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ABSTRACT

A Recommendation System for Preconditioned Iterative &slv(December 2009)
Thomas George, B. Tech., Indian Institute of Technologylids,;
M.S., Mississippi State University

Chair of Advisory Committee: Dr. Vivek Sarin

Solving linear systems of equations is an integral part o$tnscientific simulations. In
recent years, there has been a considerable interest éndagde scientific simulation of
complex physical processes. Iterative solvers are uspadtierred for solving linear sys-
tems of such magnitude due to their lower computationaliremqments. Currently, compu-
tational scientists have access to a multitude of iteratbreer options available as “plug-
and-play” components in various problem solving environteeChoosing the right solver
configuration from the available choices is critical for @msg convergence and achiev-
ing good performance, especially for large complex madticelowever, identifying the
“best” preconditioned iterative solver and parameterfialenging even for an expert due
to issues such as the lack of a unified theoretical model, ity of the solver config-
uration space, and multiple selection criteria. Thereftrs desirable to have principled
practitioner-centric strategies for identifying solvenéiguration(s) for solving large linear
systems.

The current dissertation presents a general practitioeetric framework for (a) prob-
lem independent retrospective analysis, and (b) probleeciBc predictive modeling of
performance data. Our retrospective performance anatystiodology introduces new
metrics such as area under performance-profile curve arditaoral variance-based fine-
tuning score that facilitate a robust comparative perfarceaevaluation as well as parame-
ter sensitivity analysis. We present results using thigygmaapproach on a number of pop-

ular preconditioned iterative solvers available in padsaguch as PETSc, Trilinos, Hypre,



ILUPACK, and WSMP. The predictive modeling of performan@dadis an integral part
of our multi-stage approach for solver recommendation. Kéyenovelty of our approach
lies in our modular learning based formulation that congwief three sub problems: (a)
solvability modeling, (b) performance modeling, and (cjfpenance optimization, which
provides the flexibility to effectively target challengash as software failure and multi-
objective optimization. Our choice of a “solver trial” iasice space represented in terms
of the characteristics of the corresponding “linear systésolver configuration” and their
interactions, leads to a scalable and elegant formulattonpirical evaluation of our ap-
proach on performance datasets associated with fairlg lgrgups of solver configurations
demonstrates that one can obtain high quality recommendathat are close to the ideal

choices.
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CHAPTER |

INTRODUCTION
A fundamental step in most scientific and engineering sitraria is the solution of sys-
tems of linear equations of the forthx = b, where A € C™*" is typically known as
the coefficient matrixp € C™ is the right hand side vector (RHS) ande C™ is the
vector of unknowns. Large sparse linear systems involvirtjoms and even billions of
equations are becoming increasingly common in a numberaifl@ms arising from the
discretization of PDEs, structural analysis, electricwir simulations, linear and non lin-
ear programming, etc. These systems of equations can bedsobing eithedirect or
iterative methods. Direct solvers, which are based on factoring tleficeent matrix into
invertible factors , are fast and robust, but are often niséble for large three-dimensional
problems due to their prohibitive computational and memequirements. This limitation
combined with the need to solve ever increasing sizes odtiegstems has fueled a strong
interest in iterative solvers that typically require muekder memory and fewer computa-
tions [28]. However, iterative solvers are often plagueddyre and/or poor convergence
and need to be coupled with carefully chosen and fine-tunedopditioners for robust
performance.

Decades of research has culminated in a wide range of itethemes and precondi-
tioners for solving large sparse linear systems. As a rgs@cttitioners now have access to
an overwhelming number of choices of efficientimplementatiof various preconditioned
iterative solvers in several black-box solver packagesh s PETSc [4], Trilinos [45],
ILUPACK [57],Hypre [1], and many others [25]. However, foiost of these solvers, there

is no guarantee of success on large, complex matrices asdcektiemely important to

The journal model is SIAM Journal of Scientific Computing.



choose the right parameters in order to achieve convergéiten, even when the solver
converges to the correct solution, there can be a wide digparthe performance met-
rics such as computation time and memory usage for differlenices of parameters. For
example, the linear systeaudikw 1 could be solved, within a memory and time limit of
16GB and 4 hours, by only 7 out of a total of 99 configuratiora the experimented with
for Hypre ParaSails configurations. Further, the memorytand values exceed the best
values by up to a factor of 3 even among the 7 solved cases.efbney fine-tuning the
preconditioner/solver parameters is critical both foneimgy the robustness of the solution
as well as improving the performance of the preconditioseler in terms of the compu-
tation time, the memory resources, the accuracy of theisaland the number of iterations

required.

A. Practical Challenges in Solver Selection

Choosing the appropriate scheme and fine-tuning the pagasnietr a particular linear
system is an important, but highly challenging task everkperts in computational linear
algebra and remains a blend of art and science due to vafiegasons that we discuss

below.

1. Lack of Theoretical Analysis

The huge diversity among the existing preconditioners (£3gk), ICT, AMG, SAI) makes
it difficult to analyze them in a unified theoretical model.€efais also, often, a significant
variability in the different implementations of the samegwnditioner in different solver
packages (e.g., PETSc IK( Trilinos IC(k), and Hypre ICk)), which limits the utility of

a purely theoretical analysis.



2. Complex Solver Configuration Space

A preconditioned iterative scheme, in general, has manyehs — choice of package,
solver algorithm, matrix re-ordering, preconditioner aatious parameters specific to the
preconditioner choice, resulting in a large and fairly hegeneous solver configuration
space. An exhaustive search over this space for optimatpeeas using a simple trial and
error strategy is non-trivial since some of the parameteusdcbe continuous, discrete, or a
nested/linear combination of both. Mutual dependenciesranthe solver/preconditioner
parameters further exacerbate this difficulty by requiarggmultaneous exploration of the

correlated parameters.

3. Multiple Solver Selection Requirements

Selection of a suitable solver is also, often, complicatethk fact that there is no universal
“goodness” criteria and the appropriate solver(s) is deftged by the optimization criterion
specific to the application in consideration. For exampi@nie case, the best choice could
be the fastest solver that provides the correct solutiomwpdertain relative error whereas
in another scenario, the best choice could be the one thaidethe best error within 4
hours of run time. Often, the application-specific optinti@acriterion is a hybrid function
of multiple performance criteria, e.g., memory-time progluhat can include constraints
arising due to hardware limitations resulting in a large bemof possible “goodness”

criteria, each with its own set of suitable solvers for a gilieear system.

4. Problem-specific Solver Performance

Empirical studies indicate that the effectiveness andoperance of preconditioned itera-
tive solvers is highly dependent on the linear system in ickemation. For example, Table |

shows the minimum and maximum values for the total time megifior preconditioner cre-



ation and solving linear systerkgushuandaudikw 1 using 470 solver configurations span-
ning multiple preconditioners and packages (See Chapjeifhe corresponding memory
usage is also shown. The huge variations among the minimdmasimum values high-
light the benefits of problem-specific fine-tuning. Therefasimplistic solver selection
strategies that disregard the linear system characteriste of limited value. On the other
hand, determining the optimal solver choices for the ersfy@ce of linear systems is non-
trivial as there exists limited domain knowledge on the elations between linear system
properties and solver performance. This issue is espgciatical in case of applications
that require solution of a series of linear systems with theffeccient matrices changing
gradually since the set of parameters that are best for #tesfistem may not be suitable

for the latter ones.

Table I. Minimum and maximum values for time taken for preditioner creation and solv-
ing kyushuandaudikw 1 matrices for 470 iterative solver configurations spanning
multiple preconditioners and packages. The table also shbe corresponding
memory usage for storing the preconditioner as well as tieali system.

Matrix Metric Minimum | Maximum
kyushu Time (s) 32.66 3891.68
Memory (MB) | 4547.04 6794.12

audikw 1 Time (s) 336.16 10390.40
Memory (MB) | 959.318 9327.76

5. Sparse Performance Data

The main utility in solver selection is for solving large diar systems, where one cannot
afford to waste computational resources with a sub-optsoaler or multiple attempts.
However, the huge requirements of memory and time resowisesseverely limit the
collection of empirical performance data in such scenavidéch in turn limits our ability

to glean insights on solver performance for different typesnear systems.



B. Motivation for a Statistical Framework for Solver Seleat

In the past, there have been some attempts to analyzevtesativers from a theoretical
perspective, for example, the excellent survey articleBéxyzi et al. [8] and van der Vorst
et al. [73] describe the relative strengths and weaknegsewiale range of preconditioned
iterative schemes. However, the connections observedaarfeoin being actionable by
practitioners, especially given the huge variations ifedént package implementations of
the same preconditioner, which are not discussed in thégéear This limitation of a
purely theoretical approach has prompted a few empiricaliss [9, 18, 34] on precondi-
tioned iterative solvers, but these studies deal only watfiants of an in-house implemen-
tation of a single preconditioner, providing little insigin the relative performance across
preconditioners. So far, there has not been a thorough s@lpavaluation of the read-
ily available implementations of most common classes oé@mditioners, most likely due
to the extensive computational and software engineerifugtehvolved in solving large
matrices using a large number of iterative solver configoinat

On the other hand, recent technological advances haveedsnlthe creation of large
linear systems leading to widespread adoption of iteratdreers, making it extremely im-
portant to provide guidance to practitioners, who cursergly on limited domain knowl-
edge and ad hoc mechanisms for fine-tuning preconditiomanpeters. Hence, there is an
immediate need for a practitioner-centric empirical eaibtn of the commonly used gen-
eral purpose preconditioners available in black-box sgbaekages, especially for large,
complex linear systems. Since such linear systems tygicadjuire significant computa-
tional resources and have a low solvability rate, the regputtata is often sparse and noisy.
Analyzing such data entails a principled comparative mahmgy based on an informa-
tive representation of the solver configuration space ahdstostatistical metrics that are

aligned to common practitioner decisions.



From the discussion on practical issues, it is also clearfite-tuning solver config-
urations using linear system characteristics can provglafecant performance improve-
ments. Motivated by this promise, a number of recommendaystems have been pro-
posed for software selection in scientific computing [49,84 in particular, for selection
of sparse solvers [10, 13, 87]. However, these approachesbeen demonstrated to be
effective only for scenarios, where (1) one can obtain esttenperformance data easily
(i.e., training data is not sparse), and (2) the problemgesticted to a small homoge-
neous domain. Furthermore, the existing solver recomntemdapproaches [10, 13, 87]
are based on simplistic formulations of solver selectioterms of classification and are
capable only of providing highly coarse recommendatiorsetiaon a single performance
criterion. Since fine-grained optimization of parametarsronultiple selection criteria is
often required in practice, it is highly desirable to haveiagpled statistical methodology
for choosing suitable “fully specified” solver configurai®(i.e., pre-processing choices,
preconditioner, iterative solver, and the associatedpatars) for a specified linear system,

in other words, an intelligent solver recommendation syste

C. Overview of the Dissertation

The primary goal of this dissertation is to develop methodms and systems that can
provide guidance to practitioners on choosing the besttiter solver configurations for
any given linear system, while taking into account prattigplication requirements and

constraints. The dissertation consists of two main parts;hvare described below.

1. Retrospective Comparative Analysis of Solver Perforreddata

The first part is an attempt to address the inadequacies stirexiempirical studies and

comprises of an extensive practitioner-centric compagavaluation of a number of pop-



ular and promising general purpose preconditioners aaila black-box solver packages
over large linear systems chosen from a variety of domaiine typical solver selection
modus operandi of practitioners is a multi-step procesgaitie solver package and pre-
conditioner are chosen first based on the target archiee@tug., AlX, Linux), implemen-
tation specifics (e.g., MPI, OpenMP, C, C++), resource cairgs (e.g., available memory)
and available domain information on linear system propsytiollowed by refinement of
one or more preconditioner parameters using heuristicgraaland error policy. In order

to make the optimal decision, practitioners require guigaon questions such as:

How do the different package/preconditioners compare @atth other and the direct

solver with respect to time and memory?

Does the relative performance change when parameters areified?

What is a good default configuration for each preconditionerpackage?

For each package/preconditioner, what are the most senpdrameters that can be

fine-tuned for a specific linear system to improve perforne&nc

How do the answers to the above questions differ in a paisgiting?

To address these questions, we introduce a fairly genedatigorous methodology
for retrospective analysis of performance data that ali@ya robust comparison of solver
configurations, or groups thereof, using area under pedonoa-profile curve, (b) iden-
tification of the problem-independent best configuratiothimi each solver configuration
group for a given performance criterion, (c) estimationha& impact of fine-tuning various
parameters using a suitable conditional variance meaBaged on this methodology, we
developed a semi-automated system for the collectionysisabnd visualization of solver

performance data that can be used to perform various cothygeaad sensitivity analyses



within and across pre-specified groups of solver configoingti This system was used to
evaluate incomplete factorization, sparse approximaerge, and the algebraic multilevel
schemes available in packages such as PETSc, Trilinos,eHYWPACK, and WSMP

along multiple dimensions such as robustness, speed anadme&snsumption both for

serial and parallel settings, where possible. The resiilisi® comparative analysis (pre-
sented in Chapter Ill) provide detailed guidance on chofgaeconditioners and parame-
ters that could be useful to practitioners, and also higihlpgtential areas of improvement
in each solver package that could be beneficial to the saftdavelopers. Even though,
the comparative methodology is targeted towards iteratoleer selection, the key ele-
ments of our approach, for example metrics such as area pedermance-profile curve,

fine-tuning score, are readily generalizable to other sar#vgelection scenarios involving

a complex space of software options.

2. Multi-stage Learning-based Solver Recommendation éggin

The second part of the dissertation focuses on linear syspamific predictive modeling
of solver performance with the objective of providing recoendations on solver configu-
rations. Though analogous to the typical user-item reconagaton problem often studied
in machine learning literature, the solver recommendapi@blem poses a unique set of
challenges resulting from solver failure, huge variatiomperformance metrics, multi-
ple/hybrid selection criteria, user interpretability sdg@ments, and necessity of high qual-
ity cold start predictions, which make it impractical toatitly employ existing techniques.
To address these issues, we propose a novel multi-stagenigdrased methodology for
determining the “best” solver configuration(s) given therusonstraints and the desired
performance behavior for any given linear system.

Our formulation of the solver recommendation problem casgs of three key sub-

problems: (a) solvability modeling, (b) performance maugland (c) performance opti-



mization. This decomposition allow one to readily addrdsslenges arising from solver
failure and multi-objective optimization. Our choice o$tance space comprising of solver
trials, i.e., pairs of linear systems and solver configoregj represented as vector of char-
acteristics of linear systems, solver configuration patarseand their mutual interactions
(a key distinction relative to existing approaches) alsuoilts in a fairly elegant formulation
that is readily scalable with respect to the space of lingstesns and solver configurations,
while addressing practical concerns of users such as netalglity. Specifically, the solv-
ability model based on an intrinsic performance criterinsed to filter out failure-prone
configurations before modeling the performance statiskcsther, to accommodate opti-
mization of multiple criteria, we separately learn modelsdach of the core performance
statistics (e.g., time/memory/error). Standard clasgifio and regression techniques aug-
mented with latent factors are used to learn the solvalaliy performance models after
suitable transformation of performance data. The optitidrastep involves combining
the learned performance models to identify the top solveraes for the specified perfor-
mance criteria. For the case, where generalized lineaessgm is employed to model
the core performance statistics, we also propose an effigiethodology for identifying
the top4 solver choices for multiplicative combinations of the cpe¥formance statistics
using monotonic rank aggregation techniques.

We implemented the proposed methodology as a modularessifihg solver recom-
mender system with specialized components dedicated &ocdéection, feature genera-
tion, offline learning and online recommendation unit. lgginis system, we evaluated the
key aspects of the proposed approach on different subsstéveir performance data using
models at different levels of granularity. The resultindveo recommendations demon-
strate the efficacy and potential promise of our approachinAlse case of the first study,
the proposed solver recommendation methodology can alsedukly adapted to other

software selection scenarios when there is sufficient dokr@wledge on the informative



10

problem and software characteristics.

3. Organization

The rest of the dissertation is organized as follows: Chdppgovides a survey of the state
of the art in iterative solvers, preconditioners, black-Bolver packages as well as a brief
review of existing approaches for using machine learningrigues for scientific software
selection. It also includes some background material ogsiflaation, regression and fea-
ture selection techniques that are later employed in owmesoécommendation approach.
Chapter Il presents various components of our novel grangr-centric methodology for
retrospective performance analysis, as well as a desamijti the performance analysis
infrastructure. The results obtained by analyzing pertoroe data from a wide range of
preconditioned iterative schemes on a set of benchmarkegimsbare also presented in this
chapter. Chapter IV discusses the key desiderata for arsglwemmendation system and
presents details of our multi-step learning based metlogyahs well as prototype system
for identifying the best solver configurations given a linsgstem and user requirements.
Chapter V provides an empirical evaluation of various atspetthe proposed solver rec-
ommendation system for two scenarios that differ in the gjlaity of the solver config-
uration and linear system space. Chapter VI summarizes #ie oontributions of the
dissertation and discusses possible extensions invohatige collection of performance
data, optimization over a continuous solver configuratymace and applications to broader

software selection scenarios.
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CHAPTER I

RELATED WORK AND BACKGROUND
In this section we describe the state of the art in iteratbhees's, preconditioners, black-box
solver packages for solving linear systems, and also disihiesvarious machine learning

techniques used in expert systems for scientific software.

A. lterative Solvers

Over the years, a number of iterative solvers have been algeeland these are currently
the best known methods to deal with very large sparse matridee methods range from
simple stationary iterative methods to more complex mettmeth as Krylov subspace
methods and multigrid techniques. The applicability anfeéativeness of a few of the

iterative solvers in these main classes is described in aetal in the following sections.

1. Stationary Iterative Methods

Stationary iterative methods such as Jacobi, SOR involugestmrm of splitting of the
coefficient matrix and the solution at tié iteration is represented as a linear combination

of the solution of thg — 1" iteration. These methods can be written in the general form

cdtt = 4, (2.1)

gt = gt =012 (2.2)

wherer! = b — Az’ is typically known as the residuafi*! is the correction at thé"

iteration, andC' is a matrix which depends oA and the choice of the specific method.
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WhenA = C — R, the above equations can also be written in the alternative f
= C7Ra' + C7 1. (2.3)

Let the coefficient matrixd = L + D + U, where D is the diagonal (assumed to be
without any zero elements], is the strict lower triangular part, arid is the strict upper
triangular part ofA. Jacobi, Gauss-Seidel, and SOR methods differ in the cluitiee

splitting matrixC' and are described in more detail below.

a. Jacobi

The Jacobi method corresponds to the simple form where tiexnia= C'; is the diagonal
D of the coefficient matrixA. From equation (2.3), we observe that the- 1) iteration
involves inverting a diagonal matrix. Even though there migxist other methods that
provide faster convergence in a serial environment, Janekiiods might be preferable for
massively parallel systems (for example, electronic stinecsimulation) either as a solver

or preconditioner mainly due to the embarrassingly pdraliéure of the algorithm.

b. Gauss-Seidel

Gauss-Seidel method (GS) improves on the Jacobi methoctcluding all the new values
generated till thei — 1) iteration in correcting thé" component of the residual vec-
tor. For GS iterations, the matriX = Cgg is either the lower triangular portion of,
l.e.,L + D (forward Gg or the upper triangular portion of, i.e., D + U (backward G$
There also exist symmetric GS iterative schemes where &&eltion consists of a forward
GS followed by a backward GS. In any implementation of the G&hmd, one needs to
keep track of the new and old variables. Different impleragans differ in the order in
which the variables are updated. Two most commonly usediogtearered-blackand

natural ordering. The ordering chosen for implementation is imgarsince it affects the
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convergence behavior.

c. Successive Over Relaxation (SOR)

SOR method is an improvement on the GS method since it useghte® average of new
and old values for updating. SOR is based on the splitting®hatrixA = (D + wL) +
(WU—-(1-w)D))/w, 0 <w < 2. Ifw < 1, thenitis calledunder relaxatiorand ifw > 1,
then it is calledover relaxation In general, it is not easy to compute the optimal value
of w that maximizes the convergence. In practice, adaptive odsthre used to converge
to the optimal value starting from an initial guess eithengsimple heuristics or using

knowledge of the underlying problem domain.

d. Applicability Conditions & Convergence Analysis

(a) If the matrix A isstrictly diagonally dominanfi.e., each diagonal element is larger
than the sum of the magnitudes of off-diagonal elementssimatv), the Jacobi and
GS iterations are guaranteed to converge. Writihg R asG, we can say that in fact
|Gaslleo < ||Gllee < 1. Asimilar statement can be made even for column diagonally

dominant matrix. The lower the value of thg|, the faster the convergence.

(b) If the matrix A is irreducible and weakly diagonally dominarthe Jacobi and GS
iterations converge ane Rgs) < p(R;) < 1. A smaller value for the spectral radius
p indicates faster convergence, a value closkitoplies poor convergence and a value

greater than indicates divergence.

(c) GS and Jacobi methods are found to converge even foraeatthat do not satisfy
conditions (a) and (b). However, it is necessary that theathal terms inA are greater

in magnitude than the off-diagonal terms which can be a&udy reordering.
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(d) Even though for special cases (a) and (b), the GS meth&akier than the Jacobi
method, this is not true in general. There exist non-symimatatrices for which the

Jacobi method converges while GS method diverges and vica J&2].

(e) If A'is symmetric positive definite (SPD), SOR convergesdll w in the range) <
w < 2. If Alis not SPD, then the above condition is just necessadyremia sufficient
condition for convergence. The rate of convergence dependble choice ofv and
the reordering scheme used. Since GS is a special case of &&Ruv= 1, GS also

converges for SPD matrices.

In the past, stationary iterative methods were used for owaputational simulations.
However, in recent years they are slowly being replaced egqrditioned Krylov subspace
methods due to their superior convergence rate [6]. Nowadagse stationary methods
are commonly used as preconditioners for Krylov subspadbads or as smoothers for

multigrid based solvers since they are relatively inexpens

2. Krylov Subspace Methods

Krylov subspace methods such as CG and GMRES are charadédayzthe subspaces in
which the solution iterates; lie. Them!” Krylov subspace for a given matrik and vector

7o IS given by the following:
Kn(A, 1) = span{rg, Arg, A%rg, - -Am_lro} (2.4)

Various Krylov subspace methods differ in the criteria theg in selecting a vector in the

subspace.
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a. Conjugate Gradients Method (CG)

The Conjugate Gradients (CG) method picks tfiesolution iterater; to be the vector that
minimizes thed-norm (i.e.,||z — x;||4 = (z — x;), A(z — x;)) of the error over the Krylov
subspace for any SPD coefficient matdx The new residual is orthogonal to the space
of previously generated residuals or some related spacemiin advantage of CG is its
low computational and memory requirements. The CG methsdals been applied to
general unsymmetric matrices by applying it to the normalagigns (CGNE) or normal
residual (CGNR) formulation of the linear system. CG canygiad in this case because

even though the matriX is unsymmetric, the produetA” or AT A is SPD.

b. Generalized Minimal Residual Method (GMRES)

The GMRES method picks; to be the vector that minimizes the two norm of the residual
over the Krylov subspace. At each iteration, GMRES gensratee dimension of an or-
thonormal basis for the Krylov subspakg( A, o). The residual norm|ri||s, is minimized

via a least squares problem. A major drawback for this meithttht the computation cost
increases linearly with iteration count since all the basistors of the Krylov subspace
have to be stored to guarantee convergence. To alleviafgdhéem with storage require-

ments, restarted versions of GMRES are used in practice.

c. Applicability Conditions & Convergence Analysis

CG: If Ais SPD then, CG is guaranteed to converge in a finite nunabeterations.

Specifically, there exists a pessimistic bound on the nurabéerations required for re-
ducing the error by a fixed factor which is proportional to sigeiare root of the condition
number. However, in practice CG converges to the pre-spddifilerance in much fewer

iterations. This practical behavior is explained basedchereigen value distribution of the
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coefficient matrix. A general rule of thumb is that if the lasg and smallest eigen values
of A are clustered closely together, then the CG method woulderga quickly. Con-
vergence of CG method, in practice, might differ from thaekact arithmetic [23]. The
hope is that as long as the matrix is not too ill-conditiorted,floating point result would
ultimately converge to the desired solution. The CG metlsdabst suited for applications
producing SPD matrices. Target applications include m@dérfrom structural engineering
simulations of offshore platform, suspension bridgesdimngs, etc.

GMRES: For any positive definite matrix (i.e., the symmetric part af+ AT)/2 is
SPD), GMRES will eventually converge. For PD matrices thatreormal (i.e.,AAT =
AT A) there exists bounds based on the condition number or eigleles/ for the residual
afterm GMRES iterations. There does not exist any simple analpgisrims of eigen val-
ues ofA or condition number of the eigen vector matrix for generaymmetric matrices.
Greenbaum et al. [35] established that for highly non-ndmmstrices with the same spec-
trum any convergence behavior is possible. In practice, the restastrsion of GMRES is
often used and there does not exist any theoretical exjpteufat its convergence behavior.
The convergence properties vary greatly with the choicéefréstart value [18]. Precon-
ditioning techniques that reduces the number of iteratcmsgd become really useful for
using low values for restart. There are a number of appéoatithat produces unsym-
metric matrices and GMRES is a natural choice for these dusmaich as circuit physics

modeling, chemical kinetics, oil reservoir simulationpepomic modeling etc.

3. Multigrid Methods

Multigrid methods, even though originally developed foe golution of discretized ellip-
tic PDEs, are now applicable to a more general class of pmahlelhe main idea in this
approach is to represent the residuals as composed of lowighdrequency modes. The

use of an iterative method (smoothing) reduces the highuéegy components quickly
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and produces an approximate solution. This solution on tieedtid is then restricted to a
coarse grid where the previous low frequency componentseofdsidual in the fine grid
becomes high frequency components in the coarse gridi(test). This is recursively ap-
plied to a few more coarser levels and then interpolated tuattie fine grid (prolongation).
An algebraic version of multigrid method has been develdpedse in black box solvers,
which uses the properties in the coefficient matrix alonedoes not assume the existence
of underlying meshes. Multigrid methods may be used as a&solvas a preconditioner

with Krylov subspace methods.

a. Applicability Conditions & Convergence Analysis

The fundamental assumption for geometric multigrid meghisdhe availability of an un-
derlying mesh. Algebraic Multigrid (AMG) methods addreksstlimitation by defining
the interpolation and prolongation operators in an algebsay. In practice, AMG has
been shown to be applicable for a wide range of matrices. Mexyveareful tuning of the
different parameters (restriction, prolongation opaatemoothers, number of levels, etc.)
are often needed to improve the convergence rate for mdsifesapplications.

Convergence results exists for multigrid methods for peoid ranging from simple
differential operators such as Poisson operators on gtedtigrids to self adjoint elliptic
PDEs on arbitrary domains. For this class of problems, tmee@ence rate of multigrid
methods is independent of the problem size which is almaoinap except for the hid-
den constant, i.e., the work required to solve the systemaggstional to the number of
unknowns and the number of iterations required to solve msrelmost constant. Some
of the applications where multigrid techniques have beetessfully employed include
image segmentation, quantum chemistry, structured gnémgion, and VLSI design.

For all these iterative solvers, there exists theoretioavkedge on the convergence

behavior only for a narrow class of problems and generatizabd general SPD and unsym-
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metric matrices is non-trivial. Since there is no singletimesthod that is suited for all the
problems [61], researchers have developed different pditoners/pre-processing steps
to improve convergence while using minimal computatiomal memory resources. If the
problem under consideration belongs to a class for whicteterist theoretical bounds on
convergence, then one could make a judicious choice on ¢h&tiite method needed to
solve. However, in the case of general SPD and unsymmetealisystems, there are a
number of methods that are possible candidates and whethethend is applicable or not

is usually determined from experience gained in perforneimgirical studies.

B. Preconditioners

A preconditioner broadly refers to an explicit or implictheeme that modifies the orig-
inal linear system such that it is easier to solve using amtitee method. For example,
solving Az = b is equivalent to solving/ = Az = M~'b for a non-singular matrix\/.

If M~ ~ A=, then the preconditioned linear system has better spgutpkrties, thus
achieving faster convergence rate for iterative methodslewensuring that the original
solution remains unchanged. An ideal general purpose pd#ooner should have the fol-

lowing characteristics for successful deployment in alblagx iterative solver package.

e Effectiveness:The use of a preconditioner should result in a reductionerctist of
computing the solution which is often measured as the numbgerations. How-
ever, this is an effective indicator only if it is accompahl®y a reduction in the total
time needed for obtaining the solution, because precamdit iterations tend to be

more expensive than un-preconditioned ones.

e Robustness:It is important that the preconditioner provide the compataal im-
provements while retaining applicability over a wide ramggroblems and not be

susceptible to numerical instabilities.
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e Parallelizability: Preconditioning a linear system should not cause any addaiti
serial components to be introduced or reduce the paralfieiegfcy that could be
achieved in its absence. If such serial bottle necks areaithable, then the increase
in time for the parallel case should be small relative to titeltsavings due to pre-

conditioning.

e Parameter Predictability/Adaptability: Current general purpose preconditioners
for iterative solvers require the user to specify a numbegrashmeters. These pa-
rameters often have a significant impact on the solver pedoce and usually have
to be carefully fine-tuned for a given problem using trial @nebr methods to obtain
good performance. Hence, it is highly desirable to havematars that are known to
affect the convergence properties in a predictable maroérad they can be chosen
with less effort. An alternate option would be to have a prefitioner accompanied
by an adaptive scheme that chooses the appropriate paranmte given linear

system [39].

The above conflicting requirements have challenged relseesrd¢or a long time and
substantial work has been done in developing preconditsathat addresses most of these
requirements if not all. Even though simple preconditisriégee Jacobi are cheap to ap-
ply and have good parallel efficiency, they are limited initla@plicability [8]. We now

describe a few promising general purpose preconditionvaitadle for SPD linear systems.

1. Level-based Incomplete Cholesky Factorization K)}E(

An important class of preconditioners for SPD systems iethas incomplete Cholesky
factorization of the coefficient matrix. There are sevemiations of incomplete factor-
ization that differ in the rules for dropping entries to cangthe incomplete factors. One

strictly positional criterion for dropping is based on wistnown as théevel of fill, which
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is a measure of “closeness” of a fill entry to the original istin the coefficient matrix
(please refer to the book by Saad [71] or the survey by BerjZbf8a formal definition).
In IC(k) factorization, all fill-in entries at levels exceedikgare dropped. An important
advantage of a pure I€) preconditioner is that the sparsity pattern can be detexci
a-priori by a symbolic factorization step and the cost ofstarcting the preconditioner
is amortized when solving multiple linear systems with thene sparsity pattern. Often,
depending on the implementation, when the paramnieter0, it is supplemented with ad-
ditional parameters to handle fill levels higher than 0. Tmaany implementations of the
IC(k) preconditioner use a combination of dropping based on thatiposition and magni-
tude of the nonzeros. The following parameters are useckeiintbplementations of 1&()

that we study in this paper.

1. Highestfill level k, is the fundamental parameter in all implementations of@{&)

preconditioner and denotes the level beyond which allri#l-are dropped.

2. Fill factor specifies an upper bound on the amount of memory used by therptie
tioner for levels of fill greater than zero. A fill factgrdenotes that the preconditioner

would not use more that times the number of nonzeros in the original matrix.

Careful partitioning and ordering of sub-domains has bdwwa to be effective in
obtaining scalable parallel implementations of thed{reconditioner [51]. One approach
for parallelization of ICf) is to use the sequential I€Yalgorithm within each sub domain,
popularly known as the Block Jacobi basedd¥C(n general, it has been observed that the

Block Jacobi version of IG() is more scalable than a true parallel implementation of)C(

2. Threshold-based Incomplete Cholesky (ICT)

The threshold based incomplete Cholesky or ICT preconwti® control fill-in by means

of a dual dropping strategy based on a numerical threshalad an upper limitf on the
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number of fill-ins in each row or column. Typically, any new-iit whose magnitude is
belowr times a chosen metric is dropped. In addition, if the numib@ooazeros in a row
or column of the factor exceedstimes the number of nonzeros in that row or column in
the original coefficient matrix, then the excess entriefithie smallest magnitude are also
dropped. Lower values for drop tolerance lead to more ateym@conditioners but result
in higher memory consumptions, and vice versa.

There exists variants of ICT that use a multi-level incortglactorization strategy
(MLICT) combined with static pre-ordering and a droppingeson that attempts to min-
imize the norms of the inverses of the triangular factorgd.[2\hother variation in Block-
Solve95 [53] incorporates a hybrid strategy that uses ideas both level-based and
threshold based incomplete factorization preconditisndihe sparsity of the factors are
guaranteed by retaining only the largest elements suchittbahemory usage is no larger
than that required by a ILU(0) preconditioner. BlockSolyédtas the added advantage that

no parameters need to be specified.

3. Sparse Approximate Inverse (SAI)

The problems inherent in using incomplete factorizatioseovariants are partially ad-
dressed by preconditioners based on sparse approximaisasv[9]. Depending on the
algorithms used for finding the sparse inverse, approximnatrse based preconditioners
could be fairly robust in practice and easily parallelizabliowever, these preconditioners
usually incur a high initial setup cost and the efficacy amddbst of applying the precondi-
tioner depends on the choice of the sparsity pattern. We stol¢f a single implementation
of approximate inverse preconditioner which uagsriori knowledge of sparsity patterns
and Frobenius norm minimization to generate an approximaegse (ParaSails [17, 19]).
For SPD matrices, a symmetric factored approximate prattiondr is generated. ParaSails

uses three main parameters for controlling the accuracytendost of the preconditioner,
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and these are described below.

1. Thresholdcontrols the sparsification of the coefficient matrix sudt thcan be used
to generate tha-priori sparsity pattern by dropping elements that are below the spe
ified value. The range of values fthresholds [0,1]. One can also specify a negative
value forthresholdsuch that its absolute value dictates the percentage oenosz
that must be dropped. The exact value tfmesholdis determined automatically in

this case.

2. Number of levelgontrols the memory usage of the resulting preconditioRara-
Sails uses-priori sparsity patterns that are powers of sparsified matrices e¥o
ample, if a value of 2 is used for the number of levels, thengbarsity pattern
corresponds to the power of 3 of the sparsified matrix. Typialues are 0, 1 and 2

with the default value being 1.

3. Filter is a numerical threshold used to reduce the cost of applhegteconditioner
by further dropping elements from the computed approxinmaterse. This param-
eter works similar tahresholdand one could also specify a negative value if it has
to be determined automatically based on a percentage dfigptimat is desired. For
example, iffilter = —0.9, then the threshold is calculated such that 90% of the non

zeros in the computed preconditioner are dropped.

4. Algebraic Multigrid (AMG)

Algebraic multigrid or multilevel methods are currentlyj@ying a lot of popularity as

black-box solvers. The basic idea of an algebraic multilsaérer is to construct a hier-
archy of coarser graphs, where each node in a coarse levesegits multiple nodes of
the previous finer level. At each coarse level, an iteratolees or a smoother is used to

compute an approximate solution to system correspondirigaiolevel and then project
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this solution to the next finer level. The entire scheme cavi®sed as a preconditioner
for an iterative solver at the finest level.

We study two implementations of AMG, namely BoomerAMG [48hich is a paral-
lel implementation of the classical AMG [70] available inpfg, and Trilinos ML [30, 79],
which includes a parallel implementation of the smoothegreggation approach [80] for
AMG. Trilinos provides default sets of parameters for thmeggn preconditioner types for
problems arising from specific domains; classical smoo#ugpegation for SPD or nearly
SPD systems (SA), classical smoothed aggregation baseekRdomain decomposition
(DD), and 3-level algebraic domain decomposition (DD-ML).

Implementations of AMG typically have a large number of useable parameters of

which the most importahibnes are listed below.

e Smoothers -Hybrid symmetric Gauss-Seidel/Jacobi [1] is the defaulosther of
choice since CG is the default solver used for SPD matricesTHinos ML, sym-
metric Gauss-Seidel, Chebyshev polynomial, and IFPACKahers are some of

the influential ones.

e Coarsening schemesThere are multiple coarsening schemes available in Hypre
BoomerAMG, of which the important ones are Falgout (FALGYrdMel Modified
Independent Set (PMIS) and Hybrid Modified Independenti3stiS). Similarly, in
case of Trilinos ML, the popular coarsening schemes forsatat smooth aggrega-

tion (SA) include Uncoupled, MIS, hybrid Uncoupled-MIS dadRarMETIS.

e Number of Smoother Sweepshis parameter gives users of Trilinos ML another
means of controlling the trade-off between the cost peatiten and the number of

iterations required. Typical choices are values of 2 and 8fmmetric Gauss-Seidel

!Based on personal communication with authors of BoomerAM& Eilinos ML.
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and Chebyshev polynomial smoothing.

e Number of levels for aggressive coarsening (AGI)e value given to this parameter
in BoomerAMG sets the number of levels for which aggressoarsening must be

applied starting from the finest level.

e Strong threshold:The value specified for this BoomerAMG parameter serves as a
threshold to determine whether two points in a graph arengtyoor weakly con-
nected. High values of strong threshold lead to cheaperebateffective precon-
ditioners whereas low values result in expensive precamgits with better conver-

gence properties.

C. Scientific Software Selection

In this section, we describe existing work on scientific wafe recommendation systems
and also some of the adaptive techniques that have beengaepm improve the perfor-

mance and robustness of preconditioned iterative solvers.

1. Expert Systems for Recommending Scientific Software

The use of data mining techniques for knowledge discovenpisa recent development
in the scientific community [67]. One of the early influentiabrks in this area is the
recommendation portal PYTHIA-II [49], which provides usevith the data management
infrastructure to make suitable software choices. Datangitechniques have also been
used for recommending specialized applications such gehgrartitioning software [83]
and solvers for elliptic PDE problems [68] using domain kiedge and empirical perfor-
mance data.

Problem solving environments (PSE) are becoming commoamad are touted as

the future of scientific computing [50], especially, for usegemote computing technolo-
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gies. PSEs allow the user to compose applications withoatvkig the details of the
underlying algorithms and were introduced into the world@fative solvers by the Linear
System Analyzer [14]. Using the LSA, a user can compose disolatrategy by making
choices on the pre-processing steps, the preconditioméith@ solver. Typically, efficient
implementations of promising research preconditionedsitarative solvers are available
as components of a PSE. Therefore, the number of choicebdkiatto be made for solv-
ing a sparse linear system is huge, and numerous intellgystéms have been proposed
for recommending solvers/preconditioners to alleviatettrden on the application devel-
oper [10, 13, 86]. Most of these existing approaches, hokewslve a simplistic formu-
lation of the solver selection problem that focuses on theabdity of a linear system, or
in case of [10] achieving a fixed improvement over a defaulthoé. Such a formulation
readily translates to a binary classification problem, Wwhécthen addressed using off-the-
shelf association rule and classification algorithms. Aenecesearch effort [55] attempts
to use reinforcement learning for solvability predictidrowever, with limited success in

obtaining good results in comparison to more expensiversigeel learning techniques.

2. Learning-based Recommendation Systems

Statistical techniques for estimating dyadic responsetfans, in particular, the preference
ratings of users for products, form another large body cfaiesh that is relevant to our cur-
rent work. Tuzhilin et al. [2] provide a detailed survey ofchane learning techniques for
recommendation systems. These include unsupervisedigeesnsuch as [5, 44, 69] that
rely only on the local structure of the preference ratingpesvised approaches that make
use of user demographic and product content attributesgthaswhybrid approaches [3, 63]
that leverage both the correlations in the ratings as wél@aser-product attributes. These
approaches almost entirely focus on improving the accush@}l the preference ratings,

without specifically considering the additional senstjiviequired for the desirable range,
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or the algorithmic aspects of efficiently generating the kogcommendations. Though
effective for product recommendation systems, these tquka do not consider typically
practical aspects such as the variability in the perforraatatues, feature selection as well

as the final application goals that are critical for solvéeston.

3. Adaptive Preconditioned Iterative Solvers

Over the past few years, there have been a number of emgstiodies [18, 33, 34] on
iterative solvers that highlight the importance of problgmecific fine tuning for improving
solver performance and robustness. In order to addressighefdilure rate of iterative
solvers, the idea gboly-iterativesolvers was proposed in [7] to use variants of the CG
method (CGS, B-CGStab, QMR) simultaneously on a singlelprolin parallel. The itera-
tions are stopped as soon as a single method converges. palg-aterative solvers results
in higher solve times in comparison to the best method, beieh@duced failure rate. This
approach is predominantly suited for distributed memorgmrges and the authors also
present optimization steps to amortize the communicati@rleead of the various meth-
ods. Another related approach to improve the robustnederattive solvers is to use the
idea ofcompositeand adaptive solvers [11]. Unlike poly-iterative solveahge constituent
base solvers are applied in sequence and not in parallelk@halea is a combinatorial
scheme which uses metrics such as solve time and mean fealigréo construct a com-
posite solver that is more reliable than the base methodapta solvers [11, 39] where
the solver parameters are dynamically chosen at the begjroiieach iteration based on
the characteristics of the linear system as it changes gltine iterative solution process
are other approaches aimed at improving the performancelhaswobustness of iterative

solvers. Recent empirical studies [33] indicate that adagblutions are highly effective.



27

D. Machine Learning Techniques

This section gives an introduction to the machine learn@aiphiques that will be used in

our recommendation approach.

1. Classification

Classification refers to the task of assigning a set of infjgais into a predefined set
of target classes. In an inductive machine learning contai typically consists of (i)
a training phase that involves learning a classifier fromtaoexample objects labeled
with the corresponding classes, and (ii) a prediction plvelsere the learned classifier
is deployed to label new objects. It can be formally definedodews. Given training
data withn labeled example&ry, y1), (22,v2), - (Tn, yn), x; € X,y; € Y, the goal of
supervised classification techniques is to identify a fiomck : X — ) from a hypothesis
class’H that maps any object € X to its target labely € Y such that the quality of

predictions on the training examples is optimized

In most commonly used classification methods such as dedises [65], Naive Bayes,
neural networks [60], support vector machines [15], theifrgbjects inX” are represented
as vectors of predictive features and the classifier is chts@ptimize quality criteria
such as misclassification error, data likelihood or mardihe choice of the hypothesis
classH and the learning algorithm also result in further diversityhe performance with
the best technique depending on the data distribution teesextent. However, previous
research on modeling solver performance [10, 87, 41] hasrshizat the choice of feature
representation is often more important than the choiceettassifier itself. We will now

describe some of the supervised classification algorithiatdtave been used in the current
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work.

a. Decision Trees

Decision tree-based classification [64] is one of the moslelyi used effective methods
for inductive inference. A decision tree classifies an eXarby asking a series of ques-
tions, each pertaining to the value of a single feature ofrtpat item. The questions are
associated with the internal nodes of the tree and the respionquestion determines the
appropriate child node to consider next. These internaésade called splitting attributes
or predictors and the questions contained within thesesadecalled the splitting pred-
icates. The leaf nodes contain the class information andeamis assigned a class label
based on the path of the query from the root to a leaf. Therenargy variations of deci-

sion tree classifiers and they differ primarily in the ordeassignment of the interior node,
splitting attributes, and splitting predicates. Depegdam the training data, one might
have to perfornpruningto avoid the risk of over-fitting. The state-of-the-art dgan tree

algorithms can handle categorical, continuous valuecufeat multi-class classification
problems, and are robust to outliers. Techniques such astdmbdecision trees [66] and
alternating decision trees [29] that combine output of rpldtdecision trees have been

shown to provide even superior performance.

b. k-Nearest Neighbors:(NN)

k-NN is a supervised algorithm for classifying an object lobase a majority vote by its
“closest” neighboring examples in the feature space. Themof “closest” depends on
the training data and the distance metrics suitable for gipdiGation. When the training
examples are multi-dimensional vectors in a feature spgagejdean distance is typically
used as the metric provided the values are numerical. Wheswaerample has to be

classified, the distances to all the training examples a@ileged and the class labels
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corresponding to thé closest training examples are used for the majority votes idkal
value ofk is dependent on the data and is typically chosen via crdgatian. A simple
majority voting has the drawback that it biases the predistitowards classes with more
frequent training examples. However, this drawback carddesssed by inverse weighting
the votes with the true distance measures. If the trainitayidanoisy, then a pre-processing
of the features in the form of scaling or feature selectioafisn needed to improve the
accuracy of predictions. Although the nai#eNN algorithm requires the computation of
pairs of distances over the entire training data, a numbeaoétions that optimize this

step by pruning the candidate neighbors have been proposed.

c. Support Vector Classification

Support vector machine-based classification (SVM) wasldpee by Vapnik et. al. [12]
and has gained widespread popularity and acceptance dtgedtvang theoretical foun-
dations based on structural risk minimization, its abildygeneralize to unseen data, and
promising empirical performance on problems from variooméins. SVM tries to find a
linear separating hyperplane that has the maximum distaitheexamples of either class,
also known as the maximum-margin. Often, there does not aigperplane that clearly
separates the data points belonging to the positive andinegdéasses. To address such
scenarios, the notion of a “soft margin” was introduced [Z0je key idea is to allow cer-
tain data points to be correctly classified by allowing arahee while still maximizing
the distance from the hyperplane to the cleanly split exampln certain cases, even soft
margins are not adequate for obtaining an acceptable sepeaodthe two classes and it is
necessary to map the training vectors to a higher dimenisspage by means of a kernel
function. A good kernel function will result in the data bgifnearly) linear separable in
the higher dimension space.

Given a set of: training instance-label pairkr;, y;}7,, wherex; € R? andy; €
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{—1, 1}, the support vector classification requires the solutiaghefollowing optimization

problem:

1 =
minz{|wl] +C;&

subjectto y;((w,¢(x;)) +b0) >1-¢, 1<i<n (2:5)

& =0

wherew is a normal vector to the hyperplarges the slack variable that measures the
degree of mis-classification &f;, C' > 0 is the penalty parameter for the error term, and
¢ is the function used to map the training vectorsnto a higher dimensional space via
a positive definite kernek (-, -), such that'(x;, x3) = (¢(x1), ¢(x2)). The optimization
problem attempts to achieve a trade-off between the maxmnaafyin and a small error
penalty. Typically, the optimization is solved using a disamulation that associates each
data pointr; with a weighta; where a non-zere; indicates a support vector. The learned

model can then be used to obtain predictions on any inputbkjesing

f(x) = sign((w, ¢(x))+b) = Sign(z aiyi(P(xi), 9(x))+b) = Sign(z iy K (i, X)+b).

Though the original SVM classification algorithm [12] is cpuatationally expensive,
in recent years, fast variants [52] that only require lintgae (with respect to the number
of training examples) have been proposed. SVM-based fitzggin, however, does suffer
from one main limitation namely the inability to provide staassignment probabilities.
The original SVM formulation is also restricted to binarassification though there have

been extensions to multi-class scenarios.
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2. Regression

Regression techniques are used to model the behavior of arr@gegral valued target

property of an object in terms of other predictive charasties. As in the case of clas-
sification techniques, there is a training phase and a grediphase. The training phase
involves identifying the best functional mappiag: X — ) from the input space to the
output space that optimizes the fit on the training data. KWeweinlike in case of classifi-

cation techniques where the target property takes only malnaalues, there is an ordering
among the values of the target property. Hence, the qudiitgria used for regression
techniques tend to be based on a suitable distortion meassoeiated with the target
property, for example, mean squared error. We now discusstwimonly used regression

techniques namely linear regression [59] and support veetpession [26].

a. Linear Regression

Linear regression [59] refers to fitting a linear model todice the target response vari-
ables. Formally, the linear model can be expressegl as;3'x + ¢ where denotes the
vector of regression parameters ang a suitable representation of the input objects as a
vector of the predictive features. The most common choidmeér models is linear least
squares regression which is applicable to real-value@tamyiables with the error term
assumed to belong to a normal distributigif0, o%) with zero mean and constant variance
(assumption of homoscedasticity). However, when theitrgidata contains outliers or the
assumption of homoscedasticity is not valid, robust reggoeq47] is preferred. Extensions
to generalized linear models [59] that allow the linear miadde related to the response
variable via a link function and the noise teento be drawn from any exponential family

distribution, can be used for modeling a much wider varid¢tyamget variables.
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b. Support Vector Regression

Support vector regression [26, 77] is an extension of supfamtor machines for approx-
imating real-valued functions. The key idea is to find a fiorctf (z) that has at most
deviation from the actual target propeny for all the training data, while remaining as
flat as possible. In case of linear models whgfe) = (w, ¢(x)) + b, the notion of flat
translates to minimizing the norm ef as in the case of support vector classification. This
formulation also ensures that we can disregard errors tiealeas thare and attempt to
optimize the model over the support vectors that exceedithis Since it might not al-
ways be feasible to obtain such a functipfx) for a givene, the formulation also allows
for slack variableg!, ¢ that are analogous to the “soft margin” in case of supportorec
classification. Using the notation for the training data e®te, the resulting optimization

problem is given by
win | wiP + €36+ ¢
w,b,E2 —
subjectto y; — (W, o(x;)) +b<e+§', 1<i<n (2.6)
(W, 0(x:)) +b—y; < e+&,
LX) >0,

where¢ is the function used to map the training vectoysnto a higher dimensional
space via a positive definite kerngl(-, -), such thatk'(x;,x3) = (¢(x31), ¢(x2)) and the
positive constant’ determines the trade-off between the “flatness” of the maddlthe
extent to which additional errors (ovey are tolerated. As in the case of support vector
classification, the extension to non-linear kernels isitg&atilitated via a dual formulation
posed in terms of weights; associated with each of the input data points. The weight
is non-zero only for support vectors, i.e., the cases wheretror incurred is greater than

¢, which determine the learned model. The model predictiohfe target property of any
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input objectx is given by
Fx) = (W, 6(2) +b = D" i (6(x). () +b =D gl (x:.%)) + b,

3. Feature Engineering

Feature engineering [40] refers to the process of identfyan informative representa-
tion of the input space that facilitates high quality préidics for the desired property.
It is an extremely critical component in most machine leagniasks such as classifica-
tion/regression as it can help in alleviating problems Iteggifrom high sparsity and high
dimensionality, improve the generalization error of therteed models as well as reduce the
computational time and storage resources. The choice tfreegepresentation has often
been shown to be more important for improving predictioruaacy than the choice of the
learning algorithm and the size of training data, especialcase of a large feature space.

In most practical learning scenarios, feature enginedriuglves a combination of
feature design, selection, grouping and transformati@h thap an object in the input
space into a multi-dimensional vector. Of these tasks, #séga or initial extraction of
features is often specific to the application and has to blmeed by a domain expert,
for example, solvability of a trial can be assumed to be atfancof certain numerical
properties of the linear system and the parameters of tlversobnfiguration being used.
However, the optimal selection of informative featuretgité factor identification via clus-
tering/dimensionality reduction, and normalization otige values are dependent only
on the distributional properties of the original featurad ¢he target response, and are of-
ten performed using domain-independent statistical tigci@s, which we briefly discuss
below.

Feature selection involves choosing a highly informativbset of the original fea-

tures in order to prevent model over-fitting and to reducecttraputational effort. Since
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finding the optimal feature subset requires exponentia timost practical techniques ei-
ther rely on feature ranking or sequential search. In featanking techniques, the pre-
dictive power of the individual features with respect to theget response is computed
using various criteria such as mutual information and Reac®rrelation, which is then
used to sort the available features and theit@pe chosen, witlk often being determined
by cross-validation. Though highly efficient, these ragkiachniques do not account for
dependence among features and often result in redundamteeaSequential search tech-
niques such as forward-selection and backward-seleaiiothe other hand, progressively
construct a subset of features by choosing or eliminatinggesfeature from the available
pool based on their relative predictive povggven the current chosen séthere also exist
a number of other selection techniques based on wrappéess iind embedded methods
specific to various learning algorithms [40].

Creation of latent features by projecting the original éees$ into a low dimensional
space or grouping them into a small number of feature clsisgeanother effective ap-
proach that is often known to result in improved performaespecially in case of high
sparsity. This approach includes techniques such as pahcomponent analysis [62] and
non-negative matrix factorization [56], and feature ahuisty using thek-means or similar
algorithms [60]. In applications, where the input obje@s be represented as dyads (e.g.,
trials can be represented as pairs of linear systems andrsmnfigurations), it has been
shown that simultaneous clustering of the two dyadic dinwe1sg58] can yield highly pre-
dictive latent factors though their applicability is réstied to new objects over the known
dyadic dimensions (i.e., known linear systems and solvefigoarations in case of trials).
In contrast to feature selection techniques, latent fanethods often take into account the
dependencies between the various features in a holistiofasHowever, they often oper-
ate in an unsupervised fashion independent of the targedmes and might occasionally

result in latent factors that are not necessarily inforueatif the desired target property.
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Suitable normalization of feature values [62] is anothempde, yet critical task in
obtaining a good feature representation. When the diffefleature values are not com-
mensurate with each other, the parameter estimation stepsst learning algorithms re-
quire solving ill-conditioned matrices, resulting in sifigant numerical errors, and con-
sequently, sub-optimal models. Hence, it is vital to enshat the values of the various
features are comparable and this is achieved using teatmgych as linear scaling to unit
range(linear transformation so that the maximum maps todlLth@ minimum to 0), z-
score normalization (linear transformation to achieve zeean, unit variance) and inverse
logit transformation (non-linear transformation to may &eal value into the range 0 to 1).
There exist a number of normalization techniques in liteeatand the appropriate choice

is often determined both by the data domain as well as thaileaalgorithm.
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CHAPTER III

COMPARATIVE SOLVER PERFORMANCE EVALUATION
In this chapter, we describe various components of our ipi@wr-centric methodology for
retrospective performance analysis and as well as an ingslieation of the performance
analysis infrastructure. We also provide results of oufqgrarance evaluation on most of
the popular general purpose preconditioners such as inetenfactorization, sparse ap-
proximate inverse, and algebraic multilevel schemes ablin various black-box solver
packages, which can be valuable to practitioners as webfasare developers.

The remainder of this chapter is organized as follows: $adiprovides an overview
of the main contributions of the current work. Section B pdeg details of our experimen-
tal set up, including matrix collection, solver packagey] ¢he preconditioners included
in the study, and the hardware used. Section C gives an evenf the various metrics
that are used to rank the performance of individual solverffigarations as well as that
of package-preconditioner combinations. In Section D, ves@nt the detailed empirical
evaluation methodology and results. We describe our pedace analysis framework and

a prototype implementation in Section E and provide connlyicemarks in Section F.

A. Key Contributions

The main contributions of the current work are as follows:

1. Benchmarking Methodology

We introduce a methodology for a rigorous comparative etau of various precondition-
ers, including the use of some relatively simple but powerfetrics to facilitate a credible

ranking of solver configurations (combinations of solveckzge, preconditioners, itera-
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tive method, and solver and preconditioner parametersjali® among these metrics are

memory-time product and area under the curve for performanafiles (Section C).

2. Performance Analysis Infrastructure

We developed a semi-automated system for the collecticaysis, and visualization of
relative performance data. It runs experiments and callgetformance data (time, mem-
ory, error norm, etc.) for all combinations generated fromsar specified set of linear
systems, a set of hardware configurations (number of CPUsnamdory limits), and sets
of values of various solver and preconditioner parameflhnss is achieved via a data col-
lection unit composed of both serial and parallel drivergoams and associated scripts for
some widely used solver packages. Subsequently, the aahgreporting unit of the sys-
tem performs various comparative and sensitivity analygtgn and across pre-specified

groups of solver configurations using the collected peréorce data.

3. Extensive Empirical Evaluation

Using the above system, we evaluate a suite of precondisdresed on the incomplete
factorization, sparse approximate inverse, and the agebmnultilevel schemes available
in packages such as PETSc, Trilinos, Hypre, ILUPACK, and VIPSWe compare the ro-

bustness, speed, and memory consumption of these preicoed#t on a set of benchmark
problems and present results that can serve as guidancactitipners. For packages that
provide support for parallel execution, we collect and pré¢performance data on multiple

processaors.

4. Good Default Configurations

For each combination of solver package and preconditiamerdentify the best overall

choice of solver and preconditioner parameters on a sud&efse problems. These obser-



38

vations can be used for choosing gatedaultconfigurations for each package-preconditioner

combination.

5. Fine-tuning of Parameters

In addition to determining good default configurations facle preconditioner implemen-
tation, we also study how sensitive the performance of airepreconditioner is to param-
eter choices and which parameters have the greatest impaetrformance. This analysis
sheds light on the reliability of the default configuratiomdaprovides guidance for fine

tuning the parameters to a specific problem or class of pnadle

6. Choice of Package-preconditioner Combination

We simultaneously project the performance of all packagegnditioner combinations in-
cluded in this study along three carefully chosen dimerssiovolving time, memory, and
robustness to allow a ready comparison of the relative gthsnof various implementa-
tions. We perform this comparison for the overall best sgbarameters as well as for
problem specific best set of parameters for each preconditimplementation because

their relative rankings can be different under the two sdesa

7. Parallel Performance

We extend our empirical comparison of various precondéramplementations to up to 64
CPUs. In addition to traditional performance metrics likeallel efficiency and speedup,

we also study impact of parallelism on the choice of pararsete
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B. Empirical Setup

In this section, we present the details of our experimesetals These include an introduc-
tion to the solver packages, preconditioners and theimpeters, descriptions of the test

matrices and the hardware platform, and the specifics ofxqarenental approach.

1. Software Packages

We included the following packages in our study, which wedwel are likely to be of
most value to researchers and practitioners. These inghetleestablished packages that
include most commonly used preconditioners, as well asaresgackages with recently

published general purpose preconditioners.

a. PETSc - Release Version 2.3.3-p0

PETSc [4], developed at Argonne National Laboratory, islemgented in C and has ex-
tensive documentation available for a new user with a pletlod informative examples
demonstrating all the important aspects of the softward&ae The main goal of the
PETSc project is to equip a user with the tools necessaryditdibg scalable scientific
applications. PETSc provides efficient implementatiomsafbthe commonly used Krylov
subspace methods as well as fixed pattern and threshold basedplete factorization
preconditioners. Even though a wide range of preconditigisichemes are available via
interfaces to external packages, we were not able to coeflgHiT Sc to use external pack-

ages (except BlockSolve95 [53]) due to lack of support feab4£ompilation.

b. Trilinos - Release Version 8.0.3

Trilinos [45] was developed at Sandia National laboratead its main focus is to pro-

vide parallel solvers and libraries in an object orientedhfework. Trilinos is composed
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of a number of self contained independently developed mpeekéhat could be used as a
stand-alone application or in conjunction with other pagsthat support a minimal set of
prerequisites for the interfaces. A suite of object oridrieeconditioners are available in
the Ifpack [74] and ML [30] packages. The AztecOO packagevipes an object oriented
interface to the popular Aztec solver library which consaimplementations of the Krylov
subspace methods. Ifpack supports a suite of Jacobi-stgdengomplete factorization-
based preconditioners whereas the ML package provideantarof algebraic multigrid

type of preconditioners based on smoothed aggregation.

c. Hypre - Release Version 2.0.0

Hypre [1], developed at Lawrence Livermore National Lalbamg is designed primarily for

the solution of large, sparse linear systems of equationmmassively parallel computers.
Hypre provides four different logical interfaces, namslyuctured, semi-structured, finite
element and linear algebraic. In addition to incompletédiazation based precondition-
ers (Euclid [51]), Hypre also has parallel implementati@arsapproximate inverse based

(ParaSails [17, 19]) and algebraic multigrid based (Bo&MsE [43]) preconditioners.

d. ILUPACK - Dev. Version 2.2

ILUPACK [57] was developed at Technische UniveisBerlin and it contains implemen-
tations of inverse-based multilevel ILU preconditiondrattcontrols the growth of the in-
verse triangular factors for both real and complex matridesaddition to the standard
static reordering schemes, it also includes the ARMS andeschemes such as INDSET

and ddPQ [72].
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e. WSMP - Dev. Version 8.7

The Watson Sparse Matrix Package (WSMP) [37, 38], develapédM, contains serial
and parallel sparse direct solvers as well as CG and GMRBE®rsalith new incomplete

factorization based preconditioners [39].

2. Matrix Reordering

Previous research has shown that a suitable reordering affficient matrix can reduce
the memory requirement and potentially have a significamiaich on the performance of
many preconditioners [71]. Hence, wherever applicabke ntlatrices were first re-ordered
using either the Reverse Cuthill Mckee ordering (RCM) [21]tlee Nested Dissection
ordering (ND) [31, 36]. In the case of ILUPACK, we used fivelbun reordering schemes,
namely, Nested dissection (ND), RCM, Approximate Minimuith (AMF), Independent
set (INDSET), and permutation for diagonal dominance (ddrQ).

3. Test Matrices

Since our objective is to detect general performance tramasg different preconditioners
and our analysis is purely empirical, it is imperative thng test matrices represent a spec-
trum of the problems for which computational simulations aktensively used. To this
effect, we chose the matrices from a wide range of applioatgpanning fluid dynamics,
sheet metal forming, electric circuit simulation, cherhjacess simulation, optimization
etc. In order to narrow the scope of this empirical study, waseder only symmetric
positive definite systems(SPD). The details of these SPDiceatare shown in Table II.
Most of the matrices are obtained from the University of Elarcollection [22] and the

remaining ones are obtained from some of the applicaticatause WSMP [37].
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Table Il. SPD test matrices with their order (N), number ofivzeros (NNZ) and the appli-
cation area of origin

Matrix N NNZ | Application

90153 90153 5629095| Sheet metal forming

af_shell7 504855| 17588875 Sheet metal forming
Autodesk-big | 1073724| 84317460| Static stress analysis

audikw.1 943695| 77651847, Automotive crankshaft modeling
bmwcral 148770| 10644002| Automotive crankshaft modeling
ctu-1 1017397| 74144859| Structural analysis

ctu-2 384012| 28069776 Structural analysis

cfdl 70656 1828364 | C.F.D. pressure matrix

cfd2 123440| 3087898| C.F.D. pressure matrix

conti20 20341 1854361| Structural analysis

garybig 42459173| 238142243| Circuit simulation

G3_circuit 1585478 7660826| Circuit simulation

hood 220542| 10768436, Automotive

inline_1 503712| 36816342 Structural engineering

kyushu 990692| 26268136 Structural engineering

ldoor 952203| 46522475 Structural analysis

msdoor 415863| 20240935| Structural analysis

mstamp-2c 902289| 70925391| Metal stamping

nastran-b 1508088| 111614436| Structural analysis

nd24k 72000| 28715634| 3D mesh problems (ND problem set)
oilpan 73752 3597188/ Structural analysis

parabolicfem 525825| 3674625| C.F.D. convection-diffusion
pga-rem-1 5978665| 29640547\ Power network analysis
pga-rem-2 1480825 7223497| Power network analysis

ga8fk 66127 1660579 F.E.M. stiffness matrix for 3D acoustic problem
ga8fm 66127 1660579| F.E.M. mass matrix for 3D acoustic problem
ship.003 121728| 8086034| Structural analysis - ship structure
shipsec5 179860| 10113096| Structural analysis - ship section
thermal2 1228045| 8580313| Steady state thermal problem
torso 201142 3161120 Human torso modeling
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4. Solvers, Preconditioners, and Parameters

We now describe the specific parameters that are used foolvers and preconditioners
used in our study. The preconditioners can primarily besdligsl into three broad classes,
namely incomplete factorization, sparse approximaterg®jeand algebraic multigrid. Al-
though the current study’s scope is limited to symmetriatp@sdefinite systems, we do
use the GMRES solver if the resulting preconditioner is nBD STable Ill lists the specific
preconditioners and the values of the tunable parametatsvétre experimented with. In
all, 470 different combinations of solvers, preconditimmend parameters were tried for
the single processor case. The total number of solver caatigus including all the serial

and parallel cases added up to 2156.

Table Ill. Description of the package specific precondigioparameters.

Package Solver Preconditioner Orderings Parameters
BlockSolve95 RCM, ND )
PETSc CG -
Level of fill: 0, 1, 2
IC(k) RCM, ND Fill factor: 3, 5, 8, 10
IC(k) RCM, ND Level of fill: 0, 1, 2, 4, 6, 8
Number of levels0, 1, 2
ParaSails RCM, ND Threshold:0, 0.01, 0.1, -0.75, -0.9
NONE Filter: 0, 0.001, 0.05, -0.9
HYPRE ce Maximum number of level25
RCM, ND Number of aggressive coarsening levels10
BoomerAMG NONE Coarsening schemegalgout, HMIS, PMIS
Strong threshold0.25, 0.5, 0.8. 0.9
IC(k) RCM, ND Level of fill: 0, 1, 2, 4,6, 8
SmoothersSymmetric Gauss-Seidel
CG RCM, ND Chebyshev Polynomial, Incomplete Factorization
Trilinos ML-SA Smoother sweepg;, 2, 3
NONE Coarsening Schemesklincoupled, MIS
Hybrid Uncoupled-MIS, ParMETIS
ML-DD RCM, ND -
ML-DD-ML NONE -
) RCM, ND, AMF | Drop Tolerance:0.03, 0.01, 0.003, 0.001, 0.000%
ILUPACK cG Multilevel ICT | \\DSET, DDPQ | Inverse Norm Estimatet0, 25, 50, 75, 100
Auto-select Drop Tolerance:0.01, 0.003, 0.001,0.0003
WSMP ICT RCM, ND Diagonal Perturbation:OFF, ON (0.001)
CG/GMRES Fill factor: 2.5,3.3,4.1,4.9
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5. Hardware Specifics

The experiments were conducted on up to 64 processors onMrHIBC cluster 1600,
based on the Power5+ IBM processor running the 64-bit versid\ X (version 5.3). Each
of the p5-575 nodes on the cluster has sixteen 1.9 Ghz Powedgessors. A memory
limit of 24 GB per node and a wall time limit of hours was used for each empirical trial
involving a single matrix and a solver configuration.
All the packages were compiled using IBM compilers xIf (Far), xlc (C) or xIC

(C++) in 64-bit mode with the -O3 optimization flag. The Enggning Scientific Subrou-
tine library (ESSL) was linked in to provide BLAS routinesh@page size for text and data

was set to 64 KB.

6. Experimentation Methodology

We now describe our methodology for conducting the expertmand collecting the per-
formance data. In order to make the evaluation as unifornoasiple, we adhered to the

following rules for all the experiments.

e Diagonal scaling is performed on the linear system befadisg the solution pro-

cess.

e Aright hand side vector of all 1's is used and the initial gaiekthe solution for the

iterative process is always the zero vector.

e We use right preconditioning since it is the default for bé packages except PETSc
and it allows us to have a uniform convergence criteria basetie true residual for
all the experiments. This choice of right preconditioningsvalso influenced by a

similar study conducted on ILU preconditioners [18].
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e The iterations are stopped when the number of iteratiorche=al000 or when the

relative residual norm drops belaw—°.

e When using more than one processor, ParMETIS [54] is usedrtdipn the rows
of the matrix and distribute them appropriately. We therrd¢eothe local matrix on

each processor according to the specified reordering scheme

e Atrial is considered to have failed if the total time is abdvieours, or the memory
consumption per node exceeds 16 GB while using up to 8 proepsr node and
24 GB when using all 16 CPUs in a node, or the final relativeretosm exceeds

0.02.

e Atrial is also considered to have failed if its performanoeaadesired metric is more
than one order of magnitude worse than that of the best penfgrtrial. More details
on this can be found in Section C.4.

7. Performance Metrics

For each successful trial, we measured and recorded tlogvfolj performance metrics.

a. Time Taken

This is the total time in seconds required for both creatirgdreconditioner and actually
solving the linear system. We measure this using timingdadfore and after the appro-
priate routines. In the case of multiple processor runsreperted time is the maximum

among all the processors.

b. Memory Usage

This is the amount of memory in bytes allocated on the heamgluhe preconditioner

creation phase. In the case of multiple processor runs, wguate thecumulativememory
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usage across all MPI processes. If GMRES is used as thevtesatver, we also add the

memory required for storing the subspace vectors to thedbserved memory.

c. Relative Error Norm

This is measured as the ratio of L2 norm of the final error td tidhe initial error. For
computing the error, we use an approximation of the actulalisa obtained using the

WSMP direct solver.

d. Memory Time Product

In order to determine good solver configurations that perfbest over all the problems
we introduce a simple intuitive performance criterion. Speally, we use the product of
total solution time and the memory required for storing tbefficient matrix and precon-
ditioner as our primary performance criteria. Hencefonh,will refer to this quantity as
theMemory-Time-ProdudMTP). The choice of MTP is motivated by our observation that
both computation time and memory use appear to be inademuegtsures of the quality of
a preconditioner, when considered individually. For mastpnditioners, there is a range
of parameter choices in which there is a trade-off betweértisa time and memory con-
sumption, although it is possible to make parameter chaledsncrease or decrease both
time and memory simultaneously. The optimum operating tpafia preconditioner for a
given problem lies in a trade-off zone. As reported in litera [34] and confirmed by our
own experiments, direct solvers can result in the overatefst time, albeit at the cost of a
significantly high memory consumption (Section D.4). There, a preconditioner could
simply emulate the direct solver and emerge as the fastesppditioner. At the other ex-
treme, preconditioners such as Jacobi, Gauss-Seidel(@y, ikbnsume very little memory,
but can take an impractically large number of iterationsdoverge. As a result, judging

the quality of preconditioners based solely on their timen@mory requirements simply
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yields winners that are extreme cases and are of little ijpedahterest.

C. Benchmarking Methodology

In this section, we present the benchmarking methodology ire use to evaluate the
preconditioners and the relative performance of theirotegiconfigurations resulting from
different choices of parameters and other user selectaklitns. Our methodology is based
on performance profiles [24], which we augment with some rothetrics described later

in this section.

1. Solver Configurations and Performance Data

A solver configuration is a solver and preconditioner impatation with a given set of
values for all parameters and user selectable options.X¥aonge, Hypre’s CG solver and
its ParaSails preconditioner, with RCM ordering, 2 levdl§ily a threshold of 0.01, and

a filter value of 0.05 is one solver configuration, PETSc's @&er and BlockSolve95
preconditioner with ND ordering is another. We denote thiagall solver configurations
by S. Let|S| = m. The setS used in our study was constructed by using all feasible
combinations in Section 4, witlm = 470 for the single processor case. We denoterby
the set of linear systems/problems to be solved \ith= n = 30 in our study. A trial is
the application of a solver configuration to a problem. Wedgrenedm x n = 14100 trials

for the single processor case.

Let . represent any performance measure that takes a specificfeakach evaluation
trial. Examples of performance measures include time takemory usage, memory-time
product, etc. Thex x m trials result in am x m matrix ;. of performance data for each
performance metric, where the eleménts) corresponds to the performaneg; of solver

configurations with respect to problem. The performance valugs, ;, may not always be
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well-defined due to solver configuration failure and othexcgical limitations. Without
loss of generality, we assume that lower values of perfoomamlues are desirable and
therefore, we represent ill-defined values correspondingotver configuration failures
with a very high valuedo).

The solver configurations are partitioned into groups tdifate the analysis of the
performance data collected through the trials. Each salvefiguration belongs to one or
more (possibly overlapping) groups. For example, all sobamfigurations for the Hypre
package can be considered to belong to configuration gfpugll solver configurations
using the BoomerAMG preconditioner can be considered torgeto another configura-
tion groupC,, and all solver configurations resulting from various clesiof ordering and
coarsening schemes for Hypre BoomerAMG can be considereeldng to the configura-

tion groupCs.

2. Performance Ratios

Given the data for a particular performance measure, iragttforward to compare the
effectiveness of the methods with respect to a single pnob&pecifically, we assume that
methods with lower performance values are better. Howeamparing methods based
on their collective performance requires calibration asrthe problems. A natural way
to compare the solver configurations in a configuration g@wmould be to consider the
normalized performance values;(C), otherwise known as the performance ratios of the

methods for each problem:

(€)= =t

. )
min (i, ¢
s'eC Hp,

I
Tp7s

which is the ratio of the actual performance value of sohamfigurations to the best
(least) value over all solver configurations for the probjenNote thatr, ;(C) > 1 for all

(p, s) and is equal to 1 for at least one solver configuration C for each problenp, as
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long as at least onec< C is able to solve the problem
It seems reasonable that the average performanceéfip of a configuratiors € C
would be a fair indicator of the effectiveness of the confegion s with respect to that

performance metrig, where

3

S|

5(C) = 75(C):

p=1
In practice, however, is often not very useful since a single failure for a solverfogura-
tion s can make its average performance ratidl-defined, making it difficult to compare
the different methods. One simplistic solution for hanglthis issue is to only consider
problems that have well defined performance ratios, butbisid not be fair to methods
that actually solve the harder problems not solved by alhtle¢thods. A more principled
approach is to compare the performance of the methods bd#rrrs of the number of
problems solved as well as average performance ratio jinesing the distribution of the
performance ratios. To achieve this, we use the notion dbpaance profiles, which we

now describe.

3. Performance Profile

A performance profile [24] is a plot of the cumulative disttilon of the performance ra-
tios. Letp”(7) denote the cumulative distribution of the performanceosatf a solver

configurations with respect to the measuge

1
ph(r) = ~|rh.(€) < 7).

p"(7), therefore, denotes the fraction of the problems that thégarations € C can solve

with performance that is within a factor ofof the best performance for each problem.

Table IV shows hypothetical performance data (say, run tmseconds) for a set of
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Table IV. Hypothetical performance data with three solarfogurations £, s, s3), three
configuration groups, C., C3), and three problems{, p», p3). Solver configu-
ration failures are represented with.

Solver Configurations Configuration Groups s rh (C1)

b1 P2 P3| P11 P2 D3

S1 Cl,CQ,Cg 7 2 3135 1 1
So Ci, Co 3 4 6|15 2 2
S3 Cy,Cs 2 o 5|1 oo 5/3
1 O -----mmmm - + 2
0.9 ' I
508 : .
g ' '
SO0 . -9---<i> ------------- F S <
£ 0.6 b
ko) P
Q 1
205 L
o ' :
S04 L
S 4---908--6
503 ?—
Tozk —e-S;
1 _e_sz
0.1 !
: -6-5;
1 15 2 25 3 35 4 45 5

Performance Ratio

Fig. 1. Performance profile curves for solver configurationgoup(C; .
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three solver configurations and three problems. Figure Wskite performance profiles for
the configuration grou@; shown in Table IV. The performance profile plot readily rdgea
information that may not be apparent from average perfoomaatios even when they are
well defined. For example, the point (1.67, 0.67) on the pdotcbnfigurations; denotes
that this configuration was able to solve 67% of the problethiwil.67 times the best
running time for any configuration for these problems. Samiyi the point (2.0, 1.0) on the
plot for configurations, denotes that this configuration was able to solve all (100°%)e
problems consuming at most twice the best running time foh gaoblem. Additionally,
performance profiles enable one to compare easily methatts gircumstances where the
user specifies an additional success thresbad the performance ratio; i.e., any solver
configuration that results in performance value thattisnes greater than that of the best
value is considered a failure. In the example in Table IV aigdife 1,s; is clearly the best
method ford = 1.3, followed by s; ands;. On the other hand, fat = 4, boths; ands,
are equally good since they both solve all the three problemasthat too with identical
average performance ratio vf/6. Comparing withs; is somewhat tricky since it solves
only two out of the three problems, and has a lower averagernpeance ratio o8/6 for

the solved problems.

4. Solver Quality Measure

When comparing a large number of performance profile cunteaay not be possible
to visually determine the relative ordering or to pick thestogolver configuration. The
situation is usually exacerbated further due to differailtife rates of the various config-
urations. To address this issue and to eliminate humarnveréon in the case of a large
number of solver configurations, we propose to use the argerthe performance profile
curves for ranking the various solver configurations. Tleaamder the curveAUC) pro-

vides a longitudinal summary of multiple assessments atoasible performance ratios of
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interest. For a performance ratio threshold othe onlyr values of interest are those from
1 to 6. Therefore, the relevant area under the performance puoofilee for a configuration
s with respect to the configuration grodpAUCH(C, 0) is the area under the cumulative
distribution curve up t@, which is given by

’ p?s

AUCH(C,0) = 0 — %me(e  (C)).

peEP

This formulation, ignores all the performance ratios ofveolconfigurations outside
the range of the thresholtl and effectively considers those as failures. For the exam-
ple in the performance profile figur&UC! (C;,5.0) = 3.17,AUCL. (C;,5.0) = 3.17, and
AUC!: (C,,5.0) = 2.44. We also notice th&lJC of s3 is comparable to that of, ands, for
smaller values of, but becomes progressively worse as the threshold in@ease

Note that for the special case where there are no solver ewafign failures and all
performance ratios are less than or equa# téhe area under curves is directly related
to average performance ratios. A choicefois critical in the AUC-based comparison
since this can significantly affect t#dJC and thereby, the relative ranking of the different
methods. In the current study, we choose this threshold exbal to10. In other words,
we assume that a trial that results in performance that i®tih@n an order of magnitude
worse than the best performance for a given problem is efedgta failure. This is in

addition to the failure criteria described in Section B.6.

5. Configuration Group Quality Measures

So far in this section, we have discussed metrics for comgdhe relative performance
of individual solver configurations. It is often desirabbecompare different configuration
groups. For example, for a given problem $&tit would be interesting to be able to

objectively compare the implementations of different pratitioners in different packages.
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In our study, we measure and compare the following threeicsdbr configuration groups

comprised of various configurations of a given packageeméitioner combination.

a. Problem Independent Best Performance

For a configuration groug, we definePIB*(C) as the solver configuratiosi € C such
that AUC//(C, 6) is the maximum among alNUC/(C, #) for all s € C. In other words,
PIB#(C) is the configuration that results in overall best perforneanith respect to metric

w1 for a given problem seéP. Therefore, ifC represents a package-preconditioner combina-
tion, then the values of the various parameters and usetabkle options corresponding to
PIB#(C) are logical choices for default parametersforThe performance of the configu-
rationPIB*(C) can be considered representative of the performance ofiewafion group

C, and can be used to compare different groups by using therpeathce profiles and the

AUC metric.

b. Problem Specific Best Performance

An alternative to using the performanceRIiB*(C) to represent the performance of con-
figuration groug is to represent it by its problem-specific best performafoemally, we
define the problem-specific best performanﬁéB of configuration grou for problemp

as the best performance value among all the solver configosan(C; i.e.,

PSB __ ;
= i

Note thaty, ¢ is an aggregation of the performance values of the membegrsobnfigura-
tions. This is in contrast tp, pr5.(c), Which directly considers the performance values of

a particular winning member solver configuration.
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6. Hardware Configurations

The performance metrigs, ; obtained for each problem and solver configuratios is
also a function of the hardware configuration. ét= {h} denote the set of all hardware
configurations on which performance data is obtained fromr. the current studyh €
{1,2,4,8,16,32,64} where each number consists of the number of processors ased f

each trial. We study the performance with respect to onesvalls at a time.

7. Parallel Performance

Most solver packages included in this study are designedlt@ $arge sparse systems in
highly parallel environments. In the parallel case, useay e interested in additional
performance metrics other than those studied in the coonfextsingle processor. For ex-
ample, a user might be interested in knowing how the relggeréormance of the solvers
observed in a serial environment changes in various passténgs. We consider each
multi-processor run to be part of a different hardware grotpe various solvers are eval-
uated in each of these hardware groups separately akdx@ef performance profiles are
used to study the behavior of the solvers under various remgeonfigurations. An im-
portant performance metric in a parallel scenario is theieficy of the respective parallel
implementations. Efficiency is computed@as= Time®?/(np x Time"?) whereTime?

is the best sequential time afidme™ represents the time observed fgr processors. A
relatively high efficiency for large processors could eitheggest that the solver can be
parallelized efficiently or that the serial implementatismot optimal. Similarly, a low
value of efficiency could suggest the existence of expersaegiential components or a

poor parallel implementation.



55

D. Results

In this section, we present the results of our empirical wt@bn. In Section D.1, we
analyze the performance of various solver configuratiotisimconfiguration groups com-
prised of package-preconditioner combinations and reperbest configuration for each
group over all the problems with respect to time, memory, ar@mory-time product
(MTP). In addition, we also discuss the effect of certainami@nt parameters on the mem-
ory and time performance and analyze the variation in perémce of the overall best
parameter combinations in a multi-processor scenario witteasing number of proces-
sors. Section D.2 presents the effect of parameter fin@guom memory and time within
each configuration group in a multi-processor scenarios Ehiollowed by a comparison
of the default and problem-specific best performance of Hreus configuration groups
along with the direct solver in Section D.4. Finally, in SentD.5, we look at the parallel

efficiency trends of the various package-preconditionerlmoations.

1. Performance Within Configuration Groups

For the purpose of the analysis in this section, we divided#t of all solver configurations
into configuration groups, where each group represents kagaepreconditioner combi-
nation. For each configuration group and hardware configuratve identified the solver
configurations that resulted in the best overall perforreamith respect to time, memory,
and memory-time product (MTP) over all the problems in trst seiite. The best perfor-
mance was determined using the area (AUC) under the penfmenaofile (PP) curves, as
discussed in Section B.7. We also provide detailed analyste effects of various pa-
rameters for suitable subsets of the serial configuratigmadans of PP curves. We chose
these figures on a case-by-case basis depending on thesimgneerformance trends that

we found for individual preconditioner implementations.
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For the sake of brevity, we use acronyms to describe the paesuthoices in both the
tables and the legends of the figures in this section. A campik of these acronyms and
their expansions is shown in Table V, which the readers nfigttuseful to refer to while

interpreting the subsequent tables and figures with expertiahresults.

Table V. List of acronyms used to denote various parametacek.

Parameter Name Values Acronyms

Level of fill 0,1,2,4,6,8 LFO, LF1, LF2, LF4, LF6, LF8

IC(K) fill factor 1,3,5,8,10 F1, F3, F5, F8, F10

Max. additional nonzeros/row 00 NzINF

Drop tolerance 0.03, 0.01, 0.003, DT3e-2, DT1le-2, DT3e-3,
0.001, 0.0003, 0.0005 DT1e-3, DT3e-4, DT5e-4

Inverse norm estimate 10, 25, 50, 75, 100 IE10, IE25, IE50, IE75, IE100

Number of ParaSails levels 0,1,2 PLevO, PLevl, PLev2

Threshold 0,0.01,0.1,-0.75, -0.9 ThO, Th.01, Th.1, Th-.75, Th-.9

Filter 0, 0.001, 0.05, -0.9 FItO, FIt.001, Flt.05, Flt-.9

BoomerAMG coarsening schemgs Falgout, Hybrid MIS, Parallel MIS FALG, HMIS, PMIS

Strong threshold 0.25,0.5,0.7,0.9 ST.25, ST.5, ST.7, ST.9
Classical SA, SA,

ML preconditioner type SA based 2-level domain decomp, | DD,

3-level algebraic domain decomp. DD-ML
Symmetric Gauss-Seidel, ChebyshevSGS, CBY,

Smoothers Incomplete factorization IFPACK
Smoother sweeps 1,2,3 SS1, SS2, SS3
ML coarsening schemes Uncqupled, MIS, Uuc, MIS,

Hybrid uncoupled-MIS, ParMETIS | UCMIS, PMETIS
WSMP fill factor 25,33,4.1,49 F2.5,F3.3,F4.1,F4.9
WSMP diagonal shift -1,0.001 SHIFT-OFF, SHIFT-ON

a. Level-based Incomplete FactorizationAL(

The PETSc, Trilinos, and Hypre packages include impleniemsof the IC{) precondi-
tioner. We have also included the BlockSolve95 preconaiidn our study. In the case
of PETSc, experiments were conducted with valuek of0, 1, and 2. Hypre and Trilinos
IC(k) implementations consume reasonable time and memoryvelslef fill higher than

2; and therefore, we included valuesfoE 4, 6, and 8 in our experiments. For nonzero
values ofk, we experimented with fill factors of 3, 5, 8, and 10 for PET$alinos IC(k)
does not provide a user controlled parameter for contigpline fill factor and the default

setting in Hypre ICE) is oo, i.e., no limit. Table VI shows the overall best configurago
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Table VI. Solver configurations that resulted in the best mgmtime, and MTP perfor-
mance profile area for I} preconditioners in PETSc, BlockSolve95, Hypre,
and Trilinos for various numbers of processors (shown irepidresis). Expan-

sions of the parameter acronyms can be found in Table V.

Preconditioner

Memory Winner

Time Winner

MTP Winner

CG, RCM, LFO, F1
(128163264)

CG, RCM, LFO, F1
(1248163264)

CG, RCM, LFO, F1
(1248163264)

PETSCIC(K) CG, ND, LFO, F1
(4)
CG, RCM CG, RCM CG, RCM
(248163264) (12163264) (124163264)
PETSc BlockSolve CG. ND CG, ND CG. ND
(1) (48) (8)
CG, RCM, LF4 CG, RCM, LF8 CG, RCM, LF4
(12) (1248163264) (2)
N CG, RCM, LF6 CG, RCM, LF6
Trilinos 1C(k) (48163264) (3264)
CG, RCM, LF8
(14816)
CG, RCM, LFL, NzINF | CG, RCM, LFL, NzINF | CG, RCM, LF1, NzINF
(164) (1) (12163264)
CG, RCM, LF2, NzINF | CG, RCM, LF2, NzINF | CG, ND, LF1, NzINF
(241632) (264) (48)
CG, ND, LF1, NzINF | CG, ND, LF1, NzINF
Hypre IC() (8) (8)

CG, ND, LF2, NzINF
(416)
CG, ND, LF6, NzINF

(32)




58

with respect to time, memory, and MTP for various hardwanefigarations (number of
processors) for all the 1G] implementations. As is often the case with preconditisner
we noticed that the different implementations of even thatikeely straightforward 1CK)
had very different performance characteristics and resgoto values of their parameters.
Hypre IC(k): Our experimentally determined overall best parametersHypre 1C§)
preconditioner for different numbers of processors arevshim Table VI. We also in-
vestigated the impact of levels of fill on performance. Feg@rshows the memory and
time profile curves for various levels of fill with RCM ordegn As expected, increas-
ing the number of levels of fill from O to 1 results in increagebustness and improved
run times. However, the performance drops as the numbewrekslés increased beyond
one because the improvement in quality of the preconditioagnot compensate for the
increased memory and time required for higher levels of fill.

PETSc IC(k): The overall best parameter configurations shown in Tablendicate
that for PETSc ICK), level of fill & = 0 with RCM ordering resulted in the best overall
performance. The performance showed little variationgposse to changing the fill factor
for low values of fill factor. High fill factors resulted in e@ssive memory consumption.
Figure 3 shows the time and memory profiles for various legefdl with RCM ordering
and a fill factor of 5. Unlike Hypre 1Q(), both the memory and the time performance of
PETSc ICk) deteriorates rapidly with even a modest increase in lefiviéll beyond 0.
PETSc BlockSolve95: Ordering is the only user controlled parameter in Block86b;
however, we observed almost no difference in its perforradretween RCM and ND or-
derings.

Trilinos IC( k): Figure 4 shows the time and memory profiles for various levélsl|
with RCM ordering for the Trilinos 1G() preconditioner. The memory profile indicates
that higher levels of fill solve more problems at the experfagsing slightly more mem-

ory. However, the time profiles reveal that the higher leaglfll result in more effective
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Fig. 2. Serial memory and time profile curves for the Hypre&lver configurations with
RCM ordering, an unlimited number of additional nonzeros ne&v, and various
levels of fill.
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preconditioners that result in faster solution times. Tikig stark contrast to the G
implementations of PETSc and Hypre.
Comparison of Hypre, PETSc, and Trilinos IC(k): Figure 5 shows a comparison of
BlockSolve95 and the configurations of Hypre, PETSc, anlinds IC(k) that resulted in
the best overall MTP performance as measured by the AUC en@&®ETSc ICk) is most
memory efficient because its best configuration has 0; however, it is less robust than
Hypre. For the problems that they both can solve, the ovieesii configurations of PETSc

and Hypre are equally fast. However, the best Hypré)@pnfiguration is able to solve

more problems than the best PETScHC¢onfiguration.

b. Threshold-based incomplete Cholesky

Table VII. Configurations that resulted in the best memadmet and MTP performance
profile area for the ILUPACK MLICT and WSMP ICT preconditiase

Preconditioner Memory Winner Time Winner MTP Winner
ILUPACK MLICT CG, AMF CG, AMF CG, RCM
DTle-2, IE10 DT3e-3, IE75 DT3e-02, IE75
WSMP ICT AUTO, ND, DT3e-3 | AUTO, RCM, DT1e-3| AUTO, RCM, DT3e-3
F3.3, SHIFT-ON F4.9, SHIFT-OFF F4.9, SHIFT-ON

We studied the ICT preconditioners of WSMP and ILUPACK inailetWe do not
report the results of ICT preconditioner implementatiohgtber packages due to their se-
rious performance and robustness problems. For ILUPACK®L, e tried five different
built-in reordering schemes (RCM, AMF, INDSET, PQ, and MEN)), five different val-
ues for drop tolerance (0.03, 0.01, 0.003, 0.001, 0.000%),fae different values of the
norm of inverse estimate (10, 25, 50, 75, 100). In the case SMR ICT, we tried two
ordering schemes (RCM, ND), four values of drop toleranc@1(00.003, 0.001, 0.0003),
four values of fill factor (2.5, 3.3, 4.1, 4.9), with and witkltadiagonal perturbation. Ta-

ble VII shows the solver configurations that resulted in testbmemory, time, and MTP
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profile areas for ILUPACK MLICT and WSMP ICT.

ILUPACK MLICT: In Figure 6, we study the effect of drop tolerance for RCM oirp
and a low inverse norm estimate value of 10. We observe tleatanfiguration corre-
sponding to moderately low drop tolerance value of 0.00Bésmost robust but requires
significantly more memory resources than higher drop tolsavalues. The same drop
tolerance has the best time profile area too. Figure 7 shawgten for a high value of in-
verse norm estimate such as 100, the best results are abtaithehe same drop tolerance
value of 0.003.

WSMP ICT: Figure 8 shows the performance profile curves corresportditige various
drop tolerance values for RCM ordering, diagonal pertuomabf 0.001, and fill factor
of 4.9 for WSMP ICT. Drop tolerance values of 0.001 and 0.08@ns to offer the best
balance between robustness and memory and time consumipigume 9 shows the effect
of varying the ordering and diagonal perturbation for thet M TP values of drop tolerance
and fill factor (0.003 and 4.9, respectively). The use of dregj perturbation results in more
robust solver configurations. While using diagonal pewtidn, ND performed slightly

better than RCM, and without it, RCM performed better.

c. Algebraic Multigrid Methods

Multigrid preconditioners typically have a large numbepafameters that need to be fine
tuned. We used the default values suggested in the user ledyua0] for a majority of the
parameters, and varied a few key ones, based on the sugmdstio the authors of Hypre
and Trilinos. Table VIl shows the best configurations fasttiass of preconditioners.
Hypre BoomerAMG: We experimented with the ordering, coarsening scheme,mari
number of levels for aggressive coarsening, and strongltbtd for the BoomerAMG pre-
conditioner. In Figures 10 and 11, we show how the coarsesthgme and aggressive

coarsening levels affect the performance. These figures #e results with the RCM
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value of 10.
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Table VIII. Iterative solver configurations that resultedie best memory, time, and MTP
performance profile area for the AMG preconditioners in Hypnd Trilinos.
The numbers enclosed by parenthesis denote the numberoafgsars.

Preconditioner Memory Winner Time Winner MTP Winner
CG, RCM, HMIS CG, RCM, HMIS CG, RCM, HMIS
AGG10, ST0.9 AGG10, ST0.9 AGG10, ST0.9
(32) (32) (32)

CG, RCM, PMIS CG, RCM, PMIS CG, RCM, PMIS
AGGO, ST0.9 AGGO, ST0.7 AGG10, ST0.9
(64) (464) (1248)

CG, RCM, PMIS CG, RCM, PMIS CG, NONE, PMIS
AGG10, ST0.9 AGG10, ST0.9 AGG10, ST0.7

(1248) (1) (64)

Hypre BoomerAMG | 'NONE, PMIS | CG, ND, FALG CG, NONE, PMIS
AGG10, ST0.9 AGGO, ST0.9 AGG10, ST0.9
(16) (8) (16)

CG, NONE, FALG
AGGO, ST0.9
(2)
CG, NONE, PMIS
AGGO, ST0.7
(16)
CG, RCM, ML-SA CG, RCM, ML-SA CG, RCM, ML-SA
SGS, SS2, UCMIS SGS, SS2, UC SGS, SS2, UCMIS
(8) (28) (2)

SGS, SS3,UCMIS | SGS, SS2, PMETIS SGS, SS2,UC
(4) (32) (8)

CG, NONE, ML-SA | CG, RCM, ML-SA CG, RCM, ML-SA

SGS, SS2,UCMIS | SGS, SS3,UC SGS, SS2, PMETIS
(12) (4) (32)

CG, NONE, ML-SA | CG, RCM, ML-SA CG, RCM, ML-SA

Trilinos ML SGS,SS2,MIS | SGS, SS3, PMETIS SGS, SS3,UC

(32) (1) (4)

CG, RCM, ML-SA

CG, NONE, ML-SA

SGS, SS3,UCMIS | SGS, SS2,UC SGS, SS3, PMETIS
(16) (16) (1)
CG, NONE, ML-SA | CG, NONE, ML-SA | CG, NONE, ML-SA
SGS, SS3,MIS | SGS, SS3, UCMIS SGS, SS2,UC
(64) (64) (16)

CG, RCM, ML-SA

CG, NONE, ML-SA

CG, RCM, ML-SA

CG, RCM, ML-SA

CG, NONE, ML-SA, SGS
SGS, SS3, UCMIS
(64)
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Fig. 10. Memory and time performance profile curves for HypoemerAMG solver con-
figurations for a strong threshold value of 0.25 in the sex@ale. The legends also
provide details on the solver (CG), ordering (RCM), numklfdeeels of aggressive
coarsening (AGG), and coarsening schemes (FALG, PMIS).
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ordering, which resulted in the best MTP performance in gr@abcase. We found the per-
formance of the HMIS coarsening scheme to be quite similtnabof the PMIS scheme,
so we have included only PMIS and Falgout schemes in these$igkigure 10 shows the
results for a relatively small value of 0.25 for the strongesihold and Figure 11 for a high
value of 0.9. Figure 10 shows that Falgout coarsening schesodts in heavy memory and
time usage for most problems when used without aggressarsening. PMIS appears to
be the better coarsening scheme for our test suite with lmmgtthreshold values. This
observation is different from what is suggested in the usanunal [1], which recommends
Falgout coarsening scheme as the default. The memory amrdpiiofiles in Figure 11
indicate that the performance difference between the waroarsening schemes is not as
significant for a high strong threshold value, especiallgwhggressive coarsening is used.
Note that the authors recommend a high value of strong thlé$br 3D problems, which
constitute about 50% of our test suite.
Trilinos ML:  For the ML preconditioner in Trilinos, we compared the parfance of
classical smoothed aggregation (SA), two level SA basedadloiecomposition (DD),
and three level algebraic domain decomposition (DD-MLwiiteir predefined default set
of parameters as described in [30]. In addition, we also exyated with multiple coars-
ening schemes, smoothers, and the number of smoother stoedips SA preconditioner.
Figure 12 shows the time profiles for varying the number of stiner sweeps for the
symmetric Gauss-Seidel and Chebyshev smoother. We olibatvacreasing the number
of sweeps from two to three significantly improves the robess of Chebyshev polyno-
mial smoother. For the symmetric Gauss-Seidel smooth@easing the smoother sweeps
causes only a slight change in the number of problems solWedplot only the time pro-
files since the memory usage is not affected by the number obsrar sweeps. Overall,
the symmetric Gauss-Seidel smoother is faster and solves pnoblems.

Figure 13 shows the effect of various coarsening schemesh@mpérformance of
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Fig. 11. Memory and time performance profile curves for HypoemerAMG solver con-
figurations for a strong threshold value of 0.9 in the seaskc The legends provide
details on the solver (CG), ordering (RCM), number of lewdlaggressive coars-
ening (AGG), and coarsening scheme (FALG, PMIS).
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Chebyshev and symmetric Gauss-Seidel smoothers. Onae agailo not show the mem-
ory profiles since they are very similar for all the coarsgrnichemes. The time profiles
indicate that the performance of all coarsening schemespedIS is nearly identical in
Trilinos ML with classical smoothed aggregation is neadgritical.

Figure 14 shows a comparison of the time and memory usageeddihy DD-ML
configurations, and the overall best SA configuration whsleg the ParMETIS coarsening
scheme. We observe that the smoothed aggregation approaety iefficient with respect
to memory; however, the difference in time performance tssoadramatic.

Comparison of Hypre BoomerAMG and Trilinos ML: Figure 15 shows a comparison of
the overall best configurations of Trilinos ML and Hypre Baa®MG in the single proces-
sor scenario. We observe that the memory profiles of TrilMbsnd Hypre BoomerAMG
are quite close, although BoomerAMG solves more problente time profiles indicate
that Hypre BoomerAMG solves a large fraction of problemsigshnuch less time than

Trilinos ML.

d. Sparse Approximate Inverse

Table IX. Iterative solver configurations that resultedhe best memory, time, and MTP
performance profile area for the ParaSails preconditionklypre. The numbers
enclosed by parenthesis denote the processor numbermamcisg to the overall
best solver configurations. The configuration names praleédigls on parameters
such as number of levels (Lev), threshold (Th), and filtet) (FI

Preconditioner | Memory Winner Time Winner MTP Winner
CG, ND, PLevl CG, ND, PLevl CG, ND, PLevl
ThO, FIt0.05 ThO.1, FItO ThO.1, FIt0
(2) (32) (32)
CG, ND, PLev2 CG, ND, PLev2 CG, ND, PLevl
Hypre ParaSails| Th0.01, FIt0.001 Th0.1, FIt0.001 Th0.1, FIt0.001
(3264) (124816) (12481664)
CG, ND, PLev2 | CG, NONE, PLev2
ThO.1, FIt0.001 ThO.1, FItO
(14816) (64)
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Fig. 15. Memory and time performance profile curves for therall best Trilinos ML and
Hypre BoomerAMG solver configurations. The legends prowdééails on the
solver (CG), ordering (RCM), coarsening scheme (PMIS, PMEThumber of
levels of aggressive coarsening (10), and strong threstadle:s (0.9), ML precon-
ditioner type (SA), and the number of smoother sweeps (3).
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Fig. 17. Memory and time performance profile curves for HypaeaSails solver configu-
rations corresponding to various threshold and filter \&lioe a fixed number of
levels (PLev2) and best MTP ordering (ND).
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For the ParaSails preconditioner in Hypre, we experimewnti¢id multiple threshold
values (0, 0.01, 0.1, -0.75, -0.9) and filter values (0, 0,@A5, -0.9) for three different
levels as suggested by the user manual [1]. Table IX sumpsatie configurations that
resulted in the best performance profiles in our experiments

Figures 16 and 17 show the time and memory profiles for diftetteeshold and filter
values with nested dissection ordering for O and 2 levelpeaetively. When the number
of levels is 0, the memory and time requirements of all thefigonations are similar.
However, their robustness varies a lot and the configuratitim threshold 0.0 and filter
0.001 solves the most problems. In the case of two levelsmim@ory and time profile
curves for different configurations are well separated Apdtreshold value of 0.1 appears
to work the best. The negative threshold values suggestaelauthors in the user manual,
which have a different interpretation from non negativeiesl solved the fewest problems.

Figure 18 shows the performance profile curves for the besshiold and filter com-
bination for 0, 1, and 2 levels. We observe that the best corsign for 2 levels solves
the maximum number of problems, but is considerably slowan the best configuration
for 1 level. An interesting observation is that the memorgszanption actually declines
with increasing number of levels. This is because the badigurations of higher levels

include higher values of threshold and filter to drop moreiest

e. Variation of Overall Best Configurations with Number ob&egssors

From the tables in the previous section, we note that the de=stll configurations of

most preconditioner implementations are different fofedént number of processes. To
determine if these processor-specific overall best cordtguns are substantially different
in their performance, we plotted the MTP performance prafileves for each of these
configurations for a fixed number of processors. Between Bamlocessors, we observed

very small differences between the performance for thesfdiest configurations (for 1,
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combination. The legends provide details on the solver (G@jnber of levels
(Lev), threshold (Th), and filter (FIt).
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2,4, 8,16, 32, and 64 processors). The differences areluysiadl to different scalabilities
of the preconditioner generation and the solution phasésghmve discuss in detail in
Section D.5. If there is a considerable difference in théadxhity of the two phases, then
parameters that shift more computation to the more scapddalee would be favored as the

number of processors is increased.
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Fig. 19. Memory and time performance profile curves for thebfgm independent best
(PIB) and the problem-specific best (PSB) configurationsL&fRACK MLICT

and WSMP ICT.
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2. Performance Benefits of Fine Tuning

The users fine-tune the parameters of preconditionediitersblvers to optimize the per-
formance for a particular application, instead of usingdbe&ult values. In this section,
we discuss the effect of problem-specific fine-tuning of paaters on the performance of
various preconditioner implementations. For each soleefiguration group and proces-
sor configuration, we compare two sets of performance valtles first set of performance
values corresponds to the overall best configuration bas¢deoM TP metric. The second
set corresponds to problem-specific best (PSB) performzaloes; i.e., the performance
of the configurations with the least MTP value within the cgafation group for each

problem. These two sets of performance values are comparrdd 2, 4, 8, 16, 32, and 64
processors for the solvers whose parallel implementatdomgavailable.

Figure 19 shows the memory and time performance profile suorethe overall best
and problem-specific best configurations for WSMP ICT andRPRGK MLICT. These
preconditioners currently have only a serial implemeatativailable, so only single pro-
cessor results are shown. Figure 19 shows that both solkeve sonsiderable improve-
ment in performance due to problem-specific best paramelectson. The improvement
is more significant for ILUPACK MLICT than for WSMP ICT.

Figures 20—-25 show the performance variation between tiBeaP8 overall best for
all the preconditioners with parallel implementationsvidrich such a comparison . Instead
of showing separate performance profile curves for memodytiame separately for each
processor setting, we combine the information containesejparate memory and time
plots in a single figure. Each figure has two circles for eadtgssor configuration. The
empty circles correspond to the overall best parametergumafiions and the filled circles
correspond to the problem-specific best performance. Thand-y-coordinates of each

circle are respectively the areas of time and memory profiteéained by considering the



83

10

5 PROC_1
at o © PROC_2
PROC_4
PROC_8
2r ® PROC_16
® PROC_64

Memory Performance Profile Area

0 2 4 6 8 10
Time Performance Profile Area
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PIB and PSB performance of a single configuration group taget he size of each circle

is proportional to the number of problems solved. In our expents, the PSB and overall
best profile areas for PETSc BlockSolve95 and Trilinosk)Gfere nearly identical and
are, therefore, not shown. However, in the case of Hypre(s)lParaSails, and Trilinos
ML in Figures 20 — 24, we observe that there is consideraht®peance benefit to fine-
tuning for both memory and time as indicated by the separatiche PIB and PSB circles.
The gap between PSB and PIB profile areas is seen to reduceiasrease the number of
processors suggesting that fine tuning is less importamidtrer number of processors. In
the case of PETSc I€] and Hypre BoomerAMG in Figures 21 and 23, the gap between

the PIB and PSB profiles is minor for both memory and time.

3. Influence of Parameters on Solver Performance

In this section, we analyze the relative importance of theoua preconditioner parameter
choices on the time and memory performance within each sotu&figuration group. In
Section D.2, we observed the impact on performance due tectigk fine-tuning of the
parameters for each solver configuration group. Howevelpds not provide any infor-
mation on the individual effects of the various parametheg tvere experimented with.
In order to capture the relative importance of parametéesetare two main approaches
described in global sensitivity analysis literature [785bd on linear regression parameters
and conditional variance respectively. We also proposenafime-tuning score based on

variance conditioned on complementary factors.

a. Regression-based Sensitivity

The first approach is to perform a linear regression [75] Withperformance values as the
target variable and the various parameters as the depevaligtbles with the categorical

parameters being converted to multiple binary variablesthe current scenario, one could
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choose the performance ratios (normalized performande negpect to the overall best
configurationP 1 B(C)) as the target variable in order to adjust for effects of tuividual
matrices. The coefficients of the regression model indita¢edegree and direction of
change in the performance ratio for each unit change in antea and can be interpreted
as a measure of sensitivity of the performance with respeitte influencing parameters.
However, this approach is often not suitable in case of mogal behavior or large number
of outliers as is often the case. Furthermore, this approaes not adequately address
the fact that the parameters tend to have different didtdbs. These drawbacks limit the

applicability of this regression based approach for our a@iom

b. Conditional Variance-based Sensitivity

Another common approach in sensitivity analysis is to cagptie relative importance of a
parameter in terms of the reduction in variance of the perémrce metric conditioned on
the parameter value [76]. Lét; be thei" parameter ang be the performance metric of
interest normalized for each matrix to reduce variance. WLgt) be the global variance
of the performance metric, and I&%_, (u|F; = f;) denote the conditional variance pf
when the parametdr; takes the valug; and the variation is over_;(i.e., all factors except
F;). The key idea is that freezing one potential source of tianaesults in a conditional
varianceVr_. (u|F; = f;) that is lower than the unconditional global variaricé:) and

is determined only by parameters other thign Since we desire a sensitivity measure
independent of the parameter valugswe consider the expectation of the conditional
variance over all possible values of the factqr i.e., Er, (Vr_, (1| F;)). This sensitivity

measure is always lower or equal to the global varidri¢e) and it can be shown that

Er, (Ve (uF)) + Ve (Bp_ (p| ) = V (),
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where the second term denotes the variance in the expeafedpance metric conditioned
on F;, which is always non-negative. A small valueof. (Vx_,(u|F;)) or, in other words,
a large value oV, (Er_ (u|F;)) implies that most of the variance jncan be explained
by the parametefF; indicating that it is an important factor. The condition@riance
Ve, (Er_, (1] F;)) is typically normalized by the global variant& ) to give the importance

measure
Ve, (Er_ (1] Fy))
V(1)

Since the behavior tends to vary across matrices, we alsegag both the conditional

S =

and global variance across the matrices.

Figure 26 shows the relative importance of the various fadir different precondi-
tioners in the serial case. The height of the bars correspgrd each parameter indicates
the reduction in variance attained with respect to time aethory due to fixing the pa-
rameter to a particular value. A high value of reduction datgies that there is very little
variance that is not explained by this parameter. For examplFigure 26, we observe
that the level of fill parameter is the most important paranehereas ordering is the least
important one. For Hypre ParaSails, the memory usage is mack sensitive to the fil-
ter parameter than the threshold, whereas the oppositeibelsobserved in the case of
time. In the case of Hypre BoomerAMG, number of aggressiasgning levels impact
memory the most, whereas the strong threshold is the mosirtarg factor with respect
to time. For Trilinos ML, both smoother as well as the smootweeps seems to have the
maximum influence. This is just an artifact of the correlatieetween the parameters used
in this study. We analyze this case in more detail later iticed. For both ILUPACK
MLICT and WSMP ICT, drop tolerance is the most important pagter with respect to
both time and memory.

Figure 27 shows the relative importance of the various patars in a preconditioner
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with respect to memory and time as the number of processansnsased. The relative
importance of the parameters remain the same irrespedtitie aumber of processors. In

the case of PETSc BlockSolve95, there is only a single paearaad hence, we omit it.

c. Variance-based Fine-tuning Score

The variance-based sensitivity score discussed in Segti®nsed commonly in statistical
literature for retrospective analysis since a high valuseoisitivity with respect to a param-
eter indicates that the response variable can be confinednaal interval (i.e., has low
variance), which correlates to the explanatory and prisigiower of the parameter. From
the variance decomposition relation in Section b, we no#t tihe conditional variance
Ve, (Er_, (1] F;)) indicates the spread between the average performances\aitaned for
different fixed values of a parameter. However, this meadoes not capture the effect
of modifying a single parameteavhile keeping the rest fixess is common in a practical
fine-tuning scenario. Hence, we consider an alternate finiexg sensitivity measure for a
parametel; defined as the expectation of variance.dbr different values off; for fixed
values on the rest of the parameters, if:,, (Vr, (1| F-;)). This variance is a better indi-
cation of the change in the performance one can expect byinag a single parameter
keeping others fixed and we define this value normalized byglthtgal variance as thine-
tuning sensitivity Note that the two measurés. (Er_,(u|F;)) and Er_,(Vr, (u|F-;)) are
closely related to each other and involve applying the agagien and variance is different
orders. When the parameters are all uncorrelateduagxhibits linear dependence on the
parameters, the two measures are identical.

Figure 28 shows the average normalized variation with i&gpeboth time and mem-
ory for each of the fine-tuneable parameters for differeatpnditioners in the serial case.
The height of the bars corresponding to each parameterspannes to the normalized vari-

ance of the change in performance one can expect by finegttinat parameter keeping
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Fig. 27. Relative importance with respect to memory and tohéhe various parameters
for the different preconditioners in the parallel case. lEeagrve in the subplots
corresponds to a parameter that is varied in our study.
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fine-tuneable parameters of the various preconditioneisiiserial case.
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Fig. 29. Average normalized variation with respect to mgnaord time for the fine-tuneable
parameters of the various preconditioners in the paradlséc Each curve in the
subplots corresponds to a parameter that is varied in ody.stu
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others fixed. The relative heights of the bars is importarthia case since it gives an
indication of the variance on performance due to each paeméhis is more evident
when you compare the plots for PETSc A¢(n Figures 26 and 28. For example, in Fig-
ure 26, we observe that the ordering and fill factor pararadtave comparable conditional
variance-based scores in comparison to the level of fillmpatar. However, in Figure 28,
itis clear that the variation in performance due to levellbidimuch higher in comparison
to that due to ordering and fill factor. Although the generahtls for other precondition-
ers are similar to those based on the conditional variaasedsensitivity plot, there are
some subtle differences. For example, the variation inoperdnce due to ordering is al-
most negligible for both Hypre BoomerAMG and ParaSails. iBirly, the variation due to
ParaSails threshold parameter is negligible with respetitte.

Figure 29 shows the effect of fine-tuning the various paransein memory and time
as the number of processors is increased. The level of filltekarger influence on mem-
ory and time for all the three 1G] implementations in PETSc, Trilinos, and Hypre. Only
in the case of PETSc and Trilinos I&)( did the ordering scheme cause any significant
variation with respect to both memory and time. In the caseBTSc BlockSolve95, the
variations with respect to time and memory were minor and thierefore, omitted. For
Hypre BoomerAMG, the ordering scheme has the least effettodim time and memory,
while the effect of the other parameters (coarsening scheweds and strong threshold) is
substantial, but nearly flat as the number of processorssiahn the case of Hypre Para-
Sails, the number of levels has the maximum impact on botla &nd memory. Although
the filter parameter has a significant impact on memory, vasipect to time, the variation
is negligible. The trends for both conditional variancedshsensitivity and variance based
parameter fine-tuning plots show similar behavior exceptage of Trilinos ML due to

correlation between parameters, which we discuss below.
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d. Correlated Parameters

The fine-tuning measure discussed above is suitable fos vdsere each choice of a pa-
rameter can occur with all other choices of the rest of patara¢o form a valid configura-
tion, i.e., the parameters are statistically independedtcarrelated. In such a case, using
the fine-tuning measure, one can order the parameters antlfieghem one at a time.
However, in certain cases, there tend to exist groups ohhigbsitively or negatively) cor-
related parameters, e.g., smoother and number of smoetkeps (correlation coefficient
< -0.7)in case of Trilinos ML. When there is a strong dependamong the parameters,
then freezing all the other parameters has an implicit etiétmiting the range of possi-
ble values for the parameter in question resulting in a raditeg value for the fine-tuning
measure. For such scenarios, it is more appropriate to fooopg of highly correlated pa-
rameters and simultaneously fine-tune them based on theifijoe-tuning score. Figures
30 and 31 show the fine-tuning measures for Trilinos-ML withuping of the parameters
smoother and number of sweeps in the serial and parallelreapectively. We observe
that the combined parameter ML Smoother/Sweeps is the myxsirtant parameter in
Figures 30 and 31 and the scales indicate that the assoeaiadces are significant.

In the current data, we observed that across all the solvdigrtmation groups, the
parameters (smoother and number of smoother sweeps) aonlthenes with absolute
correlation> 0.5. Hence, the fine-tuning scores depicted in the Figurean8D31 are

realistic for the rest of the parameters.

4. Relative Performance of Preconditioner Implementation

We now use the MTP metric to compare the performance of alptieeonditioner im-
plementations studied in this paper. We compare the varmmptementation under two

scenarios. We first compare the overall best (PIB) or the raxieatally determined de-
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Fig. 30. Conditional variance based sensitivity scoresvanidnce based fine-tuning scores
with respect to memory and time for each of the fine-tuneadnampeters of Trilinos
ML preconditioner in the serial case.

fault configurations of the preconditioners, i.e., we cleotte parameter configuration for
each preconditioner that has the best overall performanaaptest suite. In the second
scenario, we compare the preconditioners based on thei(B8Blem specific best) con-
figurations, i.e., we pick the best parameter configuratioeach preconditioner for each
individual matrix. For both the PIB and PSB scenarios, wes@néthe results on a single
processor and on 64 processors. We also present the refssitsutaneously projecting

multiple performance metrics, which helps in analyzing téktive memory, time, and

robustness of the preconditioners, both in the serial anallpbcase.

a. Problem Independent Best Configurations

The best MTP parameter combinations for all the preconugtie are shown in Tables X
and XI for the 1 and 64 processor cases. These solver corfusare good candidates
for default values that have a high probability of yieldingraall memory-time product for

an arbitrary problem.
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Fig. 31. Conditional variance based sensitivity scoresvanidnce based fine-tuning scores
with respect to memory and time for each of the fine-tuneadnampeters of Trilinos
ML preconditioner in the parallel case. Each curve in theptatls corresponds to a
parameter that is varied in our study.
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Table X. Iterative solver configurations that resulted ia test overall performance with
respect to memory-time product profile area in the seriad.cas

Preconditioner Solver | Ordering | Preconditioner Parameters
PETSc ICk) CG RCM Fill factor 1, Level of fill 0
PETSc BlockSolve CG RCM -
Trilinos IC(k) CG RCM Level of fill 8

Smoothed aggregation, Symmetric Gauss-Seidel smodther

Trilinos ML cG RCM Smoother sweeps 3, ParMETIS Coarsening
Hypre IC() CG RCM Level of fill 1
PMIS Coarsening, Aggressive coarsening levels 10
Hypre BoomerAMG CG RCM Strong thresholng.Qgg 9
Hypre ParaSails CG ND Number of levels 1, Threshold 0.1, Filter 0.001
llupack MLICT CG RCM Drop-tolerance 0.03, Inverse norm estimate 75
WSMP ICT Auto RCM Drop tolerance 0.003

Fill factor 4.9, SHIFT-ON

Table XI. Iterative solver configurations that resultedhe best overall performance with
respect to memory-time product profile area in the 64 praressse.

Preconditioner Solver | Ordering | Preconditioner Parameters
PETSc ICk) CG RCM Fill factor 1, Level of fill 0
PETSc BlockSolve CG RCM -
Trilinos IC(k) CG RCM Level of fill (6)
I, Smoothed aggregation, Symmetric Gauss-Seidel smodther
Trilinos ML cG NONE Smoother svgv’(gep% 3, Hybr)ild Uncoupled-MIS Coarsening
Hypre IC() CG RCM Level of fill 1

PMIS Coarsening, Aggresive coarsening levels 10
Hypre BoomerAMG CG NONE Strong threshold 0.7

Hypre ParaSails CG ND Number of levels 1, Threshold 0.1, Filter 0.001
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Fig. 32. Memory performance profile curves for the direcvepand the overall best mem-
ory-time product configurations of the various k§(ICT, AMG, and SAI precon-
ditioner implementations in PETSc, Trilinos, Hypre, ILUBK, and WSMP for the
single processor case.
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Fig. 33. Memory performance profile curves for the directepand the overall best memo-
ry-time product configurations of the various K}(AMG, and SAI preconditioner
implementations in PETSc, Trilinos, and Hypre for the 64cessor case.
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Figures 32 and 33 show the memory profiles of the configuratstiown in Tables X
and Xl, respectively. The memory profile of WSMP direct solgealso included in these
figures. Recall that the memory plotted here correspondsetdatal memory needed for
storing the nonzeros in the linear system as well as the meatiocated in the heap during
the preconditioner creation.

For the single processor case in Figure 32, Hypre BoomerAM{re ParaSails,
Trilinos ML, WSMP ICT, and ILUPACK MLICT appear to be the masemory efficient
and robust. The IG() preconditioners are not as robust as the others and tlsgiecgve
curves flatten out fairly early. For the 64 processor caseguarg 33, Hypre BoomerAMG
is the most memory efficient followed by Trilinos ML, PETSc(k}, and Trilinos 1C¢).
The relative ranking of other preconditioners remains #maesexcept for Hypre ParaSails,
which shows a higher memory usage than in the serial case highenemory usage of
Hypre ParaSails is due to the specific implementation chimioghich, all the external
rows needed by a processor are collected and stored for eacbsgor. While this choice
improves the time performance, we observed that its memmmgumption increases with
the number of processors.

Figures 34 and 35 show the time profiles of the best configumati In Figure 34,
the direct solver turns out to be the fastest solver for al6gdt of the problems in the
serial case. This is followed by PETSc KJ( which is the fastest one for about 12%
of the problems. However, understandably, PETSd)@oes not do as well for more
difficult problems and its time profile curve is soon surpddsethat of WSMP ICT. Hypre
BoomerAMG and Trilinos ML, which are highly memory efficierstppear to be slower
than Hypre ParaSails, ILUPACK, and WSMP ICT. For the 64 pssoe case in Figure 35,
the direct solver is still the fastest for about 70% of thelypeans followed by Hypre 13),
PETSc ICk), Hypre ParaSails, and Hypre BoomerAMG.

Figures 36 and 37 show the memory-time product profiles f@wtrious solver con-
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figuration groups along with that of the WSMP direct solvdreTelative positions of most
memory-time product profiles in the serial case are verylamto that of the corresponding
time profiles in Figures 34 and 35. In the 64 processor case;utve for Hypre Boomer-
AMG moves up because of its excellent memory efficiency aatl fttr Hypre ParaSails
curve moves down due to its high memory usage in the mulicgssor case.

A comparison of the memory and time performance of the itexalvers relative to
WSMP’s direct solver confirms the conventional wisdom thegat solvers are generally
fast and robust, but require more memory resources. Caovahtvisdom also holds that
the preconditioned iterative solvers should outperforedinect solver on larger problems.
In addition, the performance crossover point betweentiterand direct solvers would be
observed for relatively larger matrices that result from tfumensional physical problems
as compared to three dimensional ones. Our results simgigate that, although half of
the problems in our test suite have more than half a millidinomwns, the average problem
size is still too small for most iterative solvers to outpenh the direct solver in terms of

solution time.

b. Problem Specific Parameter Selection

While the overall best or the PIB configuration of a precandier offers a good choice of
parameter settings for an arbitrary problem, users may leg@alimprove the performance
of their applications by tuning the parameters for the roagriarising in their applications.
In this section, we discuss the relative performance obwarpreconditioner implementa-
tions when the best parameter configuration is chosen ohakly for each problem from

a reasonably comprehensive set of configurations. Thigsisatan give a good indica-
tion of the best possible performance that a preconditiseapable of delivering for each
problem. While it is not practical to fine tune the parametersgach individual problem,

fine-tuning can be useful when all matrices arising in a paldir application have similar
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properties.

Figures 38 and 39 show the memory profiles (for 1 and 64 procgssespectively)
when the parameter configuration for each problem was chiasindually to minimize
its memory-time product. These figures show that problenciBpdine-tuning results in
remarkable improvements in memory use for most precomgiti® when compared with
the best overall parameter configuration. All iterativeveolcurves move upwards with
respect to the direct solver curve in Figures 38 and 39. Bsesidnsuming less memory,
most preconditioners are able to solve more problems ssittlyswith problem-specific
parameter tuning. The most remarkable improvement withegsto memory occurs for
Hypre IC().

Figures 40 and 41 show the time profiles of all the preconuitis when the param-
eter configuration for each problem was chosen individuallpinimize its memory-time
product. Just like the memory profiles, the time profiles efgheconditioners improve sig-
nificantly when compared to those for the overall best patanenfiguration. The most
notable improvements in the serial case are for ILUPACK MLI8ypre ICk) and Hypre
ParaSails. While using 64 processors, a comparison of theeBgshows that Hypre’s
BoomerAMG, IC{), and ParaSails reduce the time performance gap with the W&M
rect solver.

Tables Xll and Xl show best iterative solver configuratiemd its time and memory
consumption for each problem for the 1- and 64-processe@r. Gdsese tables also show the
time and memory used by the direct solver in each case. Thewvabrresponding to the
best memory-time product are in bold font. In the single pssor case, the direct solver
has the better memory-time product for 12 out of the 30 medriés expected, the iterative
solvers do much better for large 3-D problems. Among theiiez solvers, WSMP ICT
does best for 13 problems, PETSc A@nd Hypre BoomerAMG for 2 problems each,
and Hypre ParaSails for one problem. For the 64 processerstasvn in Table XIllI, the
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Table XII. Table showing the time (in seconds) and memoryesl(in megabytes) cor-
responding to the best problem specific memory-time prothuaterative and
direct solvers in the single processor case. The bold vahubksate the solver
configuration for which the product of memory and time wasltinest.

. . Iter. Iter. Dir. Dir.
Matrix Iterative Parameter Mem | Time Mem | Time
90153 wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, ON 55.2 | 6.61 194 2.47
af_shell7 wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, OFF | 223 62.80 830 11.75
algor-big wsmp, ICT, AUTO, RCM, DT1e-2, F4.9, OFF | 788 305.73 | - -
audikw 1 wsmp, ICT, AUTO, RCM, DT1le-2, F2.5, ON 959 336.16 | 9500 | 870.00
bmwcral wsmp, ICT, AUTO, RCM, DT1le-2, F2.5, ON 110 51.10 568 11.28
ctu-1 wsmp, ICT, AUTO, ND, DT3e-4, F2.5, OFF 2830 | 531.93 | 3210 | 86.78
ctu-2 wsmp, ICT, AUTO, ND, DT3e-3, F4.1, ON 936 462.96 | 2350 | 100.30
cfdl petsc, IC(k), CG, RCM, LFO, F1 29.1 | 6.59 157 241
cfd2 hypre, PSAILS, CG, NONE, PLev1, Th.1, FIt.05680.1 | 26.81 310 6.35
conti20 wsmp, ICT, AUTO, RCM, DT3e-3, F3.3, ON 359 | 5.63 64 0.96
garybig hypre, AMG, CG, RCM, FALG, AGG10, ST.7 | 6660 | 11597 | - -
G3_circuit wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, OFF | 179 37.39 956 20.11
hood wsmp, ICT, AUTO, ND, DT3e-3, F4.1, OFF 170 4.10 257 251
inline_1 wsmp, ICT, AUTO, RCM, DT3e-4, F2.5, OFF | 1910 | 91.75 1500 | 27.43
kyushu petsc, IC(k), CG, RCM, LFO, F1 417 32.66 9220 | 1336.48
Idoor wsmp, ICT, AUTO, ND, DT3e-4, F4.9, OFF 965 40.51 1370 | 22.45
msdoor wsmp, ICT, AUTO, ND, DT3e-4, F4.9, OFF 499 28.39 492 5.12
mstamp-2c¢ hypre, PSAILS, CG, RCM, PLevO, Th.1, FItO | 726 76.35 - -
nastran-b wsmp, ICT, AUTO, RCM, DT1e-2, F4.1, OFF | 1160 | 474.16 | 8620 | 538.88
nd24k wsmp, ICT, AUTO, RCM, DT1le-2, F2.5, ON 88.3 | 23.61 2750 | 412.18
oilpan wsmp, ICT, AUTO, ND, DT3e-4, F2.5, OFF 60.3 | 2.38 94.5 | 1.02
parabolicfem | wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, ON 70.8 | 7.39 233 2.90
pga-reml wsmp, ICT, AUTO, RCM, DT1le-2, F4.9, OFF | 277 39.03 742 11.10
pga-rem2 wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, OFF | 437 74.17 1980 | 44.63
ga8fk hypre, AMG, CG, RCM, PMIS, AGG10, ST.25| 17.9 | 2.03 193 4.60
ga8fm wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, OFF | 3.43 | 0.16 187 4.21
ship.003 wsmp, ICT, AUTO, RCM, DT1le-2, F2.5, ON 62.2 | 17.66 529 16.85
shipsec5 wsmp, ICT, AUTO, RCM, DT1e-2, F3.3, ON 88 12.15 448 12.93
thermal2 wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, OFF | 139 59.36 484 6.44
torso wsmp, ICT, AUTO, RCM, DT1le-2, F2.5, ON 476 | 5.79 677 24.43

direct solver does best for 15 problems. Among the iteraoreers, Hypre BoomerAMG
does best for 7 problems, PETSc k¢ for 6 problems, and Hypre ParaSails and PETSc
BlockSolve for one problem each. Note that WSMP ICT and ILURAdo not yet have

parallel implementations suitable for 64 processors.

c. Relative Strengths of Preconditioners and Sensitigifydrameter Tuning

We have observed that different preconditioners and selwave different strengths and

weaknesses. Some are more memory efficient than otherg sdrite are faster than oth-
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Table XIII. Table showing the time (in seconds) and memoryes (in megabytes) cor-
responding to the best problem specific memory-time proftwdterative and

direct solvers in the 64 processor case. The bold valuesatalthe solver con-
figuration for which the product of memory and time was thedetv

. . Iter. Iter. Dir. Dir.
Matrix Iterative Parameter Mem | Time Mem Time
90153 hypre, IC(k), CG, ND, LF4, NzINF 352 0.84 195 0.13
af_shell7 hypre, AMG, CG, RCM, PMIS, AGG10, ST.9 240 1.88 848 0.45
algor-big hypre, AMG, CG, NONE, PMIS, AGG10, ST.7| 987 9.95 32200 | 90.41
audikw.1 hypre, AMG, CG, RCM, FALG, AGGO, ST.9 1540 | 86.63 9750 26.91
bmwcral hypre, AMG, CG, RCM, PMIS, AGG10, ST.25| 100 6.70 572 0.42
ctu-1 - - - 3460 4.64
ctu-2 - - - 2320 | 251
cfdl petsc, IC(k), CG, RCM, LFO, F1 28.8 0.28 164 0.16
cfd2 hypre, AMG, CG, NONE, PMIS, AGG10, ST.7| 44.1 | 5.30 306 0.29
conti20 - - - 67.2 0.08
garybig hypre, AMG, CG, ND, FALG, AGG10, ST.7 6680 | 263.61 | - -
G3_circuit petsc, IC(k), CG, RCM, LFO, F1 187 2.12 939 0.69
hood petsc, BSolve, CG, RCM, ALL, NONE 116 0.95 303 0.15
inline_1 - - - 1530 1.33
kyushu petsc, IC(k), CG, RCM, LFO, F1 409 2.68 9220 34.49
Idoor hypre, PSAILS, CG, ND, PLev0, ThO, FIt.05 1760 | 2.99 1510 | 0.83
msdoor hypre, PSAILS, CG, ND, PLev1, ThO, FIt.05 1520 | 4.08 558 0.27
mstamp-2c petsc, IC(k), CG, ND, LFO, F1 1000 | 2.01 15900 | 62.79
nastran-b hypre, AMG, CG, RCM, PMIS, AGG10, ST.9 | 1350 | 79.26 9130 19.21
nd24k hypre, PSAILS, CG, NONE, PLev2, Th.1, FIt.05 1450 | 1.76 2680 10.66
oilpan hypre, AMG, CG, RCM, HMIS, AGGO, ST.9 48.5 | 6.09 103 0.06
parabolicfem | hypre, AMG, CG, NONE, HMIS, AGG10, ST.2% 76.6 0.41 235 0.16
pga-reml hypre, IC(k), CG, RCM, LF1, NzINF 525 2.36 736 0.49
pga-rem2 petsc, IC(k), CG, RCM, LFO, F1 535 | 5.09 2020 | 2.24
qa8fk hypre, AMG, CG, NONE, HMIS, AGG10, ST.2% 19.9 0.16 186 0.20
gasfm hypre, AMG, CG, RCM, PMIS, AGGO, ST.25 | 17 0.03 185 0.20
ship.003 hypre, AMG, CG, RCM, HMIS, AGG10, ST.25| 90.9 7.91 560 0.76
shipsec5 petsc, BSolve, CG, RCM, ALL, NONE 113 1.31 505 0.51
thermal2 hypre, AMG, CG, ND, PMIS, AGG10, ST.25 159 1.37 492 0.36
torso petsc, IC(k), CG, RCM, LFO, F1 54 0.16 685 0.91
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followed by the type of preconditioner. The size of a cirderoportional to the
number of problems solved. The green (dark) circles cooedo profile areas
for the default parameter configuration and the yellow fligines correspond to
profile areas for problem-specific best parameters. If tilewend green circles
overlap, it is shown as a brown circle.
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ers. They also have different degrees of robustness. InoBe2t we also saw that, as
expected, most preconditioners performed significanttieb&hen their parameters were
permitted to be tuned to each coefficient matrix. Howevdfeint preconditioners dis-
played different degrees of improvement. Figure 42 dispky/this relative information
about the performance of various preconditioners by meéassingle information-rich
graphic. The figure has two sets of circles for each precmmdit. The green (dark) circles
correspond to the default parameter configurations. ThHewélight) circles correspond
to the corresponding problem-specific best parameters.xThad y-coordinates of each
circle are the areas under the time and memory profile cuftbe @orresponding precon-
ditioner derived from plotting the default and problem spe@erformance profiles in a
single plot. The size of each circle is proportional to thenber of problems solved.

The height of a circle in Figure 42 is indicative of the memeffjciency of the cor-
responding preconditioner. Similarly, the distance frdma {-axis towards the right is
indicative of its speed. The figure shows at a glance whichessland preconditioners
are most memory efficient and which ones are most time efficlear example, in Figure
42 the direct solver is very fast and robust, but is less mgrafficient than many of the
preconditioners. On the other hand, Hypre BoomerAMG is vebust and memory effi-
cient, but is relatively slow. For the default parametergpitéd Parasails and ILUPACK are
faster, but use slightly more memory than Hypre BoomerAMGMWP ICT with default
parameters is fairly memory efficient and significantly égassSome preconditioners benefit
a great deal from parameter tuning. This is evident from #log the yellow (light) circles
corresponding to most preconditioners lie above and toigfe of their dark counterparts.
The most remarkable improvement can be seen in the case oEHgpE:). ILUPACK
MLICT and Hypre ParaSails also show significant improvenirebbth time and memory.
Another interesting observation from Figure 42 is that iheef memory, and robustness

of different implementations of the same underlying pretittoning method can be very
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different. Whether with default or with fine-tuned paramste¢he best preconditioner im-
plementations lie on the periphery of the plot. When lookimgcandidates for the best
preconditioner for an application at hand, a user is likelyare best by picking one of
Hypre BoomerAMG, ILUPACK, Hypre Parasails, WSMP ICT or WSNI#rect solver,
depending on the desired balance between computation tichenamory. PETSc |G
and Hypre ICf) also emerge as strong preconditioners in terms of memattiare ef-
ficiency, although they are able to solve fewer problems @egto the other leading
preconditioners.

In Figure 43, we compare the relative performance of theqméitioners in the 64
processor case. Just like the serial case, the direct sselvery fast but memory intensive
in comparison to other preconditioners. Hypre BoomerAMGeigtively more efficient
with respect to both time and memory and the benefits of finexguare also somewhat
more pronounced than in 42. Hypre Ig(outperforms PETSc I&) and Trilinos IC{)
with respect to both memory and time. The relative time efficy of Hypre ParaSails
increases, but it comes at the expense of increased memagg.u$o summarize, Hypre
BoomerAMG is highly memory efficient, WSMP direct and Hypie&Sails are relatively

fast whereas Hypre 1G] seems to balance both time and memory.

5. Parallel Efficiency

An important measure often reported for parallel impleragans is the time efficiency
across multiple processors. Most of the packages in thitystwe used for large scale
scientific simulations involving thousands of processors might exhibit excellent weak
scaling. Since the matrices in our test are of fixed size, we perform strong scaling
analysis. The efficiency obtained during a weak scalingystiil be much better than that
observed for our strong scaling study. Since efficiency iasueed using the ratio of the

serial time to the parallel time, the values depend heavilyhe serial implementation of
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Fig. 43. Plot of the time profile area versus the memory praiita for various precondi-
tioner implementations (64 processor case). Each cirpiesents a preconditioner
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of problems solved. The green (dark) circles correspondadle areas for the
default parameter configuration and the yellow (light) ooesespond to profile
areas for problem-specific best parameters. If the yellaggaen circles overlap,
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the respective preconditioners. Therefore, for each cordtgn group, we first determine
the solver configurations that resulted in the best seriaPMVer all the problems. If
a particular problem is solved using the best serial MTP esobonfiguration on all the
different processor configurations, then it is includeddalculating the average efficiency.
The rest of this section is organized as follows. We first gtilng variation of time
efficiency with respect to preconditioner sparsity for tmegonditioner generation phase,
iterative solution phase, and the total solution time fafk)CBoomerAMG, and ParaSails
preconditioners in the Hypre package. This is followed bymparison of the average
efficiencies across the various configuration groups cosgposgvarious package and pre-

conditioner combinations.

a. Effect of Efficiency on Preconditioner Density

Hypre IC(k): Figure 44(a) shows the average efficiency curves for theopidittoner
generation phase for the various level of fill values in Hyl@2€:). One can observe su-
perlinear speedup for most fill factor values. The high fiitéa values which typically
result in dense preconditioners have a lower average eftigiealue than the sparser pre-
conditioners for low number of processors. For higher nunabg@rocessors, the densest
preconditioners shows the maximum super linear speedupetd, the iterative solution
phase in Figure 44(b) shows a progressive drop in efficienty mwcreasing number of
processors for all the level of fill values. The drop in effiag is highest for the densest
preconditioner. Figure 44(c) shows the average efficieacyhie combined preconditioned
generation and iterative solution phases. Since the dwera efficiency and precondi-
tioner generation time efficiency are fairly similar, we @@sume that the iterative solution
phase is only a small fraction of the overall time. This peettplains the progressive drop
in efficiency observed in Figure 44(b) in comparison to thecpnditioner generation time

and the overall time.
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Fig. 44. Average time efficiency for the preconditioner gatien phase, the iterative solu-
tion phase, and the overall time of Hypre kfor various level of fill values and
RCM ordering.
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Fig. 45. Average time efficiency for the preconditioner gatien phase, the iterative solu-
tion phase, and the overall time of Hypre BoomerAMG for sgrtireshold values
(ST0.25, STO.5) for multiple aggressive coarsening le(&GG0, AGG10).
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Fig. 46. Average time efficiency for the preconditioner gatien phase, the iterative so-
lution phase, and the overall time of Hypre ParaSails forova number of levels
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name of the package followed by the type of preconditionbe Jize of a circle is
proportional to the number of problems solved.

Hypre BoomerAMG: In Section 1, we observed that the use of high aggressiveeoiaig

levels and high threshold values result in less expense@omditioners. In order to choose
four solver configurations that result in preconditionersarying sparsity, we varied the
aggressive coarsening levels and the strong thresholéwvalhile keeping other parame-
ters fixed. The densest preconditioners correspond to thiblseo aggressive coarsening
(AGGO) and low values of threshold (ST0.25). Figure 45(avahthe average efficiency

curves for the preconditioner generation phase. For lowetaer of processors, the denser
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preconditioners exhibit slightly more drop in efficiencygwever, as the number of pro-
cessors increases, all the curves are fairly close. The idrefficiency for the iterative
solution phase shown in Figure 45(b) is not as much as in teeopditioner generation
phase. Similar behavior is observed even in the case of gaeféiciency curves for the
overall time, i.e., the sparse preconditioners show leds®y in efficiency in comparison
to dense preconditioners.

Hypre ParaSails: As observed in our earlier analysis, lower number of levatslsigher
threshold values lead to sparser preconditioners. In dodghow the effect of precondi-
tioner density on the parallel time efficiency, we chose Baila configurations with vary-
ing number of levels and threshold values, while keepindiliee parameter fixed to 0.001.
Figure 46 shows the average time efficiency values for thegmiditioner generation phase,
iterative solution phase, and overall time respectivehe €ffect of preconditioner density
on the efficiency is more clearly seen in the case of nonzdwesaf the level parameter
since impact of higher values of threshold on density is nsagrificant for this case.

In Figure 46(a), we observe that the drop in efficiency forgheconditioner genera-
tion phase is more for sparser preconditioners whereasppeste behavior is observed
in Figure 46(b) for the iterative solution phase. Howeee, dverall time efficiency curves
in Figure 46(c) seems to be in between that of the precomditigeneration phase and
iterative solution phase suggesting that both the timentédweeach of the phases are fairly

close.

b. Comparison Across Configuration Groups

Figure 47 shows the average time efficiency for all the sopretilems while using the var-
ious parallel preconditioners. ILUPACK MLICT and WSMP IC&sults are not present
since they do not have distributed memory implementati@s¥he efficiency plots show

a completely different scenario from that seen in the prob$pecific time profile plots
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comparing these preconditioners. PETSc BlockSolve,nodilC(k), and ML precondi-
tioners exhibit very little drop in efficiency for the probbhs that it could solve. Hypre
ParaSails and Hypre I€)( show similar drop in efficiencies. WSMP Direct shows the
maximum drop in efficiency. This drastic drop could also lgkaited to its superior time

performance in the serial case in comparison to other pritoners.

E. Performance Analysis Infrastructure

In this section, we describe the software infrastructuag¢we used for the semi-automated
collection, analysis, and visualization of performanceadar the iterative solvers. Most
results presented in Section D were generated using threfxark. Figure 48 shows the
various components of the framework, which is composed effopnance data collection
unit and multiple analysis and visualization units. Altlgbuhe framework is implemented
for studying preconditioned iterative solvers, it is répdixtensible to other domains where
it may be useful to perform a comparative evaluation of sEvanfiguration groups with
a large number of configurations with respect to their penéorce on multiple metrics. We

now describe each component in more detail.

1. Data Collection and Preprocessing Unit

This consists of serial and parallel driver programs fordbkeer packages of interest. The
input to this component includes the set of linear systéma set of hardware configu-
rations (i.e., number of processofX) the set of supported solver configuratiansvith
the details of the solvers, preconditioners, and relateidapand parameters, and a set of
performance metricg. In addition, the user also specifies a groupia ¢f the solver
configurations which can be a combination of any of the sateafiguration components

such as package, preconditioner, solver, ordering, etc.



Fig. 48. Overview of the performance analysis infrastreetu
Boxes represent the processing units, dotted ellipses rep-
resent the input and output data while the plots generated
for visualization are represented by solid ellipses.
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Other choices of interest include driver specific informatsuch as the right hand
side (RHS), initial solution, exact solution and, stoppinigerion (e.g., the relative residual
norm or maximum number of iterations of the solver), eachhitWwhas a default value and
can also be modified by the user. The system performs emidirials for each possible
setting, collects the specified metrics, and pre-procetbesn appropriately to generate
the performance data (denoted py It also generates a mappingdnfigMayp from the
solver configurations$' to various key attributes such as the package-name, priticoreal-
name, solver and the associated parameters. This paramegiping is required to partition
the configurations into sub-groups that differ along a €rmdrameter. For example, the
configuration map for PETSc-I€) would include the ordering scheme, level of fill and fill
factors as parameters and a san@afigMapentry for this case will have an integer value
that corresponds to each parameter. In the case of ordéhnierg, are two possible values
assigned (RCM(1) and ND(2)). Similarly, we assign integenitifiers to other parameters

and a single solver configuration is mapped to an integeovetparameter identifiers.

2. Parameter Fine-tuning Analysis Unit

This unit computes the variability in the performance dua single parameter while keep-
ing all others fixed. This analysis is especially relevansfdver configurations within each
group (Section D.3). It requires as input the performanda das well as the solver con-
figuration to parameter maponfigMapgenerated by the data collection and pre-processing
unit. In order to study the effect of a single parameter, f@meple ordering scheme, we
first find groups of parameter vectors that vary only in theeardy scheme value. For
example in the case of ILUPACK MLICT, there are 12 groupsesponding to each com-
bination of drop tolerance and inverse norm estimate vatdelae solver configurations in
each group corresponds to 5 different ordering schemesedébr such group, we calculate

the average standard deviation of the percentage changernmlized memory and time
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performance for theolvedproblems. Each of these average standard deviations &nerfur

averaged across the 12 groups to create the normalized plots

3. Intra-group Analysis Unit

The intra-group analysis unit computes good default sateefigurations RIB;'(C)) that
result in the maximum AUC among all the solver configuratistiin each user specified
groupC. Such groups that typically represent a package preconéiticombination. It
also computes the problem specific best configuraf®88’(C)) among all configurations
in groupC for each test case in the problem #&t Although, we use MTP as the metric
() of choice, a user can specify other metrics such as memuong, br a weighted prod-
uct of memory and time. For a given hardware configuration @egrormance metric, a
series of performance profilé’(°) plots are created for each configuration for analysis at
a fine-grained resolution. In addition, the effect of finattg is captured by comparing
the performance of the best default configuration and théleno specific best perfor-
mance. The performance results or thealues corresponding to bofiB/'(C), PSB'(C)
are compiled for each group problemp, and hardware configuratianto generate group

performance data3roupPerfData for further analysis.

4. Inter-group Analysis Unit

The inter-group analysis unit provides a coarse grain coisga of the different solver
configuration groups based on group performance @GataipPerfDatacorresponding to
the best default configuratiofP(B;'(C)) as well as the problem specific beBtSB'(C)).
Performance profile plots are generated for each hardwargoecation for bothPIB;’
and PSB'’ values. In addition, we also generate a multi-metric plat $§imultaneously
captures the trends for up to three metrics (e.g., memang énd robustness) in the case

of both PSBandPIB performance. This provides a snapshot of the relative gthsrand
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weaknesses of the various solver configuration groups wespect to the performance

metrics under consideration.

F. Discussion

We performed an extensive empirical evaluation of some contyrused preconditioned
iterative methods available in free black box solver paekagn a collection of matrices
drawn from a wide range of scientific applications. For eaabtkpge and preconditioner
combination, we identify the best parameter choices usimg\.el performance profile
based criterion that takes into consideration the numbgralblems solved along with
the time and memory usage across all the problems in thectiolle Our experiments
reveal parameter configurations that are good candidatedefault configurations. For
each preconditioner, we quantify the benefits of paramatertfining by comparing the
best performance for each problem with the performance ioéxperimentally determined
default parameters. Different preconditioners show vayyevels of tunability and opti-
mizing individual parameters impacts the performance tiemdint degrees. We provide a
comparison of the performance of various iterative solegrfigurations relative to the di-
rect solver, which illustrates the successes and chalieingkeveloping preconditioners for
iterative solvers. The results also provide insight inoriblative strengths and weaknesses
of the various black box preconditioned iterative solveskzayes. We observed that differ-
ent implementations of the same preconditioning methodraanwidely in performance.
This study, admittedly, has its limitations. The resultedifor analysis are derived
from a test suite of only 30 problems. Although our test simtdudes problems from mul-
tiple applications, we kept its size modest due to the sheber of trials (2156) for each
matrix. Therefore, the results may not be generalizablgo&zific application domains.

However, the performance collection and reporting infragtire we have developed is in-
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dependent of the test suite and can be used on any set of testasnfrom any domain. As
part of continuing work on this topic, we plan to set up an amoeous ftp site so that ap-
plication scientists can provide us with specific matricetheir domain and matrices and
obtain a report on the relative performance of each solvaiguaration group for those ma-
trices. The methodology described in this paper can be tidlpfesearchers in evaluating

different aspects of new solver techniques in a systemegindn.
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CHAPTER IV

SOLVER RECOMMENDATION SYSTEM
In this chapter, we present a novel multi-stage learnirgelanethodology for determin-
ing the “best” solver configuration(s) given the user cauists and the desired perfor-
mance behavior for any given linear system. Unlike Chaptevhich deals with provid-
ing coarse guidance to practitioners in terms of the bestulie€onfiguration and influ-
ential parameters for a solver configuration group indepehdf the linear system, the
current chapter specifically focuses on using propertigbefinear systems to determine
the suitable solver configuration(s). Our solver recommaéind methodology relies on a
modular formulation consisting of three key sub-problera: solvability modeling, (b)
performance modeling, and (c) performance optimizatidnis @ecomposition allow us to
readily address practical issues arising from solverfaiand multi-objective optimization
in an efficient and effective manner. Specifically, the sbiMy model is used to filter
out failure-prone configurations before modeling the panfance statistics. Further, to ac-
commodate optimization of multiple criteria, we sepasatebrn models for each of the
core performance statistics (e.g, time/memory/errorg dptimization step involves com-
bining the learned performance models to identify the tdpesahoices for the specified
performance criteria.

We begin by motivating the need for a problem-specific solegeommendation sys-
tem in Section A and discuss the desiderata for such a syst&wedtion B. In Section C,
we describe how the performance data is represented anidle@formal definition of the
problem. Section D presents details of our multi-stageniegarapproach followed by a
description of a prototype system in Section E. In Sectiowé-discuss the strengths and

limitations of the proposed methodology relative to exigtiechniques for solver selection.
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A. Motivation

As we discussed earlier in Chapter Ill, Section D.2, emairavidence indicates that one
can often obtain a significant improvement in performantaixe to even a carefully cho-
sen default solver configuration by performing problemesfpefine-tuning of precondi-
tioner and solver parameters. This performance improvermsespecially critical for large
matrices since it corresponds to a substantial reducti@omiputational effort.

Knowledge of the influential preconditioner parametersaaéar Ill, Section D.3) par-
tially alleviates the solver selection problem by redudimgsearch space. Even so, choos-
ing the best preprocessing options, preconditioner anetdini@g the preconditioner’s pa-
rameters for a particular linear system is a challenging, tagen for experts in compu-
tational linear algebra due to several reasons. As mertieadier, the diversity of the
preconditioners and the variability in the different implentations for the same precondi-
tioner heavily limits the utility of any theoretical analgsThe search space determined by
the influential preconditioner parameters is often faidggke since most of these parame-
ters tend to be continuous-valued and there also existgstnutual dependencies requiring
exploration of the joint space. The enormous computatisdurces required for solving
large linear systems make it extremely expensive for grangrs to adopt a simple trial
and error strategy over the numerous choices of solver amatign components. To make
matters worse, many applications require the solution efigs of systems with the coeffi-
cient matrices changing gradually and the set of paramtitatsire best for the first system
may not be suitable for the later ones.

Therefore, it is desirable to have a more intelligent sgatier exploring the solver
configuration space by making efficient use of readily obegles characteristics of the
linear systems such as the number of nonzeros, Frobenius, mbc. A naive approach

would be to identify key groups of linear systems based oir tiemerical characteris-



132

tics and obtain the best solver configuration for each graipguthe methodology de-

scribed in Chapter Ill. Unfortunately, the linear systeroparties tend to span a large
multi-dimensional continuous space and performance datvailable only for a small

number of matrices, thus severely limiting the generabrepower of discrete recommen-
dations over each problem group. Hence, we consider amateeapproach for learning a
statistical model that can predict the best choice(s) faneal system from a set of solver
configurations. Note that the best choice is not intrinsith&olinear system and the solver
configuration, but dependent on the entire available sehoices, thus requiring a more

complex filtering mechanism as we discuss in the followingisa.

B. Desiderata for a Solver Recommendation System

From a practitioner’s perspective, the process of choamtgerative solver is usually not a
straightforward statistical modeling and optimizatioolgiem, but rather an interactive de-
cision making task where the recommendations are supploytedidence. In this section,
we now describe the key desiderata for a solver recommeamdsyistem, some of which

clearly distinguish it from a typical product recommendatsystem.

1. Prediction of Solver Failure

Empirical studies [18, 32, 34] indicate that iterative swk/have a high rate of failure.
The performance metrics obtained for failed trials canrofie misleading, for example, a
solver could result in extremely low memory usage for a patdr linear system, but not
converge to the desired accurate solution. Thereforeggsential to predict and filter out

the infeasible trials to ensure reasonable recommendation
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2. Interpretability via Performance Estimates

Often, it is desirable to not only have high quality solvezaemendations, but also pro-
vide relevant evidence in the form of performance estimat@ssolver-configuration for a
particular linear system. Such estimates are also eskentialer to handle performance-
based constraints, e.g., upper limits on memory usage @ t#ken. The performance
predictions can even be directly used to optimize work flow@éntific computation pro-

grams in parallel environments.

3. Robustness to Variability in Performance Metrics

Due to variations in the structure and the size of the matrasewell as the nature of the
solver configurations, the performance metrics often hdugltay skewed distribution with

an extremely large range spanning multiple orders of magdaife.g., run time often varies
from a fraction of milliseconds to several hours). In costyan most product recommenda-
tion systems, the user preference ratings lie in a small fiaede, e.g., 1-10, and follow a
fairly well-behaved distribution. An accurate estimatadperformance metrics, therefore,
requires a sophisticated modeling approach with suitabtdlltional transformations and

normalization.

4. Optimization of Multiple Hybrid Performance Criteria

In general, for a given linear system, there is no singleesatenfiguration that performs
best with respect to time, memory and accuracy. Often, sawafigurations that are
really fast consume significantly more memory while thosea\wawer memory usage take
considerably longer . A practitioner in such a case mighfeora solver that performs
reasonably with respect to the memory-time product or sotier dybrid additive and/or

multiplicative combinations. A methodology that can allawvide range of such hybrid



134

criteria without having to model each from scratch would baejbeneficial.

5. Fast and Memory Efficient Online Recommendations

Unlike typical product recommendation systems where thearacy of the top user prefer-
ence ratings is paramount, the key purpose of a solver reemdation system is to reduce
the computational effort involved in solving large linegstems. Hence, it is highly im-

perative that the solver selection process itself is higffiigient and the overall objective
is to optimize the combined computational effort in ideyihfy the appropriate solver con-

figuration and deploying it for a given linear system.

6. Cold Start Solution for Unseen Matrices

Another important distinguishing characteristic of solk@commendation systems relative
to typical recommendation systems is that once a lineaesyst solved correctly using
a particular solver configuration, there often is no needfoadditional recommendation.
Hence, the main goal of the solver selection problem is teideorecommendations for
new unseen matrices, often referred to as the “cold staetiago, which is not addressed
by most collaborative filtering based recommendation teghes, making it essential to
rely on the properties of the linear systems and the solugfigurations.

In addition to the above requirements on the operation aaatiput of the recom-
mendation system, one also needs to consider that the maefitbef a solver recom-
mendation system is for solving large linear systems whee @annot afford to waste
computational resources with a substantially, suboptsobler or multiple attempts, and
for which unfortunately we are likely to have highly spanmssgnring data. Hence, it is also
extremely essential to have an intelligent mechanism ftlecting performance data as

well as a learning methodology that can generalize fromsspdata.
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C. Problem Formulation

The desiderata described above clearly point to the need &ble to (i) predict the fail-
ure of a solver with respect to a linear system, (ii) estinpgdormance metrics for any
possible trial, as well as (iii) obtain top-choices for hybrid combinations of the perfor-
mance metrics. To address these needs, we consider a mpcabéem formulation that
effectively targets each of these three tasks. Before ptiegea concrete formulation of

the problem, we first describe the representation of theopmence data.

1. Data Representation
a. Linear System Features

The performance of a solver configuration with respect toedr system is highly depen-
dent on the choice of the various solver parameters andithieraction with the numerical
and structural properties of the coefficient matfix In order to model these interactions,
we represent each linear system as a vector of certain keyésaor attributes(A) derived
from the matrixA. A key characteristic of all these features is that they megpensive to
compute. Since the very purpose of employing iterativeesshis to reduce the time and
memory consumption, we would like to avoid computing expengeatures such as con-
dition number, eigenvalue spectrum, etc. Therefore, dhgasmple features is essential
for providing real time recommendations in an online scendetails of the linear system

features used for our experimental studies are providedhap@r V.

b. Solver Configurations

An iterative solver configuration comprises of many eleraeuich as the choice of solver,
matrix preprocessing steps, preconditioner and varionsenigal/categorical parameters

specific to the preconditioner and solver choice. We repitesach solver configuration
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M as a vector of attributeg(M) corresponding to the various solver components. To
accommodate parameters that are meaningful only for soem®pditioners, we allow the
parameter attributes to also take a value “not-applicabl2étails of the solver features

used in various experiments are provided in Chapter V.

c. Empirical Trials and Performance Metrics

To enable problem-specific solver selection, we encodedHeqmnance results at the gran-
ularity of an empirical trial, i.e., a combination of solvawnfiguration and linear system
features. Specifically, the performance results of a trial)/) are represented as a vector
of performance attributeg( A, M), which include criteria that are of importance to a user,
e.g., computation time, memory usage and accuracy. In gerthese observed perfor-
mance metrics not only depend on the linear system and thersmnfiguration, but also
on the hardware configuration that was used for the empitricdl To keep the exposition
simple, our current work assumes that the performancetses@ based on a single specific

hardware configuration

2. Formal Problem Definition

Let Sy = {4;};2, denote the set of linear systens§; = {M;}’;_, denote the set of solver
configurations, an@” C S4 x S); denote the set of empirical trials for which performance
data is available. Let; = x(A4;) andy,; = y(;) denote the attribute vectors associated
with thei’” linear system angi” solver configuration. Let;; = z(A;, M;) denote the per-
formance vector associated with the trfdl;, 1/;) so that the empirical performance data,
can be represented as a set of 3-tugles, y;, z;;) | (4, M;) € T}. We now formally

define the key sub-problems in our formulation.
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a. Solvability Prediction

Since iterative solvers are known to have a high rate ofiifi8], it is essential to iden-
tify and eliminate the infeasible trials. In order to formzal the notion of solver failure,
we define solvability as a pre-specified boolean functiorr ¢tive observed performance
metrics (e.g., convergence is achieved within 10 hours velétive error norm less than
0.01). The solvability prediction problem is, therefore,estimate this boolean property
without actually performing the trial. Let;; = s(A;, M;) = s(z;;) denote the solvabil-
ity of linear systemA; with respect to configuration/;. Given empirical observations
(sij, Ai,xi, M;,y;),V(1,7) € T, the first task is to predict the solvabiligy A, M) for any
potential trial involving a linear system and a solver configuratiof/. Thus, solvability
modeling essentially requires learning a binary dyadipeaese where the dyads corre-

spond to pairs of linear systems and solver configurations.

b. Performance Estimation

As discussed earlier in Section B, a desirable feature ofveiscecommendation system

is to provide performance estimates of a solver configundioo a particular linear sys-
tem, which can also be used for approximate estimation atichization of other hybrid
additive and/or multiplicative combinations such as memtone product. Therefore, the
second sub-problem involves predicting the various perémrce metrics of interest for the
trials that are deemed successful. The modeling problerisncase is similar to that of
solvability with the only substantial difference being tthee need to deal with multiple
real-valued performance metrics instead of binary valugsen empirical observations
(zij, Ai, %3, M, y5), V(i, j) € T, the performance modeling can be formally stated as pre-
dicting the performance metrieg A, M) for any potential trial involving a linear system

A and a solver configuratiof/ .
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c. Top+ Solver Configurations

The final task is to identify the top solver choices for a gilierar system that optimize
certain performance basegdality criterion while satisfying the solvability criteria. Torfo
malize the notion of the quality of a solver configurationtwigspect to the linear system,
we define it as a function that maps the performance metrittseatorresponding trial to a
real-valued score with lower score being preferable.

Let g(z) denote the quality criteria. A special class of criteria mterest are those
based on multiplicative combinations of the core perforogametrics, i.eg(z) = [J(z))e
wherez(") denotes the' performance metriay, indicates the relative importar:ce of).
An example ofg(z) is memory-time product, whem®,,c;ory = 1, aime = 1 and the rest
zero.

Given a linear system;, the ranking problem reduces to identifying the topelver

configurations, or in other words, a mapping {1, - - , k} — Sy, such that:
1. Top+ configurations are solvable, i.8,; = true, Vj € range(h)

2. Top+ configurations are ordered by their quality and better thamest, i.e.g(z;x,))

< 9(Zinay)) < 9(2z4ij), Wwherel <[, <, < kandj & range(h).

The values estimated from the performance model are useet¢ondine the quality of a

solver configuration with respect to a linear system.

D. Multi-stage Learning Approach

In this section, we describe the key algorithmic componehtair approach for addressing

the three sub-problems described in Section C.2.
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1. Solvability Prediction

Since solvability is a boolean-valued function of the enagirtrials, it can be readily mod-
eled in terms of binary classification over the trials. A matichoice for trial features
includes the attributes of the linear system and solver gardtion along with the product
interactions [60]. Given these features and the observedlsbty values, one can use any
standard classification algorithm such as decision treassigport vector machines along
with feature selection [40] to learn a solvability model. Alternate collaborative filtering-
like approach is to view the solvability prediction problasa matrix imputation problem
where one seeks to predict missing values in the solvalildyrix with linear systems as
the rows and solver configurations as the columns. This petisp ignores the trial fea-
tures and focuses exclusively on leveraging the correlatio the solvability matrix via
low rank matrix approximation and bi-clustering technig|l®, 46]. Recently, Agarwal et
al. [3] proposed an approach based on predictive discregatléactor models (PDLF) to
simultaneously make use of the available features as wiikdecal structure in the dyadic
response using bi-clustering. However, this approachmgdd to generalized linear mod-
els and does not readily accommodate feature selectionhwdcritical for our application
since the raw trial features (including interaction feaf)mumber in thousands.

We adopt a strategy that mimics the key idea in [3] while exiyi taking care of
the feature selection requirements. First, we learn ai@lkxsen the training data while
performing feature selection over the raw features. Thelassification error resulting
from this classifier is clustered using a bi-clustering alfpon appropriate for ternary (false
positive, false negatives and true predictions) respoakees [5] to identify bi-clusters of
linear systems and solver configurations. The bi-clustembezships are then used to
augment the earlier selected features and a new classifesariged. Figure 49 shows the

detailed steps.
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Input: Solvability valuess;; = s(A;, M;) = s(zi;), V(A;, M;) € T, linear system attributes
x; = x(4;),VA; € Sy, solver configuration attributeg; = y(M;),VM; € Syr, number of
clustersk,|

Output: Solvability models(A, M)

Method:
Compute raw and interaction trial features
up = [xi,y;]
W = [T, Y, T T, YL, Yy, -

Perform feature selection
uffduced FeatureSelection({u Z‘t”, Sij})
Learn initial classifier
ginitial  Classification Algorithm({s;j, u
Compute misclassification error
€ij < Sz;@ztml Sijs V(Az, Mj) eT
Perform co-clustering
(p,v) <« BiclusteringAlgorithm({e;;}), wherep : Sy — {1,--- |k} andy : Sy +—
{1,---,1} map the linear systems and solver configurations to thgiewe clusters.
Augment features
ul" = fugedueed 1(p(A;) = 1 Ay(M;) = 1),

(A =k Ay(My) = 1),
wherel(p(A;) = g Ay(M;) = h) denotes membership ih!" bi-cluster
Learn final classifier
§ « Classi ficationAlgorithm({s;;, u
return s

reduced )
ij

inal
ijzna })

Fig. 49. Solvability Modeling

2. Performance Prediction

While estimating the performance metrics such as time takehmemory used, we need
to deal with real-valued variables that have a large vdrtglfor different linear systems

(for example,A; might take 1-5 hrs to be solved whilé, only needs 1-100 ms). This
variability in the response values leads to a large uncgytan the modeling process. One
way to handle this problem is by normalizing the actual nesthy the performance of a
specific default solver. However, when the default solverfiguration does not solve all
the problems, it might result in ill-defined values. In aduht to obtain better sensitivity

for lower performance values, it is desirable to log-transf the performance ratios. This
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transformation has the additional benefits of making thpaese more Gaussian-like and
simplifying estimation of multiplicative combinations tifie core performance metrics,
e.g., memory-time product.

To model the performance metrics, we use traditional regmasapproaches such as
multivariate linear regression [59] and support vectoresgion [77], augmented with bi-
clustering based features as in the case of solvability tmgde The hybrid regression
approach based on bi-clusters can be viewed as a variantusistaa-PDLF algorithm [3]
and follows the hybrid solvability modeling approach ouwd in Figure 49. Specifically,
for each metric, we first learn a linear regression model tveraw trial features. The
prediction error for each trial is computed from this moded & subjected to bi-clustering
based on Gaussian distribution to yield clusters of lingatesns and solver configurations,
which are then used to learn a new regression model. In Ghé@ection A, we compare
results using a single regression technique with diffesetd of features (raw, interactions,
and interactions along with bi-clusters) and choose thedy@sn among these for further

modeling of configuration group specific models (Chapter &ton B).

3. Top+ Performance Ranking

Given a linear system and specific performance-based guaid solvability criteria, a
naive approach for identifying the tdpsolver configurations would be to estimate the
quality and solvability of each configuration (assuming plossible set of configurations
is finite) and sort the solvable ones in terms of the qualiitedon. A faster alternative
would be to exploit the fact that the estimates for all thefignmations are generated from
the solvability and performance models. To illustrate tlamidea, consider a hypothetical
case where there is a performance metric of interest thamndispon just two interaction
features (modeled asp(3,71y1+ P212y2)). FOr a given linear system and the performance

model, the features;, x5 and parameters;, 3, are fixed and the quality of the solver
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configurations depends only amn, y.. Wheng,z; and 5,z are both positive, pre-sorting
the solver configurations by, andy, into two lists would allow fast identification of the
top k£ configurations for the performance metric of interest.

In general, the performance models tend to contain mulfgdéures. However, the
same principle holds, i.e., pre-sorting the features caedpip ranking based on a mono-
tone aggregate function of the features. Our choice of tinegression for modeling the
performance is specifically suited for such rank aggregdiiecause the response is mod-
eled as monotonic transformation of linear combinationta teature values. Specif-
ically, for each of the core performance metri¢®), the estimated value is given by
20 = exp(B,"u), whereu denotes trial features an8l, denotes the coefficient vector
for the r** performance metric. The exponentiation is required bexafithe log trans-
formation. The quality criteria, which can be expressed aftiplicative combinations
of the core performance metrics, also happen to be simpleeggtions over the features,
i.e., g(z;j) = Hr(zi(;))ar = 9(2;5) = exp ((X, B,)"u;;) . When the trial features;;
consist only of raw or simple product interactions of atitds of the linear system and
solver configuration, for a fixed linear systefn, we can directly express the quality of a
solver in terms of the solver attributes alon€z;;) = exp(d; y;), wherey; denotes fea-
tures that depend on solver configuration andepends on attributes ¢f; as well as the
coefficient vectorq«,., 3, },. By absorbing the sign of the coefficierftsinto the features
y; themselves, the quality criterion can be reduced to a moecaggregate of the solver
features. There are a number of rank aggregation techniqudxgain the tog: choices for
a monotone aggregate of the features. In our current workemjgoy Fagin’s threshold
algorithm [27], which has been shown to be optimal in the neinab accesses and requires
a small constant buffer. The main idea is to efficiently explpotential top choices and
stop when one is confident that the unexplored items are nog go make it to the tog:.

Figure 50 shows the detailed steps.
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Input: Linear systemA;, number of recommendatiorts performance model coefficien{$, },,
quality criteriong(z) = [](2(")*r, solvability models(A, M), solver configuration sefy,, trial
attributes{w;|(A;, M;) € T}.

Output: Top k recommendations : {1,--- , k} — Sy as defined in Section C.2
Method:
Initialize and sort solver configuration features
vi — y(M;) = [y1(Mj),--- ,yp(M;)), features of solver configuratiakl; € Sy, (P denotes
# solver dependent features)
L, « Sy sorted by the'" solver featurg1 < p < P)
Compute feature coefficients and sign for specified linear sgem
Choosé); s.t. 5fyj = (zr arﬁr)Tuij
Wip < Sign(éip)a 5ip — ’(5@‘, (1 <p< P)
Initialize candidate solver configuration set
Cy 0
repeat
Access top element in the sorted feature lists in the approjate direction
M®) — pop(Ly, wip) (1 <p<P)
Check for solvability
Car — Cy U{M P} if (3(A;, MP))) = true
Compute threshold
T D wipdipyp(MP))
until  Cjs hask objects withg(A;,:) < 7
return top k list of C; in terms ofg(A;, :)

Fig. 50. Topkx Performance Ranking

E. Prototype Recommendation System

In this section, we describe a prototype solver recommegggem based on the multi-
step approach described in Section D. We have implementedyktem in C using a
combination of external software packages.

Figure 51 shows the various components of the proposedsystd their interactions.
The functional units are represented as boxes while daepiesented as ellipses. At a
coarse level, the proposed system has two main componera$ ar Offline unit dedicated
to empirical data collection and learning solvabilityfmemance models, and (b) an online

interactive unit that generates solver recommendatiodsaaswers user queries. Each
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uer:
° yj -
r 1
Linear System : !
Attributes | :
)
—_——— -, ! Recommendations 1
| : (Top-k Ranking) 1
|
Candid : I
i . 1 Performance 1
Offline Unit : I Prediction 1
|
1 Vo :
1 1 Solvability |
: 1 Prediction |
I \ J
1 |____________I
1

Fig. 51. Prototype Solver Recommender System

of these have multiple sub-components for performing oefftacused tasks, which are

described below.

e Empirical Testing Uniexecutes the chosen trials under controlled settings aodds
the performance results in a database. Currently, thigifumality is implemented
via a driver script on a an IBM HPC cluster 1600 based on 1.9 B8blzer5+ pro-

cessors.

e Feature Computation Unitomputes a specified set of attributes for a given linear
system. The mapping between the linear system and the dedeatures is then

recorded in the empirical results database.

¢ Solvability Modeling Uniselects informative features and learns binary classjier(
to predict the solvability of a linear system with respectatsolver configuration.

This is accomplished in the current system by extending M®ER toolkit [78] and
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LIBSVM software, which provide support for multiple clasation algorithms such
as decision trees and support vector machines as well agpladéature selection

techniques based on information gain, L1 norm, etc.

e Performance Modeling Unikearns predictive models for the performance metrics
of interest in the solvable region, using the available eitqli performance data.
This typically involves a combination of multi-variate regsion and feature selec-
tion techniques and is currently accomplished using restin the SPIDER kit and

LIBSVM.

e Solvability Prediction Unipredicts whether a given linear system can be solved using

a particular solver configuration using the learned solitgtmodel.

e Performance Prediction Unprovides predictions on the expected performance for
user specified combinations of linear systems and solvefigroations using the

learned performance model.

e Recommendation Unprovides a topk ranked list of the solver configurations for
a user specified linear system and quality criterion takirig account the specified

constraints using a judicious application of the Faginfeshold algorithm.

F. Discussion

In this section, we contrast our approach with the existtagesof-art machine learning
based approaches for selection of sparse iterative solvers

As discussed in Chapter I, in recent years, there has beenad interest in apply-
ing machine learning techniques for choosing scientifitveaxie. The problem of solver
selection for sparse linear systems, in particular, has beefocus of three recent papers,

which are all based on classification algorithms. Of theseksydhe first one by Dongarra
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et al. [13] poses the problem of finding the “best” (fastestvali as correct) solver for a
given linear system among a small set of possible choicesnaglt&class classification
problem. The linear systems are represented as multi-diiovea vectors and classified
using a Bayesian classifier where the individual class-timmél densities are modeled
as multi-variate Gaussian distributions. An importantitation of this method is that the
notion of “best” requires a comparison among the variousess| which necessitates a
multi-class formulation that is impractical for a large roen of solvers, unlike a simple
binary-formulation based on intrinsic solvability crii@fe.g., time< 4 hours and relative
error< 10~%). Hence, this approach can only give coarse (e.g., soldigroration group)
recommendations. The assumption of Gaussian class-ammalitistributions also often
does not hold as discussed in [10].

The second work by Xu et al. [85, 86] considers only four défe solver configura-
tions (ILUO and ILU{) with £ = 1, 2, 3) and focuses on predicting the intrinsic solvability
status (e.g, solved, no convergence, out of memory) for@ngmatrix anda single solver
configuration(one of the chosen three) using a support vector machinsiftas Since
a classifier needs to be learned for each solver configurais approach again does
not scale with the number of solvers, but the extended nati@olvability status instead
of binary (solved/not solved) has considerable diagnastice. This approach, however,
does not attempt to provide a recommendation among possibler choices and merely
predicts the solvability status. The third work by Bhowmitkal. [10] poses the solver
selection problem in terms of identifying all the solver figarations that improve the
computational time relative to a arbitrarily chosen “ddffagonfiguration by a factory.
This choice of a target response does not require an expbaiparison among all the
solver configurations and is not entirely intrinsic to thereat solver configuration due to
the dependence on the “default” choice. This idea can beadexs a compromise between

the approaches in [13] and [86] that avoids the scalab#isyés in [13] while providing
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good recommendations when the default is chosen carefalligis approach, the instances
space consists of solver trials, i.e., pairs of linear systand solver configurations (instead
of linear systems as in the previous two approaches) andtixdeon of determining if the
solver configuration in the trial is a “good recommendatiéor” the matrix reduces to a
binary classification, which is solved using alternatingigien trees. In the presence of
sufficient training data (which was possible since the lir@estems used in experiments
were small and from a similar domain), this approach was shimaprovide fairly high
classification accuracy, but the simplistic representaticsolver configurations as discrete
entities makes it impractical to learn in case of sparsaitigidata.

Our current work shares commonalities with the above thppeaaches in the use of
classification algorithms for solvability prediction aritetrepresentation of linear systems
as vectors of linear system features. However, there ares &dg differences that make
our approach more scalable and flexible. First, our reptasen of solver configurations
in terms of features based on various components insteadrefated discrete entities
allows us to readily scale to a large number of configuratimg perform fine-grained
tuning even over continuous parameters, which is not plesai&ing any the approaches
in [10, 13, 85]. The use of solver configuration and lineateysinteraction properties
(e.g., num non-zeras 10° and drop tolerance: 10~3) in the representation of solver trials
is another unique feature of our approach that leads torg@telictions. Second, unlike
the previous approaches that provide coarse binary (ogeatal in case of [13]) recom-
mendations based on a single criterion, we also attemptitoas the actual performance
values and provide a ranking of the solver configurationsdas a desired criterion. This
modular approach allows us to separately target the balsialslity requirements and the
performance optimization in addition to providing fairlytérpretable results. The separate
modeling of the different performance metrics providesfidebility to optimize multiple

hybrid criteria as well as incorporating resource constsafe.g., memory usage 2GB).
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It also enables us to estimate the suitability of any sublssbloer configurations without
having to construct a new model from scratch. Lastly, oureahof data representation and
multi-step methodology provides a higher capacity to galies from sparse training data
(which is common for large sized matrices and a large numbseoleer configurations)
compared to the existing approaches. In fact, the large euoifisolver configurations in
our performance dataset (see Chapter V) make it compuédigampractical to perform a

quantitative comparison of even the data representataspacts of the existing approaches

1

'We did not perform a simplified quantitative comparison df thifferent solver se-
lection approaches over coarse solver configuration grsinge that does not address the
key problem of interest, namely, linear system-specific-fureng of solver configuration
parameters.
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CHAPTER V

EMPIRICAL EVALUATION OF RECOMMENDATION SYSTEM
In this chapter, we present empirical evaluation of theotagiaspects of our solver recom-
mendation approach. In particular we focus on two studieggusie multi-step approach
outlined in Chapter IV. The first study (Section A) focusesaosingle package, Hypre,
and explores the use of multiple learning algorithms anfkht feature sets. The het-
erogeneity of the feature space as well as varied perforenbabavior across the various
solver configuration groups motivated our second studyckvimivolves learning a sepa-
rate model for each solver configuration group. In Sectiow&describe the results from

solver configuration specific modeling for Trilinos ML, HypParaSails, and WSMP ICT.

A. Package Specific Modeling

We describe the results of a prototype recommendationmyisésed on package specific
models. We have chosen the Hypre package for this purpose gihad a wide range
of preconditioner encompassing level based and threslasledincomplete factorization,
approximate inverse, and multigrid based preconditian&isst, we present the details
on the performance dataset including the linear system alversconfiguration features.
We then show the results on solvability and performance firaglen new trials involving
the matrices in the training set. Finally, we present theipren and quality of the top-

recommendations.

1. Performance Dataset

For this study, we used the 30 SPD test matrices in our erapstady in Chapter Il and

317 solver configurations from the Hypre package. Table Xdilthe set of features of the
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Table XIV. Linear system features along with the p-valueagtie Pearson correlation coef-
ficient with respect to memory, time and solvability valuesandomly selected
20% training data.

Linear System Features Memory Time | Solvability
Geometric Dimension (GD) 2.6-06 | 3.8-07 1.5-09
Number of rows/columns 1.3e-05| 9.8-05 2.8e-11
Number of Non-zeros 8.9e-08 | 1.2e-07 5.1e-13
Avg. non-zeros per col. (AvgNzPerCol) 0.8 0.5 7.6e-03
Std. dev. of AvgNzPerCol(stdAvgNzPerCol) 0.75 0.6 1.7e-08
Weight of longest column 0.02 0.13 2.7e-06
Weight of shortest column 2.1-04 0.2 0.16
%Weakly diagonally dominant columns 1le-10 | 8.9e-13 6.4e-28
Maximum bandwidth 1.3e-05 le-04 1.3e-10
Average diagonal dominance (avgDiagDom) 1.2e-09 | 5.0e-08 4.1e-12
Frobenius Norm 6e-12 | 7.8e-08 0.93
Max. over min. of row sum (mm-RS) 0.52 | 4.1e-03 7.4e-08
Std. dev. of row sum (stdRS) 0.76 4e-05 0.29

matrices that we consider, along with the p-values of thearBon correlation coefficients
to three key performance metrics. A key characteristic bfredse features is that they
are inexpensive to compute. Since the very purpose of usengtive solvers is to use
moderate time and memory resources, we would like to avaitpeing expensive features
such as condition number, eigenvalue spectrum, etc. Tdrerethoosing simple features
is essential for providing real time recommendations in aline scenario. The low p-
values of the Pearson correlation coefficients of most featin Table XIV suggest that
these features have a correlation with the performanceacaétiat is significantly different
from zero. Table XV contains a list of the solver featuregs th@ used in our experiments.
Based on the description of the solver options in Table XVideatified 15 attributes such
as solver, restart, preconditioner, level of fill and droletance. Using the above solver
configurations, we generated performance data on the settofces in our collection. For
this set of experiments, the right hand size was chosenspmngling to an exact solution of
all ones. In addition, we set a limit of 1000 for the maximunmtoer of iterations and the
relative residual norm stopping criterion 8% 8. For each trial, we obtained the memory

usage, time taken, relative error norm, and also recordedrsailure where applicable.
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Table XV. Description of the components of solver configiorat
Package Solver Preconditioner Orderings Preconditioner Parameters
Level of fill: 0, 1, 2

ce IC() RCM, ND Fill factor: 3, 5, 8, 10 oiMax NNZ/row:5, co

GMRES Drop tolerance (DT)1e-2, 3e-2, 1e-3, 5e-4
Restart(30,65,100 ILuT RCM, ND Fill factor: 3, 5, 8, 10 oiMax NNZ/row:5
Number of levels (Lev), 1, 2
CG ParaSails RCM, ND, NONE | Threshold (Thresh)0, 0.01, 0.1, -0.75, -0.9
Filter: 0, 0.001, 0.05, -0.9
Maximum number of level25
Number of aggressive coarsening levels10
Coarsening schemegalgout, HMIS, PMIS
Strong threshold (STP.25, 0.5, 0.8. 0.9

HYPRE

CG BoomerAMG RCM, ND, NONE

2. Solvability Modeling

In our evaluation, a trial was considered to be successéulthe linear system was deemed
solvable by a particular configuration, if the final relatereor norm was less thait =2 or
if the relative residual norm was less theimT® and the relative norm of the error was in the
range [0.01, 0.1]. Furthermore, we enforce a wall time liofiiB hours and memory limit
of 16 GB.

To test the effectiveness of learning based approach fdigineg solvability, we split
the performance datasets into multiple train splits (of/way size — 20% to 80%) and a
test split containing 20% of the trials. For each such spi&,considered four different
sets of features — (a) raw features formed by concatenatioget of the linear system
and solver configuration (Raw), (b) raw features along wiitledr interactions (Interac-
tion), (c) only bi-cluster membership features (BiClugt)) concatenation of interaction
features with complementary bi-cluster membership fest(inter-BiClust). Each of the
above feature sets was further refined using mutual infoomafain based feature selec-
tion and in each case, we learned a solvability model usingetdifferent classification
algorithms: (1) support vector machines (SVM) [81], (2) idemn tree (J48) [48], and
(3) K-nearest neighbor (KNN) [60]. For each run, we compugdclassification error,

(FN+FP)/(TN+TP+FN+FP), (b) specificity, TN/(TN+FP), arj éensitivity, TP/(TP+FN).
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Here FN, FP, TN, and TP denote the numbers of false negatalss,positives, true nega-
tives, and true positives, respectively.

Figure 52 shows the classification error, sensitivity, gretdicity using different fea-
ture sets for the various classifiers on a 20% training dageaaed over 5 runs. We find that
the SVM and KNN classifiers significantly outperform the demn tree classifier. The raw
features seem to be quite predictive of solvability and lteswa substantial improvement
over the baseline classification errdb (% using the majority classification). Including
the interaction features leads to even better classifitaozuracy. Figure 53 depicts a
3 x 3 bi-clustering of the trials. On examining the clusters, &swbserved that the third
linear system cluster (bottom) consisted mainly of masribat could be solved by most of
the methods. The second cluster consists of linear systeshsauld not be solved using
the IC() and ILUT preconditioners as well as many ParaSails and BoAMG based
solver configurations while the first one contains matrites tould not be solved by the
IC(k) and ILUT preconditioners, but were solved by most configars of ParaSails and
BoomerAMG preconditioners. Though the latent bi-clustdiscovered in isolation are
valuable in the absence of observed trial characteristiesfind that there was no ad-
ditional benefit in using interaction features along witkchister membership, possibly
because our interaction feature set was rich enough to sudsormation from the bi-
clusters. The first column in Table XVI1 lists the top 5 intdiaw features that were selected

for classification.

3. Performance Modeling

We used the subset of trials deemed to be solvable to learessgn models for the time
taken and memory used. These values were normalized by thesponding values for
specific default configuration(s) that correspond to thetbehoice independent of the lin-

ear system. To identify the overall “best” solver configicat we considered performance
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Table XVI. Top 5 interaction features selected for clasatfan, memory and time predic-
tion on a 20% training data. The features with an™@efix are solver features.

Solvability Memory Time

GD x avgNnzPerCol GDxavgNnzPerCol GDxis_ST-0.7

GD x is.CG GDxis.CG GDxavgNnzPerCol
GD x is_Restart-100 GDxis_Restart100 | GDxis.CG

MMRSx is_SAI-Lev0 GDxis.GMRES GDxis_Restart-100
MMRSx is_ILUT-DT1e-3 | stdRS<isSAI-Lev2 | GDxis_SAI-Thresh0

profile curves [24] of the different solver configurations, i plots of the cumulative distri-
bution of the performance ratios with respect to a perfomeanetric. The default solver
configurations were then chosen so as to optimize both thierpgnce and the number of
linear systems solved using the area under the performant@ieurves (Chapter IIl) .

As in the case of solvability modeling, we created traintspf varying sizes (20% to
80%) and a test split containing 20% of the solvable trialst éach such split, we again
considered four different sets of features (Raw, Inteoa¢tBiClust, Inter-BiClust) and in
each case applied multi-variate linear regression alotig f@ature selection. To study the
effects of variability, we modeled the performance valuéerdog transformation. For
each run, we computed the’ statistic defined as — Zf}((zzi__zz))j where? is the predicted
value,z is the actual value andis the mean of the actual values.

Figure 54 shows th&? statistic for the predicted memory and time values usirnfgdif
ent feature sets for different sizes of training data. Freefigure, the observed features as
well as the bi-clustering memberships are clearly very ipte@ and provide a significant
reduction (1% for memory,41% for time) in the quadratic loss in the best case. As in the
case of solvability, the interaction features proved caitifor improving the performance
estimates. As expected, increasing the size of the tragebgesults in a steady increase
in the prediction accuracy. The second and third columnsalerXVI shows the top 5

predictive interaction features for memory and time, retipely.
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4. Top+ Recommendations

We now present results on the tégecommendations for each of the linear systems given.
To highlight the flexibility of our approach, we considerdbrdifferent criteria for de-
termining the best solvers. The first two involve optimiziogre performance values,
i.e., memory usage and computational time while the thirel fmeuses on optimizing the
memory-time product.

For each linear system, we used the solvability and perfocmanodels (with log-
transformed response) trained only 20¥5 of the trials using the best feature set (Inter-
BiClust) to identify the topk (k =25) solver configurations for each criterion. Using thé ful
performance data, the actual tésolutions were also identified. We measured the quality
of the recommendations in terms of two performance metrfay:top4 precision, i.e.,
fraction of the predicted top-solutions that are in the actual taphist, (b) improvement

over the problem independent best choice (PIB) in terms efame quality value of the
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top-k recommendations.

Figure 55 shows the top-precision of the solver recommendations for optimizing
memory, time, and memory-time product. Our approach ifleata large fraction of the
top solutions (approximatel§y2% for memory andi3% for time) in a purely automated
manner and requires evaluating the performance modeldamdysmall subset of possible
choices. Figure 56 (a-c) shows the performance improvethahican be obtained using
the generated recommendations over the PIB choice. Indbis the PIB solver configura-
tion (dotted lines) were chosen based on the overall bekimpeance on the entire test suite
using performance profile areas. The problem specific b&R)RBne-tuning curves shows
the average performance value of the actualkgmlutions, which is the best achievable
improvement. We observe that the recommender fine-tuningeés always lower than the
PIB choice for all the three criteria and fairly close to theBPcurve. The recommenda-
tions for memory-time product indicate that our approaah loa quite effective even for
optimizing a hybrid performance criterion.
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is present in toge recommendations.
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5. Discussion

The recommendations using package specific models lookigirmgnhowever, there are a
number of issues that need to be addressed. The performateceskd for learning and
testing the model involved only those matrices which weheesbby the PIB configuration.
This restriction removed a number of complex challengingrices and the resulting per-
formance data. Another issue is that all our testing is peréal on trials associated with
matrices represented in the training data. In the next@gatie will remove the restriction
that matrices need to be solved by the PIB choice and examenguality of the model by

testing on an entirely new set of matrices that are not inrdiaihg set.
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B. Solver Configuration Group Specific Modeling

In this section, we present the results on solver configumagpecific models that were
created primarily to address the heterogeneity in the sdbature space and inadequacy
of the PIB choice in solving certain problems. First, we présietails on the performance
dataset used for this study. We then present solvabilityp@nfbrmance results on a 20%
test data of unseen trials on matrices used for learning thadehas well as a set of new

matrices that did not have any presence in the training set.

1. Performance Dataset

Tables XVII and XVIII shows the SPD matrices that are usedifaining and testing the
models. These train and test matrix sets were chosen in twdeave adequate repre-
sentation of the application domains. Table XIX shows timedr system features that
were extracted from these matrices, which similar to thasslun Section A with a few
minor changes. A detailed analysis of the correlation oftteinteraction features will
be provided later in Sections 2 and 3. Adequate training dapmramount to learning
good models for solvability and performance predictionm8amf the solver configuration
groups in this study had very few parameters and due to sfalieres, there was very little
training data for learning performance models. For tho$ees@onfiguration groups, the
respective PIB configuration is quite competitive and the ofsa model is probably not
necessary. In our empirical setup there are only 5 solvefigumation groups which had
at least 50 or more solver configurations. Of these, we chasprasentative solver con-
figuration group corresponding to preconditioners basegholtigrid, sparse approximate
inverse, and theshold-based incomplete Cholesky faetiiwiz. These solver configura-
tion groups are shown in Table XX along with the number of eobonfigurations in each

and the number of trials used for learning the solvabilitgd @erformance models. The
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Table XVII. SPD test matrices with their order (N), numbernain-zeros (NNZ) and the

Matrix N NNZ | Application

46053 46053 2863917| Sheet metal forming

af_shell7 504855| 17588875 Sheet metal forming

Autodesk-big | 1073724 84317460| Static stress analysis

apache2 715176| 4817870/ 3D finite difference structural analysis
BenElechil 245874 | 13150496| Structural analysis

bmwcral 148770| 10644002| Automotive crankshaft modeling
bone010 986703| 71666325| Micro finite element analysis of bone
ctu-1 1017397| 74144859| Structural analysis

ctu-2 384012| 28069776| Structural analysis

cfdl 70656 1828364 | C.F.D. pressure matrix

conti20 20341 1854361| Structural analysis

cranksegl 52804 | 10614210 Linear static analysis of crankshaft
F1 343791| 26837113| Structural analysis

G3.circuit 1585478 7660826| Circuit simulation

hb_drawlins 282576| 21718350| Structural mechanics

hood 220542| 10768436, Automotive

inline_1 503712| 36816342| Structural engineering

kyushu 990692| 26268136| Structural engineering

msdoor 415863| 20240935| Structural analysis

mstamp-1c 354816| 26143920| Metal stamping

nastran-b 1508088| 111614436/ Structural analysis

nd24k 72000| 28715634| 3D mesh problems (ND problem set)
oilpan 73752 3597188 Structural analysis

parabolicfem | 525825 3674625| C.F.D. convection-diffusion
pga-rem-1 5978665| 29640547 Power network analysis

pga-rem-2 1480825 7223497| Power network analysis

pwitk 217918| 11634424, Stiffness matrix - Pressurized wind tunnel
ga8fk 66127 1660579| F.E.M. stiffness matrix for 3D acoustic proble
ship.003 121728 8086034/ Structural analysis - ship structure
shipsec5 179860| 10113096| Structural analysis - ship section
thermal2 1228045| 8580313 Steady state thermal problem
tmt.sym 726713 5080961| Electromagenetic simulation

torso 201142 3161120| Human torso modeling

m
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Table XVIII. SPD test matrices with their order (N), numbémon-zeros (NNZ) and the
application area of origin

Matrix N NNZ | Application
90153 90153 5629095| Sheet metal forming
audikw.1 943695| 77651847, Automotive crankshaft modeling

boneS10 914898| 55468422| Micro finite element analysis of bon
garybig 42459173| 238142243| Circuit simulation

ldoor 952203| 46522475 Structural analysis

mstamp-2c| 902289| 70925391 Metal stamping

pga-rem3 2928711| 15510973| Circuit Simulation

D

Table XIX. Linear system features extracted from the masrifor solvability and perfor-
mance modeling.

Linear System Features Abbreviation
Number of rows/columns NUMCOLS
Number of non-zeros NUMNONZEROS
Aveage non-zeros per column AVGNZPERCOL
Standard deviation of AVGNZPERCOL STDAVGNZPERCOL
Maximum bandwidth MAXBANDWIDTH
Average bandwidth AVGBANDWIDTH
%Weakly diagonally dominant columns PERCENTAGEWEAKDIAGDOMROWS
Average diagonal dominance AVGDIAGDOM
Maximum over minimum of row sum MAXOVERMINROWSUM
Standard deviation of row sum STDROWSUM
Geometric Dimension based on maximum bandwidth GEOMDIMMAXBANDWIDTH
Geometric Dimension based on average bandwidth GEOMDIMAVGBANDWIDTH
Standard deviation of diagonal STDDIAG
Size of supernode SUPNODESIZE

table also lists the maximum number of interaction feattimaswere used for each solver
configuration group.

In order to generate the performance data, for each triapoged of a matrix and
solver configuration, we set the right hand side to a vectall@ines and solve the resulting
linear system. The iterations are stopped if the numbereadtions exceed 1000 or if the
relative residual norm drops belol—. In each trial, we record the memory usage, time
taken, final relative residual, and the relative error nofrthe final solution. The relative

error norm is computed by using the exact solution obtairsgug.the direct solver.
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Table XX. Solver configuration groups used for learning widlial models along with the

number of solver configurations, number of interactiondesg, total number of
trials used for learning solvability and performance medel

Configuration . . #Interaction| #Total Trials | #Feasible Trialg
#Configurations .
Group features Solvability Performance
Trilinos ML 66 372 1743 1020
Hypre ParaSailg 99 349 2614 798
WSMP ICT 64 288 1690 1512

2. Solvability Modeling

As discussed earlier in Chapter 1V, we modeled solvabiktyadoolean function of trials.
A trial is considered to be successful, only if the final nelaterror norm is less than
2 x 1072 and the relative residual norm is less theim®. In addition, we also enforce
a wall time limit of 4 hours and memory limit of 16 GB. In ordey avoid over-fitting
the models, we experimented with 10 different feature s&tsson five different train-test
crossfold splits. Before creating the feature sets, thiewarfeatures are first ordered based
on mutual information criteria [60] and then normalizedlstitat each feature vector has
zero mean and unit variance. We then select 10 feature sétsrefising sizes starting
from 10% all the way to 100% from the set of meaningful intéacfeatures. We used
the SVM classifier with the RBF kernel for learning the soiigbmodel. An important
choice for achieving good results using SVM is the value efkbrnel parameter and the
penalty parameter’. As proposed by Lin et al. [16], we perform a parallel gridrsbaover
values ofC = 275,273 271 21 ... 213 915 gndy = 2715 2713 o-11 ... 9-1 9l 93,
The results shown in this section correspond to the modehéehusing the parameter
that resulted in the best accuracy over the 110 combinatib6sand~. This parallel grid

search is performed for each feature set and crossfoldesplithe best’ and~ are chosen.

The results shown in the following sections are the averagéges over the various splits
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for the best feature set. We now discuss the results on nalw tver the train matrices and
also unseen test matrices. We also present a brief anafytbis predictive features of the

best solvability models for the different solver configiwatgroups.

a. Results on New Trials Over Train Matrices

Figure 57 shows the (a) classification accuracy (TP+TNYHP+TN+FN), (b) precision

TP/(TP+FP), and (c) recall TP/(TP+FN) for a 20% test splitha trials averaged over 5
runs. In this case, we used the remaining 80 % of the datadoviig the model. Exper-

iments with a smaller training data (50%) also yield compkraccuracy, precision, and
recall values. We observe that for all the solver configaragroups the results are signifi-
cantly superior to the baseline, which corresponds to ataahprediction of the majority

class. For precision and recall, we do not show the basdlice the baseline precision is
identical to the classification accuracy value and the basetcall is 1 when the majority
class corresponds to the solvable cases as in our data. wked® not compare with other
classification algorithms and feature selection choices &ection A since the main goal

is to evaluate the overall quality of recommendations.

b. Results on Unseen Test Matrices

The solvability predictions in the previous section arggood since the test set contains
new trials only involving matrices from the training datan€llitmus test for these solvabil-
ity models, however is their ability to generalize on a set@hpletely new set of matrices,
i.e., the models have seen no performance data on any mallving a particular matrix.
Figure 58 shows the classification accuracy, precision,randll for trials involving all
the various solver configurations in a group and the unsestmtatrices. Even though the
solvability prediction accuracy is better than the basepredictions, we observe that the

prediction quality is not comparable to that for new triatstcain matrices in Figure 57.
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This indicates that there is a significant drift in the tramudest data distributions and the
i.i.d assumptions inherent in our inductive classificaapproach are not completely true.
To analyze this further, we retrained the classification e®dsing the training data on
the seen train matrices and increasing number of trials seemtest matrices and evaluated
them on the rest of the trials on unseen test matrices. Figfushows the learning curves
for each of the three solver configuration groups with insieg number of trials on the
new matrices on the x-axis and the solvability predictioouaacy and f-measure on the
y-axis. For all the three solver configuration groups, thereubstantial improvement in
the prediction quality with a very small amount of supemson trials associated with
the unseen matrices and after a rapid increase, it seemdtémftaut. This behavior can
be explained by considering the different classificatiordels. In particular, the classifier
trained only on trials associated with train matrices hasffaments for features derived
from the linear system characteristics (including intéoacfeatures) optimized only for
the train matrices. When there is a significant disparityhadistribution of linear system
characteristics of the train and test matrices due to tlaivelsparsity with respect to the
linear system feature space (as seems to be the case in @uineapts), these models are
not likely to do well on the test matrices. However, even alsmanber of trials on the
unseen test matrices can rectify this problem by providirficsent representation in the
relevant linear system feature space leading to a bettetuiriag of the model coefficients
for the linear system features and consequently, a big junmihe prediction accuracy,
especially when the linear system features are highly mmé&tive. The flattening out of
prediction quality, on the other hand, can be explained bydht that there exist only a few
solver configuration feature-value combinations that tn@ngly predictive of solvability,
e.g., ISDT1E-3=1, and their effects can be captured by supervisioa small number of

representative solver configurations.
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Table XXI. Top 5 interaction features selected for soh@pprediction in the case of Trili-
nos ML. The components of the interaction features are aggzhwith a “:” and
the solver features are prefixed with a “IS

Feature Name

Correlation

p-Value

MAXBANDWIDTH:IS _ML-IFPACK
MAXBANDWIDTH:IS _ML-SS1
ISORDERING-ND:ISML-IFPACK
ISORDERING-ND:ISML-SS1
STDDIAG:IS_.ML-IFPACK

1.461021e-01
1.461021e-01
1.317742e-01
1.317742e-01
1.300553e-01

3.028547e-02
3.028547e-02
5.094860e-02
5.094860e-02
5.407555e-02

Table XXII. Top 5 interaction features selected for soli@piprediction in the case of
WSMP ICT. The components of the interaction features ararségd with

a“” and the solver features are prefixed with a1S

Feature Name Correlation Sign
STDDIAG:IS.DT1E-2 2.393974e-01| 1
STDROWSUM:STDDIAG 1.714817e-01| -1
ISORDERING-RCM:ISDT1E-3 1.610345e-01| 1 5.216677e-02
AVGNNZPERROW:GEOMDIMAVGBANDWIDTH 1.508481e-01| -1 6.914791e-02
AVGNNZPERROW:GEOMDIMMAXBANDWIDTH | 1.502457e-01| -1 7.027865e-02

p-Value
3.611661e-03
3.849293e-02

c. Model Analysis

A salient property of SVM is that the predictions depend ooitlythe support vectors.
Therefore, in order to analyze the features, we select fhhd Sofeatures based on corre-
lation of the support vectors with the target response. egabIXI— XXIII show the top
interaction features for Trilinos ML, Hypre ParaSails, AN&MP ICT respectively for the
solvability models learned on trials from 33 train matricde tables also indicate the
actual value of the correlation, whether they are posigivel negatively correlated, and
also the p-values of the correlation coefficients. In theeaatsTrilinos ML and WSMP
ICT, the model seems to have not so high correlation withdpdeatures (as well as high
p-values) indicating that the learned model might not baicantly more predictive than
the baseline prediction (majority class) on unseen dataweder, in the case of Hypre
ParaSails in Table XXIII, there are number of features tihathaghly correlated with the
solvability values. For example, it was observed in Chafitahat the use of negative

values for threshold and filter parameters result in lessstdolver configurations. This is
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Table XXIII. Top 20 interaction features selected for sbility prediction in the case of
Hypre ParaSails. The components of the interaction fesitare separated
with a “:” and the solver features are prefixed with a1S

Feature Name Correlation Sign | p-Value

MAXBANDWIDTH:IS _SAI-FLT-0.9 2.849049%e-01| -1 6.238230e-15
AVGBANDWIDTH:IS _SAI-FLT-0.9 2.752059e-01| -1 5.370187e-14
NUMNONZEROS:ISSAI-FLT-0.9 2.709347e-01| -1 1.349256e-13
NUMCOLS:IS SAI-FLT-0.9 2.691398e-01| -1 1.977574e-13
AVGNNZPERROW:ISSAI-FLT-0.9 2.633090e-01| -1 6.714327e-13
IS_SAI-FLT-0.9 2.622759%-01| -1 8.312177e-13
GEOMDIMMAXBANDWIDTH:IS _SAI-FLT-0.9 2.423301e-01| -1 4.276813e-11
SUPNODESIZE:ISSAI-FLT-0.9 2.403359%-01| -1 6.224908e-11
GEOMDIMAVGBANDWIDTH:IS _SAI-FLT-0.9 2.395155e-01| -1 7.257244e-11
AVGBANDWIDTH:MAXOVERMINROWSUM 2.272560e-01| -1 6.721732e-10
MAXBANDWIDTH:MAXOVERMINROWSUM 2.240591e-01| -1 1.176746e-09
AVGNNZPERROW:MAXOVERMINROWSUM 2.217973e-01| -1 1.740017e-09
NUMNONZEROS:MAXOVERMINROWSUM 2.201226e-01| -1 2.318223e-09
STDAVGNNZPERROW:ISSAI-FLT-0.9 2.147277e-01| -1 5.752145e-09
NUMCOLS:MAXOVERMINROWSUM 2.130134e-01| -1 7.640011e-09
MAXOVERMINROWSUM 1.996882e-01| -1 6.403093e-08
STDAVGNNZPERROW:MAXOVERMINROWSUM | 1.981435e-01| -1 8.118152e-08
MAXBANDWIDTH:IS _SAI-TH-0.9 1.948508e-01| -1 1.337924e-07
STDAVGNNZPERROW:STDROWSUM 1.929104e-01| -1 1.788817e-07
AVGNNZPERROW:ISSAI-TH-0.9 1.909092e-01| -1 2.406061e-07

evident from the high occurrence and the correspondingtivegaorrelation of the features

IS_.FLT-0.9 and ISTH-0.75.

3. Performance Modeling

In Section A, we used multi-variate linear regression tarlea performance model for
the Hypre dataset. However, we observed that the perforenaetrics often exhibit non-
linear dependence on the linear system and solver confignreharacteristics. We use
SVM regression (with a RBF kernel) available in the LibSVMkage [16] since it allows
us to handle the non-linear dependencies and provide bestglts in comparison to multi-
variate linear regression. There is a lot of variability ive tperformance data since the
matrices are from multiple domains and have widely varyingpprties. Therefore, we
perform a log transformation on the matrix features anddhget values as well as reorder
the features based on a mutual information criteria befaming the performance models.

In addition, we also normalize the resulting interactioatéee vectors to have zero mean
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and unit variance. For learning the best performance moaggeipllow an approach similar
to solvability modeling, i.e., we perform a parallel gridaseh over the parameter space
of C' and~ and multiple feature sets of increasing sizes. We now dsseesults on new
trials on the train matrices and unseen test matrices. Asartase of solvability, we also
present a brief analysis of the predictive features of tte thme and memory models for

the different solver configuration groups.

a. Results on New Trials Over Train Matrices

Figures 60 and 61 show the median relative error and the Ri8tatdor 20% of the tri-
als involving train matrices for the time taken and memorggesfor all the three solver
configuration groups. We consider median relative errdesnd of the mean in order to re-
duce the effect of the outliers. Although the model is ledroe the log transformed target
values, the results shown in Figures 60 and 61 are computedagiplying the inverse of
the log transformation. We observe that the median relativ@ for memory is very low
(11 -16 %) and the higl®? statistic (Section A) values indicate that the model actsew
good reduction of the squared error with respect to a constadel. In case of the time
metric, the median relative error is slightly higher (1793 and theR? statistic indicates
that the predictions are reasonable with the exception @irélfParaSails where there is a

significant variation across the cross folds.

b. Results on Unseen Test Matrices

Figure 62 and 63 shows the median relative error for trisd@eiated with the unseen test
matrices. The high median relative error for the prediion unseen matrices relative
to that of the new trials on train matrices indicates thatg@égormance models might not
have been able to accurately capture some of the matrixfepeitects. This could be due

to the fact that data corresponding to the solved trials @igettaining the performance
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Fig. 60. Median relative error ani#? statistic for memory prediction for 20 % hold out
set of new trials comprising of matrices in the training setTrilinos ML, Hypre
ParaSails, and WSMP ICT. The performance values are awkmage 5 runs.
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Fig. 61. Mean Relative error anki® statistic for time prediction for 20 % hold out set of
trials comprising of matrices in the training set for TrdsML, Hypre ParaSails,
and WSMP ICT. The performance values are averaged over 5 runs
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models is fairly small due to the large number of solver f&fy and also because we only
employ fairly simple linear system characteristics.

Since our main objective is to obtain recommendations foh@aatrix, it is sufficient
to obtain prediction values correct up to a monotonic tramsétion. To obtain a better
indication of the effectiveness of our predictions, we catep an alternative quality mea-
sure that adjusts for matrix-specific effects using an affraasformation. Specifically,
we estimate for each matrix, the best multiplicative andtaafactors that minimize the
cumulative relative error of the predictions. The actuadictions are then transformed
using the matrix-specific factors to obtain new predictjamiich is then used to estimate
the relative error. The bottom plots in Figures 62 and 63 stimwmedian values for this

adjusted relative error.

c. Model Analysis

As in the case of solvability models in Section B.2.c , we catefhe top features based on
the correlation of the support vectors associated with eamthel to the corresponding tar-
get response. We list the top 20 features that are highlelaied with respect to memory
and time for Trilinos ML, Hypre ParaSails, and WSMP ICT in tbem of tables. The third
column shows if the feature is positively or negatively etated and the fourth column
indicates the p-value of the correlation coefficients. AnMew value for p-values indicate
that there is a non-zero correlation between the featureladbserved target variable.
Note that the tables shown below are only for the top 20 featuherefore, the absence
of certain solver features in the list does not imply the latkteractions involving those
features. There are also other important interaction featthat are negatively correlated,
which do not make it to the top 20.

Memory Usage. In the case of Trilinos ML, the use of IFPACK smoother (V& -
IFPACK) is highly correlated with the feature smoother spvealue of 1 (ISML-SS1)
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Table XXIV. Top 20 interaction features selected for menymediction in the case of Trili-
nos ML. The components of the interaction features are aggghmwith a “:”
and the solver features are prefixed with a_"IS

Feature Name Correlation Sign | p-Value

AVGBANDWIDTH:IS _ML-IFPACK 6.255588e-01| 1 1.199299%e-10
AVGBANDWIDTH:IS _ML-SS1 6.255588e-01| 1 1.199299¢e-10
MAXBANDWIDTH:IS _ML-IFPACK 6.192284e-01| 1 2.078400e-10
MAXBANDWIDTH:IS _ML-SS1 6.192284e-01| 1 2.078400e-10
NUMCOLS:IS.ML-IFPACK 5.954608e-01| 1 1.473868e-09
NUMCOLS:IS ML-SS1 5.954608e-01| 1 1.473868e-09
NUMNONZEROS:ISML-IFPACK 5.919616e-01| 1 1.940491e-09
NUMNONZEROS:ISML-SS1 5.919616e-01| 1 1.940491e-09
IS.ML-SS1 5.617411e-01| 1 1.831855e-08
IS_.ML-IFPACK:IS_ML-SS1 5.617411e-01| 1 1.831855e-08
IS_ML-IFPACK 5.617411e-01| 1 1.831855e-08
GEOMDIMAVGBANDWIDTH:IS _ML-SS1 5.442973e-01| 1 6.063428e-08
GEOMDIMAVGBANDWIDTH:IS _ML-IFPACK 5.442973e-01| 1 6.063428e-08
GEOMDIMMAXBANDWIDTH:IS _ML-SS1 5.104237e-01| 1 5.150522e-07
GEOMDIMMAXBANDWIDTH:IS _ML-IFPACK | 5.104237e-01| 1 5.150522e-07
AVGNNZPERROW:ISML-IFPACK 4.949126e-01| 1 1.273039e-06
AVGNNZPERROW:ISML-SS1 4.949126e-01| 1 1.273039e-06
ISORDERING-RCM:ISML-SS1 4.648037e-01| 1 6.528074e-06
IS.ML-SA:IS_.ML-SGS 3.906632e-01| -1 2.001932e-04
IS.ML-SGS 3.906632e-01| -1 2.001932e-04

since only the IFPACK smoother uses a smoother sweep of Iriexgeriments. In Chap-
ter 1ll, we observe that the use of IFPACK smoother resultgery high memory usage
especially in the case of ML-DD and ML-DD-ML default set ofpmeters. These observa-
tions are evident in Table XXIV in the form of high occurrerafdeatures ISMIL-IFPACK
and ISML-SS1. Also another important observation is that the dssnwothed aggrega-
tion with symmetric Gauss-Seidel smoother {&-SA:IS_ML-SGS) results in best mem-
ory usage. This is also captured by our model in the form ofja hegative correlation for
those features. Other linear system features that seenfett #ie memory performance
include the average and maximum bandwidth in addition toesother obvious features
such as number of columns and number of non-zeros. In TabM, X linear system
features and their interactions with each other are the damifeatures for Hypre Para-
Sails. An interesting observation in the case of Hypre Paile® that matrices with high
values for the product of standard deviation of diagonahelets and standard deviation

of row sums are likely to have less memory usage. Even in tee cABWSMP ICT in Ta-
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ble XXVI, we observe that the linear system features doreitia top interaction features
with respect to memory. The only solver specific feature ihptominent is the use of the
lowest drop tolerance value 8fx 10~ (IS_.DT3eE-4), which is as expected and confirmed

by the observations for WSMP ICT in Chapter IlI.

Table XXV. Top 20 interaction features selected for memagdgtion in the case of Hypre
ParaSails. The components of the interaction featuresepaated with a “”
and the solver features are prefixed with a_."IS

Feature Name

Correlation

ign

p-Value

NUMCOLS:NUMNONZEROS

NUMNONZEROS

NUMCOLS

NUMNONZEROS:AVGBANDWIDTH
NUMCOLS:GEOMDIMAVGBANDWIDTH
AVGBANDWIDTH:GEOMDIMAVGBANDWIDTH
NUMCOLS:AVGBANDWIDTH
NUMNONZEROS:MAXBANDWIDTH
NUMCOLS:GEOMDIMMAXBANDWIDTH
AVGBANDWIDTH:GEOMDIMMAXBANDWIDTH
NUMNONZEROS:GEOMDIMAVGBANDWIDTH
PERCENTAGEWEAKDIAGDOMROWS:STDROWSUM
NUMCOLS:MAXBANDWIDTH
MAXBANDWIDTH:GEOMDIMAVGBANDWIDTH
MAXBANDWIDTH:GEOMDIMMAXBANDWIDTH
PERCENTAGEWEAKDIAGDOMROWS:AVGDIAGDOM
AVGNNZPERROW:AVGBANDWIDTH
NUMNONZEROS:GEOMDIMMAXBANDWIDTH
STDROWSUM:STDDIAG

AVGBANDWIDTH:IS _SAI-FLTO

7.481570e-01
7.276030e-01
6.301348e-01
6.273709e-01
6.006792e-01
5.724516e-01
5.621981e-01
5.422520e-01
5.384312e-01
5.268219¢e-01
5.090499¢e-01
4.941968e-01
4.910021e-01
4.844044e-01
4.284834e-01
4.187313e-01
4.029771e-01
3.966251e-01
3.943092e-01
3.461256e-01

RPRRPRRPRRRPRRRERRPRRERRRERRERREREROY

R

2.365968e-17
4.558446e-16
2.842705e-11
3.676034e-11
3.883344e-10
3.750409e-09
8.115016e-09
3.386493e-08
4.406081e-08
9.611605e-08
3.002244e-07
7.410533e-07
8.950696e-07
1.314067e-06
2.517528e-05
4.002935e-05
8.220672e-05
1.087846e-04
1.203141e-04
8.327912e-04

Time Taken. Tables XXVII— XXIX show the top 20 features for time predamti
for Trilinos ML, Hypre ParaSails, and WSMP ICT respectivelynlike the top memory
features for Trilinos ML, the top 20 features for time preitios includes primarily the
linear system interaction features as shown in Table XXVII.

However, in the case of Hypre ParaSails in Table XXVIII, wesd® a number of
solver parameters in the top 20 interaction features. Maisttile of these are the threshold
parameter (ISSAI-TH-0.75) and the filter parameter (I9t-0.9). The interesting observa-
tion here is that the values chosen for these parameteregagive (Chapter Il). The use of
negative values results in much sparser less effectivepdiitoners which probably took

a lot more iterations and resulted in longer solve times. W&MP ICT, in Table XXIX,
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Table XXVI. Top 20 interaction features selected for memprgdiction in the case of
WSMP ICT. The components of the interaction features ararsgpd with
a " and the solver features are prefixed with a 1S

Feature Name Correlation Sign | p-Value

NUMNONZEROS 5.614960e-01| 1 1.125756e-20
NUMCOLS:NUMNONZEROS 5.285367e-01| 1 4.276189e-18
PERCENTAGEWEAKDIAGDOMROWS:STDROWSUM | 4.965937e-01| 1 7.527504e-16
NUMCOLS:GEOMDIMAVGBANDWIDTH 4.683495e-01| 1 4.742490e-14
AVGDIAGDOM:STDROWSUM 4.444692e-01| 1 1.184003e-12
NUMNONZEROS:GEOMDIMAVGBANDWIDTH 4.290071e-01| 1 8.349970e-12
NUMCOLS 4.007930e-01| 1 2.305390e-10
NUMCOLS:GEOMDIMMAXBANDWIDTH 3.792790e-01| 1 2.367121e-09
NUMCOLS:AVGNNZPERROW 3.320913e-01| 1 2.234824e-07
AVGBANDWIDTH:GEOMDIMAVGBANDWIDTH 3.220396e-01| 1 5.362933e-07
NUMNONZEROS:AVGBANDWIDTH 3.103979%e-01| 1 1.421728e-06
NUMNONZEROS:GEOMDIMMAXBANDWIDTH 3.019918e-01| 1 2.802362e-06
NUMCOLS:AVGBANDWIDTH 2.691424e-01| 1 3.263911e-05
GEOMDIMAVGBANDWIDTH:IS _DT3E-4 2.672155e-01| 1 3.734027e-05
AVGBANDWIDTH:GEOMDIMMAXBANDWIDTH 2.632559%e-01| 1 4.907649e-05
AVGNNZPERROW:AVGBANDWIDTH 2.609636e-01| 1 5.737680e-05
NUMNONZEROS:AVGNNZPERROW 2.561553e-01| 1 7.926385e-05
PERCENTAGEWEAKDIAGDOMROWS:AVGDIAGDOM | 2.559759e-01| 1 8.021554e-05
NUMNONZEROS:ISDT3E-4 2.477447e-01| 1 1.374222e-04
STDROWSUM:SUPNODESIZE 2.475719e-01| -1 1.389571e-04

than the solver-specific features.

we observe that the time model is predominantly affectedrmal system features more




178

Table XXVII. Top 20 interaction features selected for tintegtiction in the case of Trilinos
ML. The components of the interaction features are sephvaith a “:” and

the solver features are prefixed with a “1S

Feature Name

Correlation

ign

p-Value

NUMNONZEROS
NUMCOLS:NUMNONZEROS
NUMNONZEROS:GEOMDIMAVGBANDWIDTH
NUMCOLS:GEOMDIMAVGBANDWIDTH
AVGBANDWIDTH:GEOMDIMAVGBANDWIDTH
NUMCOLS:GEOMDIMMAXBANDWIDTH
NUMNONZEROS:GEOMDIMMAXBANDWIDTH
AVGBANDWIDTH:GEOMDIMMAXBANDWIDTH

PERCENTAGEWEAKDIAGDOMROWS:STDROWSUM

MAXBANDWIDTH:GEOMDIMAVGBANDWIDTH
STDROWSUM:STDDIAG
AVGNNZPERROW:GEOMDIMAVGBANDWIDTH
NUMNONZEROS:AVGBANDWIDTH
MAXBANDWIDTH:GEOMDIMMAXBANDWIDTH
NUMNONZEROS:MAXBANDWIDTH
AVGNNZPERROW:GEOMDIMMAXBANDWIDTH
NUMCOLS:AVGBANDWIDTH

GEOMDIMAVGBANDWIDTH:GEOMDIMMAXBANDWIDTH

STDROWSUM:SUPNODESIZE
STDAVGNNZPERROW:STDROWSUM

5.786686e-01
4.728667e-01
4.514101e-01
4.431370e-01
4.027647e-01
3.926788e-01
3.765591e-01
3.661556e-01
3.561514e-01
3.537509e-01
3.467770e-01
3.332355e-01
3.330439%e-01
3.161632e-01
3.023165e-01
2.802685e-01
2.508332e-01
2.416269e-01
2.229059e-01
2.226271e-01

PR RRERRERRERREO0

5.148768e-24
1.685356e-15
4.177258e-14
1.357957e-13
2.760662e-11
9.353786e-11
6.047343e-10
1.912658e-09
5.571392e-09
7.161582e-09
1.467839e-08
5.629584e-08
5.735056e-08
2.801437e-07
9.585510e-07
5.984878e-06
5.467695e-05
1.036201e-04
3.528651e-04
3.590962e-04

Table XXVIII. Top 20 interaction features selected for tiprediction in the case of Hypre
ParaSails. The components of the interaction featureseparated with a

and the solver features are prefixed with a IS

Feature Name Correlation Sign | p-Value

STDAVGNNZPERROW:ISSAI-TH-0.75 5.009327e-01| 1 9.883243e-18
AVGNNZPERROW:ISSAI-TH-0.75 4.273959e-01| 1 7.780590e-13
NUMNONZEROS 3.961742e-01| 1 4.342587e-11
GEOMDIMMAXBANDWIDTH:IS _SAI-TH-0.75 3.758721e-01| 1 4.781476e-10
STDAVGNNZPERROW:ISSAI-FLT-0.9 3.751373e-01| 1 5.199250e-10
AVGNNZPERROW:AVGBANDWIDTH 3.593030e-01| 1 3.006691e-09
GEOMDIMAVGBANDWIDTH:IS _SAI-TH-0.75 3.561506e-01| 1 4.216207e-09
ISSAI-LEV2:IS_SAI-TH-0.75 3.468293e-01| 1 1.121486e-08
AVGNNZPERROW:MAXBANDWIDTH 3.413456e-01| 1 1.964918e-08
NUMNONZEROS:GEOMDIMAVGBANDWIDTH 3.412530e-01| 1 1.983411e-08
NUMCOLS:AVGNNZPERROW 3.223788e-01| 1 1.259138e-07
NUMNONZEROS:ISSAI-TH-0.75 3.222282e-01| 1 1.277209e-07
AVGBANDWIDTH:IS _SAI-TH-0.75 3.222271e-01| 1 1.277340e-07
MAXBANDWIDTH:IS _SAI-TH-0.75 3.212582e-01| 1 1.399716e-07
NUMNONZEROS:GEOMDIMMAXBANDWIDTH | 3.211771e-01| 1 1.410447e-07
NUMCOLS:GEOMDIMMAXBANDWIDTH 3.136813e-01| 1 2.831180e-07
AVGNNZPERROW:ISSAI-FLT-0.9 3.114605e-01| 1 3.467714e-07
STDAVGNNZPERROW:ISSAI-LEV2 3.049816e-01| 1 6.207253e-07
NUMNONZEROS:AVGNNZPERROW 3.003735e-01| 1 9.312764e-07
NUMCOLS:GEOMDIMAVGBANDWIDTH 2.988053e-01| 1 1.067449e-06
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Table XXIX. Top 20 interaction features selected for timedction in the case of WSMP
ICT. The components of the interaction features are seguakgith a “:” and

the solver features are prefixed with a “1S

Feature Name

Correlation

ign

p-Value

NUMNONZEROS
NUMCOLS:NUMNONZEROS
NUMCOLS:GEOMDIMAVGBANDWIDTH
NUMNONZEROS:GEOMDIMAVGBANDWIDTH
AVGDIAGDOM:STDROWSUM
NUMCOLS:GEOMDIMMAXBANDWIDTH
NUMCOLS
AVGBANDWIDTH:GEOMDIMAVGBANDWIDTH
NUMNONZEROS:GEOMDIMMAXBANDWIDTH
NUMCOLS:AVGNNZPERROW
GEOMDIMAVGBANDWIDTH
AVGBANDWIDTH:GEOMDIMMAXBANDWIDTH
MAXBANDWIDTH:GEOMDIMAVGBANDWIDTH
NUMNONZEROS:AVGBANDWIDTH
GEOMDIMAVGBANDWIDTH:GEOMDIMMAXBANDWIDTH
NUMCOLS:AVGBANDWIDTH
AVGNNZPERROW:AVGBANDWIDTH
NUMCOLS:STDAVGNNZPERROW
AVGDIAGDOM:MAXOVERMINROWSUM
NUMNONZEROS:AVGNNZPERROW

5.999327e-01
5.694695e-01
5.593037e-01
5.061484e-01
4.902143e-01
4.760276e-01
4.194657e-01
4.034504e-01
3.906249¢e-01
3.668004e-01
3.536717e-01
3.452565e-01
3.401505e-01
3.370599¢e-01
2.950967e-01
2.940299e-01
2.925470e-01
2.872416e-01
2.840208e-01
2.825888e-01

RPRRPRPRRPRRPRRREPRREPRREPRRERRERRERLREOV

9.233014e-29
1.807497e-25
1.911092e-24
1.271693e-19
2.470716e-18
3.053193e-17
2.329602e-13
2.194610e-12
1.215357e-11
2.414296e-10
1.132463e-09
2.940328e-09
5.174868e-09
7.250253e-09
4.949988e-07
5.465242e-07
6.267630e-07
1.016727e-06
1.357308e-06
1.541570e-06
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4. Top+ Recommendations

We now present results on the téprecommendations for the matrices in our collection.
Similar to Section A, we rank the solver configurations baseanemory usage, compu-
tational time, and memory-time product and measure thatygudlthe recommendations
in terms of topk precision and average quality value of the fopecommendations. For
measuring the average quality of the recommendations, weailize the performance val-
ues by the problem-independent best (PIB) choice valuedefased in Chapter Ill. Note
that for the performance data involving train matrices, vakies are averaged over the
contributing matrices for each value bfover 5 crossfold splits whereas the standard de-
viations are for the matrix averaged values over the crissfolits alone. However, for
individual plots involving unseen matrices, we report tbial values for each matrix. We
compare the quality of the recommendations by comparingtiit thie PIB choice as well
as the actual topg-performance values, or in other words, the problem-spdugfst choice
(PSB). An important point to remember is that the PIB choga isolver configuration
optimized over the entire training performance data. Tioeee expecting the recommen-
dations to always improve on the performance of the PIB cardigon is not reasonable,
especially in case of unseen matrices where the problenifisgeest performance is very

close to the PIB performance.

a. Results on New Trials Over Train Matrices

We now present results on the térecision and the average quality of recommendations
for solver group specific models for Trilinos ML, Hypre PaadS, and WSMP ICT.

Trilinos ML. Figure 64 shows the topd precision of the solver recommendations
for memory, time, and memory-time product for Trilinos MLhger configurations. Our

approach identifies around 50% of the actual best configuratior memory and around
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45% of the best configurations with respect to time. With eespo memory time product,
however, the precision falls to 25%. Figure 65 shows thegoernce improvement that
can be obtained using the generated recommendations evetBtchoice (dotted line). In
case of memory, the PIB and PSB curves are fairly close anckttmenmendations almost
follow the PIB curve. However, in the case of time, we obsehat the recommended
fine-tuning curve is always lower than the PIB choice andeqaibse to the PSB curve.
The recommendations for memory-time product are not as gedtie time ones since it
seems to be dominated by the memory model.

Hypre ParaSails. Figure 66 shows the topd precision of Hypre ParaSails solver
recommendations for memory, time, and memory-time pradWé are able to identify
70% of the actual best configurations for memory-time prodaimund 65% of the best
configurations for time, and around 55 % for memory. Figursl&ws the average quality
of the top4# recommendations over the PIB choice (dotted line). In cés®@l the three
metrics, we observe that the recommender fine-tuning csraénays lower than the PIB
choice and comparable to the PSB curve indicating that traehuan provide high quality
recommendations for the train matrices.

WSMP ICT. The topd40 precision of Hypre ParaSails solver recommendations for
memory, time, and memory-time product is shown in Figure\6@h respect to memory
and memory-time product, we are able to identify almost 75%@actual best configura-
tions. Figure 69 shows the comparison of the average quidlihe top4 recommendations
with that of the PIB and PSB choices. In case of all the thre&iose we observe that the
recommendations perform better than the PIB choice andgaie aery close to the ideal

PSB values.
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b. Results on Unseen Test Matrices

Trilinos ML. Figure 70 shows the average tbprecision values for the unseen matrices.
The average top-precisions of recommendations are only slightly lower ttheose in the
case of seen matrices in Figure 64 though the standard mesadre quite high due to
the small sample. Individual toprecisions for four sample matricesudikw 1, ldoor,
mstamp-2£90153 are shown in Figure 71. With the exceptionldbor, the performance
models are able to predict a reasonable fraction of the topctilal best configurations
with respect to memory, time, and memory-time product. TWexage quality of the rec-
ommendations is shown in Figure 72 and the individual recenhation quality plots for
four sample matrices are shown in Figure 73. The averagemmemdations for time and
memory lie between the PIB and PSB curves though there im#isant variation among
the matrices. However, the individual plots in Figure 73datk that a decent fraction of
the recommendations are comparable to the PIB and PSB values

Hypre ParaSails. The average top-precision and individual tog-plots for unseen
matrices are shown in Figures 74 and 75 respectively. Weteitteption of memory, the
average precision is low relative to Trilinos-ML, but sificantly better than a random
ranking since there are 99 configurations to choose from.cbhesponding average rec-
ommendation quality and individual plots are shown in Fegur6 and 77 respectively.
Even though the top-k precision values are low, the actudbpaance values are still bet-
ter than the PIB choice and are close to the problem specift uadues. The plot for
audikw 1 in Figure 76 is an example of a case where the PIB solver caatign could
not solve it. The recommendations for all the three metniesable to capture the problem
specific best choices in the very first few recommendations.

WSMP ICT. Figures 78 and 79 show the average and individualktqpecision

plots for WSMP ICT. All the matrices have reasonable precisvith respect to memory
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and time. The average quality of recommendations in FigQrm@icates that the recom-
mendations are slightly better than the PIB values. Howes@ne of the representative
individual plots in Figure 81 indicate that the recommeratet are different for the var-
lous matrices based on the metrics. For example, in the dasstamp-2¢cthe first few
memory, time, and memory time product recommendationsratéyclose to the problem
specific configurations. There are few cases where there o drivial gap between the
first few recommended configurations and PSB values, howteerecommended config-

uration curve does intersect the PIB and PSB curves at naiitiptances.

5. Discussion

A general trend that is observed in all these results is thatpgossible to obtain reason-
ably good recommendations with respect to core performamateics as well as hybrid
combinations such as memory-time product. These recomatiend are even more in-
valuable in scenarios where the problem independent basgaoation is not able to solve
a problem or if there are numerous solver configurations twsé from. Even though
the predicted values for performance obtained for unsednaes are not highly accurate,
the recommendations based on ordering these predictedsvate fairly competitive and
most often have a significant overlap with the problem spebidist values. These results
are encouraging since there are very few feasible trialctorately capture the matrix
effects. The decrease in prediction quality of the solvighdind performance models with
respect to unseen matrices indicates that there is pdtentimprovement in our modeling
procedure, especially with respect to capturing matrieesfic effects by including more

informative matrix characteristics.



198

0.8

o o )
[6)] (o] ~
T T T

T
| |

o
»
T

o
w
T

Fraction of True Top—K Recommendations
o
T

0.1 —&— Memory [
Time

—=— Product
I

0 2 4 6 8 10 12
Number of Recommendations(K)

Fig. 78. Fraction of the true best choices for memory, tinmgl, @emory-time product that
is present in tope recommendations for WSMP ICT (64 configurations) in the
case of unseen matrices. The precision values shown aragaekover the solved
problems.



199

audikw_1

Idoor

0 2 4 6 8 10 0 2 4 6 8 10

#Recommendations(K) #Recommendations(K)
mstamp-2c 90153

—6— Memory
|| = Time
—8— Product

#True Top—K Recommendation

0 2 4 6 8 10 0 2 4 6 8 10
#Recommendations(K) #Recommendations(K)

Fig. 79. The number of true best choices for memory, time,raathory-time product that
is present in top: recommendations for WSMP ICT (64 configurations) in the case
of audikw 1, Idoor, mstamp-2cand90153matrices.



Average Norm. Top—K Performance

Fig. 80.

200

Memory
1.2f ‘ E

0.6

16
14r
12r

0.8
0.6kt

Memory-Time Product

|---PB
PSB

—>— REC
05k L | | ! | A
0 2 4 6 8 10 12

Number of Recommendations

Average performance with respect to memory, tineeraemory-time product for
recommended (REC) and problem specific best (PSB) WSMP |@figroations
normalized by the corresponding problem independent 548 (values for the
unseen matrices. For eaththe performance values are averaged over the solved
problems.



201

Memory x10°
T T

Memory
T T

Top-K Performance
5 3
Top-K Performance
g 2 8
T
|
I
I
|
I
I
/ |
I
I
I
I
I
I
|
I
I
I
I
i
]
f
|
i
|
‘\
I
)
I
I
I
I
I
|

15F
e / T PSB
[-— N 77777777777777777777 —— REC
0.5¢ ---PB
. . .
1 2 3 4 5 6 7 8 9 10 o 2 3 4 5 6 7 8 9 10
Number of Recommendations(K) Number of Recommendations(K)
(a) Matrixaudikw.1 (b) Matrix Idoor
10° Memory x10 Memory
B e —————— ——————————T——— 9 T T
10F 8
JE ST T oo
4 6
6 5
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

10 5 % X
1 2 3 4 5 6 7 8 9 10

Top-K Performance
8 8
g 8
Top-K Performance

| | | . . . .
2 3 4 5 6 7 8 9 10
Number of Recommendations(K)

Number of Recommendations(K)

(c) Matrix mstamp-2c (d) Matrix 90153

Fig. 81. Performance with respect to memory, time and mertiorg product for thek"
recommended (REC) and problem specific best (PSB) WSMP |@figroations
for audikw 1, Idoor, mstamp-2cand90153matrices. Where applicable the prob-
lem independent best (PIB) performance values are alstegdlot



202

C. Case Study: Sheet Metal Forming

The results for unseen matrices in Sections B.2 and B.3iligfleld the some of the draw-
backs of the learned models in providing accurate predistwith respect to memory and
time performance. This was predominantly due to the unsesnaces being vastly dif-
ferent from that of the train matrices. However, if an apgiiocn requires the solution of
a number of matrices, that are very similar, then the leamedels could be used for
obtaining good performance even on unseen matrices. I tsdemonstrate the utility
of the recommendation system, we collected performance a@att SPD matrices from
the UFL collection!. All the matrices vary only slightly with respect to struciband
numerical properties and are obtained from the applicatimmain of sheet metal form-
ing. The solvability and performance models were learn@tusree matricesaf 0_k101,
af_2_k101, af4_k101) and tested on the remaining thred {_k101, af3_k101, af5_k101).

In this section, we present the results on solvability prealn, performance prediction, and
effectiveness of the top-recommendations for Trilinos ML and WSMP ICT solver con-
figurations. None of the Hypre ParaSails could solve thelprob to the required accuracy
in 1000 iterations and are therefore, omitted in this sekpeements.

Figure 82 shows the accuracy, precision, and recall foradulity prediction on the
unseen matrices. In the case of WSMP ICT we are able to ob@ird accuracy which
is much better than the baseline. However, in the case aohdsIML the solvability pre-
diction accuracy is slightly lower than the baseline. Fegu83 and 84 show the median
relative error andR? statistic with respect to memory and time prediction retpely.
We are able to predict the exact memory and time usage withhigh accuracy (median
relative error< 17%) for unseen matrices.

Figures 87 — 92 show the overlap of the top 10 recommendatiutthsthe true top

thttp://www.cise.ufl.edu/research/sparse/matricegSicAFE/index.html.
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Fig. 82. Classification accuracy, precision, and recallsoivability prediction using the
best solvability model on trials comprising of domain sfieainseen matrices and
solver configurations for Trilinos ML and WSMP ICT.

10 for the three unseen matrices in the case of Trilinos ML\&&MP ICT. In the case of
Trilinos ML we observe that the overlap of the top 10 recomdations with that of the
true top 10 recommendations is lower than in the case of WSBRekpecially in the case
of memory. The corresponding performance benefits relédivke PIB and PSB choices
are shown in the figures. In the case of Trilinos ML, the rec@ndations are very close
to the PSB values for all the three matrices in the case of éinmkmemory-time product.
Even though the overlap of the top recommendations witheesp memory are low, the
actual values do not vary much from PIB and PSB choices antdkechoice is included
in the top 4 recommendations. In the case of WSMP ICT, thexealy slight variations
in memory and memory time product values between the PIB &BldPoices. However,
in the case of time, there is a significant difference in thg &hd PSB performance and
the recommendations match the PSB values closely for a feageon of the top 10 rec-
ommendations. These observations suggest that our recodatien approach is highly
effective in specialized domains if there is sufficientrirag data to capture the general

behavior of the various matrices.
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CHAPTER VI

CONCLUSION AND FUTURE WORK
Solving complex linear systems lies at the heart of mosnhsifie computing tasks and the
increasing prevalence of large scale simulations with Hungar systems has made it ex-
tremely critical to develop intelligent strategies foresging preconditioned iterative solver
configurations. The current dissertation attempts to asdifes challenge by presenting a
fairly general practitioner-centric framework both foroptem-independent retrospective
analysis as well as problem-specific predictive modelingesformance data. Empirical
evaluation of the proposed approaches for iterative saekrction clearly demonstrates

the potential benefits to practitioners.

A. Contributions
We now summarize the specific contributions of this dissierta

Performance evaluation methodology:We introduce a principled methodology for a com-
parative performance evaluation of software options thahotivated by a typical
user decision process. This approach addresses praceratencerns such as soft-
ware failure, representation of software configurations, @arameter fine-tuning by
introducing new relatively simple, but powerful metricsotible among these are
the use of area under performance-profile curves to faelaacredible ranking of
the software options and use of conditional variance meastar identify influen-
tial parameters for sequential fine-tuning. We also outlio®@ these metrics can be
employed to (a) determine the “best” default configuratiangong a set of possi-
ble choices, (b) compare groups of software options in tlesgnce and absence of

fine-tuning along multiple performance criteria and (a)mefparameters to achieve
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the desired performance improvements. Though targetearttsihe iterative solver
selection problem, this methodology has much broader sangeshould be readily

applicable to other software selection tasks.

Solver performance analysis infrastructure: To apply our performance evaluation method-
ology for the solver selection problem, we developed saftvirErastructure tools for
the collection, analysis, and visualization of solver parfance data. Given a user
specified set of linear systems, this infrastructure cotsaaftware trials and collects
performance data (time, memory, error norm, etc.) for athbmations generated
from the specified linear systems, a set of hardware contigasa(number of CPUs
and memory limits), and sets of values of various solver ardgnditioner parame-
ters. This is achieved via a data collection unit composeubtti serial and parallel
driver programs and associated scripts for some widely ssk@r packages. Subse-
guently, the analysis and reporting unit of the system perfovarious comparative
and sensitivity analyses within and across pre-specifiedgg of solver configura-
tions using the collected performance data. We intend tdighuthis software so
that application scientists can use it to analyze solvefopmance with respect to

matrices from specific domains that are of interest to them.

Extensive empirical evaluation: We also present performance evaluation of a suite of
preconditioners based on incomplete factorization, spapproximate inverse, and
algebraic multilevel schemes available in packages suétEdsc, Trilinos, Hypre,
ILUPACK, and WSMP. We compare the robustness, speed, andbmeransump-
tion of these preconditioners on a set of benchmark probkemdsalso identify the
influential parameters for each solver configuration grétgr.packages that provide
support for parallel execution, we collect and presentgrarance data on multiple

processors. To the best of our knowledge, this study previde most extensive
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practitioner-centric empirical evaluation to date of a fa@mof popular and promis-
ing general purpose preconditioners available in blackdmbver packages, and can

be highly beneficial to solver package users and developers.

Predictive performance modeling: We propose a novel multi-stage statistical approach
for determining the “best” software option for a given pratol with respect to some
desired performance criteria that is based on learninggneel models from empir-
ical performance data. The key novelty of our approach hesir modular formula-
tion that comprises of three sub problems: (a) solvabilibdeling, (b) performance
modeling, and (c) performance optimization, which prositlee flexibility to effec-
tively target practical challenges such as software faiemd multi-objective opti-
mization using suitable classification, regression and-gggregation techniques.
To be specific, the solvability model is used to filter out deé-prone configura-
tions before modeling the performance. To accommodatendggation of multiple
criteria, separate models are learned for each of the coferpgnce statistics and
then combined during the optimization step to identify thyg¢hoices. Our choice of
instance space consisting of “trials” represented in texhekaracteristics of the cor-
responding “problem”, “software configuration” and theitaractions, which allows
us to directly model solvability and performance as respdnsctions associated
with trials, is also a distinguishing feature of our apptoaglative to existing work
that contributes to an elegant formulation, and in facttdvgiredictions. Further, for
the case where the performance models are based on gee@dalear regression,
we also propose a fast and efficient methodology for ideintfythe top# solver
choices with respect to various performance criteria (idiclg hybrid combinations)
using monotonic rank aggregation techniques over the softaonfiguration feature

space.
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Iterative solver recommendation system:Lastly, we developed a prototype implementa-
tion of a modular self-learning recommendation systemtéyative solvers with spe-
cialized components dedicated to data collection, feaeneration, offline learning,
and online recommendation. Using the available domain kedge as well as solver
performance data from our earlier study, we customizeddbemmendation system
by identifying informative properties of the linear systeand iterative solver con-
figurations as well as the data transformations needed toegsod model fit. Eval-
uation of our approach on various performance datasetg msgtdels specific to a
solver package (HYPRE) and various package-preconditmmabinations demon-
strates that one can obtain very good quality recommentatitat are often close
to the ideal choices and better than even the problem-imdigme best solver con-
figuration. The success of our approach indicates that iseaehuge potential for
optimizing scientific computing software using statisticendels, especially in case

of problems that require significant computational effort.

B. Future Work

The current work offers multiple avenues for future expiiona

Application to other software selection tasks. In the current dissertation, we only
evaluated our performance analysis and recommendatiomooh@bgy on iterative
solvers, but it can be readily generalized to broader soétwalection scenarios such
as optimization of scientific libraries for different artdgtures and problem domains.
Effective customization of the proposed approaches waddire a suitable repre-

sentation of the space of problems as well as available acétaptions.

Hierarchical representation for heterogeneous solver spze. In our current perfor-

mance analysis methodology, we represent solver configngas a feature vector
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based on constituent parameters. However, certain ggslare, often, meaning-
ful only for a subset of choices, (e.g., restart values isnapoirtant parameter for
GMRES, but not applicable in case of CG). Separate analygerormance data
from the homogeneous solvers subsets (e.qg., packagengligoaer combinations)
is often beneficial in such cases, but lack of sufficient daghtread to misleading
conclusions and over-fitted models. A potential alternatgeqgy is to have a multi-
level hierarchical representation of the solver spacedasehe common parame-
ters. Using this representation, one can perform pre@icivetrospective analysis
with respect to the common parameters at any node in thertigraising the per-
formance data that corresponds to all the configurationscaded with that node,

resulting in more robust results.

Sensitivity analysis of performance modelsStudying the variation of the performance
model predictions due to changes in the linear system amérscbnfiguration fea-
tures is important for validating the models and ensurireg ine does not arrive
at misleading conclusions due to outliers. In the currentkware perform a sim-
plistic model analysis by computing the correlations areldbrresponding p-values
of the trial characteristics with respect to the responsthefperformance models
and qualitatively verifying that these are compatible vei¥pected behavior. A more
rigorous sensitivity analysis involves computing eithee partial derivatives or the
conditional variance of the response with respect to eacheofnput features. As
discussed in Chapter lll, Section D.3, for linear model€l(iding support vector
regression with linear kernel), one can obtain a globalitieitg score for each input
feature that is a function of the linear coefficient and vac@associated the input
feature and these can be compared with the empirical estsmidbwever, in case of

SVR with non-linear kernels (e.g., RBF kernel), there i®ofa significant variation
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in sensitivity depending on the value of the input feature s beneficial to study

this non-linear dependence using the metrics presente&®]n [

Optimization of continuous solver parameters. In our current recommendation ap-
proach, we assume that there are a finite number of solvergcwations and per-
form ranking over them using the performance models to nlitaé top choices.
However, in practice, due to continuous parameters, theesgpace might not be
finite and the problem of choosing the best solver configomatican be posed in
terms of an optimization problem over the solver paramgiacs with the objective
function determined by the learned performance models lamdpecified problem.

In case of linear models, this reduces to a mixed integeatipeogram.

Active collection of performance data.The current studies only involved a small bench-
mark dataset because of the difficulty in obtaining large glesamatrices. However,
in an industrial setting, where one has access to a large ewwhimatrices, the com-
putational effort associated with performing an empirical would prevent one
from exploring all possible matrix-solver combinationsn Active learning based
approach for identifying potentially informative trialsat reduce the uncertainty in

the performance models would be extremely valuable in sistuation.
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