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ABSTRACT 

 

Disruption of Two Gene Loci Putatively Encoding Siderophore-Producing 

Nonribosomal Peptide Synthetases and Characterization of Siderophore Mutants. 

(December 2009) 

James Franklin Hurley IV, B.A., University of Colorado at Boulder   

Chair of Advisory Committee: Dr. Charles M. Kenerley 

 

 The soil-borne, rhizosphere-competent, filamentous fungus Trichoderma virens 

is a well-known biocontrol agent able to control pathogenic fungi through the production 

of antibiotics, the induction of systemic resistance in host plants, or by directly 

parasitizing the competing fungus. Competition for iron is another means by which 

Trichoderma can hinder competing microorganisms, and siderophores are a means by 

which microorganisms obtain iron. In silico analysis of the T. virens genome suggested 

that two genes putatively encoding extracellular siderophore-producing nonribosomal 

peptide synthetases (NRPSs) were present.  

In this study, a disruption was created in one of the genes, TvNPS6, to create a 

mutant unable to produce the NRPS TvNps6 (∆Tvnps6). Previously, a mutant 

(∆TvsidD) had been generated with a disruption in the second gene (TvSIDD) encoding 

an NRPS thought to be involved in siderophore biosynthesis. A double mutant 

(∆∆TvsidDTvnps6) was generated by transformation of a ∆TvsidD strain with a vector 

targeting disruption of TvNPS6. This resulted in transformants disrupted within both the 
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putative siderophore-producing NRPSs. Thus, three mutants were available for analysis 

of the role of these genes in the ecology of T. virens. Transformants were confirmed by 

PCR and Southern blotting analysis. 

Phenotypic characterization of the mutants included both HPLC analysis of 

siderophore production, growth on agar and in liquid media, conidiation, germination in 

the presence of hydrogen peroxide, biocontrol against Pythium ultimum, in vitro 

confrontation against Rhizoctonia solani and growth with iron chelators to determine the 

contribution of reductive iron assimilation (RIA) compared to that of siderophores. The 

HPLC analysis demonstrated that T. virens Gv 29-8 (wild-type) produced a single 

siderophore peak when grown in an iron-depleted medium. This peak was not present in 

the ∆Tvnps6 and ∆∆TvsidDTvnps6 mutants but was apparent with the ∆TvsidD 

mutants. From the HPLC analysis, T. virens evidently produces a coprogen-type 

siderophore. Few differences were observed in the other phenotypic tests, though 

hydrogen peroxide showed some small inhibitory effects towards the ∆Tvnps6 mutants. 

The addition of chelators, which inhibit RIA, exerted some negative effects on all strains 

growing under iron-limited media, particularly the ∆Tvnps6 and ∆∆TvsidDTvnps6 

strains. 

This study demonstrated that although T. virens has two genes putatively 

encoding siderophore producing NRPSs, only the TvNPS6 gene was required for 

extracellular siderophore production. The greater sensitivity of the mutants towards the 

iron chelators suggests that unlike other other fungi studied, Trichoderma virens utilizes 
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RIA, rather than siderophore production, as the primary means by which the fungus 

obtains iron in an iron-limited environment.  
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1. INTRODUCTION 

 

1.1. Biocontrol and Trichoderma 

 

 Biological control is the reduction of inoculum or disease-producing activity of a 

pathogen through biological agents other than humans (i.e. through their interventions) 

(Alabouvette et al., 2006). Four common mechanisms of biocontrol against fungal 

pathogens are parasitism, antibiosis, competition and induction of host resistance (Jeger 

et al., 2009). Parasitism involves the symbionts, or biocontrol agents (BCAs) parasitizing 

pathogenic fungi and thus reducing initial inoculum levels and subsequent disease 

severity.  Although fungal BCAs’ parasitism of pathogen hyphae is manifest, viral or 

viral-like BCAs may be subtly effective as they can induce hypovirulence in the 

pathogen (Alabouvette et al., 2006). Antibiosis is the production of secondary 

metabolites toxic or inhibitory to other microorganisms. Besides antibiotics, this 

category includes compounds such as cell wall degrading enzymes (CWDEs) essential 

for the aforementioned mycoparasitism. Competition is simply displacing the pathogen 

from the host substrate or outcompeting it for nutrients. For example, it has been 

observed that successful iron scavenging is one way mutualistic Pseudomonas species 

 ____________ 
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control fungal pathogens (Schippers et al., 1987). An indirect mechanism of biocontrol is  

the triggering of host induced systemic resistance (ISR). ISR occurs when a pathogenic 

or benign agent interacts with the plant in such a way that plant defenses are primed for 

subsequent challenges from disease-causing organisms. Following a cascade of 

molecular signals,  there is increased production of phytoalexins and defense proteins, an 

“oxidative burst” of reactive oxygen species (ROS), and fortification of the cell wall 

(Djonović et al., 2006a; Van Loon, 2000). 

 Due to growing consumer health concerns and diminishing agronomic returns 

related to environmental degradation and development of resistant target organisms, 

purely chemical methods of controlling fungal pathogens are increasingly uneconomical 

(Vinale et al., 2008). There is heightened interest in biocontrol, but this method yields 

less consistent results than chemically-based approaches, mainly due to the pathogens’ 

genetic variability circumventing the BCAs’ specificity and unpredictable fluctuations in 

climatic conditions that may favor or inhibit components of the tripartite system (plant-

symbiont-pathogen) to varying degrees (Vinale et al., 2008). Nevertheless, biocontrol 

appears more promising as the knowledge required to make this more complex system 

feasible is being gathered. For example, theoretical models have been formulated that 

suggest two key variables of biocontrol are the symbiont’s rate of colonization and the 

length of time it remains active (Butt et al., 2001; Jeger et al., 2009). Biocontrol 

effectiveness is enhanced when used in tandem with cultural methods, such as crop 

rotation and soil solarization (Alabouvette et al., 2006). Determining the identities and 

functions of BCA secondary metabolites, as well as their fungal or bacterial producer’s 
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optimal conditions for synthesizing these compounds, may allow selective application of 

these natural products in lieu of the entire organism, possibly assuaging public wariness 

towards these types of interventions, as well as lowering costs to the grower (Vinale et 

al., 2008). In addition, researchers have observed that BCAs like Trichoderma can be 

propagated and maintained for months on agrowaste materials like tea leaves or sawdust, 

further lowering the costs of obtaining adequate amounts of the BCA (Singh et al., 

2007). 

 Trichoderma are commonly-occurring fungi found in soil and on the surface of 

roots. Although a few Trichoderma species have teleomorphic, or sexual, stages 

classified under the genus Hypocrea, sexual stages are generally unknown, and 

biocontrol strains are asexual (anamorphic) (Samuels, 2006). The (in vitro) life cycle of 

Trichoderma involves germination of conidia within 24 hours of inoculation, followed 

by visible colony expansion on the second and third days. Green conidia appear on the 

third or fourth day following inoculation (Kubicek and Harman, 1998). 

 Trichoderma species are opportunistic avirulent plant symbionts that are 

antagonistic towards many pathogenic fungi and beneficial to such diverse hosts as 

cotton, tomato, chickpea and peanut (Benitez et al., 2004: Singh et al., 2007). In 1989, T. 

harzianum was the first fungus registered with the EPA as a plant disease control agent 

(Fravel, 2008). Trichoderma species employ parasitism against pathogens (Chet and 

Baker, 1981), are prolific producers of secondary metabolites like CWDEs and 

antibiotics (Ghisalberti and Sivasithamparam, 1991), and are known to elicit induced 

systemic resistance (ISR) in their hosts (Yedida et al., 1999). They are rapid colonizers 
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due to fast growth and vigorous spore production (Vinale et al., 2008), and in addition 

can degrade such hazardous compounds as pesticides and hydrocarbons (Harman et al., 

2004). 

 T. virens is a well-known biocontrol fungus (Howell, 2003). T .virens has straight 

phialides, a Gliocladium–like branching pattern, and grows optimally on PDA at 25° C 

with yellow or no pigmentation (Chaverri et al., 2001). Researchers have observed 

mycoparasitism, induced host resistance, and antibiosis generated by such secondary 

compounds as gliotoxin and gliovirin (Howell and Stipanovic, 1983). Howell et al. 

(1993) proposed dividing T. virens into “P” and “Q” classes according to these two 

natural products. The P strain produces gliovirin, which inhibits the fungal-like 

Oomycota, such as Pythium. The Q strain employs the broader spectrum antimicrobial 

compound gliotoxin. Other secondary compounds, including the mycoherbicide viridiol 

(Howell and Stipanovic, 1984; Jones et al., 1988) and peptaibols biosynthesized from 

nonribosomal peptide synthetases (NRPSs), have been described for this species (Wiest 

et al., 2002; Wei et al., 2005). A proteaceous elicitor, Sm1, from T. virens has been 

shown to trigger an oxidative burst and increased defense protein synthesis in the cotton 

host as well as eliciting ISR in maize (Djonović et al., 2007). 

  

1.2. Iron acquisition 

 

Iron is a required micronutrient for nearly all organisms. Since it can reversibly 

assume different valences, it is a key metabolic element that is involved in processes 
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such as electron transport, macromolecule synthesis, and respiration (Haas et al., 2008). 

It is an essential constituent of redox cofactors such as cytochrome P450, and is also a 

component of catalases and peroxidases, which reduce the harmful effects of the ROS 

hydrogen peroxide (H2O2) (Madigan and Martinko, 2006).  

Although iron is the fourth most abundant element in the Earth’s crust (5% by 

mass), bioavailability of iron is limited since ferrous [Fe
2+ 

, or iron(II)] iron is readily 

oxidized by oxygen to ferric [Fe
3+

, or iron(III)] iron hydroxides (FeOH3), which are 

comparatively insoluble (10
-17 

M) at biological pH (roughly 7) (Schlesinger, 1997). 

However, more acidic environmental pH values reduce the degree to which ferric iron 

serves as a Lewis acid (electron pair acceptor); the associated water molecules are less 

likely to lose a proton and precipitate with iron as FeOH3  (Kosman, 2003). Iron 

availability is further limited since ligands holding the predominant, more highly-

charged ferric form are more difficult to displace than those holding divalent cations 

(Kosman, 2003). Competition from other species is also constant. 

 Fungi use both high-affinity and low-affinity systems to obtain iron. High- and 

low-affinity refers to the specificity of the mechanism, with the high-affinity systems 

having lower dissociation constants with their substrates (Philpott et al., 2006). Under 

iron-replete conditions, the model yeast Saccharomyces cerevisiae takes up iron through 

low-affinity transporters such as Fet4p and Smf1p (Dix et al., 1994). Low-affinity heme 

iron uptake has been observed in Candida albicans (Santos et al., 2003) and 

Histoplasma capsulatum (Foster, 2002). In addition to the low- and high-affinity 

systems, studies with S. cerevisiae has shown that excreted phenolic compounds (e.g. 
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anthranilate) can allow uptake through non-enzymatic reduction of ferric iron. S. 

cerevisiae, which produces no siderophores (see below), can also obtain iron by 

acidifying the environment with citric acid or other hydroxyl acids (Howard, 1999). 

 

1.3. RIA, siderophores and siderophore synthesis 

 

High-affinity systems are homeostatically controlled and expressed under iron-

depleted conditions (Philpott, 2006). Fungi commonly employ two high-affinity 

pathways for iron uptake, reductive iron assimilation (RIA) and siderophores. With 

Saccharomyces cerevisiae serving as the paradigm, RIA, like low-affinity transport, 

requires initial reduction of iron(III) at the plasma membrane by ferric reductases (Fres). 

The exact reductant is unknown but NADPH has been proposed (Winkelmann, 2001). 

Subsequently, the ferrous iron is passed to a complex composed of a copper-dependent 

oxidase, Fet3, and an iron permease, Ftr1. Both these proteins are required for successful 

iron uptake as formation of this heterodimer seems necessary for proper trafficking to its 

plasma membrane location (Kosman, 2003). The ferrous iron is oxidized back to the 

iron(III) form by the oxidase, then passes through the transmembrane permease to reach 

the cytosol. An explanation offered for this apparent inefficiency is that ferric iron in the 

environment is bound to chelators and requires the ferrireductase to release it. However, 

since other divalent cations (Ca
2+

, Mg
2+

) utilize the same low-affinity system as iron (see 

above), oxidizing the ferrous iron back to the trivalent state increases the specificity and 

thus enhances uptake in iron-poor conditions (Howard, 1999). The mechanism by which 
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the iron passes through the permease is unresolved, but some researchers have 

conjectured that a thermodynamic gradient allows the iron (III) molecules to flow into 

the reducing interior of the cell (Winkelmann,2001) The RIA system can utilize various 

substrates, including iron salts, low-stability chelates such as ferric citrate, and 

siderophores (Haas, 2003). 

Chelators (from the Greek work chela, meaning crab’s claw) are agents, often 

organic, which form complexes with metal ions. Chelation is a common phenomenon. 

Porphyrin rings in hemoglobin and chlorophyll contain iron and magnesium, 

respectively. The efficacy of ion sequestration by chelators relates to the number of 

ligands (usually oxygen or nitrogen) available, called the coordination number. For 

example, on the basis of the Gibbs free energy equation (∆G=∆H – T∆S), the enthalpy 

change (∆H) of chelation by six unidentate molecules (coordination number=1) versus 

one hexadentate molecule (coordination number=6) is approximately equal. However, 

less entropy is lost (∆S not as negative) when the hexadentate molecule chelates since 

fewer molecules are involved, giving a more negative ∆G value at the same temperature 

(T).  This means there is greater energy released upon formation with the hexadentate 

ligand and that the reverse reaction is less likely, so the association between the single 

hexadentate ligand and metal chelate is stronger. Other factors giving the hexadentate 

chelator an advantage involve ring formation and solvation changes (Greenwood and 

Earnshaw, 1997). 

 Fungi and bacteria can produce siderophores, low-molecular mass, ferric-

specific chelators, to obtain iron. Fungal siderophores are primarily di- or tri-
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hydroxamates, tetradentate or hexadentate ligands utilizing both a carbonyl oxygen and 

an oxygen bound to an adjacent nitrogen (Philpott, 2006) to chelate ferric iron. The 

hydroxamic acid loses an H
+
 from the nitrogen-bound oxygen, giving it a negative 

charge, while the carbonyl oxygen interacts with the ferric iron with its lone pairs of 

electrons (see Figure 1). Due to the high charge of the trivalent ions, hydroxamates 

chelate ferric iron and other ions (Ga
3+

, Al
3+

) strongly, with ferric iron’s ionic radius 

providing the highest binding affinity. Another factor enhancing the binding affinity is 

the electron configuration in ferric iron’s 3d orbitals, in which each orbital contains a 

single, unpaired electron. In this arrangement, most of the interaction energy is due to 

the negatively charged ligands and positively charged ferric ion. Another consequence is 

that the ferric iron is spherically symmetrical and has no required orientation for binding 

to the siderophore (Winkelmann, 2001). 

There are four major families of hydroxamate siderophores (Haas et al., 2008) 

(see Figure 1): rhodotorulic acid, fusarinines, coprogens, and ferrichromes. Rhodotorulic 

acid, produced by basidiomycetes, is a dihydroxamate siderophore. Fusarinines are 

linear or cyclic trihydroxamates connected by ester bonds. Coprogens are 

trihydroxamates with both peptide and ester bonds. Fusarinines and coprogens are 

usually secreted (extracellular) siderophores. Ferrichromes are cyclic siderophores 

formed by three hydroxamates and three amino acids. Ferrichromes usually serve as 

storage (intracellular) siderophores, though they may be excreted in saprophytic fungi, 

such as Aspergillus and Penicillium (Winkelmann, 2007). Decaying plants and 

competing bacteria may release damaging hydrolases, proteases, lipases and esterases. 
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Ferrichromes lack ester bonds and are more resistant than the other families to 

exoenzymatic degradation (Winkelmann, 2007). 

 

 

 

 

Fig. 1. Major siderophore families. Peptide bonds are highlighted in red, ester bonds are 

highlighted in blue (Haas et al., 2008)                                                  

 

Unlike low-affinity mechanisms, which can permit entry of other divalent cations 

such as copper and zinc (Hassett et al., 2000; Waters and Eide, 2002), the specificity of 

siderophore-chelate complex uptake through transporters is due to stereochemistry 

(Winkelmann,2001), i.e. the configuration and orientation of the complex and its binding 
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sites must perfectly complement that of the transporter. Notably, many fungi are able to 

exploit siderophores produced by other species (xenosiderophores). For example, 

Aspergillus fumigatus has a transporter similar to MirB of A. nidulans, suggesting an 

ability to process siderophores secreted by A. nidulans (Haas et al., 2008). The model 

organism S. cerevisiae, which produces no siderophores but is well-studied and serves as 

a general model for fungal iron uptake, can either reduce the ferric complex at the 

plasma membrane (RIA) or take up both the ligand (siderophore) and the bound iron and 

reduce it intracellularly (Philpott, 2006).  

Most fungi produce both extracellular siderophores, which obtain iron from the 

environment, and intracellular siderophores, which are needed to store the iron. Iron not 

properly stored within the cell can react with hydrogen peroxide and form highly 

damaging hydroxyl radicals via the Fenton Reaction (Fe
2+

 + H2O2 > Fe
3+

 +OH
-
 +OH•)    

(Halliwell and Gutteridge, 1984). Some research has suggested that siderophores are 

necessary for virulence (Oide et al., 2006; Lee et al., 2005; Hwang et al., 2008), whereas 

other investigators suggest that siderophores act as PAMPs (pathogen-associated 

molecular patterns) since their presence may elicit plant defenses against the fungus 

(Jones and Dangl, 2006; Liu et al., 2007). In human pathogens, siderophores are usually 

essential as iron is tightly bound by heme, ferritin, transferrin and lactoferrin (Schrettl et 

al., 2007). 

For siderophore synthesis, Plattner and Diekmann (1994) proposed that the 

amino acid L-ornithine first undergoes hydroxylation then transacylation at the C5 

nitrogen. Identification of the gene encoding the ornithine-N
5
-monooxygenase, which 
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catalyzes the aforementioned first step, was achieved with Ustilago maydis (Mei et al., 

1993). Orthologs to this gene, SID1, were subsequently identified in Aspergillus (SIDA) 

(Eisendle et al., 2003) and other ascomycetes. Mutation of this gene has been shown to 

completely block siderophore production in Aspergillus, Ustilago and Fusarium species 

(Haas et al., 2008); these mutants could be rescued with exogenous application of 

siderophores or ample ferrous iron. The latter implies low-affinity iron uptake is utilized 

(Eisendle et al., 2003; Haas et al., 2008). Genomic searches of T. virens and T. reesei 

revealed SIDA orthologs (Kenerley, unpublished). The second step, transacylation, 

produces hydroxamates (a CONOH group, a hydroxylamine next to a carbonyl group). 

The initial intermediate, N
5
-hydroxy-ornithine, is acylated by various acyl-coenzyme A 

derivatives. The simplest derivative, acetyl-coenzyme A, leads to intracellular 

siderophore synthesis, whereas more complex molecules (such as anhydromevalonic 

acid) are used as the acyl groups to produce fusarinine monomers which can form 

extracellular siderophores.  The third step (described in the next section) involves 

NRPSs covalently linking these acylated monomers through peptide or ester bonds to 

produce siderophores (Haas, 2008). A general overview is depicted in Figure 2. 
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Fig. 2. General siderophore biosynthetic pathway (modified from Haas, 2008). Enzymes 

are in blue boxes, products are in yellow boxes. 

 

1.4. Nonribosomal peptide synthetases  

 

Nonribosomal peptide synthetases (NRPSs) link the hydroxamate products of the 

first two steps with peptide and/or ester bonds (Plattner and Diekmann, 1994). NRPSs 

are large, modular enzymes with multiple domains that play a prominent role in the 

production of secondary metabolites (Finking and Marahiel, 2004). One module adds a 

single amino acid to the growing peptide and contains an adenylation (A) domain for 

activation of the substrate, a peptidyl carrier protein (PCP, or thiolation, (T)) domain for 

attaching the activated substrate to the enzyme, and a condensation (C) domain that 

forms a peptide bond (Figure 3). A thioesterase (TE) domain terminates synthesis and 

releases the peptide from the NRPS, though it does not seem essential as it is absent 

from Cochliobolus heterostrophus and other filamentous fungi (Lee at al., 2005). In 

addition to the aforementioned domains, there may also be epimerization domains, 

cyclization domains and n-methylase domains. The epimerization domain changes the 

amino acid configuration from L to R and is distinct from ribosomal synthesis in which 

N
5
-hydroxy-

L-ornithine 

N
5
-acyl-N

5
-

hydroxyl-L-

ornithine 

L-

ornithine 

L-ornithine N
5
-

oxygenase N
5
-transacylases NRPSs 

Siderophores 



 13 

only L- amino acids are used. The n-methylase and epimerization domains can lend 

durability to their products. Researchers have found that peptides formed by alternating 

D- and L-amino acids are more resistant to breakdown by proteases (Winkelmann et al., 

2007). Since NRPSs can process a wide variety of substrates compared to the 20 amino 

acids from which ribosomes build peptides, NRPS products have great structural 

diversity. NRPSs have great potential for manipulation as excised modules still retain 

their enzymatic function and the A domain can be mutated to alter specificity. Since 

NRPS products include antibiotics and immunosuppressive factors, there is much 

promise for these enzymes in the medicinal applications (Finking and Marahiel, 2004). 

 

 

 

 

Fig. 3. Depiction of peptide production by NRPSs. Nucleophilic attack on the carbonyl 

carbon of amino acid 1(left) by the amine group of amino acid 2 releases amino acid 

1from the sulfur atom of thiolation domain 1 and its condensation domain, elongating 

the peptide. A= adenylation domain, PCP (T)= peptidyl carrier protein (thiolation) 

domain, C= condensation domain. ©Annual Review of Microbiology, 58:453-488. 

(Finking and Marahiel, 2004) 
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The product of the NRPS Nps6 in Cochliobolus heterostrophus (Lee et al., 2005) 

has been identified and is proposed to have a role in virulence against maize and 

resistance to oxidative stress (Oide et al., 2006). All filamentous ascomycetes analyzed 

have orthologs to this NRPS (Haas et al., 2008). Evidence has been presented for two 

separate lineages within filamentous ascomycetes (Lee et al., 2005). The first lineage 

produces fusarinine-type siderophores and orthologs have been identified in A. fumigatus 

(Schrettl et al., 2007) and F. graminearum (Oide et al., 2006; Turgeon et al., 2007). The 

second group produces coprogen or coprogen derivative siderophores; orthologs have 

been identified in Neurospora crassa (Oide et al., 2006; Turgeon et al., 2007) and 

Magnoporthe grisea (Haas et al., 2008). 

           SIDD has been described as the gene encoding the NRPS (SidD) involved in the 

production of extracellular siderophores (Screttl et al., 2007), whereas SIDC encodes the 

NRPS (SidC) for intracellular siderophores [ferricrocin(FC) type]. SIDD was 

demonstrated to be essential for the production of fusarinine type siderophores in A. 

fumigatus (Schrettl et al., 2007). Fusarinine C is formed from three N
5
-cis-

anhydromevalonyl-N
5
-hydroxyornithine (called cis-fusarinine) residues joined by ester 

bonds. Acetyl CoA can be joined to a fusarinine by N
2
-acetylation to form 

triacetylfusarinine C (TAFC). In A.fumigatus, SIDG encodes the N
2
-transacetylase. 

SIDG mutants cannot produce TAFC; as a result fusarinine C is the major siderophore. 

Research has shown that SIDG mutants have normal phenotypes, suggesting that 

fusarinine C can fully compensate for the loss of TAFC (Schrettl et al., 2007; Haas et al., 

2008). 
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 A coprogen-producing NRPS was first identified in C. heterostrophus (Lee et al., 

2005), followed by identifications in N. crassa, C. miyabeanus, and Alternaria 

brassicicola (Oide et al., 2006; Turgeon et al., 2007). Lee et al., (2005) examined 11 

genes that encode for NRPSs in C. heterostrophus and found that only the NPS6 product 

was necessary for virulence against maize and had a role in protecting the fungus from 

oxidative stress, which is a common defense initiated by host plants (Mittler et al., 

2004).  A similar dependence on the Nps6 protein for resistance to oxidative stress and 

virulence of several fungal pathogens, including C. miyabeanus (rice), F. graminearum 

(wheat) and A. brassicicola (Arabidopsis) has been shown (Oide et al., 2006), as NPS6 

mutants under iron-depleted conditions were more susceptible to oxidative stress and 

showed reduced virulence to their respective host. Virulence could be rescued with 

exogenous application of either iron or both saturated and unsaturated siderophores. This 

latter point emphasizes that siderophores are necessary for iron acquisition by C. 

heterostrophus, rather than iron denial to the host (Oide et al., 2006). Supporting a 

proposed phylogeny of the NPS6 genes (Lee et al., 2005, Oide et al. 2006) found that 

introduction of an NPS6 ortholog from N. crassa into C. heterostrophus restored 

virulence to maize and tolerance to hydrogen peroxide.  
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1.5 Analysis of T. virens genome and research direction 

  

Genomic analysis of the gene clusters containing SIDD and NPS6 was performed 

earlier (Mukherjee, unpublished) and is shown in Figure 4. The genes comprising the 

clusters are listed in Tables 1 and 2. 

Fig. 4. Gene clusters containing SIDD (top) and NPS6 (bottom). Ab= Alternaria 

brassicicola , Af= Aspergillus fumigatus, Gz= Gibberella zeae, Tv=Trichoderma virens 

, Ta = T. atroviride ,Tr= T. reesei .   
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Table 1 Genes comprising homologous SIDD clusters. The NRPS row describes 

domains (A=adenylation, T=thiolation, C=condensation, dA=degenerate adenylation) 

 

 Aspergillus 

fumigatus 

SidD 

Gibberella 

zeae  SidD 

Trichoderma 

virens SidD 

Trichoderma 

reesei SidD 

NRPS (2) SidDE + 

ATCdATC 

ATCTC ATCTC ATCTC 

ADP (Adenylation Domain 

Protein) 

- 1 - - 

MFS (major facilitator 

superfamily) transporter 

3 2 1 2 

OXID (oxidoreductase) - 2 - - 

ABC (transporter) 1 1 1 2 

HYPO (hypothetical) 1 - - 2 

AT (acetyltransferase) 1 - - - 

SBP (siderophore biosyn. 

protein) 

- 1 1 1 

TF (transcription factor) 1 - - - 

P450 (cytochrome) 2 1 - 1 

EST 

(esterase/lipase/thioesterase) 

1 2 1 1 

DHR 

(dehydrogenase/reductase) 

2 - 2 - 

HYD (hydratase) - 1 1 1 

MONO (monooxygenase) - - - 2 

CDP (condensation domain 

protein) 

- 1 - - 

AC (acetylase) 1 - - - 

ISO (isomerase) 1 - - - 

OMT (O-methyl 

transferase) 

1 - - - 

HYR (hydrolase) 1 - - - 

CSP (cell surface protein) 1 - - - 

TOTAL= 19 13 8 13 

Siderophore produced Fusarinine 

C > TAFC 

TAFC None 

detected 

? 
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Table 2 Genes comprising homologous NPS6 clusters 

 

 Alternaria 

brassicicola. 

NPS6 

Trichoderma 

virens NPS6 

Trichoderma 

reesei NPS6 

Trichoderm

a atroviride 

NPS6 

NRPS ATCTTC ATCT ATCTC ATCTC 

ADP (Adenylation 

Domain Protein) 

1 1 1 1 

MFS (major facilitator 

superfamily) transporter 

- 1 1 1 

OXID (oxidoreductase) 2 1 1 1 

ABC (transporter) 2 1 1 1 

HYPO (hypothetical) 2 - - - 

AT (acetyltransferase) 1 - - - 

SBP (siderophore 

biosyn. protein) 

- 1 1 1 

TF (transcription factor) 1 - - - 

P450 (cytochrome) 1 - - - 

EST 

(esterase/lipase/thioester

ase) 

- - - - 

DHR 

(dehydrogenase/reductas

e) 

- - - - 

HYD (hydratase) - - - - 

MONO 

(monooxygenase) 

- - - - 

CDP (condensation 

domain protein) 

- - - - 

AC (acetylase) - - - - 

ISO (isomerase) - - - - 

OMT (O-methyl 

transferase) 

- - - - 

HYR (hydrolase) - - - - 

CSP (cell surface 

protein) 

- - - - 

TOTAL= 11 6 6 6 

Siderophore produced Dimethyl-

coprogen 

Yes, I.D.? ? ? 
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Trichoderma virens appears to be unique in that two putative extracellular 

siderophore-producing NRPSs, designated TvSidD and TvNps6, are present. To confirm 

this, I proposed first to disrupt the TvNPS6 gene in the wild-type strain (Gv29-8) of 

T.virens and in a ∆TvsidD strain to generate a double mutant (∆∆TvsidDTvnps6) that 

should be unable to generate extracellular siderophores. After verification of the gene 

disruptions, various phenotypic assays were conducted to support the hypothesis that 

these two NRPSs are involved in siderophore production.  

 In summary, I hypothesized that the SIDD and NPS6 orthologs of T. virens 

encode siderophore-producing NRPSs. Disruption of the genes will alter siderophore 

production and affect Trichoderma negatively due to iron-deficiency. Loss of the 

siderophore product was confirmed by HPLC analysis, whereas the aforementioned 

phenotypic assays detected the effects of the loss of NRPSs on various aspects of T. 

virens growth and development.  
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2. METHODS AND MATERIALS 

 

2.1. Materials  

 

2.1.1. Fungal materials 

 

Two strains of T. virens were used in this study: the wild-type strain, Gv29-8, 

and an arginine-auxotrophic strain, Tv10-4, which was the recipient for transformation 

in the production of the double (2x) mutants. The arginine-auxotroph was created by a 

point mutation in the small subunit of a carbamoyl phosphate synthetase (arg2) after 

treatment with 4-nitroquinoline-1-oxide (NQO) (Baek and Kenerley, 1998). These 

strains were maintained on PDA. An isolate of the pathogen Pythium ultimum was 

provided by C. Howell (USDA-Agricultural Research Service, Southern Plains 

Agricultural Research Center, College Station, Texas). The Rhizoctonia solani pathogen 

was isolated from a diseased cotton seedling in a production field from College Station, 

Texas (Djonović et al., 2006b). 

 

2.1.2. Growth media 

 

The phenotypic experiments used variations of Vogels minimal medium (Vogel, 

1956) with sucrose (VMS, containing 1.5% sucrose). As the experiments required 

different levels of iron, both VMS Fe+ (supplemented with 10µM ferrous sulfate 
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(FeSO4)) and VMS Fe- medium (no added iron) were prepared in iron-free glassware. 

Iron-free glassware was made by rinsing with water, soaking in 5% Extran (0.1% SDS) 

for 6-10 hours, soaking in 0.01% EDTA for 12-18 hours, rinsing with 1% HCl, followed 

by rinsing six times with double distilled water (ddH2O). Normal VMS was used in 

some experiments and contains approximately 1.24µM of iron. Inoculum of P. ultimum 

used in the biocontrol assay was prepared by growing the pathogen in V8 broth for 10 

days (Ayers et al., 1975). Wheat bran (5g wheat bran, 1g peat moss, 100mL H2O, pH to 

4.0) was inoculated with agar plugs of R. solani, and the pathogen was allowed to 

colonize the substrate for 10 days. The colonized wheat bran was air-dried, stored at 

4°C, and used as inoculum for cotton seedling assays.  

 

2.1.3. Hydroponics system 

 

The hydroponics system, which was a prerequisite to the root colonization assay, 

largely followed the protocol of Djonović et al, 2007. The hydroponics system utilized 

mesh screens atop metal clamps placed in one-liter glass beakers containing 

approximately 300mL MS (Murashige and Skoog, Sigma) medium adjusted to pH 5.6. 

After being cleaned with 70% alcohol and 10% H2O2, 6-10 maize (inbred line B73) 

seedlings were placed in each chamber and shaken gently (approximately 20rpm). 

Meanwhile, the different strains (wild-type and mutants) were grown in VMS media. 

After three days, the hydroponics chambers were inoculated with approximately one 

gram of the Trichoderma mycelia. 



 22 

 2.2. Extraction of siderophores and HPLC analysis 

    

2.2.1. Extraction of siderophores 

 

       The siderophore extraction protocol largely followed that of Oide et al., 2006. 

For quantitative analysis of siderophore production, 250mL flasks containing 100mL of 

VMS Fe- medium were inoculated with approximately 10
6
 conidia. Cultures were then 

shaken for 72 hours at 125rpm on an orbital shaker. Mycelia were then removed by 

filtration, and culture filtrates were stored at -20 or -80°C prior to analysis. 

 To prepare filtrates for analysis, ferric chloride (FeCl3) was added to the filtrates 

to a concentration of 1.5mM. A 1x18 inch glass column was loaded with 5ml sand, 

followed by 10mL Amberlite XAD-16. After tamping down the Amberlite, 15 more mL 

of sand was added. To pre-equilibrate the Amberlite, 20mL of 50mM KPO4 buffer was 

eluted through the column. 

The ferrated culture filtrates were loaded onto the column and eluted, with a 

pinkish-orange color indicating the presence of siderophores. To rinse the column of 

water-soluble compounds, two 20mL volumes of the KPO4 were loaded and eluted. To 

remove buffer salts, two sequential 20mL volumes of mQ-H2O were eluted. For both 

these rinses, the sidewalls of the column were also rinsed. A 40mL volume of methanol 

was loaded in the column to move the siderophores from the Amberlite into a 125mL 

flat-bottom boiling flask. The methanol was rotoevaporated from the siderophore 

solution at 30°C and reduced pressure. The remaining aqueous siderophore solution was 
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transferred to a 50mL boiling flask. The boiling flask was rinsed with a volume of 

ethanol equal to that of the siderophore solution transferred, so that the 50mL flask then 

contained double the volume of the siderophore solution initially transferred. The sample 

was rotoevaporated at 30°C and reduced pressure. This ethanol rotoevaporation step was 

repeated if the sample was not dry.  

To dry the sample, 0.500mL of mQ-H2O:acetonitrile (9:1) was added, swirling 

the flask to dissolve the siderophore residue on the walls. The siderophore solution was 

transferred to an HPLC vial. This process was repeated with a second volume of mQ-

H2O: acetonitrile, then the vial was sealed and submitted for HPLC analysis. 

 

2.2.2. HPLC analysis  

 

 The HPLC analyses of siderophores were performed by the lab of Dr. R. 

Stipanovic of the Cotton Pathology Research Unit of the USDA Southern Plains Area 

Research Center based on the protocol of Zhang et al., 1993. The instruments used were 

an Agilent Technologies 1200 liquid chromatograph equipped with standard 

performance degasser, quaternary pump, autosampler, heated column compartment and 

diode array detector, along with a Hewlett-Packard 1050 liquid chromatograph 

quaternary pump and heated column compartment integrated with Agilent Technologies 

1100 standard autosampler and diode array detector. 

 The analysis method involved maintaining a Phenomenex Prodigy ODS-3 5µm 

(4.6 x 250mm) column at 40°C. The mobile phase was a linear gradient of mQ-H2O and 
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acetonitrile, with both containing 0.1% trifluoroacetic acid and run at 1.00 mL/minute. 

The gradient set points were 6% acetonitrile (0 min), 15% (10 min), 20% (15 min), 30% 

(20 min), 100% (26 min), 100% (29 min), 6% (30 min), and 6% (34 min). The 

chromatogram signals were at 254 nm and 435 nm (bandwidth 20nm), which were 

referenced to 550 nm (bandwidth 50nm). The spectra of the peaks were 210 to 600nm in 

2.00 nm steps. 

 Solutions of authentic siderophores in mQ-H2O:acetonitrile (9:1) were analyzed 

to provide information on their retention times and spectra in the HPLC systems. The 

standard compound solutions and their retention times are provided in Table 3. The 

solutions included 115µg/mL of triacetylfusarinine C, 122 µg/mL of a mix containing 

Fe-dimerum acid, neocoprogen II, linear fusigen, cyclic fusigen, neocoprogen I, 

coprogen and triacetylfusarinine C (both from EMC microcollections GmbH) and 173 

µg/mL ferricrocin (kindly provided by Hubertus Haas of the Insbruck Medical 

University). 

 

 

 

 

 

 

 

 



 25 

Table 3 Retention times for authentic siderophores in HPLC system 

 

Siderophore tR (min) 

Fe-dimerum acid   10.45 

Ferricrocin 10.93 

Neocoprogen II 12.30 

linear & cyclic Fusigen 12.99 

Neocoprogen I 13.18 

Coprogen 15.57 

Triacetylfusarinine C 22.96 

 

 

2.2.3. Isolation of unknown compounds using HPLC 

  

The method of isolation of unknown compounds from siderophore extracts using 

HPLC involved an Agilent Technologies 1200 liquid chromatograph equipped with 

standard performance degasser, quaternary pump, autosampler, heated column 

compartment and diode array detector with manual peak collection, as well as the 

Hewlett-Packard 1050 liquid chromatograph quaternary pump and heated column 

compartment integrated with Agilent Technologies 1100 standard autosampler and diode 

array detector with automated peak collection using an ISCO Foxy-200 x-y fraction 

collector. 
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            The isolation method is just the analysis method described above but shortened 

as the peak of interest has a retention time of 12 minutes. Thus, a full run is not 

necessary. The column is a Phenomenex Prodigy ODS-3 5µm (4.6 x 250mm) 

maintained at 40°C. The mobile phase involves a linear gradient of mQ-H2O and 

acetonitrile, both containing 0.1% trifluoroacetic acid and run at 1.00 mL/min. The 

gradient set points are 6% acetonitrile (0 min), 15% (10 min), 20% (15 min), 100% (16 

min), 100% (19 min), 6% (20 min) and 6% (24 min). The chromatogram signals are 254 

and 435 nm (bandwidth 20nm) referenced to 550nm (bandwidth 50nm). The spectra of 

peaks are 210 to 600nm in 2.00 nm steps. 

 

2.3. Molecular analysis  

 

2.3.1. Detection and disruption of NPS6 in T. virens 

 

Using the NPS6 sequence of C. heterostrophus (accession #AY884191), the T. 

virens ortholog, TvNPS6, was identified by a TBLASTN homology search in the Joint 

Gene Institute (JGI) T. virens genome portal (http://genome.jgi-

psf.org/Trive1/Trive1.info.html). Two primers (Table 4) were designed from the 

nucleotide sequence of the T. virens ortholog to identify the 5’ and 3’ ends. The 

restriction sites Sal1 and Kpn1 were introduced into the forward, or Nps6f, (5’-

GTTACCATGTCGACGGGTATCG-3’) and reverse, or Nps6r, (5’-

GTACTCGTCGAGATTGGTACCT-3’) primers, respectively, to facilitate the cloning 
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of this fragment into the hygromycin resistance vector pATBS (Figure 5) (Mukherjee et 

al., 2003). This fragment is thought to encode parts of the first thiolation and 

condensation domain of the NRPS. The disruption will occur by inserting this fragment 

into genomic DNA by single crossover. 

 

 

 

Fig. 5.  The pATBS vector components and restriction sites. The insertion of the 1.3 kb 

TvNPS6 gene fragment occurs between the Sal1 and Kpn1 sites and is marked with the 

blue triangle. 

 

 

 

Insertion 
of 1.3 kb 
TvNPS6 

Gene 

fragment 
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Table 4 Primers used in this study 

 

Name Direction Sequence 5’ to 3’ Tm(°C) 

Nps6f F GTTACCATGTCGACGGGTATCG 57.3 

Nps6r R GTACTCGTCGAGATTGGTACCT 55.6 

OutS F GCATATGGACCATCTGAGTGTACC 57.0 

OutAS R CTTAAACTGGTCCAGAGCTC 52.7 

Hphforinv F GCACGAGATTCTTCGCCCTC 54.0 

SidDf F GAACCTTGATAAAAACACGAAGAG

C 

54.7 

SidDr R GGCATCATCTGTCTCACAAACG 56.2 

 

 

 

Protoplasts for transformation of T. virens Gv 29-8 were prepared from 16 hour 

germlings grown in PDB (potato dextrose broth). To prepare protoplasts, approximately 

10
8
 conidia of Gv29-8 were inoculated into 100 mL of PDB and incubated for 16 hours 

at 25°C with shaking. Mycelia were harvested, washed with water, and 0.5g fresh weight 

was  resuspended and digested in 2mL of mannitol osmoticum (50mM CaCl2, 0.5M 

mannitol, and 50mM Mes/pH 5.5) containing 2.0 mg chitinase (0.2U/mg solid materials, 

Sigma, St. Louis,MO), 7.0 mg of lyticase (600 U/mg solid material, Sigma), and 44mg 

of cellulose “onozuka” R-10 (Housha Co., Tokyo, Japan). The mixture was incubated at 
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25°C with shaking at 200rpm for 30 minutes. Freshly formed protoplasts were diluted 

with 10mL of osmoticum, filtered through a 100-µm nylon mesh filter to retain 

undigested mycelia, centrifuged at 5400 rpm for 10 minutes, and the protoplast pellet 

was resuspended in osmoticum at approximately 5x10
7
 protoplasts/mL.  

 The transformation used a polyethylene glycol (PEG)-CaCl2-mediated procedure 

(Thomas and Kenerley, 1989). To 240µL of competent fungal protoplast suspension, 5-

10µg of vector in 20µL H2O was added. The mixture was incubated on ice for 20 

minutes followed by the addition 260µL of PEG solution [60% PEG3350 (Sigma, St. 

Louis, MO) in mannitol osmoticum] and further incubated for 20 minutes at room 

temperature. This suspension was mixed with the regeneration medium (PDAS; potato 

dextrose agar with 0.5M sucrose containing 50mg/L hygromycin B for selection) 

overlaid onto PDA regeneration plates and incubated at 28°C for 2-3 days and colonies 

transferred to PDA/hyg slants (50mg hygromycin B/L).  

Transformants were screened by serial transfer to PDA (potato dextrose 

agar)/hygromycin slants (1µL hygromycin/4 mL media). Isolates able to sporulate on the 

PDA/hyg slants were further screened by transfer to a second PDA/hyg slant, followed 

by transfer to PDA slants, then a final PDA/hyg treatment. This serial transferring was 

adopted to select for stable transformants 

  Homologous recombination was verified by amplification using OutAS (5’- 

CTTAAACTGGTCCAGAGCTC -3’), and an inner primer, hphforinv, (5’-

GCACGAGATTCTTCGCCCTC-3’) from the hygromycin cassette. PCR conditions 

were 94° for 2 minutes, followed by 30 cycles of 94° 30 seconds, 55° 30 seconds, 72° 3 
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minutes, and then a 72° hold for 7 minutes. In this case, the presence of a 2.6 kb band 

indicated a successful disruption. Finally, single spore isolation was undertaken to 

separate the homologously recombined fungi from those that have ectopic insertions.  

The absence of the wild-type copy was confirmed by using two primers, 

designated as OutS (5’- GCATATGGACCATCTGAGTGTACC -3’) and OutAS (5’- 

CTTAAACTGGTCCAGAGCTC -3’) that would amplify a region just outside the 

TvNPS6 sequence used for making the vector and would not amplify the gene if it is 

disrupted. 

  

2.3.2. Southern blotting 

 

Further confirmation of the disruption was obtained by Southern hybridization 

and HPLC analysis (see above) of siderophore production. Southern hybridization was 

performed with DNA extracted from the selected transformants, digested with Pst1, and 

probed with the 1.3kb [
32

P]dCTP-labeled TvNPS6 gene fragment. Digesting with the 

Pst1 restriction enzyme and hybridization yields two fragments (lengths 3.0 and 6.1kb) 

for TvNPS6 mutants (∆Tvnps6). 
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2.3.3. Confirmation of ∆TvsidD 

 

   To reconfirm that the ∆TvsidD mutants still had the disruption before creating the 

double mutants, the mutants and WT were tested with the NPS6 forward and reverse 

primers and the SidD forward (5’-GAACCTTGATAAAAACACGAAGAGC-3’) and 

reverse (5’-GGCATCATCTGTCTCACAAACG-3’) primers. PCR conditions were 94° 

for 2 minutes, followed by 30 cycles of °94 30 seconds, 57° 30 seconds, 72° 1.5 minutes, 

then a 72° hold for 7 minutes. Amplification with the NPS6 primers will yield a 1.3 

product, whereas amplification with the ∆TvsidD mutants will fail to produce a product. 

 

2.3.4. Obtaining ∆∆Tvnps6TvsidD double mutants  

 

   In addition to the TvNPS6 mutant (∆Tvnps6), a double mutant (∆∆Tvnps6TvsidD), 

also referred to as “2x” or “DB”) was created. This objective was simplified by the fact 

that a TvSIDD mutant (∆TvsidD) had previously been constructed in the Kenerley lab. 

The gene was disrupted by insertion of an argB (arginine) gene into TvSIDD of an 

auxotrophic strain (Tv10.4) of T. virens. The procedure for creating the double mutant 

was the same as described above except that the protoplasts for transformations were 

from the ∆TvsidD mutant. The double mutants were confirmed by the same procedures 

described above, including Southern blotting.  
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2.4. Phenotypic characterizations 

 

   The phenotypic characterization included growth (both radial growth and dry 

weight), conidiation, germination inhibition by H2O2, confrontation against Rhizoctonia 

solani, root colonization of maize and biocontrol against Pythium ultimum. To ascertain 

the relative contributions of siderophores and RIA, wild-type T. virens was grown in 

media containing the ferrous iron chelator bathophenanthrolinedisulfonic acid (BPS). 

 

2.4.1. Growth 

 

     Both radial growth and biomass were measured. For radial growth, 10µL of spore 

solution containing approximately 10
4 

conidia was pipetted onto the center of a Petri 

dish containing 20mL of VMS Fe+ or Fe- agar. The plates were incubated at 27° C and 

area of mycelial growth was recorded daily by marking the circumference of the colony. 

The area was determined with ImageJ software. Moreover, growth on agar plates 

containing the ferrous iron chelator bathophenanthroline disulfonic acid (BPS) at a 

concentration of 100µM was determined.  

     To obtain biomass, 250mL flasks containing 100mL of Fe+ or Fe- medium were 

inoculated with 100µL of spore suspensions containing approximately 10
5
 conidia. The 

cultures were shaken at 125rpm. On the third day, the mycelia were harvested, blotted 

dry, and then placed in a drying oven at 70°C for 24+ hours. Following drying, weights 
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were recorded after allowing the dried mycelia to sit for two hours to equilibrate to room 

humidity. 

   Two chelators, BPS and 2,2’-dipyridyl (2DP) were tested with Gv29-8. Six liquid 

media treatments were performed for each of the two trials: Fe-, Fe- with chelator, 

Fe+1mM FeSO4, Fe+1mM FeSO4 with chelator, Fe+10mM FeSO4, and Fe+10mM 

FeSO4 with chelator. Chelators were added to a concentration of 100µM. 250mL flasks 

containing 100mL of the respective media were inoculated with approximately 10
6
 

conidia and shaken at 125rpm on an orbital shaker for 72 hours. Following the 

incubation period, mycelia were harvested by filtration on pre-weighed filter papers. 

After drying for at least 24 hours at 80°C, weights were recorded. 

 

2.3.2. Conidiation and germination 

 

   For conidiation assays, 100 µL of spore suspension containing approximately 10
6
 

conidia was pipetted and evenly spread on Fe+, Fe-, Fe+ 2 mM H2O2 and Fe- 2mM 

H2O2 agar plates. Plates were incubated for four days at 27°C. Following incubation, 

three 7.62mm (0.3 inch) diameter cores were removed from each plate, placed in 5 mL 

of 0.1% Tween aqueous solution, vortexed for 10 seconds, then conidia counted with a 

hemacytometer. 

   For germination inhibition by hydrogen peroxide, VMS plates were prepared 

containing 0 mM, 2 mM, and 5 mM H2O2. Spore suspension of 100µL containing 

approximately 100 conidia was spread evenly onto the 0 mM H2O2 plates, whereas 
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100µL of spore suspension containing approximately 1000 conidia was spread evenly on 

the 2 mM and 5 mM H2O2 plates. On the second day, the percentage germination of the 

different strains on the 0 mM plates was determined. On the third day, the percentage 

germination on the 2 mM and 5 mM plates was determined. This latter percentage was 

divided by the percentage germination on the 0 mM plates to calculate H2O2 inhibition 

for the different strains. This method eliminates discrepancies in the conidial 

concentrations of different spore suspensions. 

 

2.3.3. Confrontation, biocontrol and root colonization 

 

     Confrontation assays against R. solani were conducted by placing cores of R. 

solani and T.virens on opposite ends of VMS Fe+ or VMS Fe- plates. The time required 

for Trichoderma to completely overgrow Rhizoctonia and reach the opposite edge of the 

plate was recorded and mycoparasitic coiling by Trichoderma was confirmed by 

microscopy.  

     Biocontrol was tested against P. ultimum with cotton as the host. Seeds were 

surface-sterilized by soaking for five minutes in 70% ethanol, followed by a two hour 

treatment in 10% H2O2.  Thirty seeds were placed in a 50mL tube (Falcon), to which 

510µL of latex were added, followed by vortexing. The coated seeds were allowed to dry 

for five minutes. These seeds were then added to a tube containing 0.3 grams of T. virens 

chlamydospores (ground and sifted through a 40 mesh filter), which was then vortexed. 

The pathogen inoculum was prepared by harvesting a 10-day-old culture of P. ultimum 
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from one plate of V8 broth. The entire contents were blended (Waring blender, high-

speed setting for 30 seconds) and the slurry brought to a total of 100mL by the addition 

of sterile water. Soil was prepared by adding this 100mL of aqueous Pythium solution to 

1000g of soil then mixing well with an electrical egg beater. Approximately 10 grams of 

soil and one treated seed were added to each medium-sized glass test tube. The positive 

controls contained Pythium but no Trichoderma, whereas the negative control lacked 

both Pythium and Trichoderma.  The tubes were then incubated in a growth chamber at 

28°C. After seven days, the cotton seedlings were rated on a scale of 1 to 3, with 

1=healthy, 2= diseased, and 3= dead. 

    Root colonization was determined from corn plants grown in a hydroponics 

system. After three days of incubation in the hydroponics chamber, each set of seedlings 

was inoculated with approximately one gram of mycelia from the appropriate fungal 

strain. The seedlings were removed from the hydroponics system after two additional 

days of incubation and the roots were excised from the plant. The roots were rinsed with 

tap water to remove the fungal inoculum loosely associated with the roots. The roots 

were then submerged in a 1% NaClO treatment for 2 minutes, followed by 3x3 minute 

rinses with sterile ddH20. Roots were then plated on media composed of modified 

GVSM lacking gliotoxin (Park et al., 1992). Following 48 hours of incubation at 27°C, 

the number of Trichoderma colonies was determined for the total root length to derive 

the colonies/cm value, the measure of root colonization.  
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2.3.4. Statistics 

 

Statistics were conducted using the SAS Stat View program, with the Fisher 

Protected Least Significant Difference indicating statistical significance (p-value < 0.05) 

with 95% confidence. Graphs were created on Microsoft Excel. Experiments were 

performed with three replications unless stated otherwise. 
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3. RESULTS 

 

3.1. HPLC analyses after mutant construction 

 

HPLC of culture filtrates allows detection of siderophores. Chromatograms of the 

HPLC of the filtrates are shown in Figures 6-10. No siderophores were detected in the 

Fe+ medium filtrate for any strains assayed. For wild-type, growth in an iron-depleted 

medium yielded a compound at absorbance 12.7 minutes (x-axis), possibly 

corresponding to a coprogen-type siderophore (Figure 6).  The ∆TvsidD mutant showed 

identical peaks to wild-type (Figure 7).  This peak was absent in both ∆Tvnps6 and 

double mutants grown in Fe- medium (Figures 8 and 9). To rule out the possibility that 

TvSIDD codes for an NRPS that produces an intracellular siderophore, mycelia were 

extracted and the supernatant submitted for analysis. There were no differences between 

the wild-type and ∆TvsidD intracellular extracts; both had the ferricrocin peak at 10.9 

minutes (Figure 10). 
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Fig. 6.  HPLC profile for Gv29-8. Culture filtrate from fungi grown under iron-depleted 

(top) and iron-replete (bottom) conditions. The extract was injected in 10µL aliquots. 

The y-axis shows absorption and the x-axis shows retention times in minutes. The large 

peak at approximately 12.7 minutes retention time is for an extracellular coprogen-

family siderophore. 
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Fig. 7. HPLC analysis of Gv29-8 (top) and ∆TvsidD (bottom). Strains were grown in 

iron-depleted medium. The extract was injected in 10µL aliquots. The y-axis shows 

absorption and the x-axis shows retention times in minutes. The large peak at 12.7 

minutes for both strains is for an extracellular coprogen-family siderophore. 
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Fig. 8. HPLC analysis of Gv29-8 (top) and ∆Tvnps4 (bottom). Culture filtrates from 

iron-depleted conditions. The extract was injected in 10µL aliquots. The y-axis shows 

absorption and the x-axis shows retention times in minutes. The ∆Tvnps4 mutant lacks a 

peak at a retention time of 12.7 minutes corresponding to a coprogen-family 

siderophore. 
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Fig. 9. HPLC analysis of Gv29-8 (top) and ∆∆TvsidDTvnps4 (bottom). Culture filtrates 

from iron-depleted conditions. The extract was injected in 10µL aliquots. The y-axis 

shows absorption and the x-axis shows retention times in minutes. Gv29-8 displays a 

peak at 12.7 minutes corresponding to a coprogen-family siderophore that the double 

mutant lacks. 
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Fig. 10.  HPLC analysis for presence of the intracellular siderophore ferricrocin. From 

mycelia of Gv29-8 (top) and ∆TvsidD-4 (bottom) grown in iron-depleted conditions. 

The extract was injected in 10µL aliquots. The arrow indicates a peak at 10.9 minutes 

retention time corresponding to the intracellular siderophore ferricrocin. 
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3.2. Detection and confirmation of mutant strains 

 

3.2.1. Mutants of TvNPS6 

 

Numerous checks were conducted to ensure the target NPS6 gene was disrupted. 

Following transformation and screening on PDA/hygromycin, 103 out of 235 (44%) of 

the isolates were found to grow and sporulate after the multiple rounds of 

PDA/hygromycin. Eighteen of these potential transformants were assayed for gene 

disruption by PCR analysis.  Three mutants were identified by PCR analysis for 

TvNPS6: designated ∆Tvnps4, ∆Tvnps15, ∆Tvnps16. The amplified sequence (2.6kb, 

using OutAS and hphforinv primers, Table 4) is only present in DNA containing the 

hygromycin insert, so DNA without the insert does not yield a fragment (Figures 11 and 

12).   

 PCR analysis using primers (OutS and OutAS, Table 4) located just outside the 

TvNPS sequence was also performed with putative transformants #4, 15, and 16. In this 

latter test, lack of a product occurs as the size of the fragment to be amplified by this 

primer set in the mutants is too large (approximately 8.6kb) for amplification by 

traditional PCR methods. The genomic DNA control and putative transformants lacking 

the insert demonstrate a band of 2.3kb. Use of the Nps6f and Nps6r primer sets results in 

a 1.3kb product in both the transformants and the genomic DNA (Figure 13).  
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3.2.2. Mutants of TvSIDD 

 

The ∆TvsidD mutants, which were created prior to my project (Kenerley, 

unpublished), were reconfirmed.  These mutants were generated in the auxotrophic strain 

Tv10.4 which is mutated in the gene encoding the small subunit of carbomoyl phosphate 

synthetases (Baek and Kenerley, 1998). Selected mutants were verified by PCR analysis 

using both the SidD primer set (SidDf/SidDr) and the Nps6 primer set (Nps6f/Nps6r) 

(Table 4). No product should be present in mutants when DNA is amplified with the 

SidD primer set as a portion of the gene has been replaced with the selectable marker 

(arg2 gene). The Nps6 primer set results in a 1.3kb fragment in all strains (Figure 14). 

Homologous insertions were confirmed for ∆TvsidD designated ∆TvsidD4, ∆TvsidD46, 

and ∆TvsidD75 (see Figure 14). 

 

3.2.3. Double mutants 

 

Using the same protocol as described for the ∆Tvnps6 mutants, a disruption in 

TvNPS6 was also generated in a ∆TvsidD background, yielding double mutants 

(∆∆TvsidDTvnps6, also referred to as “DB” or “2x”) designated ∆∆TvsidDTvnps4, 

∆∆TvsidDTvnps5, ∆∆TvsidDTvnps9, ∆∆TvsidDTvnps10) (Figure 15). Use of the OutS 

and OutAS primer set does not produce a product as the fragment to be amplified is too 

large for amplification by standard PCR methods. 
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 Fig. 11.  Confirmation of disruption in transformants ∆Tvnps15 and ∆Tvnps16. 

Amplification with Hphforinv and OutAS primers (Table4) yields a fragment of 

approximately 2.6kb in strains disrupted in TvNPS6. Lanes from left to right: ladder (1 

kb plus DNA), transformants 14,15,16. 
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Fig. 12.  Confirmation of disruption in transformant ∆Tvnps4. Amplification of DNA 

with primer set Hphforinv/OutAS (Table 4). Appearance of 2.6kb fragment which 

includes the hygromycin insert is confirmation of disruption of the gene. Lanes from left 

to right: ladder, putative transformants 1 through 6. 
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Fig. 13.  PCR analysis of putative ∆Tvnps6 transformants.  OutAS/OutS (top) and 

Nps6f/Nps6r (bottom) primer sets (Table 4) were used. Lack of a product in the top of 

the gel indicates successful disruption (see page 48). For gel A (left), lanes contain, left 

to right, ladder,4,4,4,4,15,15, genomic DNA control; for gel B (right), lanes contain, left 

to right, ladder,15,15,16,16,16,16, genomic DNA control. The Nps6f/Nps6r primer set is 

a control primer pair for determining DNA quality. All isolates including WT should 

exhibit a product. 
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Fig. 14.  Verification of ∆TvsidD disruption. The SidD primer set (top) was used. The 

Nps6 primer set was used to demonstrate an intact TvNPS6 gene (bottom). Depicted, 

from left to right,  are size standard, ∆TvsidD 4, 46, 75 and genomic DNA. 
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Fig. 15.  PCR verification of ∆∆TvsidDTvnps6 mutants. In the top of the gel, 

amplification of double mutants with OutS/OutAS primer set (Table 4) does not result in 

a product. In the bottom half, the transformants and the genomic DNA produce a 1.3 kb 

product when amplified by the primer set Nps6f/Nps6r (Table 4). Lanes contain, from 

left to right, ladder, 4,4,4,5,5,5,9,9,9, 10,10,10, control.  
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3.2.4. Southern blotting 

  

As the Pst1 restriction enzyme cuts within the insertion (Figure 16), Southern 

blot analysis provided further verification of the aforementioned ∆Tvnps6 and 

∆∆TvsidDTvnps6 mutants (Figures 17 and 18). Thus, mutant strains containing the 

transforming vector produce fragments of 3.0 and 6.1kb, whereas wild-type DNA 

yielded a single fragment of 2.8kb when hybridized with a 1.3kb probe from module one 

(Figure 16). The 6.1 kb fragment contains the TvNPS6 fragment, the Bluescript vector, 

and part of the hygromycin resistance gene. The 3.0 kb fragment contains the second 

copy of the TvNPS6 fragment and the portion of the hygromycin gene not in the 6.1 kb 

fragment (Figure 16). The same probe and process worked for Southern blotting both the 

TvNPS6 mutants and the double mutants. 
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Fig. 16.  Depiction of genomic and recombinant DNA with restriction sites. The probe is 

the 1.3kb section of NPS6 labeled with 
35

P. An extra Pst1 site is present in the 

recombinant DNA, so it will yield two bands of lengths 6.1 and 3.0 kb. Wild-type will 

have a single 2.8kb band. Primer pairs are indicated above the restriction enzyme sites 

(see Table 4). 
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Fig. 17.  Southern analysis and confirmation of ∆Tvnps6 disruptants. The Pst1 

restriction enzyme cuts within the insertion, producing two fragments of 6.1 and 3.0kb. 

Genomic DNA has a single 2.8kb fragment. Depicted from left to right, are wild-type 

DNA, ∆Tvnps4, ∆Tvnps6, ∆Tvnps15, ∆Tvnps16. The probe was a 1.3kb [
32

P]dCTP-

labeled TvNPS6 gene fragment. 
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Fig. 18.  Southern analysis and confirmation of double mutants. The probe was a 1.3kb 

[
32

P]dCTP-labeled TvNPS6 gene fragment. As with the ∆Tvnps6 mutants (Fig.17), 

restriction digest with Pst produces two fragments for the mutants and a single fragment 

for wild-type DNA. Depicted from left to right are ∆∆TvsidDTvnps10, 

∆∆TvsidDTvnps9, ∆∆TvsidDTvnps5, ∆∆TvsidDTvnps4 and genomic DNA.  
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3.3. Phenotypic experiments 

  

3.3.1. Growth 

 

Area of mycelial growth at 60 hours for wild-type and mutant strains is presented 

in Figure 19. The growth of strains was assessed on VMS Fe+ and VMS Fe- media, 

following inoculation of the center of the plate with conidia. Wild-type growth is 

significantly less than all ∆TvsidD and ∆Tvnps6 for both treatments. Wild-type growth 

is significantly less than ∆∆TvsidDTvnps4 and ∆∆TvsidDTvnps10 for both treatments, 

but there is no significant difference between wild-type and ∆∆TvsidDTvnps9 for either 

treatment. 

Biomass (represented by dry weights) of strains grown in VMS Fe+ and VMS 

Fe- liquid media following 3 days of incubation is presented in Figure 20. For the Fe+ 

treatment, wild-type growth was significantly less than both ∆Tvnps6 mutant strains, but 

greater than ∆∆TvsidDTvnps5 and ∆∆TvsidDTvnps10. For the Fe- treatment, wild-type 

was likewise significantly less than both ∆Tvnps6 mutants but greater than 

∆∆TvsidDTvnps5 only.  

 

 

 

 



 54 

Radial Growth

0

5

10

15

20

25

30

35

40

A
+

B
1+

B
2+

B
3+

C
1+

C
2+

D
1+

D
2+

D
3+ A

-
B
1-

B
2-

B
3-

C
1-

C
2-

D
1-

D
2-

D
3-

A
re

a
 (

s
q

.c
m

)

 

Fig. 19.  Radial growth of WT (Gv29-8) and mutant strains. Growth was on Fe+ and Fe- 

agar medium. A=WT, B=∆TvsidD (Mutants: 1=#4, 2=#46, 3=#75), C=∆Tvnps6 

(Mutants: 1=#4, 2=#16), D=∆∆TvsidDTvnps6 (Mutants: 1=#5, 2=#9, 3=#10).“+” and “-

” signify VMS Fe+ and VMS Fe- media. Bars represent average area in mm
2
 of three 

repetitions, and standard error represented by error bars.  
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Fig. 20. Biomass of WT (Gv29-8) and mutants. Grown in VMS Fe+ and VMS Fe- liquid 

medium. Liquid media was inoculated with conidia. A=WT, B=∆TvsidD (Mutants: 

1=#4, 2=#46, 3=#75), C=∆Tvnps6 (Mutants: 1=#4, 2=#16), D=∆∆TvsidDTvnps6 

(Mutants: 1=#5, 2=#9, 3=#10). “+” and “-” signify VMS Fe+ and VMS Fe- media. Bars 

represent average weight in grams of three repetitions, and error bars show standard 

error. 

  

 

 To ascertain the importance of reductive iron assimilation (RIA), growth on agar 

in the presence of the chelator BPS was measured. Wild-type and a single strain of each 

mutant were grown on four types of agar: VMS Fe+, VMS Fe-, VMS Fe+ with BPS, and 

VMS Fe- with BPS. Inoculation was with conidia in the center of the plate and values 

for radial growth were determined at four days of incubation. The radial growth 
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measurements are shown in Figure 21. Strong inhibition was exerted by the chelator on 

both the ∆Tvnps6 mutants and the double mutants under both BPS treatments compared 

to wild-type. 

 

 

 

 

Radial Growth with and without BPS Chelator

0

10

20

30

40

50

60

70

A
+

B
+

C
+

D
+ A

-
B
-

C
-

D
-

A
+B

PS

B
+B

P
S

C
+B

P
S

D
+B

P
S

A
-B

PS

B
-B

P
S

C
-B

P
S

D
-B

P
S

m
m

Fig. 21.  Radial growth of wild-type (WT) and mutants with BPS chelator. Grown on 

Fe+, Fe-, Fe+ with BPS and Fe- with BPS agar medium. A=Wild-type, B=∆TvsidD, 

C=∆Tvnps6, D=∆∆TvsidDTvnps6. A single strain of each mutants (all transformant #4) 

were chosen. “+”, “-”, “+BPS”, and “-BPS” denote Fe+, Fe-, Fe+ with BPS, and Fe- 

with BPS media. Values represent the average diameter in mm of three repetitions and 

error bars show standard error. 
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 A subsequent experiment was performed in a liquid medium to confirm that 

∆Tvnps6 mutant growth is severely inhibited relative to wild-type. After four days of 

growth in Fe- media with 100µM BPS, wild-type biomass was significantly greater than 

both of the ∆Tvnps6 mutants tested (Figure 22).  
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Fig. 22. Biomass growth of WT and ∆Tvnps6 with BPS chelator. Biomass in Fe- media 

with 100µM of BPS. The average biomass of three repetitions is shown with standard 

error bars. 
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 3.3.2. Conidiation and germination
 
 

The ability of the strains to produce conidia after four days incubation on VMS 

Fe+ and VMS Fe- agar is presented in Figure 23A, with values presented as the 

proportion relative to wild-type sporulation. On the Fe+ medium, conidia formation by 

the wild-type was significantly greater than all ∆TvsidD strains but significantly less 

than ∆Tvnps4, ∆Tvnps 16, and ∆∆TvsidDTvnps9. On the Fe- medium, wild-type 

conidiation was significantly greater than ∆TvsidD46, ∆TvsidD75, ∆∆TvsidDTvnps4 

and ∆∆TvsidDTvnps5, whereas it was significantly less than ∆Tvnps16.  

 As siderophore mutants in other studies have shown reductions in conidiation 

under oxidative stress (Schrettl et al., 2007), the effect of hydrogen peroxide on 

conidiation was evaluated with wild-type, and single strains of ∆TvsidD (∆TvsidD4) and 

∆Tvnps6 (∆Tvnps4) mutants (Figure 23B). Conidiation of wild-type was significantly 

greater than the ∆Tvnps6 mutant on Fe+ medium. On Fe- medium, wild-type was 

greater than ∆Tvnps6 but less than ∆TvsidD. For the Fe+2mM hydrogen peroxide 

treatment, wild-type was less than ∆TvsidD. For both hydrogen peroxide treatments, 

wild-type was greater than ∆Tvnps6. As for intrastrain variability, wild-type and mutants 

all showed reduced growth under the hydrogen peroxide treatments compared to Fe+, 

with the exception of WT Fe+ vs. WT Fe-2mM. 

 Germination on 2mM H2O2 as a proportion of germination without hydrogen 

peroxide is presented in Figure 24. Wild-type germination was significantly greater than  

∆TvsidD46 and ∆∆TvsidDTvnps9, but significantly less than ∆TvsidD4, ∆Tvnps4, and 

∆∆TvsidDTvnps10.   
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Fig. 23A. Conidiation of WT and mutants. Grown on Fe+ and Fe- medium. Conidiation 

of mutants is presented as a proportion of wild-type. Conidia were harvested and 

counted after 4 days incubation. A=Wild-type, B=∆TvsidD (Mutants: 1=#4, 2=#46, 

3=#75), C=∆Tvnps6 (Mutants:1=#4, 2=#15, 3=#16), D=∆∆TvsidDTvnps6 (Mutants: 

1=#4, 2=#5, 3=#9). “+” and “-”signify Fe+ and Fe- media. Error bars represent standard 

error. 
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Fig. 23B. Conidiation of WT and mutants with H2O2 stress. Strains tested are A=Wild-

type, B=∆TvsidD mutant#4, C=∆Tvnps6 mutant#4. Conidiation was determined on 

VMS Fe+ (+), VMS Fe-(-), VMS Fe+ with 2mM H2O2 (+2mM), or VMS Fe- with 2mM 

H2O2 (-2mM). Conidia were harvested after 4 days incubation. Error bars represent 

standard error. 
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Germination Inhibition under Hydrogen Peroxide Stress
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Fig. 24. Germination of WT and mutants with H2O2 stress. Grown on normal VMS 

medium with 2mM hydrogen peroxide. Germination is presented as a proportion of 

germination in absence of H2O2. A= wild-type, B=∆Tvnps6, C=∆TvsidD, 

D=∆∆TvsidDTvnps6. Error bars are standard errors. 
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3.3.3. Confrontation and biocontrol 

 

 All mutants performed identically to wild-type in the confrontation assay against 

R. solani. All strains overgrew the pathogen within eleven days regardless of the 

medium (Fe+ and Fe-). Typical confrontation plates are shown in Figure 25. Coiling of 

hyphae of strains of T. virens around the hyphae of R. solani was confirmed by 

microscopy, with mutants showing no loss of this mycoparasitic trait.  

 Similarly, there was no reduction of the biocontrol abilities in the mutants. All 

mutants prevented P. ultimum infection on cotton to the same degree as the wild-type 

strain. The biocontrol experiment is depicted in Figure 26, with the positive control 

containing P. ultimum but no Trichoderma strains, and the negative control containing 

neither P.ultimum nor Trichoderma strains. A grading scale of 3(dead), 2(diseased with 

visible lesions) and 1(healthy) was used with the average index presented in Figure 26. 
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Fig. 25. Confrontation against Rhizoctonia solani. Grown on Fe- plates after 11 days of 

incubation. Clockwise from top left: wild-type, ∆TvsidD4, ∆∆TvsidDTvnps4, ∆Tvnps4. 

The Trichoderma strains initiated in the lower half of the plate have overgrown the 

lighter-colored P. ultimum and reached the opposite edge of the plate. 
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Fig. 26. Biocontrol against Pythium ultimum. Hosts were cotton seedlings. Grading scale 

was 3=dead, 2=diseased with visible lesions, 1=healthy, with the average index of ten 

repetitions presented. Error bars are standard errors. The positive control lacks 

Trichoderma, whereas the negative control lacks both Trichoderma and the pathogen P. 

ultimum. 

 

 

3.3.4. Root colonization 

 

Averages for the number of colonies/mm of maize root for two mutant and the 

wild-type strains are presented in Figure 27. There were no significant differences 

among the strains, wild-type, ∆TvsidD4 and ∆Tvnps4 (when a single mutant of each 
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type was to be tested, the lowest number was chosen. In this case, for all three types of 

transformant, the mutant was #4). 
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Fig. 27. Root colonization of WT and mutants on maize. Average number of colonies of 

wild-type (WT) and two mutants on the roots of Zea mays seedlings. The values are 

colonies per millimeter of root length with standard error bars.  
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3.3.5. Growth with chelators 

 

In order to determine the relative contribution of RIA to T. virens growth, 

biomass of wild-type was measured in liquid media of varying iron-concentrations with 

and without the BPS chelator. Results are presented in Figure 28 and Table 5. Without 

the chelator, there were no significant differences in biomass production among the three 

iron treatments. However, with the chelator, biomass in Fe+10 with BPS was 

significantly greater than Fe- with BPS and Fe+1 with BPS. Growth under all three iron 

levels was significantly greater in the absence of BPS than in its presence.  

 Similarly, biomass production by wild-type was also tested with the membrane-

permeable chelator 2,2’-dipyridyl (2DP) at a concentration of 100µM. The Fe- with 2DP 

was significantly less than the Fe- and Fe+1 treatments (Figure 29). No other differences 

were significant. 
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Growth in various media, including BPS 
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Fig. 28. Biomass of WT under various BPS treatments. Average biomass (dry weight) of 

wild-type after four days incubation in different media, with or without 100µM BPS. 

Media are, from left to right, VMS Fe-, VMS Fe- with BPS, VMS Fe+1µM FeSO4, 

VMS Fe+1µM FeSO4 with BPS, VMS Fe+10µM FeSO4, VMS Fe+10µM FeSO4 with 

BPS. Values represent the average of 3 repetitions with error bars corresponding to 

standard errors. 
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Table 5 Biomass (dry weight) of wild-type grown in various media with BPS. Analyzed 

with Fisher’s Protected Least Significant Differences Test. 

 

Comparison Mean Difference P-value Significance 

Fe-,Fe- with BPS 0.134 <0.0001 S 

Fe-,Fe+1µM FeSO4 0.010 0.6424 - 

Fe-, Fe+10 µM 

FeSO4 

-0.019 0.3753 - 

Fe- with BPS, 

Fe+1µM FeSO4  

with BPS 

-0.021 0.3444 - 

Fe- with BPS, 

Fe+10 µM FeSO4 

with BPS 

-0.102 0.0004 S 

Fe+1µM FeSO4, 

Fe+1 µM FeSO4 

with BPS 

0.103 0.0004 S 

Fe+1 µM FeSO4, 

Fe+10 µM FeSO4 

-0.029 0.1877 - 

Fe+1 µM FeSO4 

with BPS, Fe+10 

µM FeSO4  with 

BPS 

-0.082 0.0022 S 

Fe+10 µM FeSO4 , 

Fe+10 µM FeSO4 

with BPS 

0.051 0.0318 S 
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Growth in various media, including 2DP

0

0.05

0.1

0.15

0.2

0.25

WT- WT-2DP WT+1 WT+1,2DP WT+10 WT+10,2DP

D
ry

W
t.

(g
)

Fig. 29. Biomass of WT under various 2DP treatments. Biomass (dry weight) of wild-

type (WT) after four days incubation in different media, with or without 100µM 2DP. 

Media are, from left to right, VMS Fe-, VMS Fe- with 2DP, VMS Fe+1µM FeSO4, 

VMS Fe+1µM FeSO4 with 2DP, VMS Fe+10µM FeSO4, VMS Fe+10µM FeSO4 with 

2DP. Values are the average dry weight of three repetitions with error bars 

corresponding to standard errors. 
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4. DISCUSSION 

 

4.1. HPLC analyses 

 

 HPLC analyses were performed at 435nm to detect hydroxamate siderophores. 

Analysis of the wild-type (Gv 29-8) with (Fe+) and without (Fe-) iron showed a 

prominent peak at 12.7 minutes under iron-depleted conditions (Figure 6). Lack of a 

peak under iron-replete conditions (~10µM Fe) demonstrates that transcription of genes 

encoding siderophore-producing NRPSs is repressed in iron-replete media. 

Concentrations of iron exceeding 10µM have generally been regarded to repress 

siderophore biosynthesis in most microorganisms (Leong and An, 1997), so our result is 

expected and our media sufficiently iron-depleted or iron-replete. Based on siderophore 

standards, the peak represents the biosynthesis of a coprogen-type siderophore by T. 

virens. This is similar to the production of coprogen in Cochliobolus heterostrophus 

(Lee et al., 2005), Neurospora crassa, and Alternaria brassicicola (Oide et al., 2006), 

and Magnaporthe grisea (Hof et al., 2009). These fungi contain an NRPS with 

homology to TvNPS6. In addition, coprogen and coprogen B have been detected in 

several Trichoderma strains (Anke et al., 1991). For the studies presented in this thesis, 

all subsequent filtrates submitted for HPLC analysis were from growth in the iron-

depleted medium. 

 The mutant ∆TvsidD grown under iron-depleted conditions showed an identical 

chromatogram to the wild-type (Figure 7). Disruption of the TvSIDD gene had no 
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apparent effect on the production of the putative siderophore. As the TvSIDD gene is 

homologous to genes encoding fusarinine-producing NRPSs in Aspergillus fumigatus 

(Schrettl et al., 2007), this chromatogram suggests that the hydroxamate detected is not a 

fusarinine-type siderophore. In contrast, neither the ∆Tvnps6 strain nor the double 

mutant showed the siderophore peak at 12.7 minutes (Figures 8 and 9). Evidently, 

disruption of TvNPS6 prevents the production of a coprogen-type siderophore. 

 As the role of the NRPS TvSidD was not clear, the intracellular extracts of wild-

type and ∆TvsidD were compared. This would reveal whether the TvSidD product was 

an intracellular siderophore. In Figure 10, it is shown that the ∆TvsidD strain retains the 

peak of the putative intracellular siderophore ferricrocin (of the ferrichrome family) at 

10.9 minutes. Thus, the identity of the TvSIDD gene product was not resolved by our 

HPLC analysis. 

   

4.2. Detection and confirmation of disruptions 

 

 With 44% of the transformants successfully growing and reproducing through 

serial passages on medium containing hygromycin, and three of the first 18 mutants 

tested showing a disruption in the target gene (Figures 11 and 12), the single crossover 

technique was an effective means of generating mutants. Several TvNPS6 mutants 

(∆Tvnps4, ∆Tvnps15, ∆Tvnps16) were demonstrated to be generated by this approach 

(Figure 13). PCR amplification of a unique fragment in a second set of transformants 

verified double mutants ∆∆TvsidDTvnps4 , ∆∆TvsidDTvnps5, ∆∆TvsidDTvnps9, and 
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∆∆TvsidDTvnps10 (Figure 15).  Southern blots confirmed that there was homologous 

recombination for ∆Tvnps4, ∆Tvnps15, ∆Tvnps16, ∆∆TvsidDTvnps4, 

∆∆TvsidDTvnps5, ∆∆TvsidDTvnps9, and ∆∆TvsidDTvnps10 (Figures 17 and 18). 

Thus, mutants were generated for the two genes encoding NRPSs potentially involved in 

siderophore production in T. virens. 

 

4.3. Phenotypic experiments 

 

4.3.1 Growth 

 

For area of mycelial growth, wild-type was significantly less than all mutants 

except for ∆∆TvsidDTvnps9 for both Fe+ and Fe- treatments (Figure 19). This is 

unexpected as similar experiments (Schrettl et al., 2007; Hof et al., 2009) showed 

significant reductions in radial growth when a siderophore-producing NRPS is disrupted. 

The results are also at odds with the HPLC data presented; if the ∆Tvnps6 and double 

mutants produce no siderophores, they would be expected to show reduced growth under 

iron-depleted conditions. Furthermore, after months of working with the mutants, no 

remarkable differences in growth appeared during plating or transfers. An argument 

could be made that area of mycelial growth is not an ideal measure since deficiencies in 

other phenotypic characteristics such as conidiation may allow greater allocation of 

energy for growth.  
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Growing the fungi in liquid media and then determining biomass as dry weight 

seemed preferable. Nevertheless, the data presented in Figure 20 show that the ∆Tvnps6 

strains outgrow the wild-type in both treatments, while double mutants #5 and #10 

produce less biomass than wild-type in both treatments. Here, the ∆TvsidD mutants were 

not significantly different than wild-type.  

From these first two bioassays, it seems that siderophore production, although 

clearly occurring in low-iron conditions, is not essential for growth of the fungus. 

Therefore, the effects of RIA on the mutants were investigated. 

Figure 21 shows the results of growing wild-type and one strain of each mutant 

on four different agar media: VMS Fe+ (sufficient iron), VMS Fe- (low-iron, fungi 

employ siderophores and/or RIA), VMS Fe+ and BPS (Iron present, but chelation of 

ferrous iron by BPS, so RIA hindered), and VMS Fe- and BPS (low-iron, so BPS effect 

on RIA even more significant). Here the mutants incapable of producing a coprogen 

siderophore (∆Tvnps6, ∆∆TvsidDTvnps6) show growth less than or approximately 

equal to wild-type and ∆TvsidD on the Fe+ and Fe- media, contradicting the 

experiments (and supporting the empirical observations) discussed above. The addition 

of the chelator BPS significantly reduces the growth of ∆Tvnps6 and ∆∆TvsidDTvnps6 

mutants under both BPS treatments. On Fe- with BPS, these mutants show a greater 

degree of inhibition than on the Fe+ with BPS treatment, suggesting that the Fe+ with 

BPS treatment still has sufficient uncomplexed iron for the siderophore mutants to grow 

moderately using the RIA pathway. Studies with A. fumigatus (Schrettl et al., 2007) 

demonstrated similar results in which growth inhibition of siderophore mutants showed a 
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clear relationship to both iron and BPS concentrations. Wild-type and ∆TvsidD strains 

showed moderate growth reductions in Fe- with BPS compared to Fe-. ∆TvsidD’s 

normal growth and the double mutants’ phenotypic similarity to the ∆Tvnps6 mutants 

suggest greater importance of the TvNPS6 gene. It is almost certain that increasing BPS 

concentrations from our 100µM protocol would further reduce growth of all the strains, 

most drastically on those lacking a functional TvNPS6 gene.  

Liquid growth in Fe- media with BPS added was conducted on wild-type and two 

TvNPS6 mutants. Corroborating the BPS experiment on agar, the ∆Tvnps6 strains were 

significantly reduced compared to wild-type (Figure 22).  

Thus, compared to wild-type, growth of the siderophore mutants (transformants 

disrupted in TvNPS6) showed pronounced inhibition under BPS treatments. This is 

expected as BPS blocks RIA by intercepting ferrous iron before it can reach the 

transmembrane Fet3/Ftr1 complex for oxidation and uptake. Without ferric-chelating 

siderophores to compensate for the loss of RIA, the siderophore mutants show reduced 

growth. No differences can be asserted confidently for the mutants under the Fe+ and 

Fe- treatments lacking BPS. The growth experiments suggest that RIA is more important 

for growth than siderophores since the siderophore mutants do as well or better under 

Fe- (RIA, no siderophores) than wild-type and ∆TvsidD do under Fe-BPS (siderophores, 

reduced RIA). 
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4.3.2 Conidiation and germination 

 

Conidia production for all strains is presented in Figure 23A. Despite the 

similarity between wild-type and ∆TvsidD strains revealed by the HPLC analyses (i.e. 

siderophore production) and suggested by the growth data, the ∆TvsidD strains showed 

lower conidiation on both Fe+ and Fe- media. Compared to wild-type, the ∆Tvnps6 

strains showed a trend of greater sporulation on the Fe+ plates, but lower conidiation 

rates (except for the ∆Tvnps16 strain) on Fe- media. The double mutants showed a 

similar trend, with slightly less sporulation in low-iron media.  

Hydrogen peroxide’s (2mM) effects on conidiation were determined with wild-

type and the ∆TvsidD4 and ∆Tvnps4 strains (Figure 23B). The siderophore mutant 

∆Tvnps4 conidiated significantly less than both wild-type and ∆TvsidD4 for all four 

treatments. Though neither wild-type nor ∆TvsidD4 showed strong negative effects from 

hydrogen peroxide, the siderophore mutant conidiated significantly less on the H2O2 

plates compared to the Fe+ and Fe- plates. Given the contradictory data between Figures 

23A and 23B, no conclusions can be made from these assays. Nevertheless, the reduced 

conidiation by the siderophore mutant ∆Tvnps4 in the presence of H2O2 could be further 

investigated. Although the growth data suggest that RIA allows siderophore mutants to 

grow normally under low-iron conditions, the addition of H2O2 may increase iron 

demand for the synthesis of catalases and peroxidases to detoxify the reactive oxygen 

species to a degree beyond that which RIA can supply. Over the course of this project, 

the general trend has been that H2O2 in low-iron hindered Trichoderma more than in 
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iron-replete media. In other words, the deleterious effects of the Fenton Reaction are 

evidently less significant than the need for obtaining sufficient iron to synthesize the 

detoxifying enzymes. 

Germination inhibition under H2O2 stress likewise failed to show any strong 

trends (Figure 24). Others (Schrettl et al., 2007) have discovered that conidia can carry 

their own reserves of iron stored in the conidial storage siderophore hydroxyferricrocin. 

Perhaps this iron reserve allows normal germination in the siderophore mutants (these 

mutants still have the intracellular siderophore ferricrocin), but this is soon depleted and 

subsequent development is hindered as the increased iron demand under oxidative stress 

cannot be met. Harvesting spores from H2O2 -treated plates then determining 

germination may be more informative as conidia produced by the ∆Tvnps6 and double 

mutant strain under these conditions may have hydroxyferricrocin levels sufficiently low 

to affect germination. 

Overall, the results from the conidiation and germination studies do not show any 

consistent trends in the absence of hydrogen peroxide. Studies with Magnaporthe grisea 

∆nps6 mutants showed reduced growth, conidiation and heightened sensitivity to 

hydrogen peroxide (Hof et al., 2009). They also recorded reduced catalase activity in the 

siderophore (coprogen) mutants. Much higher concentrations of H2O2 (2-20mM) were 

used and these experiments followed a day-night rhythm that also could have affected 

the phenotype. In the studies with M. grisea and A. fumigatus, greater time was allowed 

for sporulation than in the experiments with T. virens (Hof et al., 2009; Schrettl et al., 

2007). Thus, higher concentrations of H2O2 and/or longer experiments may reveal 
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inhibition of the ∆Tvnps6 and double mutant strains. Finally, given the large intrastrain 

variability, new protocols could be developed to obtain more consistent results. In 

summary, the results suggest that while extracellular siderophores may play a role in 

germination and conidiation, intracellular siderophores are more important, particularly 

under oxidative stress. 

 

4.3.3. Confrontation, biocontrol and root colonization 

 

 All three mutants tested performed identically to wild-type in confrontation with 

R. solani, so low-iron did not compromise the antifungal capability of the mutants 

(Figure 25).  No obvious visual differences between wild-type and the mutants were 

observed.  

 Likewise, the biocontrol assay showed no loss of effectiveness in the mutants to 

protect cotton seedlings against P. ultimum (Figure 26). It is notable that T. virens has 

been found to control oomycetes like Pythium and Phytophthora through production of 

gliovirin (Howell et al., 1993), which utilizes the same diketopiperazine building block 

as the coprogen siderophores (Figure 1). Nevertheless, research has also shown that T. 

virens mutants deficient in both mycoparasitism and antibiotic production still inhibited 

R.solani by inducing the cotton host to generate terpenoid aldehydes and increase 

peroxidase activity in the roots (Howell, 2004). Trichoderma was proposed to prevent 

Pythium infection of cotton by preventing susceptible germinating seeds from releasing 

compounds stimulatory to the latent pathogen (Howell, 2004). By this mechanism, the 
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biocontrol agent consumed sufficient germinating seed exudates to prevent pathogen 

activation. 

 Finally, the root colonization results did not show significant differences among 

the strains assayed (Figure 27). As only putative siderophore genes were disrupted and 

the media is not iron depleted, this is not surprising. Another consideration is that these 

experiments were from sterile hydroponics systems rather than soil environments. The 

rationale for this assay was that the host may produce a defensive oxidative burst upon 

initial infection that may have affected the mutants. The mutant fungi are probably using 

their low-affinity pathway to obtain iron if it is not too scarce. If the plant, which has 

been in the MS medium two days longer than the fungi, has already begun to deplete the 

iron, all strains can utilize functional RIA systems. From the growth discussion above, it 

seems that this is the more common high-affinity pathway in T.virens. 

 In summary, there were no significant differences for any of these three 

bioassays. The versatility of T. virens as a biocontrol species mentioned above is 

significant and it seems in light of the growth data that RIA can supply sufficient iron. It 

could be argued that in a more complex environment with a full suite of microorganisms 

and more variability in abiotic parameters (nutrients, moisture, pH, etc.), iron 

competition will be more intense and siderophore production would be necessary. 

Moreover, a combination of very low bioavailability of iron combined with the oxidative 

burst of the host which can be elicited by T. virens (Djonović et al., 2006a) may pose 

problems for the siderophore mutants since hydrogen peroxide did show effects (Figure 

23B). 
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4.3.4. Growth with chelators 

 

  The purpose of these assays was to ascertain the contribution of RIA in the 

growth of the wild-type strain before considering the mutants. The membrane-

impermeable BPS showed that wild-type functions equally well in all three treatments 

lacking BPS, with its success at lower iron concentrations attributable to RIA and/or 

siderophores. By adding BPS to the media, RIA is impeded and the fungus relies 

increasingly on siderophores. From the results in Figure 28, it seems that siderophore 

production by the wild-type cannot compensate for the loss of RIA in Fe- with BPS and 

Fe+1µM with BPS treatments. In the Fe+10µM with BPS treatment, biomass is still 

reduced compared to the Fe+10µM treatment, but is significantly higher than the other 

BPS treatments with lower iron. The 100µM of chelator is evidently becoming saturated. 

 The membrane-permeable 2,2-dipyridyl chelator showed less inhibiting effects, 

although there did seem to be a (non-significant) trend of chelator saturation as iron 

concentrations increased (Figure 29). In the Fe- with 2DP media, there was significantly 

less biomass than the Fe- and Fe+1 treatments. Oddly, the Fe+10 treatment biomass was 

not significantly greater than any of the BPS treatments. The non-chelator treatments 

were not significantly different from each other.  

 The BPS data clearly supports the hypothesis that RIA is more important than 

siderophore production for T. virens. The 2DP data is not clear, especially since others 

have shown that 2DP is strongly inhibiting in C. heterostrophus (Oide et al., 2006). 



 80 

However, Oide et al. used agar plates rather than liquid media and also added higher 

concentrations of 2DP.   

The nature of the 2DP chelator is different from BPS in that 2DP binds ferrous 

iron in a 1:1 ratio and uses 2 nitrogen ligands. The ligands are the respective lone pairs 

of two nitrogen atoms in the same uncharged aromatic ring. In contrast, BPS is a much 

larger molecule and binds ferrous iron with two anionic oxygen ligands in a 3:1 

BPS:metal ratio (Yokoyama et al., 1999). Thus the BPS-iron(II) complex has a charge of 

-4 (an individual uncomplexed BPS has a -2 charge and cannot enter the membrane). 

Although siderophores have some affinity for other trivalent cations (aluminum, gallium, 

indium) these elements are usually quite scarce, which is in marked contrast to the 

divalent cations, such as zinc, manganese and copper, which may be complexed by the 

BPS and 2DP. It has been observed that copper (II) was preferentially bound by ethylene 

diamine over iron(II) (i.e. higher stability constant) since copper prefers this chelator’s 

nitrogenous ligands (Kosman, 1994) Moreover, the concentrations and availability of the 

divalent ions may vary on opposite sides of the membrane, with intracellular metals 

usually bound to ligands and much less accessible than the metal salts occurring in the 

extracellular environment (Kosman, 1994). In short, because of these variables, an 

explanation for the discrepancy between chelators cannot be offered with confidence.  
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5. CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1 Conclusions 

 

This project determined that T. virens has two genes putatively encoding 

extracellular siderophore-producing NRPSs, TvSIDD and TVNPS6, but only the latter 

generated a detectable siderophore product. Although many fungi produce different 

derivatives within a single hydroxamate family, T. virens’ possession of two genes 

possibly producing fusarinines and coprogens is noteworthy. Anke (Anke et al., 1991) 

did observe that T. pseudokoningii and T. longbrachiatum produced both coprogens and 

fusarinines, though the other seven Trichoderma strains tested made only coprogens. 

Since siderophore production has metabolic costs, producing two separate siderophores 

through two different NRPSs could be considered redundant.  

Coprogen production may have become selected for since the tri-ester fusarinines 

are more susceptible to hydrolysis by esterases, such as those produced by decaying 

plant cells and soil bacteria such as Bacillus and Streptomyces (Winkelmann, 2007). 

Coprogen also has an ester bond attaching the third trans-fusarinine to the 

diketopiperazine dimerum acid, though attaching an acetyl or methyl group to the N
2
 

atom of this third molecule can shield the ester (Renshaw et al., 2002) and also allow 

structural diversity (Haas et al., 2008). The methyl groups create a more lipophilic 

molecule, whereas hydroxyl groups attached to either end of the trihydroxamate make 

the molecule more hydrophilic (Renshaw et al., 2002). Additionally, if the ester bond is 
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cleaved, the remaining dimerum acid can still function as a siderophore, albeit a weaker 

tetradentate one. Coprogens are not as durable as hexapeptide ferrichrome-type 

siderophores, which predominate among saprophytes, but they are not as costly to 

produce.  

 Another observation was that, unless H2O2 was present, the siderophore mutants 

(∆Tvnps6, ∆∆TvsidDnps6) lacking a functional TvNPS6 gene generally performed as 

well in iron-depleted media as the wild-type and were just as effective in biocontrol. 

This suggests RIA is the primary pathway for iron acquisition in T. virens. In contrast, 

loss of the extracellular siderophores fusarinine C (a.k.a.fusigen) and TAFC lowered 

growth rates and conidiation in A. fumigatus grown in Fe- media, whereas 150% greater 

application of the chelator BPS (250µM) did not alter growth of wild-type strains 

(Schrettl et al., 2007). Likewise, M grisea mutants defective in coprogen production 

showed lower growth rates and conidiation in Fe- media than wild-type (Hof et al., 

2009). Perhaps Trichoderma’s existence as a saprophyte/symbiont puts it in a 

comparatively iron-rich soil environment that would provide more substrates for RIA, 

such as humic acids, fulvic acids, iron salts, etc.. Secretion of acidic compounds (e.g. 

caffeic acid) by plant roots would lower the pH of the microenvironment and solubilize 

more iron. Furthermore, hydroxamate siderophores’ efficacy decreases with lower pH as 

protons increasingly compete for the ligands. MFS transporters are not particularly 

abundant in the T. virens gene clusters, implying that siderophore/xenosiderophore 

uptake is not as critical as in other saprophytes. In contrast, M. grisea and A. fumigatus 

inhabit more restricted niches as leaf and human pathogens with fewer opportunities for 
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RIA. Deletion of the RIA system’s FtrA iron permease in A. fumigatus did not affect 

virulence, whereas loss of siderophores did (Schrettl et al., 2004). Although A. fumigatus 

also exists as a saprophyte, it encounters a very iron-depleted environment as a 

pathogen. Iron must be removed by TAFC from high-affinity complexes with 

transferrin. Although some microorganisms, such as Candida albicans, have specialized 

receptors for ferritin-type molecules, it is not especially common. Human transferrin has 

679 amino acids, so it is likely more difficult to maneuver this molecule through the cell 

wall into position for RIA. Similarly, the C. heterostrophus host, rice, has iron bound by 

phytoferritins.    

The indications we detected of siderophore mutant heightened sensitivity to H2O2 

were corroborated by other studies (Oide et al., 2006: Schrettl et al., 2007: Hof et al., 

2009). The Oide et al. study showed that the C. heterostrophus ∆nps6 mutants were 

inhibited at half the concentration of hydrogen peroxide as wild-type (8mM vs. 16mM), 

while the Hof et al. M. grisea research showed mutant inhibition at 16mM and wild-type 

inhibition at 20mM. The Schrettl et al. study matched our observation that all strains met 

challenges by H2O2 better in iron-replete media than in iron-depleted media. Both the C. 

heterostrophus and M. grisea studies showed strong inhibition exerted on the mutants by 

the superoxide generator KO2.  

Despite TvSIDD’s homology to genes encoding siderophore-producing NRPSs, 

disruption of this gene did not reduce the putative siderophore peak on the HPLC 

analysis, so it is unclear what this gene’s role is. One possibility is that the TvNps6 

NRPS produces sufficient siderophores, rendering the TvSidD peptide synthetase 
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superfluous and nonfunctional. The TvSIDD gene cluster depicted in Table 1 show T. 

virens missing several genes present in the A. fumigatus cluster, so it is possible that key 

enzymes are missing and/or a defective protein is produced that was not detected by 

HPLC. Alternatively, considering iron deficiency derepresses genes encoding 

siderophore-producing NRPSs, perhaps the transcription of TvSIDD is delayed relative 

to that of TvNPS6 and the RIA genes and incoming iron from these pathways keep the 

TvSIDD locus unexpressed.  

Another more conjectural possibility is that in the absence of selection pressure, the 

“redundant” NRPS has evolved/been modified to serve another purpose. Research has 

shown that Trichoderma spp. can withstand fairly high levels of heavy metals (Kredics 

et al., 2001a; Kredics et al., 2001b) and can degrade toxicants such as (metallo)cyanide, 

arsenic, polyphenols, and hydrocarbons (Harman et al, 2004 ).  In addition, the 

hydroxamate siderophores of the bacteria Rhizobium and Bacillus have been observed to 

chelate toxic Al
3+

 (Rogers et al., 2001; Hu and Boyer, 1996), which damages plant roots. 

Like Trichoderma, Rhizobium is a plant symbiont. Hydroxamates are stable down to a 

pH of 2.0 (Winkelmann, 2001) and trivalent aluminum becomes mobile at pH 4.7 

(aluminum hydroxides in soils serve as buffers, reacting with protons to form Al
3+

 and 

water) (Schlesinger, 1997), so chelation by fungal hydroxamates could ameliorate 

damage to the plant. In a low-iron environment high concentrations of aluminum were 

observed to further increase siderophore production, though in iron-replete cultures the 

added aluminum did not elicit siderophore production (Hu et al., 1996). Aluminum 
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complexed to the siderophore vicibactin did not show any toxic effects towards 

Rhizobium (Rogers et al., 2001).  

The most plausible new role for the redundant siderophore could be in copper 

metabolism. It was shown that the S. cerevisiae copper chaperone and transporter (Atx1p 

and Ccc2p, respectively) were expressed in response to iron depletion, not copper 

depletion (Philpott, 2006). Given T. virens apparent reliance on RIA and the requirement 

for RIA’s Fet3 oxidase to be loaded with four copper atoms, ensuring an adequate 

supply copper is critical. On the other hand, studies of T. viride observed that the fungus 

was able to withstand high concentrations of copper by binding it to the cell wall (Anand 

et al., 2005). This calls to mind the Fit (facilitator of iron transport) proteins that bind 

siderophore-iron complexes to the cell wall of S. cerevisiae before the complexes are 

processed by the RIA system. Both iron and copper share the first RIA step of reduction 

by the Fre1p metalloreductase (Philpott, 2006). Of the divalent cations (including Fe
2+

), 

only Cu(II) forms strong complexes with hydroxamates. Chelation of excess copper 

could prevent swamping of the low-affinity divalent transporter that would not only lead 

to Cu toxicity, but also preclude then entry of other essential divalent ions. Nevertheless, 

copper-hydroxamate chelates have a much different structure than those of iron (Van der 

Helm and Winkelmann, 1994), so this alternative role for TvSidD, like the others, is 

highly speculative. 

In summary, this study suggests that RIA is the primary mechanism of iron uptake 

as siderophore mutants were not inhibited in the absence of an added chelator. Although 
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T. virens has two genes putatively encoding extracellular siderophore-producing NRPSs, 

only the TvNPS6 gene has a detectable product, which is a coprogen-type siderophore. 

 

5.2 Future directions  

 

In the immediate future, it will be informative to treat the mutants with larger 

quantities of hydrogen peroxide to see greater effects. Also, as the mutants are entirely 

dependent on RIA, perhaps increasing doses of the 2DP chelator, which may 

preferentially bind copper over iron, could reduce RIA by limiting copper. The logic 

would be that the wild-type would shift to getting more iron via siderophores, an option 

unavailable to siderophore mutants. This would require a media depleted in both iron 

and copper. In addition, adding the superoxide generator KO2 to the media could 

possibly produce strong effects since superoxide can reduce ferric iron to ferrous iron 

and also generate hydrogen peroxide. In other words, KO2 could supply both reactants of 

the Fenton Reaction (Howard, 1999; Madigan and Martinko, 2006) 

Our lab has disrupted the “master siderophore gene”, TvSIDA, which encodes the L-

ornithine N
5
-monoxygenase, the initial step of siderophore synthesis (Figure 2). Other 

studies examining these type mutants have seen large effects (Schrettl et al., 2007; Hof 

et al., 2009). Blocking the initial step leaves the fungus entirely dependent on RIA and 

the speculation above about copper (both dearth and excess) could be tested (in this 

condition, aluminum would almost certainly be toxic). 
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Conversely, the RIA system could be examined, annotated and mutated to see 

whether siderophores can offset the loss of RIA. The best target for mutation would be 

the genes encoding the Ftr1-Fet3 complex since it is specific for iron, whereas the 

metalloreductase homologous to S. cerevisiae’s Fre1 may also have copper(II) as a 

substrate (see Introduction, p.4). In this altered state, it would be interesting to see 

whether TvSIDD makes a product if the coprogen siderophores cannot compensate 

sufficiently. Also, since iron is acquired by either taking in the entire Fe-siderophore 

complex through the Arn transporters or removing the iron from the siderophore by 

reducing it at the membrane (RIA), disrupting RIA may help determine which 

transporters are present. In these RIA mutants, ferrated (loaded) siderophores from other 

families (ferrichromes, fusarinines, catecholates) could also be added to see whether they 

can be utilized. Uptake of coprogen and possibly fusarinine would be predicted for T. 

virens. 
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