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ABSTRACT 

 

Using Genetic Algorithms to Optimize Bathymetric Surveys for Hydrodynamic  

Model Input. (December 2009) 

Dinesh Manian, B.Tech., Indian Institute of Technology Madras,  

Chennai, India 

Chair of Advisory Committee: Dr. James M. Kaihatu 

 

The first part of this thesis deals with studying the effect of the specified bathymetric 

resolution and ideal bathymetric form parameters on the output from the wave and 

hydrodynamic modules of Delft-3D. This thesis then describes the use of an optimization to 

effectively reduce the required bathymetric sampling for input to a numerical forecast model, by 

using the model‟s sensitivity to this input. A genetic algorithm is developed to gradually evolve 

the survey path for a ship, AUV, or other measurement platform to an optimum, with the 

resulting effect of the corresponding measured bathymetry on the model, used as a metric. 

Starting from an initial simulated set of possible random or heuristic sampling paths over the 

given bathymetry using certain constraints like limited length of track, the algorithm can be used 

to arrive at the path that would provide the best possible input to the model under those 

constraints. This suitability is tested by a comparison of the model results obtained by using 

these new simulated observations, with the results obtained using the best available bathymetry. 

Two test study areas were considered, and the algorithm was found to consistently converge to a 

sampling pattern that best captured the bathymetric variability critical to the model prediction. 
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CHAPTER I 

INTRODUCTION 

 

Hydrodynamic models are of significant utility for many naval operations where 

knowledge of waves and currents in a region near the coast is required. Among the inputs 

required for these models are estimates of wind, wave spectra at open boundaries, and good 

bathymetric data (i.e. underwater topography) at the modeled locations. However, significant 

knowledge gaps exist in the coastal bathymetric record in many potentially strategic areas, 

requiring supplemental field surveys. Moreover, weather, security and sovereignty issues make 

coastal seabed mapping potentially difficult and dangerous. Under these circumstances, where 

timely information is required and highly valued, it becomes significantly important to know the  

dominant spatial scales of resolution that determine model accuracy, so that no more time is 

spent on collecting field data than what is absolutely necessary. Autonomous underwater 

vehicles (AUVs) have been shown to be a tenable platform for bathymetric data collection in 

such situations. Thus, to make the best possible use of available resources and data, techniques 

that make use of existing datasets to optimize the application of such platforms would be 

beneficial. 

The Delft-3D model (Lesser et al. 2004) is a commercial hydrodynamic software 

package widely used in many engineering and defense applications for simulations of waves, 

flow, sediment transport, morphology, etc. The Flow-Wave module of the Delft-3D in particular 

is of significant interest to the US Navy, who have in recent years acquired a Navy-wide license 

for the software. This thesis therefore aims to study the behavior of this model and its sensitivity 
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to bathymetric input, and develop a method to optimize the required data collection. 

There has been some related prior work on this topic. Plant et al. (2002) developed an 

interpolation technique for bathymetric data processing which allowed for control of the spatial 

scale of various bottom features in the interpolated result. The resulting technique was also 

useful in determining the relative amount of smoothing smaller scale features would undergo. 

The effect of this smoothing on the Delft3D-Wave (SWAN) and Delft3D-Flow models was 

analyzed by Plant et al. (2009). They determined that the wave and flow models responded to 

changes in spatial scales in the bathymetry.  

 

1. OUTLINE 

The first part of this study (Chapter II) analyses flow and wave propagation over ideal 

bottom features - elliptical shoal, continuous sandbar, and sandbars with rip channels to quantify 

the sensitivity of the model to the defined characteristic parameters of each form. These features 

have been selected for study, as they are among the most commonly occurring in the coastal 

zone, and the results serve as a good first step towards a more general picture of how the model 

responds to changes or errors in input bathymetry. However, extending the same approach to 

develop sampling criteria for practical applications could be rather cumbersome as it would 

involve among other things, identifying these features in the naturally occurring bathymetry, 

applying the appropriate sampling conditions for each, and coupling them to a realistic range of 

forcing conditions. 

 To develop a feasible way to determine an optimal sampling – optimized for use as a 

model input to Delft-3D - for practical purposes, the spatial variation in the sensitivity of model 

predicted wave-heights and currents to bathymetry particular to a given study area, needs to be 

examined. The goal of this study is then to identify the critical bottom features that need to be 
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captured in sampling so as to obtain an interpolated bathymetry that helps the model to produce 

the most accurate results of wave-heights and currents. The use of a global optimization scheme 

for this purpose is proposed in Chapter III, which first compares different approaches to the 

sampling problem.  

 Computer generated random survey paths are then evaluated for their ability to capture 

the areas critical to the model function and a genetic algorithm is developed and applied to 

evolve the fittest possible path. This fitness is ascertained by comparing the model results 

produced from the path interpolated bathymetry with those from the best available bathymetry. 

A general background of the concept of genetic algorithms is laid out in Chapter III, and Chapter 

IV describes the procedure followed to adapt and apply this technique to the current problem. 

Chapters V and VI present the results and conclusions respectively, along with possible 

improvements and alternatives to the present approach.  
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CHAPTER II  

EFFECT OF ERRORS IN BATHYMETRIC INPUT 

 

 The effect of errors in bathymetric input on the Delft-3D model results was studied for three 

ideal-form bathymetries. A brief introduction to the Delft-3D model, which was the 

hydrodynamic model used throughout this work follows. 

 

1. DELFT-3D MODEL DESCRIPTION 

1-A Delft-3D Wave 

 SWAN or Simulating Waves Near-shore (Booij et al., 1999), the wave module of the 

Delft-3D hydrodynamic package used in this study, is a third generation wave model based on 

the Eulerian formulation of the conservation of wave action density. This equation in Cartesian 

coordinates takes the form:  

x y

S
N C N C N C N C N

t x y
.     (1) 

 The first three terms of this equation represent the local rate of change of action density 

and the propagation of action over geographical space, respectively. The fourth term represents 

the shifts in relative frequency due to bottom depth variation and currents, while the fifth term 

represents the depth and current induced refraction. The source term S on the right hand side 

accounts for wave generation, dissipation and non-linear – quadruplet and triad - wave-wave 

interactions, which are all represented explicitly. The model is driven by wave boundary 

conditions and local winds. The SWAN wave model has been extensively validated with field 

data, most recently by Rogers et al. (2007). However, the majority of the analyses of model 

performance have focused on the model‟s source terms (e.g. Ris et al. 1999; Rogers et al. 2003). 
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An analysis of model behavior with respect to large scale bathymetric smoothing was performed 

by Kaihatu and O‟Reilly (2002), who studied the impact of the level of detail present in two 

bathymetric surveys on the model predictions. However, this analysis was not further developed.  

 The wave induced set-up in SWAN is computed using the vertically integrated 

momentum balance equation which, in the 2D case, incorporates the observation of Dingemans 

et al. (1987) that the rotation-free part of the wave force drives the set-up, while the divergence-

free part drives the wave induced currents. This leads to the use of the following approximation: 

.( ) 0F gd .         (2) 

where, η is the water surface elevation including the wave induced set-up, 

 d is the total water depth, and 

 F represents the wave force vector.  

 SWAN can also estimate wave transmission through obstacles, though diffraction 

around its ends is not well modeled. Some developments in this regard (Holthuijsen et al. 2003) 

have been put forth, but are not presently included in the version incorporated in Delft3D. 

 
1-B Delft-3D Flow 

 The Delft-3D Flow module simulates 2-D depth averaged or 3-D unsteady flow and 

transport phenomena by solving the unsteady non-linear shallow water equations for an 

incompressible fluid. It makes use of the hydrostatic pressure assumption, as the time and 

horizontal length scales of the modeled flow phenomena are significantly larger than the vertical 

scales. The governing system of equations also consists of the equation of continuity to compute 

vertical velocity in 3-D models, and the transport equations for the conserved constituents. The 

equations are formulated in orthogonal curvilinear coordinates. The flow is forced by water-level 
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or tides at the open boundaries, wind stress at free surface, density gradients or water-level 

induced pressure gradients. 

 

2. PARAMETERIZATION OF BOTTOM MORPHOLOGY 

2-A Elliptical shoal 

The elliptical shoal was represented in terms of the following non-dimensional parameters: 

a) Ry / L   

b) Rx / L  

c) hs / h =  (Shoal height) / (Water depth) 

where, L = characteristic wavelength, x = long-shore direction, y = cross-shore 
 
 
 

 
Fig. 2.1: Sketch of the form of elliptical shoal domain. 

 
 
 

The equation for the depth over the elliptical shoal  (Fig. 2.1) was adapted from the one used for 

depth over a circular shoal by Chawla et al. (1996), in such a way that it can be applied to any 

elliptical shoal of specified radii and height. This derivation is shown in the Appendix.  

 

2-B Sandbars with rip channels (on a quadratic beach) 

The sandbar forms (Fig. 2.2) were represented in terms of the following parameters: 

a) Ls / Lc  
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b) Lb / Lc  

c) hs / h 

 
Fig. 2.2: Sketch of sandbars with rip channels on a quadratic beach. 

 
 
 

The ideal-form bathymetry described in Haas (2000) - where it was used for SHORECIRC 

simulations - was used. The offshore distance of the bars, the length and crest depth of the bars, 

and the width of the rip channels were thus used as parameters, characteristic of the system. 

2-C Continuous sandbars of Gaussian profile on a sloping beach (Reniers-Battjes set up) 

The sandbar forms (Fig. 2.3) were represented in terms of the following parameters normalized 

by wavelength (except slope): 

a) Ls – distance of bar from shore-line 

b) hc – height of the sandbar 

c) wb – width of the bar 

d) S – slope of the beach 
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Fig. 2.3: Profile sketch of continuous sandbar on sloping beach. 

 
 
 

The bathymetry from the Reniers and Battjes (1997) set-up for the study of long-shore currents 

was used here. Waves of oblique incidence were used to drive long-shore current behind the 

sandbar. 

 

3. METHOD 

The goal is to study two fundamental aspects of the model response to variations in 

bathymetry. The first is the effect of insufficient detail in the given bathymetric dataset on the 

performance of the model. This was achieved by examining the model behavior at different 

bottom grid resolutions. The second is the effect of errors in given bathymetric feature size and 

position on the model results. This was done by studying the response of the model to changes in 

the feature form parameters mentioned in the previous section.  

 To obtain the sensitivity of the model results to each of these parameters, the length 

scales of interest must first be defined. For the elliptical shoal, the analysis results over a test grid 

of resolution Rx by Ry (Fig. 2.1) were considered, while for the sandbars study, a scale of Lc by b 

was used, where b is the width of the sandbar. The results for one set of form parameters at 

highest bottom grid resolution were assumed as standard, with respect to which the magnitudes 
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of the relative error in the other results were computed. The region of maximum error, i.e., the 

region most sensitive to the changes in input was then identified.  These errors were plotted as a 

function of each parameter value, in an attempt to establish a general trend. 

 

4. RESULTS 

4-A Elliptical shoal 

A domain of size 18 m by 18 m, with a maximum bottom grid resolution of 0.1 m by 0.1 m 

was used. The boundary conditions specified are as follows:  

- JONSWAP spectrum (Hasselmann et al., 1973) with peak enhancement factor,  = 7, at 

open boundary 

- Significant wave-height, Hs = 0.024 m 

- Peak period, Tp = 0.73 s 

The estimated wave-length of the incident waves was about 0.7 m, which is much higher than 

the bottom grid resolution. The wave shoaling and subsequent breaking behind the circular shoal 

of radius 2.57 m can be seen in Fig. 2.4. 

 
 

 
Fig. 2.4: Wave transformation over a circular shoal (wave-height and mean period). 
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(a) Sensitivity to bottom grid resolution 

The bottom resolutions along cross-shore and long-shore were varied separately, while 

keeping the other fixed at a maximum. On comparing the variation of model wave-heights and 

wave periods with changing bottom resolution, the wave-heights were found to be far more 

sensitive, and thereby the critical factors that determine the required resolution for a given level 

of model performance.  
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Fig. 2.5: Relative RMS error in Hs as a function of cross-shore (top) and long-shore (bottom) bathymetric 

resolutions. 
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As can be seen from Fig. 2.5, the relative RMS error shows a non-linear increase with coarser 

resolution. However, the model appears to be slightly more sensitive to the long-shore resolution 

of the shoal than the cross-shore. 

(b) Sensitivity of the model results to form parameters of the shoal 

There was found to be a linear variation of the relative error with each of the three form 

parameters. The model was found to be most sensitive to the variation in the long-shore axis 

parameter, Rx / L of the shoal. The slope of the plots (Fig. 2.6) of the relative error in wave-

heights against the parameters Rx / L Ry / L  and hs / h defined in section 2, were found to be 12, 

8 and 6, respectively. 
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(a) 

Fig. 2.6: Sensitivity of model results to shoal form parameters: (a) Rx / L and Ry / L  (b) hs / h.  
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 (b)  

Fig. 2.6 (contd.) 
 

 

4-B Sandbars with rip channels 

A domain of size 32 m by 14 m, with a maximum bottom grid resolution of 0.2 m by 0.2 m 

was used. It was chosen to be reasonably higher than the estimated wave-length of the incident 

waves, which was about 0.92 m. The boundary conditions were selected from the set-up of Haas 

(2000) as was the bathymetry. They were specified as follows:  

- JONSWAP spectrum with peak enhancement factor,  = 7, at open boundary  

- Hs = 0.07 m 

- Peak period, Tp = 1.0 s 

The width of channel between sandbars, Lc , was kept fixed at 2 m through all the simulations, 

while the sandbar length, Lb, and its offshore distance, Ls were varied. Fig. 2.7 shows the wave-

height and period results over the region for the setting Lb = 12 m and Ls = 5 m, and the 

corresponding depth-averaged flow velocity is shown in Fig. 2.8. These depict reduced wave 

breaking, and presence of rip currents and increased set up at the locations of the gaps between 

sandbars. 
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Fig. 2.7: Delft-3D Wave results for Lb = 12 m and Ls = 5 m.  

 
 

 

 
Fig. 2.8: Delft-3D Flow results for Lb = 12 m and Ls = 5 m. 

 
 

(a) Sensitivity to bottom grid resolution 

In this case too, the wave heights being more sensitive to changes in input, tended to determine 

the required resolution for a given level of model performance. Since the bathymetric contours in 
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the input are parallel to shore, the study of the model sensitivity to its long-shore resolution is a 

trivial case that would only depend on resolving the gap between the sandbars. Also, the change 

in model response with cross-shore resolution (Fig. 2.9) is due to the quadratic beach only, as the 

sandbars of constant height are fully captured at all resolutions. The small magnitude of the 

errors in model results indicate, that interpolated bathymetric data at computational grid points 

serves as a good proxy for the actual data in this case. 

 

 

   
Fig. 2.9: Relative RMS error in wave-height and vorticity as a function of cross-shore resolution. 
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(b) Sensitivity of the model to form parameters of the bar 

While moving the bar away from the shore, i.e. increasing the parameter Ls / Lc has some impact 

on the model prediction of RMS wave-height (Fig. 2.10; smoothing spline fitted curve) as might 

be expected, increasing the bar length or Lb / Lc only causes the gaps to shift and therefore the 

maximum relative error simply levels off.  
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Fig. 2.10: Relative RMS error in wave-height as a function of bottom-form parameters. 
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Moreover, a fair correspondence between the absolute errors in the depth, RMS wave height and 

cross-shore current velocity over the whole beach, was found; for instance, at the rip channel 

where the depth is under-predicted by interpolation, an over-prediction of the RMS height and 

cross-shore current is observed. Fig. 2.11 shows the plot of the correlation of predicted Hrms error 

at any given computational point to the errors in depth at points situated in the same cross-shore 

section. 
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Fig. 2.11: Autocorrelation of wave-height and current velocity errors along a cross-shore transect. 
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4-C Continuous sandbars on sloping beach 

The numerical simulations were conducted on a 93 m by 26 m domain, with a maximum bottom 

grid resolution of 0.2 m by 0.2 m. The boundary conditions – which were selected from the set-

up of Reniers and Battjes (1997), just as the bathymetry – were specified as follows: 

- JONSWAP spectrum with peak enhancement factor,  = 7, at open boundary  

- Hs = 0.08 m,  = 340o (nautical) 

- Peak period, Tp = 1.0 s 

The estimated wave-length of incoming waves was about 0.92 m, higher than the maximum 

specified bottom grid resolution. The simulations were carried out for different offshore bar 

distances (Ls). Fig. 2.12 shows the wave-height and long-shore current magnitude fields for Ls = 

4 m. The oblique wave incidence at the offshore boundary was responsible for the asymmetric 

flow field that grew steadily stronger moving longshore. 

 
 

 
Fig. 2.12: Model wave-heights and long-shore currents. 

 
 

(a) Sensitivity to bottom grid resolution 

The errors in the wave-height were found to approximately mirror the relative errors in the 

interpolated bathymetry (Fig. 2.13), though currents were found to be more sensitive than wave-

height to changes in resolution, with a higher relative error magnitude at coarse resolutions. 

Hrms wave height (m) Depth averaged velocity, x component (m/s) 
(m) 
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(b) 

Fig. 2.13: Sensitivity of (a) interpolated depth, (b) sig. wave height, (c) cross-shore velocity, and (d) long-
shore velocity - to bottom depth resolution.  
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Fig. 2.13 (contd.) 

 
 

 
The errors observed at a discrete set of bottom resolutions, and a smoothing spline fitted to the 

observations, are shown in Fig.2.13. The „coefficients of determination‟ (r2) of the fits are 0.78, 

0.76, 0.72 and 0.94 respectively. The absence of any apparent trends in the pattern of variation of 
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these errors points to the importance of capturing the sandbar crest. In cases where the peak of 

the bar was not resolved correctly, the maximum errors in wave-height occur at that position. 

Where the peak was resolved, the maximum errors in wave-height were smaller, and occurred 

just behind the bar. Fig. 2.14 shows the cross-shore depth profile as seen at different resolutions. 

 

 
Fig. 2.14: Evolution of the interpolated depth profile with changing bottom resolution. 

 
 
 

(b) Sensitivity to bottom parameters 

The offshore distance of sandbar, Ls, was varied while keeping the boundary conditions the 

same. A smoothing spline was fitted to the error observations at different parameter values (Fig. 

2.15). The currents were found to be most sensitive to errors in bottom parameters, while the 

effect on wave-heights was relatively very small. 
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(b) 

 
Fig. 2.15: Sensitivity of (a) interpolated depth, (b) sig. wave height, (c) cross-shore velocity, (d) long-

shore velocity - to offshore distance (Ls) of sandbar. 
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Fig. 2.15 (contd.)  

 
 

4-D Results over natural bathymetry 
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site off the coast of La Jolla, California was considered. Shepard and Inman (1950) indicated that 

the submarine canyons in this area cause a large spatial variation of the incident waveheight, 

which can lead to the presence of rip currents. A large scale field study of this region, called the 

Near-shore Canyon Experiment (NCEX) was conducted in 2003, with many different agencies 

contributing to the data collection. The updated bathymetric data and offshore wave spectra from 

the NCEX program were used for this model study. The dimensions of the area modeled were 

about 12 km by 14.6 km. The corresponding bathymetry and model wave-heights are shown in 

Fig. 2.16. The resolution in each direction of the rectilinear grid was varied from 40 m 

(compared to an incident wavelength of 80 m) to 200 m. On reducing the y-direction (long-

shore) resolution, significant variation was found in the model cross-shore and long-shore 

velocities averaged over the entire domain. Fig. 2.17 shows this variation along with a 

smoothing spline fit to the error observations, of coefficient of determination (r2) 0.94 and 0.98. 

 

5. SUMMARY 

While the sensitivity analysis study of the model to the parameters of the elliptical shoal 

feature produced some linear trends in the errors in model results, the study on ideal-form barred 

beaches showed that errors in the sandbar profile lead to errors in the wave-generated long-shore 

current behind the bar. It was not always possible, however, to establish a generic relationship 

between the bottom resolution and the model results. Also, there are practical difficulties in the 

application of the results of even much more comprehensive sensitivity studies over different 

ideal bathymetries such as this, to answering the questions of how much bathymetric information 

is needed, and where, for a given flow or wave model to produce acceptable results.  

 
 
 
 



 24 

 
 
 
 
 

 

 
 

Fig. 2.16: Bathymetry and modeled wave-height off La Jolla, California coast. 
 

water depth (m) 

Hrms wave height (m) 



 25 

40 60 80 100 120 140 160 180 200
-0.02

0

0.02

0.04

0.06

0.08

0.1

Resolution (in m)

R
el

at
iv

e 
rm

s 
er

ro
r

 

 

err vs. res data points

fit to data points

40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Resolution (in m)

R
e
la

ti
v
e
 r

m
s
 e

rr
o
r

 

 

err vs. res data points

fit to data points

 
Fig. 2.17: Sensitivity of interpolated depth (top) and cross-shore velocity (bottom) to bottom long-

shore resolution. 
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CHAPTER III  

GENETIC ALGORITHMS 

 

1. APPROACHES TO THE SAMPLING PROBLEM 

If the objective of the bathymetric sampling is defined as the generation of the most cost 

effective input for the Delft-3D hydrodynamic model, one possible method of determining the 

sampling strategy could be by studying the theoretical sensitivity of the predicted wave heights 

and currents at the required location(s) to the bathymetry. This sensitivity would vary in space, 

and a high sensitivity at any given set of locations would indicate that greater importance must 

be given to capturing those locations during sampling. However, the ubiquity of depth dependent 

terms in the governing equations of both the Wave and Flow modules as seen in Chapter II, and 

the nonlinear dependence of predicted waves and currents on depth, precludes this. Therefore, 

any effort to quantify the effect of the input local bathymetry on the model results would have to 

use nonlinear or stochastic methods. 

 Genetic algorithms (GA) are just such a method. GA‟s are widely used to solve 

problems in optimization and machine learning. The general theme of this approach is to evolve 

a set of candidate solutions to a problem using operators inspired from natural selection and 

genetic variation. 

 

2. GENETIC ALGORITHMS 

The stochastic approach of GA's gives them an advantage over other traditional methods 

of optimization, especially when dealing with multi-modal problems (i.e. when there is more 

than one extremum). While traditional methods like gradient descent might not be able to 

differentiate between a global and local extremum, the GA ensures that the whole search space is 
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covered, therefore increasing the probability of convergence to a global extremum. GA are also 

well suited for application to multi-criteria optimization problems, where the optimum solution 

is required in the presence of several conflicting constraints. 

Natural processes and phenomena have historically inspired many inventions and 

problem solving techniques (Liu and Tsui, 2006). The robustness and efficiency of natural 

phenomena has led to many attempts to replicate these concepts in artificial systems. The idea of 

evolutionary computation, of which genetic algorithms are a sub-class, came about as a result of 

efforts to emulate nature to solve optimization problems (Davis, 1991). In nature, there exist 

variations within species which are brought about by reproduction. Of the many offspring 

produced by the individuals of a population, only a few survive to adulthood and reproduce in 

turn. This is known as 'natural selection', where the survival of an offspring is dependent on its 

suitability and adaptability to its environmental conditions. Similarly, a genetic algorithm 

maintains a population of possible solutions to the given problem, to which the concept of 

'survival of the fittest' is applied. Reproduction is achieved by the 'crossover' of parent 

chromosomes, and the mutation operator is responsible for introducing diversity by randomly 

changing some genes. Holland (1975) was the first to successfully model the mixing of 

chromosomes that occurs in nature, to create a functioning genetic algorithm. The following 

section further describes this method, and brings out the meaning of a few of these technical 

terms in the context of the optimization problem. 

 

3. METHOD OUTLINE 

A basic genetic algorithm has the following steps (Goldberg, 1989): 

1) Representing the problem; 

2) Generating initial population of candidate solutions; 
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3) Evaluating the fitness parameter for each; 

4) Selecting individuals to produce new offspring; 

5) Recombining the selected individuals using genetic operators for crossover and 

mutation; 

6) Reinserting the new solutions to the population; 

7) Repeating steps 3 to 6 till convergence. 

The following is a brief general description of each of these steps. Chapter IV relates these to the 

problem at hand. 

Problem representation: A set of candidate solutions to the problem, maintained by the GA is 

referred to as a population. Each individual of the population is called a chromosome. Each 

chromosome is composed of a string of genes. These genes could typically be binary valued 

representations or real valued numbers or an array composed of individual members, referred to 

as alleles. 

Population initialization: To produce the initial population, random number generators are 

typically used to produce the gene values for each individual, to ensure sufficient spread over the 

entire search space. The size of the population depends on the nature of the problem, or (more 

specifically), the nature of the search space. However, a larger population size, though requiring 

larger number of computations to produce offspring, translates to greater diversity which usually 

helps in faster convergence in a fewer number of generations. 

Fitness evaluation: The suitability of a particular solution is characterized by computing the 

„fitness value‟. This fitness corresponding to the specified optimization criterion is calculated for 

each individual, and the objective of the algorithm is to maximize this in subsequent generations.  

Selection: In the genetic algorithm framework, the fitness value also acts as a tool with which to 

select individuals for mating, which is done so that individuals with higher fitness have a greater 
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effect on the properties of the next generation of solutions. There are various methods of 

selection documented in the literature (Goldberg and Deb, 1991). The 'Roulette selection' 

method is one such, where the probability of a member being selected to reproduce is directly 

proportional to its calculated 'fitness value' relative to the other members. 

Reproduction: New individuals are produced from the selected pairs in each generation using the 

genetic operations of crossover and mutation. The crossover operation combines the 

characteristics of the two parent chromosomes to form new offspring. 'Single point crossover' 

technique selects a random rth gene in the n gene sequence, and genes 1 to r of the first 

chromosome and (r + 1) to n of the second chromosome are copied to the new offspring. The 

probability of a crossover operation is specified by the crossover rate. Similarly, the probability 

of mutation of a gene is specified by the mutation rate, and is carried by inserting a new 

randomly created gene in place of the selected gene. 

Reinsertion: The new offspring are then immediately inserted into the population in place of the 

least fit individual, which are discarded. This variation, which is known as elitism, ensures that 

the best performing individuals are always retained, and helps in faster convergence. 
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CHAPTER IV 

METHODOLOGY 

 

Genetic algorithms (GA) have been used as a global optimization scheme in a variety of 

applications. They were first used in the area of oceanographic experiment design by Barth 

(1992), who considered a time dependent design problem for an idealized experiment. Baehr et 

al. (2004) first employed it for pre-deployment array design in optimizing an observing system 

for the North Atlantic meridional overturning circulation. They compared this technique with 

both the simulated annealing method and a heuristic approach, and found genetic algorithms to 

be a significantly faster method than simulated annealing and at the same time more successful 

in finding the optimum solution than the heuristic approach.  

On the use of AUVs for oceanographic surveys, Bellingham and Wilcox (1996) 

described a method to determine the optimum resolution and extent of survey that would 

minimize the energy cost and the total survey error. However, no investigations of methods to 

increase the efficiency of non-uniform oceanographic surveys could be found in the scientific 

literature. The parameter to be optimized in such surveys would be the path of motion of the 

survey vehicle, rather than a 1-D point distribution as would be the case when optimizing a 

typical observing system. The problem thus becomes one of path planning to minimize the total 

survey error at an acceptable energy cost. The problem of path planning in general and for AUVs 

in particular, has been quite extensively studied before in the context of getting from one point to 

another in the ocean with a given current field, at minimum energy cost (Alvarez et al., 2004, 

Fox et al., 1999). However, the survey path planning problem has somewhat conflicting 

requirements of maximizing survey extent to achieve minimum survey error, and doing so with 

minimum path distance, which calls for a different GA scheme. 



 31 

1. OBJECTIVE 

The broad objective of this study is to estimate the required amount of bathymetric 

information for the hydrodynamic model, and the sampling strategy needed to minimize this 

amount. This is done by setting ourselves two goals. 

The first goal is to estimate the spatial variation in the optimum cross-shore and long-

shore resolution requirements of bathymetry for the model for a given study area. This is hence 

referred to as the 'optimum resolution problem'. This is equivalent to the problem of designing 

the spatial distribution of parallel long-shore or cross-shore bathymetry survey tracks for best 

possible bathymetric input to the model.  

 The next goal is to design an optimum continuous path for a bathymetric survey vessel 

such as an AUV, focusing on the utility of the thus sampled, model-grid interpolated data as a 

model input for Delft-3D (hence referred to as the 'survey design problem'). Two different 

schemes for the same goal are developed and evaluated.  

Under scheme 1, the problem is somewhat simplified by constraining the number of 

degrees of freedom of the path such that it can only take perpendicular turns, and is of the form 

of a line by line sweep of the coverage area as shown in Fig. 4.1. The sweep direction shown in 

the figure is long-shore. This approach ensures at the outset a more or less uniform coverage of 

the area of interest. However in this case, the basic structure of the path to be followed is pre-

determined. 

Under scheme 2, the GA is given more leeway to decide the structure of the path to be 

followed, by using a strategy that only sets an upper limit of the length of the path, and allows it 

to move in any of eight possible directions. Starting from an initial randomly chosen point, the 

step-length is chosen as the minimum unit of distance that must be travelled in a straight line, 

before changing direction.  Thus, the path has to pass through adjacent points on a grid of 
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resolution equal to the step-length. Though a smaller step-length might be desirable in order to 

make the algorithm select and converge on the best possible path, the step-length must be set 

high enough so that there is no excessive concentration or looping in a small area at the expense 

of wider coverage of the complete area of interest.  

 

 
Fig. 4.1: A typical AUV path for bottom sampling as modeled in the study (Scheme 1). 

 

2. APPLICATION OF THE GA 

The general blueprint of the GA followed in both these problems mentioned in the 

objective, remains the same as described in the previous chapter. However, the problem 

representation schemes and implementations vary. The following sub-sections provide a detailed 

description of the implementation of these steps for the stated problems in the previous section. 

 
2-A Optimum spatial resolution problem 

(a) Encoding scheme 

The 'encoding scheme', which describes how each individual solution is encoded as a 

chromosome, needs to be carefully selected, as it determines the effectiveness of the genetic 

operations performed on the chromosomes. In this case, each individual solution was encoded as 

a string of a fixed number of real valued numbers (genes) that correspond to the y-coordinates of 

the long-shore tracks, or x-coordinates of the cross-shore tracks. The positive x-direction was 
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assumed to point towards the shoreline. The number of genes in the encoded solution varied 

according to the number of tracks desired.  

(b) Initial population generation 

The individuals of the initial population were generated by using the built-in random 

number generating function 'rand' in Matlab to simulate a real numbered value (x or y coordinate 

in the given domain) corresponding to each gene. Different population sizes were tried, and their 

effect on the performance of  the GA was studied, with the goal of using a population size 

leading to the best convergence characteristics in the solution. 

(c) Fitness calculation 

The model was first run with the best available, highest-resolved bathymetry and the 

results thus obtained were used as the standard of comparison (a so-called “golden standard”) for 

evaluating the fitness of the sub-sampling schemes. The inverse of the mean absolute difference 

between the 'golden standard' results and the individual results over the entire area of interest 

was then defined as the fitness parameter of that individual. 

(d) Selection 

The Roulette selection method described in the previous chapter was used to select 

individuals to reproduce based on the 'fitness value' calculations.  

(e) Genetic operations 

Single point crossover was used, which means that the parent chromosomes were 

truncated at a single randomly selected gene, before being recombined to form new offspring. A 

100 percent crossover rate was used so that this operation is always performed on the selected 

individuals. Then a mutation operation was used in order to introduce new properties (random 

genes) to the offspring solution at a specified mutation rate, which was selected for best 
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convergence on the basis of the results of the application of the GA to a test problem, described 

in the section IV-3.  

(f) Replacement 

The new offspring was immediately inserted into the population in place of the 

individual with the least fitness. This variation, referred to as elitism, ensures that the fittest 

available individuals are always retained at every stage of the process, which ultimately helps in 

faster convergence. 

 
2-B Survey design problem: Scheme 1 

(a) Encoding scheme 

In this case, each individual is a random path of fixed length. Since spatial location is the 

primary property characteristic of these various alternate solutions, the encoding scheme must be 

such that each gene has a uniquely identifiable geographical area associated with it. Only then 

can crossover and other genetic operations be used to create progressively better solutions. 

Therefore, the path (chromosome) was divided into sections (genes) of equal length, and the 

study area divided along the y-axis (see Fig. 4.1) at equal distances, so that each cross-shore strip 

of area had just one associated gene.  

 By constraining the structure of the solution path to the form of a line by line sweep with 

a fixed jump in the y-direction after each sweep line, each gene could then be encoded as a string 

of numbers representing the starting x-coordinates and the directions of each line associated with 

that gene. To make sure that the length of the section of path corresponding to each gene is a 

constant „l‟, „n‟ sub-sections (parallel tracks) were created by selecting „n-1‟ random points 

between 0 and „l‟, where „n‟ is the number of equidistant parallel tracks (could be long-shore or 

cross-shore) associated with that gene. This produced a set of n real numbers „di‟, obeying the 

following constraint:  
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n di = l.             (3) 

The x-coordinate of the starting point of the section was set equal to the x-coordinate of the end 

point of the previous adjacent section, and the x-coordinate of the start of each new sub-section 

was decided by: 

xj,i = xj,i-1 + k i-1 di-1 ,             (4) 

where, k i =  1,is a random number, 

j is the gene index, and  

i is the allele index.  

The next step was to check whether the path thus described obeys the constraints of the given 

boundary. If not, the current sequence was discarded and a new one created until the constraints 

were met. The number of such iterations required was found not to be large enough to 

significantly increase computational costs. Thus the encoded solution was of the form:  

[{x1,1 , … ,x1,n },{ x2,1 , …,x2,n },….,{ xm,1 , …,xm,n }] ,  

where, m is the number of genes, and n, the number of alleles of a gene.  

(b) Initial population generation 

The genes of all the chromosomes of the initial population were initialized with the help 

of the Matlab pseudorandom number generating function 'rand', while making sure that each 

member satisfies the set constraints of the domain boundaries and the constant length. 

(c) Fitness calculation and selection 

The fitness parameter was calculated here as in the previous case, by calculating the 

inverse of the mean absolute total error, and the Roulette selection method was used. 

(d) Genetic operations 

The crossover rate used here was 100 percent, and a single-point crossover at a 

randomly selected rth gene was performed. However, a simple crossover would not produce an 
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acceptable offspring in this case as the resultant path would most likely be discontinuous. 

Therefore, while the remaining genes of either parent were carried over to the offspring during 

the crossover in a normal fashion, a random mutated gene was inserted in place of the rth gene, 

such that the resultant individual was acceptable, and the conditions of continuity and length of 

the path maintained.  

Also, to make sure that the length of the section of path corresponding to each gene is 

constant at „l‟, and at the same time continuous with the adjacent sections, „n-2‟ sub-sections of 

the form [(0, l1 ), (l1 , l2 ),… ,(ln-3 , ln-2 )] were created, by selecting „n-2‟ random points between 

0 and „l‟. The first „n-2‟ alleles were then encoded and tested as described in the encoding 

scheme. The (n-1)th allele was chosen to satisfy: 

dn-1 + dn = l - i
(n-2) di , and           

kn-1dn-1 + kndn = xj,n - xj,n-2          (5) 

In the absence of real positive solutions for dn-1 and dn-2, the procedure was repeated until one 

was found. The new chromosome was then inserted into the population in place of the least fit 

member. 

 
2-C Survey design problem: Scheme 2 

The following steps in this scheme differ from those in scheme 1: 

(a) Encoding scheme 

A grid of a specified step-length was defined. The start point of the vehicle path was 

picked at random from the nodes of the defined grid. The integer index numbers of this grid 

point constituted the first two genes of the candidate solution. One of the adjacent grid points 

was picked as the next decision point on the path. The relative position of these grid points to the 

current location was encoded according to the numbering convention shown in Fig. 4.2, where 
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the center represents the current location. This string of relative directions encoded as integers 

formed the remaining genes of the individual.  

 
Fig. 4.2: Relative direction encoding scheme. 

 
(b)  Genetic operations 

A single-point crossover was used, and mutation of individual genes carried out at the 

specified rate. Thus in this case, the geographic location information of one of the two parent 

paths was lost, and only its structure passed on to the offspring. 

 

3. MATHEMATICAL TEST FUNCTIONS  

 The GA developed was tested by applying it to standard mathematical test functions for 

global optimization techniques. The first such function used was the Rastrigin function (DeJong, 

1975), which is defined for 2 independent variables as: 

2 2

1 2 1 2
( ) 20 10(cos 2 cos 2 )Ras x X X X X .       (6) 

The minimization of the Rastrigin function is an unconstrained optimization problem, as there 

are no additional constraints on the unknown variables Xi. The GA was used to minimize this 

function for n number of independent variables, where n represents the number of genes in the 

problem representation. While this function has multiple local minima, it has a known unique 

global minimum of Ras(x) = 0 at [X1, X2, ….,Xn] = [0,0,…, 0]. 
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 In the intended AUV path problem however, the solution path is  constrained by  the 

maximum allowed length of path and the regional boundaries. To test  for an  n-dimensional 

constrained optimization problem, the Griewank G2 function (Griewank, 1981)  was  minimized. 

The G2 problem is defined as: 
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The results of the Rastrigin function minimization tests are shown in  Figs. 4.3 and  4.4. 

In Fig. 4.3, the large spread in the function values seen in the initial population  disappears in  the 

final population, where almost all the members of the population seem to have reached  an  equal 

minimum value.  This indicates convergence, as any further evolution is unlikely with  a 

predominantly homogeneous population. On varying the population size (Fig. 4.4), it  was  found 

that at smaller population size, the number of iterations for initial  convergence is  generally 

smaller even though the actual global minimum of zero is not always reached.  This could  be 

attributed to the fact that for a smaller population size, the same number of  cost  function 

computations (iterations) correspond to a larger number of generations, which  means  more 

opportunities to crossover and mutate. The algorithm here was found to take  about  12-15 

generations to converge. Thus the population size may be selected by taking into  account  the 

acceptable error criteria for the given problem, and the value  placed on  quicker  computation. 

Table 5.1 summarizes the performance of the algorithm on the Rastrigin function minimization 
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problem, with different settings. The average of the results of 40 runs of each case was  used  to 

create this table. The last two columns of the table show the average final solution obtained   after 

convergence, and the number of iterations required for the convergence. 

The algorithm was then applied to the problem of G2 function maximization for  17 

independent variables. For each combination of settings of the population size and  mutation  rate, 

the algorithm was executed 40 times, and the average results obtained were  compared  with the 

similarly averaged results for the same settings with the Matlab GA toolbox. Table 5.2 summarizes 

this comparison. As seen in Fig. 4.5, the variance in the fitness value  distribution of  the 

population was found to decrease substantially with subsequent  generations,  implying 

convergence. In this case, an average of 15-20 generations was required for  convergence.  The 

effect of the specified mutation rate on the performance of the algorithm was then  studied,  and 

relatively higher rates were found to be most effective for quickest convergence to a  low  enough 

cost function.  

 
 

Fig. 4.3: Rastrigin function distribution of members of the initial and final population (after 6000 
iterations). 
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Fig. 4.4: 20-D Rastrigin function minimization: Best solution at each iteration (Max. iterations = 6000). 

 
 
 

TABLE 5.1: Rastrigin function minimization (Global minimum known to be zero) 
 
Population size Mutation % Best solution Cost func. evals.  

 Developed 
GA 

   

50 
100 
100 
200 
200 
200 
200 
300 
300 

7 
11 
7 

11 
9 
7 
5 

11 
7 

28.57 
15.97 
15.27 
8.92 
8.77 
8.37 
9.15 
6.67 
6.12 

740 
1413 
1328 
3031 
3020 
2923 
2983 
4788 
4740 
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TABLE 5.2: G2 function maximization 
 

Population size Mutation % Best solution Cost func. evals.  

 Developed 
GA 

   

50 
50 
50 
50 

100 
100 
200 
200 

11 
9 
7 
5 

11 
7 

11 
7 

0.2517 
0.2410 
0.2440 
0.2440 
0.2628 
0.2646 
0.2628 
0.2630 

7871 
7798 
7144 
7521 

14592 
24623 
22491 
19888 

 

 GA 
Toolbox 

   

50 
50 
50 
50 

100 
100 
200 
200 

11 
9 
7 
5 

11 
7 

11 
7 

0.3382 
0.3611 
0.3267 
0.3257 
0.3650 
0.3165 
0.4457 
0.3333 

7885 
7736 
7925 
7951 

15522 
15713 
30592 
31640 
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Fig. 4.5: G2 function maximization: Initial and final population distributions (after 15000 iterations, pop. 

size = 100). 

G
2 

fu
nc

tio
n 

f(
x)

  



 42 

CHAPTER V 

RESULTS 

 

1. STUDY AREA DESCRIPTION 

The data from the site of the Nearshore Canyon Experiment (NCEX), conducted near the 

Scripps and La Jolla canyons off the coast of La Jolla, California in 2003, was used to test the 

effectiveness of the GA method. The bathymetric data and the offshore wave spectrum forcing 

for the model was made available for this region from the surveys conducted during this period. 

The steep topography at the canyons could be expected to cause significant changes in wave 

energy longshore, and this expected spatial variation in sensitivity of the overall model results to 

bathymetry was one of the reasons for selecting this as the study area. 

 Due to the offshore wave spectrum data being about 7 km offshore, the SWAN model 

was first run over a larger domain (shown in Fig. 5.1a), and the wave spectrum results along the 

offshore boundary of an approximately 3 km by 3 km grid (shown in Fig. 5.1b) was written out 

to be used as the boundary condition for the SWAN runs over this smaller area of interest. A 

computational grid resolution of 40 m both in the cross-shore and longshore was used. This was 

chosen to be sufficiently high to reduce the effect of numerical artifacts on the model results, and 

thereby maximize the impact of the input conditions. 

An area off the coast of Camp Lejeune, North Carolina served as a second test study 

region. This area of about 22 km by 18 km has much more small scale irregularity in the 

bathymetry (Fig. 5.2) relative to the La Jolla region bathymetry which is dominated just by the 

two canyons. Therefore, one might expect a significant difference in the product bathymetry and 

thereby model results depending on where the sampling is done. This might provide a greater 

incentive for performing the optimization and would be a test of the usefulness of the method.  
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(a)  

  
                  (b) 
Fig. 5.1: (a) Bathymetry over the extent of the larger Wave domain (La Jolla), and selected area of interest, 

(b) Selected bathymetric input field, and corresponding wave-height results. 
 
 

 
Fig. 5.2: Camp Lejeune bathymetric field (left) and corresponding wave-height results (in m). 
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The 'golden standard' model wave-heights corresponding to the best bathymetric input is also 

shown in Fig. 5.2. This served as a benchmark for comparing the model results from sparsely 

sampled input. The typical wave boundary conditions for this region were obtained from an 

NDBC (National Data Buoy Center) buoy located at 34.476o N, 77.280o W (Station 41035, 

Onslow Bay, NC). 

 

2. RESULTS FOR OPTIMUM SPATIAL RESOLUTION 

The performance of the method was measured in terms of the relative percentage mean 

absolute difference between the computed wave-heights (with sub-sampled bathymetry as input) 

over the entire study area, and the expected wave-heights - predicted using all available 

bathymetric data as input. Figs. 5.3a and b show the results for the case when the longshore and 

cross-shore sampling were optimized to a minimum cost of 5.5 % and 3% error, respectively. 

 As can be seen from the figures, the resultant sampling scheme is denser near the south 

canyon, near which the wave-height gradient is also at its greatest (Fig. 5.3a). Also the area 

closer to the shore seems to require greater sampling (Fig. 5.3b), which is consistent with what 

one might expect given the bathymetric complexity in this area. 

Though the average discrepancy in the newly computed wave-height over the entire 

study area was used as an indicator of the performance of the method, the performance at any 

given location might be very different, and Fig. 5.4 shows this spatial variation in the error 

computed at different locations. Fig. 5.5a shows a convergence plot for this average performance 

metric against the number of model iterations. Fig. 5.5b shows the convergence plot when only 

the wave-heights of the nearshore short waves (with wavelength < 60m) are considered for 

optimization. The effect of sampling extent on the best achievable solution in a given maximum 

computational time is shown in Fig. 5.6. 
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(b) 
Fig. 5.3: (a) Longshore and (b) Cross-shore variation in model sensitivity to the bottom. 
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Fig. 5.4: Spatial variation of wave-height error (in m). 

                  
 

                     (a)                                  (b)  
Fig. 5.5 Error convergence plot for (a) all waves in the domain, (b) short waves only. 
 

Fig. 5.6: Effect of extent of sampling on the time and level of convergence. 
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3. RESULTS FOR SURVEY DESIGN: SCHEME 1 

Fig. 5.7 shows a 27 km length of survey track, optimized to serve the model to produce 

the best possible wave-heights over the selected study area. The corresponding grid interpolated 

bathymetry and the resultant wave-heights from the model are shown in Figs. 5.8 a and b 

respectively. The performance metric used was the same as described in the previous section, 

and Fig. 5.9 shows the convergence plot. The computation time was about 12 seconds per 

iteration of the GA on a 2.66 GHz dual core processor of 2 GB memory. Increasing the extent of 

sampling has a definite but relatively small effect in improving the performance of the algorithm, 

as seen in Figure 5.10. 

For different specified lengths of path, the optimized paths always converged to a pattern 

that sampled the deep north-west canyon, and the trend-line lying in the north-west – south-east 

direction, so that the south canyon was also mostly captured.  

 

Fig. 5.7: An optimized survey track of length 27 km over the study area. 

Optimum survey path (Track length = 27 km) 
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(a)       (b) 

Fig. 5.8 (a) Bathymetry interpolated from the sampling, and (b) Corresponding model wave-height results. 

 

 
Fig. 5.9: Scheme 1: Convergence plot. 

 
 

 
Fig. 5.10: Convergence vs. sampling extent. 
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4. RESULTS FOR SURVEY DESIGN: SCHEME 2 

 In this scheme, there are fewer constraints on the structure of the desired path. In the 

study over the La Jolla region, a relatively low maximum survey path length of 8 km was 

specified. An optimized solution path after 15 generations is shown in Fig. 5.11, while the 

derived bathymetry and wave-heights, and convergence are shown in Figs. 5.12 and 5.13 

respectively. The computation time for this study region was of the order of 7 seconds per 

iteration of the GA. A step-length (see section IV-2-c) of 400 m was used here, which means 

every decision point on the path was followed by a straight line section of at least 400 m. This 

was chosen such that excessive local looping that would impede possible wider coverage is 

avoided, and at the same time enough decision points are allowed to give room for the solution 

path to evolve. 

As model wave-height is the only criterion considered for optimization of the bottom 

sampling, the possibility of many distinct bottom configurations producing similar looking 

wave-height fields arises, especially so when the sampling extent is small. Also, since the cost 

function used considers only the spatially averaged wave-height errors with respect to the 

„golden standard‟ (see Fig. 5.1b), there could be considerable difference in the actual spatial 

variation of wave-heights as seen in Fig. 5.12. As seen in the figure, the optimum path sampled 

the south canyon well, while the north canyon was almost completely ignored. The effect of this 

is evident in the wave-height fields produced, which show a better match with the „golden 

standard‟ in the southern part of the modeled area. 
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Fig. 5.11: An optimized AUV path for specified max. survey length of 8 km (La Jolla). 

 
 
 

 

 
Fig. 5.12: Derived bathymetry and resultant model wave-height from optimized survey. 
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Fig. 5.13: Scheme 2: Convergence plot. 

 

The results of the study over the Camp Lejeune, NC bathymetry – the optimized path, 

and the derived bathymetry and model wave-heights - are shown in Figs. 5.14 and 5.15 

respectively. The upper limit used for the length of survey was 55 km on an area of about 18 km 

by 20 km. This length was chosen to be relatively small, in order to assess one of the worst 

possible scenarios. A step-length of 10 times the computational grid resolution of 92.5 m was 

used. In contrast with the study over the La Jolla region, the spatially averaged relative error in 

modeled wave-height for such a small length of survey path was found to be relatively very high 

- of the order of 23 percent. Moreover, due to the large size of the study area, the computation 

time required was of the order of 2 minutes per iteration. 
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Fig. 5.14: An optimized AUV path for specified maximum survey length of 55 km (Camp Lejeune). 

 
 

 
Fig. 5.15: Derived bathymetry and model wave-heights from optimized survey. 
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CHAPTER VI  

CONCLUSIONS AND FURTHER WORK 

 

Single beam bathymetric survey sonars provide less than 100 percent coverage of the 

area of interest, depending on survey density. They are still popularly used by virtue of being 

relatively inexpensive compared to multi-beam survey sonars which are capable of providing 

much better coverage of 200 percent or more. The genetic algorithm approach developed here 

attempts to make more efficient use of the former, for the task of providing better hydrodynamic 

model input. 

First, the sensitivity of the Delft-3D model wave-heights and currents to the non-

dimensional form parameters of several ideal bathymetric features was studied. The errors 

resulting from insufficient bottom resolutions were estimated and plotted. All these serve as a 

measure of the level of bathymetric detail required by the model to efficiently model the waves 

and currents at the required spatial scale.  

 Then, a Genetic Algorithm (GA) was developed and tuned, by applying it to standard 

test functions – the Rastrigin function and the G2 function. The results of these tests – the rate 

and level of convergence - were used to determine GA parameters such as the population size 

and mutation rate. Two test study areas were considered, and the GA was then applied to answer 

the questions of how much bathymetric information is needed, and where, for the Delft-3D 

Wave model to produce acceptable wave-height results. Only one set of offshore wave 

conditions were considered though, which might be acceptable if they are known to be relatively 

invariant during the period of interest. Otherwise, a more general approach would be to execute 

the GA for different sets of possible wave conditions, and consider the weighted results of the 

sampling strategies to design a new sampling path. 
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The large number of cost function evaluations involved, meant a large number of Delft-

3D model runs, and running the combined Flow and Wave modules was found to be to take an 

infeasible amount of time with the given resources. Currents and waves could be expected to 

have different sensitivities to bottom variations, and considering both for the purpose of 

optimization of the sampling path would have been a challenge as such. 

 The interpolation scheme used to arrive at the model input bathymetry from the sampled 

one, could have a large impact on the solution path, and needs to be carefully selected. Inverse 

distance weighted triangular interpolation was used for the purpose of this study. Using the 

techniques of Plant et al. (2009) could potentially help improve the interpolation process. 

 The objective of the optimization schemes used here was to minimize the spatial average 

of the error in wave-height, which was effectively used as a cost function. This, however, may 

not always be a good measure of performance for the model, and was used in this study only as a 

rough indicator. The objective function can then be easily redefined to be location specific, or to 

suit a different output parameter, or be more representative of the spatial variance of the error.  

One potential issue in the practical applicability of the proposed methods is the possible 

redundancy in data collection that would occur by not integrating and acknowledging the 

acceptable data from previous surveys. To this end, a future study could employ the sediment 

and morphology modules of Delft-3D to predict the expected changes in bathymetry over the 

given area during the interim period between surveys, with the help of an older bathymetric 

dataset and long-term model forcing. This would make it possible to concentrate the search for 

an optimal solution path in areas that are classified as having high expected bathymetric change.  

While uniform sampling of bathymetry along parallel survey tracks is today mostly the 

norm, well informed non-uniform sampling schemes offer the potential of the same level of 

coverage at smaller time and energy costs. 
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APPENDIX 

1. Elliptic Shoal Bathymetry 

An equation for bathymetry over an elliptic shoal was developed by modifying the equation for 

the bathymetry over a circular shoal used by Chawla et al. (1996):  

depth(x,y) = h – [h-d1(x,y)] * [Smax / (h-d1(xcen,ycen)) ]   

(Scaling the depth so that peak ht. = Smax) 

where, 

d1(x,y) = h + bo - ((rx
2 + ry

2)/2)1/2 *[(co/rx)2 + (co /ry)2 – shoal(x,y)2 ]1/2  

shoal(x,y) = [ {(x-xcen)/rx}2 + {(y-ycen)/ry}2 ] 1/2 

co = 9.1 / √2  

bo = [(rx
2 + ry

2)/2]1/2 *[(co /rx)2 + (co /ry)2 – 1] 1/2 

Smax = maximum shoal height 

rx , ry = major, minor axis of ellipse 

xcen, ycen = coordinates of centre of the ellipse 

h = surrounding water depth 
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