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ABSTRACT 

 

Chemopreventive Potential of Sorghum with Different Phenolic Profiles.  

(December 2009) 

Liyi Yang, B.E., Nanjing Agricultural University, China 

Chair of Advisory Committee: Dr. Joseph M. Awika 

 

Epidemiological evidence has correlated consumption of sorghum with reduced 

incidences of gastrointestinal (GI) tract cancer, especially esophageal cancer. There is 

little evidence on how phenols of sorghum may affect chemoprevention. Seventeen 

sorghum varieties were screened for phenolic profiles and antioxidant capacity. The 

ability of crude sorghum extracts to induce NAD(P)H:quinone oxidoreductase (QR, a 

phase II protective enzyme), and inhibit proliferation of colon (HT-29) and esophageal 

(OE33) carcinoma cells using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) and PicoGreen assays, were determined in vitro. 3-

Deoxyanthocyanidins, apigeninidin, luteolinidin and their methoxylated derivatives were 

also investigated for antioxidant capacity, QR inducing and antiproliferative potential. 

Tannin sorghum generally showed higher antioxidant capacity than non-tannin 

sorghum varieties. Sorghum varieties containing extractable condensed tannins did not 

show any significant QR inducing potential; on the other hand, non-tannin sorghums 

increased QR activity by 1.5-2.7 times; black sorghum (Tx430) was most potent 

(doubled QR activity at 25 μg/mL, 2.7-fold increase at 100 μg/mL). All sorghum 
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extracts showed relatively strong antiproliferation activity with IC50s (the concentration 

needed to inhibit cancer cell growth by 50%) of 49.7-883 μg/mL. Tannin-containing 

sorghums had stronger cancer cell proliferation inhibitory potential (IC50s 49.7-131 

μg/mL) than non-tannin sorghums (IC50s 141-883 μg/mL). Total phenol content and 

antioxidant capacity of crude sorghum extracts positively correlated with their 

antiproliferative potential (r2 0.71-0.97).  

 Among tested 3-deoxyanthocyanidins, methoxylation on A-ring improved QR 

inducing potency. 5,7-Dimethoxyluteolinidin had the greatest QR inducing potency (4.3-

fold at 100 μM). Methoxylation also improved their antiproliferation potential; the IC50s 

trend was di-methoxylated (8.3-105 μM) > mono-methoxylated (40.1-192 μM) > 

apigeninidin and luteolinidin (81.5-284 μM). 

 This study provides information for how phenolic compositions of sorghum and 

3-deoxyanthocyanidin structure affect their capacity to induce QR activity and inhibit GI 

tract cancer cell proliferation. The information is useful to promote the utilization of 

sorghum in functional foods, beverages, dietary supplements, and other health-related 

industries. Further study will focus on, fractioned and isolated sorghum phenols, the 

effect of food processing on their chemopreventive potential, as well as cellular 

mechanisms involved. 
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CHAPTER I 

INTRODUCTION 

 

Cancer is the second leading cause of death in the US and 1.4 million new cases 

of cancer were expected to be diagnosed in 2008 (1). Eighty-nine billion dollars was 

spent on direct cancer-related medical care in 2007 in the US (2). Most cancer incidence 

(90-95%) is related to diet, lifestyle and environment (3). Hence effective use of dietary 

components to reduce the risk of developing cancer is desirable.  

Diets rich in fruits and vegetables reduce the risk of cancer in various sites (4-7). 

The plausible mechanism is not clear but is possibly related to intake of fiber, vitamins, 

minerals and dietary antioxidants (8). Consumption of whole grains is also associated 

with lower incidence of cancer, especially digestive system cancers. Complex 

carbohydrates, vitamins, minerals and phenolic compounds in whole grain are partly 

responsible (9-13).  

Epidemiological studies have shown that a staple diet of sorghum correlates with 

low incidence of esophageal cancer in areas where this type of cancer is endemic (14-

18). However, how sorghum contributes to this chemoprevention and which components 

of sorghum are responsible is unclear. Sorghum has a unique profile of polyphenols, 

such as condensed tannins, flavones and 3-deoxyanthocyanins, not commonly found 

 

 

________________ 
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 2

in wheat, corn, rice, and other cereals. These polyphenols may be responsible for the 

chemopreventive properties of sorghum. For example, 3-deoxyanthocyanins were 

recently reported as stronger cancer cell proliferation inhibitors than their anthocyanin 

analogs (19). The unique compounds in sorghum should be evaluated for their 

chemoprevention potential. 

Carcinogenesis generally involves three main steps: initiation, promotion and 

progression (20). Chemopreventive agents could target any of these three steps, such as 

blocking activation of carcinogens, activating transcription factors that regulate the 

expression of protective enzymes, and suppressing cancer promotion and/or progression 

(21). Thus dietary compounds that have such properties may be important in 

chemoprevention. For example, dietary antioxidants could prevent or block the insults 

from carcinogens and oxidative stresses in vitro. Dietary compounds that induce phase II 

detoxifying enzymes could directly protect normal cells by detoxifying potential 

carcinogens. Additionally, the capacity of food components to directly inhibit cancer cell 

proliferation may indicate their ability to suppress preformed cancer promotion and 

progression.  

This study aims to evaluate the primary chemopreventive effects of different 

types of sorghums and how their phenol profile affects this potential via in vitro cell 

culture studies. This will allow for selection of sorghum varieties with the best potential 

for chemoprevention for further studies of the molecular mechanisms involved, as well 

as effect of food processing conditions on activity and bioavailability of the active 

components of sorghum.  
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The objectives of this study were to: 

1. Compare the capacity of different varieties of sorghum to induce phase II 

enzyme activity in vitro; 

2. Compare the capacity of different varieties of sorghum to inhibit colon and 

esophageal cancer cell proliferation in vitro; 

3. Determine the effect of sorghum 3-deoxyanthocyanidin structure on phase II 

enzyme activity and GIT cancer cell growth inhibition in vitro. 
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CHAPTER II 

LITERATURE REVIEW 

 

The Prevalence of Cancer 

North America has the highest prevalence of cancer, with 1.5% of the population 

(over 3.2 million individuals) affected during the previous 5 years (22). Western Europe, 

Australia and New Zealand have similar percentages of affected population (1.2% and 

1.1%, respectively), while Japan and Eastern Europe have 1.0% and 0.7%, respectively, 

followed by Latin America and the Caribbean (0.4%), and other regions (0.2%) (22). 

Developed countries generally have similar prevalence in men and women; while in 

developing countries, the prevalence in men is 25% greater than in women. This reflects 

a preponderance of cancer sites with poor survival in males, such as liver, esophagus and 

stomach in developing countries (22). Overall, in 2006, there were 10.9 million new 

cases, 6.7 million deaths, and 24.6 million persons living with cancer in the world. The 

most common causes of cancer deaths worldwide are lung cancer (1.18 million deaths in 

2006), stomach cancer (700,000), and liver cancer (598,000) (23).  

In the US, cancer is the second leading cause of death (after cardiovascular 

disease) (1). It is a growing burden on public health: approximately one in two men and 

one in three women in the US will develop cancer during their lifetime. Nearly 294,120 

men and 271,530 women will die of cancer in the US in 2008 (1) and 1.44 million new 

cases of cancer will be diagnosed in 2008 (1).  
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On a worldwide basis, gastrointestinal tract (GIT) cancers account for 

approximately 20% of all cancers (24) and are a major cause of death in cancer patients 

(25). The incidence of certain gastrointestinal cancers, such as esophageal 

adenocarcinoma, liver and intrahepatic bile duct cancer, increases yearly (24). In 

general, rates of incidence of colorectal cancer are increasing rapidly in countries where 

overall risk was formerly low (especially in Japan, but also elsewhere in Asia), while in 

high risk countries, trends are either gradually increasing, stabilizing (North and West 

Europe), or declining with time (North America) (26). Among US men and women 

colorectal cancer is the most prevalent gastrointestinal tract cancer, accounting for 8-9% 

of total cancer deaths. Pancreatic, liver and intrahepatic bile duct cancer, and esophageal 

cancer accounted for about 6%, 4%, and 4% of total cancer deaths, respectively (1). 

While the incidence of colorectal cancer has decreased since the last decade, the 

incidence of esophageal, and liver and intrahepatic bile duct cancer is still increasing (1). 

Moreover, while colorectal cancer and liver and intrahepatic bile duct cancer similarly 

affect males and females, esophageal cancer mainly affects males. African Americans 

are at higher risk of GIT cancer than any other ethnic groups (1). 

The cost of cancer is one of the most important contributors of health care 

expenditures in the US. In 2007, $219 billion was spent on overall annual costs of 

cancer, with $89 billion direct medical care; $18 and $ 112 billion on costs of lost 

productivity due to illness and premature death, respectively (2). Since direct medical 

treatments, for example surgery, chemo- and radiation therapy or the combination of 
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single treatments, for cancer are hardly affordable for cancer patients, effective ways to 

prevent cancer or at least, to reduce the risk of cancer are needed. 

 

Causes of Cancer 

Cancer is a group of diseases involving cells that have defects in regulatory 

circuits, which governs normal cell proliferation and homeostasis. More than 100 

distinct types of cancer and subtype tumors are found in specific organs (27). Cancer 

cells have six common characteristics: self-sufficiency in growth signals, insensitivity to 

growth-inhibitory (antigrowth) signals, evasion of programmed cell death (apoptosis), 

limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis. 

Due to the malignant growth, cancer cells form a microenvironment to suffice their own 

growth needs and nutrient supply, which impairs the normal metabolism of the specific 

tissue where the tumor locates (27). 

Carcinogenesis is a multistep and complex process. In an oversimplified way, 

carcinogenesis is divided into initiation, promotion and progression. Initiation is the 

damage of genetic materials: DNA or RNA, which leads to unregulated cell growth. This 

step is rapid, reversible and affected by both intracellular (inherited genes, oxidative 

stress, inflammation, hormones) and extracellular (environmental including exposure to 

carcinogens, diet and lifestyle) factors. A single malignant cell reproduces itself to form 

more malignant cells in the process called promotion. This process is reversible and 

slow, sometimes taking up to 10 years (20). Finally, in the process of progression, 
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preneoplastic cells undergo neoplastic transformation, which forms a tumor with 

invasive and metastasis potential (20). 

Leading causes of cancer in general include smoking, alcohol abuse, physical 

inactivity, malnutrition, chronic infection, over-exposure to sunlight, and exposure to 

occupational or environmental carcinogens (28). Causes of gastrointestinal tract cancer 

are tightly associated with dietary components, long-term/persistent inflammation in the 

gut and environmental risk factors, which possibly lead to oxidative damage of the 

epithelial cells in the gastrointestinal tract (25).  

Smoking and alcohol abuse account for 75% of oral cancer occurrence in USA 

men. They are the two most important risk factors for oral cancer in developed countries 

(29). Alcohol consumption has been identified as a risk factor for esophagus, gastric 

cancer and colorectal cancer (30). Increased consumption of red and processed meats 

initiate oxidative damage to normal cells, activate carcinogenic compounds, or increase 

risk of cancer in the distal portion of the large intestine (31-33).  

Increased incidence of cancer in the gastrointestinal tract has been associated 

with exposure to high fat diet induced bile acids (34). The primary bile acids are 

synthesized from cholesterol in the liver, and mainly contain cholic and 

chenodeoxycholic acid (35). Deoxycholate and other hydrophobic bile acids, which are 

induced by high fat diets, generate reactive oxygen/nitrogen species (ROS/RNS) (36). 

ROS/RNS increase the oxidative stress in vivo, which causes damage to DNA and 

eventually DNA mutation (37). 
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Major chronic inflammation of the GI tract is linked to Helicobacter pylori (H. 

pylori) infection, and/or inflammatory diseases such as celiac disease, inflammatory 

bowel disease, chronic pancreatitis, primary sclerosing cholangitis, ulcerative colitis, and 

Crohn’s disease (25). Infection of viruses (mainly hepatitis B and C viruses, some 

Epstein–Barr virus and the oncogenic JC virus) also may cause chronic inflammation 

(38). Though it is still not clear how and why chronic inflammation triggers 

carcinogenesis, it has been proposed that ROS generated from inflamed epithelia causes 

oxidative damage to DNA (39). Normally, the gut epithelia are uniquely structured to 

manage interaction with a wide range of stimuli. However, repeated and/or over 

stimulation by diet and from the gut environment leads to malfunctioned responses of 

gut epithelia. Chronic inflammation begins with a trigger (dietary or environmental) 

acting on the epithelium to invoke an inflammatory response. This results in the 

activation of a number of different inflammatory cells and the generation of oxidative 

stress. Then the existing inflammation may lead to genetic and/or epigenetic alterations. 

Though repair and regeneration could help on a limited basis at early stages, over a 

longer term, the damage to DNA may result in cellular dysplasia, which finally leads to 

carcinogenesis (25). 

In the “cancer belt” extending from Northeastern China through Central Asia into 

Northern Iran and Eastern Turkey (40) where upper gastrointestinal cancers are endemic, 

poor socioeconomical conditions, barren lands, heavy metals, and soil contaminated by 

industrial toxins are major environmental risk factors for these specific cancers (41). 
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High prevalence of gastrointestinal cancers has been observed in areas where heavy 

metals and radioactive elements are ubiquitous (42, 43). 

 

Principles of Chemoprevention 

The concept of chemoprevetion entails protective actions, including retarding, 

blocking or even reversing carcinogenesis (44). The mechanisms of cancer prevention 

target any of the six physiological changes required for development of a tumor: self-

sufficiency in growth signals, insensitivity to growth-inhibitory (antigrowth) signals, 

evasion of programmed cell death (apoptosis), limitless replicative potential, sustained 

angiogenesis, and tissue invasion and metastasis (27). Wattenberg (21) proposed that 

cancer chemopreventive compounds could be divided into two basic categories, cancer 

initiation blockers and cancer promotion suppressors.  

Blocking the insult that causes damage to DNA is a major approach to preventing 

cancer initiation. Cancer initiation blockers can prevent the formation of carcinogens 

from precursor substances (21). The blockers, which are mainly antioxidants, can 

scavenge reactive ROS/RNS species or environmental carcinogens, which in turn, 

prevent potential damage from free radicals to cells (45). The cancer initiation blockers 

can also stimulate molecular pathways, such as Nrf2 (nuclear factor-erythroid 2p45 (NF-

E2)-related factor 2) to activate the production of protective phase II enzymes, such as 

acetyltransferases, glutathione-S-transferases (GSTs), UDP-glucuronyltransferases, 

NAD(P)H:quinone oxidoreductase and sulphotransferases (45). The phase II enzyme 
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induction system is responsible for the removal of a diverse array of electrophilic and 

oxidative toxicants.  

Phase II enzymes, which catalyze conjugation reactions producing molecules that 

can be excreted in bile or urine, can detoxify xenobiotic chemicals, including 

carcinogens (20). Dietary antioxidants perform their protective effects not only by 

scavenging ROS, but also by inducing de novo expression of genes that encode 

detoxifying/defensive proteins, including phase II enzymes (44). These xenobiotics-

activated stress response genes contain a common cis-element, known as antioxidant 

response elements (AREs). Basic leucine zipper (bZIP) transcription factors — including 

NRF (NF-E2 related factor)— bind to these ARE sequences and modulate expression of 

stress-response genes. NRF2-KEAP1 (Kelch-like ECH-associated protein 1, a negative 

regulator of NRF2) complex pathway is the one that most commonly responds to dietary 

phytochemical stimulation (46). 

The cancer promotion suppressors can activate cellular parthways to over express 

signaling molecules to induce apoptosis in abnormal cells. They can repair the damaged 

genetic materials to terminate the malignant cell growth (45). Among the intracellular 

signaling pathways related to regulation of cell proliferation and differentiation, 

mitogen-activated protein kinases (MAPKs), which belongs to the family of proline-

directed serine/threonine kinases, is one of the central cellular signaling systems 

maintaining in vivo homeostasis (47).  

Dietary phytochemicals targeting different signaling compounds in MAPKs, can 

activate or silence part of the signaling system; hence they can prevent abnormal cell 
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proliferation. Dietary phytochemicals can also target other cell-signaling kinases such as 

protein kinase C (PKC) and phosphatidyinositol-3-kinase (PI3K) (48). These upstream 

kinases activate a distinct set of transcription factors, including nuclear factor κB (NF-

κB) and activator protein 1 (AP1) (48). Aberrant activation or overexpression of NF-κB 

has been linked to resistance to apoptosis, stimulation of proliferation and neoplastic 

transformation in cells. Similarly, functional activation of AP1 also results in malignant 

transformation and tumor promotion. A vast group of phytochemicals target these two 

cellular-signalling cascades to suppress the gene expression associated with 

carcinogenesis (49, 50). Epigallocatechin gallate (EGCG), genistein, resveratrol, 

curcumin, [6]-gingerol and capsaicin have been suggested as involved in MAPKs and its 

downstream pathways (28). 

 

Evidence of Chemoprevention from Dietary Substances 

It is believed that 90-95% of cancer is related to our diet and environment, only 

5-10% is genetic (3). More than adequate intake of red meat, processed meat (31), 

saturated fat, fried foods, or salt-preserved foods, inadequate intake of vegetables and 

fruits (28), and abuse of alcohol (29) are risk factors of cancer. On the other hand, 

consumption of green tea, colored vegetables and fruits, and whole grains reduces risk of 

some types of cancer (51, 52). 

Increased intake of fruits and vegetables has been associated with lower 

occurrence of lung, stomach and colon cancer (4, 5). In a large nutrition cohort study 

performed in the US from 1992 to 1997, a 30% reduction in colon cancer risk was 
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observed in men with the highest vegetable intakes (>3.3 servings) per day (6). The 

study also suggested that very low intakes of plant foods may increase colon cancer risk. 

High intakes of glucosinolates, indoles, β-carotene, lutein, lycopene and vitamin C 

phytochemical subgroups may decrease colon cancer risk. 

Mediterranean diets high in fruit, cereals, olive oil as the main source of fat, and 

relatively low in meat and dairy products (53, 54) have been linked with lower incidence 

of GIT cancer (55). De Lorgeril and others (56) found a 61% reduction of all-site cancer 

risks in French coronary heart disease patients consuming a Mediterranean diet. Gallus 

and others (57) identified consumption of fruits and vegetables, fish, wholegrain foods 

and olive oil in a typical Mediterranean diet as potential protective factors against 

cancer, especially digestive tract cancer. A case control study in Italy by la Vecchia and 

others (58) showed that consumption of olive oil and other unsaturated oils and fish were 

preferable over saturated oil, red meat and refined carbohydrates in terms of lowering 

the risk of epithelial cell cancers. Dietary antioxidants such as β-carotene, vitamin E and 

minerals, such as calcium, showed an inverse relationship with breast cancer risk. 

Bosetti et al. (59) investigated the diversity of the components of Mediterranean diet and 

upper gastrointestinal tract cancer risk in three epidemiological studies in Italy. They 

reported a lower risk of upper aerodigestive tract cancers in people whose diet contained 

at least six of the components in a typical Mediterranean diet related to those that 

contained less than three.  

An epidemiological study revealed that drinking over 10 Japanese-size cups 

(about 80–120 ml) of green tea per day delayed the average age of cancer onset in Japan. 
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The recurrence of human breast cancer was also delayed with increased consumption of 

green tea (60-62). Experiments performed on tumorigenesis in APC mice showed that 

green tea polyphenol extracts, such as epigallocatechin gallate (EGCG), decreased 

proliferation and induced apoptosis in tumor cells (63). 

 

Whole Grains and Chemoprevention 

Cereals are the edible seeds or grains of the grass family, Gramineae. The 

predominant cereals consumed around the world are wheat, rice, corn (maize), millets, 

oats, rye, sorghum and barley. Cereals provide mainly carbohydrate, protein, fiber as 

well as vitamins (mainly E and B family) and minerals (zinc, magnesium and selenium) 

in the diet (64). The anatomical structure of all cereals is similar: the grain is made up of 

three components, the endosperm, the germ and the bran. Though the endosperm 

constitutes almost 80% of the whole seed and provides protein and starch, the bran and 

the germ account for most vitamins, minerals and phytochemicals (65, 66). Whole grain 

products use all three parts in processing. The Food and Drug Administration requires 

products to be low-fat and contain at least 51% whole grains by weight, to make the 

“whole grain” claim on the label (67). 

Epidemiological studies reveal a strong protective effect of whole grain food 

against GIT cancers (10). Jacobs and co-workers (10) concluded that intake of whole 

grain foods consistently reduced the risk of oral cavity and pharynx, oesophagus, 

stomach, colon, rectum and liver neoplasms by 30–70 %. A cohort study among 34,651 

postmenopausal women showed that intake of a high amount of whole grains (7 servings 
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per day) and yellow/orange vegetables (0.5 serving per day) was inversely related to risk 

of overall upper aerodigestive cancers, such as oropharyngeal, laryngeal, 

nasopharyngeal/salivary, esophageal and gastric cancers (12). A case-control study in 

Switzerland found that consumption of whole grain cereals correlated with decreased 

risk of cancer of the oral cavity and pharynx, esophagus and larynx. In contrast, refined 

grains were associated with higher risk of these cancers (68). A population-based cohort 

study among Swiss women concluded that high consumption of whole grain (>4.5 

servings per day) could reduce the risk of colon cancer (69).  

Whole grains may contribute to cancer prevention by stimulating a healthy gut 

environment, with dietary fiber providing antioxidants (66), potentially binding of 

carcinogens, modulating glycemic response, and producing hormone like effects (from 

phytoestrogens) (65).  

Complex carbohydrates in grains may lower the risk of large bowel cancer (70). 

Insoluble non-starch polysaccharides, resistant starch, and oligosaccharides are large 

bowel laxatives, microflora fermentation substrates and prebiotics that promote gut 

health (70). Dietary fiber can be fermented in the gut, producing short-chain fatty acids 

(SCFA), which lower colonic pH. They also serve as an energy source for colonocytes 

and may alter blood lipids. These improvements in the gut environment may provide 

immune protection beyond the gut (71). Dietary fiber is also protective by diluting or 

adsorbing carcinogens (72), reducing colonic transit time, and altering bile acid 

metabolism (73).  
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An inverse relation between intake of dietary fibers and incidence of large bowel 

cancer was observed (7). It suggested that colorectal cancer risk could be reduced by 

40% by increasing fiber consumption from 15 g to 30 g per day (7). McIntyre and others 

(74) found that rats fed with wheat bran and oat bran had a lower incidence of large 

bowel cancer than rats fed with non-fiber diets. Butyrate produced by gut microflora 

through fermenting fiber in bran was proposed as the preventive mechanism.  

Various phytochemicals and minerals present in whole grains provide antioxidant 

benefits to the gastrointestinal tract epithelia. Important groups of phytochemicals found 

in whole grains are phenolics, carotenoids, vitamin E compounds, lignans, β-glucan, and 

inulin (75). Major antioxidant minerals in cereals are Zinc and Selenium (64). A16-year 

follow up study in 34,708 postmenopausal women in Iowa indicated that zinc intake was 

negatively related to upper digestive tract cancer (76). Whole grain phytochemicals, such 

as ferulic acid and diferulates, complement those in fruits and vegetables. The 

antioxidant compounds in grains are mainly substituted benzoic and cinnamic acid 

compounds, caffeic and ferulic acid esters of long chain mono and dialcohols, 

tocopherols, and flavonoids (75). Most of these phytochemicals are bound to cell wall 

materials (75). Due to their insolubility, whole grain phytochemicals survive digestion in 

the upper gastrointestinal tract and reach the colon. Thus colonic microflora digestion 

may release them and make them available (77). For example, ferulic acid and diferulic 

acids from cereal bran can be released by gastrointestinal esterase from intestinal 

mucosa and microflora (78). Dietary fiber, condensed tannins and phytic acids may bind 

excessive iron and heavy metals in diet thus provide antioxidant benefits (65). 
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Phytoestrogens present in legumes, whole grains, fruits, and vegetables could 

induce detoxifying phase II enzymes hence provide chemopreventive effects. Jacobs and 

others (79) concluded that consuming whole grains in the diet regularly could increase 

serum enterolactone concentrations, which has been associated with reduced cancer risk 

(80). The elevated enterolactone concentrations in serum was mainly due to breakdown 

of the lignans contained in the whole grains (81). Wang et al. (82) determined the 

capacity of enterolactone to induce NAD(P)H:quinone oxidoreductase (QR) in human 

colon cancer cells and found a 6-fold induction of QR activity at 10.0 μM of 

enterolactone.  

Whole grains reduce glycemic index and glycemic loads while refined 

carbohydrates elevate them. A persistent high glycemic load from the diet causes 

abnormal glucose metabolism and probably dyslipidemia, which are risk factors for 

many chronic diseases (83, 84). A case-control study in Italian women showed an 

inverse association between glycemic index, and glycemic loads of the diet and 

colorectal cancer risk (85). 

 

Chemoprevention Potential of Sorghum 

Sorghum (Sorghum bicolor) is the fifth most important cereal crop in the world 

(86). It is a staple food and important cereal in many parts of Africa, Asia, and the 

Middle East (65). Sorghum in these areas is mainly consumed in the forms of couscous, 

porridge, baked goods (bread, flat bread, cookie, and steam bread), and fermented 

drinks. Sorghum is an important alternative grain to use in gluten-free diets (87). 
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Sorghum is fairly resistant to pests and diseases, which is partly linked to its unique 

profile of phytochemicals (88). 

In Africa and parts of Asia, regular consumption of sorghum and millets was 

associated with lower esophageal cancer incidence compared to areas where wheat and 

corn were the major cereals consumed (15, 18). Chen and others (17) reported a 

correlation between decreased incidence of esophageal cancer and consumption of 

sorghum and millet as opposed to corn and wheat in the diet in Shanxi province, China. 

Isaacson (16) proposed that the increase in esophageal cancer among South African 

blacks was due to their substitution of sorghum with corn as a staple diet. These 

observations suggested that sorghum and/or sorghum components have preventive 

properties against esophageal cancer that other cereal grains do not possess. It is possible 

that this beneficial effect could extend to other GIT cancers. However, information on 

the possible mechanisms of sorghum chemoprevention and the components of sorghum 

that contribute to this effect are limited.  

Phenolic acids (89, 90) and flavonoids (3-deoxyanthocyanins (91, 92), flavones 

(93), flavanones (93), and condensed tannins (94)) have been found in sorghum. The 

total phenol contents in colored pericarp sorghums ranged from 6.4-19.8 mg gallic acid 

equivalent (GAE)/g (95). Total phenol content of brans from those sorghums ranged 

from 19.9-66.3 mg GAE/g (95). Total phenols in sorghum are higher than other common 

cereal grains, such as wheat (0.5-0.6 mg GAE/g), barley (0.9 mg GAE/g), millet (1.4 mg 

GAE/g), and rye (1.0 mg GAE/g) (96, 97). 
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Two classes of phenolic acids, hydroxybenzoic acids and hydroxycinnamic acids, 

are the major phenolic acids in sorghums (98). Free phenolic acids are found in the outer 

layers of the kernel while bound phenolic acids are attached to the cell walls of the grain 

matrix. The ratio of free to bound phenolic acids range from 1:2-1:5, depending on the 

varieties (89). 

Sorghum flavonoids include 3-deoxyanthocyanins (apigeninidin, luteolinidin and 

their derivatives) (91, 92), flavones (apigenin, luteolin) (99), flavanones (eriodictyol 

(100), naringenin (101)), flavonols (kaempferol 3-rutinoside-7-glucuronide (91), 

dihydroflavonols taxifolin (93), taxifolin 7-glucoside (93)), and flavan-4-ol compounds 

(luteoforol, apiforol) (102).  

Based on appearance and total extractable phenols, sorghums can be classified as 

white (with no detectable tannins or anthocyanins and very low levels of phenols); red 

(with no tannins but significant levels of phenols and a red pericarp); black (with very 

high levels of 3-deoxyanthocyanins and a black pericarp) and tannin sorghums (with 

significant levels of tannins and different degrees of pericap pigments) (86). The high 

pigment content in black pericarp sorghums were correlated with high antioxidant 

capacity (86). 

The pigments from black pericarp sorghums, 3-deoxyanthocyanins, are unique 

compared to anthocyanins from other plant sources. The 3-deoxyanthocyanins lack a 

substitution at the  C-3 position of the C-ring, which makes them more stable as 

colorants (103, 104), and more cytotoxic than their anthocyanin analogs (19). 3-

Deoxyanthocyanins identified in sorghum mainly include apigeninidin, luteolinidin (86, 
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92, 105); their glucosides, apigeninidin-5-glucoside and luteolinidin-5-glucoside (91, 92, 

105); acylated forms (106, 107); and methoxylated derivatives, 5-methoxyluteolinidin, 

7-methoxyapigeninidin, 5-methoxyluteolinidin-7-glucoside (105), 5-

methoxyapigeninidin, 7-methoxyluteolinidin (99), and 7-methoxyapigenidin-5-glucoside 

(105, 108). Black pericarp sorghum has the highest level of 3-deoxyanthocyanins 

ranging from 173-1054 μg/g; red pericarp sorghum contains 32-180 μg/g; lemon-yellow 

and white pericarp sorghum have very low level of 3-deoxyanthocyanins (109). 

Compared with other pigmented cereal grains, black sorghum has similar content of 

anthocyanins as purple corn (965 μg/g) and at least twice the level in pink (93 μg/g), red 

(558 μg/g), and blue corns (225 μg/g), blue barley (4 μg/g), and blue (106-156 μg/g) and 

purple wheat (13-139 μg/g) (96, 110). 

 Condensed tannins, also known as proanthocyanidins, are high-molecular weight 

polyphenols that consist of polymerized flavan-3-ol and/or flavan-3,4-diol units (98). 

Tannins in sorghum are of condensed type. Because of their ability to bind free radicals, 

sorghums containing tannins have higher antioxidant capacity than most non-tannin 

sorghums (86).  

 Different genotypes of sorghum with a wide range of phenol profiles have been 

recognized as strong free radical scavengers in vitro (109). The antioxidant capacity 

(evaluated by ABTS) of sorghums, especially black and high tannin sorghums (75-340 

μmol Trolox equivalent /g) are the highest among common cereals such as 

red/purple/white wheat (20-30 μmol Trolox equivalent /g), barley (10-40 μmol Trolox 

equivalent /g), finger and pearl millets (40-50 μmol Trolox equivalent /g), black/red rice 
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(50-120 μmol Trolox equivalent /g), and blue/red/yellow corn (20-30 μmol Trolox 

equivalent /g) (96, 97). 

Antioxidant capacity is insightful in evaluating chemopreventive potential 

because antioxidants can block initiation of carcinogenesis by scavenging or reduce the 

oxidative species and/or carcinogens. Different genotypes of sorghum with a wide 

phenol profile have been recognized as strong free radical scavengers.  Brans from 

tannin sorghum, red, black and white pericarp sorghum varieties exhibited anti-

inflammatory potential (111). Hence sorghum phenols may have a potential in 

chemoprevention. It is necessary to determine how composition affects their ability to 

prevent carcinogenesis and/or inhibit cancer growth. 

  

Methods for Evaluating Chemopreventive Potential of Phytochemicals 

 

Antioxidant (Free Radical Scavenge) Capacity Assays 

Free radical (or oxidant) scavenging assays determine how effective an 

antioxidant is at preventing initiation and prolongation of radicals or oxidation (112). 

Free radical scavengers have strong potential to block the insults from carcinogens and 

oxidative stress (21). Antioxidant assays are divided into two major categories: single 

electron transfer reaction based assays (ET) and hydrogen atom transfer reaction based 

assays (HAT) (112).  

The ET-based assays involve one redox reaction between the antioxidant and the 

oxidant (also as the probe for monitoring the reaction). The oxidant attracts an electron 
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from the antioxidant then changed color. The color change is proportion to the 

concentration of the antioxidant (112). The ET-based assays include DPPH (diphenyl-1-

picrylhydrazyl) radical scavenging capacity (113), FRAP (ferric ion reducing antioxidant 

parameter) (114), and TEAC (Trolox equivalent antioxidant capacity) also known as 

ABTS (2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (115) assay. Because of 

lack of a competitive reaction between the antioxidant and an oxygen radical in ET-

based assays, it is assumed that antioxidant capacity measured by these assays is indeed 

the reducing capacity of the compound (116). 

The HAT-based assays generally evaluate how competitive an antioxidant is to 

trap free radicals. Major assays in this category include TRAP (total radical trapping 

antioxidant parameter) assay (117), ORAC (Oxygen Radical Absorbance Capacity) 

assay (118), IOU (inhibited oxygen uptake) assay (119), and inhibition of linoleic acid 

oxidation assay (120). Those assays monitor the kinetic competitive reaction in a system 

composed of a synthetic free radical generator, an antioxidant and a probe (also an 

oxidant) to indicate the progress of the reaction; and quantitation is derived from the 

kinetic reaction curve (112). 

Among these assays, ABTS and ORAC assay are common methods used to 

evaluate free radical scavenging capacity and were demonstrated as suitable methods to 

evaluate phenolic compounds (95, 121, 122). The ABTS assay is based on the capacity 

of a compound to donate an electron to react with the probe ABTS, which causes a color 

change in the probe (112). The ABTS assay is relatively easy, fast, and inexpensive to 

perform. The ORAC assay was developed to directly assess the capacity of the 
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antioxidants to inhibit the oxidation of the molecular probe (fluorescein) by monitoring 

the kinetics of the reaction. The ORAC assay evaluates the radical chain-breaking 

antioxidant capacity. In general, ORAC assay applies a thermal radical generator (2,2’-

azobis(2-amidinopropane) dihydrocloride, AAPH) to give a steady flux of peroxyl 

radicals in air-saturated solution. An antioxidant competes with probes (fluorescein) for 

the radicals and inhibits or retards the probe oxidation (112, 118). Though the ORAC 

assay takes a relatively longer time to gather results and expensive instrument to 

complete analysis, its procedure is standardized hence results over different laboratories 

can be compared. 

 

Phase II Enzyme Inducing Capacity Assays 

Potential to activate cellular actions to block cancer initiation is an important 

aspect of chemoprevention (45). Determining phase II enzyme inducing capacity of a 

compound is an established method to determine its capacity to activate the ARE 

protective pathways (123). Phase II enzymes include glutathione- 

s-transferase (GST), UDP-glucuronyltransferases (UGTs), NAD(P)H: quinone 

oxidoreductase (QR) and heme oxygenase (HO-1) (124). Methods to evaluate phase II 

enzyme inducing capacity can target different sites along the synthesis and expression of 

these enzymes, such as measuring gene expression, measuring the amount of enzyme 

protein, or determining enzyme activity (45, 124).  

NAD(P)H: quinone oxidoreductase (QR), a model phase II enzyme, promotes the 

obligatory two electron reduction of quinones to hydroquinones, which are then 
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degraded by glucuronidation. Thus QR protects cells from the toxicity of quinones and 

their metabolic precursors (125). One method to evaluate QR enzyme inducing capacity 

in vitro has been developed using murine hepatoma cell lines (123).  

 

Cancer Cell Proliferation Inhibition Assays 

Chemopreventive compounds have the potential to suppress the promotion and 

progression of malignant cells. Evaluating the potential of a compound to directly inhibit 

cancer cell proliferation determines the efficacy of the compound to suppress preformed 

tumors. Many assays are available to determine cell proliferation, for example, 

radioactive assays based on the capacity of viable cells to incorporate isotopes (such as 

[3H]-thymidine, [3H]uridine) into  nucleic acids (126), measurement of nucleic acid and 

adenosine triphosphate (ATP) contents in lysed cells (127), and colorimetric assays 

based on the capacity of living cells to reduce a chemical (such as Alamar blue (128) and 

tetrazolium dyes (129)) then measure the color change.  

MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay is a 

commonly used non-radioactive method to determine proliferation of cultured cells. The 

MTT assay (129) is based on the ability of a mitochondrial dehydrogenase enzyme from 

viable cells to cleave the tetrazolium rings of the pale yellow MTT to form dark blue 

formazan crystals, thus accumulates within healthy cells. The crystals formed are largely 

impermeable to cell membranes. The number of surviving cells is directly proportional 

to the level of the formazan product created. Adding a detergent to the system solubilizes 

the cells and the crystals at the same time. Then the color is quantified using a multiwell 
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scanning spectrophotometer (130-132). The MTT assay is easy and not labor intensive to 

perform. However, several reports have indicated that for some agents and cell lines, an 

increase of MTT reduction was observed without increased cell viability; e.g. with drug 

efflux inhibitors (133), ursolic acid (134), resveratrol (135), and high Abl kinase activity 

tumor cell lines (136). Hence it is important to use complementary cell viability assays 

along with MTT assay. 

Cell proliferation can also be determined by measuring double-stranded DNA 

(dsDNA) content by fluorescent dyes (137). PicoGreen is a fluorescent probe that 

specifically binds to dsDNA. PicoGreen assay has a high sensitivity for measuring 

dsDNA (25 pg/mL dsDNA) (138, 139). Double-stranded DNA content is considered as a 

stable parameter in cells and the estimated dsDNA content from PicoGreen assay varies 

depending on the cell cycle of a tested culture (140), hence it is a reliable indicator of 

cell proliferation. 
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CHAPTER III 

MATERIALS AND METHODS 

 

Sorghum Samples 

Seventeen sorghum varieties were screened for phenolic profile and antioxidant 

capacity. Among the 17 samples, some were selected for further cell culture studies. The 

samples included six tannin sorghums (Sumac, Hi-tannin (College Station, TX 2002); 

Seredo, Cadam and CR 35 (KARI, Kenya 2006); Black PI Tall (College Station, TX 

2005), and 11 non-tannin sorghums selected based on different pericarp pigmentation: a 

black variety Tx430 (College Station, TX 2002), a commercially grown red variety from 

Missouri (Columbia, MO 2006) (“Mizzou”), three red varieties Tx2911, 98BRON155, 

and 99LGWO50 from Texas (College Station, TX 2008), a light red variety I CSV III 

from Kenya (KARI, Kenya 2006), two lemon yellow varieties SC748 and EBA3 

(College Station, TX 2008), and three white varieties: KARI-Mtama (KARI, Kenya 

2006), a commercially grown variety from Missouri (Columbia, MO 2006) (“Mizzou 

white”), and ATX635 × RTX436 (College Station, TX 2001). White commercial dent 

corn was used as a control because of its low phenol and carotenoids content. Sorghum 

grains were kept at -35°C till used. 
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Reagents and Experimental Materials 

 

Chemicals and Reagents 

3-Deoxyanthocyanidin standards, apigeninidin, luteolinidin, 7-

methoxyapigeninidin, 7-methoxyluteolinidin, 5-methoxyapigeninidin, 5,7-

dimethoxyapigeninidin and 5,7-dimethoxyluteolinidin were obtained from AlsaChim 

(Strasbourg, France). Figure 1 shows the structures of 3-deoxyanthocyanidin standards 

and the abbreviations used in this thesis. Genistein and sulforaphane were purchased 

from Sigma-Aldrich (St. Louis, MO). 

Hexane, acetone, ethanol, methanol, hydrochloride acid (HCl), Folin-Ciocalteu 

reagent, ethanolamine, potassium phosphate, sodium chloride (NaCl), sodium dodecyl 

sulfate (SDS), crystal violet, Tris, and Tween-20 were of analytical grade and purchased 

from Fisher (Fisher Scientific, Fair Lawn, NJ). Gallic acid, catechin hydrate, vanillin, 

ABTS (2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), potassium persulfate, 

MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], sodium 

fluorescein, 2,2’-azobis(2-amidinopropane) dihydrochloride (AAPH), 6-hydroxy-

2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), flavin adenine dinucleotide 

(FAD), β-nicotinamide adenine dinucleotide phosphate (NADH), and bovine serum 

albumin were purchased from Sigma-Aldrich (St. Louis, MO). Dimethyl sulfoxide 

(DMSO), ethylenediaminetetraacetic acid (EDTA) and digitonin were purchased from 

Acros Organics (Acros Organics, NJ). Menadione was purchased from Alexis 

Biochemicals (San Diego, CA). Dicoumarol was from EMD Biosciences (EMD 
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Biosciences, Inc., La Jolla, CA). Glucose-6-phosphate and yeast glucose-6-phosphate 

dehydrogenase were from MP Biomedicals (Solon, Ohio).  
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Figure 1. Skeleton structures of 3-deoxyanthocyanidins used in this study. 

 

 

 

 

Compound Abbreviation R1 R2 R3 

Apigeninidin Api H H H 

5-methoxyapigeninidin 5-Api H CH3 H 

7-methoxyapigeninidin 7-Api H H CH3 

5,7-dimethoxyapigeninidin 5,7-Api H CH3 CH3 

Luteolinidin Lut OH H H 

7-methoxyluteolinidin 7-Lut OH H CH3 

5,7-dimethoxyluteolinidin 5,7-Lut OH CH3 CH3 
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Cell Lines 

Two human gastrointestinal carcinoma cell lines were selected to represent the 

upper digestive tract (esophagus) and lower digestive tract (colon), which are common 

gastrointestinal tract cancer sites. The OE33 (a cell line established from the 

adenocarcinoma of the lower esophagus of a 73-year-old female patient) was purchased 

from Sigma (St. Louis, MO); HT-29 (a cell line established from colorectal 

adenocarcinoma of a 44-year-old female patient) was purchased from the American 

Type Culture Collection (ATCC, Manassas, VA).  

Murine hepatoma Hepa 1c1c7 (a murine hepatoma cell line derived from C57/L 

mouse) was purchased from ATCC (Manassas, VA). This cell line is useful for studying 

aryl hydrocarbon receptor and P450IA1 regulation. It has been used as a standard cell 

line in testing the inducing capacity of a compound to induce cellular NAD(P)H:quinone 

oxidoreductase activity.  

 

Cell Culture Materials 

Media used included α-MEM (minimum essential medium) (with 2mM L-

glutamine without ribonucleosides or deoxyribonucleosides), McCoy’s 5A medium 

(with 1.5mM L-glutamine) and RPMI 1640 medium (with 2mM L-glutamine). Media 

were purchased from Invitrogen (Carlsbad, California) and kept at 4 °C till use. Fetal 

bovine serum (FBS) was obtained from Atlanta Biologicals (Lawrenceville, GA). 

Dulbecco's phosphate-buffered saline (DPBS) and 0.05% trypsin were purchased from 

Invitrogen (Carlsbad, CA).  
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Three types of plates were used to culture cells: 96-well all clear tissue culture 

plates (FALCON, Franklin Lakes, NJ), 96-well black with clear bottom tissue culture 

plates (Costar) and regular all black 96-well plates (Costar, Corning Incorporated, NY). 

MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] cell 

proliferation assay kit was purchased from ATCC (Manassas, VA). Quant-iT PicoGreen 

dsDNA assay kit was purchased from Invitrogen (Carlsbad, CA).   

 

Preparation of Crude Sorghum Extracts 

Whole kernels of sorghum grain were ground in a cyclone mill (UDY, Boulder, 

CO) to pass through 0.1 mm screen before extraction. Ground samples were defatted 

using hexane at a ratio of 1:2 (w:v) by stirring for 2 h. The mixture was then centrifuged 

at 3100 ×g and the residue was dried inside a fume hood over night at room temperature. 

Defatted samples were extracted with 70% (v/v) aqueous acetone with stirring for 30 

min. Supernatant was collected by centrifuging (3100 × g) for 15 min at 4 °C. Acetone 

was immediately removed from the supernatant under vacuum at 40 °C. The aqueous 

phase was freeze-dried and used as a crude extract. Extracts were kept at -35°C till use. 

 

Gross Phenolic Profile 

Ground grain samples were extracted with 1% HCl in methanol for 2 h to 

measure total polyphenol, tannin, and 3-deoxyanthocyanin contents. Freeze-dried crude 

sorghum extracts were dissolved in 1% HCl in methanol for these assays.  
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Phenol Content 

The Folin-Ciocalteu method described by Kaluza et. al. (141) was used. Aqueous 

samples (0.1 mL) was added into 1.1 mL distilled water then reacted with 0.4 mL Folin 

reagent and 0.9 mL 0.5 M ethanolamine for 20 min at room temperature. The absorbance 

was then read at 600 nm. Serial dilutions of gallic acid (0, 5, 10 15, 20, 25 mg/mL in 

methanol) was used as standards. Results were calculated and expressed as mg gallic 

acid equivalent (GAE)/g sample.  

 

Condensed Tannin Content 

The vanillin-HCl method described by Price et. al. (142) was used. Aqueous 

samples (1 mL) was added to 5 mL vanillin reagent (0.01 g/mL vanillin in methanol 

mixed with equal volume 8% HCl in methanol) and allowed to react for 20 min at 35 °C; 

a blank was prepared under the same reaction condition by reacting 1 mL the same 

aqueous sample with 5 mL 4% HCl in methanol. Absorbance was read at 500 nm and 

blank for each sample was subtracted. Serial concentrations of catechin (0, 0.2, 0.4, 0.6, 

0.8, and 1.0 mg/mL in methanol) were used as standards. Results were calculated and 

expressed as mg catechin equivalent (CE)/g sample.  

 

3-Deoxyanthocyanin Content 

The method used was first described by Fuleki and Francis (143) and further 

detailed by Awika et al. (144). Absorbance of sorghum grain samples and extract 

samples were read at 480 nm. The concentrations of 3-deoxyanthocyanins were 
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calculated based on the absorbance of luteolinidin at 480 nm using the Lambert-Beer’s 

Law: A = ε CL, where A is the absorbance at 480 nm, ε is the molar extinction 

coefficient (ε) of luteolinidin, C is sample concentration, L is the pathlength, which is 1 

cm. The 3-deoxyanthocyanin content of a sample was calculated based on the formula   

C (mol/L) = A/ ε. The mg luteolinidin equivalent of a sample = A/ ε × 103 × 270 × 

dilution factor, where 270 is the molecular weight of luteolinidin and molar extinction 

coefficient (ε) of luteolinidin used was 29,157 (145). 

 

Antioxidant (Free Radical Scavenging) Capacity Assays 

Antioxidant (Free radical scavenging) capacity was measured by ABTS (2,2’-

azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and Oxygen Radical Absorbance 

Capacity (ORAC) assays. Ground grain samples were extracted in 70% aqueous acetone 

for 2 h and were used immediately in these assays. Freeze-dried sorghum crude extracts 

were dissolved in 70% acetone to be used in these assays. For both assays, the methods 

were described by Awika et al. (95).  

 

ABTS Assay 

The ABTS stock solution was prepared by reacting equal volume of 8 mM ABTS 

with 3 mM potassium persulfate in the dark for at least 12 h. The ABTS working 

solution must be prepared right before the assay by diluting 5 mL ABTS stock solution 

with 145 mL of pH 7.4 PBS buffer. The original absorbance of ABTS working solution 

at 734 nm should be around 1.5. Aqueous sample (0.1 mL) was added with 2.9 mL 
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ABTS working solution then allowed to react in the dark for 30 min at room 

temperature. The absorbance was read at 734 nm. A series dilution of Trolox (0, 100, 

200, 300, 400, 500, 600, 700, 800, 1000 μM in methanol) was used as standards. 

Antioxidant capacity was calculated and expressed as μmol Trolox equivalent /g sample.  

 

ORAC Assay 

The ORAC assay was conducted using a solid black 96-well plate and the 

reaction was monitored by a Biotek Synergy HT plate reader with automatic dispenser 

(Biotek, Winooski, VT). Sodium fluorescein working solution (4 × 10-3 μM), AAPH 

(153 mM), Trolox standards (0, 6.25, 12.5, 25, 50, 100 μM) were prepared using PBS 

buffer (pH 7.4) right before performing the assay. Aqueous samples (25 μL) and Trolox 

standards (25 μL) were analyzed in triplicate on the same plate. Sodium fluorescein 

working solution (150 μL) was added to each well before the whole plate was incubated 

inside the plate reader at 37 °C for 30 min. One aliquot (25 μL) of 153 mM AAPH was 

automatically dispensed into each well as the free radicals generator to start the reaction 

after incubation. Fluorescence readings (excitation 485 nm, emission 528 nm) was taken 

every minute from the time AAPH was added for 90 min. Antioxidant capacity was 

calculated based on the area under the fluorescence curve (AUC),  

AUC = 0.5 + (R2/R1) + (R3/R1 ) + (R4/R1) + . . . + (R90/R1) , where Rn is the fluorescent 

reading at the nth minute. 

A Trolox standard curve was obtained by plotting the concentrations of Trolox 

standards versus their AUC. Trolox equivalent of each sample was obtained by 
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interpolating the AUC of sample into the Trolox standard curve. The antioxidant 

capacity of ORAC assay was expressed as μmol Trolox equivalent / g. Each sample was 

measured on three different plates at three separate times. 

 

Cell Culture  

 

General 

Murine hepatoma cells Hepa 1c1c7 were cultured in Gibco α-MEM medium 

supplemented with 10% fetal bovine serum. Human colon carcinoma cells HT-29 were 

cultured in Gibco McCoy’s 5A medium supplemented with 10% fetal bovine serum. 

Human esophageal carcinoma cells OE33 were cultured in Gibco RPMI 1640 medium 

supplemented with 10% fetal bovine serum. Cell lines were subcultured every 3 or 4 d 

and incubated in a humidified incubator with 5% CO2 at 37 ºC. 

 

Preparation of Treatment Media 

Sorghum extract stocks were prepared by dissolving crude sorghum extracts in 

500 μL DMSO then diluted with DMSO into serial concentrations (5-800 mg/mL). 

Treatment medium was prepared by adding stocks at a ratio of 1:1000 (v/v) to 

corresponding growth medium. Final treatment medium contained 5-800 μg/mL crude 

sorghum extracts. Sorghum 3-deoxyanthocyanidin standard stocks (0.2-200 mM) and 

treatment medium were prepared by the same method. Final treatment medium 

contained 0.2-200 μM 3-deoxyanthocyanidins. 
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NAD(P)H:Quinone Oxidoreductase (QR) Inducing Capacity and Cytotoxicity 

Assay 

This assay measured QR activity in both sample-treated and control cells. The 

QR activity was measured through the NAD(P)H-dependent QR oxidized menadiol-

mediated reduction of MTT. Figure 2 shows the schematic principle of this assay. 

 

 

 

 

Figure 2. Principle of the NAD(P)H: quinone reductase (QR) activity assay (adapted 
from Prochaska and Santamaria (146)). Glucose-6-phosphate and glucose-6-phosphate 
dehydrogenase continually generate NADPH, which is used by QR to transfer electrons 
to menadione. Menadione further transfers this electron to MTT then produces blue 
reduced MTT formazan dye, which can be measured at 610 nm. Both NADPH and 
menadione are regenerated, which obviates problems encountered with substrate 
depletion (146).  
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NAD(P)H:Quinone Oxidoreductase (QR) Inducing Capacity Assay 

The Hepa 1c1c7 cells were cultured in growth medium (α-MEM medium 

supplemented with 10% fetal bovine serum) for 72 h before plating into a clear 

FALCON 96-well tissue culture plate at a density of 10,000 cells/well with 200 μL 

growth medium. The cells were incubated at 37 ºC with 5% CO2 for 24 h before 

exposure to treatment media.  

Six different treatments and one control were applied onto one 96-well plate. 

Each treatment was assigned to 12 wells while control was assigned to 16 wells, and the 

remaining 8 wells were blanks. Final treatment medium contained 5-400 μg/mL 

sorghum crude phenol extracts or 0.2-200 μM 3-deoxyanthocyanidin standards. Each 

well received 200 μL treatment medium while control cells received 200 μL growth 

medium containing 0.1% DMSO. The cells were grown for another 24 h (37°C, 5% 

CO2) before QR activity assay. After 24 h incubation, the medium in each well was 

aspirated and the cells were lysed with 50 μL 0.8% digitonin in 2 mM pH 7.8 EDTA, 

incubated for 10 min at 37 ºC then agitated on a shaker for another 10 min at room 

temperature. Lysed cells were used for QR activity assays. 

Each treatment set was then divided into three different assays to evaluate 

different aspects of QR activity. The three assays were: 1) standard enzyme activity 

assay, 2) prior stop enzyme activity assay, and 3) minus menadione assay.  

Standard enzyme activity assay evaluates the proportion of MTT reduction 

attributable to QR activity. MTT, a pale yellow tetrazolium dye, is reduced to its blue 

formazan form, which can be measured by the absorbance at 610 nm. Prior stop enzyme 
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activity assay evaluates the proportion of MTT reduction not attributable to QR activity. 

Since menadione is used in these two assays mentioned above as an electron transporter 

to MTT, minus meadione assay determines the proportion of MTT reduction attributable 

to QR activity but without menadione as an electron transporter. True cellular QR 

activity is determined using the QR activity obtained from standard enzyme activity 

assay subtracting the activity obtained from prior stop enzyme activity assay and minus 

menadione assay.  

A baseline reaction solution was prepared for each set of QR activity assays. The 

composition of the baseline reaction solution was as follows: 5% (v/v) 0.5M Tris-HCl 

(pH 7.4), 6.67% (v/v) 1.5% Tween-20, 0.67% (v/v) 7.5mM FAD, 0.06% (v/v) 50mM 

NADP, 66.7% (g/L) bovine serum albumin,  30% (g/L) MTT, 6.67% (v/v) 150 mM 

glucose-6-phosphate (in 1% HCl acidified distilled water), 2 U/mL yeast glucose-6-

phosphate dehydrogenase, and distilled water to make up to the final volume. A 

standard reaction solution used for standard enzyme activity assay was made by adding 

1 μL of 50 mM menadione (dissolved in acetonitrile) per mL of baseline reaction 

solution just before the standard reaction solution was dispensed into the wells. 

Dicoumarol (0.3mM in 0.5% DMSO and 5mM potassium phosphate (pH 7.4)) served as 

the stop solution to stop QR activity. The three assays to determine cellular QR activity 

were carried out on the same plate and at the same time. Figure 3 shows a schematic 

process of the three assays. 

Once the cells were lysed, stop solution (50 μL) was first added to prior stop 

enzyme activity assay wells. Then 200 μL of standard reaction solution was added to 
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standard enzyme activity assay and prior stop enzyme activity assay wells. Finally 200 

μL of baseline reaction solution was added to minus menadione assay wells. The plate 

was then allowed to react in the dark for 5 min at room temperature. The reaction was 

arrested by dispensing 50 μL of stop solution to both standard enzyme activity assay and 

minus menadione assay wells. The plate was then read in the BioTek Synergy HT Plate 

Reader at 610 nm. Absorbance of all the solutions from the standard enzyme activity 

assay was taken as blank reading. 

 

Cytotoxicity Assay (Crystal Violet Assay) 

Since samples screened for QR inducing activity could also suppress growth of 

the cells, thus affecting results, cell population was measured by the crystal violet assay 

(146). Plates were treated identically as for the QR inducing activity assay. After the 

cells were incubated with treatment medium for 24 h, the medium was decanted. Then 

200 μL of 0.2% crystal violet in 2% ethanol was dispensed into each well to stain the 

cells for 10 min at room temperature. The plate was rinsed 3 times with distilled water. 

Bound dye was solubilized by adding 200 μL of 0.5% SDS in 50% ethanol in each well. 

The plate was then incubated at 37 ºC for 1 hour, and absorbance was read at 610 nm. A 

higher absorbance reading in treated cells than the control cells indicated cell growth 

induced by treatment; while a lower reading indicated a reduction of cell population due 

to treatment. Hence cell population was used to correct QR activity obtained from 

treatments. 
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Figure 3. Schematic process of NAD(P)H:quinone oxidoreductase (QR) activity assay 
according to Prochaska and Santamaria’s method (146).  
 

 

Calculating QR Inducer Ratios 

The QR inducer ratio determines how well a treatment could raise the cellular 

activity of QR compared with non-treated cells (controls). The QR inducer ratio was 
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calculated as the ratio of cellular QR activity obtained from each treatment to the cellular 

QR activity from the control treatment conducted on the same plate. The formula below 

was used: 

QR inducer ratio = (A610 of treatment – A610 of control on the same plate) / A610 of       

control on the same plate 

QR specific inducer ratio = treatment QR inducer ratio × treatment cell population / cell 

population of control for the treatment. 

 

Cancer Cell Proliferation Assay 

Both MTT and PicoGreen assays were used because of their non-radioactive 

nature, convenience and accuracy.  

 

MTT Assay 

The MTT assay is based on the ability of a mitochondrial dehydrogenase enzyme 

from viable cells to cleave the tetrazolium rings of the pale yellow MTT and form dark 

blue formazan crystals, thus resulting in its accumulation within healthy cells. The 

number of surviving cells is directly proportional to the level of the formazan product 

created. Adding a detergent into the system solubilized the cells and the crystals at the 

same time, which enabled the quantitative reading of the absorbance by a plate reader 

(130-132).  

Both HT-29 and OE33 cells were grown in growth medium (α-MEM 

supplemented with 10% FBS for HT-29 and McCoy’s 5A supplemented with 10% FBS 
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for OE33) for 72 h before plating into a clear FALCON 96-well tissue culture plate at a 

population of 2,000 cells/well with 100 μL growth medium. Final treatment medium 

contained 5-800 μg/mL crude sorghum extracts or 0.2-200 μM 3-deoxyanthocyanidin 

standards. The cells were incubated with treatment medium for 48 h. Each treatment 

used 4 wells and each well received 100 μL of treatment medium while control cells 

received 100 μL of growth medium containing 0.1% DMSO. After 48 h incubation, 

viable cells were determined using the ATCC MTT assay kit. The linearity of this MTT 

assay was 100-5000 cells per well (plated cell population, tested after 48 h incubation) 

for both cell lines. The MTT reagent (10 μL) was added to each well and incubated for 3 

h at 37 ºC; the medium was then decanted and 50 μL of DMSO was added to dissolve 

the purple crystals. Absorbance was read at 570 nm. Blank reading (10 μL of MTT 

reagent plus 50 μL of DMSO) was subtracted from each well. Sample blank reading was 

recorded as absorbance due to treatment medium only (without cells). Relative Growth 

(%) was calculated using the following formula:  

 Relative Growth (%) = (A570 of test sample – blank – sample blank)/A570 of control 

cells × 100 % 

 

Double-Stranded (ds) DNA Content: PicoGreen Assay 

Since the dsDNA content in each cell is constant, by determining the contents of 

dsDNA using Quant-iT PicoGreen dsDNA assay indicates the living cell population. 

Both HT-29 and OE33 cells were treated using the same protocol described for MTT 

assay above, except cells were plated in 96-well black plates with a clear bottom. After 
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48 hour incubation, the medium was aspirated and cells were washed twice with DPBS 

buffer to wash out dead cells floating in the medium. Each well then received 50 μL of 

0.05% trypsin in 0.9% NaCl solution to detach cells at 37 ºC for 1 hour. The plate was 

then frozen at -35 °C for 1 hour then thawed at room temperature to lyse cells. A 

standard curve of dsDNA (0, 1, 5, 10, 50, 100, 150 ng/well) was prepared in the same 

testing plate for each assay. Standard solution of dsDNA (100 μg/mL in 10 mM Tris-

HCl 1 mM EDTA, pH 7.5) were provided in the PicoGreen assay kit and diluted with 

0.05% trypsin in 0.9% NaCl solution. PicoGreen fluorescent dye working solution was 

prepared in 10mM Tris-1mM EDTA buffer provided in the PicoGreen assay kit. After 

lysing the cells, PicoGreen working solution (50 μL) was added to each well including 

the standards then the whole plate was incubated at room temperature in the dark for at 

least 5 min. Fluorescence was read in the plate reader at excitation 480 nm and emission 

520 nm. The content of dsDNA in each well was calculated using the standard curve 

obtained from each assay. Relative Growth (%) was calculated using the following 

formula:  

Relative Growth (%) = dsDNA content of treatment cells/dsDNA content of control cells 

× 100 %. 

 

Statistical Analysis 

Total phenol, condensed tannin, 3-deoxyanthocyanin pigment contents, ABTS 

and ORAC antioxidant capacity, and cancer cell growth inhibition assays were repeated 

three times. QR inducing capacity assay was repeated two times. Statistical analyses 
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were done using SPSS version 15.0 (SPSS Inc., Chicago, IL) with one-way Analysis of 

Variance (ANOVA). Post Hoc test (Dunnett’s, Fisher’s LSD, and Tukey’s HSD) after 

ANOVA was used to compare treatments means.  
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CHAPTER IV 

GROSS PHENOLIC PROFILES AND ANTIOXIDANT PROPERTIES OF 

SORGHUM GRAINS AND THEIR CRUDE EXTRACTS 

 

Gross Phenolic Profiles and Antioxidant Properties of Sorghum Grains 

 

Gross Phenolic Profiles of Sorghum Grains 

The seventeen varieties of sorghum showed a wide range of phenolic 

compositions (Table 1). Based on the presence of condensed tannins, the seventeen 

sorghum grains can be divided into two groups: tannin and non-tannin sorghums. The 

tannin contents in tannin sorghums ranged from 7.0-23.3 mg catechin equivalent (CE)/g 

sample (db), which agreed with Dykes et al. (98) (6.4-50.2 mg CE/g sample). Only 

sorghums with a pigmented testa contain tannins (86, 147). 

Tannin sorghums had varying contents of 3-deoxyanthocyanins (trace to 1.2 mg 

luteolinidin equivalents (LE)/g sample) (Table 1). Among non-tannin sorghums, 3-

deoxyanthocyanin contents in red and black pericarp sorghums ranged from 0.07-4.5 mg 

LE /g sample (db) (Table 1), which was similar to what Awika et al. (103) reported in 

red and black sorghums (0.8-2.8 mg LE/g sample). White and lemon yellow pericarp 

sorghum grains did not contain significant amount of 3-deoxyanthocyanin pigments. 

Pericarp color of sorghum grains is significantly correlated with 3-deoxyanthocyanin 

contents: the darker and redder the grain pericarp color, the higher the 3-

deoxyanthocyanin contents (148, 149). Pericarp color is regulated by the R and Y genes 
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and is not influenced by the presence of tannins (regulated by the dominant B1_B2_ 

gene) (150), which explains why tannin content did not correlate with 3-

deoxyanthocyanin content. 

Total phenol content of tannin sorghums was 5.1 to 29.6 mg gallic acid 

equivalent (GAE)/g sample (db); while non-tannin sorghums ranged from 0.9-18.2 mg 

GAE/g sample (Table 1).  Dykes (109) reported that total phenol contents of tannin 

sorghums was 8-20 mg GAE/g sample and that of non-tannin sorghums was 1.8-6.0 mg 

GAE/g sample. Tannin sorghums generally had higher total phenol content than non-

tannin sorghums (p<0.001) (Figure 4), which agreed with previous reports (109, 151). 

This may be due to the chemistry behind the total phenol assay. The Folin-Ciocalteu 

assay involves redox reaction between phenolate and Folin-Ciocalteu reagent, and the 

assay actually measures a phenol’s reducing capacity (112). Tannins presented in 

sorghum are of condensed type (94, 152, 153) and one condensed tannin molecule can 

have more phenolate groups than one molecule of other phenols, such as phenolic acids, 

flavones, 3-deoxyanthocyanins, and flavanones. This characteristic of condensed tannins 

in tannin sorghums can contribute to their higher total phenol contents than non-tannin 

sorghums. Since the Folin-Ciocalteu method for total phenol content has a similar 

chemical reaction with the single electron transfer reaction based antioxidant capacity 

assays (112), the results of total phenol content indicated that condensed tannins were 

stronger antioxidants than other sorghum phenols.  
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Table 1. Phenolic Content and Free Radical Scavenging Capacity of Sorghum Grains 

 Condensed 
tannins 

(mg CE/g)a 

3-DXA 
content 

(mg LE/g)b 

Phenol content 
(mg GAE/g)c 

ORAC 
(μmol 
TE/g)d 

ABTS 
(μmol 
TE/g)d 

White dent corn nd trace 0.6 ± 0.05 11.8 ± 1.2 7.29 ± 1.3 

ATX635×RTX436 
(white) 

nd trace 0.9 ± 0.09  24.3 ± 3.2 9.70 ± 1.0 

KARI- Mtama (white)  nd trace 8.1 ± 0.3 81.6 ± 1.8 63.9 ±  0.9 

Mizzou White (white) nd trace N. D. N. D. N. D. 

Mizzou (red)  nd  1.0 ± 0.2 11.8 ± 0.6 95.3 ± 1.8 67.4 ±  1.8 

Tx2911 (red) nd 0.27 ± 0.01 3.1 ± 0.1 171 ± 16 44.6 ± 2.0 

98BRON155 (red) nd 0.07 ± 0.01 2.1 ± 0.1 113 ± 14 27.6 ± 1.8 

99LGWO50 (red) trace 0.20 ± 0.01 3.5 ± 0.2 178 ± 17 51.5 ± 1.6 

I CSV III (red) trace 0.14 ± 0.08 7.9 ± 0.1 102 ± 1.1 65.9 ± 0.5 

Tx430 (black)  nd 4.5 ± 0.3 18.2 ± 1.3 126 ± 5.8 78.9 ± 4.3 

SC748 (lemon yellow) nd 0.05 ± 0.01 2.09 ± 0.14 132 ± 18 24.4 ± 2.8 

EBA-3 (lemon yellow) nd 0.03 ± 0.00 2.17 ± 0.11 122 ± 14 25.4 ± 2.5 

Black PI Tall (tannin)  7.2 ± 1.8 1.2 ± 0.07 5.14 ± 0.18 203 ± 31 66.6 ± 4.4 

Cadam (tannin) 18.3 ± 0.4 N. D. N. D. N. D. N. D. 

CR 35 (tannin) 7.0 ± 0.4 trace 16.5 ± 0.5 72.4 ± 6.3 61.6 ± 0.8 

Seredo (tannin)  20.2 ± 0.4 0.7 ± 0.1 21.9 ± 0.4 171 ± 14 118 ± 1.2 

Sumac (tannin)  23.3  ± 1.0 1.2 ± 0.09 29.6 ± 0.7 236 ± 21 125 ± 3.1 

Hi-Tannin (tannin)  18.1 ± 0.6 0.5 ± 0.05 17.6 ± 0.2 182 ± 23 108 ± 4.6 

aCE; catechin equivalents (Vanillin-HCl method). b3-Deoxyanthocyanin pigment content 
expressed as luteolinidin equivalents (LE). cGAE; gallic acid equivalents (Folin-
Ciocalteu method). dTE; trolox equivalents. Values ± sd (db) reported for three separate 
experiments; nd – not detected; N.D. – not determined. 
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Figure 4. Box plot of total phenol contents (mg gallic acid equivalent/g sample) (a), 
ORAC (b) and ABTS (c) antioxidant capacity (μmol Trolox equivalent/g sample) 
between tannin and non-tannin sorghum grains. Tannin sorghum grains had higher total 
phenol content (p<0.001), ORAC value (p<0.006), and ABTS value (p<0.001) than non-
tannin sorghum grains. 
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Antioxidant Capacity of Sorghum Grains 

The antioxidant capacity measured by ABTS assay of tannin sorghum grains 

ranged from 61.6-125 μmol Trolox equivalent (TE)/g sample (Table 1). Dykes (109) 

reported tannin sorghum ABTS antioxidant value ranged from 125-340 μmol TE/g 

sample using 1% HCl acidified methanol as the extraction solvent (ours was 70% 

aqueous acetone). The differences observed in this study could be first due to extraction 

solvent. Another reason can be the different varieties of grains and growth environments 

of the samples, such as year and location. The antioxidant capacity measured by ABTS 

assay of non-tannin sorghum grains ranged from 9.7-78.9 μmol TE/g sample (Table 1), 

which was close to what Dykes (109) reported (8-75 μmol TE/g sample). Tannin 

sorghums had higher antioxidant capacity measured by ABTS assay than non-tannin 

sorghum grains (p<0.001) (Figure 4). Plausible reason for this is that condensed tannins 

are stronger hydrogen donators because of the presence of more phenolate groups in one 

molecule than other phenols (94, 152, 153).  

The antioxidant capacity measured by ORAC assay of tannin sorghum grains 

was 72.4 to 236 μmol TE/g sample (Table 1). Awika et al. (95) reported ORAC 

antioxidant value for tannin sorghum grains as 440-853 μmol TE/g sample using 

aqueous acetone as extraction vehicle. The differences can be due to different varieties 

of tannin sorghums or a different model of instrument used. The antioxidant capacity 

measured by ORAC assay of non-tannin sorghum grains ranged from 24.3 to 178 μmol 

TE/g sample (Table 1), which was close to the ORAC values reported by Awika et. al. 

(95) (21-205 μmol TE/g sample). Similar to ABTS assay, ORAC antioxidant values of 
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tannin sorghum grains were higher than non-tannin sorghum grains (p<0.006) (Figure 4). 

Since ORAC assay measures a competitive reaction between an oxidant and an 

antioxidant, the structure of condensed tannins may make it more efficient in terminating 

the insults from free radicals than other phenols. Besides higher hydrogen donating 

capacity, condensed tannins have a greater metal chelating capacity because of the 

polymerized structures (154). However, some varieties of non-tannin sorghums, e.g. 

99LGWO50 (red), Tx2911 (red), SC748 and EBA-3 (lemon yellow), had ORAC values 

almost as high as tannin sorghums. This suggested that other phenol groups present in 

these varieties, such as flavones and flavanones (109) may have strong free radical 

scavenging capacity as well. 

Antioxidant capacity is an indicator of chemopreventive potential because dietary 

components which are antioxidants can reduce the oxidative stress and terminate the 

insults from free radicals or carcinogens. Hence the antioxidant capacity of these 

sorghum varieties may provide a direct insight into their chemopreventive potential. 

However, antioxidant capacity is not the only factor that influences this potential. It is 

important to determine how gross phenolic profile and antioxidant capacity affect 

chemoprevention by evaluating how the compounds interact with related gastrointestinal 

tract epithelial cells.  

 

Correlation between Gross Phenolic Profile and Antioxidant Capacity 

As previously stated, tannin sorghum grains had higher total phenol content 

(p<0.001), ABTS antioxidant capacity (p<0.001) and ORAC antioxidant capacity 
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(p<0.006) than non-tannin sorghum grains (Figure 4). Total phenol content and ABTS 

antioxidant value correlated with the tannin contents among tested tannin sorghum 

grains (Table 2). Pearson’s correlation determines strength of linear correlation while 

Spearman’s rho (one of nonparametric correlations) evaluates how strong a correlation is 

regardless of its nature. The results suggested that ORAC values of tannin sorghum 

grains were not correlated with their tannin contents significantly. The reason could be 

ORAC assay based on a different chemical reation than total phenol and ABTS assays. 

 

 Table 2. Correlation of Condensed Tannin Content with Total Phenol Content, ABTS 
and ORAC Antioxidant Capacity among Tannin Sorghum Grains 

Correlation coefficient Phenol ABTS ORAC 
Pearson’s correlation Tannins 0.837** 0.995** 0.601 

Spearman’s rho Tannins 0.964** 0.988** 0.600 
** correlation was significant (p<0.01) (2-tailed) 

 

Among non-tannin sorghum grains, content of 3-deoxyanthocyanins (the degree 

of pigmentation) had a strong linear correlation with total phenol content and ABTS 

antioxidant capacity (Table 3). This correlation indicated that 3-deoxyanthocyanin 

content was an indicator of antioxidant capacity in non-tannin sorghum grains. However, 

pigment content in non-tannin sorghum grains only correlated with ORAC antioxidant 

capacity moderately by nonparametric correlation (Spearman’s rho 0.474, p<0.05). This 

suggested that pigmentation itself was not good enough to explain the differences 

observed in ORAC assay. Since the chemical reaction of ORAC assay is quite different 

from total phenol and ABTS assays, it is assumed that other sorghum phenols which are 
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colorless are able to show some free radical scavenging capacity in the ORAC assay. 

The antioxidant capacity of the colorless phenols may be underestimated by ABTS assay 

because they are not strong reducing agents or their reaction with ABTS is slow. Hence 

it is important to consider pigmentation as an indicator of antioxidant capacity but 3-

deoxyanthocyanins are not the only group of antioxidants in non-tannin sorghum grains.  

 

Table 3. Correlation of 3-Deoxyanthocyanin Content with Total Phenol Content, ABTS 
and ORAC Antioxidant Capacity among Non-Tannin Sorghum Grains 

Correlation coefficient Phenol ABTS ORAC 
Pearson’s correlation 3-DXA pigment 0.853** 0.587** 0.109 

Spearman’s rho 3-DXA pigment 0.624** 0.674** 0.474* 
3-DXA: 3-deoxyanthocyanin content  
*   correlation was significant (p<0.05) (2-tailed) 
** correlation was significant (p<0.01) (2-tailed) 
 

 

On the whole, total phenol content of all tested sorghum grains correlated with 

their ABTS antioxidant capacity (Pearson’s correlation 0.911, p<0.001). Since the 

chemical mechanisms of these two assays are similar, the results are expected. Total 

phenol content also correlated with ORAC antioxidant value (Pearson’s correlation 

0.401, p<0.028) but not very strongly, which indicated that reducing potential was not 

the only mechanism for the antioxidant capacity measured by ORAC assay. The ORAC 

assay also measures radical chain-breaking potential of antioxidants (112). The ABTS 

antioxidant capacity had similar moderate correlation with ORAC value (Pearson’s 

correlation 0.599, p<0.001). This may be due to the different chemical principles behind 

these assays.  



 51

The correlations observed among gross phenolic profiles suggested that certain 

groups of phenols were strong antioxidants, such as condensed tannins and 3-

deoxyanthocyanins. The correlation between phenolic profile and antioxidant capacity 

indicated that phenols in sorghum can serve as indicators as antioxidant capacity. 

 

Gross Phenolic Profiles and Antioxidant Properties of Crude Sorghum Extracts 

Extracts from natural sources, for example, fruits, grains, leaves, roots, can have 

wider applications than the source itself. Because extracts are concentrated and dried, 

they are easier to store, transport, package and use as additives, ingredients, and dietary 

supplements than the bulk original source. Hence it is important to analyze the properties 

of extracts compared with the original material. 

 

Gross Phenolic Profiles of Crude Sorghum Extracts 

Crude sorghum extracts presented similar phenolic profiles compared with 

respective sorghum grains (Table 4). Generally speaking, the extracts were 5- to 30-fold 

higher in condensed tannins, 3-deoxyanthocyanins, and total phenols than the grains.  
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Table 4. Phenolic Content and Free Radical Scavenging Capacity of the Crude Freeze-
Dried Sorghum Extracts 

Extract (grain type) 
Tannins 

(mg 
CE/g)a 

3-DXA (mg 
LE/g)b 

Phenol 
content (mg 

GAE/g)c

ORAC 
(μmol 
TE/g)d 

ABTS 
(μmol 
TE/g)d 

White dent corn nd 0.1 ±0.08 20.4 ± 2.4 776 ± 46 358 ± 31 

ATX635×RTX436 
(white) 

nd 0.3 ± 0.01 24.9 ± 4.3 1232 ± 162 403 ± 37 

KARI-Mtama (white) nd 0.2 ± 0.05 48.3 ± 0.3 1470 ± 97 506 ± 49 
Mizzou White (white) nd 0.4 ± 0.02 26.2 ± 2.1 933 ± 34 276 ± 31 
Mizzou (red) nd 9.7 ± 1.2 81.5 ± 3.2 2050 ± 200 1060 ± 98 

Tx2911 (red) nd 3.8 ± 0.5 88.4 ± 5.2 4758 ± 509 2043 ± 564 

98BRON155 (red) nd 1.0 ± 0.4 49.9 ± 15 4383 ± 690 1261 ± 160 
99LGWO50 (red) trace 4.3 ± 0.5 103 ± 8.7 6284 ± 298 2226 ± 302 
I CSV III (red) trace 4.8 ± 0.4 87.9 ± 8.1 2280 ± 210 1190 ± 140 
Tx430 (black) trace 25.8 ± 2.4 92.2 ± 4.3 2910 ± 210 2790 ± 170 
SC748 (lemon yellow) nd 0.9 ± 0.02 58.5 ± 3.3 3635 ± 365 1405 ± 215 
EBA-3 (lemon yellow) nd 0.8 ± 0.05 66.8 ± 3.5 2822 ± 219 1187 ± 64 
Black PI Tall (tannin) 881 ± 36 18.5 ± 2.5 241 ± 7.5 2958 ± 227 2879 ± 262 
Cadam (tannin) nd 4.0 ± 0.8 45.0 ± 2.5 2944 ± 418 777 ± 46 

CR 35 (tannin) nd 0.9 ± 0.2 69.5 ± 1.6 1670 ± 52 648 ± 13 

Seredo (tannin) 253 ± 10 7.1 ± 2.7 169 ± 7.0 2970 ± 6.0 3310 ± 185 

Sumac (tannin) 394  ± 15 16.3 ± 8.1 308 ± 13 6333 ± 697 4420 ± 270 

Hi-Tannin (tannin) 605 ± 23 5.3 ± 0.5 251 ± 14 2630 ± 190 4320 ± 420 
aCE; catechin equivalents (Vanillin-HCl method). b3-Deoxyanthocyanin pigment 

content expressed as luteolinidin equivalents. cGAE; gallic acid equivalents (Folin-
Ciocalteu method). dTE; trolox equivalents (antioxidant activity). Values ± sd reported 
three separate experiments; nd – not detected. 

 

 

Condensed tannin content in tannin sorghum extracts varied vastly: the crude 

extracts from Cadam and CR35 did not contain detectable condensed tannins; the rest of 

the crude tannin sorghum extracts had 253-881 mg CE/g sample. The difference should 
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be from the genetics of tannin sorghums. According to the presence of a spreader gene 

SS, tannin sorghums can be divided into two groups, type II sorghum (recessive spreader 

gene) and type III sorghum (with spreader gene) (155). The extractability of condensed 

tannins in these two groups is different: tannins in type II sorghum can only be extracted 

with acidified methanol because acid is needed to disturb the structure of the vesicles in 

the pigmented testa where tannins are located (156). The extraction solvent used to 

obtain the extracts was 70% aqueous acetone; hence condensed tannins in Cadam and 

CR35 were not extracted in corresponding freeze-dried extracts. So Cadam and CR35 

crude extracts were grouped into non-tannin sorghum extracts within the discussion 

here. 

3-Deoxyanthocyanin contents in crude sorghum extracts followed similar trends 

as the grains (Tables 1 & 4). Tannin sorghum extracts contained varying amounts of 3-

deoxyanthocyanins (5.3-18.5 mg LE/g sample) because pigment and condensed tannin 

contents are controlled by different genes (150). Red and black pericarp sorghum 

extracts contained high levels of 3-deoxyanthocyanins, for example, Tx430 (black) (25.8 

mg LE/g), Black PI Tall (tannin) (18.5 mg LE/g), and Mizzou (red) (9.7 mg LE/g). 

White and lemon yellow pericarp sorghum extracts contained low levels of 3-

deoxyanthocyanins (less than 1 mg LE/g sample). Dark red pericarp color of sorghum 

grains is associated with higher 3-deoxyanthocyanin contents in the crude extracts. 

Total phenol content in tannin containing sorghum extracts (169-308 mg GAE/ g 

sample) was higher than non-tannin containing extracts (24.9-103 mg GAE/ g sample) 

(p<0.001) (Figure 5). Based on the total phenol contents of crude sorghum extracts, the 
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antioxidant capacity of crude sorghum extracts were expected to have similar trends as 

the grains. 

The phenolic profile in extracts from different natural sources varies depending 

on the source and extraction solvent. Yang et al. (157) reported that total phenolics of 

80% aqueous acetone extracts from common edible nuts ranged from 1.5-15.8 mg 

GAE/g extract. Chen and Blumberg (158) used both acidified methanol and 

gastrointestinal juice mimics to extract the phenols from almond skin. They found the 

total phenol content of the extracts was 15.5 mg and 2.5 mg GAE/g for the two methods, 

respectively. Ajila and others (159) reported the total phenols from 80% acetone extracts 

of mango peel was 54.7-109.7 mg GAE/g extract. Dai and others (160) extracted Hull 

blackberry with acidified ethanol and reported total phenol content was 17.3 mg GAE/g 

dried extract. Compared with these studies, sorghum grains have higher total phenols, 

which indicate potential to use sorghum extracts in the functional food industry.  

 

 



 55

O
R

AC
 (μ

m
ol

 T
E/

g)

1 2
0

50

100

150

200

250

300

350

1 2
0

1000

2000

3000

4000

5000

6000

7000

8000

W

1 2
0

1000

2000

3000

4000

5000

W

Tannin extracts     Non-tannin extracts

AB
TS

 (μ
m

ol
 T

E/
g)

Ph
en

ol
 C

on
te

nt
 (m

g 
G

AE
/g

) a

b

c

 

Figure 5.  Box plot of total phenol contents (mg gallic acid equivalent/g sample) (a), 
ORAC (b) and ABTS (c) antioxidant capacity (μmol Trolox equivalent/g sample) 
between crude tannin and non-tannin sorghum extracts. Crude sorghum extracts 
containing tannin had higher total phenol (p<0.001) and ABTS (p<0.001) antioxidant 
capacity than crude sorghum extracts which do not contain tannins, but the difference 
between ORAC values was not significant (p<0.194). 
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Antioxidant Capacity of Crude Sorghum Extracts 

The antioxidant capacity of crude sorghum extracts was 10 to 40 times higher 

than that of their grains. The antioxidant capacity measured by ABTS assay of tannin 

containing extracts ranged from 2879-4420 μmol TE/g sample; while non-tannin 

containing extracts ranged from 276-2790 μmol TE/g sample (Table 4). The trend was 

generally related to what was observed in sorghum grains.  

 The antioxidant capacity measured by ORAC assay of tannin containing extracts 

was from 2630 to 6333 μmol TE/ g sample; while non-tannin containing extracts varied 

from 933- 6284 μmol TE/ g sample (Table 4). The difference in ORAC values (p<0.194) 

between tannin containing and non-tannin containing crude sorghum extracts was not 

significant as total phenol content and ABTS antioxidant capacity (p<0.001). The 

possible reason was some other groups of phenol in non-tannin containing crude extracts 

were more efficient in the kinetic experimental settings using ORAC to evaluate 

antioxidant capacity. For example, the crude extract from 99LGWO50, a red thick 

pericarp sorghum with tan secondary plant color (109), showed ORAC value of 6284 

μmol TE/g sample, which is almost as high as Sumac (tannin) extracts (6333 μmol TE/g 

sample). Also, crude extracts from Tx2911, 98BRON155, SC748 all showed relatively 

high ORAC values among non-tannin extracts, which was higher than the crude extract 

from Tx430 (black). This indicated that pigmentation alone can not explain the higher 

ORAC values in these crude sorghum extracts. Dykes (109) observed similar high 

antioxidant capacity trends among these sorghum grains. Further investigation into the 

phenolic profile found that flavanones, flavan-4-ols, and flavones content in 
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99LGWO50, Tx2911, 98BRON155, and SC748 sorghum grains were relatively high 

(109). Aqueous acetone extraction may concentrate these groups of phenols in the 

freeze-dried extracts. 

Many studies report the antioxidant potential of extracts from different plant 

sources using varying methods; hence it is difficult to compare the antioxidant capacity 

values reported in literature. Yang et al. (157) reported that the antioxidant capacity of 

phenolic extracts from common nuts measured by Total Oxyradical Scavenging 

Capacity assay, which is similar to ORAC assay, ranged from 7.1-458.1 μmol vitamin C 

equivalent/g. Chen and Blumberg (158) reported that ORAC value of almond skin 

extract was around 3.0 μmol Trolox equivalent/ μmol GAE. Dai and others (160) 

determined the antioxidant capacity of dried blackberry extract using ABTS was around 

67.0 μmol TE/g extract. By a rough comparison with similar studies, crude extracts from 

different sorghum grains exhibited relatively strong antioxidant potential. This 

characteristic makes crude sorghum extracts potent source of healthy food ingredients or 

dietary supplements. 

 

Correlation between Gross Phenolic Profile and Antioxidant Capacity 

 Tannin content of crude sorghum extracts did not correlate with total phenol 

content, or ABTS or ORAC antioxidant capacity of crude tannin extracts (Table 5) 

though the correlation of tannin content was observed in tannin sorghum grains (Table 

2). The results suggested that after 70% acetone extraction, removal of acetone, and 

freeze-drying, the phenolic profile of crude sorghum extracts was different than the 
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sorghum grains. Some phenols may be concentrated, and some may be lost during this 

process. Hence the impact of condensed tannins was not as great as it was in sorghum 

grains. Another possibility was small sample size. We only have 4 varieties of tannin 

sorghum included in this correlation. There may be a correlation if we could include 

more varieties. 

 

Table 5. Correlation of Condensed Tannin Content with Phenol Content, ABTS, and 
ORAC Antioxidant Capacity among Crude Tannin Sorghum Extracts. 

Correlation coefficient Phenol ABTS ORAC 
Pearson’s correlation Tannins 0.258 -0.302 -0.319 

Spearman’s rho Tannins 0.310 -0.048 -0.238 
                      
 
 
 

Among crude non-tannin extracts, 3-deoxyanthocyanin content correlated with 

total phenol content, ABTS, and ORAC antioxidant capacity significantly (ORAC only 

significant for Spearman’s rho correlation, Table 6). This correlation suggested that 3-

deoxyanthocyanins were a major contributor to antioxidant capacity in the extracts. 

However, as mentioned above, some red pericarp sorghum (99LGWO50, Tx2911, and 

98 BRON155) and lemon yellow pericarp sorghum contained other colorless phenols 

that also had strong antioxidant capacity.  

 

 
Table 6. Correlation of 3-Deoxyanthocyanin Content with Phenol Content, ABTS, and 
ORAC Antioxidant Capacity among Crude Non-Tannin Sorghum Extracts. 

Correlation coefficient Phenol ABTS ORAC 
Pearson’s correlation 3-DXA pigments 0.519** 0.677** 0.098 

Spearman’s rho 3-DXA pigments 0.785** 0.703** 0.502** 
              ** correlation was significant (p<0.01) (2-tailed) 
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 Overall, the total phenol content of all the crude sorghum extracts correlated 

significantly with ABTS and ORAC antioxidant capacity (Pearson’s correlation 0.911, 

p< 0.001 and 0.451, p< 0.007, respectively). The correlation suggested that phenols were 

the major components in the extracts that had antioxidant potential. Also, the two 

antioxidant assays correlated with each other (Pearson’s correlation 0.570, p< 0.001), 

which indicated that though the chemical basis is different in these two assays, the 

results reflected similar antioxidant potential of the crude extracts. 

 Based on the gross phenolic profile and antioxidant capacity of these seventeen 

sorghums, different genotypes presented varying phenolic profiles. The presence and 

amount of condensed tannins and 3-deoxyanthocyanins had major impact on antioxidant 

levels. Thus we studied how these two groups of compounds affect chemopreventive 

potential of sorghums. Capacity to scavenge free radicals such as ROS/RNS and 

carcinogens could minimize the oxidative damage to normal cells and reduce oxidative 

stress in the body (21). Hence sorghum varieties representing varying levels of 3-

deoxyanthocyanins and condensed tannins were selected to further investigate how 

composition of sorghum affects chemoprevetive potential on relevant cancer cells.    
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CHAPTER V 

PHASE II ENZYME INDUCING AND ANTIPROLIFERATIVE POTENTIAL OF 

CRUDE SORGHUM EXTRACTS 

 

NAD(P)H:Quinone Oxidoreductase (QR) Inducing Capacity of Crude Sorghum 

Extracts 

Capacity of dietary phytochemicals to elevate the activity of phase II detoxifying 

enzymes in normal cells is an important cancer initiation blocking mechanism (45). The 

phase II enzyme inducing capacity of crude sorghum extracts should be a useful 

screening tool for determining chemopreventive potential of sorghum. 

Nine sorghum varieties were used to measure the NAD(P)H:quinone 

oxidoreductase (QR) inducing potencial. Four non-tannin sorghums were selected based 

on pericarp pigmentation: KARI-Mtama (white), Mizzou (red), I CSV III (red) and 

Tx430 (black). Five tannin sorghums included two type II tannin sorghum, Cadam and 

CR35; and three type III sorghum, Seredo, Sumac and Hi-Tannin. Because Hepa 1c1c7 

cell growth was affected by the crude sorghum extracts, QR specific inducer ratio which 

was corrected for cell population was reported. 
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Figure 6. Effect of crude non-tannin sorghum extracts on (a) Hepa 1c1c7 murine 
hepatoma cells growth and (b) NAD(P)H:quinone oxidoreductase (QR) specific inducer 
ratio (after correction for cell population). Cells (10,000/well) were induced with 
extracts for 24 h before QR activity analysis. Legend represents concentrations (μg/mL) 
of crude sorghum extracts used while concentrations of Tx430 (black) are shown in 
parentheses.  Error bars represent ± sd from two separate experiments. * indicates 
significantly different QR inducer ratio from that in control cells (p < 0.05, Dunnett’s 
multiple comparison, 2-sided).  
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All the tested crude non-tannin sorghum extracts showed a quadratic except 

KARI-Mtama (white) showed a dose-dependent QR inducing capacity (Figure 6). Tx430 

(black) had the highest QR specific inducer ratio among the four varieties; it doubled QR 

activity at 25 μg/mL and maximally increased QR activity 2.7-fold at 100 μg/mL. Tx430 

(black) did not show significant inhibition of Hepa 1c1c7 growth at the concentrations 

tested, which indicated that the QR activity induced by Tx430 (black) was independent 

of change in cell population. The Tx430 (black) extract contained the highest 3-

deoxyanthocyanin contents (25.8 mg luteolinidin equivalent (LE)/ g of extract, Table 4) 

among all non-tannin sorghum extracts, which may partly explain its high QR inducing 

capacity.  

Two red varieties (Mizzou and I CSV III) showed similar QR specific inducer 

ratio. Mizzou (red) maximized QR activity by 50% at 200 μg/mL; while I CSV III (red) 

increased QR activity by 60% at 200 μg/mL. Mizzou (red) and I CSV III (red) extracts 

contained less 3-deoxyanthocyanin content than Tx430 (black) (9.6 and 4.8 mg LE/g, 

respectively). The difference in 3-deoxyanthocyanin contents could partly explain the 

different QR inducing potency. However composition of 3-deoxyanthocyanins and other 

flavonoids may also affect QR inducing potential in pigmented sorghum varieties.  

Crude extract of white pericarp sorghum KARI-Mtama showed higher QR 

inducing potential than both red varieties; it increased QR activity by almost 60% at the 

concentration of 200 μg/mL and almost doubled QR activity at 400 μg/mL. This 

indicated that non-pigmented phenols in white sorghum likely induced QR activity in 

Hepa 1c1c7 cells.  
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The QR specific inducer ratio of five tannin sorghum is shown in Figure 7. The 

five tannin sorghum crude extracts did not show any QR activity inducing potential. 

Cadam increased QR activity by 20% maximally at 10 μg/mL but this was not 

statistically significant; while CR35 increased QR activity by 40% maximally at 50 

μg/mL. Crude extracts from Cadam and CR35 did not contain detectable condensed 

tannins. Hence it is possible that other phenols which are also present in non-tannin 

sorghums were able to induce QR activity. Seredo and Sumac extracts did not increase 

any significant QR activity at concentrations tested; Hi-Tannin extracts exhibited a 

significant 20-30% QR activity increase at lowest concentration (1 and 5 μg/mL) but the 

QR activity decreased when concentration went up. An inhibitory effect of tannin 

containing sorghum extracts on Hepa 1c1c7 cells was observed when concentration was 

greater than 20 μg/mL. This may partly explain why QR inducing potential was not seen 

in these three varieties. Another possibility is that condensed tannins can not induce QR 

activity or are inhibitors of QR activity. 
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Figure 7. Effect of crude tannin sorghum extracts on (a) Hepa 1c1c7 murine hepatoma 
cells growth and (b) NAD(P)H:quinone oxidoreductase (QR) specific inducer ratio (after 
correction for cell population). Cells (10,000/well) were induced with extracts for 24 h 
before QR activity analysis. Legend represents concentrations (μg/mL) of crude tannin 
sorghum extracts used.  Error bars represent ± sd from two separate experiments. * 
indicates significantly different QR inducer ratio than that in control cells (p < 0.05, 
Dunnett’s multiple comparison, 2-sided). 
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Among the nine sorghum varieties tested, QR specific inducer ratio varied 

according to their compositions: condensed tannins containing crude sorghum extracts 

were non-inducers. Among non-tannin sorghum crude extracts, Tx430 (black), a black 

pericarp sorghum containing the highest level of 3-deoxyanthocyanins, was the most 

potent QR inducer; red pericarp sorghum crude extracts were less efficient QR inducers; 

the QR inducing potential of white sorghum was better than the red ones but not better 

than the black variety. However, taking all the sorghum varieties into account, there was 

no correlation between QR inducing potential and total phenol content or antioxidant 

capacity of the crude sorghum extracts. Condensed tannin containing crude extracts had 

higher total phenol content and antioxidant capacity but no QR inducing potencial; white 

sorghum extracts contained less total phenols with less antioxidant capacity but showed 

a moderate QR inducing capacity.  

Yang and Liu (161) reported that acetone extracts from different varieties of 

fresh grapes were potent QR inducers with QR activity doubling concentration of 600-

800 μg/mL using Hepa 1c1c7 cells. Similarly, the authors suggested that there was no 

positive correlation found between QR induction and antioxidant capacity of these 

varieties of grapes. Additionally, some white varieties of grapes had higher QR 

induction potential than red varieties, which indicated that pigmentation of grapes was 

not correlated with QR inducing potential. Chen and Blumberg (158) used acidified 

methanol and gastrointestinal juice mimics extracted almond skin extracts to induce QR 

in Hepa 1c1c7 cells and found the two extracts behaved differently: acidified methanol 

extract was a QR inducer while gastrointestinal juice extract was QR inhibitor. 
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Srivastava et al. (162) did not find any phase II enzyme inducing potential from 

anthocyanin fractions of blueberry extracts. This indicated that activation of the cellular 

upregulation of phase II enzymes does not necessarily relate to higher antioxidant 

capacity but is more dependent on structure, steric bulk and partition coefficient 

(lipophilicity) (163) of a compound.  

Sorghum is a rich source of different groups of phenolic compounds. It is 

apparent that different groups of phenols have different effects on phase II enzymes. 

Hence it is beneficial to determine the effect of different fractions of sorghum phenols 

on phase II enzyme inducing potential, such as 3-deoxyanthocyanins, flavones and 

flavanones, to obtain a complete picture for how phenolic profiles of various sorghum 

varieties may affect phase II enzyme inducing potential.  

 

Inhibitory Effect of Sorghum Crude Extracts on Human Colon and Esophageal 

Carcinoma Cell Proliferation 

The capacity to inhibit cancer cell proliferation is an important aspect of 

chemoprevention (45). Seven crude sorghum extracts were selected: three condensed 

tannin containing crude extracts from tannin sorghums, Seredo, Sumac and Hi-Tannin; 

four crude extracts from non-tannin sorghums, KARI-Mtama (white), Mizzou White 

(white), Mizzou (red) and Tx430 (black). The two assays used in this study (MTT and 

PicoGreen assay) generally showed the same inhibitory trends for the extracts tested. 

However, we noticed that MTT assay consistently estimated higher viable cell 

population than the PicoGreen assay in preliminary tests. We suspected this was because 



 

 

67

of the interference of the phenols present in the extracts. MTT assay is based on the 

ability of a mitochondrial dehydrogenase enzyme from viable cells to cleave the 

tetrazolium rings of the pale yellow MTT and form a dark blue formazan crystals. The 

number of surviving cells is directly proportional to the level of the formazan product 

created (129). However, phenols in sorghum may reduce MTT and form the dark blue 

color without the presence of viable cells. The color interference due to the extracts 

resulted in higher false reading. Blank sample using only the extracts were used to 

correct for the interference from phenols. 

The inhibitory effect of the seven selected crude sorghum extracts generally 

followed a dose-response pattern but with different inhibitory endpoints (Figure 8 & 9). 

The inhibitory pattern of these extracts on both human colon cancer (HT-29) and 

esophageal cancer (OE33) cell lines was similar. In order to further compare the 

inhibitory effect of sorghum extracts, IC50s (Table 7), a parameter estimates the 

concentration for a compound needed to inhibit 50% of cancer cell proliferation, were 

calculated. A lower IC50 indicated a stronger inhibitory capacity.  
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Figure 8. Inhibition of HT-29 human colon carcinoma cell proliferation by crude 
sorghum extracts (baseline to 0.1% DMSO) measured by MTT (top) and PicoGreen 
(bottom) assays. Cells (2000/well) were induced with extracts for 48h before 
proliferation assay. Error bars represent standard deviation from triplicates. 
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Figure 9. Inhibition of OE33 human lower esophageal adenocarcinoma cell proliferation 
by crude sorghum extracts (baseline to 0.1% DMSO) measured by MTT (top) and 
PicoGreen (bottom) assays. Cells (2000/well) were induced with extracts for 48h before 
proliferation assay. Error bars represent standard deviation from triplicates. 
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Table 7.  Concentration (μg/mL) of Crude Sorghum Extracts Needed to Inhibit 50% of 
HT-29 (colon) and OE33 (lower esophageal) Carcinoma Cell Proliferation (IC50) 

 IC50 (μg/mL) 
Sample HT-29 OE33 
(type) MTT PicoGreen MTT PicoGreen 

KARI-Mtama 
(white) 452 ± 111 b 635 ± 180 b 824 ± 204 b 883 ± 13.8 d 

Mizzou White 
(white) 608 ± 108 b 611 ± 19.8 b 701 ± 44.3 a,b 747 ± 57.1 c 

Mizzou  
(red) 190 ± 0.3 a 262 ± 50.1 a 604 ± 57.8 a,b 553 ± 18.4 b 

Tx430  
(black) 164 ± 22.9 a 141 ± 10.9 a 458 ± 58.9 a 208 ± 7.3 a 

Overall mean 
(non-tannin) 354 412 647 598 

Seredo  
(tannin) 85.0 ± 4.7 a 99.0 ± 1.4 b 131 ± 1.9 b 88.0 ± 1.6 b 

Sumac  
(tannin) 95.6 ± 10.3 a 59.1 ± 18.6 a,b 91.9 ± 6.6 a 51.9 ± 2.4 a,b 

Hi-Tannin 
(tannin) 130 ± 3.0 b 50.6 ± 3.3 a 125 ± 13 b 49.7 ± 11.4 a 

Overall mean 
(tannin) 104 69.6 118 63.1 

Cells (2000/well) were induced with extracts for 48h before proliferation assay. Values ± 
sd (μg/mL) reported from three separate experiments. Tannin sorghum extracts had 
significantly lower IC50s than non-tannin sorghum extracts (p<0.05). Within tannin and 
non-tannin sorghum extract groups, values with different letters within the same column 
were different (Fisher’s LSD, p<0.05). 
 
 
 
 

Tannin sorghum extracts inhibited almost 80% of both HT-29 and OE33 growth 

at around 200 μg/mL and reached 90-95% inhibition at 800 μg/mL. The IC50s of tannin 

sorghum extracts for HT-29 ranged from 50.6-130 μg/mL and 49.7-131 μg/mL for 

OE33. Though the condensed tannin content in these three extracts differed from each 

other (Table 4), the inhibitory effect was generally similar. The black sorghum Tx430 

showed the strongest inhibition potential among the three non-tannin sorghums, with 
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IC50s of 141-458 μg/mL (though statistical analysis was not significant on all assays). It 

inhibited HT-29 growth by more than 90% at 800 μg/mL, which was similar endpoint 

inhibition as the tannin sorghum extracts; it inhibited approximately 70% of OE33 

growth at 800 μg/mL. The Mizzou (red) had IC50s from 190-604 μg/mL, and it achieved 

maximal inhibition of HT-29 (about 65% inhibition) and OE33 (about 55% inhibition) 

growth at 800 μg/mL. The two white varieties KARI-Mtama and Mizzou White had 

similar IC50s from 452 to 883 μg/mL. Both of them achieved 60% inhibition against HT-

29 growth at 800 μg/mL and around 46% inhibition of OE33 proliferation at the same 

concentration. 

Tannin sorghum extracts were stronger GIT cancer cell proliferation inhibitors 

than non-tannin sorghum extracts. For both MTT and PicoGreen assays, crude tannin 

sorghum extracts had significantly lower IC50s than crude non-tannin sorghum extracts 

(p<0.05) (Figure 10). Condensed tannins present in sorghum were probably responsible 

for the higher cancer cell proliferation inhibition. McDougall and others (164) 

determined the antiproliferative capacity of anthocyanin-rich and tannin-rich fractions of 

lingonberry extracts and concluded that tannin-rich fraction had a stronger inhibitory 

potential than anthocyanin-rich fraction.  
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Figure 10. Box plot of IC50s (μg/mL) (concentration needed to inhibit 50% of cell 
growth) of crude tannin and non-tannin sorghum extracts, (a) IC50s on HT-29 
proliferation measured by MTT assay; (b) IC50s on HT-29 proliferation measured by 
PicoGreen assay; (c) IC50s on OE33 proliferation measured by MTT assay; (d) IC50s on 
OE33 proliferation measured by PicoGreen assay. Crude tannin sorghum extracts had 
lower IC50s than crude non-tannin sorghum extracts (all p-values < 0.05). 
 

 

Due to the stronger inhibition observed in Tx430 (black) and Mizzou (red) 

extracts among non-tannin sorghum extracts, 3-deoxyanthocyanins may have 
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contributed to the inhibitory potential among non-tannin pigmented sorghum varieties. 

Shih et al. (19) indicated aglycones of 3-deoxyanthocyanins, apigeninidin and 

luteolinidin,  had stronger antiproliferative capacity than their anthocyanidin analogs. 

Additionally, non-pigmented sorghum flavonoids could have inhibitory effect against 

GIT cancer cell growth based on the inhibitory capacity observed in white sorghum 

extracts.  

Overall, all sorghum extracts tested had relative strong inhibition capacity against 

HT-29 growth (IC50s 50.6-635 μg/mL) than other natural phenol extracts reported in 

literature. Yi et al. (165) observed that crude extracts from various muscadine grapes had 

IC50s of 1000-7000 μg/mL (48 h incubation) against HT-29 growth measured by MTT 

assay. Netzel and others (166) reported that anthocyanin fraction from black carrots had 

an IC50 greater than 1000 μg/mL (48 h incubation) against HT-29 growth using MTT 

assay. This suggests that compounds in sorghum extracts may have stronger cancer 

growth inhibitory potency than those found in other resources, which agrees with Shih et 

al. (19). 

The antiproliferative effect of sorghum extracts was correlated with phenolic 

profiles and antioxidant properties. The IC50s had a negative correlation with ABTS 

values (Pearson’s correlation 0.778-0.941), total phenol content (Spearman’s rho 0.844-

0.944) and ORAC values of the crude extracts (Spearman’s rho 0.713-0.867) (p all less 

than 0.05) (Table 8). Yang et al. (157) determined the antiproliferative capacity of crude 

extracts from nuts and concluded that inhibitory potency was correlated with phenolics 

and flavanoids contents as well as total antioxidant capacity of the extracts. By this 
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token, we can use phenol content and antioxidant capacity of a crude sorghum extract as 

an indicator of its antiproliferative potential. However, the correlation between 

antiproliferation and antioxidant potential of crude extract can be misleading because 

different groups of phenols may have different impact on antioxidant potential. For 

example, tannins are stronger hydrogen donators (94, 152, 153), but tannin content itself 

did not correlate with the antioxidant capacity of crude tannin extracts (Table 5). So 

phenolic composition should be considered when correlate phenol content and 

antioxidant potential, further when correlate antioxidant and antiproliferation potential. 

Thus we may only conclude that phenol composition affects GIT cancer growth by this 

correlation. 

 

 

Table 8. Correlation between IC50s and Chemical Properties of Crude Sorghum Extracts 

 
Correlation coefficient 

IC50 (μg/mL) 
HT-29 OE33 

MTT PicoGreen MTT PicoGreen

Pearson’s 
Correlation 

ABTS -0.778** -0.839** -0.904** -0.941** 
ORAC -0.666* -0.652* -0.759** -0.709** 

Phenol content -0.659* -0.705* -0.849** -0.791** 

Spearman’s 
rho 

ABTS -0.820** -0.944** -0.860** -0.965** 
ORAC -0.841** -0.713** -0.867** -0.727** 

Phenol content -0.844** -0.937** -0.923** -0.944** 
     *correlation is significant at the 0.05 level (2-tailed). 
     **correlation is significant at the 0.01 level (2-tailed).  
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For sorghum, separation of the crude extract into different phenol fractions 

would determine the role of each group of phenol in chemoprevention. Identification of 

the specific active components is also needed to determine how structure of these 

components affects the chemopreventive capacity. Based on this information, 

mechanisms involved in chemoprevention of sorghum phenols would be determined, i.e. 

mechanisms for inducing phase II enzymes; mechanisms for inhibit cancer cell 

proliferation, to see if apoptosis is induced or cell cycle is arrested. This will open up 

opportunities to utilize sorghum as a rich and economical source of ingredients for 

health-related industries.  
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CHAPTER VI 

EFFECT OF 3-DEOXYANTHOCYANIDIN STRUCTURE ON PHASE II 

ENZYME INDUCING AND ANTIPROLIFERATIVE POTENTIAL 

 

Uda et al. (167) reported that among natural flavonoids, structure had an impact 

on the capacity to induce phase II enzyme, NAD(P)H: quinone oxidoreductase (QR). 

They suggested a 2-3 double bond on the C-ring was essential to induce QR; i.e. 

catechin was not QR inducer but apigenin was. Shih et al. (19) reported that aglycones of 

3-deoxyanthocyanins exhibited stronger antiproliferative capacity than their 

anthocyanidin analogs. Additionally, relatively strong QR inducer and antiproliferative 

potential of crude extract from Tx430 (black) sorghum made it essential to determine 

effect of structure on the chemopreventive potential of the unique 3-deoxyanthocyanins. 

Hence two groups of major sorghum 3-deoxyanthocyanin aglycones, apigeninidin and 

luteolinidin and their methoxylated derivatives, were used to determine the effect of 3-

deoxyanthocyanidin structure on their QR inducing and human colon and esophageal 

cancer cell proliferation inhibition capacity.  

 

Effect of 3-Deoxyanthocyanidin Structure on Antioxidant Capacity 

The antioxidant capacity of 3-deoxyanthocyanidins is shown in Table 9.  No 

meaningful correlation between structure and ABTS values was observed. The possible 

reason is antioxidant capacity of individual molecules is affected by various reaction 

factors, such as solvent system, reaction time, probes, protocols, etc. As to ORAC 
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values, methoxylation reduced ORAC antioxidant capacity for both apigeninidin and 

luteolinidin.  

 

Table 9.  Free Radical Scavenging (Antioxidant) Capacity of 3-Deoxyanthocyanidins. 
Results Were Expressed as mol Trolox Equivalent (TE)/ mol Sample.   

Mean ± Standard deviation was reported from three separate replicates. Within columns, 
values with different letters are different, p<0.05 (Turkey’s HSD). 

 

 

It has been reported that structure has an important impact on antioxidant 

capacity of flavonoids. Hydroxylation, especially ortho-(3’,4’-) dihydroxyl group on the 

B-ring, enhances free radical scavenging capacity and metal chelating capacity (154, 

168, 169). On the other hand, hydroxylation or methoxylation on the A-ring could 

decrease or increase antioxidant capacity (154, 168, 169). Our study found that 

methoxylated luteolinidin and apigeninidin derivatives generaly had lower antioxidant 

capacity than non-methoxylated aglycones. We also observed that ORAC assay 

measured a bigger difference between apigeninidin/luteolinidin and their methoxylated 

derivatives than ABTS assay. The different chemical principle of the two assays may 

contribute to this difference observed. More 3-deoxyanthocyanins standards are needed 

  
ORAC  

(mol TE/ mol sample) 
ABTS 

(mol TE/ mol sample) 
Apigeninidin 7.4 ± 0.7 a 4.0 ± 0.2 a,b,c 
7-Methoxyapigeninidin 4.7 ± 0.9 a,b 3.7 ± 0.1 b,c 
5-Methoxyapigeninidin 2.9 ± 0.4 b 2.6 ± 0.02 d 
5,7-Dimethoxyapigeninidin 2.9 ± 1.0 b 3.6 ± 0.1 c 
Luteolinidin 7.6 ± 1.0 a 4.3 ± 0.1 a,b 
5,7-Dimethoxyluteolinidin 4.4 ± 0.6 a,b 4.6 ± 0.1 a 
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in order to determine the effect of different substitution pattern on their antioxidant 

capacity.  

 

Effect of 3-Deoxyanthocyanidin Structure on NAD(P)H:Quinone Oxidoreductase 

(QR) Inducing Capacity 

The QR specific inducer ratios of apigeninidin and its derivatives are shown in 

Figure 11. Apigeninidin doubled QR activity at 20 μM, which was also its maximal 

inducer ratio. 7-Methoxyapigeninidin showed higher maximal QR inducing potential, 

almost 2.7-fold increase at 50 μM. 5-Methoxyapigeninidin maximally increased QR 

activity by 70% at 50 μM. 5,7-Dimethoxyapigeninidin had the strongest inducing 

potency among apigeninidin derivatives: doubled the QR activity at 0.2 μM; and 

increased to 3-fold at 5 μM.  

The QR inducer ratio of luteolinidin and its derivatives are shown in Figure 12. 

Luteolinidin did not show significant increase of induced QR activity at tested 

concentrations. 5,7-Dimethoxyluteolinidin on the other hand increased QR activity by 

2.4-fold at 50 μM and maximally 4.2-fold at 100 μM. We noticed some pure compounds 

used in this study, besides 5,7-dimethoxyluteolinidin, 7-methoxyapigeninidin, 

sulforaphane and genistein, inhibited Hepa 1c1c7 growth at most concentrations tested. 

It suggested that the upregulated QR activity may be due to the potency of those 

compounds or the stress from inhibition of proliferation. The QR activity can be induced 

in response of xenobiotics, antioxidants, oxidants, heavy metals, UV, light, stress 

conditions and ionizing radiation (170-172), and its activity is also upregulated in 
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malignant tissues (170). Hence the upregulated QR activity observed in this study may 

come from the effect of inhibited proliferation, not merely the direct inducing potency of 

the compound. Sulforaphane, the known QR inducer isolated from broccoli, doubled the 

QR activity between 0.2-0.5 μM and had a maximal QR activity increase of 4.2-fold at 

10 μM (Figure 13), which confirmed to Prochaska’s findings (123). Genistein, the 

isoflavone isolated from soybean, doubled QR activity at 10 μM and had a maximal QR 

specific inducer ratio of 3.7 at 50 μM (Figure 13), which agreed with what Yang and Liu 

reported (161).  

The dimethoxylated forms of 3-deoxyanthocyanin aglycones had equivalent 

maximal QR specific inducer ratio as sulforaphane and genistein tested under the same 

experimental conditions. Gao and others (124) reported that nitric oxide-donating 

aspirin, the most extensively studied nitric oxide-donating non-steroidal anti-

inflammatory drug, increased QR activity by 2.3-fold maximally at 100 μM. Yang and 

Liu (161) reported only quercetin and resveratrol exhibited QR inducing capacity among 

common grape flavonoids, with maximal 3.5-fold increase at 30 μM and 2.2- fold at 50 

μM, respectively. This suggested that dimethoxylated apigeninidin and luteolinidin have 

strong potential as chemopreventive agents. 
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Figure 11. Effect of apigeninidin and its derivatives on (a) Hepa 1c1c7 murine hepatoma 
cells growth and (b) NAD(P)H:quinone oxidoreductase (QR) specific inducer ratio (after 
correction of cell population). Cells (10,000/well) were induced with extracts for 24 h 
before QR activity analysis. Legend represents concentrations (μM) used while 
concentrations of 5,7-dimethoxyapigeninidin are shown in parentheses.  Error bars 
represent ± sd from two separate experiments. * indicates significantly different QR 
inducer ratio than that in control cells (p < 0.05, Dunnett’s multiple comparison, 2-
sided). 
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Figure 12. Effect of luteolinidin and 5,7-dimethoxyluteolinidin on (a) Hepa 1c1c7 
murine hepatoma cells growth and (b) NAD(P)H:quinone oxidoreductase (QR) specific 
inducer ratio (after correction of cell population). Cells (10,000/well) were induced with 
extracts for 24 h before QR activity analysis. Legend represents concentrations (μM) 
used while concentrations of 5,7-dimethoxyluteolinidin are shown in parentheses.  Error 
bars represent ± sd from two separate experiments. * indicates significantly different QR 
inducer ratio than that in control cells (p < 0.05, Dunnett’s multiple comparison, 2-
sided). 
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Figure 13. Effect of sulforaphane and genistein on (a) Hepa 1c1c7 murine hepatoma 
cells growth and (b) NAD(P)H:quinone oxidoreductase (QR) specific inducer ratio (after 
correction of cell population). Cells (10,000/well) were induced with extracts for 24 h 
before QR activity analysis. Legend represents concentrations (μM) used while 
concentrations of genistein are shown in parentheses.  Error bars represent ± sd from two 
separate experiments. * indicates significantly different QR inducer ratio than that in 
control cells (p < 0.05, Dunnett’s multiple comparison, 2-sided). 
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The findings indicated a structure-activity relationship of QR inducing capacity 

of 3-deoxyanthocyanidins: methoxylation of the A-ring improved QR inducing capacity; 

position of methoxylation (like 7- or 5- on the A-ring) also influenced it. The results 

confirmed that the efficacy of a compound to induce phase II enzyme does not 

necessarily relate to its antioxidant capacity. The structure of the compound probably 

plays a more important role. Uda et al. (167) suggested that a double bond at the 2-3 

position of the C-ring was essential for a flavonoid to induce QR activity and 

hydroxylation of the B-ring was not essential. Harris et al. (163) proposed that 

bioactivity of phenolics correlated with steric bulk (structural configuration) as well as 

lipophilicity (partition coefficient). At near neutral pH ranges, 3-deoxyanthocyanins 

exist primarily as quinoidal bases (173). Awika (174) reported that some of these 

sorghum 3-deoxyanthocyanin quinoidal bases contained a 2-3 double bond on their C-

ring, which may partly explain the QR inducing capacity observed in this study. 

Methoxyl substitution of 3-deoxyanocyanidins changes their steric configuration and 

enhances their lipophilicity, which may afford them better affinity to specific cell 

membrane binding sites or may favor their migration across the cell membrane. This can 

facilitate the expression of phase II enzymes. 

The 3-deoxyanthocyanidins can be used as dietary supplements or 

chemopreventive agents. A systematic study of the structure-activity relationship of 3-

deoxyanthocyanins is needed to understand how structure affects the activation of 

cellular mechanisms to enhance the expression of phase II enzymes. Other phenolic 

groups present in sorghum also require investigation of their structure-activity 
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relationship. Uda et al. (167) recognized flavonols as the most effective QR inducer 

among flavonoids. Lemon yellow sorghums are a rich source of flavonols (109), and if 

we demonstrate the effectiveness of sorghum flavonols to induce phase II enzymes, it 

will enhance opportunity to utilize sorghum.    

 

Inhibitory Effect of 3-Deoxyanthocyanidin Structure on Human Colon and 

Esophageal Carcinoma Cell Proliferation 

According to Shih et al. (19), the aglycones of sorghum 3-deoxyanthocyanins, 

apigeninidin and luteolinidin, had greater inhibitory potency against human cancer cell 

growth than their 3-hydroxylated analogs, pelargonidin and cyanidin; moreover 

luteolinidin was a stronger inhibitor than apigeninidin. This evidence drove us to 

investigate how the structure of 3-deoxyanthocyanidins affected their antiproliferative 

potency. Genistein, the isoflavone in soybean was used as a positive control in the study.  

To compare the effect of structure on antiproliferative potential of 3-

deoxyanthocyanidins tested, IC50s (μM) of each 3-deoxyanthocyanidin were calculated 

(Table 10). After 48 h incubation, apigeninidin inhibited approximately 60% and 50% of 

HT-29 and OE33 growth, respectively, at 200 μM (Figures 14 and 15), with IC50s from 

81.5-284 μM. 7-Methoxyapigeninidin had stronger inhibitory potential than 

apigeninidin: it inhibited almost 90% of HT-29 growth and 70% of OE33 growth at 200 

μM with IC50s from 40.1-87.9 μM. 5-Methoxyapigeninidin had similar inhibitory 

potency on both HT-29 and OE33 cell lines as its 7-methoxylated analog, with IC50s 

from 48.4-57.7 μM. 5,7-Dimethoxyapigeninidin had the strongest inhibitory potential 
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among apigeninidin derivatives: it almost inhibited 95% of HT-29 and OE33 growth at 

50 μM, IC50s were 8.3-23.4 μM on both cell lines.  

Among luteolinidin and its derivatives, luteolinidin reduced approximately 50% 

and 45% of HT-29 and OE33 growth at 200 μM, respectively (Figures 14 and 15), with 

IC50s from 172-219 μM. 7-Methoxyluteolinidin was a stronger inhibitor than luteolinidin 

on both cell lines, with IC50s 91.4-192 μM. 5,7-Dimethoxyluteolinidin had strongest 

inhibition capacity among luteolinidin derivatives: it inhibited 60-65% of HT-29 and 

OE33 growth at 200 μM and had IC50s from 47.1-105 μM. Genistein, as a control, had 

IC50s from 47.8-111 μM. 

The most obvious structure-activity relationship of 3-deoxyanthocyanidins was 

that methoxylation of the A-ring enhanced antiproliferative capacity. The IC50 trends 

were: di-methoxylated aglycones < mono-methoxylated < non-methoxylated (Figure 

16). The position of methoxyl group on the A-ring did not affect this potential. 

Apigeninidin and its derivatives also generally had lower IC50s than luteolinidin and its 

derivatives, though this was more apparent in the HT-29 cells (Figures 17). 
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Table 10. Concentration (μM) of Sorghum 3-Deoxyanthocyanidins Needed to Inhibit 
50% of HT-29 (colon) and OE33 (lower esophageal) Carcinoma Cell Proliferation (IC50) 

Cells (2000/well) were induced with samples for 48h before proliferation assay. 
Genistein, an isoflavone isolated in soybean, was used as a positive control in this study. 
Values ± sd (μg/mL) reported from three separate experiments. Within apigeninidin and 
luteolinidin and their correspond derivatives, values with different letters within the 
same column were different, and genistein was not included in this Post Hoc test 
(Fisher’s LSD, p<0.05). 
 

 

 

 IC50 (μM) 
 HT-29 OE33 
 MTT PicoGreen MTT PicoGreen 

Apigeninidin 81.5 ± 11.6 c 106 ± 11.8 c 284 ± 11.4 d 276 ± 11.8 c 
7-Methoxyapigeninidin 50.3 ± 7.4 b 40.1 ± 1.9 b 87.9 ± 10.6 c 51.9 ± 0.8 b 
5-Methoxyapigeninidin 53.6 ± 12.6 b 48.4 ± 6.3 b 57.7  ± 0.6 b 55.0 ± 10.6 b 

5,7-Dimethoxyapigeninidin 13.7 ± 0.1 a 8.3 ± 0.7 a 23.4 ± 3.4 a 22.7 ± 0.9 a 
Overall mean 

(apigeninidin and 
derivatives) 

49.7 50.7 113 101 

Luteolinidin 199 ± 11.2 b 188 ± 20.6 c 219 ± 17.2 b 172 ± 20.7 c 
7-Methoxyluteolinidin 91.4 ± 11.5 a 129 ± 6.2 b 192 ± 2.8 b 94.4 ± 7.2 b 

5,7-Dimethoxyluteolinidin 89.6 ± 11.1 a 53.3 ± 0.5 a 105 ± 0.8 a 47.1 ± 0.8 a 
Overall mean 

(luteolinidin and 
derivatives) 

127 123 172 104 

Genistein 97.4 ± 15.3 47.8 ± 2.6 84.7 ± 6.5 111 ± 4.3 
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Figure 14.  Inhibition of HT-29 human colon carcinoma cell proliferation by sorghum 3-deoxyanthocyanidins (baseline to 
0.1% DMSO) measured by MTT (left) and PicoGreen (right) assays. Cells (2000/well) were induced with samples for 48h 
before proliferation assay. Error bars represent standard deviation from triplicates. 
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Figure 15. Inhibition of OE33 human lower esophageal adenocarcinoma cell proliferation by sorghum 3-deoxyanthocyanidins 
(baseline to 0.1% DMSO) measured by MTT (left) and PicoGreen (right) assays. Cells (2000/well) were induced with extracts 
for 48h before proliferation assay. Error bars represent standard deviation from triplicates.
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  To explain this structure-activity relationship of 3-deoxyanthocyanidins, we 

tried to correlate their inhibition capacity with antioxidant capacity (Table 11). The 

ABTS antioxidant capacity of 3-deoxyanthocyanidins had a positive non-linear 

correlation with IC50s measured by MTT assay on both cell lines; while ORAC 

antioxidant capacity had a positive linear correlation with IC50s measured by both MTT 

and PicoGreen assays and on both cell lines. The correlation suggested lower antioxidant 

capacity actually indicated stronger antiproliferative potential. The ORAC values 

seemed to be better predictors because methoxylation reduced ORAC values but 

enhanced antiproliferative potency. Since antioxidant capacity of a compound is highly 

related to its structure and the method used to measure it, antioxidant capacity may not 

have a direct relation with antiproliferative potential. 

 The antiproliferative potential of 3-deoxyanthocyanidins indicated a strong 

structure-activity relationship: methoxylation on the A-ring enhanced inhibitory potency. 

Hydroxylation on the B-ring could reduce inhibitory potency but this relationship may 

be cell line specific. There is little information on the structure-antiproliferation potential 

of 3-deoxyanthocyanidins. However, the inhibitory effect of anthocyanin aglycone 
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Figure 16. Box plot of IC50s (μg/mL) (concentration needed to inhibit 50% of cell 
growth) among non-, mono-, and di-methoxylated 3-deoxyanthocyanidins, (a) IC50s on 
HT-29 proliferation measured by MTT assay (p<0.072); (b) IC50s on HT-29 proliferation 
measured by PicoGreen assay (p<0.014); (c) IC50s on OE33 proliferation measured by 
MTT assay (p<0.002); (d) IC50s on OE33 proliferation measured by PicoGreen assay 
(p<0.001). Boxes with different letters within the same plot were different (p<0.05, 
Fisher’s LSD). Non-, non-methoxylated 3-deoxyanthocyanidins, apigeninidin and 
luteolinidin; mono-, mono-methoxylated 3-deoxyanthocyanidins, 5-
methoxyapigeninidin, 7-methoxyapigeninidin, and 7-methoxyluteolinidin; di-, di-
methoxylated 3-deoxyanthocyanidins, 5,7-dimethoxyapigeninidin and 5,7-
dimethoxyluteolinidin. 
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Figure 17. Box plot of IC50s (μg/mL) (concentration needed to inhibit 50% of cell 
growth) between apigeninidin derivatives and luteolinidin derivatives, (a) IC50s on HT-
29 proliferation measured by MTT assay (p<0.014); (b) IC50s on HT-29 proliferation 
measured by PicoGreen assay (p<0.042); (c) IC50s on OE33 proliferation measured by 
MTT assay (p<0.473); (d) IC50s on OE33 proliferation measured by PicoGreen assay 
(p<0.828). Api family, apigeninidin, 5-methoxyapigeninidin, 7-methoxyapigeninidin, 
and 5,7-dimethoxyapigeninidin; lut family, luteolinidin, 7-methoxyluteolinidin, 5,7-
dimethoxyluteolinidin. 
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Table 11. Correlation between IC50s and Antioxidant Properties of  
 3-Deoxyanthocyanidin Standards 

 
Correlation coefficient 

IC50 (μM) 
HT-29 OE33 

MTT PicoGreen MTT PicoGreen
Pearson’s 

Correlation 
ABTS 0.499 0.377 0.461 0.273 
ORAC 0.732** 0.772** 0.887** 0.804** 

Spearman’s 
rho 

ABTS 0.747** 0.551 0.660* 0.239 
ORAC 0.687* 0.711** 0.799** 0.673* 

     *correlation is significant at the 0.05 level (2-tailed). 
     **correlation is significant at the 0.01 level (2-tailed). 

 

structure on carcinogenesis is mostly affected by substitution on the B-ring: number of 

hydroxyl/methoxyl group on the B-ring of anthocyanin aglycone positively correlated 

with stronger cancer cell growth inhibitory action (175, 176). Hydroxylation also 

enhanced apoptosis inducing (177) and antiproliferative potential (178) of flavones. Our 

findings were in accordance with the literature on methoxyl substitution but did not 

match the literature on hydroxyl substitution. Other reports showed methoxyl 

substitution and substitution of other lipophilic groups enhanced antiproliferative 

potency of phenolic compounds (179, 180). Greater lipophilicity allows easier 

penetration into the cell (181). Hydroxylation of luteolinidin and its derivatives reduce 

their lipophilicity compared to apigeninidin and its derivatives hence luteolinidin and its 

derivatives may not easily get into cells.  

For future study, a more complete structure-activity relationship of 3-

deoxyanthocyanins is desired. Research on chemopreventive effect of hydroxylation and 

methoxylation at different positions on 3-deoxyanthocyanin aglycones is needed. 
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Because glycosylation of flavonoids reduced their inhibitory activity against human 

cancer cell lines (178), it is highly recommended to study the effect of glycosylation, the 

most common substitution pattern in sorghum 3-deoxyanthocyanins, on their 

chemopreventive potentials. Additionally, Marko and others (176) indicated that the 

effect of B-ring substitution of anthocyanidins might vary depending on different assays 

used. So the research on chemopreventive potential of 3-deoxyanthocyanins should 

involve different mechanisms (i.e. apoptosis induction, cell cycle arrest, and cell 

membrane sites binding) on various cell lines. Other phenolic compounds in sorghum, 

such as flavones and flavonols deserve further study on their chemopreventive potential. 

Daskiewicz and co-workers (182) reported that among 42 flavonoids with different 

substitution at various positions examined for human cancer cell antiproliferation 

capacity, flavones and flavonols possessed greater antiproliferative activity than 

chalcones and flavanones. The study on all major groups of sorghum phenols will be of 

great benefit to utilize sorghum in health related industries. 
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CHAPTER VII 

SUMMARY 

 

We observed a wide rage of phenolic profiles among different varieties of 

sorghum. Tannin sorghums contained higher total phenols (p<0.001), ABTS (p<0.001) 

and ORAC (p<0.006) antioxidant capacity than non-tannin sorghums, similar to findings 

of Awika et al. (95) and Dykes (109). Among non-tannin sorghum grains, 3-

deoxyanthocyanin content had a significant correlation with total phenol content 

(p<0.01), ABTS (p<0.01), and ORAC (p<0.05) antioxidant capacity. The crude 70% 

actone extracts of sorghum grains had similar phenolic profiles as their grains. However, 

the ORAC antioxidant capacity of the extracts did not differ between tannin and non-

tannin extracts (p<0.194) hence tannin content of the extracts did not correlate with their 

ORAC values. Some non-tannin sorghum extracts, such as 98BRON155, 99LGWO50, 

Tx2911, had high ORAC values as tannin sorghum extracts. The extraction process may 

concentrate some groups of phenols in these varieties (i.e. flavanones, flavones, flavan-

4-ols (109)) that exhibited high ORAC values among those sorghums.  

The NAD(P)H: quinone reductase (QR) inducing capacity of selected sorghum 

varieties was different between tannin and non-tannin sorghums. Tannin sorghums did 

not show QR inducing potential. Among non-tannin sorghums, black sorghum (Tx430) 

doubled QR activity at 25 μg/mL, and increased the activity 2.7-fold at 100 μg/mL. Two 

red varieties (Mizzou and I CSV III) increased QR activity by 50-60% at 200 μg/mL 

while the white variety (KARI-Mtama) doubled QR activity at 400 μg/mL. The QR 
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inducing capacity did not correlate with the phenol content or antioxidant capacity of 

selected varieties. This indicated that the QR inducing potential may be related to 

structure of active phenols present in sorghums. Further investigation into how phenol 

composition affects phase II enzyme inducing capacity is needed. Future study could 

focus on 1) the phase II enzyme inducing potential of fractionated sorghum extracts 

containing isolated phenols (i.e. 3-deoxyanthocyanins, flavones, flavanones), 2) the 

specific cellular mechanism of the inducing potential (i.e. measure expression of genes 

that upregulate phase II enzymes), and 3) other enzymes in phase II family. 

All the crude sorghum extracts tested had a relatively strong antiproliferative 

potential against human gastrointestinal cancer cell proliferation, though inhibitory 

potential was different between tannin and non-tannin sorghum varieties. Tannin 

sorghums generally had a stronger inhibitory effect on cancer cell growth than non-

tannin sorghums (IC50s 49.7-131 vs. 141-883 μg/mL). Among non-tannin sorghums, 

black sorghum (Tx430) showed the strongest antiproliferative potential followed by red 

(Mizzou), then white (KARI-Mtama and Mizzou White) varieties. This inhibitory effect 

correlated with total phenol content and antioxidant capacity of the extracts. This 

indicated that the antioxidant capacity may be indicators of inhibitory potential. Some 

varieties of strong antioxidant non-tannin sorghum were not tested in our study, i.e. 

98BRON155, 99LGWO50, and Tx2911, hence it will be beneficial if we can use them to 

confirm this theory. Future study could 1) determine the antiproliferative potential of 

different phenolic fractions of sorghum extracts, 2) target specific mechanisms of the 

antiproliferative effect, such as induction of apoptosis, arresting cell cycles, or 
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preventing DNA damage, 3) determine the antiproliferative potential of sorghum using 

additional gastrointestinal and other types of cancer cells, to have a better understanding 

of the chemopreventive properties of sorghum. 

 Among the 3-deoxyanthocyanidins tested, the activity trends for both QR 

inducing and antiproliferation were similar: methoxylation improved the potency of 

apigeninidin and luteolinidin. On the other hand, apigeninidin and its methoxylated 

derivatives generally have stronger antiproliferative potential than luteolinidin and 

derivatives. For future study, 1) more substitution pattern, i.e. glycosylation, 

hydroxylation, multi-methoxylation/hydroxylation, of 3-deoxyanthocyanidins need to be 

studied for a complete structure-activity relationship, 2) specific cellular 

chemopreventive mechanisms, such as affinity to bind specific cell membrance sites, 

permeability across the cell membrane, induction of apoptosis, cell cycle arrest, and 

repair of damaged DNA need to be studied, 3) other groups of phenols present in 

sorghum (i.e. flavones, flavanones, flavol-4-ols) need to be studied for their 

chemopreventive properties. 

 On the whole, we observed a relatively strong chemopreventive potential of 

sorghums with different phenolic compositions. Future studies should not only aim at the 

aforementioned chemopreventive aspects, but also focus on the effect of food 

processing, storage, and use of additives on the chemopreventive potentials of sorghum 

phenols. Also, determining the chemopreventive roles of sorghum on healthy population 

is desirable. This information can be used to promote the utilization of sorghum grains, 

crude extracts, and isolated compounds. Applications could target direct food use, use as 
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functional food ingredients, and dietary supplements. The information would also be 

useful to breeding programs to selectively breed sorghum varieties for specific health 

applications.  
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