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ABSTRACT

Toward Understanding and Modeling Compressibility Effects on Velocity Gradients

in Turbulence. (December 2009)

Sawan Suman, B.Tech., Indian Institute of Technology-Kanpur, India

Chair of Advisory Committee: Dr. Sharath S. Girimaji

Development of improved turbulence closure models for compressible fluid flow

simulations requires better understanding of the effects of compressibility on various

underlying processes of turbulence. Fundamental studies of turbulent velocity gradi-

ents hold the key to understanding several non-linear processes like material element

deformation, energy cascading, intermittency and mixing. Experiments, direct nu-

merical simulation (DNS) and simple mathematical models are three approaches to

study velocity gradients. With the goal of furthering our understanding of the effects

of compressibility on turbulent velocity gradients, this dissertation (i) employs DNS

results to characterize some of the effects of compressibility on turbulent velocity gra-

dients, and (ii) develops simple mathematical models for velocity gradient dynamics

in compressible turbulence.

In the first part of the dissertation, effects of compressibility on velocity gradient

invariants and the local topology of compressible turbulence are characterized em-

ploying DNS results of compressible decaying isotropic turbulence. Joint statistics of

second and third invariants of velocity gradient tensor and the exact probability of

occurrence of associated topologies conditioned upon dilatation (degree of compres-

sion/expansion of fluid) are computed. These statistics are found to be (i) highly

dependent on dilatation and (ii) substantially different from the statistics observed

in incompressible turbulence. These dilatation-conditioned statistics of compressible

turbulence, however, are found to be fairly independent of Mach number and Reynolds
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number.

In the second part of the dissertation, two mathematical models for compressible

velocity gradient dynamics are developed. To take into account the significant aero-

thermodynamic coupling that exists in compressible flows, the models are derived

explicitly using the continuity, energy and state equations, along with the momen-

tum equation. The modeling challenge involved in the development of these models

lies in capturing the inherently non-local nature of pressure and viscous effects as a

function of local terms to derive a closed set of ordinary differential equations. The

models developed in this dissertation are evaluated in a variety of flow regimes - in-

compressible limit (low Mach number); pressure-released limit (extremely high Mach

number); and intermediate (sub-sonic Mach numbers) - and are shown to recover a

range of known compressibility effects.
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CHAPTER I

INTRODUCTION

Development of improved turbulence closure models for compressible flow computa-

tions relies on our ability to understand the underlying physics of various processes

and the influence of compressibility on these processes. Examination of velocity gra-

dients offers a viable route to understanding several important non-linear turbulence

phenomena such as energy cascade, scalar mixing, material element deformation and

intermittency. This dissertation attempts to advance the current understanding of

the effects of compressibility on turbulent velocity gradients.

Velocity gradient tensor is an exact representation of the deformation rate of a

fluid element. While the symmetric part of velocity gradient tensor - the strain-rate

tensor - represents the rate of stretching of a fluid element, the anti-symmetric portion

– the rotation-rate tensor – represents the rate of rotation, or equivalently vorticity,

associated with a fluid element. On the other hand, trace of the velocity gradient

tensor or dilatation represents the rate of change in the volume of a fluid element.

In incompressible flows, dilatation is identically zero. However, in compressible flows

dilatation can assume a range of values across the flow domain: positive values for

expanding fluid elements; and negative values for contracting ones. Invariants of the

velocity gradient tensor can be used to directly infer the local streamline pattern/local

topology of flow, thus aiding in flow visualization [1]. Some of the most popular vortex

eduction techniques – required for isolating and understanding coherent structures

of a turbulent flow field – rely on the knowledge of velocity gradient invariants [2,

3]. Topology of a turbulent flow field is intrinsically interesting, not only as an aid

This dissertation follows the style of Journal of Turbulence.
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to flow visualization, but also, provides insight into material element deformation

and mixing. A non-focal topology will deform a fluid element and lead to increased

mixing. A focal-topology, on the other hand, will merely re-orient a fluid element

without significant increase in mixing. On the other hand, magnitude and sign of the

principal strain-rates reveal the nature of self-straining of a fluid element. Orientation

of the vorticity vector, with respect to the strain-rate eigenvectors, influences the

extent of vortex stretching. This in turn leads to generation of smaller length scales

in a flow field and the associated transfer of kinetic energy from large to smaller

scales of motion [4, 5]. Interaction of vorticity vector with strain-rate tensor also

influences the orientation tendencies of scalar gradients, thus influencing mixing [5].

The phenomenon of intermittency is related to the localized magnification of velocity

gradients [6]. Higher order structure tensor functions of velocity gradients can be

employed to directly study many features of anisotropic turbulence [7].

Experimental observations, direct numerical simulations (DNS) and mathemat-

ical models are three approaches to studying velocity gradients in a turbulent flow

field. Each of these modes has advantages and disadvantages. Recent developments in

non-invasive methods [8] have enabled experiments to capture velocity gradient data

with high accuracy. However, availability of experimental data is limited and often

restricted to small regions in a flow field. In recent years, direct simulation of Navier -

Stokes equations has emerged as a powerful tool to simulate turbulent flow field over

large volumes. Though DNS computations do provide an almost time-continuous,

domain-spanning data of the velocity gradient field, the computational demand for

such simulations is quite high, especially at large Reynolds numbers. A mathematical

model for the evolution of velocity gradient tensor is the third alternative for studying

velocity gradient physics. Such a model is expected to be a closed set of autonomous

ordinary differential equations and can provide a very simple, although less accurate,
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way to study the evolution of velocity gradients. Moreover, such a model – owing to

its Lagrangian nature – can prove to be a more intuitive method to develop insights

into velocity gradient physics and the non-linear processes of turbulence. Another

advantage of having a velocity gradient model is that it can provide a direct closure

for the stochastic methods of turbulence computations [9, 10].

A. Literature review

The research presented in this dissertation can be categorized into two parts. In

the first part (Chapter II), DNS results are employed to characterize the effects of

compressibility on velocity gradient invariants and the related local topology of com-

pressible turbulence. In the second part (Chapters III and IV), mathematical models

for compressible velocity gradient dynamics are developed. Accordingly, in this sec-

tion separate literature reviews corresponding to these two parts of the dissertation

are presented.

1. Effects of compressibility on velocity gradient invariants and local topology

Motivated by the need for a general classification methodology to categorize flow

topology, Chong et al. [11] proposed a scheme based on the three invariants (P,Q,R)

of velocity gradient tensor. Employing this scheme, the local streamline pattern or

the local topology of the velocity field can be inferred. Subsequently, Soria et al.

[12] studied the joint statistical distributions of Q and R at small scales of motion

in incompressible mixing layers. They found that the scatter plot of the second

and third invariants has two prominent features: (i) a significant amount of data

lies in lower right quadrant, and (ii) the bulk of data lies in the upper left quadrant

roughly distributed uniformly over an elliptical region. The local topologies associated
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with these two regions are unstable node/saddle/saddle and stable focus stretching

(described in detail in Chapter II). These prominent topological features immediately

attracted considerable research attention and were later found to be quite robust

across a variety of turbulent flows: in high symmetry flow by Boratav et al. [13];

boundary layer flow by Chacin et al. [14]; channel flow by Blackburn et al. [15]; and

turbulent/non-turbulent interface by da Silva et al. [16]. In addition to inferring the

dominant local topologies, invariant studies have also been used by several workers

to develop more insightful understanding of turbulence. Boratav et al. [13] suggested

the usefulness of studying turbulence statistics conditioned on the value of Q, as

this quantity directly corresponds to the right hand side of the Poisson equation for

pressure. Thus, such conditioning can isolate the role of pressure. Chacin et al.

[14] identified the strong association of various production mechanisms with the sign

of the discriminant, D (≡ 27R2/4 + Q3). Soria et al. [17] explained the preferred

vorticity alignment tendencies and the preferred sign of the intermediate strain-rate

using volume integrals of the invariants. O’Neill et al. [18] studied the association

between scalar dissipation and topological structures. Kobayashi et al. [19] used a

normalized form of the second invariant Q to develop a subgridscale (SGS) model for

large eddy simulation (LES) applications.

All the above cited works are in the context of incompressible turbulence wherein

the first invariant, P (which is the additive inverse of dilatation) is zero. Some

studies have been performed for compressible turbulence as well. Chen et al. [20]

and Cantwell et al. [21] studied the dynamics of invariants and the associated flow

topologies in compressible wakes and flames. Chen et al. [22] examined the statistics

of second and third invariants in a compressible mixing layer. Maekawa et al. [23]

studied flow patterns/local topologies in decaying isotropic compressible turbulence

and reported the percentage occurrence of various flow patterns conditioned on the
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sign of dilatation. Miura [24] performed a comparative study of compressible and

incompressible decaying turbulence in terms of (a) vortical structures and (b) root

mean square of the fluctuations in Q. Pirozzoli et al. [25] studied the invariants of the

traceless anisotropic portion of the velocity gradient tensor in compressible isotropic

turbulence.

In all these studies of compressible turbulence, however, the effect of the first

invariant (P ) on the statistics of the second and third invariants has largely been

ignored. As mentioned before, P being the additive inverse of dilatation, is trivially

zero in incompressible flows. However, in compressible flows it can be considerably

different from zero. A non-zero P signifies the degree of compression/expansion of

a fluid element, and thus is a very significant quantity in compressible turbulence.

Maekawa et al.[23] does consider the first invariant, but is concerned only with the

sign of P , but not with the magnitude of P .

Recently, Suman et al. [26] and Lee et al. [27] have demonstrated the strong de-

pendence of strain-rate statistics on normalized dilatation in compressible turbulence.

Previous studies [22] of compressible velocity gradients fields at low and moderate

Mach numbers concluded that the overall statistics of second and third invariants are

very similar to the behavior seen in incompressible turbulence. As discussed in [27],

this behavior may be due to the following two factors: (i) the dilatational component

of velocity gradient in these studies is small; and (ii) the effects of positive and neg-

ative dilatation may be canceling each other, thus showing no significant difference

between the overall statistics of incompressible and compressible turbulence. This

scenario can substantially change at higher Mach numbers. Lee et al. [27] demon-

strate that the percentage occurrence of a non-zero dilatation value steadily grows

as Mach number increases in decaying isotropic turbulence. Moreover, with increas-

ing Mach number, more extreme values (both positive and negative) are encountered
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in the domain. Therefore, it is reasonable to expect that at very high Mach num-

bers, overall turbulence behavior can be substantially different from incompressible

turbulence.

These studies [26, 27] prompt the following questions: (i) are the statistics of

second and third invariants also strongly dependent on normalized dilatation? (ii)

how does this dependence change at different levels of normalized dilatation? (iii)

what are the preferred local topologies at different non-zero dilatations? (iv) How

do the initial parameters, such as Mach number and Reynolds number, influence this

dependence? The first part of the dissertation (Chapter II) attempts to answer these

questions.

2. Development of mathematical models for compressible velocity gradient

dynamics

The first attempt to derive a Lagrangian model for velocity gradient dynamics in

incompressible turbulence was made by Vieillefosse [4]. This model - called the re-

stricted Euler equation (REE) - is based on the Euler equation and is an autonomous

system of ordinary differential equations describing the nonlinear velocity gradient

dynamics in incompressible flows. Ashurst et al. [5] demonstrated that REE accu-

rately captures many important features of velocity gradient geometry seen in DNS

of homogeneous shear and decaying isotropic turbulence. Subsequently, several mod-

ifications have been proposed to enhance the REE. Cantwell [28] presented invariant

maps of velocity gradient tensor to develop more insight into the tensor geometry.

Cantwell [29] also proposed a modeled form of the neglected pressure effects and

demonstrated that this modification captures some additional features of velocity

gradient physics seen in DNS results. Girimaji et al. [7] identified a limitation in the

original REE in the context of non-zero mean flows and proposed modified REE to
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ensure momentum conservation. Also, a computational strategy to circumvent the

problem of finite-time singularity was developed. Chertkov et al. [30] proposed an

improvement to REE based on Lagrangian tetrad dynamics. Jeong et al. [31] in-

corporated further physics into the REE to take into account the viscous effects and

consequently, removed the finite-time singularity problem altogether. Recently, Li et

al. [6] have used the restricted Euler dynamics to propose a simple nonlinear dynam-

ical model to explain the origins of intermittency in turbulent flows. Furthermore,

Chevillard et al [32], Biferale et al. [33] and Chevillard et al. [34] have used a more

unified approach to model both the anisotropic pressure Hessian and viscous effects

employing Eulerian-Lagrangian change of variables (also used by Jeong et al. [31]

to model viscous effects) and the so-called “recent fluid deformation closure”. With

these modifications, REE reproduces several stationary statistics of incompressible

velocity gradients seen in DNS. Overall, REE is emerging as an important analytical

tool for studying various turbulence mechanisms in incompressible flows.

However, even in its most advanced form, REE is fundamentally unsuited for

modeling velocity gradient dynamics in compressible flows. The modeled pressure

Hessian tensor in REE hinges on the Poisson equation and involves no thermody-

namic considerations. The interaction of pressure with velocity field plays an impor-

tant role in velocity gradient dynamics. In incompressible flows, the pressure field

depends exclusively upon velocity field via the Poisson equation. The restricted Euler

model takes advantage of this fact and closes the pressure Hessian in terms of the

velocity gradient itself by completely neglecting the anisotropic portion of the ten-

sor. In compressible flows the pressure field evolution is dictated by state and energy

equations. Variations in temperature and density manifest on the turbulent veloc-

ity field via pressure effects. The momentum and energy equations become coupled,

and thermodynamics can significantly influence the velocity field. A velocity gradi-
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ent model for compressible flow field must necessarily take into account this coupling

between turbulence and thermodynamics. The REE approximation, which hinges on

the Poisson equation, is fundamentally unsuited for extension to compressible flows.

Thus, there is a need to develop a suitable model, which can be used for compressible

turbulent flows. Unlike REE, such a model requires the explicit inclusion of energy

and state equations along with the continuity and momentum equations. The chal-

lenge involved in developing such models lies in capturing the inherently non-local

nature of pressure and viscous effects as a function of local terms to derive a closed

set of autonomous ordinary differential equations.

B. Dissertation goals

In light of the literature review presented above, the following two goals are identified

for this dissertation.

(1) The first goal of the dissertation is to characterize the effects of compressibil-

ity on velocity gradient invariants and the local topology of compressible turbulence.

Toward this end, the following specific objectives are pursued: (i) examination of the

dependence of the joint statistics of second and third invariants of velocity gradient

tensor on dilatation (degree of compression/expansion of a fluid element) in compress-

ible decaying isotropic turbulence, (ii) identification of the predominant topologies

at various levels of normalized dilatation, and (iii) evaluation of the dependence of

conditional statistics on initial turbulent Mach number and Reynolds number. Fur-

thermore, the performance of a recently developed model for compressible velocity

gradients – homogenized Euler equation [26] - is evaluated against the behavior seen

in DNS.

(2) The second goal of the dissertation is to develop mathematical models to com-
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pute the evolution of velocity gradients in compressible turbulence. Toward this goal,

two models are developed: (a) homogenized Euler equation (HEE); and (b) enhanced

homogenized Euler equation (EHEE). The HEE model ignores all the non-local ef-

fects on the evolution of velocity gradients and can be considered base line model

for compressible velocity gradients. On the other hand, in the EHEE model, several

non-local pressure and viscous effects are included. Both models are extensively eval-

uated in various flow regimes - incompressible, intermediate and pressure-released –

against a range of available DNS and analytical results of turbulence.

The dissertation is organized into 5 chapters. In Chapter II the effects of com-

pressibility on velocity gradient invariants is characterized. In Chapter III the HEE

model is developed and evaluated. Chapter IV presents an account of the develop-

ment and evaluation of the EHEE model. Chapter V concludes the dissertation with

a summary.
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CHAPTER II

EFFECTS OF COMPRESSIBILITY ON VELOCITY GRADIENT INVARIANTS

AND LOCAL TOPOLOGY OF TURBULENCE

The objectives of this chapter are (i) to examine the dependence of the joint statistics

of second and third invariants of velocity gradient tensor on dilatation in compressible

decaying isotropic turbulence, (ii) to identify the predominant topologies at various

levels of normalized dilatation, and (iii) to evaluate the dependence of the conditional

statistics on initial turbulent Mach number and Reynolds number. Furthermore we

also investigate whether the invariant statistics seen in direct numerical simulation

(DNS) of compressible turbulence can be recovered by a recently proposed model

(homogenized Euler equation [26]) for compressible velocity gradient dynamics.

The organization of this chapter is as follows. Section B includes an overview of

the three-dimensional phase space of P , Q and R and the methodology of inferring the

local flow topology. Section C, D include results from DNS and HEE computations,

respectively.

A. The phase space of P −Q−R and topology of compressible turbulence

The local topology at a point in a flow field can be deduced with a knowledge of

the eigenvalues (λi) of the local velocity gradient tensor, Aij [11]. These eigenvalues

satisfy the following characteristic equation:

λ3 + Pλ2 +Qλ+R = 0 (2.1)
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The quantities P , Q and R appearing in (2.1) are the first, second and third invariants

of Aij:

P ≡ −tr[A] = −Sii;

Q ≡ 1

2

(
P 2 − tr[A2]

)
=

1

2

(
P 2 − SijSji −WijWji

)
;

R =
1

3

(
−P 3 + 3PQ− SijSjkSki − 3WijWjkSki

)
. (2.2)

The quantities Sij and Wij represent the strain-rate and rotation rate tensors respec-

tively: Sij ≡ 1
2

(Aij + Aji) and Wij ≡ 1
2

(Aij − Aji). The characteristic equation (2.1)

has three roots. The nature of solution and the local flow topology can be categorized

based on these roots. The possibilities are: (i) all real and distinct roots; (ii) all real

and two equal roots; (iii) all real and equal roots ; and (iv) one real and two com-

plex conjugate roots. However, to infer category of solution we do not need to solve

the characteristic equation. Topology can be directly inferred using the properties of

P −Q−R space and the values of the invariants P , Q and R.

Chong et al. [11] explain that the P −Q− R space is partitioned into different

spatial regions by a set of surfaces. Each of these regions corresponds to a particular

category of the solution of the characteristic equation and hence is associated with a

particular topology. The surface that separates the regions of real and complex roots

is:

27R2 +
(
4P 3 − 18PQ

)
R +

(
4Q3 − P 2Q2

)
= 0. (2.3)

This surface can be split into two surfaces S1a and S1b, which osculate each other to

form a cusp. The equations for S1a and S1b are:

1

3
P

(
Q− 2

9
P 2

)
− 2

27

(
−3Q+ P 2

) 3
2 −R = 0; (2.4)

1

3
P

(
Q

2

9
P 2

)
+

2

27

(
3Q+ P 2

) 3
2 −R = 0. (2.5)
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Fig. 1. Regions on the p = 0 (Aii = 0) plane and the corresponding flow patterns.

Description of acronyms provided in Table I.
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Fig. 2. Regions on a negative p (or a positive Aii) plane and the corresponding flow

patterns. Description of acronyms provided in Table I.

The region of complex roots has another dividing surface, S2, which contains the

points associated with purely imaginary roots:

PQ−R = 0. (2.6)

It is convenient to visualize the P − Q − R space and the various regions (that

determine various local flow topologies) by considering planes of Q and R at discrete

values of P . On such a plane, surfaces S1a, S1b and S2 appear simply as curves

which divide the plane into different planar regions. In Figures 1 – 3, we show three
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Fig. 3. Regions on a positive p (or a negative Aii plane) and the corresponding flow

patterns. Description of acronyms provided in Table I.
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representative Q − R planes at P = 0, P < 0 and P > 0. On the P = 0 plane

(Figure 1) the surface S2 is coincident with the Q axis. The surfaces S1a and S1b are

symmetric with respect to each other about the Q axis thus dividing the plane into

four regions. These four regions are associated with four distinct flow patterns which

are schematically shown in Figure 1. These flow patterns are UFC, UNSS, SNSS and

SFS. The description of these acronyms and the others which appear elsewhere in this

chapter are included in Table I. While UNSS and SNSS are non-focal structures (all

real eigenvalues), UFC and SFS are structures with a focus and an out-of-plane strain

(one real and two complex conjugates roots). As P assumes a non-zero value, two

qualitative differences appear on the Q-R plane: (i) surface S2 is no longer co-incident

with the Q-axis, and (ii) the symmetry of surfaces S1a and S1b is lost (Figures 2 and

3). Consequently, additional regions appear on these planes. Both P < 0 and P > 0

planes are now divided into six regions. An increase in the number of regions results

in an increase in the number of possible topologies as well. On both P < 0 and P > 0

planes, there are three focal and three non-focal topologies. The schematic of these

patterns and their correspondence with the six regions are illustrated in Figures 2

and 3. On each of these figures, in addition to the flow patterns associated with the

six regions, we include an illustration of the topology associated with the osculation

point of S1a and S1b curves. This topology is USN/USN/USN and SSN/SSN/SSN on

P < 0 and P > 0 planes, respectively. The significance of these two point-associated

topologies in compressible turbulence will be discussed in the next section.

Notably, the associated topology for a given Aij tensor does not depend on the

magnitude of the tensor. It depends only on the structure of the tensor. We can define

a normalized form of the velocity gradient tensor that retains all the information
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Table I. Description of acronyms.

Acronyms Description

SFS Stable Focus Stretching

UFS Unstable Focus Stretching

SFC Stable Focus Compressing

UFC Unstable Focus Compressing

SN/S/S Stable Node/Saddle/Saddle

UN/S/S Unstable Node/Saddle/Saddle

SN/SN/SN Stable Node/Stable Node/Stable Node

UN/UN/UN Unstable Node/Unstable Node/Unstable Node

SSN/SSN/SSN Stable Star Node/Stable Star Node/Stable Star Node

USN/USN/USN Unstable Star Node/Unstable Star Node/Unstable Star Node
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pertaining to the structure of Aij. The normalized form (aij) is defined as:

aij ≡
Aij√

AmnAmn
. (2.7)

Thus, the associated topology can as well be inferred by employing the same method-

ology as described in [11] but to the space of the normalized invariants p, q and r.

These normalized invariants are defined as:

p ≡ −tr[a] = −sii;

q ≡ 1

2

(
p2 − tr[a2]

)
=

1

2

(
p2 − sijsji − wijwji

)
;

r ≡ 1

3

(
−p3 + 3pq − tr[a3]

)
=

1

3

(
−p3 + 3pq − sijsjkski − 3wijwjkski

)
(2.8)

where sij and wij are the normalized strain and rotation rate tensors: sij ≡ aij+aji

2
and

wij ≡ aij−aji

2
. The advantage of using normalized invariants is that all the quantities

are bounded by their known algebraic limits. In compressible flows, p, which is

negative of normalized dilatation, can vary within the algebraic limits of −
√

3 and
√

3. On the other hand the normalized invariants q and r are bounded in the intervals

[−1/2, 1] and
[
−
√

3/9,
√

3/9
]
, respectively.

B. DNS results of invariants and local topology

In this section, we present the statistics of velocity gradient invariants seen in direct

numerical simulation of compressible decaying isotropic turbulence. We examine these

statistics conditioned upon normalized dilatation (aii = Aii√
AmnAmn

). We also examine

the dependence of the conditional statistics on initial Mach number and Reynolds

number.

All DNS results presented in this section are computed using a Gas Kinetic

Method (GKM) solver. GKM solvers have been developed and verified for various
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Table II. DNS simulation cases

Parameter Case A Case B Case C

Reλ 55.6 80.0 55.6

Mt 0.70 0.70 0.43

compressible flow applications [35, 36]. Kerimo et al. [37] demonstrate the accuracy

and robustness of GKM solvers for turbulent flow simulations. DNS data used for

discussion in this chapter is obtained by Lee [38] over a computational domain of

2563 box with periodic boundary conditions. We discuss results from three different

simulation cases. The initial turbulent Mach number (Mt) and Taylor-scale Reynolds

number (Reλ) of these simulations are specified in Table II. Further details about the

simulations are available in [38]. In each case, velocity field is obtained at the peak

of dissipation. Velocity gradient field is then computed for the entire computational

domain, and subsequently the three invariants are evaluated at each grid point. Using

the values of p at these grid points, q− r data is then binned at various chosen levels

of normalized dilatation. The bin specifications and the sample size corresponding to

each bin are provided in Table III.

1. Conditional invariant statistics in compressible turbulence

We study the statistics of the invariants in terms of (i) joint probability density

function (PDF), and (ii) probability of occurrence of various topologies (shown in

Figures 1–3) at various levels of normalized dilatations. We start the discussion with

the zero dilatation case (aii = −p = 0). Subsequently, we study the invariant statistics

conditioned upon different positive and negative dilatation values. All the conditional
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Table III. Number of samples at each dilatation level. Bin size corresponding to each

dilatation level is ±0.05 about the median value.

Median value of aii Case A Case B Case C

1.4 657 419 -

1.1 6941 3759 7

0.7 66455 47592 2368

0.3 914684 788133 236518

0.0 3866101 4208919 7108648

-0.3 786840 762275 284889

-0.7 89321 69572 4811

-0.9 31868 22140 1150

-1.4 749 647 10
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joint PDFs are obtained by considering bins of dimensions 0.008 X 0.008 on the q− r

plane. Unless specified otherwise, all reported results are from Case A simulation.

a. Zero dilatation

In Figure 4a we plot the joint PDF of q and r conditioned upon zero normalized

dilatation. The PDF shown in Figure 4a has two prominent features: (i) a signifi-

cant number of points lie in the upper left area distributed over an elliptical region;

and (ii) the bulk of data lies in the lower right area concentrated around the Vielle-

fosse line (q = 3
√

27r2/4). Lee [38] shows that the statistics of strain-rate eigenvalues

and vorticity alignment tendencies in compressible turbulence conditioned upon zero

dilatation are very similar to the statistics seen in incompressible turbulence. We

examine whether such similarity can be seen in terms of invariant statistics as well.

In Figure 4b we present the joint PDF of q and r seen in DNS of incompressible

decaying turbulence. Clearly the distribution from compressible DNS is very similar

to the one from incompressible DNS. The two prominent features mentioned above

are indeed the same features that are seen in a variety of incompressible flows ([12]–

[22]). Further, we make quantitative comparisons between the conditional data from

compressible turbulence and incompressible DNS results in terms of the percentages

of various possible topologies. In Table IV we present the percentage occurrence of

various possible topologies. Indeed, the probability of occurrence of each topology

seen in compressible turbulence is very close to those seen in incompressible turbu-

lence. Based on these observations, we can conclude that in decaying compressible

turbulence, at the locations of negligible normalized dilatation, the joint statistics

of second and third invariants is very similar to the statistics seen in incompressible

turbulence.
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(a)

(b)

Fig. 4. (a) Joint PDF of q and r conditioned upon zero dilatation from Case A sim-

ulation, and (b) joint PDF of q and r from DNS of incompressible decaying

isotropic turbulence.
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Table IV. Comparison of percentage of various flow topologies conditioned upon zero

dilatation

UFC UN/S/S SN/S/S SFS

Case A 25.6 24.9 6.5 43.1

Incompressible DNS 27.5 25.4 7.3 39.9

b. Positive dilatation

In Figures 5a, 5c, 5e and 5g, we plot the joint PDFs of q and r conditioned upon

various positive values of normalized dilatation. The chosen levels of normalized di-

latation vary from 0.3 to 1.4. A visual inspection of these figures suggests that the

PDFs are strongly dependent on the value of normalized dilatation. Both the shape

and concentration of distribution with respect to the various region-dividing curves

(S1a, S1b, S2 and q-axis, see Figure 2) change significantly with changing dilata-

tion level. In fact the shape of the distribution is seen to be following a trend: the

shape changes from being elongated tear shaped at zero dilatation to a more localized

elliptical shape as dilatation assumes higher positive values. Indeed at the extreme

positive dilatation (aii =
√

3) the distribution is almost a two dimensional Dirac-delta

distribution (not shown) with all points being located at the osculation point of S1a

and S1b. As shown in Figure 2, this point corresponds to a rotation free topology

with all the eigenvalues being real, equal and positive. According to the nomencla-

ture of Chong et al. [11] the topology is USN/USN/USN. This topology can also be

visualized as rotation-free, isotropic (spherical) expansion of a fluid element. The cor-

responding eigenvalues are
(
1/
√

3, 1/
√

3, 1/
√

3
)
. In fact it can be shown using simple

algebra that, at aii =
√

3, this eigenvalue set is the only possibility. Also, this state



23

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Conditional joint PDF of q and r as seen in Case A DNS simulation (left

column) and HEE model simulation (right column). Value of aii changes from

top to bottom in the following order: 0.3, 0.7, 1.1 and 1.4.
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Table V. Percentage of various flow topologies conditioned upon different positive di-

latation levels from Case A simulation

aii UFC UN/S/S SN/S/S SFS UFS UN/UN/UN USN/USN/USN

0.3 24.4 31.2 3.2 21.2 20.0 0.0 0.0

0.7 22.1 33.7 0.6 5.5 37.2 0.8 0.0

1.1 10.4 25.8 0.0 0.0 53.3 10.5 0.0

1.4 0.0 1.5 0.0 0.0 60.1 38.4 0.0

1.7 0.0 0.0 0.0 0.0 0.0 0.0 100.0

is one of the stable solutions of the pressure-released velocity gradient dynamics [39].

Next we examine the percentage occurrence of each of the possible topologies (see

Figure 2) at aii > 0 . These percentages are presented in Table V. At low positive di-

latations, the percentages of UFC, UNSS and SNSS do not show significant difference

as compared to the zero dilatation state. However, the probability of SFS reduces

significantly giving way to UFS topology, which is non-existent at zero dilatation.

As dilatation level increases further, richness in the topology of compressible flows is

severely reduced. At high positive dilatation value of 1.4, the only existing topolo-

gies are UN/UN/UN and UFS. Eventually at the extreme dilatation value of
√

3 the

only existing topology is USN/USN/USN. As aii increases, it is plausible to expect a

decrease in the strength of rotation-rate (wij). Since the categorization scheme based

on p−q−r phase space does not address this issue directly, we seek a confirmation of

this expectation. The contribution of normalized rotation-rate in aij can be gauged

by the following quantity:

φ ≡ wijwij
wmnwmn + smnsmn

. (2.9)
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(a)

(b)

Fig. 6. Conditional PDFs of φ ≡ wijwij

smnsmn+wmnwmn
at different levels of normalized di-

latation from Case A simulation: (a) positive aii; and (b) negative aii.

In Figure 6a we present conditional PDFs of φ at different levels of normalized dilata-

tion. As aii increases from zero to
√

3, the PDFs shift leftwards clearly indicating that

the rotation-rate is decreasing. Thus, at high positive values of aii – even though we

see considerable focal structures (see Table V)– we can conclude that the contribution

of rotation-rate in aij monotonically reduces.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7. Conditional joint PDF of q and r as seen in Case A simulation (left column)

and HEE model simulation (right column). Value of aii changes from top to

bottom in the following order: −0.3, −0.7, −0.9 and −1.4.
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Table VI. Percentage of various flow topologies conditioned upon different negative

dilatation levels from Case A simulation

aii UFC UN/S/S SN/S/S SFS SFC SN/SN/SN SSN/SSN/SSN

-0.3 22.4 14.6 17.1 30.3 15.4 0.0 0.0

-0.7 11.1 2.7 33.5 21.8 30.1 0.8 0.0

-0.9 2.7 0.2 37.6 18.3 37.9 3.3 0.0

-1.4 0.0 0.0 2.7 0.5 45.4 51.4 0.0

-1.7 0.0 0.0 0.0 0.0 0.0 0.0 100.0

c. Negative dilatation

We present the conditional joint PDFs of q and r at various negative dilatation

values in Figures 7a, 7c, 7e and 7g. In these figures, aii varies from −0.3 to −1.4.

The overall variation in shape and location of the joint distributions is similar to

what we observed for positive dilatation values: (i) the shape of the distribution

changes from being tear shaped at low negative dilatations to an elliptical shape,

which keeps shrinking with increasing magnitude of normalized dilatation, (ii) at

extreme negative dilatation of −
√

3 all fluid elements get concentrated at the cusp

of surfaces S1a and S1b. At aii = −
√

3 all the eigenvalues of the velocity gradient

tensor are real, equal and negative and the associated topology is SSN/SSN/SSN.

Despite the overall similarity between the trends for positive and negative dilatational

values, distributions at negative dilatation show a distinct feature. At moderate/high

dilatations (Figures 7c and 7e), there is a distinct higher preference for the points to

gather along the S1b curve near the origin. The eigenvalues of aij associated with

the origin on a negative q − r plane are (0, 0,−1) and is suggestive of formation
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of shocklets in the flow field. This eigenvalue set is one of the stable solutions of

pressure-released velocity gradient dynamics [39].

In Table VI we present the percentage occurrence of various topologies at dif-

ferent negative dilatation levels. Moving from zero to negative dilatations, SFC and

SN/SN/SN are the new topologies that emerge. As dilatation assumes higher negative

dilatations, the topologies that dominate incompressible turbulence regime disappear.

At high negative dilatations, SN/SN/SN and SFC are the predominant flow patterns.

At the extreme negative dilatation aii = −
√

3 the topology is unique (SSN/SSN/SSN)

with the three eigenvalues being equal, real and negative
(
−1/
√

3,−1/
√

3,−1/
√

3
)
.

Again, just like the case for extreme positive dilatation, the uniqueness of this set can

easily be demonstrated using simple algebra. However, unlike the state at aii =
√

3,

the unique eigenvalue set at aii = −
√

3 is not one of the stable solutions of pressure-

released velocity gradient dynamics [39]. Also, similar to the observation made at

positive dilatation values, we observe that as aii assumes higher negative values, nor-

malized rotation-rate monotonically decreases from aii = 0 to aii = −
√

3 (Figure

6b).

Thus we conclude that the joint PDFs of the second and third invariants of

normalized velocity gradient tensor are strongly dependent on normalized dilatation

value. At zero dilatation the distribution has a tear drop shape and is very similar to

the distribution seen in incompressible turbulence. As the dilatation level increases

(positive or negative), we see a drastic departure from this shape. The distributions

get increasingly more localized on the p-plane with increasing magnitude of normal-

ized dilatation, leading to a reduction in the variety of observed flow patterns. At

either extreme of normalized dilatation (−
√

3 and
√

3), the distribution shrinks to

the cusp of surfaces S1a and S1b and is associated with a unique topology with all

the eigenvalues being real and equal. Moreover, an increase in the magnitude of nor-
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malized dilatation is associated with a tendency of monotonic decrease in normalized

rotation-rate.

2. Dependence of conditional statistics on Mach and Reynolds number

Lee [38] demonstrates that conditional statistics of strain-rate eigenvalues and vor-

ticity alignment tendencies in compressible turbulence remains largely independent

of Reynolds number and Mach number of the flow. In this sub-section, we examine

the influence of initial Reynolds number and initial Mach number on the conditional

statistics of invariants. We make comparisons between different cases listed in Table

II. Case A is compared with Case B to examine the effects of Reynolds number. Case

A is compared with Case C to infer the effects of initial Mach number.

Using figures similar to Figures 4–7, we qualitatively examine the conditional

joint distributions of the second and third invariants for Cases B and C. In Case

C, which has a lower initial Mach number (Mt = 0.43), very high positive or very

high negative dilatations are rarely seen [38]. In the absence of adequate sample size,

statistics for aii > 1 and aii < −1 is not available for this case. Otherwise, various

qualitative features of distribution and general trends seen in Cases B and C are

very similar to what we observed in Case A. We do not include the joint distribution

contours from Cases B and C here, however, we present quantitative comparisons

between the three cases in terms of the conditional percentage of various topologies.

In Table VII we present the conditional percentages at zero dilatation. In Tables VIII

and IX, percentages at positive and negative dilatations are included.

a. Effect of Reynolds number on topology

In Tables VII – IX, we compare Case A and Case B to infer the influence of Reynolds

number on the percentage occurrence of flow patterns. At zero and almost all positive



30

Table VII. Percentage of various flow topologies conditioned upon zero dilatation from

different simulation cases. In each cell below, percentages are presented in

the following order: (UFC, UN/S/S, SN/S/S, SFS)

Case A Case B Case C

aii (Reλ = 55.6, Mt = 0.70) (Reλ = 80.0, Mt = 0.70) (Reλ = 55.6, Mt = 0.43)

0 (26, 25, 7, 43) (25, 26, 7, 42) (27, 25, 6, 43)

Table VIII. Percentage of various flow topologies conditioned upon different positive

dilatation levels from different simulation cases. In each cell below, per-

centages are presented in the following order: (UFC, UN/S/S, SN/S/S,

SFS, UFS, UN/UN/UN)

Case A Case B Case C

aii (Reλ = 55.6, Mt = 0.70) (Reλ = 80.0, Mt = 0.70) (Reλ = 55.6, Mt = 0.43)

0.3 (24, 31 3, 21, 20, 0) (23, 33, 4, 22, 17, 0) (27, 32, 5, 24, 12, 0)

0.7 (22, 34, 1, 6, 37, 1) (21, 39, 1, 7, 31, 1) (27, 38, 1, 8, 26, 1)

1.1 (10, 26, 0, 0, 53, 11) (11, 28, 0, 0, 51, 11) -

1.4 (0, 2, 0, 0, 60, 38) (0, 1, 0, 0, 60, 39) -
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Table IX. Percentage of various flow topologies conditioned upon different negative

dilatation levels from different simulation cases. In each cell below, percent-

ages are presented in the following order: (UFC, UN/S/S, SN/S/S, SFS,

SFC, SN/SN/SN)

Case A Case B Case C

aii (Reλ = 55.6, Mt = 0.70) (Reλ = 80.0, Mt = 0.70) (Reλ = 55.6, Mt = 0.43)

-0.3 (22, 15, 17, 30, 15, 0) (22, 15, 20, 28, 15, 0) (26, 14, 20, 27, 13, 0)

-0.7 (11, 3, 34, 22, 30, 1) (11, 3, 36, 22, 28, 1) (10, 2, 36, 20, 31, 1)

-0.9 (3, 0, 38, 18, 38, 3) (3, 0, 40, 17, 37, 3) (2, 0, 36, 12, 48, 3)

-1.4 (0, 0, 3, 1, 45, 51) (0, 0, 0, 0, 57, 43) -

dilatations the percentage values from Case B simulation are very close to those from

Case A simulations except at aii = 0.7. At this dilatation, an increase in Reynolds

number increases the probability of UNSS topology. At various negative dilatations

in Table IX, the agreement is generally good except at aii = −1.4. While at lower

Reynolds number (Case A), UN/UN/UN is the most dominant topology, at higher

Reynolds number (Case B), SFC emerges as the most dominant topology. Since the

sample size at aii = −1.4 is quite small, this aberration may be a statistical error.

Over all, Reynolds number (in the range investigated) appears to have negligible effect

on topology conditioned on normalized dilatation.

b. Effect of Mach number on topology

We compare Case A and Case C results in Tables VII–IX to infer the effects of initial

Mach number. As mentioned above, Case C simulation does not offer adequate
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samples at high positive/negative dilatations. Thus, this comparison is naturally

restricted to low and moderate dilatation levels. In Table VII we observe that Mach

number has no effect on the topology of the flow field conditioned upon zero dilatation.

At non-zero dilatations also, there are no significant differences between the two cases

except at aii = −0.9. At this dilatation, the probability of SFC topology is higher

than what is seen in Case A. On the basis of these observations, we conclude that

turbulent Mach number (in the range investigated) does not appear to influence the

conditional topology.

C. HEE model computations of invariants and local topology

Velocity gradient evolution is a highly non-linear process. Understanding this process

is of paramount importance, as it holds the key to many turbulent processes of prac-

tical interest like mixing, intermittency, cascading, etc. While DNS results do provide

an almost time-continuous, domain-spanning data of this evolution, it is often diffi-

cult to develop in-depth physical insights with such large volumes of data. For this

reason, there has always been a need to have simple Lagrangian dynamical models

that can offer an approximate, though a more direct way to probe the evolution of

velocity gradients in a flow field. However, such models require adequate validation

before they can be employed for wider purposes. Restricted Euler equation is one

such model [4] for incompressible velocity gradient dynamics. It has been used with

considerable success [28, 6] and being continuously improved [40, 7, 30, 31, 32]. REE,

however, is not useful for compressible velocity gradients. To the authors’ knowledge,

the only available dynamical model for compressible velocity gradient dynamics is

the homogenized Euler equation model [26]. The model shows considerable success

in predicting strain-rate statistics in compressible turbulence [26]. In this section, we
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examine whether the model can capture the various characteristics of compressible

velocity gradient invariants discussed in Section C.

We numerically solve the HEE equation employing the same initial conditions

as described in [26]. To study the HEE results, we adopt an approach similar to

what we employed for analyzing the DNS results in Section C. We condition the HEE

solution upon various levels of normalized dilatation and examine the joint statistics

of the second and third invariants of the normalized velocity gradient tensor (aij) at

different dilatation levels.

In Figures 5 and 7, we present the conditional joint PDF of q and r obtained

from HEE computations. The dilatation level ranges from −1.4 to 1.4. At zero di-

latation the HEE model accurately predicts the tear-drop shape of the distribution

at zero dilatation (discussed in detail in [26]). As the dilatation level changes, HEE

distributions show changes in shape and location with respect to the various parti-

tioning curves (see Figures 1 – 3). The underlying trend of these changes is similar

to the DNS behaviour in Figures 5 and 7. As normalized dilatation assumes a higher

positive value, the HEE distributions shrink and clearly show the tendency to get

concentrated near the cusp of surfaces S1a and S1b. On the other hand, at mod-

erate/high negative dilatations, HEE distributions show a pronounced tendency to

concentrate near the origin. This is reminiscent of the behaviour observed in DNS at

moderate/high negative dilatations (see Figure 7c). However, HEE clearly overesti-

mates this behaviour.

Next we perform a quantitative evaluation of the HEE model. We compare

the HEE computations against DNS in terms of the probability of occurrence of

various topologies. In Tables X – XII, we present the percentage of various topologies

computed from the HEE solution at different levels of dilatation. First we consider

the topologies at zero dilatation (Table X). The percentage occurrence of SN/S/S
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Table X. Percentage of various flow topologies conditioned upon zero dilatation from

HEE computations

UFC UN/S/S SN/S/S SFS

44.3 13.2 4.2 38.2

Table XI. Percentage of various flow topologies conditioned upon different positive

dilatation levels from HEE computations

aii UFC UN/S/S SN/S/S SFS UFS UN/UN/UN USN/USN/USN

0.3 28.2 17.1 1.8 18.5 32.6 1.8 0.0

0.7 18.4 15.2 0.2 1.9 60.8 3.5 0.0

1.1 13.8 8.3 0.0 0.0 72.4 5.5 0.0

1.4 0.0 0.0 0.0 0.0 78.1 21.9 0.0

1.7 0.0 0.0 0.0 0.0 0.0 0.0 100.0

and SFS predicted by HEE are close to the corresponding percentages seen in Case

A DNS simulation (Table IV). The model also correctly predicts UFC and SFS as

the most dominant topologies. However, it overestimates the probability of UFC.

In Table XI we present the HEE data at positive dilations. A comparison against

corresponding DNS results (Table V), clearly suggests the failure of the HEE model

to capture the probabilities accurately. However, the model does capture certain

features. HEE correctly predicts UFS as the dominant topology at all moderate/high

positive dilatations. At high dilatation (aii = 1.4), the model correctly predicts

UN/UN/UN as the second most dominant topology.

Table XII includes the percentage of topologies at various negative dilatations
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Table XII. Percentage of various flow topologies conditioned upon differentnegative

dilatation levels from HEE computations

aii UFC UN/S/S SN/S/S SFS SFC SN/SN/SN SSN/SSN/SSN

-0.3 52.6 10.0 7.5 22.4 7.5 0.0 0.0

-0.7 60.3 7.6 10.2 9.0 12.5 0.3 0.0

-0.9 66.2 6.2 10.1 3.4 13.8 0.3 0.0

-1.4 0.0 0.0 0.0 0.0 77.1 22.9 0.0

-1.7 - - - - - - -

obtained with HEE computations. We compare this table against the DNS data in

Table VI. At low negative dilatation (aii = −0.3), HEE correctly predicts UFC as

the dominant topology, but clearly overestimates the percentage. At moderate and

high dilatation levels, the failure of HEE to estimate the correct percentages is very

apparent. However, at high negative dilatation (aii = −1.4), the model correctly

identifies SN/SN/SN and SFC as the only existing topologies. At extreme negative

dilatation (aii = −
√

3) HEE does not offer any statistics for comparison.

Based on the foregoing discussion, we conclude that HEE model does not recover

the percentage occurrence of various topologies very accurately. However, it captures

most of the qualitative trends seen in DNS data. The performance at zero and positive

dilatations is, in general, superior to that at negative dilatations. As indicated in

[26], inclusion of viscosity and other non-isentropic effects may be required to further

improve the HEE model.
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D. Conclusions

In this chapter, the dependence of joint statistics of second and third invariants of

velocity gradient tensor on dilatation (degree of compression/expansion of a fluid

element) in compressible decaying isotropic turbulence is examined using DNS re-

sults. Moreover, the exact probabilities of occurrence of various local flow pat-

terns/topologies conditional upon dilatation are computed. The study reveals that

the joint statistics of the second and third invariants is highly dependent on normal-

ized dilatation. Invariant statistics conditioned upon zero dilatation is very similar to

the behavior seen in incompressible turbulence but changes drastically as dilatation

assumes higher positive/negative values. It is found that at high positive and negative

dilatations, the dominant topologies are entirely different from those seen in incom-

pressible turbulence. While unstable focus stretching and unstable node/unstable

node/unstable node dominate at high positive dilatations, stable focus compressing

and stable node/stable node/stable node topologies are dominant at large negative

dilatations. As the extreme levels of normalized dilatations are reached (±
√

3), the

variety in the observed flow patterns is further reduced. The only observed flow pat-

tern at
√

3 and −
√

3 is unstable star node/unstable star node/unstable star node and

stable star node/stable star node/stable star node, respectively. Furthermore, it is

found that the conditional behavior of invariants is insensitive to Reynolds number

and Mach number (at least in the considered range). Additionally in this part of the

dissertation, the above-mentioned findings are employed to evaluate the performance

of a recently developed velocity gradient model – homogenized Euler equation (HEE).

It is found that the HEE model qualitatively captures many features seen in DNS.

However, the quantitative performance is not very accurate, especially at negative

dilatation values.
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CHAPTER III

HOMOGENIZED EULER EQUATION: A MODEL FOR COMPRESSIBLE

VELOCITY GRADIENT DYNAMICS∗

The principal objective of this chapter is to develop a velocity-gradient model for

turbulent compressible flows along the lines of the incompressible restricted Euler

equation (REE) model. This model -called the homogenized Euler equation (HEE)

– is derived from energy and state equations by invoking uniform velocity-gradient

assumption [4]. Furthermore the model is validated by comparing: (i) the asymptotic

behaviour against fixed-points of Burgers turbulence [39]; (ii) the incompressible-limit

behaviour against incompressible DNS results [5, 12] and (iii) strain-rate statistics at

intermediate dilatations against compressible DNS results [38]. Comparisons are also

made with the asymptotic REE results to highlight the improvements achieved by

the HEE model in the incompressible limit.

This chapter is organized as follows. In Section B the homogenized Euler equation

(HEE) is developed. Section C contains a discussion of the numerical method and

establishes the various velocity-gradient statistics of interest. In Section D the model

results are presented, and the performance of the model is evaluated against known

turbulence behaviour.

A. Homogenized Euler equation

In this section we develop the homogenized Euler equation and highlight the involved

assumptions. For an inviscid calorically perfect gas without any heat source, the

∗Reprinted with permission from “Homogenized Euler equation: A model for
compressible velocity gradient dynamics” by S. Suman and S. S. Girimaji, 2009,
Journal of Fluid Mechanics, 620, 177–194, Copyright[2009] by Cambridge University
Press.
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conservation of mass, momentum and energy equations are:

∂ρ

∂t
+
∂(ρVk)

∂xk
= 0, (3.1)

∂Vi
∂t

+ Vk
∂Vi
∂xk

= −1

ρ

∂p

∂xi
, (3.2)

∂T

∂t
+ Vk

∂T

∂xk
= −T (n− 1)

∂Vi
∂xi

, (3.3)

where n is the ratio of specific heats; Vi, p, ρ and T represent velocity, pressure,

density and temperature. For a perfect gas the three thermodynamic variables are

related through the following state equation:

p = ρRT. (3.4)

Any attempt to formulate a velocity-gradient model for a general perfect gas flow

field would lead to a very high degree of complexity. As a first step we restrict our

consideration to a flow field which has a uniform entropy distribution. With this

assumption the state equation (3.4) simplifies to the following form:

p = Cρn, (3.5)

where C is constant both in time and space. This assumption significantly simpli-

fies the formulation and yet captures the influence of a thermodynamically evolving

pressure field on velocity gradient dynamics. In later works we will ease the uniform

entropy assumption to develop models for more complex flows. Nonetheless, we will

compare the model performance against decaying non-isentropic turbulence data to

investigate the practical utility of the new model. We will also compare the model

against Burgers turbulence which represents an extreme limit of compressible flow.
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1. Equation for the velocity gradients

We now derive the evolution equation for the primary quantity of interest, the velocity

gradient tensor, Aij:

Aij ≡
∂Vi
∂xj

. (3.6)

Equation (3.2) is re-written using (3.5) as

∂Vi
∂t

+ Vk
∂Vi
∂xk

= −1

ρ

∂(Cρn)

∂xi
. (3.7)

Taking gradient of this equation leads to an equation for Aij:

dAij
dt

= −AikAkj −
∂

∂xj

(
1

ρ

∂(Cρn)

∂xi

)
, (3.8)

where d/dt indicates material derivative. Now, with C and n being constants the

pressure Hessian, ∂
∂xj

(
1
ρ
∂(Cρn)
∂xi

)
, simplifies to a symmetric form:

dAij
dt

= −AikAkj −
Cn

n− 1

∂2g

∂xi∂xj
, (3.9)

where g ≡ ρn−1. Closure equation for this symmetric pressure Hessian is next obtained

from the mass conservation equation (3.1):

d

dt

(
∂g

∂xi

)
= −Aki

∂g

∂xk
− (n− 1)Akk

∂g

∂xi
− (n− 1) g

∂Akk
∂xi

, (3.10)

d

dt

(
∂2g

∂xi∂xj

)
= −Akj ∂2g

∂xi∂xk
− Aki ∂2g

∂xk∂xj
− ∂Aki

∂xj

∂g
∂xk
− (n− 1)Akk

∂2g
∂xi∂xj

− (n− 1) ∂Akk

∂xi

∂g
∂xj
− (n− 1) ∂Akk

∂xj

∂g
∂xi
− (n− 1) ∂2Akk

∂xi∂xj
g. (3.11)

2. Central assumption of HEE

As discussed in Chapter I, it is our objective to construct a simple autonomous dynam-

ical system of equations which can capture the essential features of nonlinear velocity
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gradient dynamics in compressible turbulence. The success of REE for incompress-

ible flows clearly demonstrates that much insight can be obtained in homogeneous

systems wherein the velocity gradients are constant in space [4]:

∂Aij
∂xk

≡ 0. (3.12)

This is the central assumption of our model. Subject to this assumption, (3.9) and

(3.11) simplify substantially to:

dAij
dt

= −AikAkj − Pij, (3.13)

dPij
dt

= −PikAkj − PkjAki − (n− 1)PijAkk, (3.14)

where

Pij ≡
Cn

n− 1

∂2g

∂xi∂xj
(3.15)

is the pressure Hessian tensor. Equations (3.13) and (3.14) form a closed set of 15

ordinary differential equations in 15 unknowns. We refer to this equation set as the

homogenized Euler equation model. It is important here to point out major differences

between the HEE and REE formulations. The original REE invokes a more serious

assumption in which the pressure Hessian is simplified to only its isotropic component:

∂

∂xj

(
1

ρ

∂p

∂xi

)
=

1

ρ

∂2p

∂xi∂xj
= −AmnAnm

3
δij. (3.16)

This assumption is invoked for the mathematical benefit of yielding a closed set of

equations. It must be pointed out that the term ‘homogenized’ in HEE does not

indicate any homogenization procedure. Here, homogeneous refers to the fact that

the velocity gradients are (nearly) invariant in space. Homogenization procedure on

the other hand refers to the mathematical limit of setting the heterogeneity scale to

infinity, thus rendering the problem homogeneous.



41

Some attempts have been made in literature to include anisotropic contributions

[29, 32] in REE. These involve other assumptions which have their own limitations.

The HEE, on the other hand, does not require any further assumptions regarding the

pressure Hessian. The full Hessian in its natural form is included in the model. This

is possible due to the invocation of state and energy equations, which are not used in

the REE.

3. Velocity gradient dynamics in Burgers turbulence

In the context of nonlinear turbulence processes, it is relevant to mention the signifi-

cance of Burgers equation. Burgers turbulence represents the extreme state of com-

pressible turbulence in which pressure effects are negligible in comparison with the

inertial effects. For this reason Burgers turbulence is also called the pressure-released

turbulence. Burgers turbulence is known [41] to provide a reasonably accurate rep-

resentation of very high Mach number Navier–Stokes turbulence in (i) high density

flows with polytropic index less than unity and (ii) low density flows with polytropic

index larger than unity. Due to its simplicity, Burgers equation is often used as a test

bed to evaluate new turbulence theories [42, 43]. Burgers turbulence also captures

some important aspects of the energy cascade mechanism and intermittency seen in

Navier–Stokes turbulence. Girimaji et al. [44] demonstrate that the spectral energy

transfer and the triadic interactions displayed by Burgers equation are similar to that

in Navier–Stokes turbulence. Recently, Bikkani et al. [39] investigated the dynamics

of three dimensional Burgers equation to probe the role of pressure in incompressible

flows. One key result in [39] is that Burgers-turbulence velocity gradients exhibit two

stable fixed-point families given by:

(α, β, γ, ωα, ωβ, ωγ) =
(
ϕ, 0, ϕ− 1, 0,±2

√
ϕ− ϕ2, 0

)
; (3.17)
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(α, β, γ, ωα, ωβ, ωγ) =
(

1√
3
, 1√

3
, 1√

3
, 0, 0, 0

)
, (3.18)

where ωα, ωβ and ωγ are the components of vorticity along the eigenvectors corre-

sponding to the strain-rates eigenvalues: α; β; and γ. The term ϕ is a free parameter

which depends on initial conditions only. It is reasonable to conclude that these fixed-

points represent the turbulent velocity-gradient behaviour in the limit of very large

Mach number.

B. HEE normalization and conditional statistics

Inviscid incompressible velocity gradient dynamics exhibit finite-time singularity [28,

7] rendering numerical computations difficult. In this section, we first present the

normalized version of HEE which circumvents the finite-time singularity problem

by rescaling time. Then we proceed to describe the manner in which statistics are

gathered and present the rationale for conditional averaging based on dilatational

level.

1. Normalization and rescaling

We define the normalized velocity gradient tensor as:

aij ≡
Aij
ε

ε ≡
√
AmnAmn. (3.19)

The quantity aij contains all the geometrical information about the velocity gradient

tensor and has the advantage of being bounded (−1 ≤ aij ≤ 1). The substitution of

aij in (3.13), however, results in the appearance of ε, which itself can diverge in finite

time. To eliminate ε from the equations the evolution is considered in rescaled time,

t′, such that dt′ ≡ dt/τ , where τ ≡ 1/ε. With these change of variables, (3.13) and
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(3.14) take the following form:

daij
dt′

= aijamnaknamk + τ 2aijamnPmn − aikakj − τ 2Pij; (3.20)

dτ

dt′
= τamnaknamk + τ 3amnPmn; (3.21)

dPij
dt′

= −Pikakj − Pkjaki − (n− 1)Pijakk. (3.22)

This set has the same number of equations as the un-normalized form. The equations

are computationally well-behaved even if the un-normalized velocity gradients diverge

in finite time. The normalized equations (3.20)–(3.22) are now employed to examine

velocity-gradient geometry. As in [7], time integration of (3.20)–(3.22) is performed

using fourth-order Runge–Kutta scheme with a specified set of initial conditions for

each realization or particle. A particle is “created” by assigning randomly generated

values for initialAij. A random number generator that produces uniformly distributed

numbers between -1 and 1 is employed for the purpose. Initial τ is set to unity for

all particles. The initial Pij is chosen as in the REE model:

Pij(t=0) = −AmnAnm
3

δij. (3.23)

Starting from this initial condition, Pij then evolves according to (3.22).

2. On the nature of HEE

The HEE, REE and Burgers velocity-gradient models are all autonomous dynamical

equation sets with one or more stable fixed-point families. The evolution and asymp-

totic behaviour of the REE velocity gradients are described in detail in [28]. The

incompressibility constraint makes REE transient behaviour analytically tractable.

The transient behaviour of Burgers and the HEE model do not appear to be as easily

amenable to analytical examination. As mentioned earlier, the asymptotic behaviour
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of Burgers velocity gradient dynamics is given in [39]. Our computations show (more

on this in next section) that HEE, like Burgers, yields two distinct velocity gradi-

ent stable fixed-points. Starting from specified initial conditions, a typical solution

trajectory evolves rapidly with non-monotonic changes in dilatation and approaches

one of two fixed-points at long times. While the asymptotic geometry of the velocity

gradient tensor is important, the transient dynamics also yields crucial insight into

turbulence processes. We characterize the transient dynamics conditioned upon the

current value of normalized dilatation. Normalized dilatation quantifies the degree of

compression of a fluid element, as it represents the rate of change of density. Velocity-

gradient statistics conditioned on dilatation provides a basis for comparison of HEE

against DNS data.

To minimize the influence of initial conditions, statistics are gathered after an

initial time lapse, T :

T =
1

(τamnaknamk + τ 3amnPmn)t′=0

. (3.24)

From (3.24), T can be seen as one velocity gradient turn-over time.

3. Conditional statistics

We perform HEE calculations with an ensemble of fluid particles in order to obtain

statistics of various quantities of interest. The normalized velocity gradient tensor

(aij) is separated into its symmetric and anti-symmetric parts: the strain-rate tensor

(sij) and the rotation-rate tensor (wij). The symbols α, β and γ are assigned to

the three eigenvalues of sij such that α ≥ β ≥ γ. The sum of these eigenvalues

is the dilatation (aii) or the measure of the rate of change in element volume. In

compressible flows, the normalized dilatation, aii, can vary within the algebraic limits

of −
√

3 to
√

3. Expanding fluid elements are characterized by positive dilatation
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values whereas contracting ones by negative dilatation values. Ratios between the

strain-rate eigenvalues help in visualizing the change in shape of the fluid element.

Each of the eigenvalues is normalized as follows:

α∗ =
α√

α2 + β2 + γ2
β∗ =

β√
α2 + β2 + γ2

γ∗ =
γ√

α2 + β2 + γ2
. (3.25)

Another point of interest is the orientation of the vorticity vector, ω. This is exam-

ined in terms of the cosine of the angles that the vorticity vector makes with the

eigenvectors of (i) the strain-rate tensor and (ii) the pressure Hessian tensor, Pij .

Eigenvalues of the pressure Hessian tensor are represented by the symbols αp, βp and

γp such that |αp| ≥ |βp| ≥ |γp| [45]. We also examine the three invariants of the

normalized velocity gradient tensor, aij. The definitions of these invariants are [11]:

p ≡ −aii;

q ≡ 1
2

(
p2 − sijsji − wijwji

)
;

r ≡ 1
3

(
−p3 + 3pq − sijsjkski − 3wijwjkski

)
. (3.26)

C. Results and discussion

In this section we compare the performance of the HEE model against some estab-

lished analytical and numerical results. We first examine the asymptotic states of the

HEE equation and discuss their relation to the stable fixed-points of Burgers velocity

gradient dynamics. Next we compare the performance of the HEE in the incompress-

ible limit against incompressible turbulence DNS. Here we also make comparisons

with REE results. Finally we compare HEE against compressible DNS results at

various intermediate levels of dilatation.
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1. Asymptotic behaviour of HEE

As mentioned earlier, the numerical integration of the HEE equations reveal two

asymptotic states for the normalized velocity gradient tensor. The normalized di-

latations of the two fixed-points are approximately 1.7 and -1. All particles going

to the fixed-point with the normalized dilatation value of 1.7 have a vorticity-free

three-dimensional isotropic expansion-wave structure:

(α, β, γ, ωα, ωβ, ωγ) ≈
(

1√
3
, 1√

3
, 1√

3
, 0, 0, 0

)
. (3.27)

For all the particles in this asymptotic state we observe that the inertial term is much

larger than the pressure term: ‖AikAkj‖ >> ‖Pij‖ referring to (3.13). Clearly, this is

a pressure-released limit of the HEE. It is then reasonable to compare this solution to

the pressure-released Navier–Stokes (Burgers turbulence) fixed-point behaviour given

in (3.17) and (3.18). This HEE pressure-released fixed-point is identical to (3.18).

All particles reaching the other asymptotic state (aii = −1) have an one-dimensional

compression wave-like structure with negligible vorticity:

(α, β, γ, ωα, ωβ, ωγ) ≈ (0, 0,−1, 0, 0, 0) . (3.28)

This solution happens to be a special case of the first fixed-point (3.17) of Burgers

dynamics with parameter ϕ =0. Despite this agreement, we do not classify this HEE

asymptotic state as a pressure-released behaviour. Our computations show that in

this asymptotic state the inertia terms are not convincingly large enough as compared

to the pressure terms (‖AikAkj‖ ≈ 5 ‖Pij‖).

Overall, it can be concluded that in the pressure-released or high-Mach number

limit, the HEE reproduces asymptotic Burgers turbulence behviour.
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Fig. 8. Probability density functions (PDF) of normalized strain-rate eigenvalues (α∗,

β∗, γ∗). (a) Incompressible DNS, (b) asymptotic REE and (c) zero-dilatation

HEE.
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2. HEE in incompressible limit

Now we will examine HEE at the other limiting case, incompressible turbulence. The

HEE results conditioned upon zero dilatation can be interpreted as the incompressible-

limit behaviour of the HEE model. We compare this behaviour against DNS results

of incompressible decaying isotropic turbulence [37]. We also include the asymptotic

REE results in this discussion to highlight the relative improvements achieved with

the HEE model in predicting incompressible turbulence behavior.

Alignment of vorticity vector with respect to the eigenvectors of the strain-rate

tensor is of much physical significance as it quantifies the extent of vortex stretch-

ing in turbulent flows. The information about the sign and magnitude of strain-rate

eigenvalues helps us understand cascading due to self straining. In Figures 8 and 9

we present probability density functions of the normalized strain-rate eigenvalues (α∗,

β∗, γ∗) and the cosine of the angles vorticity makes with the corresponding eigenvec-

tors. While the probability density functions completely describe the distributions of

the quantities of interest, the peaks can be interpreted as the most probable values.

The success of asymptotic REE has been limited to qualitatively predicting the fol-

lowing two most-probable features of incompressible turbulence: (i) the intermediate

eigenvalue is small but positive, and (ii) vorticity aligns best with the eigenvector

corresponding to the intermediate eigenvalue. The REE probability density functions

do not recover the broad distributions seen in DNS. The HEE model, on the other

hand, not only reproduces the most probable values seen in DNS, but recovers the

entire range of distributions in Figures 8 and 9.

Next, we compare joint distribution of the second and third invariants of aij

(3.26). The associated topology of the velocity gradient tensor can be inferred with

knowledge of the coordinates (q, r) on the p = 0 plane for incompressible flows [11].
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Fig. 9. Probability density functions of the cosines (magnitude) of the angles between

vorticity and strain-rate eigenvectors. (a) Incompressible DNS, (b) asymptotic

REE and (c) zero-dilatation HEE.
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Chen et al. [22] and Soria et al. [12] investigate the dominant local topologies at

the dissipating scales of motion in mixing layers in terms of the invariants. Soria

et al. [12] plot joint number density of un-normalized invariants rather than joint

probability density function. The joint probability density function of q and r com-

puted from isotropic decay DNS data (Figure 10a) has two prominent features: (i)

a significant amount of data lies in the lower-right quadrant concentrated along the

curve q = − 3
√

27r2/4 (Vieillefosse line), and (ii) the bulk of data lies almost uni-

formly distributed over a roughly elliptical region in the upper-left quadrant. These

features have been observed in DNS of a variety of flows and are fairly independent

of initial conditions ([12]–[22]). The local topologies corresponding to the distribu-

tions in the upper-left and the lower-right quadrants are stable-focus-stretching and

unstable-node-saddle-saddle. While the asymptotic REE does capture the first fea-

ture seen in DNS, it completely fails to recover the second. The asymptotic REE joint

probability density function is completely concentrated on the curve q = − 3
√

27r2/4

(Figure 10b). Failure to show any topology in the upper-left quadrant has been one

of the major shortcomings of the REE model, and it has attracted considerable re-

search attention [29, 32]. The HEE model on the other hand convincingly recovers

both the aforementioned features of the q − r distribution seen in DNS (see Figure

10c). Evidently, the HEE results conditioned on zero dilatation capture the richness

of topology observed in incompressible flows much better than the asymptotic REE

results.

It is reasonable to attribute the observed superiority of HEE over REE to the in-

clusion of anisotropic portion of the pressure Hessian tensor. We can further validate

the HEE model by examining how vorticity is oriented with respect to the eigen-

vectors of the pressure Hessian tensor. Eulerian analysis of incompressible flows [45]

suggests that at points of maximum enstrophy, vorticity aligns with the eigenvector
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(a) (b)

(c)

Fig. 10. Joint probability density function of the second and third invariants (q, r).

(a) Incompressible DNS, (b) asymptotic REE and (c) zero-dilatation HEE.
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Fig. 11. Probability density functions of the cosines (magnitude) of the angles between

vorticity and pressure Hessian eigenvectors. Closed symbols: incompressible

DNS. Open symbols: zero-dilatation HEE.

of the pressure Hessian tensor associated with the smallest eigenvalue magnitude.

Based on this insight we categorize the pressure Hessian eigenvalues as αp, βp and

γp such that |αp| ≥ |βp| ≥ |γp|. This basis of categorization is different from the one

followed by Kalelkar [46], wherein the pressure Hessian eigenvalues are categorized

by arranging them simply in descending order of value. In Figure 11 we plot the

probability density functions of the cosine of the angles between vorticity and pres-

sure Hessian eigenvectors. Similar to what has been observed by Ohkitani et al. [45]

in inviscid flows, the DNS also shows a distinct preference of vorticity to align with

the eigenvector of γp - the eigenvalue with the smallest magnitude. The HEE model

accurately recovers not only this trend but the entire distributions seen in DNS. It

should be noted that the REE model has an isotropic pressure Hessian tensor and

hence does not lend itself to this important examination.
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Based on the foregoing discussion we summarize that the HEE model in its

incompressible limit accurately recovers the incompressible turbulence behaviour seen

in DNS. Moreover, with a more accurate description of the pressure Hessian tensor,

the HEE model shows significant improvements over the REE model.

3. HEE at intermediate dilatations

Having established that the HEE model captures the turbulence behaviour reasonably

well in the extreme Mach number limits, we now examine its validity at intermediate

levels of dilatation. The model results will now be compared against decaying com-

pressible isotropic turbulence DNS data. Although the model development invokes

the isentropic assumption, we would like to compare it against general non-isentropic

turbulence. Therefore, the decaying turbulence initial conditions are as given in [38]

rather than [47], which is expressly for isentropic turbulence. As is standard proce-

dure in REE literature, we compare DNS data against HEE results obtained from

statistically un-biased randomly-generated velocity gradient initial conditions. As

the HEE equations constitute a non-linear dynamical system, the asymptotic veloc-

ity gradient structure will be independent of the initial condition. We do expect the

levels of dilatational kinetic energy and dilatational dissipation to depend on initial

conditions and initial turbulent Mach number [48, 38]. However, the velocity gradi-

ent structure conditioned on local dilatation is expected to be weakly dependent on

initial conditions and turbulent Mach number [38]. To ensure that initial conditions

do not unduly influence the model-data comparison, the HEE statistics are gathered

only after finite time-elapse corresponding to several turn-over times. We would like

to point out at the very outset that this comparison between non-isentropic DNS and

HEE results from randomly generated initial conditions constitute a very rigorous

test of the proposed model.



54

−1 −0.5 0 0.5 1
0

2

4

6

8

10

α*

P
D

F

 

 

−1.4
−1.0
−0.5
0
0.5
1.0
1.4
1.65

(a)

a
ii

−1 −0.5 0 0.5 1
0

2

4

6

8

10

α*

P
D

F

 

 

−1.4
−1.0
−0.5
0
0.5
1.0
1.4
1.65

(b)

a
ii

Fig. 12. Probability density functions of normalized largest strain-rate eigenvalue (α∗)

conditioned on various values of aii . (a) Compressible DNS (b) HEE.
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As in REE, in HEE velocity gradient tensor is computed following a fluid particle.

In addition, in HEE, pressure Hessian is also computed explicitly from an evolution

equation. Both in REE and HEE the velocity field is not considered and hence

the kinetic energy evolution cannot be computed. Since REE and HEE are inviscid

models, dissipation is also not known. Hence DNS and HEE comparison is restricted

to velocity gradient alignment angles and invariant maps [4, 5, 28, 29].

The HEE computations of the probability density functions of the strain-rate

eigenvalues are compared against decaying compressible turbulence DNS data of Lee

[38]. The DNS velocity-gradient statistics are computed at the peak of dissipation in

a simulation with initial values of turbulent Mach number and Taylor-scale Reynolds

number of 0.88 and 55.6, respectively. The probability density functions are condi-

tioned on various values of aii ranging from -1.4 to 1.65. Figures 12(a), 13(a) and

14(a) show the probability density functions of the normalized eigenvalues (α∗, β∗

and γ∗) computed from DNS data. Each of these probability density functions is a

single-peaked distribution with a moderate spread around the peak. For example,

the probability density function of the largest eigenvalue conditioned on aii = −1.4

has a peak at α∗ = −0.15 with a spread in the range: −0.4 < α∗ < 0.1.

The DNS probability density functions of the intermediate eigenvalue (β∗) shift

monotonically from left to right as aii increases. The corresponding shifts for the

largest (α∗) and the smallest (γ∗) eigenvalues are non-monotonic. The arrows placed

on the corresponding figures indicate the direction of these shifts with increasing

aii. For the largest eigenvalue, the reversal in the direction of shift happens at a

high positive aii, whereas for the smallest eigenvalue the reversal happens at a high

negative aii. All these features observed in DNS are very well recovered by HEE in

Figures 12(b), 13(b) and 14(b). Remarkably, the values of dilatation at which the

trends reverse are captured very accurately by HEE.
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Fig. 13. Probability density functions of normalized intermediate strain-rate eigen-

value (β∗) conditioned on various values of aii . (a) Compressible DNS (b)

HEE.
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Fig. 14. Probability density functions of normalized smallest strain-rate eigenvalue

(γ∗) conditioned on various values of aii. (a) Compressible DNS (b) HEE.
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Fig. 15. Most-probable normalized strain-rate eigenvalues (α∗, β∗, γ∗) vs. aii. Closed

symbols: Compressible DNS. Open symbols: HEE.

Next we compare the shapes of the probability density functions. It is clear

that the HEE does not recover exactly the shapes of the probability density func-

tions seen in DNS. However, there are some ranges of aii over which the agreement

is good. For the largest eigenvalue the HEE distributions become increasingly more

accurate as aii approaches higher positive values. The HEE probability density func-

tions for the intermediate eigenvalue are fairly close to their DNS counterparts at

moderately-negative and moderately-positive dilatations. The distinct asymmetry of

the β∗ probability density functions seen in DNS at moderate dilatations is well re-

produced by HEE. For the smallest eigenvalue the agreement between the DNS and

HEE distributions gets better at high negative dilatations.

With Figure 15 we take a closer look at the dependence of most-probable strain-

rate eigenvalues (peaks of the probability density functions in Figures 12–14) on

normalized dilatation. The agreement between the HEE and DNS values is gen-
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erally good with an exception at aii = −1. At this dilatation the HEE computa-

tions show that the strain-rate tensor is under severe uni-axial compression with

(α∗, β∗, γ∗) ≈ (0.02, 0.02,−0.98), which is somewhat different from the DNS be-

haviour [(α∗, β∗, γ∗) ≈ (0.12,−0.15,−0.98)]. One of the possible reasons for this dis-

crepancy could be the role of viscosity. HEE computations reveal that almost all

contracting particles with aii = −1 are associated with very large velocity-gradient

magnitudes and hence sizable viscous effects. It is plausible that dissipation and vis-

cous effects would dominate the dynamics in these regions. In these high dissipation

regions, the isentropic assumption is also questionable.

D. Conclusions

Under the assumptions of uniform velocity gradients in an inviscid compressible and

isentropic flow field, we develop a model - the homogenized Euler equation (HEE) -

for describing compressible velocity gradient dynamics. The medium is assumed to

be a calorically perfect gas. Coupling between the energy and momentum equation

is invoked through the perfect gas state and energy equations. The pressure Hessian

evolves as dictated by thermodynamic considerations. In contrast to the restricted

Euler equation (REE), the anisotropic pressure Hessian effects are retained intact

in this approach. The model comprises of 15 ordinary differential equations in 15

unknowns. Computations are performed for an ensemble of random initial velocity

gradient tensors. We study various statistics pertaining to the structure of the ve-

locity gradient tensor conditioned upon normalized dilatation. HEE results in the

incompressible limit compare very well against direct numerical simulation (DNS)

results of incompressible decaying isotropic turbulence. Moreover, in this limit the

HEE computations are much improved over the asymptotic REE results. At vari-



60

ous non-zero dilatations the HEE very well captures many features of the principal

strain-rate statistics seen in compressible DNS. The HEE behviour in the high-Mach

number (pressure-released) limit is consistent with Burgers velocity gradient dynam-

ics. The HEE is put forward as a useful model to describe velocity gradient dynamics

in compressible turbulence.
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CHAPTER IV

ENHANCED HOMOGENIZED EULER EQUATION FOR MODELING

COMPRESSIBLE VELOCITY GRADIENT DYNAMICS

In Chapter III we developed a model for compressible velocity gradient dynamics

– homogenized Euler equation (HEE). The model relies on the central assumption

that the higher gradients of velocity gradient tensor are negligible. This assumption

removes all the non-local terms in the pressure Hessian evolution equation and leads

to a closed set of ordinary differential equations. An important feature of the HEE

model is that, unlike restricted Euler equation (REE), both isotropic and anisotropic

portions of the pressure Hessian tensor evolve in time. The HEE model results con-

ditioned upon normalized dilatation show excellent agreement [26] with the behavior

seen in DNS of compressible decaying turbulence. However, HEE is not a com-

plete model of compressible velocity gradient dynamics, and it needs improvements.

Although HEE results show good agreement with the DNS results of compressible

turbulence when various statistics are conditioned upon dilatation, the time evolution

of dilatation itself is not captured accurately.

Theoretical analysis and computational evidence [49, 50] of homogeneous isotopic

turbulence at low turbulent Mach numbers (Mt) show that the solenoidal component

of the velocity field evolves on a fluid scale, whereas the dilatational component evolves

on an acoustic time scale. Sarkar et al. [50] further demonstrate that in decaying

isotropic turbulence up to Mt = 0.5, the statistics of fast changing variables (for ex-

ample root mean squared value of dilatation or compressible dissipation rate) tend to

attain quasi-equilibrium state with respect to the slow changing flow variables (root

mean squared value of vorticity or solenoidal dissipation rate). This phenomenon is

altogether absent in the HEE model, wherein both dilatational and solenoidal parts
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of the velocity gradient tensor evolve on the same time scale – the time scale of fluid

motion (discussed in Chapter III). Clearly, the HEE model needs improvement in

order to reproduce the actual behavior seen in compressible turbulence. The homo-

geneous entropy (homentropic) assumption and missing viscous effects are other areas

in which the HEE model requires improvement, before it can be employed for wider

applications.

Thus the objective of this chapter is to further enhance the original HEE model.

Toward this end we (i) modify and improve the modeled pressure Hessian evolution

equation to introduce an appropriately defined acoustic time scale in the model, and

(ii) model the effects of viscosity in both the velocity gradient and pressure Hessian

equations. These enhancements also remove the homentropic constraint of the origi-

nal model. We evaluate the enhanced model in different flow regimes. At a very small

Mach number (incompressible regime), model performance is compared against in-

compressible DNS results [5]. At a very high Mach number (pressure-released regime),

we compare the model results with Burgers velocity gradient dynamics [39]. At mod-

erate subsonic Mach numbers, we evaluate the model against known theoretical and

computational results of compressible turbulence [51, 38, 50].

This chapter is organized into 4 sections. In Section B, we develop the enhance-

ment of the HEE model and also identify the non-dimensional parameters of the

enhanced model. Section C presents the results of the enhanced model and compares

them against known turbulence behavior in various flow regimes.

A. Enhanced homogenized Euler equation

In this section, we modify the modeled pressure Hessian equation and introduce an

acoustic time scale into the model. Next we model the missing viscosity effects in both
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the velocity gradient and pressure Hessian evolution equations. In the last part of

this section, we perform a dimensional analysis of the model and identify its inherent

non-dimensional parameters.

1. Inclusion of acoustic time scale

We start with the HEE model equations:

dAij
dt

= −AikAkj − Pij; (4.1)

dPij
dt

= −AkjPik − AkiPkj − (n− 1)AppPij (4.2)

where n is the specific heat ratio of the medium, and Aij and Pij are the velocity

gradient and the pressure Hessian tensors:

Aij ≡
∂Vi
∂xj

; (4.3)

Pij ≡
∂

∂xj

(
1

ρ

∂p

∂xi

)
. (4.4)

The quantities Vi, p, ρ and n denote velocity, pressure, density and specific heat ratio

of the medium. The symbols t and xi denote time and spatial co-ordinate. Equations

(4.1) and (4.2) form a closed set of 18 ordinary differential equations (ODE) modeling

the evolution of velocity gradients in a compressible flow. Note that with the above

definition of Pij (4.4), the model (4.1)–(4.2) is no more subject to the homentropy

constraint under which the HEE model was developed in Chapter III.

As stated in the beginning of this chapter, irrespective of the initial conditions,

the trace of velocity gradient tensor or dilatation (Aii) in (4.1) evolves on the same

time scale as the solenoidal (Aij−Aii δij3 ) portion of the tensor. This model behavior is

not consistent with the known behavior of compressible turbulence and hence warrants

modifications in the HEE model. In order to address this inadequacy of the model
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and to suggest improvements, we first examine the evolution equation of Aii in the

HEE model. Taking the trace of (4.1) we get:

dAmm
dt

= −AmkAkm − Pmm. (4.5)

The right hand side (rhs) of 4.5 is exact for inviscid flows. Thus, the dependence

of the evolution Aii on an acoustic time scale must appear through the evolution

equation of the pressure term, Pmm. In the HEE model, the quantity Pmm evolves

through the following modeled equation:

dPmm
dt

= −AkmPmk − AkmPkm − (n− 1)AppPmm. (4.6)

Upon inspection we find that the only time scale appearing in the evolution equation of

Pmm is the time scale 1/ |A|, which is the time scale of fluid motion (|A| ≡
√
AmnAmn).

In low Mach number flows, this time scale is much larger than the acoustic time scale.

Thus, the unphysical time evolution of Amm in the HEE model (4.1-4.2) is certainly

attributable to the neglect of an acoustic time scale in the evolution equation of

the trace of the pressure Hessian tensor, Pmm. Thus, an improvement in the HEE

model requires a modification or replacement of the modeled equation for Pmm by a

physically more viable model. In this work we propose an improved model for Pmm.

For the sake of brevity, we represent Pmm by Z. Using this notation, we now express

the pressure Hessian tensor as a combination of isotropic (Zδij/3) and anisotropic

portions (Qij):

Pij = Qij + Z
δij
3
. (4.7)

Note that a straightforward implication of this decomposition is: Qmm ≡ 0.

To arrive at a physically sensible model for Z, we use one assumption of pseudo-

sound theory (used earlier by Ristorcelli [52] to derive turbulence models for pressure-
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dilatation correlation and compressible dissipation rate). The cornerstone of pseudo-

sound theory is the physics that very near to a source of sound, which in our case

is a small fluid particle, the fluid behaves as if it were incompressible [52, 53]. This

implies that very near to a small fluid particle, pressure is governed by the Poisson

equation. In our context this implies:

Z ≡ Pii = −AlmAml. (4.8)

Further assuming that the degree of “nearness” increases with the local speed of

sound (c) and decreases with the length scale (L) associated with the fluid particle

under consideration, we propose a simple prognostic model for the evolution of Z in

a compressible flow field

dZ

dt
= − (Z + AlmAml)

c

L
. (4.9)

Note that the quantity c/L appearing on the rhs of (4.9) is a measure of a local

acoustic time scale. As expected, this prognostic model can now allow the isotropic

portion of the pressure Hessian to evolve on an acoustic time scale. We assume c

to be constant in our model. The length L, however, is subject to large variations

because of intense fluid deformation induced by turbulence. L indeed depends on

the deformation history of a fluid element. In Lagrangian analysis, the deformation

history of a fluid element is associated with the deformation tensor Cij:

Cij ≡
∂Xi

∂xj
(4.10)

where x and X denote the position vector of the fluid particle in Eulerian and La-

grangian descriptions, respectively. Following the precedence of Jeong et al. [31], we

estimate the length scale, L, associated with a fluid element as:

L ≈ Lo√
CpqCpq/3

(4.11)
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where Lo is the initial length scale associated with the Lagrangian particle. The

exact evolution of the deformation tensor (Cij), in turn, is governed by the following

equation [31]:

dMij

dt
= AikMkj (4.12)

where M ≡ C−1.

Having obtained a new model equation (4.9) for the isotropic portion (4.7) of the

pressure Hessian tensor, the trace of (4.2) must be modified. The trace of (4.2) is now

redundant. This redundancy is removed by subtracting out the trace of (4.2) leading

to the following equation of the anisotropic portion (Qij) of the pressure Hessian

tensor:

dQij

dt
= − AkjQik − AkiQkj − (n− 1)AppQij

− (−AkmQmk − AkmQkm)
δij
3
. (4.13)

Thus, we now have a model for compressible velocity gradient evolution in which the

isotropic portion (Z) of the pressure Hessian evolves through (4.9) at an acoustic time

scale, and the anisotropic portion (Qij) evolves through (4.13) at more of a fluid time

scale.

We summarize this sub-section as follows. Driven by the need to have a phys-

ically correct evolution of dilatation in the HEE model developed in Chapter III,

we decompose the pressure Hessian tensor into its isotropic and anisotropic portions

(4.7). Based on relevant physical arguments, we develop a new model equation (4.9)

for the isotropic portion of the pressure Hessian tensor, allowing it to evolve on an

acoustic time scale. The equation for the anisotropic pressure Hessian (4.13) is ex-

tracted from the pressure Hessian equation of the HEE model of Chapter III. As a
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result, the HEE model is enhanced to the following form:

dAij
dt

= −AikAkj −Qij − Z
δij
3

; (4.14)

dQij

dt
= −AkjQik − AkiQkj − (n− 1)AppQij

− (−AkmQmk − AkmQkm)
δij
3

; (4.15)

dZ

dt
= − (Z + AlmAml)

c

L
; (4.16)

dMij

dt
= AikMkj; (4.17)

L =
Lo√

CpqCpq/3
; (4.18)

C = M−1. (4.19)

Equations (4.14) – (4.19) comprise a closed set of 27 ordinary differential equations

(ODEs) modeling the evolution of the velocity gradient tensor in an inviscid com-

pressible and calorically perfect medium.

2. Viscous effects modeling

The model equation set (4.14) – (4.19) is algebraically closed but physically still an

incomplete model of compressible velocity gradient dynamics. The model lacks the

effects of viscosity on the evolving quantities. In the absence of viscosity, velocity

gradient magnitudes evolve to impractically high values. This is reminiscent of the

behavior seen in incompressible Euler turbulence [45, 54] and even in the REE model

[4, 29]. To make the HEE model applicable for wider practical applications, the effects

of viscosity must be included in the model. However, including the exact viscosity

terms in a Lagrangian dynamical system like (4.14) – (4.19) is not possible. The

exact viscous terms are inherently non-local, and their inclusion will lead to obvious
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closure problems. Thus, the effects of viscosity must be modeled.

In the context of modeling incompressible velocity gradient dynamics (REE

model), the approach of using a diffusion model [40] along with Lagrangian-Eulerian

change in variables [31, 32] has successfully been employed for modeling viscous ef-

fects. In this work we follow a similar approach. However it should be noted that

modeling viscous effects on compressible velocity gradient dynamics has an impor-

tant difference, as compared to the viscous effects on incompressible velocity gradient

dynamics. In incompressible turbulence, viscosity influences the velocity gradients

only through the process of momentum diffusion, and has no direct bearing on the

pressure Hessian tensor. The pressure Hessian tensor depends directly on the velocity

field through the Poisson equation. In contrast, in compressible turbulence, the evo-

lution of the pressure Hessian tensor is dependent on energy equation [26]. Thus, the

pressure Hessian tensor (and in turn the velocity gradient tensor) is subject to the

conductive and heating effects of viscosity as well via the energy equation. Thus, a

comprehensive account of viscous effects on compressible velocity gradient dynamics

requires modeling not only the diffusive action of viscosity in momentum equation

but its energy-conducting and viscous-heating effects in energy equation as well. In

this work, we ignore the viscous-heating effects. However, we do model the viscous

conductive effects in addition to the effects of viscosity, in the momentum/velocity-

gradient equation.

It can be easily demonstrated that the exact viscous contribution (∆ij) in the

evolution equation of Aij is:

∆ij ≡
∂

∂xj

(
1

ρ

∂σik
∂xk

)
(4.20)

where ρ and σij represent density and the viscous stress tensor. The constitutive
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relationship for a compressible Newtonian fluid is:

σij = µ (Aij + Aji) + λAppδij. (4.21)

where µ and λ represent the first and second coefficients of viscosity. Using Stoke’s

hypothesis (λ = −2µ/3)[55], the constitutive relationship (4.21) simplifies to:

σij = µAij + µAji −
2

3
µAppδij. (4.22)

Substituting (4.22) in (4.20), we express ∆ij in terms of the velocity gradient tensor,

Aij:

∆ij = ν

(
∂2Aij
∂xk∂xk

+
1

3

∂2App
∂xi∂xj

)
(4.23)

where ν = µ/ρ and the spatial variations in ρ and the µ have been neglected to avoid

further complexity in modeling the viscous effects. Clearly, (4.23) has non-local terms

(higher gradients of Aij), and these terms require modeling. We attempt to model

these viscous terms employing the Linear Lagrangian Diffusion Modeling (LLDM)

approach of Jeong et al. [31]. Using Eulerian-Lagrangian change of variables, ∆ij can

be expressed as:

ν

[
∂2Aij
∂xk∂xk

]
+ ν

[
1

3

∂2App
∂xi∂xj

]
= ν

[
∂2Aij

∂Xn∂Xm

∂Xn

∂xk

∂Xm

∂xk
+
∂Aij
∂Xm

∂2Xm

∂Xn∂xk

∂Xn

∂xk

]
+ ν

[
∂2App

∂Xn∂Xm

∂Xm

∂xj

∂Xn

∂xi
+
∂App
∂Xm

∂2Xm

∂Xn∂xj

∂Xn

∂xi

]
(4.24)

where X and x denote the Lagrangian and Eulerian co-ordinates, respectively. Invok-

ing the assumptions of the LLDM approach [31], we neglect the higher order terms
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in (4.24) and arrive at the following approximation:

ν

[
∂2Aij
∂xk∂xk

]
+ ν

[
1

3

∂2App
∂xi∂xj

]
≈ ν

[
∂2Aij

∂Xn∂Xm

∂Xn

∂xk

∂Xm

∂xk

]
+ ν

[
∂2App

∂Xn∂Xm

∂Xm

∂xj

∂Xn

∂xi

]
= ν

[
∂2Aij

∂Xn∂Xm

CnkCmk

]
+ ν

[
∂2App

∂Xn∂Xm

CmjCni

]
.(4.25)

Note that the tensor Cij is the deformation tensor as defined in (4.10). The first term

appearing on the rhs of (4.25) involves the second order tensor CmkCnk and is exactly

the same term as in incompressible velocity gradient equation [40, 31]. Thus, we treat

this term in the same way as modeled by Jeong et al. [31]:[
νCmkCnk

∂2Aij
∂Xm∂Xn

]
≈ −CpqCpq

3τv
Aij (4.26)

where the quantity τv is a constant to be interpreted as the molecular viscous relax-

ation time scale.

The second term in (4.25) involves the second gradient of dilatation (App) and

the fourth order tensor CmjCni. This term is zero in incompressible flows, but may

have non-zero contribution in compressible flows. However, the nature of this term

being different from the first viscous term in (4.25), it is not very straightforward to

extend the diffusion-type modeling approach to this term. In this work, we ignore

the effects of this term on compressible velocity gradients. Thus, using (4.26), (4.14)

is augmented to the following form:

dAij
dt

= −AikAkj − Pij −
CpqCpq

3τv
Aij. (4.27)

The evolution of the quantity CpqCpq appearing in (4.27) has already been in-

cluded in the model (4.17 and 4.19). However, in an inviscid flow wherein the evo-

lution of CpqCpq is unrestricted, in viscous flows we must impose an upper bound on

CpqCpq in accordance with the known limiting behavior of viscous action. At smallest
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scales of motion, the fluid is strongly affected by viscous forces. The Reynolds number

based at these small scales of motion is restricted to be of order unity [56, 57]:

Re ≈ 1. (4.28)

The Reynolds number is a measure of the relative significance of inertia to the viscous

effects. In the context of our velocity gradient model, the relevant Reynolds number

can be defined as the ratio of self-stretching (first term on rhs of (4.27) to viscous

terms (third term on rhs of (4.27)). A simple order of magnitude analysis of (4.27)

leads to an estimate of the order of magnitude of the relevant Reynolds number in

our velocity gradient model (more on this in Section C):

Re = O

(
|AikAkj|

CpqCpq |Aij| /3τv

)
∼ O

(
3τv |A|
CpqCpq

)
(4.29)

where |A| is the instantaneous magnitude of the velocity gradient tensor. Now we

employ (4.28) in the limiting regime of viscous action to arrive at a corresponding

bound on the magnitude of CpqCpq:

1 ≤ Re⇒ CpqCpq ≤ 3τV |A| .

We use this bound on CpqCpq for all our computations discussed in the next sections.

Using a similar modeling approach, we augment the evolution equation of the

traceless (anisotropic) portion of the pressure Hessian (4.15) with the conductive

effects of viscosity:

dQij

dt
= − AkjQik − AkiQkj − (n− 1)AppQij −

CpqCpq
3τp

Qij

− (−AkmQmk − AkmQkm)
δij
3
. (4.30)

The quantity τp appearing in (4.30) is a constant to be interpreted as the time scale



72

associated with the (molecular) heat conduction process in the fluid. The relationship

between τp with τv is discussed in the next sub-section.

Note that (4.16), which is the evolution equation of the isotropic portion (Z) of

the pressure Hessian, needs no viscous model. The tendency of the isotropic portion

of the pressure Hessian to impose divergence-free velocity field depends only on the

interaction of acoustic and inertial processes, and thus is truly an inviscid effect.

In summary, as a result of the viscous enhancements introduced in this sub-

section, the equation set (4.14) – (4.19) modifies to the following form

dAij
dt

= −AikAkj −Qij − Z
δij
3
− CpqCpq

3τv
Aij; (4.31)

dQij

dt
= −AkjQik − AkiQkj − (n− 1)AppQij −

CpqCpq
3τp

Qij

− (−AkmQmk − AkmQkm)
δij
3

; (4.32)

dZ

dt
= − (Z + AlmAml)

c

L
; (4.33)

dMij

dt
= AikMkj; (4.34)

L =
Lo√

CpqCpq/3
; (4.35)

C = M−1. (4.36)

Equations (4.31) – (4.36) form a coupled set of 27 ODEs. We refer to this equation set

as the enhanced homogenized Euler equation (EHEE) and propose it as a model for

velocity gradient dynamics in a compressible viscous and calorically perfect medium.

3. Non-dimensional parameters

Similar to the full Navier-Stokes (NS) equation set for compressible flows, the EHEE

model (4.31) – (4.36) involves inertial, acoustic and viscous time scales. In order to
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better understand the influence of these time scales on compressible velocity gradient

dynamics, we must examine the non-dimensional form of the EHEE model. Thus, in

this sub-section, we first non-dimensionalize (4.31) – (4.36) and isolate the inherent

non-dimensional parameters of the model. Next, we highlight the physical significance

of these parameters. Finally we discuss the analogies between the non-dimensional

parameters of the EHEE model and those of full Navier–Stokes equations (Mach

number, Reynolds number, etc.).

To non-dimensionalize (4.31) – (4.36), we choose a characteristic value of each

quantity appearing in these equations. We choose scalars L∗ and Z∗ as the character-

istic values of the length scale (L) and the isotropic part (Z) of the pressure Hessian

tensor, respectively. The scalars A∗, Q∗ and M∗ are chosen as the characteristic val-

ues of the magnitudes of the Aij, Qij and Mij tensors, respectively. Having chosen

A∗, the quantity 1/A∗ can be considered as the characteristic time scale of the fluid

motion. Each variable in the model equation set can now be expressed in terms of

the normalized variable (denoted by an over bar) and the corresponding characteristic

value:

t =
t

A∗
; L = LL∗; Z = ZZ∗;

Aij = AijA
∗; Qij = QijQ

∗; Mij = M ijM
∗. (4.37)

Since dilatation (Aii) can have a very different magnitude than that of the velocity

gradient tensor itself, we need to have another characteristic scalar, χ, to appropri-

ately non-dimensionalize Aii. The quantity χ must be chosen such that:

Aii = χAiiA
∗. (4.38)

Note that for a strictly incompressible flow, χ ≡ 0.



74

Substituting (4.37) and (4.38) in (4.31) –(4.36) and subsequently grouping the

characteristic quantities together, we are led to the following equations:

dAij
dt

= −AikAkj − φQij − ψZ
δij
3
− 1

ReM
Aij; (4.39)

dQij

dt
= −AkjQik − AkiQkj − (n− 1)χAppQij −

1

θ
Qij

−
(
−AkmQmk − AkmQkm

) δij
3

; (4.40)

dZ

dt
= − 1

MM

(
Z +

1

ψ
AlmAml

)
1

L
; (4.41)

dM ij

dt
= AikMkj; (4.42)

L =
Lo√

CpqCpq/3
; (4.43)

C = (MM∗)−1. (4.44)

where the five non-dimensional parameters have the following definitions:

φ ≡ Q∗

A∗2
; ψ ≡ Z∗

A∗2
;

ReM ≡
3τvA

∗

CpqCpq
; θ ≡ 3τpA

∗

CpqCpq
; MM ≡

A∗L∗

c
. (4.45)

The single most important non-dimensional parameter appearing in (4.39) –

(4.44) is MM ≡ c
A∗L∗

. This really is a gradient Mach number. The parameter MM

appears in (4.41) and directly determines the tendency of the isotropic portion of the

pressure Hessian to impose incompressibility on the fluid particle. Clearly, MM is a

ratio of the acoustic and inertial time scales in the model. Accordingly, we call MM

the model Mach number (MM). In compressible homogeneous isotropic turbulence,

the relevant Mach number is the turbulent Mach number (MT ), which is defined as
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[58, 50]:

MT ≡
√

uiui
nRT

(4.46)

where ui and T are characteristic fluctuating velocity and characteristic mean temper-

ature values and R is gas constant. Since our model equation set for velocity gradients

does not have an explicit appearance of velocity, it is not straightforward to provide

an exact relationship between MM and the turbulent Mach number. However, using

order of magnitude arguments, we can estimate a relationship between the two Mach

numbers:

MT ≈
√

3MM . (4.47)

Certainly, MM can be considered a parameter analogous to MT , as the former is

indeed the ratio between the relevant inertial and acoustic time scales in the model.

The parameter ReM appearing with the last term in rhs of (4.39) determines the

importance of viscous terms relative to the inertial terms. Thus ReM is analogous

to the conventional definition of the Reynolds number (Re). The definition of ReM

in (4.45) clearly shows that an increase in τv should effectively simulate an increased

Reynolds number effect in the EHEE model (and vice-versa). Similarly, the coefficient

(θ) appearing in the rhs of (4.40) represents the ratio of thermal conduction terms

to inertial terms in the modeled equation. In the exact non-dimensional Navier–

Stokes energy equation, the coefficient of conduction term is n
RePr

[59], where n and

Pr represent the specific heat ratio and Prandtl number of the gaseous medium.

Taking a cue from this known fact, we can relate ReM and θ through the following

relationship:

τp = τv
n

Pr
(4.48)

where n represents the specific heat ratio of the medium. All EHEE simulation results

presented in the next section employ (4.48).
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Table XIII. Various non-dimensional parameters in EHEE model and their analogy

with the non-dimensional parameters of full compressible Navier-Stokes

(NS) equations.

Parameter in Parameter Physical Analogous parameter in

EHEE model definition interpretation exact NS equations

MM
A∗L∗

c
inertial time scale
acoustic time scale

Mach number

ReM
3τvA∗

CpqCpq

inertial terms
viscous terms

Reynolds number (Re)

θ 3τpA∗

CpqCpq

inertial terms
conduction terms

n
RePr

φ Q∗

A∗2
Anisotropic pressure Hessian terms

Inertial terms
-

ψ Z∗

A∗2
Isotropic pressure Hessian term

Inertial term
-

The non-dimensional quantity φ appearing in (4.39) represents the relative im-

portance of anisotropic pressure Hessian terms to the inertial terms in the evolution

equation of Aij. Similarly, ψ – appearing in (4.39) and (4.41) – is the ratio of isotropic

pressure Hessian terms to the inertial terms. The order of magnitude of φ and ψ

must depend on the Mach number regime of the flow. In very low Mach number

flows, wherein the pressure field becomes increasingly dependent on velocity field via

the Poisson equation, both φ and ψ should be order unity. On the other hand, at

large Mach numbers, φ and ψ must scale as 1/ (MM)2. Table XIII summarizes the

discussion of this sub-section.
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B. Model evaluation

In this section we evaluate the EHEE model by comparing the model results against

known turbulence behavior (DNS and analytical results) in different Mach number

and Reynolds number regimes. The variable Mach number and Reynolds number

effects are simulated by appropriately changing various non-dimensional parameters

identified in Section A (see Table XIII). In the small Mach number regime, the

EHEE model recovers the known incompressible turbulence behavior (Sub-section

1). On the other extreme, at an extremely high Mach number, the model behavior

resembles Burgers or pressure-released velocity gradient dynamics (Sub-section 2).

In the intermediate Mach number regime, we evaluate the model in terms of various

Mach number effects on the dilatational and solenoidal components of Aij (Sub-

section 3). Lastly, we evaluate the model in terms of various Reynolds number effects

on dilatational and solenoidal statistics (Sub-section 4).

All EHEE results are obtained by performing time integration of (4.31) – (4.36).

We employ the fourth-order Runge-Kutta method for the purpose. We evaluate the

model in terms of statistics of various pertinent quantities. Thus computations are

performed for an ensemble of initial conditions or “particles” to obtain these statistics.

An optimum sample size of 20,000 particles is used to obtain all the EHEE results

presented in this chapter. As indicated in Section A, the set of initial conditions for

an EHEE simulation must be chosen in accordance with the simulated Mach number

and Reynolds number regime. Specific details of the choice of initial conditions for

each EHEE simulation is discussed in the respective sub-sections below.
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1. Evaluation at low Mach number: Incompressible limit

In incompressible limit, we evaluate the EHEE model in terms of the structure of

(i) the velocity gradient and, (ii) the pressure Hessian tensors. Comparisons are

made directly against the behavior seen in DNS of decaying isotropic incompressible

turbulence [5]. To simulate the incompressible limit of the EHEE model, the set

of initial conditions for a “particle” is chosen as follows. We choose the orders of

magnitude of the velocity gradient and pressure Hessian tensors as:

√
AmnAmn ∼ 1;

Z = −AlmAlm;√
QmnQmn ∼ |AlmAml| . (4.49)

Individual components of Aij and Qij tensors are generated randomly. A random

number generator that produces uniformly distributed numbers between −1 and 1

is employed. Both Aij and Qij are ensured to be traceless initially. The Mij tensor

is chosen to be the identity tensor. The value of c is chosen as 100 to have a small

enough value of initial Mach number (MM = 0.01) to simulate the incompressible

limit of the model. The molecular viscous relaxation time scale (τv) is chosen to be

20, and the value of τp is set using (4.48). The initial length scale, Lo, is chosen to be

unity. The Prnadtl number and specific heat ratio values are chosen as 0.7 and 1.4,

respectively.

All EHEE results discussed in this sub-section are obtained at the non-dimensional

time, tAo = 5 where Ao ≡
√
AmnAmn at t = 0. By this time the averaged pseudo-

dissipation of the sample, 〈AijAij〉, reduces to less than one-tenth of its initial value,

and thus the non-linear and viscous processes are expected to be in full effect.

We first consider the eigenvalues of the strain-rate tensor Sij (≡ (Aij + Aji)/2)
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(a)

(b)

Fig. 16. Probability density function (PDF) of strain-rate eigenvalues in (a) DNS of

incompressible isotropic turbulence, and (b) EHEE simulation at MM = 0.01.
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and the alignment tendencies of the vorticity vector (ω) with the eigenvectors of the

strain-rate tensor. In several previous studies [5, 54, 45] of incompressible turbulence,

two prominent features have been observed: (i) two eigenvalues of the strain-rate

tensor are positive, and (ii) vorticity is aligned with the eigenvector corresponding to

the smaller positive eigenvalue. Such a preferred structure of the velocity gradient

tensor is responsible for intense vortex stretching in incompressible turbulence.

The preferred signs of the strain-rate eigenvalues: α, β, γ (α ≥ β ≥ γ) [5] and

the ratio between these can be studied in terms of the probability density functions

(PDF) of the normalized form of these eigenvalues:

α∗ =
α√

α2 + β2 + γ2
β∗ =

β√
α2 + β2 + γ2

γ∗ =
γ√

α2 + β2 + γ2
. (4.50)

On the other hand, the vorticity alignment tendency can be studied in terms of the

cosine of the angle between the vorticity vector and the corresponding eigenvector of

the strain-rate tensor.

In Figure 16(a), we present the probability density functions α∗, β∗ and γ∗ as seen

in DNS of incompressible decaying isotropic turbulence. In Figure 17(a) PDFs of the

cosine of the angle between the vorticity vector and the strain-rate eigenvectors are

presented. In Figures 16(b) and 17(b) the corresponding results obtained with EHEE

computations are presented. The EHEE model indeed captures the high probability

of the two eigenvalues (α and β) to be positive. Moreover, similar to the behavior

seen in DNS, the vorticity vector in the EHEE computations clearly shows a very high

probability to align with the eigenvector corresponding to the intermediate strain-rate

eigenvalue.

Next we consider the pressure Hessian tensor. Analysis and simulation of incom-

pressible Euler flows by Ohkitani et al. [54] and Ohkitani et al. [45] demonstrate that

in regions of intense vortex stretching, the vorticity vector must be well aligned with
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(a)

(b)

Fig. 17. PDF of cosine of the angle between vorticity vector and strain-rate eigen-

vectors in (a) DNS of incompressible isotropic turbulence, and (b) EHEE

simulation at MM = 0.01.
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(a)

(b)

Fig. 18. PDF of cosine of the angle between vorticity vector and pressure Hessian

eigenvectors in (a) DNS of incompressible isotropic turbulence, and (b) EHEE

simulation at MM = 0.01.



83

one of the eigenvectors of the pressure Hessian tensor. This behavior is observed in

DNS of incompressible turbulence as well. In Figure 18(a), we present the PDFs of

the cosine of angle between the vorticity vector and the eigenvectors corresponding

to the eigenvalues (αp, βp, γp) of the pressure Hessian tensor as seen in DNS. Note

that |αp| ≥ |βp| ≥ |γp| [45]. In Figure 18(b) we present the alignment tendency of the

vorticity vector with the anisotropic portion of the pressure Hessian tensor (Qij) seen

in EHEE model. Similar to the behavior seen in Figure 18(a), the vorticity vector

shows high propensity to align with the γp eigenvector of the Qij tensor.

We further evaluate the model in terms of the joint statistics of the second (q)

and third (r) invariants of the normalized velocity gradient tensor. For incompressible

turbulence these invariants are defined as in (2.8). Knowledge about velocity gradient

invariants can be employed to infer the local topology of a flow field [11]. In Figures

19(a) and 19(b) we present the joint PDFs of q and r as seen in DNS and EHEE

computations. The distribution in Figure 19(a) has two prominent features: (i) a

significant amount of data lies in the lower right region along the curve q = 3
√

27r2/4

(Vieillefosse line); and (ii) the bulk of data lies almost uniformly distributed over a

roughly elliptical region in the upper left quadrant. The local topologies associated

with these regions are stable-focus-stretching (lower-right) and unstable node-saddle-

saddle (upper-left). These features are found to be quite universal across a variety of

incompressible turbulent flows ([12] – [22]). A close inspection of Figure 19(b) reveals

that the EHEE model does not capture the details of the distribution very accurately.

However, the model clearly recovers the preferred alignment of the joint distribution

along the Vieillefosse line.

Based on the foregoing discussion, we summarize that at a small enough Mach

number (MM = 0.01), the EHEE model recovers several features seen in DNS of

incompressible turbulence. Moreover, unlike the HEE model developed in Chapter
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(a)

(b)

Fig. 19. Joint PDF of second and third invariants (q, r) of normalized velocity gradi-

ent tensor in (a) DNS of incompressible isotropic turbulence, and (b) EHEE

simulation at MM = 0.01.
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III, the recovery of the incompressible behavior in the EHEE model is not conditional

upon the instantaneous value of normalized dilatation. This is a major improvement

achieved by the EHEE model.

2. Evaluation at high Mach number: Pressure released limit

In this sub-section, we evaluate the model performance in an extremely high Mach

number regime. This regime can also be considered as the pressure-released limit,

wherein pressure has negligible influence on the flow field. Bikkani et al. [39] study the

evolution of velocity gradient dynamics in such a regime using the Burgers equation.

Their study can be considered as the exact pressure released behavior of turbulence,

as pressure terms are completely removed from the governing equations. Thus, we will

evaluate the EHEE results in high Mach number limit against the results of Bikkani

et al. [39].

To simulate the high Mach number behavior, we choose initial MM = 10000.

Though this number is too high from a practical viewpoint, nevertheless it is useful

to demonstrate the asymptotic ability of the EHEE model to recover pressure-released

behavior. As pointed out in Section A, the initial values of the isotropic (Z) and the

anisotropic (Qij) parts of the pressure Hessian terms must be chosen consistent with

the simulated high Mach number regime. A simple non-dimensional analysis of the

Navier–Stokes equation [59] clearly suggests that at very high Mach numbers the

pressure terms scale as 1/(Ma)
2 of inertia terms, where Ma is the ratio between the

relevant acoustic and inertial time scales. Accordingly, in our EHEE simulation we

choose the initial values Z and
√
QmnQmn as:

|Z| ∼ |AlmAml|
(MM)2

;√
QmnQmn ∼

|AlmAml|
(MM)2

. (4.51)
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(a)

(b)

Fig. 20. PDF of strain-rate eigenvalues for particles undergoing gradient steepening

(velocity gradient magnitude 10 times the initial value) in (a) Burgers velocity

gradient dynamics, and (b) EHEE simulation at MM = 10000.
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(a)

(b)

Fig. 21. PDF of cosine of angle between vorticity vector and strain-rate eigenvectors

for particles undergoing gradient steepening (velocity gradient magnitude 10

times the initial value) in (a) Burgers velocity gradient dynamics, and (b)

EHEE simulation at MM = 10000.
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Moreover, as the analysis of Bikkani et al. [39] assumes inviscid dynamics, we set

τv (and τp) to be infinity (very large number) in our simulations. This removes the

influence of viscosity terms in the EHEE model (4.31) – (4.36). The value of sound

speed (c) is set to a low value of 0.0001 to achieve an initial Mach number (MM) of

10000. The initial values of all other quantities are chosen to be the same as described

in Sub-section 1 for the incompressible limit simulation.

Computations and analysis of Bikkani et al. [39] show that the pressure-released

turbulence has bimodal behavior. In their computations, approximately 70% of the

particles undergo gradient steepening, and the other 30% undergo gradient smoothen-

ing. The velocity gradient structures associated with these two modes of behavior

are vastly different from each other. Again, we study the structure of the velocity

gradient tensor in terms of the PDFs of strain-rate eigenvalues and cosines of the

angles between the vorticity vector and strain-rate eigenvectors. In Figures 20(a)

and 21(a), we present the PDFs of the normalized strain-rate eigenvalues (4.50) and

the cosine of the angle between the vorticity vector and the strain-rate eigenvectors

for the particles undergoing gradient steepening (results sampled at an instant when
√
AmnAmn reaches 10 times its initial value). In Figures 22(a) and 23(a) we present

results from Burgers dynamics for particles undergoing gradient smoothening (re-

sults sampled at an instant when
√
AmnAmn reaches one-tenth of its initial value).

These PDFs clearly show the tendency of Burgers dynamics to approach the stable

fixed points of the inviscid Burgers velocity gradient dynamics [39]. In Figures 20(b),

21(b), 22(b) and 23(b) we present the corresponding results obtained with the EHEE

model in high Mach number limit. The EHEE results in these figures are in com-

plete agreement with those of Burgers dynamics. Moreover, in EHEE simulations we

find that the ratio of the number of particles undergoing gradient steepening to that

undergoing gradient smoothening is indeed 70 : 30, which is the same as observed in
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(a)

(b)

Fig. 22. PDF of strain-rate eigenvalues for particles undergoing gradient smoothening

(velocity gradient magnitude one-tenth of the initial value) in (a) Burgers

velocity gradient dynamics, and (b) EHEE simulation at MM = 10000.



90

(a)

(b)

Fig. 23. PDF of cosine of angle between vorticity vector and strain-rate eigenvectors

for particles undergoing gradient smoothening (velocity gradient magnitude

one-tenth of the initial value) in (a) Burgers velocity gradient dynamics, and

(b) EHEE simulation at MM = 10000.
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Burgers dynamics by Bikkani et al. [39]. Thus, we conclude that at an extremely high

Mach number, EHEE exactly recovers the pressure-released behavior of compressible

velocity gradient dynamics.

3. Evaluation at intermediate Mach numbers

In this sub-section, we evaluate the performance of the EHEE model at moderate

subsonic Mach numbers. A series of comparisons is performed against DNS results of

compressible decaying isotropic turbulence [51, 50, 38]. Specifically, we evaluate the

model in terms of the influence of Mach number on the statistics of (i) vorticity (ωi),

and (ii) dilatation (Aii). EHEE computations are performed at three representative

initial Mach numbers: MM = 0.1, 0.2, and 0.3. These values are chosen to have a rea-

sonable comparison with the available DNS results of compressible turbulence, which

employ turbulent Mach number as parameter (see 4.47). We restrict our compar-

isons over a low sub-sonic Mach number regime, as considerable understanding and

significant volume of DNS studies are available in this regime. For the EHEE simu-

lation results presented in this sub-section, a desired value of initial MM is achieved

by appropriately choosing a value for sound speed, c (see 4.45). Initial values of the

pressure Hessian components are chosen such that φ ≈ 0.01 and ψ ≈ 0.01 (see defi-

nitions in (4.45)). The value of τv is chosen to achieve a desired value of ReM . For

all the EHEE simulations discussed in this section, ReM is chosen to be 35.4 (unless

specified otherwise). Note that these values are chosen to match the initial conditions

specified in [51] and [38].

a. Effect of Mach number on solenoidal and compressible dissipation

In homogeneous turbulence, the root mean square (rms) of vorticity and dilatation

are proportional to solenoidal dissipation (εS) and compressible dissipation (εC) of
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(a)

(b)

Fig. 24. Effect of Mach number on the time evolution of εC/εS in (a) DNS of com-

pressible isotropic turbulence, (b) EHEE simulations.
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turbulent kinetic energy [50]:

εS =
µ

〈ρ〉

〈
ω
′

iω
′

i

〉
; (4.52)

εC =
4 〈µ〉
3 〈ρ〉

〈
d
′2
〉

(4.53)

where µ and ρ denote dynamic viscosity and density and d ≡ Aii. (〈ζ〉, ζ ′ denote

Reynolds mean and fluctuation of any flow variable ζ).

Theoretical analysis and computational results of homogeneous isotropic com-

pressible turbulence [50, 51, 38] show that in low sub-sonic Mach number regime the

effect of Mach number on solenoidal dissipation is negligible. On the other hand,

compressible dissipation (εC) shows a strong dependence on turbulent Mach num-

ber [50]. In Figure 24(a)∗ we present evolution of the ratio, εC/εS seen in DNS of

Lee et al. [51] with an initial turbulent Mach number as the parameter. The figure

clearly demonstrates that an increase in Mach number increases εC/εS, or equiva-

lently
〈
d
′
d
′〉
/
〈
ω
′
iω
′
i

〉
(see definitions in 4.53). Theoretical analysis of Sarkar et al.

[50] estimates that εC tends toward a quasi-equilibrium value with respect to εS with

turbulent Mach number (MT ) as a scaling factor:

εC ∝M2
T εS. (4.54)

With 〈µ〉 and 〈ρ〉 being constants for homogeneous turbulence, (4.54) is essentially

a relationship between the rms values of vorticity and dilatations:

〈
d
′
d
′
〉

= ηM2
T

〈
ω
′

iω
′

i

〉
(4.55)

where η is a constant. In Figure 25(a) we plot the results presented in Figure 24(a)

∗Reprinted with permission from [51]. Copyright[1991], American Institute of
Physics.
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(a)

(b)

Fig. 25. Effect of Mach number on the time evolution of εC/εS normalized by the initial

value of Mach number in (a) DNS of compressible isotropic turbulence, and

(b) in EHEE simulations.
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normalized by the initial value (MT )2. Indeed, with this normalization all the curves

collapse representing the existence of (MT )2 scaling suggested by Sarkar et al. (4.54).

Note that in Figures 24(a) and 25(a), time on the x-axis has been re-normalized (to

a new time variable T ) as compared to the original presentation of Lee et al. [51].

Lee et al. [51] present the results over a defined acoustic time scale. The value of this

time scale at the instant when εC/εS attains its maxima (approximately the same for

all Mach number simulations) is used to renormalize the time axis in Figures 24(a)

and 25(a).

We now consider EHEE results and qualitatively examine them with respect to

the DNS behavior discussed above. In Figure 26 we present the evolution of
〈
ω
′
iω
′
i

〉
(equivalent to εS ) computed with the EHEE model. Clearly, the model qualitatively

recovers the behavior seen in DNS: initial Mach number has negligible influence on〈
ω
′
iω
′
i

〉
. In Figure 24(b) we present the evolution of

〈
d
′
d
′〉
/
〈
ω
′
iω
′
i

〉
(equivalent to

εC/εS) from EHEE computations. Similar to the trend seen in DNS (Figure 24(a)),

an increase in Mach number significantly increases the value of
〈
d
′
d
′〉
/
〈
ω
′
iω
′
i

〉
in the

EHEE simulations as well. Furthermore, we check to see if the EHEE model recovers

the Mach number scaling (4.55). In Figure 25(b), we plot
〈
d
′
d
′〉
/
〈
ω
′
iω
′
i

〉
compensated

by (MM)2. Indeed, this compensation makes the curves collapse together. This is in

agreement with the behavior seen in DNS (Figure 25(a)).

b. Effect of Mach number on skewness and flatness of vorticity and dilatation

We further evaluate the model in terms of higher order moments – skewness and

flatness – of vorticity and dilatation PDFs. Skewness (Sζ) and flatness (Fζ)) for any
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Fig. 26. Effect of Mach number on the time evolution of solenoidal dissipation rate

(εS) in EHEE simulations.

variable ζ are defined as:

Sζ ≡
〈
ζ
′3
〉

〈ζ ′2〉3/2
;

Fζ ≡
〈
ζ
′4
〉

〈ζ ′2〉2
. (4.56)

The DNS study of Lee et al. [51] suggests that skewness and flatness of each compo-

nent of vorticity vector in homogeneous isotropic turbulence is very similar to those of

a Gaussian distribution. Thus Sωi
≈ 0, and Fωi

≈ 3. Furthermore, both Sωi
and Fωi

remain unchanged as the Mach number increases. On the other hand, skewness and

flatness of dilatation (Sd, Fd) are highly dependent on Mach number. Both Sd and Fd

show significant departure from the Gaussian distribution as Mach number increases.

At non-zero Mach numbers, compression events are more favored than expansions

leading to negative Sd values. Also, dilatation has a considerably flatter distribution

resulting in Fd being greater than that of Gaussian distribution. Furthermore, as
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(a)

(b)

Fig. 27. Effect of Mach number on time evolution of skewness of dilatation (Aii) in (a)

DNS of compressible isotropic turbulence, and (b) EHEE simulations. The

dashed curves in (b) represent skewness of vorticity (ωi).
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Mach number increases, dilatation distribution gets more negatively skewed, and the

flatness of dilatation further increases. These findings of Lee et al. [51] are reproduced

in Figures 27(a)∗ and 28(a)∗ in re-normalized time, T .

To examine the corresponding EHEE performance, we present the model results

in Figures 27(b) and 28(b). The dashed curves represent the time evolution of skew-

ness and flatness of vorticity in Figures 27(b) and 28(b), respectively. We observe

that indeed a change in Mach number influences neither skewness nor flatness of vor-

ticity (curves corresponding to different Mach numbers overlap). This is in line with

expected behavior. Furthermore, at initial times (T ≤ 1.5), the skewness and flatness

at all Mach numbers are indeed close to those of Gaussian distribution (Sωi
= 0,

Fωi
= 3). However, at later times the flatness evolutions become erratic and the

model computations show no qualitative agreement with the DNS results.

The solid curves in Figures 27(b) and 28(b) represent the skewness and flatness of

the dilatation PDF. The facts that the dilatation PDF in compressible turbulence has

negative skewness and a flatness value more than that of a Gaussian distribution are

very well captured by the EHEE model. Moreover, the model correctly recovers the

following trends: (i) skewness becomes increasingly more negative, and (ii) flatness

becomes increasingly more positive with an increase in the Mach number. At earlier

times (T ≤ 1.5), the behavior shown in EHEE computations is indeed very similar

to that seen in DNS. However, at later times, like vorticity, the model performance

deteriorates as evolutions of both Sd and Fd become erratic. The inconsistent behavior

of statistics at these late times may be due to the neglected dilatation related viscous

effects in the EHEE model (4.25).

∗Reprinted with permission from [51]. Copyright[1991], American Institute of
Physics.
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(a)

(b)

Fig. 28. Effect of Mach number on time evolution of flatness of dilatation (Aii) in (a)

DNS of compressible isotropic turbulence, and (b) EHEE simulations. The

dashed curves in (b) represent flatness of vorticity (ωi).
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4. Evaluation in terms of Reynolds number effects

A well-known effect of a decreased Reynolds number on turbulence is to inhibit the

process of velocity gradient steepening. Consequently, kinetic energy dissipation, ε

(≡ (εS + εC)) decreases with decreased Reynolds number. Lee et al. [51] further

demonstrate that a reduction in Reynolds number causes a decrease in magnitudes of

skewness (Sd) and flatness (Fd) of the dilatation PDF. In Figures 29(a), 29(b), and

29(c), we demonstrate the capability of the EHEE model in capturing these effects.

In each of these figures, results have been shown from two different simulations.

These simulations differ only in terms of the value of τv or, equivalently, the effective

Reynolds number (see Section A, (4.45)). In Figure 29(a), we show the evolution of ε.

A reduction in τv clearly reduces dissipation rate, ε. This is in line with the expected

behavior. In Figures 29(b) and 29(c) we demonstrate the time evolution of skewness

and flatness of dilatation. In both figures, the moderating effect of decreased Reynolds

number is clearly seen. Based on these observations, we conclude that the EHEE

model recovers the general effects of Reynolds number on compressible turbulence.

C. Conclusions

The recently developed dynamical model for compressible velocity gradient dynamics

– homogenized Euler equation (HEE) – is enhanced further by (i) introducing an

acoustic time scale to correctly capture the physics of dilatational portion of velocity

gradient field, and (ii) adding viscosity terms to capture finite Reynolds number

effects. These enhancements are necessary to address the shortcomings of the original

HEE model. An acoustic time scale is introduced in the model by modifying the

pressure Hessian evolution equation in the model. This modification brings in an

explicit appearance of Mach number (ratio of acoustic and fluid velocity time scales)
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(a)

(b)

(c)

Fig. 29. Effect of Reynolds number on time evolution of (a) total dissipation rate

(εS + εC), (b) skewness of dilatation (Aii), and (c) flatness of dilatation in

EHEE simulations.
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in the model. Viscous effects are added to the model using the linear Lagrangian

diffusion approximation, which has been earlier used in the context of the restricted

Euler equation. Performance of this enhanced model – Enhanced HEE (EHEE) – is

evaluated against direct numerical simulation (DNS) results. EHEE shows several

improvements over its predecessor. At very low Mach numbers (incompressible limit)

the model recovers several features seen in incompressible turbulence. In the very high

Mach number limit, the model exactly recovers Burgers (pressure-released) velocity

gradient behavior. At intermediate Mach numbers, the model accurately captures

various Mach number effects on the statistics of both solenoidal and dilatational

portions of the velocity gradient tensor as seen in DNS of compressible turbulence.

Similarly, several Reynolds number effects on compressible velocity gradient physics

are recovered by the model.
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CHAPTER V

SUMMARY AND CONCLUSIONS

The overall goal of this dissertation is to further the current understanding of the

effects of compressibility on turbulent velocity gradients. Toward this end this work (i)

characterizes the effects of compressibility on turbulent velocity gradients employing

direct numerical simulation (DNS) results, and (ii) develops mathematical models to

compute the evolution of velocity gradients in compressible turbulence. The study of

velocity gradients is key to understanding various non-linear processes of turbulence

such as cascading, intermittency, mixing and material element deformation. Such

understanding is imperative for the development of high fidelity turbulence closure

models for compressible turbulence computations. A brief summary including the

major conclusions/findings of this dissertation is presented below.

A. Effects of compressibility on velocity gradient invariants and local topology

In this part of the dissertation, dependence of joint statistics of second and third

invariants of velocity gradient tensor on dilatation (degree of compression/expansion

of a fluid element) in compressible decaying isotropic turbulence is examined using

DNS results. Moreover, the exact probabilities of occurrence of various local flow pat-

terns/topologies conditional upon dilatation are computed. The study reveals that

the joint statistics of the second and third invariants are highly dependent on normal-

ized dilatation. Invariant statistics conditioned upon zero dilatation are very similar

to the behavior seen in incompressible turbulence but change drastically as dilatation

assumes higher positive/negative values. It is found that at high positive and negative

dilatations, the dominant topologies are entirely different from those seen in incom-

pressible turbulence. While unstable focus stretching and unstable node/unstable
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node/unstable node dominate at high positive dilatations, stable focus compressing

and stable node/stable node/stable node topologies are dominant at large negative

dilatations. As the extreme levels of normalized dilatations are reached (±
√

3), the

variety in the observed flow patterns is further reduced. The only observed flow pat-

tern at
√

3 and −
√

3 is unstable star node/unstable star node/unstable star node and

stable star node/stable star node/stable star node, respectively. Furthermore, it is

found that the conditional behavior of invariants is insensitive to Reynolds number

and Mach number (at least in the considered range). Additionally, in this part of the

dissertation, the above-mentioned findings are employed to evaluate the performance

of a recently developed velocity gradient model – homogenized Euler equation (HEE).

It is found that the HEE model qualitatively captures many features seen in DNS.

However, the quantitative performance is not very accurate, especially at negative

dilatation values.

B. Development of models for compressible velocity gradient dynamics

In the second part of the dissertation, two mathematical models for compressible

velocity gradient dynamics are developed. The first model - called the homogenized

Euler equation (HEE) - ignores all the non-local effects and is developed under the

assumptions of uniform velocity gradients in an inviscid compressible and homen-

tropic flow field. The medium is assumed to be a calorically perfect gas. Coupling

between the energy and momentum equation is invoked through the state and energy

equations. The pressure Hessian evolves as dictated by thermodynamic considera-

tions. In contrast to the restricted Euler equation (REE), the anisotropic pressure

Hessian effects are retained to some level of accuracy in this approach. Computations

are performed for an ensemble of random initial velocity gradient tensors. Various
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statistics pertaining to the structure of the velocity gradient tensor conditioned upon

normalized dilatation are studied. HEE results in the incompressible limit (statistics

conditioned on zero dilatation) compare very well against DNS results of incompress-

ible decaying isotropic turbulence. Moreover, in this limit the HEE computations are

much improved over the asymptotic REE results. At various non-zero dilatations,

the HEE very well captures many features of the principal strain-rate statistics seen

in compressible DNS. The asymptotic behavior of HEE is consistent with Burgers

velocity gradient dynamics. Despite its excellent performance in capturing several

dilatation-conditioned statistics, the HEE model suffers from two important short-

comings. First, the model does not capture the time evolution of dilatation accurately.

Second, in the absence of viscous terms, the HEE model fails to correctly recover the

magnitudes of velocity gradients.

To address the shortcomings of the HEE model, a second model called the en-

hanced homogenized Euler equation (EHEE) is developed. In the EHEE model, sev-

eral non-local pressure and viscous effects are included. The specific enhancements

introduced in the EHEE model are: (i) introduction of an acoustic time scale to cor-

rectly capture the physics of the dilatational portion of velocity gradient field; and

(ii) addition of viscosity effects. An acoustic time scale is introduced in the model by

enhancing the existing pressure Hessian evolution equation of the HEE model. This

modification brings an explicit appearance of Mach number (ratio of acoustic and

fluid time scales) in the EHEE model. Viscous effects are added to the model using

the linear Lagrangian diffusion approximation, which has been earlier used in context

of the restricted Euler equation. Performance of the enhanced model is evaluated

against a range of known turbulence behavior. EHEE shows several improvements

over its predecessor. At very low Mach numbers (incompressible limit) the model

recovers several features seen in incompressible turbulence. In the very high Mach
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number limit, the model exactly recovers Burgers (pressure-released) velocity gradi-

ent behavior. At intermediate Mach numbers, the model accurately captures various

Mach number effects on the statistics of both solenoidal and dilatational portions of

the velocity gradient tensor as seen in DNS of compressible turbulence. Similarly,

the model recovers several Reynolds number effects on compressible velocity gradient

physics.
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