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ABSTRACT

Upscaling Methods for Multi-Phase Flow and Transport

in Heterogeneous Porous Media. (December 2009)

Yan Li, B.S., Shandong University, China;

M.S., Shandong University, China

Chair of Advisory Committee: Dr. Yalchin Efendiev

In this dissertation we discuss some upscaling methods for flow and trans-

port in heterogeneous reservoirs. We studied realization-based multi-phase flow and

transport upscaling and ensemble-level flow upscaling. Multi-phase upscaling is more

accurate than single-phase upscaling and is often required for high level of coarsening.

In multi-phase upscaling, the upscaled transport parameters are time-dependent func-

tions and are challenging to compute. Due to the hyperbolic feature of the saturation

equation, the nonlocal effects evolve in both space and time. Standard local two-phase

upscaling gives significantly biased results with reference to fine-scale solutions. In

this work, we proposed two types of multi-phase upscaling methods, TOF (time-of-

flight)-based two-phase upscaling and local-global two-phase upscaling. These two

methods incorporate global flow information into local two-phase upscaling calcula-

tions. A linear function of time and time-of-flight and a global coarse-scale two-phase

solution (time-dependent) are used respectively in these two approaches. The local

boundary condition therefore captures the global flow effects both spatially and tem-

porally. These two methods are applied to permeability distributions with various

correlation lengths. Numerical results show that they consistently improve existing

two-phase upscaling methods and provide accurate coarse-scale solutions for both

flow and transport.

We also studied ensemble level flow upscaling. Ensemble level upscaling is up-
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scaling for multiple geological realizations and often required for uncertainty quantifi-

cation. Solving the flow problem for all the realizations is time-consuming. In recent

years, some stochastic procedures are combined with upscaling methods to efficiently

compute the upscaled coefficients for a large set of realization. We proposed a fast

perturbation approach in the ensemble level upscaling. By Karhunen-Loève expansion

(KLE), we proposed a correction scheme to fast compute the upscaled permeability

for each realization. Then the sparse grid collocation and adaptive clustering are cou-

pled with the correction scheme. When we solve the local problem, the solution can

be represented by a product of Green’s function and source term. Using collocation

and clusering technique, one can avoid the computation of Green’s function for all

the realizations. We compute Green’s function at the interpolation nodes, then for

any realization, the Green’s function can be obtained by interpolation. The above

techniques allow us to compute the upscaled permeability rapidly for all realizations

in stochastic space.
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CHAPTER I

INTRODUCTION

Subsurface formations are characterized by strong heterogeneities occurring on

multiple length scales. High-resolution formation descriptions are often generated

through geostatistical simulation by integrating data from different sources and at

various scales. Due to the very high resolution involved, direct numerical simulation

of subsurface flow is usually not feasible. Therefore upscaling procedures are often

applied to coarsen the highly detailed models to scales that are suitable for flow

simulation. Flow and transport are the two main mechanisms in subsurface flow.

In this dissertation, we will discuss some upscaling methods for flow and transport

problem in porous media.

The main idea of upscaling is to generate coarse-scale equations, which may

not be same as fine-scale equations. The coarse-scale parameters are computed by

solving local fine-scale problems. Based on upscaled parameters, upscaling in porous

media can be classified as upscaling of single-phase flow parameters and upscaling

of multiphase transport parameters. The single-phase flow upscaling considers only

the upscaling of absolute permeability k, and represents the most commonly applied

upscaling technique in practice (see reviews, e.g., [32, 18, 19], for a variety of methods).

The upscaling of multiphase transport parameters involves, in addition, rock-fluid

properties, such as phase relative permeabilities kraj . These upscaled parameters are

time-dependent functions (through phase saturations), and are more challenging to

compute. This type of upscaling is intended to capture the transport of injected fluid

This dissertation follows the style of the Multiscale Modeling and Simulation.
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and its mobility effects on flow, and is especially required in a high level of coarsening.

Reviews and recent studies (e.g., [1, 9, 5]) presented different methods and discussed

general challenges in multiphase upscaling.

With any upscaling method, a well-known issue lies in that its accuracy can be

significantly affected by local boundary conditions imposed to compute the upscaled

quantities. In recent years, significant progress has been made for the upscaling of

single-phase flow parameters. Based on the flow problems solved in the upscaling

calculations, there exist a series of methods, ranging from local, quasi-global, to

global approaches. In the upscaling of two-phase transport functions, the issue of

local boundary conditions becomes more severe because of the need of boundary

conditions for both pressure and saturation equations. Due to the hyperbolic feature

of the saturation equation, the nonlocal effects evolve in space and time. Standard

local two-phase upscaling gives significantly biased results with reference to fine-scale

solutions. Although there exist global two-phase upscaling methods, it is important

to note that unlike global single-phase upscaling, global two-phase upscaling may not

be feasible in practice.

We developed two type of two-phase upscaling approaches using global flow infor-

mation in local boundary conditions. One is TOF-based two-phase upscaling, where

we use a linear function of time t and time-of-flight τ accounting for temporal and

spatial trend in saturation. The other approach is local-global two-phase upscaling.

The global coarse-scale two-phase solution is directly imposed onto local boundary

condition for both pressure and saturation. Since global coarse-scale solution and lo-

cal fine-scale simulation has different time scale, we use the average of local saturation

as a criteria to update boundary conditions. This approach entails the exchange of

global coarse and local fine-scale flow information in space and time. Both TOF-based

and local-global two-phase upscaling significantly improve over existing method and
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provide accurate predictions in close agreement with the fine-scale reference solution.

In this dissertation, we also study ensemble level upscaling. As we know, the

media properties often contain uncertainties. These uncertainties are usually param-

eterized and one has to deal with a large set of permeability fields (realizations). The

upscaling for multiple realizations is the ensemble level upscaling. The ensemble level

upscaling approach aims to achieve agreement between the fine and coarse-scale flow

models at the ensemble level, rather than realization by realization agreement. For

this purpose, flow-based upscaling calculations are combined with some statistical

procedure to efficiently compute the upscaled parameters. An ensemble level upscal-

ing, proposed by Y. Chen and L. Durlofsky, computes upscaled coefficients via some

sampled realizations [7]. A collocation method uses the upscaled coefficients on a

sparse grid to interpolate the upscaled coefficients for a given realization [13].

Based on Karhunen-Loève expansion (KLE), we proposed a correction scheme

to compute the upscaled absolute permeabilities. In a high dimensional stochastic

space R
N , we solve the local problem in a lower dimensional space R

m of R
N , where

m ≤ N . Then using Green’s function and collocation technique, we are able to

compute the upscaled permeabilities for a random realization in R
N . Especially, the

Smolyak sparse grid nodes are used in collocation. Due to the special distribution

of 1st level Smolyak nodes, we only solve 2m + 1 of 2N + 1 local problems. The

other 2N − 2m nodes are on a hyper-plane, where we can use the correction scheme

to rapidly compute upscaled permeabilites. We also proposed an adaptive clustering

technique. A large set of random variables can be divided into a group of clusters

and in each cluster we only need solve local problem for a representative realization.

Thus, the number of variables are greatly reduced.

The dissertation proceeds as follows. A literature review on the upscaling of flow

and transport is presented in Chapter II. It includes single-phase upscaling, multi-
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phase upscaling and local boundary issue in upscaling method. We use the global fine-

scale solution at initial time in the local upscalign computations. The incorporation

of global information in local problem improves the accuracy of upscaled parameters.

Chapter III presents TOF-based and local-global two-phase upscaling methods.

The global flow dependency of transport functions is first discussed using a sim-

ple periodic permeability. Then, we present TOF-based two-phase upscaling, which

uses single-phase time-of-flight τ to incorporate the large-scale heterogeneties in lo-

cal boundary condition. A piecewise linear approximation, At + Bτ + C, is used

as saturation boundary condition in local fine-scale simulation. Here, τ is a global

fine-scale time-of-flight, t is the time in the local flow simulation. A represents a

temporal change of local boundary condition, B and C represent global spatial trend

and local variation. Due to the unknown time-dependency of global solution, A needs

to be pre-determined. To get temporal information, we proposed to use the global

coarse-scale two-phase solution in local boundary condition. This is the local-global

two-phase upscaling. In this approach, the global coarse-scale solutions (both flux

and saturation) are interpolated on the local fine-scale boundaries. These flux and

saturation boundary conditions are time-dependent and they are updated when the

local saturation equals to coarse-scale saturation. This approach provides a mean to

systematically incorporate global flow effects for both pressure and saturation in lo-

cal two-phase upscaling calculations. We also generalize the proposed approaches and

suggest the use of discontinuous Galerkin method where the basis functions depend

on time-of-flight functions. Some preliminary numerical results are presented.

In Chapter IV, we give a homogenization analysis for a time-dependent parabolic

problem. A simplified analysis is presented for single-phase upscaling where the per-

meability is a time-dependent function that has both spatial and temporal variations.

In particular, we choose time scales such that the local flow problem in homogeniza-
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tion is time-dependent, i.e., time scales are important in upscaling. Our aim is to

mimic a scenario when the mobility changes in time for pressure equation or veloc-

ity changes in time for the saturation is important. We derive error estimates for

homogenized coefficients. This error represent the difference between true upscaled

permeability for time-dependent flow problem and the approximate upscaled perme-

ability computed based on local flow solutions. The local flow problems are formulated

both in space and time. Our analysis reveals the resonance errors and shows that

there is a resonance error both with respect to space and time discretization.

Chapter V is devoted to ensemble level flow upscaling. In this chapter, we propose

a fast correction scheme for single-phase upscaling. In the correction scheme, the

solution of local flow problem is represented by a product of Green’s function and

a perturbation term, which allows us to get the local solution rapidly on hyper-

planes. The perturbation term can be rapidly computed, but one has to solve a

local problem to get Green’s function. To avoid solving local flow problem for all

realizations, we use collocation and adaptive clustering techniques. The basic idea

of the collocation method is to choose a sparse grid nodes (e.g. Smolyak Nodes

[28, 2]) and compute Green’s function on these grid nodes. Then for a random

realization, the Green’s function is calculated by interpolation of Green’s function

at grid nodes. The idea of adaptive clustering is to group all the realizations into a

number of clusters, then solve local flow problem on a reduced set. In each cluster, we

choose only one representative realization and compute Green’s function at this point.

For other realizations in this cluster, we use Green’s function at the representative

point and the correction scheme to get the approximated upscaled permeabilities.

The collocation and clustering techniques coupled with correction scheme allow us to

compute upscaled flow parameters fast in the stochastic space.

At last, we summarize our work in Chapter VI and discuss the possible future
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work.
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CHAPTER II

UPSCALING IN HETEROGENEOUS POROUS MEDIA

In this chapter, we introduce the notations and governing equations in the

upscaling of flow and transport problem. The purpose of upscaling is to develop

appropriate coarse-scale models with coarse-scale coefficients determined via upscal-

ing procedures. By the upscaled coarse-scale parameters, upscaling can be classified

as upscaling of single-phase flow parameters and upscaling of multiphase transport

parameters. We will discuss these two types of upscaling respectively.

Coarse Grid Simulation Coarse Grid Simulation

Comparison of Performance of Upscaling

Upscaled Parameters
Generation of the

Geologic Model

Fine Grid Simulation

k *
Single−Phase Upscaling

k* λ* f *
Two−Phase Upscaling

Fig. 2.1. Upscaling work flow.
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2.1. Governing Equations

2.1.1. Fine-scale equations

We consider two-phase flow and transport equations on the fine scale, neglecting

the effects of gravity, compressibility, capillary pressure and dispersion. Porosity φ,

defined as the volume fraction of the void space, will be taken to be constant. The

two phases will be referred to as water and oil and designated by the subscripts w

and o, respectively. We can then write Darcy’s law, with all quantities dimensionless,

for each phase j (j = w, o) as follows:

(2.1) vj = −λj(S)k(x) · ∇p,

where vj is phase velocity, k is the absolute permeability tensor, which is symmetric

and uniformly positive definite. S is water saturation (volume fraction), p is pressure,

λj is phase mobility,

λj = krj(S)/µj(2.2)

where krj and µj are the relative permeability and viscosity of phase j respectively.

For simplicity, we will study two-dimensional case.

Combining Darcy’s law with conservation of mass, div(vw + vo)=0, allows us to

write the flow equation in the following form

(2.3) div(λ(S)k(x) · ∇p) = qt,

where the total mobility λ(S) is given by

λ(S) = λw(S) + λo(S),(2.4)

and qt is a source term representing wells/sources. The term qt = qw + qo represents
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the total volumetric source term. The saturation dynamics affects the flow equations.

One can derive the equation describing the dynamics of the saturation

(2.5) φ
∂S

∂t
+ div(vf(S)) = −qw,

where f(S) is the fractional flow of water, given by

f = λw/(λw + λo).(2.6)

The signs of the source terms which appear in (2.3) and (2.5) can be inter-changed.

The total velocity v is given by

(2.7) v = vw + vo = −λ(S)k(x) · ∇p.

(2.3) and (2.5) are the system of flow and transport equations in reservoir and they

are also referred as pressure and saturation equations.

2.1.2. Coarse-scale models

The above equations (2.3) and (2.5) describe the two-phase flow model on a fully

resolved or fine scale. Exact coarse-scale equations can be obtained through volume

averaging of the fine-scale equations, which gives

div[λ(S)k · ∇p] = 0,(2.8)

φ
∂S

∂t
+ div[vf(S)] = 0,(2.9)

where the overline represents volume averaging. Eqs. (2.8) and (2.9) are obtained by

applying div( ) = div( ), which is satisfied when the average is over orthogonal

(e.g., rectangular) grid blocks, and by assuming the porosity φ is a constant. The

averaging of nonlinear terms in the above equations yields additional terms (higher

order moments) in the coarse-scale equations. Different treatments of the nonlinear
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terms λk · ∇p and vf lead to different upscaling procedures [15].

In practice, the coarse-scale models are often taken to be the same form as the

fine-scale model (Eqs. (2.3) and (2.5)), but with the fine-scale parameters being

replaced by coarse-scale quantities

div[λ∗(Sc)k∗ · ∇pc] = 0,(2.10)

φ∗∂S
c

∂t
+ div[vcf ∗(Sc)] = 0,(2.11)

where the superscript ∗ designates upscaled (coarse-scale) quantities and the super-

script c represents coarse-scale (volume-averaged) variables. The upscaled quantities

are computed through appropriate numerical procedures such that the coarse-scale

variables to be solved in Eqs. (2.10) and (2.11) are as close as possible to the fine-scale

solution.

The upscaled quantities can be categorized into the upscaled single-phase flow

parameters and the upscaled multiphase flow functions. When the coarse-scale model

involves only the upscaled single-phase parameters k∗, the model is referred to as

primitive coarse-scale model, described as follows.

div[λ(Sc)k∗ · ∇pc] = 0,(2.12)

φ∗∂S
c

∂t
+ div[vcf(Sc)] = 0.(2.13)

We can see the fine-scale relative permeability functions, λ(·) and f(·), are retained

in the primitive coarse-scale model. The primitive model does not account for the

transport effects in the upscaled model. It may be applicable for cases in which

the subgrid permeability heterogeneity is small, such as the cases with moderate

coarsening level or non-uniform grids to minimize the heterogeneity within coarse

blocks.
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In more general cases, especially with large upscaling ratios, the upscaled two-

phase functions λ∗(Sc) and f ∗(Sc) in Eqs. (2.10) and (2.11) need to be additionally

considered. The representation of λ∗(Sc) and f ∗(Sc) in the coarse model is equivalent

to the use of upscaled relative permeability functions k∗rj(S
c) (referred to (2.2), (2.4),

and (2.6)). This type of upscaling is multiphase upscaling. As it will be described in

the next section, multiphase upscaled transport parameters are more challenging to

compute than the single-phase flow parameters.

It should be kept in mind that Eqs. (2.10) and (2.11) only represent one form of

the coarse-scale model. There exist other models to represent the subgrid effects due

to the nonlinear terms. Efendiev and Durlofsky (2003) [15] presented a generalized

convection-diffusion model, which introduced a diffusive term to model the subgrid

effects in Eq. (2.9), in addition to the convective correction as shown in Eq. (2.11).

We point out that both the diffusive and convective terms in [15] need to be numeri-

cally determined, analogous to the computation of λ∗(Sc) and f ∗(Sc) here. Therefore,

the issue of global flow dependency of the upscaled terms also exists in the generalized

convection-diffusion model.

2.2. Upscaling for Flow and Transport

The accuracy of the coarse-scale model and the efficiency of the upscaling procedures

depend to a large extent on how the upscaled two-phase functions are computed. In

this section, we briefly review the existing upscaling techniques.

2.2.1. Single-phase upscaling

If krw = S, kro = 1 − S and µw = µo, then the flow equation reduces to

div(k(x) · ∇p) = qt in Ω.(2.14)
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In single-phase upscaling, only pressure equation is involved. The coarse-scale equa-

tion has the same form as the fine-scale equation except that the coefficients are

replaced by effective, homogenized coefficients as follows

div(k∗(x) · ∇pc) = qt in Ω..(2.15)

The effective coefficients in upscaling methods are computed using the solution of the

local problem in a representative volume Vic,jc, Figure 2.2. For simplicity, we neglect

(x)=x

X

Y

(  ,j )ic c 

(a) Representative volume (ic, jc) (b) Local calculation for upscaled coeffcient

ϕ(x)=x1

ϕ

(x)=xϕ 1

(i ,c cj )

x* +− k

(x)=xϕ

Fig. 2.2. Schematic showing a local single-phase upscaling. Local problem (2.16) and

(2.17) is solved to compute k∗x, the unit vector used is e = e1 = (1, 0).

subscript ic,jc in the following discussion. On V , the local problem is defined as

div(k(x) · ∇φe(x)) = 0 in V,(2.16)

φe(x) = x · e on ∂V,(2.17)

where e is a unit vector, x = (x1, x2) ∈ R
2.

It is sufficient to solve (2.16) and (2.17) for d linearly independent vectors e1, ...,

ed in R
d because φe =

∑

i βiφei if e =
∑

i βie
i. Here V denotes a coarse grid block,

though one can use a smaller region. The effective coefficients are computed in each
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V as

(2.18) k∗(x) · e =
1

|V |

∫

V

k(x) · ∇φedx.

We note that k∗ (which is not the same as the homogenized coefficients) is a

symmetric and positive definite provided k is symmetric and positive definite. For

(2.16), one can use various boundary conditions, including periodic boundary condi-

tions as well as oversampling methods. We refer to [14, 35] for the discussion on the

use of various boundary conditions.

2.2.2. Pseudo-relative permeabilities for multiphase upscaling

For two-phase upscaling, the upscaled two-phase functions λ∗ and f ∗ are computed to

preserve the averaged fine-scale total flow rate and fractional flow. The total flow rate

c 

X

Y

(i ,c c (i +1,c c

u n=0.

λ  ,x
* fx

*
j ) j )

u n=0.

S=1
p=1

S=0
p=0(i ,j )c c

Fig. 2.3. Schematic showing a local multiphase upscaling of transport parameters λ∗

and f ∗, a constant pressure-no flow boundary condition is applied.

is preserved via the upscaled total mobility function λ∗(Sc). By comparing Eq. (2.10)

and Eq. (2.8), λ∗(Sc) needs to satisfy

(2.19) λ∗(Sc)k∗ · ∇pc = λk · ∇p = −v,
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where v designates the averaged fine-scale total velocity. The x component in the

above equation gives λ∗x(S
c)k∗x∆p

c/∆xc = vx, where ∆pc represents a pressure differ-

ence (of opposite sign to ∇pc). Therefore λ∗x(S
c) can be computed as

(2.20) λ∗x(S
c) =

vx

k∗x∆p
c/∆xc

=
vx∆y

ch

(k∗x∆p
c/∆xc)∆ych

=
qx

T ∗
x∆pc

,

where ∆xc and ∆yc designate the dimensions of a coarse grid block, h is the model

thickness, qx is the total flux in the x direction, and k∗x and T ∗
x are coarse-scale

permeability and transmissibility in the x direction.

In a discrete form, λ∗x defined at the interface of two adjacent coarse blocks (e.g.,

i and i+ 1 as shown in Fig. 2.3 is computed via

(2.21) (λ∗x(S
c))i+1/2 =

〈qx〉i+1/2
(

T̂ ∗
x

)

i+1/2
(〈p〉i − 〈p〉i+1)

,

where 〈qx〉 designates the integrated total fine-scale flux through the interface and

〈p〉 is the volume average of the fine-scale pressure over the coarse block. In the

above equation, T̂ ∗
x represents an upscaled single-phase transmissibility, computed

at the same time with the calculation of λ∗x. Note that it is different than T ∗
x , the

upscaled transmissibility obtained from single-phase flow upscaling, and applied later

in global coarse-scale simulations. The quantity T̂ ∗
x is computed from the initial

time of the local two-phase flow simulation, when the system is still single-phase. In

general, the value of T̂ ∗
x will be different than T ∗

x used in the coarse-scale simulation,

which may be computed using different (local, quasi global or global) single-phase

upscaling approaches. The separate determination of λ∗x and T ∗
x decouples the single

and two-phase upscaling computations, and allows us to focus on the issues specific

to two-phase upscaling. For more detailed discussion, refer to [5].

For the coarse-scale transport equation Eq. (2.11), the upscaled fractional flow
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function f ∗(Sc) is computed to preserve the averaged fractional flow vf in the volume

averaged saturation equation (Eq. 2.9), which gives

(2.22) vcf ∗(Sc) = vf.

The directional fractional flow function in the x direction can be determined via

(2.23) f ∗
x(Sc) =

vxf

vx
.

And f ∗
x(Sc), defined at the interface of two coarse blocks, is computed as

(2.24) (f ∗
x(Sc))i+1/2 =

〈vxf〉i+1/2

〈vx〉i+1/2
=

〈qxw〉i+1/2

〈qx〉i+1/2
,

where 〈qxw〉 and 〈qx〉 represent the integrated fine-scale water and total flux through

the coarse-block interface. Analogously, the quantities λ∗y and f ∗
y can be computed

with the local flow imposed in the y direction.

Note that both λ∗ and f ∗ are dynamic quantities, and are represented as functions

of coarse-scale saturation Sc. In this work, the quantity Sc associated with λ∗ and

f ∗ is computed as the average saturation over the fine-scale cells along the block

interface. This is to be consistent with the numerical scheme applied here, a second-

order Total-Variation-Diminishing (TVD) scheme.
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CHAPTER III

TWO-PHASE UPSCALING FOR FLOW AND TRANSPORT*

In this chapter, we study two-phase upscaling method for flow and transport.

We propose the TOF-based two-phase upscaling and local-global two-phase upscal-

ing. In these two approaches, the global flow information is incorporated into local

boundary conditions for the calculation of the upscaled flow and transport functions.

3.1. Global Flow Dependence of Transport Functions

3.1.1. Local v.s. global two-phase upscaling

First, we study the dependence of the upscaled transport functions λ∗ and f ∗ on the

global information of saturation by an example. This example involves a periodic

permeability field, which is generated by replicating a 10× 10 permeability template

(as displayed in Fig. 3.1 top). The template is extracted from a log normal permeabil-

ity distribution of dimensions 100 × 100, and with dimensionless correlation lengths

lx = 0.4 and ly = 0.01. The resultant 100×100 periodic permeability field is shown in

Fig. 3.1 bottom, with the same 10× 10 permeability pattern repeated in the domain.

We consider two-phase flow with fine-scale relative permeabilities krw = S2 and

kro = (1 − S)2, and the endpoint water-oil mobility ratio M = 5. The fine-scale

periodic permeability field is uniformly coarsened to 10 × 10. Therefore the fine-

scale permeability heterogeneity within each coarse block (of dimensions 10 × 10)

remains the same. We apply both the local and global two-phase upscaling methods

* 1 Part of this chapter is reprinted with permission from Y. Li, Y. Efendiev, R. E.
Ewing, G. Qin, and X. H. Wu, An accurate multiphase upscaling for flow and transport
in heterogeneous porous media, in Proceedings of the 15th Middle East Oil&Gas Show and

Conference, Bahrain, 2007, paper SPE105377-PP, Copyright 2007, SPE.
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to compute the upscaled two-phase functions.

DownstreamUpstream

y

p=1 p=0

x

Fig. 3.1. A periodic permeability field generated by a template.

Shown in Fig. 3.2 are the results of λ∗ (in the x direction) using local two-phase

upscaling with standard boundary conditions. It displays λ∗x for one row of the coarse

blocks (as shown in Fig. 3.2c). Each subplot here represents one coarse-block interface

from the upstream (indexed by (2, 1)) to downstream (indexed by (2, 10)), where the

first index indicates the row number. In Fig. 3.2, the dotted curve designates the

input fine-scale mobility function λ, while the dot-dash curve the upscaled function

λ∗x. Due to the same permeability heterogeneity within each coarse block and the

same set of local boundary conditions imposed to each local region (to compute λ∗x),

the resultant λ∗x are the same for all the coarse-block interfaces from the upstream to

downstream.

Similarly, the results of λ∗x for one row of the coarse blocks using the global

two-phase upscaling approach is shown in Fig. 3.3. Note that λ∗x is computed from

a generic global flow in the x direction. Again, the input fine-scale λ is represented
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Fig. 3.2. Upscaled total mobility function λ∗x from local two-phase upscaling with stan-

dard local boundary conditions for one row of the coarse-scale blocks from

the periodic permeability field.

by the dotted curve, while the upscaled λ∗x by the dot-dash curve. We note that

λ∗x displays a clear trend from the upstream to downstream interfaces (indexed from

(2, 1) to (2, 10)), different from the results shown in Fig. 3.2. In the upstream, λ∗x

shows the largest deviation from the input fine-scale λ, then the deviation gradually

decreases from the upstream to downstream. Recall that the underlying fine-scale

permeabilities within each coarse block are the same. Therefore the trend in the

resultant λ∗x is driven by a global flow dependency. Given the fact that for the periodic

permeability field, the pressure differences and fluxes remain constant for each coarse

block, the global flow dependency in fact lies in the saturation. We note that this

effect (the global dependency of saturation) is evident, but it is not considered at all

in the local upscaling methods.

The use of EFBC local upscaling gives results similar to those shown in Fig. 3.2

(from standard local upscaling). Due to the attenuated fluxes specified in EFBCs,

the λ∗x from EFBCs will be lower than those shown in Fig. 3.2; however λ∗x remains
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Fig. 3.3. Upscaled total mobility function λ∗x from global two-phase upscaling with

standard local boundary conditions for one row of the coarse-scale blocks

from the periodic permeability field.

the same from the upstream to the downstream. This is because EFBCs do not

modify the saturation boundary conditions, i.e., it uses the same local saturation

boundary conditions as standard local upscaling. Therefore, the EFBCs local two-

phase upscaling cannot capture the global trend of λ∗x revealed in global upscaling (as

shown in Fig. 3.3) either.

3.1.2. Performance of existing two-phase upscaling techniques

The discrepancy in the upscaled two-phase functions from the local and global meth-

ods will result in different coarse-scale flow predictions. Now we compare different

coarse-scale results with reference to fine-scale solutions.

A more realistic permeability field is applied here. It involves a log normal

permeability distribution, generated using sequential Gaussian simulation [11]. The

permeability field, shown in Fig. 3.4a, is characterized by dimensionless correlation

length lx = 0.4 and ly = 0.01 and with σ = 2, where σ2 is the variance of log k.
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We also consider other permeability distributions with various correlation lengths,

as shown in Figs. 3.4b-d. Their applications will be presented in Section 3.2 and

Section 3.3. For all the permeability fields considered in this dissertation, a spherical

variogram model is applied.
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Fig. 3.4. Permeability distributions of dimensions 100× 100 with different correlation

lengths, shown in log scale. For all the permeability fields, the variance (σ2)

of log k is 4.0.

The fine-scale model, of dimensions 100×100, is uniformly coarsened to 10×10.

We consider a flow problem driven by a pressure difference in the x direction. This

is accomplished by setting p = 1 over the left edge of the model and p = 0 over the

right edge. The system is initially saturated with the non-aqueous (oil) phase (i.e.,

S = 0). For the solution on the fine and coarse scales, an implicit pressure, explicit
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Fig. 3.5. Flow results of EFBC local two-phase upscaling and global two-phase upscal-

ing for a log normal permeability field (lx = 0.4, ly = 0.01, and σ = 2.0).

saturation (IMPES) procedure is employed, and a second-order TVD scheme is ap-

plied to solve the saturation equation. For the upscaled single-phase flow parameters,

we employ an accurate global transmissibility upscaling approach, so we can focus

on the performance of different two-phase upscaling methods. This applies to this

and all the subsequent cases. With the specified pressure boundary conditions, we

compare the fine and coarse-scale flow results in terms of total flow rate of fluid and

the flowing fraction of oil at the outlet edge of the model. Those are typical quantities

that represent the flow and transport predictions of a model.

Fig. 3.5 shows the results for the permeability field with lx = 0.4 and ly =

0.01 (shown in Fig. 3.4a). Here we use a dimensionless time, pore volume injected

(PVI), defined as 1
Vp

∫ t

0
Q(τ)dτ , where Vp is the total pore volume. Compared to the

fine-scale solution (represented by the solid curve), the primitive model (the dotted

curve) shows evident errors, especially for the transport predictions (Fig. 3.5b). This

late breakthrough is very typical for primitive coarse models (without any upscaled

two-phase functions), as the fine-scale permeability features are not captured in the

coarsened model.
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Also shown in Fig. 3.5 are the results using local (EFBC) and global two-phase

upscaling. The use of the upscaled two-phase functions is to correct the bias in the

primitive model. We see that the EFBC local upscaling still presents errors (the

dot-dash curve). Opposite to the primitive model, it shows overestimated total flow

rate and a bias towards earlier breakthrough. EFBCs, however, already improved

the results using standard local upscaling (not shown here), which in fact gives more

severely overestimated flow rate and earlier breakthrough. We point out that for

some cases, EFBC local upscaling does provide results that are close to the fine-scale

solution, but it fails to capture the fine-scale results for cases with relatively short

correlation lengths in one direction (as in the case shown here).

In contrast to the local methods, the global two-phase upscaling displays accu-

rate coarse-scale predictions for both flow and transport results (the dashed curves in

Fig. 3.5). This illustrates that the global flow dependency captured in the global two-

phase upscaling plays an important role in the accurate predictions of coarse models.

With the upscaled two-phase functions appropriately computed, the coarse model can

reproduce the fine-scale solution very well. However, as discussed earlier, although

global two-phase upscaling provides accurate coarse models, it is not practically fea-

sible due to its high computational cost. Our focus will be on the development of

local two-phase upscaling methods, but with the global flow information appropri-

ately accounted for. Next we present a TOF-based two-phase upscaling procedure

which effectively incorporates global single-phase flow information, and avoids solving

global fine-scale two-phase flow.
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3.2. TOF-Based Two-Phase Upscaling

In TOF-Based two-phase upscaling, we focus on the upscaling of transport param-

eters. For the calculation upscaled flow parameters, we use existing local upscaling

method e.g. local, global, EFBCs. For the upscaling of transport parameters, we

propose an improved saturation boundary condition using global single phase infor-

mation, time-of-flight. The motivation is from a recent asymptotic analysis ([16]) ,

where the authors show that the single-phase flow can have dominant effect on two-

phase flow simulations. From this asymptotic analysis, it follows that the saturation is

a smooth function of single-phase time of flight and, thus, it can be approximated via

a linear function of time of flight. We write saturation as a function of time-of-flight τ

and time t, S(x, t) = S(Aτ(x)+Bt+C). This function is used as the saturation inlet

boundary conditions in the local flow simulation. Time-of-flight τ is computed on the

fine grid at time zero on the whole domain, so it contains the fine-scale global flow in-

formation. Through the use of τ the fine-scale global flow information is incorporated

and through the use of t the local boundary condition is updated as time. Thus, we

simulate the time-dependent saturation boundary condition in the local region. The

numerical results show that this accurate saturation boundary condition significantly

improves the production prediction.

3.2.1. Asymptotic analysis

In the analysis of the saturation, we introduce the streamline function ψ(x) and the

time-of-flight function τ(x) associated with the velocity field v0(x) = v(x, 0) = (v0
x, v

0
y)

[12]. The streamline function ψ(x) satisfies ∇× ψ = v0(x), i.e.,

∂ψ

∂x
= −v0

y ,
∂ψ

∂y
= v0

x.(3.1)
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The time-of-flight function τ(x) is defined by the following curvilinear integral along

a streamline arc with end points x0 and x:

τ(x) =

∫ x

x0

1

v0
l

dl(3.2)

τ(x)|x0
= 0(3.3)

where, l is the streamline, v0
l represents the length of v0 along the arc, and x0 means

the starting point of the streamline. By (3.2), the time-of-flight τ can be viewed as

the travel time of a tracer particle along a streamline ψ. Here, we will always assume

that x0 is on the left boundary of domain Ω = [0, 1] × [0, 1], namely, x0 = {(x, y) ∈

Ω|x = 0}. Then, it is easy to check that the time-of-flight defined in this way satisfies

the relation

v0(x) · ∇τ(x) = 1,(3.4)

τ((0, y)) = 0, ∀y ∈ [0, 1].(3.5)

To achieve high accuracy in the coarse-scale simulations, the boundary conditions

for the saturation need to be adapted to the global flow directions. We propose the

use of time of flight associated with single-phase flow in imposing the saturation

boundary conditions. The motivation stems from an asymptotic analysis presented

in [16]. First, we briefly mention some analytical results from [16]. Denote the initial

stream function and pressure by η = ψ(x, t = 0) and ζ = p(x, t = 0). Then the

equation for the pressure can be written in the (η, ζ) coordinate system as

∂

∂η
(|k|2λ(S)

∂p

∂η
) +

∂

∂ζ
(λ(S)

∂p

∂ζ
) = 0(3.6)

where k = kI, I is the identity matrix. For simplicity, S(x) = 0, x ∈ Ω at time zero

is assumed. We consider a typical boundary condition that gives high flow within
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the channel, such that the high flow channel will be mapped into a large slab in the

(η, ζ) coordinate system. If the permeability variation within the channel (in the η

direction) is weak, the saturation within the channel will depend on ζ . In this case,

the leading order pressure p̂ will depend only on ζ , and it was shown ([16]) that

p(η, ζ, t) = p̂(ζ, t) + high order terms,(3.7)

where p̂(ζ, t) is the dominant pressure. This asymptotic expansion shows that the

pressure (which varies in time due to saturation effects) depends strongly on the initial

pressure ζ ; i.e., the leading order term in the asymptotic expansion is a function of

initial pressure and time only. This initial pressure contains global information. From

(3.7), it follows that

v = C∗(x, t)v0,(3.8)

where v0 is single-phase flow velocity field, v is two-phase flow velocity field, and C∗

is a smooth (coarse-scale) function. Using time of flight function τ , the saturation

equation for two-phase transport can be written in terms of τ in the following way:

∂S

∂t
+ C∗∂S

∂τ
= 0(3.9)

This equation suggests that S is a smooth function of τ and t away from interfaces

which can be tracked separately. This is an underlying idea of the proposed approach.

Because S is a smooth function in terms of τ and t, we propose to approximate the

local boundary conditions for S using a linear function in τ and t. More precisely, S

at the inlet boundary can be described by

S|inlet = At+Bτ + C,(3.10)

where A, B and C are fine-scale functions. This is a first order approximation. Eq.



26

(3.9) suggests that one can perform pseudo computations using flow based grids.

However, our objective is to set boundary conditions in a general grids using global

information from single-phase flow simulations. Next step, we will discuss about the

determination of A, B and C.

3.2.2. Accurate saturation boundary condition

(i ,

X

Y

(  ,j )ic c 

(a) Global fine−scale time−of−flight

S=0

+xc 

λ ,*x fx*

x−

S
j
f

      two−phase upscaling
(b) Local fine−scale flow for 

c j )

c

c (i +1,j )c

Fig. 3.6. Schematic showing TOF-based two-phase upscaling. The local boundary

conditions of local fine-scale flow are determined from global fine-scale

time-of-flight.

Assume the whole domain is Ω, shown in Fig. 3.6, which contains total nc
x × nc

y

coarse blocks, indexed by (ic, jc). In a local fine-scale region, assume that it contains

nf
x × nf

y fine-scale cells and is indexed by (i, j). At the inlet boundary (x−), the

saturation boundary condition is chosen as:

(Sf
j )x− = a1t+ c

τmax − τj
τmax − τmin

|x− 1 ≤ j ≤ nf
y .(3.11)

Here the superscript f represents the fine-scale quantities, j is the fine-scale index

along the local boundary. a1 designates the temporal change of local boundary con-
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dition, it need to be predetermined (we will discuss this later). τmax and τmin are local

maximum and minimum of time of flight on the edge (x−),

τmax := max
1≤j≤nf

y

{τj}x−, τmin := min
1≤j≤nf

y

{τj}x−.(3.12)

τmax − τj
τmax − τmin

is an approximation of the variation of local fine-scale of saturation. At

τj = τmax,
τmax − τj
τmax − τmin

= 0 and at τj = τmin, it is one. This fine-scale variation is

neglected in the standard two-phase upscaling methods. In the existing methods, the

inlet saturation is simplified as S = 1, which leads an overestimation of the saturation,

see Fig. 3.7 . As a consequence, the overestimation introduces an earlier breakthrough

in oil cut prediction.
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Fig. 3.7. The saturation on two different coarse blocks. It shows that the overestima-

tion of saturation in local region. The red line is standard two-phase upscaling

with Sinlet = 1, the blue solid and dot-dash lines are the real saturation from

global two-phase flow, both the distribution and mean changes with time.

In (3.11), we also introduce a parameter c, which represents the spatial trend of

the saturation in the global field. This was not considered in our previous work [26].

At the inlet edge (x−), c is defined as

c|x− :=

min
1≤ic≤nc

x

〈τ〉|x−

ic

〈τ〉|x−

.(3.13)
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c = 1 on the very upstream coarse block ( min
1≤ic≤nc

x

〈τ〉|x−

ic
= 〈τ〉|x−

1
) and c decreases in

downstream as in Fig. 3.8.
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Fig. 3.8. The distribution of c from upstream to downstream in the periodic perme-

ability field. The x-axis denotes the number of blocks indexing from upstream

to downstream as 1 to 10.

In (3.11), the function includes three important global information for satura-

tion; the temporal change of saturation is represented by a1t, the local fine-scale

variation is reproduced by
τmax − τj
τmax − τmin

, and the global spatial trend is designated by

c. Hence, (3.11) constructs an accurate saturation inlet boundary condition for local

flow simulation.

At the out edge (x+), the saturation boundary condition is set as zero,

(Sf
j )x+ = 0 1 ≤ j ≤ nf

y .(3.14)

Now we compare the inlet boundary conditions for Sf
real from the global two-phase

simulation and Sf calculated by (3.11) on one layer of coarse blocks. The permeabil-

ity field is the periodic permeability field, referred in Fig. 3.1. From upstream to

downstream, coarse blocks are indexed as (1, 1), ..., (1, 10), we plot saturation on the

inlet boundaries at different PV Is. At PV I = 0, the Sf
real is 1 on the first coarse block



29

and 0 at other blocks. We plot Sf for PV I = 0.5 and PV I = 0.5, as in Figs. 3.9. In

the two figures the solid lines are the fine-scale saturation on local boundaries, the

dot lines are simulated boundary condition.
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Fig. 3.9. The real saturation and simulated saturation on the local domain inlet edge.

The term a1t increases as time and S|x− finally reaches 1 at the inlet. If a1 is

small, then the local saturation reaches steady state before any large changes occur at

the inlet. For very large values of a1, the inlet boundary conditions reaches 1 quickly

and the results are similar to standard pseudo relative permeability computations.

In our simulations, we find that the results of the proposed approach depend on the

values of a1 and test various values of a1. For shorter correlation lengths in y direction,

e.g. ly = 0.02 and ly = 0.01, a1 is chosen as a1 = 0.1. For longer correlation lengths

in y direction, e.g. ly = 0.1, a1 is chosen as a1 = 0.5. Because the flow is transported
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in x direction, correlation length ly affects fluid’s transportation. For larger ly, the

fluid transports faster, then we choose larger a1. The numerical results showed us

these choices of a1 give an accurate prediction. But we want to point out that since

a1 is a coefficient for temporal trend, it cannot be determined only by single-phase

flow information. In (3.11), we have single-phase information time of flight τ , which

only involves flow information at time zero. So it’s hard to determine a1 in TOF-

based two-phase upscaling. We are currently considering various options where one

can quantify a1. One solution is to use global coarse-scale two-phase solution, which

contains the temporal information of saturation. We call this method local-global

two-phase upscaling and we will discuss it in detail in Section 3.3.

In TOF-based two-phase upscaling, the global single-phase simulations are per-

formed, we use them for the computations of upscaled permeability and the computa-

tions of the local problems. We would like to note that our approach is a modification

of existing pseudo relative permeability approach, and thus also applicable to other

similar approaches, e.g., local-global single-phase upscaling method [4], generalized

convection-diffusion approach [15], and effective flux boundary condition approach

[33, 34]. One can use single-phase flow based information in imposing saturation

boundary conditions in these approaches.

3.2.3. Algorithm

The TOF-based two-phase upscaling is a modification of existing two-phase upscal-

ing method with an accurate saturation boundary condition imposed in local flow

simulation. The algorithm can be summarized as follows.

Algorithm 3.2.1. TOF-based two-phase upscaling for flow and transport.

• Solve global fine-scale single-phase flow at time zero with generic boundary con-
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ditions (i.e., flow in the x and y direction) to obtain fine-scale τx and τy and

upscaled absolute permeability k∗.

• On each coarse block, calculate τmax, τmin and coefficients c for τx and τy re-

spectively. And construct fine-scale local boundary conditions for saturation as

defined in (3.14).

• Solve local two-phase problem subject to the local boundary saturation conditions

defined in Step 2, and local pressure boundary conditions defined by an existing

local upscaling method.

• Compute the upscaled two-phase functions λ∗ and f ∗ and output the saturation

and the upscaled functions.

In the above algorithm 3.2.1, we want to emphasize that the TOF-based two-

phase upscaling doesn’t require extra computation compared with other local two-

phase upscaling method. Since the improved saturation boundary condition is con-

structed from time of flight, which can be calculated from global single-phase flow.

A standard approach is applied to compute the time of flight [29]. Only Step 2 are

not considered in existing local upscaling methods, but it’s pretty fast.

3.2.4. Numerical result

We now present the numerical results of the TOF-based two-phase upscaling for dif-

ferent cases. As in the last section 3.2.2, TOF-based two-phase upscaling focus on the

construction of an accurate saturation inlet boundary condition in local computation

of upscaled transport functions. It can be adaptable with different local upscaling

method, e.g. standard local upscaling method [9], EFBC (effective flux boundary

conditions approach) [33, 34], and global single-phase upscaling method [4]. In par-

ticular, we will show numerical results of TOF-based two-phase upscaling combined



32

with EFBC for various permeability fields.

3.2.4.1. Results for different correlation lengths

In this section, we show the numerical results of permeability distributions with dif-

ferent correlation lengths as described in Section 3.1.2. The first case involves a

log-normal permeability distribution with dimensionless correlation lengths lx = 0.4

and ly = 0.01, and σlog k = 2. The permeability field (displayed in Fig. 3.4a) was

considered earlier to demonstrate the performance of existing two-phase upscaling

methods (shown in Fig. 3.5). For this case, the results of the TOF-based two-phase

upscaling is presented in Fig. 3.10, along with those of the primitive model and the

local EFBCs method. As discussed earlier, the primitive model typically gives under-

estimated total flow rate and late breakthrough in the oil fractional flow; and EFBCs

upscaling shows an overestimation of total flow rate and a biased oil fractional flow

toward early breakthrough. In contrast to these, the TOF-based two-phase upscaling

(the dashed curves in Fig. 3.10) captures the fine-scale solutions very well for both

the total flow rate and oil fractional flow predictions. It shows comparable accuracy

to the global two-phase upscaling (as shown in Fig. 3.5), but with significant compu-

tational savings, as the TOF two-phase upscaling avoids solving any global fine-scale

two-phase flow. This example demonstrates the efficacy of the proposed TOF-based

two-phase upscaling approach.

Next we consider different permeability fields, shown in Figs. 3.11 and 3.12. The

corresponding permeability fields are displayed in Fig. 3.4c and 3.4d respectively.

These two permeability fields are again characterized by very short correlation lengths

in the vertical direction (ly = 0.02 and ly = 0.01, respectively), and the horizontal

correlation lengths are also shorter than the previous two examples (lx = 0.2 and

lx = 0.25, respectively). In the previous study ([5]), it is showed that EFBC local
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two-phase upscaling lost accuracy for these two cases (and for cases with shorter

correlation lengths in one direction in general, e.g., see Figs. 12 and 14 in [5]). Here

the results of TOF two-phase upscaling as well as the EFBC local method are shown

in Figs. 3.11 and 3.12. Similar to the case with lx = 0.4, ly = 0.01 (shown in Fig. 3.10),

the EFBC local method (dot-dash curve) gives overestimated flow rate and biased oil

fractional flow predictions towards an early breakthrough. These biases are essentially

corrected by using the TOF two-phase upscaling (dashed curves in Figs. 3.11 and

3.12), which provides a coarse model that is very close to the fine-scale solution.

We also consider the permeability field characterized by relatively long correla-

tion length. The permeability distribution with lx = 0.5 and ly = 0.1 is shown in

Fig. 3.4b. It has a more blocky appearance than that shown in Fig. 3.4a, since here

the vertical correlation length is 10 times of the previous case. We again compare

the three different coarse-scale models with the fine-scale reference solution, and the

results are shown in Fig. 3.13. For this case, the EFBC local upscaling (the dot-

dash curve) provides a solution close to the fine-scale results (the solid curve). For

cases within this parameter range (with relatively long correlation lengths in the ver-

tical direction), similar results were observed in our previous studies (e.g., [7]). In

Fig. 3.13, we see that even EFBCs give reasonable predictions, the TOF two-phase

upscaling further improves the results, showing very accurate predictions (the dashed

curves). As pointed out earlier, EFBCs approximately account for some global flow

effects in the pressure equation, and do provide significant improvement over standard

boundary conditions for appropriate parameter ranges, though not for all the cases.

The TOF-based two-phase upscaling incorporates the global dependency of satura-

tion. Therefore it can capture the fine-scale solutions for general cases in different

parameter ranges.
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Fig. 3.10. Flow results of TOF-based two-phase upscaling (with EFBCs) for a log

normal permeability field (lx = 0.4, ly = 0.01, and σ = 2.0), with a1 = 0.1.
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Fig. 3.11. Flow results of TOF-based two-phase upscaling (with EFBCs) for a log

normal permeability field (lx = 0.2, ly = 0.02, and σ = 2.0), with a1 = 0.1.
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Total flow rate Oil fractional flow
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Fig. 3.12. Flow results of TOF-based two-phase upscaling (with EFBCs) for a log

normal permeability field (lx = 0.25, ly = 0.01, and σ = 2.0), with a1 = 0.1.
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Fig. 3.13. Flow results of TOF-based two-phase upscaling (with EFBCs) for a log

normal permeability field (lx = 0.5, ly = 0.1, and σ = 2.0), with a1 = 0.5.
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3.2.4.2. Results for high mobility ratio

In the last section, we considered a moderate fluid-mobility ratio (M = 5), which is

typical in oil-water flow. The TOF two-phase upscaling approach was also applied to

cases with high mobility ratios (e.g., M = 50 and M = 100), as may be encountered

in gas injections for hydrocarbon recoveries from petroleum reservoirs.

We note that for the previous cases (M = 5), the errors associated with the

primitive model mainly exist in the oil fractional flow predictions. The errors in the

total flow rate are relatively small (e.g., Figs. 3.13 and 3.11). This is due to the fact

that for all the cases in this work, we apply the most accurate single-phase (global

transmissibility) upscaling method. And for cases with moderate mobility ratios, the

accuracy of the upscaled single-phase flow parameters has a dominant impact on the

accuracy of the two-phase flow results.

However, for cases with high-mobility ratios, the upscaled two-phase functions

also affect considerably the results of total flow rate. In Fig. 3.15, we present the

results for M = 50 (for the permeability field with lx = 0.25, ly = 0.01, shown in

Fig. 3.4d). And in Fig. 3.16, the results for M = 100 (for lx = 0.4 and ly = 0.01,

as shown in Fig. 3.4a) are displayed. For both cases (Figs. 3.15a and 3.16a), the

accuracy of the total flow rate at PVI=0 (when the system is still of single-phase

flow) is determined by the upscaled single-phase flow parameters. Then the upscaled

two-phase functions act to account for the multiphase flow effects. We see that the

primitive coarse model (the dotted curves in Figs. 3.15a and 3.16a) shows evident

errors during the course of simulation (except for PVI=0). The TOF two-phase

upscaling (the dashed curves) consistently corrects the errors as the simulation time

evolves, and shows very close predictions to the fine-scale model. It again improves

the results of local EFBC two-phase upscaling (the dot-dash curves in Figs. 3.15a and
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3.16a), which overestimates the total flow rate, as shown in the previous cases.
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Fig. 3.14. Flow results of TOF-based two-phase upscaling (with EFBCs) for a log

normal permeability field (lx = 0.2, ly = 0.02, and σ = 2.0), M = 50 and

a1 = 0.1.

Shown in Figs. 3.15b and 3.31b are the results for oil fractional flow for the cases

withM = 50 andM = 100. Compared to the previous cases, the injected fluid (water)

breaks through very fast (as illustrated in the fine-scale solutions) due to the very high-

mobility ratios. The primitive coarse model again shows biased predictions towards

late breakthrough, though the errors are not as large as the previous cases. Both

EFBC local two-phase upscaling and the local-global two-phase upscaling correct the

errors in the primitive model, especially capture the breakthrough time. We see that

for these cases (M = 50 and M = 100), the errors associated with EFBC local

upscaling are much smaller than the cases with M = 5. The TOF-based two-phase

upscaling again outperforms the EFBC, consistently showing improvements over local

methods.



38

Total flow rate Oil fractional flow
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Fig. 3.15. Flow results of TOF-based two-phase upscaling (with EFBCs) for a log

normal permeability field (lx = 0.25, ly = 0.01, and σ = 2.0), M = 50 and

a1 = 0.1.
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Fig. 3.16. Flow results of TOF-based two-phase upscaling (with EFBCs) for a log

normal permeability field (lx = 0.4, ly = 0.01, and σ = 2.0), M = 100 and

a1 = 0.1.
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3.2.4.3. Results for low mobility ratio

In this section, we will show some results with the mobility ratio less than 1. The

mobility ratio indicates the displacement efficiency of the process. A ratio of less than

1 is favorable with an effective displacement, which happens in using biopolymers for

oil recovery.

For cases with low mobility ratios, we also observe that the upscaled two-phase

functions affects the results of total flow rate and oil cut. In Figure 3.17, we present

the result for M = 0.1. As in Figure 3.17, the local EFBC two-phase upscaling (the

dot-dash curve in Figure 3.17a) shows evident errors during the course of simulation.

The TOF two-phase upscaling (the dashed curves) consistently corrects the errors

as the simulation time evolves, and shows very close predictions to the fine-scale

model. It again improves the results of the primitive coarse model (the dotted curve

in Figure 3.17a).
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Fig. 3.17. Flow results of TOF-based two-phase upscaling (with EFBCs) for a log

normal permeability field (lx = 0.4, ly = 0.01, and σ = 2.0), M = 0.1 and

a1 = 0.1.
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3.2.4.4. Results with different pressure boundary conditions

In the above results, we show TOF combined with EFBC gives accurate flow pre-

diction. In this section, we will combine TOF-based two-phase upscaling with other

two-phase upscaling approaches and show that TOF-based two-phase upscaling is

adaptable to different upscaling method. The flow upscaling considered here are

standard local upscaling method (local), which set constant pressure boundary con-

ditions; local-global upscaling method (global), which applies global single-phase flux

into local pressure boundary condition.

The first case is log-normal permeability distribution with correlation lengths

lx = 0.4 and ly = 0.01, and σlog k = 2. The permeability field (displayed in Fig. 3.4a)

was considered earlier to demonstrate the performance of existing two-phase upscaling

methods (shown in Fig. 3.5). For this permeability field with short correlation length,

a1 is chosen as 0.1. We show the results of TOF with standard local two-phase

upscaling Fig. 3.18 and TOF with global flux two-phase upscaling Fig. 3.19. As we

see in the results, the standard local two-phase upscaling gives a big overestimation

of total flow rate and very late breakthrough in the oil fractional flow; the local-global

two-phase upscaling corrects some of the gaps but still has overestimation of total

flow rate and a biased oil fractional flow with early breakthrough. But if we combine

these two upscaling with TOF-based accurate saturation boundary condition (the

dashed curves in Figs. 3.18, . 3.19), the fine-scale solution is approximated very well

for both the total flow rate and oil fractional flow predictions.

The second case is log-normal permeability distribution with longer correlation

lengths lx = 0.5 and ly = 0.1, and σlog k = 2 (displayed in Fig. 3.4a) Here we let

a1 = 0.5. We also show the results of TOF with standard local two-phase upscaling

Fig. 3.20 and TOF with local-global two-phase upscaling Fig. 3.21. We have the same
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Fig. 3.18. Flow results of TOF-based two-phase upscaling (with Standard) for a log

normal permeability field (lx = 0.4, ly = 0.01, and σ = 2.0), with a1 = 0.1.
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Fig. 3.19. Flow results of TOF-based two-phase upscaling (with Global) for a log nor-

mal permeability field (lx = 0.4, ly = 0.01, and σ = 2.0), with a1 = 0.1.
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observation that the standard local two-phase upscaling and local-global two-phase

upscaling give overestimation of total flow rate and breakthrough in the oil fractional

flow. These bias are corrected with application of TOF-based accurate saturation

boundary condition in local flow simulation, (the dashed curves in Figs. 3.20, . 3.21).
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Fig. 3.20. Flow results of TOF-based two-phase upscaling (with Standard) for a log

normal permeability field (lx = 0.5, ly = 0.1, and σ = 2.0), with a1 = 0.5.
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Fig. 3.21. Flow results of TOF-based two-phase upscaling (with Global) for a log nor-

mal permeability field (lx = 0.5, ly = 0.1, and σ = 2.0), with a1 = 0.5.
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3.2.5. Multiscale discontinuous galerkin method for saturation equation

In this section, we will discuss a multiscale discontinuous Galerkin method for trans-

port equation using single-phase global information such as time-of-flight. The moti-

vation is from the asymptotic analysis presented in Section 3.2.1. As we noted that

the saturation can be expressed as a function of time t and time-of-flight τ(x). Here,

we propose a multiscale discontinuous Galerkin method. The fine-scale time-of-flight

is used as a basis function and we solve the saturation equation on a coarse grid. The

saturation is approximated by a linear function of τ(x) and a 2nd-order Runge-Kutta

is used for solving saturation.

Discontinuous Galerkin method is a useful tool to solve the transport problem in

reservoir simulation. In [10], the authors introduced the Runge-Kutta discontinuous

Galerkin methods for hyperbolic conservation laws and convection-dominated prob-

lems. This method is based on a piecewise polynomial space discretization, combined

with a total variation diminishing (TVD) explicit time-stepping algorithms. A re-

markable advantage of DG method is that the approximate solutions can be computed

element-by-element when the elements are suitably ordered along the characteristic

directions of the transport field. We will use piecewise linear polynomial to solve for

the saturation by 2nd order Runge-Kutta DG method.

We use fine-scale single-phase time-of-flight τ(x) and 1 as basis functions. The

saturation is approximated in each coarse grid by a piecewise linear function of τ(x).

Denote the two scales as the follows, the fine scale grid is T and the coarse scale grid

T c. We construct a piecewise polynomial approximation for saturation as follows,

S(x, t) = Ac(x, t)τ(x) +Bc(x, t).(3.15)

Here the coefficients Ac(x, t) and Bc(x, t) are coarse-scale functions, τ(x) is a fine-scale
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function. We will solve the problem (3.15) on a coarse-scale grid T c to compute the

upscaled coefficients Ac(x, t) and Bc(x, t). Using (3.15), the saturation will be solved

on a coarse grid. Since τ(x) is defined on the fine grid, the fine-scale heterogeneities

are included in the basis functions. In this way, we will get a coarse solution that can

be downscales using multiscale basis functions.

Assume the coarse-scale decomposition of domain is Ω = ∪N
i,j=1{T c

ij}. On a

coarse-scale block T c
ij , the saturation S is in the form of Sij(x, t) = Aij(t)τ(x)+Bij(t).

For a fixed t, the coefficients Aij(t) and Bij(t) are constant on each coarse-scale

block. Multiplying the saturation equation by 1 and τ(x) respectively, we obtain the

following system



















∑

ij

[

∫

T c
ij

∂(Aijτ(x) +Bij)

∂t
dx+

∫

T c
ij

vn(x) · ∇f(Sn(x))dx] = 0,

∑

ij

[

∫

T c
ij

∂(Aijτ(x) +Bij)

∂t
τ(x)dx+

∫

T c
ij

vn(x) · ∇f(Sn(x))τ(x)dx] = 0.
(3.16)

Taking an average of τ(x) on T c
ij , we have











































































∑

ij

[(An+1
ij τ(x) +Bn+1

ij ) − (An
ijτ(x) +Bn

ij)]

= −
∑

ij

∆t

|T c
ij |

∫

∂T c
ij

vn(x) · nf(An
ijτ(x) +Bn

ij)dl,

∑

ij

[(An+1
ij τ 2(x) +Bn+1

ij τ(x)) − (An
ijτ

2(x) +Bn
ijτ(x))]

=
∑

ij

[− ∆t

|T c
ij |

∫

∂T c
ij

vn · nf(An
ijτ(x) +Bn

ij)τ(x)dl

+
∆t

|T c
ij|

∫

T c
ij

vn(x) · ∇τ(x)f(An
ijτ(x) +Bn

ij)dx].

(3.17)

Denote X = [(Aij); (Bij)]
′. We use 2nd order Runge-Kutta method in the
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following way.

X(1) = Xn + ∆tL(Xn),

Xn+1 = Xn +
1

2
∆t(L(Xn) + L(X(1))).

(3.18)

In the above equations, L is the discrete operator at each time step defined as in

(3.17).

The algorithm of multiscale discontinuous Galerkin method is described as fol-

lows.

Algorithm 3.2.2. Assume on the domain Ω, the coarse scale grid is T c, the fine

grid is T . We solve two-phase flow problem in the following way.

• Step 1. At t = 0, solve single-phase flow problem on the fine grid T and compute

the time-of-flight τ(x).

• Step 2. At time step t = tm, compute fine-scale velocity vm(x) on T by










vm(x) = −k(x)λ(Sm−1)∇p(x))

∇ · (vm(x)) = 0
.

• Step 3. At time step t = tn, we solve the saturation equation on the coarse grid

T c by the 2nd-order Runge-Kutta system. (3.18).

• Step 4. Repeat Step 2 and Step 3 until t = T .

Remark 3.2.1. In Algorithm 3.2.2, m = c1n + c2, where c1 and c2 are positive

integers. Typically, the flow equations are solved with larger time step m.

For the numerical result, we consider a simple permeability field that only de-

pends on y, i.e., k(x1, y) ≡ k(x2, y), ∀x1, x2 ∈ Ω. The permeability field is depicted in

Figure 3.22 For the permeability in Figure 3.22, we assume a constant pressure drop

in the horizontal direction and no flow boundary condition in the vertical direction,

i.e., p(0, y) = 1, p(1, y) = 0, v(x, 0) · n(x, 0) = 0, and v(x, 1) · n(x, 1) = 0. We choose
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the fine grid T = 100×100 and the coarse grid T c = 20×20, we compare the fine-scale

and the coarse-scale saturation distributions in Figure 3.23. The fine-scale satura-

tion is computed by the traditional IMPES scheme and the coarse-scale saturation is

computed by the TOF-based multiscale discontinuous Galerkin method, as discussed

above. We observe a good agreement between fine- and coarse-scale solutions.

We can use two time-of-flight functions τx(x), τy(x) and 1 as basis functions.

τx(x) and τy(x) are obtained by single-phase problems, but with different boundary

conditions. For τx(x, we put constant pressure in x direction and no-flow in y direc-

tion; for τy(x, we put constant pressure in y direction, no flow in x direction. Including

two time-of-flight functions allows to avoid specific flow direction. The saturation on

each coarse block T c
ij has the form of

Sij(x, t) = Aij(t)τx(x) +Bij(t)τy(x) + Cij(t).(3.19)

To solve this, we can generate a similar system with (3.16) but with 3 equations, i.e.,

the test functions are chosen to be τx(x), τy(x) and 1. The obtained linear system

can be solved either explcitly or implicitly. This is under our investigation.

3.2.6. Concluding remarks

The TOF-based two-phase upscaling focuses on more accurate representations of sat-

uration boundary conditions in local two-phase upscaling calculations. The method

uses global single-phase time-of-flight to construct the local saturation boundary con-

ditions. Both the spatial and temporal global flow dependency of the saturation

incorporated into the local calculations. It successfully corrects the bias in the exist-

ing two-phase upscaling methods.

Compared to global two-phase upscaling methods, the TOF-based two-phase

upscaling has the advantage in terms of efficiency. It avoids solving global fine-scale
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Fig. 3.22. A layered permeability field.
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Fig. 3.23. The saturation distribution: the left figure shows the fine-scale saturation;

the right figure shows the coarse-scale saturation.
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two-phase flow, but can effectively account for the effects of global flow. The TOF-

based two-phase upscaling does not require significant extra computation compared

with the existing two-phase upscaling method. The single-phase time-of-flight is

computed once at the initial time and from the single-phase pressure solution.

The coefficient a1, which accounts for the temporal trend of saturation in the lo-

cal saturation boundary conditions needs to be predetermined. We note that it may

be difficult to determine a prior this time-dependent coefficient from only single-phase

flow information. It is also found that the value of this coefficient (in order to ob-

tain satisfactory coarse-scale predictions) depends strongly on the spatial correlation

structure of fine-scale permeability. Therefore it is possible to tune this parameter

based on underlying reservoir heterogeneities, which can then be applied to a variety

of permeability distributions with similar reservoir characterizations.

Another approach is to use global coarse-scale two-phase solutions (as in the

recently developed local-global two-phase upscaling approach [8]) in the local calcu-

lations for the determination of a1. This will be discussed in the next section.

3.3. Local-Global Two-Phase Upscaling

In the local-global two-phase (LG2P) upscaling approach, the local boundary con-

ditions are directly determined from global coarse-scale solutions. In so doing, the

local-global approach avoids solving global fine-scale two-phase flow (as required in

the global methods), and effectively incorporates the global flow effects in the local

calculations. This procedure can be viewed as an extension of the coupled local-

global single-phase upscaling approach developed by Chen et al. (2003) [6]. However,

in the two-phase upscaling, both global coarse and local fine-scale simulations are

time-dependent, which poses more challenges.
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Fig. 3.24 schematically illustrates the local-global two-phase upscaling procedure.

A global coarse-scale flow is shown in Fig. 3.24a, and the shaded region represents a

local region embedded in the global domain. Local fine-scale flow solved on the local

region is presented in Fig. 3.24b. The global coarse and local fine-scale flow simula-

tions are coupled through the local boundary conditions. Similar to the single-phase

upscaling approach, the global coarse-scale solutions need to be interpolated onto

the local fine-scale boundaries. In addition, the local fine-scale boundary conditions

need to be updated according to the time-dependent coarse-scale solutions. We now

describe in detail the interpolation and updating of the local boundary conditions.

Fig. 3.24. Schematic showing local-global two-phase upscaling. The local boundary

conditions of local fine-scale flow are determined from global coarse-scale

solutions. Both the global coarse solutions and local boundary conditions

are time-dependent.

3.3.1. Interpolation of coarse-scale solutions

The arrows in Fig. 3.24a designate coarse-scale fluxes (qc) and saturations (Sc) ob-

tained from the global coarse-scale simulation. They are defined at the inlet (x−) and
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outlet (x+) edges of the local domain. These coarse-scale quantities are distributed

onto the local fine-scale boundaries based on fine-scale permeability heterogeneities.

There are different treatments, as presented in the previous single-phase upscaling

approach [6]. In this work, the interpolation is based on time of flight (TOF) from

fine-scale single-phase streamline calculations.

For the local fine-scale region shown in Fig. 3.24b, assume that it contains nx×ny

fine-scale cells and is indexed by (i, j). At the inlet edge (x−), the coarse-scale fluxes

and saturations (qc
x− and Sc

x−) are apportioned to the local fine-scale boundaries via

(

qf
j

)

x−

=
τmax − τj
τmax − τmin

|x−qc
x−, 1 ≤ j ≤ ny,

(

Sf
j

)

x−

=
τmax − τj
τmax − τmin

|x−Sc
x−, 1 ≤ j ≤ ny,(3.20)

where the superscript c and f designate coarse and fine-scale quantities, τmax and τmin

represent the maximum and minimum values of τ along the fine-scale boundary x−,

refers to (3.12), and j is the fine-scale index along the local boundary. Analogously,

the fine-scale fluxes and saturations at the outlet boundary x+ are obtained from qc,

Sc, and the fine-scale single-phase τ at the local boundary x+. For the two boundaries

that are parallel to the flow direction, no-flow boundary conditions are imposed.

TOF itself actually carries global transport information (for single-phase tracer

flow). We note that the normalization in Eq. 3.20 localizes the values of TOF. Thus

the distribution of qc and Sc (as shown in Eq. 3.20) only depends on the local fine-

scale heterogeneity. However, it should be kept in mind that the global dependency

is in fact already incorporated through the direct use of global coarse solutions qc

and Sc, which vary spatially. We also note that other quantities, such as fine-scale

single-phase velocities, permeabilities and inter-block transmissibilities, can also be

applied to interpolate the coarse-scale fluxes and saturations, though they are not
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considered here. As will be shown in Section 3.3.4, the use of TOF does provide

satisfactory results.

3.3.2. Update of local boundary conditions

The global flow dependency in the two-phase upscaling exists both temporally and

spatially. How to use the time-dependent global coarse solutions qc and Sc is a

challenge that was not encountered in single-phase flow upscaling calculations. To

incorporate the temporal global flow information, we need to update the local bound-

ary conditions in accordance with the coarse solutions during the course of local

fine-scale simulation. A key issue lies in that the time scales involved in the global

coarse and local fine-scale simulations are different. In this work, introduce a crite-

rion, which attempts to keep the change of local fine-scale saturation (in an average

sense) approximately same as that of the global coarse solution.

For a local domain, we denote the saturation on the inlet boundary as Sbc, and

the saturation in the interior domain Sin. Then Sbc and Sin represent those values

from the global coarse solution, and Sf
bc and Sf

in designate the integrated fine-scale

saturation on the boundary and the averaged saturation in the interior region. Note

that here for simplicity, we do not use 〈·〉 to represent the integrated/averaged quan-

tities. Assume that the boundary saturation is a function of the interior saturation,

i.e., Sbc(Sin). In the local-global two-phase upscaling, the local fine-scale saturation

boundary conditions are obtained from the global coarse-scale solution, which yields

Sf
bc(S

f
in) = Sc

bc(S
c
in)(3.21)

Fig. 3.25 schematically displays a functional relationship between the satura-

tion at the inlet boundary and that in the interior domain. In this work, the time-

dependent global coarse saturation is represented by a series of solutions. As shown in
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Fig. 3.25. Schematic showing the update of local boundary conditions.

Fig. 3.25, the boundary saturation from coarse-scale solution is designated as (Sc
bc)

k,

where k designates a time step in the global coarse simulation, at which the coarse

solution is output. The (averaged) fine-scale saturation (over a coarse block) from

the local fine-scale simulation is denoted as (Sf
in)n, where n is the time step in the

local fine-scale simulation.

In the local fine-scale simulation, for a given boundary saturation (Sc
bc)

k, the

interior saturation (Sf
in)n will increase with the advances of time step n. This is

schematically illustrated by the dotted horizontal lines in Fig. 3.25. When (Sf
in)n

reaches the value of its corresponding coarse-scale saturation at the next step (Sc
in)k+1

(for the given coarse block), the boundary saturation at k + 1, (Sc
bc)

k+1, will be used

to determine the local fine-scale boundary conditions. Thus the criterion to update

the boundary conditions can be expressed as

(Sf
in)n ≥ (Sc

in)k+1(3.22)
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That is, when the averaged local fine-scale saturation equals the coarse-scale satura-

tion for a given coarse block, the local boundary conditions determined by qc and Sc

(at time step k, via Eq.(3.20)) will be updated by qc and Sc at time step k + 1.

We note that here the global transient solution is approximated by a series of

steady state solutions. Therefore, the smaller the time interval, the better the ap-

proximation is. We point out that standard local saturation boundary conditions, by

contrast, considers only Sbc = 1.0. Therefore, the local fine-scale saturation (Sf
in)n

increases only along the dashed horizontal line of Sbc = 1.0. It is also found that the

time interval, on which the local boundary conditions are updated, does considerably

affect the flow results. In this dissertation, we consider a time interval of 0.05 PVI

(on the time scale of global coarse simulation), which gives satisfactory results. In

fact, it can be shown that if the time interval is small enough, this treatment implies

that the change of the averaged local fine-scale saturation approximately equals to

that of the global coarse saturation. From Eq. (3.21), we take derivative with respect

to time t, which gives

dSf
bc

dSf
in

dSf
in

dt
=
dSc

bc

dSc
in

dSc
in

dt
(3.23)

In Fig. 3.25, we see that if the time interval is very small, we have

dSf
bc

dSf
in

≈ dSc
bc

dSc
in

,(3.24)

then it follows that

dSf
in

dt
≈ dSc

in

dt
(3.25)

This means that the change of the averaged local fine-scale saturation is approximately

same as that of the coarse saturation. The updating of local boundary conditions

ensures that the temporal dependency of global flow is also taken into account in the
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local upscaling calculations.

3.3.3. Algorithm of local-global two-phase upscaling

The overall local-global two-phase (LG2P) upscaling algorithm can be summarized

as follows. We describe the algorithm with reference to Fig. 3.24:

Algorithm 1. Local-global two-phase (LG2P) upscaling.

1. Solve global coarse-scale flow with generic boundary conditions (i.e., flow in the

x or y direction) to obtain time-dependent coarse-scale solutions (qc)k and (Sc)k,

k = 0, . . . , K, where k represents a time step on the global coarse scale, and K

the end of global coarse simulation. For the initial global solution, primitive

coarse models (with fine-scale λ and f) are applied.

2. For a time step k, distribute the global coarse-scale solution (qc)k and (Sc)k onto

the local fine-scale boundaries using Eq. 3.20 to obtain local fine-scale boundary

conditions.

3. Solve local fine-scale flow problem subject to the local boundary conditions de-

termined in step 2, and advance the solution with local fine-scale time step n.

4. For a prescribed saturation (computed by averaging the local fine-scale solution),

compute the upscaled two-phase functions λ∗ and f ∗ via Eqs. 2.21 and 2.24, and

output the saturation and upscaled functions.

5. Compute averaged fine-scale saturation over coarse block i (〈Sf
i 〉n) and compare

it with the corresponding global coarse-scale saturation at block i ((Sc
i )

k+1).

6. If 〈Sf
i 〉n < (Sc

i )
k+1, continue on step 3.

7. If 〈Sf
i 〉n ≥ (Sc

i )
k+1 (and k < K), update the coarse-scale solution (qc and Sc)

in step 2 with qc and Sc from time step k + 1, and continue with step 2.
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8. If needed, iterate on step 1 by solving the global coarse-scale flow with the newly

computed coarse-scale two-phase functions λ∗ and f ∗.

The LG2P upscaling approach uses generic flows in both the x and y directions

to compute the x and y components of λ∗ and f ∗. For the initial global coarse-scale

solution, since the upscaled two-phase functions are not yet computed, we consider the

primitive coarse-scale model. The coarse-scale solutions computed from the primitive

model may not be the best to estimate the local boundary conditions. Therefore,

after the upscaled λ∗ and f ∗ are computed, the global coarse-scale flow can be solved

again to obtain a new set of qc and Sc, which can be expected to be more accurate

than those from the primitive model. In fact, the entire procedure can be iterated on

the global coarse and local fine-scale solutions, similar to the local-global single-phase

upscaling approach [6]. For all the LG2P results presented in this dissertation, we

applied one iteration to compute the λ∗ and f ∗, and observed evident improvement

of the flow results compared to the case without iteration.

In the current implementation, the global coarse-scale solutions were computed

prior to the local fine-scale simulations. Existing local two-phase upscaling code can

be readily applied in that only the local boundary conditions need to be modified. We

note that the LG2P upscaling algorithm can be implemented in a way such that the

global coarse and local-fine scale simulations are performed simultaneously, though

the discrepancy of time scales (described in Section 3.3.2) still needs to be resolved.

3.3.4. Numerical result

In this section, we present the numerical results of the local-global two-phase up-

scaling for different cases. We first consider permeability distributions with different

correlation lengths, and cases with high fluid-mobility ratios and different flow bound-
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ary conditions. Then the method is applied to multiple permeability realizations and

the statistics of flow results are compared. The permeability distributions and flow

problems considered here are as described in Section 3.1.2. For all the cases, two-

dimensional systems are considered, and an upscaling ratio of 10 is applied in each

dimension.

3.3.4.1. Results for different correlation lengths

The first case is a log-normal permeability distribution with correlation lengths lx =

0.4 and ly = 0.01, and σlog k = 2, as shown in Fig. 3.4a. In the Section 3.2.4.1, we

showed the results of TOF-base two-phase upscaling, with a1 predetermined. Here,

using LG2P upscaling we get an accurate approximation without predetermined a1,

refer to Fig. 3.26. The LG2P upscaling (the dashed curves in Fig. 3.26) captures the

fine-scale solutions very well for both the total flow rate and oil fractional flow pre-

dictions. Here, we don’t want to compare TOF-based upscaling and LG2P upscaling.

We want to show both of these methods give accurate prediction of total flow rate

and oil fractional flow. Here, we still compare LG2P upscaling with primitive coarse

model and local EFBC upscaling. As in Fig. 3.26, LG2P shows comparable accuracy

to the global two-phase upscaling (as shown in Fig. 3.5), but with significant compu-

tational savings, as the LG2P upscaling avoids solving any global fine-scale two-phase

flow. This example demonstrates the efficacy of the proposed local-global two-phase

upscaling approach.

Next we consider a permeability field characterized by relatively long correlation

lengths. The permeability distribution with lx = 0.5 and ly = 0.1 is shown in Fig. 3.4b,

and the results are shown in Fig. 3.27. For this longer correlation lengths, the EFBC

local upscaling (the dot-dash curve) provides a solution close to the fine-scale results

(the solid curve) and primitive coarse model also gives a reasonable solution with small
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error. But the LG2P upscaling further improves the results, showing very accurate

predictions (the dashed curves) in Fig. 3.27. So by the results Fig. 3.26 and Fig. 3.27,

we can see the local-global two-phase upscaling capture the fine-scale solutions for

general cases in different parameter ranges. It is a general approach to incorporate

the global dependency of both pressure and saturation.

The following cases are permeability fields characterized by very short correla-

tion lengths in the vertical direction (ly = 0.02 and ly = 0.01, respectively), and

the horizontal correlation lengths are also shorter than the previous two examples

(lx = 0.2 and lx = 0.25, respectively), displayed in Fig. 3.4c and 3.4d. As we have

mentioned in the Section 3.2.4.1, EFBC local two-phase upscaling lost accuracy for

these two cases (and for cases with shorter correlation lengths in one direction in

general, e.g., see Figs. 12 and 14 in [5]). Here the results of LG2P upscaling corrects

the overestimation of total flow rate and earlier breakthrough of oil fractional flow in

EFBCs, as shown in Figs. 3.28 and 3.29.

In our previous work [5], for these two cases, we applied a generalized convection-

diffusion (GCD) model to improve the coarse-scale accuracy. As discussed in Chapter

II, the upscaled parameters in the GCD model also requires numerical computation

of local flow problems. Therefore the issue of global flow dependency also exists in

the GCD model, and the local-global two-phase upscaling approach presented here

will also benefit the local computations of the GCD parameters.

3.3.4.2. Results for high mobility ratio

For the results we presented so far, we considered a moderate fluid-mobility ratio

(M = 5), which is typical in oil-water flow. The LG2P upscaling approach was also

applied to cases with high mobility ratios (e.g., M = 50 and M = 100), as may be

encountered in gas injections for hydrocarbon recoveries from petroleum reservoirs.
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Fig. 3.26. Flow results of local-global two-phase upscaling for a log normal permeabil-

ity field (lx = 0.4, ly = 0.01, and σ = 2.0).
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Fig. 3.27. Flow results of local-global two-phase upscaling for a log normal permeabil-

ity field (lx = 0.5, ly = 0.1, and σ = 2.0).
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Fig. 3.28. Flow results of local-global two-phase upscaling for a log normal permeabil-

ity field (lx = 0.2, ly = 0.02, and σ = 2.0).
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Fig. 3.29. Flow results of local-global two-phase upscaling for a log normal permeabil-

ity field (lx = 0.25, ly = 0.01, and σ = 2.0).
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We note that for the previous cases (M = 5), the errors associated with the

primitive model mainly exist in the oil fractional flow predictions. The errors in the

total flow rate are relatively small (e.g., Figs. 3.27 and 3.28). This is due to the fact

that for all the cases in this work, we apply the most accurate single-phase (global

transmissibility) upscaling method. And for cases with moderate mobility ratios, the

accuracy of the upscaled single-phase flow parameters has a dominant impact on the

accuracy of the two-phase flow results.

However, for cases with high-mobility ratios, the upscaled two-phase functions

also affect considerably the results of total flow rate. In Fig. 3.30, we present the

results for M = 50 (for the permeability field with lx = 0.25, ly = 0.01, shown in

Fig. 3.4d). And in Fig. 3.31, the results for M = 100 (for lx = 0.4 and ly = 0.01,

as shown in Fig. 3.4a) are displayed. For both cases (Figs. 3.30a and 3.31a), the

accuracy of the total flow rate at PVI=0 (when the system is still of single-phase

flow) is determined by the upscaled single-phase flow parameters. Then the upscaled

two-phase functions act to account for the multiphase flow effects. We see that the

primitive coarse model (the dotted curves in Figs. 3.30a and 3.31a) shows evident

errors during the course of simulation (except for PVI=0). The LG2P upscaling (the

dashed curves) consistently corrects the errors as the simulation time evolves, and

shows very close predictions to the fine-scale model. It again improves the results

of local EFBC two-phase upscaling (the dot-dash curves in Figs. 3.30a and 3.31a),

which overestimates the total flow rate, as shown in the previous cases.

Shown in Figs. 3.30b and 3.31b are the results for oil fractional flow for the cases

withM = 50 andM = 100. Compared to the previous cases, the injected fluid (water)

breaks through very fast (as illustrated in the fine-scale solutions) due to the very high-

mobility ratios. The primitive coarse model again shows biased predictions towards

late breakthrough, though the errors are not as large as the previous cases. Both
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Fig. 3.30. Flow results of local-global two-phase upscaling for a log normal permeabil-

ity field (lx = 0.25, ly = 0.01, and σ = 2.0), and M = 50.
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Fig. 3.31. Flow results of local-global two-phase upscaling for a log normal permeabil-

ity field (lx = 0.4, ly = 0.01, and σ = 2.0), and M = 100.
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EFBC local two-phase upscaling and the local-global two-phase upscaling correct the

errors in the primitive model, especially capture the breakthrough time. We see that

for these cases (M = 50 and M = 100), the errors associated with EFBC local

upscaling are much smaller than the cases with M = 5. The LG2P upscaling again

outperforms the EFBC local upscaling, consistently showing improvements over local

methods.

3.3.4.3. Results for low mobility ratio

In this section, we present numerical results for low mobility ratio cases, i.e., M is less

than 1. We limit ourselves to one representative numerical result. In Figure 3.32, we

present the result for M = 0.1. In Figure 3.32, the local EFBC two-phase upscaling

(the dot-dash curve in Figure 3.32a) shows errors during the course of the simulation.

We notice that for low mobility ratio, the error of primitive coarse model is small

compared to that with higher mobility ratio. In fact, the primitive coarse-scale result

is close to the fine-scale simulation result. If we use local-global two-phase upscal-

ing, it still improves the result of the primitive coarse model (the dotted curve in

Figure 3.32a) as well as the local EFBC two-phase upscaling (the dash-dot curve in

Figure 3.32a). The local-global two-phase upscaling (the dashed curves) consistently

corrects the errors as the simulation time evolves, and shows very close predictions

to the fine-scale model.

3.3.4.4. Results for changing flow conditions

We next present numerical results for different flow boundary conditions. In the reser-

voir simulation, if the flow boundary condition changes, the total flow and fractional

flow curves will change dramatically. In this section, we will show that LG2P up-

scaling gives accurate prediction of total flow rate and fraction flow during the whole
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Fig. 3.32. Flow results of local-global two-phase upscaling for a log normal permeabil-

ity field (lx = 0.4, ly = 0.01, and σ = 2.0), M = 0.1.

process while flow condition changes.

We consider the permeability field characterized by lx = 0.4 and ly = 0.01,

change flow condition at PVI= 0.6. Two different flow conditions are applied, refer

to Fig. 3.33. When PVI≤ 0.6, the boundary condition is constant pressure-no flow

condition, after that the boundary condition is changed to corner-to-corner as shown

in Fig. 3.33 (a) and (b). We compared the primitive coarse model, local EFBCs with

local-global two-phase upscaling. As the results shown in Fig. 3.34 and 3.34, LG2P

gives the most accurate prediction of total flow rate and fractional flow. After the

boundary condition changes, the error of LG2P upscaling is a little bit large. The

reason is that the pseudo functions are generated by initial boundary condition and

are used through out the whole process. If we generate use different pseudo functions

corresponding with different boundary conditions, we might be able to get a better

result. This is under investigation.
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Fig. 3.33. Schematically showing different flow conditions. Flow condition is constant

pressure and no flow condition from PVI=0.0 to PVI = 0.6. For PVI≥ 0.6,

flow condition is changed to corner-to-corner flow.

3.3.4.5. Results for multiple realizations

Our final example involves flow simulation over multiple permeability realizations,

which are often required for uncertainty quantification in subsurface modeling. We

consider the permeability field characterized by lx = 0.4 and ly = 0.01, and gener-

ate 100 realizations of the fine-scale model (unconditional to any data). The various

coarse-scale models are then applied to each realization. As often applied in uncer-

tainty quantification, the flow results are represented by ensemble statistics (i.e., P50

and P10-P90 confidence interval) of the flow predictions over 100 realizations. Here

we compare the fine and coarse-scale ensemble statistics to assess the overall accuracy

of a particular coarse model.

Shown in Fig. 3.36 are the fine and coarse-scale results for oil fractional flow

for the 100 realizations (represented by gray curves). Fig. 3.36a shows the fine-scale

predictions, while Fig. 3.36b is for the primitive coarse-scale model. We see the

variations among different realizations. Of greater interest is some key statistics of

the flow responses, such as the P50 and P10-P90 confidence interval. In Fig. 3.36, the

solid black curves represent the P50 flow predictions, while the dashed black curves

represent the P10 (lower curves) and P90 (upper curves) responses. Next we compare
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Fig. 3.34. Flow results of local-global two-phase upscaling with a changed flow condi-

tion at PVI=0.6, as (a) in Fig. 3.33. Permeability is a log normal perme-

ability field lx = 0.4, ly = 0.01, and σ = 2.0, and M = 5.
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Fig. 3.35. Flow results of local-global two-phase upscaling with a changed flow condi-

tion at PVI=0.6, as (b) in Fig. 3.33. Permeability is a log normal perme-

ability field lx = 0.4, ly = 0.01, and σ = 2.0, and M = 5.
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the P50, P10 and P90 flow predictions of the fine and different coarse-scale models.

The comparisons are shown in Fig. 3.37, in which the solid curves correspond to

the fine-scale results, the dot-dash curves to the coarse-scale models; and the thick

curves represent P50 and the thin curves the P10 (lower curves) and P90 (upper

curves) flow responses. Shown in Fig. 3.37a is the comparison between the fine and

primitive coarse-scale models. It is evident that the primitive coarse model shows

large errors — the P10-P90 intervals predicted by the fine and coarse models do not

overlap in Fig. 3.37a.

The results for the EFBC local upscaling are shown in Fig. 3.37b. Although

it considerably improves the primitive model by correcting the bias towards a late

breakthrough, it is also apparent that there is a bias towards an early breakthrough

and the predicted uncertainty range is much narrower than that in the fine-scale

model. Here the biased results in the P50 and P10-P90 interval illustrate the biased

prediction in each realization using EFBC local upscaling. The results for LG2P

upscaling are shown in Fig. 3.37c. We see that it captures the fine-scale P50 and

P10-P90 predictions very well. The coarse models reproduce the P50 of fine-scale

solution, and capture the P10-P90 uncertainty range. This example demonstrates

again the superior performance of the local-global two-phase upscaling.

Note that in other work [7], an ensemble-level upscaling approach was developed

to efficiently generate the upscaled two-phase functions for multiple reservoir models.

In that approach, statistical methods can be combined with any flow-based two-phase

upscaling, which in fact serves as a base method. The accuracy of the underlying flow-

based method will determine the accuracy of the ensemble-level upscaling. Therefore,

the LG2P upscaling developed here can be applied in the context of ensemble-level

upscaling to efficiently and accurately model multiple reservoir realizations.
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3.3.5. Concluding remarks

A new local-global two-phase upscaling approach was developed to upscale two-phase

transport functions. The method uses global coarse-scale flow solutions to determine

the local boundary conditions (for both pressure and saturation equations) in the local

two-phase upscaling calculations. The local boundary conditions are updated with

the time-dependent coarse solutions, therefore capturing the global flow effects both

spatially and temporally. Unlike global two-phase upscaling, the LG2P upscaling

avoids solving any global fine-scale two-phase flow, which makes the method much

more efficient. This new approach can be viewed as an extension of the previous work

on a coupled local-global upscaling for single-phase flow parameters, though the issue

of global dependency of saturation was not encountered in the single-phase upscaling

approach.

In addition to the accuracy, another important aspect in upscaling is the com-

putational cost associated with the upscaling computations. The computational cost

of LG2P upscaling is essentially the number of iterations multiplies the cost of local

two-phase upscaling. For all the results presented in this work, only one iteration

is considered. That means the computational cost is doubled compared to the local

two-phase upscaling. This cost is still often small compared to the full fine-scale

multiphase flow simulation. The computational savings will be even more significant

when flow simulations for different flow scenarios are preformed, and when the LG2P

upscaling is applied in conjunction with ensemble-level upscaling approaches ([7]) to

cases with multiple permeability realizations.

An important issue with any upscaling technique is the robustness of the method

with respect to changing flow conditions. It is important to note that in any global

upscaling methods (or local methods with global flow information incorporated), there
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are two types of global flow information. The local-global procedure presented here

considers generic global flow boundary conditions, i.e., global flow in the x and y

directions (for a 2D system). The resultant coarse-scale properties are expected to

provide reasonable accuracy for different flow scenarios, though it may not yield

the most accurate coarse model for a particular flow condition. The second type of

global flow addresses this issue through the use of a specific set of global boundary

conditions. They can be expected to provide the best accuracy for a specific flow

problem, though the upscaled properties may need to be updated when the flow

conditions change dramatically.

From our limited tests, it was shown that the LG2P upscaling associated with

generic global flows provides reasonable accuracy when the flow conditions change. In

the context of single-phase flow upscaling, the coupled local-global ([6]) and adaptive

local-global ([4]) approaches represent the use of the two different types of global flows.

We note that similar to the single-phase upscaling methods, the LG2P upscaling can

be extended to adjust the upscaled two-phase functions based on the actual global

boundary conditions (including well-driven flows). Extensions along this line will be

studied in our future work.

The current implementation of the LG2P upscaling could be modified by using

different treatments to determine the local boundary conditions. In this work, only the

inlet and outlet boundary conditions (for fluxes and saturations) are determined from

the global coarse-scale flow based on single-phase time of flight. For the boundaries

that are parallel to the flow directions, we simply impose no-flow conditions. It is

possible that other procedures (e.g., the use of pressures and the interpolation of

coarse solutions on all the local boundaries) as well as other interpolation schemes

might provide even further improved accuracy.
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3.4. Conclusion

The following main conclusions can be drawn from this chapter:

• In this chapter, we investigated the global flow dependency of upscaled two-

phase functions in the coarse-scale modeling of subsurface flow and transport.

We demonstrated that the global dependency of saturation has a strong impact

on the upscaled transport functions. This effect is unique in the upscaling of

multiphase flow, and was not effectively accounted for in existing local two-phase

upscaling methods.

• A TOF (time-of-flight)-based two-phase upscaling approach was developed and

implemented. In this approach, local saturation boundary conditions are time-

dependent, which is constructed as a function of time and single-phase time-

of-flight. The single-phase TOF can represent local saturation variations (due

to permeability heterogeneity), as well as the spatial trend of global flow. A

pre-determined parameter associated with time is used to represent the tem-

poral effects of global flow. The value of this parameter depends strongly on

the spatial correlation structure of fine-scale permeability. So it is possible to

tune this parameter based on underlying reservoir heterogeneities, which can

then be applied to a variety of permeability distributions with similar reservoir

characterizations.

• We apply the TOF-based two-phase upscaling to permeability fields with var-

ious correlation lengths and fluid mobility ratios. It is shown that the use of

the TOF-based two-phase upscaling can considerably improve upon existing

two-phase upscaling methods (e.g., standard local boundary conditions, global

flux boundary conditions, and effective flux boundary conditions), and provide
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accurate coarse-scale predictions for both flow and transport. The TOF-base

two-phase upscaling does not require significant extra computation compared

with existing two-phase upscaling methods. It avoids solving global fine-scale

two-phase flow, but effectively account for the effects of global flow.

• A new local-global two-phase upscaling approach was developed and imple-

mented. The method uses global coarse-scale two-phase flow solutions to deter-

mine the local boundary conditions (both for pressure and saturation equations)

in the local upscaling calculations. Different than the upscaling of single-phase

flow parameters, the local boundary conditions need to be updated with the

time-dependent coarse-scale solutions, so the global dependency in both space

and time can be taken into account. The LG2P upscaling accounts for the

global effects in both pressure and saturation, and avoids solving global fine-

scale two-phase flow, which is required in global two-phase upscaling.

• The local-global two-phase upscaling was systematically applied to permeability

fields with various correlation lengths, and its results were compared with an

improved local two-phase upscaling - EFBC local two-phase upscaling. It was

shown that the LG2P upscaling consistently outperforms the local methods.

It corrects the bias in the local methods (i.e., overestimated total flow rate

and a bias towards early breakthrough), and provides accurate coarse-scale

solutions with reference to the fine-scale solution. The LG2P upscaling shows

comparable accuracy to the global two-phase upscaling, but with much reduced

computational cost.
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Fig. 3.36. Oil fractional flow for 100 realizations for a log normal permeability field

(lx = 0.4, ly = 0.01, and σ = 2.0) and M = 5. Black curves represent P50

(solid curve) and P10-P90 interval (dashed curve).
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Fig. 3.37. Comparison of P50 (thick curves) and P10-P90 interval (thin curves) for

oil cut between fine-scale (solid curves) and coarse-scale (dot-dash curves)

models a log normal permeability field (lx = 0.4, ly = 0.01, and σ = 2.0)

and M = 5.
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CHAPTER IV

UPSCALING METHOD FOR TIME DEPENDENT PARABOLIC EQUATIONS

In this chapter, we present a simplified analysis for single-phase upscaling where

the permeability is a time-dependent function that has both spatial and temporal

scales. In particular, we choose the time scale such that the local flow problem in

homogenization is time-dependent, i.e., time scales are important in upscaling. Our

aim is to mimic a scenario when the mobility changes in time for pressure equation

or velocity changes in time for the saturation is important.

We consider a linear parabolic equation

Dtw
ǫ − div(kǫ(t, x)∇wǫ) = f(t, x) in [0, T ) × Ω(4.1)

wǫ = 0 in [0, T ) × ∂Ω(4.2)

wǫ(0, x) = g(x) in {0} × Ω,(4.3)

where wǫ is a quantity of interest (e.g. pressure of saturation). Here kǫ(t, x) = k( t
ǫ2
, x

ǫ
)

is a symmetric positive and definite matrix in [0, T ) × Ω and f ∈ L2(0, T ;H−1(Ω)).

We also assume that λ|ξ|2 ≤ ξTkǫξ ≤ Λ|ξ|2 for all ξ ∈ R
d. Let Γ be the periodicity

of time variable t and Y be the periodicity of space variable x. Setting τ = t
ǫ2

and

y = x
ǫ
, we define N j to be Γ × Y periodic solution of the following equation:

(4.4) DτN
j − divy((k(τ, y)∇y(N

j − yj))) = 0

Using the formal asymptotic expansion, we have the corresponding homogeniza-
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tion equation:

Dtw0 − div(k∗∇w0) = f(t, x) in [0, T ) × Ω(4.5)

w0 = 0 in [0, T ) × ∂Ω(4.6)

w0(0, x) = g(x) in {0} × Ω(4.7)

where k∗ = 〈k(I−∇yN)〉Γ×Y and it is a symmetric positive definite constant matrix.

Let wǫ have the expansion like

wǫ = w0(t, x) + ǫw1(t, x, τ, y) + ǫθǫ +O(ǫ2),

where w1 = −N j(τ, y)∂w0

∂xj
. If we ignore the term O(ǫ2), then the boundary corrector

θǫ satisfies the equation

Dtθǫ − div(kǫ∇θǫ) =
1

ǫ
[Dt(w

ǫ − w0 − ǫw1) − div(kǫ(wǫ − w0 − ǫw1))](4.8)

in [0, T ) × Ω

θǫ = −N j ∂w0

∂xj

in [0, T ) × ∂Ω(4.9)

θǫ(0, x) = −N j(0, y)
∂w0

∂xj

in {0} × Ω(4.10)

It is known that: (1) wǫ ⇀ w0 weakly in L2(0, T ;H1
0(Ω)); (2) kǫ∇wǫ ⇀ k∗∇w0

weakly in [L2(Ω)]d.

4.1. Time-Space Upscaling Procedure

In this section we are going to study single-phase upscaling for permeability with

spatial and time variables. To get the effective permeability matrix k̃, we need to
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solve the local problems in each coarse block V .

Dtφ
ǫ
i − div(kǫ∇φǫ

i) = 0 in [0, T ) × V(4.11)

φǫ
i = xi on [0, T ) × ∂V(4.12)

φǫ
i = xi in {0} × V,(4.13)

where i = 1, 2, ..., d. The associated homogenized equation is

Dtφi − div(k∗∇φi) = 0 in [0, T ) × V(4.14)

φi = xi on [0, T ) × ∂V(4.15)

φi = xi in {0} × V.(4.16)

From the above equations, we know that φi = φi(x) is a linear function only depending

on x not on t. As for the boundary corrector θǫ
i , a direct calculation gives rise to

Dtθ
ǫ
i − div(kǫ∇θǫ

i ) =
1

ǫ
[Dt(φ

ǫ
i − φi + ǫN j ∂φi

∂xj
) − div(kǫ∇(φǫ

i − φi + ǫN j ∂φi

∂xj
))]

= −1

ǫ
[−div(kǫ∇φi) + ǫ∇φi ·DtN + ǫ(div(kǫ∇N)) · ∇φi]

− div(kǫN(∇ : ∇φi))

= −1

ǫ
[DtN − div(kǫ(I − ǫ∇N))]∇φi

= − 1

ǫ2
[DτN − divy(k(I −∇yN))]∇φi

= 0.
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Therefore, the boundary corrector θǫ
i in each coarse block satisfies the following equa-

tion

Dtθ
ǫ
i − div(kǫ∇θǫ

i ) = 0 in [0, T ) × V(4.17)

θǫ
i = −N(t,

x

ǫ
)ei on [0, T ) × ∂V(4.18)

θǫ
i = −N(0,

x

ǫ
)ei in {0} × V.(4.19)

Now we want to estimate θǫ
i . Applying the regularity estimation of parabolic equation,

we have

(4.20) ‖θǫ
i‖L2(0,T ;H1(Ω) ≤ C(‖N(0,

x

ǫ
)ei‖0 + ‖N(

t

ǫ2
,
x

ǫ
)‖

H0, 1
2 (Σ)

).

We assume that diam(V ) = h, T = ∆t. One can show that

‖N(
t

ǫ2
,
x

ǫ
)‖

H0, 1
2 (Σ)

≤ C‖N(
t

ǫ2
,
x

ǫ
)‖

1

2

H0,0(Σ)‖N(
t

ǫ2
,
x

ǫ
)‖

1

2

H0,1(Σ)

≤ C(∆t)
1

2h
d−1

2 ǫ−
1

2 ,

where Σ is the boundary of the set [0, T ) × V . Also we have

(4.21) ‖N(0,
x

ǫ
)‖0 ≤ Ch

d
2 .

Noticing that h≫ ǫ and ∆t≫ ǫ, we obtain

(4.22) ‖θǫ
i‖L2(0,T ;H1(Ω) ≤ C(∆t)

1

2h
d−1

2 ǫ−
1

2 .

Let It = [ti, te) be the coarse time-interval with diam(It) = ∆t. In this disserta-

tion, we define the upscaled effective permeability matrix k̃ satisfying 〈∇φǫ
i〉It×V k̃〈∇φǫ

j〉It×V =

〈∇φǫ
ik

ǫ∇φǫ
j〉It×V in each coarse block It×V . A direct calculation gives 〈∇φǫ

i〉It×V = ei

for any i = 1 · · ·d. Consequently we have

(4.23) k̃ij = 〈∇φǫ
ik

ǫ∇φǫ
j〉It×V .
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One of the main problem in the upscaling is to estimate the difference |k̃ij − k∗ij|.

In the following we focus on this estimate.

Let E(τ, y) = I −∇yN(τ, y), where N = (N1, N2, · · · , Nd) satisfying the follow-

ing equation

(4.24) DτN + div(kǫE) = 0.

We obtain k∗ =< ETkE >Γ×Y and ∇φǫ
i = E∇φi + ǫ∇θǫ

i . Therefore, using the above

equations, we get

k̃ij = 〈(E∇φi + ǫ∇θǫ
i ) · kǫ(E∇φj + ǫ∇θǫ

j)〉∆t×V

= 〈(E∇φi) · kǫ(E∇φj)〉∆t×V + 2ǫ〈∇θǫ
i · kǫ(E∇φj)〉∆t×V + ǫ2〈∇θǫ

i · kǫ∇θǫ
j〉∆t×V

= I + II + III.

Since kǫ is bounded, using (4.22) one can easily obtain that

(4.25) III = O(
ǫ

h
).

Applying Cauchy-Schwartz inequality to the term II and using (4.22) we obtain

(4.26) II = O(

√

ǫ

h
).

Hence we have |k̃ij − 〈(E∇φi) · kǫ(E∇φj)〉∆t×V | = O(
√

ǫ
h
). To finish the estimation

|k̃ij − k∗ij|, we need the following lemma:

Lemma 4.1.1. Let I ×D be a unit cylinder in R×R
d and G(τ, y) be I ×D-periodic

function. Suppose that It × V ∈ R×Rd and diam(It) = ∆t and diam(V ) = h. Then

for all f(t, x) ∈ L∞(It × V ), we have

|
∫

It×V

f(t, x)G(
t

ǫ2
,
x

ǫ
)dtdx−

∫

It×V

f(t, x)〈G〉I×D| = O(ǫ2hd + ǫhd−1∆t).
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Proof. Let Ii×Yi be the periodic cell of G and Ii×Yi ⊂ It×V . Assuming 〈G〉I×D = 0,

we have

|
∫

It×V

f(t, x)G(
t

ǫ2
,
x

ǫ
)dtdx| ≤ C‖f‖L∞(It×V )|

∫

∪(Ii×Yi))

Gdx+

∫

It×V −∪(Ii×Yi)

Gdtdx|

≤ Cǫ2hd + ǫhd−1∆t.

We return to the estimation |k̃ij − k∗ij|. Applying Lemma 4.1.1, we have

< (E∇φi) · kǫ(E∇φj) >∆t×V =< ∇φi · (ETkǫE)∇φj >∆t×V

=< ∇φi · k∗∇φj >∆t×V +O(
ǫ2

∆t
+
ǫ

h
)

= k∗ij +O(
ǫ2

∆t
+
ǫ

h
).

So we get the following theorem.

Theorem 4.1.2. Let k̃ and k∗ be the up-scaling matrix and homogenized matrix

respectively, then

|k̃ij − k∗ij| = O(

√

ǫ

h
+

ǫ2

∆t
).
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CHAPTER V

ENSEMBLE LEVEL FLOW UPSCALING

Ensemble level upscaling is the upscaling for multiple realizations. In this chap-

ter we propose a perturbation approach to compute the upscaled absolute perme-

ability. In this approach, the solution of a local flow simulation is represented by a

product of Green’s function and a source term. In the stochastic space, the collocation

technique is used to generate Green’s function for a random realization. Combining

the perturbation approach and collocation technique, we can compute the upscaled

permeabilities rapidly for all the realizations.

5.1. Stochastic Subsurface Properties

The media properties often contain uncertainties. These uncertainties are usually

parameterized and one has to deal with a large set of permeability fields(realizations).

This brings an additional challenge to the fine-scale simulation and necessitates the

use of of coarse-scale upscaling models. Assume that the media properties are random

and denoted by k(x, ω), where ω refers to a realization. The solution of flow equation

is given by p(x, ω) for each realization ω.

One of the commonly used stochastic descriptions of spatial fields is based on two-

point correlation function of log-permeability. To describe it, we denote by Y (x, ω) =

log[k(x, ω)]. For permeability fields described with two-point correlation function, it

is assumed that covariance function R(x, y) = E [Y (x, ω)Y (y, ω)] is known, where

E[·] refers to the expectation (i.e., average over all realizations) and x, y are points in

the spatial domain.

For permeability fields described by two-point correlation function, one can use

the Karhunen-Loève expansion (KLE) [27, 36] to obtain permeability field description
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with possibly fewer degrees of freedom. This is done by representing the permeability

field in terms of an optimal L2 basis. By truncating the expansion, we can represent

the permeability matrix by a small number of random parameters.

We briefly recall some properties of the KLE. For simplicity, for simplicity, we

assume that E[Y (x, ω)] = 0. Suppose Y (x, ω) is a second order stochastic process

with E
∫

Ω
Y 2(x, ω)dx <∞. Given an orthonormal basis {Φi} in L2(Ω), we can expand

Y (x, ω) as a general Fourier series

Y (x, ω) =
∞

∑

i=1

Yi(ω)Φi(x), Yi(ω) =

∫

Ω

Y (x, ω)Φi(x)dx.

We are interested in the special L2 basis {Φi} which makes the random variables Yi

uncorrelated. That is, E(YiYj) = 0 for all i 6= j. The basis functions {Φi} satisfy

E[YiYj] =

∫

Ω

Φi(x)dx

∫

Ω

R(x, y)Φj(y)dy = 0, i 6= j.

Since {Φi} is a complete basis in L2(Ω), it follows that Φi(x) are eigenfunctions of

R(x, y):

(5.1)

∫

Ω

R(x, y)Φi(y)dy = λiΦi(x), i = 1, 2, . . . ,

where λi = E[Y 2
i ] > 0. Furthermore, we have

(5.2) R(x, y) =
∞

∑

i=1

λiΦi(x)Φi(y).

Denote θi = Yi/
√
λi, then θi satisfy E(θi) = 0 and E(θiθj) = δij . It follows that

(5.3) Y (x, ω) =

∞
∑

i=1

√

λiθi(ω)Φi(x),

where Φi and λi satisfy (5.1). We assume that the eigenvalues λi are ordered as

λ1 ≥ λ2 ≥ . . .. The expansion (5.3) is called the Karhunen-Loève expansion.
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In the KLE (5.3), the L2 basis functions Φi(x) are deterministic and resolve the

spatial dependence of the permeability field. The randomness is represented by the

scalar random variables θi. After we discretize the domain Ω by a rectangular mesh,

the continuous KLE (5.3) is reduced to finite terms and Φi(x) are discrete fields.

Generally, we only need to keep the leading order terms (quantified by the magnitude

of λi) and still capture most of the energy of the stochastic process Y (x, ω). For

an m-term KLE approximation Ym =
∑m

i=1

√
λiθiΦi, define the energy ratio of the

approximation as

(5.4) e(m) :=
E‖Ym‖2

E‖Y ‖2
=

∑m
i=1 λi

∑∞
i=1 λi

.

If λi, i = 1, 2, . . . decay very fast, then the truncated KLE would be a good approxi-

mation of the stochastic process in the L2 sense.

Suppose the permeability field k(x, ω) is a log-normal homogeneous stochastic

process, then Y (x, ω) = log(k(x, ω)) is a Gaussian process, and θi are independent

standard Gaussian random variables. In this case, the covariance function of Y (x, ω)

has the form

(5.5) R(x, y) = σ2 exp
(

−|x1 − y1|2
2l21

− |x2 − y2|2
2l22

)

.

In the above formula, l1 and l2 are the correlation lengths in each dimension, and

σ2 = E(Y 2) is the variance. We first solve the eigenvalue problem (5.1) numerically

on the rectangular mesh and obtain the eigenpairs {λi,Φi}. We put 4 points per

correlation length in our numerical simulations. Since the eigenvalues decay fast, in

this case the truncated KLE approximates the stochastic process Y (x, ω) fairly well

in the L2 sense. Therefore, we can sample Y (x, ω) from the truncated KLE (5.3) by

generating Gaussian random variables θi.

If the permeability field k(x, ω) is a log-exponential homogeneous stochastic process,
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Fig. 5.1. An illustration of eigenvalues Distribution.

then the covariance function of Y (x, ω) has the form

(5.6) R(x, y) = σ2 exp
(

−|x1 − y1|
l1

− |x2 − y2|
l2

)

.

In this work, we will mainly consider the above two types of permeability fields.

Now we show the eigenvalues and eigenvectors for log-normal permeability field de-

scribed by (5.5), with l1 = 0.1, l2 = 0.1, Nfine = 50. In Fig. 5.2, we plot 4 eigenvectors

corresponding to eigenvalues 1, 10, 50 and 100. In Fig. 5.1, we plot eigenvalues for

log-normal permeability field described by (5.5) as well as log-exponential permeabil-

ity (5.6). As we see from these figures that the eigenvalues decay fast for log-normal

permeability fields compared to log-exponential permeability fields. The eigenvectors

corresponding to smaller (in value) eigenvalues contain finer scale features of the me-

dia. Moreover, if we denote the amplitute of eigenvector as Ai := max
x

{Φi(x)}, then

we can observe that Ai decreases as eigenvalue λi decreases as in Fig. 5.3. This is

because ‖Φ‖L2 = 1 and Φs become more ossilative as i increases.
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Fig. 5.2. Schematic showing the eigenvectors of a log-normal permeability field, with

lx = 0.1, ly = 0.1, and σ = 2.0.
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5.2. A Perturbation Approach

5.2.1. Truncated permeability

As we know permeability k(x) is given by KLE of θ (5.3). In applications, the perme-

ability fields are defined on a discrete grid. In this case, the continuous KLE (5.3) is

reduced to finite N terms, N is the total number of grid blocks in the domain, and the

stochastic variable θ is in N−dimensional uncertainty space, θ = (θ1, θ2, ..., θN) ∈ R
N ,

the permeability k(x) is

(5.7) k(x) = exp(YN) = exp(
N

∑

i=1

√

λiθiΦi(x)).

Now we introduce a truncated KLE, which approximates permeability k with

fewer terms in (5.7). The eigenvalues λi, i = 1, 2, · · ·, N decay to zero rapidly (as

in Fig. 5.1), so we use the first m largest eigenvalues in the truncated KLE. Take a

m ≤ N , let θ0 = (θ1, θ2, ..., θm, 0, 0, ...0) ∈ R
N , the truncated permeability k0(x) is

given by KLE of θ0

(5.8) k0(x) = exp(Ym) = exp(

m
∑

i=1

√

λiθiΦi(x)).

It follows that k0 is an approximation of k.

Now we study the upscaled truncated permeability k∗0(x). We solve a single-phase

flow problem with truncated permeability k0 on the local domain Ω,

(5.9) div(k0∇φ0
e) = 0 in Ω.

Boundary condition is φ0
e(x) = x · e on ∂Ω, where e is a unit vector, Ω is a coarse grid

block. The truncated upscaled effective permeability on Ω is computed as

(5.10) k∗0e =
1

|Ω|

∫

Ω

k∇φ0
edx.
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Table 5.1. Error of
‖k∗−k∗

0
‖

‖k∗‖
base on 100 realizations of log-exponential permeability

fields, with correlation lengths lx = 0.1, ly = 0.1 and variance σ = 2.0.

m e(m)
‖k∗−k∗

0
‖

‖k∗‖

10 23% 0.180007

50 54% 0.084668

100 68% 0.051392

300 86% 0.016983

600 95% 0.005556

k∗0 is an approximation to k∗.

In Table 5.1, we show results of upscaled truncated permeabilities for 100 realiza-

tions. On domain Ω = [0, 1] × [0, 1], we consider a log-exponential permeability field

k with the correlation lengths lx = 0.1, ly = 0.1, the covariance σ = 2.0. Taking fine

grid as Nf
x = Nf

y = 41 and coarse grid as N c
x = N c

y = 1, then the total number of fine

grid blocks is N = 1681. For 100 realizations, we compute the upscaled truncated

permeability k∗0. In Table 5.1, the number of truncated terms, the corresponding

energy ratio and the mean value of relative error
‖k∗−k∗

0‖

‖k∗‖
based on 100 realizations is

illustrated. When energy ratio is large, the upscaled truncated permeability is accu-

rate. For example, when the energy ratio e(m) = 95%, the error is
‖k∗−k∗

0
‖

‖k∗‖
= 0.5%;

for e(m) = 68%, the error is
‖k∗−k∗

0
‖

‖k∗‖
= 5%. But if m ≤ 50 or less, the error becomes

large ≥ 10%. It might be asked that if it is possible to make a correction on the trun-

cated upscaled permeability such that for smaller m, the error is small, e.g. ≤ 5%.

In the following parts, we will introduce a correction scheme, which gives an accurate

upscaled permeability in lower dimensional space, e.g. m ≤ 50.
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5.2.2. Correction scheme

For m ≤ N , the permeability k and the solution φe can be written into two parts,

the lower order part and the perturbation part:

(5.11) k = k0 + k′, φe = φ0
e + φ′

e,

where, the lower order part of permeability is k0,

k0(x) = exp(
m

∑

i=1

√

λiθiΦi(x)),(5.12)

and the perturbation part is k′ = k − k0 = k0(exp(log k − log k0) − 1), i.e.,

k′ = k0[exp(

N
∑

i=m+1

√

λiθiφi) − 1] .(5.13)

For φe(x), the lower order part is φ0
e(x), that is the solution of (5.9). The perturbation

part is φ′
e(x) = φe(x) − φ0

e(x).

With the above notation, the single-phase flow equation can be written as

div((k0 + k′)∇(φ0
e + φ′

e)) = 0 in Ω .(5.14)

It follows that

div((k0 + k′)∇(φ0
e + φ′

e)) = div(k0∇φ0
e) + div(k0∇φ′

e)

+ div(k′∇φ0
e) + div(k′∇φ′

e) .

Neglecting the higher order term k′∇φ′
e, then we obtain

div(k0∇φ0
e) + div(k0∇φ′

e) + div(k′∇φ0
e) ≈ 0 .(5.15)
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m e(m)
‖k∗−k∗

0
‖

‖k∗‖
‖k∗−k̃∗‖
‖k∗‖

2 11% 0.283463 0.188595

5 24% 0.236421 0.119825

10 42% 0.180092 0.077604

30 79% 0.055768 0.013354

60 95% 0.012932 0.002109 5 10 15 20 25 30 35 40 45 50 55 60
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Fig. 5.4. Errors of
‖k∗−k∗

0‖

‖k∗‖
and ‖k∗−k̃∗‖

‖k∗‖
based on 100 realizations of log-normal perme-

ability fields, with correlation lengths lx = 0.1, ly = 0.1 and the variance

σ = 2.0.

Denote the corrected solution as φ̃e, the corrected single-phase flow system is

div(k0∇φ̃e) = −div(k′∇φ0
e) x ∈ Ω .(5.16)

Here, φ̃e(x) satisfies same boundary condition as φe(x). We call φ̃e(x) the corrected

single-phase flow solution, and define the corrected upscaled effective permeability as

(5.17) k̃∗e =
1

|Ω|

∫

Ω

k∇φ̃edx.

Comparing (5.9) and (5.15), we observe that in (5.9) there are two terms missing,

div(k0∇φ′
e) and div(k′∇φ0

e), so k̃∗ is a correction of k∗0.

For the same 100 realizations in Section 5.2.1, we compare the upscaled corrected

permeability k̃∗ and upscaled truncated permeability k∗0 in Figure 5.4. The error of the

corrected upscaled permeability
‖k∗ − k̃∗‖

‖k∗‖ is much smaller than the error of truncated

upscaled permeability
‖k∗ − k∗0‖

‖k∗‖ . The same trend is shown in Figure 5.5, where the

permeability fields are generated by an exponential covariance function (5.6) but with

the same coefficients as in Figure 5.4.
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m e(m)
‖k∗−k∗

0
‖

‖k∗‖
‖k∗−k̃∗‖
‖k∗‖

10 23% 0.180007 0.087122

50 54% 0.084668 0.022694

100 68% 0.051392 0.010665

300 86% 0.016983 0.001884
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Fig. 5.5. Errors of
‖k∗−k∗

0‖

‖k∗‖
and ‖k∗−k̃∗‖

‖k∗‖
based on 100 realizations of log-exponential

permeability fields, with the correlation lengths lx = 0.1, ly = 0.1 and the

variance σ = 2.0.

We observe that the corrected upscaled permeability k̃∗ corrects the error in

truncated upscaled permeability. For larger m, with e(m) ≥ 95% , the error is about

10−4. For smaller m, with e(m) ≈ 50% , the error is about 5%. We will use the

corrected scheme (5.15) and (5.16) to compute the corrected upscaled permeability

k̃∗.

5.2.3. Error analysis

In this section, we estimate the error of the corrected upscaled permeability k̃∗. Writ-

ing the corrected solution ϕ̃ as ϕ̃ = ϕ0 + ϕ̃′, where ϕ0 is the solution of (5.9), then ϕ′

and ϕ̃′ satisfy the following equations respectively:











∇ · (k∇ϕ′) = −∇ · (k′∇ϕ0)

ϕ′ = 0
(5.18)











∇ · (k0∇ϕ̃′) = −∇ · (k′∇ϕ0)

ϕ̃′ = 0.
(5.19)
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On one coarse grid block Ω, the error of corrected upscaled permeability is

|k∗ − k̃∗| = |〈k∇ϕ〉Ω − 〈k∇ϕ̃〉Ω| = |〈k∇(ϕ′ − ϕ̃′)〉Ω|

≤ |Ω| 12‖k∇(ϕ′ − ϕ̃′)‖L2 .(5.20)

Substracting (5.19) from (5.18), we obtain

∇ · (k∇(ϕ′ − ϕ̃′)) = −∇ · (k′∇ϕ̃′).(5.21)

Multiplying the above equation by ϕ′ − ϕ̃′ and intergrating by parts on Ω (using

ϕ′ − ϕ̃′ = 0 on ∂Ω ), we obtain

∫

Ω

k∇(ϕ′ − ϕ̃′) · ∇(ϕ′ − ϕ̃′)dx = −
∫

Ω

k′∇ϕ̃′ · ∇(ϕ′ − ϕ̃′)dx.(5.22)

Equivalently,

∫

Ω

1

k
k∇(ϕ′ − ϕ̃′) · k∇(ϕ′ − ϕ̃′)dx = −

∫

Ω

1

k

k′

k0

k0∇ϕ̃′ · k∇(ϕ′ − ϕ̃′)dx.(5.23)

Then we get

1

kmax

‖k∇(ϕ′ − ϕ̃′)‖L2. ≤ 1

kmin

| k
′

k0

|max‖k0∇ϕ̃′‖L2

≤ 1

kmin
| k

′

k0
|max(k0,max|

k′

k0
|max‖∇ϕ0‖L2).

We substitute the above equation into (5.20), it follows that

|k∗ − k̃∗| ≤ |Ω| 12 | k
′

k0
|2max k0,max

kmax

kmin
‖∇ϕ0‖L2(5.24)

By KLE expansion, we have

| k
′

k0
(x)|max = | exp(

N
∑

i=m+1

√

λiΦi(x)θi) − 1|max.(5.25)

Denote V (x) as a vector with the product of square root of eigenvalues and eigenvec-
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tors,

V (x) = (
√

λ1Φ1(x), ...,
√

λmΦm(x), ...,
√

λNΦN (x)),(5.26)

we can write V (x) into two parts

(5.27) V (x) = V0(x) + V ′(x),

where,

V0(x) = (
√

λ1Φ1(x), ...,
√

λmΦm(x), 0, ..., 0),

V ′(x) = (0, ..., 0,
√

λm+1Φm+1(x), ...,
√

λNΦN (x)).

For θ = (θ1, ..., θm, ..., θN), let θ = θ0 + θ′, where θ0 = (θ1, ..., θm, 0, ..., 0), θ′ =

(0, ..., 0, θm+1, ...θN ), then we have

| k
′

k0
| = | exp(V ′ · θ′) − 1|.(5.28)

For 0 ≤ m ≤ N , the energy ratio e(m) =
Pm

i=1
λi

PN
i=1

λi
. Notice λi is decreas-

ing, then λj ≤ (1−e(m))
N−m

∑N
i=1 λi, ∀j = m + 1, ..., N .

∑N
i=1 λi = |Ω|σ2, so λj ≤

(1−e(m))
N−m

(|Ω|σ2), ∀j = m+ 1, ..., N . By Taylor expansion

| exp(V ′ · θ′) − 1| = |1 + (V ′ · θ′) +
(V ′ · θ′)2

2!
+

(V ′ · θ′)3

3!
+ ...− 1|

= |(V ′ · θ′) +O((V ′ · θ′)2)|

≤ C‖V ′‖2‖θ′‖2

= {
N

∑

i=m+1

λiφ
2
i (x)}

1

2 ‖θ′‖2.
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So we have

| k
′

k0
(x)|max = |{

N
∑

i=m+1

λiφ
2
i (x)}

1

2 |max ‖θ′‖2

≤ {
N

∑

i=m+1

λiA
2
i }

1

2 ‖θ′‖2

≤ max
m+1≤i≤N

{Ai}{
M

∑

i=m+1

λi}
1

2 ‖θ′‖2

≤ Am(1 − e(m))
1

2 |Ω| 12σ‖θ′‖2

= |Ω| 12σAm(1 − e(m))
1

2‖θ′‖2.

Substituting the above result into (5.24), we have the following lemma.

Lemma 5.2.1. Assume kmax

kmin
≤ C and k0,max ≤ C0, C and C0 is independ of θ, then

we get the following error estimation,

|k∗ − k̃∗| ≤ C ′A2
m(1 − e(m))‖θ′‖2

2‖∇ϕ0‖L2 ,(5.29)

where, C ′ = |Ω| 32 σ2 C C0.

By Lemma 5.2.1, for each fixed θ0, the error |k∗ − k̃∗| depends on e(m) and the

perturbation part of realization ‖θ′‖2.

5.3. Fast Computation of k̃∗ on Hyperplane

In this section, we will discuss about the computation of the corrected upscaled per-

meability k̃∗ on a hyperplane. The hyperplane is defined based on a fixed realization

θ0. On a hyperplane, the Green’s functions are same, so we can rapidly compute the

upscaled permeability.
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5.3.1. Green’s function

Green’s function is a type of function used to solve inhomogeneous differential equa-

tions subject to boundary conditions [17]. In the corrected single-phase flow system

(5.16), Green’s function G(x, y) satisfies the following equation

(5.30) div(k0∇G(x, y)) = δ(x− y) .

In (5.16), the right hand side is

(5.31) f(x) = −div(k′∇φ0
e) .

Then, the solution of (5.16) is:

φ̃(x) =

∫

Ω

G(x, y)f(y)dy ,(5.32)

where G(x, y) and f(x) satisfy (5.30) and (5.31), respectively.

Remark 5.3.1. In the numerical discrete form, the equation (5.30) will be imple-

mented as AU = b, so the solution is U = A−1b. In this discrete form, the Green’s

function is the inverse of the stiff matrix A.

5.3.2. Fast computation via hyperplane projection

Firstly, we introduce the definition of hyperplane. For any θ = (θ1, θ2, ..., θm, θm+1, ..., θN) ∈

R
N , it can be written into two parts θ = θ0 + θ′, where θ0 = (θ1, θ2, ..., θm, 0, ..., 0)

and θ′ = (0, 0, ..., 0, θm+1, ..., θN). We define hyperplane Hθ0 as the following,

Hθ0 := {ω ∈ R
N |ω = (θ1, θ2, ..., θm, ωm+1, ..., ωN)},(5.33)

where ωi(m ≤ i ≤ N) ∈ R. Hθ0 is shown in Figure 5.6.

On the hyperplane, Green’s function G(x, y) is uniquely determined by θ0 (see
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\theta_0

R ^n

1 −− m

m −− n

\omega
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m −− low dimension
n  −− full dimension

H_

Fig. 5.6. Illustration of a hyperplane Hθ0 in R
N .

(5.30)) . And we observe that the source term f(y) is determined by k′ and φ0
e. On the

hyperplane Hθ0 defined by θ0, G(x, y) and φ0
e are same for a relization θ ∈ Hθ0. For

different realizations on this hyperplane, we only need to change θ′ in the calculation of

upscaled permeability. Green’s function G(x, y) and local solution φ0
e only need to be

computed once, so we get the upscaled permeability rapidly on the whole hyperplane.

Now we compute the corrected upscaled permeability on one hyperplane. We

consider an exponential permeability field k with correlation lengths lx = 0.3, ly =

0.06 and variance σ = 2.0. The fine grid is Nf
x = Nf

y = 84 and coarse grid is

N c
x = N c

y = 1. Since the energy ratio e(600) = 0.9760, we take the solution for

m = 600 as the reference solution. The result of the corrected upscaled permeability

is shown in Table 5.2. In Table 5.2, we present errors between the truncated upscaled

permeability k∗0 and k∗ and the corrected upscaled permeability k̃∗ and k∗. As we

mentioned earlier, the error of k̃∗ is smaller than error of k∗0. We observe this here.

We would like to point out that on a hyperplane , the computational costs for k̃∗ and

k∗0 are same.
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Another case we studied is an exponential permeability k with lx = 0.4, ly = 0.05,

σ = 2.0. The fine grid is Nf
x = Nf

y = 81 and coarse grid as N c
x = N c

y = 1. We take

the solution with m = 400 as the reference solution. Numerical results are shown in

Table 5.3. In this table we present errors for the truncated upscaled permeability k∗0

and the corrected upscaled permeability k̃∗. The corrected upscaled permeability is

more accurate.

Table 5.2. On a hyperplane, we compare the errors of
‖k∗−k∗

0
‖

‖k∗‖
and ‖k∗−k̃∗‖

‖k∗‖
for an expo-

nential permeability field, with the correlation lengths lx = 0.3, ly = 0.06

and the variance σ = 2.0.

m
‖k∗

x−k∗

x,0‖

‖k∗

x‖
‖k∗

x−k̃x
∗

‖
‖k∗

x‖

‖k∗

y−k∗

y,0‖

‖k∗

y‖

‖k∗

y−k̃y
∗

‖

‖k∗

y‖

3 0.101942 0.047174 0.350483 0.203149

5 0.097316 0.038822 0.301587 0.174062

10 0.073517 0.022492 0.244898 0.112901

15 0.070854 0.018579 0.193204 0.076596

Table 5.3. On one hyperplane, we compare the error of
‖k∗−k∗

0‖

‖k∗‖
and ‖k∗−k̃∗‖

‖k∗‖
for an

exponential permeability field, with correlation lengths lx = 0.4, ly = 0.05

and the variance σ = 2.0.

m
‖k∗

x−k∗

x,0‖

‖k∗

x‖
‖k∗

x−k̃x
∗

‖
‖k∗

x‖

‖k∗

y−k∗

y,0‖

‖k∗

y‖

‖k∗

y−k̃y
∗

‖

‖k∗

y‖

3 0.079778 0.029701 0.384073 0.228551

5 0.076143 0.027384 0.336654 0.216180

10 0.060936 0.017679 0.271402 0.118205

15 0.053693 0.012607 0.216085 0.091798
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5.4. Collocation Technique in Stochastic Space

In this section, we will introduce a collocation technique, which will be used to com-

pute Green’s function G(x, y) and the source term f(y). The collocation method has

been used for the uncertainty problem [13] , where the author computes a set of up-

scaled permeabilities at reference nodes θ̃i ∈ R
N . Each time for a new permeability k,

the upscaled permeability k∗ is interpolated by the reference upscaled permeabilities

k∗(x, θ) =
∑

i

k∗(x, θ̃i)βi(θ).(5.34)

The weights βi(θ) are computed priori and they depend on the interpolation method.

Here in this dissertation, we propose a different approach. As in (5.32), the local

solution can be computed by Green’s function and the source term. We use collocation

method for Green’s function G(x, y) and the local solution φ0
e. Given collocation

points {θi}Mc

i=1 ∈ R
N , for any θ0 ∈ R

N , the interpolated Green function I(G)(x, y, θ0)

and the truncated local solution I(φ0
e)(x, θ0) can be computed by

I(G)(x, y, θ0) =

Mc
∑

i=1

G(x, y, θi)αi(θ0),(5.35)

I(φ0
e)(x, θ0) =

Mc
∑

i=1

φ0
e(x, θ

i)βi(θ0).(5.36)

Here, Mc is the total number of collocation points, αi and βi are computed priori.

Then, we use I(G)(x, y, θ0) and I(f)(y, θ0) to get the interpolated corrected

solution:

I(φ̃e) =

∫

Ω

I(G)(x, y, θ0)I(f)(y)dy(5.37)

At last, we can get the interpolated corrected upscaled permeability,

I(k̃∗)e =
1

|Ω|

∫

Ω

k∇I(φ̃e)dx.(5.38)
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The algorithm of of collocation method in R
N is given as following:

Algorithm 5.4.1. For any θ0 = (θ1, θ2, ..., θm, θm+1, ..., θN−1, θN) ∈ R
N ,

1. Choose a set of collocation nodes {θi}Mc

i=1 ∈ R
N . Compute G(x, y, θi), φ0

e(x, θ
i)

and interpolation weights αi(θ
0), βi(θ

0).

2. Get the interpolated Green’s function I(G)(x, y, θ0) and interpolated local solu-

tion I(φ0
e)(y, θ

0) by (5.35) and (5.36). Then, compute the interpolated corrected

solution by (5.37).

3. Compute the interpolated corrected upscaled permeability by (5.38).

Remark 5.4.1. Step 1 is a one-time computation. Since the collocation nodes

{θi}Mc

i=1 ∈ V are chosen, the interpolation values G(x, y, θi) and φ0(θ
i) are computed

only once. For any θ ∈ R
N , we only need to do Step 2 and Step 3.

In the following two sections, we will discuss the collocation method in different

spaces, a lower dimensional space and the full dimensional space.

5.4.1. Collocation technique in lower dimensional space

In this section, we consider collocation method in a lower dimensional space V. If the

stochastic space is R
N , then for m ≤ N , we define the lower dimensional manifold V

as follows

(5.39) V = {ω ∈ R
N |ω = (ω1, ω2, ..., ωm, 0, ..., 0)} ⊂ R

N .

Figure 5.7 illustrates the low dimensional manifold V in R
N . For any θ ∈ R

N , let

θ = θ0 + θ′ such that θ0 = {θ1, θ2, · · ·, θm, 0, · · ·, 0}, θ′ = {0, 0, · · ·, 0, θm+1, · · ·, θN}.

Then, θ0 ∈ V.
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\theta_0: the projection of \theta onto V
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Fig. 5.7. An illustration of the projection from R
N onto V.

5.4.1.1. General interpolation in V

In a lower dimensional space, the general interpolation is commonly used. We briefly

present some results in a unit cube. On a unit cube [−1.0, 1.0]2, we consider a linear

interpolation. Let mesh step size h = 1.0−(−1.0)
M

, and we choose the interpolation nodes

as {θ} = {(i1h, i2h, 0, 0, ..., 0)}M
i1,i2=1. In each direction there are M interpolation

nodes, so totally there are Mc = M2 interpolation nodes. If m = 3, on [−1.0, 1.0]3,

the interpolation nodes are: {θ} = {(i1h, i2h, i3h, 0, ..., 0)}M
i1,i2,i3=1. So totally we need

Mc = M3 interpolation nodes. Similarly, on a m dimensional unit cube [−1.0, 1.0]m,

there will be Mm collocation nodes, {θ} = {(i1h, i2h, , , , imh, 0, ..., 0)}M
i1,i2,,,im=1.

We consider 20 realizations of log-normal permeability fields, with lx = 0.3,

ly = 0.5, and σ = 2.0. We take mesh grid to be Nf
x = Nfy = 17, N c

x = N c
y = 1,

and the total number of eigenvalues is N = 187. We compare the error of truncated

upscaled permeability, corrected upscaled permeability and the interpolated corrected

upscaled permeability. Numerical result is shown in Figure 5.8 and Table 5.4. In

Figure 5.8, we plot the error of three types of upscaled permeability in 2-dimensional
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and 3-dimensional space. The circle dash line is the error of
‖k∗

0
−k∗‖

‖k∗‖
, the square dash

line is the error of ‖k̃∗−k∗‖
‖k∗‖

, and the diamond dash line is the error ‖Im(k̃∗)−k∗‖
‖k∗‖

. By the

plot, we can see the error of
‖k∗

0−k∗‖

‖k∗‖
is much larger than the other two. The mean

value of errors are shown in Table 5.4.
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Fig. 5.8. Error of corrected upscaled permeability using linear interpolation for a nor-

mal permeability field with the correlation lengths lx = 0.3, ly = 0.5 and the

variance σ = 2.0.

In Table 5.4, TE denotes the truncation error
‖k∗

0
−k∗‖

‖k∗‖
, PE denotes the pertur-

bation error ‖k̃∗−k∗‖
‖k∗‖

(PE), and ImE denotes the interpolation error where Im is the

interpolation in m-dimensional space. We observe that the error of ‖Im(k̃∗)−k∗‖
‖k∗‖

is very

close to the error of ‖k̃∗−k∗‖
‖k∗‖

(PE). This means the interpolation error (ImE) is very

small. Thus the upscaled permeability I(k̃∗), which is from the interpolated Green’s

function Im(G) and the interpolated solution Im(φ0
e), is a very good approximation.

We observe that the errors have the following relation,

PE ≪ TE, PE + ImE ≪ TE.(5.40)

Note that the interpolation error is small, so using perturbation approach with col-

location technique, we can obtain an accurate upscaled permeability. But we notice

that the choice the interpolation method is essential in this method. In practice,
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Table 5.4. Error of
‖k∗

0
−k∗‖

‖k∗‖
(truncated upscaled permeability), ‖k̃∗−k∗‖

‖k∗‖
(PE) (corrected

upscaled permeability) and ‖Im(k̃∗)−k∗‖
‖k∗‖

(interpolated corrected upscaled per-

meability using linear interpolation) for a log-normal permeability field with

correlation lengths lx = 0.3, ly = 0.5 and covariance σ = 2.0.

Dimension Interp Nodes
‖k∗

0
−k∗‖

‖k∗‖
(TE) ‖k̃∗−k∗‖

‖k∗‖
(PE) ‖Im(k̃∗)−k∗‖

‖k∗‖
(PE + ImE)

m = 2 Mc = 112 0.108946 0.028012 0.030891

m = 2 Mc = 212 0.108946 0.028012 0.028568

m = 2 Mc = 312 0.108946 0.028012 0.028345

m = 3 Mc = 113 0.028805 0.004391 0.009220

the general interpolation methods only can be applied for low dimensional case, e.g.

m = 2, 3. For example, if m = 4 and M = 10, then we have Mc = 104 values needed

for the interpolation. This requires intense computing for the one-time computation

of interpolation value. Furthermore, it requires many interpolation. We would like

an interpolation method which can significantly reduce the computation. Sparse grid

collocation methods will be used to alleviate this problem.

5.4.1.2. Sparse grid interpolation in V

Now we discuss the sparse grid collocation method with Smolyak Algorithm in the

lower dimensional space V. In V, using the 1st-level Smolyak Algorithm, we only need

2m + 1 collocation nodes. Similar to Algorithm 5.4.1, we apply Smolyak algorithm

and Lagrange interpolation introduced in [13, 28]. For m dimensional case, if we

use the lowest interpolation level Nl = 1, then there are Mc = 2m + 1 reference

nodes are needed for a linear interpolation. We try the same permeability field as the

permeability in Table 5.4, the results with Smolyak algorithm are shown in Table 5.5.
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Table 5.5. Error of
‖k∗

0
−k∗‖

‖k∗‖
(truncated upscaled permeability), ‖k̃∗−k∗‖

‖k∗‖
(PE) (corrected

upscaled permeability) and ‖Im(k̃∗)−k∗‖
‖k∗‖

(interpolated corrected upscaled per-

meability using Smolyak Algorithm in V) for a log-normal permeability field

with correlation lengths lx = 0.3, ly = 0.5 and the variance σ = 2.0.

Dim Interp Nodes
‖k∗

0
−k∗‖

‖k∗‖
(TE) ‖k̃∗−k∗‖

‖k∗‖
(PE) ‖Im(k̃∗)−k∗‖

‖k∗‖
(PE + ImE)

m = 2 Mc = 5(Nl = 1) 0.108946 0.028012 0.067856

m = 2 Mc = 13(Nl = 2) 0.108946 0.028012 0.034330

m = 2 Mc = 29(Nl = 3) 0.108946 0.028012 0.029884

Comparing Table 5.4 and Table 5.5, we can see both the general interpolation

and Smolyak algorithm give accurate results. But Smolyak interpolation uses much

fewer nodes. If the interpolation level Nl = 1, only 2m+1 reference nodes are needed.

This interpolation is very efficient for a higher dimensional space, since 2m+1 ≪ Mm

(if m is large). We will discuss more of this sparse interpolation later.

5.4.2. Sparse grid interpolation in R
N

In this section, we use Smolyak interpolation nodes in the full dimensional space R
N .

We notice that the first level Smolyak nodes has a very special distribution. For

m < N , there are 2m + 1 Smolyak nodes in V and 2N − 2m nodes in Hyperplane

H0 = (0, 0, ..., 0, θm+1, ..., θN), see Fig. 5.9.

In V, we need solve 2m+1 local problems to get the interpolated values {IN (G)(x, y, θi)}2m+1
i=1

and {IN(φ0
e)(x, θ

i)}2m+1
i=1 . In H0 Green’s function and local flow simulation only need

to be computed once, so the 2N − 2m interpolation values can be rapidly computed

by the method introduced in Section 5.3.2. By these two steps, we only solve 2m+ 1

local problems to get total 2N + 1 interpolation values in R
N .
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Fig. 5.9. Illustration of the first level Smolyak nodes in R
N .

In Table 5.6, we show the results for a log-normal permeability field with corre-

lation lengths lx = 0.1, ly = 0.1, and variance σ = 2.0. In Table 5.6, we compare the

error of corrected upscaled permeability, interpolated upscaled permeablity Im(k̃∗) in

V and the interpolated IN (k̃∗) in R
N . We can see that using collocation technique,

the error of upscaled permeability is significantly reduced. Comparing with ImE and

INE, the error INE (interpolation in RN ) is much smaller. That is because we apply

the collocation in the full dimensional space R
N . For the 2N +1 interpolation nodes,

2N − 2m+ 1 are in one hyperplane, where we solve local flow problem once.

In Table 5.7, we show the results for a log-exponential permeability field with

correlation lengths lx = 0.3, ly = 0.5, and variance σ = 2.0. Particularly, we compare

the error of interpolated corrected upscaled permeablity Im(k̃∗) in V and the error of

interpolated corrected upscaled permeablity IN(k̃∗) in R
N . It shows us that IN (k̃∗)

is more accurate. We also notice these two interpolations have similar computation

costs, i.e., 2m+ 1 local problems need to be computed.
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Table 5.6. Error of ‖k̃∗−k∗‖
‖k∗‖

(PE) (corrected upscaled permeability), ‖Im(k̃∗)−k∗‖
‖k∗‖

(inter-

polated corrected upscaled permeability using Smolyak Algorithm in V),

and ‖IN (k̃∗)−k∗‖
‖k∗‖

(interpolated corrected upscaled permeability using Smolyak

Algorithm in R
N ) for a log-normal permeability field with lx = 0.1, ly = 0.1

and σ = 2.0.

Dim ‖k̃∗

m−k∗‖
‖k∗‖

(PE) ‖Im(k̃∗)−k∗‖
‖k∗‖

(PE + ImE) ‖IN (k̃∗)−k∗‖
‖k∗‖

(PE + INE)

m = 2 0.22808043 0.04126556 0.00067630

m = 3 0.19795747 0.04176262 0.00062872

m = 5 0.15711911 0.04193267 0.00054790

m = 10 0.08905113 0.04177832 0.00037403

5.5. Adaptive Clustering

In this section, we discuss an adaptive clustering technique with a particular type

of interpolation method, piecewise constant interpolation. The main idea of the

proposed adaptive clustering technique is to group the realizations into groups with

similar properties. These properties are typically described by a particular norm.

5.5.1. Region partition in lower dimensional space

We introduce a partitioning technique and a projection to lower dimensions to com-

pute the Green’s function without using an expensive interpolation over the whole

uncertainty space. First, we introduce the partitioning technique. Assume we have a

partition

R
N = W1 ∪ W2 ∪ · · · ∪ WNs

.(5.41)
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Table 5.7. Error of ‖Im(k̃∗)−k∗‖
‖k∗‖

(interpolated corrected upscaled permeability using

Smolyak Algorithm in V), and ‖IN (k̃∗)−k∗‖
‖k∗‖

(interpolated corrected upscaled

permeability using Smolyak Algorithm in R
N) for a log-exponential perme-

ability field with lx = 0.3, ly = 0.5 and σ = 2.0.

Dim ‖Im(k̃∗)−k∗‖
‖k∗‖

‖IN (k̃∗)−k∗‖
‖k∗‖

m = 2 0.108425 0.022237

m = 3 0.090201 0.022351

m = 5 0.038620 0.020419

m = 10 0.014419 0.019867

For any θ ∈ R
N , we would like to find a region Wi that contains θ, i.e., θ ∈ Wi.

Then, using the piecewise constant interpolation, we can obtain the Green’s function

and the truncated solution at a selected point θ

G(x, y, θ) =
Ns
∑

i=1

δWi
(θ)G(x, y, θi), φ0

e(y, θ) =
Ns
∑

i=1

δWi
(θ)φ0

e(y, θi),(5.42)

where θi ∈ Wi, δWi
(θ) =











1 θ ∈ Wi

0 θ ∈ R
N/Wi

, 1 ≤ i ≤ Ns .

In (5.42), for θ ∈ Wi, we use the Green’s function at θi to approximate the

Green’s function at θ. Similarly, we can approximate the Green’s function for all the

θ ∈ Wi. For example, the region’s partition (5.41) can be a Voronoi decomposition.

Each Voronoi cell Wi consists of all points closer to θi than to any other θj ’s for a

given set of points {θi}Ns

i=1 ∈ R
N . In Figure 5.10, we show 2D clustering results. 100

independent realizations are clustered into 5 different clusters based on Euclidean

distance. One can use different distance functions, e.g., based on flow measurements.

Figure 5.11 shows a clustering result on domain Ω = [−20, 20]2. We consider
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Fig. 5.10. Schematic showing the clustering for random realizations, the center of each

cluster is the representative point.
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Fig. 5.11. Schematic illustration of the distribution of error ‖k∗−k̃∗‖
‖k∗‖

on Ω = [−20, 20]2

and 16 clusters grouped by this error.
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Fig. 5.12. Schematic showing the clusters and the representative points θ0. In each

cluster, the center point is chosen as the representative point.

400 realizations uniformly distributed in Ω. First, we group these realizations by Eu-

clidean distance and get the centers of clusters. We call these centers as representative

points since each of them represents a cluster. Then, for each realization we find the

representative point that has the smallest error ‖k∗−k̃∗‖
‖k∗‖

. This way, the points are, in

some sense, re-clustered based on flow measurements. The groups of realizations are

shown in Figure 5.11 (right), where different colors are used for different clusters.

In this dissertation, we will use an error indicator based on inexpensive compu-

tations to cluster the selected realizations. The error indicator will be used to control

the error in the cluster. In each cluster we would like the error of corrected upscaled

permeability k̃∗ controlled within 5% accuracy. Moreover, we will show that the error

indicator is inexpensive to compute and linearly proportional to real error.

5.5.2. Adaptive clustering with error indicator

Now, we will introduce the error indicator that will be used to group the realizations

into clusters. In each cluster C, assume the representative realization is θ0 and the

corresponding permeability is k0, as in Figure 5.12.

First, we estimate the error of upscaled permeability k̃∗. For any realization θ ∈ C
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with permeability k, we denote k′ = k − k0 as the perturbation of the permeability.

The corrected upscaled permeability is computed by (5.16) and (5.17). Here, we notice

that this is a general correction scheme. Compared with the correction scheme in

Section 5.2.2, we use the permeability at a representative point as k0, see Figure 5.12.

The error of ‖k∗−k̃‖
‖k∗‖

is computed in a similar way as the error analysis in Section 5.2.3.

We obtain the error indicator as follows.

EE = | k
′

k0
|max

kmax

kmin
k0,max(5.43)

In Ω = [−20, 20]2, we consider a log-exponential permeability field with lx = 0.1,

ly = 0.1, σ = 2.0. The fine grid is Nf
x = Nf

y = 20 and the coarse grid is N c
x =

N c
y = 2. In Figure 5.13, we showed the distribution of Log(Er) and Log(EE). We

observe that the true error and the error indicator have similar statistical distribution.

Moreover, in Figure 5.14, we present the cross plot of Log(Er) and Log(EE). An

approximate linear relation is observed. Next, we will choose some Er and EE to

linearly interpolate the error at random realizations. Since the error indicator EE

can be rapidly generated using the interpolation, we can get the interpolated error

for all the realizations efficiently.
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Fig. 5.13. Distribution of logarithm of the true error, Log(Er) and logarithm of the er-

ror indicator, Log(EE) for a log-exponential permeability field with lx = 0.1,

ly = 0.1, σ = 2.0.



107

−8 −7 −6 −5 −4 −3 −2 −1 0 1
−8

−7

−6

−5

−4

−3

−2

−1

0

1

Log(Er)

Lo
g(

E
E

)

Fig. 5.14. Cross plot of natural logarithm of the true error, Log(Er) and natural log-

arithm of the error indicator, Log(EE) for a log-exponential permeability

field with lx = 0.1, ly = 0.1, σ = 2.0.

Using 5.43, we cluster the realizations in a lower dimensional space. The algo-

rithm is as follows.

Algorithm 5.5.1. • Step 1. For Nr realizations θiN0

i=1 ∈ R
m ⊂ R

N , we use

Euclidean distance to cluster the Nr realizations into Nc clusters, denoted as

Ci, 1 ≤ i ≤ Nc. In each Ci there are Ni realizations.

• Step 2. For 1 ≤ i ≤ Nc, we choose some, e.g., five, realizations to compute the

error indicator {EEj}5
j=1 and error {Erj}5

j=1.

– For other realizations, {thetaj}Ni

j=6 ∈ Ci, we rapidly compute the error

indicators {EEj}Ni

j=6.

– Using {EEj}5
j=1 ,{Erj}5

j=1, and {EEj}Ni

j=6, we compute the interpolated

error IErj at θj, for 6 ≤ j ≤ Ni.

– For 6 ≤ j ≤ Ni, if IErj > 0.05, we move θj into an auxiliary set Ca.
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Fig. 5.15. 400 realizations and 20 representative points for a log-exponential perme-

ability field with lx = 0.1, ly = 0.1, σ = 2.0.

• Step 3. We repeat Step 1 and Step 2 for the auxiliary set Ca until Ca becomes

an or nearly empty set (i.e., contains less than 5% of the total points). The

auxiliary set is divided into Na clusters.

• Step 4. Let Nc = Nc + Nca
, then for any realization θ ∈ R

m, we find the

closest representative point θ0
i using the (5.17) to rapidly compute the upscaled

permeability. Here, the representative point, as discussed above, is the center of

the cluster defined using Euclidean distance.

5.5.3. Numerical results in lower dimensional space

In this section, we will show some numerical results of adaptive clustering in low

dimensional space.

In Ω = [−20, 20]2, we consider a log-exponential permeability field with lx = 0.1,

ly = 0.1, σ = 2.0. The fine grid is Nf
x = Nf

y = 50 and the coarse grid is N c
x = N c

y = 5.

Using Algorithm 5.5.1, we use 400 realizations to generate 20 clusters as shown in

Figure 5.15.

On Ω, we randomly select 100 realizations. For each realization, we find the clos-

est representative point, i.e., find the cluster it belongs to. Then we can immediately
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Fig. 5.16. Errors of k̃∗−k∗

k∗
based on 100 realizations for a log-exponential permeability

field with lx = 0.1, ly = 0.1, σ = 2.0.

get the upscaled permeability. For these 100 realizations, we compare the corrected

upscaled permeability (using the representative point) and the real upscaled perme-

ability, see Figure 5.16. Figure 5.16 a shows the distribution of the errors. Note that

most of the errors are small. In Figure 5.16 b, we plot the values of errors against

realizations. The red line designates 0.05 error. We can see that for 85 realizations,

the error k̃∗−k∗

k∗
is less than 5%.

5.6. Concluding Remarks

In this chapter, we studied ensemble-level upscaling.

• We proposed a correction scheme to compute the single-phase upscaled perme-

ability for the ensemble of realizations. In the correction scheme, the solution

of a local flow problem is represented by a product of Green’s function and a

source term. This allows us to get the local solution rapidly on hyper-planes.

• To avoid solving local flow problem for all realizations, we use collocation tech-

niques in a lower dimensional space V and full dimensional space R
N . The first
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order Smolyak sparse grid is used in a collocation method. Green’s function

and local flow solution is calculated at the Smolyak nodes. Using these values,

we can rapidly interpolate Green’s function and local solution at any random

realization.

• Another approach for rapid calculation of upscaled permeability is to use adap-

tive clustering techniques. We propose an error indicator to adaptively group

the realizations into a number of clusters, then solve local flow problem on each

reduced set. In each cluster, we choose only one representative realization and

compute Green’s function at this point. For other realizations in this cluster,

we use Green’s function at the representative point and the correction scheme

to get the approximated upscaled permeabilities.

• The adaptive clustering can also be applied in higher dimensional space. This

is still under investigation.
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CHAPTER VI

SUMMARY

In the dissertation, we have studied efficient upscaling methods for flow and

transport in heterogeneous porous media. Our studies focus on realization-based

two-phase flow and transport upscaling as well as ensemble-level flow upscaling in the

dissertation.

In two-phase flow and transport upscaling, we proposed TOF-based upscaling

techniques and local-global two-phase upscaling techniques. The common feature of

these methods is that both of these techniques use some type of limited global infor-

mation. TOF-based methods aim to capture the spatial variations of the solution of

transport equations that have hyperbolic nature and difficult to upscale. These meth-

ods use the solutions of time-of-flight equation and use this information to represent

the local heterogeneities in the solution. Local-global two-phase upscaling techniques

attempt to approximate the non-local behavior of the solution due to time. In partic-

ular, one of the difficulties in the upscaling of hyperbolic equation is to represent the

time variation of the solution. These two methods capture global flow effects both

spatially and temporally and correct a bias in existing two-phase upscaling meth-

ods. We have studied these methods for permeability fields with different correlation

lengths, different mobility ratios, different flow conditions and multiple realizations.

The numerical results showed that the proposed methods consistently improve the

existing two-phase upscaling methods and provide accurate coarse-scale solutions for

both flow and transport. We also proposed discontinuous Galerkin methods for the

transport equation using multiple limited global information. Some analysis for time-

dependent flow equations based on homogenization is presented.
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In the dissertation, we studied an efficient approach for ensemble-level flow up-

scaling. The objective is to rapidly upscale a large ensemble of permeability fields.

We use perturbation techniques as well as collocation methods for this purpose. A

perturbation approach is proposed and the error of the corrected upscaled permeabil-

ity is analyzed. Combining the perturbation approach with sparse grid collocation

techniques and adaptive clustering techniques allows us to compute the upscaled

permeability rapidly for all realizations in stochastic space. We found that the inter-

polation error in the sparse grid collocation is small and independent of the dimension

of the uncertainty space. Using sparse grid collocation techniques with a perturbation

approach gives an accurate upscaled permeability. Collocation technique can also be

applied in conjunction with finite element methods. For multiple realizations, we

can use a collocation technique to get basis functions for a random realization. The

adaptive clustering technique has been studied in the dissertation. The main idea is

to cluster permeability realizations such that one can use a few representative realiza-

tions per cluster and compute the upscaled permeabilities rapidly. We present some

numerical examples to demonstrate the efficiency of the proposed adaptive clustering

techniques.
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APPENDIX A

SMOLYAK ALGORITHM

In this part, we introduce a sparse grid collocation method, Smolyak algorithm.

Since θ ∈ R
N , if N is large, the computational cost of interpolation in R

N will be

extremely high. Instead of using full grids, we use sparse grids in high dimensional

space. By [2, 28], we use the Smolyak with the extrema of the Chebyshev polynomials.

The Smolyak formula A(q,N) is a linear combination of product formulas such

that an interpolation property for N = 1 is preserved for N > 1. Let |i| = i1 + · · ·+ iN
for i ∈ N

N , then the smolyak algorithm is given by [2, 13]

A(q,N) =
∑

q−n+1≤|i|≤q

(−1)q−|i| ·







N − 1

q − |i|






· U i1 ⊗ · · · ⊗ U iN .(A.1)

To compute A(q,N)(f), one only needs to know function values at the sparse grid:

H(q,N) =
⋃

q−N+1≤|i|≤q

(−1)q−|i|(Θi1 × · · · × ΘiN ).(A.2)

where Θi = {θi
1, · · ·θi

Mi
} ⊂ [−1, 1] denotes the set of points used by U i. This leads us

to (k +N,N) ≈ 2k

k!
·Nk nodes used by A(q,N). Here k determines how many nodes

will be used. For a fixed N , we define A(N+k,N) as kth order Smolyak interpolation.

The smallest order is k = 1, in which case we only have 2N + 1 interpolation nodes.

Here, we consider Smolyak formulas that are based on the exterma of Chebyshev

polynomials. We choose

θi
j = − cos

π · (j − 1)

Mi − 1
, j = 1, · · ·,Mi.(A.3)

and define θi = 0 for Mi = 1. We also choose M1 = 1 and Mi = 2i−1 + 1 for i > 1.

This has the benefit of making our nodal sets nested, thus H(q,N) ⊂ H(q + 1, N).
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By [2], we have that A(N + k,N) is exact for all polynomials of degree k.
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