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ABSTRACT

A Distributed Pool Architecture for Genetic Algorithms. dBember 2009)
Gautam Samarendra N Roy, B. Tech., Indian Institute of TedgyGuwahati

Co—Chairs of Advisory Committee: Dr. Jennifer Welch
Dr. Nancy Amato

The genetic algorithm paradigm is a well-known heuristicsolving many problems
in science and engineering in which candidate solution&ndividuals”, are manipulated
in ways analogous to biological evolution, to produce neWwtsms until one with the
desired quality is found. As problem sizes increase, a ahtuestion is how to exploit
advances in distributed and parallel computing to speedh@@xecution of genetic algo-
rithms. This thesis proposes a new distributed architedtor genetic algorithms, based
on distributed storage of the individuals in a persistem pBrocessors extract individuals
from the pool in order to perform the computations and theeiitithe resulting individuals
back into the pool. Unlike previously proposed approacttesnew approach is tailored
for distributed systems in which processors are looselylsal) failure-prone and can run
at different speeds. Proof-of-concept simulation resaféspresented for four benchmark
functions and for a real-world Product Lifecycle Designlgem. We have experimented
with both the crash failure model and the Byzantine failureledloThe results indicate that
the approach can deliver improved performance due to tidison and tolerates a large

fraction of processor failures subject to both models.
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CHAPTER |

INTRODUCTION*

Genetic algorithms (GAs) are powerful search techniquesdéving optimization
problems [1, 2]. They are inspired by the theory of biolog@ablution and belong to the
class of algorithms known as evolutionary algorithms. Ehalgjorithms provide approx-
imate solutions, and are typically applied when classigainoization methods cannot be
used or are too computationally expensive.

In genetic algorithms a population of abstract represemtsitof candidate solutions
(“individuals” or “chromosomes”) evolves towards bettetgions over multiple “genera-
tions”. The algorithm begins with a population of (typigatatndom) individuals. At each
iteration, the individuals are evaluated using a fitnesstfan to select a subset. The cho-
sen individuals are given the opportunity to “reproduceeéte new individuals) through
two stochastic operators, mutation and crossover, in sughyathat the better solutions
have greater chance to reproduce than the inferior sokiti@rossover cuts individuals
into pieces and reassembles them, while mutation makesmantdanges to an individual.
A genetic algorithm normally terminates when a certain nends iterations has been per-
formed, or a target level of the fitness function is reachedtdgast one individual. The
candidate solution encoding and fitness function are deperah the specific problem to

be solved.

This thesis follows the style dEEE Transactions on Evolutionary Computation.

* (©2009 IEEE. Reprinted, with permission, from IEEE Congress woliEionary
Computation, CEC '09, “A Distributed Pool Architecture for &&ic Algorithms”, Roy,
G.; Hyunyoung Lee; Welch, J.L.; Yuan Zhao; Pandey, V.; TtamrsD
For more information go to http://thesis.tamu.edu/fotEBBE%20permission%20note.pdf/view.



As problem sizes increase, a natural question is how to #gxga@ances in distributed
and parallel computing to speed up the execution of gentgarithms. This thesis pro-
poses a new distributed architecture for genetic algosthoased on distributed storage
of candidate solutions (“individuals”) in a persistent paralled Pool GA. After initializ-
ing the pool with randomly generated individuals, processxtract individuals from the
pool in order to perform the genetic algorithm computatiand then insert the resulting
individuals into the pool.

Unlike previously proposed approaches, the new approaeliaesed for loosely cou-
pled, heterogeneous, distributed systems and works wefl Bvthe presence of failures
of components. Since individuals can be stored separataty GA processors, the failure
of a processor does not cause good individuals to be losto, Afe individuals can be
replicated for additional fault tolerance.

We have simulated the Pool GA approach on a variety of agmits using simple
selection, crossover and mutation operators, in order taimlsome proof-of-concept re-
sults. Four of the application problems are continuoustfans drawn from the literature
[3] and are considered good benchmark problems for testifags G he results show that
there is a clear advantage using concurrent processing@irilte same level of fitness is
achieved faster with more processors.

We also apply our approach to a real-world Product Lifecydsign problem. Prod-
uct Lifecycle Design involves planning ahead to reuse oramufacture certain compo-
nents to recover some of their economic value. A recentleld@ed decision model [4]
indicates that component reuse and remanufacture cantaimeolsly decrease cost and in-
crease customer satisfaction; however, computationaéssbave prevented the scaling of
the analysis to larger, more realistically sized probleNsy computational methods, such
as distributed approaches, therefore need to be consitlemedan quickly and reliably

determine the optimal solution, thus allowing exploratidmore of the design space.



Having the capability to quickly and efficiently solve theiopzation problems allows
re-running the code under varying input conditions. Itwaidor evaluating scenarios be-
fore they occur and formulating strategies for differergiga conditions. As new insights
are gained, products can be redesigned and enhanced quitikkipinimal deviations from
optimality under changing conditions. We have applied aolfSA to a simple version of
this problem. The results look promising and we expect thaemealistic versions of the
problem will benefit even more from our distributed approach

We have simulated two types of processor failures in testurg?ool GA. In the crash
failure model, the failing processors simply stop at anteaby instant. In the Byzantine
failure model, introduced by Lamport et al. [5], the faultyppessors can exhibit arbitrary
deviation from their expected behavior. This failure modelhus more malignant than
the crash failure model. The Byzantine processors can, famee, independently write
back poor fitness individuals into the pool, or several Byirenprocessors could try to
cooperate and try to delay the progress of the GA. In genleeaByzantine failure model
captures the faulty behavior that is the worst for the atpari

There are thus many ways in which Byzantine processors maiyrgesed. We sim-
ulate Byzantine behavior by what we call Anti-Elitism in whithe Byzantine processors
continue to run the GA algorithm as before; however, theyeavack a new individual to
the pool only if it is worse than the existing individual iretpool. We call it Anti-Elitism,
because this behavior is the exact opposite of the GA cormdfegitism, wherein new in-
dividuals are considered for further reproduction onhhiéy are better than the individual
from the previous generation. The simulation results iatdi¢hat the algorithm is tolerant
to a high percentage of processor failures of both crash amdriyne type.

A preliminary version of the results in this thesis appeand).



CHAPTER I

RELATED WORK*

Whitley [2] provides a good starting resource for the studgefetic algorithms. He
also summarizes some theoretical foundations for genkgarithms based on the argu-
ments of Hyperplane Sampling and the Schema Theorem anslgpvee insight as to why
genetic algorithms work. Many theoretical advances hase béen made in recent times
to further the understanding of genetic algorithms as ematad by Rowe in [7].

Advances in computing technology have increased intenestploring the possibil-
ity of parallelizing genetic algorithms. Prior proposats tlistributed or parallel genetic
algorithms can be classified into three broad models, thedvi&ave model, the (coarse
grained) Island model, and the (fine grained) Cellular moziel [

In the Master-Slave model, a master processor stores theégtimm and the slave pro-
cessors evaluate the fitness. The evaluation of fithessafiglezed by assigning a fraction
of the individuals to each of the processors available. Tierghm runs synchronously in
that the master process waits to receive the fitness valudkiondlividuals before proceed-
ing to the next generation. Communication costs are incueehever the slaves receive
individuals to evaluate and when they return back the fitmakges. Apart from evaluating
the fitness, another part of the GA that can be parallelizétispplication of mutation and
crossover operators; however these operators are useajlysimple and the communica-
tion cost of sending and receiving individuals will nornyadiffset the performance gain by

* (©2009 IEEE. Reprinted, with permission, from IEEE Congress woliEionary
Computation, CEC '09, “A Distributed Pool Architecture for i&ic Algorithms”, Roy,

G.; Hyunyoung Lee; Welch, J.L.; Yuan Zhao; Pandey, V.; TtaursD
For more information go to http://thesis.tamu.edu/fotBBEE%20permission%20note.pdf/view.



parallelization. In summary, the Master-Slave model hasathges when evaluating the
fitness of the individuals is time-consuming. If a slaved#ilthe Master-Slave model, then
the master may become blocked. In our Pool GA approach, ¢oeitdm is not stalled due
to the failure of a participating processor.

In the Island model, the overall population is divided intdgopulations of equal
size, the subpopulations are distributed to different @ssors, and separate copies of a
sequential genetic algorithm are run on each processag isiown subpopulation. Every
few generations the best individuals from each processayrate” to some other proces-
sors [8]. The migration process is critical to the perfors®aof the Island model. Of great
interest is to understand the role of migration on the perforce of this parallel GA, such
as the effect of frequency of migration, the number of indlidls exchanged each time, the
effect of communication topology, etc. CarPaz [8] discusses some of the past work on
this subject and also states that most of these problemslawader investigation. Another
open question is to find the optimal number of subpopulatiorget the best performance
in terms of quality of solutions and speed of convergence. iliteraction between proces-
sors is mostly asynchronous; the processors do not waitthar gprocessors to take any
steps. The failure of a processor in the Island model caredéedoss of good individuals.
In our Pool GA approach, all individuals computed are awdddo the other processors
even after the generating processor fails.

In the Cellular GA model, also known as fine-grained GA or mesdgiparallel GA,
there is one overall population, and the individuals araraged in a grid, ideally one
per processor. Communication is restricted to adjacenvishails and takes place syn-
chronously.

Recently, there has been interest in developing parallel f8Amulti-objective op-
timization problems. Deb et al. [9] provide a parallel GA@ighm designed to find the

Pareto-Optimal solution set in multi-objective problend$eir algorithm is based on the



Island model.

The idea of keeping the candidate solutions for the genggarithm in a “pool” was
inspired by the Linda programming model [10, 11], and has bé&en used by others (e.qg.,
[12, 13]). Sutcliffe and Pinakis [12] embedded the Lindagreanming paradigm into the
programming language Prolog and mentioned, as one apphaaft the resulting system,
a genetic algorithm in which candidate solutions are st@®duples in the Linda pool
and multiple clients access the candidate solutions inllpardn contrast to our thesis,
no results are given in [12] regarding the behavior of thealglr GA. Davis et al. [13]
describe a parallel implementation of a genetic algoritbnfihding analog VLSI circuits.
The algorithm was implemented on 20 SPARC workstations ngnaicommercial Linda
package. Two versions of the algorithm are presented: thsedire follows the Master-
Slave model and the second one is a coarse-grained Islandl nmmo@vhich each of the
four islands runs the Master-Slave algorithm. In contraat, algorithm is fine grained,
and we evaluate the behavior of the algorithm through sitiwavith varying numbers of
processors.

In [14], a distributed GA is proposed that uses the Island ehadd a peer-to-peer
service to exchange individuals in a message-passingigarath contrast we use a more
fine-grained approach than the Island model and use a shiajextt paradigm for exchang-
ing individuals between processors, and we provide moenskte simulation results.

The candidate solutions in our approach are examples ofldistd shared objects
(e.g., [15]). They can be implemented using replicatiog.(g16]). Previous work has
suggested such approaches for other aspects of the Prathaytdle Design problem [17].

Hidalgo et al. [18] studied the fault tolerance of the Islanddel in a specific imple-
mentation with 8 processors subject to crash failures.rresults suggest that, at least for
multi-modal functions, there is enough redundancy amoag#hmious processors for there

to be implicit fault tolerance in the Island model. One ofitlenclusions is that it is better



to exchange individuals more frequently than to have a latgeber of islands. Lombrana
et al. [19] came to similar conclusions about the inhereultflerance of parallel GAs
based on simulations of a Master-Slave method. Our resuitbe considered an extension
to the case of fine-grained parallelism, in which individuate exchanged all the time and
each processor is an island. Furthermore, in our approexdte mdividuals are stored sep-
arately from GA processing elements, they can be replidateadditional fault tolerance
so that the failure of a processing element does not causkigdividuals to be lost.

Merelo et al. [20] proposed a framework using Ruby on Rails fpa@kspare CPU
cycles in an application-level network (e.g., SETI@Hom&hg a web browser interface.
Experiments were done with a genetic algorithm applicaitiowhich the server was the
master and volunteer “slave” nodes could request indivgizceevaluate.

The work reported in this thesis was originally motivateddtempts to find compu-
tationally efficient solutions to large instances of thed®ict Lifecycle Design problem.
Modeling of the entire lifecycle of a product is widely adabed for environmentally be-
nign design and manufacturing. Product Lifecycle Desigmsab reduce the environmental
impact over the entire lifecycle. For example, Kimura [2ddposed a framework for com-
puter support of total lifecycle design to help designemdqueming rational and effective
engineering design. Pandey and Thurston [22] applied threddoninated Sorting Genetic
Algorithm (NSGA-II) to identify non-dominated solutionsrifcomponent reuse in one life-
cycle. A service selling (leasing) approach can also beseanved where the manufacturer
retains the ownership of the product and upgrades the prexhen considered necessary
or if desired by the customer. Mangun and Thurston [4] dgedosuch a decision model
indicating that a leasing program allows manufacturersotatrol the take-back time, so
components can be used for multiple lifecycles more cdst@vely. Sakai et al. [23]
proposed a method and a simulation system for Product Lafedesign based on product

life control.



CHAPTER IlI

THE POOL GA ARCHITECTURE*

In the proposed Pool GA Architecture, there are multiplecpesors, each running a
copy of the GA. Unlike the Island model, each processor isonfined to a set of individ-
uals: there is a common pool of individuals from which eaabcpssor picks individuals
for computing the next generation. The pool size is largantthe population of the in-
dividual GA working on each processor. Thus, our Pool GA nhade be viewed as an
Island model with migration frequency of one per generatiod the number of individuals
allowed to migrate is equal to the population size of the GA.

We now describe the working of the Pool GA Architecture iradlet

There arey > 1 participating processors. Each participating processus a sequen-
tial GA with a population of size;.. There is a common pod?P of individuals of size
n > wu. Each individual in the pool is stored in a shared data strectwhich can be ac-
cessed concurrently by multiple processors. There is alitefature on specifying and
implementing shared data structures (e.g., [24]). For tineeat study, we have chosen to
store each individual as a multi-reader single-writerstgi In more detailP is partitioned
into P, ..., P,. Each partitiorP,(1 < k < p) is a collection of single-writer (written by
processotk), multi-reader (read by any of theprocessors) shared variables where each
shared variable holds an individual of the GA. Initially timnelividuals in? are randomly
generated.

* (©2009 IEEE. Reprinted, with permission, from IEEE Congress woliEionary
Computation, CEC '09, “A Distributed Pool Architecture for i&ic Algorithms”, Roy,

G.; Hyunyoung Lee; Welch, J.L.; Yuan Zhao; Pandey, V.; TtaursD
For more information go to http://thesis.tamu.edu/fotBBEE%20permission%20note.pdf/view.



There are two basic operations performedoy any participating processoReadIn
and WriteOut. The ReadIn operation performed o® by processof picks u individu-
als uniformly at random fronP and copies them inté’s local data structuré’,. The
WriteOut operation performed o® by processok writes back the individuals i to
the portion ofP that is allotted tak. Here, in order to ensure convergence of the GA, an
element of elitism is applied, i.e. the individuah P, replaces an individual in P, only
if 7 is fitter thanj. (Other schemes are possible; this one was chosen for ¢eness.)

Between theReadIn and WriteOut operations, each processbmperforms a local
procedure Generate to generate a new generation of individuals from the indigid in
Py.. The Generate procedure consists ofelection, Crossover and Mutation operations.
The choice of these operators is up to the implementer aneddbas the problem. The
operators in our simulation are described in the next clhapte

One of the design goals of the Pool GA Architecture was to lenptmcessors with
different speeds to participate together in the GA and iwg@tolerance to failures of some
of the participating processors. The Pool GA achieves bwtbkd goals by decoupling the
operation of processors from each other: i.e., the procggseract with only the pool and
are unaware of each other’s existence. Processors do natityggynchronize with each
other and can be working on different generations at the samnee

An important part of any GA is the method of termination. Téare various termina-
tion criteria that may be used in conjunction with our Pool.&Ar the scenario where the
desired fitness level is known, once any processor discavensdividual with that fitness
it can terminate. It can also inform the other processorsredgerminating, so that they can
also terminate. The above method takes advantage of diffesein processor speeds. In
the case where the desired fitness level is unknown a coupleadégies can be used. One
is to let the GA run for a sufficient predecided number of gahens and then terminate.

Another is to let a processor terminate once it sees verylshahge in the best fitness
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value generated for few continuous generations.

The Pool GA Architecture could support a dynamically chagget of participating
processors, as it provides persistent storage for indasdundependent of the processors
that created them. A possible advantage of such a looseyl@dasynchronous model is
that large problems can be solved in a distributed fashisersuworldwide can volunteer
the free time on their computers for processing the probl&he Berkeley Open Infras-
tructure for Network Computing [25] gives a list of many suabjpcts using distributed
computing over the Internet.

It is important to note that the Pool GA Architecture is tethas an “architecture” and
not an algorithm because it is not tied to specific selectiomgsover or mutation operators.
It gives a paradigm for maintaining a large set of potentéitsons and defines a procedure
by which multiple processors can cooperatively solve thep&gblem by accessing a pool
of individuals.

We believe the Pool GA Architecture can provide more fauérance than the exist-
ing models. In the Island model if a processor fails, theviatlials it holds are lost with
it. In the unfortunate case where the fittest individual wasated at that failed proces-
sor, that individual could be lost and convergence woulddiayed. If a slave fails in the
Master-Slave model, then the master may become blockeaawver, the master is a single
point of failure for the entire algorithm. In the Pool Arobiture, failures of the processors
cannot lead to loss of individuals, since individuals acees separately from processors,
and they do not cause the algorithm to block since the copmxessors continue to op-
erate. In contrast in our case as the pool is decoupled, é&eprocessor which found a
good individual fails, other processors will have accesh#b individual. The pool is not
a single point of failure (like the master is) because faikrance for the individuals can
be achieved using standard distributed computing teclesiguth replication and quorum

systems (e.g., [16]).
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CHAPTER IV

IMPLEMENTATION*

We simulated our Pool GA with a C++ program written in the PO&ilti-threaded
environment. In the simulation each POSIX thread represarrocessor participating
in the Pool GA. The simulation can be easily modified to user®#e or other parallel
programming paradigms for multiprocessors when the hamlvgaavailable. The simple
GA code in C provided at the KANGAL website [26] was adaptedatoulti-threaded
version. We used the operators available in the KANGAL codetournament-based
selection operator is used for selection. For discretaegiproblems (“binary GAs”), a
single point crossover operator was used, and the mutagierator flipped each bit of the
individual with the probability of mutation. For real-vad problems (“real GAs”), the
Simulated Binary Crossover (SBX) operator and the polynomiaation operator were
used. These operators are not tied in any way to the Pool #eathre and can easily be
changed according to the problem.

The common pool of. individuals which are possible solutions to our distrilal@&A
is represented in the code by a shared global array of lemgthet v be the per-thread
population size. The threads (each representing one @marcesthe real scenario) run
their own GA algorithm on a subset of the pool. In each germ@raa thread use®eadin
to pick © random indices from the array, which act as its current patpart. The thread
performs Selection, Crossover and Mutation on these individuals and generates the next

* (©2009 IEEE. Reprinted, with permission, from IEEE Congress woliEionary
Computation, CEC '09, “A Distributed Pool Architecture for i&ic Algorithms”, Roy,

G.; Hyunyoung Lee; Welch, J.L.; Yuan Zhao; Pandey, V.; TtaursD
For more information go to http://thesis.tamu.edu/fotBBEE%20permission%20note.pdf/view.



12

generation. This new generation is written back to the pbapacific indices based on
the thread id using thavriteOut operator. ForWriteOut, the array representing the pool
is considered to be partitioned inposegments, wherg is the number of threads, each of
sizeu. Each thread can read from any element of the array, but dgn\ite to its own
partition. More specifically, after computingnew individuals¢y, cs, . . ., ¢, the WriteOut
operator on the pool is implemented by having the threadevindick each new individual
¢; into thei-th entry of the thread’s partition if the fithess gfis better than that of the
currenti-th entry. (Alternative ways of implementingeadin and WriteOut are of course
possible but we did not yet experiment with them.)

Each thread terminates after a certain number of genegatach thread maintains
the best solution it has generated thus far. The overalldmdstion is picked from among
the best solutions of all the threads.

The threads used in the simulation in general behave asymatsly i.e. each pro-
gresses independently of others based on the schedulimg lmperating system. However
in section B of chapter V we present results for synchronqesation of threads, in which
each participating thread finishes generatdobefore any thread begins generativnt 1.
This lock step behavior is achieved using barrier synclzation in pthreads.

The Pool GA was tested on the following real-valued benckmanimization func-

tions [3] whose optimal values are given in Table I:
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7
A@) = ) 107,
i=1
—10.0 < z; <10.0
fg(l’l, SL’Q) = 100(%‘2 — I%)2 + (]. — .%'1)2,

—15<z; <15
20
f3(&) = 204 (a7 — cos(2ma;)),
i=1
—5.12 < ; < 5.12
10
f@) = ) —wisin(y/]al),
i=1

—-500 < z; <500

Table I. Benchmark functions and optimal values

Function| Optimum Value
fi 0
fa 0
f3 0
fa —4189

We also tested our Pool GA on a Product Lifecycle Design gmoblhich is a com-
bination of a binary-valued and real-valued problem. Thabfem is a maximization prob-
lem. Background information on the problem and the generghemaatical expression of
the problem are given in the Appendix. Roughly speaking, thed ¢ to determine the
optimal number of lifecycles for the product (up to a maximof8), and within each

lifecycle to decide on the optimal choices (of which there 4y regarding manufacturing
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each of the 12 components of the product. Each candidaté®sois represented by a
(34 8-2-12) = 195 bit string.

We have studied the performance of the Pool GA under two faallels: crash and
Byzantine. We simulate crash failure of a processor by thengxof the thread at an
arbitrary instant during the execution of the Pool GA. Adad probability is given as a
parameter to the simulation. At the start of each generatidhread tosses a coin with the
given probability to decide whether to exit. In case it exite thread no longer participates
in the GA in any manner.

We simulate Byzantine failures using the Anti-Elitism clegistic. A failure fraction
is provided as a parameter to the simulation. For failuretioa f in a simulation withn
threads,|100f/n| threads are Byzantine from the outset. Note the differenme four
simulation of the crash failures, where the processorshcahs/aried points during the
simulation, while for the Byzantine failure simulations wenesider the faulty processors
to be Byzantine from the outset. We believe this is more in kepwith the “worst case”

notion of the Byzantine failure model.
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CHAPTER V

RESULTS*

In this chapter we presents results studying various aspéthe Pool GA using the
benchmark problems as well as the Product Lifecycle Desighlem. The results relate

to
1. The effect of pool size on performance.
2. Speed of convergence as a function of number of threads use
3. Fault-tolerance to crash and Byzantine failures.

4. Distribution of the fitness values of individuals in theopat the beginning and end

of the Pool GA.

All plots are the average of 10 runs.

A. Effect of Constant Pool Size

Our first simulation experiment compares the performanca single threaded GA to
the performance of our Pool GA with multiple threads whilepimg the pool size (i.e.,
the number of candidate solutions being manipulated) eohsfThe purpose is to check
that the overhead of the parallelism does not cause behi#abis worse than the single-
threaded case. Using the lifecycle design problem withébkbriophile customer group, we
* (©2009 IEEE. Part of the work reported in this chapter is répdnwith permission,
from IEEE Congress on Evolutionary Computation, CEC '09, “A tbimited Pool
Architecture for Genetic Algorithms”, Roy, G.; Hyunyoungd;éMelch, J.L.; Yuan Zhao;

Pandey, V.; Thurston, D
For more information go to http://thesis.tamu.edu/folEBEE%20permission%20note.pdf/view.
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compared the performance of the Pool GA for different numiloéithreads with a single
threaded GA (SGA). In all cases, we used the same algoritmampers and a fixed pool

size of 640. The per-thread population size withreads wa$40/t.

0.66

0.64 |
062 -
06 |
0.58

fitness

0.56 son
PGA 2 threads

0.54 1 PGA 4 threads -
PGA 8 threads

0.52 PGA 32 threads

0.5

0 10 20 30 40 50 60 70 80 90 100
generation number

Fig. 1. Lifecycle Design problem for technophile customesup: Speed of convergence
over 100 generations with constant pool size of 640

The results are in Fig. 1. All versions of the GA converge tanailar fitness value,
indicating that the distribution has not introduced anyesewverhead. We also observe
that the GA converges faster as the number of threads ireseas

However, keeping the pool size constant does not explointtreased available pro-
cessing power provided by a distributed GA. Thus in the résuo simulations, for each
problem we keep the population siger threadconstant, resulting in an overall pool size

that increases linearly with the number of threads.

B. Synchronous Operation

We have stated throughout the thesis that the Pool GA acthiteis better suited for asyn-

chronous, loosely coupled distributed systems. Beforesptasy the results corresponding
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to asynchronous executions we take a detour and first pressrits when the processors
participating in the Pool GA behave synchronously or in Ietép. By synchronous opera-
tion we mean that all the processors participating in the @isliigenerationV before any
processor starts generatioh+ 1. The purposes for showing these results are manifold.
Firstly it shows that the Pool GA can work very well even if dse a synchronous man-
ner. Secondly these results clearly show the advantaged&w distributed processing.
With more processors the algorithm converges faster anéirthkfitness values obtained
are better. Third, as many existing parallel genetic atbors are synchronous, this could
give us a basis in the future to compare the Pool GA with otRkestiag parallel genetic

algorithms.

2 threads
4 threads
8 threads ..............
16 threads - A
32 threads [

le+06

10000 [

100 |

fitness

0.01 ey ]

0.0001 r

0 100 200 300 400 500
generation number

Fig. 2. Benchmark functiorf;: Synchronous operation, average speed of convergence over
500 generations with population size 16 per thread

We have used the benchmark functions for these simulatiéigs. 2, 3, 4, and 5 show
the results for functiory;, f,, f3 and f, respectively. The plots show the average of the
best fithess value seen in each generation by each threadvamgieg number of threads.

In all the remaining sections of this chapter, the resultsipied are for asynchronous
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Fig. 3. Benchmark functiorf,: Synchronous operation, average speed of convergence over
500 generations with population size 16 per thread
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Fig. 4. Benchmark functioriz: Synchronous operation, average speed of convergence over
900 generations with population size 50 per thread
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Fig. 5. Benchmark functiorf,: Synchronous operation, average speed of convergence over
900 generations with population size 50 per thread

operation.

C. Performance on Benchmark Functions for Asynchronous @pera

We now provide simulation results for the Pool GA appliedie benchmark functions
studied in [3] when the participating threads behave asymaiusly. The plots show the
average of the best fitness value seen in each generationchytl@ad under varying
number of threads. Figs. 6, 7, 8, and 9 show the results.

On all four functions, the common behavior observed is thatrore threads, the
faster the convergence to a solution with better fitness. fEof, and f; which have op-
timum value zero, the Pool GA reaches quite close to the aypiralue. The function
f4 has optimal value-4189 and it is considered quite hard to reach [3]. We see in Fig. 9
that with greater number of threads a better value for aeedddhe best fithess seen by
each thread per generation is reached. For a different @eigp on the computation of
f1, in Fig. 10 we plot the best value seen among all the threadgatticular generation

instead of the average of the best value seen by all the thr@duis gives a different look
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Fig. 6. Benchmark functiorf;: Average speed of convergence over 500 generations with
population size 16 per thread
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Fig. 7. Benchmark functiorf,: Average speed of convergence over 500 generations with
population size 16 per thread
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Fig. 8. Benchmark functiorf;: Average speed of convergence over 900 generations with
population size 50 per thread
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Fig. 9. Benchmark functiorf,: Average speed of convergence over 900 generations with
population size 50 per thread
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on the progress of the GA. It appears finding a good solutiotf fas easy, but finding an

excellent one is hard.

-2800

" 2 threads
4 threads

-3000 8 threads - |
16 threads
32 threads ~--- -~

-3200 j

-3400

fitness

-3600

-3800 fii

-4000 L L L L L L L L
0 100 200 300 400 500 600 700 800 900

generation number

Fig. 10. Benchmark functiorf,: Speed of convergence over 900 generations with popula-
tion size 50 per thread

On close observation of the results of Figs. 6 and 8, we seddhthe functionsf;
and f; the 32 thread case is an out-lier to the general trend olseivas is because the
metric we use to show the progress of the GA is the averagedféht fithess value seen in
each generation by each thread. Thus each point on the goagsponding to a particular
generation number, say is the average of the best value seen by each of the patingpa
threads in generatiom. Two aspects of such a plot must be made clear. Firstly bedhas
execution is asynchronous, the time when one thread exsegateeration: may be much
earlier or later than when another thread executes geoeratiFor instance for the case
of 8 threads, thread 1 may execute generation 5 at#jitgead 2 may execute generation
5 at timet 4+ 10 while thread 3 may execute generation 5 at time 5. Thus when we
average the best values for generation 5 we are not averagings that were obtained

at the same real-times. Secondly, in spite of the abovetirealanomaly, these plots are
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still good indicators of the progress of the GA. To illusérdhis, continuing the above
example, say thread 1 executes generation 6 at time, thread 2 executes generation
6 at timet + 15 while thread 3 executes generation 6 at time 1. Thus the data we
use to find the average of generation 6 are generated atilates than the values used
for the average of generation 5. Getting back to our 32 thoeddier case, we note that
for a large number of threads like 32 in any generation, sdmeats have access to an
excellent individual while some do not, thus making the agervalue of fithess seem bad.
If we look at only the best individual found, which would besthctual result of the GA,
the 32 threads simulation actually obtains the optimumevaifizero. Moreover due to
the asynchrony some thread in the simulation may see anidiidivwith the best fitness
as early as generation 1. Tables Il and Il reflects this féuety provide the best value of
fitness seen for each number of threads and the generatidmenuvhen any thread in the

simulation first saw an individual with that fitness.

Table Il. Benchmark functiorf;: Best fitness and first generation when the best fithess was

seen
Number of Threads Best Fitness First Generation
2 0.009116 486
4 0.004045 303
8 0.004701 120
16 0.0 1
32 0.0 1

In Figs. 9 and 10 we observe that the simulation never achitdwe optimal value

of fitness, i.e., -4189. We believe that part of the difficultat our Pool GA had with
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Table Ill. Benchmark functiorfs: Best fitness and first generation when the best fithess was

seen

Number of Threads Best Fithess

First Generation

16

32

0.000041
0.000001
0.0
0.0
0.0

868

798

387
1

1

finding optimal solutions tqgf, is due to the simplistic nature of th8election, Mutation

and Crossover operators used in our simulation. We conjecture with befperators tuned

to the specific function the results will improve.

D. Performance on Product Lifecycle Design Problem for Afyonous Operation

We now provide results for our Pool GA applied to the Produtgdycle Design problem.

Figs. 11 and 12 show the results for two different targetaust groups. Plots show

the best fithess value seen by the simulation in each gemerfti varying number of

processors. As can be seen, using fewer threads it takes geaszations to converge

to the optimal fitness values of 0.83 and 0.63 respectivalygompared to using 8 or 32

threads. We anticipate this difference will be more and npwosiounced as the problem

being solved becomes larger and more complex.

Currently the Lifecycle Design problem does not appear @agrly difficult to solve.

Note that simply choosing around 3000 candidate solutibreralom and finding the one

with the best fitness appears to work quite well, without teedhto do any additional
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Fig. 11. Lifecycle Design problem for neutral customer groS8peed of convergence over
100 generations with population size 50 per thread
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Fig. 12. Lifecycle Design problem for technophile customeup: Speed of convergence
over 100 generations with population size 50 per thread
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computation.

However for our simulations we have used a simple versiorhefproblem which
focuses on one customer group and optimizes only a singectig instead of multiple
objectives. The development of this problem is still a warkprogress and we anticipate
in the future that the problem will become essentially sgdaand complex that using a

distributed genetic algorithm will pay dividends.

E. Fault-Tolerance to Crash Failures

We performed simulations to test the fault-tolerance ofPool GA. We simulated crash
failures of processors by ending each thread at the begjrofirrach of its generations
with probabilityi, whereg is the number of generations in the run. Thus, over the course
of the run, we expect at most half the threads to crash. Thelaiions of Figs. 7 and 8
were repeated under this fault model and the results arersholigs. 13 and 14. We see
that the convergence rate is not greatly affected, everngtihoon an average, half of the

participating processors crash.

10000

2 threads |
1 i 4 threads
000 8 threads
16 threads
100 32 threads ---
10
@
1
" 01 b
001 %
0001 |
0.0001 L L L L
0 100 200 300 400 500

generation number

Fig. 13. Benchmark functiorfi, with crashes: Average speed of convergence over 500 gen-
erations with population size 16/thread, failure prolighbil/1000
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Fig. 14. Benchmark functioriy with crashes: Average speed of convergence over 900 gen-
erations with population size 50/thread, failure prokigbil/1800

F. Fault-Tolerance to Byzantine Failures

Recall that we model Byzantine behavior of processors by theBitism characteristic
where a Byzantine faulty processor writes back newly geadriadividuals into the pool
only if the individual it is trying to replace from the pool etter. In our simulations,
when we sayf% of processors are Byzantine in a total @fthreads, then f « N/100 |
processors are Byzantine. For instance when we say, for dagioruwith 2 threads30%

of the processors are Byzanting0 = 2/100] = 1 processor is Byzantine. The results
plotted are from data generated by only the correct procggsthe simulation; the output
of the Byzantine faulty processors are ignored.

Ouir first set of plots show how the Pool GA performs as the peacge of Byzantine
processors in the system increases. We provide the resiidts 38%, 60% and80% of
the processors are Byzantine. Figs. 15, 16 and 17 show thisrésufunction f;, while
Figs. 18, 19 and 20 show the results for functijn We observe the fault-tolerance of

the Pool GA even when faced with this malignant kind of fagluhe final fithess values
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Fig. 15. Benchmark function; with 33% Byzantine faults: Average speed of convergence
over 500 generations with population size 16/thread
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Fig. 16. Benchmark functiori; with 60% Byzantine faults: Average speed of convergence
over 500 generations with population size 16/thread
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Fig. 17. Benchmark functiori; with 80% Byzantine faults: Average speed of convergence
over 500 generations with population size 16/thread

achieved in the 33% and 60% cases are not very different fnasetachieved in the non-
faulty cases. The performance is worse for the 80% casehg& A still makes significant
progress in the right direction. We observe a similar tremdbth f; and f;: the larger the
number of correct threads, the better the convergence.nili®s a strong case for using
increased levels of distribution in solving GA problems.

The percentage of faulty processors has a pronounced effelse convergence of the
fithess values. This can be seen in Figs. 21 and 22 which centipamperformance for 8

threads with varying Byzantine failure percentages for fimms f; and f; respectively.

G. Distribution of Fitness of Individuals in the Pool

In previous sections we have mostly looked at the averagbeobést values seen by the
processors involved in the Pool GA in each generation. We Isaen that the Pool GA
has good fault-tolerance. For crash failures, the average \mlues (Figs. 13 and 14)
obtained are almost as good as the values obtained for tihesponding cases with no

failure (Figs. 7 and 8). For the Byzantine failure case, wh&¥ ®f the processors in the
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Fig. 18. Benchmark functiori; with 33% Byzantine faults: Average speed of convergence
over 900 generations with population size 50/thread
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Fig. 19. Benchmark functioti; with 60% Byzantine faults: Average speed of convergence
over 900 generations with population size 50/thread
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Fig. 20. Benchmark functiori; with 80% Byzantine faults: Average speed of convergence
over 900 generations with population size 50/thread
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Fig. 21. Benchmark functiori; with 8 threads and varying percentage of Byzantine faults:
Speed of convergence over 500 generations with populatzerié/thread
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Fig. 22. Benchmark functiori; with 8 threads and varying percentage of Byzantine faults:
Average speed of convergence over 900 generations witHgtapusize 50/thread

system are Byzantine (Figs. 15 and 18) the average of the Akssvis still comparable
to the no-failure case (Figs. 6 and 8). For the the 60% Byzaincessors case (Figs. 16
and 19) the results are still good but the average fithesesalorsen about 10 times. For
the 80% Byzantine processors case, the results deteridfigie (7 and 20) and there is
an order-of-magnitude difference in the average of the\mges as compared to previous
plots.

Looking at the average of the best values seen by all thedhiiea good indicator of
the performance of the GA; however, there are some intageatipects that are missed out.
Firstly, the result of the GA is the absolute best value seehthat value could be much
less than the average of the best values seen by each threemhd$, it is interesting to
see what the fitness values of the various individuals in ted @re: are all individuals in
the pool mere replicas of the best individual, are most iiddials in the pool similar to the
best individual or are most individuals of poor fithess? Haeslthis vary with crash and
Byzantine failures? To answer these questions we look atigiebdition of the fitness of

the individuals in the pool.
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Fig. 23. Distribution of fithess of individuals in initial pbfor function f; with 8 threads

2500

2000 r

1500

Frequency

1000 r

500 |

/91
9-91
G-91
v-o1
9
o1 |
S}
0971
o1
[AS)
€971

Interval

Fig. 24. Distribution of fitness of individuals in final poadrf function f; with 8 threads
under no failures
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Fig. 25. Distribution of fitness of individuals in final poadrf function f; with 8 threads
under crash failures (1/1800 probability of crash in eaaegation)
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Fig. 26. Distribution of fitness of individuals in final poadrf function f; with 8 threads
under 33% Byzantine failures
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In this section we look at the distribution of the fitness ad thdividuals in the pool.
We use the functiorf; and run the Pool GA with 8 threads. Simulation parameters are
kept the same as those for previous simulationg;pf.e., a population of 50/thread, total
900 generations, same probability of mutation, selecttoossover. For the crash failure
simulation we use the same probability of failur¢] 800, as before. The initial pool is kept
the same for each of the simulations and the distributiomefiitial pool is provided in
Fig. 23. We look at the distribution of the pool at the end &f $hmulation of the no-failure
case (Fig. 24), crash failure case (Fig. 25) and Byzantimerés with 33%, 60% and 80%
of the processors being Byzantine (Figs. 26, 27 and 28). Batle distributions is plotted
with a logarithmic x-axis starting from0~" and ending withi03. The bar corresponding
to 10~7 gives the number of individuals whose fitngskes in 1078 < f < 10~7. The bar
corresponding ta0—¢ gives the number of individuals whose fitngskes in10-7 < f <
10~% and so on. We did not see any individuals with fitness less that for the above
simulations so the range of our axes is appropriate. Eadhcplttains data ot0 runs.
Thus the sum of the y-values of the bars is the sum of the ppe$ ©if all the runs. In our
case the population is 50/thread and hence the pool sizendorum is50 « 8 = 400. For
the 10 runs we observe a total @b00 individuals and that is the number of individuals in
each distribution.

Fig. 23 shows that initial fithess values of the individual$he pool is quite poor. For
the simulation with no failures (Fig. 24) we observe thatha ftinal pool most individuals
have close to optimum fitness; the quality of the individualhe pool is thus overall very
good. For the crash failure simulation (Fig. 25), we see atgrespread in the distribution;
however, a majority segment of the pool still has very goatess values. For the Byzan-
tine failure simulations (Figs. 26, 27 and 28) we observétti@pool appears to have two
partitions. One patrtition has individuals of good (low) &8s values while the other par-

tition has bad (high) fitness values. As the percentage of Bymafailures increases, the
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number of individuals in the bad fitness partition keepseaasing. This general trend is to
be expected because with our Anti-Elitism approximatio®pfantine behavior, the cor-
rect processors try to reduce the fitness value of indivgluethe pool while the Byzantine
processors try to increase the fitness value of the indilédodhe pool. It is an interesting
open problem, however, to study why our Anti-Elitism appneation of Byzantine failure

leads to the bimodal distribution observed.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK
In this thesis we proposed a new architecture for distribggenetic algorithms in which
the participating processors interact in an asynchrorioosgly coupled manner through
shared objects. This architecture is tailored to take adggnof the state of the art in
distributed computing by allowing processors with diff@rspeeds to cooperatively solve
a problem. The architecture also provides fault-tolerangqaocessor failures by allowing
the data to be decoupled from the processors. Fault-taleliama crucial property in today’s
world where the availability of large numbers of processacseases the chance that some
of the processors will fail.

In the future, we would like to explore the pool model furtherstudy optimum pa-
rameters for convergence such as the relation betweenashoi@ool size, processor pop-
ulation size, and the effect of the strategy for writing b&zkhe pool. Currently the pool
of individuals is a passive store of data; we would like tolerpthe possibility of making
the pool more intelligent; for instance, can the pool autibcadly replicate individuals of
greater fitness? We would also like to provide an implemantatf the Pool GA on a
parallel programming framework like OpenMP or MPI and teghwhe full version of the
Lifecycle Design problem. In terms of parallel implemeitdas it will be interesting to see
whether the pool architecture fits in well with Google’s Meghuce paradigm [27], which
would make the parallel programming easier. From a digithgshared memory perspec-
tive, we would like to define the semantics of the pool as aliizable shared memory data
structure [24]. Finally we would also like to explore difégit ways of modelling Byzantine

failure of processors for our Pool GA.
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APPENDIX A

PRODUCT LIFECYCLE DESIGN APPLICATION

We consider design of a product portfolio to cover differeastomer market seg-
ments, over multiple lifecycles. Four market segments afméd: technophile, utilitarian,
greens and neutral in terms of their relative preferencegpéformance, cost, and envi-
ronmental impact. Manufacturers need to make optimal dedégisions to maximize the
total product portfolio utility, which is a function of cq@nvironmental impact and perfor-
mance. In each market segment, customers have their oner@neks and willingness to
make tradeoffs, which together define their utility funoso

The decision variables are the discrete design decisiansdoh component of the
product in each lifecycle. The resulting optimization desb is large; for example, for five
lifecycles of a single product comprising 12 componentspab0® solutions are possible
if each component can be reused, remanufactured, recyclegplaced. Exhaustive enu-
meration of all solutions is not feasible. Consideration aifitiple products per lifecycle

(product portfolio) will undoubtedly increase the probleomplexity even further.
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Cpmin < Cp < Cpmax
Ep,min S Ep S Ep,max
Rp,min S Rp S Rp,max
Tp i1y Tpi2s Tpi3s Tpia € 10,1}

Tprin T Tpri2 + Tpris + Tpria =1

Notes:
e p =index of specific product in the product portfolio
e K, = normalizing constant for produpt
e ¢ ranges over attributeS (cost), £ (environmental impact), ang& (reliability)
e k,, = scaling constant corresponding to attribut®r productp
e U, , = utility of attributea for productp
e (), = total cost of producp; betweenC), i, andC), nax
e E, = total environmental impact of produgt betweenk, i, and £, ;ax

e R, = the minimum reliability in all lifecycles of produgt; betweenR, ., and

Rp max
e L, = number of lifecycles of produgt
e (,; = cost associated with produgin lifecycle [
e (),; = profit margin of producp in lifecycle!

e s = number of components in the product (all products in padfblve same num-

ber of components)



46

xp,1.i. = binary design decision for componendf productp during lifecyclel; z
ranges from 1 to 4 with 1 indicating reuse, 2 remanufactyrggecycling, and 4

new; for a fixedp, [, andi, exactly one of the four variables should be true

Cp.1in = cost of operatiom for component of productp in lifecycle I; n ranges
from 1 to 8 with 1 indicating new material acquisition, 2 méuauring/forming, 3

assembly, 4 take-back, 5 disassembly, 6 remanufacturiregy€ling, and 8 disposal
E,; = environmental impact associated with produat lifecycle!

E,..:» = environmental impact of operationfor component of productp in life-

cyclel

R, = reliability of productp in lifecycle [; based on component reliabilities and

failure model assumed

R, = reliability of component of productp in lifecycle!
f = function modeling failure mode for the product

©, = characteristic life of componeit

b; = slope of Weibull reliability curve for component
tp..; = age of componentin productp at end of lifecycled

g = function modeling how the design decisions {; .,z = 1, ..., 4) impact com-

ponenti’s end of lifecycle age

a,; = productp’s usage time in lifecyclé
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