) of Texture A and Texture C samples. The two textures as discussed 

earlier has basal poles of most grains oriented perpendicular to the FD. Therefore, during 

compression along this direction, tensile twinning is activated as can be seen from the 
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hardening behavior of all samples (dashed lines). Tension along this direction is 

accommodated by slip systems mainly prismatic and basal systems. Only compression 

tests were performed on the hybrid routes samples (5H-I and 7H-I) because of the size 

limitations of the processed samples. The important observation from these curves, is the 

effect of the thermo-mechanical hybrid processing on the activity of twins during 

compression along FD. The compressive yield strength of the hybrid samples is almost 

twice that of the conventionally ECAE processed samples. The differences between 

these samples are the grain sizes and morphology and the amount of dislocations. The 

lower processing temperature at the final stages of the hybrid processing is expected to 

reduce dynamic recovery and recrystallization and, hence, increase the dislocation 

density inside the grains and at the grain boundaries. As discussed in Chapter IV, 

dynamic recovery and DRX have detrimental effects on yield strength of the material by 

reducing the dislocation density and introducing new unstrained grains. However, no 

effects of dynamic recovery and DRX were observed on the compressive yield strength 

along ED (See Figure 4.7.a, 4.8.a and 5.4.a and Figure 4.8.b, 5.4.b and 5.8.a). During 

this compression, plastic deformation is accommodated mainly by slip.  
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                    (a)                                                                   (b) 

Figure 5.10 The mechanical response along flow direction (FD) of (a) Texture A 

samples and (b) Texture C samples.  

 

5.6 Summary of Observations 

AZ31B Mg alloy was successfully processed up to four passes following routes 

A, C, E and BC. The texture evolution during ECAE was successfully predicted using a 

VPSC crystal plasticity model. The mechanical responses of the processed samples 

revealed the significance of the crystallographic texture on flow stress anisotropy and 

tension-compression asymmetry. The main findings of this study can be summarized as 

follow:  

1. Higher number of ECAE passes leads to more uniform microstructures with 

finer grain sizes.  

2. Routes E and BC result in more uniform microstructures than those produced 

by routes A and C.  Route BC is leads to finest grain size.  
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3. Low temperature processing of AZ31B Mg alloy was successful after initial 

high temperature processing. Smaller grain sizes were achieved using the 

multi-temperature processing.  

4. Despite the dynamic recrystallization observed during ECAE of Mg alloys, 

the texture evolution was successfully predicted using VPSC following 

different conventional and hybrid ECAE routes and up to seven passes.  

5. Samples with different microstructures but very close crystallographic 

textures have similar mechanical response in tension and compression along 

different directions.  

6. The activity of tensile twinning during monotonic testing leads to the T/C 

asymmetry.  
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CHAPTER VI 

PREDICTION OF FLOW STRESS ANISOTROPY AND TENSION-

COMPRESSION ASYMMETRY OF AZ31B MG ALLOY  

 

In this chapter, the mechanical response of as received hot rolled AZ31B Mg 

plate along its two directions is predicted using the same visco-plastic self-consistent 

(VPSC) model coupled with a dislocation-based hardening scheme. The same hardening 

parameters are then used to predict the response of the ECAE processed samples along 

the three orthogonal directions of the billet.  

6.1 Dislocation-based Hardening Formulation 

The aforementioned VPSC model coupled with the dislocation-based hardening 

formulation developed by Beyerlein and Tome´ [91] was used to predict the stress-strain 

response of AZ31B Mg alloy. For each slip mode α, a dislocation population is evolved 

explicitly as a function of temperature and strain through thermally-activated recovery 

and debris formation.  

Work hardening is linked to the evolution of dislocations, their interactions with 

each other, and with barriers in the microstructure. Therefore, the critical strength or slip 

resistance of each slip s α∈ , s
cτ evolves as follows: 

                      
s
HPdebforest

s
c τττττ ααα +++= 0 ,   s α∈                   (6.1) 
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where 0
ατ  is the initial slip resistance which depends on slip mode α, solute density, and 

T and ε
i

. The second and third terms on the right hand side of equation 6.1 represent the 

work hardening due to dislocation interactions. The last term, s
HPτ , is the barrier effect 

provided by grain or twin boundaries whichever constrains the mean free path of 

dislocations more.  

An evolution model for dislocation density developed by Essman and Mughrabi 

[95] and further developed by Mecking and Kocks [96] was used to describe the 

dislocation density evolution and it is expressed as follow: 

                            1 2 ( , )k k T
α

α α α α
α

ρ ρ ε ρ
γ
∂

= −
∂

i
       (6.2) 

where 2kα  is calculated as a function of strain rate, ε
i

 and temperature T and it controls 

the rate-sensitivity of dislocation removal. It increases with T and decreases with ε
i

 as 

shown in the following equation: 

   2
3

1
0

( , ) 1 lnk T b kT
k g D b

α α

α α α

ε χ ε

ε

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= −
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

i i

i      (6.3) 

where χ is an interaction parameter between 0.1 and 1.0, b is the Burger vector of the 

slip system α, D is a proportionality factor of unit of stress, g is normalized stress-

independent activation energy and k is the gas constant. In equation (6.3), the constant k1 

affects the dislocation generation during plastic deformation. In thermally activated 

glide, usually the dislocation multiplication is rate insensitive compared to dislocation 
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removal processes [91]. Therefore, k1 is set as a function of material and not of strain 

rate or temperature. D and g are the thermal activation parameters.  

The third term on the RHS of equation 6.1 which is the contribution of ρdeb is 

expressed as follow 

1logdeb deb deb
deb

k b
b

α α
α

τ μ ρ
ρ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
      (6.4) 

Where kdeb is a material-independent constant determined to be 0.86 [97] and ρdeb 

evolves with plastic strain as follow 

, ,  and  rem
deb tot deb

deb

nbq f f A b
l

α α
α α α

α
α

ρρ ρ
γ

∂
∂ = = ≈

∂∑      (6.5) 

where A is set as a logarithmic function of T, such that A=Q0+Q1ln(1+T/Q3). This third 

term deb
ατ  affects mainly stage IV. In this work, this stage has not been included due to 

time limitations. Therefore, values of A = 1 were set for all slip systems.  Substituting 

for each term in equation 6.1, the resistance to slip of each system s α∈  evolves from a 

zero-strain value calculated to be: 

0 0( 0) ( )   s
c

g

bT HP b s
d

α
α α α ατ γ τ μ χμ ρ α= = + + ∀ ∈      (6.6) 

assuming no twins are present before deformation and the amount of debris is negligible, 

to a final value of  

0 ,

1( ) log   s deb
c debs PTS

mfp deb

kbT HP b s
d b

α
α αβ α α

α
τ τ μ χμ ρ ρ α

χ ρ

⎡ ⎤⎛ ⎞
= + + + ∀ ∈⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    (6.7) 

 



 

 

106

6.2 Prediction of Hot-rolled Sample Mechanical Response 

In this work, three slip systems and one twin system have been considered to 

predict the room temperature mechanical flow response of AZ31B Mg alloy. These 

deformation modes are listed in Table 6.1. The hardening parameters for the slip systems 

are listed in Table 6.2. The critical resolved shear stress for the tensile twinning system 

is set to 35MPa. As can be seen from Table 6.2, there are at least ten parameters for each 

slip system. The estimation of these parameters is achieved by running serious of 

uniaxial tension and compression tests at several temperatures, since some of these 

parameters are functions of temperature. Some of these parameters should be material 

properties. However, the lack of experimental procedures to measure them for each 

individual slip system limits the solution to finding these parameters to fitting the 

measured stress-strain curves following trial-and-error approach. This fitting process can 

be highly improved by testing single crystals along different directions along which 

limited known slip or twinning systems are expected to take place.  

 

Table 6.1 Deformation modes considered in the prediction of the stress-strain response.  

Slip Plane Direction Number of 
systems 

Basal { }0002  1120  3 

Prismatic <a> { }1100  1120  3 

2nd order pyramidal <c+a> { }1122  1123  6 

Tensile twining { }1012  1011  6 
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Table 6.2 Hardening parameters for slip systems considered in the predictions. 

 Basal Prismatic Pyramidal <c+a> 

1kα

 1.5E+9 m 2.5E+9 m 3.1E+9 m 

0
αε  1.0E+7 1.0E+7 1.0E+7 

1gα

 0.5E-2 0.5E-2 9.75E-3 

0Dα

 0.5MPa 5000MPa 6000MPa 

0
ατ  2.0 MPa 60.0 MPa 50.0 MPa 

q  4 4 4 
χ  0.9 0.9 0.9 

HPα 100 100 350 

HPαβ 1000 100 1000 

A 1.0 1.0 1.0 

  

Figure 6.1 shows the experimental and predicted compressive and tensile stress-

strain curves of as-received hot rolled sample. The type of hardening observed along the 

two directions of the hot rolled plate was predicted. Through thickness compression 

(TTC) and in-plane tension (IPT) have slip dominated deformation. The strain hardening 

during through thickness tension (TTT) and in-plane compression (IPC) has twin 

characteristic.  
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Figure 6.1 Experimental (lines) and predicted (symbols) of the as-received hot rolled 

sample. 

 

Figure 6.2 shows the predicted relative activities during these tests inside the 

grains and twins. Despite the similar hardening response during TTC and IPT, the 

governing mechanisms are different as can be seen in Figure 6.2.a and 6.2.c. In TTC, all 

plastic deformation is accommodated by basal and pyramidal <c+a> slip systems, while, 

prismatic slip accommodates most of the deformation during IPT. Tensile twinning is 

activated at the beginning of both TTT and IPC. This results in the no-hardening plateau 

at stage II. The hardening rate observed afterward, is due to the activity of slip systems 

inside the twins and hence the effect of twins as barriers to the dislocation movements. 

These effects are accounted for in the model by the HPmfp, representing the Hall-Pitch 

effect of the mean free path of the twins (see Figure 2.12).  
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Figure 6.2 The predicted activities of deformation modes during (a) Through-Thickness 

Compression (TTC), (b) Through-Thickness Tension (TTT) in parent grains and (c) in 

twins, (d) In-Plane tension (IPT) and, (e) In-Plane compression in parent grains and (f) 

in twins, of the as-received hot rolled AZ31B Mg sample.  

 

6.3 Prediction of Mechanical Response of ECAE Processed AZ31B Mg Alloy 

Without considering the evolution of hardening parameter during ECAE, the 

predicted stress-strain curves of AZ31B ECAE processed samples up to four passes are 

shown in Figure 6.3. Those samples processed up to one and two passes have non-

uniform bimodal microstructures consisting of large and fine DRX grains. Since, the 

dislocation hardening model used in the prediction does not account for such non-
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uniform microstructures, the response of those samples are not predicted. Four-pass 

samples have more uniform microstructures as discussed in Chapter V.  

It is important to note that the evolution of hardening parameter that is expected 

during ECAE, was not taken into account in the prediction of four-pass samples 

response. Exactly the same hardening parameter used for as received sample, including 

critical resolved shear stresses and dislocation densities, have been used for the modeling 

of stress-strain response of samples processed up to four ECAE passes. Despite this fact, 

the model was able to predict to some degree the hardening behavior of these samples 

along the three directions.  

6.4 Discussion of Results 

In order to find out the model parameters, tension and compression tests were 

carried out along the two directions of the hot rolled plate. These tests however, were 

performed only at room temperature. Some parameters in this model are temperature and 

strain dependent. Therefore, tests at several temperatures and strains are required to 

obtain the right parameters. These tests have not been done in this dissertation due to the 

time limitation. Despite this fact, the model was able to predict the hardening response.  
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Figure 6.3 Experimental (lines) and predicted (symbols) of AZ31B samples ECAE 

processed up to four passes following route (a) A (4A-I), (b) C (4C-I), (c) E (4E-I) and 

(d) BC (4BC-I). 
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6.4.1 Governing mechanisms during through-thickness and in-plane monotonic testing 

of hot rolled plate 

As discussed in Chapter IV, the tension compression asymmetry of the AZ31B 

Mg hot rolled plate is high along the two plate directions: through-thickness and in-

plane, where the stress differential (SD%) values were -78% and 73% along IP and TT 

directions, respectively. Figure 6.2 shows the predicted relative activities during tension 

and compression of the rolled plate. Tensile twinning is activated during stage II and III 

of deformation in TTT and IPC. The twin fraction reaches 90% of the matrix in both 

cases. In TTC and IPT, however, negligible amount of tensile twinning is observed in 

Figure 6.2.a and 6.2.d. Deformation during TTC is accommodated by basal and 

pyramidal slip systems. In IPT, deformation is accommodated by mainly prismatic and 

basal slip systems. 

 Figure 6.2.c and 6.2.f shows the predicted relative activities inside the twins. It is 

very obvious, that there is a delay on the start of activities of slip systems inside the 

twins. This delay governs the size of the plateau region observed at stage II. Klimanek 

and Pötzsch [36] pointed out that at strains below 8%, while profuse { }1012  twinning 

takes place, there is little dislocation accumulation. In other word, twinning delays the 

onset of gross dislocation plasticity [114]. It is well known that the tensile twinning 

reorient the twinned region by 86.4°. This explains the difference in slip systems 

activated in the matrix and twins. During TTT, for example, plastic deformation inside 

twins is accommodated by prismatic slip similar to IPT. The same thing can be said 
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about deformation inside twins during IPC, where only basal and pyramidal are active 

similar to deformation during TTC.  

6.4.2 Deformation mechanisms of ECAE processed samples 

Figure 6.4 shows the predicted relative activities during tension along the FD of 

the ECAE processed AZ31B Mg samples up to four passes. The response of these four 

samples along this direction is similar as shown in Figure 5.4 and 6.3. The samples of 

4E-I and 4C-I are, however, softer than 4A-I and 4C-I samples. The measured and 

predicted basal pole figures of the four samples are shown in Figure 5.3. Basal poles of 

most grains in all four samples are oriented with the FD. Therefore, these samples are 

expected to deform mainly by slip systems in tension along FD similar to IPT of hot 

rolled plate. This deformation behavior is seen very clearly in 4A-I and 4C-I samples 

where plastic deformation is accommodated mostly by prismatic slip. In 4E-I and 4BC-I 

samples, the basal poles are more randomly distributed with respect to FD, although, 

most of them are oriented perpendicular to this direction. In fact, basal poles of 

significant amount of grains in these two samples have basal poles parallel to FD. This 

triggers some activity of tensile twinning during tension along FD as can be seen in 

Figure 6.4.c and 6.4.d.  
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Figure 6.4 The predicted relative activities of deformation modes during tension along 

the FD of the AZ31B ECAE processed up to four passes following route (a) A (4A-I), 

(b) C (4C-I), (c) E (4E-I) and (d) BC (4BC-I).  

  

The flow direction of the processed samples is of great interest because it is the 

strongest direction in tension (see Table 5.1 and Figure 5.4) and these samples 

demonstrate the highest T/C asymmetry along this direction as can be seen in Figure 5.9. 

As can be seen in Figure 6.4.a and 6.4.b, the activity of basal slip system is much lower 

than that of prismatic slip. Since basal is the easiest slip system, the material 

demonstrated higher tensile yield strength along FD due to the more restricted basal 
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orientation which is being perpendicular to the testing direction (FD). When the basal 

activity increases, as seen in Figure 6.4.c and 6.4.d, due to more favorable basal 

orientation, the tensile yield strength decreases.  

6.5 Summary of Observations 

The visco-plastic self-consistent polycrystalline plasticity model coupled with a 

dislocation-based hardening scheme was used to predict the stress-strain response of hot 

rolled AZ31B Mg plate in tension and compression. The same model parameters then 

used to predict the flow stress anisotropy and tension-compression asymmetry of ECAE 

processed samples. The main observations are summarized as follows: 

1. The VPSC model coupled with the dislocation-based hardening scheme was 

able to predict the hardening response of as-received hot rolled AZ31B Mg 

plate.  

2. The tension-compression (T/C) asymmetry observed during monotonic in-

plane and through-thickness tension and compression is mainly because of 

the directionality of tensile twinning. Tensile twinning is activated only by a 

resolved tensile stress along the c-axis of the grains. This is why it is 

activated during through thickness tension (TTT) and in-plane compression 

(IPC) of hot rolled plate.  

3. Tensile twinning reorients the twinned region by about 90° from the loading 

direction. 
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4. An acceptable prediction of flow stress anisotropy and tension-compression 

asymmetry of ECAE processed AZ31B Mg alloy up to four passes following 

four different ECAE routes.  

5. Lower activity of basal slip systems due to the more restricted basal 

orientation during room temperature monotonic tests increases the tensile 

yield strength of the sample and T/C asymmetry.  
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CHAPTER VII 

FLOW RESPONSE OF A SEVERE PLASTICALLY DEFORMED TWO-PHASE 

ZINC-ALUMINUM ALLOY  

 

In this chapter, the effects of microstructural refinement and the evolution of 

microstructural morphology on the mechanical response of the ECAE processed Zn-Al 

alloy are discussed. A comparison between the current alloy (Zn-8wt% Al) and other 

similar Zn-Al alloys (Zn-12wt% Al, Zn-27wt% Al and Zn-40wt% Al) is presented in 

terms of the amount of improvement in strength and ductility, and the flow softening 

taking place after further ECAE processing. Microhardness measurements and 

microprobe analysis are also used to investigate possible reasons for the flow softening. 

Monotonic tensile tests were conducted at room temperature along the extrusion 

direction in addition to the directions parallel and perpendicular to the long axis of the 

elongated hard eutectoid phase particles in order to reveal the effect of microstructural 

morphology on the anisotropic flow response. 

7.1 Microstructural Evolution during ECAE 

Figure 7.1 shows the optical micrographs of the as-cast and ECAE processed 

ZA-8 taken from the flow plane of the billets. ZA-8 alloy lies left side of the eutectic 

composition in the Al-Zn phase diagram (Figure 2.9)  where the primary phase is β 

which exists as numerous small and particulate dendrites in an eutectic matrix above the 

C�eutectoid temperature of 275 °C [79]. Upon cooling below the eutectoid temperature, 

the β phase decomposes into α and η giving its lamellar structure. Therefore, the 
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microstructure of the as-cast alloy (Figure 7.1.a) consists of a dendritic structure with 

eutectoid dendrites (fine α + η lamellae) dispersed in a eutectic matrix (α + η phase). 

After the first ECAE pass, the dendrites were partially fragmented and macroscopic 

shear bands are present throughout the structure (Figure 7.1.b). After the second pass, 

the dendritic structure was completely eliminated and an elongated structure consisting 

of parallel bands of the eutectoid particles and the eutectic matrix was developed (Figure 

7.1.c). More ECAE passes led to further refinement and uniform dispersion of the 

primary eutectoid particles in the eutectic matrix as can be seen in Figure 7.1.d which 

shows the microstructure of the sample processed up to eight ECAE passes following 

route BC. 

The effects of processing route on the microstructure and especially on the size, 

shape and distribution of the eutectoid particles can be seen in Figure 7.2. This figure 

shows the optical micrographs of the samples processed following route C, BA, BC and E 

up to eight passes. The hard eutectoid phase is finer in the samples processed following 

routes BA, BC and E. The microstructure of the alloy processed via route C is less 

homogeneous than those processed via other routes. Moreover, this structure contains 

large unbroken eutectoid particles in addition to the elongated bands as a sign of non-

uniform deformation throughout the bulk of the material. In contrast, the eutectoid phase 

on the samples processed via routes BC and E possesses an elongated and ribbon-shaped 

morphology throughout the structure. These eutectoid phase bands are, also, finer and 

distributed more uniformly in the matrix.  
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Figure 7.1 Optical micrographs of (a) the as-cast ZA-8 alloy and ECAE processed alloy 

for (b) one pass, (c) two passes, and (d) eight passes in route BC. The aluminum-rich α-

phase is the light phase and the zinc-rich eutectic matrix (α + η) is the dark one. 
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Figure 7.2 Optical micrographs of ECAE processed ZA-8 alloy up to eight passes via  

(a) route C, (b) route BA, (c) route BC and (d) route E. 
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7.2 Tensile Flow Response 

The effect of the number of ECAE passes on the true tensile stress – strain 

responses of the as-cast ZA-8 alloy is shown in Figure 7.3. The basic mechanical 

properties extracted from these curves and the curves in Figure 7.4 are summarized in 

Table 7.1. From Figure 7.3, it can be seen that the ultimate tensile strength and 

elongation to failure were significantly enhanced after ECAE. A relatively high ultimate 

tensile strength was achieved after the first pass and then it slightly decreased after the 

second pass following route BC, but it finally increased to a higher value after eight 

passes than that of the first pass sample. An average increase in ultimate tensile strength 

of about 50% was achieved after eight passes. The elongation to failure continued to 

increase with number of passes with a maximum value of about 61% achieved via route 

BC compared to 0.6% of as-cast alloy. 

It can be seen in Figure 7.4 that the true stress vs. true strain curves of the 

processed samples peaked directly soon after the yielding and demonstrated an extended 

no hardening regime before flow softening started. This figure also shows that the 

resulting strength and ductility levels are a strong function of the ECAE route. The effect 

of processing route on ductility seems to be much more pronounced than that on 

strength. The sample processed following route C shows the lowest strength and 

ductility after 8 passes compared to other routes. Its strength and ductility values are 

even less than those of the sample processed up to only two passes in route BC. Owing to 

their similar microstructures (Figure 7.2), the stress-strain response of the materials 
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Figure 7.3 Room temperature true tensile stress vs. strain 

curves of the as-cast ZA-8 alloy and the samples ECAE 

processed using route BC up to 8 passes. 
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Figure 7.4 Room temperature true stress vs. true strain 

curves of the ECAE processed ZA-8 alloy up to eight 

passes using different processing routes.  
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Table 7.1 Tensile properties of the as-cast and ECAE processed ZA-8 alloy. HP: Major 

axis direction of the hard phase. 

Route Number 
of passes 

Extrusion 
Temperature 

(oC) 

Tensile 
Direction 

 

Elongation 
at fracture 

(%) 

Ultimate 
Tensile Strength 

(MPa) 
As-Cast NA NA NA 0.6 ± 0.05 217 ± 9 

A 1 80 
ED 15.6 ± 0.1 319 ± 2 

Parallel to HP 12.1 ± 2.1 330 ± 1 
Perp. to HP 4.4 ± 0.9 321 ± 1 

BC 2 80 
ED 33.3 ± 6.3 315 ± 3 

Parallel to HP 34.5 ± 7.5 371 ± 1 
Perp. to HP 20.1 ± 6.4 323 ± 2 

C 8 80 ED 28.4 ± 1.7 287 ± 6 
BA 8 100 ED 41.2 ± 0.6 336 ± 5 

BC 8 80 
ED 60.8 ± 1.0 321 ± 4 

Parallel to HP 58.8 ± 3.7 340 ± 2 
Perp. to HP 49.4 ± 2.9 334 ± 6 

E 8 80 ED 61.4 ± 3.1 319 ± 4 
 

processed via routes E and BC after eight passes are almost identical. The sample 

processed via these routes exhibit higher elongation to failure than those processed via 

route C and BA. Route BA, on the other hand, results in the highest ultimate tensile 

strength levels, probably because of the maximum refinement in the eutectoid hard phase 

after this route compared to other routes, yet the ductility in the Route BA samples are 

relatively low as compared to those for Routes BC and E due to the non-uniform nature 

of this refinement (Figure 7.2).    

The macroscopic appearance of the failed tensile samples is shown in Fig 7.5. In 

the as-cast sample, there was no necking and the sample demonstrated brittle fracture 

without notable plastic deformation. The fracture surface of the as-cast sample is 

basically normal to the tensile axis. Whereas, the samples extruded up to eight passes, 
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excluding the one processed via route C which demonstrated brittle fracture with no 

neck formation, exhibited highly ductile fracture in which the samples necked down to 

almost a point at high plastic deformation levels.  

 

 

Figure 7.5 Macroscopic appearance of the failed tensile samples in the as-cast and 

ECAE processed conditions. 

 

In addition to the tensile tests along the longitudinal axis of the ECAE samples, 

i.e. the extrusion direction (ED), the tests were also carried out parallel and 

perpendicular to the long axis of the hard phase particles, orientation of which 

determined using the OM images in Figure 7.1. Tensile responses of the 1A, 2BC and 

8BC samples along the three directions are shown in Figure 7.6. The macroscopic 

appearance of the failed tensile specimens is also included in the figure. The anisotropy 

in the flow strength and elongation to failure is the most pronounced in the 2BC sample. 

This anisotropy then tends to decrease with further processing and hence, with the 

further refinement, fragmentation, and more homogeneous distribution of the hard phase 
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particles, and chemical homogenization than in the hard phase particles, as will be 

shown in the next section. The 8BC samples have the same strength levels when tested 

parallel and perpendicular to the long axis of the hard eutectoid phase bands. The 

necking however starts earlier when the sample is pulled in a direction perpendicular to 

these bands, thus leading to a lower elongation to failure value. These hard second phase 

bands basically act as fiber reinforcement in the softer Zn-rich matrix. However, their 

effectiveness diminishes with the number of passes due to chemical homogenization in 

the hard eutectoid phase which will be the focus of next section.  

7.3 Wavelength Dispersive Spectroscopy (WDS) 

WDS of the as-cast and ECAE processed ZA-8 alloy revealed changes in the 

composition of the constitutive phases after ECAE following routes BC and C as listed in 

Table 7.2. Zn contents in the eutectoid phase increased from about 37 wt.% in the as-cast 

state to 50 wt% after the first ECAE pass and continued to increase up to an average of 

58 wt.% after 8 ECAE passes for both routes. This increase in Zn content of the 

eutectoid phase was accompanied by an increase of the Al content in the eutectic matrix; 

however, the latter is less significant as can be seen in Table 7.2. This chemical 

homogenization in the eutectoid phase which took place during ECAE is believed to be a 

result of the long range diffusion taking place due to the high homologous temperature 

(0.52 to 0.55 Tm) of processing.  
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Figure 7.6 Room temperature true stress vs. true strain curves of the ECAE processed ZA-8 alloy tested along the extrusion 

direction and the directions parallel and perpendicular to the long axis of the elongated hard phase particles or bands (see 

Figure 1) for samples processed for (a) 1A, (b) 2BC, and (c) 8BC. (HP: The long axis direction of the hard-phase particles). 
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Table 7.2 Chemical compositions of the two phases in the as-cast and ECAE-processed 

ZA-8 alloy as a function of the processing parameters. 

Condition 
Eutectic-Matrix Eutectoid (α + η)-phase 

Zn (wt.%) Al (wt.%) Zn (wt.%) Al (wt%) 

As-Cast 97.9 ± 0.1 2.11 ± 0.1 37.4 ± 2.0 62.7 ± 2.0 

1A 96.5 ± 0.2 3.5 ± 0.2 49.5 ± 1.1 50.5 ± 1.1 

2BC 95.7 ± 0.1 4.3 ± 0.1 51.7 ± 1.1 48.3 ± 1.1 

8BC 95.6 ± 0.2 4.4 ± 0.2 57.8 ± 0.7 42.2 ± 0.7 

8C 96.2 ± 0.7 3.8 ± 0.7 58.2 ± 0.8 41.8 ± 0.8 

 

7.4 Microhardness Evolution 

The Vickers microhardness levels of the two phases (eutectic and eutectoid) was 

measured before and after ECAE and the values are listed in Table 7.3. In addition to the 

overall change in tensile properties reported in Section 7.2, the mechanical properties of 

the individual constituents also changed as a result of the microstructural refinement 

depicted in Figures 7.1 and 7.2 and due to chemical homogenization. Relatively high 

values of the microhardness for both constituents were reached after the first pass and 

then, they continued to increase until an average increase of about 18% and 26% was 

achieved for the eutectoid phase and the eutectic matrix, respectively, after eight passes 

in the presence of chemical homogenization, pointing out significant microstructural 

refinement. 
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Table 7.3 Vickers microhardness values of the two phases of the as-cast and ECAE 

processed ZA-8 alloy as a function of the processing parameters. 

Condition Eutectic-Matrix (HV) Eutectoid (α + η)-phase (HV) 

As-Cast 77.6 ± 2.0 85.6 ± 3.7 

1A 88.9 ± 3.9 97.5 ± 3.1 

2BC 91.9 ± 2.7 100.8 ± 0.7 

8BC 98.4 ± 10.6 102.3 ± 6.4 

8C 96.5 ± 5.7 100.4 ± 2.1 

 

7.5 Discussion of the Results  

7.5.1 Effects of Al content on mechanical behavior of Zn-Al alloys after ECAE 

In the present study, we report a dramatic increase in strength and elongation to 

failure of the as-cast ZA-8 alloy after ECAE processing. A 50% relative increase in 

ultimate tensile strength obtained in the present study has not been reported for any 

ECAE processed Zn-Al alloys to date as can be seen in Figure 7.7. Figure 7.7 shows the 

evolution of ultimate tensile strength with the number of ECAE passes for ZA-8 

processed at 80 °C, ZA-12 processed at 75 °C, ZA-27 processed at 90 °C and ZA-40 

processed at 130 °C, all processed following route BC. In all cases a strength drop was 

observed after the second pass, and in the case of ZA27 [16] and ZA40 [15], the final 

strength achieved after four passes was lower than the strength of the as-cast state. In the 

present study such softening was also observed after the second pass, however, the 
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decrease in strength as compared to the strength increase after the first pass was quite 

small. Moreover, higher strength levels are then achieved after eight passes for all routes 

except route C, in the present case which was not reported in any of the previous works.  
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Figure 7.7 Evolution of ultimate tensile strength with the number of extrusion passes in 

different ECAE studies on Zn-Al alloys including the present work. 

 

Close examination of Figure 7.7 reveals that the amount of increase in strength 

after the first ECAE pass and then the amount of softening after subsequent ECAE 

passes of Zn-Al alloys are consistent with the Al content of these alloys. The lower the 

Al content is, the higher the increase in strength after the first pass and the lower the 
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amount of softening after the subsequent ECAE passes are. Comparing ZA-8 and ZA-

12, just above the eutectoid isotherm, ZA-8 has 17% primary β (ZnAl) phase compared 

to 50% in case of ZA-12. Upon cooling, the primary β decomposes into eutectoid fine α 

+ η lamellae. Therefore, the volume fraction of the eutectoid phase (decomposed β) in 

ZA-12 is higher than that in ZA-8. Consequently, the spacing between the eutectoid 

dendrites is smaller in ZA-12. Larger spacing between dendrites will allow them to be 

sheared into smaller particles and scattered in the eutectic matrix more freely leading to 

more uniform microstructure. On the other hand, smaller spacing between dendrites will 

constrain them and allow limited shearing and distribution of the particles in the matrix. 

It is well known in composite materials that smaller hard phase particles in the matrix 

will contribute to the strength of the composite more than larger particles. This might 

explain the higher relative strength increase in ZA-8 than in ZA-12. In addition to the 

effects of size and distribution of the hard phase in the matrix, deformation-induced 

chemical homogenization of eutectic and eutectoid phases tends to soften Zn-Al alloys 

[15].. For the alloys with higher volume fraction of hard particles, like ZA-27 and ZA-

40, a saturation level for the distribution of these particles can be reached earlier in terms 

of the amount of plastic strain applied. Softening then can start taking place because of 

the deformation-induced chemical homogenization mechanism [15]. In ZA-8, where 

there is enough space for the particles to be shared and scattered in the matrix, the effects 

of size and distribution of the hard particles overcome the softening caused by 

homogenization.  
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7.5.2 Effects of ECAE processing routes on the microstructural evolution  

It is obvious from the optical micrographs of the samples processed up to eight 

passes following different routes (Figure 7.2) that the shape and distribution of the 

elongated bands of the eutectoid particles is different for the four presented cases. These 

bands are finer and distributed more uniformly in samples processed via route BA, BC 

and E than those processed via route C. The eutectoid particles are, also, smaller after 

processing through these former routes. The differences in microstructures, in terms of 

the shape and distribution of the eutectoid particles in the matrix, are due to the different 

shearing patterns and slip systems activated during processing. For the sample processed 

via route C, although the microhardness of the two phases increased and has values close 

to those of materials processed via route BC, its structure consists of larger eutectoid 

particles which are not distributed uniformly as those in the other three routes. This 

observation can be attributed to the effects of the 90° rotation about the billet axis in 

route BC, BA, and E but not in route C on the shearing patterns and hence the 

effectiveness of grain refinement. Route C was also found to be the least effective route 

in introducing high-angle grain boundaries (HAGB) population because of the lack of 

90° rotation [115-117]. This is another indication pointing out the influence of the size 

and distribution of the hard phase on the strength properties of ZA-8 alloy.  
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7.5.3 Ductility Improvements after ECAE 

The remarkable improvement in ductility is mostly due to the refinement of the 

brittle dendritic structure and reduction of casting porosity after ECAE. Moreover, the 

distribution and size of the hard eutectoid phase also has a great influence on ductility. 

The eutectoid phase particle size was reduced by the severe plastic deformation and 

dispersed uniformly in the matrix.  Carcia-Infanta et al. [118] have reported that the 

elongation to failure increased in Al-Si alloy after ECAE processing because the hard 

and brittle phase particles became smaller after ECAE processing. Hence, they have less 

probability of crack nucleation than the large particles found in the as-cast alloy. They 

also found that the difference in the tensile ductility of the alloys processed using 

different routes is because of the difference in crack propagation path. The more the hard 

phase particles become elongated and oriented along the testing direction the harder the 

propagation path of the crack is. Basically these particles act as barriers to mode-I crack 

propagation. Figure 7.2 shows how the hard eutectoid particles are elongated and 

oriented toward the extrusion direction along which the most tensile testing was 

performed. In the samples processed via routes BC and E, these particles are more 

elongated and oriented along the extrusion direction than those in the samples processed 

via route C and BA. Therefore, the former routes result in higher tensile elongation to 

failure values than the routes C and BA along the extrusion direction. The higher 

elongation to failure levels observed in the 2BC and 8BC samples tested parallel to the 

long axis of the hard phase particles in Figure 7.6, as compared to the samples tested 
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along the extrusion direction, support the aforementioned assessment on the positive 

effects of elongated hard phase particles or bands on ductility. 

7.5.4 Flow anisotropy in ECAE processed materials 

 It is well-known that fiber-reinforced composite systems are stronger in 

direction parallel to the fiber axis. The 2BC samples behave similar to the fiber-

reinforced composites. They demonstrate higher strength and elongation to failure values 

when tested parallel to the long axis of the hard eutectoid phase particles, as can be seen 

in Figure 7.6. The anisotropy in flow strength and elongation to failure tends to decrease 

with the number of ECAE passes as can be concluded from the tensile responses of the 

8BC samples in Figure 7.6. High magnification back-scattered electron (BSE) images 

shown in Figure 7.8 reveal the continuous refinement and fragmentation of the hard Al-

rich phase during ECAE. This phase in 8BC samples no longer exists as elongated 

particles as in the 2BC samples. Instead, it exists as very fine discontinuous particles 

forming elongated bands. This might explain the reduction of anisotropy of the 

mechanical properties in these samples. The effect of the hard phase morphology is even 

more prevalent in the failure mechanisms of the tensile specimens perpendicular to the 

long axis of the hard phase particles or bands. The crack propagation path along the hard 

phase particle boundaries is obvious in the failed tension specimens of the 1A and 2BC 

samples. However, the 8BC specimens exhibited highly ductile fracture in which it 

necked down to almost a point at high plastic deformation levels similar to the 

specimens tested along the extrusion direction and parallel to long axis of the elongated 

hard phase bands.  
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Figure 7.8 Back-scattered electron images of (a) as cast, (b) 1A, (c) 2BC and (d) 8BC samples. The hard phase particles are 

sheared and elongated starting from the first pass. However, the elongated structure is fully developed after the second pass. 

Large elongated particles can still be seen in 2BC sample. In 8BC sample, these particles are broken into much smaller particles 

that form elongated bands. 
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7.6 Summary of Observations 

The two-phase Zinc - 8 wt.% Aluminum alloy was successfully processed using 

equal channel angular extrusion (ECAE) following different ECAE routes up to eight 

passes at temperatures 80 to 100 °C in order to investigate the flow anisotropy of 

hexagonal closed packed (hcp) materials with the presence of a face-centered cubic (fcc) 

secondary phase.  The main findings of this study can be summarized as follows: 

1. ECAE was found to be an effective technique to eliminate the dendritic 

structure and casting porosity as well as to refine the microstructures in two-

phase alloys. 

2. ECAE improved the mechanical properties of as-cast ZA-8 alloy. The 

ultimate tensile strength was significantly increased after the first ECAE pass 

and saturated almost at the same level with further processing. The 

substantial improvements in the tensile strength and ductility of the as-cast 

ZA-8 alloy after multi-pass ECAE were attributed to the elimination of the 

dendritic microstructure along with casting defects, decrease in the size of 

hard eutectoid-phase, and relatively homogeneous distribution of these phase 

particles in the eutectic matrix.   

3. The relatively large increase in strength of ZA-8 as compared to what have 

been reported for other ECAE processed Zn-Al alloys was attributed to the 

initial lower volume fraction of the eutectoid-phase in ZA-8 and, thus, to the 

larger dendrite spacing for eutectoid particles to be sheared more effectively 

and to scatter in the eutectic matrix more uniformly.  
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4. No notable softening in strength with increasing number of ECAE passes as 

opposed to other Zn-Al alloys with higher Al content was observed in ZA-8. 

This is considered to be due to the effects of refined size and more uniform 

distribution of the hard eutectoid particles in the eutectic matrix overcoming 

the effects of deformation-induced chemical homogenization which is 

believed to be the main reason behind softening observed in other ECAE 

processed Zn-Al alloys. 

5. The anisotropy in flow strength and elongation to failure of the ECAE 

processed samples increases with increasing elongation of the hard second 

phase particles. Then it drops with further ECAE passes following route BC, 

for example, due to the continuous refinement and fragmentation of these 

particles.  
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CHAPTER VIII 

MAIN CONCLUSIONS  

 

The influence of the crystallographic texture, grain size and the presence of 

second phase on the flow stress anisotropy and compression asymmetry of hexagonal 

closed packed alloys was investigated in this dissertation. Equal channel angular 

extrusion (ECAE) process was very beneficial in introducing a wide variety of texture 

and grain sizes on AZ31B Mg alloys by varying the processing routes and number of 

passes. In addition to the conventional ECAE routes, thermo-mechanical processing 

utilizing ECAE of this alloy was successfully conducted in order to further refine grain 

sizes. ECAE was also used, successfully, to process Zn-8wt.% Al alloy following 

different processing routes. The size and distribution of the eutectoid particles varied 

depending on the number of ECAE passes and routes followed. This helped examining 

the effects of these particles in the mechanical properties as well as the flow anisotropy 

of this alloy. Notably the texture and grain shape evolution during ECAE following four 

conventional and hybrid ECAE routes were successfully predicted using an ECAE 

simulation model based on a visco-plastic self-consistent (VPSC) polycrystal plasticity 

scheme.  The same material parameters were utilized in all simulations which are 

conducted continuously without interruption, accounting for the rigid rotations between 

passes associated with each route.  Therefore, reliable predictions of the slip activities 

during each test could be achieved. The same model coupled with a dislocation-based 

hardening scheme was also used to predict the tensile and compressive stress-strain 
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response of as-received hot rolled AZ31B plate and ECAE processed samples along 

different directions. The main findings of this dissertation can be summarized as follows:  

 

1. The initial grain orientation (initial texture) with respect to the ECAE die 

orientation significantly affects the evolution of texture, dynamic 

recrystallization, and grain morphology of the processed AZ31B Mg samples 

due to different amounts of non-basal slip activity.  

2. The activity of prismatic slip system tends to reduce the amount of dynamic 

recrystallization during ECAE of AZ31B Mg alloy. Prismatic slip acts as a 

relaxation mechanism that lowers the amount of internal stresses and hence 

the available energy for DRX.   

3. The flow stress anisotropy and tension-compression asymmetry of AZ31B 

Mg alloy depend on the orientation of the basal poles with respect to the 

testing directions. The more random distribution of the basal poles is the 

lower the flow anisotropy and tension-compression asymmetry are. 

4. The activity of twins is the main reason behind the flow stress anisotropy and 

tension-compression asymmetry in AZ31B Mg alloy. More strong texture 

leads to the activity of twinning system along certain directions and under 

certain type of loading (compression or tension). 

5. Despite the wide variety of ECAE deformation textures produced in AZ31B 

Mg samples, these textures can be classified in three categories that are called 

Texture A, Texture C and Texture BC in this dissertation. When looking on 
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the flow plane texture, Texture A has two basal peaks close from each other 

and oriented along the longitudinal direction (LD) of the billet. Texture C has 

two separate basal peaks separated by 60 - 65° and make and angle of about 

45° from the extrusion direction (ED) and longitudinal direction (LD). 

Texture BC, however, have one basal peak where basal poles of most grains 

are oriented along a pole making an angle of about 27-38° from LD.  

6. The visco-plastic self-consistent (VPSC) crystal plasticity model, notably, 

works very well in predicting texture evolution of AZ31B Mg alloy during 

ECAE following conventional and hybrid routes.  

7. ECAE is an effective technique to eliminate the dendritic structure and 

casting porosity as well as refining the microstructure in as cast two-phase 

alloys.  

8. The substantial improvements in the tensile strength and ductility of the as-

cast Zn-8wt.% Al alloy after multi-pass ECAE are attributed to the 

elimination of the dendritic microstructure, the casting defects, decrease in 

the size of the hard eutectoid-phase, and relatively homogeneous distribution 

of these phase particles in the eutectic matrix.  

9. The relatively large increase in strength of Zn-8wt.% Al alloy as compared to 

what have been reported for other ECAE processed Zn-Al alloys is attributed 

to the initial lower volume fraction of the eutectoid-phase in Zn-8wt.% Al 

and, thus, to the larger dendrite spacing for eutectoid particles to be sheared 

more effectively and to scatter in the eutectic matrix more uniformly. The 
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effects of refined size and more uniform distribution of the hard eutectoid 

particles in the eutectic matrix overcome the effects of deformation-induced 

chemical homogenization witch is believed to be the main reason behind 

softening observed in other ECAE Zn-Al alloys.  

10. The flow stress anisotropy of Zn-8wt.% Al alloy is dependent on the size and 

morphology of the hard eutectoid particles. The more refined these particles 

the lower is the anisotropy despite the elongated bands they form which are 

usually oriented along the same direction.  
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CHAPTER IX 

SUGGESTIONS FOR FUTURE WORKS  

 

1. The current study of flow stress anisotropy and tension-compression 

asymmetry of AZ31B Mg alloys was carried out by measuring and predicting 

the mechanical response of the ECAE processed samples along the three 

orthogonal directions of the billets: ED, LD and FD. From the 

crystallographic textures of the ECAE processed samples, this study can be 

extended to account for other important directions. For example, the direction 

of basal poles in the samples having Texture BC samples.  

2. Because of the size of AZ31B samples processed using the hybrid routes, the 

tension tests of these samples were limited along the extrusion direction 

(ED). It was observed that these hybrid routes produced samples of higher 

strength along the flow direction (FD). Only compression tests were 

performed along this direction because of the small size of the processed 

sample. Since, plastic deformation is mainly accommodated by twinning 

during compression along this direction, tension tests along this direction are 

necessary to confirm the finding that grain size has limited influence on slip 

systems activity. To overcome the size limitations, the AZ31B Mg alloy can 

be processed as bulk billets following hybrid route. It can also be processed 

inside larger cans.  
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3. Texture prediction during ECAE of AZ31B Mg alloy was carried out using 

the visco-plastic self-consistent (VPSC) polycrystalline model without 

considering hardening of deformation modes. This was sufficient to 

successfully predict the texture even after seven ECAE passes at relatively 

high temperatures. However, modeling post-ECAE processing at room 

temperature requires the knowledge of critical stress evolution during ECAE. 

Therefore, hardening evolution during ECAE should be accounted for by 

using a hardening scheme like the dislocation-based one.  

4. The dislocation-based hardening scheme has many parameters associated for 

each slip systems. Fitting the experimental stress-strain curves to find out all 

these parameters is a time consuming process. Reducing these parameters by 

combining some of them will facilitate the application of this hardening 

model. 

5. Tension and compression tests at several temperatures in addition to the room 

temperature tests should be done in order to improve the hardening 

parameters.  

6. Post-ECAE processing can be used to further increase the strength of Mg 

alloys. Low temperature rolling is a good candidate to further refine the 

grains and increase the internal stresses of the alloy. Compressing the ECAE 

processed billets that have Texture A type along their extrusion axis can 

introduce twinning in the billet which increases the volume fraction of 
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boundaries that hinder the dislocation movement. This is expected to have 

significant increase on yield strength of the alloy. 

7. Post-ECAE processing like rolling can increase the texture strength and 

hence increase the flow stress anisotropy. High flow stress anisotropy is 

beneficial in some applications such as blast protection applications.  

8. Plate ECAE helps producing plates with ultrafine grained microstructures 

while preserving the strong basal texture of hot-rolled plate. Type A texture 

observed after ECAE is an evidence of the possibility of fabricating such 

plates. The current VPSC model used in this dissertation will help in 

designing the processing routes to obtain plates with desired textures and 

grain sizes.  

9. ECAE found to be an efficient processing technique to eliminate the dendritic 

structure and casting porosities of as-cast two-phase Zn-Al alloys and hence 

improve the mechanical properties of these alloys. Other two-phase alloys 

should be processed using ECAE in order to improve their mechanical 

properties.  
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