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ABSTRACT 

 

Essays on Choice and Demand Analysis of Organic and Conventional Milk in the United 

States. (December 2009) 

Pedro Aya-ay Alviola IV, B.S., University of the Philippines; M.A., University of the 

Philippines 

Chair of Advisory Committee: Dr. Oral Capps, Jr. 

 

This dissertation has four interrelated studies, namely (1) the characterization of 

milk purchase choices which included the purchase of organic milk, both organic and 

conventional milk and conventional milk only; (2) the estimation of a single-equation 

household demand function for organic and conventional milk; (3) the assessment of 

binary choice models for organic milk using the Brier Probability score and Yates 

partition, and (4) the estimation of demand systems that addresses the censoring issue 

through the use of econometric techniques.   

 In the first paper, the study utilized the estimation of both multinomial logit and 

probit models in examining a set of causal socio-demographic variables in explaining the 

purchase of three outcome milk choices namely organic milk, organic and conventional 

milk and conventional milk only. These crucial variables include income, household 

size, education level and employment of household head, race, ethnicity and region.    

Using the 2004 Nielsen Homescan Panel, the second study used the Heckman 

two-step procedure in calculating the own-price, cross-price, and income elasticities by 



 iv 

estimating the demand relationships for both organic and conventional milk. Results 

indicated that organic and conventional milk are substitutes. Also, an asymmetric pattern 

existed with regard to the substitution patterns of the respective milk types.  

Likewise, the third study showed that predictive outcomes from binary choice 

models associated with organic milk can be enhanced with the use of the Brier score 

method.  In this case, specifications omitting important socio-demographic variables 

reduced the variability of predicted probabilities and therefore limited its sorting ability.  

 The last study estimated both censored Almost Ideal Demand Systems (AIDS) 

and Quadratic Almost Ideal Demand System (QUAIDS) specifications in modeling non-

alcoholic beverages. In this research, five estimation techniques were used which 

included the usage of Iterated Seemingly Unrelated Regression (ITSUR), two stage 

methods such as the Heien and Wessells (1990) and the Shonkwiler and Yen (1999) 

approaches,  Generalized Maximum Entropy and the Dong, Gould and Kaiser (2004a) 

methods. The findings of the study showed that at various censoring techniques, price 

elasticity estimates were observed to have greater variability in highly censored non-

alcoholic beverage items such as tea, coffee and bottled water.  
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CHAPTER I 

INTRODUCTION 

 

The recent shift towards differential diet mechanisms in favor of healthier foods 

is an indicator that the typical American consumer is now highly conscious of both the 

different food items being offered in the market and its impact on nutrition and total 

wellbeing. Similarly, recent trends in supermarkets offering healthier and natural food 

choices can be seen as a reaction to rising demand for healthier foods. This rapid 

expansion in the organic food market has in effect triggered in part the increasing growth 

in the organic milk industry. 

 Why look at the organic milk and non-alcoholic beverage industry? There are 

several reasons why these markets deserve research scrutiny. First, the increasing growth 

of the organic milk market represents the current shift of healthy food items that are 

increasingly being demanded by the American consumer. Examining this particular 

market will help define profiles of consumers that are responsive and sensitive to healthy 

food choices and therefore assist in the fine tuning of policies that addresses significant 

health concerns in the United States. As well, it is important to focus on the 

interdependencies of milk with other products such as fruit juice, tea, carbonated soft 

drinks and bottled water. In this regard, the non-alcoholic beverage complex represents 

  

____________  
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ideal cases for testing estimation procedures that address the censoring problem in 

demand systems estimation. 

 With varying levels of censoring, we are in position to evaluate the performance 

of several cutting edge estimators. Thus, this dissertation will contribute towards a 

clearer picture of how choices are made with regards to healthy alternative foods such as 

organic milk and shed some light on the existing debate on the appropriate estimator to 

use in estimating censored demand systems. 

Organization of the Dissertation 

Chapter II begins the study by looking at the possible household choice 

determinants of three milk choice outcomes, namely: organic milk and conventional 

milk, organic milk only and conventional milk only. This was achieved through the use 

of both multinomial logit and probit models. On the other hand, Chapter III estimated a 

two-stage model, namely the use of a probit model in the first stage to account for 

selection bias, and then incorporating it in the second stage, where the calculation of 

price and income elasticity coefficients was done by estimating demand equations for 

both organic and non-organic milk. In Chapter IV, the extensive use of discrete choice 

models in the research led naturally to the examination of the quality of predicted 

probabilities. This chapter assessed the prediction probabilities of fundamental discrete 

choice models, namely the linear probability model, the logit and probit models by 

probability scoring techniques such as the Brier Probability Scoring Method and Yates 

partition. On the other hand, Chapter V estimated a micro-demand system of the non-

alcoholic beverages that included conventional milk of which varying levels of data 
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censoring were observed. The central theme of this chapter looked at various methods of 

estimating censored demand system that have been recently proposed in the literature 

and made comparative analysis of each estimation technique. Finally, in Chapter VI we 

summarize the findings of the essays and provide recommendations and key points for 

future research efforts. 
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CHAPTER II 

EXAMINING THE FACTORS AFFECTING HOUSEHOLD PURCHASE OF 

ORGANIC AND CONVENTIONAL FLUID MILK IN THE UNITED STATES 

 

In recent years, the fluid milk industry has undergone several notable changes. In 

the past, fluid milk consumers have looked at fat content levels (Gould, 1996) as an 

indicator that product choices can be available to support healthy dietary lifestyles. US 

consumers are now highly conscious of the different food items offered in the 

marketplace and their impact on nutrition and total well-being. With advances in 

biotechnology, conventional milk production has increased because growth hormones 

such as the recombinant bovine somatotropin (rBST) have been widely available to the 

dairy industry. However, despite scientific claims that rBST milk is safe for human 

consumption, the public perception has been to oppose its introduction and demand other 

forms of milk variants that are labeled rBST free. Unlike other dairy milk products that 

arose due to the controversies of the rBST milk dilemma, the organic fluid milk industry 

has been steadily rising with minimal influence from any coalitional networks. In fact, 

DuPuis (2000) argued that the industry’s increasing market shares were due to the 

acceptance of mainstream consumers who saw organic milk as a viable alternative in 

meeting their changing taste and preferences. Also, the industry was characterized as 

flexible in terms of catering to those changing needs.            

According to Dimitri and Venezia (2007), US sales of organic milk have been 

steadily rising by about 25 percent from the 1990’s up until 2004. This growth was 
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largely driven by the increasing market sales of the organic food market. Dimitri and 

Greene (2002) and Li et al. (2007) opined that consumer acceptance of organic food was 

largely driven on the grounds that it was a pesticide-free product.  Furthermore, the 

organic milk industry has gained wider distribution from large retail chains such as 

Costco and Wal-Mart, thus boosting its product exposure in the market (Thompson, 

1998; Dimitri and Venezia, 2007). In addition, dairy producers switched from 

conventional milk production to organic operations in response to opportunities created 

through the rightward shift in demand for organic milk. Thus, given these developments, 

organic milk sales have been increasing ever since starting in the early 1990s, while 

sales of conventional milk have been relatively constant during this time span (Miller 

and Blayney, 2006). 

There have been previous studies concerning the demand interplay between 

organic and conventional milk. Several studies including Glaser and Thompson (2000), 

Dhar and Foltz (2005) and Alviola and Capps (2009) revealed that organic and 

conventional milk are substitutes and that there exist significant differential responses 

with regard to cross-price effects. These works dealt with the purchased quantities of 

organic and conventional milk. On the other hand, studies that examine the factors that 

drive the decision to buy organic and conventional milk have been limited. Dimitri and 

Venezia (2007) and Alviola and Capps (2009) examined the factors that affect the binary 

choice decision of buying organic and conventional milk at the household level. 

However, one can extend the dichotomous choice model to a polychotomous model 

because households may purchase organic milk only, conventional milk only or both 
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organic and conventional milk conditional on the decision to purchase milk in the first 

place.       

Thus, the objective is to characterize consumer buying behavior with respect to 

the three aforementioned milk purchase choices. In particular, we wish to identify and 

assess household characteristics that drive each of these types of milk purchases. In this 

way, we add to the literature by carrying out an extension of what had been previously 

undertaken regarding the purchase of organic and conventional milk.       

Literature Review 

Past studies regarding choice models that deal with organic and conventional 

milk have been instrumental in understanding the underlying factors that influence the 

purchase of both milk types. For example Hill and Lynchehaun (2002) cited various 

socio-demographic factors that affect the buying of organic milk. These factors included 

personal values, attitudes, age, and ethnicity, presence of children, education, 

advertising, taste, packaging quality, food scares, prices and income. Similarly Dimitri 

and Venezia (2007) presented a descriptive analysis of organic milk users based on 

analysis of Nielsen Homescan data for calendar year 2004. Their findings indicated that 

the typical organic milk consumer was white, highly educated and less than 50 years old.  

Also, organic milk users were generally Orientals and Hispanic. However, their analysis 

was based on descriptive statistics, and no formal statistical analysis was conducted. 

 Alviola and Capps (2009) utilized a probit model in characterizing the household 

choice between organic and conventional milk. The source of data was also the 2004 

Nielsen Homescan panel. They concluded that households likely to purchase organic 
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milk were single person, affluent, highly educated, located in the west region, black, 

oriental, Hispanic and have no children. However, the major limitation of their study is 

that the choice outcome is limited to two (organic versus conventional milk) when in 

fact these outcomes can extend beyond binary choices. 

 Using the same data set as that of Dimitri and Venezia (2007) and Alviola and 

Capps (2009), McKnight (2007) looked at households that purchased organic milk and 

utilized cluster analysis to differentiate choices between organic milk and conventional 

milk. The key variable in this analysis was the percentage share of organic milk purchase 

to total fluid milk purchase. This choice partitioning then was used to construct a 

multinomial logit model with household socio-demographic variables as choice drivers. 

The findings indicated that households small in size with well educated household heads 

were more likely to purchase organic milk. The limitations of the study were twofold: 

(1) since the choice outcome variable was characterized as percentage of organic milk 

purchase to total fluid milk purchase, it ignored the interplay of choices between organic 

milk and conventional milk; (2) choices were assumed to be independent, ignoring the 

possibility that both organic milk and conventional milk choices might be related.           

Methodology 

In the literature, the use of multinomial models has been widespread with 

multinomial logit models dominating over probit models due to the ease of estimation. 

Starting with the work of McFadden (1978), Dubin and McFadden (1984) and more 

recently Train (2003), improvements on the multinomial logit model continuously have 

been refined. The inherent tractability of this model particularly in applied work in 



 8 

agricultural markets and commodities has been well received (Vergara et al., 2004). 

However the tractability of the multinomial logit model comes with a cost, in that it 

assumes the independence of irrelevant alternatives (IIA). The fallout of this assumption 

is the constancy of choice odds even as the number of alternative choices increases.  

With the use of multinomial probit models, on the other hand, the IIA assumption is 

relaxed.  

With the pioneering work of Hausman and Wise (1978), applications of the 

multinomial probit model have been employed in various fields such as political science, 

especially in  voter choice of candidates (Dow and Endersby, 2004; Alvarez and 

Nagler,1994), likelihood of completing high school and college education (Jepsen, 

2008), transportation and brand choice (Nobile, Bhat and Pas, 1996 and Hrushka, 2007) 

and farming adoption decisions resulting in availability of multiple technology 

(Dorfman, 1996). However, if the number of choice alternatives exceeds four, the 

practicality of the use of the multinomial choice models diminishes due to mathematical 

complexity. The current thrust on workable solutions with regard to overcoming this 

formidable intractability has been the usage and refinement of numerical methods 

(Train, 2003; Weeks, 1997; Breslaw, 2002 and Bunch, 1991) in achieving solution 

convergence. Despite the advances in this field, some researchers particularly Maddala 

(1983) questioned the extra computational burden posed by the multinomial probit 

model. More recently Greene (2008) noted that while advances in numerical methods are 

now available for researchers, restrictions on the variance-covariance matrix of the error 

terms must be in place to achieve convergence.          
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Random Utility Model 
 

Following Cameron and Trivedi (2005) and Greene (2008), consider a kth choice 

multinomial model among a class of m choices. The utility function of the kth choice can 

be written as 

(1)                                ,),( kkkkk VVU εε +=                         k = 1,2,…..,m,                                      

where Vk and εk are the deterministic and stochastic factors of the kth choice. The 

deterministic component Vk can be expressed as Vk = Wkηk where Wk are the identified 

drivers of the individual’s kth choice and ηk are the k-parameters to be estimated. One 

also can construct an alternative utility function Ur to represent the rth choice among the 

available m choices. Therefore to motivate the problem in terms of utility comparisons, 

an individual chooses the kth choice among all other competing choices as indexed by 

the jth choice if and only if Uk ≥ Ur. This situation implies that an individual chooses 

choice k if and only if it yields the highest level of utility among all choices (McFadden, 

1973, 1974a, 1974b and 1978). Following Cameron and Trivedi (2005), if we let p be 

the probability of occurrence, then the probability of occurrence of the kth choice (Pr 

(Y=k)) becomes:                   

 (2)                                                         )Pr()Pr( rk UUkY ≥== ,                                                   

     )Pr( rrkk eVeV +≥+=  

                                                            )Pr( rrrkkk eWeW +≥+= ηη , 

                                                            )Pr( rrkkkr WWee ηη −≤−=  , 

                                                            )Pr( '
rkrk V≤= µ , 
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where µrk and V’rk are defined respectively as er – ek and Wkηk - Wrηr.  Assumptions can 

be made about the error terms. If the errors assume an extreme value distribution with 

mean 0 and variance π2/6, then the resulting model is a multinomial logit model (MNL). 

On the other hand if the errors assume a jointly normal distribution, then a multinomial 

probit model (MNP) emerges.  

 The fundamental crux between these models has revolved around the 

independence of irrelevant alternative (IIA) axiom where the multinomial logit model 

has the property of its choice odds being invariant to additional alternatives. As 

additional alternatives are either being added or subtracted, the choice odds remain the 

same for any pairwise comparison of the relevant alternatives. This invariance property 

however raises serious concerns on model validity. As noted by Baltagi (2005), when 

choices are likely to be close substitutes, the MNL and its allied models (conditional 

logit models) may produce inconsistent estimates if the choices are truly not 

independent. This assumption maybe appealing in terms of empirical tractability but is 

very restrictive in terms of characterizing underlying utility preferences (Greene, 2008).  

 One of the alternative approaches however, is to forego the IIA axiom by 

assuming an error structure that is multivariate normal, leading to the multinomial probit 

model. Flexibility is achieved by permitting cross correlations among choices through 

the specification of a correlated error structure. However, the choice of the multinomial 

probit model comes with a cost that as the number of alternatives expands, the 

computational ability to evaluate multiple integrals in finding closed form solutions 

becomes increasingly difficult (Maddala, 1983). In this exercise, the deployment of the 
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multinomial probit model for modeling organic and non-organic milk choices comes 

from two major considerations: (1) the IIA axiom may not be a realistic assumption to 

impose; and (2) the choice variable takes on only three responses, resulting in 

computationally tractable model from a numerical integration viewpoint (Maddala, 

1983).  

 The choice to buy either organic or conventional milk yields the same odds of 

either purchasing one or the other milk type. However, if another alternative choice is 

given such as buying both organic and conventional milk then the IIA axiom 

presupposes that the odds between purchasing organic or conventional milk will not 

change. This imposition may not be realistic as one can immediately deduce that 

purchasing both milk types can affect the odds of purchasing either organic or 

conventional milk alone. The other reason revolves around numerical ease. While 

computational burden of estimating the multinomial probit model is exceedingly longer 

relative to the multinomial logit model, the three choices of either purchasing organic 

milk, conventional milk or both is still within the purview of the trivariate normal 

integral limit where standard analytical integration methods can still be applied 

(Cameron and Trivedi, 2005). However, if multiple responses exceeded four choices 

then simulation techniques such as frequency simulators, sampling and Bayesian 

estimation have been in recent years used to make the multinomial probit model 

tractable (Train, 2003). More recently Greene (2008) opined that caution has to be 

emphasized that in using multinomial probit models, the requirement of additional 
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restrictions such as zero or equal correlation among the error terms are usually imposed 

in order to achieve convergence.                        

Multinomial Probit and Logit Models 

A logical extension of the binary choice models is to estimate unordered discrete 

responses that go beyond two choice outcomes. Thus, for each choice outcome of the 

dependent variable, the corresponding discrete values range from to 0 to m-1 where m 

denotes the maximum number of choice outcome. In this exercise, three choices have 

been identified wherein a household might purchase both organic and conventional milk 

(1), organic milk (2) and only conventional milk (3). Thus, these choices are 

characterized as unordered categorical variables in that the household may arbitrarily 

choose to purchase organic milk or conventional milk or both without being constrained 

by any choice-ordering axiom.  

In using the multinomial probit model, consider the case where the choice 

variable takes on three responses and let Wi be a vector of independent variables that are 

related to the purchase of organic and conventional milk. Following Greene (2008), 

Cameron and Trivedi (2005), Wooldridge (2002), Gan (2007) and Maddala (1983), the 

probability of selecting both organic and conventional milk (1st) choice in a multinomial 

probit model can be represented as:  

(3)                                    ),Pr()1Pr( 3121 UUUUY >>== ,                                                         

),Pr( 333111222111 eWeWeWeW +>++>+= ηηηη , 

   ),Pr( 113313112212 ηηηη WWeeWWee −<−−<−= , 

   ),Pr( 111333111222 eWWeeWWe +−<+−<= ηηηη  , 
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and if the error terms are assumed to be multivariate normal then the last expression  

becomes; 

 (4)                          Pr(Y=1) 111133111221 ))()(()( deeWWFeWWFef +−+−= ∫
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where φ(.) and Φ(.) are pdf and cdf respectively. For choice alternatives 2 and 3, the 

same process can be done in terms of deriving the choice probabilities.   

In the multinomial logit model case, the choice variable takes on integer values 

from j = 0,…….,m-1 and let Wi be a vector of  independent variables that are related the 

purchase of organic and non-organic milk. Following Greene (2008), Cameron and 

Trivedi (2005) and Wooldridge (2002), the probability of the ith individual selecting the 

j th choice in a multinomial logit model can be represented as:  

(5)                                                   
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where Pij is the probability that the ith choice selected and ηi are the parameters to be 

estimated. For this exercise, the study evaluated i =3, where the choices are organic and 

conventional milk (qi = 1), only organic milk (qi = 2) and only conventional milk (qi = 3).  
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Variance-Covariance Matrix Structure of the Error Terms for Multinomial Probit 

Model1 

In order to relax the IIA assumption, the multinomial probit model permits cross 

correlations between the error terms. In this exercise, STATA’s calculation of the 

variance-covariance matrix requires several restrictions, which translates into 

constraining one of the variances in the differenced error variance-covariance matrix in 

order for the matrix to be identified (Note that it does not matter which variance need to 

be constrained). Following Long and Freese (2006), Kropko (2008) and StataCorp 

(2005) and assuming that the variance of Choice 1 is fixed, the resulting differenced 

error variance-covariance matrix can be denoted as; 
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eeVar −=ασ  and expanding further2, we have 

 

(7)                  












−++−−
−+

3131311313121213232

212121

222

22 .

eeeeeeeeeeeeeeeeeee

eeeeee

σρσσσσσρσσρσσρ
σρσσ

, 

 

In order to constrain 2

2ασ into a constant, the STATA asmprobit routine restricts the 

variance of both choice 1 and choice 2 equal to 1. Thus in a three choice model, the 

                                                 
1 Kropko (2008) and Long and Freese (2006) provide excellent discussions on how STATA calculates the 
variance-covariance matrix of the differenced error terms used in its “asmprobit” command. The 
discussion of the multinomial probit error variance-covariance structure follows their exposition.  
2 See Kropko (2008) for example. 
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following restrictions are imposed in order for the differenced errors variance-covariance 

matrix to be identified. 

(8)                                                      122

21
== ee σσ , 

(9)                                                      0
3121

== eeee ρρ ,             

Thus, it follows from (8) that covariances (ex. 0
21221

== eeeeee σσρσ ) associated with 

choice 1 are 0. With the restrictions from both equation 8 and 9, the final differenced 

error variance-covariance matrix as calculated by STATA’s “asmprobit” command 

becomes; 

(10)                                                  



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eeee σσρ , 

For this exercise the constrained choice is 3, thus the differenced error variance-

covariance matrix is; 

 

 Choice 2 Choice 1 

Choice 2 2 . 

Choice 1 0.64323 0.25022 
 

As for the other multinomial probit (uncorrelated error) variant, this model was 

calculated by STATA’s “mprobit“command.  This type of variant is the normal 

counterpart of the multinomial logit model and therefore still assumes IIA resulting to 

error terms that are uncorrelated. 
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Marginal Effects 

For the estimation of the marginal effects, one has to take the partial change of 

the choice probability with respect to the conditioning variables. Thus, the marginal 

effects for the multinomial logit model can be written as 

(14)                                             
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Equation 14 can be interpreted as the change in probability of the ith choice of the jth 

household given a change in the independent variables Wi.   

As for the multinomial probit model, the derivation of the respective marginal 

effects is much more complicated (see Dorfman, 1996 for example). The calculation of 

the marginal effects in both the multinomial logit model and multinomial probit model in 

STATA is done by numerical approximation.  

Empirical Specification 

In this empirical exercise, several socio-demographic variables such as 

household income, household size, employment status and educational level of 

household head, race, ethnicity, number of children in the household and region are 

hypothesized factors affecting purchasing choice of organic and conventional milk. The 

general multinomial model specification is given as follows: 

(15)                       
εηηηηη

ηηηη
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where, the ith household has the jth choice (j = 1, 2 and 3) denoting households who 

purchased both organic and conventional milk, organic milk only and conventional milk 
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only, respectively. Φ is the cdf and Wi is the vector of socio-economic and demographic 

variables of the household which include Inc as household income and HHsize is the 

household size where indicator variables were created for one, two, three, four and five 

more members representing the number of household members respectively. Other 

demographic indicator variables include EMP as employment status of household head, 

while Educ is the level of education of the household head. The variable Race represents 

the race type and Ethcy refers to ethnicity, that is whether the household is Hispanic, or 

not.  Agechild represents the presence of children in the household and finally the 

variable Reg represents region.   Milk prices are not included in the multinomial 

logit/probit estimation. Prices were derived as the ratio of expenditure to quantity; but if 

there was no recorded purchase then no price can be computed3.   

Description of Data 

 For this empirical exercise, the data pertaining to the choice of purchasing 

organic and conventional milk, income and household socio-demographic variables are 

from the AC Nielsen Homescan Panel for calendar year 2004. The AC Nielsen scanner 

data set is the world’s largest, on-going household scanner data survey system, tracking 

household purchases in the United States. Table 2.1 presents the definition and summary 

statistics of all the relevant variables partitioned by choice outcome.  

For households that purchased both organic and conventional milk (choice 1), the 

average price paid for both milk types were approximately $3.15/half gallon and 

$2.03/half gallon, respectively. The average purchase quantity was approximately 8.53 

                                                 
3 One may use imputation techniques to derive missing prices, but the empirical results are tied to the use 
of these procedures. 
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half gallons of organic milk and 39.39 half gallons of conventional milk. On the other 

hand, households that only purchased organic milk (choice 2), had an average purchase 

price and quantity of $3.25/half gallon and 13.19 half gallons. Finally, the average 

purchase price and quantity  of households that purchased only conventional milk 

(choice 3)  were approximately  $1.75/half gallon and 47.68 half gallons. 

From Table 2.1, the variable Inc is defined as household income, where for this 

sample, the average income level for households that purchased both organic and 

conventional milk was $55,317, while for those household that purchased only organic 

milk the average household income is approximately $49,044.Likewise, the average 

income for households that purchased only non organic milk is approximately $49, 356. 

The study also used indicator variables to describe the number of household members 

with hs1as the base variable with hs2 pertaining to a household having 2 members. The 

variables hs3 and hs4 denoted 3 and 4 members in a household while the last household 

size indicator variable hsp5 describes 5 or more members in the household. The 

demographic values indicate that more than 70% of the household respondents for 

choice 1 and choice 3 are households with 1 or 2 members. For those households that 

purchased only organic milk (choice 2), almost 62 % are single-member households.  

Agepcchild corresponds to a dummy variable with 1 indicating the presence of children 

and 0 otherwise. Almost 25% of households associated with choices 1 and 3 have 

children, while only 8% of households associated with choice 2 (organic milk only) have 

children. 
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Table 2.1. Descriptive Statistics of Relevant Household Demographic Variables  
  (Choice 1 = organic and conventional) (Choice 2 = organic milk) (Choice 3 = conventional milk) 

Variables Mean Std. Dev. Min Max Mean Std. Dev. Min Max Mean 
Std. 
Dev. Min Max 

 
inc (Household Income) 55317 28181 5000 100000 49044 27683 5000 100000 49356 27117 5000 100000 
agepcchild (Presence of children 
in Household) 0.254 0.435 0.000 1.000 0.080 0.271 0.000 1.000 0.254 0.435 0.000 1.000 

Household Size             

hs1 (one member) 0.257 0.437 0.000 1.000 0.617 0.487 0.000 1.000 0.260 0.439 0.000 1.000 

hs2 (two members) 0.392 0.488 0.000 1.000 0.258 0.438 0.000 1.000 0.392 0.488 0.000 1.000 

hs3 (three members) 0.149 0.356 0.000 1.000 0.072 0.259 0.000 1.000 0.142 0.349 0.000 1.000 

hs4 (four members) 0.126 0.332 0.000 1.000 0.034 0.182 0.000 1.000 0.128 0.334 0.000 1.000 

hsp5 (five members) 0.076 0.264 0.000 1.000 0.019 0.137 0.000 1.000 0.078 0.268 0.000 1.000 

Employment Status of Family Head            

emparttime (part time) 0.176 0.380 0.000 1.000 0.167 0.373 0.000 1.000 0.155 0.362 0.000 1.000 

empfulltime(fulltime) 0.441 0.497 0.000 1.000 0.542 0.499 0.000 1.000 0.433 0.496 0.000 1.000 

unemp(unemployed) 0.383 0.486 0.000 1.000 0.292 0.455 0.000 1.000 0.412 0.492 0.000 1.000 

Educational Level of Family Head            

Education less than highschool 0.026 0.159 0.000 1.000 0.004 0.062 0.000 1.000 0.040 0.196 0.000 1.000 

eduhighschool (highschool level) 0.188 0.391 0.000 1.000 0.072 0.259 0.000 1.000 0.287 0.453 0.000 1.000 

edusomecollege (some college) 0.310 0.462 0.000 1.000 0.273 0.446 0.000 1.000 0.321 0.467 0.000 1.000 

educollegeplus (collegeplus) 0.476 0.499 0.000 1.000 0.652 0.477 0.000 1.000 0.351 0.477 0.000 1.000 

Race/Ethnicity              

white 0.757 0.429 0.000 1.000 0.674 0.470 0.000 1.000 0.835 0.371 0.000 1.000 

black 0.128 0.334 0.000 1.000 0.178 0.383 0.000 1.000 0.092 0.289 0.000 1.000 

oriental 0.038 0.192 0.000 1.000 0.053 0.225 0.000 1.000 0.020 0.138 0.000 1.000 

other 0.076 0.265 0.000 1.000 0.095 0.293 0.000 1.000 0.054 0.226 0.000 1.000 

hispyes(hispanic) 0.092 0.289 0.000 1.000 0.083 0.277 0.000 1.000 0.062 0.242 0.000 1.000 

hispno (not hispanic) 0.908 0.289 0.000 1.000 0.917 0.277 0.000 1.000 0.938 0.242 0.000 1.000 

Region             

east 0.169 0.375 0.000 1.000 0.178 0.383 0.000 1.000 0.162 0.369 0.000 1.000 

central 0.168 0.374 0.000 1.000 0.167 0.373 0.000 1.000 0.244 0.429 0.000 1.000 

south 0.392 0.488 0.000 1.000 0.322 0.468 0.000 1.000 0.383 0.486 0.000 1.000 

west 0.271 0.445 0.000 1.000 0.333 0.472 0.000 1.000 0.211 0.408 0.000 1.000 

obs 4295       264       33633       
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The demographic characteristics of the household head also were included in this 

study. Both the employment status and educational attainment of the household head 

were represented as dummy or indicator variables. The variables unemp, empparttime 

and empfulltime were indicator variables representing whether the household head was 

unemployed, employed part-time or employed fulltime. The results indicate that for 

households choosing choice 1, almost 44% are employed fulltime whereas for those 

households under choice 2 more than 50% were also employed fulltime. For households 

with choice 3, approximately 43% were employed fulltime.  Similarly the variables 

edulths, eduhighschool, edusomecollege and educolleges were utilized to describe 

whether the household head achieved educational attainment below high school, high 

school, above high school but below college and college and post-college. From the 

table more than half of the household in all three choices have some college units or 

have college or higher degrees. For example in choice 1, almost 79% of the households 

have college education whereas for those household who purchased only organic milk 

(choice 2) 65% alone comprise those heads which have college and higher degrees. 

Similar with choice 1, those who purchased only conventional milk (choice 3) have 

approximately 67 % of their household heads with college units and college plus 

degrees. 

Also included into the model are the race and ethnicity of the household. The 

indicator variables white, black, oriental and others represented the racial household 

distinctions. The majority of the households of all the three choices are white households 

with choice 1 (76%), choice 2 (67%) and choice 3 (84%).  On the other hand, household 
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ethnicity was represented as hispanic (hispyes) and nonhispanic (hispno) and more than 

90% in all of the three choices are non-Hispanic households. Finally, regional dummy 

variables were also included to describe the regional location of the household. The four 

major regional dummies that were created were east, central south and west. The 

number indicate that 39% of the households for choice 1 are from the south while those 

household that were under choice 2, approximately 33% were from the west. For choice 

3, 38% of the households were from the south.    

Empirical Results  

Test of Independence of Irrelevant Alternatives (IIA) 

A fundamental characteristic of the Multinomial Logit Model (MNL) is its 

assumption of the Independence of Irrelevant Alternatives (IIA) axiom.  However, given 

that pairwise choice alternatives S and T are close substitutes, then the MNL model may 

produce inconsistent estimates. Consequently, if choices S and T are truly not 

independent, the MNL model may not be the optimal model to choose. 

 The Hausman-McFadden (1984) and Small-Hsiao (1985) tests involve pairwise 

comparisons of estimated coefficients of the full model vis-a- vis those estimates 

generated by restricted models where at least one choice alternative has been removed 

(Long and Freese, 2006). For these tests, the null hypothesis is whether alternatives S 

and T are independent of other alternatives. If the Chi-square statistic is significant, then 

the use of the MNL model is deemed inappropriate.  

Table 2.2 presents the results of the two tests where the Hausman-McFadden test 

imply that both two choices failed to reject the null hypotheses and therefore use of the 
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MNL model is still valid. Notice that choice 2 have negative Chi-squared values. While 

implausible, these values are to be interpreted as not violating the IIA condition 

(Hausman-McFadden, 1984). On the other hand, the Small-Hsiao (1985) test results 

indicate Choice 1 rejecting the null hypotheses while Choice 2 failing to reject it. This 

situation implies that for Choice 1, IIA is not valid while for Choice 2, the independence 

axiom holds. Notice that both the Hausman-McFadden and Small-Hsiao test produced 

contradictory results. Apparently, these conflicting results from the Hausman-McFadden 

and Small-Hsiao tests were investigated by Cheng and Long (2007) by running Monte 

Carlo simulations on the size properties of these two tests. The study concluded that the 

Hausman-McFadden test results in poor estimates even if the sample size is larger than 

1000 while the Small-Hsiao test performance were ambiguous with different data 

structures.  

The study further concludes that these tests are inadequate in evaluating IIA 

validity or violations and note McFadden’s (1973) recommendation that care and valid 

judgment must be taken into account in using the MNL models especially if the 

partitioned choice outcomes are really distinct from each other. On the other hand, this 

exercise explicitly assumes a priori that the choices might not be distinct and therefore 

prompts us to use other models that would explicitly assume choice correlations (i.e. 

multinomial probit model).  
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Table 2.2. Hausman and Small Hsiao Tests for Independence of Irrelevant 
Alternatives (IIA) for a Multinomial Logit Model (MNL) 
     

 Omitted Choicea 
Chi-Squared 

Statistic df P-value Evidence 
     

Hausman Test (n=38192)     
Choice1 4.5470 19 1.0000 Accept Ho 

Choice2 -0.0370b 19 1.0000 Accept Ho 
     
Small Hsiao Test (n=38192)     
Choice 1 44.809 19 0.001 Reject Ho 
Choice 2 15.34 19 0.701 Accept Ho 
     

Ho: Difference in the coefficients are not systematic 
Note if Chi2 < 0 then the model does satisfy the asymptotic assumptions of the test. 
a Since there are 3 alternatives in this model, 2 test variations are expected  where omission of choice 1 
results in  the first restricted model and omission of choice 2 produces the second restricted model. 
Both the Hausman and Small-Hsiao tests compare the restricted models’ coefficients with the full 
model where all choices are included.  
b, Hausman and McFadden (1984) opined that a possible negative result is evidence  that IIA is not 
violated. 
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Multinomial Model Parameter Estimates  

Table 2.3 presents three multinomial models namely the multinomial logit model 

and variants of the multinomial probit models. For the multinomial probit models, the 

variation comes from the various assumptions made about the error variance-covariance 

matrix. These variations include uncorrelated and unequal correlation of error terms.  

The findings of the three models indicate that as the number of household size 

increases, the less likely that these households will purchase the combination of both 

organic and conventional milk (choice 1) and organic milk (choice 2) and this finding is 

readily apparent in choice 2 relative to choice 1. This situation implies that a single 

household is more likely to purchase both organic and a combination of organic and 

conventional milk relative to households with two, three, four and five or more 

household members. Household income although insignificant is positive throughout all 

models suggesting increasing likelihood of buying both organic and combination of 

organic and conventional milk. On the other hand households with children are less 

likely to buy both organic and combination of organic and conventional milk relative to 

households without children.  

As for employment status, household heads that are employed fulltime are less 

likely to buy milk relative to those whose employment status is part time or not 

employed. The estimates for the household head’s level of education suggest a pattern 

indicating increasing likelihood of purchasing organic and combination of both milk 

types as educational level increases. As for race, the results show white households are 
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Table 2.3. Multinomial Logit and Probita Estimated Coefficients and P-values of Fluid Milk Purchase   
 

  Multinomial Logit Multinomial Probit Multinomial Probit 

   (Uncorrelated Error Terms) 
(Unequal Correlation of 

Error Terms) 

Variables Response 1b Response 2c Response 1 Response 2 Response 1 Response 2 

  Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients 

       

inc 0.1712 0.0368 0.1289 0.0433 0.0448 0.0664 
 (0.000)d (0.647) (0.000) (0.272) (0.060) (0.053) 

agepcchild -0.0622 -0.5136 -0.0498 -0.2475 -0.0212 -0.2047 
 (0.306) (0.141) (0.266) (0.100) (0.275) (0.087) 

Household Size       

hs2 -0.0566 -1.1466 -0.0532 -0.5863 -0.0368 -0.4941 
 (0.206) (0.000) (0.106) (0.000) (0.100) (0.000) 

hs3 -0.0862 -1.4279 -0.0750 -0.7173 -0.4652 -0.5924 
 (0.181) (0.000) (0.116) (0.000) (0.115) (0.000) 

hs4 -0.1876 -2.0069 -0.1565 -1.0130 -0.0776 -0.8593 
 (0.016) (0.000) (0.006) (0.000) (0.087) (0.000) 

hsp5 -0.2069 -2.0398 -0.1694 -0.9729 -0.0819 -0.8049 
 (0.023) (0.000) (0.011) (0.000) (0.094) (0.000) 

Employment of Family Head      

empparttime 0.1074 0.4930 0.0815 0.2307 0.0327 0.1601 
 (0.028) (0.011) (0.025) (0.016) (0.130) (0.037) 

empfulltime -0.1732 0.1917 -0.1292 0.0545 -0.0427 -0.0056 
 (0.000) (0.226) (0.000) (0.4780) (0.076) (0.932) 

Education of Family Head      

eduhighschool 0.0375 0.9948 0.0252 0.3910 0.0119 0.2916 
 (0.723) (0.333) (0.733) (0.334) (0.667) (0.257) 

edusomecollege 0.3435 2.0012 0.2462 0.8717 0.0948 0.6989 
 (0.001) (0.047) (0.001) (0.028) (0.111) (0.001) 

educollegeplus 0.6197 2.6918 0.4607 1.2509 0.1777 1.0293 
 (0.000) (0.007) (0.000) (0.0020) (0.078) (0.000) 

Race/Ethnicity        

white -0.2025 -0.8757 -0.1564 -0.4300 -0.0634 -0.3535 
 (0.017) (0.008) (0.015) (0.009) (0.093) (0.017) 

black 0.2350 -0.0054 0.1784 0.0561 0.0619 0.0789 
 (0.014) (0.988) (0.014) (0.752) (0.155) (0.600) 

oriental 0.2843 0.2163 0.2283 0.2023 0.0822 0.1980 
 (0.018) (0.605) (0.02) (0.34) (0.145) (0.246) 

hispyes 0.3057 0.2548 0.2376 0.1970 0.0840 0.2066 
 (0.000) (0.467) (0.000) (0.246) (0.099) (1.540) 

 



 

 

26 

Table 2.3 Continued 
 

  Multinomial Logit Multinomial Probit Multinomial Probit 

   (Uncorrelated Error Terms) 
(Unequal Correlation of 

Error Terms) 

Variables Response 1b Response 2c Response 1 Response 2 Response 1 Response 2 

  Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients 

Region       

central -0.3774 -0.3885 -0.2730 -0.1994 -0.0970 -0.1615 
 (0.000) (0.066) (0.000) (0.054) (0.063) (0.057) 

south -0.0327 -0.2528 -0.0250 -0.1226 -0.0109 -0.0934 
 (0.494) (0.171) (0.480) (0.180) (0.416) (0.057) 

west 0.1375 0.2908 0.1059 0.1909 0.0405 0.1825 
 (0.008) (0.120) (0.006) (0.041) (0.113) (0.014) 

Constant -2.1369 -5.5852 -1.7395 -3.4493 -0.5923 -3.1550 
 (0.000) (0.000) (0.000) (0.000) (0.064) (0.000) 
              
       

Wald chi2(36) 1006.8700  983.0900  501.8000  

 0.0000  0.0000  0.0000  
log 
Pseudoliklihood -1463.2930  -1460.7740    
log simulated 
Pseudoliklihood     -1458.9130  

obs 38192   38192   38192   
aBase outcome is response 3 (only conventional milk) 
bResponse 1 is purchase of both organic and conventional milk 
cResponse 2 is purchase of organic milk only 
dvalues in parentheses are p-values 
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less likely to buy organic and conventional milk and organic milk only compared to 

black and oriental households while Hispanics are more likely to buy both organic and 

combination milk relative to non-Hispanics.  The findings for regions are relatively the 

same for all models as households located in the west are more likely to buy strictly 

organic milk and combination of organic and combination milk. However, those 

households located in the South and Midwest are less likely to buy organic milk and a 

combination of organic and conventional milk. 

Marginal Effects Analysis 

Multinomial Logit Analysis 

Looking at the multinomial logit model, as household incomes increase the 

purchase probability increases by 0.0162 and 0.0001 and decreases by 0.0163 if the milk 

purchase is combination, strictly organic milk and strictly conventional milk (Table 2.4). 

For the marginal effects of household size equal or greater than 5 members, the 

probability of purchasing declines by 0.0180 and 0.0035 and increase by 0.0215 

respectively, in purchasing a combination of organic and conventional milk and strictly 

organic milk and strictly conventional milk. Also we find a similar trend with respect to 

presence of children in that, the probability of purchase declines by 0.0057 and 0.0016 

and an increase of 0.0072 if the choice is to buy the combination of organic and 

conventional milk, strictly organic milk and strictly conventional milk. 
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Table 2.4. Marginal Effects of Multinomial Logit and Probit1 Models of Fluid Milk Purchase by Organic, Conventional or 
Both  
  

 Multinomial Logit  Multinomial Probit  Multinomial Probit 

 (Uncorrelated Error Terms)  (Uncorrelated Error Terms)  
(Unequal Correlation of Error 

Terms) 

Variables 
Response 

1 
Response 

2 
Response 

3  
Response 

1 
Response 

2 
Response 

3  
Response 

1 
Response 

2 
Response 

3 

            

inc 0.0162 0.0001 -0.0163  0.0169 0.0001 -0.0170  0.0169 0.0002 -0.0171 
 (0.000) (0.817) (0.000)  (0.000) (0.761) (0.000)  (0.000) (0.447) (0.000) 

agepcchild -0.0057 -0.0016 0.0072  -0.0060 -0.0017 0.0078  -0.0063 -0.0018 0.0080 
 (0.314) (0.104) (0.204)  (0.293) (0.079) (0.182)  (0.880) (0.733) (0.852) 

Household Size            

hs2 -0.0050 -0.0037 0.0086  -0.0059 -0.0044 0.0102  -0.0096 -0.0045 0.0141 
 (0.239) (0.000) (0.042)  (0.169) (0.000) (0.018)  (0.700) (0.720) (0.646) 

hs3 -0.0076 -0.0032 0.0109  -0.0087 -0.0037 0.0124  -0.0135 -0.0037 0.0172 
 (0.189) (0.000) (0.063)  (0.145) (0.000) (0.039)  (0.734) (0.748) (0.691) 

hs4 -0.0165 -0.0039 0.0203  -0.0185 -0.0043 0.0228  -0.0233 -0.0044 0.0277 
 (0.013) (0.000) (0.002)  (0.007) (0.000) (0.001)  (0.632) (0.754) (0.587) 

hsp5 -0.0180 -0.0035 0.0215  -0.0199 -0.0038 0.0238  -0.0250 -0.0038 0.0288 
 (0.017) (0.000) (0.004)  (0.010) (0.000) (0.002)  (0.659) (0.760) (0.613) 

Employment of Family Head           

empparttime 0.0103 0.0020 -0.0122  0.0104 0.0020 -0.0125  0.0113 0.0016 -0.0129 
 (0.036) (0.032) (0.014)  (0.036) (0.051) (0.014)  (0.743) (0.718) (0.689) 

empfulltime -0.0164 0.0007 0.0156  -0.0170 0.0007 0.0163  -0.0166 0.0004 0.0162 
 (0.000) (0.188) (0.000)  (0.000) (0.263) (0.000)  (0.645) (0.757) (0.656) 

Education of Family Head           

eduhighschool 0.0031 0.0045 -0.0076  0.0024 0.0039 -0.0062  0.0011 0.0036 -0.0047 
 (0.761) (0.451) (0.508)  (0.808) (0.428) (0.552)  (0.992) (0.787) (0.963) 



 

 

29 

Table 2.4 Continued  
 
 Multinomial Logit  Multinomial Probit  Multinomial Probit 

 (Uncorrelated Error Terms)  (Uncorrelated Error Terms)  
(Unequal Correlation of Error 

Terms) 

Variables 
Response 

1 
Response 

2 
Response 

3  
Response 

1 
Response 

2 
Response 

3  
Response 

1 
Response 

2 
Response 

3 

edusomecollege 0.0328 0.0112 -0.0441  0.0311 0.0098 -0.0409  0.0287 0.0094 -0.0381 
 (0.003) (0.220) (0.001)  (0.003) (0.147) (0.000)  (0.846) (0.735) (0.755) 

educollegeplus 0.0607 0.0166 -0.0773  0.0598 0.0150 -0.0748  0.0577 0.0145 -0.0722 
 (0.000) (0.139) (0.000)  (0.000) (0.061) (0.000)  (0.754) (0.708) (0.623) 

Race/Ethnicity             

white -0.0197 -0.0040 0.0238  -0.0203 -0.0043 0.0246  -0.0216 -0.0040 0.0256 
 (0.027) (0.053) (0.009)  (0.025) (0.061) (0.009)  (0.671) (0.673) (0.609) 

black 0.0240 -0.0001 -0.0239  0.0249 0.0001 -0.0250  0.0249 0.0002 -0.0251 
 (0.022) (0.925) (0.024)  (0.020) (0.951) (0.021)  (0.763) (0.906) (0.756) 

oriental 0.0299 0.0007 -0.0306  0.0325 0.0014 -0.0338  0.0330 0.0015 -0.0345 
 (0.033) (0.690) (0.030)  (0.026) (0.554) (0.022)  (0.740) (0.771) (0.716) 

hispyes 0.0321 0.0008 -0.0329  0.0337 0.0013 -0.0349  0.0334 0.0016 -0.0350 
 (0.000) (0.572) (0.000)  (0.000) (0.474) (0.000)  (0.694) (0.757) (0.664) 

Region            

central -0.0330 -0.0011 0.0342  -0.0333 -0.0010 0.0344  -0.0341 -0.0007 0.0348 
 (0.000) (0.065) (0.000)  (0.000) (0.151) (0.000)  (0.564) (0.730) (0.543) 

south -0.0030 -0.0008 0.0039  -0.0030 -0.0009 0.0040  -0.0033 -0.0009 0.0042 
 (0.505) (0.166) (0.397)  (0.510) (0.188) (0.394)  (0.906) (0.721) (0.880) 

west 0.0133 0.0010 -0.0144  0.0139 0.0015 -0.0154  0.0142 0.0017 -0.0160 
 (0.010) (0.181) (0.006)  (0.009) (0.112) (0.004)  (0.700) (0.722) (0.637) 

Prob(Outcome) 0.1062 0.0035 0.8904  0.1075 0.0036 0.8889  0.1091 0.0035 0.8874 
values in parentheses are p-values         
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As for the household head’s employment status, the findings indicate that for a 

household head that is employed full time, the probability of purchasing decreases by 

0.0164 and increases by 0.0007 and 0.0156 respectively, if the purchase choice is 

combination, strictly organic milk and strictly conventional milk. If on the other hand the 

household head is employed part time, then the probability of purchasing a combination 

of organic and conventional milk and organic milk only increases by 0.0103 and 0.0020. 

However, the purchase probability decreases by 0.0122 if the milk purchase is 

conventional. On the other hand, if the household head education is college level we find 

that the purchase probability increases by 0.0607 and 0.0166 and decreases by 0.0773 

respectively, if the choice purchase is combination, strictly organic and strictly 

conventional. The same purchase probability trends are observed if the household head 

is either a high school graduate or has some college level units.  

As for race, if the household is white then the probability of purchase declines by 

0.0197 and 0.0040 and increases by 0.0238 if the milk purchase is a combination, 

organic milk only or conventional milk. With regards to black and oriental households, 

the probability of purchase increases by 0.0240 and 0.0299 if the milk purchase is a 

combination of organic and conventional milk. If on the other the purchase is organic 

milk only, then the probability declines by 0.0001 if the household is black and increases 

by 0.0007 for an oriental household. Both purchase probabilities of black and oriental 

household decline by 0.0239 and 0.0306 if the milk purchase is conventional milk. For 

the ethnicity variable, the findings indicate that for hispanic households, the probability 

of purchasing organic milk and combination increases by 0.0321 and 0.0008 whereas the 
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probability of purchasing conventional milk declines by 0.0329. As for regions, 

households in the west purchase probability increases by 0.0133 and 0.0052 and declines 

by 0.0144 if the purchase choice is combination milk, strictly organic milk and strictly 

conventional. On the other hand, for those households in the south, the probability of 

purchase declines by 0.0030 and 0.0008 and increases by 0.0039 if the purchase is 

combination of organic and conventional milk, strictly organic and strictly conventional. 

Relative to the south households, those located in the central region a have similar 

purchase probability trends.  

Multinomial Probit Analysis 

The marginal effects for the two multinomial probit variants seem to be close in 

both magnitude and signs relative to the multinomial logit model marginal effects. For 

the multinomial probit model with uncorrelated error terms, the closeness and same sign 

magnitudes relative to the multinomial logit may be attributed to the fact that the error 

terms are assumed to be independent standard normal random variables. The difference 

however of the said multinomial probit model is the relatively longer computation time 

to achieve convergence due to solving standard numerical integration as required by an 

error structure that is standard normal. Thus, this type of multinomial probit still assumes 

IIA. 

There is little difference in estimated marginal effects generated by the 

multinomial logit model and the other multinomial probit variants. Thus, differences in 

the marginal effects can only occur if there is indeed a significant departure of both 

probability distributions. As argued by Dow and Endersby (2004), the relatively 
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narrower confidence interval of the marginal effects estimates found in the multinomial 

logit model relative to its probit analog seem to justify the use of the multinomial logit 

model over its probit counterpart in terms of the confidence it generates. It should noted 

that for this exercise, the 95 percent confidence bands of the marginal effects estimates 

are narrower in the multinomial logit model relative to the multinomial probit  estimates. 

Similarly, the work of Kropko (2008) strongly suggests that even when the 

independence of irrelevant alternative (IIA) axiom is severely violated, the multinomial 

logit model estimates provide more accurate results vis-à-vis those generated by the 

multinomial probit model.    

Numerical Stability and Precision of Multinomial Logit (MNL) and Probit  

(MNP) Marginal Effects Estimates 

When the respective multinomial model variants are compared, we find that little 

differences exist in the magnitudes of the marginal effects. However, the estimated 

marginal effects for the Multinomial Probit (unequal error correlation) are mostly 

insignificant. The standard errors generated by maximum simulated likelihood are larger 

relative to the other two cases. Following Dow and Endersby (2004), Greene (2008) and 

Judd (1998), we calculate the condition numbers of the three models respectively. The 

condition number (CI) is defined as the square root of the ratio between the largest and 

smallest eigenvalues (Greene, 2008). Likewise, Judd (1998) suggests a measure that can 

indicate numerical stability and accuracy. By taking the log10 (CI), indices that are less 

than or equal than 3 or 4 indicated numerical optimization stability while those greater 

than 10 imply instability.  
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 Table 2.5 presents the conditional numbers and log10 (CI) values for the 

multinomial logit, multinomial probit (uncorrelated error terms) and multinomial probit 

(correlated error terms) models. Results show that the log10 (CI) value for the MN Probit 

error correlated variant is 8.36 while for the MN Logit and MN Probit uncorrelated error 

variant,  the log10 (CI) values are approximately 2.32 and 2.045. This finding implies 

that the MN Logit and MN Probit uncorrelated error variant likelihood estimation 

procedure is numerically more stable and accurate than the MN Probit error correlated 

variant. This finding lends support to the notion that because of the inherent instability of 

likelihood estimation in the MN Probit error correlated variant, its estimated coefficients 

and/or standard errors are suspect, yielding greater likelihood of statistical insignificance 

for the estimated marginal effects. 

Assessment of Predictive Capacity of the Organic Milk Multinomial Choice  

Model (Case of the Multinomial Logit and Probit Model) 

We also examined the predictive capacity of both the multinomial logit and 

probit for organic milk (uncorrelated error term variant). Several studies including Park 

and Capps (1997) and Capps et al. (1999) have utilized prediction success tables in 

evaluating the predictive ability of multinomial/polychotomous choice models. In this 

approach, a successful prediction refers to a situation where both actual and predicted 

outcomes match in each of the outcome choices. To illustrate, suppose that the 

associated predicted probabilities of the ith household are as follows: choice 1 (0.2), 

choice 2 (0.3) and choice 3 (0.5). From the predicted values, the ith household should 



 

 

34 

 

Table 2.5. Conditional Indices and Log10 (CI) of Multinomial Model Variants  
    
  Multinomial Logit Multinomial Probit Multinomial Probit 

  
(Uncorrelated Error 

Terms) 
(Uncorrelated Error 

Terms) 
(Unequal Correlation of 

Error Terms) 
Max Eigenvalue 4.0457 0.6275 0.46766937 
Min Eigenvalue 0.00009396 0.00005104 0.0000000000000000087 
Condition 
Number(CI)a 207.5031 110.8788 232131789.3914 

log10(CI)b 2.3170 2.0448 8.3657 
a The condition number is defined as the square root of the ratio between highest and lowest eigen values 
(Greene, 2008) 
b The log10 (CI) provides a measure of numerical precision with numbers ≤ 3  indicating numerical stability and 
those > 10 showing potential instability (Judd, 1998 cited in Dow and Endersby, 2004) 
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choose outcome 3 because it has the highest probability and if the actual choice is indeed 

choice 3, then the model has made a correct prediction. Now if we sum all the correct 

predictions in all the choice outcomes and divide it by the total number of actual choices, 

then we get a measure of how successful the multinomial model is in making right 

predictions. Likewise, the ratio of a choice outcome’s right predictions and its 

corresponding number of actual choices determines the model’s ability to predict that 

particular outcome.   

 In this exercise however, an attempt was made to generate the usual prediction 

success table but was unsuccessful due to the dominant frequency of choice 3 

(conventional milk). Almost all of the generated predicted probabilities pointed to choice 

3 as the choice that should be chosen. This outcome however reduces the likelihood of 

having right predictions for choice 1 (organic and conventional milk) and choice 2 

(organic milk only) and therefore constrains the ability of the model to correctly predict 

both choices 1 and 2. In order to circumvent this problem, we utilize the percentage of 

the observed frequencies of each choice as cutoff points in constructing the various 

conditions that will likely lead to the predicted choice of a particular outcome. The 

cutoff values are 0.112458 (Choice 1), 0.006912 (Choice 2) and 0.8806295 (Choice 3).    

Denoting P(xb1), P(xb2) and P(xb3) as the predicted probabilities for choice 1 , 2 

and 3, the following are  conditions by  which  each of the  3 choices can be predicted : 

Choice 1 
 

8806295.0)3(&12`0069.0)2(&112458.0)1( pp xbPxbPxbP ≥  
8806295.0)3(&006912.0)2(&112458.0)1( pxbPxbPxbP ≥≥
8806295.0)3(&006912.0)2(&112458.0)1( ≥≥ xbPxbPxbP p  
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Choice 2 

 
8806295.0)3(&006912.0)2(&112458.0)1( pp xbPxbPxbP ≥  
8806295.0)3(&006912.0)2(&112458.0)1( pxbPxbPxbP ≥≥  
8806295.0)3(&006912.0)2(&112458.0)1( ≥≥ xbPxbPxbP p  

 
Choice 3 
 

8806295.0)3(&006912.0)2(&112458.0)1( ≥xbPxbPxbP pp  
8806295.0)3(&006912.0)2(&112458.0)1( ≥≥ xbPxbPxbP p  
8806295.0)3(&006912.0)2(&112458.0)1( ≥≥ xbPxbPxbP p  

 
Results indicate that for the multinomial logit case, the model predicts that 

approximately 19.16 percent of the time that choice 1 (organic and conventional milk) 

will be chosen. On the other hand, choice 2’s (organic milk only) prediction is 8.4 

percent. As for the last choice, the model predicts that 72.37 percent of the time, choice 

3 (conventional milk) will be selected.  Similar findings were also observed for the 

multinomial probit case where choice 1 is 19.27 percent, while for choice 2 is 8.64 

percent and 72.08 percent for choice 3. Also, the results tend to favor the multinomial 

probit over the multinomial logit in having a higher prediction rate in choices 1 and 2. 

However, for choice 3, the multinomial logit model has a higher prediction probability 

relative to its counterpart multinomial probit model.  

Conclusions and Implications  

The findings of both models indicate that as the number of household member 

increases, the less likely that these households will purchase organic milk and 

combination of both organic and conventional milk. This result implies that a single 

household is more likely to purchase both organic and conventional milk relative to 

households with two, three, four and five or more household members. Household 
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income is positive suggesting increasing likelihood of buying both organic and 

combination milk. On the other hand households with children are less likely to buy both 

organic and combination of organic and conventional milk relative to households 

without children. The estimates for the level of education of the household head indicate 

increasing likelihood of purchasing organic and combination of both as educational level 

increases. As for race, the results show that white households are less likely to buy 

compared to black and oriental household while Hispanics are more likely to buy both 

organic and combination milk relative to non-Hispanics.  For regions, households 

located in the west are more likely to buy strictly organic milk and a combination of 

organic and conventional milk. As for employment status, household heads that are 

employed fulltime are less likely to buy milk relative to those whose employment status 

is part time or not employed.  

 This work provides input in designing marketing strategies that can target 

particular demographic groups such as single person, college educate household heads, 

oriental, Hispanic and western located households. We note that these findings represent 

the 2004 conditions and that a more current data set may further update recent 

behavioral changes with regards to the interplay between factors that affect organic and 

conventional milk purchase.  
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CHAPTER III 

HOUSEHOLD DEMAND ANALYSIS OF ORGANIC AND  

CONVENTIONAL FLUID MILK IN THE UNITED STATES BASED  

ON THE 2004 NIELSEN HOMESCAN PANEL∗∗∗∗ 

 

In recent years, consumer concerns have moved beyond issues of fat content 

(Gould, 1996) to issues related to the environment, genetically modified organisms 

(GMOs), health risks, and pesticide use. Recent trends in supermarkets offering healthier 

and natural food choices can been seen as a reaction to consumer concerns. The rapid 

expansion in the organic food market (Thompson, 1998) in particular has, in effect, 

triggered growth in the organic milk industry. Dairy products, along with fresh produce, 

were among the first organic products experienced by consumers (Demeritt, 2004). As 

reported by Dimitri and Venezia (2007), beginning in the early 1990s, the distribution of 

organic milk was mainly done through specialty shops and other small-scale operators. 

Currently, organic milk is available in nearly all food retail venues, including 

conventional supermarkets and mass merchandisers (e.g. Costco and Wal-Mart), 

implying wide distribution of the product within the last decade. Glaser and Thompson 

(2000) also observed that organic milk sold in gallons and pints barely registered any 

sales, but organic milk sold in half-gallon containers recorded impressive sales. Because 

                                                 
∗ Reprinted with permission from “Household Demand Analysis of Organic and Conventional Fluid Milk 
in the United States Based on the 2004 Nielsen Homescan Panel” by Pedro A. Alviola IV, and Oral Capps, 
Jr., in press. Agribusiness: an International Journal, Copyright[2009] by Wiley Periodicals, Inc., A Wiley 
Company  
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retail sales of organic milk have been growing since the mid 1990s, while overall sales 

of conventional milk have remained relatively constant over the same time period 

(Miller and Blayney, 2006), market shares for organic milk are on the rise. Organic milk 

currently constitutes about six percent of retail milk sales (Dimitri and Venezia, 2007).  

Organic dairy is a rapidly growing market sector, offering opportunities for 

farmers to boost their incomes through conversion from commercial to organic 

production. Organic milk retails at premiums as high as 80 percent over conventional 

milk (Glaser and Thompson, 2000), while producers can accrue premiums of more than 

40 percent over conventional prices (Organic Valley, 2005). For producers who are 

facing the decision of whether or not to invest in the conversion to organic production 

methods, it is crucial to have information on the prospects for the market, in particular, 

issues concerning consumer demand. 

In this light, the objective of this research is to analyze household demand for 

organic milk and for conventional milk in the United States, addressing most of the 

limitations indigenous to previous research efforts. We wish to better understand the 

drivers of the demand for organic milk and for conventional milk, particularly own-price 

effects, cross-price effects, and income effects, as well as the effects of socio-

demographic characteristics of households. Similar to the descriptive work done by 

Dimitri and Venezia (2007), we employ the Nielsen Homescan Panel in our analysis. 

Initially, we center attention on the factors affecting the decision to purchase organic 

milk and conventional milk at the household level.  
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Once the decision to purchase organic milk and conventional milk is made, we 

subsequently focus on factors affecting the amount purchased. Consequently, we 

identify the impacts of socio-demographic variables such as household size, the presence 

of children, employment status, education level, race, and ethnicity of the household 

head and region associated with the quantities of organic fluid milk and conventional 

milk purchased, and we estimate own-price, cross-price, and income elasticities for 

organic milk and conventional milk at the household level.  In this way, we add to the 

store of knowledge in dealing with a formal econometric analysis of the demand for 

organic milk and conventional milk, by offering a micro-perspective at the household 

level across the United States. 

Literature Review 

Previous research on consumer demand for organic milk has made important 

contributions to the understanding of the market. For example, Bernard and Mathios 

(2005) find that consumers are willing to pay substantially more for organic milk and 

rBST-free milk than for conventional milk. Glaser and Thompson (2000), through the 

use of scanner data, find that purchases of organic milk are very sensitive to changes in 

prices. Dhar and Foltz (2005) considered demand interrelationships for rBST free milk, 

organic milk, and unlabeled (conventional) milk through the estimation of a Quadratic 

Almost Ideal Demand System (QUAIDS). The data indigenous to this analysis are 

weekly milk prices and sales for twelve U.S. cities over the period of March 9, 1997, to 

February 24, 2002. Findings revealed that rBST free milk and organic milk were 

complements, conventional milk and rBST free milk were substitutes, and conventional 
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milk and organic milk were substitutes. Additionally, own-price elasticities for rBST 

free milk, organic milk, and conventional milk were estimated to be -4.40,   -1.37, and -

1.04, respectively. The limitations of this research were threefold: (1) because the 

analysis only covered 12 U.S. cities, it may not be representative of national demand 

patterns; (2) the period of the analysis may not reflect current market trends; and (3) the 

analysis did not deal with socio-demographic characteristics of individual consumers or 

households. 

Dimitri and Venezia (2007) relied on the use of Nielsen Homescan data from 

2004, with coverage of 38,375 households that purchase milk. The Nielsen Homescan 

data are a nationwide panel of households who scan their food purchases for home use 

from all retail outlets. Data include detailed product characteristics, quantities, and 

expenditures for each food item purchased by each household. The data are unique in 

that purchase information and demographic information about the households is 

available. In conducting descriptive analysis of the 2004 Nielsen data, they concluded 

that the typical consumer of organic milk is white, well-educated, and living in a 

household headed by someone younger than 50 years old. Further, households of all 

income levels purchase organic milk. Across ethnic groups, a higher share of Oriental, 

Hispanic, and “other” households purchase organic milk rather than conventional milk. 

The limitations of this research were twofold: (1) no formal statistical analysis of these 

data was conducted; and (2) no own-price, cross-price, or income elasticities were 

estimated. 
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Methodology 

 We plan to address most of the limitations of previous research efforts in 

analyzing household demand for organic milk and for conventional milk. Through the 

use of the 2004 Nielsen Homescan Panel, we employ the Heckman two-step procedure 

in this analysis. 

Random Utility Model 

The decision of whether or not to purchase organic milk can be modeled as a 

binary choice, wherein the outcome variable Yi takes on two values: 1 with the 

occurrence of the event (purchase organic milk) or 0 (purchase conventional milk), i = 1, 

2, …, n, with n referring to the number of households in our sample4. With this 

specification, we can assume a utility function given as:  

(1)  ),( iiWU ε , 

where utility is function of the covariates Wi involved in the decision process. Assuming 

that the utility function U exists, this choice problem can be represented as  

(2)  1111 eWU += η , 

(3)  0000 eWU += η , 

where U1 and U0 are the utility levels associated with purchasing organic milk (U1) and 

conventional milk (U0); the disturbance terms e1 and e0 are random error components. 

                                                 
4 Other choice possibilities also included households which purchase no milk at all and households which 
purchase both organic and conventional milk. The number of households which purchase no milk during 
calendar year 2004 was extremely small. The number of households purchasing only organic milk was 
264, the number of households purchasing both organic milk and conventional milk was 4,295, and the 
number of households purchasing only conventional milk was 33,633. We were concerned with the 
decision to buy organic (conventional) milk or not over the entire year. Work is underway, in a separate 
analysis,  in estimating a polychotomous choice model dealing with the aforementioned three choices.   
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For this exercise, we assume the ith household chooses to purchase organic milk (Yi=1) 

because more utility is derived relative to the purchase of conventional milk (Yi=0). 

Thus, if the ith household chooses to purchase organic milk, then U1 > U0 and 

consequently:                                                    

(4)   )Pr()1Pr( 01 UUYi >== , 

(5)    Pr(Yi = 1) )Pr( 000111 eWeW +>+= ηη , 

(6)    Pr(Yi = 1) )Pr( 001110 ηη WWee −<−= , and  

(7)    Pr(Yi = 1) = Pr(µ < 0011 ηη WW − ). 

Subsequently, if we assume that e1 and e0 are normally distributed, then the random 

variable µ = (e1-e0) also is normally distributed. Consequently, Pr(Yi = 1) = 

Φ( 0011 ηη WW − ), where Φ represents the cumulative distribution function (cdf). This 

relationship holds across all households, i = 1,…, n. Through standardization of µ, Φ 

then represents the standard normal cumulative distribution function. In this way, we 

justify the use of the probit model in investigating the decision to purchase organic fluid 

milk. Given the binary nature of the choice problem, we also justify the use of the probit 

model in investigating the decision to purchase conventional milk. 

 Hill and Lynchehaun (2002) identified various factors that influence consumer 

preferences in purchasing organic milk (Figure 3.1). Factors considered are grouped 

according to: (1) personal factors such as values and lifestyles; (2) intrinsic factors such 

as price and packaging; (3) cultural and social factors including age, ethnicity, and 

income; (4) knowledge factors; (5) extrinsic factors; and (6) uncontrollable factors. As 
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Figure 3.1 Factors that influence the consumer preference towards organic milk 
(Hill and Lynchehaun, 2002). 
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well, as stated previously, Dimitri and Venezia (2007) provided hypotheses regarding 

typical consumers purchasing organic milk. 

Heckman Sample Selection Approach 
 

Following Heckman (1976, 1979), the issue of sample selection bias may arise if 

we limit our sample to those households who purchase organic milk or to those 

households who purchase conventional milk. The remedy, as proposed by Heckman, is 

to use a two-step approach where the first-stage involves the usage of a binary choice 

specification (i.e. probit model) to account for the selection bias. In the second stage, we 

estimate the model using least squares, with the inclusion of the omitted variable, 

representing the selection bias, as an additional covariate or regressor.  

There have been previous studies that have looked at censoring and sample 

selection issues in regard to estimating the demand for conventional fluid milk. Schmit 

et al (2002) utilized a two-step sample selection model based on a Nielson Homescan 

Panel of U.S. households from January 1996 through December 1999 in order to 

estimate at-home demand for fluid milk and cheese. Likewise, Dong et al., (2004b) 

examined milk purchasing behavior using a double-hurdle model, accounting for not 

only the censored nature of commodity purchases, but also for the dynamics of the 

purchase process. This work involved data from a panel of upstate New York 

households over the period 1996 to 1999. In our analysis, we consider only purchase 

patterns of organic and conventional milk over calendar year 2004.  
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First Stage of the Heckman Procedure 

Using the probit model, we denote qi as an indicator variable that takes on value 

of 1 if the ith household purchases organic milk and 0 if the ith household purchases 

conventional milk. Mathematically the probit model can be represented as:  

 (8)   )()1Pr( ηii Wq Φ== , and 

 (9)   )(1)0Pr( ηii Wq Φ−== , 

where Φ  is the standard normal cumulative distribution function (cdf) and Wi is vector 

of variables that are related to the decision to purchase organic milk, similar to those 

described by Hill and Lynchehaun (2002) and by Dimitri and Venezia (2007). The 

corresponding vector of first-stage parameter estimates is represented by iη . Thus, with 

)ˆ( ηφ iW  as the calculated probability density function from this first-stage estimation, the 

Inverse Mill’s Ratio (IMR) can be calculated as 

(10)   
)ˆ(

)ˆ(

η
ηφ

T
i

T
i

W

W
IMR

Φ
=  

The IMR captures all the effects of the omitted variable regressor; hence the IMR 

is added to the set explanatory variables in the model in the second stage. 

Second- Stage of the Heckman Procedure 

In the second stage estimation, the demand equation for organic milk becomes: 

(11)   








Φ
+==

)ˆ(

)ˆ(
)1|(

i
T

i

i
T

i
ii

o
i W

W
XqzE

η
ηφαβ + vi, or  

(12)   iii
o
i IMRXqzE αβ +== )1|( + vi,  
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where o
iz  is the quantity of organic milk purchased by the ith household, W represents 

the vector of variables related to the decision to purchase organic milk, and X constitutes 

the vector of explanatory variables related to the amount of organic milk purchased. 

Importantly, observations for which qi = 1, i =1, 2, …, n1 are used in the second-stage 

estimation—n1 corresponds to the number of households who purchase organic milk. 

Following Saha, Capps, and Byrne (1997) and Greene (2008), let ijX  denote the jth 

regressor common to both Wi and Xi. The estimated marginal effect (ME) of a change in 

this regressor is given by: 

(13)   
ij

i
jij X

IMR
EM

∂
∂

+= αβˆ . 

Thus, the ME is composed of two parts: a direct effect on the expected quantity of 

organic milk purchased, reflected byjβ , and a change in the IMR with respect to a unit 

change in Xij. After some simplification, equation (13) can be rewritten as 

(14) ),ˆˆˆ(ˆˆˆ 2
ii

T
ijjij RMIRMIWEM +⋅⋅−= ηηαβ   

where: 

ijEM̂  =   marginal effect of the jth explanatory variable for the ith household, 

jβ̂   =   parameter estimate associated with the jth explanatory in the second-stage of 

the model, 

α̂  =   parameter estimate associated with the IMR variable in the second stage of 

the model, 
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jη̂  =   parameter estimate of the jth explanatory variable associated with the first-

stage probit analysis,  

η̂T
iW  =   the prediction from the probit analysis for the ith household, and  

iRMI ˆ   =  the Inverse Mills Ratio for the ith household purchasing organic milk. 

 Equation (14) represents the appropriate expression in calculating the marginal 

effects associated with the Heckman two-step procedure. In general, jijEM β̂ˆ ≠ ; the only 

cases where jijEM β̂ˆ = are as follows: (1) either α̂ is not statistically different from zero 

or (2) the jth explanatory variable in the second stage of estimation does not appear in 

the first-stage. Finally, since the estimated ME is observation-dependent, we propose to 

evaluate the marginal effects at the sample means.  

 Of note, the demand equation for conventional milk is quite similar to the 

specifications given in equations (11) and (12). In those equations, we replace 

)1|( =i
o
i qzE  with )0|( =i

c
i qzE , where c

iz is the quantity of conventional milk 

purchased by the ith household. We replace W with W* to represent the vector of 

variables related to the purchase of conventional milk. Further, we replace X with X* to 

represent the vector of explanatory variables related to the amount of conventional milk 

purchased. Finally, we replace IMR with IMR* to represent the inverse Mill’s ratio in the 

demand equation for conventional milk. The number of households who purchase 

conventional milk is n2, that is i = 1, 2, …, n2. 
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Empirical Specification 

 In this empirical exercise, the first-stage probit model specification is 

hypothesized to be a function of household income; employment status and education of 

the household head; race and ethnicity of the household head; region in which the 

household is located; and the presence of children (less than 18 years of age) in the 

household. The basis of this specification comes from the work of Hill and Lynchehaun 

(2002) as well as the work of Dimitri and Venezia (2007). 

 Mathematically, we write the probit specification for the decision to purchase 

organic milk as follows: 

(15) 

+++++++== iiiiiiii AgepchildHsHsHsHsIncomeWqP 6543210 5432)1( ηηηηηηη  

+++++ iiiii plusEducollegelegeEdusomecoloolEduhighscheEmpfulltimeEmpparttim 1110987 ηηηηη
 

iiiiiiii WestSouthCentralHisyesOrientalBlackWhite ∈+++++++ 18171615141312 ηηηηηηη 5 

 A description of the variable names in this specification is given in Table 1, 

along with their associated descriptive statistics. The majority of the explanatory 

variables are dummy or indicator variables. The reference categories to avoid the 

dummy variable trap are: (1) household size of 1, (2) no children under 18 years of age 

in the household, (3) the household head is unemployed, (4) the household head did not 

complete high school, (5) the household head is not white, black, or Oriental, (6) the 

                                                 
5 We may also write mathematically the probit specification for the decision to purchase conventional milk 

as )0( ∗= ii WqP . The explanatory variables in this specification W* are the same as those in 

equation (15). Further, the parameter estimates in the specification are opposite in sign but are of the same 
magnitude. 
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household head is not Hispanic, and (7) the household is located in the East. By 

definition, the household head is the female head or the male head if no female head 

exists in the household.  

 Note that our specification does not include price as a potential explanatory 

variable influencing the decision to purchase organic milk. Prices are imputed as the 

ratio of expenditure to quantity in the Nielsen data; in essence, prices are unit values6. 

However, if organic milk is not purchased, it is not possible to derive the corresponding 

unit value. One can use other mechanisms in order to impute the missing prices, but we 

do not use additional imputation procedures in the probit analysis.  

 On the other hand, the second-stage specification deals with the amount of 

organic milk purchased, given that the decision to purchase was made.  

 Mathematically, we write the second-stage specification in the Heckman 

routine as: 

(16) +++++++= jijijijijijiji HsHsHsIncomePnonorgPorgQ 432 6543210 βββββββ  

+++++ jijijijiji oolEduhighscheEmpfulltimeEmpparttimAgepchildHs 1110987 5 βββββ  

jijijijijiji HisyesOrientalBlackWhiteplusEducollegelegeEdusomecol 171615141312 ββββββ +++++
 

jijijijiji vIMRWestSouthCentral +++++ 21201918 ββββ , where 

Qji, corresponds to the quantities of organic milk purchased (j =1) and conventional milk 

purchased (j = 2) respectively for the ith household; Porgji and Pnonorgji are the prices 

                                                 
6 These calculated unit values may also reflect quality differences, and, consequently, the estimated 
income and price elasticities may be biased. However, we believe that the commodities involved are 
sufficiently disaggregated and homogeneous so as to minimize the degree of bias (Cox and Wohlgenant, 
1986). 
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for unit values of organic milk and conventional milk, respectively, faced by the ith 

household. The rest of the variables are the same as those in the probit specification 

given by equation (12). Data pertaining to prices of soymilk or rBST-free milk were not 

available in the Nielsen Homescan panel. Consequently, these prices are excluded from 

our analysis7. 

 Unlike the situation in the estimation of the probit model given by equation 

(15), equation (16) requires the use of price variables for both organic milk and for 

conventional milk. In the estimation of the second-stage demand equation for organic 

milk (conventional milk), we use only those observations for which purchases of organic 

milk (conventional milk) were made. Consequently, no imputation of own-price 

variables in the respective demand equations is necessary. However, for the cross-price 

variables in the respective demand equations, we need to impute these values. In cases 

when purchases of organic milk were made, households may not have purchased 

conventional milk and vice versa. Our imputation process in this analysis rests on the use 

of regional dummy variables: (1) when 0=jiPorg , then  

]03836.012081.009014.020705.1exp[ jijijiji WestSouthCentralPorg ∗−∗−∗−=  and 

(2) when 0=jiPnonorg , then  

 

                                                 
7 The exclusion of rBST-free and soy milk prices may bias the parameter estimates and therefore affect the 
values of price elasticities of organic and conventional milk. The direction of the bias is difficult to 
ascertain. Based on the current literature on milk demand analysis, organic milk and rBST-free milk are 
complements while conventional milk and rBST free milk are substitutes (Dhar and Foltz, 2005). Likewise 
conventional milk and soymilk are complements (Dhar and Foltz, 2004).  
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]00543.002107.012828.056082.0exp[ jijijiji WestSouthCentralPnonorg ∗−∗+∗−= .8 

Issues of Price Endogeneity 

 Because the prices in the analysis are unit values derived from the ratio of total 

expenditures to quantities purchased, there exists the possibility of price endogeneity 

(Dong, Shonkwiler and Capps, 1998). To determine the existence or nonexistence of 

price endogeneity in both the organic and conventional milk demand models, we 

conducted Hausman tests.  

 In conducting these tests, we identified socio-demographic variables such as 

household income, race, region and poverty status as instrumental variables (IV) for 

prices of organic and conventional milk. However, our data set corresponds to a cross-

section of U.S. households, and, as such, the availability of valid instruments was 

severely limited if not lacking. Lewbel (1997), Nakamura and Nakamura (1998), and 

Park and Davis (2001), contended that if the chosen instruments were not highly 

correlated with the endogenous variable under investigation (prices in our case), then the 

IV estimator is biased and inefficient. Furthermore inference results generated from 

Hausman tests become suspect because the likelihood increases of accepting the null 

hypothesis of exogeneity as the instruments become less relevant (Nakamura and 

Nakamura, 1998, and Park and Davis, 2001). Thus, with severely limited instruments 

inherent in any data set, Ordinary Least Squares (OLS) estimates may be more 

appropriate to use relative to those generated by IV estimation. 

                                                 
8 No problems of collinearity with the regional indicator variables and the respective price variables were 
evident. In addition to capturing price variation, region also may be capturing the effects of non-economic 
factors, such as environmental issues. 
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 In performing the Hausman test, the first stage involved both regressions of 

organic and conventional milk prices as a function of income, race, region, and poverty 

levels. Further, the demand specification included the residuals of the first-stage 

estimation and F-tests were conducted to determine whether the coefficients 

corresponded to the residuals from the augmented regressions were statistically different 

from zero. Our findings indicated that endogeneity was not present in the organic milk 

demand relationship (p-value = 0.8647). However, for the conventional milk demand 

relationship, the hypothesis of price exogeneity (p-value=0.000) was rejected, which 

prompted the use of two-stage least squares (TSLS). Results from TSLS estimation for 

the conventional milk equation, however, indicated degrading collinearity patterns and 

non-significance of most of the estimated parameters, thus prompting the choice of OLS 

generated parameters. In keeping with Nakamura and Nakamura (1998), as well as Park 

and Davis (2001), given the limited instruments inherent in this cross-sectional data set, 

OLS estimates were deemed more appropriate than those generated by IV methods. 

Data Description 

 For this empirical exercise, the data pertaining to the choice of purchasing 

organic milk, price and quantity of organic milk and conventional milk, income, and 

household socio-demographic variables are from the 2004 Nielsen Homescan Panel. 

Table 3.1 presents the definition and summary statistics of all the relevant variables 

considered in the analysis. For each household, we aggregate their purchases of organic 

milk and conventional milk over the entire calendar year.  
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 The variable Yesorg (Noorg) is the dependent variable for the probit model and 

is defined as 1 to represent the purchase of organic (conventional) milk and 0 otherwise. 

Roughly 12 percent of the sample of households purchased organic milk sometime 

during the calendar year of 2004, and thus 88 percent of the sample of households 

purchased conventional milk during the 2004 calendar year.  

 The price and quantity variables of organic milk (Porg, Qorg) and conventional 

milk (Pnonorg and Qnorg) are standardized for a half gallon milk container. Most 

organic milk is sold by the half gallon (Glaser and Thompson, 2000), so we use the half 

gallon as the standard volume metric for this analysis. Conditional on making purchases, 

the average amounts of organic and conventional milk bought for calendar year 2004 

were 9 and 47 half gallons, respectively. The average price paid for organic milk was 

$3.16 per half gallon and the average paid for conventional milk was $1.78 per half 

gallon. Consequently, there is a substantial premium paid for organic milk on the order 

of $1.38 per half gallon.  

 The average household income level of the sample is slightly above $50,000. 

Concerning household size, 26 percent of the sample consists of single-person 

households, while nearly 40 percent consists of two-person households. The proportions 

of households with three, four, and five or more members are 14 percent, 13 percent, and 

8 percent, respectively. Additionally, households with children less than 18 years old 

(Agechild) are roughly 25 percent of the sample. 
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Table 3.1. Summary Statistics of Variables Used in the Analysis  
  

Variable Description Observation Mean 
Std. 
Dev. Min Max 

 
Yesorg (qi = 1) 

Household purchased organic 
milk   38,192 0.119 0.324 0 1 

Noorg (qi = 0) 
Household did not purchase 
organic milk 38,192 0.881 0.324 0 1 

Qorg 
Quantity of organic milk 
purchased       

 (half gallons) 4,559 8.798 14.798 0.5 293 

Qnorg 
Quantity of conventional milk 
purchased       

 (half gallons) 37,928 46.739 42.641 0.25 1011 

Porg 
Price of organic milk (half 
gallons) 4,559 3.155 0.541 2.12 4.58 

Pnonorg 
Price of conventional milk (half 
gallons) 38,192 1.780 0.541 0.99 4.36 

Income HH income  38,192 50,024 27,306 5,000 100,000 
Hs1 HH size of 1a 38,182 0.262 0.440 0 1 
Hs2 HH size of 2 38,192 0.391 0.488 0 1 
Hs3 HH size of 3 38,192 0.143 0.350 0 1 
Hs4 HH size of 4 38,192 0.127 0.333 0 1 
Hs5 HH size > 4 38,192 0.077 0.267 0 1 

Agepcchild 
HH has at least 1 child less than 
18 yrs of       

 age 38,192 0.253 0.435 0 1 

No children 
HH has no children less than 18 
years of       

 age 38,192 0.747 0.435 0 1 
Unemployed Head of HH is unemployed 38,192 0.408 0.491 0 1 

Empparttime 
Head of HH is employed part-
time 38,192 0.157 0.364 0 1 

Empfulltime 
Head of HH is employed full-
time 38,192 0.435 0.496 0 1 

Edulths 
HH head completed less than 
12 years of       

 schoolinga 38,192 0.038 0.192 0 1 

Eduhighschool 
HH head is high school 
graduate 38,192 0.275 0.446 0 1 

Edusomecollege 
HH head has completed some 
college 38,192 0.320 0.446 0 1 

Educollegeplus 
HH head has at least a college 
education 38,192 0.367 0.482 0 1 

White HH head is white 38,192 0.825 0.380 0 1 
Black HH head is black 38,192 0.096 0.295 0 1 
Oriental HH head is Oriental 38,192 0.022 0.146 0 1 
Other HH head is classified as othera 38,192 0.057 0.232 0 1 
Hispyes HH head is Hispanic 38,192 0.066 0.248 0 1 
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Table 3.1 Continued  
 

Variable Description Observation Mean 
Std. 
Dev. Min Max 

Hispno HH is not hispanica 38,192 0.934 0.248 0 1 
East HH is located in the Easta 38,192 0.163 0.370 0 1 
Central HH is located in the Midwest 38,192 0.235 0.424 0 1 
South HH is located in the South 38,192 0.384 0.486 0 1 
West HH is located in the West 38,192 0.219 0.413 0 1 
Source: Nielsen Home Scan Panel for Calendar Year 2004 

HH denotes household; the HH head is defined as the female head. If a female head of household does not 
exist, then the HH head is the male head. 

a Reference category so as to avoid the dummy variable trap.
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  Demographic characteristics of the household head also are included in this 

analysis. Both the employment status and educational attainment of the household head 

are represented as dummy or indicator variables. The variables Unemp, Empparttime, 

and Empfulltime are indicator variables representing whether the household head is 

unemployed, employed part-time, or employed full-time. Roughly 60 percent of 

household heads are employed either part-time or full-time. Similarly the variables 

Edulths, Eduhighschool, Edusomecollege, and Educollegeplus are utilized to describe 

whether the household head completed less than a high school education, was a high 

school graduate, completed some college, or obtained at least an undergraduate degree. 

Nearly 70 percent of the sample had at least some college, while slightly more than 25 

percent completed high school but not attended college.  

Also included into the model are race and ethnicity of the household. The 

indicator variables White, Black, Oriental, and Other represent the major racial 

household distinctions. About 83 percent of the sample is classified as white, 10 percent 

is classified as black, and slightly more than 2 percent is classified as Oriental. 

Household ethnicity is represented as either Hispanic (Hispyes) or non-hispanic 

(Hispno). About 7 percent of our sample is classified as Hispanic. Finally, dummy 

variables labeled as East, Midwest, South, and West are included to describe the regional 

location of the household. The majority of the households are located in the South (38.4 

percent), followed by the Midwest (23.5 percent), West (21.9 percent), and East (16.3 

percent).  
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Empirical Results  

First-Stage Analysis: Probit Model 

The maximum likelihood estimates of the parameters and the accompanying 

estimates of the marginal estimates of the first-stage probit model analysis are provided 

in Table 3.2. From the Wald chi-squared statistic, at least one of the coefficients 

associated with the set of explanatory variables is statistically significant despite the 

magnitude of pseudo R2 (McFadden R2 statistic) of 0.029. This magnitude of the 

measure of goodness-of-fit is not atypical in probit models. 

From Table 3.2, as the number of household member increases, it is less likely 

that households will purchase organic milk. Hence a single-person household is more 

likely to purchase organic milk relative to households with two, three, four, and five or 

more members. Looking at the marginal effects, we find that for household size equal to 

or greater than 5 members, the probability of purchasing organic milk is less by 0.0293, 

relative to a single household. For other household size categories, the probability of 

purchasing organic milk is less by 0.0283 for Hs4, 0.0178 for Hs3, and 0.0146 for Hs2. 

On the other hand, as household income increases, the likelihood of purchasing organic 

milk is greater. The presence of children in the household is not a statistically significant 

factor affecting the likelihood of purchasing organic milk. Household heads employed 

part-time are more likely to purchase organic milk relative to unemployed heads. This 

probability is higher by 0.0130. On the other hand, household heads employed full-time 

are less likely to purchase organic milk relative to unemployed household heads. This 

probability is lower by 0.0159 relative to those who are unemployed. 



 

 

59 

 
Table 3.2. Parameter and Marginal Effects Estimates of Probit Analysis of Organic 
Milk Choicea 

Variable Estimates (P>|z|) 
Marginal 
Effects (P>|z|) 

Hs2  -0.0768 0.0010 -0.0146 0.0010 

Hs3  -0.0968 0.0040 -0.0178 0.0020 

Hs4  -0.1589 0.0000 -0.0283 0.0000 

Hs5 -0.1673 0.0000 -0.0293 0.0000 

Income 3.27E-06 0.0000 6.26E-07 0.0000 

Agepcchild  -0.0429 0.1740 -0.0081 0.1680 

Empparttime  0.0659 0.0090 0.0130 0.0110 

Empfulltime  -0.0837 0.0000 -0.0159 0.0000 

Eduhighschool  0.0245 0.6380 0.0047 0.6410 

Edusomecollege  0.1908 0.0000 0.0381 0.0000 

Educollegeplus  0.3555 0.0000 0.0721 0.0000 

White  -0.1292 0.0040 -0.0260 0.0060 

Black  0.1215 0.0170 0.0246 0.0240 

Oriental  0.1619 0.0130 0.0339 0.0230 

Hispyes  0.1673 0.0000 0.0349 0.0000 

Central -0.1933 0.0000 -0.0348 0.0000 

South -0.0222 0.3710 -0.0042 0.3690 

West 0.0807 0.0030 0.0159 0.0040 

Constant -1.3431 0.0000     

McFadden R2 0.029    

Number of Observations 38,192    

Wald Statistic (18) 800    

p-value 0.000       

Wald Tests     
Joint tests of hypotheses associated 
with the indicator variables 

Chi-squared 
statistic p-value   

(1) Hs2=Hs3=Hs4=Hs5=0 20.42 0.0004   

(2) Empparttime= Empfulltime=0 40.09 0.0000   

(3) Eduhighschool=Edusomecollege=     

     Educollegeplus=0 208.42 0.0000   

(4) White=Black=Oriental=0 114.35 0.0000   

(5) Central=South=West=0 113.95 0.0000     
aThe exact same magnitudes of parameter estimates are obtained in the probit analysis of conventional 
milk choice. However, the signs of the respective coefficients are reversed. 
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The level of education of the household head plays an important role in the 

purchase of organic milk. From Table 3.2, as the educational level of the household head 

increases, the probability of purchasing organic milk increases. For household heads 

with at least a college level education, the probability of purchasing organic milk 

increases by 0.0721 relative to household heads with less than a high school education. 

For those households with educational levels corresponding to some college, the 

likelihood of buying organic milk increases by 0.0381 relative to household heads with 

less than a high school education.  

Hispanic households are more likely to purchase organic milk relative to non-

Hispanic households. The likelihood of purchase of Hispanic households (Hisyes) 

increases by 0.0349 relative to non-hispanic households.  Black and Oriental households 

are more likely to purchase organic milk relative to other race types. For the black and 

Oriental households, the probability of purchasing organic milk is higher by 0.0246 and 

0.0339, respectively, relative to other race types. For white households, the probability 

of purchasing organic milk decreases by 0.0260 relative to other types. Consequently, 

white households are the least likely to purchase organic milk, controlling for other 

socio-economic and demographic factors. 

Finally, for the regional indicator variables, the findings indicate that households 

located in the West are more likely to purchase organic milk, while those located in the 

Midwest are least likely to purchase organic milk. For households located in the West, 

the probability of purchasing organic milk increases by 0.0159 relative to households 
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located in the East. For households located in the Midwest, the probability of purchasing 

organic milk decreases by 0.0348 relative to those in the East. 

These results are consistent with the findings of the sparse literature. For 

example, according to Pittman (2004) and Dong et al (2004b), blacks are less likely to 

consume conventional milk than other races, while Hispanic households are more likely 

to consume conventional milk. Dong et al (2004b) also found that household size was 

positively correlated with the likelihood of purchasing conventional milk.   

Assessment of Predictive Capacity of the Probit Choice Model  

A prediction success table is used to assess the usefulness of the probit model. 

Several studies (Park and Capps, 1997; Capps et al., 1999) use this approach in 

evaluating qualitative choice models. In generating the appropriate classification values, 

we use a cut-off value equal to 0.119 instead of the default 0.5009. This value 

corresponds to the ratio of the total number of households purchasing organic milk to the 

total number of households in the sample, that is, the market penetration. From Table 

3.3, the percentage of correct predictions is approximately 0.58.   

In short, using our decision rule or cut-off probability of 0.119, the model is 

correct 58 percent of the time in predicting choices for both organic milk and 

conventional milk, respectively. In terms of sensitivity or the ability to correctly predict 

the decision to purchase organic milk, the model is correct approximately 61% of the 

time. On the other hand, in terms of specificity or the ability of the model to correctly  

                                                 
9 If the 0.5 default value is used instead of the market penetration of organic milk, then the model is not be 
able to correctly classify any households that purchased organic milk. 
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Table 3.3. Prediction-Success Table: Choices of Organic Milk and Conventional 
Milk 
 
  Actual Choice 
Predictions Organic Milk Conventional Milk Total 
Organic Milk 2,772 14,266 17,038 
Conventional Milk 1,787 19,367 21,154 
Total 4,559 33,633 38,192 
    
Percentage of Right Predictions (%) 57.97   

Sensitivity(%)a 60.80   

Specificity(%)b 57.58   
Cutoff value 0.119     
a The percentage of correctly predicting the choice of choosing organic milk 
(2,772/4,559)  
b The percentage of correctly predicting the choice of choosing conventional 
milk (19,367/33,633)  
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classify the decision to purchase conventional milk, the model is correct approximately 

58% of the time. 

Second Stage Analysis: Estimation of Demand Equations10 

For the second stage, estimation of the two demand equations for organic and 

conventional milk is performed using least squares. For the organic milk demand 

equation, the goodness-of-fit statistic is 0.074, while for the conventional milk demand 

equation, the goodness-of-fit ratio is 0.226. The parameter estimates and the associated 

p-values are exhibited in Table 3.4. Note, however, that in the organic milk demand 

equation the variable Invmills (inverse mills ratio) is statistically significant at the 0.05 

level (p-value=0.0300), indicating evidence of sample selection bias. Thus, for 

explanatory variables common to both the probit (first-stage equation) and the second-

stage equation, the parameter estimates are not the appropriate marginal effects. 

However, for the conventional milk demand model, the inverse mills ratio (p-

value=0.4540) is statistically insignificant; hence sample selection bias is not evident. 

Thus, the estimated coefficients in the second-stage equation for conventional milk 

correspond to the appropriate marginal effects. 

Second-Stage Results for Organic Milk 

For the second-stage estimation, once the decision to purchase organic milk has 

been made, from Table 3.4, holding other things constant, for every unit increase in the 

price of organic milk the quantity purchased of organic milk declines by 5.6 half gallons.  

                                                 
10 Attempts were made to estimate the first and second-stage equations simultaneously. However, the 
estimation routine failed to converge. Consequently, the estimation of the Heckman two-step procedure is 
done sequentially. The software package used in this analysis was STATA 9.2. 
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Table 3.4. Second Stage Parameter Estimates of  Demand Analysis of Organic 
and Conventional Milk 
 

Variable Organic P>|t| Marginal Conventional P>|t| 

  Milk   Effects Milk   

      

Porg  -5.5893 0.0000  2.6621 0.0100 

Pnonorg  3.4728 0.0000  -22.9181 0.0000 

Invmills -128.3534 0.0300  16.2653 0.4540 

Income -0.0003 0.0430 0.00005 -0.00001 0.6160 

Hs2  9.3840 0.0110 0.9698 13.3728 0.0000 

Hs3  12.2548 0.0080 1.6492 18.8843 0.0000 

Hs4  19.4247 0.0110 2.0185 26.1841 0.0000 

Hs5 17.5322 0.0290 -0.7872 32.1777 0.0000 

Agepcchild  5.8490 0.0080 1.1541 5.2759 0.0000 

Empparttime  -7.5255 0.0180 -0.3099 -1.8289 0.0210 

Empfulltime  8.2172 0.0410 -0.9537 -5.5228 0.0000 

Eduhighschool  -0.7233 0.6600 1.9627 -0.9707 0.4110 

Edusomecollege  -19.1697 0.0440 1.7218 -3.6604 0.0250 

Educollegeplus  -33.9874 0.0490 4.9483 -3.2492 0.2260 

White  16.3271 0.0090 2.1750 5.0256 0.0000 

Black  -12.8049 0.0290 0.4969 -15.3822 0.0000 

Oriental  -15.4636 0.0370 2.2629 -7.1158 0.0010 

Hispyes  -15.8197 0.0470 2.4986 -3.1379 0.0550 

Central 21.5736 0.0260 0.4058 0.5385 0.7060 

South 2.2439 0.0820 -0.1881 2.3717 0.0010 

West -7.0075 0.0660 1.8313 -3.0126 0.0010 

Constant 243.8373 0.0230   63.7563 0.0000 

      

R-squared 0.074   0.226  

Number of Observations 4,559   37,928  

F( 21, 4537) 19.23   617.63  

Prob > F 0.000      0.000   
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Table 3.4 Continued  
 

F-tests Organic Milk  Conventional milk 
Joint tests of hypotheses 
associated with the indicator 
variables F-value Prob > F  F-value Prob > F 

Hs2=Hs3=Hs4=Hs5=0 3.98 0.0032  108.86 0.0000 

Empparttime= Empfulltime=0 3.11 0.0466  36.00 0.0000 

Eduhighschool=Edusomecollege=      

          Educollegeplus=0 4.94 0.0020  6.41 0.0002 

White=Black=Oriental=0 3.23 0.0214  73.19 0.0000 

Central=South=West=0 3.81 0.0097   25.16 0.0000 
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On the other hand, a unit increase in the price of conventional milk translates to 

increases in the purchase of organic milk by almost 3.5 half gallons.  

Relative to single-person households, two-person households purchase almost 1 more 

half gallon of organic milk annually; three-person households purchase 1.65 more half 

gallons of organic milk annually; and four-person households purchase 2 more half 

gallons of organic milk annually. However, for households with five or more persons, 

annual purchases of organic milk are lower by 0.8 half gallons relative to single-person 

households. Households with children less than 18 years of age purchase almost 1.2 

more half gallons of organic milk annually relative to households with no children less 

than 18 years of age. However, household heads who are employed either part-time or 

full-time annually purchase less organic milk, on the order of 0.3 to 1 half gallons, 

relative to households with heads that are unemployed.  

However, the reverse is true regarding educational levels of household heads. 

Relative to household heads who have less than a high school education, those with a 

high school education purchase almost two more half gallons of organic milk annually; 

those with some college education purchase 1.7 more half gallons of organic milk 

annually. Additionally, those with at least an undergraduate education purchase nearly 5 

more half gallons of organic milk annually relative to those household heads with less 

than a high school education. As for race, whites and Orientals purchase roughly 2.2 

more half gallons of organic milk annually relative to other races. Hispanics buy more 

than 2.5 half gallons of organic milk annually relative to non-Hispanics. Regionally, 

marked differences exist in the volumes of organic milk purchased. Relative to 
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households located in the East, those located in the West buy more than 1.8 half gallons 

of organic milk annually; households located in the Midwest buy 0.4 more half gallons 

of organic milk annually than households located in the East; but households located in 

the South buy almost 0.2 half gallons less annually than households located in the East.  

Second Stage Results for Conventional Milk 

A unit increase in the price of conventional milk translates to a decline of 

approximately 23 half gallons of conventional milk, while an increase in the unit price of 

organic milk leads to an increase in purchase of conventional milk by almost 2.7 half 

gallons. Also, the presence of children in the household translates to increased purchases 

of conventional milk by roughly 5.3 half gallons annually. For household size, the 

purchases of conventional milk increase as number of household members increase. To 

illustrate, two-person households buy 13.4 more half gallons of conventional milk 

annually relative to single-person households; three-person households purchase almost 

19 more half gallons of conventional milk annually, relative to single-person households. 

For four-person households, the gap is 26 more half gallons annually, and for five or 

more person households the gap is 32 half gallons annually.  

Similar to the findings for organic milk, employed household heads purchase less 

conventional milk than unemployed household heads. The difference is between 1.8 and 

5.5 half gallons annually, depending if household heads are employed part-time or full-

time. In contrast with the findings for organic milk, purchases of conventional milk 

decline as the level of education increases. Concerning race, whites purchase more 

conventional milk relative to other races; blacks and Orientals purchase less 
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conventional milk relative to other races. Hispanic households purchase less 

conventional milk than non-Hispanic households. Households located in the South buy 

more conventional milk relative to households located in other regions, while 

households located in the West buy less conventional milk relative to households located 

in other regions. 

Elasticity Estimates11 

We now present estimates of own-price, cross-price and income elasticities of 

both organic and conventional milk (Table 3.5). The standard definition of price 

elasticity is the percent change in the quantity demanded brought about by a one-percent 

change in price. Using this definition, we find that the own-price and cross-price 

elasticities of organic milk are -2.00 and 0.70 respectively. These numbers imply that a 

one-percent increase (decrease) in the price of organic milk translates to a 2.00 percent 

decline (rise) in the quantity demanded for organic milk. On the other hand, if the price 

of conventional milk increases (decreases) by one-percent, the quantity demanded for 

organic milk increases (decreases) by 0.70 percent. The income elasticity for organic 

milk is approximately equal to 0.27, which implies that a one-percent increase in 

household income leads to nearly a 0.30 percent increase in quantity demanded for 

organic milk. 

 

                                                 
11 Tomek and Robinson’s (2003) formula of total elasticity is Ti = Eii + Eij*Sji where Eii and Eij are the own 
price and cross price elasticties and Sji represents the elasticities of “price transmission”. The concept 
behind the formula denotes that a change in price of say commodity i will result in changes in prices of 
other commodities as well (mutatis mutandum). We assume that changes in the price of organic milk do 
not affect the price of conventional milk and vice versa. Also, in calculating the income elasticities we 
abstract from price rationing and assume perfect competition in supply. 
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Table 3.5. Price and Income Elasticity Estimates for Organic and 
Conventional Milka 
 

 

Variable Organic Milk Conventional Milk 

   

Own-Price Elasticity -2.0046 -0.8729 

Cross-Price Elasticity 0.7027 0.1797 

Income Elasticity 0.2672 -0.0135 
a elasticities are computed at the sample means. 
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On the other hand, the own-price, cross-price, and income elasticities for 

conventional milk are -0.87, 0.18, and -0.01, respectively. The interpretations are the 

same as that of the organic case. The demand for organic milk is elastic, but the demand 

for conventional milk is inelastic. The sensitivity to own-price changes of organic milk 

is at odds with the findings of Hammarlund (2001), who finds that, on average, 

consumers are willing to pay up to five times the price of conventional milk to 

buyorganic milk. Owing to the positive cross-price elasticities, evidence indicates that 

organic and conventional milk are substitutes. Evidence also seems to indicate that 

organic milk is a necessity (income elasticity estimated to be 0.27), but conventional 

milk is an inferior good (income elasticity estimated to be -0.01). Dhar and Foltz (2005) 

estimated own-price elasticities as follows: rBST-free milk (-4.40), organic (-1.37), and 

conventional milk (-1.04). Dhar and Foltz (2005) also found that both rBST-free and 

organic milk were substitutes for conventional milk. Our own-price elasticity estimates 

for organic milk (-2.00) and for conventional milk (-0.87) differ significantly from those 

by Dhar and Foltz (2005)12. 

Our cross-price elasticity estimates indicate that a one-percent change in the price 

of conventional milk leads to a 0.70 percent change in the quantity demanded for organic 

milk, whereas a one-percent change in the price of organic milk results in a 0.18 percent 

change in the quantity demanded for conventional milk. This asymmetric pattern in the 

respective cross-price elasticities as suggested by Dhar and Foltz (2005) may be 

                                                 
12 Statistical tests were performed to consider whether our elasticity estimates were different from those 
elasticities generated by Dhar and Foltz (2005). In looking at comparisons of own-price and cross-price 
elasticities, we reject in all cases the equivalence of our estimates with those of Dhar and Foltz (2005).    
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attributed to the difficulty or unwillingness of consumers to switch back from a high-

quality product to a relatively lower-quality product, even if there are notable price 

changes. The cross-price elasticity of organic milk with respect to conventional milk was 

estimated to be 3.15 by Dhar and Foltz (2005). The cross-price elasticity of conventional 

milk with respect to organic milk was estimated to be 0.02 by Dhar and Foltz (2005). 

Our estimates of the cross-price elasticities are significantly different from those of Dhar 

and Foltz (2005).  

To highlight the importance of generating elasticities, we also calculated the 

effect of a one-percent increase in the price of organic milk and the price of conventional 

milk on total milk sales. Using Dimitri and Venezia’s (2007) calculated organic milk 

expenditure share of 0.32, our results show that a one-percent increase in the price of 

organic milk translates to a 0.20 percent decrease in total milk sales. Likewise, a one-

percent increase in the price of conventional milk translates to a 0.31 percent increase in 

total milk sales.13 The effects in each case, however, are modest.      

Implications, Conclusions and Limitations 

The findings from the probit analysis indicate that single-person households are 

more likely to purchase organic milk relative to other households with more family 

                                                 
13 The basis of this calculation is as follows. Letting TR (total revenue) = P1Q1 (total revenue from organic 
milk) + P2Q2 (total revenue from conventional milk), 
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, which implies that the percentage change in total revenue due to a 

one-percent change in P1 may be expressed as 2121111 GVVGV ++ , where V1 is the expenditure share 

of organic milk, V2 is the expenditure share of conventional milk, G11 is the own-price elasticity of organic 
milk, and G21 is the cross-price elasticity of conventional milk with respect to organic milk. The 
percentage change in total revenue due to a one-percent change in P2 similarly may be expressed as 

1212222 GVVGV ++ , where G22 is the own-price elasticity of conventional milk and G12 is the cross-

price elasticity of organic milk with respect to conventional milk. 
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members. Likewise, affluent households are more likely to purchase organic milk, and 

household heads with some college are more likely to purchase organic milk than heads 

of households with lower levels of education. In terms of region, households located in 

the West are the most likely to purchase organic milk, and those in the Midwest are the 

least likely to purchase organic milk. The presence of children in the household may 

reduce the likelihood of purchasing organic milk relative to those with no children. As 

for race, black and Oriental households are most likely to purchase organic milk and 

white households are least likely to purchase organic milk. Finally, Hispanic households 

are more likely to buy organic milk than households that are non-hispanic. Thus, from 

these demographic profiles, we find that variables such as household size, number of 

children, employment status and education of household head, race, ethnicity, and region 

have a significant effect on the likelihood of purchasing organic milk. 

However, once the decision to purchase either organic milk or conventional milk 

has been made, our findings indicate that as household size increases, purchases of both 

organic and conventional milk increase. The presence of children in the household also 

leads to increases in the purchase of both milk types. However, as the level of education 

increases, purchases of organic milk rise but purchases of conventional milk fall. Whites 

and Orientals purchase more organic milk than other races; whites also buy more 

conventional milk, but blacks and Orientals buy less conventional milk. Hispanic 

households purchase more organic milk but less conventional milk than non-Hispanic 

households. Finally, households located in the West purchase the most organic milk 

relative to other regions, whereas households located in the South purchase more 



 

 

73 

conventional milk than households located in other regions. Our second-stage results 

concerning the impacts of socio-demographic factors on purchases of organic milk 

largely are in agreement with those found by Dimitri and Venezia (2007). 

From the estimated elasticities, we find that organic and conventional milk are 

substitutes, although an asymmetric pattern exists in this relationship. The demand for 

organic milk is more sensitive to changes in the price of conventional milk, but the 

demand for conventional milk is not very sensitive to changes in the price of organic 

milk. Additionally, the demand for organic milk is elastic but the demand for 

conventional milk is inelastic. Finally, organic milk technically is a necessary good but 

conventional milk is an inferior good.  

The results from our work will enhance marketing efforts of organic milk in 

targeting particular demographic groups, particularly college-educated households, 

households located in the West, and Hispanic households. Also, owing to our findings 

concerning own-price elasticities, retailers should lower the prices of organic milk but 

raise prices of conventional milk in order to increase sales revenue, holding all other 

factors constant. As well, increases in the prices of conventional milk, all other things 

equal, will lead to increases in purchases of organic milk. 

The major limitation of our analysis is that we provide only a snapshot of the 

organic and conventional milk market in 2004. Whether this demand picture continues to 

hold in the future is a function of the interplay among retailers, the supply of milk from 

organic and conventional dairies, and the socio-demographic characteristics of the 

population. A replication of our analysis with more recent data certainly is worthwhile to 
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monitor demand patterns for organic milk and for conventional milk. Further, in future 

work, attention should be centered on household choices of buying organic milk only, 

conventional milk only, or buying both organic and conventional milk. Finally, in lieu of 

centering attention on purchase patterns over a calendar year, future work should also 

consider transactions throughout the year in order to ascertain seasonal patterns, as well 

as dynamic aspects of milk purchasing behavior. 

 

 

 



 

 

75 

CHAPTER IV 

THE IMPORTANCE OF SOCIO-DEMOGRAPHIC VARIABLES ON THE 

QUALITY OF PREDICTED PROBABILITIES FROM BINARY CHOICE 

MODELS: AN APPLICATION OF THE BRIER PROBABILITY SCORE 

METHOD CONCERNING THE CHOICE OF ORGANIC MILK 

 

Introduction  

The use of binary choice models has been standard in explaining behavioral 

choice between two alternatives or events. Because of the pervasiveness of these models 

in terms of looking at the underlying drivers associated with dichotomous choice, the 

task of evaluating these models in terms of their ability to predict correct predictions 

becomes paramount. One popular measure of fit is the use of the prediction-

success/expectation-prediction contingency tables. This approach classifies correct 

predictions from the following rule: if the predicted probability is greater than 0.5 and 

the first choice is selected, then the decision of choosing the first choice is correctly 

predicted. Likewise, if the probability is less than 0.5 and the second alternative is 

chosen, then the model has made a correct classification of the alternative choice. 

Accordingly, summing the correctly classified cases over the total number of 

observations gives the percentage of correct predictions. The higher the percentage of 

right predictions, the better predictive power the model possesses. Another alternative 

rule is to forego the 0.5 cut-off and use the mean frequency of observations of the choice 

variable as the cut-off (Capps and Kramer, 1985). There is flexibility in this approach 
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because if the mean frequency is lower than 0.5, then the model will not be able to 

predict correct classifications. 

 The advantage of the approach is its simplicity and ease in calculations and if a 

symmetric loss function is assumed then 0.5 cutoff rule is justified (Cameron and 

Trivedi, 2008). However Stock and Watson (2007) argued that the equal odds cutoff 

does not take into account the quality of the predicted probabilities as the approach does 

not discriminate whether the predicted probabilities are 51 percent or 99 percent. 

Likewise Wooldridge (2002) opined that the percent of correctly predicted can be 

misleading because there is relative ease in predicting one of the outcome and while the 

opposite is true in predicting the other alternative. Thus, Wooldridge suggested that the 

more appropriate values to look at are the sensitivity and specificity where the former is 

the ability to predict outcome Y=1 while the latter is ability to correctly classify outcome 

Y=0. Several studies including Alviola and Capps (2009) argued that the appropriate 

cutoff should be based on the frequency of the observations corresponding to the binary 

choice. This cutoff reflects the actual probability because the equal odds rule does not 

take into account the number of observations that chose a certain event. Also Cameron 

and Trivedi (2005, 2008) suggested the comparison of the average value of the binary 

outcome variable (Y=1) and the mean of the predicted probabilities.   

 The Stock and Watson (2007) and Wooldridge (2002) critiques and the Cameron 

and Trivedi (2005, 2008) approach represent the standard textbook orthodoxy in 

measuring goodness of fit of binary choice models with the use of prediction-success 

contingency tables. Although most of these studies opine that the approach is 
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suboptimal, they do not offer any superior alternative. We attempted to address this gap 

by assessing the predictive capacity of binary choice models through the use of 

probability scores. 

 We examined the prediction probabilities of fundamental discrete choice models, 

namely the logit and probit models as well as the linear probability model (LPM), 

through the Brier Probability Scoring Method. The Brier score is a type of incentive 

compatible probability forecast method that is used to assess subjective probability 

forecasts. We also applied the Yates Brier Sore Partition in order to determine the effect 

of differing model specifications on the ability to sort events that occurred and those that 

did not occur. Finally, in our analysis, we utilized the 2004 Nielsen Homescan panel in 

constructing three choice models associated with the purchase/nonpurchase of organic 

milk.          

Methodology 

Random Utility Model  

The choice of whether to purchase organic milk can be modeled as a binary 

choice wherein the outcome variable Yi takes on two values where 1 can be thought of 

an occurrence of an event or 0 otherwise.  In this alternative specification, an agent can 

assume a utility function where utility comparisons can be made. Given the utility 

function;  

(1)                             ),( iixU ε  

where U is function of the covariates vector x, the agent can assign 1 to a choice where 

he/she derives higher level of utility and 0 if the alternative choice produced a lower 
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utility level. Assuming that the utility function can be approximated as linear, this choice 

problem can represented as 

(2)                            111 exU T += β                                                              

(3)                            000 exU T += β                                                                                                                                                                         

where U1 and U0 are the corresponding deterministic utility choices and errors terms e1 

and e0 are random error components. So for this exercise the household chooses to 

purchase organic milk (Yi=1) because higher utility is derived relative to conventional 

milk. If the household chooses organic milk i.e. U1 > U0 and if we let p be the probability 

of occurrence, then the probability of occurrence Pr (Yi=1) becomes:                                 

(4)                                     )Pr()1Pr( 01 UUYi >==                                                                 

(5)                                     )Pr()1Pr( 0011 exexY TT
i +>+== ββ                                 

(6)                )Pr()1Pr( 0110 ββ TT
i xxeeY −<−==                                 

(7)                             )Pr()1Pr( 01 ββµ TT
i xxY −<==                                         

(8)        )()1Pr( βT
i xFY ==                                                              

where F(.) can be designated as the cumulative density function (cdf). If we assume that 

e1 and e0 are normally distributed, then the difference µ = e1-e0, also is normally 

distributed. If F(.) is assumed to be the standard normal cdf, then the probit model 

emerges. If, on the other hand, the error terms e1 and e0 follow an extreme value 

distribution, then the difference follows a logistic distribution. Also, since the Linear 
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Probability Model (LPM) does not rely on any distribution function, the probability of 

occurrence is equal to βT
i xY == )1Pr( .14 

Binary Choice Models and Brier Probability Score 

Following the determination of event probabilities from the probit, logit and 

LPM models, the derivation of the predicted probabilities can be calculated by replacing 

the β’s in equation (8) with their corresponding estimated coefficients (
∧
β ’s). Thus for 

this exercise, the respective predicted probabilities can be denoted as )(
∧

= βTm
ij xFp  

where m
ijp , represents the predicted probabilities of individual i on choice j (j = 0, 1) in 

model m. In this case, m = probit (P), logit (L) or LPM. The respective predicted 

probabilities of the three models are as follows: 

(9)   )(
∧

Φ= P
TP

ij xp β                        

(10)      )(
∧

= L
TL

ij xp βϕ                                                                      

(11)               LPM
TLPM

ij xp
∧

= β                                                                    

where Φ and φ are standard normal and logistic cdfs for the probit and logit 

specifications.   

With extensive use of binary choice models in modeling dichotomous product 

choices, assessing both forecast accuracy and sorting capability become paramount. 

                                                 
14 Of course, the problem with the LPM is the possibility that probabilities may fall outside the unit 
interval (0 to 1). That is, probabilities may either be less than zero, between 0 and 1, or greater than 1. The 
use of the probit model or logit model eliminates any possibility that probabilities are outside the unit 
interval. 
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Following the approach of Bessler and Ruffley (2004) and Olvera and Bessler (2006), let 

the probability of occurrence of individual i on the  j th event be ijp  and denote ijd  as a 

binary index number that takes on the values of one if the j th event occurred and zero 

otherwise. Thus, the individual level quadratic probability score (PS) can be written as: 

(12)                                  2)(),( ijij dpdpPS −=                                                        

where, the values of PS can range from zero to one. This equation can be generalized 

with a mean probability score (Brier score) indexed over N observations (households in 

our example) at i = 1,…,N. Therefore, the Brier score can be written as: 

(13)                             ∑
=

−






=
N

i
ijij dp

N
dpPS

1

2
_

)(
1

),(                                              

Given equation (13), a Brier Score of 0 means perfect forecast accuracy while a score of 

1 denotes complete forecast inaccuracy. In this exercise, estimation of the mean 

probability score was calculated in order to assess the quality of probability forecasts 

from binary choice models and to determine the importance of socio-demographic 

variables in terms of the ability to discriminate events that occurred and those that did 

not occur.   

Yates Decomposition of the Brier Score  

Furthermore, the Yates covariance partition (1982, 1988) of the Brier score was 

utilized to address the issue of relationship between reported and actual forecasts. The 

Yates partition discussed in Bessler and Ruffley (2004) and Olvera and Bessler (2006), 

separates the Brier score into decomposable factors such as bias, scatter, minimum 
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variance probability score, variance of outcome index (d) and covariance between p and 

d.  In notation form, this decomposition can be written as: 

(14)             ),(*2)()()(),( 2
_

dpCovBiaspScatterpMinVardVardpPS −+++=                        

 Starting with the term Var(d), defined as outcome index variance, the notational 

representation can be written as:  

(15)                                      )1()(
__

ijij dddVar −=                                                     

with ∑
=

=
N

i

ijij d
N

d
1

__ 1
 as the mean of the outcome index d. This term reflects the factors 

that are exogenous to the forecaster (Yates 1982, 1988).  

Scatter (p) is defined as:  

(16)                                    [ ])()(
1

)( 0011 jj pVarnpVarn
n

pScatter +=                                  
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j pp

n
pVar  denote conditional 

variances  of the predicted probabilities for events that occurred (p1) and for those events 

that did not occur (p0). Thus, scatter is the weighted average value of the two conditional 

variances and is defined as an indicator of the total noise contained in the predicted 

probabilities of the two events. Note that n0 + n1 = N.     

 MinVar(p) represents the total variance and is defined as:  

(17)                                )()()( pScatterpVarpMinVar −=                                         



 

 

82 

where ∑
=
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ijp  as the mean probability of occurrence 
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1
. Likewise, the component Bias is denoted as:  

(18)                   
__

ijij dpBias −=                                               

This term measures the difference of the mean predicted probability and the mean 

outcome index. Thus, Bias measures, on average, the deviation associated with the 

forecasted probabilities to their true outcomes. The deviation also is the rate of 

miscalibration because the bias term measures how probability forecasts are 

overpredicted or underpredicted (Yates 1982, 1988).  

 The term Cov(p,d) reflects ability to filter relevant information that enables a 

proper assignment of probabilities for events that occurred and for those that did not 

occur. This term is given as: 
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events that occurred and those that did not occur.  

Empirical Specification  

 In this exercise, two model specifications were estimated for each binary 

choice model. The respective model specifications were modeled as:    

(20)
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iiiiii SouthCentralHisyesOrientalBlackWhitePlusEduCollege 17161514131211 βββββββ ++++++

iWest εβ ++ 18                            

 
(21)      ),()|1Pr( 10 IncomeFXq ii ββ +==                                                                    

In each specification as given by equation (20) or equation (21), qi represents household 

i’s choice to purchase organic milk and 0 otherwise. Also, F(.) is the cdf, either a 

standard normal distribution to represent a probit specification or a logistic distribution 

to represent a logit specification. With the LPM model, the cdf is omitted in its 

specification.  The set of explanatory variables include household socio-demographic 

variables associated with the household head such as household income (Inc), type of 

employment, level of education, race, and ethnicity of the household, the presence or 

absence of children and region (Reg).  

 Equation (21) omits everything except for the income covariate. We use this 

specification to determine the impact of censoring potentially important socio-

demographic variables on the forecasting ability of binary choice models. Thus, two sets 

of predicted probabilities for each choice model (probit, logit and LPM) were estimated. 

These in turn were used to derive two sets of Brier Scores, prediction success tables, and 

Yates Brier Score partition (decomposition) factors.        

Data 

 For this empirical exercise, the data pertaining to the choice of purchasing 

organic milk, income and household socio- demographic variables are from the 200 

Nielsen Homescan Panel. Table 4.1 presents the definition and summary statistics of all 
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Table 4.1. Summary Statistics of Variables Used in the Analysis  
  

Variable Description Observation Mean 
Std. 
Dev. Min Max 

 
Yesorg (qi = 1) 

Household purchased organic 
milk   38,192 0.119 0.324 0 1 

Noorg (qi = 0) 
Household did not purchase 
organic milk 38,192 0.881 0.324 0 1 

Income HH income  38,192 50,024 27,306 5,000 100,000 
Hs1 HH size of 1a 38,182 0.262 0.440 0 1 
Hs2 HH size of 2 38,192 0.391 0.488 0 1 
Hs3 HH size of 3 38,192 0.143 0.350 0 1 
Hs4 HH size of 4 38,192 0.127 0.333 0 1 
Hs5 HH size > 4 38,192 0.077 0.267 0 1 

Agepcchild 
HH has at least 1 child less than 
18 yrs of       

 age 38,192 0.253 0.435 0 1 

No children 
HH has no children less than 18 
years of       

 age 38,192 0.747 0.435 0 1 
Unemployed Head of HH is unemployed 38,192 0.408 0.491 0 1 

Empparttime 
Head of HH is employed part-
time 38,192 0.157 0.364 0 1 

Empfulltime 
Head of HH is employed full-
time 38,192 0.435 0.496 0 1 

Edulths 
HH head completed less than 
12 years of       

 schoolinga 38,192 0.038 0.192 0 1 

Eduhighschool 
HH head is high school 
graduate 38,192 0.275 0.446 0 1 

Edusomecollege 
HH head has completed some 
college 38,192 0.320 0.446 0 1 

Educollegeplus 
HH head has at least a college 
education 38,192 0.367 0.482 0 1 

White HH head is white 38,192 0.825 0.380 0 1 
Black HH head is black 38,192 0.096 0.295 0 1 
Oriental HH head is Oriental 38,192 0.022 0.146 0 1 
Other HH head is classified as othera 38,192 0.057 0.232 0 1 
Hispyes HH head is Hispanic 38,192 0.066 0.248 0 1 
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Table 4.1 Continued  
 

Variable Description Observation Mean 
Std. 
Dev. Min Max 

Hispno HH is not hispanica 38,192 0.934 0.248 0 1 
East HH is located in the Easta 38,192 0.163 0.370 0 1 
Central HH is located in the Midwest 38,192 0.235 0.424 0 1 
South HH is located in the South 38,192 0.384 0.486 0 1 
West HH is located in the West 38,192 0.219 0.413 0 1 
Source: Nielsen Home Scan Panel for Calendar Year 2004 

HH denotes household; the HH head is defined as the female head. If a female head of household does not 
exist, then the HH head is the male head. 

a Reference category so as to avoid the dummy variable trap. 
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the relevant variables that were used in the study. The Nielsen scanner data set is the 

world’s largest, on-going household scanner data survey system wherein it tracks 

household purchases in the United States.  

 The variable Yesorg is the dependent choice variable and is indexed as 1 to 

represent purchase of organic milk and 0 otherwise. Income is defined as household 

income and the average income level of the sample was $50,025/household.As for the 

household size, the study used indicator variables to describe the number of household 

members where Hs1 (26%) and Hs2 (40%) pertain to households having one and two 

members while hs3 has 3 household members with a mean proportion of 14 percent. The 

two last household size indicator variables hs4 and hs5 describes 4 and 5 or more 

members in the household. The respective mean proportion are 13 and 8 percent 

respectively Also, households with children less than 18 years old (agepcchild) were 25 

percent of the sample. 

The demographic characteristics of the household head were also included in this 

study. Both the employment status and educational attainment of the household head 

were represented as dummy or indicator variables. The variables Unemp, Empparttime 

and Empfulltime are indicator variables representing whether the household head was 

unemployed, employed part-time or employed fulltime. Their respective mean 

proportions are 41 percent, 16 percent and 43 percent. Similarly the variables Edulths, 

Eduhighschool, Edusomecollege and Educolleges denote household head educational 

attainment whether it is below high school, high school, above high school but below 
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college and college and beyond. The respective mean proportions are 4 percent, 28 

percent, 32 percent and 37 percent. 

Also included into the model were race and ethnicity of the household. The 

indicator variables White, Black, Oriental and Others represented the major racial 

household distinction. Approximately 83 percent are white households.  On the other 

hand household ethnicity was represented as either Hispanic (Hispyes-7 percent) or non-

hispanic (Hispno-93 percent). Finally, regional dummy variables such as East, Central, 

South and West were included to describe the regional location of the household. The 

respective mean proportions are 16 percent, 24 percent, 38 percent and 22 percent 

respectively. 

Results 

Inter-Binary Choice Model Comparisons 

For this exercise, three models were used, namely the probit, logit and linear 

probability models to represent the binary choice between organic and conventional 

milk. Tables 4.2 and 4.3 report the logit, probit and LPM estimated parameters of both 

the full model and income only model .The Brier Score and Yates partition components 

are exhibited in Table 4.4. The calculated Brier Scores (BS) for the three respective 

models are given as follows: Probit (BS=0.1028960), Logit (BS=0.1029092) and LPM 

(BS=0.1028963). Furthermore, the Probit model has the highest forecast covariance 

value compared to the other two models. These results imply that the probit model 

predicts better than the logit and LPM models by having both the lowest Brier scores and 

highest forecast covariance values (Table 4.4).  
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Table 4.2. Full Model Parameter Estimates of Logit, Probit and LPM Analysis of 
Organic Milk Choice 
       

Variable Logit Model Probit Model  Linear Prob. Model 
  Estimates (P>|z|) Estimates (P>|z|) Estimates (P>|z|) 
       
Hs2  -0.1420 0.0010 -0.0768 0.0010 -0.0148 0.0010 
Hs3  -0.1818 0.0040 -0.0968 0.0040 -0.0191 0.0040 
Hs4  -0.2921 0.0000 -0.1589 0.0000 -0.0304 0.0000 
Hs5 -0.3105 0.0010 -0.1673 0.0000 -0.0329 0.0000 
Income 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Agepcchild  -0.0790 0.1880 -0.0429 0.1740 -0.0082 0.1740 
Empparttime  0.1272 0.0080 0.0659 0.0090 0.0138 0.0070 
Empfulltime  -0.1532 0.0000 -0.0837 0.0000 -0.0160 0.0000 
Eduhighschool  0.0529 0.6150 0.0245 0.6380 0.0045 0.5490 
Edusomecollege  0.3808 0.0000 0.1908 0.0000 0.0309 0.0000 
Educollegeplus  0.6830 0.0000 0.3555 0.0000 0.0663 0.0000 
White  -0.2429 0.0040 -0.1292 0.0040 -0.0273 0.0090 
Black  0.2212 0.0180 0.1215 0.0170 0.0258 0.0320 
Oriental  0.2789 0.0170 0.1619 0.0130 0.0461 0.0080 
Hispyes  0.2997 0.0000 0.1673 0.0000 0.0355 0.0000 
Centrak -0.3779 0.0000 -0.1933 0.0000 -0.0339 0.0000 
South -0.0431 0.3560 -0.0222 0.3710 -0.0044 0.3740 
West 0.1470 0.0030 0.0807 0.0030 0.0175 0.0020 
Constant -2.3285 0.0000 -1.3431 0.0000 0.0958 0.0000 
       

Pseudo R2 0.0287  0.029    
Obs 38192  38192  38192  
Wald chi2(18) 804.39  800    
Prob>chi2 0.000  0.000    
R2     0.0212  
F( 18, 38173)     43.5  
Prob > F         0.000   
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Table 4.3. Income-Only Model Parameter Estimates of Logit, Probit and LPM 
Analysis of Organic Milk Choice 
 
Variable Logit Model Probit Model  Linear Prob. Model 
  Estimates (P>|z|) Estimates (P>|z|) Estimates (P>|z|) 
       
Income 7.34E-06 0.0000 3.88E-06 0.0000 7.89E-07 0.0000 
Constant -2.38081 0.0000 -1.3788 0.0000 0.079893 0.0000 

       

Pseudo R2 0.0059  0.0059    
Obs 38192  38192  38192  
Wald chi2(1) 165.54  164.12    
Prob>chi2 0.0000  0.0000    
R2     0.0044  
F( 1, 38190)     156.94  
Prob > F         0.0000   
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Table 4.4. Brier Score and Decompositions of Probit, Logit and Linear 
Probability Model (LPM) and Model Variants for Organic Milk Choice 
      

PROBIT MODEL Probit    Probit    % Change 

  (Full Model)   (Income Only)a     

Brier Score (BS) 0.1028960  0.1046501  1.705 

Variance of d (Var(d)) 0.1051212  0.1051212  0.000 

Minimum variance of p (Min Var(p)) 0.0000487  0.0000020  -95.873 

Scatter (Scatter(p)) 0.0022488  0.0004615  -79.478 

Bias2 1.1E-10  8.1E-13  -99.264 

Forecast covariance (2Cov(p,d)) 0.0045228   0.0009346   -79.336 

Slope 0.0215121  0.0044453  -79.336 

Intercept 0.1167921   0.1188407   1.754 

      

LOGIT MODEL Logit    Logit    % Change 

  (Full Model)   (Income Only)     

Brier Score (BS) 0.1029092  0.1046490  1.691 

Variance of d (Var(d)) 0.1051212  0.1051212  0.000 

Minimum variance of p (Min Var(p)) 0.0000484  0.0000015  -96.921 

Scatter (Scatter(p)) 0.0022520  0.0004645  -79.374 

Bias2 0.0000000  0.0000000  0.000 

Forecast covariance (2Cov(p,d)) 0.0045124   0.0009388   -79.195 

Slope 0.0214629  0.0044655  -79.194 

Intercept 0.1168085   0.1188375   1.737 

      

LINEAR PROBABILITY MODEL LPM   LPM    % Change 

  (Full Model)   (Income Only)     

Brier Score (BS) 0.1028963  0.1046569  1.711 

Variance of d (Var(d)) 0.1051212  0.1051212  0.000 

Minimum variance of p (Min Var(p)) 0.0000471  0.0000021  -95.520 

Scatter (Scatter(p)) 0.0021779  0.0004623  -78.773 

Bias2 0.0000000  0.0000000  0.000 

Forecast covariance (2Cov(p,d)) 0.0044500   0.0009288   -79.128 

Slope 0.0211657  0.0044175  -79.129 

Intercept 0.1168440   0.1188432   1.711 

a Model variant has income as the only explanatory variable for all the three choice models.  
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Prediction success tables also were utilized to assess the ability of the “complete” 

model to classify outcomes (Table 4.5). Instead of the default 0.5 cut-off value, the 

appropriate critical values were calculated based on the purchase frequency of organic 

milk relative to the whole sample size. The choice of cut-off value was made to reflect 

the actual probability of choosing organic milk and not the usual application of the equal 

odds approach in both choices. For all three choice models utilized, the cutoff value was 

equal to 0.119. Results indicate that the logit model garnered the highest percentage of 

right predictions (58.41 percent) relative to the probit (57.97 percent) and the LPM 

(54.64 percent). The implication is that the logit model results in 58 percent correct 

predictions, the probit just fewer than 58 percent correct predictions, and the LPM 

slightly more than 54 percent correct predictions. Thus, among the three models, the 

logit model performs best in correctly classifying those households that chose organic 

and/or conventional milk. Although both methods resulted in different outcome in terms 

of model superiority, the observed values are very close that inference suggests that 

there is no significant difference. The observed values are in agreement with Capps and 

Kramer (1985) where they analyze food stamp participation using probit and logit model 

specification. Their conclusions include that both models empirical performance were 

indeed minimal. 
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Table 4.5. Prediction-Success Evaluation for Probit, Logit and Linear 
Probability Models (LPM) in Both Full Model and Income-only Specifications 
      

PROBIT Actual Choice 
 Complete   Income Only 

Predictions 
Organic 

Milk Conventional  
Organic 

Milk Conventional 
Organic Milk 2772 14266  2340 14336 
Conventional 1787 19367  2219 19297 
Total 4559 33633   4559 33633 

 Full Model Income Only    
% Right Predictionsa 57.97 56.65    
Sensitivity (%)b 60.80 51.33    
Specificity (%)c 57.58 57.38    
Cut-off value 0.12 0.12       
       

LOGITd Actual Choice 
 Complete   Income Only 

Predictions 
Organic 

Milk Conventional  
Organic 

Milk Conventional 
Organic Milk 2747 14073  2340 14336 
Conventional 1812 19560  2219 19297 
Total 4559 33633   4559 33633 

 Full Model Income Only    
% Right Predictions 58.41 56.65    
Sensitivity (%) 60.25 51.33    
Specificity (%) 58.16 57.38    
Cut-off value 0.12 0.12       
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 Table 4.5 Continued  
 

LPMe Actual Choice 
 Complete   Income Only 

Predictions 
Organic 

Milk Conventional  
Organic 

Milk Conventional 
Organic Milk 2962 15727  2340 14336 
Conventional 1597 17906  2219 19297 
Total 4559 33633   4559 33633 

 Full Model Income Only    
% Right Predictions 54.64 56.65    
Sensitivity (%) 64.97 51.33    
Specificity (%) 53.24 57.38    
Cut-off value 0.12 0.12       
a For full model ((2772+19367)/38192)*100 and for income only ((2340+19297)/38192)*100 
b This is the percentage of correctly predicting the choice of choosing organic milk. For full 
model (2772/4559)*100 and for income only (2340/4559)*100 
c This is the percentage of correctly predicting the choice of choosing conventional milk. For 
full model (19367/33633)*100 and for income only (19297/33633)*100 
d, e Same calculations as with the probit example 
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Inter-Model Probabilistic Graphs  

Following Yates (1982, 1988) and Olvera and Bessler (2006), illustrative 

constructs called probabilistic or covariance graphs were utilized to demonstrate the 

ability to differentiate binary choice events that had occurred or did not occur. The 

graphs illustrate the ability to discriminate between the choice of purchasing organic and 

conventional milk across three binary choice models, namely probit, logit and linear 

probability models (LPM). Results indicate that the slope and intercept of the three 

probabilistic graphs (Figures 4.1a, 4.2a and 4.3a) have values that are close to one 

another  

Intra-Binary Choice Model Comparisons 

In this section of the paper, the analysis shifts from comparing different binary 

choice models to looking at one choice model and its respective model variant. More 

specifically, we compare a choice model containing covariates such as income and 

various socio-demographic variables with a model variant which contains income as its 

only explanatory variable.  

 Results from Table 4.4 indicate that for all three models, Brier scores had 

increased between complete models and their variants with income as the only 

explanatory variable. More specifically, the increase in terms of percent change for the 

probit versus probit variant (income only) model was approximately 1.71 percent. For 

the logit model and its respective logit variant, the percent change increased by 1.69 

percent. As for the LPM and model variant, the approximate increase in percentage 

change was 1.711 percent. The increase in the Brier scores implies diminishing 
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forecasting ability of all three models with respect to predicting both choices (Table 4.4). 

This difference in Brier score was brought about by the declining variability of the 

predicted probabilities due to the omission of critical socio-demographic variables in a 

binary choice model specification (MinVar(p)). Thus, the results imply that when 

important socio-demographic determinants are removed, the variability of predicted 

probabilities is reduced and therefore forecasting ability is diminished. 

 Results from the prediction success-tables exhibited in Table 4.5 indicate that for 

both probit and logit models, the percent of right predictions declined by approximately 

2.27 percent and 3 percent. As for the LPM model, percentage of right predictions 

increased by 3.69 percent. Also for both the probit and logit models, we find that in 

terms of sensitivity or the ability to classify correctly the choice of organic milk, the 

sensitivity declined by 15.58 percent and 14.82 percent. Likewise, the specificity, or the 

ability to correctly predict the choice of conventional milk, declined by 0.36 percent and 

1.34 percent among model variants. The sensitivity of the LPM decreased by 21 percent 

while its specificity increased by 7.77 percent. Again based on the results of the 

prediction-success or contingency tables, censure of critical important socio-

demographic variables reduces in most cases the ability of choice models to make right 

predictions. 

Intra-Model Probabilistic Graphs  

Figures 4.1a, 4.1b, 4.2a, 4.2b, 4.3a 4.3b illustrate pairwise covariance graphs for 

probit, logit, LPM specifications and their respective model variants. Results show that
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(a) 

 
(b) 
 

Figure 4.1. Probit (a) and probit-income variant (b) model probabilistic graphs 
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(a) 

 

 
(b) 

 
Figure 4.2. Logit (a) and logit-income variant (b) model probabilistic graphs 
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(a) 

 
(b) 

Figure 4.3. Linear Probability Model (a) and LPM-income variant (b) model 

probabilistic graphs 
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the slopes of the probit, logit and LPM covariance graphs declined significantly when 

socio-demographic variables were removed from the original binary choice 

specification. For example, percentage changes in the slope for the probit and its 

income-only variant declined by approximately 79 percent. For the logit and LPM 

models, the percentage change in slope also decreased by 79 percent. These numbers are 

confirmed by the flatter probabilistic graphs that characterize choice models that are 

income-only variants. 

Intra-Model Analysis of the Yates Partition 

The Yates partition decomposes the Brier score into factors such as bias, scatter, 

minimum forecast variance, variance of outcome index (d) and covariance between p 

and d. In this section we center attention to the effect on scatter and minimum variance 

components. Results from Table 4.4 show that across the three models, the values of 

both factors declined noticeably when the number of explanatory variables were reduced 

to only the income variable. For example, the declining percent change for the probit 

model and its income only variant in both minimum forecast variance and scatter were 

95.87 percent and 79.48 percent. Likewise, for the logit model and its income-only 

model variant, the decline in percentage change were approximately 96.92 (minimum 

forecast variance) and 79.37 percent (scatter). As for the LPM model, similar changes 

also were observed in both direction of change and magnitude relative to the probit and 

logit models. 

 The effect of omitting important socio-demographic variables resulted then in 

reducing the variability of predicted probabilities. This reduction however also can mean 
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limited information flow which can constrain the ability of choice models to 

discriminate between events that occurred and those that did not occur. With limited 

information flow, we find that there is increased filtering of irrelevant information, and 

therefore the value of the scatter component decreases. As with the minimum variance, 

the limited information reduced the overall variance of the respective probabilities. 

Finally, with reduced information flow, the gap between probabilities assigned to binary 

events diminishes, thus we find that the forecast covariance decreases. In summary, 

model specifications that limit information flow in binary choice models can bring about 

increased noise filtering (declining scatter), lessening of overall forecast variance 

(decreased minimum forecast variance) and weakening of the ability to filter relevant 

information that enables the proper assignment of probabilities for events that occur and 

did not occur (reduced forecast covariance).        

Conclusions 

There were two levels of analysis done in this study; considering comparisons 

across choice models and considering comparisons of alternative specifications within 

choice models. Utilizing probit, logit and linear probability choice models to represent 

the choice of organic milk or conventional milk, both Brier scores and prediction-

success tables were evaluated to determine their usefulness in making accurate 

predictions. Results indicate that the probit model predicts better among the three models 

by having the lowest Brier Score and highest forecast covariance values. However, when 

the prediction-success was used, the logit model performed best in terms of correct 

classifications. One notable observation was that across the three models, the values of 
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the Brier score, Yates partition factors and prediction-success tables were very close in 

magnitude. The study also utilized probabilistic graphs in order to illustrate the ability of 

all models to differentiate between events that occurred (choosing organic milk) and 

those that did not occur (choosing conventional milk).  

 When important socio-demographic variables are omitted in a binary choice 

model, the variability level of the predicted probabilities becomes significantly reduced. 

Consequently, this diminishes the ability of the model to sort binary events or choices.  

Estimates from the Brier scores indicate that for each of the choice models vis-à-vis their 

respective income-only variant, the values increased indicating diminished forecasting 

ability. Likewise, results from the prediction-success table point to declining percentages 

of correct classifications. The declining slope change of the covariance graphs between 

“complete” models and their income-only variants is indicative of diminished binary 

event discriminatory ability. 

With regards to the effect on the factors from the Yates partition, the study 

focused on the scatter and minimum variance. Results show that when important socio-

demographic variables are omitted, scatter and minimum variance values are 

significantly reduced. An intuitive explanation for this change lies in the reduction of the 

variability of predicted probabilities. Also, the removal of important socio-demographic 

variables resulted in a weakened ability to sort between events that occurred and did not 

occur. And as such, points to the tradeoff between sorting and variability. As to the use 

of prediction success tables, one must also utilize other methods such as probability 
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scoring as this paper showed that logit was the superior model in using the prediction 

success tables, whereas the probit performed best under the probability score criteria.  
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CHAPTER V 

MICRO-DEMAND SYSTEMS ANALYSIS OF NON-ALCOHOLIC  

BEVERAGES IN THE US: AN APPLICATION OF ECONOMETRIC 

TECHNIQUES DEALING WITH CENSORING 

 

The move towards different diet mechanisms that favor nutritious foods has in 

recent years led to the emergence of healthier and natural food choices. In particular, 

manufacturers and retailers have been responsive in introducing new products to the non-

alcoholic beverage industry, especially juices, energy drinks and others. This chapter 

focuses on the interdependencies of milk, and demand for certain non-alcoholic beverages, 

namely: fruit juices, tea, coffee, carbonated soft drinks, and bottled water. In the case of 

the non-alcoholic beverage complex, these products have different levels of market 

penetration. Consequently, the dependent variables associated with these non-alcoholic 

beverages are censored at zero. That is, certain households have zero expenditures, but the 

corresponding information on household characteristics, which forms the basis of the 

explanatory variables are often readily observed. Thus, several competing estimation 

methods have been developed in order to address the censoring issue in the estimation of 

micro-demand systems. Importantly, no prior research has been done in terms of utilizing 

these respective approaches with regard to a particular data set.  

In this study, the estimation of the demand system made use of Quadratic Almost 

Ideal Demand System (QUAIDS) model (Banks, Blundell and Lewbel, 1997) and 

Almost Ideal Demand System (AIDS) (Deaton and Mulbauer, 1980). The advantages of 
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the QUAIDS model are its flexibility in incorporating nonlinear effects and interactions 

of price and expenditures in the demand relationships.  Since the data used are at the 

household level, censoring is typically observed as some households report expenditures 

of a beverage product say coffee and none on say bottled water. Thus, in order to model 

the censoring problem in demand systems, the research utilized estimation procedures 

that range from the use of two-step estimators (Heien and Wessells, 1990; Shonkwiler 

and Yen, 1999), maximum entropy and maximum simulated likelihood estimation 

(Dong, Gould and Kaiser, 2004a). The use of the iterated seemingly unrelated regression 

(ITSUR) estimation without adjustments for censoring serves as a basis of comparison 

for the aforementioned estimation techniques. Finally, the source of data is the 1999 

Nielsen Homescan Panel due to its vast array of household demographic information.  

Literature Review 

The use of the Quadratic Almost Ideal Demand System (QUAIDS) model in 

applied work has been well documented. For example, Dhar and Foltz (2005) utilized a 

quadratic AIDS model to estimate values and benefits derived from rBST, organic milk 

and unlabelled milk. Their study used scanner time-series data of milk consumption of 

12 key cities in the United States. Their findings indicate that rBST and organic milk are 

complements, while conventional milk and rBST milk, as well as conventional milk and 

organic milk are substitutes. Their own-price elasticity estimates were -4.40 (rBST free 

milk), -1.37 (organic milk) and -1.04 (conventional milk). 

Likewise, a study done by Mutuc, Pan and Rejesus (2007) investigated 

household demand for vegetables in the Philippines through the use of QUAIDS. Their 
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findings indicated significant differences in expenditure elasticities in both rural and 

urban areas whereas for the respective own and cross-price elasticities, no significant 

variations across rural and urban areas were evident. Dhar and Foltz (2005) used Full 

Information Maximum Likelihood (FIML) as an estimation procedure, the Mutuc et al.’s 

(2007) study had a censoring problem because of the presence zero expenditures on 

some vegetable commodities being consumed by the household, hence their  usage of 

the Shonkwiler and Yen (1999) two step procedure. As microdata become increasingly 

available and more detailed, the estimation of micro-demand systems at the household 

level becomes problematic due to censoring.   

The work of Heien and Wessells (1990) was one of the pioneering studies to 

address the censoring problem in demand systems estimation. Their approach mimics 

the Heckman two-stage method by estimating probit models to compute the inverse 

Mill’s ratios for each commodity. Subsequently, these measures are incorporated into the 

second step SUR estimation of the budget shares. On the other hand, Shonkwiler and 

Yen (1999) proposed a consistent estimation procedure that utilizes a probit estimator in 

the first step and then using the cdf to multiply the covariates in the demand shares and 

including the pdf as an independent variable in the second step. Both methods fall under 

the purview of utilizing two-step estimators.  

While the Shonkwiler and Yen approach worked well with the problem of zero 

expenditure, Arndt, Liu and Preckel (1999) claimed that it had limitations with respect to 

dealing with corner solutions. Several studies including Arndt (1999) and Golan, Perloff 

and Shen (2001) propose an alternative approach called maximum entropy to estimate 



 

 

106 

censored demand systems. This approach allows for consistent and efficient estimation 

of demand systems without putting any restrictions on the error terms. Other researchers 

such as Meyerhoefer, Ranney and Sahn (2005) use the general method of moments 

(GMM) estimator to address censoring problems in demand systems estimation. The 

GMM method was not used in this study.   

Several studies have criticized the two step method stating that it has ignores the  

“adding up” restriction in estimating share equations in the censored demand systems 

(Dong, Gould and Kaiser, 2004a; Yen, Lin and Smallwood, 2003). Together with Golan, 

Perloff and Shen (2001), these classes of estimators fall under the Amemiya-Tobin 

framework where the former does not employ maximum likelihood estimation in 

evaluating multivariate probability integrals while Dong, Gould, Kaiser (2004a) and 

Yen, Lin Smallwood (2003) utilize numerical methods such as maximum and quasi-

maximum simulated likelihood estimation in approximating the likelihood function. The 

literature regarding the use of alternative estimation techniques such as Bayesian and 

non-parametric approaches on micro-demand system estimation have been limited 

(Tiffin and Aquiar, 1995).      

Methodology 

Almost Ideal Demand System (AIDS) Model 

This research utilizes the AIDS (Deaton and Mulbauer, 1980) model in the 

demand system estimation of six non-alcoholic beverages, namely: fruit juices, tea, 

coffee, carbonated soft drinks, bottled water and milk.  Equation (1) describes the 

general specification of the AIDS model where pj and wi are the price and budget share 
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of the ith   beverage commodity with the price index ln α(p) being specified further as a 

function of own and cross prices. The average budget share wi is computed as piqi/M 

where M = ∑piqi is the total expenditure. The parameters of this system are αi, γi and βi, 

respectively. One can also incorporate household demographic characteristics into the 

demand system thru the intercept parameter αi.  These variables include HHsize for 

household size, Inc as household income and Race is race type. Also, the variable 

Season represents the seasonality component and Rg is the Region. 
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On the other hand, the classical theoretical restrictions of adding up, 

homogeneity and symmetry imposed in the AIDS demand system estimation have the 

following notational representation; 
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 By imposing these restrictions, the model satisfies the Engel Aggregation thru 

the adding up condition and from the parameter γij, homogeneity and symmetry are 

imposed.  

Quadratic Almost Ideal Demand System (QUAIDS) Model 

The Quadratic Almost Ideal Demand System (QUAIDS) model (Banks, Blundell 

and Lewbel, 1997) also is utilized in this demand analysis. The advantages of using this 

model over competing flexible demand systems is its unparalleled capability of 

incorporating non-linear effects and interactions of price and expenditures on the 

demand specifications. The mathematical representation of the QUAIDS demand system 

is as follows:  
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The QUAIDS model is a more generalized version of the AIDS model. Also, if 

the joint significance test of the parameter λi =0 is rejected then the QUAIDS model is a 

superior model at least statistically relative to the AIDS model system. In this research, 

the intercept parameter αi incorporates the household demographic characteristics just as 

with the AIDS model. Since the QUAIDS model has a quadratic term, then another 
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parameter restriction associated with adding up is imposed in addition to the classical 

theoretical restrictions that were applied.  

Adding up:∑
=

=
n

i
i

1

1α , 0
1

=∑
=

n

i
iβ , 0

1

=∑
=

n

j
ijγ , 0

1

=∑
=

n

i
iλ  

Homogeneity: 0
1

=∑
=

n

j
ijγ  

Symmetry: jiij γγ =  

Again the imposition of these restrictions satisfies the Engel Aggregation and the 

homogeneity and symmetry conditions are subsumed thru the parameter γij. 

Elasticity Estimation in AIDS and QUAIDS Demand Systems 

When the needed parameters are already estimated, the elasticity estimates can 

now be calculated for the AIDS and QUAIDS demand systems. Following Green and 

Alston (1990) and Bank, Blundell and Lewbel (1997) formulas, the expenditure, 

uncompensated and compensated price elasticities are given by the following formulas; 
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On the other hand the Marshallian or uncompensated price elasticities are given by  
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Finally, from the Slutsky’s Equation, the Hicksian or compensated elasticties are 

calculated via the formula; ji
u
ij

c
ij wηεε += ,   where u

ijε  is the uncompensated price 

elasticity of i with respect to j and iη  is the budget elasticity of good i. The term wj is the 

mean budget share of good j.    

Estimation Techniques That Address Censoring in a Demand System 

Two-Step Estimators 

A class of estimation techniques that deal with censored systems equation is the 

two-step estimation procedure. In this paper we highlight the two approaches namely the 

Heien and Wessells (1990) approach and the Shonkwiler and Yen (1999) method. These 

techniques usually consist of estimating a binary choice model in the first step, whose 

purpose is to account for those households that purchased and did not purchase the said 

commodity. In this exercise a probit model was estimated where the outcome variable 

takes on two values namely those households that purchased (1) and those that did not 

purchase (0). Two important derivatives of the probit estimation include the calculation 

of the cumulative distribution function (cdf) and probability density function (pdf) from 

the choice model.  
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In the case of the Heien and Wessells (1990) approach, the calculation of the 

inverse Mill’s ratio (ratio of the pdf and cdf) from the first step probit estimation is now 

included as an added regressor into the estimation of the demand system. We note 

however that for those households that consumed and did not consume the beverage 

item, the inverse mills ratio had the following formula: 
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where IMR, )ˆ( ηφ iW , )ˆ( ηiWΦ  and Wi  are the inverse mills ratio, pdf , cdf and vector of 

socio-demographic variables including income, race and region. Thus, the Heien and 

Wessells (1990) two step approach of estimating a demand system can be represented as:  
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On the other hand, the Shonkwiler and Yen (1999) consistent two step approach 

utilizes the calculated cdf to multiply the whole RHS variables of the share equation and 

include the pdf as an additional regressor in the system of budget shares. In notational 

form this can be represented as: 
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Dong, Gould and Kaiser Approach (2004) 

In this paper, we use the Dong, Gould and Kaiser (2004a) approach which is a 

variant of the Amemiya-Tobin model in estimating a censored AIDS model. In this 

approach the AIDS demand model can be written as:  
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where iii qpw =*  represents the latent budget share with pi and qi correspond to the price 

and quantity of ith beverage. As pointed out by Stockton, Capps and Dong (2007), the 

censored system will take into account the latent budget share if the vector mapping of 

the latent shares to its corresponding actual shares addresses the following conditions 

concerning the latent share; *iw . These conditions are i) 10 ≤≤ iw  and ii) 1=∑
i

iw . 

Thus, Dong, Gould and Kaiser (2004a) proposed an approach that addresses both 

restrictions by applying the following mapping condition; 
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 In this mapping rule, we find that not only is the adding up condition for latent and 

observed shares satisfied but because the rule addressed the two constraints imposed on 

the latent share, non-negative expenditure shares are expected. As for the estimation 

procedure, the error structure of the respective share equation assumes a multivariate 

normal distribution, thus the method of maximum simulated likelihood was used to 

evaluate the integrals inherent in a multivariate normal distribution. 

Generalized Maximum Entropy Procedure 

Following the SAS ETS 9.2 ENTROPY Procedure guide (SAS ETS 9.2 User 

Guide, 2008), the procedure selects the parameter estimates consistent with the 

maximization of the entropy distribution. Thus, the entropy metric for a given 

distribution is given as; 
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where ip  is the probability of the ith support point. 

 In a regression framework, since this method assumes no parametric assumptions 

about the error terms and coefficients, a transformation known as reparameterization is 

necessary in order to identify the said parameters. For a two point support case, a 

reparametrized error term can be written as 2211 zzzz erer +=ε  where r1 and r2 are 

associated weights of the error term’s upper and lower bound values of e1 and e2. As for 

the reparameterized coefficients, this can be written as 2211 hhhh spsp +=β  where p1 and 

p2 represent the probabilities of β and s1 and s2 are the upper and lower bounds values 
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based on prior information involving β. From this reparameterization, the GME 

maximization problem can be notationally written as: 

(16)                                 max  )ln(')ln('),( rrpprpG −−=  

                                s.t.   q = X S p + E r 

                                      1H  = (IHΘ
11L ) p 

                                       1Z = (IZΘ
11L ) r 

where q is the vector of response variable, X is the matrix of independent covariate 

observations. S and p denote the vectors of weight and their associated probabilities with 

respect to β, while r is the weight associated with the boundary point contained in E. 

And finally IH and IZ are identity matrices. The symbol Θ is the Kronecker product. 

 However for this exercise, we deal with censored shares in a demand system 

such that we make modifications in solving the primal problem of the entropy procedure 

found in equation 16. For example, given that q = wi is the share in the AIDS 
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Following this example in the AIDS model, a similar construction can be done in the 

QUAIDS model.  

Estimation Issues  

This research also attempted to use the Dirichlet distribution to model the 

censored shares of the non-alcoholic beverage demand system. The Dirichlet distribution 

is a multivariate generalization of the beta distribution and imposes following properties 

in terms of modeling the shares in the demand system; i) 10 << iw  and ii) 1=∑
i

iw . 

However, in the Dirichlet distribution, densities do not exist in the distribution’s 

boundaries (0 and 1) and therefore only those observations that are in the interior are 

valid. Thus, modeling censored demand systems with Dirichlet distribution is not 

possible. 

 The estimation of the AIDS and QUAIDS specification using the maximum 

entropy technique was done using the experimental SAS procedure called PROC 

ENTROPY. However, this experimental procedure at present is only limited to 

estimation of systems of linear regressions. Thus, attempts were made to linearize the 

demand system by using the starting values generated from the ITSUR specification and 

simplifying through the use of mean values of the non linear components such as the 
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nonlinear price index ln(a(p)) and Cobb–Douglas price aggregator b(p)  into constants in 

both the AIDS and QUAIDS model. Thus, in this case, the linearized AIDS and 

QUAIDS model can be represented as: 

 (18)                          εβγα +∆++= ∑
=

n

j
iijijii pw

1

ln , for AIDS 

                                  Where 






=∆
C

M
i ln  and ln C is a calculated constant of ln a(p)   

(19)          ελβγα +Γ+∆++= ∑
=

2

1

ln i

n

j
ijijii pw , for QUAIDS 

where 

2

2

ln

D

C

M

















=Γ  with lnC as the calculated constant of ln a(p) and D is the 

constant representing the Cobb-Douglas price aggregator b(p).  

Another simplification that the study did was to forego the imposition of classical 

restriction of adding up, symmetry and homogeneity in the maximum entropy estimation 

of the demand system. This is because of the difficulty of identifying the values of 

support points of those coefficients being restricted. And with so many restrictions being 

imposed, the identification of problematic constraints becomes a major problem. Thus, 

the estimation of the AIDS and QUAIDS models were done without the usual imposition 

of the classical theoretical constraints. 

 The usage of the Dong, Gould and Kaiser (2004) technique was only performed 

in the AIDS model. This study did not attempt to use it in a QUAIDS model 

specification. This was primarily due to the highly non linear nature of the QUAIDS 
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model and because the estimation approach requires the evaluation of multivariate 

integrals in a highly non linear model, convergence maybe difficult to achieve.     

Data 

The data used in the study is the 1999 AC Nielsen HomeScan Panel where the 

data set is a compilation of household purchase transactions of the said year. In this data 

set, the household’s transaction records with respect to total expenditures and quantities 

of commodities are purchased primarily in retail groceries which include the usage of 

either discounts or coupons. The household transactions are performed by the use of 

scanner equipment. The number of household used is 7, 195 and because it was further 

disaggregated by quarter the total sample size numbered to 28,780. This sample size can 

be thought of a national representative sample of the huge amounts of item purchases of 

U.S. households for the year 1999.  

In this study, the various specific socio-demographic variables used in the study 

were household income, household size, race, region and seasonal indicator for quarter. 

From Table 5.1, we find the mean household income is $51,740 and dominant household 

size for the sample is those with two members (38%). As for race, approximately 94 

percent are white and black households. As for region, 33 percent come from South 

while rest has the following shares: east (20%), Central (25%) and West (20%). 

Another feature of the data set is that commodity prices are not readily available, 

instead one uses the derivation of total expenditures over total quantity of the purchased 

item and it is called unit values and this is used as a proxy for the item price. If both the 
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Table 5.1. Descriptive Statistics of Relevant Household Demographic Variables  
 
Variables Mean Std. Deviation  Min Max 
     

Household Income($) 51,740 26,254 5,000 100,000 
Household Size (%)     

One member 22 41 0 1 
Two members 38 48 0 1 
Three members 16 37 0 1 
Four members 15 36 0 1 
Five members 10 29 0 1 
Race (%)      

White 84 37 0 1 
Black 10 30 0 1 
Oriental 1 11 0 1 
Other 5 22 0 1 
Region (%)     

East 20 40 0 1 
Central 25 43 0 1 
South 34 47 0 1 
West 20 40 0 1 
Quarter (%)     

Q1 25 43 0 1 
Q2 25 43 0 1 
Q3 25 43 0 1 
Q4 25 43 0 1 
     

Observations 28,780       
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expenditures and quantities were zero, then this study utilized a simple price imputation 

procedure where the process rested on the use of income, race and regional dummy 

variables. If Pi = 0, then 

Pfruitjuice = 4.53912 + (hinc*0.00000345) + (white*-0.0885) + (black*-0.24972) + 
(oriental*0.01158) + (central*-0.07377) + (south*-0.02857) + (west*0.60825); 
 
 Ptea = 2.07429 + (hinc*0.00000716) + (white*-0.39710) + (black*-0.08642) + 
(oriental*-0.13340) + (central*0.03567) + (south*-0.29073) + (west*0.24558); 
 
 Pcoffee = 1.26359 + (hinc*0.00000539) + (white*-0.26017) + (black*-0.18400) + 
(oriental*0.86170)+ (central*0.10697) + (south*0.00532) + (west*0.33853); 
 
 Pcsd = 2.29327 + (hinc*0.0000006510327) + (white*0.02942) + (black*0.03566) + 
(oriental*0.14496) + (central*0.07624) + (south*0.16520)+ (west*0.21459); 
 
 Pwater = 1.98661 + (hinc*0.00000218) + (white*0.04082) + (black*-0.06763) + 
(oriental*0.01389) + (central*-0.00548) + (south*-0.06986) + (west*-0.20992); 
 
Pmilk = 3.21833 + (hinc*-0.000000112181) + (white*-0.13875) + (black*0.28677) + 
(oriental*0.22932) + (central*-0.24758) + (south*-0.05396) + (west*0.17670); 
 

 

Tables 5.2, 5.3 and 5.4 present the mean total expenditures, quantity purchased 

and prices for the 6 non-alcoholic beverages used in the study. In this case we find that 

the top household purchases with respect to non-alcoholic beverages were carbonated 

soft drinks, fruit juices, milk and coffee. The mean price  are as follows fruit juices 

($4.71/gal), tea ($2.06/gal), coffee ($1.41/gal), carbonated soft drinks ($2.48/gal), 

bottled water ($2.06/gal) and milk ($3.08/gal). On the other hand, Table 5.5 presents the 

mean budget shares of the beverage items. For the period 1999, approximately 81 

percent of total expenditures for non alcoholic beverages are captured by carbonated soft 
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Table 5.2. Descriptive Statistics for Total Expenditure for Each Non- 
Alcoholic Beverage Item (n=28,780) 
 

  
Mean  

($) 
Std. Deviation 

($) 
Min 
($) Max ($) 

Fruit Juices 14.19 19.15 0 268.82 
Tea 3.42 7.36 0 177.26 
Coffee 8.45 13.21 0 230.59 
Carbonated Soft Drinks 31.14 41.24 0 1814.93 
Bottled Water 3.02 8.34 0 206.96 
Milk 22.86 23.87 0 304.05 
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Table 5.3. Descriptive Statistics for Quantities for Each Non Alcoholic Beverage 
Item (n=28,780) 
 

  
Mean 

(gallons) 
Std. Deviation 

(gallons) 
Min 

(gallons) 
Max 

(gallons) 
Fruit Juices 3.17 4.25 0 63.31 
Tea 2.76 6.03 0 137.50 
Coffee 8.27 13.73 0 305.51 
Carbonated Soft Drinks 13.27 16.83 0 681.75 
Bottled Water 2.44 7.51 0 151.45 
Milk 8.30 9.22 0 98.00 
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Table 5.4. Descriptive Statistics for Prices1 for Each Non-Alcoholic Beverage 
Item (n=28,780) 
 

  
Mean 

($/gallon) 
Std. Deviation 

($/gallon) 
Min 

($/gallon) 
Max 

($/gallon) 
Fruit Juices 4.71 1.31 0.99 15.09 
Tea 2.06 1.24 0.08 16.08 
Coffee 1.41 1.32 0.13 16.03 
Carbonated Soft Drinks 2.48 0.85 0.30 11.44 
Bottled Water 2.06 1.04 0.05 12.83 
Milk 3.08 0.89 0.88 15.56 

 
1 When expenditure and quantities are equal to zero, price imputation was used where if qty=0 
then Pi=f(income,race and region). 
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Table 5.5. Mean Budget Shares for Each Beverage Item for Calendar Year 1999 
 

Beverage Product 
Average  

Budget Share Std. Deviation Min Max 
Fruit Juices 0.175 0.188 0.000 1.000 
Tea 0.047 0.096 0.000 1.000 
Coffee 0.109 0.153 0.000 1.000 
Carbonated Soft Drinks 0.343 0.247 0.000 1.000 
Bottled Water 0.038 0.094 0.000 1.000 
Milk 0.288 0.210 0.000 1.000 
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drinks, fruit juices and milk. The 19 percent are devoted to tea (4.7 %), coffee (11%) and 

bottled water (3.8 %).  

Table 5.6 describes the degree of censoring associated with each type of non-

alcoholic beverages. From the table items with minimal to medium censoring are milk 

(6.77%), carbonated soft drinks (8.84 %) and fruit juices (23.09 %). On the other hand 

the remaining highly censored non-alcoholic beverage items are tea (54.88 %), coffee 

(42.77 %) and bottled water (60.65 %). 

Empirical Results      

Estimated Demand Parameters 

Both the censored AIDS and QUAIDS specifications and their unrestricted 

analogs were estimated using the various techniques addressing the censoring issue. 

These included the Iterated Seemingly Unrelated regression (ITSUR), the two step 

procedure approaches; Heien & Wessells (1990) and Shonkwiler & Yen (1999), the 

Generalized Maximum Entropy and the Simulated Maximum Likelihood estimation 

(Dong et al., 2004a). Tables 5.7 to 5.10 provide the estimated parameters of AIDS and 

QUAIDS plus their unrestricted specifications.  

Almost all of the socio-demographic parameters in both specifications and across 

all estimation techniques are statistically significant. Also, almost all of the parameters 

in both AIDS and QUAIDS and across estimation techniques are relatively close to one 

another and the same can be said for the AIDS and QUAIDS unrestricted cases. Thus it 

can be postulated that because of a relatively large sample size, the various estimation 
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Table 5.6. Number of Censored Responses for Each Beverage 
Item 
 

  
Number of 

Observations Percentage 
Fruit Juices 6,646 23.09 
Tea 15,795 54.88 
Coffee 12,310 42.77 
Carbonated Soft Drinks 2,544 8.84 
Bottled Water 17,454 60.65 
Milk 1,949 6.77 
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Table 5.7. Parameter Estimates of Different Censoring Techniques for AIDS Estimation 
 
Parameters ITSUR P-value Heien & P-value Shonkwiler P-value Generalized P-value Dong et al T-value 

      Wessells    & Yen   
Max. 

Entropy   Actual   
           
I. Fruit Juice           
constant (af0) 0.214472 <.0001 0.23759 <.0001 0.219606 <.0001 0.128333 <.0001 -0.1565 -6.3447 
hinc (afa) 7.98E-07 <.0001 8.59E-07 <.0001 9.42E-07 <.0001 6.93E-07 <.0001 0.044 20.2886 
hs2(afb) -0.01708 <.0001 -0.01751 <.0001 -0.02443 <.0001 -0.01304 <.0001 -0.0222 -5.4082 
hs3(afc) -0.0299 <.0001 -0.02968 <.0001 -0.0407 <.0001 -0.02392 <.0001 -0.0365 -6.6273 
hs4(afd) -0.04384 <.0001 -0.04243 <.0001 -0.05824 <.0001 -0.03647 <.0001 -0.0535 -9.041 
hs5(afe) -0.04321 <.0001 -0.04035 <.0001 -0.05902 <.0001 -0.03435 <.0001 -0.0523 -7.6816 
white(aff) -0.03569 <.0001 -0.03543 <.0001 -0.04462 <.0001 -0.03073 <.0001 -0.053 -7.6536 
black(afg) 0.056458 <.0001 0.053506 <.0001 0.062805 <.0001 0.058266 <.0001 0.0698 8.673 
oriental(afh) 0.058398 <.0001 0.054969 <.0001 0.064485 <.0001 0.054533 <.0001 0.0814 6.1896 
central(afi) -0.05463 <.0001 -0.05483 <.0001 -0.06587 <.0001 -0.05309 <.0001 -0.0701 -14.5763 
south(afj) -0.0382 <.0001 -0.03899 <.0001 -0.04285 <.0001 -0.03852 <.0001 -0.0504 -11.4912 
west(afk) -0.05601 <.0001 -0.05792 <.0001 -0.06122 <.0001 -0.06379 <.0001 -0.0794 -16.005 
Q1(afl) -0.00255 0.402 -0.00141 0.6164 -0.00383 0.3215 -0.00251 0.4083 -0.0029 -0.6597 
Q2(afm) -0.01287 <.0001 -0.01064 0.0002 -0.01737 <.0001 -0.01109 0.0003 -0.0172 -3.8355 
Q3(afn) -0.01244 <.0001 -0.00997 0.0004 -0.01645 <.0001 -0.01074 0.0004 -0.0193 -4.3565 
lpf(gff) -0.00018 0.961 0.007987 0.0181 0.002367 0.6077 0.016855 <.0001 -0.0203 -3.6021 
lpt(gft) 0.000672 0.6064 -0.00051 0.6983 -0.00409 0.0205 0.002177 0.2267 0.0066 2.8842 
lpc(gfc) 0.014688 <.0001 0.010834 <.0001 0.021914 <.0001 0.025443 <.0001 0.0265 8.172 
lps(gfs) -0.03636 <.0001 -0.03467 <.0001 -0.04115 <.0001 -0.01617 <.0001 0.0079 3.3476 
lpw(gfw) -0.00306 0.0293 -0.00392 0.0021 -0.00634 0.0016 -0.00652 0.0041 -0.0087 -3.7526 
lpm(gfm) 0.02424 <.0001 0.02029 <.0001 0.0273 <.0001 0.05256 <.0001   
bf 0.004014 0.0063 -0.00695 <.0001 0.003695 0.0468 0.007302 <.0001 0.005 2.5906 
pf   0.04244 <.0001       
zf     0.154526 0.0109     
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Table 5.7 Continued 
 
Parameters ITSUR P-value Heien & P-value Shonkwiler P-value Generalized P-value Dong et al T-value 

      Wessells    & Yen   
Max. 

Entropy   Actual   
           
II. Coffee           
constant (ac0) 0.065597 <.0001 0.129077 <.0001 0.202503 0.0068 0.11659 <.0001 0.0751 3.8193 
hinc (aca) -3.99E-08 0.2611 -7.28E-09 0.8111 -2.62E-07 0.0001 2.30E-08 0.5283 -0.0078 -4.3928 
hs2(acb) 0.012944 <.0001 0.004756 0.028 0.020336 <.0001 0.011339 <.0001 0.0236 6.2644 
hs3(acc) -0.022 <.0001 -0.0232 <.0001 -0.0417 <.0001 -0.02426 <.0001 -0.0319 -6.0685 
hs4(acd) -0.02987 <.0001 -0.02913 <.0001 -0.05379 <.0001 -0.03261 <.0001 -0.0443 -7.7021 
hs5(ace) -0.03579 <.0001 -0.03235 <.0001 -0.06595 <.0001 -0.03915 <.0001 -0.0537 -7.7525 
white(acf) 0.018138 <.0001 0.019822 <.0001 0.004924 0.7136 0.015943 0.0001 0.0304 4.4625 
black(acg) -0.02062 <.0001 -0.02618 <.0001 0.019014 0.425 -0.02246 <.0001 -0.041 -4.9089 
oriental(ach) 0.001977 0.8188 -0.01509 0.0405 0.046877 0.0998 0.003139 0.7128 0.0111 0.6569 
central(aci) -0.00988 0.0002 -0.01195 <.0001 0.009873 0.4256 -0.01037 <.0001 -0.0186 -4.3013 
south(acj) -0.01742 <.0001 -0.019 <.0001 -0.01579 0.0266 -0.0175 <.0001 -0.0267 -6.2609 
west(ack) 0.00872 0.0018 0.003549 0.137 0.036907 0.0014 0.012525 <.0001 0.0097 2.1751 
Q1(acl) -0.00328 0.1846 -0.00225 0.2871 -0.00689 0.1025 -0.00294 0.2337 -0.0055 -1.4365 
Q2(acm) -0.0123 <.0001 -0.00813 0.0001 -0.02353 <.0001 -0.01242 <.0001 -0.0244 -6.0645 
Q3(can) -0.01018 <.0001 -0.00678 0.0014 -0.02055 <.0001 -0.01038 <.0001 -0.0215 -5.3264 
lpf(gfc) 0.014688 <.0001 0.010834 <.0001 0.021914 <.0001 0.00149 0.6438 0.0265 8.172 
lpt(gtc) 0.001992 0.0411 -0.00272 0.005 0.020093 <.0001 0.000145 0.9211 0.0043 2.5191 
lpc(gcc) -0.06452 <.0001 -0.04213 <.0001 -0.09507 <.0001 -0.0691 <.0001 -0.1117 -40.2576 
lps(gcs) 0.010469 <.0001 0.007857 0.0001 0.010647 0.0117 0.000615 0.8444 0.0213 6.4296 
lpw(gcw) 0.007774 <.0001 0.004823 <.0001 0.0169 <.0001 0.004692 0.011 0.0188 9.9521 
lpm(gcm) 0.029593 <.0001 0.021335 <.0001 0.025515 <.0001 0.01873 <.0001   
bc -0.00098 0.4119 -0.01559 <.0001 0.000419 0.8376 -0.00351 0.004 0.0026 1.3483 
pc   0.056251 <.0001       
zc     -0.08333 0.4306     
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Table 5.7 Continued 
 
Parameters ITSUR P-value Heien & P-value Shonkwiler P-value Generalized P-value Dong et al T-value 

      Wessells    & Yen   
Max. 

Entropy   Actual   
          

III. Carbonated Soft Drinks          
constant (as0) 0.196319 <.0001 0.214279 <.0001 0.085908 0.0107 0.143986 <.0001 0.5269 30.7133 
hinc (asa) -3.66E-07 <.0001 -3.23E-07 <.0001 1.27E-07 0.55 -5.38E-07 <.0001 -0.0305 -20.084 
hs2(asb) -0.01101 0.0078 -0.01313 0.0011 -0.01146 0.0115 -0.00582 0.1602 -0.0048 -1.0681 
hs3(asc) 0.014921 0.0035 0.011912 0.0165 0.016997 0.0023 0.021685 <.0001 0.0302 4.7479 
hs4(asd) 0.007759 0.1472 0.005664 0.2771 0.008014 0.1686 0.015893 0.0033 0.0205 3.055 
hs5(ase) -0.01083 0.0755 -0.01193 0.0444 -0.01132 0.0875 -0.00112 0.8552 -0.0007 -0.0959 
white(asf) -0.01792 0.0077 -0.01726 0.008 -0.03591 0.0002 -0.01207 0.0717 -0.0009 -0.1634 
black(asg) -0.0098 0.2158 -0.01322 0.0859 -0.02779 0.0101 -0.00777 0.3252 0.0105 1.2538 
oriental(ash) -0.09292 <.0001 -0.09465 <.0001 -0.17557 <.0001 -0.09695 <.0001 -0.1154 -6.3265 
central(asi) 0.076523 <.0001 0.076186 <.0001 0.095466 <.0001 0.077509 <.0001 0.1151 20.2808 
south(asj) 0.055064 <.0001 0.054924 <.0001 0.071278 <.0001 0.055863 <.0001 0.083 15.059 
west(ask) 0.038646 <.0001 0.036423 <.0001 0.040851 <.0001 0.029935 <.0001 0.0619 10.2527 
Q1(asl) -0.00229 0.5706 -0.00198 0.6142 -0.00216 0.6234 -0.00325 0.4197 0.0045 0.8924 
Q2(asm) 0.035846 <.0001 0.035323 <.0001 0.040252 <.0001 0.036678 <.0001 0.0487 9.4008 
Q3(asn) 0.025694 <.0001 0.025005 <.0001 0.029413 <.0001 0.026503 <.0001 0.0331 6.3035 
lpf(gfs) -0.03636 <.0001 -0.03467 <.0001 -0.04115 <.0001 -0.03095 <.0001 -0.0485 -11.6719 
lpt(gts) 0.004836 0.0011 0.003496 0.0298 0.005699 0.0415 0.010563 <.0001 0.0079 3.3476 
lpc(gcs) 0.010469 <.0001 0.007857 0.0001 0.010647 0.0117 0.017874 <.0001 0.0213 6.4296 
lps(gss) -0.00442 0.3568 -0.00136 0.7693 -0.0083 0.1352 0.009411 0.0658 -0.005 -0.8126 
lpw(gsw) 0.01128 <.0001 0.007153 <.0001 0.012525 <.0001 0.019091 <.0001 0.0179 7.3878 
lpm(gsm) 0.0142 <.0001 0.017532 <.0001 0.020577 <.0001 0.034187 <.0001   
bs 0.04851 <.0001 0.04169 <.0001 0.052889 <.0001 0.054016 <.0001 0.0514 24.3444 
ps   0.032694 <.0001       
zs     0.611293 <.0001     

 



 

 

129 

Table 5.7 Continued 
 
Parameters ITSUR P-value Heien & P-value Shonkwiler P-value Generalized P-value Dong et al T-value 

      Wessells    & Yen   
Max. 

Entropy   Actual   
           
IV. Water           
constant (aw0) 0.051332 <.0001 0.088 <.0001 0.087653 0.0874 0.014262 0.0059 -0.2621 -31.8639 
hinc (awa) 2.35E-07 <.0001 3.15E-08 0.1081 5.05E-07 0.0295 1.86E-07 <.0001 0.0223 25.7652 
hs2(awb) -0.01574 <.0001 -0.01305 <.0001 -0.02319 <.0001 -0.01446 <.0001 -0.0369 -14.3957 
hs3(awc) -0.01338 <.0001 -0.01246 <.0001 -0.01941 <.0001 -0.01162 <.0001 -0.0292 -8.6243 
hs4(awd) -0.01789 <.0001 -0.01865 <.0001 -0.02791 <.0001 -0.01593 <.0001 -0.031 -8.1557 
hs5(awe) -0.01834 <.0001 -0.01798 <.0001 -0.02957 <.0001 -0.01608 <.0001 -0.0342 -7.6966 
white(awf) -0.01419 <.0001 -0.00351 0.1186 -0.03622 0.012 -0.01252 <.0001 -0.0366 -8.6262 
black(awg) 0.018541 <.0001 0.014063 <.0001 0.041239 <.0001 0.02049 <.0001 0.0267 5.6107 
oriental(awh) 0.003686 0.4835 0.007951 0.0911 0.001508 0.9017 0.003302 0.5191 -0.0076 -0.9225 
central(awi) -0.007 <.0001 -0.00109 0.4511 -0.01506 0.0184 -0.00733 <.0001 -0.0192 -6.3875 
south(awj) -0.00246 0.1008 -0.00127 0.3433 -0.00472 0.1212 -0.00222 0.1369 -0.0078 -2.8603 
west(awk) 0.001469 0.3899 0.0007 0.6475 0.002552 0.5063 -0.00182 0.2912 0.0005 0.1555 
Q1(awl) -0.00679 <.0001 -0.00373 0.0058 -0.01049 <.0001 -0.00709 <.0001 -0.0196 -6.7781 
Q2(awm) 0.003286 0.0303 0.00288 0.034 0.004472 0.0705 0.002744 0.0698 0.0048 2.0111 
Q3(awn) 0.007918 <.0001 0.004951 0.0003 0.011802 <.0001 0.007448 <.0001 0.0185 6.9359 
lpf(gfw) -0.00306 0.0293 -0.00392 0.0021 -0.00634 0.0016 0.012044 <.0001 -0.0087 -3.7526 
lpt(gtw) 0.002819 <.0001 -0.00075 0.2724 0.011376 <.0001 0.006699 <.0001 0.0095 6.9618 
lpc(gcw) 0.007774 <.0001 0.004823 <.0001 0.0169 <.0001 0.010618 <.0001 0.0188 9.9521 
lps(gsw) 0.01128 <.0001 0.007153 <.0001 0.012525 <.0001 0.017538 <.0001 0.0179 7.3878 
lpw(gww) -0.03863 <.0001 -0.02198 <.0001 -0.06014 <.0001 -0.03603 <.0001 -0.0864 -54.3579 
lpm(gwm) 0.01982 <.0001 0.014676 <.0001 0.025679 <.0001 0.021395 <.0001   
bw -0.00252 0.0005 -0.00942 <.0001 -0.00289 0.0145 -0.00161 0.0303 0.0132 10.72 
pw   0.037163 <.0001       
zw     0.012815 0.8692     
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Table 5.7 Continued 
 
Parameters ITSUR P-value Heien & P-value Shonkwiler P-value Generalized P-value Dong et al T-value 

      Wessells    & Yen   
Max. 

Entropy   Actual   
           
V. Milk           
constant (am0) 0.377373 <.0001 0.39274 <.0001 0.283723 <.0001 0.540447 <.0001   
hinc (ama) -7.10E-07 <.0001 -6.53E-07 <.0001 -3.19E-07 0.0072 -4.26E-07 <.0001   
hs2(amb) 0.032931 <.0001 0.030971 <.0001 0.035746 <.0001 0.02293 <.0001   
hs3(amc) 0.052592 <.0001 0.05096 <.0001 0.056512 <.0001 0.038544 <.0001   
hs4(amd) 0.088858 <.0001 0.088101 <.0001 0.095301 <.0001 0.071789 <.0001   
hs5(ame) 0.112908 <.0001 0.113932 <.0001 0.122047 <.0001 0.092776 <.0001   
white(amf) 0.04869 <.0001 0.053929 <.0001 0.063972 <.0001 0.037542 <.0001   
black(amg) -0.0427 <.0001 -0.04191 <.0001 -0.08646 <.0001 -0.046 <.0001   
oriental(amh) 0.033911 0.0041 0.036459 0.0013 0.020234 0.1565 0.042021 0.0003   
central(ami) 0.018784 <.0001 0.019153 <.0001 0.031074 <.0001 0.016128 <.0001   
south(amj) 0.018609 <.0001 0.019418 <.0001 0.027692 <.0001 0.017834 <.0001   
west(amk) 0.026552 <.0001 0.025821 <.0001 0.022959 <.0001 0.044341 <.0001   
Q1(aml) 0.015226 <.0001 0.015816 <.0001 0.015902 <.0001 0.016005 <.0001   
Q2(amm) -0.01613 <.0001 -0.01488 <.0001 -0.01742 <.0001 -0.01899 <.0001   
Q3(amn) -0.01286 0.0002 -0.01212 0.0002 -0.01379 0.0001 -0.01557 <.0001   
lpf(gfm) 0.02424 <.0001 0.02029 <.0001 0.0273 <.0001 -0.00779 0.0753   
lpt(gtm) 0.004002 0.0056 0.016702 <.0001 -0.00664 0.0062 -0.00715 0.0003   
lpc(gcm) 0.029593 <.0001 0.021335 <.0001 0.025515 <.0001 0.010791 0.0002   
lps(gsm) 0.0142 <.0001 0.017532 <.0001 0.020577 <.0001 -0.01891 <.0001   
lpw(gwm) 0.01982 <.0001 0.014676 <.0001 0.025679 <.0001 0.017642 <.0001   
lpm(gmm) -0.09185 <.0001 -0.09054 <.0001 -0.09243 <.0001 -0.1471 <.0001   
bm -0.03648 <.0001 -0.04419 <.0001 -0.03924 <.0001 -0.04407 <.0001   
pm   0.04714 <.0001       
zm     0.634439 <.0001     
gtt -0.01432 <.0001 -0.01622 <.0001 -0.02644 <.0001     
at0 0.094907 <.0001 -0.06169 <.0001 0.120607 0.0677     
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Table 5.7 Continued 
 
Parameters ITSUR P-value Heien & P-value Shonkwiler P-value Generalized P-value Dong et al T-value 

      Wessells    & Yen   
Max. 

Entropy   Actual   
           
VI. Tea           
constant (am0)         -0.0616 -5.6556 
hinc (ama)         0.012 12.9142 
hs2(amb)         -0.0048 -1.7551 
hs3(amc)         -0.0045 -1.199 
hs4(amd)         -0.0083 -2.0865 
hs5(ame)         -0.007 -1.4864 
white(amf)         -0.0035 -1.1978 
black(amg)         -0.0058 -1.3305 
oriental(amh)         -0.014 -1.4741 
central(ami)         -0.0464 -14.5257 
south(amj)         -0.0276 -9.4982 
west(amk)         -0.0362 -11.0767 
Q1(aml)         -0.0001 -0.0249 
Q2(amm)         0.0059 2.2412 
Q3(amn)         0.0053 1.8728 
lpf(gft)         0.0066 2.8842 
lpt(gtt)         -0.04 -24.2229 
lpc(gtc)         0.0043 2.5191 
lps(gts)         0.0079 3.3476 
lpw(gtw)         0.0095 6.9618 
bm                 -0.0145 -10.7511 
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Table 5.8. Parameter Estimates of Different Censoring Techniques for QUAIDS Estimation 
 
Parameters ITSUR P-value Heien &  P-value Shonkwiler P-value Generalized P-value 
      Wessells    & Yen   Max Entropy   
         
I. Fruit Juice         
constant (af0) 0.170773 <.0001 0.207559 <.0001 0.199746 <.0001 0.091257 <.0001 
hinc (afa) 0.000001 <.0001 8.59E-07 <.0001 6.06E-07 0.0009 6.93E-07 <.0001 
hs2(afb) -0.017390 <.0001 -0.01771 <.0001 -0.02477 <.0001 -0.01334 <.0001 
hs3(afc) -0.028940 <.0001 -0.029 <.0001 -0.03924 <.0001 -0.02323 <.0001 
hs4(afd) -0.041430 <.0001 -0.04073 <.0001 -0.05481 <.0001 -0.03477 <.0001 
hs5(afe) -0.039830 <.0001 -0.03799 <.0001 -0.05439 <.0001 -0.032 <.0001 
white(aff) -0.035170 <.0001 -0.03501 <.0001 -0.03545 <.0001 -0.03028 <.0001 
black(afg) 0.056113 <.0001 0.053298 <.0001 0.056322 <.0001 0.058094 <.0001 
oriental(afh) 0.060538 <.0001 0.056488 <.0001 0.070516 <.0001 0.055337 <.0001 
central(afi) -0.054570 <.0001 -0.05479 <.0001 -0.05357 <.0001 -0.05304 <.0001 
south(afj) -0.038350 <.0001 -0.03907 <.0001 -0.03304 <.0001 -0.03858 <.0001 
west(afk) -0.056150 <.0001 -0.05804 <.0001 -0.0425 0.0001 -0.0638 <.0001 
Q1(afl) -0.002610 0.3908 -0.00142 0.6146 -0.00404 0.2956 -0.0025 0.4102 
Q2(afm) -0.012910 <.0001 -0.01061 0.0002 -0.01756 <.0001 -0.01114 0.0003 
Q3(afn) -0.012600 <.0001 -0.01003 0.0004 -0.01682 <.0001 -0.01087 0.0004 
lpf(gff) -0.002840 0.4445 0.007467 0.0277 -0.00181 0.7029 0.017361 <.0001 
lpt(gft) 0.001701 0.2005 -0.00287 0.0467 -0.00097 0.5987 0.002311 0.1993 
lpc(gfc) 0.010472 <.0001 0.009464 <.0001 0.01337 <.0001 0.025439 <.0001 
lps(gfs) -0.033690 <.0001 -0.03316 <.0001 -0.03672 <.0001 -0.01526 <.0001 
lpw(gfw) -0.001770 0.2158 -0.0033 0.0107 -0.0037 0.0745 -0.00654 0.0039 
lpm(gfm) 0.026132 <.0001 0.022391 <.0001 0.029829 <.0001 0.053057 <.0001 
bf 0.037883 <.0001 0.015828 0.0012 0.051421 <.0001 0.033981 <.0001 
lf -0.006030 <.0001 -0.00402 <.0001 -0.0082 <.0001 -0.00486 <.0001 
pf   0.042948 <.0001     
zf     0.041737 0.4792   
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Table 5.8 Continued 
 
Parameters ITSUR P-value Heien &  P-value Shonkwiler P-value Generalized P-value 
      Wessells    & Yen   Max Entropy   
         
II. Coffee         
constant (ac0) -0.010190 0.2119 0.062059 <.0001 0.20217 <.0001 0.049244 <.0001 
hinc (aca) 0.000000 0.2189 -9.82E-09 0.746 -3.14E-07 <.0001 2.39E-08 0.5107 
hs2(acb) 0.012016 <.0001 0.004078 0.0584 0.018907 <.0001 0.010765 <.0001 
hs3(acc) -0.020750 <.0001 -0.02187 <.0001 -0.0396 <.0001 -0.02293 <.0001 
hs4(acd) -0.026110 <.0001 -0.02551 <.0001 -0.04811 <.0001 -0.02933 <.0001 
hs5(ace) -0.030410 <.0001 -0.0273 <.0001 -0.05728 <.0001 -0.03462 <.0001 
white(acf) 0.017941 <.0001 0.019864 <.0001 -0.01377 0.1863 0.016803 <.0001 
black(acg) -0.022200 <.0001 -0.02745 <.0001 0.058613 0.0012 -0.02279 <.0001 
oriental(ach) 0.004886 0.5699 -0.01238 0.0912 0.095345 0.0001 0.004677 0.5828 
central(aci) -0.010050 0.0001 -0.01207 <.0001 0.031827 0.0005 -0.01027 <.0001 
south(acj) -0.017930 <.0001 -0.0194 <.0001 -0.00469 0.4124 -0.0176 <.0001 
west(ack) 0.008250 0.003 0.003125 0.1883 0.057608 <.0001 0.012509 <.0001 
Q1(acl) -0.003590 0.1452 -0.00246 0.242 -0.0068 0.1061 -0.00292 0.236 
Q2(acm) -0.012620 <.0001 -0.0083 <.0001 -0.02372 <.0001 -0.0125 <.0001 
Q3(acn) -0.010690 <.0001 -0.00714 0.0007 -0.02094 <.0001 -0.01061 <.0001 
lpf(gfc) 0.010472 <.0001 0.009464 <.0001 0.01337 <.0001 0.002463 0.4438 
lpt(gtc) 0.003795 0.0002 -0.00811 <.0001 0.024437 <.0001 0.000403 0.7829 
lpc(gcc) -0.071550 <.0001 -0.04536 <.0001 -0.11061 <.0001 -0.0691 <.0001 
lps(gcs) 0.014694 <.0001 0.011647 <.0001 0.022269 <.0001 0.002367 0.4495 
lpw(gcw) 0.009988 <.0001 0.006423 <.0001 0.023245 <.0001 0.004639 0.0118 
lpm(gcm) 0.032605 <.0001 0.025931 <.0001 0.027291 <.0001 0.019685 <.0001 
bc 0.058849 <.0001 0.036218 <.0001 0.098272 <.0001 0.047798 <.0001 
lc -0.010600 <.0001 -0.0091 <.0001 -0.0164 <.0001 -0.00934 <.0001 
pc   0.056598 <.0001     
zc     -0.27906 0.0001   
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Table 5.8 Continued 
 
Parameters ITSUR P-value Heien &  P-value Shonkwiler P-value Generalized P-value 
      Wessells    & Yen   Max Entropy   
        
III. Carbonated Soft Drinks        
constant (as0) 0.287611 <.0001 0.326417 <.0001 0.189931 <.0001 0.226915 <.0001 
hinc (asa) 0.000000 <.0001 -3.10E-07 <.0001 8.38E-08 0.684 -5.39E-07 <.0001 
hs2(asb) -0.010060 0.0149 -0.0122 0.0024 -0.01038 0.0219 -0.00502 0.2254 
hs3(asc) 0.013243 0.0094 0.009599 0.0525 0.015562 0.0051 0.019843 0.0001 
hs4(asd) 0.003055 0.5691 -0.00025 0.9616 0.003983 0.4949 0.011321 0.0364 
hs5(ase) -0.017490 0.0043 -0.02001 0.0008 -0.01716 0.0099 -0.00744 0.228 
white(asf) -0.018220 0.0066 -0.01734 0.0073 -0.03579 0.0002 -0.01328 0.0473 
black(asg) -0.008370 0.2893 -0.01153 0.1318 -0.02586 0.0159 -0.00732 0.3533 
oriental(ash) -0.096640 <.0001 -0.09942 <.0001 -0.17657 <.0001 -0.09912 <.0001 
central(asi) 0.076621 <.0001 0.07641 <.0001 0.094539 <.0001 0.077371 <.0001 
south(asj) 0.055531 <.0001 0.055445 <.0001 0.07091 <.0001 0.056009 <.0001 
west(ask) 0.039208 <.0001 0.037076 <.0001 0.042126 <.0001 0.02996 <.0001 
Q1(asl) -0.002000 0.6192 -0.00163 0.6773 -0.00231 0.5984 -0.00328 0.4146 
Q2(asm) 0.036151 <.0001 0.035592 <.0001 0.040078 <.0001 0.036796 <.0001 
Q3(asn) 0.026234 <.0001 0.025565 <.0001 0.029419 <.0001 0.026828 <.0001 
lpf(gfs) -0.033690 <.0001 -0.03316 <.0001 -0.03672 <.0001 -0.03231 <.0001 
lpt(gts) 0.003189 0.0335 0.011352 <.0001 0.001008 0.6803 0.010203 <.0001 
lpc(gcs) 0.014694 <.0001 0.011647 <.0001 0.022269 <.0001 0.017885 <.0001 
lps(gss) -0.004450 0.3573 -0.00516 0.2781 -0.00806 0.143 0.006965 0.173 
lpw(gsw) 0.009859 <.0001 0.004772 0.0008 0.004875 0.0502 0.019166 <.0001 
lpm(gsm) 0.010402 0.0028 0.010546 0.0018 0.016628 <.0001 0.032854 <.0001 
bs -0.023230 0.001 -0.04397 <.0001 -0.01689 0.0276 -0.01757 0.0152 
ls 0.012729 <.0001 0.014866 <.0001 0.011634 <.0001 0.013037 <.0001 
ps   0.035701 <.0001     
zs     0.5855 <.0001   
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Table 5.8 Continued 
 
Parameters ITSUR P-value Heien &  P-value Shonkwiler P-value Generalized P-value 
      Wessells    & Yen   Max Entropy   
         
IV. Water         
constant (aw0) 0.074274 <.0001 0.10597 <.0001 -0.04179 0.3203 0.038078 <.0001 
hinc (awa) 0.000000 <.0001 3.39E-08 0.084 -3.00E-07 0.1127 1.86E-07 <.0001 
hs2(awb) -0.015470 <.0001 -0.01277 <.0001 -0.02256 <.0001 -0.01426 <.0001 
hs3(awc) -0.013780 <.0001 -0.01269 <.0001 -0.0202 <.0001 -0.01207 <.0001 
hs4(awd) -0.019060 <.0001 -0.01949 <.0001 -0.03017 <.0001 -0.01705 <.0001 
hs5(awe) -0.020010 <.0001 -0.01918 <.0001 -0.03295 <.0001 -0.01764 <.0001 
white(awf) -0.014050 <.0001 -0.00319 0.1555 0.012752 0.2821 -0.01281 <.0001 
black(awg) 0.019139 <.0001 0.014733 <.0001 0.038107 <.0001 0.020612 <.0001 
oriental(awh) 0.002970 0.572 0.007572 0.1075 0.025583 0.0227 0.002776 0.587 
central(awi) -0.006930 <.0001 -0.00099 0.492 0.005837 0.2768 -0.00736 <.0001 
south(awj) -0.002280 0.1278 -0.0011 0.4135 0.001873 0.5111 -0.00218 0.1435 
west(awk) 0.001688 0.3225 0.000941 0.5384 -0.00582 0.105 -0.00181 0.2926 
Q1(awl) -0.006680 <.0001 -0.00361 0.0075 -0.01023 <.0001 -0.00709 <.0001 
Q2(awm) 0.003392 0.0252 0.002998 0.0272 0.00496 0.0445 0.002775 0.0665 
Q3(awn) 0.008086 <.0001 0.00512 0.0002 0.012397 <.0001 0.007529 <.0001 
lpf(gfw) -0.001770 0.2158 -0.0033 0.0107 -0.0037 0.0745 0.011716 <.0001 
lpt(gtw) 0.002286 0.0012 0.001362 0.0684 0.010468 <.0001 0.006611 <.0001 
lpc(gcw) 0.009988 <.0001 0.025931 <.0001 0.023245 <.0001 0.01062 <.0001 
lps(gsw) 0.009859 <.0001 0.004772 0.0008 0.004875 0.0502 0.016937 <.0001 
lpw(gww) -0.039230 <.0001 -0.02252 <.0001 -0.06193 <.0001 -0.03601 <.0001 
lpm(gwm) 0.018870 <.0001 0.013257 <.0001 0.027046 <.0001 0.021083 <.0001 
bw -0.020760 <.0001 -0.02365 <.0001 -0.04092 <.0001 -0.0193 <.0001 
lw 0.003239 <.0001 0.002482 <.0001 0.006509 <.0001 0.003223 <.0001 
pw   0.03713 <.0001     
zw     0.287215 <.0001   
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Table 5.8 Continued 
 
Parameters ITSUR P-value Heien &  P-value Shonkwiler P-value Generalized P-value 
      Wessells    & Yen   Max Entropy   
         
V. Milk         
constant (am0) 0.372864 <.0001 0.408687 <.0001 0.307543 <.0001 0.524688 <.0001 
hinc (ama) -0.000001 <.0001 -6.55E-07 <.0001 -4.50E-07 0.0001 -4.25E-07 <.0001 
hs2(amb) 0.032792 <.0001 0.03094 <.0001 0.035132 <.0001 0.022713 <.0001 
hs3(amc) 0.052592 <.0001 0.050421 <.0001 0.055931 <.0001 0.039042 <.0001 
hs4(amd) 0.089030 <.0001 0.087038 <.0001 0.094797 <.0001 0.073024 <.0001 
hs5(ame) 0.113146 <.0001 0.112551 <.0001 0.121474 <.0001 0.094484 <.0001 
white(amf) 0.048320 <.0001 0.054143 <.0001 0.059077 <.0001 0.037872 <.0001 
black(amg) -0.043200 <.0001 -0.04154 <.0001 -0.07559 <.0001 -0.04612 <.0001 
oriental(amh) 0.033459 0.0046 0.035624 0.0017 0.025358 0.075 0.042608 0.0003 
central(ami) 0.018673 <.0001 0.019098 <.0001 0.028144 <.0001 0.016166 <.0001 
south(amj) 0.018509 <.0001 0.019602 <.0001 0.025014 <.0001 0.017796 <.0001 
west(amk) 0.026246 <.0001 0.025682 <.0001 0.024688 <.0001 0.044334 <.0001 
Q1(aml) 0.015126 <.0001 0.015872 <.0001 0.015893 <.0001 0.016014 <.0001 
Q2(amm) -0.016250 <.0001 -0.01486 <.0001 -0.01741 <.0001 -0.01902 <.0001 
Q3(amn) -0.012990 0.0001 -0.01206 0.0002 -0.01378 0.0001 -0.01565 <.0001 
lpf(gfm) 0.026132 <.0001 0.022391 <.0001 0.029829 <.0001 -0.00742 0.0903 
lpt(gtm) 0.003660 0.012 0.020484 <.0001 -0.00768 0.0002 -0.00706 0.0004 
lpc(gcm) 0.032605 <.0001 0.025931 <.0001 0.027291 <.0001 0.010788 0.0002 
lps(gsm) 0.010402 0.0028 0.010546 0.0018 0.016628 <.0001 -0.01825 <.0001 
lpw(gwm) 0.018870 <.0001 0.013257 <.0001 0.027046 <.0001 0.017622 <.0001 
lpm(gmm) -0.091670 <.0001 -0.09261 <.0001 -0.09312 <.0001 -0.14674 <.0001 
bm -0.032280 <.0001 -0.05595 <.0001 -0.0365 <.0001 -0.02473 <.0001 
lm -0.000740 0.4636 0.002048 0.0294 -0.00036 0.7227 -0.00352 0.0009 
pm   0.048897 <.0001     
zm     0.498066 <.0001   
         
gtt -0.014630 <.0001 -0.02222 <.0001 -0.02727 <.0001   
at0 0.104673 <.0001 -0.11069 <.0001 0.142398 0.0008   
bt -0.020460 <.0001 0.071514 <.0001 -0.05538 <.0001     
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Table 5.9. Parameter Estimates of Different Censoring Techniques for AIDS Estimation (Unrestricted) 
 
Parameters ITSUR P-value Heien &  P-value Shonkwiler P-value Generalized P-value 
      Wessells    & Yen   Max. Entropy   
         
I. Fruit Juice         
constant (af0) 0.120829 <.0001 0.157005 <.0001 0.099739 0.0006 0.128333 <.0001 
hinc (afa) 6.94E-07 <.0001 7.59E-07 <.0001 8.22E-07 <.0001 6.93E-07 <.0001 
hs2(afb) -0.01285 <.0001 -0.01396 <.0001 -0.01902 <.0001 -0.01304 <.0001 
hs3(afc) -0.02364 <.0001 -0.02453 <.0001 -0.03258 <.0001 -0.02392 <.0001 
hs4(afd) -0.03615 <.0001 -0.03616 <.0001 -0.04831 <.0001 -0.03647 <.0001 
hs5(afe) -0.03401 <.0001 -0.03285 <.0001 -0.04682 <.0001 -0.03435 <.0001 
white(aff) -0.0307 <.0001 -0.03096 <.0001 -0.04015 <.0001 -0.03073 <.0001 
black(afg) 0.058184 <.0001 0.055244 <.0001 0.064239 <.0001 0.058266 <.0001 
oriental(afh) 0.054438 <.0001 0.050954 <.0001 0.062202 <.0001 0.054533 <.0001 
central(afi) -0.05312 <.0001 -0.05393 <.0001 -0.06458 <.0001 -0.05309 <.0001 
south(afj) -0.03853 <.0001 -0.03923 <.0001 -0.04437 <.0001 -0.03852 <.0001 
west(afk) -0.06381 <.0001 -0.06516 <.0001 -0.07458 <.0001 -0.06379 <.0001 
Q1(afl) -0.0025 0.4098 -0.00142 0.613 -0.00371 0.3361 -0.00251 0.4083 
Q2(afm) -0.0111 0.0003 -0.00938 0.0009 -0.01483 0.0001 -0.01109 0.0003 
Q3(afn) -0.01077 0.0004 -0.00881 0.0019 -0.01412 0.0003 -0.01074 0.0004 
lpf(gff) 0.017989 <.0001 0.024776 <.0001 0.02359 <.0001 0.016855 <.0001 
lpt(gft) -0.01817 0.4817 -0.01714 0.1197 -0.02498 0.3113 0.002177 0.2267 
lpc(gfc) 0.026287 <.0001 0.022831 <.0001 0.017041 0.0011 0.025443 <.0001 
lps(gfs) -0.01592 <.0001 -0.0161 <.0001 -0.01605 0.0012 -0.01617 <.0001 
lpw(gfw) -0.00623 0.0063 -0.00616 0.0035 -0.01506 <.0001 -0.00652 0.0041 
lpm(gfm) 0.055842 <.0001 0.044247 <.0001 0.070089 <.0001 0.05256 <.0001 
bf 0.006872 <.0001 -0.00422 0.0026 0.006963 0.0002 0.007302 <.0001 
pf   0.042621 <.0001     
zf     0.162905 0.0129   
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Table 5.9 Continued 
 
Parameters ITSUR P-value Heien &  P-value Shonkwiler P-value Generalized P-value 
      Wessells    & Yen   Max. Entropy   
         
II. Coffee         
constant (ac0) 0.118101 <.0001 0.175941 <.0001 -1.83385 <.0001 0.11659 <.0001 
hinc (aca) 2.04E-08 0.5761 3.26E-08 0.2938 9.89E-07 <.0001 2.30E-08 0.5283 
hs2(acb) 0.010877 <.0001 0.003393 0.118 0.017825 <.0001 0.011339 <.0001 
hs3(acc) -0.02492 <.0001 -0.02532 <.0001 -0.04426 <.0001 -0.02426 <.0001 
hs4(acd) -0.03337 <.0001 -0.03193 <.0001 -0.05596 <.0001 -0.03261 <.0001 
hs5(ace) -0.03998 <.0001 -0.03576 <.0001 -0.06838 <.0001 -0.03915 <.0001 
white(acf) 0.015892 0.0001 0.020714 <.0001 0.317918 <.0001 0.015943 0.0001 
black(acg) -0.02225 <.0001 -0.02536 <.0001 -0.58441 <.0001 -0.02246 <.0001 
oriental(ach) 0.003359 0.697 -0.01113 0.1299 -0.51884 <.0001 0.003139 0.7128 
central(aci) -0.01034 <.0001 -0.01277 <.0001 -0.32311 <.0001 -0.01037 <.0001 
south(acj) -0.01744 <.0001 -0.01793 <.0001 -0.19237 <.0001 -0.0175 <.0001 
west(ack) 0.012586 <.0001 0.006807 0.0049 -0.2511 <.0001 0.012525 <.0001 
Q1(acl) -0.00295 0.2334 -0.00149 0.4794 -0.00619 0.1416 -0.00294 0.2337 
Q2(acm) -0.01244 <.0001 -0.0081 0.0001 -0.0213 <.0001 -0.01242 <.0001 
Q3(can) -0.01036 <.0001 -0.00688 0.0012 -0.01821 <.0001 -0.01038 <.0001 
lpf(gcf) 0.001002 0.7564 -0.00189 0.4933 0.00129 0.8152 0.00149 0.6438 
lpt(gct) 0.007957 0.4444 -0.07595 0.0408 0.01551 0.3056 0.000145 0.9211 
lpc(gcc) -0.06924 <.0001 -0.04716 <.0001 -0.10587 <.0001 -0.0691 <.0001 
lps(gcs) 0.000199 0.9495 -0.00233 0.3949 -0.00148 0.7837 0.000615 0.8444 
lpw(gcw) 0.004663 0.0118 0.002683 0.0924 0.012315 0.0003 0.004692 0.011 
lpm(gcm) 0.017495 <.0001 0.006217 0.0637 0.030717 <.0001 0.01873 <.0001 
bc -0.00262 0.0311 -0.01736 <.0001 -0.00384 0.0649 -0.00351 0.004 
pc   0.057273 <.0001     
zc     2.91415 <.0001   
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Table 5.9 Continued 
 
Parameters ITSUR P-value Heien &  P-value Shonkwiler P-value Generalized P-value 
      Wessells    & Yen   Max. Entropy   
        
III. Carbonated Soft Drinks        
constant (as0) 0.079025 <.0001 0.107221 <.0001 0.005497 0.8784 0.143986 <.0001 
hinc (asa) -5.35E-07 <.0001 -4.82E-07 <.0001 -3.55E-07 0.097 -5.38E-07 <.0001 
hs2(asb) -0.00562 0.1766 -0.008 0.0484 -0.00621 0.1724 -0.00582 0.1602 
hs3(asc) 0.022062 <.0001 0.018411 0.0002 0.023602 <.0001 0.021685 <.0001 
hs4(asd) 0.01633 0.0025 0.01341 0.011 0.015771 0.0074 0.015893 0.0033 
hs5(ase) -0.00065 0.9165 -0.00254 0.6732 -0.00217 0.7465 -0.00112 0.8552 
white(asf) -0.01235 0.0666 -0.01226 0.0616 -0.01983 0.0401 -0.01207 0.0717 
black(asg) -0.00804 0.3108 -0.01068 0.1668 -0.01644 0.1277 -0.00777 0.3252 
oriental(ash) -0.09756 <.0001 -0.1009 <.0001 -0.14218 <.0001 -0.09695 <.0001 
central(asi) 0.077335 <.0001 0.076828 <.0001 0.089018 <.0001 0.077509 <.0001 
south(asj) 0.05575 <.0001 0.05511 <.0001 0.066322 <.0001 0.055863 <.0001 
west(ask) 0.029905 <.0001 0.028655 <.0001 0.031656 <.0001 0.029935 <.0001 
Q1(asl) -0.00321 0.4261 -0.00325 0.4084 -0.00325 0.4586 -0.00325 0.4197 
Q2(asm) 0.036638 <.0001 0.035345 <.0001 0.04037 <.0001 0.036678 <.0001 
Q3(asn) 0.026391 <.0001 0.025037 <.0001 0.029435 <.0001 0.026503 <.0001 
lpf(gsf) -0.02274 <.0001 -0.02046 <.0001 -0.02499 <.0001 -0.03095 <.0001 
lpt(gst) -0.14758 0.4533 0.216142 0.0277 -0.20111 0.3125 0.010563 <.0001 
lpc(gsc) 0.024684 <.0001 0.024985 <.0001 -0.09046 <.0001 0.017874 <.0001 
lps(gss) 0.013186 0.0278 0.021732 <.0001 0.007004 0.3083 0.009411 0.0658 
lpw(gsw) 0.021362 <.0001 0.022064 <.0001 -0.02304 0.0013 0.019091 <.0001 
lpm(gsm) 0.060126 <.0001 0.052037 <.0001 0.0636 <.0001 0.034187 <.0001 
bs 0.053321 <.0001 0.046191 <.0001 0.058813 <.0001 0.054016 <.0001 
ps   0.032445 <.0001     
zs     0.403847 0.0086   

 



 

 

140 

Table 5.9 Continued 
 
Parameters ITSUR P-value Heien &  P-value Shonkwiler P-value Generalized P-value 
      Wessells    & Yen   Max. Entropy   
         
IV. Water         
constant (aw0) 0.015818 0.0047 0.065179 <.0001 -0.76235 <.0001 0.014262 0.0059 
hinc (awa) 1.86E-07 <.0001 -1.02E-08 0.6107 -3.02E-06 <.0001 1.86E-07 <.0001 
hs2(awb) -0.0146 <.0001 -0.01191 <.0001 -0.0204 <.0001 -0.01446 <.0001 
hs3(awc) -0.01181 <.0001 -0.01115 <.0001 -0.01522 <.0001 -0.01162 <.0001 
hs4(awd) -0.01615 <.0001 -0.0174 <.0001 -0.02291 <.0001 -0.01593 <.0001 
hs5(awe) -0.01633 <.0001 -0.01655 <.0001 -0.02375 <.0001 -0.01608 <.0001 
white(awf) -0.01257 <.0001 -0.00026 0.9067 0.177208 <.0001 -0.01252 <.0001 
black(awg) 0.02051 <.0001 0.017098 <.0001 0.025008 <.0001 0.02049 <.0001 
oriental(awh) 0.003357 0.523 0.010236 0.0294 0.118177 <.0001 0.003302 0.5191 
central(awi) -0.00734 <.0001 -0.00126 0.3823 0.074172 <.0001 -0.00733 <.0001 
south(awj) -0.00222 0.1382 -0.00038 0.7753 0.019595 <.0001 -0.00222 0.1369 
west(awk) -0.0018 0.2971 -0.00135 0.3831 -0.04053 <.0001 -0.00182 0.2912 
Q1(awl) -0.00709 <.0001 -0.0035 0.0093 -0.01085 <.0001 -0.00709 <.0001 
Q2(awm) 0.002733 0.0717 0.002549 0.0603 0.004399 0.0757 0.002744 0.0698 
Q3(awn) 0.007448 <.0001 0.004583 0.0007 0.011911 <.0001 0.007448 <.0001 
lpf(gwf) 0.011791 <.0001 0.007075 <.0001 0.019015 <.0001 0.012044 <.0001 
lpt(gwt) 0.010845 0.0562 -0.03585 0.0657 0.016548 0.0126 0.006699 <.0001 
lpc(gwc) 0.010443 <.0001 0.005222 <.0001 0.020464 <.0001 0.010618 <.0001 
lps(gws) 0.017363 <.0001 0.010045 <.0001 0.026262 <.0001 0.017538 <.0001 
lpw(gww) -0.03605 <.0001 -0.01967 <.0001 -0.05591 <.0001 -0.03603 <.0001 
lpm(gwm) 0.020641 <.0001 0.011315 <.0001 0.034418 <.0001 0.021395 <.0001 
bw -0.0014 0.0587 -0.00905 <.0001 -0.00142 0.2387 -0.00161 0.0303 
pw   0.038215 <.0001     
zw     1.207913 <.0001   
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Table 5.9 Continued 
 
Parameters ITSUR P-value Heien &  P-value Shonkwiler P-value Generalized P-value 
      Wessells    & Yen   Max. Entropy   
         
V. Milk         
constant (am0) 0.595231 <.0001 0.622839 <.0001 0.476322 <.0001 0.540447 <.0001 
hinc (ama) -4.27E-07 <.0001 -3.70E-07 <.0001 1.46E-07 0.2448 -4.26E-07 <.0001 
hs2(amb) 0.023139 <.0001 0.019202 <.0001 0.025623 <.0001 0.02293 <.0001 
hs3(amc) 0.038783 <.0001 0.03458 <.0001 0.042178 <.0001 0.038544 <.0001 
hs4(amd) 0.072065 <.0001 0.068431 <.0001 0.07762 <.0001 0.071789 <.0001 
hs5(ame) 0.093081 <.0001 0.090795 <.0001 0.100767 <.0001 0.092776 <.0001 
white(amf) 0.037798 <.0001 0.037661 <.0001 0.06107 <.0001 0.037542 <.0001 
black(amg) -0.04599 <.0001 -0.04899 <.0001 -0.11081 <.0001 -0.046 <.0001 
oriental(amh) 0.042321 0.0003 0.038684 0.0006 0.017848 0.2102 0.042021 0.0003 
central(ami) 0.016262 <.0001 0.015664 <.0001 0.031461 <.0001 0.016128 <.0001 
south(amj) 0.017868 <.0001 0.017408 <.0001 0.031825 <.0001 0.017834 <.0001 
west(amk) 0.044288 <.0001 0.043272 <.0001 0.035049 <.0001 0.044341 <.0001 
Q1(aml) 0.015966 <.0001 0.01537 <.0001 0.017081 <.0001 0.016005 <.0001 
Q2(amm) -0.01894 <.0001 -0.01925 <.0001 -0.02038 <.0001 -0.01899 <.0001 
Q3(amn) -0.01548 <.0001 -0.0162 <.0001 -0.01669 <.0001 -0.01557 <.0001 
lpf(gmf) -0.01456 0.0008 -0.01668 <.0001 -0.01542 0.0014 -0.00779 0.0753 
lpt(gmt) 0.123771 0.4477 -0.23732 0.0311 0.163821 0.3047 -0.00715 0.0003 
lpc(gmc) 0.005021 0.0857 0.003202 0.2645 0.098117 <.0001 0.010791 0.0002 
lps(gms) -0.02161 <.0001 -0.02634 <.0001 -0.01838 0.001 -0.01891 <.0001 
lpw(gmw) 0.015659 <.0001 0.013294 <.0001 0.05287 <.0001 0.017642 <.0001 
lpm(gmm) -0.1684 <.0001 -0.16844 <.0001 -0.17687 <.0001 -0.1471 <.0001 
bm -0.04416 <.0001 -0.05177 <.0001 -0.04713 <.0001 -0.04407 <.0001 
pm   0.049404 <.0001     
zm     0.859325 <.0001   
         
gtt         
at0 -2.95849 0.4216 4.524465 0.0365 -3.61141 0.2849   
bt                 
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Table 5.10. Parameter Estimates of Different Censoring Techniques for QUAIDS Estimation (Unrestricted) 
 
Parameters ITSUR P-value Heien & P-value Shonkwiler P-value Generalized P-value 
       Wessells    & Yen   Max Entropy   
         
I. Fruit Juice         
constant (af0) 0.109324 <.0001 0.144883 <.0001 0.029642 0.3045 0.091257 <.0001 
hinc (afa) 7.00E-07 <.0001 7.61E-07 <.0001 1.16E-06 <.0001 6.93E-07 <.0001 
hs2(afb) -0.01307 <.0001 -0.01414 <.0001 -0.01889 <.0001 -0.01334 <.0001 
hs3(afc) -0.02353 <.0001 -0.02432 <.0001 -0.03247 <.0001 -0.02323 <.0001 
hs4(afd) -0.03597 <.0001 -0.03538 <.0001 -0.04839 <.0001 -0.03477 <.0001 
hs5(afe) -0.0339 <.0001 -0.03176 <.0001 -0.04725 <.0001 -0.032 <.0001 
white(aff) -0.03155 <.0001 -0.03095 <.0001 -0.04949 <.0001 -0.03028 <.0001 
black(afg) 0.057652 <.0001 0.054952 <.0001 0.069414 <.0001 0.058094 <.0001 
oriental(afh) 0.053676 <.0001 0.051799 <.0001 0.058822 <.0001 0.055337 <.0001 
central(afi) -0.05407 <.0001 -0.0539 <.0001 -0.07945 <.0001 -0.05304 <.0001 
south(afj) -0.03976 <.0001 -0.03922 <.0001 -0.05598 <.0001 -0.03858 <.0001 
west(afk) -0.0646 <.0001 -0.06508 <.0001 -0.09775 <.0001 -0.0638 <.0001 
Q1(afl) -0.00259 0.3944 -0.00142 0.6133 -0.00429 0.2653 -0.0025 0.4102 
Q2(afm) -0.01092 0.0004 -0.00937 0.0009 -0.01575 <.0001 -0.01114 0.0003 
Q3(afn) -0.01049 0.0006 -0.00886 0.0018 -0.0147 0.0002 -0.01087 0.0004 
lpf(gff) 0.017866 <.0001 0.024335 <.0001 0.021496 <.0001 0.017361 <.0001 
lpt(gft) -0.01224 0.0174 -0.00317 0.3059 0.007402 0.0195 0.002311 0.1993 
lpc(gfc) 0.026185 <.0001 0.021961 <.0001 0.016225 0.0473 0.025439 <.0001 
lps(gfs) -0.01615 <.0001 -0.01555 <.0001 -0.01749 0.0004 -0.01526 <.0001 
lpw(gfw) -0.00586 0.0102 -0.00617 0.0035 -0.01322 <.0001 -0.00654 0.0039 
lpm(gfm) 0.056285 <.0001 0.044377 <.0001 0.070427 <.0001 0.053057 <.0001 
bf 0.012664 <.0001 0.008023 0.083 0.017254 <.0001 0.033981 <.0001 
lf -0.00049 <.0001 -0.00235 0.0048 -0.0009 <.0001 -0.00486 <.0001 
pf   0.043097 <.0001     
zf     0.282385 <.0001   
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Table 5.10 Continued 
 
Parameters ITSUR P-value Heien & P-value Shonkwiler P-value Generalized P-value 
       Wessells    & Yen   Max Entropy   
         
II. Coffee         
constant (ac0) 0.111606 <.0001 0.127712 <.0001 -3.6965 <.0001 0.049244 <.0001 
hinc (aca) 2.39E-08 0.5129 3.52E-08 0.2566 2.12E-06 <.0001 2.39E-08 0.5107 
hs2(acb) 0.010788 <.0001 0.002739 0.2056 0.016188 0.0002 0.010765 <.0001 
hs3(acc) -0.02485 <.0001 -0.0246 <.0001 -0.04581 <.0001 -0.02293 <.0001 
hs4(acd) -0.03326 <.0001 -0.02922 <.0001 -0.05777 <.0001 -0.02933 <.0001 
hs5(ace) -0.03989 <.0001 -0.03195 <.0001 -0.06904 <.0001 -0.03462 <.0001 
white(acf) 0.01566 0.0001 0.020842 <.0001 0.609494 <.0001 0.016803 <.0001 
black(acg) -0.02231 <.0001 -0.02611 <.0001 -1.1468 <.0001 -0.02279 <.0001 
oriental(ach) 0.003202 0.7105 -0.00788 0.2821 -1.04757 <.0001 0.004677 0.5828 
central(aci) -0.01075 <.0001 -0.01256 <.0001 -0.63723 <.0001 -0.01027 <.0001 
south(acj) -0.018 <.0001 -0.01787 <.0001 -0.35914 <.0001 -0.0176 <.0001 
west(ack) 0.01226 <.0001 0.007109 0.0032 -0.52624 <.0001 0.012509 <.0001 
Q1(acl) -0.00295 0.2326 -0.00156 0.4583 -0.00274 0.507 -0.00292 0.236 
Q2(acm) -0.0123 <.0001 -0.00812 0.0001 -0.01645 <.0001 -0.0125 <.0001 
Q3(can) -0.01017 <.0001 -0.0071 0.0008 -0.01511 0.0003 -0.01061 <.0001 
lpf(gcf) 0.001021 0.7518 -0.0033 0.2354 0.009152 0.093 0.002463 0.4438 
lpt(gct) 0.00671 0.034 -0.01474 <.0001 -0.0192 <.0001 0.000403 0.7829 
lpc(gcc) -0.0693 <.0001 -0.05012 <.0001 -0.16896 <.0001 -0.0691 <.0001 
lps(gcs) 0.000103 0.9739 0.000531 0.8455 0.003133 0.5569 0.002367 0.4495 
lpw(gcw) 0.004866 0.0087 0.003393 0.0346 0.010092 0.0021 0.004639 0.0118 
lpm(gcm) 0.018052 <.0001 0.008222 0.0135 0.030066 <.0001 0.019685 <.0001 
bc 0.00031 0.8388 0.026469 <.0001 -0.05622 <.0001 0.047798 <.0001 
lc -0.00024 0.0033 -0.00826 <.0001 0.00499 <.0001 -0.00934 <.0001 
pc   0.057371 <.0001     
zc     5.746743 <.0001   
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Table 5.10 Continued 
 
Parameters ITSUR P-value Heien & P-value Shonkwiler P-value Generalized P-value 
       Wessells    & Yen   Max Entropy   
        
III. Carbonated Soft Drinks        
constant (as0) 0.068912 <.0001 0.200245 <.0001 -0.02957 0.4096 0.226915 <.0001 
hinc (asa) -5.30E-07 <.0001 -4.83E-07 <.0001 -3.85E-07 0.0689 -5.39E-07 <.0001 
hs2(asb) -0.00574 0.1674 -0.00739 0.0666 -0.00577 0.2044 -0.00502 0.2254 
hs3(asc) 0.022211 <.0001 0.01619 0.0012 0.024035 <.0001 0.019843 0.0001 
hs4(asd) 0.016544 0.0022 0.007406 0.1595 0.016271 0.0057 0.011321 0.0364 
hs5(ase) -0.00047 0.9397 -0.01059 0.078 -0.00202 0.7631 -0.00744 0.228 
white(asf) -0.01283 0.0565 -0.01316 0.0434 -0.01709 0.0755 -0.01328 0.0473 
black(asg) -0.00829 0.2955 -0.01001 0.1921 -0.01775 0.0988 -0.00732 0.3533 
oriental(ash) -0.09801 <.0001 -0.10778 <.0001 -0.14548 <.0001 -0.09912 <.0001 
central(asi) 0.076594 <.0001 0.076296 <.0001 0.087166 <.0001 0.077371 <.0001 
south(asj) 0.054797 <.0001 0.054834 <.0001 0.066066 <.0001 0.056009 <.0001 
west(ask) 0.029277 <.0001 0.027933 <.0001 0.028723 <.0001 0.02996 <.0001 
Q1(asl) -0.00324 0.4212 -0.00324 0.4076 -0.00418 0.3397 -0.00328 0.4146 
Q2(asm) 0.036821 <.0001 0.035168 <.0001 0.039021 <.0001 0.036796 <.0001 
Q3(asn) 0.026654 <.0001 0.025268 <.0001 0.028575 <.0001 0.026828 <.0001 
lpf(gsf) -0.02331 <.0001 -0.01801 0.0005 -0.03131 <.0001 -0.03231 <.0001 
lpt(gst) -0.11075 <.0001 0.034682 <.0001 0.036379 0.0017 0.010203 <.0001 
lpc(gsc) 0.024291 <.0001 0.030132 <.0001 -0.17846 <.0001 0.017885 <.0001 
lps(gss) 0.013024 0.0114 0.017326 0.0006 0.005935 0.3213 0.006965 0.173 
lpw(gsw) 0.021893 <.0001 0.021237 <.0001 -0.00937 0.1218 0.019166 <.0001 
lpm(gsm) 0.059799 <.0001 0.049326 <.0001 0.061522 <.0001 0.032854 <.0001 
bs 0.058028 <.0001 -0.03779 <.0001 0.073441 <.0001 -0.01757 0.0152 
ls -0.0004 0.0033 0.015778 <.0001 -0.00134 <.0001 0.013037 <.0001 
ps   0.035683 <.0001     
zs     0.399182 0.0086   
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Table 5.10 Continued 
 
Parameters ITSUR P-value Heien & P-value Shonkwiler P-value Generalized P-value 
       Wessells    & Yen   Max Entropy   
         
IV. Water         
constant (aw0) 0.01936 0.0007 0.080486 <.0001 -0.53882 <.0001 0.038078 <.0001 
hinc (awa) 1.84E-07 <.0001 -1.06E-08 0.5983 -2.02E-06 <.0001 1.86E-07 <.0001 
hs2(awb) -0.01453 <.0001 -0.01172 <.0001 -0.0205 <.0001 -0.01426 <.0001 
hs3(awc) -0.01184 <.0001 -0.0114 <.0001 -0.01537 <.0001 -0.01207 <.0001 
hs4(awd) -0.0162 <.0001 -0.01829 <.0001 -0.02303 <.0001 -0.01705 <.0001 
hs5(awe) -0.01636 <.0001 -0.01778 <.0001 -0.02393 <.0001 -0.01764 <.0001 
white(awf) -0.01233 <.0001 -0.00023 0.9189 0.116325 <.0001 -0.01281 <.0001 
black(awg) 0.020657 <.0001 0.017496 <.0001 0.029346 <.0001 0.020612 <.0001 
oriental(awh) 0.003573 0.4966 0.009248 0.0491 0.083243 <.0001 0.002776 0.587 
central(awi) -0.00706 <.0001 -0.00133 0.3562 0.048269 <.0001 -0.00736 <.0001 
south(awj) -0.00186 0.2154 -0.00039 0.7708 0.012364 0.0007 -0.00218 0.1435 
west(awk) -0.00157 0.3651 -0.00144 0.351 -0.02989 <.0001 -0.00181 0.2926 
Q1(awl) -0.00707 <.0001 -0.00348 0.0097 -0.01115 <.0001 -0.00709 <.0001 
Q2(awm) 0.002677 0.0777 0.00256 0.0591 0.004027 0.1041 0.002775 0.0665 
Q3(awn) 0.007362 <.0001 0.004679 0.0006 0.01163 <.0001 0.007529 <.0001 
lpf(gwf) 0.011816 <.0001 0.007706 <.0001 0.018637 <.0001 0.011716 <.0001 
lpt(wt) 0.009538 <.0001 0.016926 <.0001 0.011615 <.0001 0.006611 <.0001 
lpc(gwc) 0.010466 <.0001 0.006541 <.0001 0.027848 <.0001 0.01062 <.0001 
lps(gws) 0.017426 <.0001 0.008667 <.0001 0.026071 <.0001 0.016937 <.0001 
lpw(gww) -0.03617 <.0001 -0.02022 <.0001 -0.05607 <.0001 -0.03601 <.0001 
lpm(gwm) 0.020459 <.0001 0.009754 <.0001 0.03391 <.0001 0.021083 <.0001 
bw -0.00314 0.0007 -0.02299 <.0001 0.000737 0.6314 -0.0193 <.0001 
lw 0.000146 0.0038 0.002646 <.0001 -0.00025 0.0069 0.003223 <.0001 
pw   0.038072 <.0001     
zw     0.861922 <.0001   
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Table 5.10 Continued 
 
Parameters ITSUR P-value Heien & P-value Shonkwiler P-value Generalized P-value 
       Wessells    & Yen   Max Entropy   
         
V. Milk         
constant (am0) 0.583246 <.0001 0.627887 <.0001 0.463968 <.0001 0.524688 <.0001 
hinc (ama) -4.20E-07 <.0001 -3.67E-07 <.0001 8.70E-08 0.4838 -4.25E-07 <.0001 
hs2(amb) 0.023129 <.0001 0.019312 <.0001 0.025888 <.0001 0.022713 <.0001 
hs3(amc) 0.039104 <.0001 0.034673 <.0001 0.042351 <.0001 0.039042 <.0001 
hs4(amd) 0.072474 <.0001 0.068512 <.0001 0.077746 <.0001 0.073024 <.0001 
hs5(ame) 0.093482 <.0001 0.09097 <.0001 0.100714 <.0001 0.094484 <.0001 
white(amf) 0.037682 <.0001 0.038345 <.0001 0.061616 <.0001 0.037872 <.0001 
black(amg) -0.04585 <.0001 -0.04845 <.0001 -0.10687 <.0001 -0.04612 <.0001 
oriental(amh) 0.042235 0.0003 0.038793 0.0005 0.019061 0.1795 0.042608 0.0003 
central(ami) 0.015589 <.0001 0.015696 <.0001 0.030425 <.0001 0.016166 <.0001 
south(amj) 0.016926 <.0001 0.017466 <.0001 0.031552 <.0001 0.017796 <.0001 
west(amk) 0.043699 <.0001 0.043184 <.0001 0.034954 <.0001 0.044334 <.0001 
Q1(aml) 0.016005 <.0001 0.015477 <.0001 0.01651 <.0001 0.016014 <.0001 
Q2(amm) -0.01864 <.0001 -0.0192 <.0001 -0.02113 <.0001 -0.01902 <.0001 
Q3(amn) -0.01509 <.0001 -0.01614 <.0001 -0.01709 <.0001 -0.01565 <.0001 
lpf(gmf) -0.01391 0.0014 -0.01598 0.0001 -0.01359 0.0046 -0.00742 0.0903 
lpt(gmt) 0.095511 <.0001 0.020502 <.0001 -0.01542 0.0504 -0.00706 0.0004 
lpc(gmc) 0.005243 0.0724 0.004566 0.1063 0.197153 <.0001 0.010788 0.0002 
lps(gms) -0.02171 <.0001 -0.02847 <.0001 -0.02053 <.0001 -0.01825 <.0001 
lpw(gmw) 0.015828 <.0001 0.011532 <.0001 0.042422 <.0001 0.017622 <.0001 
lpm(gmm) -0.16677 <.0001 -0.17284 <.0001 -0.17347 <.0001 -0.14674 <.0001 
bm -0.03901 <.0001 -0.05375 <.0001 -0.03874 <.0001 -0.02473 <.0001 
lm -0.000440 0.0003 0.000288 0.7597 -0.00072 <.0001 -0.00352 0.0009 
pm   0.051058 <.0001     
zm     0.812745 <.0001   
         
gtt         
at0 -2.293840 <.0001 -0.52751 <.0001 0.263861 0.1244   
bt 0.328340 <.0001 0.323619 <.0001 -0.2258 <.0001     
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procedures converged to yielding relatively close parameter estimates. Also, the 

parameters associated with the quadratic term in the QUAIDS specification are highly 

significant, suggesting in part the appropriateness of the QUAIDS specification over the 

AIDS model across estimation procedures and is also true for the unrestricted case.   In 

Table 5.11, we find that the symmetry, homogeneity and the combination of both 

restrictions are rejected in both AIDS and QUAIDS models.     

Expenditure, Uncompensated and Compensated Elasticities      

Tables 5.12 to 5.23 present the calculated expenditure, uncompensated and 

compensated elasticities of non-alcoholic beverages across model specification, 

estimation techniques and imposition of theoretical restrictions. From the tables, we find 

that both expenditure elasticities and own-price elasticities were generally similar across 

model specification, estimation technique and whether the theoretical restrictions were 

imposed. All of the expenditure elasticities are positive indicating that all non-alcoholic 

beverages are normal goods. Also, if we look at the compensated cross-price elasticities 

across model specification, estimation technique and theoretical restriction, we find that 

almost all of them are positive indicating that the set of non-alcoholic beverages are net 

substitutes. Similarly, the major substitutes for fruit juice and tea are coffee, carbonated 

soft drink and milk. On the other hand the major substitutes for coffee are fruit juice, 

carbonated soft drinks and milk. For carbonated soft drinks the major substitutes are 

coffee and milk. Coffee, carbonated soft drinks and milk represent the major non-

alcoholic beverage substitutes for bottled water. Finally, major commodity substitutes 

for milk are fruit juice, coffee and carbonated soft drinks.  
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Table 5.11. Symmetry, Homogeneity and Combination of Symmetry and 
Homogeneity Restriction Wald Tests 
 

  Symmetry   Homogeneity   
Symmetry and 
Homogeneity  

  
χ2-

Statistic p-value   
χ2-

Statistic p-value   
χ2-

Statistic p-value 
A. AIDS model 
         

ITSUR 671.32 <.0001  367.24 <.0001  755.93 <.0001 

H&W 610.79 <.0001  201.58 <.0001  730.66 <.0001 
S&Y 561.91 <.0001  177.43 <.0001  624.23 <.0001 

         

B. QUAIDS model 
         
ITSUR 664.31 <.0001  351.10 <.0001  726.78 <.0001 
H&W 623.55 <.0001  745.17 <.0001  1027.90 <.0001 
S&Y 594.46 <.0001   392.83 <.0001   1019.80 <.0001 
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Table 5.12. Expenditure Elasticities1 of Non-Alcoholic Beverages Using the AIDS System and 1999 ACNielsen 
Homescan Data 
 
  ITSUR H&W S&Y GME Dong et al. Dong et al. Mean Standard 

Item Estimate Estimate Estimate Estimate 
Actual 

Estimates 
Latent 

Estimates   Deviation 
Fruit Juice 1.023 0.960 1.021 1.042 1.008 1.027 1.013 0.028 
 (0.000) (0.000) (0.000)  (0.000) (0.005)   

Tea 0.733 1.733 0.684 0.741 0.889 0.728 0.918 0.405 
 (0.000) (0.000) (0.000)  (0.000) (0.000)   

Coffee 0.991 0.857 1.004 0.968 1.005 1.021 0.974 0.060 
 (0.000) (0.000) (0.000)  (0.000) (0.089)   

Carbonated 
Soft drinks 1.141 1.122 1.154 1.158 1.112 1.156 1.140 0.019 
 (0.000) (0.000) (0.000)  (0.000) (0.000)   

Bottled Water 0.934 0.752 0.924 0.958 1.128 1.397 1.016 0.222 
 (0.000) (0.000) (0.000)  (0.000) (0.000)   

Milk 0.873 0.847 0.864 0.847 0.864 0.790 0.848 0.030 
  (0.000) (0.000) (0.000)   (0.000) (0.000)     

 
 Note: p-values are in brackets 
1Calculated using sample means 
. 
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Table 5.13. Uncompensated Own- and Cross-Price Elasticity Matrix1 of Non-Alcoholic Beverages Using the AIDS and the 1999 ACNielsen 
Homescan Data 
 

                Carbonated    Bottled       
    Fruit Juice   Tea   Coffee    Soft Drinks    Water   Milk   

Fruit Juice ITSUR -1.006 [.0001] 0.002 [0.8293] 0.081 [.0001] -0.212 [.0001] -0.019 [.0196] 0.130 [.0001] 

 H&W -0.945 [.0001] -0.005 [0.5003] 0.068 [.0001] -0.191 [.0001] -0.019 [.0136] 0.131 [.0001] 

 S&Y -0.991 [.0001] -0.026 [0.0100] 0.120 [.0001] -0.236 [.0001] -0.038 [.0137] 0.150 [.0001] 
 Dong et al (actual) -1.053 [.0001] 0.016 [0.0095] 0.079 [.0001] -0.143 [.0001] -0.045 [.0001] 0.137 [.0001] 

 Dong et al (latent) -1.105 [.0001] 0.037 [0.0013] 0.138 [.0001] -0.273 [.0001] -0.040 [.0007] 0.216 [.0001] 

 GME (unrestricted) -0.912  0.009  0.141  -0.100  -0.182  0.173  

              
 Mean -1.002  0.005  0.104  -0.193  -0.057  0.156  

 Std. Deviation 0.070  0.021  0.032  0.063  0.062  0.034  

              

Tea ITSUR 0.071 [.0120] -1.279 [.0001] 0.073 [.0004] 0.148 [.0002] 0.075 [.0001] 0.179 [.0001] 
 H&W -0.188 [.0001] -1.306 [.0001] -0.178 [.0001] -0.065 [.0002] -0.082 [.0001] 0.085 [.0001] 

 S&Y -0.018 [.6308] -1.528 [.0001] 0.513 [.0001] 0.139 [.0194] 0.270 [.0001] -0.058 [.2577 

 Dong et al (actual) 0.035 [.0191] -1.298 [0.0001] 0.050 [.0001] 0.121 [.0001] 0.017 [.0478] 0.186 [.0001] 

 Dong et al (latent) 0.075 [.0408] -1.763 [0.0001] 0.126 [.0001] 0.279 [.0001] 0.111 [.0001] 0.445 [.0001] 
 GME (unrestricted) 0.231  -1.242  0.124  0.205  0.038  0.524  

              
 Mean 0.034  -1.403  0.118  0.138  0.071  0.227  

 Std. Deviation 0.137  0.204  0.224  0.115  0.117  0.220  
              

Coffee ITSUR 0.137 [.0001] 0.019 [0.0325] -1.591 [.0001] 0.098 [0.0001] 0.072 [.0001] 0.275 [.0001] 

 H&W 0.134 [.0001] -0.033 [0.0003] -1.363 [.0001] 0.099 [0.0001] 0.057 [.0001] 0.248 [.0001] 

 S&Y 0.200 [.0001] 0.1840 [0.0001] -1.873 [.0001] 0.097 [0.0123] 0.155 [.0001] 0.233 [.0001] 
 Dong et al (actual) 0.114 [.0001] 0.014 [0.0204] -1.447 [.0001] 0.092 [.0001] 0.053 [.0137] 0.169 [.0001] 

 Dong et al (latent) 0.219 [.0001] 0.036 [0.0047] -1.910 [.0001] 0.163 [.0001] 0.158 [.0001] 0.313 [.0001] 

 GME (unrestricted) 0.020  0.004  -1.628  0.011  0.045  0.183  

              
 Mean 0.137  0.037  -1.635  0.093  0.090  0.237  

 Std. Deviation 0.071  0.075  0.221  0.048  0.052  0.055  
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Table 5.13 Continued  
 

                Carbonated    Bottled       

    
Fruit 
Juice   Tea   Coffee    Soft Drinks    Water   Milk   

Carbonated Soft drinks ITSUR -0.136 [.0001] 0.0004 [0.9340] 0.014 [.0300] -1.037 [.0001] 0.025 [.0001] -0.008 [.3993] 

 H&W -0.131 [.0001] 0.017 [0.0003] 0.003 [.6093] -1.027 [.0001] 0.010 [.0141] 0.006 [.5079] 
 S&Y -0.153 [.0001] 0.000 [0.9949] -0.010 [.2407] -1.033 [.0001] 0.023 [.0013] 0.019 [.0728] 

 Dong et al (actual) -0.083 [.0001] 0.015 [0.0011] 0.015 [.0213] -1.057 [.0001] 0.042 [.0137] -0.045 [.0001] 

 Dong et al (latent) -0.120 [.0001] 0.032 [0.0001] 0.038 [.0001] -1.089 [.0001] 0.093 [.0001] -0.110 [.0001] 

 GME (unrestricted) -0.123  0.016  0.033  -0.999  0.047  0.044  
              
 Mean -0.124  0.013  0.016  -1.040  0.040  -0.016  

 Std. Deviation 0.024  0.012  0.018  0.030  0.029  0.055  

              
Bottled Water ITSUR -0.066 [.0754] 0.081 [.0001] 0.212 [.0001] 0.308 [.0001] -2.013 [.0001] 0.545 [.0001] 

 H&W -0.043 [.2050] -0.033 [.0663] 0.168 [.0001] 0.235 [.0001] -1.556 [.0001] 0.478 [.0001] 

 S&Y -0.150 [0.0051 0.308 [.0001] 0.465 [.0001] 0.334 [.0001] -2.576 [.0001] 0.696 [.0001] 

 Dong et al (actual) -0.058 [.0076] 0.093 [.0100] 0.155 [.0001] 0.126 [.0001] -1.850 [.0137] 0.407 [.0001] 
 Dong et al (latent) -0.191 [.0029] 0.305 [.0100] 0.498 [.0001] 0.351 [.0001] -3.501 [.0137] 1.142 [.0001] 

 GME (unrestricted) 0.325  0.180  0.284  0.463  -1.944  0.577  

 
 Mean -0.031  0.156  0.297  0.303  -2.240  0.641  

 Std. Deviation 0.184  0.135  0.150  0.114  0.702  0.264  
              

Milk ITSUR 0.111 [.0001] 0.026 [.0001] 0.117 [.0001] 0.070 [.0001] 0.076 [.0001] -1.274 [.0001] 

 H&W 0.108 [.0001] 0.050 [.0001] 0.099 [.0001] 0.090 [.0001] 0.065 [.0001] -1.258 [.0001] 

 S&Y 0.124 [.0001] -0.008 [.2041] 0.125 [.0001] 0.079 [.0001] 0.101 [.0001] -1.285 [.0001] 

 Dong et al (actual) 0.084 [.0001] 0.011 [.0156] 0.101 [.0001] 0.085 [.0001] 0.056 [.0001] -1.200 [.0001] 

 Dong et al (latent) 0.125 [.0001] 0.032 [.0001] 0.184 [.0001] 0.123 [.0001] 0.125 [.0001] -1.379 [.0001] 

  GME (unrestricted) 0.004   -0.011   0.056   -0.039   0.070   -1.456   

              

 Mean 0.093  0.017  0.114  0.068  0.082  -1.309  

 Std. Deviation 0.046  0.024  0.042  0.055  0.026  0.092  

Note: p-values are in brackets 
1Calculated using sample means. 
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Table 5.14. Compensated Own- and Cross-Price Elasticity Matrix1 of Non-Alcoholic Beverages Using the AIDS and the 1999 ACNielsen Homescan 
Data 
 

    Fruit            Carbonated    Bottled       
    Juice   Tea   Coffee    Soft Drinks    Water   Milk   

Fruit Juice ITSUR -0.827 [.0001] 0.050 [.0001] 0.193 [.0001] 0.139 [.0001] 0.020 [.0108] 0.425 [.0001] 

 H&W -0.777 [.0001] 0.040 [.0001] 0.173 [.0001] 0.139 [.0001] 0.018 [.0149] 0.407 [.0001] 

 S&Y -0.812 [.0001] 0.022 [.0245] 0.231 [.0001] 0.114 [.0001] 0.001 [.9528] 0.445 [.0001] 
 Dong et al (actual) -0.877 [.0001] 0.064 [0.0001] 0.189 [.0001] 0.202 [.0001] -0.006 [.1923] 0.428 [.0001] 

 Dong et al (latent) -0.913  0.091  0.265  0.065  -0.006  0.498  

 GME (unrestricted) -0.730  0.057  0.255  0.257  -0.142  0.474  

              
 Mean -0.823  0.054  0.218  0.153  -0.019  0.446  

 Std. Deviation 0.066  0.023  0.038  0.068  0.061  0.034  

              

Tea ITSUR 0.199 [.0001] -1.244 [.0001] 0.153 [.0001] 0.399 [.0001] 0.103 [.0001] 0.390 [.0001] 
 H&W 0.115 [.0001] -1.224 [.0001] 0.011 [.5905] 0.530 [.0001] -0.016 [.2609] 0.585 [.0001] 

 S&Y 0.101 [.0073] -1.496 [.0001] 0.587 [.0001] 0.373 [.0001] 0.296 [.0001] 0.139 [.0001] 

 Dong et al (actual) 0.190 [.0001] -1.256 [0.0001] 0.147 [.0001] 0.425 [.0001] 0.051 [.0001] 0.442 [.0001] 

 Dong et al (latent) 0.210  -1.725  0.216  0.519  0.135  0.645  
 GME (unrestricted) 0.361  -1.207  0.206  0.257  -0.142  0.474  

              
 Mean 0.196  -1.359  0.220  0.417  0.071  0.446  

 Std. Deviation 0.093  0.209  0.194  0.101  0.148  0.177  
              

Coffee ITSUR 0.310 [0.0001] 0.066 [.0001] -1.483 [.0001] 0.437 [.0001] 0.109 [.0001] 0.560 [.0001] 

 H&W 0.284 [0.0001] 0.008 [.3918] -1.270 [.0001] 0.393 [.0001] 0.090 [.0001] 0.495 [.0001] 

 S&Y 0.376 [0.0001] 0.231 [.0001] -1.764 [.0001] 0.442 [.0001] 0.193 [.0001] 0.522 [.0001] 
 Dong et al (actual) 0.289 [.0001] 0.061 [.0001] -1.337 [.0001] 0.437 [.0001] 0.092 [.0001] 0.459 [.0001] 

 Dong et al (latent) 0.409  0.090  -1.785  0.500  0.192  0.594  

 GME (unrestricted) 0.189  0.050  -1.522  0.343  0.081  0.462  

              
 Mean 0.310  0.084  -1.527  0.425  0.126  0.515  

 Std. Deviation 0.077  0.077  0.213  0.053  0.052  0.054  

 



 

 

153 

 
Table 5.14 Continued  
 

     Fruit           Carbonated    Bottled       
    Juice   Tea   Coffee    Soft Drinks    Water   Milk   

Carbonated Soft drinks ITSUR 0.064 [.0001] 0.054 [.0001] 0.139 [.0001] -0.645 [.0001] 0.068 [.0001] 0.320 [.0001] 

 H&W 0.066 [.0001] 0.069 [.0001] 0.125 [.0001] -0.642 [.0001] 0.053 [.0001] 0.329 [.0001] 

 S&Y 0.049 [.0001] 0.054 [.0001] 0.115 [.0001] -0.637 [.0001] 0.067 [.0001] 0.352 [.0001] 

 Dong et al (actual) 0.112 [.0001] 0.067 [.0001] 0.137 [.0001] -0.676 [.0001] 0.084 [.0001] 0.276 [.0001] 
 Dong et al (latent) 0.096  0.093  0.181 [.0001] -0.708  0.132  0.207  

 GME (unrestricted) 0.080  0.071  0.160  -0.603  0.091  0.377  

              
 Mean 0.078  0.068  0.143  -0.652  0.083  0.310  
 Std. Deviation 0.023  0.014  0.024  0.036  0.028  0.061  

              

Bottled Water ITSUR 0.097 [.0089] 0.125 [.0001] 0.314 [.0001] 0.628 [.0001] -1.977 [.0001] 0.814 [.0001] 

 H&W 0.088 [.0090] 0.002 [.8978] 0.250 [.0001] 0.493 [.0001] -1.527 [.0001] 0.694 [.0001] 
 S&Y 0.011 [.8326] 0.351 [.0001] 0.566 [.0001] 0.651 [.0001] -2.541 [.0001] 0.962 [.0001] 

 Dong et al (actual) 0.139 [.0001] 0.146 [.0001] 0.278 [.0001] 0.512 [.0001] -1.807 [.0001] 0.732 [.0001] 

 Dong et al (latent) 0.068  0.380  0.670  0.811  -3.455  1.525  

 GME (unrestricted)  0.492  0.225  0.389  0.791  -1.908  0.853  
              
 Mean 0.149  0.205  0.411  0.648  -2.203  0.930  

 Std. Deviation 0.173  0.144  0.170  0.134  0.698  0.307  

              
Milk ITSUR 0.264 [.0001] 0.067 [.0001] 0.213 [.0001] 0.370 [.0001] 0.109 [.0001] -1.023 [.0001] 

 H&W 0.256 [.0001] 0.090 [.0001] 0.192 [.0001] 0.380 [.0001] 0.097 [.0001] -1.014 [.0001] 

 S&Y 0.275 [.0001] 0.032 [.0001] 0.219 [.0001] 0.375 [.0001] 0.134 [.0001] -1.036 [.0001] 

 Dong et al (actual) 0.235 [.0001] 0.052 [.0001] 0.195 [.0001] 0.381 [.0001] 0.088 [.0001] -0.951 [.0001] 

 Dong et al (latent) 0.272  0.074  0.281  0.383  0.152  -1.162  

  GME (unrestricted) 0.152   0.040   0.148   0.251   0.102   -1.211   

              

 Mean 0.242  0.059  0.208  0.357  0.114  -1.066  

 Std. Deviation 0.046  0.022  0.044  0.052  0.024  0.099  

Note: p-values are in brackets 
1Calculated using sample means. 
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Table 5.15. Expenditure Elasticities1 of Non-Alcoholic Beverages Using the 
QUAIDS System and 1999 ACNielsen Homescan Data 
 
  ITSUR H&W S&Y GME Mean Standard 

Item Estimate Estimate Estimate Estimate   Deviation 

Fruit Juice 0.982 0.932 0.964 1.010 0.972 0.033 
 (0.000) (0.000) (0.000)    
Tea 0.767 1.601 0.841 0.776 0.996 0.404 
 (0.000) (0.000) (0.000)    
Coffee 0.879 0.757 0.844 0.872 0.838 0.056 
 (0.000) (0.000) (0.000)    
Carbonated Soft 
drinks 1.184 1.171 1.189 1.201 1.186 0.012 
 (0.000) (0.000) (0.000)    
Bottled Water 1.033 0.828 1.127 1.054 1.011 0.128 
 (0.000) (0.000) (0.000)    
Milk 0.870 0.855 0.864 0.833 0.856 0.016 
  (0.000) (0.000) (0.000)       

Note: p-values are in brackets 
1Calculated using sample means 
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Table 5.16. Uncompensated Own- and Cross-Price Elasticity Matrix1 of Non-Alcoholic Beverages Using the QUAIDS and the 1999 ACNielsen 
Homescan Data 
 

                Carbonated    Bottled       
    Fruit Juice   Tea   Coffee    Soft Drinks    Water   Milk   

Fruit Juice ITSUR -0.998 [.0001] 0.004 [0.6352] 0.084 [.0001] -0.197 [.0001] -0.017 [.0344] 0.143 [.0001] 

 H&W -0.939 [.0001] -0.004 [0.5953] 0.070 [.0001] -0.181 [.0001] -0.018 [.0137] 0.139 [.0001] 

 S&Y -0.974 [.0001] -0.033 [0.0011] 0.142 [.0001] -0.214 [.0001] -0.046 [.0001] 0.160 [.0001] 
 GME (unrestricted) -0.892  -0.004  0.160  -0.095  -0.210  0.177  

              
 Mean -0.951  -0.009  0.114  -0.172  -0.073  0.155  

 Std. Deviation 0.046  0.016  0.044  0.053  0.093  0.018  
              

Tea ITSUR 0.063 [.0454] -1.279 [.0001] 0.070 [.0019] 0.136 [.0002] 0.074 [.0001] 0.170 [.0001] 

 H&W -0.165 [.0070] -1.303 [.0001] -0.177 [.0001] -0.005 [.8915] -0.072 [.0001] 0.120 [.0012] 

 S&Y -0.080 [.0747] -1.462 [.0001] 0.389 [.0001] 0.076 [.1515] 0.289 [.0001] -0.053 [.2629] 
 GME (unrestricted) 0.201  -1.236  0.090  0.216  0.048  0.514  

              
 Mean 0.005  -1.320  0.093  0.106  0.085  0.188  

 Std. Deviation 0.161  0.098  0.231  0.094  0.150  0.237  
              

Coffee ITSUR 0.159 [0.0001] 0.025 [0.0059] -1.586 [0.0001] 0.140 [0.0001] 0.078 [.0001] 0.305 [.0001] 

 H&W 0.154 [0.0001] -0.0299 [0.0009] -1.357 [0.0001] 0.137 [0.0001] 0.062 [.0001] 0.277 [.0001] 

 S&Y 0.248 [0.0064] 0.143 [0.0001] -1.792 [0.0001] 0.198 [0.0913] 0.132 [.0001] 0.228 [.0001] 
 GME (unrestricted) 0.076  -0.002  -1.579  0.037  0.034  0.201  

              
 Mean 0.159  0.034  -1.579  0.128  0.077  0.253  

 Std. Deviation 0.070  0.076  0.178  0.067  0.041  0.047  
              

Carbonated  ITSUR -0.145 [.0001] -0.002 [0.6908] 0.010 [.1178] -1.051 [.0001] 0.023 [.0001] -0.020 [.0446] 

Soft drinks H&W -0.141 [.0001] 0.014 [0.0019] -0.001 [.8488] -1.044 [.0001] 0.007 [.0642] -0.007 [.4951] 

 S&Y -0.166 [.0001] 0.001 [0.8270] -0.027 [.0023] -1.046 [.0001] 0.039 [.0001] 0.009 [.4027] 
 GME (unrestricted) -0.143  0.017  0.021  -1.022  0.048  0.037  

              
 Mean -0.149  0.008  0.001  -1.041  0.029  0.005  

 Std. Deviation 0.012  0.009  0.020  0.013  0.018  0.025  
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Table 5.16 Continued 
 

                Carbonated    Bottled       
    Fruit Juice   Tea   Coffee    Soft Drinks    Water   Milk   

Bottled Water ITSUR -0.089 [0.0171] 0.077 [.0001] 0.204 [.0001] 0.274 [.0001] -2.015 [.0001] 0.517 [.0001] 

 H&W -0.062 [0.06203] -0.035 [.0510] 0.159 [.0001] 0.210 [.0001] -1.556 [.0001] 0.457 [.0001] 

 S&Y -0.230 [0.5354] 0.375 [.0835] 0.372 [.0001] 0.144 [.0290] -2.539 [.0001] 0.751 [.0001] 

 GME (unrestricted) 0.267  0.187  0.232  0.457  -1.932  0.558  
              
 Mean -0.029  0.151  0.242  0.271  -2.011  0.571  

 Std. Deviation 0.211  0.175  0.092  0.135  0.405  0.127  

              
Milk ITSUR 0.114 [.0001] 0.026 [.0001] 0.120 [.0001] 0.069 [.0001] 0.075 [.0001] -1.274 [.0001] 

 H&W 0.107 [.0001] 0.051 [.0001] 0.102 [.0001] 0.083 [.0001] 0.064 [.0001] -1.261 [.0001] 

 S&Y 0.131 [.0001] -0.010 [.1081] 0.133 [.0001] 0.079 [.0001] 0.088 [.0001] -1.285 [.0001] 

  GME (unrestricted) 0.007   -0.010   0.053   -0.024   0.071   -1.455   

              

 Mean 0.090  0.014  0.102  0.052  0.074  -1.319  

 Std. Deviation 0.056  0.030  0.035  0.051  0.010  0.091  

Note: p-values are in brackets           
1Calculated using sample means. 
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Table 5.17. Compensated Own- and Cross-Price Elasticity Matrix1 of Non-Alcoholic Beverages Using the QUAIDS and the 1999 ACNielsen 
Homescan Data 
 

                Carbonated    Bottled       
    Fruit Juice   Tea   Coffee    Soft Drinks    Water   Milk   

Fruit Juice ITSUR -0.826 [.0001] 0.050 [.0001] 0.191 [.0001] 0.140 [.0001] 0.020 [.0108] 0.426 [.0001] 

 H&W -0.776 [.0001] 0.040 [.0001] 0.172 [.0001] 0.139 [.0001] 0.018 [.0214] 0.408 [.0001] 

 S&Y -0.805 [.0001] 0.013 [.2032] 0.247 [.0001] 0.117 [.0001] -0.009 [.4151] 0.438 [.0001] 
 GME (unrestricted) -0.716  0.043  0.270  0.251  -0.172  0.469  

              
 Mean -0.781  0.036  0.220  0.162  -0.036  0.435  

 Std. Deviation 0.048  0.016  0.046  0.060  0.092  0.026  
              

Tea ITSUR 0.197 [.0001] -1.243 [.0001] 0.154 [.0001] 0.399 [.0001] 0.103 [.0001] 0.391 [.0001] 

 H&W 0.115 [.0001] -1.228 [.0001] -0.002 [.9184] 0.544 [.0001] -0.011 [.4564] 0.581 [.0001] 

 S&Y 0.067 [.0772] -1.422 [.0001] 0.480 [.0001] 0.365 [.0001] 0.321 [.0001] 0.189 [.0001] 
 GME (unrestricted) 0.337  -1.199  0.175  0.482  0.078  0.737  

              
 Mean 0.179  -1.273  0.202  0.447  0.123  0.475  

 Std. Deviation 0.118  0.101  0.202  0.081  0.141  0.237  
              

Coffee ITSUR 0.313 [0.0001] 0.066 [.0001] -1.490 [.0001] 0.442 [.0001] 0.111 [.0001] 0.558 [.0001] 

 H&W 0.286 [0.0001] 0.006 [.5303] -1.275 [.0001] 0.397 [.0001] 0.091 [.0001] 0.495 [.0001] 

 S&Y 0.396 [0.0001] 0.182 [.0001] -1.700 [.0001] 0.487 [.0001] 0.164 [.0001] 0.471 [.0001] 
 GME (unrestricted) 0.228  0.039  -1.484  0.336  0.068  0.452  

              
 Mean 0.306  0.073  -1.487  0.415  0.108  0.494  

 Std. Deviation 0.070  0.077  0.174  0.065  0.041  0.046  
              

Carbonated  ITSUR 0.062 [.0001] 0.054 [.0001] 0.139 [.0001] -0.644 [.0001] 0.068 [.0001] 0.321 [.0001] 

Soft drinks H&W 0.064 [.0001] 0.069 [.0001] 0.126 [.0001] -0.642 [.0001] 0.052 [.0001] 0.331 [.0001] 

 S&Y 0.042 [.0001] 0.057 [.0001] 0.103 [.0001] -0.638 [.0001] 0.084 [.0001] 0.352 [.0001] 
 GME (unrestricted) 0.067  0.073  0.152  -0.611  0.094  0.384  

              
 Mean 0.059  0.064  0.130  -0.634  0.075  0.347  
 Std. Deviation 0.011  0.009  0.021  0.016  0.019  0.028  
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Table 5.17 Continued 
 
                Carbonated    Bottled       
    Fruit Juice   Tea   Coffee    Soft Drinks    Water   Milk   
Bottled Water ITSUR 0.092 [.0693] 0.125 [.0001] 0.317 [.0001] 0.628 [.0001] -1.976 [.0001] 0.814 [.0001] 

 H&W 0.083 [.0140] 0.004 [.8310] 0.249 [.0001] 0.494 [.0001] -1.525 [.0001] 0.695 [.0001] 

 S&Y -0.033 [.5349] 0.428 [.0001] 0.495 [.0001] 0.530 [.0001] -2.496 [.0001] 1.076 [.0001] 

 GME (unrestricted) 0.451  0.236  0.347  0.818  -1.892  0.862  
              
 Mean 0.148  0.198  0.352  0.618  -1.972  0.862  

 Std. Deviation 0.210  0.180  0.104  0.145  0.400  0.159  

              
Milk ITSUR 0.266 [.0001] 0.067 [.0001] 0.215 [.0001] 0.367 [.0001] 0.108 [.0001] -1.024 [.0001] 

 H&W 0.257 [.0001] 0.091 [.0001] 0.195 [.0001] 0.377 [.0001] 0.096 [.0001] -1.015 [.0001] 

 S&Y 0.283 [.0001] 0.031 [.0001] 0.227 [.0001] 0.375 [.0001] 0.120 [.0001] -1.036 [.0001] 

  GME (unrestricted) 0.153   0.039   0.145   0.261   0.103   -1.215   

              

 Mean 0.240  0.057  0.195  0.345  0.107  -1.072  

 Std. Deviation 0.059  0.027  0.036  0.056  0.010  0.095  

Note:  p-values are in brackets 
1Calculated using sample means. 
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Table 5.18. Expenditure Elasticities1 of Non-Alcoholic Beverages Using the 
AIDS System and 1999 ACNielsen Homesan Data (Unrestricted) 
  
  ITSUR H&W S&Y GME Mean Standard 

Item Estimate Estimate Estimate Estimate   Deviation 

Fruit Juice 1.039 0.976 1.040 1.042 1.024 0.032 
 (0.000) (0.000) (0.000)    
Tea 0.745 1.770 0.715 0.741 0.993 0.519 
 (0.000) (0.000) (0.000)    
Coffee 0.976 0.841 0.965 0.968 0.937 0.065 
 (0.000) (0.000) (0.000)    
Carbonated 
Soft Drinks 1.155 1.135 1.171 1.158 1.155 0.015 
 (0.000) (0.000) (0.000)    
Bottled Water 0.963 0.762 0.963 0.958 0.911 0.100 
 (0.000) (0.000) (0.000)    
Milk 0.847 0.820 0.836 0.847 0.838 0.013 
  (0.000) (0.000) (0.000)       

p-values are in parenthesis 
1Calculated using sample means 
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Table 5.19. Uncompensated Own- and Cross-Price Elasticity Matrix1 of Non-Alcoholic Beverages Using the AIDS and 1999 ACNielsen Homescan 
Data (Unrestricted) 
 

                Carbonated    Bottled       

    Fruit Juice   Tea   Coffee    Soft drinks    Water   Milk   

Fruit Juice ITSUR -0.905 [.0001] 0.010 [0.3170] 0.145 [.0001] -0.093 [.0001] -0.038 [.0035] 0.301 [.0001] 

 H&W -0.853 [.0001] 0.016 [0.1106] 0.133 [.0001] -0.084 [.0001] -0.034 [.0136] 0.258 [.0001] 

 S&Y -0.872 [.0001] 0.000 [0.9705] 0.170 [.0001] -0.086 [.0022] -0.059 [.0004] 0.384 [.0001] 

 GME -0.912  0.009  0.141  -0.100  -0.182  0.173  

              

 Mean -0.885  0.009  0.147  -0.091  -0.078  0.279  

 Std. Deviation 0.028  0.007  0.016  0.007  0.070  0.088  
              

Tea ITSUR 0.197 [.0001] -1.254 [.1828] 0.096 [.0004] 0.159 [.0001] 0.036 [.0001] 0.417 [.0001] 

 H&W -0.018 [.0586] -1.431 [.3909] -0.277 [.0001] 0.019 [.1877] -0.306 [.0001] 0.991 [.0001] 

 S&Y -0.024 [.0123] -1.376 [.1545] 0.775 [.0001] 0.014 [.2010] 0.416 [.0001] -0.345 [.0001] 

 GME 0.231  -1.242  0.124  0.205  0.038  0.524  

              

 Mean 0.097  -1.325  0.179  0.099  0.046  0.397  

 Std. Deviation 0.136  0.093  0.437  0.098  0.295  0.554  
              

Coffee ITSUR 0.014 [0.6441] 0.003 [0.8206] -1.632 [0.0001] 0.003 [0.9226] 0.044 [.0092] 0.172 [.0001] 

 H&W 0.018 [0.4823] 0.053 [0.0001] -1.415 [0.0001] 0.032 [0.2068] 0.034 [.0192] 0.092 [.0025] 

 S&Y 0.018 [0.7216] 0.0164 [0.4725] -2.035 [0.0001] -0.019 [0.7024] 0.089 [.0022] 0.297 [.0001] 

 GME 0.020  0.004  -1.628  0.011  0.045  0.183  

              

 Mean 0.017  0.019  -1.678  0.007  0.053  0.186  

 Std. Deviation 0.003  0.023  0.259  0.021  0.024  0.084  
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Table 5.19 Continued  
 

                Carbonated    Bottled       

    Fruit Juice   Tea   Coffee    Soft drinks    Water   Milk   

Carbonated  ITSUR -0.096 [.0001] 0.0218 [0.0025] 0.053 [.0001] -0.968 [.0001] 0.053 [.0001] 0.103 [.0001] 

Soft drinks H&W -0.090 [.0001] -0.004 [0.6689] 0.058 [.0001] -0.982 [.0001] 0.056 [.0001] 0.058 [.0001] 

 S&Y -0.103 [.0001] 0.027 [0.0007] 0.048 [.0001] -0.954 [.0001] 0.051 [.0001] 0.112 [.0001] 

 GME -0.123  0.016  0.033  -0.999  0.047  0.044  

              

 Mean -0.103  0.015  0.048  -0.976  0.052  0.079  

 Std. Deviation 0.015  0.013  0.011  0.019  0.004  0.033  
              

Bottled Water ITSUR 0.317 [0.0001] 0.178 [.0001] 0.279 [.0001] 0.458 [.0001] -1.947 [.0001] 0.560 [.0001] 

 H&W 0.239 [0.0001] 0.177 [.0001] 0.163 [.0001] 0.344 [.0001] -1.503 [.0001] 0.351 [.0001] 

 S&Y 0.507 [0.0001] 0.302 [.0001] 0.471 [.0001] 0.686 [.0001] -2.497 [.0001] 0.922 [.0001] 

 GME 0.325  0.180  0.284  0.463  -1.944  0.577  

              

 Mean 0.347  0.209  0.299  0.488  -1.973  0.602  

 Std. Deviation 0.113  0.062  0.127  0.143  0.407  0.236  
              

Milk ITSUR -0.022 [.1566] -0.016 [.0234] 0.037 [.0003] -0.069 [.0001] 0.063 [.0001] -1.513 [.0001] 

 H&W -0.018 [.2153] 0.022 [.0156] 0.031 [.0019] -0.031 [.0390] 0.057 [.0001] -1.545 [.0001] 

 S&Y -0.024 [.1348] -0.016 [.0341] 0.044 [.0001] -0.088 [.0001] 0.070 [.0001] -1.544 [.0001] 

  GME 0.004   -0.011   0.056   -0.039   0.070   -1.456   

              

 Mean -0.015  -0.005  0.042  -0.057  0.065  -1.515  

 Std. Deviation 0.013  0.018  0.011  0.026  0.006  0.042  

Note: p-values are in brackets 
1Calculated using sample means 
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Table 5.20. Compensated Own- and Cross-Price Elasticity Matrix1 of Non-Alcoholic Beverages Using the AIDS and 1999 ACNielsen Homescan 
Data (Unrestricted) 
 

                Carbonated    Bottled       

    Fruit Juice   Tea   Coffee    Soft Drinks    Water   Milk   

Fruit Juice ITSUR -0.723 [.0001] 0.059 [.0001] 0.259 [.0001] 0.264 [.0001] 0.002 [.9024] 0.600 [.0001] 

 H&W -0.682 [.0001] 0.061 [.0001] 0.239 [.0001] 0.251 [.0001] 0.003 [.7842] 0.539 [.0001] 

 S&Y -0.690 [.0001] 0.048 [.0002] 0.283 [.0001] 0.271 [.0001] -0.019 [.2473] 0.683 [.0001] 

 GME -0.730  0.057  0.255  0.257  -0.142  0.474  

              

 Mean -0.706  0.057  0.259  0.261  -0.039  0.574  

 Std. Deviation 0.024  0.006  0.018  0.009  0.069  0.089  
              

Tea ITSUR 0.327 [.0001] -1.219 [.1954] 0.177 [.0001] 0.415 [.0001] 0.065 [.0001] 0.631 [.0001] 

 H&W 0.292 [.0001] -1.347 [.4191] -0.084 [.0001] 0.626 [.0001] -0.239 [.0001] 1.501 [.0001] 

 S&Y 0.102 [.0001] -1.342 [.1649] 0.853 [.0001] 0.259 [.0001] 0.443 [.0001] -0.139 [.0001] 

 GME 0.361  -1.207  0.206  0.257  -0.142  0.474  

              

 Mean 0.270  -1.279  0.288  0.389  0.032  0.617  

 Std. Deviation 0.116  0.076  0.398  0.174  0.302  0.677  
              

Coffee ITSUR 0.185 [0.0001] 0.049 [.0003] -1.526 [.0001] 0.338 [.0001] 0.081 [.0001] 0.045 [.0001] 

 H&W 0.165 [0.0001] 0.092 [.0001] -1.324 [.0001] 0.320 [.0001] 0.066 [.0001] 0.335 [.0001] 

 S&Y 0.187 [0.0002] 0.062 [.0001] -1.930 [.0001] 0.312 [.0001] 0.125 [.0001] 0.575 [.0001] 

 GME 0.189  0.050  -1.522  0.343  0.081  0.462  

              

 Mean 0.181  0.063  -1.575  0.328  0.088  0.354  

 Std. Deviation 0.011  0.020  0.255  0.014  0.026  0.228  
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Table 5.20 Continued 
 

                Carbonated    Bottled       

    Fruit Juice   Tea   Coffee    Soft Drinks    Water   Milk   

Carbonated  ITSUR 0.107 [.0001] 0.076 [.0001] 0.179 [.0001] -0.572 [.0001] 0.097 [.0001] 0.436 [.0001] 

Soft drinks H&W 0.109 [.0001] 0.050 [.0001] 0.182 [.0001] -0.593 [.0001] 0.099 [.0001] 0.449 [.0001] 

 S&Y 0.102 [.0001] 0.082 [.0001] 0.175 [.0001] -0.552 [.0001] 0.096 [.0001] 0.450 [.0001] 

 GME 0.080  0.071  0.160  -0.603  0.091  0.377  

              

 Mean 0.099  0.070  0.174  -0.580  0.096  0.428  

 Std. Deviation 0.013  0.014  0.010  0.023  0.004  0.034  
              

Bottled Water ITSUR 0.486 [.0001] 0.223 [.0001] 0.384 [.0001] 0.789 [.0001] -1.910 [.0001] 0.838 [.0001] 

 H&W 0.372 [.0001] 0.213 [.0001] 0.246 [.0001] 0.605 [.0001] -1.474 [.0001] 0.570 [.0001] 

 S&Y 0.675 [.0001] 0.347 [.0001] 0.576 [.0001] 0.651 [.0001] -2.461 [.0001] 1.016 [.0001] 

 GME 0.492  0.225  0.389  0.791  -1.908  0.853  

              

 Mean 0.506  0.252  0.399  0.709  -1.938  0.819  

 Std. Deviation 0.125  0.064  0.135  0.095  0.404  0.185  
              

Milk ITSUR 0.127 [.0001] 0.024 [.0009] 0.129 [.0001] 0.222 [.0001] 0.096 [.0001] -1.269 [.0001] 

 H&W 0.125 [.0001] 0.060 [.0001] 0.120 [.0001] 0.250 [.0001] 0.088 [.0001] -1.309 [.0001] 

 S&Y 0.122 [.0001] 0.023 [.0001] 0.135 [.0001] 0.199 [.0001] 0.102 [.0001] -1.303 [.0001] 

  GME 0.152   0.040   0.148   0.251   0.102   -1.211   

              

 Mean 0.131  0.037  0.133  0.230  0.097  -1.273  

 Std. Deviation 0.014  0.018  0.012  0.025  0.007  0.045  

Note: p-values are in brackets 
1Calculated using sample means 
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Table 5.21. Expenditure Elasticities1 of Non-Alcoholic Beverages Using the 
QUAIDS System and 1999 ACNielsen Homescan Data (Unrestricted) 
 

  ITSUR H&W S&Y GME Mean Standard 

Item Estimate Estimate Estimate Estimate   Deviation 

Fruit Juice 1.054 0.956 1.079 1.010 1.025 0.054 
 (0.000) (0.000) (0.000)    
Tea 0.586 1.547 0.929 0.776 0.959 0.416 
 (0.000) (0.000) (0.000)    
Coffee 0.988 0.734 0.661 0.872 0.814 0.145 
 (0.000) (0.000) (0.000)    
Carbonated Soft Drinks 1.162 1.198 1.199 1.201 1.190 0.019 
 (0.000) (0.000) (0.000)    
Bottled Water 0.943 0.862 0.995 1.054 0.963 0.081 
 (0.000) (0.000) (0.000)    
Milk 0.854 0.820 0.856 0.833 0.841 0.017 

  (0.000) (0.000) (0.000)       
Note: p-values are in brackets 
1Calculated using sample means 
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Table 5.22. Uncompensated Own- and Cross-Price Elasticity Matrix1 of Non-Alcoholic Beverages Using the QUAIDS and the 1999 ACNielsen 
Homescan Data (Unrestricted) 
 

                Carbonated    Bottled       
    Fruit Juice   Tea   Coffee    Soft drinks    Water   Milk   

Fruit Juice ITSUR -0.907 [.0001] 0.051 [0.0001] 0.143 [.0001] -0.094 [.0001] -0.037 [.0045] 0.297 [.0001] 

 H&W -0.850 [.0001] -0.028 [0.1028] 0.134 [.0001] -0.081 [.0001] -0.034 [.0049] 0.264 [.0001] 

 S&Y -0.887 [.0001] 0.021 [0.1310] 0.384 [.0001] -0.095 [.0007] -0.038 [.0232] 0.377 [.0001] 
 GME -0.892  -0.004  0.160  -0.095  -0.210  0.177  

              

 Mean -0.884  0.010  0.205  -0.091  -0.080  0.279  

 Std. Deviation 0.024  0.034  0.120  0.007  0.087  0.083  
              
Tea ITSUR 0.210 [.0001] -1.686 [.0001] 0.115 [.0001] 0.160 [.0001] 0.014 [.0001] 0.453 [.0001] 

 H&W 0.006 [.7797] -1.737 [.0001] -0.287 [.0001] 0.140 [.8915] -0.312 [.0001] 0.978 [.0001] 

 S&Y -0.074 [.0001] -1.427 [.0001] 1.984 [.0001] 0.071 [.0001] 0.520 [.0001] -0.451 [.0001] 
 GME 0.201  -1.236  0.090  0.216  0.048  0.514  

              

 Mean 0.086  -1.521  0.475  0.147  0.067  0.373  

 Std. Deviation 0.142  0.234  1.023  0.060  0.343  0.598  
              
Coffee ITSUR 0.012 [0.6903] 0.034 [0.0413] -1.634 [0.0001] 0.003 [0.9165] 0.045 [.0076] 0.170 [.0001] 

 H&W 0.094 [0.0004] 0.003 [0.7935] -1.410 [0.0001] 0.052 [0.0386] 0.042 [.0042] 0.139 [.0001] 

 S&Y 0.124 [0.0147] -0.083 [0.0258] -3.800 [0.0001] 0.0003 [0.9951] -0.067 [.0897] 0.390 [.0001] 
 GME 0.076  -0.002  -1.579  0.037  0.034  0.201  

              

 Mean 0.077  -0.012  -2.106  0.023  0.014  0.225  

 Std. Deviation 0.048  0.050  1.133  0.025  0.054  0.113  
              
Carbonated Soft drinks ITSUR -0.097 [.0001] 0.041 [0.0001] 0.052 [.0001] -0.970 [.0001] 0.054 [.0001] 0.103 [.0001] 

 H&W -0.136 [.0001] 0.035 [0.0001] 0.053 [.0001] -0.989 [.0001] 0.051 [.0001] 0.090 [.001] 

 S&Y -0.116 [.0001] 0.051 [0.0001] 0.747 [.0001] -0.972 [.0001] 0.066 [.0001] 0.116 [.0001] 
 GME -0.143  0.017  0.021  -1.022  0.048  0.037  

              

 Mean -0.123  0.036  0.218  -0.988  0.055  0.087  

 Std. Deviation 0.021  0.014  0.353  0.024  0.008  0.034  
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Table 5.22 Continued 
 
                Carbonated    Bottled       
    Fruit Juice   Tea   Coffee    Soft drinks    Water   Milk   

Bottled Water ITSUR 0.321 [0.0001] 0.123 [.0001] 0.282 [.0001] 0.459 [.0001] -1.948 [.0001] 0.565 [.0001] 

 H&W 0.227 [0.0001] 0.318 [.0001] 0.167 [.0001] 0.297 [.0001] -1.499 [.0001] 0.354 [.0001] 

 S&Y 0.492 [0.0001] 0.307 [.0001] 0.711 [.0001] 0.688 [.0001] -2.478 [.0001] 0.893 [.0001] 

 GME 0.267  0.187  0.232  0.457  -1.932  0.558  
              

 Mean 0.327  0.234  0.348  0.475  -1.965  0.593  

 Std. Deviation 0.116  0.095  0.247  0.161  0.401  0.223  

              
Milk ITSUR -0.022 [.1551] 0.003 [.7189] 0.035 [.0004] -0.066 [.0001] 0.064 [.0001] -1.516 [.0001] 

 H&W -0.016 [.2688] -0.017 [.1292] 0.035 [.0001] -0.045 [.0015] 0.060 [.0001] -1.526 [.0001] 

 S&Y -0.029 [.0798] -0.014 [.0710] 0.149 [.0001] -0.077 [.0001] 0.080 [.0001] -1.557 [.0001] 

 GME 0.007  -0.010  0.053  -0.024  0.071  -1.455  

              

 Mean -0.015  -0.009  0.068  -0.053  0.069  -1.514  

 Std. Deviation 0.015  0.009  0.055  0.023  0.009  0.043  

Note: p-values are in brackets 
1Calculated using sample means 
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Table 5.23. Compensated Own- and Cross-Price Elasticity Matrix1 of Non-Alcoholic Beverages Using the QUAIDS and the 1999 ACNielsen 
Homescan Data (Unrestricted) 
 

                Carbonated    Bottled       
    Fruit Juice   Tea   Coffee    Soft Drinks    Water   Milk   

Fruit Juice ITSUR -0.723 [.0001] 0.100 [.0001] 0.258 [.0001] 0.268 [.0001] 0.003 [.8061] 0.600 [.0001] 

 H&W -0.683 [.0001] 0.017 [.3264] 0.238 [.0001] 0.246 [.0001] 0.003 [.8260] 0.539 [.0001] 

 S&Y -0.698 [.0001] 0.071 [.0001] 0.502 [.0001] 0.275 [.0001] 0.003 [.8804] 0.687 [.0001] 
 GME -0.716  0.043  0.270  0.251  -0.172  0.469  

              

 Mean -0.705  0.058  0.317  0.260  -0.041  0.574  

 Std. Deviation 0.018  0.036  0.124  0.014  0.087  0.093  
              
Tea ITSUR 0.312 [.0001] -1.658 [.0001] 0.179 [.0001] 0.361 [.0001] 0.037 [.0001] 0.622 [.0001] 

 H&W 0.276 [.0001] -1.207 [.0001] -0.119 [.0001] 0.671 [.0001] -0.254 [.0001] 1.424 [.0001] 

 S&Y 0.089 [.0001] -1.383 [.0001] 2.085 [.0001] 0.390 [.0001] 0.555 [.0001] -0.184 [.0001] 
 GME 0.337  -1.199  0.175  0.482  0.078  0.737  

              

 Mean 0.254  -1.362  0.580  0.476  0.104  0.650  

 Std. Deviation 0.113  0.215  1.013  0.140  0.335  0.659  
              
Coffee ITSUR 0.185 [0.0001] 0.081 [.0001] -1.527 [.0001] 0.342 [.0001] 0.083 [.0001] 0.454 [.0001] 

 H&W 0.163 [0.0001] -0.163 [.0001] -1.330 [.0001] 0.304 [.0001] 0.070 [.0001] 0.351 [.0001] 

 S&Y 0.240 [0.0001] -0.052 [.1667] -3.728 [.0001] 0.227 [.0001] -0.042 [.2921] 0.580 [.0001] 
 GME 0.228  0.039  -1.484  0.336  0.068  0.452  

              

 Mean 0.204  -0.024  -2.017  0.302  0.044  0.459  

 Std. Deviation 0.036  0.108  1.144  0.053  0.058  0.094  
              
Carbonated Soft drinks ITSUR 0.106 [.0001] 0.096 [.0001] 0.178 [.0001] -0.572 [.0001] 0.098 [.0001] 0.438 [.0001] 

 H&W 0.110 [.0001] 0.214 [.0001] 0.184 [.0001] -0.578 [.0001] 0.097 [.0001] 0.435 [.0001] 

 S&Y 0.093 [.0001] 0.108 [.0001] 0.348 [.0001] -0.561 [.0001] 0.112 [.0001] 0.461 [.0001] 
 GME 0.067  0.073  0.152  -0.611  0.094  0.384  

              

 Mean 0.094  0.123  0.216  -0.580  0.100  0.429  

 Std. Deviation 0.019  0.062  0.089  0.021  0.008  0.033  
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Table 5.23 Continued 
 
                Carbonated    Bottled       
    Fruit Juice   Tea   Coffee    Soft Drinks    Water   Milk   

Bottled Water ITSUR 0.486 [.0001] 0.167 [.0001] 0.385 [.0001] 0.783 [.0001] -1.912 [.0001] 0.837 [.0001] 

 H&W 0.378 [.0001] 0.358 [.0001] 0.261 [.0001] 0.593 [.0001] -1.467 [.0001] 0.602 [.0001] 

 S&Y 0.666 [.0001] 0.354 [.0001] 0.819 [.0001] 1.029 [.0001] -2.440 [.0001] 1.180 [.0001] 

 GME 0.451  0.236  0.347  0.818  -1.892  0.862  
              

 Mean 0.495  0.279  0.453  0.806  -1.928  0.870  

 Std. Deviation 0.122  0.093  0.250  0.179  0.399  0.237  

              
Milk ITSUR 0.128 [.0001] 0.043 [.0001] 0.129 [.0001] 0.227 [.0001] 0.096 [.0001] -1.270 [.0001] 

 H&W 0.127 [.0001] 0.022 [.0594] 0.124 [.0001] 0.236 [.0001] 0.091 [.0001] -1.290 [.0001] 

 S&Y 0.121 [.0001] 0.026 [.0001] 0.243 [.0001] 0.216 [.0001] 0.112 [.0001] -1.311 [.0001] 

 GME 0.153  0.039  0.145  0.261  0.103  -1.215  

              

 Mean 0.132  0.033  0.160  0.235  0.101  -1.271  

 Std. Deviation 0.014  0.010  0.056  0.019  0.009  0.041  

                            
Note: p-values are in brackets 
1Calculated using sample means 
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Elasticity Comparisons across Censored Estimation Techniques of  

Non-Alcoholic Beverages    

Table 5.14 presents the AIDS compensated or Hicksian price elasticity matrix of 

non-alcoholic beverages. We note more variability of cross price elasticities estimates of 

non-alcoholic beverage that are highly censored. These include tea, coffee and bottled 

water. On the other hand, relatively less variable cross-price elasticity estimates were 

observed for commodities with relatively minor censoring issues. For example, in milk, 

the cross-price elasticity estimates of milk with respect to fruit juice ranged from 0.152 

to 0.264. Though not comparable, the cross-price elasticity values for bottled water with 

respect to fruit juice ranged from 0.011 to 0.492. Also note that associated p-values for 

all price elasticities are mostly significant. For the QUAIDS specification, we note the 

same claim that the greater number of censored observations the commodity, the more 

variable its respective own- and cross-price elasticities are. For milk the compensated 

price elasticities with respect to fruit juice ranged from 0.153 to 0.283, while for the 

bottled water, the compensated price elasticities ranged from -0.033 to 0.451 (Table 

5.17). On the other hand, the same observation can be made for the AIDS and QUAIDS 

unrestricted cases. For example the cross price elasticity of milk with respect fruit juice 

ranged from 0.122 to 0.152 for AIDS and 0.121 to 0.153 for QUAIDS, while the cross 

price elasticity of bottled water with respect to fruit juice ranged from 0.372 to 0.675 for 

the AIDS specification and 0.378 to 0.666 for the QUAIDS model (Tables 20 and 23). 
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Elasticity Comparisons across Model Specification (AIDS vs. QUAIDS) 

Table 5.14 and 5.17 present the compensated own- and cross-price elasticity 

matrices of non-alcoholic beverages of both the AIDS and QUAIDS models. We note 

relatively similar price elasticity estimates especially with respect to the own price 

elasticity values of both models. For example for milk, the range of the own price 

elasticities were from -0.951 to -1.211, whereas for the QUAIDS model, the values 

ranged from -1.015 to -1.215. Also if we look at a highly censored commodity such as 

bottled water, the cross price elasticity of bottled water with respect to tea ranged from 

0.002 to 0.380 for the AIDS model and 0.004 to 0.428 in the QUAIDS specification. The 

same findings were also observed for the unrestricted cases of AIDS and QUAIDS 

where the calculated compensated price elasticities were remarkably similar. 

Elasticity Comparisons across Imposition of Theoretical Restrictions 

Tables 5.14 and 5.20 show the compensated own- and cross-price elasticity 

matrices of the AIDS restricted and unrestricted cases. Two notable results were 

observed; own price elasticity estimates (absolute values) were larger in the restricted 

case vis-as-vis the unrestricted case. On the other hand compensated cross price 

elasticities were generally larger in absolute terms in the unrestricted case relative to the 

values generated in the restricted case. The same result can also be observed for the 

QUAIDS restricted and unrestricted models (Tables 5.17 & 5.23).  

Fit Comparisons across Econometric Techniques 

 Table 5.24 present the R-square values of the budget share equations from 

different censoring econometric techniques across demand system specification and 
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imposition of theoretical restrictions. From the estimates, we find that across model 

specification and theoretical restrictions, the Heien and Wessells approach had the 

highest R-square values in its budget share equations. On the other hand, R-square 

values generated by the Shonkwiler and Yen technique registered second if theoretical 

restrictions are relaxed.  Likewise, the ITSUR technique placed last across demand 

model specifications and theoretical impositions.     

Conclusions 

We find that the price elasticities especially the compensated price elasticities 

were robust and relatively similar and statistically significant across model 

specifications, estimation techniques and restriction impositions. The results of the 

compensated cross-price elasticities across the three categories were generally positive 

indicating that the respective non-alcoholic beverages are net substitutes. Comparative 

analysis show that across estimation techniques, greater variability of compensated 

cross-price elasticity estimates were observed in highly censored non-alcoholic 

beverages such as tea, coffee and bottled water. As for the comparison between model 

specification (AIDS versus QUAIDS), the compensated price estimates were remarkably 

similar especially for the own-price elasticity values. Finally, the estimates for 

unrestricted compensated cross price elasticities were generally greater vis-à-vis the 

restricted cases. The reverse is generally true with regard to the compensated own-price 

elasticity estimates.  
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Table 5.24. R-squared Values of Budget Share Equations from Different Censoring Econometric Techniques 
 

Micro-Demand  Econometric Fruit Juice Coffee Soft Drink Bottled Water Milk Tea 

System  Model Techniques w_f w_c w_s w_w w_m w_t 

AIDS ITSUR 0.0622 0.0673 0.0484 0.0764 0.0734 0.0184 

 H&W 0.1937 0.3202 0.0966 0.2593 0.1441 0.0038 

 S&Y 0.0629 0.0641 0.0479 0.0720 0.0744 0.0133 

 GME (unrestricted) 0.0673 0.0695 0.0537 0.0801 0.0937 0.0145 

 Dong et. al 0.0139 0.0484 0.0016 0.0676 0.0253 0.0101 

        

QUAIDS ITSUR 0.0636 0.0732 0.0517 0.0779 0.0734 0.0189 

 H&W 0.1956 0.3259 0.1054 0.2602 0.1463 0.0037 

 S&Y 0.0643 0.0702 0.0511 0.0740 0.0742 0.0155 

 GME (unrestricted) 0.0681 0.0742 0.0571 0.0816 0.0940 0.0150 

        

AIDS  ITSUR 0.0672 0.0694 0.0532 0.0801 0.0940 0.0035 

(unrestricted) H&W 0.1981 0.3257 0.1008 0.2649 0.1699 0.0113 

 S&Y 0.0676 0.0697 0.0529 0.0766 0.0944 0.0005 

 GME 0.0673 0.0695 0.0537 0.0801 0.0937 0.0145 

        

QUAIDS  ITSUR 0.0682 0.0697 0.0536 0.0804 0.0946 0.0030 

(unrestricted) H&W 0.1995 0.3299 0.1106 0.2656 0.1721 0.0001 

 S&Y 0.0696 0.1076 0.0562 0.0768 0.0958 0.0037 

  GME 0.0681 0.0742 0.0571 0.0816 0.0940 0.0150  
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 The robustness of both the parameter estimates and the calculated expenditure 

and price elasticities may be explained in part to the availability of high number of 

observations (n~30,000). However, since most censored data sets do not usually have 

this particular characteristic, then studies that simulate the effect of sample size will be 

beneficial on determining whether robustness will still be observed for parameter 

estimates and price and expenditures elasticities in the presence of differing sample 

sizes.   
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CHAPTER VI 

CONCLUSIONS 

 

 This dissertation has produced a series of interrelated studies that focused from 

the examination of selected socio-demographic variables as potential drivers of organic 

and conventional milk choice, estimation of demand interrelationship of organic and 

conventional milk, examination of the sorting ability of binary choice models and to the 

estimation of a demand system that includes milk in a broader non-alcoholic beverage 

complex.  These studies relied on the usage of 1999 and 2004 Nielsen Homescan Panel 

data. 

In Chapter II, an attempt was made to look at the various socio-demographic 

drivers in terms of explaining household purchase of three milk types namely purchase 

of organic and conventional milk, purchase of organic milk only and purchase of 

conventional milk only. This examination was facilitated by the usage of both 

multinomial logit and multinomial probit models. The findings indicated that increasing 

household size, the presence of children, increasing educational level of household, 

hispanic households and those located in the west were identified as the key variables in 

explaining the likelihood of purchasing organic milk and the combination of organic and 

conventional milk. The study also found that little differences exist in the magnitudes of 

the marginal effects for both the multinomial logit and probit models. However the 

standard errors from the multinomial probit model are higher than the multinomial logit 
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model thus more insignificant marginal effects with the multinomial probit model were 

observed than from the multinomial logit model.  

In chapter III, a Heckman two-step correction was done in order to address the 

issue of sample selection in estimating the demand for both organic and conventional 

milk. Results from the first-stage probit analysis indicate that socio-demographic 

variables such household size, income, educational and employment levels of household 

head, race, ethnicity and regions were significant in explaining the likelihood of 

purchasing organic milk. Likewise, once the decision to purchase organic milk has been 

made, the findings indicate that variables such as household size, presence of children 

are associated with increased purchases of both organic and conventional milks. Also as 

household head educational level increases, purchases of organic milk also increases. 

The same also is true for white and oriental households where purchases of organic are 

more relative to black households. In terms of race, Hispanic households purchase more 

organic milk, while those located in the west purchase more organic milk relative to the 

other regions. Finally, the calculated elasticties indicate that both organic and 

conventional milks are substitutes. However the relationship is an asymmetric one, 

where the demand for organic milk is more sensitive to price changes in conventional 

milk but changes in the price of organic milk has relatively little impact on the demand 

for conventional milk.  

In Chapters II and III, binary choice models were used in evaluating behavioral 

choices with regard to two alternatives. And because of their usefulness, methods such 

as the prediction-success contingency tables have been a standard measure in evaluating 
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the ability of models to make correct predictions. However, these types of methods are 

centered on the assumption of a symmetric loss function with a default cut-off value of 

0.5. And a major critique of this method is it does not address the quality of predicted 

probabilities in that is there is no discrimination whether the predicted probability is 51 

percent or 99 percent. Thus, Chapter IV focuses on the assessment of binary choice 

models through alternative methods such as probability scores. In this chapter both the 

Brier Score and Yates Brier Score Decomposition were used. Results show that when 

important socio-demographic variables are omitted, scatter and minimum variance 

values are significantly reduced. An intuitive explanation for this change might lie in the 

variability reduction of the predicted probabilities. Also the removal of important socio-

demographic variables resulted in a weakened ability to sort between events that 

occurred and did not occur.  

Finally in Chapter V, the study estimated both censored AIDS and QUAIDS 

demand systems involving non-alcoholic beverages such as fruit juice, tea, coffee, 

carbonated soft drinks, bottled water and tea. The highlight of the study involved the 

usage of different estimation techniques that addressed censoring in demand systems. 

These include two-step estimation techniques such as the Heien and Wessells (1990) and 

Shonkwiler and Yen (1999) approaches, general maximum entropy and the Dong, Gould 

and Kaiser (2004a) methods. The study also included the use of ITSUR without 

adjustments for censoring as a means of acting as a base estimator relative to the other 

techniques. The results show that the estimated elasticities bear little difference with the 

estimates from past studies and most of the commodities in the non-alcoholic beverage 
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complex are net substitutes. Likewise across censoring techniques, variability of cross 

price elasticities was observed especially for those beverages that are highly censored 

such as tea, coffee and bottled water.  On the other hand when comparisons are made 

across model types, compensated price elasticities especially the own price elasticities 

were remarkably very similar. Also compensated cross price estimates from the 

unrestricted AIDS and QUAIDS models were relatively greater compared to the 

restricted cases, but the reverse is true with regards to the compensated own price 

elasticities.  

From a marketing standpoint, the implications for organic milk are clear, that the 

results of the dissertation particularly those of Chapters II and III imply crucial inputs in 

terms of  designing marketing strategies that can target demographic groups such as 

single person, college educated head, Hispanic households. However, since the data 

were compiled from a 2004 data set, a more updated database might provide richer 

insights as to whether significant changes have occurred with regards to organic milk 

preference.  

In terms of methodological implications, the chapter on Brier score provides 

valuable insights in using alternative techniques such as the Yates partition in 

complementing the use of prediction-success tables. More importantly, binary choice 

specifications that omit important drivers may achieve some noise reduction but at the 

cost of weakening the ability of models to sort alternative events. And finally, since 

many censored data sets do not have the luxury of very high sample sizes, a future area 

of research might be determining robustness through simulation of different levels of 
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sample sizes and its effect on the estimated elasticities in a censored demand system 

framework. Also one can simulate alternative error term specifications and determine 

whether robustness still holds in all of the considered techniques that address censored 

demand systems.    
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