
A RECOMMENDATION SYSTEM FOR PRECONDITIONED ITERATIVE SOLVERS

A Dissertation

by

THOMAS GEORGE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2009

Major Subject: Computer Science

A RECOMMENDATION SYSTEM FOR PRECONDITIONED ITERATIVE SOLVERS

A Dissertation

by

THOMAS GEORGE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Vivek Sarin
Committee Members, Patrick Lynett

Valerie Taylor
Yoonsuck Choe

Head of Department, Valerie Taylor

December 2009

Major Subject: Computer Science

iii

ABSTRACT

A Recommendation System for Preconditioned Iterative Solvers. (December 2009)

Thomas George, B. Tech., Indian Institute of Technology, Madras;

M.S., Mississippi State University

Chair of Advisory Committee: Dr. Vivek Sarin

Solving linear systems of equations is an integral part of most scientific simulations. In

recent years, there has been a considerable interest in large scale scientific simulation of

complex physical processes. Iterative solvers are usuallypreferred for solving linear sys-

tems of such magnitude due to their lower computational requirements. Currently, compu-

tational scientists have access to a multitude of iterativesolver options available as “plug-

and-play” components in various problem solving environments. Choosing the right solver

configuration from the available choices is critical for ensuring convergence and achiev-

ing good performance, especially for large complex matrices. However, identifying the

“best” preconditioned iterative solver and parameters is challenging even for an expert due

to issues such as the lack of a unified theoretical model, complexity of the solver config-

uration space, and multiple selection criteria. Therefore, it is desirable to have principled

practitioner-centric strategies for identifying solver configuration(s) for solving large linear

systems.

The current dissertation presents a general practitioner-centric framework for (a) prob-

lem independent retrospective analysis, and (b) problem-specific predictive modeling of

performance data. Our retrospective performance analysismethodology introduces new

metrics such as area under performance-profile curve and conditional variance-based fine-

tuning score that facilitate a robust comparative performance evaluation as well as parame-

ter sensitivity analysis. We present results using this analysis approach on a number of pop-

ular preconditioned iterative solvers available in packages such as PETSc, Trilinos, Hypre,

iv

ILUPACK, and WSMP. The predictive modeling of performance data is an integral part

of our multi-stage approach for solver recommendation. Thekey novelty of our approach

lies in our modular learning based formulation that comprises of three sub problems: (a)

solvability modeling, (b) performance modeling, and (c) performance optimization, which

provides the flexibility to effectively target challenges such as software failure and multi-

objective optimization. Our choice of a “solver trial” instance space represented in terms

of the characteristics of the corresponding “linear system”, “solver configuration” and their

interactions, leads to a scalable and elegant formulation.Empirical evaluation of our ap-

proach on performance datasets associated with fairly large groups of solver configurations

demonstrates that one can obtain high quality recommendations that are close to the ideal

choices.

v

To my grandmother

vi

ACKNOWLEDGMENTS

A lot of people asked me how I felt after my dissertation defense. All I remember is that

I felt numb, but peaceful and content that it was finally over.Even though it was a rough

ride fraught with adversity, I have been fortunate enough tohave a number of friends and

mentors that helped me all through the way.

First and foremost, my sincere thanks to my Ph.D. advisor, Dr. Vivek Sarin, for guid-

ing me through this long process and helping me mature into anindependent researcher.

Even when I was having a lot of trouble finding a topic for my dissertation, he continued

to believe in me and support me. When I first proposed the idea of a recommendation sys-

tem for preconditioned iterative solvers, despite his apprehension about its feasibility, he

helped me pursue it. Dr. Sarin’s encouragement and support enabled me to obtain a wider

exposure to the research community as well as the critical research challenges in my area.

I have also been very fortunate to have had the opportunity towork with Dr. Anshul Gupta

during my IBM internships. He not only helped me grow as a researcher, but has been a

great friend and mentor. His feedback on my work and suggestions provided the basis for

much of this dissertation. Anshul’s high expectations pushed me to persevere in my work

and ultimately set higher standards for myself.

There are a number of other professors that have inspired andencouraged me, espe-

cially my masters advisor, Dr. Edward Luke, who believed in me in spite of my limited

computer science background, and Dr. Scott Pike, who rekindled in me the joy of learning

and research when I was getting frustrated during my quest for a thesis topic. Attending

Dr. Pike’s course also gave me valuable insight on asking theright research questions and

demonstrated the importance of effectively communicatingone’s ideas. I am also grateful

to Dr. Teresa Leyk, who was extremely understanding, and helped me with reduced teach-

ing assistant duties at times I needed it the most. I would also like to thank Dr. Valerie

vii

Taylor, Dr. Patrick Lynett, and Dr. Yoonsuck Choe for agreeing to serve on my committee

and for their helpful comments and constructive criticism.

I am glad to have had wonderful labmates Hemant, Kasthuri, Meiqui, Radhika, and

Xue, who were always willing to lend an empathetic ear to all my research woes, in ad-

dition to being great friends. My friends have always been the most important people in

my life, but especially so during the past few years of my graduate life. I am extremely

fortunate that I got to meet such nice people as Jaya, Anand, Syam, Lekshmi, Raghu, Rad-

hika, Sunita, Annie, Suju, Nitin, Pratheesh, Satish, Kums,Rupam, Ghosh, Girish, Rajith,

Jayashankar, Jerry, Jolly, Alex, TP, Julie, and Gabi. Special thanks to Girija Aunty for feed-

ing me through the last hectic months leading to my defense. Iwould also like to thank the

Computer Science department staff for taking care of all administrative issues, and I will

especially miss the love and affection of Kathy Flores and the friendly banter with Tony

Okoinski.

I am deeply indebted to my family members and Ramani Chechi for their love and

affection throughout my life. Nothing would have been possible without the love, support,

and dedication of my grandmother. I am what I am because of herefforts. My extended

family of uncles, aunts, and cousins both here in the USA and India also deserve special

thanks for their advice and moral support which helped me handle the various adversities

in life. Lastly, my wife, Srujana, deserves a special mention. She has been with me through

thick and thin as a friend and a life partner. Without her loveand encouragement throughout

these years, this dissertation would not have been possible.

viii

TABLE OF CONTENTS

Page

ABSTRACT .. iii

DEDICATION .. v

ACKNOWLEDGMENTS vi

TABLE OF CONTENTS viii

LIST OF TABLES .. xii

LIST OF FIGURES .. xvi

CHAPTER

I INTRODUCTION . 1

A. Practical Challenges in Solver Selection2
1. Lack of Theoretical Analysis 2
2. Complex Solver Configuration Space 3
3. Multiple Solver Selection Requirements 3
4. Problem-specific Solver Performance 3
5. Sparse Performance Data 4

B. Motivation for a Statistical Framework for Solver Selection . . 5
C. Overview of the Dissertation 6

1. Retrospective Comparative Analysis of Solver Per-
formance Data . 6

2. Multi-stage Learning-based Solver Recommendation
Approach . 8

3. Organization . 10

II RELATED WORK AND BACKGROUND 11

A. Iterative Solvers . 11
1. Stationary Iterative Methods 11

a. Jacobi . 12
b. Gauss-Seidel . 12
c. Successive Over Relaxation (SOR) 13
d. Applicability Conditions & Convergence Analysis . . 13

ix

CHAPTER Page

2. Krylov Subspace Methods 14
a. Conjugate Gradients Method (CG) 15
b. Generalized Minimal Residual Method (GMRES) . . 15
c. Applicability Conditions & Convergence Analysis . . 15

3. Multigrid Methods . 16
a. Applicability Conditions & Convergence Analysis . . 17

B. Preconditioners . 18
1. Level-based Incomplete Cholesky Factorization (IC(k)) . . 19
2. Threshold-based Incomplete Cholesky (ICT) 20
3. Sparse Approximate Inverse (SAI) 21
4. Algebraic Multigrid (AMG) 22

C. Scientific Software Selection 24
1. Expert Systems for Recommending Scientific Software . . 24
2. Learning-based Recommendation Systems 25
3. Adaptive Preconditioned Iterative Solvers 26

D. Machine Learning Techniques 27
1. Classification . 27

a. Decision Trees . 28
b. k-Nearest Neighbors (k-NN) 28
c. Support Vector Classification 29

2. Regression . 31
a. Linear Regression 31
b. Support Vector Regression 32

3. Feature Engineering . 33

III COMPARATIVE SOLVER PERFORMANCE EVALUATION . . . 36

A. Key Contributions . 36
1. Benchmarking Methodology 36
2. Performance Analysis Infrastructure 37
3. Extensive Empirical Evaluation 37
4. Good Default Configurations 37
5. Fine-tuning of Parameters 38
6. Choice of Package-preconditioner Combination 38
7. Parallel Performance . 38

B. Empirical Setup . 39
1. Software Packages . 39

a. PETSc - Release Version 2.3.3-p0 39
b. Trilinos - Release Version 8.0.3 39

x

CHAPTER Page

c. Hypre - Release Version 2.0.0 40
d. ILUPACK - Dev. Version 2.2 40
e. WSMP - Dev. Version 8.7 41

2. Matrix Reordering . 41
3. Test Matrices . 41
4. Solvers, Preconditioners, and Parameters 43
5. Hardware Specifics . 44
6. Experimentation Methodology 44
7. Performance Metrics . 45

a. Time Taken . 45
b. Memory Usage . 45
c. Relative Error Norm 46
d. Memory Time Product 46

C. Benchmarking Methodology 47
1. Solver Configurations and Performance Data 47
2. Performance Ratios . 48
3. Performance Profile . 49
4. Solver Quality Measure 51
5. Configuration Group Quality Measures 52

a. Problem Independent Best Performance 53
b. Problem Specific Best Performance 53

6. Hardware Configurations 54
7. Parallel Performance . 54

D. Results . 55
1. Performance Within Configuration Groups 55

a. Level-based Incomplete Factorization IC(k) 56
b. Threshold-based incomplete Cholesky 61
c. Algebraic Multigrid Methods 64
d. Sparse Approximate Inverse 74
e. Variation of Overall Best Configurations with

Number of Processors 79
2. Performance Benefits of Fine Tuning 82
3. Influence of Parameters on Solver Performance 86

a. Regression-based Sensitivity 86
b. Conditional Variance-based Sensitivity 87
c. Variance-based Fine-tuning Score 89
d. Correlated Parameters 95

4. Relative Performance of Preconditioner Implementations . 95

xi

CHAPTER Page

a. Problem Independent Best Configurations 96
b. Problem Specific Parameter Selection 106
c. Relative Strengths of Preconditioners and Sen-

sitivity to Parameter Tuning 112
5. Parallel Efficiency . 116

a. Effect of Efficiency on Preconditioner Density 118
b. Comparison Across Configuration Groups 123

E. Performance Analysis Infrastructure 124
1. Data Collection and Preprocessing Unit 124
2. Parameter Fine-tuning Analysis Unit 126
3. Intra-group Analysis Unit 127
4. Inter-group Analysis Unit 127

F. Discussion . 128

IV SOLVER RECOMMENDATION SYSTEM 130

A. Motivation . 131
B. Desiderata for a Solver Recommendation System 132

1. Prediction of Solver Failure 132
2. Interpretability via Performance Estimates 133
3. Robustness to Variability in Performance Metrics 133
4. Optimization of Multiple Hybrid Performance Criteria . .133
5. Fast and Memory Efficient Online Recommendations . . . 134
6. Cold Start Solution for Unseen Matrices 134

C. Problem Formulation . 135
1. Data Representation . 135

a. Linear System Features 135
b. Solver Configurations 135
c. Empirical Trials and Performance Metrics 136

2. Formal Problem Definition 136
a. Solvability Prediction 137
b. Performance Estimation 137
c. Top-k Solver Configurations 138

D. Multi-stage Learning Approach 138
1. Solvability Prediction . 139
2. Performance Prediction 140
3. Top-k Performance Ranking 141

E. Prototype Recommendation System 143
F. Discussion . 145

xii

CHAPTER Page

V EMPIRICAL EVALUATION OF RECOMMENDATION SYSTEM 149

A. Package Specific Modeling . 149
1. Performance Dataset . 149
2. Solvability Modeling . 151
3. Performance Modeling 152
4. Top-k Recommendations 155
5. Discussion . 157

B. Solver Configuration Group Specific Modeling 158
1. Performance Dataset . 158
2. Solvability Modeling . 161

a. Results on New Trials Over Train Matrices 162
b. Results on Unseen Test Matrices 162
c. Model Analysis . 167

3. Performance Modeling 168
a. Results on New Trials Over Train Matrices 169
b. Results on Unseen Test Matrices 169
c. Model Analysis . 172

4. Top-k Recommendations 180
a. Results on New Trials Over Train Matrices 180
b. Results on Unseen Test Matrices 188

5. Discussion . 197
C. Case Study: Sheet Metal Forming 202

VI CONCLUSION AND FUTURE WORK. 214

A. Contributions . 214
B. Future Work . 217

REFERENCES . 220

VITA . 230

xiii

LIST OF TABLES

TABLE Page

I Minimum and maximum values for time taken for preconditioner cre-
ation and solvingkyushuandaudikw1matrices for 470 iterative solver
configurations spanning multiple preconditioners and packages. The
table also shows the corresponding memory usage for storingthe pre-
conditioner as well as the linear system.. 4

II SPD test matrices with their order (N), number of non-zeros (NNZ)
and the application area of origin. 42

III Description of the package specific preconditioner parameters. 43

IV Hypothetical performance data with three solver configurations (s1,
s2, s3), three configuration groups (C1, C2, C3), and three problems
(p1, p2, p3). Solver configuration failures are represented with∞. 50

V List of acronyms used to denote various parameter choices.. 56

VI Solver configurations that resulted in the best memory, time, and MTP
performance profile area for IC(k) preconditioners in PETSc, Block-
Solve95, Hypre, and Trilinos for various numbers of processors (shown
in parenthesis). Expansions of the parameter acronyms can be found
in Table V. 57

VII Configurations that resulted in the best memory, time, and MTP per-
formance profile area for the ILUPACK MLICT and WSMP ICT pre-
conditioners. 61

VIII Iterative solver configurations that resulted in the best memory, time,
and MTP performance profile area for the AMG preconditionersin
Hypre and Trilinos. The numbers enclosed by parenthesis denote the
number of processors.. 69

xiv

TABLE Page

IX Iterative solver configurations that resulted in the bestmemory, time,
and MTP performance profile area for the ParaSails preconditioner in
Hypre. The numbers enclosed by parenthesis denote the processor
number corresponding to the overall best solver configurations. The
configuration names provide details on parameters such as number of
levels (Lev), threshold (Th), and filter (Flt).. 74

X Iterative solver configurations that resulted in the best overall perfor-
mance with respect to memory-time product profile area in theserial
case. 98

XI Iterative solver configurations that resulted in the bestoverall perfor-
mance with respect to memory-time product profile area in the64
processor case.. 98

XII Table showing the time (in seconds) and memory values (inmegabytes)
corresponding to the best problem specific memory-time product for
iterative and direct solvers in the single processor case. The bold val-
ues indicate the solver configuration for which the product of memory
and time was the lowest. 112

XIII Table showing the time (in seconds) and memory values (in megabytes)
corresponding to the best problem specific memory-time product for
iterative and direct solvers in the 64 processor case. The bold values
indicate the solver configuration for which the product of memory and
time was the lowest. 113

XIV Linear system features along with the p-values for the Pearson corre-
lation coefficient with respect to memory, time and solvability values
on randomly selected 20% training data.. 150

XV Description of the components of solver configuration.. 151

XVI Top 5 interaction features selected for classification,memory and time
prediction on a 20% training data. The features with an “is” prefix
are solver features.. 154

XVII SPD test matrices with their order (N), number of non-zeros (NNZ)
and the application area of origin. 159

xv

TABLE Page

XVIII SPD test matrices with their order (N), number of non-zeros (NNZ)
and the application area of origin. 160

XIX Linear system features extracted from the matrices for solvability and
performance modeling.. 160

XX Solver configuration groups used for learning individualmodels along
with the number of solver configurations, number of interaction fea-
tures, total number of trials used for learning solvabilityand perfor-
mance models.. 161

XXI Top 5 interaction features selected for solvability prediction in the
case of Trilinos ML. The components of the interaction features are
separated with a “:” and the solver features are prefixed witha “IS ”. . . . 167

XXII Top 5 interaction features selected for solvability prediction in the
case of WSMP ICT. The components of the interaction featuresare
separated with a “:” and the solver features are prefixed witha “IS ”. . . . 167

XXIII Top 20 interaction features selected for solvabilityprediction in the
case of Hypre ParaSails. The components of the interaction features
are separated with a “:” and the solver features are prefixed with a “IS ”. . 168

XXIV Top 20 interaction features selected for memory prediction in the case
of Trilinos ML. The components of the interaction features are sepa-
rated with a “:” and the solver features are prefixed with a “IS”. 175

XXV Top 20 interaction features selected for memory prediction in the case
of Hypre ParaSails. The components of the interaction features are
separated with a “:” and the solver features are prefixed witha “IS ”. . . . 176

XXVI Top 20 interaction features selected for memory prediction in the case
of WSMP ICT. The components of the interaction features are sepa-
rated with a “:” and the solver features are prefixed with a “IS”. 177

XXVII Top 20 interaction features selected for time prediction in the case of
Trilinos ML. The components of the interaction features areseparated
with a “:” and the solver features are prefixed with a “IS”. 178

xvi

TABLE Page

XXVIII Top 20 interaction features selected for time prediction in the case
of Hypre ParaSails. The components of the interaction features are
separated with a “:” and the solver features are prefixed witha “IS ”. . . . 178

XXIX Top 20 interaction features selected for time prediction in the case of
WSMP ICT. The components of the interaction features are separated
with a “:” and the solver features are prefixed with a “IS”. 179

xvii

LIST OF FIGURES

FIGURE Page

1 Performance profile curves for solver configurations in groupC1. 50

2 Serial memory and time profile curves for the Hypre IC(k) solver con-
figurations with RCM ordering, an unlimited number of additional
nonzeros per row, and various levels of fill.. 59

3 Serial memory and time profile curves for the PETSc IC(k) solver
configurations with RCM ordering, fill factor of 5, and various level
of fill parameters. 60

4 Serial memory and time profile curves for the Trilinos IC(k) solver
configurations with RCM ordering and various level of fill parameters. . 62

5 Memory and time performance profile curves for the overall best con-
figurations for Trilinos IC(k), PETSc IC(k), PETSc BlockSolve95,
and Hypre IC(k) in the serial case. 63

6 Memory and time performance profile variations for varyingvalues
of drop tolerance (DT) in the case of ILUPACK MLICT with RCM
ordering and inverse norm estimate value of 10.. 65

7 Memory and time performance profile variations for varyingvalues
of drop tolerance (DT) in the case of ILUPACK MLICT with RCM
ordering and inverse norm estimate value of 100.. 66

8 Memory and time performance profile variations for varyingvalues of
drop tolerance (DT) in the case of WSMP ICT with RCM ordering,
diagonal perturbation, and fill factor value of 4.9.. 67

9 Memory and time performance profile variations for variousordering
schemes with and without diagonal perturbation in the case of WSMP
ICT with drop tolerance 0.003 and fill factor 4.9.. 68

xviii

FIGURE Page

10 Memory and time performance profile curves for Hypre BoomerAMG
solver configurations for a strong threshold value of 0.25 inthe serial
case. The legends also provide details on the solver (CG), ordering
(RCM), number of levels of aggressive coarsening (AGG), andcoars-
ening schemes (FALG, PMIS).. 70

11 Memory and time performance profile curves for Hypre BoomerAMG
solver configurations for a strong threshold value of 0.9 in the se-
rial case. The legends provide details on the solver (CG), ordering
(RCM), number of levels of aggressive coarsening (AGG), andcoars-
ening scheme (FALG, PMIS).. 72

12 Time performance profile curves for Trilinos ML solver configura-
tions for different smoothing sweeps of symmetric Gauss-Seidel and
Chebyshev smoothers in the serial case. The legends providede-
tails on the solver (CG), ordering (RCM), and coarsening scheme
(UCMIS). 73

13 Time performance profile curves for Trilinos ML configurations using
the Chebyshev and symmetric Gauss-Seidel smoothers with various
coarsening schemes in the single processor case. The legends provide
details on the solver (CG), ordering (RCM), and smoother sweeps
(SS3). 73

14 Memory and time performance profile curves for the best Trilinos ML
SA, DD, and DD-ML configurations for RCM ordering in the single
processor case. 75

15 Memory and time performance profile curves for the overallbest Trili-
nos ML and Hypre BoomerAMG solver configurations. The leg-
ends provide details on the solver (CG), ordering (RCM), coarsening
scheme (PMIS, PMETIS), number of levels of aggressive coarsening
(10), and strong threshold values (0.9), ML preconditionertype (SA),
and the number of smoother sweeps (3).. 76

16 Memory and time performance profile curves for Hypre ParaSails
solver configurations corresponding to various threshold and filter val-
ues for a fixed number of levels (PLev0) and best MTP ordering (ND). . . 77

xix

FIGURE Page

17 Memory and time performance profile curves for Hypre ParaSails
solver configurations corresponding to various threshold and filter val-
ues for a fixed number of levels (PLev2) and best MTP ordering (ND). . . 78

18 Memory and time performance profile curves for Hypre ParaSails
solver configurations that resulted in the best MTP profile area for
a fixed ordering (ND) and level combination. The legends provide de-
tails on the solver (CG), number of levels (Lev), threshold (Th), and
filter (Flt). 80

19 Memory and time performance profile curves for the probleminde-
pendent best (PIB) and the problem-specific best (PSB) configurations
of ILUPACK MLICT and WSMP ICT. 81

20 Memory and time profile areas for the overall best (empty circles) and
the problem-specific best configurations (filled circles) ofHypre IC(k)
preconditioner for multiple processors.. 83

21 Memory and time profile areas for the overall best (empty circles)
and the problem-specific best configurations (filled circles) of PETSc
IC(k) preconditioner for multiple processors.. 83

22 Memory and time profile areas for the overall best (empty circles)
and the problem-specific best configurations (filled circles) of Trilinos
IC(k) preconditioner for multiple processors.. 84

23 Memory and time profile areas for the overall best (empty circles)
and the problem-specific best configurations (filled circles) of Hypre
BoomerAMG preconditioner for multiple processors.. 84

24 Memory and time profile areas for the overall best (empty circles) and
the problem-specific best configurations (filled circles) ofTrilinos ML
preconditioner for multiple processors.. 85

25 Memory and time profile areas for the overall best (empty circles)
and the problem-specific best configurations (filled circles) of Hypre
ParaSails preconditioner for multiple processors.. 85

26 Conditional variance based sensitivity scores of the parameters in a
preconditioner with respect to time and memory in the serialcase. 90

xx

FIGURE Page

27 Relative importance with respect to memory and time of thevarious
parameters for the different preconditioners in the parallel case. Each
curve in the subplots corresponds to a parameter that is varied in our study. 91

28 Average normalized variation with respect to memory and time for
each of the fine-tuneable parameters of the various preconditioners in
the serial case.. 92

29 Average normalized variation with respect to memory and time for the
fine-tuneable parameters of the various preconditioners inthe parallel
case. Each curve in the subplots corresponds to a parameter that is
varied in our study. 93

30 Conditional variance based sensitivity scores and variance based fine-
tuning scores with respect to memory and time for each of the fine-
tuneable parameters of Trilinos ML preconditioner in the serial case. . . . 96

31 Conditional variance based sensitivity scores and variance based fine-
tuning scores with respect to memory and time for each of the fine-
tuneable parameters of Trilinos ML preconditioner in the parallel case.
Each curve in the subplots corresponds to a parameter that isvaried in
our study. 97

32 Memory performance profile curves for the direct solver and the over-
all best memory-time product configurations of the various IC(k),
ICT, AMG, and SAI preconditioner implementations in PETSc,Trili-
nos, Hypre, ILUPACK, and WSMP for the single processor case.. 99

33 Memory performance profile curves for the direct solver and the over-
all best memory-time product configurations of the various IC(k),
AMG, and SAI preconditioner implementations in PETSc, Trilinos,
and Hypre for the 64 processor case.. 100

34 Time performance profile curves for the direct solver and the overall
best memory-time product configurations of the various IC(k), ICT,
AMG, and SAI preconditioner implementations in PETSc, Trilinos,
Hypre, ILUPACK, and WSMP for the single processor case.. 101

xxi

FIGURE Page

35 Time performance profile curves for the direct solver and the overall
best memory-time product configuration of the various IC(k), AMG,
and SAI preconditioner implementations in PETSc, Trilinos, and Hypre
for the 64 processor case.. 102

36 Memory-time product performance profile curves for the direct solver
and the overall best memory-time product configuration of the var-
ious IC(k), ICT, AMG, and SAI preconditioner implementations in
PETSc, Trilinos, Hypre, ILUPACK, and WSMP for the single proces-
sor case.. 103

37 Memory-time product performance profile curves for the direct solver
and the overall best memory-time product configuration of the vari-
ous IC(k), AMG, and SAI preconditioner implementations in PETSc,
Trilinos, and Hypre for the 64 processor case.. 104

38 Memory performance profiles for the direct solver and the memory
values corresponding to the best problem specific memory-time prod-
uct configuration of the various IC(k), ICT, AMG, and SAI precon-
ditioner implementations in PETSc, Trilinos, Hypre, ILUPACK, and
WSMP in the single processor case.. 108

39 Memory performance profiles for the direct solver and the memory
values corresponding to the best problem specific memory-time prod-
uct configuration of the various IC(k), AMG, and SAI preconditioner
implementations in PETSc, Trilinos, and Hypre in the 64 processor case.. 109

40 Time performance profiles for the direct solver and the time values
corresponding to the best problem specific memory-time product con-
figuration of the various IC(k), ICT, AMG, and SAI preconditioner
implementations in PETSc, Trilinos, Hypre, ILUPACK, and WSMP
in the single processor case.. 110

41 Time performance profiles for the direct solver and the time values
corresponding to the best problem specific memory-time product con-
figuration of the various IC(k), AMG, and SAI preconditioner imple-
mentations in PETSc, Trilinos, and Hypre in the 64 processorcase.. . . . 111

xxii

FIGURE Page

42 Plot of the time profile area versus the memory profile area for vari-
ous preconditioner implementations (single processor case). Each cir-
cle represents a preconditioner whose name consists of the first two
letters of the name of the package followed by the type of precondi-
tioner. The size of a circle is proportional to the number of problems
solved. The green (dark) circles correspond to profile areasfor the de-
fault parameter configuration and the yellow (light) ones correspond
to profile areas for problem-specific best parameters. If theyellow
and green circles overlap, it is shown as a brown circle.. 114

43 Plot of the time profile area versus the memory profile area for various
preconditioner implementations (64 processor case). Eachcircle rep-
resents a preconditioner whose name consists of the first twoletters of
the name of the package followed by the type of preconditioner. The
size of a circle is proportional to the number of problems solved. The
green (dark) circles correspond to profile areas for the default param-
eter configuration and the yellow (light) ones correspond toprofile
areas for problem-specific best parameters. If the yellow and green
circles overlap, it is shown as a brown circle.. 117

44 Average time efficiency for the preconditioner generation phase, the
iterative solution phase, and the overall time of Hypre IC(k) for vari-
ous level of fill values and RCM ordering.. 119

45 Average time efficiency for the preconditioner generation phase, the
iterative solution phase, and the overall time of Hypre BoomerAMG
for strong threshold values (ST0.25, ST0.5) for multiple aggressive
coarsening levels (AGG0, AGG10).. 120

46 Average time efficiency for the preconditioner generation phase, the
iterative solution phase, and the overall time of Hypre ParaSails for
various number of levels (Lev0, Lev1) and multiple threshold values
(Th0, Th0.1). 121

47 Average time efficiency corresponding to the PIB parameters of the
various preconditioner implementations. The legend namesconsists
of the first two letters of the name of the package followed by the type
of preconditioner. The size of a circle is proportional to the number
of problems solved.. 122

xxiii

FIGURE Page

48 Overview of the performance analysis infrastructure. Boxes represent
the processing units, dotted ellipses represent the input and output data
while the plots generated for visualization are represented by solid
ellipses. 125

49 Solvability Modeling . 140

50 Top-k Performance Ranking. 143

51 Prototype Solver Recommender System. 144

52 Classification error, sensitivity and specificity on testset for solvabil-
ity prediction for SVM, KNN and J48 classifiers on a trial with20%
training split averaged over 5 runs.. 153

53 Linear system-solver configuration bi-cluster for solvability. Blue in-
dicates solver failure, red indicates solver successes andgreen indi-
cates missing values.. 153

54 R2 statistic for memory and time prediction with varying training data
size averaged over 5 runs for multiple feature sets.. 155

55 Fraction of the true best choices for memory, time and memory-time
product that is present in top-k recommendations.. 156

56 Average improvement in the memory, time and memory-time product
due to fine-tuning over that of the PIB choice for multiple values ofk. . . 157

57 Classification error, precision, and recall for solvability prediction us-
ing SVM classifier on a 20% hold out set of new trials on seen ma-
trices for Trilinos ML, Hypre ParaSails, and WSMP ICT. The values
shown are averaged over 5 runs.. 163

58 Classification accuracy, precision, and recall for solvability prediction
using the best solvability model on trials comprising of unseen matri-
ces and solver configurations for Trilinos ML, Hypre ParaSails, and
WSMP ICT. 164

59 Improvement in classification accuracy and f-measure forsolvability
prediction for increasing number of trials on unseen matrices for Trili-
nos ML, Hypre ParaSails, and WSMP ICT.. 165

xxiv

FIGURE Page

60 Median relative error andR2 statistic for memory prediction for 20
% hold out set of new trials comprising of matrices in the training set
for Trilinos ML, Hypre ParaSails, and WSMP ICT. The performance
values are averaged over 5 runs.. 170

61 Mean Relative error andR2 statistic for time prediction for 20 % hold
out set of trials comprising of matrices in the training set for Trilinos
ML, Hypre ParaSails, and WSMP ICT. The performance values are
averaged over 5 runs.. 171

62 Median Relative error andR2 statistic for memory prediction using
the best memory model on trials comprising of unseen matrices and
solver configurations for Trilinos ML, Hypre ParaSails, andWSMP ICT. . 173

63 Mean Relative error andR2 statistic for time prediction using the best
memory model on trials comprising of unseen matrices and solver
configurations for Trilinos ML, Hypre ParaSails, and WSMP ICT. 174

64 Fraction of the true best choices for memory, time, and memory-time
product that is present in top-k recommendations for Trilinos ML (66
configurations) for the seen matrices. The precision valuesshown are
averaged over the solved problems over 5 runs.. 182

65 Average performance with respect to memory, time and memory-time
product for the recommended (REC) and problem specific best (PSB)
Trilinos ML configurations normalized by the correspondingproblem
independent best (PIB) values for the seen matrices. For each k, the
performance values are averaged over the solved problems for 5 runs. . . 183

66 Fraction of the true best choices for memory, time, and memory-time
product that is present in top-k recommendations for Hypre ParaSails
(99 configurations) for the seen matrices. The precision values shown
are averaged over the solved problems for 5 runs.. 184

67 Average performance with respect to memory, time and memory-time
product for the recommended (REC) and problem specific best (PSB)
Hypre ParaSails configurations normalized by the corresponding prob-
lem independent best (PIB) values for the seen matrices. Foreachk,
the performance values are averaged over the solved problems for 5 runs.. 185

xxv

FIGURE Page

68 Fraction of the true best choices for memory, time, and memory-time
product that is present in top-k recommendations for WSMP ICT (64
configurations) for the seen matrices. The precision valuesshown are
averaged over the solved problems for 5 runs.. 186

69 Average performance with respect to memory, time and memory-time
product for the recommended (REC) and problem specific best (PSB)
WSMP ICT configurations normalized by the corresponding problem
independent best (PIB) values for the seen matrices. For each k, the
performance values are averaged over the solved problems for 5 runs. . . 187

70 Fraction of the true best choices for memory, time, and memory-time
product that is present in top-k recommendations for Trilinos ML (66
configurations) in the case of unseen matrices. The precision values
are averaged over the solved problems.. 189

71 The number of true best choices for memory, time, and memory-time
product that is present in top-k recommendations for Trilinos ML (66
configurations) in the case ofaudikw1, ldoor, mstamp-2c, and90153
matrices.. 190

72 Average performance with respect to memory, time and memory-time
product for recommended (REC) and problem specific best (PSB)
Trilinos ML configurations normalized by the correspondingproblem
independent best (PIB) values for the unseen matrices. For eachk, the
performance values are averaged over the solved problems.. 191

73 Performance with respect to memory, time and memory-timeprod-
uct for thekth recommended (REC) and problem specific best (PSB)
Trilinos ML configurations foraudikw1, ldoor, mstamp-2c, and90153
matrices. Where applicable, the problem independent best (PIB) per-
formance values are also plotted.. 192

74 Fraction of the true best choices for memory, time, and memory-time
product that is present in top-k recommendations for Hypre ParaSails
(99 configurations) in the case of unseen matrices. The precision val-
ues shown are averaged over the solved problems.. 193

xxvi

FIGURE Page

75 The number of true best choices for memory, time, and memory-time
product that is present in top-k recommendations for Hypre ParaSails
(99 configurations) in the case ofaudikw1, ldoor, mstamp-2c, and
90153matrices. 194

76 Average performance with respect to memory, time and memory-time
product for recommended (REC) and problem specific best (PSB)
Hypre ParaSails configurations normalized by the corresponding prob-
lem independent best (PIB) values for the unseen matrices. For each
k, the performance values are averaged using the solved problems. 195

77 Performance with respect to memory, time and memory-timeprod-
uct for thekth recommended (REC) and problem specific best (PSB)
Hypre ParaSails configurations foraudikw1, ldoor, mstamp-2c, and
90153 matrices. Where applicable, the problem independent best
(PIB) performance values are also plotted.. 196

78 Fraction of the true best choices for memory, time, and memory-time
product that is present in top-k recommendations for WSMP ICT (64
configurations) in the case of unseen matrices. The precision values
shown are averaged over the solved problems.. 198

79 The number of true best choices for memory, time, and memory-time
product that is present in top-k recommendations for WSMP ICT (64
configurations) in the case ofaudikw1, ldoor, mstamp-2c, and90153
matrices.. 199

80 Average performance with respect to memory, time and memory-time
product for recommended (REC) and problem specific best (PSB)
WSMP ICT configurations normalized by the corresponding problem
independent best (PIB) values for the unseen matrices. For eachk, the
performance values are averaged over the solved problems.. 200

81 Performance with respect to memory, time and memory-timeprod-
uct for thekth recommended (REC) and problem specific best (PSB)
WSMP ICT configurations foraudikw1, ldoor, mstamp-2c, and90153
matrices. Where applicable the problem independent best (PIB) per-
formance values are also plotted.. 201

xxvii

FIGURE Page

82 Classification accuracy, precision, and recall for solvability prediction
using the best solvability model on trials comprising of domain spe-
cific unseen matrices and solver configurations for TrilinosML and
WSMP ICT. 203

83 Median relative error andR2 statistic for memory prediction using the
best memory model on trials comprising of domain specific unseen
matrices and solver configurations for Trilinos ML and WSMP ICT. . . . 204

84 Mean Relative error andR2 statistic for time prediction using the best
time model on trials comprising of domain specific unseen matrices
and solver configurations for Trilinos ML and WSMP ICT.. 205

85 The number of true best choices for memory, time, and memory-time
product that is present in top-k recommendations for Trilinos ML (66
configurations) in the case ofaf 1 k101, af 3 k101andaf 5 k101matrices. 206

86 The number of true best choices for memory, time, and memory-time
product that is present in top-k recommendations for WSMP ICT (64
configurations) in the case ofaf 1 k101, af 3 k101, andaf 5 k101matrices. 207

87 Performance with respect to memory, time and memory-timeprod-
uct for thekth recommended (REC) and problem specific best (PSB)
Trilinos ML configurations foraf 1 k101. Where applicable the prob-
lem independent best (PIB) performance values are also plotted. 208

88 Performance with respect to memory, time and memory-timeprod-
uct for thekth recommended (REC) and problem specific best (PSB)
Trilinos ML configurations foraf 3 k101. Where applicable the prob-
lem independent best (PIB) performance values are also plotted. 209

89 Performance with respect to memory, time and memory-timeprod-
uct for thekth recommended (REC) and problem specific best (PSB)
Trilinos ML configurations foraf 5 k101. Where applicable the prob-
lem independent best (PIB) performance values are also plotted. 210

90 Performance with respect to memory, time and memory-timeprod-
uct for thekth recommended (REC) and problem specific best (PSB)
WSMP ICT configurations foraf 1 k101. Where applicable the prob-
lem independent best (PIB) performance values are also plotted. 211

xxviii

FIGURE Page

91 Performance with respect to memory, time and memory-timeprod-
uct for thekth recommended (REC) and problem specific best (PSB)
WSMP ICT configurations foraf 3 k101. Where applicable the prob-
lem independent best (PIB) performance values are also plotted. 212

92 Performance with respect to memory, time and memory-timeprod-
uct for thekth recommended (REC) and problem specific best (PSB)
WSMP ICT configurations foraf 5 k101. Where applicable the prob-
lem independent best (PIB) performance values are also plotted. 213

1

CHAPTER I

INTRODUCTION

A fundamental step in most scientific and engineering simulations is the solution of sys-

tems of linear equations of the formAx = b, whereA ∈ Cm×n is typically known as

the coefficient matrix,b ∈ Cm is the right hand side vector (RHS) andx ∈ Cn is the

vector of unknowns. Large sparse linear systems involving millions and even billions of

equations are becoming increasingly common in a number of problems arising from the

discretization of PDEs, structural analysis, electric circuit simulations, linear and non lin-

ear programming, etc. These systems of equations can be solved using eitherdirect or

iterativemethods. Direct solvers, which are based on factoring the coefficient matrix into

invertible factors , are fast and robust, but are often not suitable for large three-dimensional

problems due to their prohibitive computational and memoryrequirements. This limitation

combined with the need to solve ever increasing sizes of linear systems has fueled a strong

interest in iterative solvers that typically require much lesser memory and fewer computa-

tions [28]. However, iterative solvers are often plagued byfailure and/or poor convergence

and need to be coupled with carefully chosen and fine-tuned preconditioners for robust

performance.

Decades of research has culminated in a wide range of iterative schemes and precondi-

tioners for solving large sparse linear systems. As a result, practitioners now have access to

an overwhelming number of choices of efficient implementations of various preconditioned

iterative solvers in several black-box solver packages, such as PETSc [4], Trilinos [45],

ILUPACK [57],Hypre [1], and many others [25]. However, for most of these solvers, there

is no guarantee of success on large, complex matrices and it is extremely important to

The journal model is SIAM Journal of Scientific Computing.

2

choose the right parameters in order to achieve convergence. Often, even when the solver

converges to the correct solution, there can be a wide disparity in the performance met-

rics such as computation time and memory usage for differentchoices of parameters. For

example, the linear systemaudikw1 could be solved, within a memory and time limit of

16GB and 4 hours, by only 7 out of a total of 99 configurations that we experimented with

for Hypre ParaSails configurations. Further, the memory andtime values exceed the best

values by up to a factor of 3 even among the 7 solved cases. Therefore, fine-tuning the

preconditioner/solver parameters is critical both for ensuring the robustness of the solution

as well as improving the performance of the preconditioned-solver in terms of the compu-

tation time, the memory resources, the accuracy of the solution and the number of iterations

required.

A. Practical Challenges in Solver Selection

Choosing the appropriate scheme and fine-tuning the parameters for a particular linear

system is an important, but highly challenging task even forexperts in computational linear

algebra and remains a blend of art and science due to variety of reasons that we discuss

below.

1. Lack of Theoretical Analysis

The huge diversity among the existing preconditioners (e.g., IC(k), ICT, AMG, SAI) makes

it difficult to analyze them in a unified theoretical model. There is also, often, a significant

variability in the different implementations of the same preconditioner in different solver

packages (e.g., PETSc IC(k), Trilinos IC(k), and Hypre IC(k)), which limits the utility of

a purely theoretical analysis.

3

2. Complex Solver Configuration Space

A preconditioned iterative scheme, in general, has many elements — choice of package,

solver algorithm, matrix re-ordering, preconditioner andvarious parameters specific to the

preconditioner choice, resulting in a large and fairly heterogeneous solver configuration

space. An exhaustive search over this space for optimal parameters using a simple trial and

error strategy is non-trivial since some of the parameters could be continuous, discrete, or a

nested/linear combination of both. Mutual dependencies among the solver/preconditioner

parameters further exacerbate this difficulty by requiringa simultaneous exploration of the

correlated parameters.

3. Multiple Solver Selection Requirements

Selection of a suitable solver is also, often, complicated by the fact that there is no universal

“goodness” criteria and the appropriate solver(s) is determined by the optimization criterion

specific to the application in consideration. For example, in one case, the best choice could

be the fastest solver that provides the correct solution up to a certain relative error whereas

in another scenario, the best choice could be the one that provides the best error within 4

hours of run time. Often, the application-specific optimization criterion is a hybrid function

of multiple performance criteria, e.g., memory-time product, that can include constraints

arising due to hardware limitations resulting in a large number of possible “goodness”

criteria, each with its own set of suitable solvers for a given linear system.

4. Problem-specific Solver Performance

Empirical studies indicate that the effectiveness and performance of preconditioned itera-

tive solvers is highly dependent on the linear system in consideration. For example, Table I

shows the minimum and maximum values for the total time required for preconditioner cre-

4

ation and solving linear systemskyushuandaudikw1 using 470 solver configurations span-

ning multiple preconditioners and packages (See Chapter III). The corresponding memory

usage is also shown. The huge variations among the minimum and maximum values high-

light the benefits of problem-specific fine-tuning. Therefore, simplistic solver selection

strategies that disregard the linear system characteristics are of limited value. On the other

hand, determining the optimal solver choices for the entirespace of linear systems is non-

trivial as there exists limited domain knowledge on the correlations between linear system

properties and solver performance. This issue is especially critical in case of applications

that require solution of a series of linear systems with the coefficient matrices changing

gradually since the set of parameters that are best for the first system may not be suitable

for the latter ones.

Table I. Minimum and maximum values for time taken for preconditioner creation and solv-

ing kyushuandaudikw1 matrices for 470 iterative solver configurations spanning

multiple preconditioners and packages. The table also shows the corresponding

memory usage for storing the preconditioner as well as the linear system.
Matrix Metric Minimum Maximum

kyushu
Time (s) 32.66 3891.68

Memory (MB) 4547.04 6794.12

audikw 1
Time (s) 336.16 10390.40

Memory (MB) 959.318 9327.76

5. Sparse Performance Data

The main utility in solver selection is for solving large linear systems, where one cannot

afford to waste computational resources with a sub-optimalsolver or multiple attempts.

However, the huge requirements of memory and time resourcesalso severely limit the

collection of empirical performance data in such scenarios, which in turn limits our ability

to glean insights on solver performance for different typesof linear systems.

5

B. Motivation for a Statistical Framework for Solver Selection

In the past, there have been some attempts to analyze iterative solvers from a theoretical

perspective, for example, the excellent survey articles byBenzi et al. [8] and van der Vorst

et al. [73] describe the relative strengths and weaknesses of a wide range of preconditioned

iterative schemes. However, the connections observed are far from being actionable by

practitioners, especially given the huge variations in different package implementations of

the same preconditioner, which are not discussed in these articles. This limitation of a

purely theoretical approach has prompted a few empirical studies [9, 18, 34] on precondi-

tioned iterative solvers, but these studies deal only with variants of an in-house implemen-

tation of a single preconditioner, providing little insight on the relative performance across

preconditioners. So far, there has not been a thorough empirical evaluation of the read-

ily available implementations of most common classes of preconditioners, most likely due

to the extensive computational and software engineering effort involved in solving large

matrices using a large number of iterative solver configurations.

On the other hand, recent technological advances have resulted in the creation of large

linear systems leading to widespread adoption of iterativesolvers, making it extremely im-

portant to provide guidance to practitioners, who currently rely on limited domain knowl-

edge and ad hoc mechanisms for fine-tuning preconditioner parameters. Hence, there is an

immediate need for a practitioner-centric empirical evaluation of the commonly used gen-

eral purpose preconditioners available in black-box solver packages, especially for large,

complex linear systems. Since such linear systems typically require significant computa-

tional resources and have a low solvability rate, the resulting data is often sparse and noisy.

Analyzing such data entails a principled comparative methodology based on an informa-

tive representation of the solver configuration space and robust statistical metrics that are

aligned to common practitioner decisions.

6

From the discussion on practical issues, it is also clear that fine-tuning solver config-

urations using linear system characteristics can provide significant performance improve-

ments. Motivated by this promise, a number of recommendation systems have been pro-

posed for software selection in scientific computing [49, 84] and in particular, for selection

of sparse solvers [10, 13, 87]. However, these approaches have been demonstrated to be

effective only for scenarios, where (1) one can obtain extensive performance data easily

(i.e., training data is not sparse), and (2) the problems arerestricted to a small homoge-

neous domain. Furthermore, the existing solver recommendation approaches [10, 13, 87]

are based on simplistic formulations of solver selection interms of classification and are

capable only of providing highly coarse recommendations based on a single performance

criterion. Since fine-grained optimization of parameters over multiple selection criteria is

often required in practice, it is highly desirable to have a principled statistical methodology

for choosing suitable “fully specified” solver configurations (i.e., pre-processing choices,

preconditioner, iterative solver, and the associated parameters) for a specified linear system,

in other words, an intelligent solver recommendation system.

C. Overview of the Dissertation

The primary goal of this dissertation is to develop methodologies and systems that can

provide guidance to practitioners on choosing the best iterative solver configurations for

any given linear system, while taking into account practical application requirements and

constraints. The dissertation consists of two main parts, which are described below.

1. Retrospective Comparative Analysis of Solver Performance Data

The first part is an attempt to address the inadequacies in existing empirical studies and

comprises of an extensive practitioner-centric comparative evaluation of a number of pop-

7

ular and promising general purpose preconditioners available in black-box solver packages

over large linear systems chosen from a variety of domains. The typical solver selection

modus operandi of practitioners is a multi-step process where the solver package and pre-

conditioner are chosen first based on the target architecture (e.g., AIX, Linux), implemen-

tation specifics (e.g., MPI, OpenMP, C, C++), resource constraints (e.g., available memory)

and available domain information on linear system properties, followed by refinement of

one or more preconditioner parameters using heuristics or atrial and error policy. In order

to make the optimal decision, practitioners require guidance on questions such as:

• How do the different package/preconditioners compare witheach other and the direct

solver with respect to time and memory?

• Does the relative performance change when parameters are fine-tuned?

• What is a good default configuration for each preconditionerin a package?

• For each package/preconditioner, what are the most sensitive parameters that can be

fine-tuned for a specific linear system to improve performance?

• How do the answers to the above questions differ in a parallelsetting?

To address these questions, we introduce a fairly general and rigorous methodology

for retrospective analysis of performance data that allows(a) a robust comparison of solver

configurations, or groups thereof, using area under performance-profile curve, (b) iden-

tification of the problem-independent best configuration within each solver configuration

group for a given performance criterion, (c) estimation of the impact of fine-tuning various

parameters using a suitable conditional variance measure.Based on this methodology, we

developed a semi-automated system for the collection, analysis, and visualization of solver

performance data that can be used to perform various comparative and sensitivity analyses

8

within and across pre-specified groups of solver configurations. This system was used to

evaluate incomplete factorization, sparse approximate inverse, and the algebraic multilevel

schemes available in packages such as PETSc, Trilinos, Hypre, ILUPACK, and WSMP

along multiple dimensions such as robustness, speed and memory consumption both for

serial and parallel settings, where possible. The results of this comparative analysis (pre-

sented in Chapter III) provide detailed guidance on choice of preconditioners and parame-

ters that could be useful to practitioners, and also highlight potential areas of improvement

in each solver package that could be beneficial to the software developers. Even though,

the comparative methodology is targeted towards iterativesolver selection, the key ele-

ments of our approach, for example metrics such as area underperformance-profile curve,

fine-tuning score, are readily generalizable to other software selection scenarios involving

a complex space of software options.

2. Multi-stage Learning-based Solver Recommendation Approach

The second part of the dissertation focuses on linear system-specific predictive modeling

of solver performance with the objective of providing recommendations on solver configu-

rations. Though analogous to the typical user-item recommendation problem often studied

in machine learning literature, the solver recommendationproblem poses a unique set of

challenges resulting from solver failure, huge variationsin performance metrics, multi-

ple/hybrid selection criteria, user interpretability requirements, and necessity of high qual-

ity cold start predictions, which make it impractical to directly employ existing techniques.

To address these issues, we propose a novel multi-stage learning based methodology for

determining the “best” solver configuration(s) given the user constraints and the desired

performance behavior for any given linear system.

Our formulation of the solver recommendation problem comprises of three key sub-

problems: (a) solvability modeling, (b) performance modeling, and (c) performance opti-

9

mization. This decomposition allow one to readily address challenges arising from solver

failure and multi-objective optimization. Our choice of instance space comprising of solver

trials, i.e., pairs of linear systems and solver configurations, represented as vector of char-

acteristics of linear systems, solver configuration parameters and their mutual interactions

(a key distinction relative to existing approaches) also results in a fairly elegant formulation

that is readily scalable with respect to the space of linear systems and solver configurations,

while addressing practical concerns of users such as interpretability. Specifically, the solv-

ability model based on an intrinsic performance criterion is used to filter out failure-prone

configurations before modeling the performance statistics. Further, to accommodate opti-

mization of multiple criteria, we separately learn models for each of the core performance

statistics (e.g., time/memory/error). Standard classification and regression techniques aug-

mented with latent factors are used to learn the solvabilityand performance models after

suitable transformation of performance data. The optimization step involves combining

the learned performance models to identify the top solver choices for the specified perfor-

mance criteria. For the case, where generalized linear regression is employed to model

the core performance statistics, we also propose an efficient methodology for identifying

the top-k solver choices for multiplicative combinations of the coreperformance statistics

using monotonic rank aggregation techniques.

We implemented the proposed methodology as a modular self-learning solver recom-

mender system with specialized components dedicated to data collection, feature genera-

tion, offline learning and online recommendation unit. Using this system, we evaluated the

key aspects of the proposed approach on different subsets ofsolver performance data using

models at different levels of granularity. The resulting solver recommendations demon-

strate the efficacy and potential promise of our approach. Asin the case of the first study,

the proposed solver recommendation methodology can also bereadily adapted to other

software selection scenarios when there is sufficient domain knowledge on the informative

10

problem and software characteristics.

3. Organization

The rest of the dissertation is organized as follows: Chapter II provides a survey of the state

of the art in iterative solvers, preconditioners, black-box solver packages as well as a brief

review of existing approaches for using machine learning techniques for scientific software

selection. It also includes some background material on classification, regression and fea-

ture selection techniques that are later employed in our solver recommendation approach.

Chapter III presents various components of our novel practitioner-centric methodology for

retrospective performance analysis, as well as a description of the performance analysis

infrastructure. The results obtained by analyzing performance data from a wide range of

preconditioned iterative schemes on a set of benchmark problems are also presented in this

chapter. Chapter IV discusses the key desiderata for a solver recommendation system and

presents details of our multi-step learning based methodology as well as prototype system

for identifying the best solver configurations given a linear system and user requirements.

Chapter V provides an empirical evaluation of various aspects of the proposed solver rec-

ommendation system for two scenarios that differ in the granularity of the solver config-

uration and linear system space. Chapter VI summarizes the main contributions of the

dissertation and discusses possible extensions involvingactive collection of performance

data, optimization over a continuous solver configuration space and applications to broader

software selection scenarios.

11

CHAPTER II

RELATED WORK AND BACKGROUND

In this section we describe the state of the art in iterative solvers, preconditioners, black-box

solver packages for solving linear systems, and also discuss the various machine learning

techniques used in expert systems for scientific software.

A. Iterative Solvers

Over the years, a number of iterative solvers have been developed and these are currently

the best known methods to deal with very large sparse matrices. The methods range from

simple stationary iterative methods to more complex methods such as Krylov subspace

methods and multigrid techniques. The applicability and effectiveness of a few of the

iterative solvers in these main classes is described in moredetail in the following sections.

1. Stationary Iterative Methods

Stationary iterative methods such as Jacobi, SOR involve some form of splitting of the

coefficient matrix and the solution at thejth iteration is represented as a linear combination

of the solution of thej − 1th iteration. These methods can be written in the general form

Cdi+1 = ri, (2.1)

xi+1 = xi + di+1, i = 0, 1, 2 · · · (2.2)

whereri = b − Axi is typically known as the residual,di+1 is the correction at theith

iteration, andC is a matrix which depends onA and the choice of the specific method.

12

WhenA = C − R, the above equations can also be written in the alternative form :

xi+1 = C−1Rxi + C−1b. (2.3)

Let the coefficient matrixA = L + D + U , where D is the diagonal (assumed to be

without any zero elements),L is the strict lower triangular part, andU is the strict upper

triangular part ofA. Jacobi, Gauss-Seidel, and SOR methods differ in the choiceof the

splitting matrixC and are described in more detail below.

a. Jacobi

The Jacobi method corresponds to the simple form where the matrix C = CJ is the diagonal

D of the coefficient matrixA. From equation (2.3), we observe that the(i + 1)th iteration

involves inverting a diagonal matrix. Even though there might exist other methods that

provide faster convergence in a serial environment, Jacobimethods might be preferable for

massively parallel systems (for example, electronic structure simulation) either as a solver

or preconditioner mainly due to the embarrassingly parallel nature of the algorithm.

b. Gauss-Seidel

Gauss-Seidel method (GS) improves on the Jacobi method by including all the new values

generated till the(i − 1)th iteration in correcting theith component of the residual vec-

tor. For GS iterations, the matrixC = CGS is either the lower triangular portion ofA,

i.e.,L + D (forward GS) or the upper triangular portion ofA, i.e.,D + U (backward GS).

There also exist symmetric GS iterative schemes where each iteration consists of a forward

GS followed by a backward GS. In any implementation of the GS method, one needs to

keep track of the new and old variables. Different implementations differ in the order in

which the variables are updated. Two most commonly used orderings arered-blackand

natural ordering. The ordering chosen for implementation is important since it affects the

13

convergence behavior.

c. Successive Over Relaxation (SOR)

SOR method is an improvement on the GS method since it uses a weighted average of new

and old values for updating. SOR is based on the splitting of the matrixA = ((D + ωL) +

(ωU− (1−ω)D))/ω, 0 < ω < 2. If ω < 1, then it is calledunder relaxationand ifω > 1,

then it is calledover relaxation. In general, it is not easy to compute the optimal value

of ω that maximizes the convergence. In practice, adaptive methods are used to converge

to the optimal value starting from an initial guess either using simple heuristics or using

knowledge of the underlying problem domain.

d. Applicability Conditions & Convergence Analysis

(a) If the matrix A isstrictly diagonally dominant(i.e., each diagonal element is larger

than the sum of the magnitudes of off-diagonal elements in its row), the Jacobi and

GS iterations are guaranteed to converge. WritingC−1R asG, we can say that in fact

||GGS||∞ ≤ ||GJ ||∞ < 1. A similar statement can be made even for column diagonally

dominant matrix. The lower the value of the||.||, the faster the convergence.

(b) If the matrix A is irreducible and weakly diagonally dominant, the Jacobi and GS

iterations converge andρ(RGS) < ρ(RJ) < 1. A smaller value for the spectral radius

ρ indicates faster convergence, a value close to1 implies poor convergence and a value

greater than1 indicates divergence.

(c) GS and Jacobi methods are found to converge even for matrices that do not satisfy

conditions (a) and (b). However, it is necessary that the diagonal terms inA are greater

in magnitude than the off-diagonal terms which can be achieved by reordering.

14

(d) Even though for special cases (a) and (b), the GS method isfaster than the Jacobi

method, this is not true in general. There exist non-symmetric matrices for which the

Jacobi method converges while GS method diverges and vice versa [82].

(e) If A is symmetric positive definite (SPD), SOR converges for all ω in the range0 <

ω < 2. If A is not SPD, then the above condition is just necessary and not a sufficient

condition for convergence. The rate of convergence dependson the choice ofω and

the reordering scheme used. Since GS is a special case of SOR whereω = 1, GS also

converges for SPD matrices.

In the past, stationary iterative methods were used for mostcomputational simulations.

However, in recent years they are slowly being replaced by preconditioned Krylov subspace

methods due to their superior convergence rate [6]. Nowadays, these stationary methods

are commonly used as preconditioners for Krylov subspace methods or as smoothers for

multigrid based solvers since they are relatively inexpensive.

2. Krylov Subspace Methods

Krylov subspace methods such as CG and GMRES are characterized by the subspaces in

which the solution iteratesxj lie. Themth Krylov subspace for a given matrixA and vector

r0 is given by the following:

Km(A, r0) = span{r0, Ar0, A
2r0, · · ·A

m−1r0} (2.4)

Various Krylov subspace methods differ in the criteria theyuse in selecting a vector in the

subspace.

15

a. Conjugate Gradients Method (CG)

The Conjugate Gradients (CG) method picks thejth solution iteratexj to be the vector that

minimizes theA-norm (i.e.,||x− xi||A = (x− xi), A(x− xi)) of the error over the Krylov

subspace for any SPD coefficient matrixA. The new residual is orthogonal to the space

of previously generated residuals or some related space. The main advantage of CG is its

low computational and memory requirements. The CG method has also been applied to

general unsymmetric matrices by applying it to the normal equations (CGNE) or normal

residual (CGNR) formulation of the linear system. CG can be applied in this case because

even though the matrixA is unsymmetric, the productAAT or AT A is SPD.

b. Generalized Minimal Residual Method (GMRES)

The GMRES method picksxj to be the vector that minimizes the two norm of the residual

over the Krylov subspace. At each iteration, GMRES generates one dimension of an or-

thonormal basis for the Krylov subspaceKi(A, r0). The residual norm,||ri||2, is minimized

via a least squares problem. A major drawback for this methodis that the computation cost

increases linearly with iteration count since all the basisvectors of the Krylov subspace

have to be stored to guarantee convergence. To alleviate theproblem with storage require-

ments, restarted versions of GMRES are used in practice.

c. Applicability Conditions & Convergence Analysis

CG: If A is SPD then, CG is guaranteed to converge in a finite numberof iterations.

Specifically, there exists a pessimistic bound on the numberof iterations required for re-

ducing the error by a fixed factor which is proportional to thesquare root of the condition

number. However, in practice CG converges to the pre-specified tolerance in much fewer

iterations. This practical behavior is explained based on the eigen value distribution of the

16

coefficient matrix. A general rule of thumb is that if the largest and smallest eigen values

of A are clustered closely together, then the CG method would converge quickly. Con-

vergence of CG method, in practice, might differ from that inexact arithmetic [23]. The

hope is that as long as the matrix is not too ill-conditioned,the floating point result would

ultimately converge to the desired solution. The CG method is best suited for applications

producing SPD matrices. Target applications include matrices from structural engineering

simulations of offshore platform, suspension bridges, buildings, etc.

GMRES: For any positive definite matrix (i.e., the symmetric part of(A + AT)/2 is

SPD), GMRES will eventually converge. For PD matrices that are normal (i.e.,AAT =

AT A) there exists bounds based on the condition number or eigen values for the residual

afterm GMRES iterations. There does not exist any simple analysis in terms of eigen val-

ues ofA or condition number of the eigen vector matrix for general unsymmetric matrices.

Greenbaum et al. [35] established that for highly non-normal matrices with the same spec-

trumanyconvergence behavior is possible. In practice, the restarted version of GMRES is

often used and there does not exist any theoretical explanation for its convergence behavior.

The convergence properties vary greatly with the choice of the restart value [18]. Precon-

ditioning techniques that reduces the number of iterationscould become really useful for

using low values for restart. There are a number of applications that produces unsym-

metric matrices and GMRES is a natural choice for these domains such as circuit physics

modeling, chemical kinetics, oil reservoir simulation, economic modeling etc.

3. Multigrid Methods

Multigrid methods, even though originally developed for the solution of discretized ellip-

tic PDEs, are now applicable to a more general class of problems. The main idea in this

approach is to represent the residuals as composed of low andhigh frequency modes. The

use of an iterative method (smoothing) reduces the high frequency components quickly

17

and produces an approximate solution. This solution on the fine grid is then restricted to a

coarse grid where the previous low frequency components of the residual in the fine grid

becomes high frequency components in the coarse grid (restriction). This is recursively ap-

plied to a few more coarser levels and then interpolated backto the fine grid (prolongation).

An algebraic version of multigrid method has been developedfor use in black box solvers,

which uses the properties in the coefficient matrix alone anddoes not assume the existence

of underlying meshes. Multigrid methods may be used as a solver or as a preconditioner

with Krylov subspace methods.

a. Applicability Conditions & Convergence Analysis

The fundamental assumption for geometric multigrid methods is the availability of an un-

derlying mesh. Algebraic Multigrid (AMG) methods address this limitation by defining

the interpolation and prolongation operators in an algebraic way. In practice, AMG has

been shown to be applicable for a wide range of matrices. However, careful tuning of the

different parameters (restriction, prolongation operators, smoothers, number of levels, etc.)

are often needed to improve the convergence rate for most real life applications.

Convergence results exists for multigrid methods for problems ranging from simple

differential operators such as Poisson operators on structured grids to self adjoint elliptic

PDEs on arbitrary domains. For this class of problems, the convergence rate of multigrid

methods is independent of the problem size which is almost optimal except for the hid-

den constant, i.e., the work required to solve the system is proportional to the number of

unknowns and the number of iterations required to solve remains almost constant. Some

of the applications where multigrid techniques have been successfully employed include

image segmentation, quantum chemistry, structured grid generation, and VLSI design.

For all these iterative solvers, there exists theoretical knowledge on the convergence

behavior only for a narrow class of problems and generalization to general SPD and unsym-

18

metric matrices is non-trivial. Since there is no single best method that is suited for all the

problems [61], researchers have developed different preconditioners/pre-processing steps

to improve convergence while using minimal computational and memory resources. If the

problem under consideration belongs to a class for which there exist theoretical bounds on

convergence, then one could make a judicious choice on the iterative method needed to

solve. However, in the case of general SPD and unsymmetric linear systems, there are a

number of methods that are possible candidates and whether amethod is applicable or not

is usually determined from experience gained in performingempirical studies.

B. Preconditioners

A preconditioner broadly refers to an explicit or implicit scheme that modifies the orig-

inal linear system such that it is easier to solve using an iterative method. For example,

solvingAx = b is equivalent to solvingM−1Ax = M−1b for a non-singular matrixM .

If M−1 ≈ A−1, then the preconditioned linear system has better spectralproperties, thus

achieving faster convergence rate for iterative methods, while ensuring that the original

solution remains unchanged. An ideal general purpose preconditioner should have the fol-

lowing characteristics for successful deployment in a black-box iterative solver package.

• Effectiveness:The use of a preconditioner should result in a reduction in the cost of

computing the solution which is often measured as the numberof iterations. How-

ever, this is an effective indicator only if it is accompanied by a reduction in the total

time needed for obtaining the solution, because preconditioned iterations tend to be

more expensive than un-preconditioned ones.

• Robustness: It is important that the preconditioner provide the computational im-

provements while retaining applicability over a wide rangeof problems and not be

susceptible to numerical instabilities.

19

• Parallelizability: Preconditioning a linear system should not cause any additional

serial components to be introduced or reduce the parallel efficiency that could be

achieved in its absence. If such serial bottle necks are unavoidable, then the increase

in time for the parallel case should be small relative to the total savings due to pre-

conditioning.

• Parameter Predictability/Adaptability: Current general purpose preconditioners

for iterative solvers require the user to specify a number ofparameters. These pa-

rameters often have a significant impact on the solver performance and usually have

to be carefully fine-tuned for a given problem using trial anderror methods to obtain

good performance. Hence, it is highly desirable to have parameters that are known to

affect the convergence properties in a predictable manner so that they can be chosen

with less effort. An alternate option would be to have a preconditioner accompanied

by an adaptive scheme that chooses the appropriate parameters for a given linear

system [39].

The above conflicting requirements have challenged researchers for a long time and

substantial work has been done in developing preconditioners that addresses most of these

requirements if not all. Even though simple preconditioners like Jacobi are cheap to ap-

ply and have good parallel efficiency, they are limited in their applicability [8]. We now

describe a few promising general purpose preconditioners available for SPD linear systems.

1. Level-based Incomplete Cholesky Factorization (IC(k))

An important class of preconditioners for SPD systems is based on incomplete Cholesky

factorization of the coefficient matrix. There are several variations of incomplete factor-

ization that differ in the rules for dropping entries to compute the incomplete factors. One

strictly positional criterion for dropping is based on whatis known as thelevel of fill, which

20

is a measure of “closeness” of a fill entry to the original entries in the coefficient matrix

(please refer to the book by Saad [71] or the survey by Benzi [8] for a formal definition).

In IC(k) factorization, all fill-in entries at levels exceedingk are dropped. An important

advantage of a pure IC(k) preconditioner is that the sparsity pattern can be determined

a-priori by a symbolic factorization step and the cost of constructing the preconditioner

is amortized when solving multiple linear systems with the same sparsity pattern. Often,

depending on the implementation, when the parameterk > 0, it is supplemented with ad-

ditional parameters to handle fill levels higher than 0. Thus, many implementations of the

IC(k) preconditioner use a combination of dropping based on boththe position and magni-

tude of the nonzeros. The following parameters are used in the implementations of IC(k)

that we study in this paper.

1. Highest fill level,k, is the fundamental parameter in all implementations of theIC(k)

preconditioner and denotes the level beyond which all fill-ins are dropped.

2. Fill factor specifies an upper bound on the amount of memory used by the precondi-

tioner for levels of fill greater than zero. A fill factorf denotes that the preconditioner

would not use more thatf times the number of nonzeros in the original matrix.

Careful partitioning and ordering of sub-domains has been shown to be effective in

obtaining scalable parallel implementations of the IC(k) preconditioner [51]. One approach

for parallelization of IC(k) is to use the sequential IC(k) algorithm within each sub domain,

popularly known as the Block Jacobi based IC(k). In general, it has been observed that the

Block Jacobi version of IC(k) is more scalable than a true parallel implementation of IC(k).

2. Threshold-based Incomplete Cholesky (ICT)

The threshold based incomplete Cholesky or ICT preconditioners control fill-in by means

of a dual dropping strategy based on a numerical thresholdτ and an upper limitf on the

21

number of fill-ins in each row or column. Typically, any new fill-in whose magnitude is

belowτ times a chosen metric is dropped. In addition, if the number of nonzeros in a row

or column of the factor exceedsf times the number of nonzeros in that row or column in

the original coefficient matrix, then the excess entries with the smallest magnitude are also

dropped. Lower values for drop tolerance lead to more accurate preconditioners but result

in higher memory consumptions, and vice versa.

There exists variants of ICT that use a multi-level incomplete factorization strategy

(MLICT) combined with static pre-ordering and a dropping criterion that attempts to min-

imize the norms of the inverses of the triangular factors [57]. Another variation in Block-

Solve95 [53] incorporates a hybrid strategy that uses ideasfrom both level-based and

threshold based incomplete factorization preconditioners. The sparsity of the factors are

guaranteed by retaining only the largest elements such thatthe memory usage is no larger

than that required by a ILU(0) preconditioner. BlockSolve95 has the added advantage that

no parameters need to be specified.

3. Sparse Approximate Inverse (SAI)

The problems inherent in using incomplete factorization based variants are partially ad-

dressed by preconditioners based on sparse approximate inverses [9]. Depending on the

algorithms used for finding the sparse inverse, approximateinverse based preconditioners

could be fairly robust in practice and easily parallelizable. However, these preconditioners

usually incur a high initial setup cost and the efficacy and the cost of applying the precondi-

tioner depends on the choice of the sparsity pattern. We study only a single implementation

of approximate inverse preconditioner which usesa-priori knowledge of sparsity patterns

and Frobenius norm minimization to generate an approximateinverse (ParaSails [17, 19]).

For SPD matrices, a symmetric factored approximate preconditioner is generated. ParaSails

uses three main parameters for controlling the accuracy andthe cost of the preconditioner,

22

and these are described below.

1. Thresholdcontrols the sparsification of the coefficient matrix such that it can be used

to generate thea-priori sparsity pattern by dropping elements that are below the spec-

ified value. The range of values forthresholdis [0,1]. One can also specify a negative

value for thresholdsuch that its absolute value dictates the percentage of nonzeros

that must be dropped. The exact value forthresholdis determined automatically in

this case.

2. Number of levelscontrols the memory usage of the resulting preconditioner.Para-

Sails usesa-priori sparsity patterns that are powers of sparsified matrices. For ex-

ample, if a value of 2 is used for the number of levels, then thesparsity pattern

corresponds to the power of 3 of the sparsified matrix. Typical values are 0, 1 and 2

with the default value being 1.

3. Filter is a numerical threshold used to reduce the cost of applying the preconditioner

by further dropping elements from the computed approximateinverse. This param-

eter works similar tothresholdand one could also specify a negative value if it has

to be determined automatically based on a percentage of sparsity that is desired. For

example, iffilter = −0.9, then the threshold is calculated such that 90% of the non

zeros in the computed preconditioner are dropped.

4. Algebraic Multigrid (AMG)

Algebraic multigrid or multilevel methods are currently enjoying a lot of popularity as

black-box solvers. The basic idea of an algebraic multilevel solver is to construct a hier-

archy of coarser graphs, where each node in a coarse level represents multiple nodes of

the previous finer level. At each coarse level, an iterative solver or a smoother is used to

compute an approximate solution to system corresponding tothat level and then project

23

this solution to the next finer level. The entire scheme can beviewed as a preconditioner

for an iterative solver at the finest level.

We study two implementations of AMG, namely BoomerAMG [43],which is a paral-

lel implementation of the classical AMG [70] available in Hypre, and Trilinos ML [30, 79],

which includes a parallel implementation of the smoothed aggregation approach [80] for

AMG. Trilinos provides default sets of parameters for threemain preconditioner types for

problems arising from specific domains; classical smoothedaggregation for SPD or nearly

SPD systems (SA), classical smoothed aggregation based 2-level domain decomposition

(DD), and 3-level algebraic domain decomposition (DD-ML).

Implementations of AMG typically have a large number of usertunable parameters of

which the most important1 ones are listed below.

• Smoothers -Hybrid symmetric Gauss-Seidel/Jacobi [1] is the default smoother of

choice since CG is the default solver used for SPD matrices. For Trilinos ML, sym-

metric Gauss-Seidel, Chebyshev polynomial, and IFPACK smoothers are some of

the influential ones.

• Coarsening schemes:There are multiple coarsening schemes available in Hypre

BoomerAMG, of which the important ones are Falgout (FALG), Parallel Modified

Independent Set (PMIS) and Hybrid Modified Independent Set (HMIS). Similarly, in

case of Trilinos ML, the popular coarsening schemes for classical smooth aggrega-

tion (SA) include Uncoupled, MIS, hybrid Uncoupled-MIS, and ParMETIS.

• Number of Smoother Sweeps:This parameter gives users of Trilinos ML another

means of controlling the trade-off between the cost per iteration and the number of

iterations required. Typical choices are values of 2 and 3 for symmetric Gauss-Seidel

1Based on personal communication with authors of BoomerAMG and Trilinos ML.

24

and Chebyshev polynomial smoothing.

• Number of levels for aggressive coarsening (AGG):The value given to this parameter

in BoomerAMG sets the number of levels for which aggressive coarsening must be

applied starting from the finest level.

• Strong threshold:The value specified for this BoomerAMG parameter serves as a

threshold to determine whether two points in a graph are strongly or weakly con-

nected. High values of strong threshold lead to cheaper, butless effective precon-

ditioners whereas low values result in expensive preconditioners with better conver-

gence properties.

C. Scientific Software Selection

In this section, we describe existing work on scientific software recommendation systems

and also some of the adaptive techniques that have been proposed to improve the perfor-

mance and robustness of preconditioned iterative solvers.

1. Expert Systems for Recommending Scientific Software

The use of data mining techniques for knowledge discovery isnot a recent development

in the scientific community [67]. One of the early influentialworks in this area is the

recommendation portal PYTHIA-II [49], which provides users with the data management

infrastructure to make suitable software choices. Data mining techniques have also been

used for recommending specialized applications such as graph partitioning software [83]

and solvers for elliptic PDE problems [68] using domain knowledge and empirical perfor-

mance data.

Problem solving environments (PSE) are becoming commonplace and are touted as

the future of scientific computing [50], especially, for usein remote computing technolo-

25

gies. PSEs allow the user to compose applications without knowing the details of the

underlying algorithms and were introduced into the world ofiterative solvers by the Linear

System Analyzer [14]. Using the LSA, a user can compose a solution strategy by making

choices on the pre-processing steps, the preconditioner, and the solver. Typically, efficient

implementations of promising research preconditioners and iterative solvers are available

as components of a PSE. Therefore, the number of choices thathave to be made for solv-

ing a sparse linear system is huge, and numerous intelligentsystems have been proposed

for recommending solvers/preconditioners to alleviate the burden on the application devel-

oper [10, 13, 86]. Most of these existing approaches, however, involve a simplistic formu-

lation of the solver selection problem that focuses on the solvability of a linear system, or

in case of [10] achieving a fixed improvement over a default method. Such a formulation

readily translates to a binary classification problem, which is then addressed using off-the-

shelf association rule and classification algorithms. A recent research effort [55] attempts

to use reinforcement learning for solvability prediction,however, with limited success in

obtaining good results in comparison to more expensive supervised learning techniques.

2. Learning-based Recommendation Systems

Statistical techniques for estimating dyadic response functions, in particular, the preference

ratings of users for products, form another large body of research that is relevant to our cur-

rent work. Tuzhilin et al. [2] provide a detailed survey of machine learning techniques for

recommendation systems. These include unsupervised techniques such as [5, 44, 69] that

rely only on the local structure of the preference ratings, supervised approaches that make

use of user demographic and product content attributes, as well as hybrid approaches [3, 63]

that leverage both the correlations in the ratings as well asthe user-product attributes. These

approaches almost entirely focus on improving the accuracyof all the preference ratings,

without specifically considering the additional sensitivity required for the desirable range,

26

or the algorithmic aspects of efficiently generating the topk recommendations. Though

effective for product recommendation systems, these techniques do not consider typically

practical aspects such as the variability in the performance values, feature selection as well

as the final application goals that are critical for solver selection.

3. Adaptive Preconditioned Iterative Solvers

Over the past few years, there have been a number of empiricalstudies [18, 33, 34] on

iterative solvers that highlight the importance of problemspecific fine tuning for improving

solver performance and robustness. In order to address the high failure rate of iterative

solvers, the idea ofpoly-iterativesolvers was proposed in [7] to use variants of the CG

method (CGS, B-CGStab, QMR) simultaneously on a single problem in parallel. The itera-

tions are stopped as soon as a single method converges. Use ofpoly-iterative solvers results

in higher solve times in comparison to the best method, but has a reduced failure rate. This

approach is predominantly suited for distributed memory machines and the authors also

present optimization steps to amortize the communication overhead of the various meth-

ods. Another related approach to improve the robustness of iterative solvers is to use the

idea ofcompositeand adaptive solvers [11]. Unlike poly-iterative solvers,the constituent

base solvers are applied in sequence and not in parallel. Thekey idea is a combinatorial

scheme which uses metrics such as solve time and mean failurerate to construct a com-

posite solver that is more reliable than the base methods. Adaptive solvers [11, 39] where

the solver parameters are dynamically chosen at the beginning of each iteration based on

the characteristics of the linear system as it changes during the iterative solution process

are other approaches aimed at improving the performance as well as robustness of iterative

solvers. Recent empirical studies [33] indicate that adaptive solutions are highly effective.

27

D. Machine Learning Techniques

This section gives an introduction to the machine learning techniques that will be used in

our recommendation approach.

1. Classification

Classification refers to the task of assigning a set of input objects into a predefined set

of target classes. In an inductive machine learning context, this typically consists of (i)

a training phase that involves learning a classifier from a set of example objects labeled

with the corresponding classes, and (ii) a prediction phasewhere the learned classifier

is deployed to label new objects. It can be formally defined asfollows. Given training

data withn labeled examples(x1, y1), (x2, y2), · · · (xn, yn), xi ∈ X , yi ∈ Y , the goal of

supervised classification techniques is to identify a function h : X → Y from a hypothesis

classH that maps any objectx ∈ X to its target labely ∈ Y such that the quality of

predictions on the training examples is optimized

max
h∈H

n
∑

i=1

Q(h(xi), yi).

In most commonly used classification methods such as decision trees [65], Naive Bayes,

neural networks [60], support vector machines [15], the input objects inX are represented

as vectors of predictive features and the classifier is chosen to optimize quality criteria

such as misclassification error, data likelihood or margin.The choice of the hypothesis

classH and the learning algorithm also result in further diversityin the performance with

the best technique depending on the data distribution to some extent. However, previous

research on modeling solver performance [10, 87, 41] has shown that the choice of feature

representation is often more important than the choice of the classifier itself. We will now

describe some of the supervised classification algorithms that have been used in the current

28

work.

a. Decision Trees

Decision tree-based classification [64] is one of the most widely used effective methods

for inductive inference. A decision tree classifies an example by asking a series of ques-

tions, each pertaining to the value of a single feature of theinput item. The questions are

associated with the internal nodes of the tree and the response to question determines the

appropriate child node to consider next. These internal nodes are called splitting attributes

or predictors and the questions contained within these nodes are called the splitting pred-

icates. The leaf nodes contain the class information and an item is assigned a class label

based on the path of the query from the root to a leaf. There aremany variations of deci-

sion tree classifiers and they differ primarily in the order of assignment of the interior node,

splitting attributes, and splitting predicates. Depending on the training data, one might

have to performpruning to avoid the risk of over-fitting. The state-of-the-art decision tree

algorithms can handle categorical, continuous valued features, multi-class classification

problems, and are robust to outliers. Techniques such as boosted decision trees [66] and

alternating decision trees [29] that combine output of multiple decision trees have been

shown to provide even superior performance.

b. k-Nearest Neighbors (k-NN)

k-NN is a supervised algorithm for classifying an object based on a majority vote by its

“closest” neighboring examples in the feature space. The notion of “closest” depends on

the training data and the distance metrics suitable for the application. When the training

examples are multi-dimensional vectors in a feature space,Euclidean distance is typically

used as the metric provided the values are numerical. When a new example has to be

classified, the distances to all the training examples are calculated and the class labels

29

corresponding to thek closest training examples are used for the majority vote. The ideal

value ofk is dependent on the data and is typically chosen via cross-validation. A simple

majority voting has the drawback that it biases the predictions towards classes with more

frequent training examples. However, this drawback can be addressed by inverse weighting

the votes with the true distance measures. If the training data is noisy, then a pre-processing

of the features in the form of scaling or feature selection isoften needed to improve the

accuracy of predictions. Although the naivek-NN algorithm requires the computation of

pairs of distances over the entire training data, a number ofvariations that optimize this

step by pruning the candidate neighbors have been proposed.

c. Support Vector Classification

Support vector machine-based classification (SVM) was developed by Vapnik et. al. [12]

and has gained widespread popularity and acceptance due to its strong theoretical foun-

dations based on structural risk minimization, its abilityto generalize to unseen data, and

promising empirical performance on problems from various domains. SVM tries to find a

linear separating hyperplane that has the maximum distancewith examples of either class,

also known as the maximum-margin. Often, there does not exist a hyperplane that clearly

separates the data points belonging to the positive and negative classes. To address such

scenarios, the notion of a “soft margin” was introduced [20]. The key idea is to allow cer-

tain data points to be correctly classified by allowing a tolerance while still maximizing

the distance from the hyperplane to the cleanly split examples. In certain cases, even soft

margins are not adequate for obtaining an acceptable separation of the two classes and it is

necessary to map the training vectors to a higher dimensional space by means of a kernel

function. A good kernel function will result in the data being (nearly) linear separable in

the higher dimension space.

Given a set ofn training instance-label pairs{xi, yi}ni=1, wherexi ∈ Rd andyi ∈

30

{−1, 1}, the support vector classification requires the solution ofthe following optimization

problem:

min
w,b,ξ

1

2
||w||2 + C

n
∑

i=1

ξi

subject to yi(〈w, φ(xi)〉+ b) ≥ 1− ξi, 1 ≤ i ≤ n

ξi ≥ 0

(2.5)

wherew is a normal vector to the hyperplane,ξ is the slack variable that measures the

degree of mis-classification ofxi, C > 0 is the penalty parameter for the error term, and

φ is the function used to map the training vectorsxi into a higher dimensional space via

a positive definite kernelK(·, ·), such thatK(x1,x2) = 〈φ(x1), φ(x2)〉. The optimization

problem attempts to achieve a trade-off between the maximalmargin and a small error

penalty. Typically, the optimization is solved using a dualformulation that associates each

data pointxi with a weightαi where a non-zeroαi indicates a support vector. The learned

model can then be used to obtain predictions on any input object x using

f(x) = sign(〈w, φ(x)〉+b) = sign(
∑

i

αiyi〈φ(xi), φ(x)〉+b) = sign(
∑

i

αiyiK(xi,x)+b).

Though the original SVM classification algorithm [12] is computationally expensive,

in recent years, fast variants [52] that only require lineartime (with respect to the number

of training examples) have been proposed. SVM-based classification, however, does suffer

from one main limitation namely the inability to provide class assignment probabilities.

The original SVM formulation is also restricted to binary classification though there have

been extensions to multi-class scenarios.

31

2. Regression

Regression techniques are used to model the behavior of a real or integral valued target

property of an object in terms of other predictive characteristics. As in the case of clas-

sification techniques, there is a training phase and a prediction phase. The training phase

involves identifying the best functional mappingh : X 7→ Y from the input space to the

output space that optimizes the fit on the training data. However, unlike in case of classifi-

cation techniques where the target property takes only nominal values, there is an ordering

among the values of the target property. Hence, the quality criteria used for regression

techniques tend to be based on a suitable distortion measureassociated with the target

property, for example, mean squared error. We now discuss two commonly used regression

techniques namely linear regression [59] and support vector regression [26].

a. Linear Regression

Linear regression [59] refers to fitting a linear model to predict the target response vari-

ables. Formally, the linear model can be expressed asy = βtx + ǫ whereβ denotes the

vector of regression parameters andx is a suitable representation of the input objects as a

vector of the predictive features. The most common choice oflinear models is linear least

squares regression which is applicable to real-valued target variables with the error termǫ

assumed to belong to a normal distributionN (0, σ2) with zero mean and constant variance

(assumption of homoscedasticity). However, when the training data contains outliers or the

assumption of homoscedasticity is not valid, robust regression [47] is preferred. Extensions

to generalized linear models [59] that allow the linear model to be related to the response

variable via a link function and the noise termǫ to be drawn from any exponential family

distribution, can be used for modeling a much wider variety of target variables.

32

b. Support Vector Regression

Support vector regression [26, 77] is an extension of support vector machines for approx-

imating real-valued functions. The key idea is to find a function f(x) that has at mostǫ

deviation from the actual target propertyyi for all the training data, while remaining as

flat as possible. In case of linear models wheref(x) = 〈w, φ(x)〉 + b, the notion of flat

translates to minimizing the norm ofw as in the case of support vector classification. This

formulation also ensures that we can disregard errors that are less thanǫ and attempt to

optimize the model over the support vectors that exceed thislimit. Since it might not al-

ways be feasible to obtain such a functionf(x) for a givenǫ, the formulation also allows

for slack variablesξl
i, ξ

u
i that are analogous to the “soft margin” in case of support vector

classification. Using the notation for the training data as before, the resulting optimization

problem is given by

min
w,b,ξ

1

2
||w||2 + C

n
∑

i=1

ξu
i + ξl

i

subject to yi − 〈w, φ(xi)〉+ b ≤ ǫ + ξu
i , 1 ≤ i ≤ n

〈w, φ(xi)〉+ b− yi ≤ ǫ + ξl
i,

ξl
i,x

u
i ≥ 0,

(2.6)

whereφ is the function used to map the training vectorsxi into a higher dimensional

space via a positive definite kernelK(·, ·), such thatK(x1,x2) = 〈φ(x1), φ(x2)〉 and the

positive constantC determines the trade-off between the “flatness” of the modeland the

extent to which additional errors (overǫ) are tolerated. As in the case of support vector

classification, the extension to non-linear kernels is readily facilitated via a dual formulation

posed in terms of weightsαi associated with each of the input data points. The weightαi

is non-zero only for support vectors, i.e., the cases where the error incurred is greater than

ǫ, which determine the learned model. The model prediction for the target property of any

33

input objectx is given by

f(x) = 〈w, φ(x)〉+ b =
∑

i

αiyi〈φ(xi), φ(x)〉+ b =
∑

i

αiyi〈K(xi,x)〉+ b.

3. Feature Engineering

Feature engineering [40] refers to the process of identifying an informative representa-

tion of the input space that facilitates high quality predictions for the desired property.

It is an extremely critical component in most machine learning tasks such as classifica-

tion/regression as it can help in alleviating problems resulting from high sparsity and high

dimensionality, improve the generalization error of the learned models as well as reduce the

computational time and storage resources. The choice of feature representation has often

been shown to be more important for improving prediction accuracy than the choice of the

learning algorithm and the size of training data, especially in case of a large feature space.

In most practical learning scenarios, feature engineeringinvolves a combination of

feature design, selection, grouping and transformation that map an object in the input

space into a multi-dimensional vector. Of these tasks, the design or initial extraction of

features is often specific to the application and has to be performed by a domain expert,

for example, solvability of a trial can be assumed to be a function of certain numerical

properties of the linear system and the parameters of the solver configuration being used.

However, the optimal selection of informative features, latent factor identification via clus-

tering/dimensionality reduction, and normalization of feature values are dependent only

on the distributional properties of the original features and the target response, and are of-

ten performed using domain-independent statistical techniques, which we briefly discuss

below.

Feature selection involves choosing a highly informative subset of the original fea-

tures in order to prevent model over-fitting and to reduce thecomputational effort. Since

34

finding the optimal feature subset requires exponential time, most practical techniques ei-

ther rely on feature ranking or sequential search. In feature ranking techniques, the pre-

dictive power of the individual features with respect to thetarget response is computed

using various criteria such as mutual information and Pearson correlation, which is then

used to sort the available features and the topk are chosen, withk often being determined

by cross-validation. Though highly efficient, these ranking techniques do not account for

dependence among features and often result in redundant features. Sequential search tech-

niques such as forward-selection and backward-selection,on the other hand, progressively

construct a subset of features by choosing or eliminating a single feature from the available

pool based on their relative predictive powergiven the current chosen set. There also exist

a number of other selection techniques based on wrappers, filters and embedded methods

specific to various learning algorithms [40].

Creation of latent features by projecting the original features into a low dimensional

space or grouping them into a small number of feature clusters is another effective ap-

proach that is often known to result in improved performanceespecially in case of high

sparsity. This approach includes techniques such as principal component analysis [62] and

non-negative matrix factorization [56], and feature clustering using thek-means or similar

algorithms [60]. In applications, where the input objects can be represented as dyads (e.g.,

trials can be represented as pairs of linear systems and solver configurations), it has been

shown that simultaneous clustering of the two dyadic dimensions [58] can yield highly pre-

dictive latent factors though their applicability is restricted to new objects over the known

dyadic dimensions (i.e., known linear systems and solver configurations in case of trials).

In contrast to feature selection techniques, latent factormethods often take into account the

dependencies between the various features in a holistic fashion. However, they often oper-

ate in an unsupervised fashion independent of the target response and might occasionally

result in latent factors that are not necessarily informative of the desired target property.

35

Suitable normalization of feature values [62] is another simple, yet critical task in

obtaining a good feature representation. When the different feature values are not com-

mensurate with each other, the parameter estimation steps in most learning algorithms re-

quire solving ill-conditioned matrices, resulting in significant numerical errors, and con-

sequently, sub-optimal models. Hence, it is vital to ensurethat the values of the various

features are comparable and this is achieved using techniques such as linear scaling to unit

range(linear transformation so that the maximum maps to 1 and the minimum to 0), z-

score normalization (linear transformation to achieve zero mean, unit variance) and inverse

logit transformation (non-linear transformation to map any real value into the range 0 to 1).

There exist a number of normalization techniques in literature and the appropriate choice

is often determined both by the data domain as well as the learning algorithm.

36

CHAPTER III

COMPARATIVE SOLVER PERFORMANCE EVALUATION

In this chapter, we describe various components of our practitioner-centric methodology for

retrospective performance analysis and as well as an implementation of the performance

analysis infrastructure. We also provide results of our performance evaluation on most of

the popular general purpose preconditioners such as incomplete factorization, sparse ap-

proximate inverse, and algebraic multilevel schemes available in various black-box solver

packages, which can be valuable to practitioners as well as software developers.

The remainder of this chapter is organized as follows: Section A provides an overview

of the main contributions of the current work. Section B provides details of our experimen-

tal set up, including matrix collection, solver packages, and the preconditioners included

in the study, and the hardware used. Section C gives an overview of the various metrics

that are used to rank the performance of individual solver configurations as well as that

of package-preconditioner combinations. In Section D, we present the detailed empirical

evaluation methodology and results. We describe our performance analysis framework and

a prototype implementation in Section E and provide concluding remarks in Section F.

A. Key Contributions

The main contributions of the current work are as follows:

1. Benchmarking Methodology

We introduce a methodology for a rigorous comparative evaluation of various precondition-

ers, including the use of some relatively simple but powerful metrics to facilitate a credible

ranking of solver configurations (combinations of solver package, preconditioners, itera-

37

tive method, and solver and preconditioner parameters). Notable among these metrics are

memory-time product and area under the curve for performance profiles (Section C).

2. Performance Analysis Infrastructure

We developed a semi-automated system for the collection, analysis, and visualization of

relative performance data. It runs experiments and collects performance data (time, mem-

ory, error norm, etc.) for all combinations generated from auser specified set of linear

systems, a set of hardware configurations (number of CPUs andmemory limits), and sets

of values of various solver and preconditioner parameters.This is achieved via a data col-

lection unit composed of both serial and parallel driver programs and associated scripts for

some widely used solver packages. Subsequently, the analysis and reporting unit of the sys-

tem performs various comparative and sensitivity analyseswithin and across pre-specified

groups of solver configurations using the collected performance data.

3. Extensive Empirical Evaluation

Using the above system, we evaluate a suite of preconditioners based on the incomplete

factorization, sparse approximate inverse, and the algebraic multilevel schemes available

in packages such as PETSc, Trilinos, Hypre, ILUPACK, and WSMP. We compare the ro-

bustness, speed, and memory consumption of these preconditioners on a set of benchmark

problems and present results that can serve as guidance to practitioners. For packages that

provide support for parallel execution, we collect and present performance data on multiple

processors.

4. Good Default Configurations

For each combination of solver package and preconditioner,we identify the best overall

choice of solver and preconditioner parameters on a suite ofdiverse problems. These obser-

38

vations can be used for choosing gooddefaultconfigurations for each package-preconditioner

combination.

5. Fine-tuning of Parameters

In addition to determining good default configurations for each preconditioner implemen-

tation, we also study how sensitive the performance of a certain preconditioner is to param-

eter choices and which parameters have the greatest impact on performance. This analysis

sheds light on the reliability of the default configuration and provides guidance for fine

tuning the parameters to a specific problem or class of problems.

6. Choice of Package-preconditioner Combination

We simultaneously project the performance of all package-preconditioner combinations in-

cluded in this study along three carefully chosen dimensions involving time, memory, and

robustness to allow a ready comparison of the relative strengths of various implementa-

tions. We perform this comparison for the overall best set ofparameters as well as for

problem specific best set of parameters for each preconditioner implementation because

their relative rankings can be different under the two scenarios.

7. Parallel Performance

We extend our empirical comparison of various preconditioner implementations to up to 64

CPUs. In addition to traditional performance metrics like parallel efficiency and speedup,

we also study impact of parallelism on the choice of parameters.

39

B. Empirical Setup

In this section, we present the details of our experimental setup. These include an introduc-

tion to the solver packages, preconditioners and their parameters, descriptions of the test

matrices and the hardware platform, and the specifics of our experimental approach.

1. Software Packages

We included the following packages in our study, which we believe are likely to be of

most value to researchers and practitioners. These includewell-established packages that

include most commonly used preconditioners, as well as research packages with recently

published general purpose preconditioners.

a. PETSc - Release Version 2.3.3-p0

PETSc [4], developed at Argonne National Laboratory, is implemented in C and has ex-

tensive documentation available for a new user with a plethora of informative examples

demonstrating all the important aspects of the software package. The main goal of the

PETSc project is to equip a user with the tools necessary for building scalable scientific

applications. PETSc provides efficient implementations for all the commonly used Krylov

subspace methods as well as fixed pattern and threshold basedincomplete factorization

preconditioners. Even though a wide range of preconditioning schemes are available via

interfaces to external packages, we were not able to configure PETSc to use external pack-

ages (except BlockSolve95 [53]) due to lack of support for 64-bit compilation.

b. Trilinos - Release Version 8.0.3

Trilinos [45] was developed at Sandia National laboratories and its main focus is to pro-

vide parallel solvers and libraries in an object oriented framework. Trilinos is composed

40

of a number of self contained independently developed packages that could be used as a

stand-alone application or in conjunction with other packages that support a minimal set of

prerequisites for the interfaces. A suite of object oriented preconditioners are available in

the Ifpack [74] and ML [30] packages. The AztecOO package, provides an object oriented

interface to the popular Aztec solver library which contains implementations of the Krylov

subspace methods. Ifpack supports a suite of Jacobi-style and incomplete factorization-

based preconditioners whereas the ML package provides variants of algebraic multigrid

type of preconditioners based on smoothed aggregation.

c. Hypre - Release Version 2.0.0

Hypre [1], developed at Lawrence Livermore National Laboratory, is designed primarily for

the solution of large, sparse linear systems of equations onmassively parallel computers.

Hypre provides four different logical interfaces, namely,structured, semi-structured, finite

element and linear algebraic. In addition to incomplete factorization based precondition-

ers (Euclid [51]), Hypre also has parallel implementationsfor approximate inverse based

(ParaSails [17, 19]) and algebraic multigrid based (BoomerAMG [43]) preconditioners.

d. ILUPACK - Dev. Version 2.2

ILUPACK [57] was developed at Technische Universität Berlin and it contains implemen-

tations of inverse-based multilevel ILU preconditioners that controls the growth of the in-

verse triangular factors for both real and complex matrices. In addition to the standard

static reordering schemes, it also includes the ARMS ordering schemes such as INDSET

and ddPQ [72].

41

e. WSMP - Dev. Version 8.7

The Watson Sparse Matrix Package (WSMP) [37, 38], developedat IBM, contains serial

and parallel sparse direct solvers as well as CG and GMRES solvers with new incomplete

factorization based preconditioners [39].

2. Matrix Reordering

Previous research has shown that a suitable reordering of the coefficient matrix can reduce

the memory requirement and potentially have a significant impact on the performance of

many preconditioners [71]. Hence, wherever applicable, the matrices were first re-ordered

using either the Reverse Cuthill Mckee ordering (RCM) [21] or the Nested Dissection

ordering (ND) [31, 36]. In the case of ILUPACK, we used five built-in reordering schemes,

namely, Nested dissection (ND), RCM, Approximate Minimum Fill (AMF), Independent

set (INDSET), and permutation for diagonal dominance (ddPQ) [72].

3. Test Matrices

Since our objective is to detect general performance trendsamong different preconditioners

and our analysis is purely empirical, it is imperative that the test matrices represent a spec-

trum of the problems for which computational simulations are extensively used. To this

effect, we chose the matrices from a wide range of applications spanning fluid dynamics,

sheet metal forming, electric circuit simulation, chemical process simulation, optimization

etc. In order to narrow the scope of this empirical study, we consider only symmetric

positive definite systems(SPD). The details of these SPD matrices are shown in Table II.

Most of the matrices are obtained from the University of Florida collection [22] and the

remaining ones are obtained from some of the applications that use WSMP [37].

42

Table II. SPD test matrices with their order (N), number of non-zeros (NNZ) and the appli-

cation area of origin
Matrix N NNZ Application
90153 90153 5629095 Sheet metal forming
af shell7 504855 17588875 Sheet metal forming
Autodesk-big 1073724 84317460 Static stress analysis
audikw 1 943695 77651847 Automotive crankshaft modeling
bmwcra1 148770 10644002 Automotive crankshaft modeling
ctu-1 1017397 74144859 Structural analysis
ctu-2 384012 28069776 Structural analysis
cfd1 70656 1828364 C.F.D. pressure matrix
cfd2 123440 3087898 C.F.D. pressure matrix
conti20 20341 1854361 Structural analysis
garybig 42459173 238142243 Circuit simulation
G3 circuit 1585478 7660826 Circuit simulation
hood 220542 10768436 Automotive
inline 1 503712 36816342 Structural engineering
kyushu 990692 26268136 Structural engineering
ldoor 952203 46522475 Structural analysis
msdoor 415863 20240935 Structural analysis
mstamp-2c 902289 70925391 Metal stamping
nastran-b 1508088 111614436 Structural analysis
nd24k 72000 28715634 3D mesh problems (ND problem set)
oilpan 73752 3597188 Structural analysis
parabolicfem 525825 3674625 C.F.D. convection-diffusion
pga-rem-1 5978665 29640547 Power network analysis
pga-rem-2 1480825 7223497 Power network analysis
qa8fk 66127 1660579 F.E.M. stiffness matrix for 3D acoustic problem
qa8fm 66127 1660579 F.E.M. mass matrix for 3D acoustic problem
ship 003 121728 8086034 Structural analysis - ship structure
shipsec5 179860 10113096 Structural analysis - ship section
thermal2 1228045 8580313 Steady state thermal problem
torso 201142 3161120 Human torso modeling

43

4. Solvers, Preconditioners, and Parameters

We now describe the specific parameters that are used for the solvers and preconditioners

used in our study. The preconditioners can primarily be classified into three broad classes,

namely incomplete factorization, sparse approximate inverse, and algebraic multigrid. Al-

though the current study’s scope is limited to symmetric positive definite systems, we do

use the GMRES solver if the resulting preconditioner is non SPD. Table III lists the specific

preconditioners and the values of the tunable parameters that were experimented with. In

all, 470 different combinations of solvers, preconditioners, and parameters were tried for

the single processor case. The total number of solver configurations including all the serial

and parallel cases added up to 2156.

Table III. Description of the package specific preconditioner parameters.
Package Solver Preconditioner Orderings Parameters

PETSc CG
BlockSolve95 RCM, ND

-

IC(k) RCM, ND
Level of fill: 0, 1, 2
Fill factor: 3, 5, 8, 10

HYPRE CG

IC(k) RCM, ND Level of fill: 0, 1, 2, 4, 6, 8

ParaSails
RCM, ND

Number of levels:0, 1, 2
Threshold:0, 0.01, 0.1, -0.75, -0.9

NONE Filter: 0, 0.001, 0.05, -0.9

BoomerAMG
RCM, ND

Maximum number of levels:25

NONE

Number of aggressive coarsening levels:0, 10
Coarsening schemes:Falgout, HMIS, PMIS
Strong threshold:0.25, 0.5, 0.8. 0.9

Trilinos
CG

IC(k) RCM, ND Level of fill: 0, 1, 2, 4, 6, 8

ML-SA
RCM, ND

Smoothers:Symmetric Gauss-Seidel
Chebyshev Polynomial, Incomplete Factorization

NONE
Smoother sweeps:1, 2, 3
Coarsening Schemes:Uncoupled, MIS
Hybrid Uncoupled-MIS, ParMETIS

ML-DD RCM, ND -
ML-DD-ML NONE -

ILUPACK CG Multilevel ICT
RCM, ND, AMF Drop Tolerance:0.03, 0.01, 0.003, 0.001, 0.0005
INDSET, DDPQ Inverse Norm Estimate:10, 25, 50, 75, 100

WSMP
Auto-select

ICT RCM, ND
Drop Tolerance:0.01, 0.003, 0.001,0.0003
Diagonal Perturbation:OFF, ON (0.001)

CG/GMRES Fill factor: 2.5, 3.3, 4.1, 4.9

44

5. Hardware Specifics

The experiments were conducted on up to 64 processors on an IBM HPC cluster 1600,

based on the Power5+ IBM processor running the 64-bit version of AIX (version 5.3). Each

of the p5-575 nodes on the cluster has sixteen 1.9 Ghz Power5+processors. A memory

limit of 24 GB per node and a wall time limit of4 hours was used for each empirical trial

involving a single matrix and a solver configuration.

All the packages were compiled using IBM compilers xlf (Fortran), xlc (C) or xlC

(C++) in 64-bit mode with the -O3 optimization flag. The Engineering Scientific Subrou-

tine library (ESSL) was linked in to provide BLAS routines. The page size for text and data

was set to 64 KB.

6. Experimentation Methodology

We now describe our methodology for conducting the experiments and collecting the per-

formance data. In order to make the evaluation as uniform as possible, we adhered to the

following rules for all the experiments.

• Diagonal scaling is performed on the linear system before starting the solution pro-

cess.

• A right hand side vector of all 1’s is used and the initial guess of the solution for the

iterative process is always the zero vector.

• We use right preconditioning since it is the default for all the packages except PETSc

and it allows us to have a uniform convergence criteria basedon the true residual for

all the experiments. This choice of right preconditioning was also influenced by a

similar study conducted on ILU preconditioners [18].

45

• The iterations are stopped when the number of iterations reaches 1000 or when the

relative residual norm drops below10−5.

• When using more than one processor, ParMETIS [54] is used to partition the rows

of the matrix and distribute them appropriately. We then reorder the local matrix on

each processor according to the specified reordering scheme.

• A trial is considered to have failed if the total time is above4 hours, or the memory

consumption per node exceeds 16 GB while using up to 8 processors per node and

24 GB when using all 16 CPUs in a node, or the final relative error norm exceeds

0.02.

• A trial is also considered to have failed if its performance on a desired metric is more

than one order of magnitude worse than that of the best performing trial. More details

on this can be found in Section C.4.

7. Performance Metrics

For each successful trial, we measured and recorded the following performance metrics.

a. Time Taken

This is the total time in seconds required for both creating the preconditioner and actually

solving the linear system. We measure this using timing calls before and after the appro-

priate routines. In the case of multiple processor runs, thereported time is the maximum

among all the processors.

b. Memory Usage

This is the amount of memory in bytes allocated on the heap during the preconditioner

creation phase. In the case of multiple processor runs, we compute thecumulativememory

46

usage across all MPI processes. If GMRES is used as the iterative solver, we also add the

memory required for storing the subspace vectors to the total observed memory.

c. Relative Error Norm

This is measured as the ratio of L2 norm of the final error to that of the initial error. For

computing the error, we use an approximation of the actual solution obtained using the

WSMP direct solver.

d. Memory Time Product

In order to determine good solver configurations that perform best over all the problems

we introduce a simple intuitive performance criterion. Specifically, we use the product of

total solution time and the memory required for storing the coefficient matrix and precon-

ditioner as our primary performance criteria. Henceforth,we will refer to this quantity as

theMemory-Time-Product(MTP). The choice of MTP is motivated by our observation that

both computation time and memory use appear to be inadequatemeasures of the quality of

a preconditioner, when considered individually. For most preconditioners, there is a range

of parameter choices in which there is a trade-off between solution time and memory con-

sumption, although it is possible to make parameter choicesthat increase or decrease both

time and memory simultaneously. The optimum operating point of a preconditioner for a

given problem lies in a trade-off zone. As reported in literature [34] and confirmed by our

own experiments, direct solvers can result in the overall fastest time, albeit at the cost of a

significantly high memory consumption (Section D.4). Therefore, a preconditioner could

simply emulate the direct solver and emerge as the fastest preconditioner. At the other ex-

treme, preconditioners such as Jacobi, Gauss-Seidel, or IC(0), consume very little memory,

but can take an impractically large number of iterations to converge. As a result, judging

the quality of preconditioners based solely on their time ormemory requirements simply

47

yields winners that are extreme cases and are of little practical interest.

C. Benchmarking Methodology

In this section, we present the benchmarking methodology that we use to evaluate the

preconditioners and the relative performance of their various configurations resulting from

different choices of parameters and other user selectable options. Our methodology is based

on performance profiles [24], which we augment with some other metrics described later

in this section.

1. Solver Configurations and Performance Data

A solver configuration is a solver and preconditioner implementation with a given set of

values for all parameters and user selectable options. For example, Hypre’s CG solver and

its ParaSails preconditioner, with RCM ordering, 2 levels of fill, a threshold of 0.01, and

a filter value of 0.05 is one solver configuration, PETSc’s CG solver and BlockSolve95

preconditioner with ND ordering is another. We denote the set of all solver configurations

by S. Let |S| = m. The setS used in our study was constructed by using all feasible

combinations in Section 4, withm = 470 for the single processor case. We denote byP

the set of linear systems/problems to be solved with|P| = n = 30 in our study. A trial is

the application of a solver configuration to a problem. We performedm×n = 14100 trials

for the single processor case.

Letµ represent any performance measure that takes a specific value for each evaluation

trial. Examples of performance measures include time taken, memory usage, memory-time

product, etc. Then ×m trials result in ann ×m matrix µ of performance data for each

performance metric, where the element(p, s) corresponds to the performanceµp,s of solver

configurations with respect to problemp. The performance valuesµp,s may not always be

48

well-defined due to solver configuration failure and other practical limitations. Without

loss of generality, we assume that lower values of performance values are desirable and

therefore, we represent ill-defined values corresponding to solver configuration failures

with a very high value (∞).

The solver configurations are partitioned into groups to facilitate the analysis of the

performance data collected through the trials. Each solverconfiguration belongs to one or

more (possibly overlapping) groups. For example, all solver configurations for the Hypre

package can be considered to belong to configuration groupC1, all solver configurations

using the BoomerAMG preconditioner can be considered to belong to another configura-

tion groupC2, and all solver configurations resulting from various choices of ordering and

coarsening schemes for Hypre BoomerAMG can be considered tobelong to the configura-

tion groupC3.

2. Performance Ratios

Given the data for a particular performance measure, it is straightforward to compare the

effectiveness of the methods with respect to a single problem. Specifically, we assume that

methods with lower performance values are better. However,comparing methods based

on their collective performance requires calibration across the problems. A natural way

to compare the solver configurations in a configuration groupC would be to consider the

normalized performance valuesrp,s(C), otherwise known as the performance ratios of the

methods for each problem:

rµ
p,s(C) =

µp,s

min
s′∈C

µp,s′
,

which is the ratio of the actual performance value of solver configurations to the best

(least) value over all solver configurations for the problemp. Note thatrp,s(C) ≥ 1 for all

(p, s) and is equal to 1 for at least one solver configurations ∈ C for each problemp, as

49

long as at least ones ∈ C is able to solve the problemp.

It seems reasonable that the average performance ratioηs(C) of a configurations ∈ C

would be a fair indicator of the effectiveness of the configuration s with respect to that

performance metricµ, where

ηµ
s (C) =

1

n

n
∑

p=1

rµ
p,s(C).

In practice, however,ηs is often not very useful since a single failure for a solver configura-

tion s can make its average performance ratioηs ill-defined, making it difficult to compare

the different methods. One simplistic solution for handling this issue is to only consider

problems that have well defined performance ratios, but thiswould not be fair to methods

that actually solve the harder problems not solved by all themethods. A more principled

approach is to compare the performance of the methods both interms of the number of

problems solved as well as average performance ratio directly using the distribution of the

performance ratios. To achieve this, we use the notion of performance profiles, which we

now describe.

3. Performance Profile

A performance profile [24] is a plot of the cumulative distribution of the performance ra-

tios. Let ρµ
s (τ) denote the cumulative distribution of the performance ratios of a solver

configurations with respect to the measureµ:

ρµ
s (τ) =

1

n
|rµ

p,s(C) ≤ τ |.

ρµ
s (τ), therefore, denotes the fraction of the problems that the configurations ∈ C can solve

with performance that is within a factor ofτ of the best performance for each problem.

Table IV shows hypothetical performance data (say, run timein seconds) for a set of

50

Table IV. Hypothetical performance data with three solver configurations (s1, s2, s3), three

configuration groups (C1, C2, C3), and three problems (p1, p2, p3). Solver configu-

ration failures are represented with∞.

Solver Configurations Configuration Groups µp,s rµ
p,s(C1)

p1 p2 p3 p1 p2 p3

s1 C1, C2, C3 7 2 3 3.5 1 1

s2 C1, C2 3 4 6 1.5 2 2

s3 C1, C3 2 ∞ 5 1 ∞ 5/3

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

s
1

s
2

s
3

Fig. 1. Performance profile curves for solver configurationsin groupC1.

51

three solver configurations and three problems. Figure 1 shows the performance profiles for

the configuration groupC1 shown in Table IV. The performance profile plot readily reveals

information that may not be apparent from average performance ratios even when they are

well defined. For example, the point (1.67, 0.67) on the plot for configurations3 denotes

that this configuration was able to solve 67% of the problem within 1.67 times the best

running time for any configuration for these problems. Similarly, the point (2.0, 1.0) on the

plot for configurations2 denotes that this configuration was able to solve all (100%) of the

problems consuming at most twice the best running time for each problem. Additionally,

performance profiles enable one to compare easily methods under circumstances where the

user specifies an additional success thresholdθ on the performance ratio; i.e., any solver

configuration that results in performance value that isθ times greater than that of the best

value is considered a failure. In the example in Table IV and Figure 1,s1 is clearly the best

method forθ = 1.3, followed bys3 ands2. On the other hand, forθ = 4, boths1 ands2

are equally good since they both solve all the three problemsand that too with identical

average performance ratio of11/6. Comparing withs3 is somewhat tricky since it solves

only two out of the three problems, and has a lower average performance ratio of8/6 for

the solved problems.

4. Solver Quality Measure

When comparing a large number of performance profile curves,it may not be possible

to visually determine the relative ordering or to pick the best solver configuration. The

situation is usually exacerbated further due to different failure rates of the various config-

urations. To address this issue and to eliminate human intervention in the case of a large

number of solver configurations, we propose to use the area under the performance profile

curves for ranking the various solver configurations. The area under the curve (AUC) pro-

vides a longitudinal summary of multiple assessments at allpossible performance ratios of

52

interest. For a performance ratio threshold ofθ, the onlyτ values of interest are those from

1 to θ. Therefore, the relevant area under the performance profilecurve for a configuration

s with respect to the configuration groupC AUCµ
s (C, θ) is the area under the cumulative

distribution curve up toθ, which is given by

AUCµ
s (C, θ) = θ −

1

n

∑

p∈P

min(θ, rµ
p,s(C)).

This formulation, ignores all the performance ratios of solver-configurations outside

the range of the thresholdθ and effectively considers those as failures. For the exam-

ple in the performance profile figure,AUCµ
s1

(C1, 5.0) = 3.17,AUCµ
s2

(C1, 5.0) = 3.17, and

AUCµ
s3

(C1, 5.0) = 2.44. We also notice thatAUCof s3 is comparable to that ofs1 ands2 for

smaller values ofθ, but becomes progressively worse as the threshold increases.

Note that for the special case where there are no solver configuration failures and all

performance ratios are less than or equal toθ, the area under curves is directly related

to average performance ratios. A choice ofθ is critical in theAUC-based comparison

since this can significantly affect theAUCand thereby, the relative ranking of the different

methods. In the current study, we choose this threshold to beequal to10. In other words,

we assume that a trial that results in performance that is more than an order of magnitude

worse than the best performance for a given problem is effectively a failure. This is in

addition to the failure criteria described in Section B.6.

5. Configuration Group Quality Measures

So far in this section, we have discussed metrics for comparing the relative performance

of individual solver configurations. It is often desirable to compare different configuration

groups. For example, for a given problem setP, it would be interesting to be able to

objectively compare the implementations of different preconditioners in different packages.

53

In our study, we measure and compare the following three metrics for configuration groups

comprised of various configurations of a given package-preconditioner combination.

a. Problem Independent Best Performance

For a configuration groupC, we definePIBµ(C) as the solver configurations′ ∈ C such

that AUCµ
s′(C, θ) is the maximum among allAUCµ

s (C, θ) for all s ∈ C. In other words,

PIBµ(C) is the configuration that results in overall best performance with respect to metric

µ for a given problem setP. Therefore, ifC represents a package-preconditioner combina-

tion, then the values of the various parameters and user selectable options corresponding to

PIBµ(C) are logical choices for default parameters forP. The performance of the configu-

rationPIBµ(C) can be considered representative of the performance of configuration group

C, and can be used to compare different groups by using the performance profiles and the

AUCmetric.

b. Problem Specific Best Performance

An alternative to using the performance ofPIBµ(C) to represent the performance of con-

figuration groupC is to represent it by its problem-specific best performance.Formally, we

define the problem-specific best performanceµPSB
p,C of configuration groupC for problemp

as the best performance value among all the solver configurations inC; i.e.,

µPSB
p,C = min

s∈C
µp,s.

Note thatµp,C is an aggregation of the performance values of the member solver configura-

tions. This is in contrast toµp,P IB µ(C), which directly considers the performance values of

a particular winning member solver configuration.

54

6. Hardware Configurations

The performance metricsµp,s obtained for each problemp and solver configurations is

also a function of the hardware configuration. LetH = {h} denote the set of all hardware

configurations on which performance data is obtained from. For the current study,h ∈

{1, 2, 4, 8, 16, 32, 64} where each number consists of the number of processors used for

each trial. We study the performance with respect to one value ofh at a time.

7. Parallel Performance

Most solver packages included in this study are designed to solve large sparse systems in

highly parallel environments. In the parallel case, users may be interested in additional

performance metrics other than those studied in the contextof a single processor. For ex-

ample, a user might be interested in knowing how the relativeperformance of the solvers

observed in a serial environment changes in various parallel settings. We consider each

multi-processor run to be part of a different hardware group. The various solvers are eval-

uated in each of these hardware groups separately and theAUCof performance profiles are

used to study the behavior of the solvers under various hardware configurations. An im-

portant performance metric in a parallel scenario is the efficiency of the respective parallel

implementations. Efficiency is computed asǫ = T imesp/(np × T imenp) whereT imesp

is the best sequential time andT imenp represents the time observed fornp processors. A

relatively high efficiency for large processors could either suggest that the solver can be

parallelized efficiently or that the serial implementationis not optimal. Similarly, a low

value of efficiency could suggest the existence of expensivesequential components or a

poor parallel implementation.

55

D. Results

In this section, we present the results of our empirical evaluation. In Section D.1, we

analyze the performance of various solver configurations within configuration groups com-

prised of package-preconditioner combinations and reportthe best configuration for each

group over all the problems with respect to time, memory, andmemory-time product

(MTP). In addition, we also discuss the effect of certain important parameters on the mem-

ory and time performance and analyze the variation in performance of the overall best

parameter combinations in a multi-processor scenario withincreasing number of proces-

sors. Section D.2 presents the effect of parameter fine-tuning on memory and time within

each configuration group in a multi-processor scenario. This is followed by a comparison

of the default and problem-specific best performance of the various configuration groups

along with the direct solver in Section D.4. Finally, in Section D.5, we look at the parallel

efficiency trends of the various package-preconditioner combinations.

1. Performance Within Configuration Groups

For the purpose of the analysis in this section, we divided the set of all solver configurations

into configuration groups, where each group represents a package-preconditioner combi-

nation. For each configuration group and hardware configuration, we identified the solver

configurations that resulted in the best overall performance with respect to time, memory,

and memory-time product (MTP) over all the problems in the test suite. The best perfor-

mance was determined using the area (AUC) under the performance profile (PP) curves, as

discussed in Section B.7. We also provide detailed analysesof the effects of various pa-

rameters for suitable subsets of the serial configurations by means of PP curves. We chose

these figures on a case-by-case basis depending on the interesting performance trends that

we found for individual preconditioner implementations.

56

For the sake of brevity, we use acronyms to describe the parameter choices in both the

tables and the legends of the figures in this section. A complete list of these acronyms and

their expansions is shown in Table V, which the readers mightfind useful to refer to while

interpreting the subsequent tables and figures with experimental results.

Table V. List of acronyms used to denote various parameter choices.
Parameter Name Values Acronyms
Level of fill 0, 1, 2, 4, 6 ,8 LF0, LF1, LF2, LF4, LF6, LF8
IC(K) fill factor 1, 3, 5, 8, 10 F1, F3, F5, F8, F10
Max. additional nonzeros/row ∞ NzINF

Drop tolerance
0.03, 0.01, 0.003, DT3e-2, DT1e-2, DT3e-3,
0.001, 0.0003, 0.0005 DT1e-3, DT3e-4, DT5e-4

Inverse norm estimate 10, 25, 50, 75, 100 IE10, IE25, IE50, IE75, IE100
Number of ParaSails levels 0, 1, 2 PLev0, PLev1, PLev2
Threshold 0, 0.01, 0.1, -0.75, -0.9 Th0, Th.01, Th.1, Th-.75, Th-.9
Filter 0, 0.001, 0.05, -0.9 Flt0, Flt.001, Flt.05, Flt-.9
BoomerAMG coarsening schemesFalgout, Hybrid MIS, Parallel MIS FALG, HMIS, PMIS
Strong threshold 0.25, 0.5, 0.7, 0.9 ST.25, ST.5, ST.7, ST.9

ML preconditioner type
Classical SA, SA,
SA based 2-level domain decomp, DD,
3-level algebraic domain decomp. DD-ML

Smoothers
Symmetric Gauss-Seidel, Chebyshev,SGS, CBY,
Incomplete factorization IFPACK

Smoother sweeps 1, 2, 3 SS1, SS2, SS3

ML coarsening schemes
Uncoupled, MIS, UC, MIS,
Hybrid uncoupled-MIS, ParMETIS UCMIS, PMETIS

WSMP fill factor 2.5, 3.3, 4.1, 4.9 F2.5, F3.3, F4.1, F4.9
WSMP diagonal shift -1, 0.001 SHIFT-OFF, SHIFT-ON

a. Level-based Incomplete Factorization IC(k)

The PETSc, Trilinos, and Hypre packages include implementations of the IC(k) precondi-

tioner. We have also included the BlockSolve95 preconditioner in our study. In the case

of PETSc, experiments were conducted with values ofk = 0, 1, and 2. Hypre and Trilinos

IC(k) implementations consume reasonable time and memory for levels of fill higher than

2; and therefore, we included values ofk = 4, 6, and 8 in our experiments. For nonzero

values ofk, we experimented with fill factors of 3, 5, 8, and 10 for PETSc.Trilinos IC(k)

does not provide a user controlled parameter for controlling the fill factor and the default

setting in Hypre IC(k) is∞, i.e., no limit. Table VI shows the overall best configurations

57

Table VI. Solver configurations that resulted in the best memory, time, and MTP perfor-

mance profile area for IC(k) preconditioners in PETSc, BlockSolve95, Hypre,

and Trilinos for various numbers of processors (shown in parenthesis). Expan-

sions of the parameter acronyms can be found in Table V.
Preconditioner Memory Winner Time Winner MTP Winner

PETSc IC(k)

CG, RCM, LF0, F1 CG, RCM, LF0, F1 CG, RCM, LF0, F1
(1 2 8 16 32 64) (1 2 4 8 16 32 64) (1 2 4 8 16 32 64)
CG, ND, LF0, F1

(4)

PETSc BlockSolve

CG, RCM CG, RCM CG, RCM
(2 4 8 16 32 64) (1 2 16 32 64) (1 2 4 16 32 64)

CG, ND CG, ND CG, ND
(1) (4 8) (8)

Trilinos IC(k)

CG, RCM, LF4 CG, RCM, LF8 CG, RCM, LF4
(1 2) (1 2 4 8 16 32 64) (2)

CG, RCM, LF6 CG, RCM, LF6
(4 8 16 32 64) (32 64)

CG, RCM, LF8
(1 4 8 16)

Hypre IC(k)

CG, RCM, LF1, NzINF CG, RCM, LF1, NzINF CG, RCM, LF1, NzINF
(1 64) (1) (1 2 16 32 64)

CG, RCM, LF2, NzINF CG, RCM, LF2, NzINF CG, ND, LF1, NzINF
(2 4 16 32) (2 64) (4 8)

CG, ND, LF1, NzINF CG, ND, LF1, NzINF
(8) (8)

CG, ND, LF2, NzINF
(4 16)

CG, ND, LF6, NzINF
(32)

58

with respect to time, memory, and MTP for various hardware configurations (number of

processors) for all the IC(k) implementations. As is often the case with preconditioners,

we noticed that the different implementations of even the relatively straightforward IC(k)

had very different performance characteristics and responses to values of their parameters.

Hypre IC(k): Our experimentally determined overall best parameters forthe Hypre IC(k)

preconditioner for different numbers of processors are shown in Table VI. We also in-

vestigated the impact of levels of fill on performance. Figure 2 shows the memory and

time profile curves for various levels of fill with RCM ordering. As expected, increas-

ing the number of levels of fill from 0 to 1 results in increasedrobustness and improved

run times. However, the performance drops as the number of levels is increased beyond

one because the improvement in quality of the preconditioner cannot compensate for the

increased memory and time required for higher levels of fill.

PETSc IC(k): The overall best parameter configurations shown in Table VI indicate

that for PETSc IC(k), level of fill k = 0 with RCM ordering resulted in the best overall

performance. The performance showed little variation in response to changing the fill factor

for low values of fill factor. High fill factors resulted in excessive memory consumption.

Figure 3 shows the time and memory profiles for various levelsof fill with RCM ordering

and a fill factor of 5. Unlike Hypre IC(k), both the memory and the time performance of

PETSc IC(k) deteriorates rapidly with even a modest increase in level of fill beyond 0.

PETSc BlockSolve95: Ordering is the only user controlled parameter in BlockSolve95;

however, we observed almost no difference in its performance between RCM and ND or-

derings.

Trilinos IC(k): Figure 4 shows the time and memory profiles for various levelsof fill

with RCM ordering for the Trilinos IC(k) preconditioner. The memory profile indicates

that higher levels of fill solve more problems at the expense of using slightly more mem-

ory. However, the time profiles reveal that the higher levelsof fill result in more effective

59

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:hypre:IC(k):CG:RCM:LF0:NzINF
PROC1:hypre:IC(k):CG:RCM:LF1:NzINF
PROC1:hypre:IC(k):CG:RCM:LF2:NzINF
PROC1:hypre:IC(k):CG:RCM:LF4:NzINF
PROC1:hypre:IC(k):CG:RCM:LF6:NzINF
PROC1:hypre:IC(k):CG:RCM:LF8:NzINF

(a) Memory performance profile

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:hypre:IC(k):CG:RCM:LF0:NzINF
PROC1:hypre:IC(k):CG:RCM:LF1:NzINF
PROC1:hypre:IC(k):CG:RCM:LF2:NzINF
PROC1:hypre:IC(k):CG:RCM:LF4:NzINF
PROC1:hypre:IC(k):CG:RCM:LF6:NzINF
PROC1:hypre:IC(k):CG:RCM:LF8:NzINF

(b) Time performance profile

Fig. 2. Serial memory and time profile curves for the Hypre IC(k) solver configurations with

RCM ordering, an unlimited number of additional nonzeros per row, and various

levels of fill.

60

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:petsc:IC(k):CG:RCM:LF0:F1
PROC1:petsc:IC(k):CG:RCM:LF1:F3
PROC1:petsc:IC(k):CG:RCM:LF2:F3
PROC1:petsc:IC(k):CG:RCM:LF1:F5
PROC1:petsc:IC(k):CG:RCM:LF2:F5
PROC1:petsc:IC(k):CG:RCM:LF1:F8
PROC1:petsc:IC(k):CG:RCM:LF2:F8
PROC1:petsc:IC(k):CG:RCM:LF1:F10
PROC1:petsc:IC(k):CG:RCM:LF2:F10

(a) Memory performance profile

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:petsc:IC(k):CG:RCM:LF0:F1
PROC1:petsc:IC(k):CG:RCM:LF1:F3
PROC1:petsc:IC(k):CG:RCM:LF2:F3
PROC1:petsc:IC(k):CG:RCM:LF1:F5
PROC1:petsc:IC(k):CG:RCM:LF2:F5
PROC1:petsc:IC(k):CG:RCM:LF1:F8
PROC1:petsc:IC(k):CG:RCM:LF2:F8
PROC1:petsc:IC(k):CG:RCM:LF1:F10
PROC1:petsc:IC(k):CG:RCM:LF2:F10

(b) Time performance profile

Fig. 3. Serial memory and time profile curves for the PETSc IC(k) solver configurations

with RCM ordering, fill factor of 5, and various level of fill parameters.

61

preconditioners that result in faster solution times. Thisis in stark contrast to the IC(k)

implementations of PETSc and Hypre.

Comparison of Hypre, PETSc, and Trilinos IC(k): Figure 5 shows a comparison of

BlockSolve95 and the configurations of Hypre, PETSc, and Trilinos IC(k) that resulted in

the best overall MTP performance as measured by the AUC metric. PETSc IC(k) is most

memory efficient because its best configuration hask = 0; however, it is less robust than

Hypre. For the problems that they both can solve, the overallbest configurations of PETSc

and Hypre are equally fast. However, the best Hypre IC(k) configuration is able to solve

more problems than the best PETSc IC(k) configuration.

b. Threshold-based incomplete Cholesky

Table VII. Configurations that resulted in the best memory, time, and MTP performance

profile area for the ILUPACK MLICT and WSMP ICT preconditioners.
Preconditioner Memory Winner Time Winner MTP Winner

ILUPACK MLICT CG, AMF CG, AMF CG, RCM
DT1e-2, IE10 DT3e-3, IE75 DT3e-02, IE75

WSMP ICT
AUTO, ND, DT3e-3 AUTO, RCM, DT1e-3 AUTO, RCM, DT3e-3

F3.3, SHIFT-ON F4.9, SHIFT-OFF F4.9, SHIFT-ON

We studied the ICT preconditioners of WSMP and ILUPACK in detail. We do not

report the results of ICT preconditioner implementations of other packages due to their se-

rious performance and robustness problems. For ILUPACK MLICT, we tried five different

built-in reordering schemes (RCM, AMF, INDSET, PQ, and METISN), five different val-

ues for drop tolerance (0.03, 0.01, 0.003, 0.001, 0.0005), and five different values of the

norm of inverse estimate (10, 25, 50, 75, 100). In the case of WSMP ICT, we tried two

ordering schemes (RCM, ND), four values of drop tolerance (0.01, 0.003, 0.001, 0.0003),

four values of fill factor (2.5, 3.3, 4.1, 4.9), with and without diagonal perturbation. Ta-

ble VII shows the solver configurations that resulted in the best memory, time, and MTP

62

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:tril:IC(k):CG:RCM:LF0:NONE
PROC1:tril:IC(k):CG:RCM:LF1:NONE
PROC1:tril:IC(k):CG:RCM:LF2:NONE
PROC1:tril:IC(k):CG:RCM:LF4:NONE
PROC1:tril:IC(k):CG:RCM:LF6:NONE
PROC1:tril:IC(k):CG:RCM:LF8:NONE

(a) Memory performance profile

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:tril:IC(k):CG:RCM:LF0:NONE
PROC1:tril:IC(k):CG:RCM:LF1:NONE
PROC1:tril:IC(k):CG:RCM:LF2:NONE
PROC1:tril:IC(k):CG:RCM:LF4:NONE
PROC1:tril:IC(k):CG:RCM:LF6:NONE
PROC1:tril:IC(k):CG:RCM:LF8:NONE

(b) Time performance profile

Fig. 4. Serial memory and time profile curves for the TrilinosIC(k) solver configurations

with RCM ordering and various level of fill parameters.

63

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:petsc:IC(k):CG:RCM:LF0:F1
PROC1:petsc:BSolve:CG:RCM:ALL:NONE
PROC1:tril:IC(k):CG:RCM:LF8:NONE
PROC1:hypre:IC(k):CG:RCM:LF1:NzINF

(a) Memory performance profile

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:petsc:IC(k):CG:RCM:LF0:F1
PROC1:petsc:BSolve:CG:RCM:ALL:NONE
PROC1:tril:IC(k):CG:RCM:LF8:NONE
PROC1:hypre:IC(k):CG:RCM:LF1:NzINF

(b) Time performance profile

Fig. 5. Memory and time performance profile curves for the overall best configurations for

Trilinos IC(k), PETSc IC(k), PETSc BlockSolve95, and Hypre IC(k) in the serial

case.

64

profile areas for ILUPACK MLICT and WSMP ICT.

ILUPACK MLICT: In Figure 6, we study the effect of drop tolerance for RCM ordering

and a low inverse norm estimate value of 10. We observe that the configuration corre-

sponding to moderately low drop tolerance value of 0.003 is the most robust but requires

significantly more memory resources than higher drop tolerance values. The same drop

tolerance has the best time profile area too. Figure 7 shows that even for a high value of in-

verse norm estimate such as 100, the best results are obtained with the same drop tolerance

value of 0.003.

WSMP ICT: Figure 8 shows the performance profile curves correspondingto the various

drop tolerance values for RCM ordering, diagonal perturbation of 0.001, and fill factor

of 4.9 for WSMP ICT. Drop tolerance values of 0.001 and 0.003 seem to offer the best

balance between robustness and memory and time consumption. Figure 9 shows the effect

of varying the ordering and diagonal perturbation for the best MTP values of drop tolerance

and fill factor (0.003 and 4.9, respectively). The use of diagonal perturbation results in more

robust solver configurations. While using diagonal perturbation, ND performed slightly

better than RCM, and without it, RCM performed better.

c. Algebraic Multigrid Methods

Multigrid preconditioners typically have a large number ofparameters that need to be fine

tuned. We used the default values suggested in the user manuals [1, 30] for a majority of the

parameters, and varied a few key ones, based on the suggestions from the authors of Hypre

and Trilinos. Table VIII shows the best configurations for this class of preconditioners.

Hypre BoomerAMG: We experimented with the ordering, coarsening scheme, maximum

number of levels for aggressive coarsening, and strong threshold for the BoomerAMG pre-

conditioner. In Figures 10 and 11, we show how the coarseningscheme and aggressive

coarsening levels affect the performance. These figures show the results with the RCM

65

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:ilupack:MLICT:CG:RCM:DT5e−4:IE10
PROC1:ilupack:MLICT:CG:RCM:DT1e−3:IE10
PROC1:ilupack:MLICT:CG:RCM:DT3e−3:IE10
PROC1:ilupack:MLICT:CG:RCM:DT1e−2:IE10
PROC1:ilupack:MLICT:CG:RCM:DT3e−2:IE10

(a) Memory performance profile

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:ilupack:MLICT:CG:RCM:DT5e−4:IE10
PROC1:ilupack:MLICT:CG:RCM:DT1e−3:IE10
PROC1:ilupack:MLICT:CG:RCM:DT3e−3:IE10
PROC1:ilupack:MLICT:CG:RCM:DT1e−2:IE10
PROC1:ilupack:MLICT:CG:RCM:DT3e−2:IE10

(b) Time performance profile

Fig. 6. Memory and time performance profile variations for varying values of drop tolerance

(DT) in the case of ILUPACK MLICT with RCM ordering and inverse norm estimate

value of 10.

66

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:ilupack:MLICT:CG:RCM:DT5e−4:IE100
PROC1:ilupack:MLICT:CG:RCM:DT1e−3:IE100
PROC1:ilupack:MLICT:CG:RCM:DT3e−3:IE100
PROC1:ilupack:MLICT:CG:RCM:DT1e−2:IE100
PROC1:ilupack:MLICT:CG:RCM:DT3e−2:IE100

(a) Memory performance profile

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:ilupack:MLICT:CG:RCM:DT5e−4:IE100
PROC1:ilupack:MLICT:CG:RCM:DT1e−3:IE100
PROC1:ilupack:MLICT:CG:RCM:DT3e−3:IE100
PROC1:ilupack:MLICT:CG:RCM:DT1e−2:IE100
PROC1:ilupack:MLICT:CG:RCM:DT3e−2:IE100

(b) Time performance profile

Fig. 7. Memory and time performance profile variations for varying values of drop tolerance

(DT) in the case of ILUPACK MLICT with RCM ordering and inverse norm estimate

value of 100.

67

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:wsmp:ICT:AUTO:RCM:DT3e−4:F4.9_SHIFT−ON
PROC1:wsmp:ICT:AUTO:RCM:DT1e−3:F4.9_SHIFT−ON
PROC1:wsmp:ICT:AUTO:RCM:DT3e−3:F4.9_SHIFT−ON
PROC1:wsmp:ICT:AUTO:RCM:DT1e−2:F4.9_SHIFT−ON

(a) Memory performance profile

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:wsmp:ICT:AUTO:RCM:DT3e−4:F4.9_SHIFT−ON
PROC1:wsmp:ICT:AUTO:RCM:DT1e−3:F4.9_SHIFT−ON
PROC1:wsmp:ICT:AUTO:RCM:DT3e−3:F4.9_SHIFT−ON
PROC1:wsmp:ICT:AUTO:RCM:DT1e−2:F4.9_SHIFT−ON

(b) Time performance profile

Fig. 8. Memory and time performance profile variations for varying values of drop tolerance

(DT) in the case of WSMP ICT with RCM ordering, diagonal perturbation, and fill

factor value of 4.9.

68

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:wsmp:ICT:AUTO:ND:DT3e−3:F4.9_SHIFT−OFF
PROC1:wsmp:ICT:AUTO:RCM:DT3e−3:F4.9_SHIFT−OFF
PROC1:wsmp:ICT:AUTO:ND:DT3e−3:F4.9_SHIFT−ON
PROC1:wsmp:ICT:AUTO:RCM:DT3e−3:F4.9_SHIFT−ON

(a) Memory performance profile

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:wsmp:ICT:AUTO:ND:DT3e−3:F4.9_SHIFT−OFF
PROC1:wsmp:ICT:AUTO:RCM:DT3e−3:F4.9_SHIFT−OFF
PROC1:wsmp:ICT:AUTO:ND:DT3e−3:F4.9_SHIFT−ON
PROC1:wsmp:ICT:AUTO:RCM:DT3e−3:F4.9_SHIFT−ON

(b) Time performance profile

Fig. 9. Memory and time performance profile variations for various ordering schemes with

and without diagonal perturbation in the case of WSMP ICT with drop tolerance

0.003 and fill factor 4.9.

69

Table VIII. Iterative solver configurations that resulted in the best memory, time, and MTP

performance profile area for the AMG preconditioners in Hypre and Trilinos.

The numbers enclosed by parenthesis denote the number of processors.
Preconditioner Memory Winner Time Winner MTP Winner

Hypre BoomerAMG

CG, RCM, HMIS CG, RCM, HMIS CG, RCM, HMIS
AGG10, ST0.9 AGG10, ST0.9 AGG10, ST0.9

(32) (32) (32)
CG, RCM, PMIS CG, RCM, PMIS CG, RCM, PMIS

AGG0, ST0.9 AGG0, ST0.7 AGG10, ST0.9
(64) (4 64) (1 2 4 8)

CG, RCM, PMIS CG, RCM, PMIS CG, NONE, PMIS
AGG10, ST0.9 AGG10, ST0.9 AGG10, ST0.7

(1 2 4 8) (1) (64)
CG, NONE, PMIS CG, ND, FALG CG, NONE, PMIS

AGG10, ST0.9 AGG0, ST0.9 AGG10, ST0.9
(16) (8) (16)

CG, NONE, FALG
AGG0, ST0.9

(2)
CG, NONE, PMIS

AGG0, ST0.7
(16)

Trilinos ML

CG, RCM, ML-SA CG, RCM, ML-SA CG, RCM, ML-SA
SGS, SS2, UCMIS SGS, SS2, UC SGS, SS2, UCMIS

(8) (2 8) (2)
CG, RCM, ML-SA CG, RCM, ML-SA CG, RCM, ML-SA
SGS, SS3, UCMIS SGS, SS2, PMETIS SGS, SS2, UC

(4) (32) (8)
CG, NONE, ML-SA CG, RCM, ML-SA CG, RCM, ML-SA
SGS, SS2, UCMIS SGS, SS3, UC SGS, SS2, PMETIS

(1 2) (4) (32)
CG, NONE, ML-SA CG, RCM, ML-SA CG, RCM, ML-SA

SGS, SS2, MIS SGS, SS3, PMETIS SGS, SS3, UC
(32) (1) (4)

CG, NONE, ML-SA CG, NONE, ML-SA CG, RCM, ML-SA
SGS, SS3, UCMIS SGS, SS2, UC SGS, SS3, PMETIS

(16) (16) (1)
CG, NONE, ML-SA CG, NONE, ML-SA CG, NONE, ML-SA

SGS, SS3, MIS SGS, SS3, UCMIS SGS, SS2, UC
(64) (64) (16)

CG, NONE, ML-SA, SGS
SGS, SS3, UCMIS

(64)

70

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:hypre:AMG:CG:RCM:FALG:AGG0_ST0.25
PROC1:hypre:AMG:CG:RCM:PMIS:AGG0_ST0.25
PROC1:hypre:AMG:CG:RCM:FALG:AGG10_ST0.25
PROC1:hypre:AMG:CG:RCM:PMIS:AGG10_ST0.25

(a) Memory performance profile

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:hypre:AMG:CG:RCM:FALG:AGG0_ST0.25
PROC1:hypre:AMG:CG:RCM:PMIS:AGG0_ST0.25
PROC1:hypre:AMG:CG:RCM:FALG:AGG10_ST0.25
PROC1:hypre:AMG:CG:RCM:PMIS:AGG10_ST0.25

(b) Time performance profile

Fig. 10. Memory and time performance profile curves for HypreBoomerAMG solver con-

figurations for a strong threshold value of 0.25 in the serialcase. The legends also

provide details on the solver (CG), ordering (RCM), number of levels of aggressive

coarsening (AGG), and coarsening schemes (FALG, PMIS).

71

ordering, which resulted in the best MTP performance in the serial case. We found the per-

formance of the HMIS coarsening scheme to be quite similar tothat of the PMIS scheme,

so we have included only PMIS and Falgout schemes in these figures. Figure 10 shows the

results for a relatively small value of 0.25 for the strong threshold and Figure 11 for a high

value of 0.9. Figure 10 shows that Falgout coarsening schemeresults in heavy memory and

time usage for most problems when used without aggressive coarsening. PMIS appears to

be the better coarsening scheme for our test suite with low strong threshold values. This

observation is different from what is suggested in the user manual [1], which recommends

Falgout coarsening scheme as the default. The memory and time profiles in Figure 11

indicate that the performance difference between the various coarsening schemes is not as

significant for a high strong threshold value, especially when aggressive coarsening is used.

Note that the authors recommend a high value of strong threshold for 3D problems, which

constitute about 50% of our test suite.

Trilinos ML: For the ML preconditioner in Trilinos, we compared the performance of

classical smoothed aggregation (SA), two level SA based domain decomposition (DD),

and three level algebraic domain decomposition (DD-ML) with their predefined default set

of parameters as described in [30]. In addition, we also experimented with multiple coars-

ening schemes, smoothers, and the number of smoother sweepsfor the SA preconditioner.

Figure 12 shows the time profiles for varying the number of smoother sweeps for the

symmetric Gauss-Seidel and Chebyshev smoother. We observethat increasing the number

of sweeps from two to three significantly improves the robustness of Chebyshev polyno-

mial smoother. For the symmetric Gauss-Seidel smoother, increasing the smoother sweeps

causes only a slight change in the number of problems solved.We plot only the time pro-

files since the memory usage is not affected by the number of smoother sweeps. Overall,

the symmetric Gauss-Seidel smoother is faster and solves more problems.

Figure 13 shows the effect of various coarsening schemes on the performance of

72

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:hypre:AMG:CG:RCM:FALG:AGG0_ST0.9
PROC1:hypre:AMG:CG:RCM:PMIS:AGG0_ST0.9
PROC1:hypre:AMG:CG:RCM:FALG:AGG10_ST0.9
PROC1:hypre:AMG:CG:RCM:PMIS:AGG10_ST0.9

(a) Memory performance profile

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:hypre:AMG:CG:RCM:FALG:AGG0_ST0.9
PROC1:hypre:AMG:CG:RCM:PMIS:AGG0_ST0.9
PROC1:hypre:AMG:CG:RCM:FALG:AGG10_ST0.9
PROC1:hypre:AMG:CG:RCM:PMIS:AGG10_ST0.9

(b) Time performance profile

Fig. 11. Memory and time performance profile curves for HypreBoomerAMG solver con-

figurations for a strong threshold value of 0.9 in the serial case. The legends provide

details on the solver (CG), ordering (RCM), number of levelsof aggressive coars-

ening (AGG), and coarsening scheme (FALG, PMIS).

73

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:tril:ML:CG:RCM:SA:SGS_SS2_UCMIS
PROC1:tril:ML:CG:RCM:SA:CBY_SS2_UCMIS
PROC1:tril:ML:CG:RCM:SA:SGS_SS3_UCMIS
PROC1:tril:ML:CG:RCM:SA:CBY_SS3_UCMIS

Fig. 12. Time performance profile curves for Trilinos ML solver configurations for differ-

ent smoothing sweeps of symmetric Gauss-Seidel and Chebyshev smoothers in the

serial case. The legends provide details on the solver (CG),ordering (RCM), and

coarsening scheme (UCMIS).

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:tril:ML:CG:RCM:SA:SGS_SS3_UCMIS
PROC1:tril:ML:CG:RCM:SA:CBY_SS3_UCMIS
PROC1:tril:ML:CG:RCM:SA:SGS_SS3_MIS
PROC1:tril:ML:CG:RCM:SA:CBY_SS3_MIS
PROC1:tril:ML:CG:RCM:SA:SGS_SS3_UC
PROC1:tril:ML:CG:RCM:SA:CBY_SS3_UC
PROC1:tril:ML:CG:RCM:SA:SGS_SS3_PMETIS
PROC1:tril:ML:CG:RCM:SA:CBY_SS3_PMETIS

Fig. 13. Time performance profile curves for Trilinos ML configurations using the Cheby-

shev and symmetric Gauss-Seidel smoothers with various coarsening schemes in

the single processor case. The legends provide details on the solver (CG), ordering

(RCM), and smoother sweeps (SS3).

74

Chebyshev and symmetric Gauss-Seidel smoothers. Once again, we do not show the mem-

ory profiles since they are very similar for all the coarsening schemes. The time profiles

indicate that the performance of all coarsening schemes except MIS is nearly identical in

Trilinos ML with classical smoothed aggregation is nearly identical.

Figure 14 shows a comparison of the time and memory usage of the DD, DD-ML

configurations, and the overall best SA configuration while using the ParMETIS coarsening

scheme. We observe that the smoothed aggregation approach is very efficient with respect

to memory; however, the difference in time performance is not so dramatic.

Comparison of Hypre BoomerAMG and Trilinos ML: Figure 15 shows a comparison of

the overall best configurations of Trilinos ML and Hypre BoomerAMG in the single proces-

sor scenario. We observe that the memory profiles of TrilinosML and Hypre BoomerAMG

are quite close, although BoomerAMG solves more problems. The time profiles indicate

that Hypre BoomerAMG solves a large fraction of problems using much less time than

Trilinos ML.

d. Sparse Approximate Inverse

Table IX. Iterative solver configurations that resulted in the best memory, time, and MTP

performance profile area for the ParaSails preconditioner in Hypre. The numbers

enclosed by parenthesis denote the processor number corresponding to the overall

best solver configurations. The configuration names providedetails on parameters

such as number of levels (Lev), threshold (Th), and filter (Flt).
Preconditioner Memory Winner Time Winner MTP Winner

Hypre ParaSails

CG, ND, PLev1 CG, ND, PLev1 CG, ND, PLev1
Th0, Flt0.05 Th0.1, Flt0 Th0.1, Flt0

(2) (32) (32)
CG, ND, PLev2 CG, ND, PLev2 CG, ND, PLev1
Th0.01, Flt0.001 Th0.1, Flt0.001 Th0.1, Flt0.001

(32 64) (1 2 4 8 16) (1 2 4 8 16 64)
CG, ND, PLev2 CG, NONE, PLev2
Th0.1, Flt0.001 Th0.1, Flt0

(1 4 8 16) (64)

75

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:tril:ML:CG:RCM:SA:SGS_SS3_PMETIS
PROC1:tril:ML:CG:RCM:DD−ML:IFPACK_SS1_PMETIS
PROC1:tril:ML:CG:RCM:DD:IFPACK_SS1_PMETIS

(a) Memory performance profile

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:tril:ML:CG:RCM:SA:SGS_SS3_PMETIS
PROC1:tril:ML:CG:RCM:DD−ML:IFPACK_SS1_PMETIS
PROC1:tril:ML:CG:RCM:DD:IFPACK_SS1_PMETIS

(b) Time performance profile

Fig. 14. Memory and time performance profile curves for the best Trilinos ML SA, DD, and

DD-ML configurations for RCM ordering in the single processor case.

76

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:tril:ML:CG:RCM:SA:SGS_SS3_PMETIS
PROC1:hypre:AMG:CG:RCM:PMIS:AGG10_ST0.9

(a) Memory performance profile

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:tril:ML:CG:RCM:SA:SGS_SS3_PMETIS
PROC1:hypre:AMG:CG:RCM:PMIS:AGG10_ST0.9

(b) Time performance profile

Fig. 15. Memory and time performance profile curves for the overall best Trilinos ML and

Hypre BoomerAMG solver configurations. The legends providedetails on the

solver (CG), ordering (RCM), coarsening scheme (PMIS, PMETIS), number of

levels of aggressive coarsening (10), and strong thresholdvalues (0.9), ML precon-

ditioner type (SA), and the number of smoother sweeps (3).

77

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:hypre:PSAILS:CG:ND:PLev0:Th0_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev0:Th0.01_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev0:Th0.1_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev0:Th−0.75_Flt−0.9

(a) Memory performance profile

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:hypre:PSAILS:CG:ND:PLev0:Th0_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev0:Th0.01_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev0:Th0.1_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev0:Th−0.75_Flt−0.9

(b) Time performance profile

Fig. 16. Memory and time performance profile curves for HypreParaSails solver configu-

rations corresponding to various threshold and filter values for a fixed number of

levels (PLev0) and best MTP ordering (ND).

78

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:hypre:PSAILS:CG:ND:PLev2:Th0_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev2:Th0.01_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev2:Th0.1_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev2:Th−0.75_Flt−0.9

(a) Memory performance profile

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:hypre:PSAILS:CG:ND:PLev2:Th0_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev2:Th0.01_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev2:Th0.1_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev2:Th−0.75_Flt−0.9

(b) Time performance profile

Fig. 17. Memory and time performance profile curves for HypreParaSails solver configu-

rations corresponding to various threshold and filter values for a fixed number of

levels (PLev2) and best MTP ordering (ND).

79

For the ParaSails preconditioner in Hypre, we experimentedwith multiple threshold

values (0, 0.01, 0.1, -0.75, -0.9) and filter values (0, 0.001, 0.05, -0.9) for three different

levels as suggested by the user manual [1]. Table IX summarizes the configurations that

resulted in the best performance profiles in our experiments.

Figures 16 and 17 show the time and memory profiles for different threshold and filter

values with nested dissection ordering for 0 and 2 levels, respectively. When the number

of levels is 0, the memory and time requirements of all the configurations are similar.

However, their robustness varies a lot and the configurationwith threshold 0.0 and filter

0.001 solves the most problems. In the case of two levels, thememory and time profile

curves for different configurations are well separated and the threshold value of 0.1 appears

to work the best. The negative threshold values suggested bythe authors in the user manual,

which have a different interpretation from non negative values, solved the fewest problems.

Figure 18 shows the performance profile curves for the best threshold and filter com-

bination for 0, 1, and 2 levels. We observe that the best configuration for 2 levels solves

the maximum number of problems, but is considerably slower than the best configuration

for 1 level. An interesting observation is that the memory consumption actually declines

with increasing number of levels. This is because the best configurations of higher levels

include higher values of threshold and filter to drop more entries.

e. Variation of Overall Best Configurations with Number of Processors

From the tables in the previous section, we note that the bestoverall configurations of

most preconditioner implementations are different for different number of processes. To

determine if these processor-specific overall best configurations are substantially different

in their performance, we plotted the MTP performance profilecurves for each of these

configurations for a fixed number of processors. Between 1 and64 processors, we observed

very small differences between the performance for the 7 sets of best configurations (for 1,

80

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:hypre:PSAILS:CG:ND:PLev0:Th0_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev1:Th0.1_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev2:Th0.1_Flt0.05

(a) Memory performance profile

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PROC1:hypre:PSAILS:CG:ND:PLev0:Th0_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev1:Th0.1_Flt0.001
PROC1:hypre:PSAILS:CG:ND:PLev2:Th0.1_Flt0.05

(b) Time performance profile

Fig. 18. Memory and time performance profile curves for HypreParaSails solver configura-

tions that resulted in the best MTP profile area for a fixed ordering (ND) and level

combination. The legends provide details on the solver (CG), number of levels

(Lev), threshold (Th), and filter (Flt).

81

2, 4, 8, 16, 32, and 64 processors). The differences are usually tied to different scalabilities

of the preconditioner generation and the solution phases, which we discuss in detail in

Section D.5. If there is a considerable difference in the scalability of the two phases, then

parameters that shift more computation to the more scalablephase would be favored as the

number of processors is increased.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PSB1
DEF1

(a) ILUPACK MLICT Memory Profile

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PSB1
DEF1

(b) ILUPACK MLICT Time Profile

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PSB1
DEF1

(c) WSMP ICT Memory Profile

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

PSB1
DEF1

(d) WSMP ICT Time Profile

Fig. 19. Memory and time performance profile curves for the problem independent best

(PIB) and the problem-specific best (PSB) configurations of ILUPACK MLICT

and WSMP ICT.

82

2. Performance Benefits of Fine Tuning

The users fine-tune the parameters of preconditioned iterative solvers to optimize the per-

formance for a particular application, instead of using thedefault values. In this section,

we discuss the effect of problem-specific fine-tuning of parameters on the performance of

various preconditioner implementations. For each solver configuration group and proces-

sor configuration, we compare two sets of performance values. The first set of performance

values corresponds to the overall best configuration based on the MTP metric. The second

set corresponds to problem-specific best (PSB) performancevalues; i.e., the performance

of the configurations with the least MTP value within the configuration group for each

problem. These two sets of performance values are compared for 1, 2, 4, 8, 16, 32, and 64

processors for the solvers whose parallel implementationsare available.

Figure 19 shows the memory and time performance profile curves for the overall best

and problem-specific best configurations for WSMP ICT and ILUPACK MLICT. These

preconditioners currently have only a serial implementation available, so only single pro-

cessor results are shown. Figure 19 shows that both solvers show considerable improve-

ment in performance due to problem-specific best parameter selection. The improvement

is more significant for ILUPACK MLICT than for WSMP ICT.

Figures 20–25 show the performance variation between the PSB and overall best for

all the preconditioners with parallel implementations forwhich such a comparison . Instead

of showing separate performance profile curves for memory and time separately for each

processor setting, we combine the information contained inseparate memory and time

plots in a single figure. Each figure has two circles for each processor configuration. The

empty circles correspond to the overall best parameter configurations and the filled circles

correspond to the problem-specific best performance. The x-and y-coordinates of each

circle are respectively the areas of time and memory profilesobtained by considering the

83

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

PROC_1

PROC_2

PROC_4

PROC_8

PROC_16

PROC_64

Time Performance Profile Area

M
em

or
y

P
er

fo
rm

an
ce

 P
ro

fil
e

A
re

a

Fig. 20. Memory and time profile areas for the overall best (empty circles) and the prob-

lem-specific best configurations (filled circles) of Hypre IC(k) preconditioner for

multiple processors.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

PROC_1

PROC_2

PROC_4

PROC_8

PROC_16

PROC_64

Time Performance Profile Area

M
em

or
y

P
er

fo
rm

an
ce

 P
ro

fil
e

A
re

a

Fig. 21. Memory and time profile areas for the overall best (empty circles) and the prob-

lem-specific best configurations (filled circles) of PETSc IC(k) preconditioner for

multiple processors.

84

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

PROC_1

PROC_2

PROC_4

PROC_8

PROC_16

PROC_64

Time Performance Profile Area

M
em

or
y

P
er

fo
rm

an
ce

 P
ro

fil
e

A
re

a

Fig. 22. Memory and time profile areas for the overall best (empty circles) and the prob-

lem-specific best configurations (filled circles) of Trilinos IC(k) preconditioner for

multiple processors.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

PROC_1

PROC_2

PROC_4

PROC_8

PROC_16

PROC_64

Time Performance Profile Area

M
em

or
y

P
er

fo
rm

an
ce

 P
ro

fil
e

A
re

a

Fig. 23. Memory and time profile areas for the overall best (empty circles) and the prob-

lem-specific best configurations (filled circles) of Hypre BoomerAMG precondi-

tioner for multiple processors.

85

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

PROC_1

PROC_2

PROC_4

PROC_8

PROC_16

PROC_64

Time Performance Profile Area

M
em

or
y

P
er

fo
rm

an
ce

 P
ro

fil
e

A
re

a

Fig. 24. Memory and time profile areas for the overall best (empty circles) and the prob-

lem-specific best configurations (filled circles) of Trilinos ML preconditioner for

multiple processors.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

PROC_1

PROC_2

PROC_4

PROC_8

PROC_16

PROC_64

Time Performance Profile Area

M
em

or
y

P
er

fo
rm

an
ce

 P
ro

fil
e

A
re

a

Fig. 25. Memory and time profile areas for the overall best (empty circles) and the prob-

lem-specific best configurations (filled circles) of Hypre ParaSails preconditioner

for multiple processors.

86

PIB and PSB performance of a single configuration group together. The size of each circle

is proportional to the number of problems solved. In our experiments, the PSB and overall

best profile areas for PETSc BlockSolve95 and Trilinos IC(k) were nearly identical and

are, therefore, not shown. However, in the case of Hypre’s IC(k), ParaSails, and Trilinos

ML in Figures 20 – 24, we observe that there is considerable performance benefit to fine-

tuning for both memory and time as indicated by the separation of the PIB and PSB circles.

The gap between PSB and PIB profile areas is seen to reduce as weincrease the number of

processors suggesting that fine tuning is less important forhigher number of processors. In

the case of PETSc IC(k) and Hypre BoomerAMG in Figures 21 and 23, the gap between

the PIB and PSB profiles is minor for both memory and time.

3. Influence of Parameters on Solver Performance

In this section, we analyze the relative importance of the various preconditioner parameter

choices on the time and memory performance within each solver configuration group. In

Section D.2, we observed the impact on performance due to collective fine-tuning of the

parameters for each solver configuration group. However, itdoes not provide any infor-

mation on the individual effects of the various parameters that were experimented with.

In order to capture the relative importance of parameters, there are two main approaches

described in global sensitivity analysis literature [75] based on linear regression parameters

and conditional variance respectively. We also propose a new fine-tuning score based on

variance conditioned on complementary factors.

a. Regression-based Sensitivity

The first approach is to perform a linear regression [75] withthe performance values as the

target variable and the various parameters as the dependentvariables with the categorical

parameters being converted to multiple binary variables. For the current scenario, one could

87

choose the performance ratios (normalized performance with respect to the overall best

configurationPIB(C)) as the target variable in order to adjust for effects of the individual

matrices. The coefficients of the regression model indicatethe degree and direction of

change in the performance ratio for each unit change in a parameter and can be interpreted

as a measure of sensitivity of the performance with respect to the influencing parameters.

However, this approach is often not suitable in case of non-linear behavior or large number

of outliers as is often the case. Furthermore, this approachdoes not adequately address

the fact that the parameters tend to have different distributions. These drawbacks limit the

applicability of this regression based approach for our domain.

b. Conditional Variance-based Sensitivity

Another common approach in sensitivity analysis is to capture the relative importance of a

parameter in terms of the reduction in variance of the performance metric conditioned on

the parameter value [76]. LetFi be theith parameter andµ be the performance metric of

interest normalized for each matrix to reduce variance. LetV (µ) be the global variance

of the performance metric, and letVF−i
(µ|Fi = fi) denote the conditional variance ofµ

when the parameterFi takes the valuefi and the variation is overF−i(i.e., all factors except

Fi). The key idea is that freezing one potential source of variation results in a conditional

varianceVF−i
(µ|Fi = fi) that is lower than the unconditional global varianceV (µ) and

is determined only by parameters other thanFi. Since we desire a sensitivity measure

independent of the parameter valuesfi, we consider the expectation of the conditional

variance over all possible values of the factorFi, i.e., EFi
(VF−i

(µ|Fi)). This sensitivity

measure is always lower or equal to the global varianceV (µ) and it can be shown that

EFi
(VF−i

(µ|Fi)) + VFi
(EF−i

(µ|Fi)) = V (µ),

88

where the second term denotes the variance in the expected performance metric conditioned

onFi, which is always non-negative. A small value ofEFi
(VF−i

(µ|Fi)) or, in other words,

a large value ofVFi
(EF−i

(µ|Fi)) implies that most of the variance inµ can be explained

by the parameterFi indicating that it is an important factor. The conditional variance

VFi
(EF−i

(µ|Fi)) is typically normalized by the global varianceV (µ) to give the importance

measure

Si =
VFi

(EF−i
(µ|Fi))

V (µ)
.

Since the behavior tends to vary across matrices, we also aggregate both the conditional

and global variance across the matrices.

Figure 26 shows the relative importance of the various factors for different precondi-

tioners in the serial case. The height of the bars corresponding to each parameter indicates

the reduction in variance attained with respect to time and memory due to fixing the pa-

rameter to a particular value. A high value of reduction indicates that there is very little

variance that is not explained by this parameter. For example, in Figure 26, we observe

that the level of fill parameter is the most important parameter whereas ordering is the least

important one. For Hypre ParaSails, the memory usage is muchmore sensitive to the fil-

ter parameter than the threshold, whereas the opposite behavior is observed in the case of

time. In the case of Hypre BoomerAMG, number of aggressive coarsening levels impact

memory the most, whereas the strong threshold is the most important factor with respect

to time. For Trilinos ML, both smoother as well as the smoother sweeps seems to have the

maximum influence. This is just an artifact of the correlation between the parameters used

in this study. We analyze this case in more detail later in section d. For both ILUPACK

MLICT and WSMP ICT, drop tolerance is the most important parameter with respect to

both time and memory.

Figure 27 shows the relative importance of the various parameters in a preconditioner

89

with respect to memory and time as the number of processors isincreased. The relative

importance of the parameters remain the same irrespective of the number of processors. In

the case of PETSc BlockSolve95, there is only a single parameter and hence, we omit it.

c. Variance-based Fine-tuning Score

The variance-based sensitivity score discussed in Sectionb is used commonly in statistical

literature for retrospective analysis since a high value ofsensitivity with respect to a param-

eter indicates that the response variable can be confined to asmall interval (i.e., has low

variance), which correlates to the explanatory and predictive power of the parameter. From

the variance decomposition relation in Section b, we note that the conditional variance

VFi
(EF−i

(µ|Fi)) indicates the spread between the average performance values obtained for

different fixed values of a parameter. However, this measuredoes not capture the effect

of modifying a single parameterwhile keeping the rest fixedas is common in a practical

fine-tuning scenario. Hence, we consider an alternate fine-tuning sensitivity measure for a

parameterFi defined as the expectation of variance ofµ for different values ofFi for fixed

values on the rest of the parameters, i.e.,EF−i
(VFi

(µ|F−i)). This variance is a better indi-

cation of the change in the performance one can expect by fine-tuning a single parameter

keeping others fixed and we define this value normalized by theglobal variance as thefine-

tuning sensitivity. Note that the two measuresVFi
(EF−i

(µ|Fi)) andEF−i
(VFi

(µ|F−i)) are

closely related to each other and involve applying the aggregation and variance is different

orders. When the parameters are all uncorrelated andµ exhibits linear dependence on the

parameters, the two measures are identical.

Figure 28 shows the average normalized variation with respect to both time and mem-

ory for each of the fine-tuneable parameters for different preconditioners in the serial case.

The height of the bars corresponding to each parameter corresponds to the normalized vari-

ance of the change in performance one can expect by fine-tuning that parameter keeping

90

Ordering Level of Fill Fill Factor
0

0.5
1

pe
−

IC
(k

)

Ordering Level of Fill
0
0.5
1

tr
−

IC
(k

)

Ordering Level of Fill
0

0.5
1

hy
−

IC
(k

)

Ordering ML−Default ML Smoother ML Sweeps ML Coarsen
0
0.5
1

tr
−

M
L

Ordering Coarsening Scheme Coarsen Levels Strong Threshold
0

0.5
1

hy
−

A
M

G

Ordering ParaSails Levels ParaSails Threshold ParaSails Filter
0
0.5
1

hy
−

P
S

A
IL

S

Ordering Drop Tolerance Inverse Norm Estimate
0

0.5
1

il−
M

LI
C

T

Ordering Drop Tolerance Fill Factor WSMP ICT SHIFT
0
0.5
1

w
s−

IC
T

Time Memory

Fig. 26. Conditional variance based sensitivity scores of the parameters in a preconditioner

with respect to time and memory in the serial case.

91

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

pe
−

IC
(k

)

Ordering
Level of Fill
Fill Factor

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

tr
−

IC
(k

)

Ordering
Level of Fill

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

hy
−

IC
(k

)

Ordering
Level of Fill

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

pe
−

IC
(k

)

Ordering
Level of Fill
Fill Factor

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

tr
−

IC
(k

)

Ordering
Level of Fill

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

hy
−

IC
(k

)

Ordering
Level of Fill

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

tr
−

M
L

Ordering
ML−Default
ML Smoother
ML Sweeps
ML Coarsen

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

hy
−

A
M

G

Ordering
Coarsening Scheme
Coarsen Levels
Strong Threshold

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

hy
−

P
S

A
IL

S

Ordering
ParaSails Levels
ParaSails Threshold
ParaSails Filter

Relative importance of parameters with
respect to memory.

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

tr
−

M
L

Ordering
ML−Default
ML Smoother
ML Sweeps
ML Coarsen

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

hy
−

A
M

G

Ordering
Coarsening Scheme
Coarsen Levels
Strong Threshold

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

hy
−

P
S

A
IL

S

Ordering
ParaSails Levels
ParaSails Threshold
ParaSails Filter

Relative importance of parameters with
respect to time.

Fig. 27. Relative importance with respect to memory and timeof the various parameters

for the different preconditioners in the parallel case. Each curve in the subplots

corresponds to a parameter that is varied in our study.

92

Ordering Level of Fill Fill Factor
0

0.5
1

pe
−

IC
(k

)

Ordering Level of Fill
0
0.5
1

tr
−

IC
(k

)

Ordering Level of Fill
0

0.5
1

hy
−

IC
(k

)

Ordering ML−Default ML Smoother ML Sweeps ML Coarsen
0
0.5
1

tr
−

M
L

Ordering Coarsening Scheme Coarsen Levels Strong Threshold
0

0.5
1

hy
−

A
M

G

Ordering ParaSails Levels ParaSails Threshold ParaSails Filter
0
0.5
1

hy
−

P
S

A
IL

S

Ordering Drop Tolerance Inverse Norm Estimate
0

0.5
1

il−
M

LI
C

T

Ordering Drop Tolerance Fill Factor WSMP ICT SHIFT
0
0.5
1

w
s−

IC
T

Time Memory

Fig. 28. Average normalized variation with respect to memory and time for each of the

fine-tuneable parameters of the various preconditioners inthe serial case.

93

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

pe
−

IC
(k

)

Ordering
Level of Fill
Fill Factor

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

tr
−

IC
(k

)

Ordering
Level of Fill

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

hy
−

IC
(k

)

Ordering
Level of Fill

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

pe
−

IC
(k

)

Ordering
Level of Fill
Fill Factor

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

tr
−

IC
(k

)

Ordering
Level of Fill

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

hy
−

IC
(k

)

Ordering
Level of Fill

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

tr
−

M
L

Ordering
ML−Default
ML Smoother
ML Sweeps
ML Coarsen

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

hy
−

A
M

G

Ordering
Coarsening Scheme
Coarsen Levels
Strong Threshold

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

hy
−

P
S

A
IL

S

Ordering
ParaSails Levels
ParaSails Threshold
ParaSails Filter

Variation in memory

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

tr
−

M
L

Ordering
ML−Default
ML Smoother
ML Sweeps
ML Coarsen

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

hy
−

A
M

G

Ordering
Coarsening Scheme
Coarsen Levels
Strong Threshold

0 10 20 30 40 50 60 70
0

0.5

1

Number of Processors

hy
−

P
S

A
IL

S

Ordering
ParaSails Levels
ParaSails Threshold
ParaSails Filter

Variation in time

Fig. 29. Average normalized variation with respect to memory and time for the fine-tuneable

parameters of the various preconditioners in the parallel case. Each curve in the

subplots corresponds to a parameter that is varied in our study.

94

others fixed. The relative heights of the bars is important inthis case since it gives an

indication of the variance on performance due to each parameter. This is more evident

when you compare the plots for PETSc IC(k) in Figures 26 and 28. For example, in Fig-

ure 26, we observe that the ordering and fill factor parameters have comparable conditional

variance-based scores in comparison to the level of fill parameter. However, in Figure 28,

it is clear that the variation in performance due to level of fill is much higher in comparison

to that due to ordering and fill factor. Although the general trends for other precondition-

ers are similar to those based on the conditional variance-based sensitivity plot, there are

some subtle differences. For example, the variation in performance due to ordering is al-

most negligible for both Hypre BoomerAMG and ParaSails. Similarly, the variation due to

ParaSails threshold parameter is negligible with respect to time.

Figure 29 shows the effect of fine-tuning the various parameters on memory and time

as the number of processors is increased. The level of fill hasthe larger influence on mem-

ory and time for all the three IC(k) implementations in PETSc, Trilinos, and Hypre. Only

in the case of PETSc and Trilinos IC(k), did the ordering scheme cause any significant

variation with respect to both memory and time. In the case ofPETSc BlockSolve95, the

variations with respect to time and memory were minor and are, therefore, omitted. For

Hypre BoomerAMG, the ordering scheme has the least effect onboth time and memory,

while the effect of the other parameters (coarsening scheme/levels and strong threshold) is

substantial, but nearly flat as the number of processors varies. In the case of Hypre Para-

Sails, the number of levels has the maximum impact on both time and memory. Although

the filter parameter has a significant impact on memory, with respect to time, the variation

is negligible. The trends for both conditional variance based sensitivity and variance based

parameter fine-tuning plots show similar behavior except incase of Trilinos ML due to

correlation between parameters, which we discuss below.

95

d. Correlated Parameters

The fine-tuning measure discussed above is suitable for cases where each choice of a pa-

rameter can occur with all other choices of the rest of parameters to form a valid configura-

tion, i.e., the parameters are statistically independent and correlated. In such a case, using

the fine-tuning measure, one can order the parameters and fine-tune them one at a time.

However, in certain cases, there tend to exist groups of highly (positively or negatively) cor-

related parameters, e.g., smoother and number of smoother sweeps (correlation coefficient

< -0.7)in case of Trilinos ML. When there is a strong dependence among the parameters,

then freezing all the other parameters has an implicit effect of limiting the range of possi-

ble values for the parameter in question resulting in a misleading value for the fine-tuning

measure. For such scenarios, it is more appropriate to form groups of highly correlated pa-

rameters and simultaneously fine-tune them based on their joint fine-tuning score. Figures

30 and 31 show the fine-tuning measures for Trilinos-ML with grouping of the parameters

smoother and number of sweeps in the serial and parallel caserespectively. We observe

that the combined parameter ML Smoother/Sweeps is the most important parameter in

Figures 30 and 31 and the scales indicate that the associatedvariances are significant.

In the current data, we observed that across all the solver configuration groups, the

parameters (smoother and number of smoother sweeps) are theonly ones with absolute

correlation≥ 0.5. Hence, the fine-tuning scores depicted in the Figures 30and 31 are

realistic for the rest of the parameters.

4. Relative Performance of Preconditioner Implementations

We now use the MTP metric to compare the performance of all thepreconditioner im-

plementations studied in this paper. We compare the variousimplementation under two

scenarios. We first compare the overall best (PIB) or the experimentally determined de-

96

Ordering ML Default ML Smoother/Sweeps ML Coarsen
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tr
−

M
L

Time Memory

(a) Relative importance of the parameters
in Trilinos ML

Ordering ML Default ML Smoother/Sweeps ML Coarsen
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tr
−

M
L

Time Memory

(b) Variance based fine-tuning score of
the parameters in Trilinos ML

Fig. 30. Conditional variance based sensitivity scores andvariance based fine-tuning scores

with respect to memory and time for each of the fine-tuneable parameters of Trilinos

ML preconditioner in the serial case.

fault configurations of the preconditioners, i.e., we choose the parameter configuration for

each preconditioner that has the best overall performance on our test suite. In the second

scenario, we compare the preconditioners based on their PSB(problem specific best) con-

figurations, i.e., we pick the best parameter configuration of each preconditioner for each

individual matrix. For both the PIB and PSB scenarios, we present the results on a single

processor and on 64 processors. We also present the results of simultaneously projecting

multiple performance metrics, which helps in analyzing therelative memory, time, and

robustness of the preconditioners, both in the serial and parallel case.

a. Problem Independent Best Configurations

The best MTP parameter combinations for all the preconditioners are shown in Tables X

and XI for the 1 and 64 processor cases. These solver configurations are good candidates

for default values that have a high probability of yielding asmall memory-time product for

an arbitrary problem.

97

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

tr
−

M
L

Ordering
ML Default
ML Smoother/Sweeps
ML Coarsen

(a) Relative importance of the parameters
in Trilinos ML w.r.t. memory

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

tr
−

M
L

Ordering
ML Default
ML Smoother/Sweeps
ML Coarsen

(b) Relative importance of the parameters
in Trilinos ML w.r.t. time

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

tr
−

M
L

Ordering
ML−Default
ML Smoother
ML Coarsen

(c) Variance based fine-tuning score of
the parameters in Trilinos ML w.r.t.
memory

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

tr
−

M
L

Ordering
ML−Default
ML Smoother
ML Coarsen

(d) Variance based fine-tuning score of
the parameters in Trilinos ML w.r.t. time

Fig. 31. Conditional variance based sensitivity scores andvariance based fine-tuning scores

with respect to memory and time for each of the fine-tuneable parameters of Trilinos

ML preconditioner in the parallel case. Each curve in the subplots corresponds to a

parameter that is varied in our study.

98

Table X. Iterative solver configurations that resulted in the best overall performance with

respect to memory-time product profile area in the serial case.

Preconditioner Solver Ordering Preconditioner Parameters
PETSc IC(k) CG RCM Fill factor 1, Level of fill 0

PETSc BlockSolve CG RCM -
Trilinos IC(k) CG RCM Level of fill 8

Trilinos ML CG RCM
Smoothed aggregation, Symmetric Gauss-Seidel smoother
Smoother sweeps 3, ParMETIS Coarsening

Hypre IC(k) CG RCM Level of fill 1

Hypre BoomerAMG CG RCM
PMIS Coarsening, Aggressive coarsening levels 10
Strong threshold 0.9

Hypre ParaSails CG ND Number of levels 1, Threshold 0.1, Filter 0.001
Ilupack MLICT CG RCM Drop-tolerance 0.03, Inverse norm estimate 75

WSMP ICT Auto RCM
Drop tolerance 0.003
Fill factor 4.9, SHIFT-ON

Table XI. Iterative solver configurations that resulted in the best overall performance with

respect to memory-time product profile area in the 64 processor case.

Preconditioner Solver Ordering Preconditioner Parameters
PETSc IC(k) CG RCM Fill factor 1, Level of fill 0

PETSc BlockSolve CG RCM -
Trilinos IC(k) CG RCM Level of fill (6)

Trilinos ML CG NONE
Smoothed aggregation, Symmetric Gauss-Seidel smoother
Smoother sweeps 3, Hybrid Uncoupled-MIS Coarsening

Hypre IC(k) CG RCM Level of fill 1

Hypre BoomerAMG CG NONE
PMIS Coarsening, Aggresive coarsening levels 10
Strong threshold 0.7

Hypre ParaSails CG ND Number of levels 1, Threshold 0.1 , Filter 0.001

99

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

petsc−IC(k)
petsc−BSolve
trilinos−IC(k)
trilinos−ML
hypre−IC(k)
hypre−AMG
hypre−PSAILS
ilupack−MLICT
wsmp−ICT
wsmp−DIRECT

Fig. 32. Memory performance profile curves for the direct solver and the overall best mem-

ory-time product configurations of the various IC(k), ICT, AMG, and SAI precon-

ditioner implementations in PETSc, Trilinos, Hypre, ILUPACK, and WSMP for the

single processor case.

100

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

petsc−IC(k)
petsc−BSolve
trilinos−IC(k)
trilinos−ML
hypre−IC(k)
hypre−AMG
hypre−PSAILS
wsmp−DIRECT

Fig. 33. Memory performance profile curves for the direct solver and the overall best memo-

ry-time product configurations of the various IC(k), AMG, and SAI preconditioner

implementations in PETSc, Trilinos, and Hypre for the 64 processor case.

101

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

petsc−IC(k)
petsc−BSolve
trilinos−IC(k)
trilinos−ML
hypre−IC(k)
hypre−AMG
hypre−PSAILS
ilupack−MLICT
wsmp−ICT
wsmp−DIRECT

Fig. 34. Time performance profile curves for the direct solver and the overall best memo-

ry-time product configurations of the various IC(k), ICT, AMG, and SAI precondi-

tioner implementations in PETSc, Trilinos, Hypre, ILUPACK, and WSMP for the

single processor case.

102

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

petsc−IC(k)
petsc−BSolve
trilinos−IC(k)
trilinos−ML
hypre−IC(k)
hypre−AMG
hypre−PSAILS
wsmp−DIRECT

Fig. 35. Time performance profile curves for the direct solver and the overall best memo-

ry-time product configuration of the various IC(k), AMG, and SAI preconditioner

implementations in PETSc, Trilinos, and Hypre for the 64 processor case.

103

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

petsc−IC(k)
petsc−BSolve
trilinos−IC(k)
trilinos−ML
hypre−IC(k)
hypre−AMG
hypre−PSAILS
ilupack−MLICT
wsmp−ICT
wsmp−DIRECT

Fig. 36. Memory-time product performance profile curves forthe direct solver and the over-

all best memory-time product configuration of the various IC(k), ICT, AMG, and

SAI preconditioner implementations in PETSc, Trilinos, Hypre, ILUPACK, and

WSMP for the single processor case.

104

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

petsc−IC(k)
petsc−BSolve
trilinos−IC(k)
trilinos−ML
hypre−IC(k)
hypre−AMG
hypre−PSAILS
wsmp−DIRECT

Fig. 37. Memory-time product performance profile curves forthe direct solver and the over-

all best memory-time product configuration of the various IC(k), AMG, and SAI

preconditioner implementations in PETSc, Trilinos, and Hypre for the 64 processor

case.

105

Figures 32 and 33 show the memory profiles of the configurations shown in Tables X

and XI, respectively. The memory profile of WSMP direct solver is also included in these

figures. Recall that the memory plotted here corresponds to the total memory needed for

storing the nonzeros in the linear system as well as the memory allocated in the heap during

the preconditioner creation.

For the single processor case in Figure 32, Hypre BoomerAMG,Hypre ParaSails,

Trilinos ML, WSMP ICT, and ILUPACK MLICT appear to be the mostmemory efficient

and robust. The IC(k) preconditioners are not as robust as the others and their respective

curves flatten out fairly early. For the 64 processor case in Figure 33, Hypre BoomerAMG

is the most memory efficient followed by Trilinos ML, PETSc IC(k), and Trilinos IC(k).

The relative ranking of other preconditioners remains the same except for Hypre ParaSails,

which shows a higher memory usage than in the serial case. Thehigh memory usage of

Hypre ParaSails is due to the specific implementation choicein which, all the external

rows needed by a processor are collected and stored for each processor. While this choice

improves the time performance, we observed that its memory consumption increases with

the number of processors.

Figures 34 and 35 show the time profiles of the best configurations. In Figure 34,

the direct solver turns out to be the fastest solver for about67% of the problems in the

serial case. This is followed by PETSc IC(k), which is the fastest one for about 12%

of the problems. However, understandably, PETSc IC(k) does not do as well for more

difficult problems and its time profile curve is soon surpassed by that of WSMP ICT. Hypre

BoomerAMG and Trilinos ML, which are highly memory efficient, appear to be slower

than Hypre ParaSails, ILUPACK, and WSMP ICT. For the 64 processor case in Figure 35,

the direct solver is still the fastest for about 70% of the problems followed by Hypre IC(k),

PETSc IC(k), Hypre ParaSails, and Hypre BoomerAMG.

Figures 36 and 37 show the memory-time product profiles for the various solver con-

106

figuration groups along with that of the WSMP direct solver. The relative positions of most

memory-time product profiles in the serial case are very similar to that of the corresponding

time profiles in Figures 34 and 35. In the 64 processor case, the curve for Hypre Boomer-

AMG moves up because of its excellent memory efficiency and that for Hypre ParaSails

curve moves down due to its high memory usage in the multi-processor case.

A comparison of the memory and time performance of the iterative solvers relative to

WSMP’s direct solver confirms the conventional wisdom that direct solvers are generally

fast and robust, but require more memory resources. Conventional wisdom also holds that

the preconditioned iterative solvers should outperform the direct solver on larger problems.

In addition, the performance crossover point between iterative and direct solvers would be

observed for relatively larger matrices that result from two dimensional physical problems

as compared to three dimensional ones. Our results simply indicate that, although half of

the problems in our test suite have more than half a million unknowns, the average problem

size is still too small for most iterative solvers to outperform the direct solver in terms of

solution time.

b. Problem Specific Parameter Selection

While the overall best or the PIB configuration of a preconditioner offers a good choice of

parameter settings for an arbitrary problem, users may be able to improve the performance

of their applications by tuning the parameters for the matrices arising in their applications.

In this section, we discuss the relative performance of various preconditioner implementa-

tions when the best parameter configuration is chosen individually for each problem from

a reasonably comprehensive set of configurations. This analysis can give a good indica-

tion of the best possible performance that a preconditioneris capable of delivering for each

problem. While it is not practical to fine tune the parametersfor each individual problem,

fine-tuning can be useful when all matrices arising in a particular application have similar

107

properties.

Figures 38 and 39 show the memory profiles (for 1 and 64 processors, respectively)

when the parameter configuration for each problem was chosenindividually to minimize

its memory-time product. These figures show that problem specific fine-tuning results in

remarkable improvements in memory use for most preconditioners, when compared with

the best overall parameter configuration. All iterative solver curves move upwards with

respect to the direct solver curve in Figures 38 and 39. Besides consuming less memory,

most preconditioners are able to solve more problems successfully with problem-specific

parameter tuning. The most remarkable improvement with respect to memory occurs for

Hypre IC(k).

Figures 40 and 41 show the time profiles of all the preconditioners when the param-

eter configuration for each problem was chosen individuallyto minimize its memory-time

product. Just like the memory profiles, the time profiles of the preconditioners improve sig-

nificantly when compared to those for the overall best parameter configuration. The most

notable improvements in the serial case are for ILUPACK MLICT, Hypre IC(k) and Hypre

ParaSails. While using 64 processors, a comparison of the figures shows that Hypre’s

BoomerAMG, IC(k), and ParaSails reduce the time performance gap with the WSMP di-

rect solver.

Tables XII and XIII show best iterative solver configurationand its time and memory

consumption for each problem for the 1- and 64-processor case. These tables also show the

time and memory used by the direct solver in each case. The values corresponding to the

best memory-time product are in bold font. In the single processor case, the direct solver

has the better memory-time product for 12 out of the 30 matrices. As expected, the iterative

solvers do much better for large 3-D problems. Among the iterative solvers, WSMP ICT

does best for 13 problems, PETSc IC(k) and Hypre BoomerAMG for 2 problems each,

and Hypre ParaSails for one problem. For the 64 processor case shown in Table XIII, the

108

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

petsc−IC(k)
petsc−BSolve
trilinos−IC(k)
trilinos−ML
hypre−IC(k)
hypre−AMG
hypre−PSAILS
ilupack−MLICT
wsmp−ICT
wsmp−DIRECT

Fig. 38. Memory performance profiles for the direct solver and the memory values corre-

sponding to the best problem specific memory-time product configuration of the

various IC(k), ICT, AMG, and SAI preconditioner implementations in PETSc,

Trilinos, Hypre, ILUPACK, and WSMP in the single processor case.

109

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

petsc−IC(k)
petsc−BSolve
trilinos−IC(k)
trilinos−ML
hypre−IC(k)
hypre−AMG
hypre−PSAILS
wsmp−DIRECT

Fig. 39. Memory performance profiles for the direct solver and the memory values corre-

sponding to the best problem specific memory-time product configuration of the

various IC(k), AMG, and SAI preconditioner implementations in PETSc, Trilinos,

and Hypre in the 64 processor case.

110

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

petsc−IC(k)
petsc−BSolve
trilinos−IC(k)
trilinos−ML
hypre−IC(k)
hypre−AMG
hypre−PSAILS
ilupack−MLICT
wsmp−ICT
wsmp−DIRECT

Fig. 40. Time performance profiles for the direct solver and the time values corresponding to

the best problem specific memory-time product configurationof the various IC(k),

ICT, AMG, and SAI preconditioner implementations in PETSc,Trilinos, Hypre,

ILUPACK, and WSMP in the single processor case.

111

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Ratio

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

petsc−IC(k)
petsc−BSolve
trilinos−IC(k)
trilinos−ML
hypre−IC(k)
hypre−AMG
hypre−PSAILS
wsmp−DIRECT

Fig. 41. Time performance profiles for the direct solver and the time values corresponding to

the best problem specific memory-time product configurationof the various IC(k),

AMG, and SAI preconditioner implementations in PETSc, Trilinos, and Hypre in

the 64 processor case.

112

Table XII. Table showing the time (in seconds) and memory values (in megabytes) cor-

responding to the best problem specific memory-time productfor iterative and

direct solvers in the single processor case. The bold valuesindicate the solver

configuration for which the product of memory and time was thelowest.

Matrix Iterative Parameter
Iter. Iter. Dir. Dir.
Mem Time Mem Time

90153 wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, ON 55.2 6.61 194 2.47
af shell7 wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, OFF 223 62.80 830 11.75
algor-big wsmp, ICT, AUTO, RCM, DT1e-2, F4.9, OFF 788 305.73 - -
audikw 1 wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, ON 959 336.16 9500 870.00
bmwcra1 wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, ON 110 51.10 568 11.28
ctu-1 wsmp, ICT, AUTO, ND, DT3e-4, F2.5, OFF 2830 531.93 3210 86.78
ctu-2 wsmp, ICT, AUTO, ND, DT3e-3, F4.1, ON 936 462.96 2350 100.30
cfd1 petsc, IC(k), CG, RCM, LF0, F1 29.1 6.59 157 2.41
cfd2 hypre, PSAILS, CG, NONE, PLev1, Th.1, Flt.05 80.1 26.81 310 6.35
conti20 wsmp, ICT, AUTO, RCM, DT3e-3, F3.3, ON 35.9 5.63 64 0.96
garybig hypre, AMG, CG, RCM, FALG, AGG10, ST.7 6660 11597 - -
G3 circuit wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, OFF 179 37.39 956 20.11
hood wsmp, ICT, AUTO, ND, DT3e-3, F4.1, OFF 170 4.10 257 2.51
inline 1 wsmp, ICT, AUTO, RCM, DT3e-4, F2.5, OFF 1910 91.75 1500 27.43
kyushu petsc, IC(k), CG, RCM, LF0, F1 417 32.66 9220 1336.48
ldoor wsmp, ICT, AUTO, ND, DT3e-4, F4.9, OFF 965 40.51 1370 22.45
msdoor wsmp, ICT, AUTO, ND, DT3e-4, F4.9, OFF 499 28.39 492 5.12
mstamp-2c hypre, PSAILS, CG, RCM, PLev0, Th.1, Flt0 726 76.35 - -
nastran-b wsmp, ICT, AUTO, RCM, DT1e-2, F4.1, OFF 1160 474.16 8620 538.88
nd24k wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, ON 88.3 23.61 2750 412.18
oilpan wsmp, ICT, AUTO, ND, DT3e-4, F2.5, OFF 60.3 2.38 94.5 1.02
parabolicfem wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, ON 70.8 7.39 233 2.90
pga-rem1 wsmp, ICT, AUTO, RCM, DT1e-2, F4.9, OFF 277 39.03 742 11.10
pga-rem2 wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, OFF 437 74.17 1980 44.63
qa8fk hypre, AMG, CG, RCM, PMIS, AGG10, ST.25 17.9 2.03 193 4.60
qa8fm wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, OFF 3.43 0.16 187 4.21
ship 003 wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, ON 62.2 17.66 529 16.85
shipsec5 wsmp, ICT, AUTO, RCM, DT1e-2, F3.3, ON 88 12.15 448 12.93
thermal2 wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, OFF 139 59.36 484 6.44
torso wsmp, ICT, AUTO, RCM, DT1e-2, F2.5, ON 47.6 5.79 677 24.43

direct solver does best for 15 problems. Among the iterativesolvers, Hypre BoomerAMG

does best for 7 problems, PETSc IC(k) for 6 problems, and Hypre ParaSails and PETSc

BlockSolve for one problem each. Note that WSMP ICT and ILUPACK do not yet have

parallel implementations suitable for 64 processors.

c. Relative Strengths of Preconditioners and Sensitivity to Parameter Tuning

We have observed that different preconditioners and solvers have different strengths and

weaknesses. Some are more memory efficient than others, while some are faster than oth-

113

Table XIII. Table showing the time (in seconds) and memory values (in megabytes) cor-

responding to the best problem specific memory-time productfor iterative and

direct solvers in the 64 processor case. The bold values indicate the solver con-

figuration for which the product of memory and time was the lowest.

Matrix Iterative Parameter
Iter. Iter. Dir. Dir.
Mem Time Mem Time

90153 hypre, IC(k), CG, ND, LF4, NzINF 352 0.84 195 0.13
af shell7 hypre, AMG, CG, RCM, PMIS, AGG10, ST.9 240 1.88 848 0.45
algor-big hypre, AMG, CG, NONE, PMIS, AGG10, ST.7 987 9.95 32200 90.41
audikw 1 hypre, AMG, CG, RCM, FALG, AGG0, ST.9 1540 86.63 9750 26.91
bmwcra1 hypre, AMG, CG, RCM, PMIS, AGG10, ST.25 100 6.70 572 0.42
ctu-1 - - - 3460 4.64
ctu-2 - - - 2320 2.51
cfd1 petsc, IC(k), CG, RCM, LF0, F1 28.8 0.28 164 0.16
cfd2 hypre, AMG, CG, NONE, PMIS, AGG10, ST.7 44.1 5.30 306 0.29
conti20 - - - 67.2 0.08
garybig hypre, AMG, CG, ND, FALG, AGG10, ST.7 6680 263.61 - -
G3 circuit petsc, IC(k), CG, RCM, LF0, F1 187 2.12 939 0.69
hood petsc, BSolve, CG, RCM, ALL, NONE 116 0.95 303 0.15
inline 1 - - - 1530 1.33
kyushu petsc, IC(k), CG, RCM, LF0, F1 409 2.68 9220 34.49
ldoor hypre, PSAILS, CG, ND, PLev0, Th0, Flt.05 1760 2.99 1510 0.83
msdoor hypre, PSAILS, CG, ND, PLev1, Th0, Flt.05 1520 4.08 558 0.27
mstamp-2c petsc, IC(k), CG, ND, LF0, F1 1000 2.01 15900 62.79
nastran-b hypre, AMG, CG, RCM, PMIS, AGG10, ST.9 1350 79.26 9130 19.21
nd24k hypre, PSAILS, CG, NONE, PLev2, Th.1, Flt.05 1450 1.76 2680 10.66
oilpan hypre, AMG, CG, RCM, HMIS, AGG0, ST.9 48.5 6.09 103 0.06
parabolicfem hypre, AMG, CG, NONE, HMIS, AGG10, ST.25 76.6 0.41 235 0.16
pga-rem1 hypre, IC(k), CG, RCM, LF1, NzINF 525 2.36 736 0.49
pga-rem2 petsc, IC(k), CG, RCM, LF0, F1 535 5.09 2020 2.24
qa8fk hypre, AMG, CG, NONE, HMIS, AGG10, ST.25 19.9 0.16 186 0.20
qa8fm hypre, AMG, CG, RCM, PMIS, AGG0, ST.25 17 0.03 185 0.20
ship 003 hypre, AMG, CG, RCM, HMIS, AGG10, ST.25 90.9 7.91 560 0.76
shipsec5 petsc, BSolve, CG, RCM, ALL, NONE 113 1.31 505 0.51
thermal2 hypre, AMG, CG, ND, PMIS, AGG10, ST.25 159 1.37 492 0.36
torso petsc, IC(k), CG, RCM, LF0, F1 54 0.16 685 0.91

114

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

pe−IC(k)

pe−IC(k)

pe−BSolve

tr−IC(k)
tr−IC(k)

tr−ML
tr−ML

hy−IC(k)

hy−IC(k)

hy−AMG

hy−AMG

hy−PSAILS

hy−PSAILS

il−MLICT

il−MLICT

ws−ICT

ws−ICT

ws−DIRECT

Time Performance Profile Area

M
em

or
y

P
er

fo
rm

an
ce

 P
ro

fil
e

A
re

a

Fig. 42. Plot of the time profile area versus the memory profilearea for various precondi-

tioner implementations (single processor case). Each circle represents a precon-

ditioner whose name consists of the first two letters of the name of the package

followed by the type of preconditioner. The size of a circle is proportional to the

number of problems solved. The green (dark) circles correspond to profile areas

for the default parameter configuration and the yellow (light) ones correspond to

profile areas for problem-specific best parameters. If the yellow and green circles

overlap, it is shown as a brown circle.

115

ers. They also have different degrees of robustness. In Section 2, we also saw that, as

expected, most preconditioners performed significantly better when their parameters were

permitted to be tuned to each coefficient matrix. However, different preconditioners dis-

played different degrees of improvement. Figure 42 displays all this relative information

about the performance of various preconditioners by means of a single information-rich

graphic. The figure has two sets of circles for each preconditioner. The green (dark) circles

correspond to the default parameter configurations. The yellow (light) circles correspond

to the corresponding problem-specific best parameters. Thex- and y-coordinates of each

circle are the areas under the time and memory profile curves of the corresponding precon-

ditioner derived from plotting the default and problem specific performance profiles in a

single plot. The size of each circle is proportional to the number of problems solved.

The height of a circle in Figure 42 is indicative of the memoryefficiency of the cor-

responding preconditioner. Similarly, the distance from the y-axis towards the right is

indicative of its speed. The figure shows at a glance which solvers and preconditioners

are most memory efficient and which ones are most time efficient. For example, in Figure

42 the direct solver is very fast and robust, but is less memory efficient than many of the

preconditioners. On the other hand, Hypre BoomerAMG is veryrobust and memory effi-

cient, but is relatively slow. For the default parameters, Hypre Parasails and ILUPACK are

faster, but use slightly more memory than Hypre BoomerAMG. WSMP ICT with default

parameters is fairly memory efficient and significantly faster. Some preconditioners benefit

a great deal from parameter tuning. This is evident from the fact the yellow (light) circles

corresponding to most preconditioners lie above and to the right of their dark counterparts.

The most remarkable improvement can be seen in the case of Hypre IC(k). ILUPACK

MLICT and Hypre ParaSails also show significant improvementin both time and memory.

Another interesting observation from Figure 42 is that the time, memory, and robustness

of different implementations of the same underlying preconditioning method can be very

116

different. Whether with default or with fine-tuned parameters, the best preconditioner im-

plementations lie on the periphery of the plot. When lookingfor candidates for the best

preconditioner for an application at hand, a user is likely to fare best by picking one of

Hypre BoomerAMG, ILUPACK, Hypre Parasails, WSMP ICT or WSMPDirect solver,

depending on the desired balance between computation time and memory. PETSc IC(k)

and Hypre IC(k) also emerge as strong preconditioners in terms of memory and time ef-

ficiency, although they are able to solve fewer problems compared to the other leading

preconditioners.

In Figure 43, we compare the relative performance of the preconditioners in the 64

processor case. Just like the serial case, the direct solveris very fast but memory intensive

in comparison to other preconditioners. Hypre BoomerAMG isrelatively more efficient

with respect to both time and memory and the benefits of fine-tuning are also somewhat

more pronounced than in 42. Hypre IC(k) outperforms PETSc IC(k) and Trilinos IC(k)

with respect to both memory and time. The relative time efficiency of Hypre ParaSails

increases, but it comes at the expense of increased memory usage. To summarize, Hypre

BoomerAMG is highly memory efficient, WSMP direct and Hypre ParaSails are relatively

fast whereas Hypre IC(k) seems to balance both time and memory.

5. Parallel Efficiency

An important measure often reported for parallel implementations is the time efficiency

across multiple processors. Most of the packages in this study are used for large scale

scientific simulations involving thousands of processors and might exhibit excellent weak

scaling. Since the matrices in our test are of fixed size, we only perform strong scaling

analysis. The efficiency obtained during a weak scaling study will be much better than that

observed for our strong scaling study. Since efficiency is measured using the ratio of the

serial time to the parallel time, the values depend heavily on the serial implementation of

117

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

pe−IC(k)
pe−IC(k)

pe−BSolve

tr−IC(k)
tr−IC(k)

tr−MLtr−ML

hy−IC(k)

hy−IC(k)

hy−AMG

hy−AMG

hy−PSAILS

hy−PSAILS

ws−DIRECT

Time Performance Profile Area

M
em

or
y

P
er

fo
rm

an
ce

 P
ro

fil
e

A
re

a

Fig. 43. Plot of the time profile area versus the memory profilearea for various precondi-

tioner implementations (64 processor case). Each circle represents a preconditioner

whose name consists of the first two letters of the name of the package followed

by the type of preconditioner. The size of a circle is proportional to the number

of problems solved. The green (dark) circles correspond to profile areas for the

default parameter configuration and the yellow (light) onescorrespond to profile

areas for problem-specific best parameters. If the yellow and green circles overlap,

it is shown as a brown circle.

118

the respective preconditioners. Therefore, for each configuration group, we first determine

the solver configurations that resulted in the best serial MTP over all the problems. If

a particular problem is solved using the best serial MTP solver configuration on all the

different processor configurations, then it is included forcalculating the average efficiency.

The rest of this section is organized as follows. We first study the variation of time

efficiency with respect to preconditioner sparsity for the preconditioner generation phase,

iterative solution phase, and the total solution time for IC(k), BoomerAMG, and ParaSails

preconditioners in the Hypre package. This is followed by a comparison of the average

efficiencies across the various configuration groups composed of various package and pre-

conditioner combinations.

a. Effect of Efficiency on Preconditioner Density

Hypre IC(k): Figure 44(a) shows the average efficiency curves for the preconditioner

generation phase for the various level of fill values in HypreIC(k). One can observe su-

perlinear speedup for most fill factor values. The high fill factor values which typically

result in dense preconditioners have a lower average efficiency value than the sparser pre-

conditioners for low number of processors. For higher number of processors, the densest

preconditioners shows the maximum super linear speedup. However, the iterative solution

phase in Figure 44(b) shows a progressive drop in efficiency with increasing number of

processors for all the level of fill values. The drop in efficiency is highest for the densest

preconditioner. Figure 44(c) shows the average efficiency for the combined preconditioned

generation and iterative solution phases. Since the overall time efficiency and precondi-

tioner generation time efficiency are fairly similar, we canassume that the iterative solution

phase is only a small fraction of the overall time. This partly explains the progressive drop

in efficiency observed in Figure 44(b) in comparison to the preconditioner generation time

and the overall time.

119

2 4 8 16 32 64

0.8

1

1.2

1.4

1.6

1.8

2

:hypre:IC(k):CG:RCM:LF0:NzINF

:hypre:IC(k):CG:RCM:LF1:NzINF

:hypre:IC(k):CG:RCM:LF2:NzINF

:hypre:IC(k):CG:RCM:LF4:NzINF

:hypre:IC(k):CG:RCM:LF6:NzINF

Number of Processors

T
im

e
E

ffi
ci

en
cy

(a) Preconditioner generation phase.

2 4 8 16 32 64
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

:hypre:IC(k):CG:RCM:LF0:NzINF

:hypre:IC(k):CG:RCM:LF1:NzINF

:hypre:IC(k):CG:RCM:LF2:NzINF

:hypre:IC(k):CG:RCM:LF4:NzINF

:hypre:IC(k):CG:RCM:LF6:NzINF

Number of Processors

T
im

e
E

ffi
ci

en
cy

(b) Solution phase.

2 4 8 16 32 64
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

:hypre:IC(k):CG:RCM:LF0:NzINF

:hypre:IC(k):CG:RCM:LF1:NzINF

:hypre:IC(k):CG:RCM:LF2:NzINF

:hypre:IC(k):CG:RCM:LF4:NzINF

:hypre:IC(k):CG:RCM:LF6:NzINF

Number of Processors

T
im

e
E

ffi
ci

en
cy

(c) Overall.

Fig. 44. Average time efficiency for the preconditioner generation phase, the iterative solu-

tion phase, and the overall time of Hypre IC(k) for various level of fill values and

RCM ordering.

120

2 4 8 16 32 64
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

:hypre:AMG:CG:RCM:FALG:AGG0_ST0.25

:hypre:AMG:CG:RCM:FALG:AGG10_ST0.25

:hypre:AMG:CG:RCM:FALG:AGG0_ST0.5

:hypre:AMG:CG:RCM:FALG:AGG10_ST0.5

Number of Processors

T
im

e
E

ffi
ci

en
cy

(a) Preconditioner generation phase.

2 4 8 16 32 64
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

:hypre:AMG:CG:RCM:FALG:AGG0_ST0.25

:hypre:AMG:CG:RCM:FALG:AGG10_ST0.25

:hypre:AMG:CG:RCM:FALG:AGG0_ST0.5

:hypre:AMG:CG:RCM:FALG:AGG10_ST0.5

Number of Processors

T
im

e
E

ffi
ci

en
cy

(b) Solution phase.

2 4 8 16 32 64
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

:hypre:AMG:CG:RCM:FALG:AGG0_ST0.25

:hypre:AMG:CG:RCM:FALG:AGG10_ST0.25

:hypre:AMG:CG:RCM:FALG:AGG0_ST0.5

:hypre:AMG:CG:RCM:FALG:AGG10_ST0.5

Number of Processors

T
im

e
E

ffi
ci

en
cy

(c) Overall.

Fig. 45. Average time efficiency for the preconditioner generation phase, the iterative solu-

tion phase, and the overall time of Hypre BoomerAMG for strong threshold values

(ST0.25, ST0.5) for multiple aggressive coarsening levels(AGG0, AGG10).

121

2 4 8 16 32 64

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

:hypre:PSAILS:CG:NONE:PLev0:Th0_Flt0.001

:hypre:PSAILS:CG:NONE:PLev1:Th0_Flt0.001

:hypre:PSAILS:CG:NONE:PLev0:Th0.1_Flt0.001

:hypre:PSAILS:CG:NONE:PLev1:Th0.1_Flt0.001

Number of Processors

T
im

e
E

ffi
ci

en
cy

(a) Preconditioner generation phase.

2 4 8 16 32 64
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

:hypre:PSAILS:CG:NONE:PLev0:Th0_Flt0.001

:hypre:PSAILS:CG:NONE:PLev1:Th0_Flt0.001

:hypre:PSAILS:CG:NONE:PLev0:Th0.1_Flt0.001

:hypre:PSAILS:CG:NONE:PLev1:Th0.1_Flt0.001

Number of Processors

T
im

e
E

ffi
ci

en
cy

(b) Solution phase.

2 4 8 16 32 64
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

:hypre:PSAILS:CG:NONE:PLev0:Th0_Flt0.001

:hypre:PSAILS:CG:NONE:PLev1:Th0_Flt0.001

:hypre:PSAILS:CG:NONE:PLev0:Th0.1_Flt0.001

:hypre:PSAILS:CG:NONE:PLev1:Th0.1_Flt0.001

Number of Processors

T
im

e
E

ffi
ci

en
cy

(c) Overall.

Fig. 46. Average time efficiency for the preconditioner generation phase, the iterative so-

lution phase, and the overall time of Hypre ParaSails for various number of levels

(Lev0, Lev1) and multiple threshold values (Th0, Th0.1).

122

2 4 8 16 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

pe−IC(k)

pe−BSolve

tr−IC(k)

tr−ML

hy−IC(k)

hy−AMG

hy−PSAILS

ws−DIRECT

Number of Processors

T
im

e
E

ffi
ci

en
cy

Fig. 47. Average time efficiency corresponding to the PIB parameters of the various precon-

ditioner implementations. The legend names consists of thefirst two letters of the

name of the package followed by the type of preconditioner. The size of a circle is

proportional to the number of problems solved.

Hypre BoomerAMG: In Section 1, we observed that the use of high aggressive coarsening

levels and high threshold values result in less expensive preconditioners. In order to choose

four solver configurations that result in preconditioners of varying sparsity, we varied the

aggressive coarsening levels and the strong threshold values while keeping other parame-

ters fixed. The densest preconditioners correspond to thosewith no aggressive coarsening

(AGG0) and low values of threshold (ST0.25). Figure 45(a) shows the average efficiency

curves for the preconditioner generation phase. For lower number of processors, the denser

123

preconditioners exhibit slightly more drop in efficiency, however, as the number of pro-

cessors increases, all the curves are fairly close. The dropin efficiency for the iterative

solution phase shown in Figure 45(b) is not as much as in the preconditioner generation

phase. Similar behavior is observed even in the case of average efficiency curves for the

overall time, i.e., the sparse preconditioners show lesserdrop in efficiency in comparison

to dense preconditioners.

Hypre ParaSails: As observed in our earlier analysis, lower number of levels and higher

threshold values lead to sparser preconditioners. In orderto show the effect of precondi-

tioner density on the parallel time efficiency, we chose ParaSails configurations with vary-

ing number of levels and threshold values, while keeping thefilter parameter fixed to 0.001.

Figure 46 shows the average time efficiency values for the preconditioner generation phase,

iterative solution phase, and overall time respectively. The effect of preconditioner density

on the efficiency is more clearly seen in the case of nonzero values of the level parameter

since impact of higher values of threshold on density is moresignificant for this case.

In Figure 46(a), we observe that the drop in efficiency for thepreconditioner genera-

tion phase is more for sparser preconditioners whereas the opposite behavior is observed

in Figure 46(b) for the iterative solution phase. However, the overall time efficiency curves

in Figure 46(c) seems to be in between that of the preconditioner generation phase and

iterative solution phase suggesting that both the time taken for each of the phases are fairly

close.

b. Comparison Across Configuration Groups

Figure 47 shows the average time efficiency for all the solvedproblems while using the var-

ious parallel preconditioners. ILUPACK MLICT and WSMP ICT results are not present

since they do not have distributed memory implementations yet. The efficiency plots show

a completely different scenario from that seen in the problem specific time profile plots

124

comparing these preconditioners. PETSc BlockSolve, Trilinos IC(k), and ML precondi-

tioners exhibit very little drop in efficiency for the problems that it could solve. Hypre

ParaSails and Hypre IC(k) show similar drop in efficiencies. WSMP Direct shows the

maximum drop in efficiency. This drastic drop could also be attributed to its superior time

performance in the serial case in comparison to other preconditioners.

E. Performance Analysis Infrastructure

In this section, we describe the software infrastructure that we used for the semi-automated

collection, analysis, and visualization of performance data for the iterative solvers. Most

results presented in Section D were generated using this framework. Figure 48 shows the

various components of the framework, which is composed of a performance data collection

unit and multiple analysis and visualization units. Although the framework is implemented

for studying preconditioned iterative solvers, it is readily extensible to other domains where

it may be useful to perform a comparative evaluation of several configuration groups with

a large number of configurations with respect to their performance on multiple metrics. We

now describe each component in more detail.

1. Data Collection and Preprocessing Unit

This consists of serial and parallel driver programs for thesolver packages of interest. The

input to this component includes the set of linear systemsP, a set of hardware configu-

rations (i.e., number of processors)H, the set of supported solver configurationsS with

the details of the solvers, preconditioners, and related options and parameters, and a set of

performance metricsµ. In addition, the user also specifies a grouping (C) of the solver

configurations which can be a combination of any of the solverconfiguration components

such as package, preconditioner, solver, ordering, etc.

125

Fig. 48. Overview of the performance analysis infrastructure.

Boxes represent the processing units, dotted ellipses rep-

resent the input and output data while the plots generated

for visualization are represented by solid ellipses.

����������	�
�������
�
����� ���������
� �����
��������
���� �
����
������������ ������
��������������������µ���� !"�#��!$��$�
�� �
���µ�)(CPIBk

µ

������������$�
�� �
���µ� ���������
� �����
��������
���� %�����
������������ ������
&����������
���
���µ�

µ
��������� � &�� '�µ ����
�

�
���� (���$���
������ ����

��������� ����$���������
����
�

���������� ��$�
�� ���µ�

������	�������

P ={p} : Linear Systems S ={s} : Solver Configurations
H = {h} : Hardware Configurations F ={f} : Fine-tunable Factors
T = {t} : Type (PIB, PSB, PIB vs. PSB) C : Solver Configuration Group
µ : Performance Metric (time, memory, MTP) PP : Performance Profile

126

Other choices of interest include driver specific information such as the right hand

side (RHS), initial solution, exact solution and, stoppingcriterion (e.g., the relative residual

norm or maximum number of iterations of the solver), each of which has a default value and

can also be modified by the user. The system performs empirical trials for each possible

setting, collects the specified metrics, and pre-processesthem appropriately to generate

the performance data (denoted byµ). It also generates a mapping (ConfigMap) from the

solver configurationsS to various key attributes such as the package-name, preconditioner-

name, solver and the associated parameters. This parametermapping is required to partition

the configurations into sub-groups that differ along a single parameter. For example, the

configuration map for PETSc-IC(k) would include the ordering scheme, level of fill and fill

factors as parameters and a sampleConfigMapentry for this case will have an integer value

that corresponds to each parameter. In the case of ordering,there are two possible values

assigned (RCM(1) and ND(2)). Similarly, we assign integer identifiers to other parameters

and a single solver configuration is mapped to an integer vector of parameter identifiers.

2. Parameter Fine-tuning Analysis Unit

This unit computes the variability in the performance due toa single parameter while keep-

ing all others fixed. This analysis is especially relevant for solver configurations within each

group (Section D.3). It requires as input the performance dataµ as well as the solver con-

figuration to parameter mapConfigMapgenerated by the data collection and pre-processing

unit. In order to study the effect of a single parameter, for example ordering scheme, we

first find groups of parameter vectors that vary only in the ordering scheme value. For

example in the case of ILUPACK MLICT, there are 12 groups corresponding to each com-

bination of drop tolerance and inverse norm estimate value and the solver configurations in

each group corresponds to 5 different ordering schemes. Foreach such group, we calculate

the average standard deviation of the percentage change in normalized memory and time

127

performance for thesolvedproblems. Each of these average standard deviations are further

averaged across the 12 groups to create the normalized plots.

3. Intra-group Analysis Unit

The intra-group analysis unit computes good default solverconfigurations (PIBµ
h (C)) that

result in the maximum AUC among all the solver configurationswithin each user specified

groupC. Such groups that typically represent a package preconditioner combination. It

also computes the problem specific best configuration (PSBµ
h (C)) among all configurations

in groupC for each test case in the problem setP. Although, we use MTP as the metric

(µ) of choice, a user can specify other metrics such as memory, time, or a weighted prod-

uct of memory and time. For a given hardware configuration andperformance metric, a

series of performance profile (PP) plots are created for each configuration for analysis at

a fine-grained resolution. In addition, the effect of fine-tuning is captured by comparing

the performance of the best default configuration and the problem specific best perfor-

mance. The performance results or theµ values corresponding to bothPIBµ
h (C), PSBµ

h (C)

are compiled for each groupC, problemp, and hardware configurationh to generate group

performance data (GroupPerfData) for further analysis.

4. Inter-group Analysis Unit

The inter-group analysis unit provides a coarse grain comparison of the different solver

configuration groups based on group performance dataGroupPerfDatacorresponding to

the best default configuration (PIBµ
h (C)) as well as the problem specific best (PSBµ

h (C)).

Performance profile plots are generated for each hardware configuration for bothPIBµ
h

andPSBµ
h values. In addition, we also generate a multi-metric plot that simultaneously

captures the trends for up to three metrics (e.g., memory, time and robustness) in the case

of bothPSBandPIB performance. This provides a snapshot of the relative strengths and

128

weaknesses of the various solver configuration groups with respect to the performance

metrics under consideration.

F. Discussion

We performed an extensive empirical evaluation of some commonly used preconditioned

iterative methods available in free black box solver packages on a collection of matrices

drawn from a wide range of scientific applications. For each package and preconditioner

combination, we identify the best parameter choices using anovel performance profile

based criterion that takes into consideration the number ofproblems solved along with

the time and memory usage across all the problems in the collection. Our experiments

reveal parameter configurations that are good candidates for default configurations. For

each preconditioner, we quantify the benefits of parameter fine-tuning by comparing the

best performance for each problem with the performance of our experimentally determined

default parameters. Different preconditioners show varying levels of tunability and opti-

mizing individual parameters impacts the performance to different degrees. We provide a

comparison of the performance of various iterative solver configurations relative to the di-

rect solver, which illustrates the successes and challenges in developing preconditioners for

iterative solvers. The results also provide insight into the relative strengths and weaknesses

of the various black box preconditioned iterative solver packages. We observed that differ-

ent implementations of the same preconditioning method canvary widely in performance.

This study, admittedly, has its limitations. The results used for analysis are derived

from a test suite of only 30 problems. Although our test suiteincludes problems from mul-

tiple applications, we kept its size modest due to the sheer number of trials (2156) for each

matrix. Therefore, the results may not be generalizable to specific application domains.

However, the performance collection and reporting infrastructure we have developed is in-

129

dependent of the test suite and can be used on any set of test matrices from any domain. As

part of continuing work on this topic, we plan to set up an anonymous ftp site so that ap-

plication scientists can provide us with specific matrices in their domain and matrices and

obtain a report on the relative performance of each solver configuration group for those ma-

trices. The methodology described in this paper can be helpful to researchers in evaluating

different aspects of new solver techniques in a systematic fashion.

130

CHAPTER IV

SOLVER RECOMMENDATION SYSTEM

In this chapter, we present a novel multi-stage learning-based methodology for determin-

ing the “best” solver configuration(s) given the user constraints and the desired perfor-

mance behavior for any given linear system. Unlike Chapter III which deals with provid-

ing coarse guidance to practitioners in terms of the best default configuration and influ-

ential parameters for a solver configuration group independent of the linear system, the

current chapter specifically focuses on using properties ofthe linear systems to determine

the suitable solver configuration(s). Our solver recommendation methodology relies on a

modular formulation consisting of three key sub-problems:(a) solvability modeling, (b)

performance modeling, and (c) performance optimization. This decomposition allow us to

readily address practical issues arising from solver failure and multi-objective optimization

in an efficient and effective manner. Specifically, the solvability model is used to filter

out failure-prone configurations before modeling the performance statistics. Further, to ac-

commodate optimization of multiple criteria, we separately learn models for each of the

core performance statistics (e.g, time/memory/error). The optimization step involves com-

bining the learned performance models to identify the top solver choices for the specified

performance criteria.

We begin by motivating the need for a problem-specific solverrecommendation sys-

tem in Section A and discuss the desiderata for such a system in Section B. In Section C,

we describe how the performance data is represented and provide a formal definition of the

problem. Section D presents details of our multi-stage learning approach followed by a

description of a prototype system in Section E. In Section F,we discuss the strengths and

limitations of the proposed methodology relative to existing techniques for solver selection.

131

A. Motivation

As we discussed earlier in Chapter III, Section D.2, empirical evidence indicates that one

can often obtain a significant improvement in performance relative to even a carefully cho-

sen default solver configuration by performing problem-specific fine-tuning of precondi-

tioner and solver parameters. This performance improvement is especially critical for large

matrices since it corresponds to a substantial reduction ofcomputational effort.

Knowledge of the influential preconditioner parameters (Chapter III, Section D.3) par-

tially alleviates the solver selection problem by reducingthe search space. Even so, choos-

ing the best preprocessing options, preconditioner and fine-tuning the preconditioner’s pa-

rameters for a particular linear system is a challenging task, even for experts in compu-

tational linear algebra due to several reasons. As mentioned earlier, the diversity of the

preconditioners and the variability in the different implementations for the same precondi-

tioner heavily limits the utility of any theoretical analysis. The search space determined by

the influential preconditioner parameters is often fairly large since most of these parame-

ters tend to be continuous-valued and there also exist strong mutual dependencies requiring

exploration of the joint space. The enormous computationalresources required for solving

large linear systems make it extremely expensive for practitioners to adopt a simple trial

and error strategy over the numerous choices of solver configuration components. To make

matters worse, many applications require the solution of a series of systems with the coeffi-

cient matrices changing gradually and the set of parametersthat are best for the first system

may not be suitable for the later ones.

Therefore, it is desirable to have a more intelligent strategy for exploring the solver

configuration space by making efficient use of readily observable characteristics of the

linear systems such as the number of nonzeros, Frobenius norm, etc. A naive approach

would be to identify key groups of linear systems based on their numerical characteris-

132

tics and obtain the best solver configuration for each group using the methodology de-

scribed in Chapter III. Unfortunately, the linear system properties tend to span a large

multi-dimensional continuous space and performance data is available only for a small

number of matrices, thus severely limiting the generalization power of discrete recommen-

dations over each problem group. Hence, we consider an alternate approach for learning a

statistical model that can predict the best choice(s) for a linear system from a set of solver

configurations. Note that the best choice is not intrinsic tothe linear system and the solver

configuration, but dependent on the entire available set of choices, thus requiring a more

complex filtering mechanism as we discuss in the following section.

B. Desiderata for a Solver Recommendation System

From a practitioner’s perspective, the process of choosingan iterative solver is usually not a

straightforward statistical modeling and optimization problem, but rather an interactive de-

cision making task where the recommendations are supportedby evidence. In this section,

we now describe the key desiderata for a solver recommendation system, some of which

clearly distinguish it from a typical product recommendation system.

1. Prediction of Solver Failure

Empirical studies [18, 32, 34] indicate that iterative solvers have a high rate of failure.

The performance metrics obtained for failed trials can often be misleading, for example, a

solver could result in extremely low memory usage for a particular linear system, but not

converge to the desired accurate solution. Therefore, it isessential to predict and filter out

the infeasible trials to ensure reasonable recommendations.

133

2. Interpretability via Performance Estimates

Often, it is desirable to not only have high quality solver recommendations, but also pro-

vide relevant evidence in the form of performance estimatesof a solver-configuration for a

particular linear system. Such estimates are also essential in order to handle performance-

based constraints, e.g., upper limits on memory usage or time taken. The performance

predictions can even be directly used to optimize work flow ofscientific computation pro-

grams in parallel environments.

3. Robustness to Variability in Performance Metrics

Due to variations in the structure and the size of the matrices as well as the nature of the

solver configurations, the performance metrics often have ahighly skewed distribution with

an extremely large range spanning multiple orders of magnitude (e.g., run time often varies

from a fraction of milliseconds to several hours). In contrast, in most product recommenda-

tion systems, the user preference ratings lie in a small fixedrange, e.g., 1–10, and follow a

fairly well-behaved distribution. An accurate estimationof performance metrics, therefore,

requires a sophisticated modeling approach with suitable distributional transformations and

normalization.

4. Optimization of Multiple Hybrid Performance Criteria

In general, for a given linear system, there is no single solver configuration that performs

best with respect to time, memory and accuracy. Often, solver configurations that are

really fast consume significantly more memory while those with lower memory usage take

considerably longer . A practitioner in such a case might prefer a solver that performs

reasonably with respect to the memory-time product or some other hybrid additive and/or

multiplicative combinations. A methodology that can allowa wide range of such hybrid

134

criteria without having to model each from scratch would be quite beneficial.

5. Fast and Memory Efficient Online Recommendations

Unlike typical product recommendation systems where the accuracy of the top user prefer-

ence ratings is paramount, the key purpose of a solver recommendation system is to reduce

the computational effort involved in solving large linear systems. Hence, it is highly im-

perative that the solver selection process itself is highlyefficient and the overall objective

is to optimize the combined computational effort in identifying the appropriate solver con-

figuration and deploying it for a given linear system.

6. Cold Start Solution for Unseen Matrices

Another important distinguishing characteristic of solver recommendation systems relative

to typical recommendation systems is that once a linear system is solved correctly using

a particular solver configuration, there often is no need foran additional recommendation.

Hence, the main goal of the solver selection problem is to provide recommendations for

new unseen matrices, often referred to as the “cold start” scenario, which is not addressed

by most collaborative filtering based recommendation techniques, making it essential to

rely on the properties of the linear systems and the solver configurations.

In addition to the above requirements on the operation and the output of the recom-

mendation system, one also needs to consider that the main benefit of a solver recom-

mendation system is for solving large linear systems where one cannot afford to waste

computational resources with a substantially, suboptimalsolver or multiple attempts, and

for which unfortunately we are likely to have highly sparse training data. Hence, it is also

extremely essential to have an intelligent mechanism for collecting performance data as

well as a learning methodology that can generalize from sparse data.

135

C. Problem Formulation

The desiderata described above clearly point to the need to be able to (i) predict the fail-

ure of a solver with respect to a linear system, (ii) estimateperformance metrics for any

possible trial, as well as (iii) obtain top-k choices for hybrid combinations of the perfor-

mance metrics. To address these needs, we consider a modularproblem formulation that

effectively targets each of these three tasks. Before presenting a concrete formulation of

the problem, we first describe the representation of the performance data.

1. Data Representation

a. Linear System Features

The performance of a solver configuration with respect to a linear system is highly depen-

dent on the choice of the various solver parameters and theirinteraction with the numerical

and structural properties of the coefficient matrixA. In order to model these interactions,

we represent each linear system as a vector of certain key features or attributesx(A) derived

from the matrixA. A key characteristic of all these features is that they are inexpensive to

compute. Since the very purpose of employing iterative solvers is to reduce the time and

memory consumption, we would like to avoid computing expensive features such as con-

dition number, eigenvalue spectrum, etc. Therefore, choosing simple features is essential

for providing real time recommendations in an online scenario. Details of the linear system

features used for our experimental studies are provided in Chapter V.

b. Solver Configurations

An iterative solver configuration comprises of many elements such as the choice of solver,

matrix preprocessing steps, preconditioner and various numerical/categorical parameters

specific to the preconditioner and solver choice. We represent each solver configuration

136

M as a vector of attributesy(M) corresponding to the various solver components. To

accommodate parameters that are meaningful only for some preconditioners, we allow the

parameter attributes to also take a value “not-applicable”. Details of the solver features

used in various experiments are provided in Chapter V.

c. Empirical Trials and Performance Metrics

To enable problem-specific solver selection, we encode the performance results at the gran-

ularity of an empirical trial, i.e., a combination of solverconfiguration and linear system

features. Specifically, the performance results of a trial(A, M) are represented as a vector

of performance attributesz(A, M), which include criteria that are of importance to a user,

e.g., computation time, memory usage and accuracy. In general, these observed perfor-

mance metrics not only depend on the linear system and the solver configuration, but also

on the hardware configuration that was used for the empiricaltrial. To keep the exposition

simple, our current work assumes that the performance results are based on a single specific

hardware configuration

2. Formal Problem Definition

Let SA = {Ai}
m
i=1 denote the set of linear systems,SM = {Mj}

n
j=1 denote the set of solver

configurations, andT ⊂ SA×SM denote the set of empirical trials for which performance

data is available. Letxi = x(Ai) andyj = y(Mj) denote the attribute vectors associated

with theith linear system andjth solver configuration. Letzij = z(Ai, Mj) denote the per-

formance vector associated with the trial(Ai, Mj) so that the empirical performance data,

can be represented as a set of 3-tuples{(xi,yj , zij) | (Ai, Mj) ∈ T }. We now formally

define the key sub-problems in our formulation.

137

a. Solvability Prediction

Since iterative solvers are known to have a high rate of failure [18], it is essential to iden-

tify and eliminate the infeasible trials. In order to formalize the notion of solver failure,

we define solvability as a pre-specified boolean function over the observed performance

metrics (e.g., convergence is achieved within 10 hours withrelative error norm less than

0.01). The solvability prediction problem is, therefore, to estimate this boolean property

without actually performing the trial. Letsij = s(Ai, Mj) = s(zij) denote the solvabil-

ity of linear systemAi with respect to configurationMj . Given empirical observations

(sij, Ai,xi, Mj ,yj), ∀(i, j) ∈ T , the first task is to predict the solvabilitys(A, M) for any

potential trial involving a linear systemA and a solver configurationM . Thus, solvability

modeling essentially requires learning a binary dyadic response where the dyads corre-

spond to pairs of linear systems and solver configurations.

b. Performance Estimation

As discussed earlier in Section B, a desirable feature of a solver recommendation system

is to provide performance estimates of a solver configuration for a particular linear sys-

tem, which can also be used for approximate estimation and optimization of other hybrid

additive and/or multiplicative combinations such as memory-time product. Therefore, the

second sub-problem involves predicting the various performance metrics of interest for the

trials that are deemed successful. The modeling problem in this case is similar to that of

solvability with the only substantial difference being that we need to deal with multiple

real-valued performance metrics instead of binary values.Given empirical observations

(zij, Ai,xi, Mj ,yj), ∀(i, j) ∈ T , the performance modeling can be formally stated as pre-

dicting the performance metricsz(A, M) for any potential trial involving a linear system

A and a solver configurationM .

138

c. Top-k Solver Configurations

The final task is to identify the top solver choices for a givenlinear system that optimize

certain performance basedqualitycriterion while satisfying the solvability criteria. To for-

malize the notion of the quality of a solver configuration with respect to the linear system,

we define it as a function that maps the performance metrics ofthe corresponding trial to a

real-valued score with lower score being preferable.

Let g(z) denote the quality criteria. A special class of criteria of interest are those

based on multiplicative combinations of the core performance metrics, i.e.,g(z) =
∏

r

(z(r))αr

wherez(r) denotes therth performance metric,αr indicates the relative importance ofz(r).

An example ofg(z) is memory-time product, whereαmemory = 1, αtime = 1 and the rest

zero.

Given a linear systemAi, the ranking problem reduces to identifying the top-k solver

configurations, or in other words, a mappingh : {1, · · · , k} 7→ SM such that:

1. Top-k configurations are solvable, i.e.,sij = true, ∀j ∈ range(h)

2. Top-k configurations are ordered by their quality and better than the rest, i.e.,g(zih(l1))

≤ g(zih(l2)) ≤ g(zij), where1 ≤ l1 < l2 ≤ k andj 6∈ range(h).

The values estimated from the performance model are used to determine the quality of a

solver configuration with respect to a linear system.

D. Multi-stage Learning Approach

In this section, we describe the key algorithmic componentsof our approach for addressing

the three sub-problems described in Section C.2.

139

1. Solvability Prediction

Since solvability is a boolean-valued function of the empirical trials, it can be readily mod-

eled in terms of binary classification over the trials. A natural choice for trial features

includes the attributes of the linear system and solver configuration along with the product

interactions [60]. Given these features and the observed solvability values, one can use any

standard classification algorithm such as decision trees orsupport vector machines along

with feature selection [40] to learn a solvability model. Analternate collaborative filtering-

like approach is to view the solvability prediction problemas a matrix imputation problem

where one seeks to predict missing values in the solvabilitymatrix with linear systems as

the rows and solver configurations as the columns. This perspective ignores the trial fea-

tures and focuses exclusively on leveraging the correlations in the solvability matrix via

low rank matrix approximation and bi-clustering techniques [5, 46]. Recently, Agarwal et

al. [3] proposed an approach based on predictive discrete latent factor models (PDLF) to

simultaneously make use of the available features as well asthe local structure in the dyadic

response using bi-clustering. However, this approach is limited to generalized linear mod-

els and does not readily accommodate feature selection, which is critical for our application

since the raw trial features (including interaction features) number in thousands.

We adopt a strategy that mimics the key idea in [3] while explicitly taking care of

the feature selection requirements. First, we learn a classifier on the training data while

performing feature selection over the raw features. The misclassification error resulting

from this classifier is clustered using a bi-clustering algorithm appropriate for ternary (false

positive, false negatives and true predictions) response values [5] to identify bi-clusters of

linear systems and solver configurations. The bi-cluster memberships are then used to

augment the earlier selected features and a new classifier islearned. Figure 49 shows the

detailed steps.

140

Input: Solvability valuessij = s(Ai,Mj) = s(zij), ∀(Ai,Mj) ∈ T , linear system attributes
xi = x(Ai),∀Ai ∈ SA, solver configuration attributesyj = y(Mj),∀Mj ∈ SM , number of
clustersk,l

Output: Solvability modelŝ(A,M)
Method:

Compute raw and interaction trial features
uraw

ij = [xi,yj]

uinter
ij = [xi1, · · · ; yj1, · · · ;xi1xi2, · · · ;xi1yj1, · · · ; yj1yj2, · · ·].

Perform feature selection
ureduced

ij = FeatureSelection({uinter
ij , sij})

Learn initial classifier
ŝinitial ← ClassificationAlgorithm({sij,u

reduced
ij })

Compute misclassification error
eij ← ŝinitial

ij − sij, ∀(Ai,Mj) ∈ T
Perform co-clustering
(ρ, γ) ← BiclusteringAlgorithm({eij}), whereρ : SA 7→ {1, · · · , k} and γ : SM 7→
{1, · · · , l}map the linear systems and solver configurations to their respective clusters.
Augment features
u

final
ij = [ureduced

ij ,1(ρ(Ai) = 1 ∧ γ(Mj) = 1),
· · · ,1(ρ(Ai) = k ∧ γ(Mj) = l)],
where1(ρ(Ai) = g ∧ γ(Mj) = h) denotes membership inghth bi-cluster
Learn final classifier
ŝ← ClassificationAlgorithm({sij,u

final
ij })

return ŝ

Fig. 49. Solvability Modeling

2. Performance Prediction

While estimating the performance metrics such as time takenand memory used, we need

to deal with real-valued variables that have a large variability for different linear systems

(for example,A1 might take 1-5 hrs to be solved whileA2 only needs 1-100 ms). This

variability in the response values leads to a large uncertainty in the modeling process. One

way to handle this problem is by normalizing the actual metrics by the performance of a

specific default solver. However, when the default solver configuration does not solve all

the problems, it might result in ill-defined values. In addition, to obtain better sensitivity

for lower performance values, it is desirable to log-transform the performance ratios. This

141

transformation has the additional benefits of making the response more Gaussian-like and

simplifying estimation of multiplicative combinations ofthe core performance metrics,

e.g., memory-time product.

To model the performance metrics, we use traditional regression approaches such as

multivariate linear regression [59] and support vector regression [77], augmented with bi-

clustering based features as in the case of solvability modeling. The hybrid regression

approach based on bi-clusters can be viewed as a variant of Gaussian-PDLF algorithm [3]

and follows the hybrid solvability modeling approach outlined in Figure 49. Specifically,

for each metric, we first learn a linear regression model overthe raw trial features. The

prediction error for each trial is computed from this model and is subjected to bi-clustering

based on Gaussian distribution to yield clusters of linear systems and solver configurations,

which are then used to learn a new regression model. In Chapter V Section A, we compare

results using a single regression technique with differentsets of features (raw, interactions,

and interactions along with bi-clusters) and choose the best option among these for further

modeling of configuration group specific models (Chapter V, Section B).

3. Top-k Performance Ranking

Given a linear system and specific performance-based quality and solvability criteria, a

naive approach for identifying the top-k solver configurations would be to estimate the

quality and solvability of each configuration (assuming thepossible set of configurations

is finite) and sort the solvable ones in terms of the quality criterion. A faster alternative

would be to exploit the fact that the estimates for all the configurations are generated from

the solvability and performance models. To illustrate the main idea, consider a hypothetical

case where there is a performance metric of interest that depends on just two interaction

features (modeled asexp(β1x1y1+β2x2y2)). For a given linear system and the performance

model, the featuresx1, x2 and parametersβ1, β2 are fixed and the quality of the solver

142

configurations depends only ony1, y2. Whenβ1x1 andβ2x2 are both positive, pre-sorting

the solver configurations byy1 andy2 into two lists would allow fast identification of the

topk configurations for the performance metric of interest.

In general, the performance models tend to contain multiplefeatures. However, the

same principle holds, i.e., pre-sorting the features can speed up ranking based on a mono-

tone aggregate function of the features. Our choice of linear regression for modeling the

performance is specifically suited for such rank aggregation because the response is mod-

eled as monotonic transformation of linear combination of the feature values. Specif-

ically, for each of the core performance metricsz(r), the estimated value is given by

ẑ(r) = exp(βr
T
u), whereu denotes trial features andβr denotes the coefficient vector

for the rth performance metric. The exponentiation is required because of the log trans-

formation. The quality criteria, which can be expressed as multiplicative combinations

of the core performance metrics, also happen to be simple aggregations over the features,

i.e., g(zij) =
∏

r(z
(r)
ij)αr ⇒ g(ẑij) = exp

(

(
∑

r αrβr)
T
uij

)

. When the trial featuresuij

consist only of raw or simple product interactions of attributes of the linear system and

solver configuration, for a fixed linear systemAi, we can directly express the quality of a

solver in terms of the solver attributes alone,g(ẑij) = exp(δT
i yj), whereyj denotes fea-

tures that depend on solver configuration andδi depends on attributes ofAi as well as the

coefficient vectors{αr, βr}r. By absorbing the sign of the coefficientsδi into the features

yj themselves, the quality criterion can be reduced to a monotone aggregate of the solver

features. There are a number of rank aggregation techniquesto obtain the topk choices for

a monotone aggregate of the features. In our current work, weemploy Fagin’s threshold

algorithm [27], which has been shown to be optimal in the number of accesses and requires

a small constant buffer. The main idea is to efficiently explore potential top choices and

stop when one is confident that the unexplored items are not going to make it to the top-k.

Figure 50 shows the detailed steps.

143

Input: Linear systemAi, number of recommendationsk, performance model coefficients{βr}r,
quality criteriong(z) =

∏

r
(z(r))αr , solvability model̂s(A,M), solver configuration setSM , trial

attributes{uij |(Ai,Mj) ∈ T }.
Output: Topk recommendationsh : {1, · · · , k} 7→ SM as defined in Section C.2
Method:

Initialize and sort solver configuration features
yj ← y(Mj) = [y1(Mj), · · · , yP (Mj)], features of solver configurationMj ∈ SM , (P denotes

solver dependent features)
Lp ← SM sorted by thepth solver feature(1 ≤ p ≤ P)

Compute feature coefficients and sign for specified linear system
Chooseδi s.t.δT

i yj = (
∑

r αrβr)
T
uij

wip ← sign(δip), δip ← |δip|, (1 ≤ p ≤ P)
Initialize candidate solver configuration set
CM ← ∅

repeat
Access top element in the sorted feature lists in the appropriate direction
M (p) ← pop(Lp, wip) (1 ≤ p ≤ P)

Check for solvability
CM ← CM

⋃

{M (p)} if (ŝ(Ai,M
(p))) = true

Compute threshold
τ ←

∑

p=1 wipδipyp(M
(p))

until CM hask objects withg(Ai, :) ≤ τ

return topk list of CM in terms ofg(Ai, :)

Fig. 50. Top-k Performance Ranking

E. Prototype Recommendation System

In this section, we describe a prototype solver recommendersystem based on the multi-

step approach described in Section D. We have implemented this system in C using a

combination of external software packages.

Figure 51 shows the various components of the proposed system and their interactions.

The functional units are represented as boxes while data is represented as ellipses. At a

coarse level, the proposed system has two main components — (a) an offline unit dedicated

to empirical data collection and learning solvability/performance models, and (b) an online

interactive unit that generates solver recommendations and answers user queries. Each

144

Linear System
Linear System

Attributes
Feature Computation

Candidate Trials

Performance
Results

Query

Testing Unit

Query
Result

Recommendations
(Top-k Ranking)

Performance
Prediction

Solvability
Prediction

Solvability Modeling
(Classification)

Performance Modeling
(Regression)

Solvability
Model

Performance
Model

Empirical Data

Offline Unit

Online Unit

Fig. 51. Prototype Solver Recommender System

of these have multiple sub-components for performing certain focused tasks, which are

described below.

• Empirical Testing Unitexecutes the chosen trials under controlled settings and records

the performance results in a database. Currently, this functionality is implemented

via a driver script on a an IBM HPC cluster 1600 based on 1.9 GHzPower5+ pro-

cessors.

• Feature Computation Unitcomputes a specified set of attributes for a given linear

system. The mapping between the linear system and the derived features is then

recorded in the empirical results database.

• Solvability Modeling Unitselects informative features and learns binary classifier(s)

to predict the solvability of a linear system with respect toa solver configuration.

This is accomplished in the current system by extending the SPIDER toolkit [78] and

145

LIBSVM software, which provide support for multiple classification algorithms such

as decision trees and support vector machines as well as multiple feature selection

techniques based on information gain, L1 norm, etc.

• Performance Modeling Unitlearns predictive models for the performance metrics

of interest in the solvable region, using the available empirical performance data.

This typically involves a combination of multi-variate regression and feature selec-

tion techniques and is currently accomplished using routines in the SPIDER kit and

LIBSVM.

• Solvability Prediction Unitpredicts whether a given linear system can be solved using

a particular solver configuration using the learned solvability model.

• Performance Prediction Unitprovides predictions on the expected performance for

user specified combinations of linear systems and solver configurations using the

learned performance model.

• Recommendation Unitprovides a top-k ranked list of the solver configurations for

a user specified linear system and quality criterion taking into account the specified

constraints using a judicious application of the Fagin’s threshold algorithm.

F. Discussion

In this section, we contrast our approach with the existing state-of-art machine learning

based approaches for selection of sparse iterative solvers.

As discussed in Chapter II, in recent years, there has been a lot of interest in apply-

ing machine learning techniques for choosing scientific software. The problem of solver

selection for sparse linear systems, in particular, has been the focus of three recent papers,

which are all based on classification algorithms. Of these works, the first one by Dongarra

146

et al. [13] poses the problem of finding the “best” (fastest aswell as correct) solver for a

given linear system among a small set of possible choices as amulti-class classification

problem. The linear systems are represented as multi-dimensional vectors and classified

using a Bayesian classifier where the individual class-conditional densities are modeled

as multi-variate Gaussian distributions. An important limitation of this method is that the

notion of “best” requires a comparison among the various solvers, which necessitates a

multi-class formulation that is impractical for a large number of solvers, unlike a simple

binary-formulation based on intrinsic solvability criteria (e.g., time≤ 4 hours and relative

error≤ 10−4). Hence, this approach can only give coarse (e.g., solver configuration group)

recommendations. The assumption of Gaussian class-conditional distributions also often

does not hold as discussed in [10].

The second work by Xu et al. [85, 86] considers only four different solver configura-

tions (ILU0 and ILU(k) with k = 1, 2, 3) and focuses on predicting the intrinsic solvability

status (e.g, solved, no convergence, out of memory) for a given matrix anda single solver

configuration(one of the chosen three) using a support vector machine classifier. Since

a classifier needs to be learned for each solver configuration, this approach again does

not scale with the number of solvers, but the extended notionof solvability status instead

of binary (solved/not solved) has considerable diagnosticvalue. This approach, however,

does not attempt to provide a recommendation among possiblesolver choices and merely

predicts the solvability status. The third work by Bhowmicket al. [10] poses the solver

selection problem in terms of identifying all the solver configurations that improve the

computational time relative to a arbitrarily chosen “default” configuration by a factorγ.

This choice of a target response does not require an explicitcomparison among all the

solver configurations and is not entirely intrinsic to the current solver configuration due to

the dependence on the “default” choice. This idea can be viewed as a compromise between

the approaches in [13] and [86] that avoids the scalability issues in [13] while providing

147

good recommendations when the default is chosen carefully.In this approach, the instances

space consists of solver trials, i.e., pairs of linear systems and solver configurations (instead

of linear systems as in the previous two approaches) and the problem of determining if the

solver configuration in the trial is a “good recommendation”for the matrix reduces to a

binary classification, which is solved using alternating decision trees. In the presence of

sufficient training data (which was possible since the linear systems used in experiments

were small and from a similar domain), this approach was shown to provide fairly high

classification accuracy, but the simplistic representation of solver configurations as discrete

entities makes it impractical to learn in case of sparse training data.

Our current work shares commonalities with the above three approaches in the use of

classification algorithms for solvability prediction and the representation of linear systems

as vectors of linear system features. However, there are a few key differences that make

our approach more scalable and flexible. First, our representation of solver configurations

in terms of features based on various components instead of unrelated discrete entities

allows us to readily scale to a large number of configurationsand perform fine-grained

tuning even over continuous parameters, which is not possible using any the approaches

in [10, 13, 85]. The use of solver configuration and linear system interaction properties

(e.g., num non-zeros> 105 and drop tolerance< 10−3) in the representation of solver trials

is another unique feature of our approach that leads to better predictions. Second, unlike

the previous approaches that provide coarse binary (or categorical in case of [13]) recom-

mendations based on a single criterion, we also attempt to estimate the actual performance

values and provide a ranking of the solver configurations based on a desired criterion. This

modular approach allows us to separately target the basic solvability requirements and the

performance optimization in addition to providing fairly interpretable results. The separate

modeling of the different performance metrics provides theflexibility to optimize multiple

hybrid criteria as well as incorporating resource constraints (e.g., memory usage< 2GB).

148

It also enables us to estimate the suitability of any subset of solver configurations without

having to construct a new model from scratch. Lastly, our choice of data representation and

multi-step methodology provides a higher capacity to generalize from sparse training data

(which is common for large sized matrices and a large number of solver configurations)

compared to the existing approaches. In fact, the large number of solver configurations in

our performance dataset (see Chapter V) make it computationally impractical to perform a

quantitative comparison of even the data representationalaspects of the existing approaches

1.

1We did not perform a simplified quantitative comparison of the different solver se-
lection approaches over coarse solver configuration groupssince that does not address the
key problem of interest, namely, linear system-specific fine-tuning of solver configuration
parameters.

149

CHAPTER V

EMPIRICAL EVALUATION OF RECOMMENDATION SYSTEM

In this chapter, we present empirical evaluation of the various aspects of our solver recom-

mendation approach. In particular we focus on two studies using the multi-step approach

outlined in Chapter IV. The first study (Section A) focuses ona single package, Hypre,

and explores the use of multiple learning algorithms and different feature sets. The het-

erogeneity of the feature space as well as varied performance behavior across the various

solver configuration groups motivated our second study, which involves learning a sepa-

rate model for each solver configuration group. In Section B,we describe the results from

solver configuration specific modeling for Trilinos ML, Hypre ParaSails, and WSMP ICT.

A. Package Specific Modeling

We describe the results of a prototype recommendation system based on package specific

models. We have chosen the Hypre package for this purpose since it had a wide range

of preconditioner encompassing level based and threshold based incomplete factorization,

approximate inverse, and multigrid based preconditioners. First, we present the details

on the performance dataset including the linear system and solver configuration features.

We then show the results on solvability and performance modeling on new trials involving

the matrices in the training set. Finally, we present the precision and quality of the top-k

recommendations.

1. Performance Dataset

For this study, we used the 30 SPD test matrices in our empirical study in Chapter III and

317 solver configurations from the Hypre package. Table XIV lists the set of features of the

150

Table XIV. Linear system features along with the p-values for the Pearson correlation coef-

ficient with respect to memory, time and solvability values on randomly selected

20% training data.
Linear System Features Memory Time Solvability
Geometric Dimension (GD) 2.6-06 3.8-07 1.5-09
Number of rows/columns 1.3e-05 9.8-05 2.8e-11
Number of Non-zeros 8.9e-08 1.2e-07 5.1e-13
Avg. non-zeros per col. (AvgNzPerCol) 0.8 0.5 7.6e-03
Std. dev. of AvgNzPerCol(stdAvgNzPerCol) 0.75 0.6 1.7e-08
Weight of longest column 0.02 0.13 2.7e-06
Weight of shortest column 2.1-04 0.2 0.16
%Weakly diagonally dominant columns 1e-10 8.9e-13 6.4e-28
Maximum bandwidth 1.3e-05 1e-04 1.3e-10
Average diagonal dominance (avgDiagDom) 1.2e-09 5.0e-08 4.1e-12
Frobenius Norm 6e-12 7.8e-08 0.93
Max. over min. of row sum (mm-RS) 0.52 4.1e-03 7.4e-08
Std. dev. of row sum (stdRS) 0.76 4e-05 0.29

matrices that we consider, along with the p-values of their Pearson correlation coefficients

to three key performance metrics. A key characteristic of all these features is that they

are inexpensive to compute. Since the very purpose of using iterative solvers is to use

moderate time and memory resources, we would like to avoid computing expensive features

such as condition number, eigenvalue spectrum, etc. Therefore, choosing simple features

is essential for providing real time recommendations in an online scenario. The low p-

values of the Pearson correlation coefficients of most features in Table XIV suggest that

these features have a correlation with the performance metrics that is significantly different

from zero. Table XV contains a list of the solver features that we used in our experiments.

Based on the description of the solver options in Table XV, weidentified 15 attributes such

as solver, restart, preconditioner, level of fill and drop tolerance. Using the above solver

configurations, we generated performance data on the set of matrices in our collection. For

this set of experiments, the right hand size was chosen corresponding to an exact solution of

all ones. In addition, we set a limit of 1000 for the maximum number of iterations and the

relative residual norm stopping criterion as10−8. For each trial, we obtained the memory

usage, time taken, relative error norm, and also recorded solver failure where applicable.

151

Table XV. Description of the components of solver configuration.
Package Solver Preconditioner Orderings Preconditioner Parameters

HYPRE

CG IC(K) RCM, ND
Level of fill: 0, 1, 2
Fill factor: 3, 5, 8, 10 orMax NNZ/row:5,∞

GMRES
ILUT RCM, ND

Drop tolerance (DT):1e-2, 3e-2, 1e-3, 5e-4
Restart(30,65,100) Fill factor: 3, 5, 8, 10 orMax NNZ/row:5

CG ParaSails RCM, ND, NONE
Number of levels (Lev):0, 1, 2
Threshold (Thresh):0, 0.01, 0.1, -0.75, -0.9
Filter: 0, 0.001, 0.05, -0.9

CG BoomerAMG
RCM, ND, NONE

Maximum number of levels:25
Number of aggressive coarsening levels:0, 10
Coarsening schemes:Falgout, HMIS, PMIS
Strong threshold (ST):0.25, 0.5, 0.8. 0.9

2. Solvability Modeling

In our evaluation, a trial was considered to be successful, i.e., the linear system was deemed

solvable by a particular configuration, if the final relativeerror norm was less than10−2 or

if the relative residual norm was less than10−8 and the relative norm of the error was in the

range [0.01, 0.1]. Furthermore, we enforce a wall time limitof 3 hours and memory limit

of 16 GB.

To test the effectiveness of learning based approach for predicting solvability, we split

the performance datasets into multiple train splits (of varying size — 20% to 80%) and a

test split containing 20% of the trials. For each such split,we considered four different

sets of features — (a) raw features formed by concatenating those of the linear system

and solver configuration (Raw), (b) raw features along with linear interactions (Interac-

tion), (c) only bi-cluster membership features (BiClust),(d) concatenation of interaction

features with complementary bi-cluster membership features (Inter-BiClust). Each of the

above feature sets was further refined using mutual information gain based feature selec-

tion and in each case, we learned a solvability model using three different classification

algorithms: (1) support vector machines (SVM) [81], (2) decision tree (J48) [48], and

(3) K-nearest neighbor (KNN) [60]. For each run, we computed(a) classification error,

(FN+FP)/(TN+TP+FN+FP), (b) specificity, TN/(TN+FP), and (c) sensitivity, TP/(TP+FN).

152

Here FN, FP, TN, and TP denote the numbers of false negatives,false positives, true nega-

tives, and true positives, respectively.

Figure 52 shows the classification error, sensitivity, and specificity using different fea-

ture sets for the various classifiers on a 20% training data averaged over 5 runs. We find that

the SVM and KNN classifiers significantly outperform the decision tree classifier. The raw

features seem to be quite predictive of solvability and result in a substantial improvement

over the baseline classification error (45.6% using the majority classification). Including

the interaction features leads to even better classification accuracy. Figure 53 depicts a

3 × 3 bi-clustering of the trials. On examining the clusters, it was observed that the third

linear system cluster (bottom) consisted mainly of matrices that could be solved by most of

the methods. The second cluster consists of linear systems that could not be solved using

the IC(k) and ILUT preconditioners as well as many ParaSails and BoomerAMG based

solver configurations while the first one contains matrices that could not be solved by the

IC(k) and ILUT preconditioners, but were solved by most configurations of ParaSails and

BoomerAMG preconditioners. Though the latent bi-clustersdiscovered in isolation are

valuable in the absence of observed trial characteristics,we find that there was no ad-

ditional benefit in using interaction features along with bi-cluster membership, possibly

because our interaction feature set was rich enough to subsume information from the bi-

clusters. The first column in Table XVI lists the top 5 interaction features that were selected

for classification.

3. Performance Modeling

We used the subset of trials deemed to be solvable to learn regression models for the time

taken and memory used. These values were normalized by the corresponding values for

specific default configuration(s) that correspond to the “best” choice independent of the lin-

ear system. To identify the overall “best” solver configuration, we considered performance

153

Raw Interaction BiClust Inter−BiClust
0

0.1

0.2

0.3

0.4

C
la

ss
ifi

ca
tio

n
E

rr
or

SVM
KNN
J4.8

Raw Interaction BiClust Inter−BiClust
0

0.5

1

S
pe

ci
fic

ity

Raw Interaction BiClust Inter−BiClust
0

0.5

1

S
en

si
tiv

ity

Fig. 52. Classification error, sensitivity and specificity on test set for solvability prediction

for SVM, KNN and J48 classifiers on a trial with 20% training split averaged over

5 runs.

Fig. 53. Linear system-solver configuration bi-cluster forsolvability. Blue indicates solver

failure, red indicates solver successes and green indicates missing values.

154

Table XVI. Top 5 interaction features selected for classification, memory and time predic-

tion on a 20% training data. The features with an “is” prefix are solver features.
Solvability Memory Time
GD× avgNnzPerCol GD×avgNnzPerCol GD×is ST-0.7
GD× is CG GD×is CG GD×avgNnzPerCol
GD× is Restart-100 GD×is Restart100 GD×is CG
mmRS× is SAI-Lev0 GD×is GMRES GD×is Restart-100
mmRS× is ILUT-DT1e-3 stdRS×isSAI-Lev2 GD×is SAI-Thresh0

profile curves [24] of the different solver configurations, i.e., plots of the cumulative distri-

bution of the performance ratios with respect to a performance metric. The default solver

configurations were then chosen so as to optimize both the performance and the number of

linear systems solved using the area under the performance profile curves (Chapter III) .

As in the case of solvability modeling, we created train splits of varying sizes (20% to

80%) and a test split containing 20% of the solvable trials. For each such split, we again

considered four different sets of features (Raw, Interaction, BiClust, Inter-BiClust) and in

each case applied multi-variate linear regression along with feature selection. To study the

effects of variability, we modeled the performance values after log transformation. For

each run, we computed theR2 statistic defined as1 −
P

i(ẑi−zi)2
P

i(ẑi−z̄)2
, whereẑ is the predicted

value,z is the actual value and̄z is the mean of the actual values.

Figure 54 shows theR2 statistic for the predicted memory and time values using differ-

ent feature sets for different sizes of training data. From the figure, the observed features as

well as the bi-clustering memberships are clearly very predictive and provide a significant

reduction (61% for memory,41% for time) in the quadratic loss in the best case. As in the

case of solvability, the interaction features proved critical for improving the performance

estimates. As expected, increasing the size of the trainingset results in a steady increase

in the prediction accuracy. The second and third columns in Table XVI shows the top 5

predictive interaction features for memory and time, respectively.

155

10 20 30 40 50 60 70 80 90
0.2

0.3

0.4

0.5

0.6

0.7

R
2 S

ta
tis

tic

Memory Usage

10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

R
2 S

ta
tis

tic

Time Taken

Training data size

Raw
Interaction
Inter−Biclust

Fig. 54.R2 statistic for memory and time prediction with varying training data size averaged

over 5 runs for multiple feature sets.

4. Top-k Recommendations

We now present results on the top-k recommendations for each of the linear systems given.

To highlight the flexibility of our approach, we consider three different criteria for de-

termining the best solvers. The first two involve optimizingcore performance values,

i.e., memory usage and computational time while the third one focuses on optimizing the

memory-time product.

For each linear system, we used the solvability and performance models (with log-

transformed response) trained only on20% of the trials using the best feature set (Inter-

BiClust) to identify the top-k (k =25) solver configurations for each criterion. Using the full

performance data, the actual top-k solutions were also identified. We measured the quality

of the recommendations in terms of two performance metrics:(a) top-k precision, i.e.,

fraction of the predicted top-k solutions that are in the actual top-k list, (b) improvement

over the problem independent best choice (PIB) in terms of average quality value of the

156

top-k recommendations.

Figure 55 shows the top-k precision of the solver recommendations for optimizing

memory, time, and memory-time product. Our approach identifies a large fraction of the

top solutions (approximately52% for memory and43% for time) in a purely automated

manner and requires evaluating the performance models onlyfor a small subset of possible

choices. Figure 56 (a-c) shows the performance improvementthat can be obtained using

the generated recommendations over the PIB choice. In this case, the PIB solver configura-

tion (dotted lines) were chosen based on the overall best performance on the entire test suite

using performance profile areas. The problem specific best (PSB) fine-tuning curves shows

the average performance value of the actual top-k solutions, which is the best achievable

improvement. We observe that the recommender fine-tuning curve is always lower than the

PIB choice for all the three criteria and fairly close to the PSB curve. The recommenda-

tions for memory-time product indicate that our approach can be quite effective even for

optimizing a hybrid performance criterion.

0 5 10 15 20 25 30
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

recommendations (k)

T
op

−
k

P
re

ci
si

on

Time
Memory
Memory−Time product

Fig. 55. Fraction of the true best choices for memory, time and memory-time product that

is present in top-k recommendations.

157

0 5 10 15 20 25
0.4

0.6

0.8

1

Time

0 5 10 15 20 25
0.4

0.6

0.8

1

A
ve

ra
ge

 to
p−

K
 p

er
fo

rm
an

ce
 (

w
.r

.t.
 d

ef
au

lt)
Memory

0 5 10 15 20 25
0.2

0.4

0.6

0.8

1

recommendations (k)

Memory−Time product

PSB
REC
PIB

Fig. 56. Average improvement in the memory, time and memory-time product due to fine–

tuning over that of the PIB choice for multiple values ofk.

5. Discussion

The recommendations using package specific models look promising, however, there are a

number of issues that need to be addressed. The performance data used for learning and

testing the model involved only those matrices which were solved by the PIB configuration.

This restriction removed a number of complex challenging matrices and the resulting per-

formance data. Another issue is that all our testing is performed on trials associated with

matrices represented in the training data. In the next section, we will remove the restriction

that matrices need to be solved by the PIB choice and examine the quality of the model by

testing on an entirely new set of matrices that are not in the training set.

158

B. Solver Configuration Group Specific Modeling

In this section, we present the results on solver configuration specific models that were

created primarily to address the heterogeneity in the solver feature space and inadequacy

of the PIB choice in solving certain problems. First, we present details on the performance

dataset used for this study. We then present solvability andperformance results on a 20%

test data of unseen trials on matrices used for learning the model as well as a set of new

matrices that did not have any presence in the training set.

1. Performance Dataset

Tables XVII and XVIII shows the SPD matrices that are used fortraining and testing the

models. These train and test matrix sets were chosen in orderto have adequate repre-

sentation of the application domains. Table XIX shows the linear system features that

were extracted from these matrices, which similar to those used in Section A with a few

minor changes. A detailed analysis of the correlation of thetop interaction features will

be provided later in Sections 2 and 3. Adequate training datais paramount to learning

good models for solvability and performance prediction. Some of the solver configuration

groups in this study had very few parameters and due to solverfailures, there was very little

training data for learning performance models. For those solver configuration groups, the

respective PIB configuration is quite competitive and the use of a model is probably not

necessary. In our empirical setup there are only 5 solver configuration groups which had

at least 50 or more solver configurations. Of these, we chose arepresentative solver con-

figuration group corresponding to preconditioners based onmultigrid, sparse approximate

inverse, and theshold-based incomplete Cholesky factorization. These solver configura-

tion groups are shown in Table XX along with the number of solver configurations in each

and the number of trials used for learning the solvability and performance models. The

159

Table XVII. SPD test matrices with their order (N), number ofnon-zeros (NNZ) and the

application area of origin
Matrix N NNZ Application
46053 46053 2863917 Sheet metal forming
af shell7 504855 17588875 Sheet metal forming
Autodesk-big 1073724 84317460 Static stress analysis
apache2 715176 4817870 3D finite difference structural analysis
BenElechi1 245874 13150496 Structural analysis
bmwcra1 148770 10644002 Automotive crankshaft modeling
bone010 986703 71666325 Micro finite element analysis of bone
ctu-1 1017397 74144859 Structural analysis
ctu-2 384012 28069776 Structural analysis
cfd1 70656 1828364 C.F.D. pressure matrix
conti20 20341 1854361 Structural analysis
crankseg1 52804 10614210 Linear static analysis of crankshaft
F1 343791 26837113 Structural analysis
G3 circuit 1585478 7660826 Circuit simulation
hb drawlins 282576 21718350 Structural mechanics
hood 220542 10768436 Automotive
inline 1 503712 36816342 Structural engineering
kyushu 990692 26268136 Structural engineering
msdoor 415863 20240935 Structural analysis
mstamp-1c 354816 26143920 Metal stamping
nastran-b 1508088 111614436 Structural analysis
nd24k 72000 28715634 3D mesh problems (ND problem set)
oilpan 73752 3597188 Structural analysis
parabolicfem 525825 3674625 C.F.D. convection-diffusion
pga-rem-1 5978665 29640547 Power network analysis
pga-rem-2 1480825 7223497 Power network analysis
pwtk 217918 11634424 Stiffness matrix - Pressurized wind tunnel
qa8fk 66127 1660579 F.E.M. stiffness matrix for 3D acoustic problem
ship 003 121728 8086034 Structural analysis - ship structure
shipsec5 179860 10113096 Structural analysis - ship section
thermal2 1228045 8580313 Steady state thermal problem
tmt sym 726713 5080961 Electromagenetic simulation
torso 201142 3161120 Human torso modeling

160

Table XVIII. SPD test matrices with their order (N), number of non-zeros (NNZ) and the

application area of origin
Matrix N NNZ Application
90153 90153 5629095 Sheet metal forming
audikw 1 943695 77651847 Automotive crankshaft modeling
boneS10 914898 55468422 Micro finite element analysis of bone
garybig 42459173 238142243 Circuit simulation
ldoor 952203 46522475 Structural analysis
mstamp-2c 902289 70925391 Metal stamping
pga-rem3 2928711 15510973 Circuit Simulation

Table XIX. Linear system features extracted from the matrices for solvability and perfor-

mance modeling.
Linear System Features Abbreviation
Number of rows/columns NUMCOLS
Number of non-zeros NUMNONZEROS
Aveage non-zeros per column AVGNZPERCOL
Standard deviation of AVGNZPERCOL STDAVGNZPERCOL
Maximum bandwidth MAXBANDWIDTH
Average bandwidth AVGBANDWIDTH
%Weakly diagonally dominant columns PERCENTAGEWEAKDIAGDOMROWS
Average diagonal dominance AVGDIAGDOM
Maximum over minimum of row sum MAXOVERMINROWSUM
Standard deviation of row sum STDROWSUM
Geometric Dimension based on maximum bandwidth GEOMDIMMAXBANDWIDTH
Geometric Dimension based on average bandwidth GEOMDIMAVGBANDWIDTH
Standard deviation of diagonal STDDIAG
Size of supernode SUPNODESIZE

table also lists the maximum number of interaction featuresthat were used for each solver

configuration group.

In order to generate the performance data, for each trial composed of a matrix and

solver configuration, we set the right hand side to a vector ofall ones and solve the resulting

linear system. The iterations are stopped if the number of iterations exceed 1000 or if the

relative residual norm drops below10−5. In each trial, we record the memory usage, time

taken, final relative residual, and the relative error norm of the final solution. The relative

error norm is computed by using the exact solution obtained using the direct solver.

161

Table XX. Solver configuration groups used for learning individual models along with the

number of solver configurations, number of interaction features, total number of

trials used for learning solvability and performance models.
Configuration

#Configurations
#Interaction #Total Trials #Feasible Trials

Group features Solvability Performance
Trilinos ML 66 372 1743 1020

Hypre ParaSails 99 349 2614 798
WSMP ICT 64 288 1690 1512

2. Solvability Modeling

As discussed earlier in Chapter IV, we modeled solvability as a boolean function of trials.

A trial is considered to be successful, only if the final relative error norm is less than

2 × 10−2 and the relative residual norm is less than10−5. In addition, we also enforce

a wall time limit of 4 hours and memory limit of 16 GB. In order to avoid over-fitting

the models, we experimented with 10 different feature set sizes on five different train-test

crossfold splits. Before creating the feature sets, the various features are first ordered based

on mutual information criteria [60] and then normalized such that each feature vector has

zero mean and unit variance. We then select 10 feature sets ofincreasing sizes starting

from 10% all the way to 100% from the set of meaningful interaction features. We used

the SVM classifier with the RBF kernel for learning the solvability model. An important

choice for achieving good results using SVM is the value of the kernel parameterγ and the

penalty parameterC. As proposed by Lin et al. [16], we perform a parallel grid search over

values ofC = 2−5, 2−3, 2−1, 21, · · · , 213, 215 and γ = 2−15, 2−13, 2−11, · · · , 2−1, 21, 23.

The results shown in this section correspond to the model learned using the parameter

that resulted in the best accuracy over the 110 combinationsof C andγ. This parallel grid

search is performed for each feature set and crossfold splitand the bestC andγ are chosen.

The results shown in the following sections are the averagedvalues over the various splits

162

for the best feature set. We now discuss the results on new trials over the train matrices and

also unseen test matrices. We also present a brief analysis of the predictive features of the

best solvability models for the different solver configuration groups.

a. Results on New Trials Over Train Matrices

Figure 57 shows the (a) classification accuracy (TP+TN)/(TP+FP+TN+FN), (b) precision

TP/(TP+FP), and (c) recall TP/(TP+FN) for a 20% test split ofthe trials averaged over 5

runs. In this case, we used the remaining 80 % of the data for training the model. Exper-

iments with a smaller training data (50%) also yield comparable accuracy, precision, and

recall values. We observe that for all the solver configuration groups the results are signifi-

cantly superior to the baseline, which corresponds to a constant prediction of the majority

class. For precision and recall, we do not show the baseline since the baseline precision is

identical to the classification accuracy value and the baseline recall is 1 when the majority

class corresponds to the solvable cases as in our data. Here,we do not compare with other

classification algorithms and feature selection choices asin Section A since the main goal

is to evaluate the overall quality of recommendations.

b. Results on Unseen Test Matrices

The solvability predictions in the previous section are quite good since the test set contains

new trials only involving matrices from the training data. The litmus test for these solvabil-

ity models, however is their ability to generalize on a set ofcompletely new set of matrices,

i.e., the models have seen no performance data on any trials involving a particular matrix.

Figure 58 shows the classification accuracy, precision, andrecall for trials involving all

the various solver configurations in a group and the unseen test matrices. Even though the

solvability prediction accuracy is better than the baseline predictions, we observe that the

prediction quality is not comparable to that for new trials on train matrices in Figure 57.

163

TR_ML HY_PSAILS WS_ICT
0

0.5

1

A
cc

ur
ac

y

Predicted
Baseline

TR_ML HY_PSAILS WS_ICT
0

0.5

1

P
re

ci
si

on

TR_ML HY_PSAILS WS_ICT
0

0.5

1

R
ec

al
l

Fig. 57. Classification error, precision, and recall for solvability prediction using SVM clas-

sifier on a 20% hold out set of new trials on seen matrices for Trilinos ML, Hypre

ParaSails, and WSMP ICT. The values shown are averaged over 5runs.

164

TR−ML HY−PSAILS WS−ICT
0

0.5

1

A
cc

ur
ac

y

Predicted
Baseline

TR−ML HY−PSAILS WS−ICT
0

0.5

1

P
re

ci
si

on

TR−ML HY−PSAILS WS−ICT
0

0.5

1

R
ec

al
l

Fig. 58. Classification accuracy, precision, and recall forsolvability prediction using the

best solvability model on trials comprising of unseen matrices and solver configu-

rations for Trilinos ML, Hypre ParaSails, and WSMP ICT.

165

0 10 20 30 40 50 60 70
0.5

0.6

0.7

0.8

0.9
Trilinos−ML

0 10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

1
Hypre−ParaSails

0 10 20 30 40 50 60 70
0.88

0.9

0.92

0.94

0.96
WSMP−ICT

Number of trials for each unseen matrix

BaselineAccuracy
Accuracy
F−measure

Fig. 59. Improvement in classification accuracy and f-measure for solvability prediction for

increasing number of trials on unseen matrices for TrilinosML, Hypre ParaSails,

and WSMP ICT.

166

This indicates that there is a significant drift in the train and test data distributions and the

i.i.d assumptions inherent in our inductive classificationapproach are not completely true.

To analyze this further, we retrained the classification models using the training data on

the seen train matrices and increasing number of trials on unseen test matrices and evaluated

them on the rest of the trials on unseen test matrices. Figure59 shows the learning curves

for each of the three solver configuration groups with increasing number of trials on the

new matrices on the x-axis and the solvability prediction accuracy and f-measure on the

y-axis. For all the three solver configuration groups, thereis substantial improvement in

the prediction quality with a very small amount of supervision on trials associated with

the unseen matrices and after a rapid increase, it seems to flatten out. This behavior can

be explained by considering the different classification models. In particular, the classifier

trained only on trials associated with train matrices has coefficients for features derived

from the linear system characteristics (including interaction features) optimized only for

the train matrices. When there is a significant disparity in the distribution of linear system

characteristics of the train and test matrices due to the relative sparsity with respect to the

linear system feature space (as seems to be the case in our experiments), these models are

not likely to do well on the test matrices. However, even a small number of trials on the

unseen test matrices can rectify this problem by providing sufficient representation in the

relevant linear system feature space leading to a better fine-tuning of the model coefficients

for the linear system features and consequently, a big jump in the prediction accuracy,

especially when the linear system features are highly informative. The flattening out of

prediction quality, on the other hand, can be explained by the fact that there exist only a few

solver configuration feature-value combinations that are strongly predictive of solvability,

e.g., ISDT1E-3=1, and their effects can be captured by supervision on a small number of

representative solver configurations.

167

Table XXI. Top 5 interaction features selected for solvability prediction in the case of Trili-

nos ML. The components of the interaction features are separated with a “:” and

the solver features are prefixed with a “IS”.
Feature Name Correlation Sign p-Value
MAXBANDWIDTH:IS ML-IFPACK 1.461021e-01 1 3.028547e-02
MAXBANDWIDTH:IS ML-SS1 1.461021e-01 1 3.028547e-02
ISORDERING-ND:ISML-IFPACK 1.317742e-01 1 5.094860e-02
ISORDERING-ND:ISML-SS1 1.317742e-01 1 5.094860e-02
STDDIAG:IS ML-IFPACK 1.300553e-01 1 5.407555e-02

Table XXII. Top 5 interaction features selected for solvability prediction in the case of

WSMP ICT. The components of the interaction features are separated with

a “:” and the solver features are prefixed with a “IS”.
Feature Name Correlation Sign p-Value
STDDIAG:IS DT1E-2 2.393974e-01 1 3.611661e-03
STDROWSUM:STDDIAG 1.714817e-01 -1 3.849293e-02
ISORDERING-RCM:ISDT1E-3 1.610345e-01 1 5.216677e-02
AVGNNZPERROW:GEOMDIMAVGBANDWIDTH 1.508481e-01 -1 6.914791e-02
AVGNNZPERROW:GEOMDIMMAXBANDWIDTH 1.502457e-01 -1 7.027865e-02

c. Model Analysis

A salient property of SVM is that the predictions depend onlyon the support vectors.

Therefore, in order to analyze the features, we select the top 15 features based on corre-

lation of the support vectors with the target response. Tables XXI– XXIII show the top

interaction features for Trilinos ML, Hypre ParaSails, andWSMP ICT respectively for the

solvability models learned on trials from 33 train matrices. The tables also indicate the

actual value of the correlation, whether they are positively or negatively correlated, and

also the p-values of the correlation coefficients. In the case of Trilinos ML and WSMP

ICT, the model seems to have not so high correlation with the top features (as well as high

p-values) indicating that the learned model might not be significantly more predictive than

the baseline prediction (majority class) on unseen data. However, in the case of Hypre

ParaSails in Table XXIII, there are number of features that are highly correlated with the

solvability values. For example, it was observed in ChapterIII that the use of negative

values for threshold and filter parameters result in less robust solver configurations. This is

168

Table XXIII. Top 20 interaction features selected for solvability prediction in the case of

Hypre ParaSails. The components of the interaction features are separated

with a “:” and the solver features are prefixed with a “IS”.
Feature Name Correlation Sign p-Value
MAXBANDWIDTH:IS SAI-FLT-0.9 2.849049e-01 -1 6.238230e-15
AVGBANDWIDTH:IS SAI-FLT-0.9 2.752059e-01 -1 5.370187e-14
NUMNONZEROS:ISSAI-FLT-0.9 2.709347e-01 -1 1.349256e-13
NUMCOLS:IS SAI-FLT-0.9 2.691398e-01 -1 1.977574e-13
AVGNNZPERROW:ISSAI-FLT-0.9 2.633090e-01 -1 6.714327e-13
IS SAI-FLT-0.9 2.622759e-01 -1 8.312177e-13
GEOMDIMMAXBANDWIDTH:IS SAI-FLT-0.9 2.423301e-01 -1 4.276813e-11
SUPNODESIZE:ISSAI-FLT-0.9 2.403359e-01 -1 6.224908e-11
GEOMDIMAVGBANDWIDTH:IS SAI-FLT-0.9 2.395155e-01 -1 7.257244e-11
AVGBANDWIDTH:MAXOVERMINROWSUM 2.272560e-01 -1 6.721732e-10
MAXBANDWIDTH:MAXOVERMINROWSUM 2.240591e-01 -1 1.176746e-09
AVGNNZPERROW:MAXOVERMINROWSUM 2.217973e-01 -1 1.740017e-09
NUMNONZEROS:MAXOVERMINROWSUM 2.201226e-01 -1 2.318223e-09
STDAVGNNZPERROW:ISSAI-FLT-0.9 2.147277e-01 -1 5.752145e-09
NUMCOLS:MAXOVERMINROWSUM 2.130134e-01 -1 7.640011e-09
MAXOVERMINROWSUM 1.996882e-01 -1 6.403093e-08
STDAVGNNZPERROW:MAXOVERMINROWSUM 1.981435e-01 -1 8.118152e-08
MAXBANDWIDTH:IS SAI-TH-0.9 1.948508e-01 -1 1.337924e-07
STDAVGNNZPERROW:STDROWSUM 1.929104e-01 -1 1.788817e-07
AVGNNZPERROW:ISSAI-TH-0.9 1.909092e-01 -1 2.406061e-07

evident from the high occurrence and the corresponding negative correlation of the features

IS FLT-0.9 and ISTH-0.75.

3. Performance Modeling

In Section A, we used multi-variate linear regression to learn a performance model for

the Hypre dataset. However, we observed that the performance metrics often exhibit non-

linear dependence on the linear system and solver configuration characteristics. We use

SVM regression (with a RBF kernel) available in the LibSVM package [16] since it allows

us to handle the non-linear dependencies and provide betterresults in comparison to multi-

variate linear regression. There is a lot of variability in the performance data since the

matrices are from multiple domains and have widely varying properties. Therefore, we

perform a log transformation on the matrix features and the target values as well as reorder

the features based on a mutual information criteria before learning the performance models.

In addition, we also normalize the resulting interaction feature vectors to have zero mean

169

and unit variance. For learning the best performance model,we follow an approach similar

to solvability modeling, i.e., we perform a parallel grid search over the parameter space

of C andγ and multiple feature sets of increasing sizes. We now discuss results on new

trials on the train matrices and unseen test matrices. As in the case of solvability, we also

present a brief analysis of the predictive features of the best time and memory models for

the different solver configuration groups.

a. Results on New Trials Over Train Matrices

Figures 60 and 61 show the median relative error and the R2 statistic for 20% of the tri-

als involving train matrices for the time taken and memory usage for all the three solver

configuration groups. We consider median relative error instead of the mean in order to re-

duce the effect of the outliers. Although the model is learned on the log transformed target

values, the results shown in Figures 60 and 61 are computed after applying the inverse of

the log transformation. We observe that the median relativeerror for memory is very low

(11 -16 %) and the highR2 statistic (Section A) values indicate that the model achieves a

good reduction of the squared error with respect to a constant model. In case of the time

metric, the median relative error is slightly higher (17-18%) and theR2 statistic indicates

that the predictions are reasonable with the exception of Hypre ParaSails where there is a

significant variation across the cross folds.

b. Results on Unseen Test Matrices

Figure 62 and 63 shows the median relative error for trials associated with the unseen test

matrices. The high median relative error for the predictions on unseen matrices relative

to that of the new trials on train matrices indicates that theperformance models might not

have been able to accurately capture some of the matrix specific effects. This could be due

to the fact that data corresponding to the solved trials usedfor training the performance

170

TR_ML HY_PSAILS WS_ICT
0

0.05

0.1

0.15

M
ed

ia
n

R
el

at
iv

e
E

rr
or

TR_ML HY_PSAILS WS_ICT
0

0.2

0.4

0.6

0.8

R
2 −

S
ta

tis
tic

Fig. 60. Median relative error andR2 statistic for memory prediction for 20 % hold out

set of new trials comprising of matrices in the training set for Trilinos ML, Hypre

ParaSails, and WSMP ICT. The performance values are averaged over 5 runs.

171

TR_ML HY_PSAILS WS_ICT
0

0.05

0.1

0.15

M
ed

ia
n

R
el

at
iv

e
E

rr
or

TR_ML HY_PSAILS WS_ICT
0

0.2

0.4

0.6

0.8

1

R
2 −

S
ta

tis
tic

Fig. 61. Mean Relative error andR2 statistic for time prediction for 20 % hold out set of

trials comprising of matrices in the training set for Trilinos ML, Hypre ParaSails,

and WSMP ICT. The performance values are averaged over 5 runs.

172

models is fairly small due to the large number of solver failures, and also because we only

employ fairly simple linear system characteristics.

Since our main objective is to obtain recommendations for each matrix, it is sufficient

to obtain prediction values correct up to a monotonic transformation. To obtain a better

indication of the effectiveness of our predictions, we computed an alternative quality mea-

sure that adjusts for matrix-specific effects using an affinetransformation. Specifically,

we estimate for each matrix, the best multiplicative and additive factors that minimize the

cumulative relative error of the predictions. The actual predictions are then transformed

using the matrix-specific factors to obtain new predictions, which is then used to estimate

the relative error. The bottom plots in Figures 62 and 63 showthe median values for this

adjusted relative error.

c. Model Analysis

As in the case of solvability models in Section B.2.c , we compute the top features based on

the correlation of the support vectors associated with eachmodel to the corresponding tar-

get response. We list the top 20 features that are highly correlated with respect to memory

and time for Trilinos ML, Hypre ParaSails, and WSMP ICT in theform of tables. The third

column shows if the feature is positively or negatively correlated and the fourth column

indicates the p-value of the correlation coefficients. A very low value for p-values indicate

that there is a non-zero correlation between the feature andthe observed target variable.

Note that the tables shown below are only for the top 20 features, therefore, the absence

of certain solver features in the list does not imply the lackof interactions involving those

features. There are also other important interaction features that are negatively correlated,

which do not make it to the top 20.

Memory Usage. In the case of Trilinos ML, the use of IFPACK smoother (ISML-

IFPACK) is highly correlated with the feature smoother sweep value of 1 (ISML-SS1)

173

TR_ML HY_PSAILS WS_ICT
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
ed

ia
n

R
el

at
iv

e
E

rr
or

40 Pctile
Median
60 Pctile

TR_ML HY_PSAILS WS_ICT
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
ed

ia
n

A
dj

. R
el

at
iv

e
E

rr
or

40 Pctile
Median
60 Pctile

Fig. 62. Median Relative error andR2 statistic for memory prediction using the best mem-

ory model on trials comprising of unseen matrices and solverconfigurations for

Trilinos ML, Hypre ParaSails, and WSMP ICT.

174

TR_ML HY_PSAILS WS_ICT
0

0.5

1

1.5

2

2.5

M
ed

ia
n

R
el

at
iv

e
E

rr
or

40 Pctile
Median
60 Pctile

TR_ML HY_PSAILS WS_ICT
0

0.2

0.4

0.6

0.8

1

M
ed

ia
n

A
dj

. R
el

at
iv

e
E

rr
or

40 Pctile
Median
60 Pctile

Fig. 63. Mean Relative error andR2 statistic for time prediction using the best memory

model on trials comprising of unseen matrices and solver configurations for Trilinos

ML, Hypre ParaSails, and WSMP ICT.

175

Table XXIV. Top 20 interaction features selected for memoryprediction in the case of Trili-

nos ML. The components of the interaction features are separated with a “:”

and the solver features are prefixed with a “IS”.
Feature Name Correlation Sign p-Value
AVGBANDWIDTH:IS ML-IFPACK 6.255588e-01 1 1.199299e-10
AVGBANDWIDTH:IS ML-SS1 6.255588e-01 1 1.199299e-10
MAXBANDWIDTH:IS ML-IFPACK 6.192284e-01 1 2.078400e-10
MAXBANDWIDTH:IS ML-SS1 6.192284e-01 1 2.078400e-10
NUMCOLS:IS ML-IFPACK 5.954608e-01 1 1.473868e-09
NUMCOLS:IS ML-SS1 5.954608e-01 1 1.473868e-09
NUMNONZEROS:ISML-IFPACK 5.919616e-01 1 1.940491e-09
NUMNONZEROS:ISML-SS1 5.919616e-01 1 1.940491e-09
IS ML-SS1 5.617411e-01 1 1.831855e-08
IS ML-IFPACK:IS ML-SS1 5.617411e-01 1 1.831855e-08
IS ML-IFPACK 5.617411e-01 1 1.831855e-08
GEOMDIMAVGBANDWIDTH:IS ML-SS1 5.442973e-01 1 6.063428e-08
GEOMDIMAVGBANDWIDTH:IS ML-IFPACK 5.442973e-01 1 6.063428e-08
GEOMDIMMAXBANDWIDTH:IS ML-SS1 5.104237e-01 1 5.150522e-07
GEOMDIMMAXBANDWIDTH:IS ML-IFPACK 5.104237e-01 1 5.150522e-07
AVGNNZPERROW:ISML-IFPACK 4.949126e-01 1 1.273039e-06
AVGNNZPERROW:ISML-SS1 4.949126e-01 1 1.273039e-06
ISORDERING-RCM:ISML-SS1 4.648037e-01 1 6.528074e-06
IS ML-SA:IS ML-SGS 3.906632e-01 -1 2.001932e-04
IS ML-SGS 3.906632e-01 -1 2.001932e-04

since only the IFPACK smoother uses a smoother sweep of 1 in our experiments. In Chap-

ter III, we observe that the use of IFPACK smoother results invery high memory usage

especially in the case of ML-DD and ML-DD-ML default set of parameters. These observa-

tions are evident in Table XXIV in the form of high occurrenceof features ISML-IFPACK

and ISML-SS1. Also another important observation is that the use of smoothed aggrega-

tion with symmetric Gauss-Seidel smoother (ISML-SA:IS ML-SGS) results in best mem-

ory usage. This is also captured by our model in the form of a high negative correlation for

those features. Other linear system features that seem to affect the memory performance

include the average and maximum bandwidth in addition to some other obvious features

such as number of columns and number of non-zeros. In Table XXV, the linear system

features and their interactions with each other are the dominant features for Hypre Para-

Sails. An interesting observation in the case of Hypre ParaSails is that matrices with high

values for the product of standard deviation of diagonal elements and standard deviation

of row sums are likely to have less memory usage. Even in the case of WSMP ICT in Ta-

176

ble XXVI, we observe that the linear system features dominate the top interaction features

with respect to memory. The only solver specific feature thatis prominent is the use of the

lowest drop tolerance value of3×10−4 (IS DT3eE-4), which is as expected and confirmed

by the observations for WSMP ICT in Chapter III.

Table XXV. Top 20 interaction features selected for memory prediction in the case of Hypre

ParaSails. The components of the interaction features are separated with a “:”

and the solver features are prefixed with a “IS”.
Feature Name Correlation Sign p-Value
NUMCOLS:NUMNONZEROS 7.481570e-01 1 2.365968e-17
NUMNONZEROS 7.276030e-01 1 4.558446e-16
NUMCOLS 6.301348e-01 1 2.842705e-11
NUMNONZEROS:AVGBANDWIDTH 6.273709e-01 1 3.676034e-11
NUMCOLS:GEOMDIMAVGBANDWIDTH 6.006792e-01 1 3.883344e-10
AVGBANDWIDTH:GEOMDIMAVGBANDWIDTH 5.724516e-01 1 3.750409e-09
NUMCOLS:AVGBANDWIDTH 5.621981e-01 1 8.115016e-09
NUMNONZEROS:MAXBANDWIDTH 5.422520e-01 1 3.386493e-08
NUMCOLS:GEOMDIMMAXBANDWIDTH 5.384312e-01 1 4.406081e-08
AVGBANDWIDTH:GEOMDIMMAXBANDWIDTH 5.268219e-01 1 9.611605e-08
NUMNONZEROS:GEOMDIMAVGBANDWIDTH 5.090499e-01 1 3.002244e-07
PERCENTAGEWEAKDIAGDOMROWS:STDROWSUM 4.941968e-01 1 7.410533e-07
NUMCOLS:MAXBANDWIDTH 4.910021e-01 1 8.950696e-07
MAXBANDWIDTH:GEOMDIMAVGBANDWIDTH 4.844044e-01 1 1.314067e-06
MAXBANDWIDTH:GEOMDIMMAXBANDWIDTH 4.284834e-01 1 2.517528e-05
PERCENTAGEWEAKDIAGDOMROWS:AVGDIAGDOM 4.187313e-01 1 4.002935e-05
AVGNNZPERROW:AVGBANDWIDTH 4.029771e-01 1 8.220672e-05
NUMNONZEROS:GEOMDIMMAXBANDWIDTH 3.966251e-01 1 1.087846e-04
STDROWSUM:STDDIAG 3.943092e-01 -1 1.203141e-04
AVGBANDWIDTH:IS SAI-FLT0 3.461256e-01 1 8.327912e-04

Time Taken. Tables XXVII– XXIX show the top 20 features for time prediction

for Trilinos ML, Hypre ParaSails, and WSMP ICT respectively. Unlike the top memory

features for Trilinos ML, the top 20 features for time predictions includes primarily the

linear system interaction features as shown in Table XXVII.

However, in the case of Hypre ParaSails in Table XXVIII, we dosee a number of

solver parameters in the top 20 interaction features. Most notable of these are the threshold

parameter (ISSAI-TH-0.75) and the filter parameter (ISFlt-0.9). The interesting observa-

tion here is that the values chosen for these parameters are negative (Chapter II). The use of

negative values results in much sparser less effective preconditioners which probably took

a lot more iterations and resulted in longer solve times. ForWSMP ICT, in Table XXIX,

177

Table XXVI. Top 20 interaction features selected for memoryprediction in the case of

WSMP ICT. The components of the interaction features are separated with

a “:” and the solver features are prefixed with a “IS”.
Feature Name Correlation Sign p-Value
NUMNONZEROS 5.614960e-01 1 1.125756e-20
NUMCOLS:NUMNONZEROS 5.285367e-01 1 4.276189e-18
PERCENTAGEWEAKDIAGDOMROWS:STDROWSUM 4.965937e-01 1 7.527504e-16
NUMCOLS:GEOMDIMAVGBANDWIDTH 4.683495e-01 1 4.742490e-14
AVGDIAGDOM:STDROWSUM 4.444692e-01 1 1.184003e-12
NUMNONZEROS:GEOMDIMAVGBANDWIDTH 4.290071e-01 1 8.349970e-12
NUMCOLS 4.007930e-01 1 2.305390e-10
NUMCOLS:GEOMDIMMAXBANDWIDTH 3.792790e-01 1 2.367121e-09
NUMCOLS:AVGNNZPERROW 3.320913e-01 1 2.234824e-07
AVGBANDWIDTH:GEOMDIMAVGBANDWIDTH 3.220396e-01 1 5.362933e-07
NUMNONZEROS:AVGBANDWIDTH 3.103979e-01 1 1.421728e-06
NUMNONZEROS:GEOMDIMMAXBANDWIDTH 3.019918e-01 1 2.802362e-06
NUMCOLS:AVGBANDWIDTH 2.691424e-01 1 3.263911e-05
GEOMDIMAVGBANDWIDTH:IS DT3E-4 2.672155e-01 1 3.734027e-05
AVGBANDWIDTH:GEOMDIMMAXBANDWIDTH 2.632559e-01 1 4.907649e-05
AVGNNZPERROW:AVGBANDWIDTH 2.609636e-01 1 5.737680e-05
NUMNONZEROS:AVGNNZPERROW 2.561553e-01 1 7.926385e-05
PERCENTAGEWEAKDIAGDOMROWS:AVGDIAGDOM 2.559759e-01 1 8.021554e-05
NUMNONZEROS:ISDT3E-4 2.477447e-01 1 1.374222e-04
STDROWSUM:SUPNODESIZE 2.475719e-01 -1 1.389571e-04

we observe that the time model is predominantly affected by linear system features more

than the solver-specific features.

178

Table XXVII. Top 20 interaction features selected for time prediction in the case of Trilinos

ML. The components of the interaction features are separated with a “:” and

the solver features are prefixed with a “IS”.
Feature Name Correlation Sign p-Value
NUMNONZEROS 5.786686e-01 1 5.148768e-24
NUMCOLS:NUMNONZEROS 4.728667e-01 1 1.685356e-15
NUMNONZEROS:GEOMDIMAVGBANDWIDTH 4.514101e-01 1 4.177258e-14
NUMCOLS:GEOMDIMAVGBANDWIDTH 4.431370e-01 1 1.357957e-13
AVGBANDWIDTH:GEOMDIMAVGBANDWIDTH 4.027647e-01 1 2.760662e-11
NUMCOLS:GEOMDIMMAXBANDWIDTH 3.926788e-01 1 9.353786e-11
NUMNONZEROS:GEOMDIMMAXBANDWIDTH 3.765591e-01 1 6.047343e-10
AVGBANDWIDTH:GEOMDIMMAXBANDWIDTH 3.661556e-01 1 1.912658e-09
PERCENTAGEWEAKDIAGDOMROWS:STDROWSUM 3.561514e-01 1 5.571392e-09
MAXBANDWIDTH:GEOMDIMAVGBANDWIDTH 3.537509e-01 1 7.161582e-09
STDROWSUM:STDDIAG 3.467770e-01 -1 1.467839e-08
AVGNNZPERROW:GEOMDIMAVGBANDWIDTH 3.332355e-01 1 5.629584e-08
NUMNONZEROS:AVGBANDWIDTH 3.330439e-01 1 5.735056e-08
MAXBANDWIDTH:GEOMDIMMAXBANDWIDTH 3.161632e-01 1 2.801437e-07
NUMNONZEROS:MAXBANDWIDTH 3.023165e-01 1 9.585510e-07
AVGNNZPERROW:GEOMDIMMAXBANDWIDTH 2.802685e-01 1 5.984878e-06
NUMCOLS:AVGBANDWIDTH 2.508332e-01 1 5.467695e-05
GEOMDIMAVGBANDWIDTH:GEOMDIMMAXBANDWIDTH 2.416269e-01 1 1.036201e-04
STDROWSUM:SUPNODESIZE 2.229059e-01 -1 3.528651e-04
STDAVGNNZPERROW:STDROWSUM 2.226271e-01 -1 3.590962e-04

Table XXVIII. Top 20 interaction features selected for timeprediction in the case of Hypre

ParaSails. The components of the interaction features are separated with a

“:” and the solver features are prefixed with a “IS”.
Feature Name Correlation Sign p-Value
STDAVGNNZPERROW:ISSAI-TH-0.75 5.009327e-01 1 9.883243e-18
AVGNNZPERROW:ISSAI-TH-0.75 4.273959e-01 1 7.780590e-13
NUMNONZEROS 3.961742e-01 1 4.342587e-11
GEOMDIMMAXBANDWIDTH:IS SAI-TH-0.75 3.758721e-01 1 4.781476e-10
STDAVGNNZPERROW:ISSAI-FLT-0.9 3.751373e-01 1 5.199250e-10
AVGNNZPERROW:AVGBANDWIDTH 3.593030e-01 1 3.006691e-09
GEOMDIMAVGBANDWIDTH:IS SAI-TH-0.75 3.561506e-01 1 4.216207e-09
ISSAI-LEV2:IS SAI-TH-0.75 3.468293e-01 1 1.121486e-08
AVGNNZPERROW:MAXBANDWIDTH 3.413456e-01 1 1.964918e-08
NUMNONZEROS:GEOMDIMAVGBANDWIDTH 3.412530e-01 1 1.983411e-08
NUMCOLS:AVGNNZPERROW 3.223788e-01 1 1.259138e-07
NUMNONZEROS:ISSAI-TH-0.75 3.222282e-01 1 1.277209e-07
AVGBANDWIDTH:IS SAI-TH-0.75 3.222271e-01 1 1.277340e-07
MAXBANDWIDTH:IS SAI-TH-0.75 3.212582e-01 1 1.399716e-07
NUMNONZEROS:GEOMDIMMAXBANDWIDTH 3.211771e-01 1 1.410447e-07
NUMCOLS:GEOMDIMMAXBANDWIDTH 3.136813e-01 1 2.831180e-07
AVGNNZPERROW:ISSAI-FLT-0.9 3.114605e-01 1 3.467714e-07
STDAVGNNZPERROW:ISSAI-LEV2 3.049816e-01 1 6.207253e-07
NUMNONZEROS:AVGNNZPERROW 3.003735e-01 1 9.312764e-07
NUMCOLS:GEOMDIMAVGBANDWIDTH 2.988053e-01 1 1.067449e-06

179

Table XXIX. Top 20 interaction features selected for time prediction in the case of WSMP

ICT. The components of the interaction features are separated with a “:” and

the solver features are prefixed with a “IS”.
Feature Name Correlation Sign p-Value
NUMNONZEROS 5.999327e-01 1 9.233014e-29
NUMCOLS:NUMNONZEROS 5.694695e-01 1 1.807497e-25
NUMCOLS:GEOMDIMAVGBANDWIDTH 5.593037e-01 1 1.911092e-24
NUMNONZEROS:GEOMDIMAVGBANDWIDTH 5.061484e-01 1 1.271693e-19
AVGDIAGDOM:STDROWSUM 4.902143e-01 1 2.470716e-18
NUMCOLS:GEOMDIMMAXBANDWIDTH 4.760276e-01 1 3.053193e-17
NUMCOLS 4.194657e-01 1 2.329602e-13
AVGBANDWIDTH:GEOMDIMAVGBANDWIDTH 4.034504e-01 1 2.194610e-12
NUMNONZEROS:GEOMDIMMAXBANDWIDTH 3.906249e-01 1 1.215357e-11
NUMCOLS:AVGNNZPERROW 3.668004e-01 1 2.414296e-10
GEOMDIMAVGBANDWIDTH 3.536717e-01 1 1.132463e-09
AVGBANDWIDTH:GEOMDIMMAXBANDWIDTH 3.452565e-01 1 2.940328e-09
MAXBANDWIDTH:GEOMDIMAVGBANDWIDTH 3.401505e-01 1 5.174868e-09
NUMNONZEROS:AVGBANDWIDTH 3.370599e-01 1 7.250253e-09
GEOMDIMAVGBANDWIDTH:GEOMDIMMAXBANDWIDTH 2.950967e-01 1 4.949988e-07
NUMCOLS:AVGBANDWIDTH 2.940299e-01 1 5.465242e-07
AVGNNZPERROW:AVGBANDWIDTH 2.925470e-01 1 6.267630e-07
NUMCOLS:STDAVGNNZPERROW 2.872416e-01 1 1.016727e-06
AVGDIAGDOM:MAXOVERMINROWSUM 2.840208e-01 1 1.357308e-06
NUMNONZEROS:AVGNNZPERROW 2.825888e-01 1 1.541570e-06

180

4. Top-k Recommendations

We now present results on the top-k recommendations for the matrices in our collection.

Similar to Section A, we rank the solver configurations basedon memory usage, compu-

tational time, and memory-time product and measure the quality of the recommendations

in terms of top-k precision and average quality value of the top-k recommendations. For

measuring the average quality of the recommendations, we normalize the performance val-

ues by the problem-independent best (PIB) choice values, asdefined in Chapter III. Note

that for the performance data involving train matrices, thevalues are averaged over the

contributing matrices for each value ofk over 5 crossfold splits whereas the standard de-

viations are for the matrix averaged values over the crossfold splits alone. However, for

individual plots involving unseen matrices, we report the actual values for each matrix. We

compare the quality of the recommendations by comparing it with the PIB choice as well

as the actual top-k performance values, or in other words, the problem-specificbest choice

(PSB). An important point to remember is that the PIB choice is a solver configuration

optimized over the entire training performance data. Therefore, expecting the recommen-

dations to always improve on the performance of the PIB configuration is not reasonable,

especially in case of unseen matrices where the problem specific best performance is very

close to the PIB performance.

a. Results on New Trials Over Train Matrices

We now present results on the top-k precision and the average quality of recommendations

for solver group specific models for Trilinos ML, Hypre ParaSails, and WSMP ICT.

Trilinos ML. Figure 64 shows the top-10 precision of the solver recommendations

for memory, time, and memory-time product for Trilinos ML solver configurations. Our

approach identifies around 50% of the actual best configurations for memory and around

181

45% of the best configurations with respect to time. With respect to memory time product,

however, the precision falls to 25%. Figure 65 shows the performance improvement that

can be obtained using the generated recommendations over the PIB choice (dotted line). In

case of memory, the PIB and PSB curves are fairly close and therecommendations almost

follow the PIB curve. However, in the case of time, we observethat the recommended

fine-tuning curve is always lower than the PIB choice and quite close to the PSB curve.

The recommendations for memory-time product are not as goodas the time ones since it

seems to be dominated by the memory model.

Hypre ParaSails. Figure 66 shows the top-10 precision of Hypre ParaSails solver

recommendations for memory, time, and memory-time product. We are able to identify

70% of the actual best configurations for memory-time product, around 65% of the best

configurations for time, and around 55 % for memory. Figure 67shows the average quality

of the top-k recommendations over the PIB choice (dotted line). In case of all the three

metrics, we observe that the recommender fine-tuning curve is always lower than the PIB

choice and comparable to the PSB curve indicating that the model can provide high quality

recommendations for the train matrices.

WSMP ICT. The top-10 precision of Hypre ParaSails solver recommendations for

memory, time, and memory-time product is shown in Figure 68.With respect to memory

and memory-time product, we are able to identify almost 75% of the actual best configura-

tions. Figure 69 shows the comparison of the average qualityof the top-k recommendations

with that of the PIB and PSB choices. In case of all the three metrics, we observe that the

recommendations perform better than the PIB choice and are again very close to the ideal

PSB values.

182

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Recommendations (K)

F
ra

ct
io

n
of

 T
ru

e
T

op
−

K
 R

ec
om

m
en

da
tio

ns

Memory
Time
Product

Fig. 64. Fraction of the true best choices for memory, time, and memory-time product that

is present in top-k recommendations for Trilinos ML (66 configurations) for the

seen matrices. The precision values shown are averaged overthe solved problems

over 5 runs.

183

0 2 4 6 8 10 12

0.9

0.95

1

1.05

1.1

Memory

0 2 4 6 8 10 12
0.4

0.6

0.8

1

Time

0 2 4 6 8 10 12

0.8

1

1.2

1.4

Memory−Time Product

Number of Recommendations

PIB
PSB
REC

A
ve

ra
ge

 N
or

m
. T

op
−

K
 P

er
fo

rm
an

ce

Fig. 65. Average performance with respect to memory, time and memory-time product for

the recommended (REC) and problem specific best (PSB) Trilinos ML configura-

tions normalized by the corresponding problem independentbest (PIB) values for

the seen matrices. For eachk, the performance values are averaged over the solved

problems for 5 runs.

184

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Recommendations (K)

F
ra

ct
io

n
of

 T
ru

e
T

op
−

K
 R

ec
om

m
en

da
tio

ns

Memory
Time
Product

Fig. 66. Fraction of the true best choices for memory, time, and memory-time product that

is present in top-k recommendations for Hypre ParaSails (99 configurations) for the

seen matrices. The precision values shown are averaged overthe solved problems

for 5 runs.

185

0 2 4 6 8 10 12
0.4

0.6

0.8

1

Memory

0 2 4 6 8 10 12

0.6

0.8

1

Time

0 2 4 6 8 10 12
0.6

0.8

1

Memory−Time Product

Number of Recommendations

PIB
PSB
REC

A
ve

ra
ge

 N
or

m
. T

op
−

K
 P

er
fo

rm
an

ce

Fig. 67. Average performance with respect to memory, time and memory-time product for

the recommended (REC) and problem specific best (PSB) Hypre ParaSails config-

urations normalized by the corresponding problem independent best (PIB) values

for the seen matrices. For eachk, the performance values are averaged over the

solved problems for 5 runs.

186

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Recommendations (K)

F
ra

ct
io

n
of

 T
ru

e
T

op
−

K
 R

ec
om

m
en

da
tio

ns

Memory
Time
Product

Fig. 68. Fraction of the true best choices for memory, time, and memory-time product that

is present in top-k recommendations for WSMP ICT (64 configurations) for the

seen matrices. The precision values shown are averaged overthe solved problems

for 5 runs.

187

0 2 4 6 8 10 12

0.6

0.8

1

Memory

0 2 4 6 8 10 12

0.6

0.8

1

Time

0 2 4 6 8 10 12

0.6

0.8

1

Memory−Time Product

Number of Recommendations

PIB
PSB
REC

A
ve

ra
ge

 N
or

m
. T

op
−

K
 P

er
fo

rm
an

ce

Fig. 69. Average performance with respect to memory, time and memory-time product for

the recommended (REC) and problem specific best (PSB) WSMP ICT configura-

tions normalized by the corresponding problem independentbest (PIB) values for

the seen matrices. For eachk, the performance values are averaged over the solved

problems for 5 runs.

188

b. Results on Unseen Test Matrices

Trilinos ML. Figure 70 shows the average top-k precision values for the unseen matrices.

The average top-k precisions of recommendations are only slightly lower thanthose in the

case of seen matrices in Figure 64 though the standard deviations are quite high due to

the small sample. Individual top-k precisions for four sample matrices (audikw1, ldoor,

mstamp-2c, 90153) are shown in Figure 71. With the exception ofldoor, the performance

models are able to predict a reasonable fraction of the top 10actual best configurations

with respect to memory, time, and memory-time product. The average quality of the rec-

ommendations is shown in Figure 72 and the individual recommendation quality plots for

four sample matrices are shown in Figure 73. The average recommendations for time and

memory lie between the PIB and PSB curves though there is a significant variation among

the matrices. However, the individual plots in Figure 73 indicate that a decent fraction of

the recommendations are comparable to the PIB and PSB values.

Hypre ParaSails. The average top-k precision and individual top-k plots for unseen

matrices are shown in Figures 74 and 75 respectively. With the exception of memory, the

average precision is low relative to Trilinos-ML, but significantly better than a random

ranking since there are 99 configurations to choose from. Thecorresponding average rec-

ommendation quality and individual plots are shown in Figures 76 and 77 respectively.

Even though the top-k precision values are low, the actual performance values are still bet-

ter than the PIB choice and are close to the problem specific best values. The plot for

audikw1 in Figure 76 is an example of a case where the PIB solver configuration could

not solve it. The recommendations for all the three metrics are able to capture the problem

specific best choices in the very first few recommendations.

WSMP ICT. Figures 78 and 79 show the average and individual top-k precision

plots for WSMP ICT. All the matrices have reasonable precision with respect to memory

189

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Recommendations(K)

F
ra

ct
io

n
of

 T
ru

e
T

op
−

K
 R

ec
om

m
en

da
tio

ns

Memory
Time
Product

Fig. 70. Fraction of the true best choices for memory, time, and memory-time product that

is present in top-k recommendations for Trilinos ML (66 configurations) in the case

of unseen matrices. The precision values are averaged over the solved problems.

190

0 2 4 6 8 10
0

1

2

3

4

5

6

7

#Recommendations(K)

audikw_1

0 2 4 6 8 10
0

1

2

3

4

#Recommendations(K)

ldoor

0 2 4 6 8 10
0

2

4

6

8

#Recommendations(K)

mstamp−2c

0 2 4 6 8 10
0

2

4

6

8

#Recommendations(K)

90153

Memory
Time
Product

#T
ru

e
T

op
−

K
 R

ec
om

m
en

da
tio

n

Fig. 71. The number of true best choices for memory, time, andmemory-time product that

is present in top-k recommendations for Trilinos ML (66 configurations) in the case

of audikw1, ldoor, mstamp-2c, and90153matrices.

191

0 2 4 6 8 10 12

0.9

1

1.1
Memory

0 2 4 6 8 10 12

0.4

0.6

0.8

1

Time

0 2 4 6 8 10 12

1

1.5

2

2.5
Memory−Time Product

Number of Recommendations

PIB
PSB
REC

A
ve

ra
ge

 N
or

m
. T

op
−

K
 P

er
fo

rm
an

ce

Fig. 72. Average performance with respect to memory, time and memory-time product for

recommended (REC) and problem specific best (PSB) Trilinos ML configurations

normalized by the corresponding problem independent best (PIB) values for the

unseen matrices. For eachk, the performance values are averaged over the solved

problems.

192

1 2 3 4 5 6 7 8 9 10
7.5

8

8.5

9
x 10

8 Memory

1 2 3 4 5 6 7 8 9 10
5500

6000

6500

7000
Time

1 2 3 4 5 6 7 8 9 10
4.5

5

5.5

6
x 10

12 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

(a) Matrixaudikw1

1 2 3 4 5 6 7 8 9 10
4.6

4.65

4.7

4.75

4.8
x 10

8 Memory

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000
Time

1 2 3 4 5 6 7 8 9 10
1.3

1.4

1.5

1.6
x 10

12 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

(b) Matrix ldoor

1 2 3 4 5 6 7 8 9 10
6.9

6.95

7

7.05

7.1
x 10

8 Memory

1 2 3 4 5 6 7 8 9 10
500

550

600

650

700
Time

1 2 3 4 5 6 7 8 9 10
3

4

5

6
x 10

11 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

(c) Matrix mstamp-2c

1 2 3 4 5 6 7 8 9 10
5.35

5.4

5.45

5.5
x 10

7 Memory

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400
Time

1 2 3 4 5 6 7 8 9 10
1.9

2

2.1

2.2

2.3
x 10

10 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

(d) Matrix 90153

Fig. 73. Performance with respect to memory, time and memory-time product for thekth

recommended (REC) and problem specific best (PSB) Trilinos ML configurations

for audikw1, ldoor, mstamp-2c, and90153matrices. Where applicable, the prob-

lem independent best (PIB) performance values are also plotted.

193

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Recommendations(K)

F
ra

ct
io

n
of

 T
ru

e
T

op
−

K
 R

ec
om

m
en

da
tio

ns

Memory
Time
Product

Fig. 74. Fraction of the true best choices for memory, time, and memory-time product that

is present in top-k recommendations for Hypre ParaSails (99 configurations) inthe

case of unseen matrices. The precision values shown are averaged over the solved

problems.

194

0 2 4 6 8
0

1

2

3

4

5

6

7

#Recommendations(K)

audikw_1

0 2 4 6 8 10
0

1

2

3

4

#Recommendations(K)

ldoor

0 2 4 6 8 10
0

2

4

6

8

#Recommendations(K)

mstamp−2c

0 2 4 6 8 10
0

0.5

1

1.5

2

#Recommendations(K)

90153

Memory
Time
Product

#T
ru

e
T

op
−

K
 R

ec
om

m
en

da
tio

n

Fig. 75. The number of true best choices for memory, time, andmemory-time product that

is present in top-k recommendations for Hypre ParaSails (99 configurations) inthe

case ofaudikw1, ldoor, mstamp-2c, and90153matrices.

195

0 2 4 6 8 10 12

0.8

1

1.2

Memory

0 2 4 6 8 10 12

0.5

1

1.5

Time

0 2 4 6 8 10 12
0.2

0.4

0.6

0.8

1

Memory−Time Product

Number of Recommendations

PIB
PSB
REC

A
ve

ra
ge

 N
or

m
. T

op
−

K
 P

er
fo

rm
an

ce

Fig. 76. Average performance with respect to memory, time and memory-time product for

recommended (REC) and problem specific best (PSB) Hypre ParaSails configura-

tions normalized by the corresponding problem independentbest (PIB) values for

the unseen matrices. For eachk, the performance values are averaged using the

solved problems.

196

1 2 3 4 5 6 7
1

2

3

4
x 10

9 Memory

1 2 3 4 5 6 7
4000

6000

8000

10000

12000
Time

1 2 3 4 5 6 7
1

1.5

2
x 10

13 Memory−Time Product

Number of Recommendations(K)

PSB
REC

T
op

−
K

 P
er

fo
rm

an
ce

(a) Matrixaudikw1

1 2 3 4 5 6 7 8 9 10
5

6

7

8
x 10

8 Memory

1 2 3 4 5 6 7 8 9 10
0

200

400

600
Time

1 2 3 4 5 6 7 8 9 10
0

2

4

6
x 10

11 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

(b) Matrix ldoor

1 2 3 4 5 6 7 8 9 10
6

8

10

12
x 10

8 Memory

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400
Time

1 2 3 4 5 6 7 8 9 10
0

1

2

3
x 10

11 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

(c) Matrix mstamp-2c

1 2 3 4 5 6 7 8 9 10
7

8

9

10
x 10

7 Memory

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80
Time

1 2 3 4 5 6 7 8 9 10
1.5

2

2.5

3
x 10

9 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

(d) Matrix 90153

Fig. 77. Performance with respect to memory, time and memory-time product for thekth

recommended (REC) and problem specific best (PSB) Hypre ParaSails configura-

tions foraudikw1, ldoor, mstamp-2c, and90153matrices. Where applicable, the

problem independent best (PIB) performance values are alsoplotted.

197

and time. The average quality of recommendations in Figure 80 indicates that the recom-

mendations are slightly better than the PIB values. However, some of the representative

individual plots in Figure 81 indicate that the recommendations are different for the var-

ious matrices based on the metrics. For example, in the case of mstamp-2c, the first few

memory, time, and memory time product recommendations are pretty close to the problem

specific configurations. There are few cases where there is a non trivial gap between the

first few recommended configurations and PSB values, however, the recommended config-

uration curve does intersect the PIB and PSB curves at multiple instances.

5. Discussion

A general trend that is observed in all these results is that it is possible to obtain reason-

ably good recommendations with respect to core performancemetrics as well as hybrid

combinations such as memory-time product. These recommendations are even more in-

valuable in scenarios where the problem independent best configuration is not able to solve

a problem or if there are numerous solver configurations to choose from. Even though

the predicted values for performance obtained for unseen matrices are not highly accurate,

the recommendations based on ordering these predicted values are fairly competitive and

most often have a significant overlap with the problem specific best values. These results

are encouraging since there are very few feasible trials to accurately capture the matrix

effects. The decrease in prediction quality of the solvability and performance models with

respect to unseen matrices indicates that there is potential for improvement in our modeling

procedure, especially with respect to capturing matrix-specific effects by including more

informative matrix characteristics.

198

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Recommendations(K)

F
ra

ct
io

n
of

 T
ru

e
T

op
−

K
 R

ec
om

m
en

da
tio

ns

Memory
Time
Product

Fig. 78. Fraction of the true best choices for memory, time, and memory-time product that

is present in top-k recommendations for WSMP ICT (64 configurations) in the

case of unseen matrices. The precision values shown are averaged over the solved

problems.

199

0 2 4 6 8 10
0

2

4

6

8

10

#Recommendations(K)

audikw_1

0 2 4 6 8 10
0

1

2

3

4

5

6

7

#Recommendations(K)

ldoor

0 2 4 6 8 10
0

1

2

3

4

5

6

7

#Recommendations(K)

mstamp−2c

0 2 4 6 8 10
0

2

4

6

8

#Recommendations(K)

90153

Memory
Time
Product

#T
ru

e
T

op
−

K
 R

ec
om

m
en

da
tio

n

Fig. 79. The number of true best choices for memory, time, andmemory-time product that

is present in top-k recommendations for WSMP ICT (64 configurations) in the case

of audikw1, ldoor, mstamp-2c, and90153matrices.

200

0 2 4 6 8 10 12
0.6

0.8

1

1.2

Memory

0 2 4 6 8 10 12
0.6

0.8

1

1.2

1.4

1.6

Time

0 2 4 6 8 10 12
0.5

1

1.5

Memory−Time Product

Number of Recommendations

PIB
PSB
REC

A
ve

ra
ge

 N
or

m
. T

op
−

K
 P

er
fo

rm
an

ce

Fig. 80. Average performance with respect to memory, time and memory-time product for

recommended (REC) and problem specific best (PSB) WSMP ICT configurations

normalized by the corresponding problem independent best (PIB) values for the

unseen matrices. For eachk, the performance values are averaged over the solved

problems.

201

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5
x 10

9 Memory

1 2 3 4 5 6 7 8 9 10
300

400

500

600
Time

1 2 3 4 5 6 7 8 9 10
3

4

5

6
x 10

11 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

(a) Matrixaudikw1

1 2 3 4 5 6 7 8 9 10
5

6

7

8
x 10

8 Memory

1 2 3 4 5 6 7 8 9 10
40

60

80

100

120
Time

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2
x 10

11 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

(b) Matrix ldoor

1 2 3 4 5 6 7 8 9 10
6

8

10

12
x 10

8 Memory

1 2 3 4 5 6 7 8 9 10
100

200

300

400
Time

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2
x 10

11 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

(c) Matrix mstamp-2c

1 2 3 4 5 6 7 8 9 10
5

6

7

8

9
x 10

7 Memory

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10
Time

1 2 3 4 5 6 7 8 9 10
0

5

10

15
x 10

8 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

(d) Matrix 90153

Fig. 81. Performance with respect to memory, time and memory-time product for thekth

recommended (REC) and problem specific best (PSB) WSMP ICT configurations

for audikw1, ldoor, mstamp-2c, and90153matrices. Where applicable the prob-

lem independent best (PIB) performance values are also plotted.

202

C. Case Study: Sheet Metal Forming

The results for unseen matrices in Sections B.2 and B.3 highlighted the some of the draw-

backs of the learned models in providing accurate predictions with respect to memory and

time performance. This was predominantly due to the unseen matrices being vastly dif-

ferent from that of the train matrices. However, if an application requires the solution of

a number of matrices, that are very similar, then the learnedmodels could be used for

obtaining good performance even on unseen matrices. In order to demonstrate the utility

of the recommendation system, we collected performance data on 6 SPD matrices from

the UFL collection1. All the matrices vary only slightly with respect to structural and

numerical properties and are obtained from the applicationdomain of sheet metal form-

ing. The solvability and performance models were learned using three matrices (af 0 k101,

af 2 k101, af4 k101) and tested on the remaining three (af 1 k101, af3 k101, af5 k101).

In this section, we present the results on solvability prediction, performance prediction, and

effectiveness of the top-k recommendations for Trilinos ML and WSMP ICT solver con-

figurations. None of the Hypre ParaSails could solve the problems to the required accuracy

in 1000 iterations and are therefore, omitted in this set of experiments.

Figure 82 shows the accuracy, precision, and recall for solvability prediction on the

unseen matrices. In the case of WSMP ICT we are able to obtain 100 % accuracy which

is much better than the baseline. However, in the case of Trilinos ML the solvability pre-

diction accuracy is slightly lower than the baseline. Figures 83 and 84 show the median

relative error andR2 statistic with respect to memory and time prediction respectively.

We are able to predict the exact memory and time usage with very high accuracy (median

relative error< 17%) for unseen matrices.

Figures 87 – 92 show the overlap of the top 10 recommendationswith the true top

1http://www.cise.ufl.edu/research/sparse/matrices/Schenk AFE/index.html.

203

TR_ML WS_ICT
0

0.5

1

A
cc

ur
ac

y

Predicted
Baseline

TR_ML WS_ICT
0

0.5

1

P
re

ci
si

on

TR_ML WS_ICT
0

0.5

1
R

ec
al

l

Fig. 82. Classification accuracy, precision, and recall forsolvability prediction using the

best solvability model on trials comprising of domain specific unseen matrices and

solver configurations for Trilinos ML and WSMP ICT.

10 for the three unseen matrices in the case of Trilinos ML andWSMP ICT. In the case of

Trilinos ML we observe that the overlap of the top 10 recommendations with that of the

true top 10 recommendations is lower than in the case of WSMP ICT expecially in the case

of memory. The corresponding performance benefits relativeto the PIB and PSB choices

are shown in the figures. In the case of Trilinos ML, the recommendations are very close

to the PSB values for all the three matrices in the case of timeand memory-time product.

Even though the overlap of the top recommendations with respect to memory are low, the

actual values do not vary much from PIB and PSB choices and thebest choice is included

in the top 4 recommendations. In the case of WSMP ICT, there are only slight variations

in memory and memory time product values between the PIB and PSB choices. However,

in the case of time, there is a significant difference in the PIB and PSB performance and

the recommendations match the PSB values closely for a largefraction of the top 10 rec-

ommendations. These observations suggest that our recommendation approach is highly

effective in specialized domains if there is sufficient training data to capture the general

behavior of the various matrices.

204

TR_ML WS_ICT
0

0.05

0.1

0.15

M
ed

ia
n

R
el

at
iv

e
E

rr
or

TR_ML WS_ICT
0

0.2

0.4

0.6

0.8

R
2 −

S
ta

tis
tic

Fig. 83. Median relative error andR2 statistic for memory prediction using the best memory

model on trials comprising of domain specific unseen matrices and solver configu-

rations for Trilinos ML and WSMP ICT.

205

TR_ML WS_ICT
0

0.05

0.1

0.15

0.2

M
ed

ia
n

R
el

at
iv

e
E

rr
or

TR_ML WS_ICT
0

0.2

0.4

0.6

0.8

R
2 −

S
ta

tis
tic

Fig. 84. Mean Relative error andR2 statistic for time prediction using the best time model

on trials comprising of domain specific unseen matrices and solver configurations

for Trilinos ML and WSMP ICT.

206

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

#Recommendations(K)

af_1_k101

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

#Recommendations(K)

af_3_k101

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

#Recommendations(K)

af_5_k101

Memory
Time
Product

#T
ru

e
T

op
−

K
 R

ec
om

m
en

da
tio

n

Fig. 85. The number of true best choices for memory, time, andmemory-time product that

is present in top-k recommendations for Trilinos ML (66 configurations) in the case

of af 1 k101, af 3 k101andaf 5 k101matrices.

207

1 2 3 4 5 6 7 8 9 10
0

5

10

#Recommendations(K)

af_1_k101

1 2 3 4 5 6 7 8 9 10
0

5

10

#Recommendations(K)

af_3_k101

1 2 3 4 5 6 7 8 9 10
0

5

10

#Recommendations(K)

af_5_k101

Memory
Time
Product

#T
ru

e
T

op
−

K
 R

ec
om

m
en

da
tio

n

Fig. 86. The number of true best choices for memory, time, andmemory-time product that

is present in top-k recommendations for WSMP ICT (64 configurations) in the case

of af 1 k101, af 3 k101, andaf 5 k101matrices.

208

1 2 3 4 5 6 7 8 9 10
1.86

1.88

1.9

1.92

1.94
x 10

8 Memory

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000
Time

1 2 3 4 5 6 7 8 9 10
2.6

2.8

3

3.2

3.4
x 10

11 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

Fig. 87. Performance with respect to memory, time and memory-time product for thekth

recommended (REC) and problem specific best (PSB) Trilinos ML configurations

for af 1 k101. Where applicable the problem independent best (PIB) performance

values are also plotted.

209

1 2 3 4 5 6 7 8 9 10
1.86

1.88

1.9

1.92

1.94
x 10

8 Memory

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000
Time

1 2 3 4 5 6 7 8 9 10
2.6

2.8

3

3.2

3.4
x 10

11 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

Fig. 88. Performance with respect to memory, time and memory-time product for thekth

recommended (REC) and problem specific best (PSB) Trilinos ML configurations

for af 3 k101. Where applicable the problem independent best (PIB) performance

values are also plotted.

210

1 2 3 4 5 6 7 8 9 10
1.86

1.88

1.9

1.92

1.94
x 10

8 Memory

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000
Time

1 2 3 4 5 6 7 8 9 10
2.6

2.8

3

3.2

3.4
x 10

11 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

Fig. 89. Performance with respect to memory, time and memory-time product for thekth

recommended (REC) and problem specific best (PSB) Trilinos ML configurations

for af 5 k101. Where applicable the problem independent best (PIB) performance

values are also plotted.

211

1 2 3 4 5 6 7 8 9 10
2

3

4

5
x 10

8 Memory

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200
Time

1 2 3 4 5 6 7 8 9 10
2

4

6

8
x 10

10 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

Fig. 90. Performance with respect to memory, time and memory-time product for thekth

recommended (REC) and problem specific best (PSB) WSMP ICT configurations

for af 1 k101. Where applicable the problem independent best (PIB) performance

values are also plotted.

212

1 2 3 4 5 6 7 8 9 10
2

3

4

5
x 10

8 Memory

1 2 3 4 5 6 7 8 9 10
0

50

100

150
Time

1 2 3 4 5 6 7 8 9 10
3

4

5

6
x 10

10 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

Fig. 91. Performance with respect to memory, time and memory-time product for thekth

recommended (REC) and problem specific best (PSB) WSMP ICT configurations

for af 3 k101. Where applicable the problem independent best (PIB) performance

values are also plotted.

213

1 2 3 4 5 6 7 8 9 10
2

3

4

5
x 10

8 Memory

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200
Time

1 2 3 4 5 6 7 8 9 10
3

4

5

6

7
x 10

10 Memory−Time Product

Number of Recommendations(K)

PSB
REC
PIB

T
op

−
K

 P
er

fo
rm

an
ce

Fig. 92. Performance with respect to memory, time and memory-time product for thekth

recommended (REC) and problem specific best (PSB) WSMP ICT configurations

for af 5 k101. Where applicable the problem independent best (PIB) performance

values are also plotted.

214

CHAPTER VI

CONCLUSION AND FUTURE WORK

Solving complex linear systems lies at the heart of most scientific computing tasks and the

increasing prevalence of large scale simulations with hugelinear systems has made it ex-

tremely critical to develop intelligent strategies for selecting preconditioned iterative solver

configurations. The current dissertation attempts to address this challenge by presenting a

fairly general practitioner-centric framework both for problem-independent retrospective

analysis as well as problem-specific predictive modeling ofperformance data. Empirical

evaluation of the proposed approaches for iterative solverselection clearly demonstrates

the potential benefits to practitioners.

A. Contributions

We now summarize the specific contributions of this dissertation.

Performance evaluation methodology:We introduce a principled methodology for a com-

parative performance evaluation of software options that is motivated by a typical

user decision process. This approach addresses practical user concerns such as soft-

ware failure, representation of software configurations, and parameter fine-tuning by

introducing new relatively simple, but powerful metrics. Notable among these are

the use of area under performance-profile curves to facilitate a credible ranking of

the software options and use of conditional variance measures to identify influen-

tial parameters for sequential fine-tuning. We also outlinehow these metrics can be

employed to (a) determine the “best” default configurationsamong a set of possi-

ble choices, (b) compare groups of software options in the presence and absence of

fine-tuning along multiple performance criteria and (a) refine parameters to achieve

215

the desired performance improvements. Though targeted towards the iterative solver

selection problem, this methodology has much broader scopeand should be readily

applicable to other software selection tasks.

Solver performance analysis infrastructure: To apply our performance evaluation method-

ology for the solver selection problem, we developed software infrastructure tools for

the collection, analysis, and visualization of solver performance data. Given a user

specified set of linear systems, this infrastructure conducts software trials and collects

performance data (time, memory, error norm, etc.) for all combinations generated

from the specified linear systems, a set of hardware configurations (number of CPUs

and memory limits), and sets of values of various solver and preconditioner parame-

ters. This is achieved via a data collection unit composed ofboth serial and parallel

driver programs and associated scripts for some widely usedsolver packages. Subse-

quently, the analysis and reporting unit of the system performs various comparative

and sensitivity analyses within and across pre-specified groups of solver configura-

tions using the collected performance data. We intend to publish this software so

that application scientists can use it to analyze solver performance with respect to

matrices from specific domains that are of interest to them.

Extensive empirical evaluation: We also present performance evaluation of a suite of

preconditioners based on incomplete factorization, sparse approximate inverse, and

algebraic multilevel schemes available in packages such asPETSc, Trilinos, Hypre,

ILUPACK, and WSMP. We compare the robustness, speed, and memory consump-

tion of these preconditioners on a set of benchmark problemsand also identify the

influential parameters for each solver configuration group.For packages that provide

support for parallel execution, we collect and present performance data on multiple

processors. To the best of our knowledge, this study provides the most extensive

216

practitioner-centric empirical evaluation to date of a number of popular and promis-

ing general purpose preconditioners available in black-box solver packages, and can

be highly beneficial to solver package users and developers.

Predictive performance modeling: We propose a novel multi-stage statistical approach

for determining the “best” software option for a given problem with respect to some

desired performance criteria that is based on learning predictive models from empir-

ical performance data. The key novelty of our approach lies in our modular formula-

tion that comprises of three sub problems: (a) solvability modeling, (b) performance

modeling, and (c) performance optimization, which provides the flexibility to effec-

tively target practical challenges such as software failure and multi-objective opti-

mization using suitable classification, regression and rank-aggregation techniques.

To be specific, the solvability model is used to filter out failure-prone configura-

tions before modeling the performance. To accommodate optimization of multiple

criteria, separate models are learned for each of the core performance statistics and

then combined during the optimization step to identify the top choices. Our choice of

instance space consisting of “trials” represented in termsof characteristics of the cor-

responding “problem”, “software configuration” and their interactions, which allows

us to directly model solvability and performance as response functions associated

with trials, is also a distinguishing feature of our approach relative to existing work

that contributes to an elegant formulation, and in fact, better predictions. Further, for

the case where the performance models are based on generalized linear regression,

we also propose a fast and efficient methodology for identifying the top-k solver

choices with respect to various performance criteria (including hybrid combinations)

using monotonic rank aggregation techniques over the software configuration feature

space.

217

Iterative solver recommendation system:Lastly, we developed a prototype implementa-

tion of a modular self-learning recommendation system for iterative solvers with spe-

cialized components dedicated to data collection, featuregeneration, offline learning,

and online recommendation. Using the available domain knowledge as well as solver

performance data from our earlier study, we customized the recommendation system

by identifying informative properties of the linear systems and iterative solver con-

figurations as well as the data transformations needed to ensure good model fit. Eval-

uation of our approach on various performance datasets using models specific to a

solver package (HYPRE) and various package-preconditioner combinations demon-

strates that one can obtain very good quality recommendations that are often close

to the ideal choices and better than even the problem-independent best solver con-

figuration. The success of our approach indicates that thereis a huge potential for

optimizing scientific computing software using statistical models, especially in case

of problems that require significant computational effort.

B. Future Work

The current work offers multiple avenues for future exploration:

Application to other software selection tasks. In the current dissertation, we only

evaluated our performance analysis and recommendation methodology on iterative

solvers, but it can be readily generalized to broader software selection scenarios such

as optimization of scientific libraries for different architectures and problem domains.

Effective customization of the proposed approaches would require a suitable repre-

sentation of the space of problems as well as available software options.

Hierarchical representation for heterogeneous solver space. In our current perfor-

mance analysis methodology, we represent solver configurations as a feature vector

218

based on constituent parameters. However, certain attributes are, often, meaning-

ful only for a subset of choices, (e.g., restart values is an important parameter for

GMRES, but not applicable in case of CG). Separate analysis of performance data

from the homogeneous solvers subsets (e.g., package-preconditioner combinations)

is often beneficial in such cases, but lack of sufficient data might lead to misleading

conclusions and over-fitted models. A potential alternate strategy is to have a multi-

level hierarchical representation of the solver space based on the common parame-

ters. Using this representation, one can perform predictive or retrospective analysis

with respect to the common parameters at any node in the hierarchy using the per-

formance data that corresponds to all the configurations associated with that node,

resulting in more robust results.

Sensitivity analysis of performance models.Studying the variation of the performance

model predictions due to changes in the linear system and solver configuration fea-

tures is important for validating the models and ensuring that one does not arrive

at misleading conclusions due to outliers. In the current work, we perform a sim-

plistic model analysis by computing the correlations and the corresponding p-values

of the trial characteristics with respect to the response ofthe performance models

and qualitatively verifying that these are compatible withexpected behavior. A more

rigorous sensitivity analysis involves computing either the partial derivatives or the

conditional variance of the response with respect to each ofthe input features. As

discussed in Chapter III, Section D.3, for linear models (including support vector

regression with linear kernel), one can obtain a global sensitivity score for each input

feature that is a function of the linear coefficient and variance associated the input

feature and these can be compared with the empirical estimates. However, in case of

SVR with non-linear kernels (e.g., RBF kernel), there is often a significant variation

219

in sensitivity depending on the value of the input feature and it is beneficial to study

this non-linear dependence using the metrics presented in [42].

Optimization of continuous solver parameters. In our current recommendation ap-

proach, we assume that there are a finite number of solver configurations and per-

form ranking over them using the performance models to obtain the top choices.

However, in practice, due to continuous parameters, the solver space might not be

finite and the problem of choosing the best solver configurations can be posed in

terms of an optimization problem over the solver parameter space with the objective

function determined by the learned performance models and the specified problem.

In case of linear models, this reduces to a mixed integer linear program.

Active collection of performance data.The current studies only involved a small bench-

mark dataset because of the difficulty in obtaining large complex matrices. However,

in an industrial setting, where one has access to a large number of matrices, the com-

putational effort associated with performing an empiricaltrial would prevent one

from exploring all possible matrix-solver combinations. An active learning based

approach for identifying potentially informative trials that reduce the uncertainty in

the performance models would be extremely valuable in such asituation.

220

REFERENCES

[1] Hypre, high performance preconditioners: Users manual. Available online at

http://acts.nersc.gov/hypre/documents/HYPREusr manual.ps, 2006.

[2] G. ADOMAVICIUS AND A. TUZHILIN , Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions, IEEE Transactions

on Knowledge and Data Engineering, 17 (2005), pp. 734–749.

[3] D. AGARWAL AND S. MERUGU, Predictive discrete latent factor models for large

scale dyadic data, in Proceedings of the 13th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, 2007, pp. 26–35.

[4] S. BALAY , K. BUSCHELMAN, W. D. GROPP, D. KAUSHIK , M. G. KNEP-

LEY, ET AL ., Portable extensible toolkit for scientific computing web page, 2001.

http://www.mcs.anl.gov/petsc.

[5] A. BANERJEE, I. DHILLON , J. GHOSH, S. MERUGU, AND D. MODHA, A general-

ized maximum entropy approach to Bregman co-clustering andmatrix approximation,

Journal of Machine Learning Research, 8 (2007), pp. 1919–1986.

[6] R. BARRETT, M. BERRY, T. F. CHAN , J. DEMMEL , J. DONATO, ET AL ., Templates

for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM,

Philadelphia, PA, 1994.

[7] R. BARRETT, M. BERRY, J. DONGARRA, V. EIJKHOUT, AND C. ROMINE, Algo-

rithmic bombardment for the iterative solution of linear systems: A poly-iterative

approach, Journal of Computational and Applied Mathematics, 74 (1996), pp. 91–

109.

221

[8] M. BENZI, Preconditioning techniques for large linear systems: A survey, Journal of

Computational Physics, 182 (2002), pp. 418–477.

[9] M. BENZI AND M. TUMA , A comparative study of sparse approximate inverse pre-

conditioners, Applied Numerical Mathematics, 30 (1999), pp. 305–340.

[10] S. BHOWMICK , V. EIJKHOUT, Y. FREUND, E. FUENTES, AND D. KEYES, Appli-

cation of machine learning to the selection of sparse linearsolvers, International

Journal of High Performance Computing Applications. UnderReview.

[11] S. BHOWMICK , P. RAGHAVAN , LOIS C. MCINNES, AND BOYANA NORRIS, Faster

PDE-based simulations using robust composite linear solvers, Future Generation

Computer Systems, 20 (2004), pp. 373–387.

[12] B. E. BOSER, I. GUYON, AND V. VAPNIK, A training algorithm for optimal margin

classifiers, in Proceedings of the 5th Annual Conference on Computational Learning

Theory, 1992, pp. 144–152.

[13] G. BOSILCA, Z. CHEN, J. DONGARRA, V. EIJKHOUT, G. E. FAGG, ET AL ., Self-

adapting numerical software (SANS) effort, IBM Journal of Research and Develop-

ment, 50 (2006), pp. 223–238.

[14] R. BRAMLEY, D. GANNON, T. STUCKEY, J. VILLACIS , J. BALASUBRAMANIAN ,

ET AL ., The Linear System Analyzer, Tech. Report TR-511, Indiana University,

Bloomington, IN, 1998.

[15] C. J. C. BURGES, A tutorial on support vector machines for pattern recognition, Data

Mining and Knowledge Discovery, 2 (1998), pp. 121–167.

[16] C. CHANG AND C. LIN, LIBSVM: A library for support vector machines, 2001.

Software available athttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvm .

222

[17] E. CHOW, Parallel implementation and practical use of sparse approximate inverse

preconditioners with a priori sparsity patterns, International Journal of High Perfor-

mance Computing Applications, 15 (2001), pp. 56–74.

[18] E. CHOW AND Y. SAAD , Experimental study of ILU preconditioners for indefinite

matrices, Journal of Computational and Applied Mathematics, 86 (1997), pp. 387–

414.

[19] E. CHOW AND Y. SAAD , Approximate inverse preconditioners via sparse-sparse it-

erations, SIAM Journal on Scientific Computing, 19 (1998), pp. 995–1023.

[20] C. CORTES ANDV. VAPNIK, Support-vector networks, Machine Learning, 20 (1995),

pp. 273–297.

[21] E. CUTHILL AND J. MCKEE, Reducing the bandwidth of sparse symmetric matrices,

in Proceedings of the 24th ACM National Conference, 1969, pp. 157–172.

[22] T. A. DAVIS, The University of Florida sparse matrix collection, Jan 2007. Available

at http://www.cise.ufl.edu/research/sparse/matrices.

[23] J. W. DEMMEL, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.

[24] E. D. DOLAN AND J. J. MORÉ, Benchmarking optimization software with perfor-

mance profiles, Mathematical Programming, 91 (2002), pp. 201–213.

[25] J. DONGARRA AND A. BUTTARI, Freely available software for linear algebra on the

web, 2009.http://www.netlib.org/utk/people/JackDongarra/la-sw.html.

[26] H. DRUCKER, C. J. C. BURGES, L. KAUFMAN , A. J. SMOLA , AND V. VAPNIK,

Support vector regression machines, in Proceedings of the 9th Annual Conference on

Neural Information Processing Systems, 1996, pp. 155–161.

223

[27] R. FAGIN , A. LOTEM, AND M. NAOR, Optimal aggregation algorithms for middle-

ware, Journal of Computer and System Sciences, 66 (2003), pp. 614–656.

[28] R. FREUND, G. GOLUB, AND N. NACHTIGAL , Iterative solution of linear systems,

Acta Numerica, (1992), pp. 57–100.

[29] Y. FREUND AND L. M ASON, The alternating decision tree learning algorithm,

in Proceedings of the 16th International Conference on Machine Learning, 1999,

pp. 124–133.

[30] M.W. GEE, C.M. SIEFERT, J.J. HU, R.S. TUMINARO , AND M.G. SALA , ML 5.0

Smoothed Aggregation User’s Guide, Tech. Report SAND2006-2649, Sandia Na-

tional Laboratories, 2006.

[31] A. GEORGE AND J. W. LIU, Computer Solution of Large Sparse Positive Definite

Systems, Prentice Hall Professional Technical Reference, Englewood Cliffs, NJ, 1981.

[32] T. GEORGE, A. GUPTA, AND V. SARIN, An experimental evaluation of iterative

solvers for large SPD systems of linear equations, in Proceedings of the 10th Copper

Mountain Conference on Iterative Methods, 2008.

[33] T. GEORGE, A. GUPTA, AND V. SARIN, An Empirical Analysis of Iterative Solver

Performance for SPD Systems, Tech. Report RC 24737, IBM T. J. Watson Research

Center, Yorktown Heights, NY, 2009.

[34] J. R. GILBERT AND S. TOLEDO, An assessment of incomplete-LU preconditioners

for nonsymmetric linear systems, Informatica, 24 (2000), pp. 409–425.

[35] A. GREENBAUM, V. PTAK , AND Z. STRAKOUS, Any non-increasing convergence

curve is possible for GMRES, SIAM Journal of Matrix Analysis and Applications, 17

(1996), pp. 465–469.

224

[36] A. GUPTA, Fast and effective algorithms for graph partitioning and sparse-matrix

ordering, IBM Journal of Research and Development, 41 (1997), pp. 171–184.

[37] A. GUPTA, WSMP: Watson Sparse Matrix Package (Part-I: Direct Solution of Sym-

metric Sparse Systems), Tech. Report RC 21886, IBM T. J. Watson Research Center,

Yorktown Heights, NY, 2000.

[38] A. GUPTA, WSMP: Watson Sparse Matrix Package (Part-III: Iterative Solution of

Sparse Systems), Tech. Report RC 24398, IBM T. J. Watson Research Center, York-

town Heights, NY, 2007.

[39] A. GUPTA AND T. GEORGE, Adaptive techniques for improving the performance of

incomplete factorization preconditioning, SIAM Journal on Scientific Computing. To

appear.

[40] I. GUYON AND A. ELISSEEFF, An introduction to variable and feature selection,

Journal of Machine Learning Research, 3 (2003), pp. 1157–1182.

[41] I. GUYON, J. WESTON, S. BARNHILL , AND V. VAPNIK, Gene selection for cancer

classification using support vector machines, Machine Learning, 46 (2002), pp. 389–

422.

[42] I. GUYON, J. WESTON, S. BARNHILL , AND V. VAPNIK, Gene selection for cancer

classification using support vector machines, Machine Learning, 46 (2002), pp. 389–

422.

[43] V. E. HENSON AND U. M. YANG, BoomerAMG: A parallel algebraic multigrid

solver and preconditioner, Applied Numerical Mathematics: Transactions of Interna-

tional Association for Mathematics and Computers in Simulation, 41 (2002), pp. 155–

177.

225

[44] J. L. HERLOCKER, J. A. KONSTAN, A. BORCHERS, AND J. RIEDL, An algorithmic

framework for performing collaborative filtering, in Proceedings of the 22nd Interna-

tional ACM SIGIR Conference on Information Retrieval, 1999, pp. 230–237.

[45] M. A. HEROUX, R. A. BARTLETT, V. E. HOWLE, R. J. HOEKSTRA, J. J. HU,

ET AL ., An overview of the Trilinos project, ACM Transactions on Mathematical

Software, 31 (2005), pp. 397–423.

[46] T. HOFMANN, Latent semantic models for collaborative filtering, ACM Transactions

on Mathematical Software, 22 (2004), pp. 89–115.

[47] P. W. HOLLAND AND R.E. WELSCH, Robust regression using iteratively reweighted

least-squares, Communications in Statistics: Theory and Methods, A6 (1977),

pp. 813–827.

[48] G. HOLMES, A. DONKIN , AND I. H. WITTEN, WEKA: A machine learning work-

bench, in Proceedings of the 2nd Australian and New Zealand Conference on Intel-

ligient Information Systems, 1994, pp. 357–361.

[49] E. N. HOUSTIS, A. C. CATLIN , J. R. RICE, V. S. VERYKIOS, N. RAMAKRISH -

NAN , AND C. E. HOUSTIS, PYTHIA-II: A knowledge/database system for manag-

ing performance data and recommending scientific software, ACM Transactions on

Mathematical Software, 26 (2000), pp. 227–253.

[50] E. N. HOUSTIS AND J. R. RICE, Future Problem Solving Environments for Compu-

tational Science, Purdue University, West Lafayette, IN, 2002.

[51] D. HYSOM AND A. POTHEN, A scalable parallel algorithm for incomplete factor

preconditioning, SIAM Journal of Scientific Computing, 22 (2000), pp. 2194–2215.

226

[52] T. JOACHIMS, Training linear svms in linear time, in Proceedings of the 12th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006,

pp. 217–226.

[53] M. T. JONES AND P. E. PLASSMANN, An improved incomplete Cholesky factoriza-

tion, ACM Transactions on Mathematical Software, 21 (1995), pp.5–17.

[54] G. KARYPIS AND V. KUMAR, Parallel multilevel k-way partitioning scheme for ir-

regular graphs, in Proceedings of the 8th ACM/IEEE Conference on Supercomput-

ing, 1996, p. 35.

[55] E. KUEFLER AND T.-Y I CHEN, On using reinforcement learning to solve sparse

linear systems, in Proceedings of the 8th International Conference on Computational

Science, vol. 5101, 2008, pp. 955–964.

[56] D. D. LEE AND H. S. SEUNG, Algorithms for non-negative matrix factorization, in

Proceedings of the 13th Annual Conference on Neural Information Processing Sys-

tems, 2000, pp. 556–562.

[57] M. BOLLHÖFER, Y. SAAD AND O. SCHENK, ILUPACK - preconditioning software

package. Available online athttp://www.math.tu-berlin.de/ilupack, 2006.

[58] S. C. MADEIRA AND A. L. OLIVEIRA , Biclustering algorithms for biological data

analysis: A survey, IEEE/ACM Transactions on Computational Biology and Bioin-

formatics, 1 (2004), pp. 24–45.

[59] P. MCCULLAGH AND J. NELDER, Generalized Linear Models, 2nd edition, Chapman

& Hall/CRC, Boca Raton, FL, 1989.

[60] T. M. M ITCHELL, Machine Learning, McGraw-Hill Higher Education, Columbus,

OH, 1997.

227

[61] M. NACHTIGAL , S. C. REDDY, AND L. N. TREFETHEN, How fast are nonsymmetric

matrix iterations, SIAM Journal on Matrix Analysis and Applications, 13 (1992),

pp. 778–795.

[62] R. O.DUDA , P.E. HART, AND D. G. STORK, Pattern Classification (2nd edition),

Wiley-Interscience, New York, NY, 2000.

[63] A. POPESCUL, L. H. UNGAR, D. M. PENNOCK, AND S. LAWRENCE, Probabilistic

models for unified collaborative and content-based recommendation in sparse-data

environments, in Proceedings of the 17th Annual Conference on Uncertainty in Arti-

ficial Intelligence, 2001, pp. 437–444.

[64] J. R. QUINLAN , Induction of decision trees, Machine Learning, 1 (1986), pp. 81–106.

[65] J. R. QUINLAN , C4.5: Programs for Machine Learning, Morgan Kaufmann Publish-

ers Inc., San Francisco, CA, 1993.

[66] J. R. QUINLAN , Bagging, boosting, and C4.5, in Proceedings of the 13th National

Conference on Artificial Intelligence, vol. 1, 1996, pp. 725–730.

[67] N. RAMAKRISHNAN AND A. GRAMA , Mining scientific data, Advances in Comput-

ers, 55 (2001), pp. 119–169.

[68] N. RAMAKRISHNAN AND C. J. RIBBENS, Mining and visualizing recommendation

spaces for elliptic PDEs with continuous attributes, ACM Transactions on Mathemat-

ical Software, 26 (2000), pp. 254–273.

[69] J. RENNIE AND N. SREBRO, Fast maximum margin matrix factorization for collab-

orative prediction, in Proceedings of the 22nd International Conference on Machine

Learning, 2005, pp. 713–719.

228

[70] J.W. RUGE AND K. STÜBEN, Multigrid methods, 3 (1987), pp. 73–130. Frontiers in

Applied Mathematics.

[71] Y. SAAD , Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, Philadel-

phia, PA, 2003.

[72] Y. SAAD AND B. SUCHOMEL, ARMS: An algebraic recursive multilevel solver for

general sparse linear systems, Numerical Linear Algebra with Applications, 9 (2002),

pp. 359–378.

[73] Y. SAAD AND H. A. VAN DER VORST, Iterative solution of linear systems in the 20th

century, Journal of Computational and Applied Mathematics, 123 (2000), pp. 1–33.

[74] M. SALA AND M. HEROUX, Robust Algebraic Preconditioners with IFPACK 3.0,

Tech. Report SAND-0662, Sandia National Laboratories, Albuquerque, NM, 2005.

[75] A. SALTELLI , M. RATTO, T. ANDRES, F. CAMPOLONGO, J. CARIBONI , ET AL .,

Global Sensitivity Analysis: The Primer, WileyBlackwell, West Sussex, UK, 2008.

[76] A. SALTELLI AND S. TARANTOLA , On the relative importance of input factors in

mathematical models: Safety assessment for nuclear waste disposal, Journal of the

American Statistical Association, 97 (2002), pp. 702–709.

[77] A. J. SMOLA AND B. SCHÖLKOPF, A tutorial on support vector regression, Statistics

and Computing, 14 (2004), pp. 199–222.

[78] Spider: General purpose machine learning toolbox in matlab(version 1.7). Available

at http://www.kyb.tuebingen.mpg.de/bs/people/spider,2006.

[79] R. S. TUMINARO AND C. TONG, Parallel smoothed aggregation multigrid : Ag-

gregation strategies on massively parallel machines, in Proceedings of the 12th

ACM/IEEE conference on Supercomputing, 2000, p. 5.

229

[80] P. VANEK, Acceleration of convergence of a two level algorithm by smooth transfer

operators, Applied Mathematics, 37 (1992), pp. 265 –274.

[81] V. N. VAPNIK, The Nature of Statistical Learning Theory, Springer-Verlag, New

York, NY, 1999.

[82] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.

[83] V. S. VERYKIOS, E. N. HOUSTIS, AND J. R. RICE, A knowledge discovery method-

ology for the performance evaluation of scientific software, Neural, Parallel and Sci-

entific Computations, 8 (2000), pp. 115–132.

[84] D. C. WILSON, D. B. LEAKE, AND R. BRAMLEY , Case-based recommender com-

ponents for scientific problem-solving environments, in Proceedings of the 16th Inter-

national Association for Mathematics and Computers in Simulation World Congress,

2000.

[85] S. XU, E. LEE, AND J. ZHANG, Designing and building an intelligent preconditioner

recommendation system (a progress report), in Proceedings of International Confer-

ence on Preconditioning Techniques for Large Sparse MatrixProblems in Scientific

and Industrial Applications, 2003.

[86] S. XU, E. J. LEE, AND J. ZHANG, An Interim Analysis Report on Preconditioners

and Matrices, Tech. Report 388–03, University of Kentucky, Lexington, KY, 2004.

[87] S. XU AND J. ZHANG, A Data Mining Approach to Matrix Preconditioning Problem,

Tech. Report 433-05, University of Kentucky, Lexington, KY, 2005.

230

VITA

Thomas George was born in Trivandrum, India in 1976. He completed his Bachelor of

Technology in mechanical engineering from Indian Institute of Technology (IIT), Madras,

India in May 1999. He joined the graduate program in the Engineering Research Center

(ERC) at Mississippi State University, Starkville, Mississippi in Spring 2000 and earned his

Master of Science degree in Computational Engineering in December 2001. He continued

to work at ERC as a full time research associate working on several NSF and NASA funded

projects till he joined the PhD program in Computer Science at Texas A&M University in

the Fall of 2003.

During his stay at Texas A&M University, Thomas George worked as a Graduate Re-

search Assistant for Dr. Vivek Sarin and Graduate Teaching Assistant for Dr. Joseph Hurley

and Dr. Teresa Leyk. His research interests are in scientificcomputing, parallel applica-

tions, and scientific data mining. He also published severalarticles in international journals

and conferences such as: Journal of Functional Programming, SIAM Journal of Scientific

Computing, Supercomputing, and International Conferenceon Data Mining among others.

His address is: IBM India Research Lab, 4 Block C, Institutional Area, Vasant Kunj, New

Delhi, 110070, India.

