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ABSTRACT 

 

Aquifer Management for CO2 Sequestration.  

(December 2009) 

Abhishek Anchliya, B.S., Indian School of Mines, Dhanbad, India 

Chair of Advisory Committee: Dr. Christine Ehlig-Economides  

 

 

Storage of carbon dioxide is being actively considered for the reduction of green 

house gases. To make an impact on the environment CO2 should be put away on the 

scale of gigatonnes per annum. The storage capacity of deep saline aquifers is 

estimated to be as high as 1,000 gigatonnes of CO2.(IPCC). Published reports on the 

potential for sequestration fail to address the necessity of storing CO2 in a closed 

system. This work addresses issues related to sequestration of CO2 in closed aquifers 

and the risk associated with aquifer pressurization. Through analytical modeling we 

show that the required volume for storage and the number of injection wells required 

are more than what has been envisioned, which renders geologic sequestration of CO2 

a profoundly nonfeasible option for the management of CO2 emissions unless brine is 

produced to create voidage and pressure relief. The results from our analytical model 

match well with a numerical reservoir simulator including the multiphase physics of 

CO2 sequestration.  

 

Rising aquifer pressurization threatens the seal integrity and poses a risk of CO2 

leakage. Hence, monitoring the long-term integrity of CO2 storage reservoirs will be a 

critical aspect for making geologic sequestration a safe, effective and acceptable 

method for greenhouse gas control. Verification of long-term CO2 residence in 
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receptor formations and quantification of possible CO2 leaks are required for 

developing a risk assessment framework. Important aspects of pressure falloff tests for 

CO2 storage reservoirs are discussed with a focus on reservoir pressure monitoring 

and leakage detection. The importance of taking regular pressure falloffs for a 

commercial sequestration project and how this can help in diagnosing an aquifer leak 

will be discussed.  

 

The primary driver for leakage in bulk phase injection is the buoyancy of CO2 under 

typical deep reservoir conditions. Free-phase CO2 below the top seal is prone to leak 

if a breach happens in the top seal. Consequently, another objective of this research is 

to propose a way to engineer the CO2 injection system in order to accelerate CO2 

dissolution and trapping. The engineered system eliminates the buoyancy-driven 

accumulation of free gas and avoids aquifer pressurization by producing brine out of 

the system. Simulations for 30 years of CO2 injection followed by 1,000 years of 

natural gradient show how CO2 can be securely and safely stored in a relatively 

smaller closed aquifer volume and with a greater storage potential. The engineered 

system increases CO2 dissolution and capillary trapping over what occurs under the 

bulk phase injection of CO2.  

 

This thesis revolves around identification, monitoring and mitigation of the risks 

associated with geological CO2 sequestration.  
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction  

The United Nations Intergovernmental Panel for Climate Change (IPCC 2007) insists 

that anthropogenic greenhouse gas emissions are harmful to the planet and are causing 

global climate change evident as global temperatures rise and local weather reaches 

extremes. Total emissions (Fig. 1.1) from fossil fuel consumption and flaring of 

natural gas were approximately 30 Gt CO2 in 2006 (EIA 2006). In order to stabilize 

the concentration of greenhouse gases in the atmosphere, many countries have 

committed themselves to reduce their greenhouse gas emissions. The IPCC estimates 

that global emissions will reach ~77 Gt CO2 /yr by 2100, and the average atmospheric 

CO2 concentration will reach ~750 ppm (Albritton and Meira-Filho 2001). To 

stabilize atmospheric CO2 concentrations at 550 ppm, global emissions must be 

continuously reduced so that by 2050, global emissions are 15 Gt CO2 /yr less than the 

usual projections, and by 2100, emissions are 50 Gt CO2 /yr less (Albritton and Meira-

Filho 2001, Wigley et al. 1996). This task is enormous and will be exacerbated further 

by recent legislation that proposes even more stringent goals. To achieve these 

substantial emission reductions, projects from a diverse portfolio of options should be 

employed. Projects improving energy conversion and efficiency of fossil fuels, 

shifting energy production to low-carbon or non-carbon fuel sources, switching to 

renewable sources of energy, enhancement of natural biological sinks of CO2 and 

decreasing the carbon intensity of fossil fuels should be considered. Out of all the 

potential mitigation options for stabilizing atmospheric GHG concentrations, 

including injection into deep oceans, depleted oil reservoirs, and unminable coal 

seams, storage in deep saline aquifers appears to be the most viable option, 

considering their storage capacity. Efforts across the globe have already begun on 

__________________ 

This thesis follows the style and format of SPE Reservoir Engineering and 

Evaluation. 
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storing CO2 in deep saline aquifers. Industrial scale projects like (> 1 MtCO2/ yr or  

more) the Sleipner project in the North Sea, the Weyburn project in Canada and the In 

Salah project in Algeria are often cited as examples of successful CO2 sequestration. 

Through these projects, about 3—4 MtCO2 that would otherwise be released to the 

atmosphere is being captured and stored annually in geological formations.  

 
 

 
Fig. 1.1—World CO2 emissions from combustion and flaring of fossil fuels (EIA 2006). 

 
 

1.2 Geologic CO2 Storage 

Fig. 1.2 is a schematic of various options available for geologic CO2 storage. While 

there are uncertainties, given the large amount of anthropogenic CO2 to be stored, 

geologic storage is regarded as a likely mechanism to substantially reduce global CO2 

emissions. Capacity of unminable coal formations is uncertain, with estimates ranging 

from as little as 3 GtCO2 up to 200 GtCO2. Depleted oil and gas reservoirs are 

estimated to have a storage capacity of 675 to 900 GtCO2. Deep saline formations are 

presumed to have a storage capacity varying from 100 to 10,000 GtCO2 and some 
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studies (Davidson et al. 2001; Omerod 1994; Beect et al. 2001) suggest it may be an 

order of magnitude greater than this. Filling this capacity would account for hundreds 

to thousands of years of CO2 emissions. It is difficult to quantify the upper range until 

additional studies are undertaken (IPCC 2005). 

 
 
Fig. 1.2— Overview of geological storage options (IPCC, 2007). 
 
 
Even with this large potential capacity, a major obstacle to public acceptance of 

sequestration is the lack of insights into the risks associated with it. It is very 

important to demonstrate that safety and environmental protection of subsurface CO2 

storage can be assured.  

 

One of the critical criteria for evaluating the economics of a geologic sequestration 

project is the storage potential. It is defined as the amount of CO2 stored per unit pore 

volume of aquifer pore volume.  
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where 

2COV = Total volume of injected CO2 

  pV  = Total available pore volume of aquifer  

 

1.3 Research Objectives  

 
Among various possible solutions to mitigate the increasing concentration of 

“greenhouse gases” in the atmosphere, geological sequestration seems to be the most 

attractive and promising one. This research explores various issues related to carbon 

dioxide sequestration in deep saline aquifers. Issues related to aquifer pressurization, 

monitoring, and risk mitigation have been studied using a numerical reservoir 

simulator that models the multiphase flow physics of CO2 process using the Peng-

Robinson equation of state (EOS).  

1.3.1 Identifying Risk  

Published reports on the potential for sequestration fail to address the necessity of 

storing CO2 in a closed system. Injecting such large quantities of CO2 obviously has a 

risk associated with it. Several authors have employed a constant-pressure boundary 

to the reservoir models for calculation of storage potential in the aquifer, an approach 

that is highly misleading. A closed boundary is not same as an effectively infinite 

boundary, and an effectively infinitely infinite boundary is not the same as a constant-

pressure boundary. Aquifer pressurization can severely limit the storage capacity of an 

aquifer. The injection pressure should not go above a geomechanically determined 

fracture pressure. An elevated fluid pressure in the aquifer is risky since the free CO2 

can easily escape from the cap rock due to any breach in the seal integrity over time. 

Through analytical modeling we show that the pressure buildup in the aquifer over 

time is substantial and that the required aquifer volume for storage is astronomically 
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more than what has been envisioned. This renders geologic sequestration of CO2 a 

profoundly non-feasible option for the management of CO2 emissions, unless brine is 

produced to create voidage and pressure relief.  

1.3.2 Monitoring Risk 

Aquifer pressurization introduces a risk of CO2 leakage and a threat to seal integrity. 

Verification of long-term CO2 residence in receptor formations and quantification of 

possible CO2 leaks are required for developing a risk assessment framework. 

Important aspects of pressure falloff tests for CO2 storage reservoirs must focus on 

reservoir pressure monitoring and leakage detection. Monitoring the long-term 

integrity of CO2 storage reservoirs will be a critical aspect for making geologic 

sequestration a safe, effective, and acceptable method for greenhouse gas control. 

Although measurement technology applicable for monitoring geologic storage is 

available from a variety of applications including, natural gas storage, disposal of 

liquid and hazardous waste, groundwater monitoring, etc., under envisioned carbon 

emissions constraints, both the volume to be stored and the length of time required for 

monitoring to mitigate emissions from electric power generation and other 

applications is imposing. 

 

Pressure behavior in CO2 storage aquifers has been neglected thus far in the literature 

because current models assume constant-pressure or infinite-acting aquifer behavior. 

In reality, a closed aquifer will have significant pressure response during injection, 

and this research spells out why pressure monitoring makes sense.  

1.3.3 Mitigating Risk 

The CO2 injected in bulk form into a deep aquifer is less dense than the resident brine. 

In this situation buoyancy forces will drive the injected CO2 upwards in the aquifer 

until a geological seal is reached. Free-phase CO2 below the top seal is prone to leak if 

a breach happens in the top seal. Convective displacement due to small density 

gradients is a very slow process and the time scales for this process with natural 
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aquifer flow is thousands of years (Ennis-King and Paterson 2002; Riaz et al. 2006; 

Hesse et al. 2006). It is important to explore techniques to eliminate buoyancy-driven 

accumulation of a mobile free-phase CO2 below the top seal. The main motivation 

behind this research is addressing two kinds of risks that exist in sequestering CO2 in 

deep saline aquifer: the free gas saturation below the top seal and the increase in 

average reservoir pressure due to CO2 injection. This research will propose a way to 

engineer the CO2 injection system to accelerate dissolution and trapping and control 

aquifer pressurization. Engineering will eliminate buoyancy-driven accumulation of 

free gas and avoid aquifer pressurization in the reservoir by producing brine out of the 

system (equal to the volume of injected CO2). With this model, risk assessment may 

ignore the leakage pathways owing to very slow movement of CO2-saturated brines. 

This research will show how CO2 can be securely and safely stored in a relatively 

smaller and closed aquifer volume and with a greater storage potential.  

 

At this point, it is important to note that this research does not deal with the in-situ 

mineralization of CO2 in aquifers. CO2 mineralization is one of the safest forms of 

geological storage (Gunter et al. 1993, Noh et al. 2004). However, mineralization 

takes hundreds to thousands of years and there are many uncertainties in the 

prediction of the process (Kumar et al. 2004; Pruess et al. 2003). The time scale 

considered for this study is much smaller than that.  

1.4 Literature Survey  

Risks to the planet and its societal implications of climate change have been clearly 

identified by several national and international agencies (DEFRA 2003; IPCC 2007; 

Stern 2006; EIA 2006). CO2 capture from stationary point sources and long-term 

storage in underground geological formations offers a viable means of contributing to 

an overall global warming mitigation strategy (IPCC 2007; Holloway 2001).  

 

A number of projects involving the underground storage of CO2 are currently in 

progress worldwide. These range from small pilot projects like the Nagakoa pilot 
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project in Japan (Kikuta et al. 2005) and the Frio brine project in Texas (Hovorka et 

al.2006) to industrial scale projects (> 1Mt of CO2 per year) like Sleipner in the North 

Sea (Baklid et al. 1996), In Salah in Algeria (Riddiford et al. 2003), and the enhanced 

oil recovery project at Weyburn in Canada (Wilson and Monea 2004).  

 

The small-scale projects are aimed at developing a better understanding of the 

multiphase physics of CO2 injection, whereas the industrial-scale projects have 

demonstrated the feasibility of injecting CO2 into subsurface geological reservoirs and 

are providing platforms for scaling ongoing research efforts (time-lapse geophysical 

monitoring, reservoir history matching, reaction-transport modeling). Based on the 

acquired data, reservoir simulation models are being calibrated to replicate the 

behavior of CO2 in the ground. The ability to inject a large amount of CO2 equivalent 

to the output from a 500 MW (3MMT/yr CO2) or greater plant is untested as yet.  

1.4.1 Aquifer Pressurization Risk  

The storage capacity of deep saline aquifers has usually been estimated under the 

assumption that brine displacement is not a limiting factor and that the in-situ brine 

will be pushed away to create space for the injected CO2. The studies for CO2 disposal 

purposes assume that the reservoir has infinite extent, a condition that is unlikely to 

met by the real-world aquifers close to the stationary CO2 sources. Several authors 

(Kumar et al. 2005; Baklid and Korbo 1996; Pruess 2004; Nghiem et al. 2004; Sengul 

2006; and Izpec et al. 2006) employ a constant-pressure outer boundary when 

modeling CO2 injection, which is convenient but misleading. Actually, flow behavior 

in a reservoir with a constant-pressure boundary does not mimic that of an effectively 

infinite aquifer, and authors who employ this condition are significantly 

misrepresenting this case. It is to be understood that sequestration is not a 

displacement process but permanent storage in a secure, closed system.  

Authors like Orr (2004) and Noh et al. (2004), who emphasize the analogies with 

EOR, are on the wrong track. The consequence of these misrepresentations is that the 
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volume required for CO2 storage has been severely underestimated. Schembre-

McCabe et al. (2007) demonstrated that mechanisms present during sequestration are 

very different from traditional EOR operations. 

The hydraulic connectivity between deep saline formations and overlying freshwater 

aquifers updip could be a risk. The displaced brine can migrate to shallower aquifers 

and can decrease the pH of fresh drinking water and change the level of the water 

table. According to Holloway (1996), even small CO2 leaks can severely deteriorate 

the potable water quality.  

Rigg et al. (2001) reports that in continents like Australia most of the desirable basins 

(“open” aquifers) lie far from the required stationary CO2 sources. Sometimes the lack 

of a large aquifer near a high CO2 emission site requires consideration of a relatively 

smaller and closed aquifer for CO2 storage. Through analytical modeling, Economides 

and Ehlig-Economides (2009) showed that instead of the 1 to 4% of pore volume 

storage potential indicated prominently in the literature, which is based on an 

erroneous steady-state modeling approach, CO2 can occupy no more than 1% of the 

pore volume, and the pore volume requirement is going to be considerably higher than 

quoted in the sequestration literature.  

Van der Meet et al. (2006) explored various aspects of storage pressure limiting 

storage potential in finite saline aquifers. Storage capacity is limited by space within a 

certain geological structure; moreover, the injection pressure at the well will gradually 

increase as the volume of CO2 buildup. Thus the maximum amount of CO2 that can be 

injected depends on the maximum acceptable pressure increase without fracturing the 

formation and moving the existing faults. Thus, in a storage operation, a 

geomechanically determined pressure threshold can be established, above which 

pressure should not rise (Law 1996; Obdam et al. 2003).  
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Zhou et al. (2007) studied compartmentalized formations, from which the displaced 

brine can not easily escape laterally to make room for the injected CO2 (closed 

systems). Becker et al. (2009) discussed application of the pressure decline and initial 

bottomhole pressure vs depth curves to define some of the limiting factors for CO2 

sequestration in Frio brine pilot project. They showed that the fluid flow in the Frio 

formation is strongly compartmentalized. In some cases even though the aquifer is 

open, the pressure gradient necessary to displace the native brine out of the system 

may exceed the fracture pressure gradient. 

1.4.2 Leakage Risk 

 

 

Fig. 1.3—Risks of underground CO2 sequestration. Black and gray arrows represent CO2 and CH4 flows 
(along abandoned wells, fractures, faults). White arrows represent brine displacement as a consequence 
of CO2 injection. (Figure from Damen et al. 2006.)  
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The injected CO2 is less dense than the brine; once injected, it has a tendency to move 

upwards. It might potentially migrate out of the system if it finds a leak, to the 

subsurface first and then finally to surface. Fig. 1.3 is a schematic of potential leakage 

pathways for the injected CO2.  

The resident time of CO2 in the aquifer is considered to be ranging from 1,000 years to 

100,000 years (Gunter et al. 1993). Diffusion of CO2 through the cement is a very 

slow process, traveling 20 cm in 100 years (Gunter et al. 1993). However, such a long 

timescale for the resident CO2 can cause deterioration of the casing and cement plugs. 

These wells may serve as short-circuit pathways for leakage, with possible 

contamination of shallow subsurface zones, and ultimately leaking back into the 

atmosphere (Celia and Bachu 2003). 

 

Another important mechanism for leakage is cap rock failure. Deep saline aquifers 

have not been characterized and researched as well as hydrocarbon reservoirs due to 

the limited penetration of their wells. Confirming the integrity of the aquifer seal over 

its extension is a tedious task. Sometimes the data may not be accurate enough to 

predict the seal integrity with confidence.  

 

Leakage through fractures and faults that extends through the cap rock and connect to 

a shallow aquifer updip is a possibility for deep saline aquifers (Zhou et al. 2009). 

Pasla et al. (2003) varied the range of permeability values to study the impact of fault 

permeability/porosity structures on the migration of CO2. Their simulation results 

show that the fault zone properties, especially permeability in the reservoir, can 

influence the flow of CO2 in the reservoir as a consequence of bypassing through 

conduits or flow compartmentalization because of permeability barriers or low-

permeability layers.  

 

It is also very important to keep the injection pressure below the formation fracturing 

pressure or below the pressure at which the caprock may shear (Law 1996 ; Obdam et 
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al. 2003). The CO2 may react with the cap rock, causing it to dissolve and form high- 

permeability zones (Damen et al. 2006). Seismic disturbance can also cause cap rock 

failure (Saripalli et al. 2003). 

Of all these mechanisms, CO2 leakage through the wellbore is more controllable than 

leakage through a cap rock. The leakage through the cap rock depends more on the 

geological characteristics and extends for a longer distance as compared to well 

failures. Modern well completion techniques from the oil industry can help identify 

leaks along the wellbore and squeeze them off using squeeze cementing and zonal 

isolation techniques.  

1.4.3 Pressure Monitoring  

Pressure monitoring is one of the critical factors of the overall risk management 

strategy for geological sequestration projects. Monitoring is likely to be required as of 

part of the permitting process and public acceptance of CO2 sequestration. It will be 

used for various processes like tracking the location and understanding the behavior of 

the plume, validating the physics of the disposal process, and ensuring the security of 

storage by leak detection in abandoned wells or through aquifer seals. Additionally, 

monitoring is necessary for satisfying regulatory requirements. It is important to 

ensure that the CO2 is not leaking in the shallow natural resources such as ground 

water and endangering local populations.  

 

Monitoring also provides feedback to reservoir simulation studies. Commonly 

obtained pressure and temperature data can be integrated into the reservoir models to 

improve accuracy and to estimate unknown parameters by history matching.  

 

Each of the three existing CO2 storage projects uses a different kind of monitoring 

technique, depending upon the specific need of the project (Benson 2006). For 

example, at Weyburn, a combination of geochemical sampling and soil gas surveys 

along with 3D time-lapse seismic is used to demonstrate the containment of injected 
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gas (Wilson et al. 2004). Sleipner uses a combination of 2D and 3D time lapse seismic 

monitoring to track the movement of the plume in the Utsira formation in the North 

Sea (Arts et al. 2002). The In Salah project in Algeria plans to install permanent 3D 

seismic monitoring array and introduce tracers for tracking CO2 breakthrough into the 

gas reservoir (Ebrom et al. 2006). In addition to these major commercial scale 

projects, monitoring methods have been implemented on smaller projects like the 

Nagakoa pilot project in Japan (Kikuta et al. 2005), the Otway basin in Australia 

(Watson et al. 2004), and the Frio brine pilot in Texas (Hovorka 2006). Surface-to-

borehole seismic imaging, cross-well seismic, cross-well electronic monitoring, well 

logs, pressure transients, natural and introduced tracers, brine and gas composition 

sampling and analysis, flux accumulation chambers, soil gas sampling, and ground 

water sampling have been used to monitor the fate and migration of injected CO2 

(Benson et al. 2002). 

Newer techniques such as gravity and electrical measurements may also be useful 

(Hoversten et al. 2002). Geochemical methods are useful for directly monitoring the 

movement of CO2 in the subsurface and for understanding the mineralization trapping 

mechanisms (Gunter et al. 1998; Gunter and Perkins 2001). Miles et al. (2005) 

assessed the eddy covariance method for assessing surface fluxes. Well logs are one 

of the common methods for evaluating geological formations. For the purpose of CO2 

storage, routine well logs will be most useful for ensuring that the well is not 

providing a leakage pathway to the injected CO2, but the resolution of well logs may 

not be enough to detect very small seepage rates through micro-cracks (Benson et al. 

2002).  

 
Table 1.1 summarizes a large of number of approaches for monitoring geological 

storage. The reliability, resolution and sensitivity of these techniques need to be tested 

since all of these monitoring techniques have been adapted from other applications 

(Benson 2006). The most practical and effective monitoring approach will depend on 

a combination of various monitoring techniques. Different monitoring techniques will 
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be applicable to different sequestration projects. For upcoming sequestration projects, 

there should be enough flexibility to deploy some of these methods and tailor them 

based on the new requirements and outputs from research and development.  

Several innovative and relatively new monitoring methods are available today that can 

be used to detect, locate, and quantify emissions. However, it is expected that some 

parameters such as injection rate and injection well pressure will be measured 

routinely.  

 
Table 1.1—Monitoring approaches and options for measuring emissions from geological storage 
formations. Methods in bold type are best developed. (Table from Benson et al. 2002.) 
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1.4.4 Residual Trapping  

Immobilization of CO2 injected into a saline aquifer can occur in variety of ways: by 

capillary trapping, solubility trapping, structural trapping, and mineralization trapping. 

When CO2 is injected, it displaces the in-situ brine, in a process called drainage. After 

the cessation of injection, the CO2 rises to the top of the aquifer since it is less dense 

than the resident brine. Due to this countercurrent flow, the brine interacts with the tail 

of the rising CO2 plume. Thus, wetting phase (brine) enters the pores occupied by the 

non-wetting phase (CO2), leading to a significant trapping of the nonwetting phase 

inside the pores. This process is called imbibition. Due to the difference in the 

saturation history during imbibition and drainage, the system experiences a relative 

permeability hysterisis. Consequently, the drainage relative permeability curve 

follows a different path than the imbibition relative permeability curve (Fig. 1.4). 

 

Fig. 1.4—Relative permeability hysterisis. The blue curve is for drainage and red for imbibition. Figure 
illustrates two imbibition cases with different starting points on the drainage curve, resulting in 
different residual saturation. (Figure from Kumar et al. 2008.) 
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Kumar et al. (2005) studied these mechanisms for a heterogeneous aquifer and 

concluded that well completion is a very important factor in deciding the fate of 

injected CO2. A substantial amount of CO2 can be trapped if injected at the bottom of 

the aquifer to rise under the effect of buoyancy. Spiteri et al. (2005) and Juanes et al. 

(2006) investigated the effects of hysteresis in the relative permeability of the 

hydrocarbon phase in a two-phase system. They proposed a new model of trapping 

and showed that capillary trapping can significantly limit the movement of CO2 inside 

the aquifer. Their proposed formulation overcomes some of the limitations of existing 

trapping and relative permeability models. 

Mo et al. (2005) suggested that increase in viscous to gravity forces will increase the 

sweep efficiency resulting in more CO2 trapping as residual gas. Ide et al. (2007) 

studied the interplay between the viscous and gravity forces and capillary trapping of 

CO2. They correlated the amount of trapping after the cessation of injection to the 

ratio of gravity to viscous forces, also called as gravity number.  

1.4.5 Solubility Trapping  

Injection of CO2 into aquifers is carried out at supercritical conditions. The 

concentration of aqueous CO2 in solution is important for estimating the amount of 

carbon-dioxide that can be stored. Hangx (2005) summarized the experimental studies 

done on understanding the solubility behavior of CO2. Along with the experimental 

studies, theoretical efforts have been made to model the solubility of carbon dioxide in 

aqueous solutions (Nighswander et al. 1989; Carroll et al. 1991; Duan and Sun 2003; 

Duan et al. 2005).  

Fig. 1.5 shows the solubility of CO2 in mole fraction vs depths at different salinities 

when the temperature and pressure gradients are assumed to be 1°F/100 ft and 0.44 

psi/ft respectively. Clearly, the solubility of CO2 is constant after a depth of 2,000 ft 

for a specific salinity. In general, the solubility of CO2 in brine increases with 
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pressure, decreases with temperature, and decreases with increasing salinity (Hangx 

2005). 

 

Fig.1.5—The solubility in mole percent predicted by the Duan EOS (Hangx 2005) for a temperature 
and pressure gradient of 1°F/100 ft and 0.44 psi/ft. Surface temperature and pressure were assumed to 
be 61°F and 14.7 psia, respectively. Solubility increases with depth to ~2,000 ft, then remains fairly 
constant. Brine salinity has a significant effect on the plateau solubility. (Figure from Burton and 
Bryant 2007.) 
 
 
Duan and Sun (2003, 2005) is the most complete model that exists to date for 

modeling solubility of CO
2 

in pure water and aqueous solutions from 0 to 260°C and 

from 0 to 2,000 bar total pressure. The model is extended to not only predict the 

solubility of CO
2 

in pure water and NaCl solutions but also in more complex systems, 

which may include Ca
2+

, K
+
, Mg

2+
, and SO

4

2- 
ions.  
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1.4.6 Accelerating Residual and Dissolution Trapping  

After the end of injection, free-phase CO2 slowly dissolves in the contacted brine, 

slightly increasing the brine density. With time, CO2-laden brine sinks to the bottom 

of the aquifer, and instability due to density inversion kicks off a natural convection 

mechanism, inducing additional contact with undersaturated brine and further 

dissolution. However, convective displacement due to small density gradients is a 

very slow process and the time scale for the dissolution process under natural aquifer 

flow is thousands of years (Ennis-King and Paterson 2002; Riaz et al.2006; Hesse et 

al. 2007). The dissolution mechanism (under diffusion) does not significantly increase 

the storage potential of the aquifer, and the CO2 stays for a long time as a free phase 

below the top seal. 

 

Fig. 1.6 from IPCC (2008) shows the quantitative timings of storage security for 

various trapping mechanisms. Stratigraphic trapping is one of the fastest trapping 

mechanisms. However, it is highly risk prone since the free CO2 can easily escape 

from the cap rock due to any breach in the seal integrity over time. The solubility of 

CO2 in brine is extremely low (3 to 5% by mass) at reservoir conditions (Burton and 

Bryant 2007). Model calculations of simulations in the Upper Plover formation 

(Australia) indicate that complete dissolution is expected to take place on a time scale 

ranging from 10,000 to 100,000 years (Ennis-King and Paterson 2003). Simulation 

studies on the Utsira formation at Sliepner suggest that CO2 will take 5,000 years to 

dissolve (Lindeberg and Wessel-Berg 1997). As CO2 is dissolved, it will form ionic 

species (H+ and HCO3
-), accompanied by a rise in the pH. These ions in turn react 

with the minerals of the formation; depending upon the mineralogy of the formation, 

some fraction may be converted to stable carbonate minerals (mineral trapping). CO2 

mineralization is one of the safest forms of geological storage (Gunter et al. 1993). 
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However, it takes hundreds to thousands of years and there are many uncertainties in 

the prediction of the process.  

 

Kumar et al.2005 proposed a strategy to inject low and let rise, where CO2 is injected 

in the bottom part of the aquifer, and after the injection is finished, the CO2 will 

continue to migrate under the effect of buoyancy. As the CO2 rises, it will leave a trail 

of residually trapped gas behind it. With this approach, vertical movement toward the 

seal is retarded and the storage is permanent. In principal, CO2 can be prevented from 

reaching the aquifer seal by choosing the right amount of CO2 to be injected through 

each well (Bryant et al. 2006). However, this strategy is extremely sensitive to aquifer 

dip and thickness, and it is often difficult to achieve very low gas saturation below the 

top seal at practical injection rates for a commercial sequestration project. A typical 

500 MW power plant will produce 3 million tones (~ 156 million scf/D) of CO2 every 

year. Several injection wells will be needed to optimize the sequestration operation 

with the inject-low-and-let-rise strategy. 

 

 
Fig. 1.6—Timing of various mechanisms for storage security (IPCC, 2008). 
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Another approach suggests brine injection to accelerate dissolution by pumping brines 

from regions where it is undersaturated to regions occupied by CO2 (Leonenko et al. 

2006). Even though that technique has advantages in securing the storage, it will 

severely limit the storage potential of the aquifer. Since the brine injection is 

uncontrolled, there are chances that the injected CO2 may move to thief zones such as 

fractures, faults, and abandoned wells. The timeframe of brine injection considered by 

Leonenko et al. is 200 years, which is much larger than observed in the oil industry. 

The cost to operate a brine injection/extraction system for a couple of centuries could 

be prohibitive. The rate at which the injected CO2 comes into contact with 

undersaturated brine limits the rate of dissolution, and considering practical injection 

rates for a 500-MW to 1-GW power plant, it is highly probable that the injected CO2 

would be more buoyant than the brine, so it would migrate upward and accumulate 

below the top seal more quickly than its competing dissolution trapping mechanism. 

1.4 Review of Sections  

Section 2 summarizes some key features of CMG’s compositional simulator for 

generalized EOS for greenhouse gas (GEM-GHG). It describes how solubility and 

relative permeability hysterisis is modeled in the simulator. To correctly set up a 

compositional simulation, it is important to understand various physical and chemical 

processes involved.  

 

Section 3 discusses issues related to aquifer pressurization due to CO2 injection. An 

analytical model is developed for injection into a closed system. The results from the 

analytical model match well with a numerical reservoir simulator.  

 

Section 4 discusses the importance of taking regular pressure falloff tests for CO2 

injection. It also discusses how average pressure of the reservoir can be monitored and 

leakage can be detected using pressure falloff tests. 
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Section 5 discusses the importance of producing brine from the aquifer for pressure 

relief and increased storage potential. 

 

Section 6 discusses engineering techniques to accelerate CO2 dissolution and trapping 

in aquifers and further increases the storage potential. It addresses various risks 

associated with bulk-phase CO2 injection.  

 

Section 7 summarizes and concludes the overall findings from this thesis.  
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2. BASE CASE SIMULATION FEATURES 

In this section, some of the important features of CMG’s generalized EOS model 

simulator for green house gases (GEM GHG) are applied to set up the base case 

simulation parameters used throughout this study. GHG, the new additional module 

from CMG, is an adaptive tool for carrying out compositional simulation for 

sequestration of CO2 and other greenhouse gases in saline aquifers. The modeling of 

CO2 storage in saline aquifers involves the solution of the component transport 

equations, the equations for thermodynamic equilibrium between the gas and aqueous 

phases, and the equations for geochemistry. The latter involve reactions between the 

aqueous species and mineral precipitation and dissolution. They are based on an 

adaptive implicit formulation, which helps in deciding for each grid and each time 

step whether to use fully implicit or explicit solution methods. During subsequent 

simulation runs, blocks may be switched to explicit if an adaptive/implicit formulation 

and a stability-switching criterion is used. Consisting of the usual capability of other 

simulators, CMG’s GHG simulator brings advance options for modeling mass transfer 

of components into different phases (solubility) and aqueous phase density and 

viscosity correlations. In this section, Section 2.1 discusses the modeling of phase 

behavior of a CO2-brine system, followed by Section 2.2 that discusses the specifics 

of solubility modeling in CMG. Section 2.3 discusses the model used to model 

residual trapping and hysteresis, and Section 2.4 describes the properties of the base 

case simulation model considered for this research.  

2.1. Phase Behavior of Co2 -Brine System 

The Peng-Robinson (1976) EOS (PR-EOS) is used for modeling CO2 —H2O-C1 

mixture behavior. CO2, H2O, and C1 are used as pure components. Standard properties 

are given for the PR-EOS for these components. Typically C1, is used as a “trace gas” 

(CMG keyword “TRACE-COMP”). The idea is to have a tiny trace of C1 present as 

residual gas in the aquifer to add some compressibility to the system; this helps 
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converge the equations as reservoir simulation techniques were not really designed to 

handle nearly incompressible systems. This “limitation’ could be removed by using 

keyword “AQFILL ON,” but this adds complexity to the model and numerical 

solutions. The solubility of CO2 in brine is modeled using dynamic phase partitioning 

by Henry’s law. Enhanced solubility models are used in GEM-GHG for specific 

components, making the Henry’s constant a function of temperature, pressure and 

salinity. The gas density is calculated with the PR-EOS. The gas viscosity is estimated 

from the Jossi, Stiel, and Thodos correlation (Reid et al. 1977). The aqueous phase 

density and viscosity are calculated respectively from the Rowe and Chou (1970) 

correlation and the Kestin et al. (1981) correlation. 

2.2. Modeling Solubility and H20 Vaporization  

 
CO2 solubility in brine is calculated by solving the equality of fugacities of CO2 in the 

gas and aqueous phase (Nghiem et al., 2004). Upon injection, CO2 dissolves in the 

aqueous phase, and it can be represented by the following chemical reaction: 

  
2 2,, aqCO g COf f= .  ............................................................................................  (2.1) 

The = sign represents a reaction that is reversible. The gas fugacity 
2 ,CO gf  is calculated 

with a cubic equation of state (Peng and Robinson 1976) and the aqueous phase 

fugacity 
2,aqCOf  is calculated from Henry’s law.  

  
2, 2, 2 ,.

aq aqCO CO CO aqf H y= .  .............................................................................  (2.2)  

 

In Eq. 2-2 , 
2,aqCOH is Henry’s constant for CO2 solubility in brine and 

2 ,CO aqy  is the 

mole fraction of CO2 in brine. Since Henry’s law constant is a function of pressure, 

temperature, and salinity, in GEM-GHG it is calculated using several correlations. 

Harvey (1996) published correlations for Henry’s constant of many gaseous 

components including CO2. Gas solubility depends on the salinity of the aqueous 

phase. The solubility of light gases normally decreases with increasing salinity; this 
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phenomenon is referred to as the salting-out process. Models for salting-out 

coefficients have also been implemented in GEM-GHG. 

 

2 2 2 2 2 2

1 0.355 1 0.41
, , , , ,ln( ) ln( ) ( ) (1 ) ( ) [exp(1 )]( )s s

i H O r H O r H O r H O r H O r H OH p A T B T T C T T− − −= + + − + −
 

  .........................................................................................................................  (2.2)  

where  

s
iH  = Henry’s constant for component i at the saturation pressure of H2O 

2

s
H Op  = 

Saturation pressure of H2O in MPa at T(K)  

2,c H OT  = Critical temperature of H2O (K) 

2,r H OT  = Reduced temperature of H2O 

 A = -9.4234  

 B = 4.0087 

 C = 10.3199 

 

The saturation pressure of H2O at T is calculated from the Saul and Wagner (1987) 

correlation. The Henry’s law constant at p and T is then given by: 

  
2

1ln( ) ln( )
s
H O

p
s

i i i
p

H H V dP
RT

= + ∫ ,  ...................................................................  (2.3)  

where iV  is the partial molar volume of component i in the aqueous phase. For CO2, 

the correlation due to Garcia (2001) is used: 

 
2

3 2 4 2 7 3( / ) 37.51 9.585 X 10 8.740 X 10 5.044 X 10COV cm mol T T T− − −= − + − , (2.4) 

where T is the temperature in °C. 

The salting-out coefficient is defined by the following relation between Henry’s 

constant in pure water and in brine: 
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  ,
,ln .salt i

salt i salt
i

H
k m

H
⎛ ⎞

=⎜ ⎟
⎝ ⎠

,  ................................................................................  (2.5) 

where 

,salt iH  = Henry’s constant of component i in brine (salt solution) 

iH  = Henry’s constant of component i at zero salinity 

 ,salt ik  = salting-out coefficient for component i 

 saltm  = molality of the dissolved salt (mol/kg H2O) 

 

Bakker (2003) gives the following correlations for the salting-out coefficients for CO2 

and CH4: 

 
2

-4 6 2 9 3
, 0.11572 6.0293 X 10 3.5817 X 10 3.7772 X 10salt COK T T T− −= − + − ,  .  (2.6)  

where T is the temperature in °C. 

The related GEM-GHG keyword is “SOLUBILITY HENRY,” “HENRY-CORR-

CO2.” These keywords activate the use of Harvey’s correlation for CO2 Henry’s 

constant. Use of this option makes the Henry’s constant a function of pressure, 

temperature, and salinity. 

Another important aspect is the vaporization of H2O. It has been reported that 

complete vaporization of H2O can occur during gas injection around the wellbore, 

which would in turn affect the gas injectivity. The associated GEM keyword to model 

water vaporization is “H2O_INCLUDED.”  
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2.3. Land’s Model for Gas Trapping  

Residual trapping is caused by wettability and capillary effects in porous media. 

Spiteri et al. (2005) provide a comprehensive summary of several residual gas 

trapping models. The dependence of the relative permeability on the saturation path or 

history causes residual trapping. It is also is referred to as capillary hysteresis. In this 

thesis, Land’s model (Land 1968) is used to calculate the trapped gas saturation. The 

input parameter for this model is maximum residual gas saturation for a particular rock 

type.  

 

 
Fig. 2.1—Land’s residual gas trapping model (Nghiem et al. 2009). 
 

Fig. 2.1 shows a sample relative permeability curve exhibiting hysteresis. As the gas 

saturation increases during the injection, the gas relative permeability follows the 

drainage curve kd
rg  (black curve). At a saturation S*

gi, the saturation history reverses 

and the gas saturation decreases. The gas relative permeability then follows the 

imbibition curve kirg (red curve). The Land’s coefficient C is expressed as:  

 

  
,max ,max

1

gt g

C
S S

=
−

,  ...................................................................................  (2.7) 
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where, ,maxgS  is the maximum gas saturation that could be attained and ,maxgtS  is the 

maximum trapped gas saturation. The residual gas saturation for a given S*
gi can be 

calculated as  

 
*

* *
*( )

1
gi

gt gi
gi

S
S S

CS
=

+  .  ................................................................................ (2.8) 

The amount of trapped gas is sensitive to relative permeability curves and maximum 

trapped gas saturation. The related GEM keyword is “HYSKRG.”  

2.4 Description of Base Case Model  

A 3D homogeneous aquifer with a constant-rate injector was simulated for the base 

case. The GEM simulator was used with the GHG option. Simulations for 30 years of 

CO2 injection followed by 1,000 years of natural gradient flow were made. 

 

The model dimensions are 25,000 ft X 25,000 ft X 1,000 ft, as shown in Fig. 2.2. The 

boundary conditions are no flow, which a default for CMG-GEM. However, for 

simulating an aquifer with an open boundary with a large part of the aquifer outside 

the simulation domain, volume modifiers are used. Large pore volume multipliers of 

the order of 106 (keyword VOLMOD in GEM) are used on the boundary blocks to 

provide a constant-pressure boundary effect.  
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Fig. 2.2—Schematic of the base case aquifer model.  
 
 
Table 2. 1—Aquifer properties and injection details 

Reservoir Description 

Length (ft) 25,000 (~ 5 Miles) 

Width(ft) 25,000 (~ 5 Miles) 

Height (ft) 1,000  

Depth of Top Seal of the Aquifer (ft) 6000 

Pressure at the Top Seal (Psi) 2,600  

Temperature (oF) 150 

Salinity (ppm) 100,000  

Porosity 0.25 

Permeability (md) 100 (Homogeneous) 

Kz/Kx 0.1 

Dip , degree  0 

Injection Details 

Maximum Injection BHP (psi) 4,200  

Maximum Injection Rate (million scf/D) 10 (30 Years) 

Injection Well Skin 0 

Injection Gas Composition 100% ,CO2 

Simulation Period  1,000 years  
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The relative permeability curve (Tables 2.2 and 2.3) was calculated using the 

following equations and parameters (Kumar 2004) :  

 

For Sg ≤ Sgr: 

 krg = 0. .............................................................................................................. (2.9)

  

For Sg >1-S: 

 krw = 0.  ........................................................................................................... (2.10) 

  

 For Sg ≥ Sgr: 

 
gN
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.  ........................................................................ (2.11) 

For wrgg SS ≤≤ 1 : 
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1  ,  ................................................................ (2.12) 

 

where rgk = gas end point relative permeability  

 rwk = water end point relative permeability  

 gS  = gas saturation 

 gcrS  = critical gas saturation  

 wirgS = irreducible water saturation  

 wrgS = residual water saturation during a gas flood  

 gconS  = connate gas saturation  

 gN = gas relative permeability exponent  

 wN = water relative permeability exponent in gas water curves  
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Table 2. 2—Relative permeability parameters for base case aquifer model 
Gas end point relative permeability , rgk  1.0 

Water end point relative permeability, rwk  0.334 

Connate gas saturation, gconS  0.25 

Critical gas saturation, gcrS  0.25 

Irreducible water saturation, wirgS  0.25 

Residual water saturation , wrgS  0.25 

Water relative permeability exponent, wN  2 

Gas relative permeability exponent, gN  2.5 

 
 
Table 2.3—Water/gas relative permeability curve for the base case.  
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Land’s model is used for modeling residual trapping. The Holtz (2002) correlations 

were used to calculate the maximum residual gas saturation since they are applicable 

for typical sandstones found deep in the earth and are a possible target for geological 

sequestration. The proposed model is a function of porosity, permeability, capillary 

pressure, and initial water saturation. 
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kSwirr ,  ......................................................................  (2.15) 

 

where  

φ  is porosity  

k is permeability in md 
max

grS  is the maximum residual gas saturation  

wirrS  is the irreducible water saturation  

 

For a porosity value of 0.25 for the base case, the maximum residual gas saturation is 

approximately 0.3. 

2.5. Section Conclusions 

The GEM-GHG simulator reproduced results very similar to those shown by other 

investigators (Kumar et al. 2004, Kumar 2008, Burton and Bryant 2007). This tool is 

used for other studies done in the thesis.  
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 3. AQUIFER PRESSURIZATION DUE TO CO2 INJECTION 

IPCC estimates the storage capacity of deep saline aquifers to be at least 1,000 

gigatonnes. Injecting such large quantities of CO2 in a limited volume will result in 

elevated fluid pressures in the formation. Injecting at a pressure above the formation 

fracture pressure causes a fracture to form in the formation. This fracture may extend 

to the aquifer seal, providing a pathway for CO2 and saline brine to flow towards 

overlying freshwater aquifers used for drinking and irrigational purposes (Braunt et al. 

2002; Nicot 2008). The most important question to answer here is the aquifer volume 

required to sequester such large quantities of CO2 given how much the aquifer will be 

pressurized above the initial aquifer pressure. If the pore volume of the aquifer is too 

small, then the pressure increase can be too high too soon.  

 

This section will try to explore answers to some of the questions raised above and 

dispel myths associated with bulk phase CO2 injection. Section 3.1 of this section 

compares various modeling approaches for CO2 injection. Section 3.2 compares the 

injectivity behavior of aquifers with drainage area of different sizes and boundary 

conditions. Section 3.3 show the analytical model as an alternative to simulation that 

enables accurate measure of storage potential and the sheer number of wells needed 

for bulk CO2 injection, and Section 3.4 concludes the section.  

3.1. Flaws With Current Modeling Approaches  

Most of the prior modeling work has assumed infinite capacity of the target aquifer 

and that injected CO2 will displace the water in the pore space. Various authors 

(Balkid and Korbo 1996; Xu et al. 2004; Kumar et al. 2004; Nghiem et al. 2004; 

Sengul 2006; Izpec et al.2006; Burton et al. 2008; Oruganti and Bryant 2008) have 

simulated the multiphase physics and thermodynamics of CO2 injection using a 

constant-pressure outer boundary on their models. In reality, a constant-pressure 
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boundary exists only if the aquifer outcrops to the atmosphere, or at the bottom of a 

surface water body (ocean, river, lake).  

Such systems are frequently referred to as “Open” systems. Other authors like Pruess 

et al. (2003) tried to model the aquifer as effectively infinite, probably because 

aquifers are known to extend from several acres to thousands of miles wide and from 

a few feet to hundreds of feet thick. Orr (2004) and Noh et al. (2004) emphasize the 

analogies of sequestration operation with EOR, thus treating CO2 injection as a 

steady-state displacement process. 

 

However, these modeling approaches neglect to consider the fact that commercial-

scale sequestration projects (>1 million T/yr), will have multiple injectors 

sequestering CO2 at constant injection rates. Even in the case of an effectively infinite 

or an open aquifer, the drainage area will be limited by feedback from the nearest 

injectors and water will not move out of the limited drainage area. Hence, the drainage 

area available to each well will be limited and the claim that the pore water will be 

pushed away to create space for the injected CO2 may not be applicable in that case. 

Therefore, the conclusions drawn from constant-pressure boundary modeling 

approaches may not be very practical and applicable to field-scale sequestration 

projects.  

 

Injection in a limited drainage area must cause the aquifer pore pressure to rise; only 

the compression of formation and brine will yield space for the injected fluids as no 

fluid is moving out of the system. A limited drainage area can also be referred to as a 

closed system and should be modeled using no-flow outer boundaries. Consequently, 

any pressurization of closed aquifer extends farther in the aquifer, leading to greater 

risk (Oruganti et al. 2008).  

 

Authors like van Engelenburg and Blok (1993), Schembre-McCabe et al. (2007), van 

der Meer and van Wees (2006), and Ennis-Ling and Patterson (2002) have already 
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tried to alert investigators to the issue of pressurization in a limited aquifer, and 

Zakrisson et al. (2008) discussed the implication of multiple injectors in one aquifer.  

Figs. 3.1 and 3.2 illustrate a fundamental difference between a model with limited 

aquifer volume (using a no-flow boundary) and a model for an open aquifer (using a 

constant-pressure boundary) using CMG numerical simulations. With a constant-

pressure boundary, it is possible to continue injecting as long as the injection pressure 

does not exceed the fracture pressure. In this case, the injected CO2 displaces the 

reservoir water, leading to a minimal pressure increase above hydrostatic pressure so 

that the injection can continue much longer, eventually filling more of the pore space 

with CO2. For the closed reservoir, injection rate must decrease after some time to 

avoid exceeding the fracture pressure constraint. If the pressure of the reservoir rises 

above a certain minimum value in order to maintain a constant injection rate (with 

fixed number of wells), additional infill drilling may be required in that case to 

maintain the target injection rate. Fig. 3.1 compares the bounded and open aquifer 

cases both in a square drainage area with 20-mile sides. The characteristics of the 

pressure profile are similar for the bounded aquifer, but pressure increases with time 

throughout the aquifer as indicated by the material balance. Fig. 3.2 shows the same 

comparison but with distance in the logarithmic scale. This comparison shows that 

injection in an open aquifer is largely a steady-state process as compared to the classic 

pseudosteady-state behavior shown by the closed aquifer. To sum, the constant-

pressure modeling approach is simple and convenient but highly misleading. 
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Fig. 3.1—CMG simulations comparing annual pressure profiles for the bounded and open aquifer 
cases, both in a square drainage area with side 20 mile. CO2 was injected for 30 years at 52 million 
scf/D (~1 million T/yr). The initial hydrostatic pressure of the reservoir was 2,600 psi. The fracture 
pressure of the reservoir is 4,200 psi.  
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Fig. 3.2—CMG simulations comparing annual pressure profiles for the bounded and open aquifer 
cases, both in a square drainage area with side 20 mile. The logarithmic distance scale facilitates 
observation of the expanding single and two-phase zone radii. CO2 was injected for 30 years at 52 
million scf/D (~1 million T/yr). The initial hydrostatic pressure of the reservoir was 2,600 psi. The 
fracture pressure of the reservoir is 4,200 psi.  
 

3.2. Local Injectivity Issues  

The bottomhole pressure (BHP) behavior of an injection well in a limited drainage 

area is significantly different from the behavior in a drainage area modeled using 
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constant- pressure boundaries. The next part of this section discusses the BHP and 

injectivity behavior of CO2 injection wells.  

3.2.1 Well BHP Behavior  

Fig. 3.3 shows the plot of well BHP behavior as a function of time for different 

aquifer sizes with square drainage area. CO2 is injected for 30 years at 52 million 

scf/D (1 million T/yr). The initial hydrostatic pressure of the reservoir is 2,600 psi. At 

first, the BHP during CO2 injection at a constant rate is governed by transient flow of 

single phase brine given by the following equation:  

 

  2
70.6( )

ln
1688

CO
wi i

ti w

q ktP P
kh c r

μ
φμ

− ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
,  ..............................................  (3.1) 

where the injection rate is shown as -qCO2 in BPD, wellbore injection and initial 

reservoir pressures are pwi and pi both in psi, t in hours, k and φ the aquifer absolute 

permeability in md and porosity, rw the well radius in ft, and cti the initial total 

compressibility in psi-1 accounting for brine and rock compressibility at initial 

injection conditions.  

 

During the first few hours of injection, very high pressures are developed near the 

wellbore. This is because the full rate of injection, 1 million T/yr, was imposed 

instantaneously from t=0, requiring a large amount of water to be displaced around a 

small expanding bubble of CO2 at high fluid displacement velocities. This effect can 

also be seen in the BHP curves: in early time the BHP is at the maximum value of 

4,200 psi, and with time eventually this pressure goes down. During this early 

injection period, the injection rate may be ramped up gradually to avoid injecting at a 

pressure above the formation fracture pressure. 

 

After a relatively shorter period of injection, the injected CO2 vaporizes the brine 

around the wellbore and this results in a 100% gas saturation zone, also defined as the 
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drying zone. As the drying zone expands, the total mobility of the system increases 

with time, leading to a constant increase in the injectivity of the system. Fig. 3.3 

shows clearly that the BHP behavior of a well in a closed drainage area is vastly 

different from a well in a drainage area with constant-pressure boundaries. 

 
Fig. 3.3—Plot comparing well BHP obtained from simulation for different aquifer dimensions. CO2 
was injected for 30 years at 52 million scf/D (~1 million T/yr). The initial hydrostatic pressure of the 
reservoir was 2,600 psi. The fracture pressure of the reservoir is 4,200 psi.  
 
 

The injected BHP of a well in a constant-pressure drainage area (red in Fig. 3.3) 

decreases with time because of the increasing injectivity behavior during CO2 

injection. Despite increasing injectivity, the BHP increases with time for a well in a 

closed drainage area. While the injection BHP decreases very early in time as the dry 

zone expands, once the pressure disturbance reaches the boundary of the drainage 

area, the BHP starts to rise. The reservoir pressure during injection may reach the 

fracture pressure before a target amount of gas is injected, forcing a need to cut back 

the injection rate. From Fig. 3.3, as the size of the drainage area increases, the rise in 

the BHP is less severe, enabling injection at a constant rate for a longer period of time.  
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In Fig 3.3, one very interesting thing to note is that the BHP behavior for a well with a 

drainage area as large as 100 mile X 100 mile (10,000 mile2) cannot be matched with 

the behavior shown by the constant-pressure boundary at 5 miles from the injection 

well. It can be clearly seen that the drainage area modeled using a constant-pressure 

boundary misinterprets the expected BHP behavior. Moreover, for commercial scale 

sequestration projects (>1 million T/yr), multiple injectors will be required to 

sequester the target amount of CO2. It will be practically infeasible for one well to 

inject into an area as large as 10,000 mile2. For the purpose of illustration, the area of 

the state of Massachusetts in United States is 10,555 mile2, slightly larger than the 

drainage area of a square well with 100-mile sides. Further, 8 out of 50 states in 

United States have an area less than or equal to 10,000 mile2. Legitimate questions 

that arise at this point are “Are we overestimating the storage capacity for CO2 

injection?” or “Are we underestimating the aquifer volume required to sequester the 

required amount of CO2 ?” The answer to these questions will be explored in 

subsequent sections of this thesis.  

3.2.2 Well Injectivity Behavior  

Authors like Burton et al. (2008), Kumar (2008) and Oruganti et al. (2009) who insist 

on using constant-pressure boundaries for modeling purposes are missing the classic 

definition of injectivity. In the petroleum engineering literature, injectivity is defined 

as the ratio of well volumetric flow rate, q, to a characteristic pressure drop or flow 

potential. Injectivity is the ability of placing the fluid in a geological formation. It is 

one key parameter for economic evaluation of a CO2 sequestration project.  

 

The pressure drop is defined by 

 wfP P PΔ = − .  ...............................................................................................  (3.2) 

wfP = well flowing BHP  

P  = average reservoir pressure  
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Injectivity, I, can be defined as 

 
wf

q qI
P P P

= =
Δ − .  ...................................................................................  (3.3) 

 P  is the average aquifer pressure that rises with time as the gas is injected. Some 

authors (Oruganti et al.2009) chose to define P  as the initial aquifer pressure (often 

defined as boundary pressure for open aquifers). Oruganti et al. (2009) also concluded 

that the injectivity of the system decreases as the system confinement increases; thus, 

the injectivity of an aquifer with no fault is highest, and as the number of sealing 

faults increases, the injectivity decreases. This claim is misleading and is in stark 

contrast with the classic definition of injectivity discussed above.  

 

Fig. 3.4 shows the injectivity vs time for square drainage areas with different sizes and 

the value of P  is taken as average aquifer pressure. The red curve shows the 

injectivity behavior for a 5-mile aquifer with a constant-pressure boundary condition. 

As expected, the injectivity is the same for all the drainage areas (constant pressure 

and no flow). For constant-rate injection, under pseudosteady state, the difference 

between the flowing BHP and the average reservoir pressure is constant, and the 

pressure rise is a linear function of time. Well BHP reaches the fracture pressure with 

continued pseudosteady-state injection, and injection rate starts to decrease. However, 

the ratio of rate vs change in average pressure for different drainage areas remains 

constant; that is, the injectivity trend does not change with the change in aquifer 

dimension. Clearly, the authors cited above are on the wrong track and are confusing 

increase/decrease in the injection rate with an injectivity increase/decrease.  
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Fig. 3.4—Plot comparing injectivity obtained from simulation for different aquifer dimensions. CO2 
was injected for 30 years at 52 million scf/D (~1 million T/yr). The initial hydrostatic pressure of the 
reservoir was 2,600 psi. The fracture pressure of the reservoir is 4,200 psi. The red curve shows the 
injectivity of a 5-mile aquifer with constant-pressure boundaries.  
 
Fig. 3.5 shows the behavior of 

wf i

q
P P−

 with the initial aquifer pressure as an 

illustration. CO2 is injected for 30 years at 52 million scf/D (~1 million T/yr). The 

initial hydrostatic pressure of the reservoir is 2,600 psi and the fracture pressure is 

4,200 psi. It is quite obvious from the curves that the aquifer with a constant-pressure 

boundary shows the highest values for this ratio, followed by the closed aquifer with 

the largest dimension. It can be clearly seen that this ratio for a 10-mile X 10-mile 

aquifer is decreasing with time, and this means that the system is overpressurized and 

no longer able to sustain the applied injection rate. Hence, the BHP is increasing and 

the rate is decreasing. The reservoir pressure during injection may exceed the fracture 

pressure very fast and injection should be stopped before the target amount is injected. 

A 25-mile X 25-mile aquifer is sufficient to inject the gas without exceeding the 

fracture pressure. A comparison of the behavior from Figs. 3.4 and 3.5 highlights the 



 40 
 

 

classic pseudosteady-state behavior shown by bounded aquifers and illustrates why it 

is essential to stick to the classic meaning of injectivity.  

 

 
Fig. 3.5—Plot comparing steady-state injectivity obtained from simulation for different aquifer 
dimensions. CO2 was injected for 30 years at 52 million scf/D (~1 million T/yr). The initial hydrostatic 
pressure of the reservoir was 2,600 psi. The fracture pressure of the reservoir is 4,200 psi. The red 
curve shows the injectivity of a 5 miles aquifer with constant-pressure boundaries.  
 
 

3.3. Analytical Model for Injection in Closed Aquifers  

Noh et al. (2004) and Burton et al.(2008) explained that the CO2 injected into a deep 

saline aquifer can be divided into three dominant regions (Fig. 3.6). 

a) Single-phase CO2 zone 

b) Two-phase zone (brine-dominated aqueous phase and CO2-dominated gas phase)  

c) Single-phase brine zone  
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Fig. 3.6--Schematic showing different flow regions when anhydrous CO2 is injected in the system.  
 

 

Farthest upstream, closest to the injection well, is the drying zone. When anhydrous 

CO2  is injected into the reservoir, it vaporizes the brine around the wellbore and gets 

saturated. After continuous injection vaporizes all the brine around the wellbore, it 

results in a 100% gas saturation zone, also defined as a drying zone. Consideration of 

this zone is very important for accurate prediction of CO2 injectivity. The two-phase 

zone contains a brine-dominated aqueous phase and a CO2-dominated gas phase. The 

phase saturation in this zone varies continuously with position and time. This region 

separates the drying zone from the single-phase brine zone.  

 

In the next part of this section we extend Burton et al.’s (2008) steady-state injectivity 

model for application to a closed aquifer. The objective is to find the aquifer volume 

required to sequester CO2 from a typical coal power plant. Given aquifer depth, 

porosity, thickness, permeability, rock compressibility, and relative permeability data 
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along with the brine salinity, the analytical model offers a quick estimate for the 

required aquifer size for a target total mass of CO2 to be sequestered. The results from 

the analytical model compare closely with simulation results.  

3.3.1 Mathematical Modeling 

Burton et al. (2008) provide equations for the radii of the single phase and two-phase 

zones and the pressure drop across each of these zones as well as the pressure drop in 

the single-phase brine.. They assumed that the pressure gradient across the drying, 

two-phase brine zone can be computed by considering the flow as steady state. They 

further assumed that the fractional flow theory can be applied to this situation and that 

viscosity of each phase is constant and independent of composition. Temperature was 

assumed to be constant and no geochemical reactions were considered.  

Basic Model  

The pressure drop across the three regions can be written in terms of Darcy’s law as 

follows.  

Dry CO2 Region  

 , 1

1 ln
2 2

dry dry
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,  ........................  (3.4) 

where kr,Sg=1 is permeability reduction due to salt precipitation.  

 

Burton et al. (2008) also proposed a simple calculation method for estimation of 

kr,Sg=1. They assumed that the salt will be distributed evenly in the pore space. The 

salinity expressed in parts per million can be converted to volume fraction (Vf, salt) 

with the knowledge of density of salt (ρsalt) and density of solution (ρsol). 
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The reduced porosity can be found by subtracting the volume of water from the 

original volume.  

 

 , ,(1 )o o g dry f saltS Vφ φ φ= − −  .  ..........................................................................  (3.6) 

 

The permeability reduction can then be described by the Kozeney-Carman 

relationship:  
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Two-Phase Region  

The pressure drop across the two-phase region can be estimated as  
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(3.8) 

 

Burton et al. (2008) simplified right-hand side of the expression by approximately 

replacing the radial-position weighted mobility with the mobility at some average 

saturation within the two-phase region. This is reasonable if the range of saturations in 

the two-phase region is narrow. The average gas saturation was calculated as the 

average of CO2 phase saturation  

 

  , ,2

2
g dry gS S φ+
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where Sg,dry is the CO2 gas saturation upstream of the two-phase region and Sg,2φ is the 

gas saturation downstream of the two-phase region, and each can be determined from 

CO2-water fractional flow theory (Lake 1989; Noh et al. 2004). 

Brine Region  

The pressure drop across the brine region can be estimated as  
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.  ....................................  (3.10) 

Total Pressure Drop 

The total pressure drop in the system for a steady state case can be written as : 
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where  

 
wμ

λ 1
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is the mobility of the brine zone,  
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is the total mobility of the two-phase region. 
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is the mobility of the single phase CO2 zone.    

In all of these equations, CO2 and water viscosities are µg and µw in cp; relative 

permeabilities are krg and krw; and outer radii of the single phase CO2, two-phase 

Buckley-Leverett, and single phase brine are rdry, r2φ, and re. The relative permeability 

of the CO2 in the single-phase region is kr,Sg=1, and relative permeability values in the 

two-phase region are evaluated at the average CO2 saturation according to Buckley-

Leverett displacement theory (1942). 

 

For this study the pressure increase over the average reservoir pressure is given by  
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Well BHP can be written in oilfield units as  
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 (3.16)  

 

The factor 0.472 in the last natural logarithm term in Eq. 3.16 accounts for average 

reservoir pressure, p , as the average pressure in the brine region and is a departure 

from the Burton et al. (2008) approach, which claimed, incorrectly, that treating the 

aquifer as open, with a constant-pressure outer boundary, was equivalent to modeling 

an effectively infinite aquifer. Eq. 3.16 assumes the aquifer volume is limited and that 

pseudosteady-state flow behavior is established.  
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The consequence of assuming the aquifer has a limited area is that the average aquifer 

pressure will increase over time. Thus, accounting for material balance, 

 

  ( ) pit VppcV =
2CO ,  ........................................................................................  (3.17)  

where VCO2 is the total volume of CO2 to be injected over the life of the sequestration 

project, Vp is pore volume available for CO2 storage, and ct is the total compressibility 

accounting for CO2, brine and rock compressibility using a bulk-volume weighted 

average. The expression for compressibility can be written as-  
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Cf is the formation compressibility in psi-1 .  

 

 Finally, the difference between the wellbore injection pressure and the initial 

reservoir pressure will be  
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Eq. 3.19 can be generalized as follows: 
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where Δpmax is the increase in well BHP due to injection and is limited to no more 

than the difference between fracture and hydrostatic pressures, pf — phyd, for an 

aquifer. The pressure of a depleted oil or gas field may be less than hydrostatic. 

Denoting the term in brackets as 1/Mr, this can be further generalized as the following 

equation: 
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where Mr can be written as  
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Ni is the required number of wells, and tplant is the life of the power plant or duration of 

CO2 injection. Noh et al. (2004) provided expressions for calculation of the speed of 

the fronts and phase saturations on either side of the front using a modified Buckley-

Leverett theory. Using the expressions for the dimensionless velocity of the fronts, the 

radial positions of the drying zone and the two-phase zone can be calculated.  

3.3.2. Comparison With Numerical Reservoir Simulator  

Using the derived Eq. 3.21 and reservoir properties from Table 2.1, we tried to 

compare the results of the analytical model to CMG numerical simulations for a 

square drainage area with 20-mile sides. Fig. 3.7 and 3.8 compare the average 

reservoir pressure and well BHP respectively. The analytical solution is sufficiently 
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close to the numerical solution, and major trends of the well BHP and average 

reservoir pressure are captured from the simplified theory for a closed system.  
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Fig. 3.7—Average reservoir pressure predicted by the simplified model for a closed system compares 
well with the CMG numerical simulator. CO2 was injected for 30 years at 52 million scf/D (~1 million 
T/yr). The initial hydrostatic pressure of the reservoir was , psi. The fracture pressure of the reservoir is 
4,200 psi.  
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Fig. 3.8—Average reservoir pressure predicted by the simplified model for a closed system compares 
well with the CMG numerical simulator. CO2 was injected for 30 years at 52 million scf/D (~1 million 
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T/yr). The initial hydrostatic pressure of the reservoir was 2,650 psi. The fracture pressure of the 
reservoir is 4,200 psi.  
 
The discrepancy between the solutions is likely because of the difference in the CO2 

properties used for the analytical solutions and inside the numerical simulator. The 

CO2 properties for the simulator are calculated from the Peng-Robinson EOS, whereas 

the properties for the analytical solution come from tabulated values (Jarrel et al. 

2002). 

3.3.3. Sensitivity Study  

Several sensitivity plots can be generated from the generalized Eq. 3.21. Simple 

relationships were generated for the specific depths of 3,000, 6,000 and 10,000 ft and 

for injection of 3 million tonnes of CO2 per year. Fig. 3.9 shows normalized 

compression pressure plotted vs a product of well count and permeability-thickness. 

Normalized compression pressure is defined as  

 

  
t i

norm
frac i

P PP
P P

−
=
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where fracP  is the fracture pressure, iP  is the initial reservoir pressure and tP  is the 

average reservoir pressure at a particular time t after starting injection.  

 

It is clear that pressurization of the reservoir to its maximum value may lead to an 

exponential increase in well counts. However, at lower normalized compression 

pressure, the pore volume requirement is more than the requirement at the higher 

compression pressure (Fig. 3.10). There is obviously a trade-off between the pore 

volume and aquifer pressurization. If the former is more, the latter is less, and vice 

versa. For the same kh value, it is clear that the number of wells required is more for a 

shallower aquifer and less at lower normalized compression pressure. Fig. 3.11 shows 

that the shallower formation depth has a smaller window between formation and 
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fracture pressures, leading to a larger volume requirement. These results are clearly 

seen in Fig. 3.10. The pressure interference between the wells in same aquifer causes 

significant injection losses, and this can severely affect the well counts required to 

sequester a target amount of CO2. The loss of injection rate and rise in average aquifer 

pressure depends on a number of parameters such as well spacing, permeability, 

thickness, differential pressures, and injection rates. At shallower depths, since the 

difference between the fracture pressure and initial aquifer pressure is less, an even 

greater number of wells is needed for the same well spacing and kh.  

 

 
 
Fig. 3.9—Relationship between well count, permeability-thickness, and the compression pressure as a 
fraction of Δpmax for given relative permeability, porosity, Δpmax, and aquifer depth. 
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Fig. 3.10—Relationship between well count, permeability-thickness, and the required minimum pore 
volume for given relative permeability, porosity, Δpmax, and aquifer depth. 
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Fig. 3.11—Plot showing the difference between the fracture and hydrostatic pressures, pf — phyd, for an 
aquifer with depth.  
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3.3.4 Storage Potential 

A critically important message conveyed by the generalized Eq. 3.21 is storage 

potential. The following discussion explains how much pressure matters to the storage 

potential in a closed, liquid-saturated reservoir. The principal behind using the 

isothermal compressibility expression to estimate the storage potential is that for an 

incremental increase in pore volume due to the injected CO2, the water volume will 

decrease and effective pore volume of rock will increase. This can be evaluated by 

starting with the expression for isothermal compressibility.  

 

The isothermal compressibility is defined as 

  1
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V p
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where V is the volume of the fluid. By separation of variables,  
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Assuming that c is constant over the pressure range,  
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Rearrangement of Eq 3-26 results in 
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The volume VCO2 is equal to Vp — Vf ; that is, the original pore volume minus that 

stored at the higher pressure. Finally, the storage potential, sCO2, is given by 
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Fig. 3.12 shows the well count kh product as a function of the storage potential. It 

indicates that the best storage potential is about 2.5% of the pore volume for a depth 

of 10,000 ft.  

 
  

 
Fig. 3.12—Relationship between well count, permeability-thickness, and the storage potential for given 
relative permeability, porosity, Δpmax,, and aquifer depth. 
 

3.3.5 Application for a Single Power Plant 

A modern commercial 500-MW coal power plant generates about 3 million metric 

tons of CO2 per year. Assuming it is captured as a pure CO2 stream, what will be the 

aquifer pore volume required to store the CO2, and how many wells will be needed if 

the plant life is assumed to be 30 years?  

 

Suppose an aquifer exists in the vicinity of the plant with porosity 20%, permeability 

100 md, and thickness 100 ft. For an aquifer depth of 6,000 ft at a temperature of 
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150°F (assuming geothermal gradient of 1°F/100 ft) and hydrostatic pressure of about 

2,598 psi, the supercritical fluid density at reservoir conditions will be about 41 

lbm/ft3 (Jarrell et al. 2002). At this density the total volume of CO2 to inject in a 30-

year period is 4.86 billion cu ft, or 865 million bbl. The volumetric injection rate is 

71,300 BPD. To determine the aquifer area required to inject this volume of CO2, it is 

necessary to decide how much the aquifer will be pressurized above the initial aquifer 

pressure. Certainly it should not be pressurized above the formation fracture pressure. 

Assuming the fracture gradient is 0.7 psi/ft, the average reservoir pressure should not 

exceed 4,200 psi. However, in order to inject at a constant rate for 30 years at the end 

of this time period, the wellbore injection pressure must exceed the average reservoir 

pressure as in Eq. 3.20, and this pressure must not exceed 4,200 psi.  

 

Experience with natural gas storage indicates that it is not possible to recover all of 

the stored gas if the reservoir is pressurized well above the initial reservoir pressure. 

This has been interpreted as an indication that some of the stored gas has leaked out of 

the reservoir. Exactly the same result may occur for CO2 storage in an aquifer. 

Therefore, as a first case, assume the aquifer average pressure will not be elevated by 

more than 100 psi over the initial aquifer pressure. With this assumption Eq. 3.21 

implies that the required aquifer pore volume is 7.7 Tcf. For the given aquifer 

thickness and porosity, the resulting area is 13,800 sq mi. If the injection pressure is 

allowed to approach the formation fracture pressure, the difference between injection 

and average pressures is 4,200 -2598-100=1502 psi, and Eq. 3.17 indicates that ½ the 

required rate can be produced in ½ of this area without exceeding this pressure 

constraint. Therefore, two wells can inject all of the CO2 produced by the plant for 30 

years.  

 

However, as points of reference, the Prudhoe Bay reservoir area is 337 sq mi, and 9 

US states and the District of Columbia all have areas less than 13,800 sq mi. It is 

possible to reduce the required area by increasing the amount to pressurize the 
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reservoir. Assuming instead that the aquifer average pressure will be elevated by 

1,000 psi, the required aquifer area is 1,371 sq mi, somewhat less than the area of the 

state of Rhode Island, which has an area of 1,545 sq mi. In this case, four wells will be 

sufficient. The minimum aquifer area, assuming pressurization of 1,600 psi is 

approximately 853 sq mi, and 1,155 wells are required.  

 

Of course, greater aquifer thickness reduces the required aquifer area by increasing 

both injectivity and storage potential per unit area. If an otherwise similar aquifer is 

200 ft thick instead of 100 ft, the area required with 1,000 psi pressurization is 

reduced to 686 sq mi and two wells, each requiring a square area approximately 17.5 

mi on a side, are sufficient. 

3.4 Section Conclusions  

The ability to properly assess the “storage potential” of an aquifer is of critical 

importance for estimating the well count needed for storage. It is very important to 

understand that interference from the neighboring injectors limits the pore volume 

available for injection from the very beginning of a project even when the aquifer is 

estimated to have an unlimited storage capacity. Hence, the practical relevance of 

constant-pressure and infinite-acting reservoir models is questionable. Our 

simulations indicate that pressurization even in relatively large aquifers will not be 

small. The average reservoir pressure of an aquifer should and will rise under constant 

injection rate with multiple wells. Our analytical model compares wells with the 

numerical reservoir simulator. Sensitivity studies show that insufficient storage 

potential can lead to an impractically large operation area or too many injection wells. 

Authors using a constant-pressure boundary approach have overestimated the storage 

potential of aquifers. A realistic no-flow boundary model indicates that there is every 

possibility that volumes envisioned for CO2 sequestration are underestimated at least 

by at least a factor of 5 and underscores the reason why aquifer pressure should be 

continuously monitored. This will be the outline of the next section.  



 56 
 

 

4. PRESSURE FALLOFF TESTING FOR AQUIFER 

CHARACTERIZATION AND LEAKAGE DETECTION 

4.1 Introduction 

Section 3 showed why in most cases we should expect the aquifer pressure to rise 

during CO2 injection. This section shows that a three-region composite reservoir 

model with sealing and constant pressure linear boundaries can be used to interpret 

simulated pressure falloffs. Section 4.2 through 4.4 builds the background needed to 

understand the behavior of a pressure falloff test. Section 4.5 explains how the 

pressure profile varies with radial distance from a CO2 injection well relates it to the 

behavior of the pressure derivative of a falloff test discussed in Section 4.6. Section 

4.7 discusses the application of Horner analysis for average pressure monitoring and 

relates it to Section 4.8, which explains how Horner analysis it can be used to detect 

an aquifer leak. Section 4.9 concludes the major findings from this section.  

4.2 Why Monitoring Is Needed 

The potential risks of storing a gas in a geological storage unit (coal seams, saline 

aquifers, and depleted oil and gas reservoirs) includes leakage of CO2 along the 

abandoned wells, faults and fractures, and high-permeability zones and by a caprock 

failure. Leakage of faults and fractures is generally considered to be the most 

important natural leakage pathway because it extends for larger distances inside the 

subsurface. Typically, risk of leakage depends on the characteristics of the storage 

site. Hydrocarbon fields, which have been well studied, are often safe for storing CO2, 

since they have held oil and gas for millions of years. On the other hand, storage 

candidates like deep saline aquifers have not been studied extensively. The risk of 

leakage is pertinent because of their extensive size and less confidence about the seal 

integrity.  
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Upwards migration of CO2 after leakage may also affect the quality of ground and 

surface water, soil, energy, and mineral resources. This in turn may affect subsurface 

marine and aquatic ecosystems. Even small CO2 leaks can severely deteriorate the 

potable water quality. A decrease in pH to a level of 4 to 5 may cause calcium 

dissolution, change in hardness of water and change in concentration of trace 

elements. (Holloway 1996). Elevation of CO2 concentration in the soil due to leakage 

is likely to lower the soil pH and adversely impact the chemistry of nutrients, redox 

sensitive elements, and plant growth (Saripalli et al. 2003). 

 

A detected leak in time can sometimes be remediated. Benson et al. (2002) suggested 

seven situations for which remediation may be required: 1) leakage out of the storage 

formation, 2) leakage from active or abandoned wells, 3) shallow groundwater 

remediation, 4) vadose zones and soil remediation, 5) surface fluxes, 6) carbon 

dioxide in indoor air, and 7) surface water. 

 

While geophysical methods have proven successful in tracking migration of a CO2 

plume, it may be more cost-effective and fit-for-purpose to use permanent pressure 

gauges and monitor pressure dynamics. Pressure transient testing is a proven 

technique in oil and gas industry for reservoir characterization. Monitoring pressure 

during injection and regular falloff pressure measurements are very fundamental and 

relatively inexpensive techniques for monitoring the storage performance. Once 

equipped with downhole pressure gauges, reservoir pressure can be continuously 

monitored for any unexpected changes and for taking regular pressure falloffs. 

Pressure monitoring can be used for various purposes, such as tracking the location of 

the CO2 plume, understanding the subsurface saturation behavior, monitoring average 

reservoir pressure, ensuring that injection and abandoned wells are not leaking, and 

for verification of the quantity of carbon dioxide that has been injected underground. 

 



 58 
 

 

Several authors in the past (Hoversten et al. 2000; Arts et al. 2002; Newmark et al. 

2002; Benson et al. 2002; Chalaturnyk and Gunter 2004; Pearce et al. 2005; Meckel et 

al. 2008) have focused on many aspects and pressure monitoring and measurements 

methods, including identification of potential technologies and the rationale. Although 

the application of pressure transient testing for monitoring is anecdotally mentioned 

throughout the sequestration literature, there is a little to be found in terms of its 

practical application for monitoring pressures in the active injection well. Pressure 

behavior in CO2 storage aquifers has been neglected thus far in the literature. In 

reality, pressure transient analysis easily distinguishes whether a well drains a limited 

volume exhibiting quasisteady state behavior, an open aquifer with constant pressure 

support, or an effectively infinite aquifer, and this section spells out why pressure 

monitoring makes sense.  

 

Thus, monitoring is important to demonstrate to regulatory oversight bodies that the 

practice of geological storage is safe and it does not create adverse local 

environmental problems.  
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4.3 Pressure Monitoring: Approach 

 

 
 
Fig. 4.1—Diagram showing CO2 injection in deep saline aquifer. 
 
 

Fig. 4.1 illustrates the concept of CO2 sequestration. The dashed box around the well 

is the location for this study. As discussed earlier, periodic pressure falloff tests can be 

used to monitor the progress of CO2 injection operations. Pressure falloff test design 

focuses on real-time pressure evolution in the active injection well or a dedicated 

observation well. The derivative of the pressure curve (rate of pressure change with 

elapsed time) reveals finer details of the pressure evolution in the aquifer. It can 

readily show the presence of leaking CO2 or brine from the aquifer and is particularly 

very powerful for understanding the flow physics of CO2 injection. Combining the 

observations with the pressure measurement data in the overlying permeable zone 

with other monitoring techniques can highlight unanticipated fluid migration out of 

the aquifer via leakage pathways. Chabora et al. (2009) provides a model for pressure 

monitoring above the zone. However, the focus of this thesis is on pressure 

monitoring in the active injection well. The information obtained can be integrated to 
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constrain and refine numerical simulation models. Pressure history matching can 

provide real-time assessment of CO2 migration during geologic storage (Matilla et al. 

2008). 

 
The GEM-GHG simulator was used to generate models for pressure and saturation 

behavior during bulk CO2 injection. No-flow and constant-pressure boundary 

conditions were simulated using the base case model discussed in Section 2. Periodic 

injection falloff tests were simulated to show what behavior can be expected over 30 

years of continued injection. 

4.4 Saturation Profiles Around Co2 Injection Well  

Fig. 4.2 diagrams a map view of the CO2 injection well surrounded radially by the dry 

zone, which is in turn surrounded radially by a zone of two-phase flow where CO2 and 

brine flow together. Outside the two-phase zone is the original single-phase brine. The 

details of the flow regions are discussed in Section 3.3.  

 

 
 

 
 
Fig. 4.2—Radial saturation variation around the CO2 injection well.  
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Fig. 4.3 shows simulated saturation profiles for simulation times ranging from 1 to 30 

years on injection. The dashed lines and arrows highlight the approximate radii of the 

dry, two-phase, shock, and brine zones for simulation after 30 years. This graph 

illustrates the reason for the shock front, which relates to Buckley-Leverett (1942) 

theory for immiscible displacements. It is also known as the mixing zone, as described 

by Lake (1989).  

 

Fig. 4.3— Graph showing simulated saturation profiles for CO2 injection well. 

 
 
Lake (1989) describes the shock front in miscible displacements as a result of 

dispersion. It is described as in-situ mixing or dilution of chemical components as 

they are transported through a porous medium. It is a result of combined effects of 

molecular diffusion and fluid velocity gradients.  
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Following Lake (1989), the one-dimensional transport equation for isothermal 

miscible displacement of a tracer in homogeneous permeable media is  
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where CD is the mass concentration (between 0 and1) at any point normalized to 

injection concentrations. The dimensionless time (pore volume injected) is  

 

  D
qt Vtt

AL Lφ
= =  .  ........................................................................................  (4.2) 
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where L is the length of the medium. The Peclet number, which is the ratio of 

convective to dispersive transport, is defined as  

 

  
eP

l

VLN
D

= .  .....................................................................................................  (4.4) 

lD  is the longitudinal dispersion coefficient.  

 

For continuous tracer injection, the analytical solution is (Lake 1989)  
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where erf is the error function. From Eq. 5.4, as the value of Peclet number decreases, 

longitudinal dispersion coefficient increases. This means a large Peclet number yields 

a sharp shock front and a small peclet number yields a more spread-out front.  

 

The dimensionless mixing zone length or length of the shock front is defined as  
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The second term in Eq. 5.5 is neglected because its contribution becomes small for 

Peclet number greater than 50. Eq. 5.6 can now be simplified as  
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Eq. 5.7 shows that the dispersive mixing zone grows in proportion to square root of 

time. Hold onto to this conclusion for now. We will use this in Section 4.6.  

4.5 Pressure Profiles Around Co2 Injection Well  

Fig. 4.4 shows pressure profiles during CO2 injection determined using the GEM-

GHG numerical simulator for times ranging from 10 days to 30 years. CO2 was 

injected for 30 years at 52 million scf/D (~1 million T/yr). The initial hydrostatic 

pressure of the reservoir is 2,600 psi. The fracture pressure of the reservoir is 4,200 

psi. First, it is important to note that the pressure builds up around the well. Excessive 

aquifer pressurization could cause the seal above the aquifer to leak. An upper bound 

for the aquifer pressurization is given by the fracture pressure, which can be 

determined by specialized injection falloff tests (Nolte, 1979) that are routine in the 

petroleum industry. Dashed curves in Fig. 4.4 show different behavior for early times 

on injection from the later profile. As the pressure builds up around the injection well, 
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the pressure rise also propagates radially away from the well. The circle shows that in 

early time the pressure disturbance has not yet reached the simulation boundary at 

about 25,000 ft from the well. The total aquifer radius for this simulation is 5 miles, 

and the outer boundary of the aquifer is held at a constant pressure. Once the pressure 

disturbance reaches the outer boundary, the pressure profile follows an established 

trend that is highlighted by the slope lines shown for the profile after 5 years of 

injection.  

 

Fig. 4.4—Pressure profiles vs radial distance for CO2 injection well. CO2 is injected for 30 years at 52 
million scf/D (~1 million T/yr). The initial hydrostatic pressure of the reservoir is 2,600 psi. The 
fracture pressure of the reservoir is 4,200 psi.  
 
For steady-state flow, well bottomhole flowing pressure is given by  
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where  
 

eP  = initial reservoir pressure (psi) 

q  = flow rate (bbl/Day) 

B  = formation volume factor (bbl/STB) 

μ  = viscosity (cp) 

k  = permeability (md) 

h  = thickness (ft) 

er  = well radius (ft) 

wr  = drainage radius (ft) 

s  = skin  

 
 
The slope, m, of the curve at any point is given by  
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where λ  is the mobility of the reservoir fluid. It is the ratio of effective permeability to 

viscosity.  
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is the mobility of the single phase CO2 zone. 
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is the total mobility of the two-phase region. 
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is the mobility of the brine zone.  

 

In Fig. 4.4, the lines illustrate that the pressure gradient is a linear function of the 

logarithm of radial distance from the well. Near the well the pressure gradient is lower 

or the mobility is higher because only CO2 is flowing, and it has a much lower 

viscosity than brine. In the two-phase zone, the pressure gradient is higher than the 

dry zone or the mobility is relatively lower than the dry zone because both CO2 and 

brine are flowing together. Between this zone and the outer single-phase zone is seen 

a much higher pressure gradient for the shock zone that will be explained later. The 

pressure gradient in the brine zone is higher than either the dry or the two-phase zone. 

This means its mobility is the lowest. One important observation here is that the 

pressure gradient in the single-phase zone is similar to that observed in the two-phase 

zone. The slopes of the two lines are almost parallel.  

4.6 Pressure Derivative Plot  

Fig. 4.5 shows a log-log plot of the pseudopressure function (Al-Hussainy et al. 1966) 

and its derivative with elapsed time on the Y axis. The pseudopressure change is 

shown during the falloff test as the upper symbols (red), and its derivative as the lower 

symbols trend (green). The pressure data has been simulated for a falloff test after 20 

days on injection. The duration of the fall of is 5 days. A three-zone radial composite 

model (Acosta and Ambastha 1994) was tried to fit to the simulated pressure transient 

data. The pore space for the composite model was divided into three heterogeneous 

regions presenting a radial symmetry around the (vertical) wellbore. Mobility and 

diffusivity of the first region are defined by the time and pressure matches, and 

parameters of the two other zones are defined through their respective mobility and 

diffusivity ratios. The circular outer limit can be no-flow or constant pressure. The 

analytical model for the simulated data is also shown in Fig. 4.5 with solid lines. This 
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shows that the three-zone radial composite models are suitable to fit the pressure 

transient data. The derivative shows level trends that are directly proportional to the 

line slopes shown in Fig. 4.4. In Fig. 4.5, the behavior as time increases reflects 

pressure gradients at increasing radial distance from the well. The level of the flat 

trend in the derivative is inversely proportional to the product of the mobility and 

thickness ( hλ ). Mobility is the ratio of effective permeability to the flowing fluid 

viscosity. Thickness refers to the aquifer thickness. The early low level corresponds to 

the low pressure gradient in the dry zone that results from the high mobility of the 

flowing CO2. On the log-log plot, the intermediate pressure derivative data right after 

the dry zone is falling on a straight line, whose slope begins less than unity and then 

goes into an intermediate radial flow, the level corresponding to that of the two-phase 

zone. This is caused by continuously changing mobility and storativity.  

 
 

 
Fig. 4.5—Simulated injection falloff test after 20 days on injection. CO2 is injected for 30 years at 52 
million scf/D (~1 million T/yr). The initial hydrostatic pressure of the reservoir is 2,600 psi. The 
fracture pressure of the reservoir is 4,200 psi. The falloff was taken over a period of 5 days. The 
analytical model for the simulated data is also shown with solid lines. 
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Still later is a level corresponding to the shock zone. It is also known as the dispersive 

mixing zone, as discussed in Section 4.4. This discontinuity is happening because of 

the significant variation in fluid properties in a short distance. A fixed value of 

mobility is difficult to define in this region because it is constantly changing. Mshock in 

Fig. 4.5 corresponds to the mobility calculation from the slope at the last point of the 

shock front in Fig. 4.4. The shock front marks the end of the transition zone. At the 

end of transition region, towards the reservoir outer boundary, exists a single-phase 

brine zone, uninvaded by the injected CO2. This zone has lowest mobility and 

storativity values. However, in this case the single-phase brine zone is too far away to 

be sensed by the falloff test, which is already 5 days long, but the derivative trend is 

returning to the lower level associated with the pressure gradient in that zone. The 

brine derivative level is masked by the shock front. It may be possible to detect the 

brine derivative level for a much longer falloff.  

 

However, taking a really long falloff may not be possible during the early life of a 

sequestration project for the obvious reason of not interrupting CO2 injection 

operations for significant duration. We envision a much longer falloff after the 

permanent cessation of injection, which corresponds to life of the power plant. In this 

case, we consider a 30-year injection period followed by a 1.5-year-long falloff. Fig. 

4.6 shows a simulated pressure falloff test for 1.5 years after 30 years on injection. As 

can be seen, the shock front did not reach the brine derivative level rather the pressure 

derivative plot dives down as a consequence of the drainage boundary. Fig. 4.4 shows 

that the pressure disturbance after 30 years of injection has reached the simulation 

boundary at about 25,000 ft from the well. As a consequence of the boundary 

interference, it is not possible to see the brine derivative level.  

 

Fig. 4.7 shows a simulated pressure falloff test for 1.5 years after 30 years on injection 

for an infinite-acting boundary condition. All other simulation parameters are kept 

constant. Clearly, the pressure transient reaches the brine derivative level in 1.5 years.  
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Fig. 4.6—Plot shows simulated injection falloff test after 30 years on injection. CO2 was injected for 30 
years at 52 million scf/D (~1 million T/yr). The falloff was taken for a period of 1.5 years. The 
simulation boundary is about 25,000 ft from the injection well. The analytical model for the simulated 
data is also shown with solid lines. 
 
 
 

 
Fig. 4.7—Plot shows simulated injection falloff test after 30 years on injection. CO2 was injected for 30 
years at 52 million scf/D (~1 million T/yr). The falloff was taken for a period of 1.5 years. The 
simulation boundary is at infinite distance from the injection well. The analytical model for the 
simulated data is also shown with solid lines. 

 

Consequently, it is practically impossible to see the brine derivative level unless the 

drainage boundaries are too far off from the injection well or a longer falloff is taken 

very early in the life of a sequestration project. For commercial sequestration projects 



 70 
 

 

at practical injection rates (>3 million T/yr), multiple injection wells will be required 

to be able to put the target amount of CO2 in the ground. The pressure interference 

between the wells located in the same aquifer causes significant injection losses and 

severely limits the drainage area, thus making boundary effects dominant in a pressure 

falloff test.  

Lake (1989) shows that a dispersive mixing zone grows in proportion to square root of 

time. This means that with subsequent falloff tests, it will be more and more difficult 

to see the brine-derivative level beyond the shock front.  

 

4.5.1 Successive Pressure Falloff Tests  

 
Fig. 4.8—Succession of injection falloff tests showing advance of dry and two-phase zones. 
 

Fig. 4.8 shows a succession of injection falloff tests like the one shown in Fig. 4.5. 

Marked in red are upward departures in the pressure derivative from the first level 

trend corresponding to the dry zone mobility. Timing of this departure is proportional 

to the square of the dry zone radius. Likewise, marked in cyan are departure times 

from the two-phase level trend that are related to the position of the shock front. Also 

shown is gradual reduction in the pressure change trends. This corresponds to 
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increasing injectivity resulting from the expanding zone of higher dry-zone mobility 

around the well. Dry-zone radius can be calculated with reasonable accuracy at 

different times using the time-of-departure concept. The radius of the dry zone can be 

written as  

 

  
948dry

t

ktr
cφμ

= ,  ......................................................................................   (4.13)  

where  k  = permeability (md) 

t  = time of departure from the first radial flow (hr) 

φ  = porosity  

μ  = viscosity (cp) 

tc  = total compressibility (psi-1) 

 

 

Fig. 4.9—A comparison of the radius of dry zone obtained from CMG simulator and pressure falloff 
test at different injection time. CO2 was injected for 30 years at 52 million scf/D (~1 million T/yr). 
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Fig. 4.9 shows a comparison of the dry zone radius computed from CMG numerical 

simulation and from the successive falloff tests using the time of departure concept. 

The mobility values from the numerical simulator are calculated using the pressure 

profile around the CO2 injection well (Fig. 4.4). Using the procedure explained in 

Section 4.5, a close match is obtained with the radius obtained from numerical 

simulator.  

 

 

Fig. 4.10—Comparison of the mobility of the dry zone obtained from the numerical reservoir simulator 
and pressure falloff test at different injection times. CO2 was injected for 30 years at 52 million scf/D 
(~1 million T/yr). 
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Fig. 4.11—Comparison of the mobility of two-phase zone obtained from numerical reservoir simulator 
and pressure falloff test at different injection time. CO2 was injected for 30 years at 52 million scf/D 
(~1 million T/yr). 
 
 

 

Fig. 4.12—Comparison of the mobility of shock front obtained from numerical reservoir simulator and 
pressure falloff test at different injection time. CO2 was injected for 30 years at 52 million scf/D (~1 
million T/yr). 
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Fig. 4.10 through Fig. 4.12 shows a comparison of the mobilities of different zones 

(dry, two-phase, shock) computed from CMG numerical simulation and from the 

successive falloff tests. A procedure for computing the mobilities of different zones 

from the numerical simulator was discussed in Section 4.5 and from pressure falloffs 

was discussed in Section 4.6 of this section. A close match was obtained between the 

mobilities computed from pressure falloff tests and the numerical simulator.  

The physics of CO2 sequestration is clearly visible from the successive pressure falloff 

tests. Planning falloff tests at regular intervals for a commercial scale CO2 projects 

can provide significant insights into the real-time movement of saturation fronts and 

mobility behavior in the aquifer. The information obtained can also be integrated to 

constrain and refine numerical simulation models.  

4.7 Determination of Average Aquifer Pressure 

Horner analysis is the usual way to determine reservoir pressure. The Horner time 

function is given by the ratio of total time divided by the elapsed time since injection 

is stopped (the start of the pressure falloff). The total time is approximated as the sum 

of the material balance time and elapsed time since the start of the falloff. Material 

balance time is given by the cumulative injection divided by the last injection rate 

before injection is stopped.  

 

When the injection pressure falloff is graphed against the logarithm of the Horner 

time function, a linear trend is normally observed for ranges of time that show a level 

pressure derivative. The usual Horner analysis approach would extrapolate the portion 

of the data showing the level derivative response corresponding to the single-phase 

brine to infinite shut-in time, which corresponds to unit value in the Horner time 

function. However, Fig. 4.8 shows that none of the falloffs, not even those after only a 

few days on injection, end with this response. This would normally discourage Horner 

analysis.  
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What enables Horner analysis to work is the observation that the pressure gradient in 

the two-phase zone has a similar value to that in the single-phase zone. Therefore, if 

the trend seen for the two-phase zone is extrapolated to the unit Horner time function 

value, the resulting extrapolated pressure will be nearly what would be determined 

with an extrapolation based on a rigorous analysis of the trend for the brine zone. 

However, this is very sensitive to the inputs of the relative permeability curves and 

may not work if the two-phase mobility is not close enough to the brine mobility in 

magnitude.  

 

Fig. 4.13 illustrates the point. Each of the lines shown in the figure are drawn through 

the portion of the data that flatten at the two-phase level on a log-log diagnostic plot 

like that in Fig. 4.5 for a given injection falloff test. The extrapolated pressures 

determined for each of these lines are shown in Fig. 4.14. Also shown in Fig. 4.14 are 

actual average reservoir pressure values from the CMG numerical simulation 

compared to the average pressure obtained from pressure falloffs, and it is evident that 

this approach provides a very reasonable approximation to the average reservoir 

pressure trend.  

 

Figs. 4.4 through 4.14 all relate to a simulation with the outer boundary of the 

reservoir held at a constant pressure. While many CO2 injection models use this outer 

boundary condition because is runs much faster and requires much lower CPU 

resources than with a no-flow outer boundary, the no-flow outer boundary is 

appropriate if the aquifer volume is compartmentalized by either structural or 

stratigraphic limits, or if the well volume is effectively bounded by interference with 

other injection wells.  

 

Fig. 4.15 shows the simulated succession of injection falloff analyses for a bounded 

aquifer. The reservoir reaches a quasisteady state much like what is called 

pseudosteady state for primary production of a single-phase fluid. While for 
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pseudosteady-state production the pressure profile remains the same and pressure 

drops everywhere at the same rate, for CO2 injection the established behavior 

continues to change as the various saturation zones expand in time. Apart from these 

rather subtle changes, the overall effect is analogous to pseudosteady-state behavior.  

 

From Fig. 4.16, the trend for the extrapolated pressures from the Horner analysis 

again matches the trend determined from the simulation, but the trend is quite unlike 

that observed for the open aquifer simulated with a constant pressure outer boundary. 

In this case the average reservoir pressure rises linearly with time as long as CO2 

injection continues at a constant rate. The pore volume of the closed aquifer can easily 

be estimated from the linear pressure increase by the following simple material 

balance equation:  

 

 ( ) pt VpcV Δ=
2CO  ............................................................................................  (4.14) 

 

where VCO2
 is the total volume of CO2 to be injected over the life of the sequestration 

project, Vp is pore volume available for CO2 storage, ct is the total compressibility 

discussed in Eq. 3.19, and Δp is the difference between average aquifer pressure 

determined from the Horner plot and the initial aquifer pressure. This equation is not 

applicable to open aquifers because the native brine is moving out of the system.  

 

The gas injection rate for the closed drainage area in this case is 10 million scf/D for 

30 years. Using Eq. 3.19, the compressibility of the system can be estimated as 6.5E-6 

psi-1. The pressure rise of the system after 5 years is 80 psi, and the volume injected is 

18,250 million scf, or 22.8 million reservoir cu ft. From this, the pore volume is 

estimated as 4.38E+10 ft3. For the given thickness of 250 ft and porosity of 0.2, the 

dimension of the square drainage area can be estimated as 5.2 miles X 5.2 miles. This 

is very close to the actual dimension of 5 miles X 5 miles. Accurate estimation of 

compressibility is very important for the accuracy of this analysis.  
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Fig. 4.13—Horner analysis for estimation of average aquifer pressure, open aquifer case. CO2 was 
injected for 30 years at 10 million scf/D (~0.2 million T/yr). The initial hydrostatic pressure of the 
reservoir was 2,600 psi. The fracture pressure of the reservoir is 4,200 psi.  
 

 

Fig. 4.14—Trend from extrapolated pressures values determined from Horner analysis compared to 
values determined from the CMG numerical, open aquifer case. CO2 was injected for 30 years at 10 
million scf/D (~0.2 million T/yr). The initial hydrostatic pressure of the reservoir was 2,600 psi. The 
fracture pressure of the reservoir is 4,200 psi.  
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Fig. 4.15—Horner analysis for estimation of average aquifer pressure-bounded aquifer case. CO2 was 
injected for 30 years at 10 million scf/D (~0.2 million T/yr). The initial hydrostatic pressure of the 
reservoir was 2,600 psi. The fracture pressure of the reservoir is 4,200 psi.  
 
 

 

Fig. 4.16—Trend from extrapolated pressure values determined from Horner analysis compared to 
values determined from the CMG numerical simulation, bounder aquifer case. CO2 was injected for 30 
years at 10 million scf/D (~0.2 million T/yr). The initial hydrostatic pressure of the reservoir was 2,600 
psi. The fracture pressure of the reservoir is 4,200 psi.  
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4.8 Detection of an Aquifer Leak 

One major requirement for the commercial application of geologic sequestration is 

accurate leak detection through continued monitoring. The small expected 

concentration of the leaking CO2 above the aquifer as well as the large background of 

CO2 present in the atmosphere makes it extremely challenging to implement surface 

monitoring techniques. 

The continuous diffusion of CO2 from the soil into the atmosphere due to plant and 

microbial respiration further exacerbates the situation. Any leak of CO2 from a 

reservoir would have to be differentiated from these other processes. Surface 

monitoring includes the detection of injected tracer molecules, direct measurement of 

CO2 soil flux, soil gas analysis, and carbon isotope analysis from soil gas (Strazisar et 

al. 2003). A range of technologies exists to measure CO2 concentrations and fluxes in 

the shallow subsurface and the atmospheric surface layer (Oldenburg et al. 2003). 

These measurements, in conjunction with a parallel modeling effort and deep seismic 

surveys, will provide an accurate measure of the leakage rate of CO2 to the surface.  

 

Current literature insists on monitoring the leakage from the reservoir quantitatively 

by measuring the surface fluxes (IPCC 2008). However, an understanding of the 

leakage behavior from the subsurface standpoint is critical to assessing the realized 

benefit of sequestration in geologic formations. A substantial leak of CO2 can be 

easily seen through ongoing monitoring of the average pressure behavior. To show 

this, simulations were performed using the three leak positions shown in Fig. 4.17. 

The first case is for a leak in the dry zone, then a leak in the two-phase zone, and 

finally a leak in the brine zone. The leaks were modeled using long horizontal wells 

with a threshold BHP of 2,900 psi. The initial reservoir pressure is 2,600 psi. The 

horizontal well starts leaking fluid out of the reservoir as the reservoir pressure rises 
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and reaches a threshold value of 2,900 psi. The idea is to simulate a breach in the seal 

that cracks open when the pressure of the reservoir rises above a certain value.  

 
Fig. 4.17—Simulated leak positions. 
 
 

4.8.1 Dry Zone Leak  

Fig. 4.18 shows Horner graphs of successive injection falloff tests for the case with a 

leak in the dry zone. The falloffs are taken every two years after the second year. The 

leak location is at a distance of 1,000 ft from the wellbore. The behavior is clearly 

distinct from that seen in either Fig. 4.13 or Fig. 4.15, and the average pressure 

behavior is also different, as seen in Fig 4.19. The Horner plot for the case with no 

leakage in Fig. 4.15 shows a classic quasisteady-state behavior where the average 

reservoir pressure rises linearly with time as long as CO2 injection continues at a 

constant rate, whereas in this case the pressure is leveling out as in the case of a 

constant-pressure boundary, but at a higher average aquifer pressure. This is also 

highlighted from the clustering of pressure falloffs on the Horner plot in late time. 

Because this is a simulation, the fluid phase leaking from the aquifer can be 

determined, and Fig. 4.20 shows that mainly CO2 is leaking out once the dry zone 

radius reaches this position.  
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Fig. 4.18—Horner analysis for estimation of average aquifer pressure,  bounded aquifer with leak in the 
dry zone. CO2 was injected for 30 years at 25 million scf/D (~0.5 million T/yr). The initial hydrostatic 
pressure of the reservoir was 2,600 psi. The fracture pressure of the reservoir is 4,200 psi. The leak is is 
located at a distance of 1,000 ft from the wellbore. 
 
 

 
Fig. 4.19—Trend from extrapolated pressure values determined from Horner analysis compared to 
values determined from the simulation, bounded aquifer with leak in the dry zone. CO2 was injected for 
30 years at 25 million scf/D (~0.5 million T/yr). The initial hydrostatic pressure of the reservoir was 
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2,600 psi. The fracture pressure of the reservoir is 4,200 psi. The leak is located at a distance of 1,000 ft 
from the wellbore. 
 

 

Fig. 4.20— Simulated fluids leaking from the dry zone. CO2 was injected for 30 years at 25 million 
scf/D (~0.5 million T/yr). The initial hydrostatic pressure of the reservoir was 2,600 psi. The fracture 
pressure of the reservoir is 4,200 psi. The leak is located at a distance of 1,000 ft from the wellbore. 
 

4.8.2 Two-phase Zone Leak  

Fig. 4.21 shows Horner graphs of successive injection falloff tests for the case with a 

leak in the two-phase zone. The leak is located at a distance of 7,000 ft from the 

wellbore. The behavior is clearly distinct from that seen in either Fig. 4.13 or Fig. 

4.15. Fig. 4.22 shows average pressure behavior for a leak in the two-phase zone. 

After leveling for some time, eventually the average pressure again goes into 

quasisteady state behavior. Once again, the Horner plot looks quite different from the 

classic quasisteady state behavior shown in Fig. 4.15 highlighting no leak. 

Interestingly, the clustering of pressure falloffs on the Horner plot has shifted its 

position. This indicates that the rate and quantity of fluid leaking out of the reservoir 

is not same as the case when the leak was 1,000 ft away from the wellbore. Fig. 4.23 

shows that mainly brine is leaking out of the aquifer with small amount of CO2, once 

the two-phase zone radius reaches this position.  
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Fig. 4.21—Horner analysis for estimation of average aquifer pressure — bounded aquifer with leak in 
the two-phase zone. CO2 was injected for 30 years at 25 million scf/D (~0.5 million T/yr). The initial 
hydrostatic pressure of the reservoir was 2,600 psi. The fracture pressure of the reservoir is 4,200 psi. 
The leak is located at a distance of 7,000 ft from the wellbore. 
 

 

Fig. 4.22— Trend from extrapolated pressure values determined from Horner analysis compared to 
values determined from the simulation,  bounded aquifer with leak in the two-phase zone. CO2 was 
injected for 30 years at 25 million scf/D (~0.5 million T/yr). The initial hydrostatic pressure of the 
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reservoir was 2,600 psi. The fracture pressure of the reservoir is 4,200 psi. The leak is located at a 
distance of 7,000 ft from the wellbore. 

 

Fig. 4.23—Simulated fluids leaking from the two-phase zone. CO2 was injected for 30 years at 25 
million scf/D (~0.5 million T/yr). The initial hydrostatic pressure of the reservoir was 2,600 psi. The 
fracture pressure of the reservoir is 4,200 psi. The leak is located at a distance of 7,000 ft from the 
wellbore. 
 

4.8.3 Brine Zone Leak  

Fig. 4.24 shows Horner graphs of successive injection falloff tests for the case with a 

leak in the brine zone. The leak is located at a distance of 15,000 ft from the wellbore. 

The behavior is clearly distinct from that seen in either Fig. 4.13 or Fig. 4.15. Fig. 

4.25 shows average pressure behavior for a leak in the brine zone. After initial 

quasisteady- state behavior, the pressure is leveling out as in the case of a constant-

pressure boundary, but at a higher average aquifer pressure. Once again, the Horner 

plot looks quite different from the classic quasisteady-state behavior shown in Fig. 

4.15, which had no leak. Interestingly, the clustering of pressure falloffs on the Horner 

plot has shifted its position again. This indicates that the rate and quantity of fluid 

leaking out of the reservoir is not same as the case when the leak was 1,000 ft or 7,000 
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ft away from the wellbore. Fig. 4.26 shows that only brine is leaking out of the 

aquifer.  

 

Fig. 4.24—Horner analysis for estimation of average aquifer pressure, bounded aquifer with leak in the 
brine zone. CO2 was injected for 30 years at 25 million scf/D (~0.5 million T/yr). The initial hydrostatic 
pressure of the reservoir was 2,600 psi. The fracture pressure of the reservoir is 4,200 psi. The leak is 
located at a distance of 15,000 ft from the wellbore. 
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Fig. 4.25—Trend from extrapolated pressure values determined from Horner analysis compared to 
values determined from the simulation, bounded aquifer with leak in the brine zone. CO2 was injected 
for 30 years at 25 million scf/D (~0.5 million T/yr). The initial hydrostatic pressure of the reservoir was 
2,600 psi. The fracture pressure of the reservoir is 4,200 psi. The leak is located at a distance of 15,000 
ft from the wellbore. 

 
 

Fig. 4.26—Simulated fluids leaking from the brine zone. CO2 was injected for 30 years at 25 million 
scf/D (~0.5 million T/yr). The initial hydrostatic pressure of the reservoir was 2,600 psi. The fracture 
pressure of the reservoir is 4,200 psi. The leak is located at a distance of 7,000 ft from the wellbore. 
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The behavior of Horner plot depends on the location and amount of fluid leaking out 

of the system. It is very difficult to characterize the location of the leak with the 

Horner plots. However, if the size of the aquifer or the rate of the leakage any one of 

them is known then the distinctive differences in average pressure behavior can be 

analyzed using material balance. The next section will briefly discuss the application 

of material balance for quantification of leaks.  

4.8.4 Quantification of Leakage  

The total volume of the fluid leaking out of the aquifer can be calculated using 

material balance. Fig. 4.27 shows the average pressure behavior of the case with a 

leak in the brine zone. The trend line shows the pseudosteady-state behavior of the 

aquifer with no leak. If there is no leak, the average pressure should continue to 

follow this trend as long as constant rate injection continues.  

 
 
Fig. 4.27—Simulated fluids leaking from the brine zone. CO2 was injected for 30 years at 25 million 
scf/D (~0.5 million T/yr). The initial hydrostatic pressure of the reservoir was 2,600 psi. The fracture 
pressure of the reservoir is 4,200 psi. The leak is located at a distance of 7,000 ft from the wellbore. 
 
 
The difference between the average pressure determined from successive falloff tests 

and the pseudosteady state trendline can provide an estimation of the total fluid 

leaking out of the aquifer.  
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  pleakpsstleak VppcV )( −= ,  ...............................................................................  (4.14) 

 
where Vleak is the total volume of fluid leaking out of the aquifer, Vp is pore volume 

determined as previously from the early linear trend in average pressure with time, ct 

is the total compressibility calculated from Eq. 3.19 in Section 3, pssp is the pressure 

from the pseudosteady-state trendline, and leakp is the average pressure for the leaking 

aquifer. Fig. 4.28 shows a comparison of simulated fluids leaking from the brine zone 

and prediction from Eq. 4.14. 

 

 
Fig. 4.28—Comparison of simulated fluids leaking from the brine zone and prediction from simple 
material balance. CO2 was injected for 30 years at 25 million scf/D (~0.5 million T/yr). The initial 
hydrostatic pressure of the reservoir was 2,600 psi. The fracture pressure of the reservoir is 4,200 psi. 
The leak is located at a distance of 7,000 ft from the wellbore. 
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4.9  Section Conslusions  

This section shows results of simulations of bulk CO2 injection from a vertical well. 

The physics of CO2 sequestration is clearly visible from the successive pressure falloff 

tests. Planning falloff tests at regular intervals for commercial-scale CO2 projects can 

provide significant insights into the real-time movement of saturation fronts and 

mobility behavior in the aquifer. The observation that mobilities of the two-phase 

zone and the single-phase brine zone are similar enables a reasonable estimation for 

the average aquifer pressure using Horner analysis. Horner analysis of simulated 

falloffs showed that the behavior of average pressure easily distinguishes whether a 

well drains a limited volume exhibiting quasisteady-state behavior, an open aquifer 

with constant pressure support, or an effectively infinite aquifer; it is also sensitive to 

the presence of a leak in the aquifer seal. Further, simple material balance analysis on 

the average pressure trend enables estimation of the aquifer volume and estimation of 

the volume of total fluid leaking from the aquifer in the case that leaking behavior is 

observed. Our results show that regular injection falloff testing in CO2 injection wells 

is an effective way to detect a leak in an aquifer intended for CO2 storage. More work 

is needed to investigate falloff test behavior for horizontal CO2 injection wells.  
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5. BRINE PRODUCTION FOR PRESSURE CONTROL 

5.1 Introduction  

The storage capacity of CO2 in a closed aquifer is greatly limited by aquifer 

pressurization during injection. The inability of water to move out of the system 

because of compartmentalization, structural or stratigraphic limits, or by interference 

with other injection wells is the main reason for rapid pressure increase. As discussed 

in Section 3, closed systems would be ideal for CO2 containment because low-

permeability barriers would prevent leakage of CO2 from the formation, but since the 

displaced brine cannot escape, the capacity for CO2 storage is rather small. Producing 

extra brine out of the reservoir can greatly relieve the increased pressure and increase 

the storage potential of the aquifer. Strategic placement of the production wells at 

optimal locations will decrease the risk of CO2 breakthrough at the production well.  

 

The lower pressure buildup and large storage potential of “open” aquifers might be a 

desirable choice for CO2. However, in continents like Australia, most of the desirable 

basins lie far from the required stationary CO2 sources (Rigg et al. 2001). Sometimes 

the lack of a large aquifer near a high CO2 emission site necessitates relatively smaller 

and closed aquifers for CO2 storage. In this section, Section 5.2 describes how these 

simulations were done, and Section 5.3 discusses how pressurization greatly reduces 

the risk of CO2 leak and greatly increases the storage potential and briefly addresses 

how produced brine may be handled.  

5.2 Reduction of Aquifer Pressurization Risk  

As discussed in the previous section, pressure contours above the hydrostatic pressure 

extend much farther into the aquifer than the saturation contours in the case of an 

infinite-acting aquifer and extend throughout a limited aquifer volume, whether it is 

modeled as open or closed. The situation worsens in closed and partially confined 

aquifers (Oruganti et al. 2009). Shallower freshwater resources may be in hydraulic 

communication to the deep saline aquifer through local high-permeability flow paths 
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such as faults and abandoned wellbores. The pressurization at depth would then 

provide a driving force for upward migration of either CO2 , fresh brine, or carbonated 

brine.  

A risk factor was defined at the location of the +50-psi pressure contour above the 

hydrostatic pressure. Such a parameter should be included in any certification 

framework for geological storage (Oldenburg et al. 2008; Oruganti et al. 2009). This 

value varies on a case-by-case basis, depending on the aquifer properties and 

formation characteristics. However, for this thesis we assume it to be +50 psi.  

 

 

 
Fig. 5.1—The + 50 psi overpressure contour for the bulk injection case with no brine production. The 
contour extends for a radial distance of 23 miles from the injection well. The boundaries of the 
reservoir are at 100 miles from the center of the well. CO2 is injected for 30 years at 52 million scf/D 
(~1 million T/yr). The initial hydrostatic pressure of the reservoir is 2,600 psi. The fracture pressure of 
the reservoir is 4,200 psi.  
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Fig. 5.1 shows the +50-psi overpressure contour for bulk injection in an effectively 

infinite aquifer with no brine production. The simulation domain is 250 ft thick with a 

square drainage area with 100-mile sides. CO2 was injected for 30 years at 52 million 

scf/D (~1 million T/yr). The initial hydrostatic pressure of the reservoir was 2,600 psi. 

The fracture pressure of the reservoir is 4,200 psi. The rest of the reservoir properties 

are same as the base case discussed in Section 2. The overpressure contour extends for 

a radial distance of 23 miles from the injection well. The area of influence of this 

pressure contour is extremely large (~1650 sq mi). For comparison purposes, 1,650 

square miles of area of influence is more the area of the USA state of Rhode Island. 

The footprint area of elevated pressure indicates the extremely large subsurface 

volumes where such pressure impacts might be expected. This may have important 

implications on large-scale connectivity assessment, reservoir characterization, and 

overall economics of the project. Such a huge area of influence clearly makes a case 

for brine production for pressure relief.  

 
Fig. 5.2 shows the +50-psi overpressure contour for the case with two brine producers. 

The simulation domain is 250 ft thick with a square drainage area with 100-mile sides. 

CO2 is injected for 30 years at 52 million scf/D (~1 million T/yr). The distance 

between the vertical production wells (10,000 ft) is decided on the CO2 breakthrough 

criteria. The initial hydrostatic pressure of the reservoir was 2,600 psi. The average 

pressure of the reservoir is kept constant by producing brine equal to the volume of 

injected CO2 at reservoir conditions. The rest of the reservoir properties are the same 

as the base case discussed in Section 2. The overpressure contour only extends for a 

radial distance of 0.25 miles from the injection well. This is an astronomical reduction 

in the area of influence to only 0.2 sq mi. This area of influence is 0.06% of the area 

without brine production. Hence, water production wells should be used to ensure that 

pressure is maintained within safe operating limits. With brine production, less aquifer 

space is required to sequester an equal amount of CO2. Brine production significantly 

increases the storage potential of the aquifer.  
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Fig. 5.2—The + 50 psi overpressure contour for the bulk injection case with two brine producers (P1 
and P2). The contour extends for a radial distance of 0.5 miles from the injection well. The boundaries 
of the reservoir are at 100 miles from the center of the well. CO2 is injected for 30 years at 52 million 
scf/D (~1 million T/yr). The initial hydrostatic pressure of the reservoir is 2,600 psi. The fracture 
pressure of the reservoir is 4,200 psi.  
 
 

5.2.1 Breakthrough Control  

For the injection production scenario, one of the main concerns is the production of 

CO2 from the drainage well. The brine production wells should be as far as possible 

away from the injection well. The injected CO2 has a tendency to migrate toward the 

producer. A simple but rigorous way to control this is to inject as low as possible and 

produce as low as possible. The “inject-low-and-let-rise” strategy (Kumar et al. 2005) 

helps in increasing residually trapped gas in the reservoir. With this approach, vertical 

movement toward the seal is retarded. Producing the brine as deep as possible will 

stall breakthrough of CO2 rising under gravity. Drilling horizontal wells at the bottom 
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of the aquifer for brine production can be one of the ways to implement this technique 

efficiently.  

5.2.2 Handling Produced Brine  

Produced water treatment would be costly using current desalination and treatment 

technologies; alternatives like solar-driven technology for freshwater production 

(Khatib and Verbeet 2002), advanced vapor-compression desalination technology 

(Ruiz 2005), and coupling carbon dioxide sequestration and extracted water for 

treatment and use in a power plant (Kobos et al. 2008) may be feasible. 

5.3 Section Conclusions  

Brine production reduces the energy requirement for CO2 injection by reducing the 

required injection pressures and greatly reduces the footprint of the overall CO2 

sequestration operation. However, simulations showed that while it greatly reduces 

risks of CO2 leakage by reducing aquifer pressurization, brine production does not 

prevent accumulation of free CO2 at the top of the aquifer. The next section offers a 

novel approach that avoids both risks.  
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6. AQUIFER MANAGEMENT TO ACCELERATE CO2 DISSOLUTION 

AND TRAPPING 

6.1 Introduction    

The risk associated with aquifer pressurization was dealt with in Section 5. However, 

a risk of free gas saturation below the top seal still exists. This section specifically 

addresses that. The CO2 injected in bulk form into a deep aquifer is typically 5 to 50% 

less dense than the resident brine. In this situation, buoyancy forces will drive the 

injected CO2 upwards in the aquifer until a geological seal is reached. The 

performance of bulk CO2 injection schemes highly depends on the seal integrity 

assessment and presence of thief zones. The accumulated pocket of free CO2 would 

readily leak through a breach in an aquifer seal. Ideally, the aquifer should be 

monitored as long as the free CO2 is present, but the CO2 is expected to remain for 

more than 1,000 years. Long-term monitoring of the seal integrity and avoiding 

leakage will be very costly.  

 

Since the main risk of leakage arises from mobile free-phase CO2, we have 

investigated a technique to eliminate buoyancy-driven accumulation of a mobile free-

phase CO2 below the top seal.  

 

In this section, we adopt a well-balanced view to the problem by combining the inject-

low-let-rise strategy (Kumar 2008) with strategically designed brine recirculation to 

accelerate CO2 dissolution and trapping. We try to engineer the system in a way that 

addresses simultaneously the risks of the mobile free-phase CO2 and aquifer 

pressurization due to CO2 injection. Section 6.2 discusses the design specifics of the 

proposed engineered system. Gravity number is an important indication of the 

sequestration efficiency; it is discussed in detail in Section 6.3. In Section 6.4, we 

apply the engineered system to sequester the CO2 output from a standard 500-MW 

coal-fired power plant. Field-scale reservoir simulation sensitivity studies provide 
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additional insights into the problem. Since the real subsurface formations are not , we 

show the application of the concept in heterogeneous permeability fields and dipping 

aquifer systems in Section 6.5.  

6.2. System Design: Adressing Risks  

Fig. 6.1 shows a comparison of the engineered system with the base case. The base 

case is the bulk CO2 injection scenario with a single, horizontal CO2 injector. The 

engineered system can be designed to address the two kinds of risk discussed in the 

previous section. In the subsequent discussion we deal with individual risks one by 

one.  

6.2.1 Addressing Risk from Free CO2 below Aquifer Seal  

To decrease the time for the CO2 plume to hit the top seal, it is important to decrease 

the plume velocity in the vertical direction. The following discussion will address an 

engineering design that increases the areal sweep of CO2 in the horizontal direction 

and decreases the velocity in the vertical direction. A single pattern of the engineered 

system consists of drilling and completing one horizontal brine injection well (IB) 

relatively near the top of the reservoir and exactly above the horizontal CO2 injector (I 

CO2
). Two brine production wells (PB) are employed on either side of the horizontal 

CO2 injector at the bottom of the reservoir.  

The aim of the top brine injection well (IB) is to decrease the vertical velocity of CO2 

rising towards the reservoir seal, and the brine producers on the sides increase the 

velocity of CO2 in the horizontal direction. Decreasing the velocity of CO2 in the 

vertical direction delays the time for the plume to hit the reservoir seal. Increasing the 

velocity of CO2 in the horizontal direction results into a better sweep efficiency of 

CO2 in the aquifer. We recommend the use of horizontal wells for CO2 injection. 

Distributing the total flow along the length of horizontal wells substantially reduces 

the vertical velocity of the plume and delays the time of the plume to hit the reservoir 

seal.  
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Recirculating the brine by producing it through the horizontal brine producers and 

injecting it back through the top brine injector helps in creating a curtain of falling 

brine. CO2 is then injected inside the falling curtain of brine to expose it to as much 

fresh brine as possible. The brine curtain will gradually widen as it falls under 

inclined pressure gradients (downwards) between the top brine injector and bottom 

brine producers. The injected brine has a high density; without the brine producers, it 

tends to fall quickly through the reservoir and fails to achieve significant areal 

coverage. Thus, the use of brine producers on the sides helps in expanding the size of 

the falling curtain. Fig. 6.2 (a) and (b) shows the top view and 3D view of the 

streamlines traced from the sources (injectors) to sinks (producers).  

As can be seen, the brine tries to form an envelope or curtain around the CO2 injector. 

The width of the curtain is also increasing from the top brine injector to brine 

producers. The perforations on the side of the top injector will provide width to the 

curtain, and perforations on the bottom will prevent the flow of rising CO2 from the 

injector ICO2.  Any top perforations on the top injector IB should be avoided. 

Perforations on production wells PB towards the CO2 injector ICO2 will help provide 

better areal sweep of CO2. The flow from the top perforation on the brine producers 

will connect to the brine injector IB to provide a downward gradient to rising CO2. As a 

design criterion, the length of the production wells should be sufficiently less than the 

length of CO2 injector. This helps in maintaining sufficiently high horizontal velocity 

of CO2 towards the production wells, thus providing a better sweep in the aquifer. One 

important point to note here is that the brine recirculation is stopped as soon the CO2 

injection stops.  
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(a)  (b) 
Fig. 6.1—(a) Base case with one horizontal CO2 injector. (b) Engineered case with a horizontal CO2 
and a brine injector and two horizontal brine producers.  
 

 

(a)  (b)  
Fig. 6.2—(a) Top view of the streamlines originating from the brine injector (source) to brine producer 
(sink). (b) 3D view of the streamlines originating from brine injector (source) to brine producer (green) 
and CO2 injector (source) to brine producer (red). 
 

For the engineered system, CO2 is injectedto in a stream of fresh brine injected from 

the top injector, exposing it to fresh, undersaturated brine. Contrary to this, the 

injected CO2 in the base case forms a dense gas cloud around the injection well, which 
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makes it difficult for the fresh, undersaturated brine to contact the injected CO2. A 

single pattern of the engineered system discussed above is analogous to pattern 

waterflooding of oil reservoirs for pressure maintenance and displacing the residual 

oil. Generally, several patterns are required to manage a field. One of the first steps in 

designing a waterflooding project is flood pattern selection and design. The design 

depends on reservoir permeability, heterogeneity, thickness, depth, lithology, fluid 

saturations and drive mechanisms. Each pattern has its own water injection and oil 

production rates. Analogous to that, in each engineering pattern a specific amount of 

gas can be injected to attain zero mobile gas saturation below the top seal throughout 

the life of a sequestration project. The rate associated with this can also be called the 

optimal injection rate. The amount of gas for each pattern depends on aquifer 

thickness, permeability, anisotropy, brine injection rates, and available pore volume. 

Several patterns may be required depending on a specific power-plant CO2 output. 

Fig. 6.3 shows engineering patterns aligned side by side. For every two CO2 injectors, 

there are three brine producers. Each pattern can take a specific amount of gas, and the 

number of patterns can be calculated as  

 2Power-plant CO  output (MMSCFD)  
Gas injected in each pattern (MMSCFD)

n =   ................................................ (6.1) 

 

where n is total number of patterns needed to sequester a target amount of CO2.  
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Fig. 6.3—Three engineered patterns place side by side.  
 
 

6.2.2 Addressing Risk from Aquifer Pressurization 

As discussed in the previous section, producing additional brine out of the reservoir 

can address the risks associated with aquifer pressurization due to CO2 injection. The 

engineered system addresses the risk of pressurization by producing additional brine 

out of the system through the horizontal brine producers. A simple material balance of 

the system suggests the amount of brine produced in reservoir barrels. It should be 

equal to the sum of injected brine and CO2. It can  be written as  

 out brinein brine QQQ =+ .  ...................................................................................... (6.2) 

 
As described in Fig.6.3, often several patterns will be required to sequester a target 

amount of CO2. For n injection wells n+1 brine producers will be required. The brine 

production rate for a set of n patterns can be written as  
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 ( ) out brinein brineCo 1
2

qnnqnq +=+  ........................................................................ (6.3) 

 

 ( ) ( )in brineCOout brine 21
qq

n
nq +
+

= ,  ...................................................................... (6.4) 

 
where 

 qbrine out = brine production rate from each brine producer (bbl/D) 

 qbrine in = brine injection rate from each brine injector (bbl/D) 

2COq   = gas injection rate from each CO2 injector (bbl/D)  

 

The remaining brine (qbrine out - qbrine in) that is not injected back into the formation 

should be disposed off or send back to the power-plant for utilization. Inexpensive 

treatment options of the brine are mentioned in Section 5.3 in this thesis.  

6.3 Gravity Number 

Gravity number is defined as the ratio of gravity forces to viscous forces. Ide et al. 

(2006) investigated the interplay of viscous and gravity forces and capillary trapping 

of CO2. They showed that the gravity number determines the shape of the CO2 plume 

in the aquifer. They also concluded that the gas injection processes in which 

gravitational forces are weak compared to viscous forces (and thus have a low gravity 

number) trap significantly more CO2 than do flows with high gravity numbers.  

In high gravity number displacements, stronger buoyant movement of CO2 drives the 

gas towards the top seal as soon as the gas is injected. Since it is not in contact with 

much of the brine and rock during its gravity-dominated flow, the trapping is less. In 

low-gravity-number displacements, CO2 is carried away horizontally by the high 

viscous forces. Once viscous forces diminish, the gas travels vertically upwards under 

gravity. This way CO2 contacts more brine and rock volume, resulting into greater 

trapping. Low-gravity-number displacements have a better sweep.  
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Ide et al. (2006) also showed that although high-gravity-number displacements trap 

significantly less CO2 than low-gravity-number displacements, the rate at which the 

final trapped gas saturation is reached is much higher in high-gravity-number systems.  

Many different expressions can be found in the literature for gravity number, but the 

basic concept is the same. All are ratios of gravity forces to viscous forces. We use the 

expression of gravity number as defined by Kumar et al. (2008),  

 
u

gk
N v

gv μ
αρ cosΔ

= ,  ......................................................................................   (6.5) 

where  vk  = vertical permeability 

ρΔ  = density difference between brine and CO2 at reservoir conditions  

α  = dip angle  

 μ  = CO2 viscosity  

 u  = total velocity of CO2 at the sandface  

   
pwhr

qu
π2

= ,  ...................................................................................................  (6.4) 

where rw is the radius of the well and hp is the perforation interval.  

 Fig. 6.4 shows a comparison of the 2D gas saturation profile for low- and high-

gravity displacement scenarios. The well is perforated through the bottom quarter of 

the formation. The aquifer is 500 ft thick and the horizontal permeability in both the 

cases is 100 md. The gas was injected for a period of 30 years. The gravity number 

was altered by changing the vertical permeability and CO2 injection rates. For Case 

(a), the injection rate is 5 million scf/D and vertical permeability is 50 md. The gravity 

number for this case is 0.19. In Case (b) the injection rate is 10 million scf/D and 
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vertical permeability is 5 md. The gravity number for this case is 0.01. Clearly, for a 

high gravity number, strong buoyant forces drive the gas toward the top seal as soon 

as the gas is injected, whereas for low gravity numbers, CO2 seems to traverse more 

horizontal distance due to viscous forces. Kumar et al. (2008) carried out a large 

number of simulations and used gravity number to characterize the size of the plume 

and sequestration efficiency. Hold onto this concept for now. We will use this in 

Section 6.4.3 to compare the gravity numbers of the base case with the engineered 

case to characterize the plume behavior.  

 

 

  (a)  (b)  
Fig. 6.4—(a) Shape of the plume for the high gravity number (0.19) after 30 years of injection. Strong 
buoyant movement drives the gas towards the top seal as soon as the gas is injected. (b) Shape of the 
plume for the low gravity number (0.01) after 30 years of injection. CO2 seems to travel more 
horizontal distance due to high viscous forces.  
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6.4. System Design for 500-Mw Power Plant 

A modern commercial 500-MW coal power plant generates about 3 million metric 

tons of CO2 per year. Assuming it is captured as a pure CO2 stream, how should the 

system be designed to accelerate dissolution and trapping mechanisms substantiality? 

What will be the required water circulation rate? How many well patterns will be 

needed if the plant life is assumed to be 30 years? Suppose an aquifer exists in the 

vicinity of the plant with thickness 1,000 ft and other properties are the same as the 

base case model discussed in Section 2. Land’s model is used for modeling residual 

trapping. Using the Holtz (2002) correlation, for a porosity value of 0.25 for the base 

case, the maximum residual gas saturation is approximately 0.3.  

6.4.1 Pattern Dimensions 

Several simulation runs were made by systematically changing the horizontal injector 

and producer well lengths, water circulation rate, and distance between the CO2 

injector and brine producers until a specific combination of the system variables were 

obtained to achieve zero free gas saturation below the top seal. The distance of the 

brine producer from the CO2 injector is decided on the criterion of breakthrough of 

CO2. This distance determines the pattern size for a particular thickness and CO2 

injection rate. Fig. 6.5 shows the required pattern size needed for injecting 3 million T 

of gas per year for a 1,000-ft thick interval for 30 years. Through a combination of 

brine recirculation, horizontal wells, and buoyancy-driven upward migration, all of 

the CO2 was trapped and dissolved before it could reach the top seal. Brine was 

recirculated for a period of 30 years, and it was stopped along with CO2 injection.  
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Fig. 6.5—Size of the required pattern for Case 1. 3 million T/yr of gas was injected for a 1,000-ft-thick 
interval for 30 years. (The plot is not to scale. It has been enlarged in the Z direction for better 
visibility) 

6.4.2 Velocity Fields 

Fig. 6.6 (a) and (b) compares velocity fields in the vertical directions for the base case 

and the engineered case respectively. Approximately 3 million T/yr (~156 million 

scf/D) of gas is injected over a period of 30 years. Brine injection rate from the top 

injector is approximately 340,000 bbl/D and brine production from each producer is 

200 bbl/D. An extra 60,000 bbl/D of brine is produced to control aquifer 

pressurization.  

The length of the CO2 injector is 4,000 ft. It can be clearly seen that the vertical 

velocity (Vz in Fig 6.1) of the gas for the engineered case at any particular injection 

time is as low as 0.01 ft/D as compared to 0.03 ft/D for the base case. The brine 

injection well reduced the velocity of rising plume by 3-fold over the CO2 injection 

well. Fig. 6.7 (a) and (b) compares velocity fields in the horizontal directions (Vx in 

Fig 6.1) for the base case and the engineered case respectively. At any particular time, 

the horizontal velocity for the base case is 0.01 ft/D as compared to 0.03 ft/D for the 

engineered case. Also, the gas has a velocity up to 4,000 ft away from the injection 

well as compared to only 1,000 ft for the base case. This indicates the increased sweep 

efficiency of the gas in the horizontal direction.  
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(a)  (b) 

Fig. 6.6—Vertical gas velocity from horizontal well. (a) Base case. (b) Engineered case. 
Approximately 3 million T/yr (~156 million scf/D) of gas is injected over a period of 30 years. Brine 
injection rate from the top injector is approximately 340 bbl/D and brine production from each 
producer is 200 bbl/D. An extra 60 bbl/Day of brine is produced to control aquifer pressurization. The 
length of the CO2  injector is 4000 ft. 
 
 

 
 

(a) (b) 

Fig. 6.7— Horizontal gas velocity away from horizontal well (a) Base case (b) Engineered case. 
Approximately 3 million T/yr (~156 million scf/D) of gas is injected over a period 30 years. Brine 
injection rate from the top injector is approximately 340 bbl/D and brine production from each 
producer is 200 bbl/D. An extra 60 bbl/Day of brine is produced to control aquifer pressurization. The 
length of the CO2 injector is 4,000 ft. 
 



 107 
 

 

6.4.3 Gas Saturation  

Table 6.1 shows the parameters values for obtaining zero gas saturation below the top 

seal. Fig. 6.8 shows the free-gas saturation of the base case and the engineered case 

just below the reservoir seal. As can be seen, after 1,000 years almost all of the free 

gas is accumulated below the top seal for the base case due to significant buoyancy 

contrast between the brine and the injected gas. After 1,000 years, the areal extent of 

gas saturation for the base case is approximately 25 sq mi. This is a substantial area of 

influence. In the case of the open aquifer, this estimate does not include the water 

displaced, which could easily double or triple the area of influence. Thus, the ultimate 

area of influence for the bulk injection approach could be huge. However, engineering 

the system renders the CO2 immobile during the injection phase of storage. The 

engineered system is successful in dissolving and trapping all of the CO2 in a very 

small volume. Hence, there is no free gas saturation below the top layer for the 

engineered case in Fig. 6.8 (b), even after 1,000 years.  

 
Table 6. 1—Parameter values for obtaining zero gas saturation below the top seal 

 
Parameter Value 

Gas Injection Rate 
156 million scf/D (~ 3 million 

T/yr) 

Length of CO2 Injector 4000 ft 

Length of Water Injector 6000 ft 

Length of Water Producers 2500 ft 

Brine Injection Rate 340,000 bbl/Day 

Brine Production Rate 200,000 bbl/Day 

Material Balance Brine Production 60,000 bbl/Day 

Size of One Pattern  15,000 ft X 15,000 ft X 1,000 ft 

 
 
The average pressure of the reservoir for the engineered case is more or less close to 

the initial hydrostatic pressure due to additional brine production. This addresses the 

risk associated with pressurization due to CO2 injection. The strategy seems counter-
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intuitive as the simulation studies using the same reservoir model imply that only 

around 1% of the pore space will contain CO2 if it is injected alone. Engineering the 

system increases aquifer utilization since more gas is stored in less volume. Fig. 6.9 

shows a comparison of capillary trapped gas between the base case and the engineered 

case after 1,000 years. Capillary trapping is one of the most rapid methods for CO2 

immobilization. A significant amount of increase in trapping is obtained for the 

engineered case since the injected gas in the engineered system efficiently contacts the 

undersaturated brine away from the CO2 injector.  

 
 

 
(a)  (b) 

 
Fig. 6.8—(a) Top view of free gas saturation for the base case after 1,000 years. (b) Top view of free 
gas saturation for the engineered case after 1,000 years. 3 million T/yr of gas was injected along with 
brine recirculation for the 30 years.  
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D View X-Z view  
 

 
 (a1)  (b1) 

 

 
  (a2)  (b2) 

 
Fig. 6.9—Comparison of trapped gas saturation for the base case and engineered case after 1,000 years. 
3 million T/yr of gas was injected for the 30 years.  (a1) 3D view of trapped gas saturation for the base 
case. (a2) 3D view of trapped gas saturation for the engineered case (b1) X-Z view of trapped gas 
saturation for the base case (Ngv=1.25). (b2) X-Z view of trapped gas saturation for the engineered 
case (Ngv=0.5). 

 

The gravity number for the base case is 1.25, whereas the gravity number for the 

engineered case is 0.5. The gravity number of the system has decreased due to the 

engineering. This means sweep efficiency of the engineered system should increase. 
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This is also evident from Fig. 6.9 (b1) and (b2), which shows trapped gas saturation. 

Clearly, the engineered case shows a better sweep of CO2 in the aquifer over the base 

case. For the engineered case, some top layers do not contain the trapped gas; this 

means that the CO2 was immobilized before hitting the top seal.  

6.4.4 Dissolution and Trapping  

Fig. 6.10(a) and (b) compares the increase in dissolution and capillary trapping over 

the base case. A two-fold increase in dissolution and 1.5 times increase in trapping is 

quite evident, although the scale on the Y axes of Figs. 6.10 (a) and (b) are 

significantly different. The dissolution of CO2 in brine is extremely low (Burton and 

Bryant 2007). Thus, the amount of gas trapped for any injection scheme case far 

exceeds the number of moles of the dissolved gas. These results are in agreement with 

some of the previously published research (Spiteri et al. 2005; Ide et al. 2007; Nghiem 

et al. 2009). Note that these results are very sensitive to the value of maximum 

residual gas saturation.  

Fig. 6.11 compares the total mobile CO2 (in billion moles) at different times for the 

base case and the engineered case. It also shows the cumulative gas injected in billion 

moles. Some free gas remains in the aquifer for the engineered case after the injection 

ends. However, the free gas in the aquifer is much lower for the engineered case than 

for the base case. The free gas left in the system will be dissolved and trapped before 

it ever gets to the top of the aquifer seal. In fact, 90% of the gas is rendered immobile 

(dissolved and trapped) for the engineered case as early as 50 years after starting 

injection, thus reducing the tendency of the free gas to leak back to the atmosphere 

through an imperfect caprock, imperfectly sealed wellbore, or conductive fault. 

Contrary to this, a significant amount of the gas still exists in the mobile free phase for 

the base case even after 1,000 years. The cost of inventory verifications and 

monitoring for such an elongated period could be prohibitive. The aim of a 

sequestration project should be to decrease the residence time of free CO2. Eliminating 

the dependence on long-term storage mechanisms like mineral trapping and 
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leveraging the short-term mechanisms like dissolution and mineral trapping could be 

the key to avoiding long-term monitoring costs and securing the storage. 

 

  (a)  (b) 
Fig. 6.10—(a) Plot comparing dissolved CO2 with time for the base case (blue) and the engineered case 
(red). (b) Plot comparing trapped CO2 with time for the base case and the engineered case. 3 million 
T/yr of gas was injected for the 30 years in a 1,000-ft-thick interval. 
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Fig. 6.11—Plot comparing mobile CO2 with time for the base case (blue) and the engineered case (red). 
The brown curve shows the total gas injected for 30 years at the rate of 3 million T/yr.  
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6.4.5 Carbonated Brine Production  

One of the prime concerns for the engineering design would be breakthrough of CO2-

saturated brine at the production wells and producing CO2-saturated brine. The 

treatment of carbonated brine could be prohibitive to sequestration project economics. 

The “inject-low-and-produce-low” strategy was proposed in Section 5.3 to avoid any 

gas breakthrough in the production wells. Producing the brine as deep as possible will 

avoid breakthrough of CO2 rising under gravity. However, since the top brine injector 

is providing a downward gradient to rising CO2, there are high chances of carbonated 

brine production in the production wells due to improved dissolution from the 

efficient engineering of the system. One way to control this is to keep a safe distance 

between the CO2 injector and the brine production well. A second reassuring argument 

could be based on the extremely low solubility of CO2 at surface conditions. Fig. 1.5 

shows the solubility of CO2 in brine (in mole percent) for various aquifer depth and 

salinity ranges. As can be seen, the solubility is 0.05% by mole fraction. Clearly, this 

is a very small amount of CO2 as compared to the injected quantity. Any produced 

CO2 from the brine injector will be flashed out of the solution as soon as it reaches the 

surface. We anticipate a flash tank for the brine before re-injecting it back into the 

ground from the top brine injector. Fig. 6.12 shows the gas rate from the brine 

production wells (red curve). CO2 breakthrough occurs at the end of 20 years, and the 

gas rate through the brine producer rises slowly. By the end of 30 years, the 

cumulative gas production from the brine producer is approximately 4% the total 

injected gas. However, the remaining 96% of the injected gas is dissolved and trapped 

securely as early as 50 years.  
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Fig. 6.12—Cumulative gas production rate (gmole) from the brine producers (red curve). The brown 
curve shows the cumulative gas injection (gmoles) through the CO2 injector.  

 

6.4.6 Sensitivity Studies  

This section discusses the sensitivity of CO2 injection rate to aquifer properties and 

pattern geometry. Fig. 6.13 shows a curve (red) for the amount of gas that can be 

injected in a single base case engineering pattern for different vertical permeability 

values. The thickness of the aquifer is 1,000 ft and the horizontal permeability is 100 

md. The amount of gas that can be injected in each pattern is very sensitive to the 

vertical permeability. The efficiency of the system severely decreases for a vertical 

permeability greater than 25 md. With an increase in vertical permeability, increases 

the vertical velocity of the CO2 plume rises under buoyancy. After a certain threshold 

value of vertical permeability, it is almost impossible to eliminate gas saturation 

below the top seal. As the vertical permeability increases, the rate of brine injection 

from the top injector should increase to provide a strong downward gradient to 

buoyant CO2.  The brown curve in Fig.6.13 shows an increasing trend with increasing 
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vertical permeability. The engineered system is very sensitive to vertical permeability 

of the system and works best for vertical permeability values less than 20 to 25 md.  
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Fig. 6.13—CO2 injection rate (million T/yr) for the base case engineered pattern for different vertical 
permeability values (red curve). The brown curve shows the water injection rate for a specific vertical 
permeability. The thickness of the base case aquifer is 1,000 ft.  
 

Fig. 6.14 shows the effects of horizontal permeability on the optimal amount of gas 

that can be safely injected in each base case engineering pattern for zero mobile gas 

saturation below the top seal. The thickness of the pattern is 1,000 ft and the vertical 

permeability is kept constant at 10 md. As can be seen, the optimal CO2 injection rate 

for each pattern is independent of horizontal permeability. In Fig.6.14 the red curve 

shows that this amount is 3 million T/yr for different values of horizontal 

permeability. However, as the horizontal permeability increases, the horizontal 

velocity of the CO2 from the CO2 injector to brine producer increases. This leads to an 

early breakthrough of CO2 at the brine production well. To avoid this, the well 
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spacing between the gas injector and the brine producer should be increased to make 

the design more efficient and avoid producing CO2 with the brine. The brown curve in 

Fig.6.14 shows the well spacing between the CO2 injector and brine producer for 

different values of horizontal permeability.  
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Fig. 6.14—CO2 injection rate (million T/yr) for the base case engineered pattern for different horizontal 
permeability values (red curve). The brown curve shows the distance between the CO2 injector and the 
brine producer in ft. The thickness of the base case aquifer is 1,000 ft.  
 
 

Fig. 6.15 shows the amount of CO2 injection vs aquifer thickness (red curve). As the 

aquifer thickness decreases, the optimal injection rate of CO2 decreases. Injecting 

more than the suggested amount may lead to mobile gas saturation below the top 

aquifer seal. As the thickness decreases, the optimal gas injection rate decreases, and 

the number of patterns required to sequester a target amount of CO2 (3 million T/yr for 

30 yrs in this case) increases (brown curve). For example, for a 750-ft-thick aquifer, 

the optimal injection rate for each pattern is 1.5 million T/yr and 2 patterns will be 
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required to inject 3 million T of CO2 per year for 30 years. If the injection rate of CO2 

exceeds 1.5 million T/yr/pattern, then the project operators may experience mobile 

free gas saturation below the top seal, unless substantial changes have been made to 

the engineering—not to mention that this curve was generated for the base case 

aquifer model with 10-md vertical permeability. Any changes to reservoir properties 

and thickness may change the results significantly. 
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Fig. 6.15—CO2 injection rate (million T/yr) for varying aquifer thickness (red curve). The brown curve 
shows the number of patterns required to sequester 3 million T/yr of CO2 in an aquifer for a particular 
aquifer thickness.  
 

 

6.4.7 Storage Potential  

Storage potential as discussed in previous sections is the percentage of pore volume 

that can be occupied by CO2. In the case of closed aquifers, this factor is limited by the 

available pore volume and aquifer pressurization. As discussed earlier, a closed 

system would be ideal for CO2 containment because the low permeability barriers will 

not allow the injected supercritical CO2 to leak back to the atmosphere. However, it is 
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important to produce brine out of the closed system for pressure relief and to increase 

the storage potential of the system. The engineering system discussed in the previous 

section of this section increases the volume of CO2 that can be stored in a closed 

aquifer volume. For the engineered case discussed in Section 6.4, 3 million T/yr of 

CO2 was injected for 30 years in a 15,000 ft X 15,000 ft X 1,000 ft pattern. This 

corresponds to a storage potential of 8.5%. This is approximately 4 times higher than 

the storage potential for the bulk injection approach injecting the same amount in an 

aquifer with similar pressure and temperature conditions. Moreover, the accelerated 

dissolution and trapping of CO2 renders 90% of the gas immobile by the end of 50 

years.  

 

The injection dynamics of the system is controlled, and it prevents CO2 from 

migrating toward potential outlets or sensitive areas. It is easier to characterize a small 

portion of the aquifer with greater confidence than to characterizie miles and miles of 

aquifer extensions. A high-resolution characterization of a smaller, closed aquifer 

volume can build greater confidence in engineering design and in evaluating the target 

formation for suitability for CO2 storage.  

 

Although this technique requires additional drilled wells, the engineered case 

significantly reduces the reservoir volume required to effectively sequester a given 

volume of CO2. Since the free gas saturation in the reservoir is reduced early on, the 

increase in the cost due to additional wells is compensated for by the dramatic 

reduction in monitoring cost. In analogy to improved recovery in pattern well 

waterflooding, engineered aquifer management improves aquifer storage potential, 

thereby reducing the underground footprint of the CO2 sequestration operation. It has 

potential to reduce the uncertainty about the long-term fate of the injected CO2. . 
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6.5 Applications of Engineered Case  

In reality, aquifers are rarely homogeneous. Since the results of the engineered case 

are encouraging with homogeneous permeability and porosity fields, in the following 

section, we discuss the application of the engineered case to horizontal and dipped 

aquifers with stochastic permeability and porosity fields. Again, 3 million T/yr of gas 

was injected for 30 years along with 30 years of brine recirculation.  

Case 1: Modification of Homogeneous Case to Stochastic Permeability Field  

In this section, a stochastic property field was generated as shown in Fig. 6.16. The 

permeability in the field varies from 1 md to 200 md with a mean permeability 

estimate of 100 md. The mean of the permeability was kept constant as the 

permeability of the homogeneous base case field. The vertical permeability is 0.1 

times the horizontal permeability. The conditional permeability realization was 

generated using the sequential Gaussian simulation (SGSIM) geostatistical algorithm 

that has been implemented into Stanford geostatistical modeling software (SGEMS). 

A random permeability data set was used to condition the Gaussian simulation. Each 

realization is discretized into a 50 X 50 X 50 (500 ft X 500 ft X 20 ft) gridblock 

system. The porosity field was correlated to the randomly generated permeability field 

with the Holtz (2002) correlation discussed in Section 2.4. The average porosity of the 

field is 23%.  

The maximum residual gas saturation and residual water saturation was again 

correlated to the random porosity field using the Holtz (2002) correlation. For each 

gridblock, different values of porosity, permeability, capillary pressure, maximum 

residual saturation, and residual water saturation were assigned in GEM-GHG. Kumar 

et al. (2004) defined different types of rock curves with porosity as independent 

variables. The value of porosity and permeability for each grid block will determine 

its rock type, which in turn determines its values of residual gas saturation and 

residual water saturation.  
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Fig. 6.16—Horizontal permeability in md for heterogeneous case.  
 

The drainage capillary pressure curves for any rock type were modeled using the 

Brooks-Corey function. Kumar et al. (2004) also scaled the capillary pressure curves 

for each rock type to average permeability (Table 6.2). Without going into further 

detail, the relative permeability and capillary pressure curves used in the simulations 

are shown for each of the rock types.  
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Table 6.2—Values used in different relative permeability tables (Kumar et al. 2002) 
Ro
ck 
Ty
pe 

Porosity 
Average 
Porosity 

Smax
gr 

Average 
Permeability 

Swirr krg 

 (fraction) (fraction) (fraction) (md) 
(fractio

n) 

(fractio

n) 

1 0.16- 0.195 0.18 0.373 4.192 0.628 0.13 

2 0.195-0.225 0.21 0.344 21.594 0.276 0.52 

3 0.225-0.255 0.24 0.315 77.877 0.194 0.62 

4 0.225-0.285 0.27 0.286 241.423 0.161 0.68 

 

Figs. 6.17 through 6.20 show the drainage relative permeability and capillary pressure 

curves for four different rock types. The capillary entry pressure varies for different 

rock types, and this leads to preferential gas flow into high-permeability rocks. The 

gas relative permeability curves shown in the plots are extended beyond the endpoint 

to maximum gas saturation 1 for correct mobility calculation of the fluid in the dry 

zone. The water relative permeability does not change during this extension (Kumar et 

al. 2008). 

 

Fig. 6.17—Relative permeability and capillary pressure curves for Rock Type 1 (Kumar et al. 2002). 
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Fig. 6.18—Relative permeability and capillary pressure curves for Rock Type 2 (Kumar et al. 2002). 
 

 

 

Fig. 6.19—Relative permeability and capillary pressure curves for Rock Type 3 (Kumar et al. 2002). 
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Fig. 6.20—Relative permeability and capillary pressure curves for Rock Type 4 (Kumar et al. 2002). 
 



 124 
 

 

Fig. 6.21 shows the free gas saturation just below the top seal after 1,000 years. As 

can be seen, the free gas was rendered immobile before it could reach the top seal. 

Fig. 6.22 and 6.23 show the trapped gas saturation after 1,000 years for the 

heterogeneous case. It is quite clear from Fig. 6.24 that heterogeneous permeability 

field has an effect on the shape of the trapped gas saturation.  

 

 

Fig. 6.21—Free gas saturation for the heterogeneous case just below the top seal after 1,000 years.  
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Fig. 6.22—3D view of trapped gas saturation for the heterogeneous engineered case after 1,000 years. 
3 million T/yr of gas was injected for the 30 years. Brine recirculation was stopped along with CO2 
injection.  
 
 

 

Fig. 6.23— X-Z view of trapped gas saturation for the heterogeneous engineered case after 1,000 years. 
3 million T/yr of gas was injected for the 30 years. Brine recirculation was stopped along with CO2 
injection. 
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Velocity Fields  

One very unique feature of engineering the system in heterogeneous field is the 

velocity field generated between the top injector and the bottom producer. The reason 

the engineered system works so well under heterogeneous conditions is the direct 

correlation between the water velocity from the top brine injector and the gas velocity 

from the bottom CO2 injector. The velocity of the CO2 rising under the buoyancy will 

be higher in the gridblock with higher permeability, which has less capillary entry 

pressure. Similarly, the velocity of brine from the top injection falling downwards 

under gravity will have a higher velocity in the high permeability gridlocks because it 

has less capillary entry pressure. This indicates that in the gridblock in which the Z 

velocity is higher, the velocity of brine falling from top will also be higher. As can be 

seen in Fig. 6.24, if the Z velocity of the CO2 is higher at any point on along the 

horizontal length of the wellbore, the velocity of the brine from the top injector is also 

higher. The velocity profiles from both the injectors more or less follow the same 

trend. The preferential movement of injected brine in gridblocks with higher 

permeability helps in suppressing the movement of rising CO2 from the high-

permeability gridblocks under buoyancy.  
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Fig. 6.24—Plot showing the Z velocity profile along the horizontal well direction in ft/D. The top plot 
shows the water velocity flowing downwards from the top brine injector and the bottom plots show the 
Z velocity of the gas rising upwards.  
 
Mobile Gas  

Fig. 6.25 shows the total mobile CO2 (in billion moles) at different times for the 

heterogeneous engineered case. It also shows the cumulative gas injected in billion 

moles. As expected, almost 85 to 90% of the gas is rendered immobile (dissolved and 

trapped) as early as 50 years after starting injection, thus reducing the tendency of the 

free gas to leak back to the atmosphere through an imperfect caprock, imperfectly 

sealed wellbore, or conductive fault.  

 

 
Fig.6.25—Mobile CO2 with time for the heterogeneous engineered case (red). The brown curve shows 
the total gas injected for 30 years at the rate of 3 million T/yr.  
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Case 2: Heterogeneous Permeability Field with Dipping formation  

In this section, a stochastic property field is shown from Case 1. The formation has a 

geological dip of 4o with the rest of the properties the same as the base case discussed 

in Section 2. Again, 3 million T/yr of gas was injected for 30 years and brine was 

recirculated for 30 years (Fig. 6.26). 

 

 
Fig. 6.26—Horizontal permeability in md for the heterogeneous dipping aquifer.  
 

During the injection period, the flow of the gas is mostly pressure driven, while after 

the injection it is mostly gravity driven due to density contrast. The CO2 travels updip 

and travels a much farther distance in dipping aquifers. Since the flow behavior of 

CO2 and water is different in inclined aquifers as compared to horizontal aquifers, 

some modifications have to be made to regular engineering design.  

Some salient features of engineering the system in dipped aquifers:  
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• Since the CO2 has a tendency to rise updip, the production well updip should be 

farther away from the CO2 injector than the production well downdip to avoid 

early breakthrough.  

• The production rate from the two production wells is not equal. The rate from the 

well updip is lower than the rate from the well downdip to avoid early 

breakthrough in the producer updip and to give CO2 a better sweep in the 

downward direction.  

• For a large aquifer dip (>4o), the top brine injector should be placed slightly 

updip as compared to the CO2 injector. Since the CO2 has a tendency to rise 

updip, a stronger gradient is required between the top brine injector and top brine 

producer to avoid any contact of the CO2 with the top aquifer seal. The reduced 

distance between the two wells (top brine injector and producer) will provide a 

stronger gradient to keep the CO2 inside the falling brine curtain.  

 

Fig. 6.27—X-Z view of the streamlines originating from the top brine injector to the bottom brine 
producers.  
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Fig. 6.27 shows the streamlines traced from the source (top brine injector) to sinks 

(brine producers). As can be seen, the brine tries to form an envelope or curtain 

around the CO2 injector. The width of the curtain is different in two directions from 

the CO2 injector. (updip and downdip). The width of the curtain is smaller updip 

because the brine producer updip is more close to top brine injector. This works to the 

benefit of the engineering design because it gives a stronger downward gradient 

between the top brine injector and brine producer keeping the rising CO2 away from 

the top seal.  

 Fig. 6.28 shows the free gas saturation just below the top seal after 1,000 years. As 

can be seen, the free gas was rendered immobile before it could reach the top seal. 

Fig. 6.29 and 6.30 shows the trapped gas saturation after 1,000 years for the 

heterogeneous dipped aquifer. It is quite clear from Fig. 6.30 that heterogeneous 

permeability and aquifer dip has an effect on the shape of the trapped gas saturation. 

The engineering of the system provides a good sweep in the direction downdip from 

the CO2 injector.  

 

 
Fig. 6.28—Free gas saturation for the heterogeneous dipping aquifer just below the top seal after 1,000 
years.  
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Fig. 6.29— 3D view of trapped gas saturation for the heterogeneous dipping aquifer after 1,000 years. 
3 million T/yr of gas was injected for the 30 years. 

 
Fig. 6.30— X-Z view of trapped gas saturation for the heterogeneous dipping aquifer after 1,000 years. 
3 million T/yr of gas was injected for the 30 years  

 

Mobile Gas  
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Fig. 6.31 shows the total mobile CO2 (in billion moles) at different times for the 

heterogeneous dipped aquifer case. It also shows the cumulative gas injected in billion 

moles. As expected, almost 90% of the gas is rendered immobile (dissolved and 

trapped) as early as 40 years after starting injection. The dissolution and trapping of 

CO2 for the dipped aquifer is faster than for the horizontal aquifers because the CO2 

travels a greater distance in the aquifer and comes in contact with more fresh brine. 

The same amount of free CO2 is realized in the system 10 years earlier for the dipping 

aquifer case. The engineering design for the dipped aquifer case is highly effective, 

thus reducing the tendency of the free gas to leak back to the atmosphere through an 

imperfect caprock, imperfectly sealed wellbore and conductive fault.  

 

 
Fig. 6.31—Mobile CO2 with time for the heterogeneous dipped aquifer engineered case (red). The 
brown curve shows the total gas injected for 30 years at the rate of  3 million T/yr.  
 
 

6.6 Section Conclusions 

This section presents a method for accelerating CO2 dissolution in saline aquifers by 

re-circulating brine in a strategically designed engineered system. Relevant risk 

arising from aquifer pressurization due to injection and free CO2 below the aquifer 



 133 
 

 

seal is addressed. Simulation studies for homogeneous and heterogeneous 

permeability fields suggest that almost 90% of the CO2 is rendered immobile as early 

as 20 years after the cessation of injection. This is much lower than the free gas 

saturation in the bulk injection scenario even 1,000 years after stopping the injection. 

Further, the storage potential is 8%. This is four times more than the storage potential 

for the bulk injection scenario. Consequently, it will not increase the number of wells 

required to sequester the CO2. Design for a given thickness, depth, and aquifer 

properties includes optimization of the aquifer geometry, well lengths, well spacing, 

CO2 injection rates, and number of patterns. Sensitivity studies show that the 

maximum amount of gas that can be immobilized in a particular aquifer decreases as 

vertical permeability increases and formation thickness decreases. Horizontal 

permeability has a minimal effect on the efficiency of the system.  

 

Eliminating the dependence of CO2 storage operations on long-term dissolution and 

mineralization mechanisms provides security to the storage and significantly reduces 

long-term monitoring costs. From a practical standpoint, dissolution and residual 

trapping are two low-risk modes of storages that could be designed and manipulated 

to increase the storage security and reduce risk. Thus, it is important to explore 

engineering techniques to eliminate buoyancy-driven accumulation of free gas and 

accelerate its dissolution and capillary trapping in the system. Once the gas is 

dissolved, risk assessment may ignore the leakage pathways owing to very slow 

movement of CO2-saturated brines.  

 

Using current multilateral well technology, the suggested engineering design could be 

easily implemented for real field-scale applications. Enough experience exists in the 

oil and gas industry for injecting and producing saline water for pressure maintenance 

and waterflooding operations. Applying such techniques can greatly reduce risks 

related to aquifer pressurization and free mobile gas. The increased storability 

expands the range of reservoirs that are acceptable for CO2 storage.  
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Preliminary results are encouraging and demonstrate potential to accelerate CO2 

dissolution and trapping, virtually eliminating the risk of mobile free-phase CO2 

leakage from the storage site.  
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7. CONCLUSIONS AND RECOMMENDATIONS  

Large quantities of CO2 should be sequestered for geologic CO2 storage to make an 

impact on the environment. Many previous studies have shown simulations of CO2 

sequestration in deep saline aquifers. This thesis is specifically focused on addressing 

the risk of CO2 leakage from an aquifer, its monitoring, and mitigation. The likelihood 

of CO2 leakage from an aquifer is aggravated by two factors: pressurization of the 

aquifer and accumulation of free CO2 at the top of the aquifer just below the seal. 

Ways to address these risks are considered in this thesis. Section 7.1 discusses the 

specific findings of this research and Section 7.2 identifies future research 

opportunities related. 

7.1 Conclusions 

Many published studies have used an open (constant pressure) boundary for 

simulations that focused on CO2 dissolution and trapping for thousands of years 

following the end of CO2 injection. The focus of this research is on the behavior of the 

aquifer during CO2 injection. After successfully simulating published results for bulk 

CO2 injection with a vertical well, this study showed that a closed aquifer boundary 

greatly affects simulation results during the time of injection. This research 

investigated three approaches to geologic CO2 sequestration in saline aquifers: bulk 

CO2 injection, brine production to avoid aquifer pressurization and increase CO2 

storability, and an engineered system designed to accelerate CO2 dissolution and 

trapping. The objective was to consider sequestration of CO2 captured from a 500-

MW coal power plant operating for 30 years.  

 

Conclusions for bulk CO2 injection include the following: 

1. Simulations clearly indicated that bulk CO2 injection into a single well could 

rarely inject the volume of CO2 produced by the power plant in a typical aquifer 

and that multiple wells would be required. In an array of injection wells, the 
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aquifer volume allotted to each injection well is limited by interference with 

other injection wells. Therefore, modeling of CO2 injection must consider a 

closed outer boundary, and bulk injection in a closed system will pressurize the 

aquifer. Simulations confirm this conclusion. 

 

2. An analytical model developed for this study extends a previously published 

analytical model for the open aquifer to a closed aquifer. A spreadsheet model 

provides very similar results to detailed simulation in a fraction of the time and 

enables systematic determination of the aquifer volume and the number of wells 

required to sequester the target amount of CO2. Results indicate that depending 

on the aquifer properties, the sequestration operation would require thousands of 

square miles of aquifer area or hundreds of wells or both. In any case, the aquifer 

must be pressurized, and CO2 accumulates at the top of the aquifer, leading to an 

unacceptable risk of CO2 leakage.  

 

3. Simulations over 30 years on injection demonstrated the value of regular pressure 

falloff monitoring of CO2 injection wells. Pressure falloff responses provide 

ongoing indications of the dry zone and two-phase zone radii over time and 

quantification of the zone mobility values. For the case studied, the falloff 

responses also provided reasonable estimates for the ongoing average aquifer 

pressure that can be used for material balance analysis. In turn, analysis of 

average pressure over time can indicate whether the behavior is that of an open 

or closed aquifer and an estimation of the aquifer size. Alternatively, average 

pressure behavior over time can signal presence of an aquifer leak and provide an 

estimation of how much fluid may be leaking from the aquifer and whether the 

leak is predominantly CO2 or brine.  

 

These results suggest that bulk CO2 injection is neither economically nor 

environmentally acceptable. 
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To avoid pressurizing the aquifer and reduce the number of wells required to 

sequester the CO2, brine should be produced from the aquifer as a volume equal to 

that of the injected CO2. This approach addresses the pressurization risk, but does not 

address the problem of CO2 accumulating at the top of the aquifer.  

 

An engineered system is proposed to both avoid aquifer pressurization and accelerate 

CO2 dissolution and trapping. This system would position a horizontal brine injection 

well above and parallel to a horizontal CO2 injection well with horizontal brine 

production wells drilled parallel to the CO2 injection well at a specified lateral 

spacing. Simulations showed that this configuration prevents CO2 accumulation at the 

top of the aquifer during injection and that 90% of the CO2 is permanently dissolved 

or trapped during injection after 50 years, including the 30 years of injection. This 

approach would greatly reduce the risk of CO2 leakage both during and forever after 

injection.  

7.2 Recommendations  

1. Bulk phase CO2 injection can provide substantive reduction in CO2 emissions 

only if additional brine is produced out of the system to address relevant risks 

arising from aquifer pressurization. Treatment of produced brine is extremely 

costly using current desalination and treatment technologies. Inexpensive 

alternative technologies for freshwater production should be explored to enable 

this option.  

 

2. The sensitivity of pressure transient measurements to detect significant leakage 

from the storage formation and detection limits for pressure gauges should be 

thoroughly investigated.  
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3. The fundamentals underlying the proposed CO2 injection scheme need to be 

formalized and generalized. The countercurrent engineering scheme proposed in 

this thesis is an unstable displacement and thus difficult to express through 

analytical solutions, and further investigations are needed into stream-function 

and streamline-based analytical solutions. In particular, expressions like gravity 

number should be modified to capture the dynamics of the engineered system. 

The new expression should be capable of comparing the efficiency of engineered 

systems based on the well lengths and brine injection/production rates.  
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APPENDIX. EXAMPLE CMG SIMULATION INPUT FILE  

 
RESULTS SIMULATOR GEM 200800 
 
 
DIM MDIMPL 100 
TITLE1 'Engineered Case' 
MAXERROR 20 
RANGECHECK OFF 
INUNIT FIELD 
WSRF WELL 1 
WSRF GRID TIME 
WRST 1,0000 
*OUTSRF *GRID *SW *SG *PRES *DENW *DENG *TEMP *SGRHYS SGHYS 
SGDTHY STRMLN DPORMNR RFO POROS PERM 
 *Z 'CO2' *W 'CO2' *Y 'H2O' *W 'H2O'VELOCRC VISG VISW RHOG 
  
*OUTSRF *WELL *GHGGAS *GHGLIQ *GHGSCRIT *GHGSOL *GHGAQU 
*GHGMNR *GHGTHY  
 
OUTSRF RES ALL 
WPRN GRID 0 
OUTPRN GRID NONE 
OUTPRN RES NONE 
 
WRST 1,0000 
*INVENTORY-CO2 
 
RESULTS XOFFSET 0.0000 
RESULTS YOFFSET 0.0000 
RESULTS ROTATION 0.0000 **$ (DEGREES) 
RESULTS AXES-DIRECTIONS 1.0 -1.0 1.0 
 
GRID CART 50 50 50 
 
KDIR DOWN 
 
DI CON 500  
 
DJ CON 500  
 
DK CON 20 
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DEPTH TOP 20 20 1 6000 
 
*Refine.txt  
NULL CON 1. 
  
*MOD 
  
 1:50 1:50 1:50 = 0 
 10:40 9:41 1:50 = 1 
 
 
POR CON 0.25 
 
PERMI CON 100 
PERMJ EQUALSI 
PERMK EQUALSI * 0.1 
 
 
PINCHOUTARRAY CON 1 
 
CPOR MATRIX 3E-6 
PRPOR MATRIX 2,600  
**$ Model and number of components 
MODEL PR 
NC 3 3 
COMPNAME 'CO2' 'C1' 'H2O'  
HCFLAG 
0 0 0  
VISCOR HZYT 
MIXVC 1.0000000E+00 
VISCOEFF 1.0230000E-01 2.3364000E-02 5.8533000E-02 -4.0758000E-02 
9.3324000E-03  
MW 
4.401,0000E+01 1.6043000E+01 1.8015000E+01  
AC 
2.2500000E-01 8.0000000E-03 3.4400000E-01  
PCRIT 
7.2800000E+01 4.5400000E+01 2.1760000E+02  
VCRIT 
9.4000000E-02 9.9000000E-02 5.6000000E-02  
TCRIT 
3.04,200 00E+02 1.9060000E+02 6.4730000E+02  
PCHOR 
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7.8000000E+01 7.7,000000E+01 5.2000000E+01  
SG 
8.1800000E-01 3.0000000E-01 1.0000000E+00  
TB 
-7.8450000E+01 -1.6145000E+02 1.0000000E+02  
OMEGA 
4.5723553E-01 4.5723553E-01 4.5723553E-01  
OMEGB 
7.7796074E-02 7.7796074E-02 7.7796074E-02  
VSHIFT 
0.0000000E+00 0.0000000E+00 0.0000000E+00  
VISVC 
9.4000000E-02 9.9000000E-02 5.6000000E-02  
BIN 
1.0300000E-01  
2.0000000E-01 4.907,0000E-01  
 
TRES 150  
PHASEID GAS 
CW 3.1e-6 
REFPW 1900 
SOLUBILITY HENRY 
DERIVATIVEMETHOD NUMERALL 
**DIFFUSION COEFFICIENT IN CM2/S 
DIFFC-AQU 
2.0E-05 0.0 0.0  
*H2O_INCLUDED 
*HENRY-CORR-CO2 
 
  
*ENTHCOEF 
 4.7780500E+00 1.1443300E-01 1.0113200E-04 -2.6494000E-08 
 3.4706000E-12 -1.3140000E-16 
 -5.5811400E+00 5.6483400E-01 -2.8297300E-04 4.1739900E-07 
 -1.5255760E-10 1.9588570E-14 
 -2.4634,200 E+00 4.5739200E-01 -5.2512000E-05 6.4549000E-08 
 -2.0275900E-11 2.3631,000E-15 
 
*TRACE-COMP 2 
 
*SATWCUTOFF 0.0 
*SWR-H2OVAP 0.0 
 
*OGW_FLASH *ON 
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*METHOD-OGW 1 
 
*NC-AQUEOUS 1 
*COMPNAME-AQUEOUS 'NaCl' 
  
*AQFILL *OFF 
*PSAT -1 
 
*SALINITY *MOLAL 1.89 
*SALINITY-CALC *OFF 
 
*AQUEOUS-DENSITY *ROWE-CHOU 
*AQUEOUS-VISCOSITY *KESTIN 
 
ROCKFLUID 
RPT 1 
*SGT 
 0.0006000 0.0 1.00000 0.0 
 0.0500000 0.0001 0.8800000 0.0 
 0.0889000 0.001,0000 0.7023000 0.0 
 0.1778000 0.01,00000 0.4705000 0.0 
 0.2667,000 0.0300000 0.2963000 0.001,0000 
 0.3556000 0.0500000 0.1715000 0.01,00000 
 0.4444000 0.1,000000 0.0878000 0.0300000 
 0.5333000 0.2000000 0.037,0000 0.8000000 
 0.6222000 0.3500000 0.011,0000 3.0000000 
 0.6500000 0.3900000 0.0 4.00000 
 0.7111,000 0.5600000 0.0 8.00000 
 0.8000000 1.00000 0.0 30.00000 
*SWT 
 0.2000000 0.0 1.00000 45.00000 
 0.2899000 0.0022000 0.6769000 19.03000 
 0.3778000 0.0180000 0.4153000 10.07,000 
 0.4667,000 0.0607,000 0.2178000 4.90000 
 0.5556000 0.1438000 0.0835000 1.80000 
 0.6444000 0.2809000 0.0123000 0.5000000 
 0.7,000000 0.4089000 0.0 0.0500000 
 0.7333000 0.4855000 0.0 0.01,00000 
 0.8222000 0.7709000 0.0 0.0 
 0.9111,000 1.00 0.0 0.0 
 1.00000 1.00000 0.0 0.0 
 
*HYSKRG 0.3 
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INITIAL 
VERTICAL *DEPTH_AVE *WATER_GAS 
ZGAS 
.001 .999 0 
 
REFPRES  
 2,600  
 
 
REFDEPTH  
 6000 
 
DWGC  
 4000.0 
 
SWOC  
 0.995 
GASZONE NOOIL 
 
  
NUMERICAL 
PRECC 1.E-07 
NORTH 80 
ITERMAX 200 
DTMIN 1.E-06 
NORM PRESS 1,000 
NORM SATUR 0.05 
NORM GMOLAR 0.05 
NORM AQUEOUS 0.05 
MAXCHANGE SATUR 0.8 
CONVERGE PRESS 1e-005 
CONVERGE HC 0.001 
CONVERGE WATER 0.001 
CONVERGE MAXRES NORMAL 
MAXCHANGE GMOLAR 0.8 
DTMAX 75 
 
 
 
RUN 
DATE 2000 1 1 
DTWELL 0.1 
** WELL 1 'Well_Inj' 
WELL 'Well_Inj' 
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INJECTOR 'Well_Inj' 
INCOMP SOLVENT 1. 0. 
OPERATE MAX STG 156e+006 CONT REPEAT 
OPERATE MAX BHP 4,200 . CONT REPEAT 
**$ rad geofac wfrac skin 
GEOMETRY J 0.5 0.35 1. 0. 
PERF GEO 'Well_Inj' 
**$ UBA ff Status Connection  
 25 21 48 1. OPEN 
 25 22 48 1. OPEN  
 25 23 48 1. OPEN  
 25 24 48 1. OPEN  
 25 25 48 1. OPEN  
 25 26 48 1. OPEN  
 25 27 48 1. OPEN  
 25 28 48 1. OPEN 
 25 29 48 1. OPEN  
  
  
  
  
  
OPEN 'Well_Inj' 
 
 
TIME 10 
 
*DTMAX 30. 
 
TIME 30 
TIME 50 
TIME 80 
TIME 100 
TIME 150 
TIME 200 
TIME 250 
TIME 300 
TIME 350 
TIME 400 
TIME 450 
TIME 500 
TIME 550 
TIME 600 
TIME 650 
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TIME 700 
TIME 750 
TIME 850 
TIME 950 
TIME 1,000 
TIME 1050 
TIME 1300 
TIME 1400 
TIME 1500 
TIME 1600 
TIME 1700 
TIME 1800 
TIME 1900 
TIME 2000 
TIME 2190 
TIME 2555 
TIME 2920 
TIME 3285 
TIME 3650 
TIME 4015 
TIME 4380 
TIME 4745 
TIME 5110 
TIME 5475 
TIME 5840 
TIME 6205 
TIME 6570 
TIME 6935 
TIME 7300 
TIME 7665 
TIME 8030 
TIME 8395 
TIME 8760 
TIME 9125 
TIME 9490 
TIME 9855 
TIME 10220 
TIME 10585 
TIME 10950 
 
SHUTIN 'Well_Inj' 
 
WPRN ITER NEWTON 
DTWELL 0.01 
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WRST TNEXT 
 
TIME 11315 
TIME 11680 
TIME 12045 
TIME 12410 
TIME 12775 
TIME 13140 
TIME 13505 
TIME 13870 
TIME 14235 
TIME 14600 
 
DTMAX 75 
 
TIME 14965 
TIME 15330 
TIME 15695 
TIME 16060 
TIME 16425 
TIME 16790 
TIME 17155 
TIME 17520 
TIME 17885 
TIME 18250 
TIME 20075 
TIME 21900 
TIME 23725 
TIME 25550 
TIME 27375 
TIME 29200 
TIME 31025 
TIME 32850 
TIME 34675 
TIME 36500 
 
DTMAX 100 
 
TIME 38325 
TIME 40150 
TIME 41975 
TIME 43800 
TIME 45625 
TIME 47450 
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TIME 49275 
TIME 51100 
TIME 52925 
TIME 54750 
TIME 56575 
TIME 58400 
TIME 60225 
TIME 62050 
TIME 63875 
TIME 65700 
TIME 67525 
TIME 69350 
TIME 71175 
TIME 73000 
TIME 76650 
TIME 80300 
TIME 83950 
TIME 87600 
TIME 91250 
TIME 94900 
TIME 98550 
TIME 102200 
TIME 105850 
TIME 109500 
TIME 113150 
TIME 116800 
TIME 120450 
TIME 124100 
TIME 127750 
TIME 131400 
TIME 135050 
TIME 138700 
TIME 142350 
TIME 146000 
TIME 149650 
TIME 153300 
TIME 156950 
TIME 160600 
TIME 164250 
TIME 167900 
TIME 171550 
TIME 175200 
TIME 178850 
TIME 182500 
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DTMAX 365 
TIME 189800 
TIME 195275 
TIME 200750 
TIME 206225 
TIME 211700 
TIME 217175 
TIME 222650 
TIME 228125 
TIME 233600 
TIME 239075 
TIME 244550 
TIME 250025 
TIME 255500 
TIME 260975 
TIME 266450 
TIME 271925 
TIME 277400 
TIME 282875 
TIME 288350 
TIME 293825 
TIME 299300 
TIME 304775 
TIME 310250 
TIME 315725 
TIME 321200 
TIME 326675 
TIME 332150 
TIME 337625 
TIME 343100 
TIME 348575 
TIME 354050 
TIME 359525 
TIME 365000 
 
STOP 
 
************************TERMINATE 
SIMULATION********************** 
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