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ABSTRACT

Application of a Constrained Optimization Technique to the Imaging of

Heterogeneous Objects Using Diffusion Theory. (December 2009)

Matthew Ryan Sternat, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Jean C. Ragusa

The problem of inferring or reconstructing the material properties (cross sec-

tions) of a domain through noninvasive techniques, methods using only input and

output at the domain boundary, is attempted using the governing laws of neutron

diffusion theory as an optimization constraint. A standard Lagrangian was formed

consisting of the objective function and the constraints to satisfy, which was min-

imized through optimization using a line search method. The chosen line search

method was Newton’s method with the Armijo algorithm applied for step length con-

trol. A Gaussian elimination procedure was applied to form the Schur complement

of the system, which resulted in greater computational efficiency.

In the one energy group and multi-group models, the limits of parameter recon-

struction with respect to maximum reconstruction depth, resolution, and number of

experiments were established. The maximum reconstruction depth for one-group ab-

sorption cross section or multi-group removal cross section were only approximately

6-7 characteristic lengths deep. After this reconstruction depth limit, features in the

center of a domain begin to diminish independent of the number of experiments.

When a small domain was considered and size held constant, the maximum recon-

struction resolution for one group absorption or multi-group removal cross section is

approximately one fourth of a characteristic length. When finer resolution then this

is considered, there is simply not enough information to recover that many region’s

cross sections independent of number of experiments or flux to cross-section mesh
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refinement.

When reconstructing fission cross sections, the one group case is identical to ab-

sorption so only the multi-group is considered, then the problem at hand becomes

more ill-posed. A corresponding change in fission cross section from a change in

boundary flux is much greater then change in removal cross section pushing conver-

gence criteria to its limits. Due to a more ill-posed problem, the maximum recon-

struction depth for multi-group fission cross sections is 5 characteristic lengths, which

is significantly shorter than the removal limit.

To better simulate actual detector readings, random signal noise and biased noise

were added to the synthetic measured solutions produced by the forward models.

The magnitude of this noise and biased noise is modified and a dependency of the

maximum magnitude of this noise versus the size of a domain was established. As

expected, the results showed that as a domain becomes larger its reconstruction ability

is lowered which worsens upon the addition of noise and biased noise.
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CHAPTER I

INTRODUCTION

A. Objective

In the field of nuclear and global security, smuggling of special nuclear materials by

transportation in containers on boats poses strong threat. To prevent this possible

smuggling pathway, a detection system must be implemented that will have the abil-

ity to detect high enriched uranium (HEU) where current detection systems cannot.

Due to self-shielding and long half-lives, uranium can be hard to detect through con-

ventional methods, especially in large scale systems such as cargo containers. There

are approximately 30,000 ships docking at the United States per year currently and

efficient detection methods must be implemented. As of the 9/11 Commission Act of

2007, foreign seaports must scan 100 percent of the cargo entering the United States

by 2012.1

A possible method of detection would be an active neutron imaging technique

which would involve incident beams of neutrons upon the cargo container and neutron

detectors surrounding the container. Using these detector readings and a constrained

optimization technique, reconstructions of the material properties inside a container

could be performed to determine the contents. We propose to address this parameter

identification by posing it as an optimal control problem where a cost function is to

be minimized. This cost function is defined as the difference between the boundary

detector measurements and the boundary neutron fluxes computed from the inferred

material properties inside the cargo. While many sets of material parameters may

The journal model is Nuclear Science and Engineering.
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have the ability to reconstruct the outer detector readings, constraints upon these

must be applied to limit the number of solutions. The valid constraint used in this

work will involve the governing conservation law of neutron physics in the container,

thereby limiting the solution of material parameters to a realistic or physical case.

This is an optimal control problem because the difference between the computed

iterative solution at the boundary and the neutron detector readings must be mini-

mized while satisfying the neutron transport equation or an approximation of it. The

equations derived from the optimization process are nonlinear, naturally requiring a

descent method to solve them. This problem is ill-posed because small changes in

the material properties can often lead to large changes in the neutron fluxes at the

boundaries. Application of iterative methods cannot guarantee convergence for any

realistic initial guess due to the ill-posedness of this nonlinear problem.

B. Imaging

Active neutral particle imaging techniques involve illuminating a domain with beams

of particles of known intensity and taking measurements around the domain of the

boundary outflow in an orientation shown in Figure I-1. Active neutral particle

imagining is performed to reconstruct information of the inside of the domain. The

location, energy, and angle of incidence of the incoming particles can be varied and

more information can be gathered. With multiple experiments of incoming beams

around the domain, the material properties reconstruction satisfying all experiments

at once can yield improved reconstruction.
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Fig. I-1. Example of incoming and outgoing particle currents

An example of this is optical tomography,2 where a nonlinear system contain-

ing nonlinear combinations of the parameters intended to be reconstructed and the

state variables is formed by the equations that define how light is transmitted and

scattered through an object and often have no analytical solution.3 By observing the

light exiting the tissues, a reconstruction of the absorption and scattering coefficients

inside the sample is performed.3 These problems are solved iteratively using forward

models to solve for the outgoing currents based on an initial guess on the interaction

coefficients directly, and nonlinear optimization techniques to update the interaction

coefficients4.5 This algorithm process is repeated until the iterative solution converges

with the observed light exiting the tissues. This is very similar to the problem of spe-

cial nuclear material (SNM) smuggling, but instead of biological matter, containers

that can be up to many optical thicknesses deep are to be imaged using neutrons.

Another example of neutral particle imaging is in large ports for object detection.

There are systems that use photons that operate in the 6-9 MeV range to image large
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cargo containers. Most of currently implemented cargo imaging uses either x-rays or

gamma rays. The x-ray systems are commonly used to ensure containers are empty

without opening them or to determine contents of smaller containers where gamma

rays are not needed. These types of systems are capable of producing images of large

containers and trucks with spatial resolution of 9mm for the gamma systems and

2mm for x-ray systems.6 While these types of systems can produce an image of the

internal contents of a container, they cannot by themselves determine if fissile mate-

rial is present. This is where a multigroup neutron imaging system would have the

greatest impact. If a system were able to reconstruct fission cross sections to deter-

mine whether fissile material were present accurately, greater detection probability of

smuggled HEU could be achieved.

Neutron imaging varies from gamma or x-ray imaging in the way they interact

with matter quite differently then x-rays do, having a high interaction probability with

hydrogen and much lower attenuation in heavier elements such as lead. While x-ray

interaction probability is directly proportional to the atomic number of the material,

neutron interaction is isotope-dependent causing both radiography mechanisms to

excel in different media types.7 Common examples of neutron radiography include

nuclear fuel surveys, multi-phase flow imaging, and explosive device imaging. In the

case at hand, HEU could easily be shielded from x-rays causing methods involving x-

rays or radiation emitted from the material itself to be ineffective. Neutron interaction

probabilities are energy-dependent, where neutrons of typical source energy have high

scattering interaction probability in many materials, limiting the ability of larger scale

imaging.
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C. Optimization and Inverse Problem Solving

The majority of inverse problems or imaging techniques involve an optimization

process in which a function is minimized or maximized by iterating the functions

variables, often subject to constraints. The most commonly used methods to solve

problems of any type involve iterative algorithms. In the optimization process, the

optimum of a given function is obtained by solving the optimality conditions using

an optimization algorithm. There is no universal optimization algorithm but instead

a collection of algorithms in which each is valid for specific problem types.8

An example of application of inverse transport is the determination of interface

locations in a multilayer domain of unknown dimensions. In this specific example,

source gamma-rays were passed through a domain and observed at boundaries, then

the location of the interfaces is solved for using optimization methods.9 This is similar

to the problem at hand except that instead of the material properties being known

and the interface locations reconstructed, the material properties are unknown but

reconstructed and assumed piecewise constant over a mesh.

D. Thesis Overview

The next chapter provides an in depth look at optimization methods from a math-

ematical standpoint. This chapter provides a complete step by step approach to

optimization problems including specific methods.

Chapter III contains the development and implementation of the presented op-

timization methods to the inverse problem using diffusion theory.

Chapter IV presents the results of reconstructions of various domains. Many

tests were performed in order to have an understanding of the workable space with

respect to domain size, mesh size, number of experiments, and measurement location.
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CHAPTER II

OPTIMIZATION METHODS

The goal of an optimization problem is to find the combination of parameters that

optimize a given quantity subject to some restrictions or constraints.10 The parame-

ters that may be changed in the process of optimization are called control or decision

variables while the restrictions on parameters are known as constraints.10 Mathe-

matically speaking, optimization is the minimization or maximization of an objective

function defined by a problem statement and is subject to constraints on its vari-

ables. Often a vector x is formed that consists of the unknowns or parameters, f if

the objective function, a scalar function of x, that we want to maximize or minimize,

and a series of constraint functions, ci, which are scalar functions of x that define

constraints the unknown vector x must satisfy. Using this notation, the optimization

problem can be written as shown in Equation 2.1.

min
x∈Rn
f(x) subject to

ci(x) = 0, i ∈ ξ

ci(x) ≥ 0, i ∈ I
(2.1)

where ci can be an equality or inequality constraint and ξ and I are the sets of

equality and inequality constraints.

This chapter provides an overview of optimization methods in general, starting

with section A on optimization problem classifications.Section B provides the optimal-

ity conditions. The section of these optimality conditions is then detailed in section

C using steepest descent and Newton’s method. This chapter will then cover con-

vergence criteria D, step-length control E and conclude with the Schur complement

method employed to reduce the system’s dimensions F.
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A. Optimization Classifications

In deterministic optimization methods, first and second derivatives of the objective

function, f(x), need to be computed. These problems are classified by the type of

their control variables and nature of their objective functions which are usually linear,

quadratic, or fully nonlinear.10 In certain cases, this function can be discontinuous

and may contain integers and binary variables; these problems can only be optimized

using discrete optimization methods for which derivatives are not defined. Other

classes of problems, where the components of the given function are allowed to be

real numbers can be optimized continuously. These continuous functions are normally

easier to solve because they are often smooth and twice differentiable.8

When a problem is considered, it is classified by the nature of its objective

function where some problems have constraints upon their variables and some do

not. Problems that involve constrained variables are optimized using constrained

optimization. Sometimes these constraints play a important role in determining the

solution and an example of a constrained objective function can be seen in Figure

II-1.

Fig. II-1. Example of a constrained objective function

For instance, in a budgetary problem, if the global solution lies outside the limits

due to budgetary constraints, a local solution that lies within these constraints will be

the best solution.8 Whereas in fully unconstrained optimization, there are no limits
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on any of the variables and the global minimum is the true function minimum as

shown in Figure II-2.

Fig. II-2. Example of an unconstrained objective function

Sometimes, even if there are minor constraints on a problems variables, if they

do not interfere with the optimization algorithms, unconstrained optimization can be

applied.8

B. Optimality Conditions

To find the minimum of f(x), conditions are applied to find where ∇f = 0. When

constraints are upon f(x), for example c(x) = 0, then a Lagrangian functional is

introduced such as in Equation 2.2.

min
x∈Rn
f(x) subject to c(x) = 0⇔ L(x, λ) = ∇f + λ∇c(x) (2.2)

where λ is a Lagrange multiplier. A saddle point in L is found where ∇L = 0, which

is

∂L
∂x

= 0 = ∇f + λ∇c (2.3)

∂L
∂λ

= 0 = c(x) (2.4)

where the first equation implies that ∇f ∝ ∇c and in the second equation the con-
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straint arises c(x) = 0. These derivatives of the Lagrangian form a set of Karush-

Kuhn-Tucker conditions or optimality conditions to be satisfied. Figure II-3 shows a

simple iso-contour plot of f(x) with a c(x) = 0 line solution.

Fig. II-3. Iso-contour plot showing an objective function and a constraint

C. Line Search Methods

In a line search method, algorithms choose a direction pk and search along this di-

rection from the current iterate for a new iterate that is closer to the optimality

conditions.8 There are various methods that can be used to determine a line search

direction along with many algorithms to determine how far in that direction to go.8

The goal of this optimization problem is the minimization of f(x) while satisfying

any given conditions. At this minimum ∂jL(x) = 0 where j is any field variable in

L(x). Just as in any iterative method, an initial guess is made and at this iterate

∇L(xk) ̸= 0. We will now describe two such techniques: the steepest descent and

Newton’s descent and then provide an example of a step-length control algorithm.

1. Steepest Descent

An obvious direction is the steepest descent. The steepest descent direction follows the

opposite direction of the gradient, or the direction perpendicular to the iso-contours.

For example in a simple two dimensional optimization scheme, this would be very
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similar to a ball in a valley rolling to the bottom. This can be seen in Figure II-4,

whereX∗ is the global minimum. The gradient of f is perpendicular to the iso-contour

of L.

Fig. II-4. Steepest descent direction

In this steepest descent method, the descent direction is pk = −∇Lk as shown

in Equation 2.5.

xk+1 = xk + αpk = xk − α∇Lk (2.5)

The steepest descent algorithm consists of the following:

1. Initialization: set k=0, set convergence criteria ϵ, choose xk.

2. If ∥∇Lk∥ < ϵ then exit, otherwise continue.

3. Compute pk = −∇Lk

4. Determine step length αk (see Section 2.4).

5. Compute new update according to Eq. 2.5.

6. k ← k + 1 and go to 2.



11

This method requires only first derivatives, tends to get stuck in local minima,

and is slowly converging while it iteratively takes steps in the gradient direction

to a new solution with lower optimality condition. The steepest descent direction

is updated at every step indexed by k and its progress is slow as some regions of

indefinite curvature are encountered especially near a solution.10 The convergence

rate of this method is much slower than other higher order methods.

2. Newton’s Method

A significantly more efficient higher order method can be derived from where the

steepest descent method left off. Newton’s method is comprised of second derivatives

and is a curve of best fit method. This uses a line search direction other then the

steepest descent, and is derived from the second order Taylor series approximation of

f(xk + p) and is shown in Equation 2.6.

L(xk + p) ≈ Lk + pT∇Lk + 1
2
pT∇2Lkp = mk(p) (2.6)

An example of such direction can be shown in Figure II-5.

Fig. II-5. Newton’s method vs. steepest descent direction
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Using this second-order Taylor series approximation, the vector p that minimizes

mk(p) is obtained by setting the derivative of mk(p) to zero leaving Equation 2.7.

∇Lk +∇2Lkpk = 0 (2.7)

where ∇2fk = H, the Hessian matrix. Then solving for pk yields

pk = −(∇2Lk)−1∇Lk = −H−1∇Lk (2.8)

xk+1 = xk + αpk = xk − αH−1∇Lk (2.9)

This Newtonian search direction tries to quadratically approximate a curve at iterate

xk and goes to the minimum of the quadratic fit. For a simple quadratic system, the

minimum of f(x) could be met after one step. Due to the nonlinearity and complexity

of most systems, Newton’s method often is applied where steepest descent methods

will not converge.

The steepest descent and Newton’s method are both of the form:

xk+1 = xk + αpk = xk − αB−1∇fk, (2.10)

with B = I, for steepest descent and B = H−1, for Newton’s method.

D. Convergence Criteria

The nonlinear system in Equation 2.4 will converge when the optimality conditions

are satisfactory close to their solution. Some very nonlinear systems with random

noise and bias will be very difficult to drive the optimality conditions close to the

true solution. At the optimum, the optimality conditions will be met but when con-

straints are present the solution that is closest to the optimality conditions while
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satisfying the constraints will be the global solution. For example, if the true global

solution was unreachable due to constraints then the convergence criteria of the op-

timality conditions will not be achievable and the closest solution to these optimality

conditions will be the solution.

E. Step-Length Selection Control and Algorithms

Now that a line search direction has been determined, how far to travel in that

direction is established next. When the objective function is not smooth, a full

Newtonian direction step may not lead to a reduction in optimality condition. Simple

algorithms can be used to attempt to ensure the optimality conditions are lowered.

Starting with the general sufficient decrease condition:

L(xk + αpk)− L(xk) < αλ∇L(xk)Tpk (2.11)

where the descent direction derived from Newton’s Method:

pk = −H−1∇L(x) (2.12)

where λ ∈ (0, 1) is an algorithmic parameter typically around 10−4. Beginning with

α = 1 repeatedly reduce α using any strategy that satisfies the general sufficient

decrease condition.

α+ ∈ [βlowαc, βhighαc] (2.13)

where 0 < βlow < βhigh < 1. The choice of β = βlow = βhigh is a simple rule in the

Armijo algorithm shown below.8

1. Initialization: set α=1 and λ ∈ (0, 1), set convergence criteria ϵ, choose xk.

2. If L(xk + αpk)− L(xk) < αλ∇L(xk)Tpk, xk+1 = xk + αpk. If not, continue.
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3. Reduce α, return to step 2.

In an exact line search, the special case where λ leads to the exact minimum of

L(xc + αpk), is not only more expensive computationally but can often degrade the

performance of the algorithm in general.

F. Schur Complement Method

The Schur Complement Method is a process of system simplification for a system

involving a Karush-Kuhn-Tucker (KKT) type matrix.8 It is a method that involves

eliminating variables in a system to simplify and often obtain a linear system of one

variable. One example of such matrix system can be shown in Equation 2.14.G AT
A 0


p
λ

 =

g
h

where: dim(p) >> dim(λ) (2.14)

This KKT matrix has blocks of entries equal to zero and can easily simplified

by simple algebra. A typical KKT matrix may have more rows of blocks, as many

multivariate problems have multiple optimality conditions, but can be simplified in

the same manner. After assuming G is positive definite, p is solved for in the first

equation in 2.14 in terms of λ then substituted in the second equation leaving a system

of λ alone as shown in Equation 2.15.

λ = A−T (g −GA−1h) (2.15)

This smaller system is solved for λ and then the other vector variable p can be directly

solved for as shown in Equation 2.16.

Gp = ATλ− g (2.16)

This method involves a matrix inversion of G and AT which often results in signif-
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icantly lower condition number than inverting the full original system matrix. This

method of system simplification can be applied to reduce system runtime and improve

computational efficiency.
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CHAPTER III

INVERSE DIFFUSION MODELS

Neutron imaging is type of non-invasive inverse problem involving incoming and out-

going neutron beams where measurements are made only on the boundary of a do-

main. The neutron transport equation defines how neutrons behave in matter through

various interaction types and can be used in inverse problems. An approximation to

the transport model is diffusion theory, which introduces some simplicity for handling

the angular dependence of the neutron population. In this thesis, we use the diffusion

approximation to model the distribution of particles.

In inverse theory, many problems are ill-conditioned or are ill-posed, where a

small variation in the input data causes a large change in the results.11 In inverse

diffusion methods, the flux solution to be solved for depends on unknown internal

parameters of the domain. Generally, an initial guess is set for the domain parameters,

then the flux is solved and the domain parameters are updated using optimization

methods.

This chapter begins with an introduction to neutron diffusion theory and the ap-

plication of a finite element method to solve neutron diffusion problems. The imple-

mentation of the previous chapters optimization methods applied to inverse diffusion

models are described next, first deriving optimality conditions and then employing

Newton’s method to solve them. The optimum control problem is formulated for

multiple experiments in the context of the multigroup diffusion approximation.
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A. Neutron Diffusion Theory

The neutron diffusion equation is derived from the Boltzmann transport equation by

integrating over all directions and using the diffusion theory expression for the neutron

current derived from Fick’s Law.12 The one-group neutron diffusion equation, shown

in Equation 3.1 and 3.2, is a phase-space dependent equation that relates the neutron

scalar flux phase-space distribution across a domain to its nuclear properties.12

−∇ ·D(r⃗)∇Φ + (Σa(r⃗)− νΣf (r⃗))Φ = Q(r⃗) in Ω (3.1)

Φ
4

+ D(r⃗)
2
∂nΦ = J inc(r⃗) in ∂Ω (3.2)

B. Finite Element Diffusion Solver

The forward diffusion models used in this problem are solved numerically using finite

element methods. The finite element method is a numerical technique for finding

approximate solutions of partial differential equations. This method differs from

finite difference in such that finite difference methods approximate PDE equations

while finite element methods approximate their solutions. Both of these methods

discretize the domain into a mesh and the finite element method used in this work

approximates the PDE’s solution as a piecewise bi-linear function across each mesh

cell.

In the finite element setting, the diffusion equation becomes:

[
AD + AΣ + 1

2
M∂Ω

]
Φ = AΦ = F (3.3)

with:
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1.

AD(i, j) =
∫

Ω
∇bi · ∇bj (3.4)

If D is constant, it can be factored out and

AD = D × S (3.5)

with S(i, j) =
∫

Ω
D∇bi · ∇bj. (3.6)

S is known as the stiffness matrix

2.

AΣ(i, j) =
∫

Ω
Σbibj (3.7)

If Σ is constant, it can be factored out and

AΣ = Σ×M (3.8)

with M(i, j) =
∫

Ω
bibj. (3.9)

M is known as the mass matrix.

3.

M∂Ω(i, j) =
∫
∂Ω
bibj (3.10)

4.

F (i) =
∫

Ω
Qbi + 2

∫
∂Ω
J incbi (3.11)

5. Now, Φ is to be understood as a vector containing the flux values Φi at the

nodes.
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1. Finite Element Meshes

There are a variety of element meshes that can be implemented with finite element

method. The most common of these are triangular and rectangular elements. After

the domain has been broken elements, a set of piecewise polynomials are used for

approximation. This must result in a function that is continuous with an integrable

or continuous first or second derivative on the entire region. Polynomials of linear type

in x and y in Equation 3.12 are often used with triangular elements and polynomials

of bilinear type, shown in Equation 3.13 are used with rectangular elements.

Φ(x, y) = a+ bx+ cy (3.12)

Φ(x, y) = a+ bx+ cy + dxy. (3.13)

The two dimensional domain is broken up into finite element meshes. This

consists of a fine mesh to be used in the flux solver and a coarse mesh that will be the

regions where the cross section (taken to be piece-wise constant) are reconstructed.

The difference between these two meshes is a refinement which is variable in each

dimension of the domain. This refinement is necessary due to the ill-posed problem

and lack of information required to solve this inverse diffusion problem. An example

of these meshes and refinement is shown in Figure III-1.
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Fig. III-1. Example of the finite element meshes for the diffusion problem

2. Finite Element Methods

An attractive feature of the finite element method is its ability to handle complicated

geometries with relative ease. This enables much more complicated domains and

geometries to be solved where the finite difference method in its basic form is restricted

to handle rectangular shapes and simple variations of. One reason for this is the finite

element method’s relative easy with which the boundary conditions are handled.13

A lot of problems have boundary conditions involving derivatives and irregularly

shaped boundaries which are difficult to handle using finite difference techniques.13

The finite difference method handles these boundary conditions by approximating

the derivative using a difference quotient at the grid points where irregular shaping

of the boundary makes the grid point locations difficult.13 The finite element method

handles the boundary conditions in a functional’s integral that is being minimized,

which is independent of the particular boundary conditions of the problem itself.13
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C. Optimization Functional

1. Misfit: To Minimize

When an iterative solution is considered, a function called the misfit is introduced

which represents the iterative solutions’s (Φ) distance from the measured solution

(z) at the boundary. In the case at hand, a synthetic measured solution is used by

evaluating the forward model with the true material parameters. While iterating to

satisfy the optimality conditions, this misfit represents the distance of Φ from z at

the boundary and should converge to zero as the solution is approached. In the case

of the problem, the misfit will be defined by Equation 3.14.

misfit = 1
2

∫
∂Ω′

[Φ− z]2 , (3.14)

where ∂Ω′ represents the portion of ∂Ω where measurements are made. In the finite

element setting:

misfit = 1
2

[Φ− z]T Mmeas [Φ− z] , (3.15)

where

Mmeas(i, j) =
∫
∂Ω′
bibj. (3.16)

If the entire boundary is used to measure data, then Mmeas = M∂Ω. This misfit is

directly used in the Lagrangian.

2. Lagrangian Functional

In constraint optimization problems, a L functional is formed and minimized con-

sisting of two parts, one being the misfit representing distance from the true solution

at the boundary and the other being constraints, here the diffusion equation acts as

the governing equation, or in other words, L = misfit + constraint. The optimality
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conditions are derived from first derivatives of this Lagrangian with respect to each

field variable and will be minimized in an iterative manner. The field variables are:

Φ, λ, and Σ where Φ is the neutron flux, λ is the Lagrange multiplier or adjoint flux,

and Σ is the set of piecewise continuous cross sections for the domain.

Constraints must be applied as several solution sets may satisfy the misfit condi-

tions and application of constraints helps in selecting these solutions. The governing

physics of the domain act as a constraint in the problem at hand and may help se-

lect a solution that physically realistic. Application of the neutron diffusion equation

here will be the constraint of choice, but additional constraints may be implemented

involving physical limits: 3Σa < 1
D

, Σa > 0, Σf < Σa and ensuring a domain remains

subcritical (keff < 1). Most all problems objective functions are smooth enough

to where the additional constraints are not needed. The goal of this optimization

problem is to find the saddle point in a Lagrangian functional L. If only Σ is to be

determined, then

L(Φ, λ,Σ) = 1
2

[Φ− z]T Mmeas [Φ− z] + λT
{[
AD + AΣ + 1

2
M∂Ω

]
Φ− F

}
. (3.17)

The KKT optimality conditions arise as the derivatives of the Lagrangian with

respect to each field variable and must be satisfied as the solution is approached.

When L is the optimum, each of these optimality conditions will be satisfied.

∂L
∂Φ

=Mmeas [Φ− z] +
[
AD + AΣ + 1

2
M∂Ω

]T
λ = 0, (3.18)

∂L
∂λ

=
[
AD + AΣ + 1

2
M∂Ω

]
Φ− F = 0, (3.19)

∂L
∂Σ

= λT∂ΣAΦ = 0. (3.20)
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There are several features embedded in the presented optimality conditions, such

as in Eq. 3.19 the constraint to the optimization problem arises as the diffusion

residual must approach zero. In Eq. 3.18 the adjoint diffusion term arises with

the misfit as a forcing term which too must approach zero as the method nears

the solution. The Lagrange multiplier, λ, has a clear meaning as the adjoint flux.

Equations 3.18-3.20 form a nonlinear system of equations to be satisfied. These

KKT optimality conditions form a nonlinear system of equations, therefore Newton’s

method is employed.

D. Hessian System

Upon implementing Newton’s method of optimization, the Hessian matrix must be

formed. This Hessian matrix is the Jacobian matrix of the KKT optimality conditions

which is composed of second derivatives of L. The derivatives of the optimality

condition are taken with respect to each field variable and put together to form a

matrix.

∂2L
∂Φ2 = Mmeas (3.21)

∂2L
∂λ2 = 0 (3.22)

∂2L
∂Σ2 = 0 (3.23)

∂2L
∂Σ∂Φ

= ∂ΣA
TΦ (3.24)

∂2L
∂Σ∂λ

= ∂ΣAΦ (3.25)

∂2L
∂λ∂Φ

=
[
AD + AΣ + 1

2
M∂Ω

]
(3.26)

Note that MT = M and
[
AD + AΣ + 1

2M∂Ω
]T

=
[
AD + AΣ + 1

2M∂Ω
]

in the

case of one-group diffusion approximation. To simplify the system, the notation
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[
AD + AΣ + 1

2M∂Ω
]

= A will be used, yielding the Hessian system below in Equation

3.27. 
Mmeas AT ∂ΣAλ

A 0 ∂ΣAΦ

λT∂ΣA ΦT∂ΣA 0




δΦ

δλ

δΣ

 = −


Mmeas [Φ− z] + ATλ

AΦ− F

λT∂ΣAΦ

 (3.27)

where δΦ, δλ, and δΣ are updates and give the Newton iterate:

Hδxk = −F (xk) (3.28)

xk+1 = δxk + xk. (3.29)

E. Implementation of Schur Complement

This Hessian system can be simplified to reduce run time by a Gauss elimination of

δΦ and δλ to arrive at a system with only δΣ. The main matrix that is inverted in the

Schur complement solution has a lower condition number then the straight forward

Hessian system.

The second row of the above Hessian system is solved first for δΦ in terms of δΣ

and constants.

AδΦ + ∂ΣAΦδΣ = −AΦ + F (3.30)

δΦ = A−1 (−AΦ + F − ∂ΣAΦδΣ) (3.31)

The first row of the above Hessian system is solved for δλ in terms of δΦ and δΣ.

MmeasδΦ + AT δΣ + ∂ΣAλδΣ = −Mmeas [Φ− z]− ATλ (3.32)

δλ = A−T
(
−Mmeas [Φ− z]− ATλ−MmeasδΦ− ∂ΣAλδΣ

)
(3.33)
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δλ = A−T

 −Mmeas [Φ− z]− ATλ−Mmeas·

[A−1 (−AΦ + F − ∂ΣAΦδΣ)]− ∂ΣAλδΣ

 (3.34)

These solutions for δΦ and δλ can be plugged back into the third row of the

above Hessian system to solve for δΣ. Starting with the third row from Equation

3.27:

λTMδΦ + ΦTMδλ = −λTMΦ (3.35)

then filling ∂Φ and ∂λ solutions:

ΦT∂ΣA

A−T
 −Mmeas [Φ− z]− ATλ−Mmeas·

[A−1 (−AΦ + F − ∂ΣAΦδΣ)]− ∂ΣAλδΣ


+

λT∂ΣA
(
A−1 (−AΦ + F − ∂ΣAΦδΣ)

)
= −λT∂ΣAΦ (3.36)

then grouping terms with and without δΣ:

[
−λT∂ΣAA

−1 (∂ΣAΦ) + ΦT∂ΣA
[
A−T

(
−MmeasA−1 (−∂ΣAΦ) + ∂ΣAλ

)]]
[δΣ]

=
−λT∂ΣAΦ− λT∂ΣAA

−1 (−AΦ + F )− ΦT∂ΣAA
−1·(

−Mmeas [Φ− z]− ATλ−MmeasA−1 (−AΦ + F )
) (3.37)

The operator created on the left hand side of Eq. 3.37 is the Schur complement

for the system and will be called S. The right hand side will be called U for simple

notation.

S = −λT∂ΣAA
−1 (MΦ) + ΦT∂ΣA

[
A−T

(
−MmeasA−1 (−∂ΣAΦ) + ∂ΣAλ

)]
(3.38)
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δΣ = S−1U (3.39)

This method for the one group case creates a system for δΣ only which is signif-

icantly smaller in size then the original system shortening iteration runtime.

F. Extension to Multiple Experiments

To also enable greater reconstruction abilities, multiple experiments can be performed

over a domain, each experiment involving different source locations. Every experiment

has a unique flux and adjoint solution to reconstruct the same cross sections to better

the likelihood of success. The most logical choices are to break the boundary into

halves, quarters, eighths, and sixteenths. The optimality conditions and misfit will

be reduced for each of these experiment’s flux solutions while optimizing the same

set of parameters for the domain. This will provide much more data and enable

greater reconstruction ability then a single experiment. Many runs will be done with

this code to test the limits of reconstruction with respect to various elements of the

domain such as mesh size, number of experiments, variable refinement, and domain

size.

1. Optimality Conditions

The Lagrangian with multiple experiments will be a simple summation over the La-

grangian for each experiment. This Lagrangian for a total of I experiments is:

L (Φ, λ,Σ) =
I∑
i=1

1
2

[Φi − zi]T Mmeas [Φi − zi] +
I∑
i=1
λTi [AiΦi − Fi] (3.40)

Similar to the single experiment case, the optimality conditions to be satisfied

are derived from the first derivatives with respect to Φi and λi for each experiment
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and the same Σ as before.

∂L
∂Φi

=Mmeas [Φi − zi] + ATi λi ∀i (3.41)

∂L
∂λi

= AiΦi − Fi ∀i (3.42)

∂L
∂Σ

=
I∑
i=1
λTi ∂ΣAΦi (3.43)

This creates more conditions for the system to be satisfied enabling greater recon-

struction ability.

2. Hessian System

The Hessian system for multiple experiments is similar to the single experiment case.

The corresponding second derivatives for the Hessian system were derived for each

experiment forming a new Hessian matrix.

∂2L
∂Φ2
i

= Mmeas,i (3.44)

∂2L
∂λ2
i

= 0 (3.45)

∂2L
∂Σ2 = 0 (3.46)

∂2L
∂Σ∂Φi

= ∂ΣA
Tλi (3.47)

∂2L
∂Σ∂λi

= ∂ΣAΦi (3.48)

∂2L
∂λ∂Φ

=
I∑
i=1
AD + AΣ + 1

2
M∂Ω (3.49)

where Mmeas,i is the mass matrix corresponding to experiment i’s measurement loca-

tion. This multiple experiment Hessian system has identical equations for Φ and λ but

with an equation for each experiment. These experiments all operate over the same
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set of cross sections, therefore the final equation has terms from every experiment.

Mmeas,1 0 AT1 0 · · · ∂ΣAλ1

0 Mmeas,2 0 AT2 · · · ∂ΣAλ2

A1 0 . . . 0 · · · ∂ΣAΦ1

0 A2 0 0 · · · ∂ΣAΦ2

... ... ... ... . . . ...

λT1 ∂ΣA λT2 ∂ΣA ΦT1 ∂ΣA ΦT2 ∂ΣA · · · 0





δΦ1

δΦ2

δλ1

δλ1

...

δΣ



=



Mmeas,1 [Φ1 − z1] + AT1 λ1

Mmeas,2 [Φ2 − z2] + AT2 λ2

A1Φ1 − F1

A2Φ2 − F2

...
I∑
i=1
λi∂ΣAΦi


(3.50)

3. Schur Complement Modification

Every time another experiment is considered, another flux and adjoint correpsonding

to that experiment will provide additional matrix equations in the Schur Complement.

This final equation for δΣ can be simplified and expressed as:

δΣ =
[
I∑
i=1
Si

]−1

·
[
I∑
i=1
Ui

]
(3.51)

where Si is the Schur complement and Ui is the corresponding right hand side from

Equations 3.37-3.39.

G. Multigroup Analysis

The final modifications to the code account for multiple energy groups of neutrons.

This multi-group code will allow reconstruction of multigroup cross sections. This

model includes reconstruction of fission cross sections, fission spectrum, group removal

cross section, and intergroup scattering cross sections. The optimality conditions

are again derived including first derivatives and the Hessian involving the second

derivatives taken with respect to each of the new variables. It is supposed that this
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model would enable greater acquisitions of realistic data that can be used to detect

materials inside these multiple optical thickness thick objects.

Multigroup diffusion theory has more meaningful application to the problem at

hand. The incident neutron beams can be classified due to their energy and with

material constants for uranium, or other fissile material, such as χg, the fission cross

sections for each group can be reconstructed to determine if fissile material is present

in the cargo container. One example of a test case would be if the incident neutrons

were only in the slow energy groups, but neutrons in fast energy groups were detected.

Due to the nature that neutrons only have a reasonable probability to upscatter in

the thermal Maxwellian range, those neutrons must have been born in the domain.

That would be a greater chance of determination of SNM.

1. Multigroup Diffusion Theory

In neutron diffusion theory, neutrons can be classified by their energy and broken into

groups. Due to scattering and fission, neutrons are able to be redistributed in energy

based on the magnitude of their cross sections and fission spectrum, χg. In neutron

diffusion theory equations of each group of neutrons can be formed with scattering

terms that represent timerate densities of group to group scattering events.

−∇ ·Dg∇Φg + Σr,gΦ = χg
G∑
g′=1
νΣf,g′Φg′ +

G∑
g′=1,g ̸=g′

Σs,g′→gΦg′ (3.52)

Where Σr,g = Σa,g+
G∑

g′=1,g ̸=g′
Σs,g→g′Φg or removal from the group g due to absorption

and outscatter. An example, the 2 group diffusion operator is given below:

A =

−∇ ·D1∇+ Σr,1 − χ1νΣf,1 −Σs,2→1 − χ1νΣf,2

−Σs,1→2 − χ2νΣf,1 −∇ ·D2∇+ Σr,2 − χ2νΣf,2

 (3.53)
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Everything remains unchanged for the optimization problem, except there are

more parameters (Φg, λg, and Σg) for multiple energy groups creating the same

AΦ = F system. The diffusion operator is no longer symmetric, AT ̸= A, because of

scattering and fission.

2. Cross-Section Data for Various Materials

To gain a greater understanding of the reconstruction length-scale with respect to

different materials, macroscopic cross sections for various materials are computed at

fission spectrum average and 14 MeV energies. Using these cross sections, diffusion

coefficients and diffusion lengths can be compared for different materials that may be

present in a container. The macroscopic cross sections for various materials can be

seen in Tables III-I - III-II14.15

The steel composition used consisted of: 65.8% iron, 20.5% aluminum, 13.6%

chromium, and 0.03% carbon. If fissile material were present, it may be shielded with

a strong absorbing material such as borated polyethylene. Enriched boron is assumed

in these computations at 90% B-10 and assuming uranium enriched to 80% U-235.

The thermal, fission spectrum average, and 14.0 MeV macroscopic cross sections are

computed and shown in Tables III-III - III-V14.15
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CHAPTER IV

RESULTS

Several examples are presented to demonstrate the reconstruction limits with respect

to different problem variables. The first example shows the importance of source and

measurement location for imaging problems (Section A. The second example is a

simple reconstruction of a homogeneous domain comparing convergence between the

steepest descent and Newton’s methods. Reconstructions with position dependence

are presented next in (Section C), while the examples 4-5 (D) provides two cases

displaying the effects on reconstruction resolution while increasing the number of

experiments to demonstrate maximum reconstruction resolution. The example 6

shows the effects on reconstruction ability when the domain size is increased, which

is tested using 8 and 32 experiments, to show the maximum reconstruction depth

into a domain. Examples 7-11 include the addition of signal noise and signal bias to

the synthetic measured solutions to better simulate actual detectors and the effect

on reconstruction ability. Multigroup models are then shown, in examples 12-18,

including various combinations of reconstructing multiple parameters (Σa and νΣf )

in different energy groups.

There are three basic geometries that are used in the presented reconstruction

examples. The first is a homogeneous domain which is used for basic reconstruction

testing and misfit plotting in multigroup. The second consists of bars of various

materials side by side. This simulates a piecewise constant one dimensional problem

spread over a second dimension. The third is a centered strong absorber hidden in the

center of a homogeneous domain, which is the typical material hidden inside another

material example and is ideal for testing as the center of a domain typically has the
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most error in reconstruction.

A. Example 1: Misfit Plots

Consider a domain divided into two side-by-side homogeneous regions for which the

cross section in each is to be reconstructed. An example of a such region is shown

in Figure IV-1. This is a case of a two-parameter problem and a misfit surface plot

can be graphed where the x-axis represents the inferred cross-section value in region

1, the y-axis represents the inferred cross-section value in region 2, and the z-axis

represents the misfit as a function of the cross sections in the two regions. This graph

will help understand the influence of the incoming source illumination on the ability

to reconstruct one or both of the cross sections in this domain.
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Region D Σa νΣf

1 0.25 0.9 0.0

2 0.25 1.1 0.0

Fig. IV-1. Two-region domain of Example 1

The ability to reconstruct an internal parameter strongly depends on the illumi-

nating source and measurement location. In this example measurements are taken

on all sides and the source location is moved, similar results arise when the reverse

case is considered. Two misfit surface plots were constructed using only one incident

beam of neutrons on the side of one of the regions as shown in Figure IV-2 (cases a.)

and b.)).
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(a) Case a.) left in-
cidence

(b) Case b.) right
incidence

(c) Case c.) both
beams present

Fig. IV-2. Ex. 1: Various cases of beam incidence

It can be noted in Figure IV-3, an elongated valley is produced for the misfit in

the direction of the cross section whose side was not upon incident neutrons. This

means that the cross section in this region can vary greatly while the misfit remains

unchanged, illustrating the ill-posedness of the inverse problem.
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Fig. IV-3. Ex. 1: Misfit plot for case a.)

If the only incident neutron beam was moved to the side of the other region, an

elongated valley is produced in the direction of the opposite cross section again as

shown in Figure IV-4. Similarly in this case, the cross section in the rgion with no

incoming neutron flux can vary greatly with respect to the other without significantly

changing the true flux solution at the measurement points.
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Fig. IV-4. Ex. 1: Misfit plot for case b.)

When both beams are on, one from each region side (case c.), a much smoother

cone shape surface is produced as shown in Figure IV-5. It will be significantly easier

to determine the cross section for both regions in this setting.
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Fig. IV-5. Ex. 1: Misfit plot for case c.)

Having described and analyzed a 2-parameter case, the next models will include

a fully position-dependent cross section. The information acquired here can be ap-

plied to the next model but cannot be shown visually. The model will have to find

the minimum misfit of a multi-dimensional function so the incoming beams and mea-

surements play a critical role in determining a solution and the ability to find this

solution.
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B. Example 2: Comparison of Convergence Between Steepest Descent

Method and Newton’s Method for a Homogeneous Problem

To show the decrease in misfit and Lagrangian as a function of iteration count, the

optimization problem is run where these are stored for an example using a homoge-

neous domain consisting of: D = 1, Σa = 0.3 and νΣf = 0. This domain is of size 6

cm × 6 cm. These are simply stored then plotted after convergence, for this simple

homogeneous problem starting relatively close (Σa = 0.2) to the true solution the

misfit and Lagrangian are shown in Figure IV-6.
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(b) Newton

Fig. IV-6. Ex. 2: Convergence of misfit and Lagrangian for steepest descent and
Newton’s methods

As expected, these are both reduced and the reduction as a function of iteration

count is exponential. Table IV-I shows a comparison of convergence statistics for

this homogeneous domain. As expected, Newton’s method outperforms the steepest

descent method.
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Table IV-I. Ex. 2: Convergence comparison between two line search methods

Method Steepest Descent Newton’s

Time [s] 424.9 49.5

Iterations 1583 50

Order of L 10−4 10−17

To better show convergence using Newton’s method, a one-group problem con-

sisting of a homogeneous domain is considered that contains two strong absorbers

present inside and the cross section plotted at several steps during convergence. The

initial guess for the domains cross section is a constant Σa = 0.2 where the true

cross sections are Σa = 0.3 for the surrounding domain and Σa = 0.5 for the strong

absorbers. An example of this problems convergence is shown in Figure IV-7 where

each step represents approximately 10 iterations.
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Fig. IV-7. Example 2: Convergence of dual strong absorbers in a homogenous domain

C. Example 3: Multiple Region Single Experiment Results

To reconstruct internal features of more complex domains, reconstructions are per-

formed using using a mesh. The number of regions is determined using a coarse mesh

based on the finer mesh used for the flux solver. This flux mesh (fine) consists of a

variable refinement but a mesh of 2× 2 finer than the material (coarse) mesh is often

used. This enabled many various domains of varying cross section to be reconstructed

at a user defined resolution.

The domain tested in this case was an 8 × 8 diffusion length domain consisting
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of four vertical stripes of different materials which properties shown in Table IV-II.

The true cross section of this domain is shown in Figure IV-8.

Table IV-II. Ex. 3: Cross-section data
Region D Σa Σf

1 0.25 0.9 0.0

2 0.25 1.0 0.0

3 0.25 1.1 0.0

4 0.25 0.9 0.0

0 1 2 3 4

0

2
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0
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0.8

1
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1.6

x
y

Fig. IV-8. Ex. 3: True cross section with position dependence

The coarse mesh here was setup as 8 by 8 in x and y directions respectively

creating 64 regions with cross sections to be reconstructed. There was a refinement

of 2 in both directions for the flux solver. This model converged after 8 Newton

iterations with a misfit of 3.616e-15 and the optimality conditions were driven down

to 1.06285e-11 in 1.47 seconds. The reconstructed flux and cross section can be shown

in Figure IV-9.
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Fig. IV-9. Ex. 3: Reconstructed cross section with position dependence

To graphically show the precision of the reconstruction the difference between

the true solution and reconstruction was taken and shown in Figure IV-10.
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Fig. IV-10. Ex. 3: Error in cross section reconstruction with position dependence

This reconstructed solution agreed with the measured solution well as the error

was on the order of 10−4.

D. Multiple Experiment Results

When the incoming currents were split across the domain creating separate experi-

ments, each with separate flux and adjoint solutions, the same set of cross sections for
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the domain are reconstructed. This created more constraints on the data resulting in

greater reconstruction ability.

1. Example 4: Reconstruction Resolution Testing with Increasing Num-

ber of Experiments on a 4 cm × 4 cm Domain

The first example case shows the correlation between reconstruction resolution and

the number of experiments on a domain consisting of a strong centered absorber.

This domain consisted of Σa = 1.3, νΣf = 0 and D = 0.3 in the center region and

Σa = 0.9, νΣf = 0 andD = 0.3 in the outer region. Three cases are considered for this

example all of the same domain and mesh size, the first consisting of one experiment

having a beam on a single side of the domain. The second case still consists of a

single experiment but a beam on all four sides of the domain. The third case consists

of eight experiments, each covering one half of each side. Measurements are made on

all four sides every time. These cases reconstructions are shown in Figure IV-11 and

corresponding errors in Figure IV-12.
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Fig. IV-11. Ex. 4: Effects on reconstruction resolution while increasing the number of
experiments on a 4 cm × 4 cm domain
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Fig. IV-12. Ex. 4: Error in reconstructions resolution testing while increasing the
number of experiments on a 4 cm × 4 cm domain

This shows that increasing the number of experiments directly improves the

maximum reconstruction resolution, enabling previously unsuccessful cases to have

successful reconstructions. While this may be misleading, every problem has its

resolution limits independent of the number of experiments. When reconstruction

limits are approached, often additional experiments consist of too much noise to add

any additional resolution refinement.

2. Example 5: Reconstruction Resolution Testing with Increasing Num-

ber of Experiments on a 10 cm × 10 cm Domain

The next test example examines the effects of multiple experiments on reconstruction

resolution for a larger domain. The same example problem of the centered strong

absorber was considered here and reconstructions performed with 1, 8, and 32 ex-

periments on a approximately 10 cm by 10 cm domain. With only 1 experiment

consisting of beams on all four sides of the domain, Figure IV-13 shows the associ-

ated reconstruction with significant error and almost no recognizable features of the

true solution.
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Fig. IV-13. Ex. 5: Reconstruction resolution testing of centered strong absorber in a
10 cm × 10 cm domain

When the number of experiments was set to eight, each covering one eighth of

the domain or two per side this resulted in a better reconstruction where the error

at the center is on the order of 10−2. When the number of experiments was set to

32, each covering 1
32 of the domain or eight per side this resulted in a much better

reconstruction where the error at the center is on the order of 10−3 shown in Figure

IV-14.
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Fig. IV-14. Ex. 5: Error in reconstructions for resolution testing of centered strong
absorber in 10 cm × 10 cm domain
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3. Example 6: Effects on Reconstruction When the Domain Size is In-

creased Using 8 and 32 Experiments

Another example problem, with the number of experiments held constant at eight,

shows the effects of increased domain size on reconstruction ability. In this example,

with the mesh size is held constant along with the number of experiments, the size of

the domain is increased and the effects on reconstruction ability was observed. Three

different sizes are used here approximately 8 × 8, 12 × 12, and 16 × 16 characteris-

tic lengths. The reconstructions are shown in Figure IV-15 and the corresponding

reconstruction error in Figure IV-16.
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Fig. IV-15. Ex. 6: Effects on reconstructions when domain size is increased using eight
experiments
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Fig. IV-16. Ex. 6: Error in reconstructions when domain size is increased using eight
experiments

Using eight experiments, the it is only possible to reconstruct approximately
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6-7 characteristic lengths deep into an object. As the domain size approached 16

characteristic lengths wide (L = 1.054cm in this example), there was too much signal

degradation to reconstruct any domain characteristics. These same cases were run

with 32 experiments, and the changes in reconstruction are shown below in Figure

IV-17 and error Figure IV-18.
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Fig. IV-17. Ex. 6: Effects on reconstructions when domain size is increased using 32
experiments
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Fig. IV-18. Ex. 6: Error in reconstructions when domain size is increased using 32
experiments

The implementation of 32 experiments shows improvement for the 12× 12 case,

while the 16×16 case showed no improvement. This proves that the addition of mul-

tiple experiments does provide additional reconstruction power, but reconstruction

depth has severe limits independent of the number of experiments.
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4. Example 7: Dual Strong Absorbers Embedded in a Large Highly Scat-

tering Domain

The next domain reconstructed consisted of a large and highly scattering domain that

contains two embedded identical strong absorbers. This domain size is over the pre-

viously mentioned maximum reconstruction size, but contains a very low absorption

cross section. The domain parameters for the two regions are shown in Table IV-III.

Table IV-III. Ex. 7: Cross-section data for dual strong absorbers embedded in a large
highly scattering domain

Region D Σa Σs

Absorbers 0.016 21.37 0.012

Domain 0.467 0.0005 0.713

The domain is 10 cm× 10 cm where the outer region resembles carbon properties,

while the absorbers embedded inside it resemble boron properties. The absorption

cross section is reconstructed for this domain with an initial guess of a constant

0.008cm−1. This reconstruction is performed using eight experiments on a coarse mesh

of 10 × 10 with a refinement of 2 in both dimensions whose true and reconstructed

cross sections are shown in Figure IV-19.
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Fig. IV-19. Ex. 7: Reconstruction of two strong absorbers in a large highly scattering
domain

While this reconstruction may look very accurate, the magnitude of the param-

eters hides the reconstruction error. To better show this effect, the absolute error

along with the relative error are shown in Figure IV-20.
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Fig. IV-20. Ex. 7: Error in reconstruction of two strong absorbers in a large highly
scattering domain

From the absolute error only, this reconstruction appears to be of excellent qual-

ity, but the relative error shows the cross sections in the center regions contain great
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variance from the true solutions.

E. Addition of Signal Noise and Bias

To better simulate an actual boundary detector, signal noise and bias have been

implemented into the synthetic measured solutions to simulate an actual radiation

detector. The addition of noise results in a perturbation of the the synthetic measured

solutions z, by a specified percentage using random numbers. The application of a bias

would be similar but just averaged in a certain direction either positive or negative as

opposed to zero. High accuracy boundary fluxes, or measured solutions, are crucial

to achieve quality reconstructions, so as noise and bias are increased, it is expected

that reconstruction ability will diminish. This amount of noise was varied and the

effect on reconstruction observed.

While there are several ways to implement signal bias and noise, a constant noise

distribution and a percentage based bias are used here shown in Equations 4.1-4.2.

zi,noise = zi(1 + βϵi) (4.1)

zi,biased noise = zi(1 + δ + βϵi) (4.2)

In Equation 4.1, zi is the clean synthetic measured solution, β is the magnitude

of the noise and ϵi ∈ (−1, 1) is the random number for measurement location i. In

Equation 4.2, the same variable magnitude of noise is present but the addition of a

flat percentage bias, δ ∈ (−1, 1), is added. The magnitude of δ is constant for all

measurement points.
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1. Addition of Random Signal Noise

a. Example 8: Signal noise added on a homogenous domain

The optimal initial benchmark case would be one who’s noiseless reconstruction ability

is very high. The problem selected is a 4 cm × 4 cm homogeneous domain broken

into 16 regions to reconstruct. This domain has the following properties: Σa = 0.3,

D = 1, and νΣf = 0. All of the signal noise examples are reconstructed using eight

experiments as this quantity of experiments is sufficient for noiseless reconstructions

in all of the problems used. Three quantities of noise are applied to this domain

of magnitudes of 0.01%, 0.1%, and 1.0% and reconstruction results shown in Figure

IV-21.
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Fig. IV-21. Ex. 8: Reconstruction with signal noise of a homogeneous domain

The case of β =0.0% noise is not shown due to the high reconstruction ability

of the β =0.01% case it is obvious what the true cross-section solution is. With

β =0.01% and β =0.1% noise reconstruction ability is still high but as the noise

magnitude approaches 1.0%, even this simple homogenous domain becomes almost

indistinguishable. The resulting reconstruction errors are shown in Figure IV-22.
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Fig. IV-22. Ex. 8: Error in reconstruction with signal noise of a homogeneous domain

b. Example 9: Signal noise added to bars of various materials

The next problem implemented with signal noise is similar to Ex. 3 (Section C)

which had high reconstruction ability and consisted of bars of various materials whose

material properties are shown in Table IV-IV.

Table IV-IV. Ex. 9: Cross-section data for bars of various material
Region D Σa Σf

1 1.0 0.3 0.0

2 1.0 0.5 0.0

3 1.0 0.7 0.0

4 1.0 0.3 0.0

This domain size is approximately 4 × 4 characteristic lengths thick and is re-

constructed using eight experiments. Due to the noiseless high reconstruction ability

of this example, the same 0.01%, 0.1% and 1.0% quantities of signal noise are added

and reconstructions shown in Figure IV-23.
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Fig. IV-23. Ex. 9: Reconstruction with signal noise of multiple materials

Just as in the case of the homogeneous domain, the 0.01% and 0.1% signal noise

examples still provided quality reconstructions while features of the domain start to

diminish in the center at 1.0% signal noise as shown in the resulting reconstruction

error in Figure IV-24.
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Fig. IV-24. Ex. 9: Error in reconstruction with signal noise of multiple materials

c. Example 10: Reconstruction testing with signal noise on a centered

strong absorber inside various size domains

The final example implemented with signal noise was the previously defined centered

strong absorber. This was tested at multiple noise magnitudes along with multiple

domain sizes in three cases approaching the maximum reconstruction size. This

domain consists of a strong absorbing center region surrounded by a weaker absorbing

domain. The center region has the following material properties Σa = 0.6, νΣf = 0,
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and D = 1.0, while the surrounding domain has Σa = 0.3, νΣf = 0, and D = 1.0.

Three domain sizes are used here and reconstructions of the 4 cm × 4 cm (L ≈ 1)

domain are shown in Figure IV-25. In this example, due to the domains small size,

reconstruction ability is high in the noiseless case so noise magnitudes of 0.01%, 0.1%

and 1.0% are applied.
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Fig. IV-25. Ex. 10 Case 1: Reconstruction with signal noise of a centered strong
absorber 4x4cm

As in the previous cases of similar domain size, the reconstruction ability di-

minished when the noise reaches 1.0% and reconstruction erros are shown in Figure

IV-26.
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Fig. IV-26. Ex. 10 Case 1: Error in reconstruction with signal noise of a centered
strong absorber 4x4cm

The next case holds reconstruction resolution and material properties the same

as the previous case of the centered absorber except the domain size is increased to 8



54

cm × 8 cm (L ≈ 1). The material properties of both regions are the same as the 4 ×

4 case. Two magnitudes of signal noise are applied in this case of 0.01% and 0.05%

and reconstruction results are shown in Figure IV-27 along with the noiseless case.
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Fig. IV-27. Ex. 10 Case 2: Reconstruction with signal noise of a centered strong
absorber 8x8cm

In the 0.01% signal noise case for this size domain, the model shows reasonably

that there is a stronger absorber in the center. While the size of this absorber is

incorrect and slightly smeared throught the center, the magnitude is a good approxi-

mation. In the 0.05% signal noise case, the entire centered absorber is smeared across

the middle including one region whos magnitude is too high by a factor of 3.5. The er-

ror in this case is too high to consider this a successful reconstruction, as the features

are hardly distinguishable. Thes reconstruction errors are shown in Figure IV-28.
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Fig. IV-28. Ex. 10 Case 2: Error in reconstruction with signal noise of a centered
strong absorber 8x8cm
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The third case was a domain of 12 cm× 12 cm in size (L ≈ 1). This is close

to the domain size reconstruction limit with no signal noise so reconstructions with

any signal noise are expected to be poor. The same material properties of the 4 × 4

and 8 × 8 case are used. Two magnitudes of signal noise are applied in this case of

0.0005% and 0.005% and reconstruction results are shown in Figure IV-29 along with

the noiseless case.
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Fig. IV-29. Ex. 10 Case 3: Reconstruction with signal noise of a centered strong
absorber 12x12cm

This case already had limited reconstruction ability with 0.0% noise, therefore

the addition of signal noise is expected to cause poor reconstructions. This case

began to lose distinguishable features as error increased over 0.005% and resulting

reconstruction error is shown in Figure IV-30.

0
2

4
6

8
10

12

0
2

4
6

8
10

12
0

0.005

0.01

0.015

x
y

(a) 0.0% Noise Er-
ror

0
2

4
6

8
10

12

0
2

4
6

8
10

12
0

0.05

0.1

0.15

0.2

0.25

0.3

x

 

y

(b) 0.0005% Noise
Error

0
2

4
6

8
10

12

0
2

4
6

8
10

12
0

0.1

0.2

0.3

0.4

x
y

(c) 0.005% Noise
Error

Fig. IV-30. Ex. 10 Case 3: Error in reconstruction with signal noise of a centered
strong absorber 12x12cm
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2. Addition of Signal Bias

The next example was implemented with signal bias was the previously defined cen-

tered strong absorber. This was tested at multiple noise strengths along with domain

sizes up to approximately the maximum reconstruction size. One of the same domains

tested with signal noise is chosen here and two problems tested with a bias with ad-

ditional signal strength and attenuated signal strength. In these cases a signal bias

is added of a specified magnitude, then random noise added of another magnitude to

simulate an actual signal bias with variable variance and magnitude.

a. Example 11: Reconstructing with a positive signal bias of a centered

strong absorber

In the first case a positive signal bias of various magnitudes was added to the synthetic

measured solutions then random signal noise of a 0.1% applied, and an attempt at

reconstructions performed. The test domain was the 4 × 4 characteristic length

centered strong absorber. This domain’s properties consist of Σa = 0.6, Σf = 0,

and D = 1.0 in the center and Σa = 0.3, Σf = 0, and D = 1 in the surrounding

area. The positive bias is applied in two magnitudes of 1.0% and 5.0% and resulting

reconstructions shown in Figure IV-31 including the 0.0% bias 0.1% noise case is

shown for comparison.
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Fig. IV-31. Ex. 11: Reconstruction with a positive signal bias of a centered strong
absorber

When a signal bias of 1.0% is added to the synthetic measured solution, the

measured solution is higher then expected leading to a cross section that provides

less attenuation. In the region surrounding the center absorber, the cross section is

smaller then the true value as expected however, in the center region the magnitude

of the cross section is higher then the true cross section. This is mainly due to the fact

that the signal bias is percentage based for each element not a flat bias throughout

the measurements. When the signal bias is increased to 5.0%, the cross section in the

surrounding region is again lowered, while the center region is again increased. These

reconstruction errors are shown in Figure IV-32.
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Fig. IV-32. Ex. 11: Error in reconstruction with a positive signal bias of a centered
strong absorber
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b. Example 12: Reconstructing with a negative signal bias on a centered

strong absorber

The same test as the positive signal bias, but with a negative signal bias instead. The

same domain is tested here with -1.0% and -5.0% bias with 0.1% random signal noise.

The same material properties as the positive bias are used here and reconstructions

are shown in Figure IV-33.
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Fig. IV-33. Ex. 12: Reconstruction with a negative signal bias of a centered strong
absorber

When a -1.0% bias is applied to the synthetic measured solutions, an abundance

of attenuation is expected leading to an increase in reconstructed cross section. This

is true for the surrounding region, this bias over accounts the attenuation in the

surrounding region leaving the center region’s cross section lower then expected. The

same effects are shown in the -5.0% case to a greater effect and the reconstruction

errors are shown in Figure IV-34.
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Fig. IV-34. Ex. 12: Error in reconstruction with a negative signal bias of a centered
strong absorber

F. Muli-group Results

With the multigroup equations it is possible to reconstruct multiple parameters at

once, for example the removal cross section of every group or a combination of removal

cross section and fission cross section simultaneously. In the case of two parameters

to be reconstructed, a homogeneous domain can be considered and a misfit surface

plot can be constructed to observe the dimensional space of the misfit with respect

to the two parameters.

1. Multi-group Misfit Plots

a. Example 13: Multigroup misfit plots of absorption cross sections only

The misfit surface code was modified to examine the variation of the misfit function

in the case of a single region multigroup example with respect to various cross-section

combinations. This enabled a visualization of reconstruction difficulty with respect

to various parameter combinations. The first case that was tested consisted of a two

group problem. χ1 = 1 and χ2 = 0, and the misfit was computed as a function of

Σr,1 and Σr,2. This problem is very similar to the original one group problem in such

there are two systems in energy coupled by parameters different than the ones being
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reconstructed. Similarly to the one group models, Σr,i can be reconstructed for any

number of energy groups. With incident beams in both energy groups, this misfit

surface plot is shown in Figure IV-35. As expected, with incoming beams in both

groups, reconstruction of both parameters is fairly simple. If the incident neutrons

were only in one group, for example the fast group, the ability to reconstruct was

tested as well.
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Fig. IV-35. Ex. 13: Misfit surface plot of Σr,1 and Σr,2 for 2 group homogeneous region
while varying source energy

In the case where incident neutrons are only in the fast group, the problem is more

ill-posed as the misfit function has an elongated valley as opposed to a steep conic

shape. While reconstruction ability is lower if incident neutrons are not in every group,

the coupling of the groups provides enough data for reconstruction of parameters in

the other groups. The misfit surface plot changed from a smooth conic shape to

smeared cone in the Σr,2 direction. In the case where incident neutrons are only in

the thermal group, an even more ill-posed problem is present. The reconstruction

ability is strongly dependent on the coupling between the two group, down scattering

or fission source, and when the source is weak in comparison to the incident neutrons,

the problem may be very ill-posed. In multigroup models, incident beams in every

group does add reconstruction ability.
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b. Example 14: Multigroup misfit plots of fission cross sections only

The next problem space that was tested with the misfit surface plot consisted of Σf,1

and Σf,2 in a 2 group problem. When reconstructing fission cross sections, one must

be careful due to physical limitations of the problem itself. When modifying νΣf ,

special care must be taken due to physical constraints such as criticality and Σf ≤ Σa.

In a realistic manner, if Σf = Σa and νΣf is still increased, due to Σf limitations

would have to imply that ν was increasing. This can lead to criticality issues very

quickly if conservative step length control is not implemented.

In this problem, when the fission cross section is modified by a large amount, and

the multiplication factor of the domain becomes greater then one, the flux can result

in a negative solution. The FEM diffusion solver implements the fission terms not

as a fixed source but in the current solution, when the system approaches criticality,

interesting results can occur such as negative fluxes in certain regions.

These physical limitations really limit the Σf,i and Σf,j workspace to a region

around the true solution if they are the only parameters being modified. Now that

physical limitations of simply modifying these parameters has been established, a

visualization of the reconstruction space was performed. The misfit function was

computed as a function of Σf,1 and Σf,2 of a homogeneous domain and results shown

in Figure IV-36. This function space is much flatter than the Σr space where quadratic

approximations in the Newtonian direction converged less slowly.
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Fig. IV-36. Ex. 14: Misfit surface plot of Σf,1 and Σf,2 for 2 group homogeneous region

This Σf,i vs. Σf,j workspace has a misfit several orders of magnitude lower

then the Σr,i vs. Σr,j workspace. This is partially due to the magnitude of the

parameters themselves. Due to criticality concerns, any fissile material placed in a

large container, would have to either be spread out or only be of a small quantity.

From a reconstruction standpoint, this would lead to a fission cross section much lower

then the total absorption cross section on the parameter grid due to the resolution

in the reconstruction homogenization. In the misfit surface plot of the Σf,i vs. Σf,j

workspace, the parameters can change significantly compared to the Σr,i vs. Σr,j

workspace while maintaining a low misfit. This data can be extrapolated to the case

of the centered fissile material expecting to limit the maximum reconstruction depth

to be shorter than the non-fissile case. One extreme example of the ill-posedness of

this type of problem is consisted of a very strong absorber with a fissile region with

significantly lower fission cross section than the absorption cross section in the center

of a domain, the fission rate, no matter what the fission cross section is, will have

little effect on the boundary fluxes.

When χ is distributed across more then one group such as the previously men-

tioned 4 group example, similar improvements occur, such as the Σr,1 and Σf,1, but
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the workspace for reconstruction is considerably smaller due to physical constraints.

c. Example 15: Multigroup misfit plots of mixed parameters

The next examples consisted of mixed parameters of type and group, for example

Σr,i and Σf,j. Reconstructions of this type are simpler then fission in multiple groups

due to the parameters are coupled weaker with respect to their energy groups. For

example, reconstruction of fission in both groups of two total groups, both parameters

produce neutrons in group one and are strongly coupled by both the groups fluxes.

While in a four group example, if Σf,4 and Σr,2 are reconstructed they are coupled

weaker and are simpler to reconstruct such as reconstructions of single parameters

are. Although mixed parameter reconstructions may have a limited workspace in the

Σf dimension, reconstruction ability is significantly greater due to Σr flexibility.

Next, the misfit is computed as a function of Σr,1 and Σf,1. This problem is very

similar to the original one group problem in such that the addition of the second

group provided no additional information to these two parameters as long as χ2 = 0.

This function shows a line solution as the minimum as expected and is shown in

Figure IV-37. If a 4 group problem is considered, and χ = [0.9 0.1 0.0 0.0] for the

four corresponding groups and same misfit was computed, since χ2 = 0.1 additional

information is provided to Σf,1. The resulting misfit surface plot is still an elongated

valley, but instead of a line solution it has a minimum enabling reconstruction for

this case.
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Fig. IV-37. Ex. 15: Misfit surface plot of Σr,1 and Σf,1 for 2 and 4 group homogeneous
regions

One example of mixed parameter reconstruction is tested for a four group case.

This example consists of χ = [0.9 0.1 0.0 0.0] where the misfit is computed as a

function Σr,2 and Σf,4 then the same parameters with reverse groups and results

shown in Figure IV-38.
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Fig. IV-38. Ex. 15: Mixed parameter misfit surface plots for 4 energy groups

Instead of the typical Σr vs. Σr type conic surface, as shown before the misfit

function is much flatter in the Σf space, so the misfit is expected to change slower
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in the Σf direction of the Σr vs. Σf misfit plot. The same effect is shown when the

parameters groups are switched.

2. Multigroup Reconstruction Results

a. Example 16: Reconstruction of a thermal strong absorber

The first case consists of reconstruction of Σr for multiple groups. As mentioned pre-

viously, this example resembles weakly coupled one group cases solved simultaneously

so high reconstruction ability is expected. This is essentially the base fundamental

reconstruction and similar tests as the single group can be compared to test the recon-

struction limits. The test case considered consisted of a homogeneous domain with

a centered strong thermal absorber. This is similar to the previous centered strong

absorber except that in this test case it only exists in group 2 of 2 total groups. The

reconstruction for this problem is shown in Figure IV-39 and corresponding error in

Figure IV-40.
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Fig. IV-39. Ex. 16: Multigroup reconstructions of a thermal centered absorber
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Fig. IV-40. Ex. 16: Error in multigroup recon. of a thermal centered absorber

Essentially the same reconstruction limits for one group problems are similar

here for Σr reconstructions for multigroup problems. They can be viewed as separate

systems only weakly coupled by fission and scattering terms and modification of the

Σr does not have any limits with respect to the other cross sections making a large

workspace in the reconstruction space.

b. Example 17: Reconstruction of centered fissile material

The next example problem attempts to reconstruct the fission cross section of a

centered strong fissile material. As mentioned before, the misfit space for the fission

cross section is strongly dependent on the magnitude of the fission cross section and

this example consists of a centered strong fissile region inside a domain. This problem

consists of a coarse mesh of 8 × 8 or 64 regions to reconstruct and the domain

properties shown in Table IV-V.
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Table IV-V. Ex. 17: Domain parameters of centered fissile material

Region D1 D2 Σa,1 Σa,2 Σf,1 Σf,2

Outer 0.5 0.5 2.0 3.0 0.01 0.01

Center 0.5 0.5 2.0 3.0 0.30 0.30

With an initial guess of Σf,1 = 0 and Σf,2 = 0 for the entire domain and, using

eight experiments, the optimality conditions were iterated down to the order of 10−7.

This reconstruction is shown in Figure IV-41 and reconstruction error in Figure IV-42.
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Fig. IV-41. Ex. 17: Σf,1 and Σf,2 reconstructions of centered fissile material
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Fig. IV-42. Ex. 17: Error in Σf,1 and Σf,2 reconstructions of centered fissile material

The reconstruction error is significantly greater then the previous removal or

absorption cross-section reconstructions while the optimality conditions are driven

down to the same magnitude. This is a result of the ill-posedness of the problem

as shown by the flatness of the misfit plot. While the center region has the highest

reconstruction error, it is still noticeable that there is stronger fissile material there.

c. Example 18: Maximum reconstruction depth testing for νΣf

Another fission reconstruction example demonstrates the maximum reconstruction

depth. A simple domain of 8 × 8 consisting of side by side homogeneous pieces with

a total of 64 regions of reconstruction is employed here. This domain has dimensions of

approx 12 cm × 12 cm (L ≈ 1cm) and 16 experiments are used in this reconstruction

each consisting of a beam covering one fourth of a side. This simple case is used as a

benchmark to test fission cross-section reconstruction depth. This examples material

properties are given in Table IV-VI.
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Table IV-VI. Ex. 18: Domain parameters of two region fissile material

Region D1 D2 Σa,1 Σa,2 Σf,1 Σf,2

Left 0.33 0.33 2.0 3.0 0.2 0.3

Right 0.33 0.33 3.0 4.0 0.3 0.4
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Fig. IV-43. Ex. 18: Σf,1 and Σf,2 reconstructions of a two zone fissile step
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Fig. IV-44. Ex. 18: Error in Σf,1 and Σf,2 reconstructions of two zone fissile step

This reconstruction, in Figure IV-43 and error in Figure IV-44, was approxi-
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mately the maximum depth any noticeable features can be distinguished for fission

cross-section reconstructions. This reconstruction was approximately 6 characteris-

tic lengths deep, or half the domain size, where noticeable internal features become

indistinguishable. The maximum depth for fission parameter reconstruction is ap-

proximately 5-6 characteristic lengths which is 1-2 characteristic lengths shorter then

removal cross-section reconstructions.

d. Example 19: Mixed parameter reconstructions

The final multigroup reconstruction problem consists of mixed parameter reconstruc-

tions. Due to the physical limitations on Σf with respect to Σa there is less freedom

for parameter modification in these cases, causing the reconstruction space to be

smaller. The first case was a 2-group problem where Σr,1 and Σf,2 are reconstructed.

This example has the same paramters as shown in Table IV-VI. The domain has size

of 1 cm × 1 cm (L ≈ 0.33cm) and strong reconstruction ability is expected. Results

from the reconstruction of Σr,1 and Σf,2 are shown in Figure IV-45.
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Fig. IV-45. Ex. 19: Mixed parameter reconstructions for a 2 group problem

As expected, the mixed parameter reconstruction is excellent and the error is
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shown in Figure IV-46.
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Fig. IV-46. Ex. 19: Error for mixed parameter reconstructions for a 2 group problem

The reconstruction parameter groups are then and Σf,1 and Σr,2 are reconstructed

and results shown in Figure IV-47.
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Fig. IV-47. Ex. 19: Mixed parameter reconstructions for a 2 group problem

As in the previous example, an excellent reconstruction is obtained with resulting

error in Figure IV-48.
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Fig. IV-48. Ex. 19: Error for mixed parameter reconstructions for a 2 group problem

e. Example 20: Variation of incident neutron and measurement energy

A more ill-posed problem is at hand, as seen by the misfit surface plots in Figure

IV-35, when incident neutrons are not present in all groups or measurements are not

made in all groups. To demonstrate this, a two-group problem is considered where

incoming neutrons are only present in group one and measurements are only made in

group 2 and both groups removal cross section is attempted to be reconstructed. In a

problem where measurements are made in a group that does not contain any incident

neutrons, reconstruction ability is strongly dependent on the source of neutrons to

this group by scatter or fission. For this example, the domain properties are shown

in Table IV-VII.

Table IV-VII. Ex. 20: Domain parameters for a multigroup centered strong absorber

Region D1 D2 Σa,1 Σa,2 Σf,1 Σf,2 Σs,1→2 Σs,2→2

Outer 1 1 0.2 0.2 0.05 0.1 0.14 0.0

Center 1 1 0.4 0.4 0.05 0.1 0.14 0.0
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The results for the reconstruction in group one are shown in Figure IV-49.
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Fig. IV-49. Ex. 20: Reconstruction of Σr,1 with incident neutrons only in group one
and measuring only in group 2

The results for the reconstruction in group two are shown in Figure IV-50.
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Fig. IV-50. Ex. 20: Reconstruction of Σr,2 with incident neutrons only in group one
and measuring only in group 2

These reconstructions are not of high quality as the strong absorbers appear to

be smeared throughout the domain. This due to the lack of information produced

by the presence of incoming neutrons and measuring in single different groups. Even

though this domain may have high reconstruction ability with incident neutrons and

measurements in both groups, reducing these to one each greatly affects the recon-

structions.
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CHAPTER V

CONCLUSIONS

The inference or reconstruction of material parameters inside a domain is presented

as a PDE-constrained optimization problem. In such problems, non-invasive inverse

problem techniques are employed using only boundary input and output as informa-

tion. An initial guess is performed, then an attempt to iterate to the solution is made

where Newton’s method implemented.

When a reconstruction is attempted on a domain there are several factors that

play a key role in the ability of reconstruction no matter the complexity of the do-

main. Such factors are the location of measurements, location of incoming beams,

and which parameter is being reconstructed. Through a misfit analysis, the location

of incident and measurement location has been shown to severely affect the ability of

reconstruction. For example in the two parameter case, or side by side homogeneous

regions, if you only measure or have incoming particles on one side of the domain, the

magnitude of the properties on the other side will have very little effect on the flux at

the measurement points. Problems such as this are very ill-posed where the material

parameters can change significantly whereas the resulting fluxes at the measurement

points have little or no change. In such problems, the optimality conditions must

be driven as low as possible to achieve meaningful results. This knowledge can be

extracted to more complicated cases and problems can be approached with greater

knowledge to provide the best possibility of reconstruction for any given domain.

The material parameter that is being reconstructed plays a role in the ability

to reconstruct it based on its magnitude with respect to the other parameters. For

example in a moderately thick domain of very strong absorption cross section, if the
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center region had a very weak fission cross section, such few of these neutrons born

from fission in the center actually make it to the measurement points therefor having

negligible change on the boundary fluxes even with significant change in the center

region’s fission cross section therefore having negligible change on the misfit.

In the one group case with position dependent parameter reconstruction, an at-

tempt at reconstructing the neutron absorption cross section was performed with

incoming neutron beams on all four sides of the two dimensional domain. This model

proves reconstruction of material parameters is possible with PDE-constrained opti-

mization and more complicated applications should be implemented.

The concept of multiple experiments has been introduced next, where the neu-

tron source is moved creating multiple separate flux and adjoint solutions while the

problem optimizes the same set of cross sections. When multiple experiments were ap-

plied to this one group problem, a large increase in reconstruction ability was shown.

Domains of certain complexity or size that no internal features distinguishable using

only one experiment could now be reconstructed successfully. While the addition

of multiple experiments proves greater reconstruction ability, no matter how many

experiments are used, there still are reconstruction limits with respect to domain size

and resolution. In the benchmark case of the centered strong absorber, the maxi-

mum reconstruction depth was limited to approximately 6-7 diffusion lengths deep

from the boundary. When a domain of larger size is considered, even with a large

number of experiments, the internal features of the domain cannot be reconstructed.

Reconstruction resolution has limits as well, such that if the size of a domain is held

constant and a finer and finer mesh considered, no matter how many experiments

used, reconstruction resolution is limited to a fraction of an optical thickness.

The addition of signal noise or bias on the synthetic measured solutions severely

affects the reconstruction ability of a domain. In small sized domains, such as 4
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× 4, the addition of signal noise up to about 1.0% still allows reconstruction of

distinguishable features of a domain while for larger domains, small quantities of

signal noise around 0.005% to 0.01% may still be enough to destroy reconstruction

ability. When a signal bias is applied to the synthetic measured solution, or signal

noise averaged higher or lower then zero, it is expected that if the measured solutions

are stronger, the cross sections be lower causing less attenuation and vice versa. The

results from cases where reconstruction ability is high, this shows to be true although

areas where reconstruction ability is low error increases significantly with the addition

of signal noise or bias.

In the approximation, the same reconstruction limits do not always apply to

the inference of various parameters from different energy groups. In the case of

removal cross sections only to be reconstruction, these parameters do not couple

the groups together in any way and is similar to reconstruction of two one-group

problems simultaneously. In this reconstruction parameter configuration, the same

reconstruction limits from the one group absorption problems arise here as well. The

same maximum reconstruction depth of 6-7 diffusion lengths deep from the boundary

is seen here.

If fission cross sections are to be reconstructed, a more complicated problem

arises. In simple homogeneous domains, the fission cross section can be reconstructed

easily just as the removal cross section. In more complicated problems, the ratio

of fission cross section to absorption cross section may play a role in the ability to

reconstruct. As mentioned before in the case of a strong absorber around a centered

region of weak fissile material, due to the magnitude of the fission cross section with

respect to the strength of the absorber, the misfit space in this problem is significantly

flatter with respect to change in the cross section. The fission cross section in the

center can change significantly without noticeable change in the boundary fluxes and
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misfit. This problem is more ill-posed than the case of absorption or removal cross-

section reconstruction as shown by the magnitude of the misfit surface plots. Through

similar test problems, the maximum reconstruction depth of approximately 5 diffusion

lengths is present for multigroup fission cross-section reconstructions. This is smaller

then the removal or absorption reconstruction limits by a significant quantity of 1-2

characteristic lengths.

Subsequent work may include a transport model for the governing physics con-

straint. The same optimization methods would apply, except a transport operator

would replace the diffusion operator. This will provide more accurate flux solutions

especially in cases where the diffusion approximation is weak. Additional subsequent

work may include the implementation of more constraints, for example using barrier

methods, for complex problems where the optimization functional is not smooth.
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