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ABSTRACT 

 

Babesia microti Recombinant DNA Vaccine as a Model for Babesia bovis Prevention. 

(December 2009) 

Juliette E. Carroll, B.S., Tarleton State University 

Chair of Advisory Committee: Dr. Patricia J. Holman 

 

 Babesiosis is caused by a genus of tick-transmitted apicomplexan parasites with 

considerable economic, medical, and veterinary impact.  Bovine babesiosis is an 

important impediment to livestock production throughout the world.  Limited options are 

available for control of this widespread protozoal disease.  This study evaluated the 

protective effect of DNA vaccines incorporating Babesia cysteine proteases and Apical 

Membrane Antigen-1 separately and in combination. The Helios Gene Gun System was 

used to vaccinate BALB/c mice with plasmid DNA constructs encoding different 

B. microti proteins (pBmCP1, pBmAMA1 or a combination of pBmCP1 and 

pBmAMA1). An analysis of the parasitemia post-challenge supports the hypothesis that 

pBmCP1 and pBmAMA1 induce protective effects against the progression of the 

parasite.  However, the combination of the two constructs given simultaneously has no 

marked effect on parasite progression. Furthermore, the data obtained from the packed 

cell volumes of the mice indicates that only BmCP1 is able to reduce this effect of 

clinical disease with any level of significance. Babesia bovis constructs containing 

Cysteine Protease-2 and Apical Membrane Antigen-1 were created and sequence 
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verified for use in future vaccination studies. The results seen using the mouse model of 

Babesiosis may provide applicable information for the design of vaccines against other 

Babesia spp., particularly for B. bovis.  
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1.  INTRODUCTION 

 

Members of the genus Babesia are tick-vectored intraerythrocytic parasites of the 

phylum Apicomplexa, order Piroplasmida (Levine, 1971; Allsopp et al., 1994). Babesia 

species infect a wide variety of mammalian hosts including humans. Currently, there are 

over 100 recognized species of Babesia throughout the globe, five of which infect cattle: 

Babesia bovis, Babesia bigemina, Babesia divergens, Babesia major and Babesia ovata 

(Levine, 1985; Krause, 2002; Liu et al., 2008). 

The first Babesia sp. was described in the late 19th century by Hungarian scientist 

Victor Babes (Reviewed by Hunfeld et al., 2008). Babes discovered microorganisms in 

the erythrocytes of Romanian cattle suffering from hemoglobinuria, this pathogen would 

later be named Babesia bovis. Following its initial discovery, Smith and Kilborne were 

able to identify ticks as the source of infection for Babesia spp. This was a significant 

advance in both veterinary and human medicine, as it was the first time an arthropod was 

identified as the vector for disease (Smith and Kilborne, 1893).  

Toward the end of the nineteenth century ranchers throughout the world began to 

experience devastating losses among their cattle. Cattle throughout the Americas, 

Australia, and Africa were becoming infected by what was discovered to be bovine 

babesiosis, commonly referred to as ―Tick Fever‖ (Bock et al., 2004).  

 

 

____________ 
This thesis follows the style of Veterinary Parasitology. 
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 Babesia bovis and Babesia bigemina became the most commonly recognized 

disease agents of bovine babesiosis in cattle located in tropical and subtropical regions of 

the world (Brown and Palmer, 1999).  

Babesia bovis and B. bigemina share similar biological characteristics - both are 

transmitted by the same tick vector and infect the erythrocytes of cattle. However, the 

clinical disease caused by these two parasites is remarkably different (Wright et al., 

1988; Criado-Fornelia et al., 2004). Generally, B. bovis is considered to be the more 

pathogenic of the two organisms, resulting in higher mortality rates among susceptible 

cattle (Brown and Palmer, 1999; Wright et al., 1988; Callow, 1984).  Both forms of 

babesiosis are characterized by high fever, anemia, ataxia, anorexia, haemoglobinurea 

and hypotensive shock. In contrast to B. bigemina infections, B. bovis infections are 

commonly associated with severe central nervous system (CNS) signs.  The damage 

done to the CNS is linked to sequestration of infected erythrocytes in the capillary bed of 

neural endothelial cells (Wright et al., 1988; O'Connor et al., 1999; Brown et al., 2006a). 

This rare phenomenon also makes B. bovis infections difficult to detect because of the 

low numbers of parasites circulating in peripheral blood (Fahrimal et al., 1992).  

 Accumulation and adherence of parasitized erythrocytes to organ vasculature is 

notably the most important aspect of B. bovis infections, however, the severe virulence 

of B. bovis has also been attributed to the overproduction of the pro-inflammatory 

cytokines associated with protective immunity resulting in a partially immune-mediated 

response (Brown et al., 2006b).  Together these two factors make B. bovis an 
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economically devastating parasite with the potential to cause significant production 

losses among cattle producers.   

 In North America parasitism by cattle fever ticks is associated with two species 

of the family Ixodidae, Boophilus annulatus and Boophilus microplus (Bock et al., 2004; 

Estrada-Peña and Venzal, 2006). It should be noted that a recent change has been made 

with regards to the naming of these two species of ticks, transferring five species in the 

genus Boophilus into the genus Rhipicephalus (Horak et al., 2003). To avoid confusion 

this paper will retain the name Boophilus as a subgenus of Rhipicephalus (Murell and 

Barker, 2003). 

Populations of Boophilus ticks were linked to a widespread occurrence of bovine 

babesiosis throughout the southern United States shortly after Smith and Kilborne 

published their detailed findings that identified ticks as the vector of this devastating 

pathogen.  Epidemiologists believe these ticks were introduced into North America on 

cattle and horses transported to the New World by Spanish colonialists (George et al., 

2002).   

 

1.1  Life cycle and development of Babesia bovis in the tick vector 

Babesia bovis parasites are transmitted by larval ticks of the subgenus Boophilus 

(Mahoney and Mirre, 1979). Adult female Boophilus ticks acquire B. bovis while 

feeding on the erythrocytes of infected cattle. After the tick has fed to repletion, Babesia 

gametocyte development occurs in the tick gut. Gametogenesis leads to zygote 

formation followed by progression into the kinete stage (Mackenstedt et al., 1995).  The 
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motile kinete enters the hemolymph via penetration of the intestinal epithelium and 

begins to invade the tissues of the female tick, the most notable tissue of invasion being 

the ovaries (Howell et al., 2007). From the ovaries, kinetes are transmitted to the tick 

offspring through the egg.  Because Boophilus ticks are one-host ticks, meaning larval, 

nymphal, and adult development occur on the same host animal, transovarial 

transmission ensures that the parasite will be spread to the next tick generation 

(Mahoney and Mirre 1979; Howell et al., 2007). 

  After an adult female tick has mated and taken a blood meal she drops off the 

host and deposits infected eggs in the environment. Larvae hatch from the eggs 

approximately 21 days after ovipositing and have the ability to survive for long periods 

of time without feeding (Needham and Teel, 1991; Corson et al., 2004). In larvae 

Babesia sporozoites migrate to and develop within the salivary glands (Mehlhorn and 

Schein, 1984; Sauer et al., 1995).  Eventually larvae attach to the bovine host then 

development continues to the adult stage. Babesia bovis sporozoites are only transmitted 

to cattle by larval ticks; the tick cannot retain the infection following its first molt.  

 Tick saliva contains various anticoagulatory, anti-inflammatory and 

immunosuppressive components that increase the efficiency of sporozoite transmission 

to the host (Bowman et al., 1997). Infective sporozoites penetrate the host erythrocytes 

where they become trophozoites divide into merozoites. Merozoites exit the infected 

erythrocyte, enter the bloodstream and invade new erythrocytes in which they undergo 

asexual division (Bock et al., 2004). 
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The merozoite stage has characteristic features not found in trophozoites. These 

features include anterior secretory organelles known as rhoptries that are critical for cell 

invasion and an actomyosin motor driven inner membrane complex that is thought to 

propel the parasite into new cells (Lew et al., 2002; Yokoyama et al., 2002). 

Apicomplexans utilize rhoptry proteins secreted from organelles located at the apical end 

of merozoites for host cell invasion. Extracellular merozoites attach to the host 

erythrocyte, reorient to bring the apical organelles close to the attachment interface, and 

discharge rhoptry proteins onto the cell membrane (Yokoyama et al., 2002). 

Erythrocyte invasion is accomplished by a novel form of locomotion called 

gliding motility. Although they do not have cilia or flagella, Babesia merozoites are 

motile. They have the ability to glide on solid substrates, such as the host cell surfaces 

(Menard, 2001). Gliding motility is thought to be driven by an actomyosin-based system 

associated with the inner membrane complex found beneath the parasite plasma 

membrane (Lew et al., 2002; Zhou et al., 2006). This theory is supported by studies that 

show the inability of Toxoplasma and Plasmodium parasites to glide and invade host 

cells in the presence of actomyosin inhibitors (Dobrowolski and Sibley, 1996; Pinder, 

1998). Lew and others (2002) inhibited B. bovis parasite invasion in vitro using myosin 

and actin-binding drugs. This was the first reported case of actomyosin-based 

participation in erythrocyte invasion by B. bovis parasites. 
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1.2 Tick eradication efforts 

One of most economically destructive outbreaks of bovine babesiosis in the 

United States occurred in 1868 when apparently healthy cattle from Texas were 

relocated to stockyards in northern states. As a result, 15,000 head of native cattle from 

Illinois and Indiana were said to have contracted Babesia and died from the subsequent 

infections (Dolman, 1969; Pelzel, 2005).  

 Despite being heavily infested with ticks, Texas cattle often remained clinically 

normal. It was later discovered that cattle driven from Texas had previously acquired 

immunity to the disease due to frequent vector exposure as calves. Calves less than 6 

months of age possess a strong resistance against B. bovis diesase (Goff et al., 2001; 

Brown et al., 2006a). Exposure to the parasite during this period induces a long-lasting 

carrier state and concomitant immunity that prevents disease typically seen in 

susceptible adults upon initial infection with B. bovis. Cattle located in the northern 

states had not been previously exposed to the parasite as calves, making them highly 

susceptible to disease. The United States Congress estimated that the direct and indirect 

economic loss associated with bovine babesiosis during this period to be $130.5 million 

(approximately $3 billion today) (Dolman, 1969; APHIS, 2002).  

 Soon after this outbreak it was discovered that as infested Texas cattle advanced 

north, female Boophilus ticks would detach and distribute Babesia infected eggs (Bram 

and Gray 1983; APHIS, 2002; Pelzel, 2005). This prompted northern stockmen and 

ranchers to ban Texas cattle from export into their states. The U.S. Secretary of 

Agriculture placed strict quarantines on Texas cattle during summer months to prevent 
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the spread of the vector. Cattlemen quickly felt the crippling financial effects of the 

quarantines and turned to the Texas legislature. In 1893, the Livestock Sanitary 

Commission (now the Texas Animal Health Commission) was established to prevent the 

spread of tick fever. 

In 1906, as part of the Cattle Fever Tick Eradication Program (CFTEP), state- 

federal quarantine and eradication programs were established to eliminate cattle fever 

ticks from the United States. Laws were instated that required cattle to be systematically 

immersed in acaricide solution in concrete dipping vats. Cattle in endemic areas were 

dipped before being transported to any tick-free zone, especially northern markets 

(Graham and Hourrigan., 1977; Pelzel, 2005). 

By 1943 the two species of fever ticks, Bo. annulatus and Bo. microplus, were 

successfully eradicated from the United States, with the exception of a permanent 

quarantine zone between Texas and Mexico. Currently, tick riders employed by the U.S. 

Department of Agriculture's (USDA) Animal and Plant Health Inspection Service 

(APHIS) are responsible for maintaining the permanent quarantine zone, which extends 

852-square miles from Del Rio, TX to Brownsville, TX and encompasses eight South 

Texas counties (Hillman, 2008a). The goal of an APHIS tick inspector is to prevent the 

introduction of new ticks from Mexico (APHIS, 2002; Hillman, 2008a). This is 

accomplished by horseback patrol and systematic quarantines along the buffer zone.  

Tick inspectors capture stray Mexican cattle that have entered the country 

illegally or native cattle that may have crossed into Mexico and returned.  Surveillance 

and control rely on a process called ―scratching‖ for ticks. This requires the official to 
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inspect the skin of the animal with his fingers, feeling for ticks (Bram and Grey, 1983; 

Pelzel, 2005). If cattle are found to be infested with Boophilus ticks they are quarantined 

and dipped in 0.3% - 0.25% Coumaphos, an organophosphate acaricide, every 10 to 14 

days (EPA, 1996, Miller et al., 2005).  Once cattle are re-inspected and declared tick-free 

they may be moved out of quarantine. The Texas Animal Health Commission 

complements the USDA control efforts through tick inspection of livestock outside the 

quarantine zone and trace-out work at Texas livestock markets.  

Recent literature indicates that Boophilus tick populations in Mexico have 

developed resistance to organophosphate acaricides, the only approved chemicals for use 

in the cattle dipping vats in the U.S. (Jamroz et al., 2000; Li et al., 2003). Rodriguez-

Vivas and others (2006) reported that 83.7% of Bo. microplus ticks obtained from cattle 

in Yucatan, Mexico were confirmed resistant to organophosphates as well as other 

classes of acaricides. Evidence obtained by the USDA indicates that the resistant strains 

of ticks from Mexico are spreading into southern Texas and jeopardizing the tick 

eradication program (Jamroz, 2000; Miller et al., 2005; Davey, 2006).  

In August 2004, ticks obtained from cattle in Starr County, TX were examined 

for resistance to several types of acaricides including Coumaphos using the Larval 

Packet DD Test (FAO, 1971). Engorged females were collected from native cattle and 

held in growth chambers until they produced eggs. Once egg production was complete, 

larvae were allowed to develop. On day 14 of larval development a discriminating dose 

test was performed with various concentrations of coumaphos, permethrin and amitraz.  

Resistance was detected by exposing larvae to an acaricide concentration expected to kill 
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99% of susceptible ticks, then increasing the dose to an amount twice that expected to 

kill 99% of susceptible ticks.  

The results from these bioassays revealed that the acaricide resistance levels of 

ticks collected from Texas cattle were similar to those found in ticks from Mexican 

cattle (Miller et al., 2005). This is the first published report of organophosphate-resistant 

ticks in the U.S. (George et al., 2002, Davey et al, 2006). 

According to the 2007 Veterinary, Medical and Urban Entomology Annual 

Report, an additional 1000 square miles extending over five Texas counties has been 

placed under temporary quarantine due to the presence of Boophilus ticks (Everett, 

2008). Re-establishment of the tick from Mexico appears to be related to the movement 

of white-tailed deer and exotic ungulates along the Texas-Mexico border (George, 1989; 

Bram et al., 2002). Boophilus microplus in all life stages have been recovered from wild 

deer, demonstrating that deer may serve as an alternative host for these ticks (Kistner 

and Hayes, 1970).  Treatment options for wildlife are limited to a bait system, which 

applies a pyrethroid to the animal, and ivermectin treated corn, which must be 

discontinued at least 60 days prior to hunting season (Hillman, 2008b). However, 

acarcide resistance may limit the effectiveness of these treatment options. 

The estimated cost of eliminating new infestations along the recently expanded 

quarantine region is $13 million (Everett, 2008). In March 2008, the U.S. Department of 

Agriculture’s Animal and Plant Health Inspection Service awarded the Cattle Fever Tick 

Eradication Program a $5.2 million dollar grant to be spent on the control of cattle fever 

tick outbreaks in the U.S. Although this amount is significantly less than requested it 
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will provide supplementary surveillance, training and treatments to postpone re-

infestation for the time being (Everett, 2008). 

Should bovine babesiosis re-emerge in the United States, the effects on the cattle 

industry will be that of a severe economic impact. Texas is the number one cattle 

producing state in the country, with an inventory of 13.8 million cattle and calves 

(NASS, 2007). For Texas cattle alone, direct and indirect losses associated with B. bovis 

have been estimated at $1.5 billion within the first year of re-emergence (Teel and 

Wagner, 2001).  

At this time the only effective prevention of bovine babesiosis in the United 

States is the use of intensive tick control measures such as quarantine zones and 

scrupulous surveillance. These methods are extremely costly and labor intensive. Due to 

the development of acaricide-resistant tick populations and the increased number of 

wildlife carrying these ticks into tick-free areas, it is only a matter of time before 

alternative babesiosis prevention strategies must be employed.  

 

1.3 Host immune response  

Young cattle possess a unique spleen-dependent innate immunity to babesiosis 

that lasts until approximately 6 months of age. Animals infected within this timeframe 

exhibit a persistent yet milder form of the infection (Trueman and Blight, 1978; 

Mahoney et al., 1979). Contrarily, aged cattle develop severe clinical disease signs upon 

initial exposure to Babesia (Mahoney and Ross, 1972; Mahoney et al., 1973; Goff, et al., 
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2001). The phenomenon of age-related immunity allows cattle infected as calves to 

transmit the parasite throughout their lifetime without the ill effects of the disease.  

Originally the age-related innate immunity observed in older calves was 

attributed to the presence of protective antibodies transferred through colostrum of 

immune mothers (Mahoney 1967). Contrarily, Riek (1963) and Christensson (1987) 

reported the same form of immunity in calves from unexposed dams and in calves that 

did not receive colostrum at birth. It has been hypothesized that age-related immunity to 

B. bovis involves a soluble babesiacidal factor (Levy et al., 1982).  

Adler and others (1995) identified nitric oxide (NO) as the first babesiacidal 

molecule to contribute to arrested growth of the parasite. Gale et al. (1998) was able to 

significantly reduce the mean parasitemia of B. bovis infected cattle by treating them 

with aminoguanidine, an inhibitor of the inducible form of nitric oxide synthase (iNOS). 

Goff et al. (2001) showed that the occurrence of age-related non-specific immunity in 

calves was achieved by the rapid induction of splenic interleukin-12 (IL-12) and 

interferon-γ (IFN-γ) followed by iNOS mRNA expression in the spleen. In the same 

study involving adult cattle, IL-12 and IFN-γ occurred later and no iNOS could be 

recovered. This suggests different mechanisms for age-related innate immunity in calves 

versus the acquired (contaminant) immunity seen in older cattle (Brown et al., 2006a).  

Animals that have recovered from an acute B. bovis infection, either naturally or 

after treatment, are often referred to as ―immunologically primed‖ (Brown and Palmer, 

1999). These animals remain persistently infected and develop a protective immunity 

that prevents the onset of clinical signs upon re-exposure to the parasite. Because the 
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parasite  involves an extracellular and intracellular stage, the mechanisms required to 

maintain immunity against B. bovis infections are thought to rely on both cell-mediated 

responses and humoral antibody responses (Brown and Palmer, 1999; Homer et al., 

2000).  

Studies involving persistently infected, immune cattle suggested that merozoite 

antigens produced by the parasite induce a strong IFN-γ response from memory T helper 

type 1 cells (Th1), providing prolonged immunity (Brown and Palmer, 1999). 

Macrophages activated in presence of the parasite produce cytokines such as IFN- , IL-

12 and IL-18 that promotes IFN-γ production by CD4+ Th1 cells (Brown and Palmer, 

1999; Shoda et al., 2001). The role of IFN-γ is two-fold, it is required to further 

stimulate production of babesiacidal molecules by macrophages and to enhance the 

opsonizing of immunoglobulin G (IgG) antibodies (Estes and Brown, 2002). During the 

re-introduction of the parasite to the blood of an immune animal, immunoglobulin G 

(IgG) antibodies block erythrocyte invasion of the parasite by binding and neutralizing 

freely circulating sporozoites before they can reach host erythrocytes (Homer et al., 

2000).  

In vitro studies using lymphocytes from Babesia-immune cattle demonstrate that 

bovine CD4+ T cells produce IFN-γ in response to parasite antigen stimulation and that 

the development of acquired immunity against B. bovis in cattle is related to this specific 

cell-mediated response (Brown et al., 1993). Murine models of Babesia microti confirm 

the theory that CD4+ T lymphocytes rather than CD8+ T lymphocytes play an essential 

role in the elimination of the infections in mice.  
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As with B. bovis, acquired immunity to B. microti is thought to involve the 

activation of memory and effector CD4+ T cells that secrete IFN-γ and assist with the 

production of protective antibodies (Igarashi et al., 1994). Mice with depleted CD4+ T 

cell levels are more susceptible to infection with B. microti compared to mice with 

adequate CD4+ T cell levels (Shimada et al., 1996; Igarashi et al., 1999).  Similarly, in 

the closely related protozoan Plasmodium, Stephens and Langhorne (2007) 

demonstrated that CD4+ T cells were essential for parasite clearance in malaria. 

 

1.4 Vaccination strategies 

An alternative approach to strategic tick control is becoming increasingly 

important with regards to B. bovis infections.  Sole reliance on one form of prevention is 

unrealistic, while integrating the use of acaricides with an appropriate vaccine will prove 

to be a better choice for the control bovine babesiosis (de Waal and Combrink, 2006). 

The first Babesia vaccine was developed through the use of a live attenuated 

strain of B. bovis (Callow and Mellors, 1966; Callow and Tammemacli, 1967; Callow, 

1979). Blood of carrier animals was passaged into splenectomized calves resulting in 

reduced virulence of the parasite. Although this type of vaccine has been successfully 

used to control babesiosis in many parts of the world, it induces a carrier state, allowing 

the animal to serve as a reservoir for transmission. The live annulated vaccine has a 

number of other deficiencies including, a short shelf life of 5-7 days at 5ºC, potential for 

reversion to virulence, and the possibility of co-transmission of other infectious agents 

such as viruses and haemoprotozoan parasites (Wright and Riddles, 1989). Vaccines 
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derived from killed B. bovis strains have also been employed (Mahoney et al., 1981) 

however, they were unsuccessful because of the unsatisfactory level of immunity 

produced (Timms et al., 1983).  

Passive transfer studies show that antibodies play an important role in the 

prevention of bovine babesiosis (Mahoney, 1967). Antibodies bind to critical epitopes 

found on the surface of the merozoites and block the processes required for erythrocyte 

invasion and/or parasite replication (Heins et al., 1995, Brown et al., 2006b). Knowledge 

of this type of antibody production has driven vaccine development towards the use of 

functionally relevant merozoite antigens (Heins et al., 1995).  

To overcome the difficulties seen with the production of live Babesia vaccines a 

variety of soluble parasite exoantigens has been isolated from B. bovis as potential 

vaccine candidates (Sibinovic et al., 1967; Goodger et al., 1987; Montenegro-James et 

al., 1987). Exoantigens are shed by the parasite during merozoite invasion of 

erythrocytes and can be obtained through the blood or plasma of Babesia infected 

animals or the supernatant of in vitro Babesia cultures (James, 1989). The use of parasite 

exoantigens appears to induce an immune response that decreases clinical disease 

manifestations through the rapid development of protective antibodies (Schetters et al., 

2001). Early use of single strain exoantigen vaccines produced protection against the 

antigen-derived strain but failed to provide protection against different strains upon 

challenge (Wright et al., 1983; Goodger et al., 1987; Schetters et al., 1995).   

Schetters et al. (2001) obtained promising vaccine results against canine 

babesiosis by using exoantigens obtained from a combination of culture-derived Babesia 
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canis canis and Babesia canis rossi. This study concluded that dogs immunized with a 

bivalent vaccine had an effective antibody response and reduced clinical signs upon 

challenge from both forms (Schetters et al., 2001).  

Although studies indicate that exoantigens do confer some protection against 

Babesia, a specific individual exoantigen has yet to be isolated. Additionally, soluble 

parasite exoantigens require the use of cultured parasites or infected animals, making 

them difficult to obtain in large quantities. These drawbacks have resulted in a shift 

towards an alternate type of subunit vaccine. The use of recombinant proteins from 

cloned DNA has come to the forefront of Babesia vaccine research because of their 

stability and high reproducibility. 

 Proteins produced from micronemes, rhoptries, and dense granules at the apical 

end of the parasites are thought to play a major role in invasion of erythorocytes and 

establishment of infection by apicomplexan parasites (Dubremetz et al., 1998).  

Recognition of the host cell is initiated by receptor-ligand interactions, while entry into 

the host erythrocyte is initiated by contact between the apex of the parasite and the 

surface of the cell (Yokoyama et al., 2006). After contact with the red blood cells, the 

parasite will orient itself to allow the apical membrane to enter the cell first. A tight 

junction is then formed, permitting the parasite to invade the red blood cell and asexually 

reproduce. After division, the parasite exits the erythrocyte and travels through the blood 

where it can enter a new cell and undergo another round of division (Dubremetz et al., 

1998).  
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Protective immunity against babesiosis may be directed against one or more 

surface antigens associated with the merozoite. Antibodies in sera obtained from cattle 

recovered from B. bovis and B. bigemina infections have been used to identify numerous 

surface-labelled merozoite proteins (McElwain et al., 1988; Suarez et al., 1991; Jasmer 

et al., 1992; Wilkowsky et al., 2003). In B. bovis, the most well-documented surface 

proteins are those which belong to the family of variable merozoite surface antigens 

(VMSA) including 60-kDa rhoptry-associated protein 1 (RAP-1), 42-kDa merozoite 

surface antigen-1 (MSA-1), and 44-kDa MSA-2c. RAP-1 antigen, a member of a 

polymorphic gene family, have undoubtedly been the most intensely studied of all the 

VMSAs.  

Conservation of B-cell and T-cell epitopes among various B. bovis strains 

initiated interest in RAP-1 as vaccine candidate (Brown et al., 1996).  Babesia bovis 

RAP-1 is encoded by two identical RAP-1 genes and possesses a sequence homologous 

to that of RAP-1 found in other Babesia spp. (Suarez et al., 1998; Dalrymple et al., 

1993). Using a lysate of merozoites, Yokoyama and others (2002) showed binding of 

RAP-1 to bovine erythrocytes in an erythrocyte-binding assay. In addition to the proof of 

RAP-1 binding to the erythrocyte in that assay, anti-RAP-1 antibodies were successful in 

hindering the binding of the parasite to the host erythrocyte in vitro. However, Norimine 

et al. (2003) found no evidence of protective immunity using a RAP-1 recombinant 

vaccine in cattle, even though the vaccine initiated strong cell-mediated and humoral 

responses against RAP-1.   
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 MSA-1 showed promise as a vaccine because of its ability to neutralize 

merozoite infectivity in vitro, suggesting its importance in merozoite invasion (Hines et 

al., 1992). As seen with RAP-1, recombinant MSA-1 immunization also failed to confer 

protection against challenge with virulent B. bovis (Hines et al., 1995). MSA-2c has been 

identified as being highly conserved among different B. bovis strains and serves as a 

possible vaccine candidate. Like MSA-1, bovine antibodies to recombinant MSA-2c 

neutralized the invasion of erythrocytes by B. bovis (Wilkowsky et al., 2003). In vivo 

vaccine trials have yet to be completed. 

 

1.5 Apical Membrane Antigen – 1 as a vaccine target 

 Because of the availability of genomic sequences of B. bovis, recombinat vaccine 

candidates can be identified based on their genetic identity with homologous proteins of 

other apicomplexan parasites (Brayton et al., 2007). Apical Membrane Antigen-1 

(AMA-1) is a highly conserved micronemal surface protein found among members of 

the phylum Apicomplexa, including B. bovis, Toxoplasma gondii and all species of 

Plasmodium examined to date (Waters et al., 1990; Donahue et al., 2000; Gaffar et al., 

2004). In Plasmodium, AMA-1 is stored in the microneme organelles and expressed 

during merozoite formation in maturing schizonts where it is transported to the rhoptries 

prior to erythrocyte invasion. While the specific function of AMA-1 is not yet known, it 

is thought to be directly responsible for reorientation of the apical end or junctional 

contact of the parasite with the host cell, which is dependent on binding proteins for 

completion of the parasite (Kocken et al., 2000; Gaffar et al., 2004; Mitchell et al., 
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2004). Because of its pivotal role in erythrocyte invasion, AMA-1 is a leading malaria 

vaccine candidate (Girard, et al., 2007; Nair, 2002). 

While the overall amino acid similarity between Plasmodium AMA-1 and 

B. bovis AMA-1 is low (18%), characteristic features such as an N-terminal ectoplasmic 

region, a cysteine-rich ectodomain, a single transmembrane domain, and a C-terminal 

cytoplasmic tail are found in both proteins (Chesne-Seck et al., 2005).  The important 

structural similarities between B. bovis AMA-1 and Plasmodium AMA-1 suggest that 

much of the research done with Plasmodium may be applied to B. bovis (Gaffar et al., 

2004; Chesne-Seck et al., 2005).  

Mice and non-human primates immunized with the ectodomain of Plasmodium 

AMA-1 are reported to have an increased protective immunity against challenge from 

blood-stage parasites (Anders et al., 1998; Hodder et al., 2001; Stowers et al., 2002). 

Evidence of this AMA-1 initiated immune response suggests that the protein could be a 

successful candidate for inclusion in a Babesia vaccine. Gaffer et al. (2004) identified 

B. bovis AMA-1 as a low-abundance 82-kDa protein that is synthesized into a 69-kDa 

protein upon invasion of erythrocytes in vitro. Additionally, antiserum made against 

B. bovis AMA-1 prevented parasite invasion of host erythrocytes in vitro.  

As in the case with soluble parasite exoantigens, considerable antigenic 

polymorphism could limit the effectiveness of a recombinant AMA-1 vaccine when 

challenged under field conditions. Immunization with the highly polymorphic 

Plasmodium falciparum AMA-1 induces antibodies that block the growth of the 

homologous parasite but are less efficient in blocking the growth of heterologous 
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P. falciparum (Kennedy, 2002; Duan et al., 2008). To date, no variation has been shown 

in AMA-1 within Babesia spp. Studies in our lab comparing AMA-1 from four different 

B. microti strains have shown no difference among the amino acid sequences 

(unpublished results).       

 

1.6 Cysteine proteases as a vaccine target 

Cysteine proteases are known for their importance in propagation and 

proliferation of protozoan parasites (McKerrow, 1993; Holman et al., 2002; Sajid and 

McKerrow, 2002). Meirelles et al. (1992) demonstrated that cysteine protease-specific 

inhibitors prevent host cell invasion and arrest intracellular development of 

Trypanosoma sp. in vitro. Engel et al. (1998) went on to report the first successful 

treatment of Chagas' disease in an animal model using inhibitors designed to inactivate 

cruzain, the major cysteine protease of T. cruzi, the causative agent of Chagas’ disease. 

Plasmodium falciparum contains several cysteine proteases with various 

functions including hydrolysis of hemoglobin, erythrocyte rupture and erythrocyte 

invasion (Rosenthal, 2004). Hemoglobin digestion is the best characterized function of 

Plasmodium cysteine proteases and is thought to provide amino acids for parasite protein 

synthesis, allow space in the cell for the growing parasite and maintain the osmotic 

stability of parasites (McKerrow, 1993; Lew et al., 2003). Incubating cultured malaria 

parasites with cysteine protease inhibitors blocked the ability of the parasite to process 

hemoglobin therefore reducing its proliferation (Rosenthal, 1995).  
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In order to complete the erythrocytic cycle of Plasmodium, the parasite must 

rupture the infected erythrocyte and release merozoites. Plasmodium cysteine protease 

inhibitors inhibit the rupture of the erythrocytes preventing the continuation of the 

asexual cycle (Wickham et al., 2003). Additionally, Greenbaum et al. (2002) 

demonstrated the role of cysteine proteases in Plasmodium erythrocyte invasion by using 

inhibitors to block invasion of erythrocytes by merozoites.  

Holman et al. (2002) identified the gene cys-1, which codes for a cathepsin L-like 

cysteine protease found in Babesia equi. In that study membrane permeable cysteine 

protease inhibitor E64d was shown to inhibit parasite propagation of B. equi in vitro, 

suggesting a target for vaccine development. Similar results were reported by Okubo et 

al. (2007) in which E64d significantly inhibited erythrocyte invasion activity of B. bovis 

in vitro. Although the exact role of cysteine protease in Babesia infections is not clear, 

data strongly suggest it plays an important role in erythrocyte invasion and/or replication 

of Babesia. 

 

1.7 Study design 

Because of the critical role AMA-1 plays in host cell invasion and the effect of 

cysteine protease on parasite proliferation, they have been selected as target genes for 

inclusion in a recombinant vaccine against B. bovis infection. Our first objective was to 

generate and verify plasmid constructs containing B. bovis AMA-1 and cysteine protease 

genes. Once it was established that these constructs could be obtained in vitro, a vaccine 
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utilizing Babesia microti AMA-1 and B. microti cysteine protease-1 (CP-1) constructs 

was created to test the efficacy of these targets as a model for the B. bovis vaccine. 

The main focus of current malaria vaccines is the use of DNA technology. 

Multivalent DNA vaccines incorporate the cell-mediated and humoral roles of the 

immune system, both of which are required for optimal protective effects. Genes coding 

for different antigenic regions of malaria proteins have been successful in invoking 

strong immune responses against the parasite (Jones et al, 2001; Ivory and Chadee, 

2004; Wang et al., 2004; Coban et al., 2004). Antigenic variation and the complex nature 

of the parasite life cycle allow for varied responses to natural infection. The use of a 

multivalent vaccine consisting of two antigens presents a greater number of protective 

epitopes and a stronger cell-mediated response.  Studies using a multivalent vaccine 

against leishmaniasis proved that the combination of three antigens is more effective in 

stimulating CD4+ Th1 cells and reducing parasite numbers than that of a single antigen 

(Mendez et al., 2001; Rafati et al., 2001). By targeting different parasite systems it is 

anticipated that we will be able to prevent invasion and proliferation of the parasite in 

the host, inhibiting the onset of clinical signs. 

For this study, the eukaryotic expression vector, pCMV (Gene Therapy Systems, 

CA), will be used to generate recombinant plasmid DNA constructs. This vector has 

been modified to incorporate a CD5 secretory signal and a polypeptide protein tag 

(FLAG-tag) to the genes of interest, and the resultant vector is designated 

pCMVCD5flag (McIlhinney, 2004; Edwards and Aruffo, 1993). Addition of a FLAG-
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tag allows fusion proteins to be purified by affinity chromatography and for evaluating 

protein expression using anti-Flag monoclonal antibodies. 

Plasmid DNA is an ideal vaccine vector because it is internalized by antigen 

presenting cells and can induce antigen presentation by major histocompatibility 

complex class II for T-cell response. The unmethylated CpG dinucleotide motifs found 

in the plasmid DNA backbone readily induce Th1 cytokine expression and increase the 

antigen-specific production of IFN-γ. This increased IFN-γ production enhances the 

development of cell-mediated responses against the immunizing antigens (Klinman et 

al., 1999). The pCMVCD5flag vector contains cytomegalovirus (CMV) promoter that 

drives gene expression and is widely used for high-level protein expression in 

mammalian cells (Boshart et al., 1985; Foecking and Hofstetter, 1986; Nott et al., 2003). 

The route of pDNA delivery plays an important role in the immunogenicity and 

efficacy of the vaccine. The skin is an ideal target for DNA immunization because of the 

large numbers of resident cutaneous antigen presenting cells, such as Langerhans cells 

and dermal dendritic cells. Intradermal gene vaccination induces antigen specific Th1 

cells secreting high levels of IFN-γ and stimulating the production of IgG2a isotype 

antibody (Grunathan and Klinman, 2000). The use of a biolistic device (e.g. a gene gun) 

to propel plasmid DNA-coated gold particles into the epidermis has been reported to be 

more effective at eliciting a protective immune response than intramuscular or 

intraperitoneal delivery methods (Yoshida et al., 2000; Mohamed et al., 2003). Upon 

challenge, a single gene gun vaccination using 2 μg of Toxoplasma gondii HSP70 gene 

resulted in a significant reduction in the number of T. gondii organisms compared with 
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50 μg of T. gondii HSP70 given by intramuscular or intraperitoneal injection (Mohamed 

et al., 2003). Biolistic delivery of DNA to the skin using the gene gun resulted in the 

direct transfection of dendritic cells and subsequent migration to draining lymph nodes 

(Akbari et al., 1999; Larregina and Falo, 2000; Larregina et al., 2001). 

The vaccine designed in this study will utilize biolistic delivery of pDNA 

encoding B. microti AMA-1 and CP-1 via the Helios Gene Gun System (Bio-Rad). Gold 

particles will be coated with plasmid DNA, and the coated particles will then be 

accelerated into the epidermis of BALB/c mice using a compressed helium driven gene 

gun.  

Anesthetized mice will receive a series of 3 injections at 2-week intervals. Each 

injection will contain 2 μg of pDNA encoding for AMA-1 and/or CP-1, or control 

plasmid DNA. It is anticipated that the AMA-1 and CP-1 protein will be expressed by 

antigen presenting cells, stimulating a strong CD4+ IFN- γ effector/memory T-cell 

response directed towards the inhibition of AMA-1 and CP-1 when challenged by 

infection with B. microti parasites. By targeting AMA-1 and CP-1, we hope to prevent 

parasite invasion of the host erythrocytes and arrest parasite proliferation. By disrupting 

the parasite, we can reduce parasitemia levels. If successful, this study will serve as a 

proof of concept for B. bovis vaccination and open the door to a new vaccine against 

bovine babesiosis. 
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1.8 Hypothesis 

Vaccination with Babesia derived Apical Membrane Antigen-1 and Cysteine 

Protease-1 will elicit a protective immune response against challenge infection. The null 

hypothesis being that there is no significant reduction of parsitemia between the 

vaccinated mice and the control mice. 

 

1.9 Objectives 

The objectives for this study are to: 
 
1. Generate and sequence verify plasmid constructs containing B. bovis AMA-1 

ectodomain and full-length cysteine protease. 

 

2. Generate and sequence verify plasmid constructs expressing B. microti  Apical 

Membrane Antigen-1 and Cysteine Protease-1 to be used as vaccine in a mouse 

model. 

 

3. Validate the use of Apical Membrane Antigen-1 and Cysteine Proteases as vaccine 

candidates for B. bovis using B. microti constructs in a mouse model. 
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2. MATERIALS AND METHODS 

 

2.1 DNA extraction from Babesia bovis 

 
 DNA was obtained from a cryo-preserved Mexican-isolate of in vitro cultivated 

Babesia bovis using the FlexiGene DNA Extraction method (Qiagen). The DNA 

concentration was adjusted to 100 ng/ul based on quantification using the NanoDrop 

ND-1000 Spectrophotometer (NanoDrop Technologies).  

 

2.2 Amplification of full-length Babesia bovis Cysteine Protease-2 

 Oligonucleotide primers for polymerase chain reaction (PCR) were designed 

based on the B. bovis (T2Bo Strain) cysteine protease-2 gene sequence (GenBank 

accession no. XP_001610695). The primers used for amplification of the full gene 

(1335 bp) were CP B.bov Forward (5′-ATG GGA ATA CCG GCT GCT GC-3′) and CP 

B.bov Reverse (5′-TTA ATA TGG GAC ATA ACC GTA AGA AAG AAC GC-3′) with 

an optimal annealing temperature of 63ºC (the table on p.31). To avoid nucleotide 

misincorporations during by PCR amplification, Phusion High-Fidelity DNA 

Polymerase was used (Finnzymes). The amplification profile for the PCR reaction was 

initial denaturation at 98ºC for 30 s, followed by 30 cycles of denaturation at 98ºC for 

10 s, annealing at 63ºC for 10 s and extension at 72ºC for 2 min with a final extension at 

72ºC for 10 min followed by hold at 4ºC (Hybaid PCR Express Thermocycler). The 

product was checked by electrophoresis on an ethidium bromide stained 1% agarose gel 

alongside a 100 bp DNA marker (Invitrogen). 
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Amplification with Phusion High-Fidelity DNA Polymerase does not result in 

the 3′ adenine overhangs required to ligate into the pCR-TOPO2.1 vector (Invitrogen); 

therefore, incubation of the PCR product with 2X Taq PCR Master Mix was required for 

addition of 3′ adenine overhangs. The Phusion High-Fidelity PCR amplicon was purified 

using the QIAquick PCR Purification method (Qiagen). The purified DNA was 

quantified on the NanoDrop ND-1000 Spectrophotometer at a concentration of 

106 ng/µl. The purified PCR product (10 µl) was incubated in 10 µl of 2X Taq PCR 

Master Mix (Qiagen) at 72ºC for 10 min. 

 

2.3 Cloning Babesia bovis Cysteine Protease-2 into pCR-TOPO2.1 and Champion 

pET 101 Directional TOPO vectors 

 A cloning reaction was prepared using 2 µl (53 ng/µl) of purified B. bovis 

cysteine protease PCR amplicon, 1 µl of salt solution, 2.0 µl of sterile water and 1 µl of 

pCR-TOPO2.1 vector according to the manufacturer’s instructions (Invitrogen). The 

reaction was gently mixed and allowed to incubate at room temperature for 30 min. 

Following the initial incubation, 2 µl of the cloning reaction was added to One Shot 

TOP10 Competent Escherichia coli cells (Invitrogen) and incubated on ice for 30 min. 

Following the 30 min incubation on ice, the cells were heat-shocked at 42ºC for 30 s and 

supplemented with 250 µl of S.O.C medium (0.5% Yeast extract, 2.0% tryptone, 10 mM 

NaCl, 2.5 mM KCl, 10 mM MgCl2, 20 mM MgSO4, 20 mM glucose). The 

transformation mixture was shaken horizontally (200 rpm) at 37ºC for 1 h (Queue 

Orbital Shaker, Queue Systems, Inc) and spread onto pre-warmed LB agar plates (Luria 
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Bertoni Agar, Sigma-Aldrich) containing Kanamycin (final concentration 50 

µg/ml)(Sigma-Aldrich) and X-Gal (5-bromo-4-chloro-3-indolyl-ß-D-galactopyranoside, 

40 mg/ml, Fisher Scientific). The plates were then incubated at 37ºC overnight. 

 Transformants were analyzed by colony PCR to check for proper B. bovis 

cysteine protease insert. A master mix was made consisting of 300 µl of 2X Taq PCR 

Master Mix, 276 µl of sterile water, 12 µl of 1 pmol M13 Forward (-20) (5′-GTA AAA 

GCG CGG CCA G-3′) and 12 µl of 1 pmol M13 Reverse (5′-CAG GAA ACA GCT 

ATG AC-3′). A portion of each transformant colony was added to 20 µl of master mix in 

a 0.2 ml PCR tube. One tube containing 20 µl of master mix served as a negative 

control. The cycling program used was initial denaturation at 94ºC for 5 min, followed 

by 30 cycles of denaturation at 94ºC for 10 s, annealing at 50ºC for 1 min and extension 

at 72ºC for 2 min. A final extension at 72ºC for 10 min was followed by a 4ºC hold. The 

product was checked by electrophoresis on an ethidium bromide stained, 1% agarose gel 

alongside a 100 bp DNA Marker. Positive clones containing the desired B. bovis 

cysteine protease insert were expanded into 10 ml LB broth cultures containing 

Kanamycin and grown for 16 h with shaking (200 rpm). 

The broth culture was centrifuged (1800 rpm for 20 min) to pellet the bacteria, 

and the supernatant discarded. Babesia bovis cysteine protease pDNA was column-

purified from the pellet using the QIAprep Spin Miniprep method (Qiagen) and 

quantified using the NanoDrop ND-1000 Spectrophotometer.  The purified pDNA clones 

were sequenced using M13 Forward (-20) and M13 Reverse primers to obtain the full 

nucleotide sequence of the cysteine protease insert (Davis Sequencing, Inc. Davis, CA). 
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The sequencing reactions were performed using Applied Biosystems Big Dye 

Terminator V3.0 sequencing chemistry and the resulting sequences analyzed using 

Sequencher 3.0 software (Gene Codes Corporation). BLAST searches were performed 

on the nucleotide sequences to confirm the correct amino acid sequence (National Center 

for Biotechnology Information, National Institutes of Health 

(http://www.ncbi.nlm.nih.gob/BLAST/) (Altschul et al., 1990).  

The insert DNA from pCR-TOPO2.1 Clone 5 was identified as a 99% amino acid 

match for the B. bovis (T2Bo Strain) cysteine protease-2 gene sequence (GenBank 

accession no. XP_001610695) and subsequently used as the template DNA for ligation 

of the gene insert into the Champion pET 101 Directional TOPO vector (Invitrogen, 

Carlsbad, CA). A PCR reaction using Phusion High-Fidelity DNA Polymerase was 

performed with BbovCP(pET) forward primer (5′-CAC CAT GGA AAT ACC GGC 

TGC T-3′) and BbovCP(pET) reverse primer (5′-GAC ATA ACC GTA AGA AAG 

AAC GCC ACA T-3′) (the table on p.31). The amplification profile for the PCR reaction 

was initial denaturation at 98ºC for 30 s, followed by 30 cycles of denaturation at 98ºC 

for 10 s, annealing at 62ºC for 10 s and extension at 72ºC for 2 min with a final 

extension at 72ºC for 10 min followed by hold at 4ºC. The product was checked by 

electrophoresis on an ethidium bromide stained 1% agarose gel alongside a 100 bp DNA 

marker. Using the same method described with pCR-TOPO2.1 vector, the resulting PCR 

products were ligated into Champion pET 101 Directional TOPO vector and One Shot 

TOP10 Competent E. coli cells were transformed. Upon removal of the transformation 

reaction from the shaker, it was spread onto pre-warmed LB agar plates containing 
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Carbenicillin at a final concentration of 50 μg/ml(Research Products International 

Corporation) and incubated at 37ºC overnight. 

Transformants were analyzed by colony PCR to check for proper cysteine 

protease insert. A master mix of consisting of 400 µl of 2X Taq PCR Master Mix, 368 µl 

of sterile water, 16 µl of 1 pmol T7 Forward (5′-TAA TAC GAC TCA CTA TAG GG-

3′) and 16µl of 1 pmol T7 Reverse (5′-TAG TTA TTG CTC AGC GGT GG-3′). Plasmid 

purification was done as described with the pCR-TOPO2.1 vector and quantified using 

the NanoDrop ND-1000 Spectrophotometer. Six clones containing the proper cysteine 

protease insert were sequenced using T7 Forward and T7 Reverse primers to obtain the 

full nucleotide sequence (Davis Sequencing, Inc. Davis, CA). The sequencing reactions 

were performed using Applied Biosystems Big Dye Terminator V3.0 sequencing 

chemistry and BLAST searches (NCBI) performed on the obtained nucleotide sequences 

to identify the correct gene sequence in the proper orientation. 

 

2.4 Amplification of Babesia bovis Apical Membrane Antigen-1 (AMA-1) 

ectodomain 

 Primers were designed based on the B. bovis Apical Membrane Antigen-1 (T2Bo 

strain) (GenBank accession no. XM_001610993). Amplification of B. bovis AMA-1 

ectodomain (1737 bp) was carried out using Platinum Taq DNA High Fidelity 

Polymerase with forward primer BbovisAMAF2 (5′-GGC CAA CCA ATT CAC GC-3′) 

reverse primer BbovisR1 (5′-CAA TTG ATT AAC AAG CGA CCA CG-3′) (Table 1). 

The amplification profile for the PCR reaction was initial denaturation at 96ºC for 2 min, 
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followed by 30 cycles of denaturation at 96ºC for 10 s, annealing at 62ºC for 10 s and 

extension at 68ºC for 2 min with a final extension at 68ºC for 10 min followed by hold at 

4ºC. The product was checked by electrophoresis on an ethidium bromide stained 1% 

agarose gel, alongside a 100 bp DNA marker. 

 

2.5 Cloning Babesia bovis AMA-1 ectodomain into pCR-TOPO2.1 and Champion 

pET 101 Directional TOPO vectors 

Babesia bovis AMA-1 was cloned into the pCR-TOPO2.1 vector as described 

above for the B. bovis cysteine protease gene. Plasmid DNA from pCR-TOPO2.1 Clone 

4 was identified as a 99% amino acid match for B. bovis Apical Membrane Antigen-1 

(T2Bo strain) (GenBank accession no. XM_001610993) and subsequently used as the 

template DNA for ligation of the B.bovis AMA-1 ectodomain into the Champion pET 

101 Directional TOPO vector. A PCR reaction using Phusion High-Fidelity DNA 

Polymerase was performed with forward primer BbovAMASigPF (5′-CAC CAT GTC 

CAA CTC CAC ACT CTT C-3′) reverse primer BbovAMAmreP (5′-GAT ACG CTT 

TGT GTT GTA GAG TCC G-3′) and an internal primer BbovMRE (5′-GAT ACG CTT 

TGT GTT GTA GAG TCC-3′) (Table 1). The amplification profile for the PCR reaction 

was initial denaturation at 98ºC for 30 s, followed by 30 cycles of denaturation at 98ºC 

for 10 s, annealing at 59ºC for 10 s and extension at 72ºC for 1.5 min with a final 

extension at 72ºC for 10 min, followed by hold at 4ºC. The product was checked by 

electrophoresis on an ethidium bromide stained 1% agarose gel alongside a 100 bp DNA 



 31 

marker. Cloning of the B. bovis AMA-1 into Champion pET 101 Directional TOPO was 

also performed as described above for B. bovis cysteine protease.  

 

Table 1  

  

Babesia bovis Full Length Cysteine Protease and Apical Membrane Antigen-1 

Ectodomain PCR Oligonucleotide Primers 

 

PCR Primer Sequence Annealing 

Temp. 

 
CP B.bov Foward  
 
CP B.bov Reverse 
 
BbovCP (pET) Forward 
  
BbovCP (pET) Reverse  
 
BbovisAMAF2  
 
BbovisR1  
 
BbovAMASigPF        

BbovAMAmreP 

BbovMRE  

 
5′-TGGGAATACCGGCTGCTGC-3′ 
 
5′- TATGGGACATAACCGTAAGAAAGAACGC-3′ 
 
5′-CACCATGGAAATACCGGCTGCT-3′ 
 
5′-GACATAACCGTAAGAAAGAACGCCACAT-3′ 
 
5′-GGCCAACCAATTCACGC-3′ 

 
5′-CAATTGATTAACAAGCGACCACG-3′ 
 
5′-CACCATGTCCAACTCCACACTCTTC-3′ 
 
5′-GATACGCTTTGTGTTGTAGAGTCCG-3′ 
 
5′-GATACGCTTTGTGTTGTAGAGTCC-3′ 
 

     
        63ºC 

 
63ºC 

 
62ºC 

 
62ºC     

 
62ºC 

 
 62ºC    

 
59ºC     

 
59ºC    

 
59ºC        

 

 

 

2.6 Amplification and cloning of Babesia microti Cysteine Protease-1 (CP-1) 

hydrophilic domain into pCR-TOPO2.1 and pCMVCD5flag vectors 

The hydrophilic domain of B. microti CP-1 (1113 bp) was amplified using 

Phusion High-Fidelity PCR from a previously cloned B. microti cysteine protease (CP-1) 

gene (Mahmoud et al., 2002 ) with primers carrying restriction sites for BamH1. The 

forward primer used was BmCPBAMH1FWD (5′-ATA GGA TCC TAT GGA GAC 
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TGA GGC TTC GAG AC-3′) and the reverse primer was BmCPBAMH1REV (5′-ATA 

GGA TCC TTA CAA CGG CAT TAA ACC G-3′). The amplification profile for the 

PCR reaction was initial denaturation at 93ºC for 3 min, followed by 35 cycles of 

denaturation at 93ºC for 30 s, annealing at 50ºC for 1 min and extension at 72ºC for 1.2 

min with a final extension at 72ºC for 10 min followed by hold at 4ºC. The PCR product 

was electrophoresed through a 0.8% agarose gel (Sigma-Aldrich) in 1X TAE buffer 

(0.04M Tris acetate; 0.001 M EDTA) at 50 volts for 1 hour. The appropriate sized 

amplicon was excised from the gel using a sterile scalpel and the amplicon purified from 

the gel slice using the QIAquick Gel Extraction method (Qiagen). 

A pCR-TOPO2.1 clone confirmed as carrying the B. microti CP-1 fragment was 

restriction digested with BamH1 (Fermentas), gel purified and the resulting fragment 

ligated into the respective sites of the BamH1-digested and tritrated pCMVCD5flag 

vector using T4 DNA ligase (Invitrogen, Carlsbad, CA). One Shot TOP10 Competent 

E. coli cells were transformed with the resulting BmCP-1 plasmids in the same manner 

as described above for B. bovis. The transformed cells were plated out onto LB agar 

plates containing Carbenicillin and incubated overnight at 37°C.  The BmCP-1 pDNA 

was column-purified using the QIAprep Spin Miniprep method and quantified using the 

NanoDrop ND-1000 Spectrophotometer. After purification the BmCP-1 plasmids were 

sequenced to identify which clones contained the correct gene sequence and orientation. 

Once the correct clone, designated pBmCP-1, was identified, a large quantity (~10mg) 

of BmCP-1 endotoxin-free plasmid DNA was obtained using the Qiagen EndoFree 

Plasmid Giga method (Qiagen). 
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2.7 Amplification and cloning of Babesia microti Apical Membrane Antigen-1 

(AMA-1) ectodomain into pCR-TOPO2.1 and pCMVCD5flag vectors 

The B. microti AMA-1 ectodomain (1440 bp) was previously amplified and 

cloned into the pCMVCD5flag vector using the same general methodology as described 

above for B. microti CP-1 and the resultant recombinant construct, designated 

pBmAMA-1, was available for this study.  The insert was sequence verified at the start 

of this study. 

 

2.8 Validation of gene expression by pBmAMA-1 and pBmCP-1 constructs 

Human embryonic kidney (HEK) Freestyle 293-A cells (Invitrogen) were 

transfected with the pBmAMA-1 or pBmCP-1 plasmid constructs to validate gene 

expression. For transfection, 2 µg plasmid DNA, 2 µl Turbofect transfection reagent 

(Fermentas) and 100 µl Opti-MEM 1 (GIBCO Laboratories) were mixed and incubated 

at room temperature for 15 min and pipetted into 6-well plate containing a monolayer of 

Freestyle 293-A cells. The 6-well plate was then incubated for 48 h at 37ºC in a 

humidified 8% CO2 in air atmosphere. 

Gene expression by the pBmAMA-1 and pBmCP-1 constructs was confirmed by 

immunocytometric analysis of transfected HEK 293-A cells by detecting the FLAG tag. 

The transfected HEK 293-A monolayers were methanol–fixed (-20°C, 5 min) and 

incubated with a 1/1000 dilution of a mouse anti-FLAG M2-alkaline phosphatase 

conjugate (Sigma-Aldrich) in blocking buffer [1X phosphate-buffered saline (PBS) with 

5% fetal bovine serum (FBS)]. Following five washes in blocking buffer, the buffer was 

removed and the alkaline phosphatase activity detected using Fast Red TR/Naphthol AS-
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MX substrate (SIGMA FAST; Sigma-Aldrich). To achieve this, one tablet of 0.1 M 

TRIS buffer was added to 10 ml deionized water and vortexed. A Fast Red TR/Naphthol 

AS-MX tablet was dissolved in the 10 ml TRIS buffer and filtered through a 0.45 μ 

syringe filter. Approximately 0.1 to 0.2 ml of Fast Red TR/Naphthol AS-MX solution 

was used to cover the cells. The cells were stained overnight and the reaction stopped by 

washing the cells with deionized water. The stained cells were visualized at 400 X 

magnification and photographed using an Olympus 1X70 inverted phase contrast 

microscope (Olympus Optical). 

 

2.9 Expression and purification of Babesia microti AMA-1 and CP-1 protein 
 

The B. microti CP-1 and AMA-1 recombinant proteins were produced by 

transient expression using the FreeStyle 293 Expression System (Invitrogen). The 293-F 

cells were cultured in suspension to a density of 1.2x106 cells per ml in the presence of 

FreeStyle 293 Expression Medium (Invitrogen). Lipid-DNA complexes were prepared 

by diluting 30 µg of pBmAMA-1 or pBmCP-1 constructs in 1 ml of Opti-MEM 1. 

Following a 5-min incubation, the DNA dilution was added to a 50 ml tube containing 

45 µl of 293fectin (Invitrogen) diluted in 1 ml of Opti-MEM 1 and incubated at room 

temperature for 20 min. The DNA-293Fectin mixture was added to a 40 ml 

FreeStyle293 cell suspension in a 250 mL polycarbonate disposable sterile Erlenmeyer 

flask (Fisher Scientific) and the transfected suspension was further incubated for 48 h at 

37°C on an orbital shaker platform rotating at 120-130 rpm. 
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The transfected 293-F cells were harvested by centrifugation in conical 

centrifuge tubes (2800 rpm for 10 min). The supernatant was decanted and saved. The 

cell pellets were resuspended in 300 µl of 1X protease inhibitor cocktail (Sigma-Aldrich) 

and lysed using three freeze/thaw cycles (alternately liquid nitrogen and a 37°C water 

bath). The lysed cell suspension was centrifuged at 2800 rpm for 15 min and the 

resulting supernatant combined with the saved supernatant and clarified through a 0.45 

µm filter. Forty milliliters of lysate was purified through batch absorption using Anti-

FLAG M2 Affinity Gel (Sigma-Aldrich). The protein was eluted from the affinity gel by 

acid elution using 1 ml aliquots of 0.1 M glycine HCL, pH 3.5 into vials containing 

25 µl of 1 M Tris, pH 8.0. The elution fractions were combined and concentrated by 

centrifugation using a 30kD molecular cut-off membrane (Millipore Corporation). The 

concentration of B. microti CP-1 or AMA-1 protein was determined using the BCA 

protein assay (Pierce Biotechnology). 

 

2.10 Validation of expressed protein using western blotting 

The molecular weights of the expressed B. microti CP-1 and AMA-1 proteins 

were confirmed by western blotting using anti-FLAG mAb. The proteins were resolved 

on a 10% Bis-Tris NuPAGE gel using the XCell Surelock electrophoresed and transfer 

apparatus with NuPAGE MES 1X Running Buffer (Invitrogen) at 135 volts for 1 h.  The 

electrophroesed proteins were transferred to a polyvinylidene difluoride (PVDF) 

membrane (Millipore) using NuPAGE transfer buffer at 35 volts for 1 h (Invitrogen). 

The PVDF membrane was first placed in blocking buffer (5% non-fat milk powder in 
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Tris-buffered saline containing 0.2% Tween 20 (TBS-T)) for 1 h at room temperature, 

and subsequently incubated in a 1:1000 dilution of monoclonal ANTI-FLAG M2 

Affinity Purified Antibody (Sigma-Aldrich) in blocking buffer for 1 h at room 

temperature.  The PVDF membrane was washed in TBS-T to removed unbound 

antibody, and then incubated with Immun-Star AP substrate (Bio-Rad) for 5 min.  The 

antibody–antigen complexes were visualized by exposure to subsequent development of 

BioMax chemiluminescence film (Kodak). 

 

2.11 Vaccine preparation 

For DNA immunization with the Helios Gene Gun System (Bio-Rad), each dose 

consisted of 0.5mg of gold spheres (1.6 µm) coated with plasmid DNA (2 µg of 

pBmAMA-1 or 2 µg of pBmCP-1, or 2 µg of each combined (4µg total) for the three 

experimental groups, respectively, resuspended in water). Gold spheres were suspended 

in 100µl of 0.05M spermidine in water. Following a 5 s sonication step the DNA was 

precipitated onto the gold by addition of 1 M CaCl2. The DNA–gold complex was 

incubated for 10 min at room temperature, centrifuged for 15 s, supernatant removed, 

and the gold washed three times with 500 µl 100% ethanol. After the last wash the pellet 

was resuspended in 0.05 mg/ml polyvinylpyrrolidone (PVP) in ethanol. The DNA-

coated gold was applied to the inner surface of Tefzel tubing (Helios Tubing Prep 

Station, Bio-Rad) by centrifugal force and a slight flow of nitrogen was used to 

evaporate the ethanol. The tubing was cut into cassettes, each containing a dose of 
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plasmid DNA. Cassettes containing the DNA-coated gold were loaded into the gene gun 

and the vaccine administered to the animals using compressed helium (Fig.1). 

 

2.12 Vaccination regimen 

 Four groups of 5 BALB/c mice each were used for this vaccine trial (Table 1). 

The abdomen of each animal was shaved and wiped with 70% ethanol. The spacer of the 

Helios Gene Gun was held directly against the abdominal skin (Fig. 1). The gun was 

discharged at a helium pressure of 300 psi. Mice were injected 3 times at 2-week 

intervals. Group 1 received inoculations containing 2 µg of pBmAMA-1 and 2 µg of 

pBmCP-1 pDNA (total 4 µg pDNA/injection). Group 2 received 2 µg of pBmAMA-1. 

Group 3 received 2 µg of pBmCP-1. Group 4 served as the negative control and received 

2 µg of the expression vector only (no gene inserts). During the first two series of 

inoculations, the mice were anesthetized to effect with isoflurane in oxygen. However, it 

became apparent that the act of anesthetizing the animals was more stressful than 

administering the vaccine without anesthetic. On the recommendation of the 

Comparative Medicine Program (Texas A&M University) a change was made to the 

protocol and the mice were not anesthetized for the third vaccination. 
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Fig. 1. Gene transfer into the abdominal skin of BALB/c mice using Helios Gene 

Gun.  

 

 

 

2.13 Analysis of infection following challenge with Babesia microti  

One month after the last gene gun vaccination was administered, the mice were 

challenged by intraperitoneal administration of 107 
B. microti-infected red blood cells.  

The challenge dose was obtained from two infected C.B-17/IcrHsd-Prkdc-scid mice at a 

combined parasitemia of 65%, adjusted with Dulbecco’s phosphate buffered saline (pH 

7.4) to a concentration of 107 
B. microti-infected red blood cells in 0.3 ml. The animals 

were monitored daily by obtaining blood smears from the tip of the tail, which were 

methanol-fixed and Giemsa-stained for microscopic examination at 1000X under oil 

immersion. Percent parasitemias were measured by counting the number of B. microti-

infected erythrocytes in 1000 erythrocytes.  The mean PCV of each group was 
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determined before challenge and every 5 days following challenge. Blood was collected 

from the tail tip in heparinized microhematocrit capillary tubes (Fisherbrand) and 

centrifuged (IEG MB Centrifuge); the PCV was then measured and recorded. The 

plasma was collected from the microhematocrit tubes and stored at –80º C for future 

serologic analysis (not in the scope of the current study).  After the parasitemia cleared, 

as determined by three consecutive days without parasite observation in blood smears, 

the mice were humanely euthanized. Euthanasia was effected by carbon dioxide 

asphyxiation followed by cervical dislocation. 

 

2.14 Statistical analyses 

A repeated data analysis was used to compare parasitemias and PCVs of 

vaccinated animal to unvaccinated animals. P-values < 0.05 are considered statistically 

significant. All data analyses were performed using SPSS version 12.0 (SPSS, Inc., 

2001, Chicago IL). 
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3. RESULTS 

3.1 Babesia bovis constructs 

The B. bovis Cysteine Protease-2 full open reading frame was successfully 

amplified (Fig. 2), cloned into pCR-TOPO2.1 and subcloned into the Champion pET 

Directional TOPO expression vector.  Figure 3 shows that the clone obtained was a 99% 

amino acid match to the B. bovis Cysteine Protease-2 sequence in the genome project 

(http://www.ncbi.nlm.nih.gob/BLAST/). The AMA-1 ectodomain gene region was 

successfully amplified (Fig. 4) and cloned into the pCR-TOPO2.1 and Champion pET 

101 Directional TOPO vectors. The clone obtained was a 99% amino acid match to the 

B. bovis AMA-1 sequence in the genome project (Fig. 5). The constructs were stored at 

–80ºC for future applications. 

 

   BP     1        2         3    
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  100  

Fig. 2 . PCR-amplified Babesia bovis Cysteine Protease gene product.  Amplification 
of  Babesia bovis cysteine protease (2), negative control (3), alongside 100 base pair 
marker (Invitrogen) (1). 
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BbCP1            MEIPAAASDLSNLDDHYVRSDDEVRDTTLIGRSRRCCVGKKTMWIVLLGTAILTAAITSG 

BbCP1Clone       MEIPAAASDLSNLDDHYVRSDDEVRDTTLIGRSRRCCVGKKTMWIVLLGTAILTAAITSG 

                 ************************************************************ 

 

BbCP1            IILLVTSLSGSKAKPSGGVKHIGKFDGLNRADCHVSPETFAELSSMAHLGEINVSDPAEI 

BbCP1Clone       IILLVTSLSGSKAKPSGGVKHIGKFDGLNRADCHVSPETFAELSSMAHLGEINVSDPAEI 

                 ************************************************************ 

 

BbCP1            VKYMDFTRMAKKFDRKYDTVAERHTAFLNFRRNHDIVKSHEHNKAATYTKDLNHFFDKDI 

BbCP1Clone       VKYMDFTRMAKKFDRKYDTVAERHTAFLNFRRNHDIVKSHEHNKAATYTKDLNHFFDKDI 

                 ************************************************************ 

 

BbCP1            KAVAAKLLHKIDVYNESNISVTPTDTTATKENQPIYATLKNYSVSAGYPPIGSKVNFEDI 

BbCP1Clone       KAVAAKLLHKIDVYNESNISVTPTDTTATKENQPIYATLKNYSVSAGYPPIGSKVNFEDI 

                 ************************************************************ 

 

BbCP1            DWRRADAVTPVKDQGMCGSCWAFAAVGSVESLLKRQKTDVRLSEQELVSCQLGNQGCNGG 

BbCP1Clone       DWRRADAVTPVKDQGMCGSCWAFAAVGSVESLLKRQKTDVRLSEQELVSCQLGNQGCNGG 

                 ************************************************************ 

 

BbCP1            YSDYALNYIKFNGIHRSEE-PYLAADGKCVAHDGTKYYIKGYHAAKGRSVANQLLVMGPT 

BbCP1Clone       YSDYALNYIKFNGIHRSEEWPYLAADGKCVAHDGTKYYIKGYHAAKGRSVANQLLVMGPT 

                 ******************* **************************************** 

 

BbCP1            VVYIAVSEDLMHYSGGVFNGECSDSELNHAVLLVGEGYDSALKKRYWLLKNSWGTSWGED 

BbCP1Clone       VVYIAVSEDLMHYSGGVFNGECSDSELNHAVLLVGEGYDSTLKKRYWLLKNSWGTSWGED 

                 **************************************** ******************* 

 

BbCP1            GYFRLERTNTPTDKCGVLSYGYV 

BbCP1Clone       GYFRLERTNTPTDKCGVLSYGYV 

                 *********************** 

 

Fig. 3. Alignment of predicted amino acid sequence of Babesia bovis Cysteine 

Protease gene insert (pCR-TOPO2.1) with the B. bovis T2Bo Strain Cysteine 

Protease-2 (GenBank accession no. XP_001610695). Amino acids identical in both 
sequences are indicated by stars (). 
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Fig. 4. PCR-amplified Babesia bovis AMA-1 gene product. Amplification of B. bovis 

AMA-1 (2), negative control (1), alongside 100 base pair DNA marker (Invitrogen) (3). 
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BbAMA1           MQSTSPKYNYKRMLCMVFVPVILSSFFAEDALASNSTLFAFHREPTNRRLTRRASRGQLL 

BbAMA1Clone      MQSTSPKYNYKRMLCMVFVPVILSSFFAEDALASNSTLFAFHREPTNRRLTRRASRGQLL 

                 ************************************************************ 

 

BbAMA1           NSRRGSDDTSESSDRYSGRSGGSKNSGQSPWIKYMQKFDIPRNHGSGIYVDLGGYESVGS 

BbAMA1Clone      NSRRGSDDTSESSDRYSGRSGGSKNSGQSPWIKYMQKFDIPRNHGSGIYVDLGGYESVGS 

                 ************************************************************ 

 

BbAMA1           KSYRMPVGKCPVVGKIIDLGNGADFLDPISSEDPSYRGLAFPETAVDSNIPTQPKTRGSS 

BbAMA1Clone      KSYRMPVGKCPVVGKIIDLGNGADFLDPISSEDPSYRGLAFPETAVDSNIPTQPKTRGSS 

                 ************************************************************ 

 

BbAMA1           SVTAAKLSPVSAKDLRRWGYEGNDVANCSEYASNLIPASDKTTKYRYPFVFDSDNQMCYI 

BbAMA1Clone      SVTAAKLSPVSAKDLRRWGCEGNDVANCSEYASNLIPASDKTTKYRYPFVFDSDNQMCYI 

                 ******************* **************************************** 

 

BbAMA1           LYSAIQYNQGNRYCDNDGSSEEGTSSLLCMKPYKSAEDAHLYYGSAKVDPDWEENCPMHP 

BbAMA1Clone      LYSAIQYNQGNRYCGNDGSSEEGTSSLLCMKPYKSAEDAHLYYGSAKVDPDWEENCPMHP 

                 ************** ********************************************* 

 

BbAMA1           VRDAIFGKWSGGSCVAIAPAFQEYANSTEDCAAILFDNSATDLDIEVVNEEFNELKELTS 

BbAMA1Clone      VRDAIFGKWSGGSCVAIAPAFQEYANSTEDCAAILFDNSATDLDIEVVNEEFNELKELTS 

                 ************************************************************ 

 

BbAMA1           GLKRLNLSKVANAIFSPLSNVAGTSRISRGVGMNWATYDKDSGMCALINETPNCLILNAG 

BbAMA1Clone      GLKRLNLSKVANAIFSPLSNVAGTSRISRGVGMNWATYDKDSGMCALINETPNCLILNAG 

                 ************************************************************ 

 

BbAMA1           SIALTAIGSPLEYDAVNYPCHIDTNGYVEPRAKTTNKYLDVPFEVTTALSTKTLKCNAYV 

BbAMA1Clone      SIALTAIGSPLEYDAVNYPCHIDTNGYVEPRAKTTNKYLDVPFEVTTALSTKTLKCNAYV 

                 ************************************************************ 

 

BbAMA1           HTKYSDSCGTYFLCSDVKPNWFIRFLHMIGLYNTKRIVIFVCCTTTAIVLTIWIWKRFIK 

BbAMA1Clone      HTKYSDSCGTYFLCSDVKPNWFIRFLHMIGLYNTKRIVIFVCCTTTAIVLTIWIWKRFIK 

                 ************************************************************ 

 

BbAMA1           AKKEPAPPSFDKYLSNYDYDTTLDADNETEQRLDSSAYSWGEAVQRPSDVTPVKLSKIN 

BbAMA1Clone      AKKEPAPPSFDKYLSNYDYDTTLDADNETEQRLDSSAYSWGEAVQRPSDVTPVKLSKIN 

                 *********************************************************** 

 

 

Fig. 5. Alignment of predicted amino acid sequence of Babesia bovis AMA-1 gene 

insert (pCR-TOPO2.1) with the B. bovis T2Bo strain AMA-1 (GenBank accession 
no. XM_001610993). Amino acids identical in both sequences are indicated by stars (). 
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3.2 BmCP-1 and BmAMA-1 plasmid constructs 

 

The B. microti Cysteine Protease-1 hydrophilic region was successfully 

amplified (Fig. 6), cloned into pCR-TOPO 2.1 and subcloned into the pCMVCD5flag 

expression vector.  Figure 7 shows that the clone obtained was a 100% amino acid match 

to the predicted B. microti CP-1 sequence previous identified in our lab (Mahmound et 

al., 2002). The AMA-1 ectodomain gene region was previously amplified and cloned 

into pCR-TOPO 2.1 and subcloned into the pCMVCD5flag expression vector.  The 

clone was sequenced verified to confirm a 100% amino acid match to the B. microti 

AMA-1 sequence previously identified in our lab (P.J. Holman, unpublished results) 

(Fig. 8). 
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Fig. 6. PCR-amplified Babesia microti CP-1 gene product. Amplification of 
B. microti CP-1 (3), negative control (1), 1 Kb marker (New England Bio Labs) (2). 
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B.microti CP-1 ETEASRQVKARLIDDMLSGQSLYNCYPYDQQRYHVGKPAQKPESVGEFIVRTLTEHGYTI 

BmCP-1 clone ETEASRQVKARLIDDMLSGQSLYNCYPYDQQRYHVGKPAQKPESVGEFIVRTLTEHGYTI 

  ************************************************************ 

 

B.microti CP-1 DPDLEAKIYKEFNIFMAKFGKIYFTPKEKGDKYINFRKSYEIVMAHNNNKNVSYKMALGQ 

BmCP-1 clone DPDLEAKIYKEFNIFMAKFGKIYFTPKEKGDKYINFRKSYEIVMAHNNNKNVSYKMALGQ 

  ************************************************************ 

 

B.microti CP-1 FSDKSPEEFENSVLNPMMSNEHYVNAIKSGRFNLFRPDPRQEGIPEQFIWDHKFLGPVLN 

BmCP-1 clone FSDKSPEEFENSVLNPMMSNEHYVNAIKSGRFNLFRPDPRQEGIPEQFIWDHKFLGPVLN 

  ************************************************************ 

 

B.microti CP-1 QGACGSCWAFATAGAVQSLFNIVNNSKLVLSPQELVDCTINANGCKGGNPIYAFNYVRDH 

BmCP-1 clone QGACGSCWAFATAGAVQSLFNIVNNSKLVLSPQELVDCTINANGCKGGNPIYAFNYVRDH 

  ************************************************************ 

 

B.microti CP-1 GLCTLNDYPYVGFQQKCSSSSCKHKIPIKNKMLVTSGFDIALAQGSPMVVGIDANGPFQH 

BmCP-1 clone GLCTLNDYPYVGFQQKCSSSSCKHKIPIKNKMLVTSGFDIALAQGSPMVVGIDANGPFQH 

  ************************************************************ 

 

B.microti CP-1 YSHGIFEAPCTPGTSNHAVLLVGYGVDKETGKKYWVIKNSWGPDWGEKGYARILRSDDGN 

BmCP-1 clone YSHGIFEAPCTPGTSNHAVLLVGYGVDKETGKKYWVIKNSWGPDWGEKGYARILRSDDGN 

  ************************************************************ 

 

B.microti CP-1 GADCNLTKFGL 

BmCP-1 clone GADCNLTKFGL 

  *********** 

 

 

Fig. 7. Alignment of cloned Babesia microti Cysteine Protease-1 predicted amino 

acid sequences.  The amino acid sequence of the hydrophilic region from the previously 
identified B. microti Cysteine Protease-1 (B. microti CP-1) gene is aligned with the 
obtained sequence of the region cloned into pCMVCD5flag (BmCP-1 clone). Amino 
acids identical in both sequences are indicated by stars (). 
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B.microtiAMA-1 ALANARPAHRKIVHKHKNSGAKPRHQAKKHVNITEEDDEDGEVYEEDEEDDYEDTDYEEL 

BmAMA-1 clone ALANARPAHRKIVHKHKNSGAKPRHQAKKHVNITEEDDEDGEVYEEDEEDDYEDTDYEEL 

 ************************************************************ 

 

B.microtiAMA-1 EFKPIGDERDNPWESYMEKFNIPKVHGSGVYVDLGKNGTFNGKKYRMVAGKCPVFGKIIE 

BmAMA-1 clone EFKPIGDERDNPWESYMEKFNIPKVHGSGVYVDLGKNGTFNGKKYRMVAGKCPVFGKIIE 

 ************************************************************ 

 

B.microtiAMA-1 FSSGVDYLSPANDTANPAFGFPYTVPAGKTIRTNEIPKTSRGRISISKSAVQTDLISPVT 

BmAMA-1 clone FSSGVDYLSPANDTANPAFGFPYTVPAGKTIRTNEIPKTSRGRISISKSAVQTDLISPVT 

 ************************************************************ 

 

B.microtiAMA-1 AKTLKAYEYDGDDIFNCASYASELMMSSDRKSDYKYPFAFDLKTKTCHILYSPLQLIQGP 

BmAMA-1 clone AKTLKAYEYDGDDIFNCASYASELMMSSDRKSDYKYPFAFDLKTKTCHILYSPLQLIQGP 

 ************************************************************ 

 

B.microtiAMA-1 KYCDNDGKVDSGSSSMPCIKPVKDMSQEMVYGSSFIYRDWKNKCPNAAVADAIFGTWNGT 

BmAMA-1 clone KYCDNDGKVDSGSSSMPCIKPVKDMSQEMVYGSSFIYRDWKNKCPNAAVADAIFGTWNGT 

 ************************************************************ 

 

B.microtiAMA-1 ACVPIQNRRLFKASTPEICGQIVFKYSASDAPENYETKRSEGSKFANAISSGDLGAVAKI 

BmAMA-1 clone ACVPIQNRRLFKASTPEICGQIVFKYSASDAPENYETKRSEGSKFANAISSGDLGAVAKI 

 ************************************************************ 

 

B.microtiAMA-1 IMPVTNSRAHHSKGWGFNWANYDRNKRECGLIDEVPNCLVFKMGNIAFNSLGSPLEDDME 

BmAMA-1 clone IMPVTNSRAHHSKGWGFNWANYDRNKRECGLIDEVPNCLVFKMGNIAFNSLGSPLEDDME 

 ************************************************************ 

 

B.microtiAMA-1 NFPCEIKSFGYITKGNPNDINSYLISSTHRDMIPNDDGIETLNARSCSGYYGKIGAKESE 

BmAMA-1 clone NFPCEIKSFGYITKGNPNDINSYLISSTHRDMIPNDDGIETLNARSCSGYYGKIGAKESE 

 ************************************************************

  

 

 

Fig. 8. Alignment of cloned Babesia microti Apical Membrane Antigen-1 predicted 

amino acid sequences.  The amino acid sequence of the ectodomain from the previously 
identified B. microti Apical Membrane Antigen-1 (B. microti AMA-1) gene is aligned 
with the obtained sequence of the region cloned into pCMVCD5flag (BmAMA-1 clone). 
Amino acids identical in both sequences are indicated by stars (). 
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3.3 Confirmation of in vitro BmCP-1 and BmAMA-1 protein expression using 

immunohistochemistry 

To confirm the expression of the flag-tagged BmAMA-1 and BmCP-1 proteins, 

HEK 293A cells were transfected and expression verified through 

immunohistochemistry detecting the presence of the FLAG marker peptide (Fig. 9). 

 

 

 
 

Fig. 9.  Expression of Babesia microti FLAG-tagged CP-1 and AMA-1 proteins in 

HEK 293-A cells. Probed with ANTI-FLAG M2 Monoclonal Antibody alkaline 
phosphatase conjugate. (A) Cells expressing CP-1 (arrows), (B) control cells, (C) cells 
expressing AMA-1 (arrows) (400X).  

 
 
 

3.4 Identification of Babesia microti AMA-1 and CP-1 proteins 

 

The open reading frames of the B. microti AMA-1 and CP-1 genes in the 

expression vector pCMVCD5flag were expressed and affinity purified.  As shown in 

Fig. 10, a strong specific 54 kDa band was obtained from lysate of HEK293F cells 

transfected with the BmAMA-1 construct and a 48 kDa band was obtained from the 

lysate of cells transfected with the BmCP-1 construct.  The molecular size of both 

proteins is consistent with the expected size from the predicted amino acid sequence. 
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Fig. 10. Western blot analysis of ANTI-FLAG M2 Affinity purified Babesia microti 

AMA-1 and CP-1 expressed proteins. (A) FLAG-tagged B. microti AMA-1 protein 
migrating at approximately 54 kDA (Lane 1). FLAG-tagged Interleukin-4 positive 
control (Lane 2). (B). FLAG-tagged B. microti CP-1 protein migrating at approximately 
48 kDa. 
 

 

3.5 Analysis of parasitemia  

 

In order to examine the protective effects of the B. microti AMA-1 and CP-1 

DNA vaccines, mice were challenged with 107 
B. microti-infected erythrocytes passaged 

from infected mice. By day 2 post-challenge, all mice developed a measurable 

parasitemia lasting until day 18 for the BmCP1 and BmAMA1 groups and until day 21 

for the BmCP1/BmAMA1 and the plasmid control groups.  The mean daily percent 

parasitemia values for each group (Fig. 11) have the highest mean peak parasitemia, 

20.04%, in the plasmid control group on day 9 and the lowest mean peak parasitemia, 
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7.42%, in the BmCP1 group on day 8.  Figure 12 shows parasitemia values for each 

individual over time, color-coded according to vaccine group. 

 

                                                                                                                                             

Fig. 11. Mean group percent parasitemias. 
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Fig. 12.  Individual parasitemia for each subject. 

 

 A repeated data analysis was used to analyze the data obtained from the 

observed parasitemias. The model for this analysis was: 

ijkijjikiijk edY )(  where i=1,2,3,4,  j=1,..,21 and k=1,…,5 i  i-th 

treatment effect, j  j-th time effect, ij)(  treatment-time interaction effect, ijke  is the 

error for every observation and considered independent and identically distributed (i.i.d), 

ikd  is the random effect of the subject (mouse) which is normally distributed with mean 

zero and variance decided from Akaike's information criterion (AIC) where ikd  is 

independent from ijke . After a check with the AIC, it was decided that the variance of 

the subject would be different in every time step. Therefore, there will be a diagonal 

covariance matrix of random effect for the subject in every time step. This choice can be 
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justified from Fig. 12 showing the individual parasitemias for each animal or from the 

table of estimated covariance (Table 2). 

 

Table 2  

Model Dimension for Covariance 

Model analysis table for selection of the proper covariance matrix for the error variance. 
 

Model Dimension
 a
 

 
Number of 

Levels 

 
Covariance 
Structure 

Number of 
Parameters 

Subject 
Variables 

Number of 
subjects 

Fixed Effects            Intercept                              1                                                       1 

                                 Vaccine                               4                                                       3 

                                 Days                                  21                                                     20 

                                 Vaccine * Days                  84                                                     60 

Repeated Effects     Days                                   21             Diagonal                          21             subject                     20 

Total                                                                  131                                                   105 

 
a Dependent Variable: Parasitemia  
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Table 3  

Type III Test of Fixed Effects: Parasitemia  

Results of a fixed effect model based on the chosen diagonal covariance matrix 

(parasitemia). 
 

 
Type III Test of Fixed Effects a

 

 
Source 

Numerator 
df 

Denominator 
df 

 
F 

 
Sig. 

Intercept 

Vaccine 

Days 

Vaccine * Days 

1 

3 

20 

60 

82.554 

82.554 

19.013 

19.013 

197.271 

5.762 

16.065 

.907 

.000 

.001 

.000 

.629 

  
a Dependent Variable: Parasitemia 

 

The analysis of variance table (Table 3) shows that there is no significant 

interaction between time and vaccine.  The mean group parasitemias given in Fig. 11 

indicate interaction; however, Table 3 proves that this is because of variability as 

opposed to real interactions. The main effect of the vaccines is statistically significant, 

meaning that statistically the vaccines react differently compared to each other and the 

control group.  A least significant difference (LSD) test of all the possible vaccine 

comparisons is shown in Table 4. 
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Table 4  

Pairwise Comparison: Parasitemia 

Pairwise comparison of parasitemia for each experimental group. 

Based on estimated marginal means 

* The mean difference is significant at the .05 level. 
a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
b Dependent Variable: Parasitemia 
 

Based on the information in Table 4, it can be concluded that the mice vaccinated 

with BmCP1 developed a statistically lower parasitemia than any of the other groups, 

including the control group (P = .000). Mice vaccinated with BmAMA1 also developed 

a statistically lower parasitemia compared to the control group (P = .037); however, 

Pairwise Comparison 
b
 

 
 

(I) Vaccine         (J) Vaccine 

 
 

Mean 
Difference 

(I-J) 

 
 

Std. Error 
 
 

df 

 
 

Sig. 
a
 

 
95% Confidence Interval 

for Difference 
a 

 

Lower 
Bound 

Upper 
Bound 

 

BmAMA1             BmCP1 

                          BmAMA1/CP1 

               Control 

 

BmCP1               BmAMA1 

                         BmAMA1/CP1 

                            Control 

 

BmAMA1/CP1    BmAMA1 

               BmCP1 

               Control 

 

Control               BmAMA1 

                            BmCP1    

                            BmAMA1/CP1 

 

1.331* 

-.292 

-1.339* 

 

-1.331* 

-1.624* 

-2.730* 

 

.292 

1.624* 

-1.107 

 

1.339* 

2.730* 

1.107 

 

.662 

.662 

.662 

 

.662 

.662 

.662 

 

.662 

.662 

.662 

 

.662 

.662 

.662 

 

82.554 

82.554 

82.554 

 

82.554 

82.554 

82.554 

 

82.554 

82.554 

82.554 

 

82.554 

82.554 

82.554 

 

.047 

.660 

.037 

 

.047 

.016 

.000 

 

.660 

.016 

.098 

 

.037 

.000 

.098 

 

.015 

-1.608 

-2.715 

 

-2.647 

-2.940 

-4.046 

 

-1.024 

.308 

-2.423 

 

.083 

1.415 

-.209 

 

2.647 

1.024 

-.083 

 

-.015 

-.308 

-1.415 

 

1.608 

2.940 

.209 

 

2.715 

4.046 

2.423 
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based on the confidence intervals, it is obvious that the BmCP1 vaccine was more 

effective than AMA-1 at providing protection against B. microti challenge.  

 

3.6 Analysis of packed cell volume 

As with the analysis of parasitemia, a repeated data analysis model was used to 

analyze the PCV data obtained from the animals within each group (Fig. 13 and Fig. 14). 

From day 0 to day 15, the mean PCV of all the groups decreased. The substantial drop in 

PCV between days 5-10 correlates with the mean peak parasitemias for all groups, 

which occurred between days 7 and 12. This time frame correlates with previous 

published reports of B. microti infections (Hu et al., 1996).  The group that had the least 

drop in PCV was the group that received BmCP1. The mean PCV of the BmCP1 group 

was considered significantly different from that of the control group (P = .011).  The 

group that had the greatest drop in PCV was the control group. After the mice appeared 

to be clear of parasitemia, a final PCV was determined. The BmCP1 group and the 

BmAMA1 had the PCV returning to normal levels at a faster rate than all other groups 

(Fig. 13). The PCVs of the control group remained lower than all other groups (Fig. 13).  
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Fig. 13.  Mean group packed cell volume (PCV). 
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The model used was: ijkijjikiijk edY )(  where i=1,2,3,4,  

j=1,…,6 and k=1,…,5 i  i-th treatment effect, j  j-th time effect, ij)(  treatment-time 

interaction effect, ijke  is the error for every observation and is considered i.i.d., ikd  is the 

random effect of the subject (mouse) which is normally distributed with mean zero and 

variance decided from AIC criteria (shown in Table 5).   

 

Table 5 

Comparison of Different Statistical Models 

Measure of the goodness of fit for different statistical models. 
 
 
 

 

 

 

From the above table, the smallest AIC is met when the assumption is made of 

diagonal covariance matrix within the subject error. The criteria chose the optimal 

covariance matrix in terms of best fit and over-parameterization. This choice can be 

justified from the variability seen in Fig. 14 or from the table of estimated covariance 

(Table 6). 

 

 

 
 

 
AR1 

 
CS 

 
DIAG 

 
-2 Restricted Log 
Likelihood 
 
Akaike's Information 
Criterion (AIC) 

 
605.862 

 
 

605.862 

 
612.157 

 
 

612.157 

 
560.454 

 
 

572.454 
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Table 6  

Type III Test of Fixed Effects: PCV 

Results of a fixed effect model based on the chosen diagonal covariance matrix (packed 
cell volume). 

 

 
Type III Test of Fixed Effects a

 

 
Source 

Numerator 
df 

Denominator 
df 

 
F 

 
Sig. 

Intercept 

Vaccine 

Days 

Group * Days 

1 

3 

5 

15 

49.230 

49.230 

20.764 

20.764 

12919.630 

3.005 

44.057 

.918 

.000 

.039 

.000 

.559 

 

a  Dependent Variable: PCV 

 

From Table 7, BmCP1 and BmAMA1/CP1 as well as BmCP1 and the plasmid 

control are statistically different at a significance level of 0.05. Based on the available 

information, it cannot be concluded that BmCP1 is superior to BmAMA1 even though 

the P-Value is close to 0.1. More observations (a larger sample size), are needed to reject 

the null hypothesis that the vaccines are the equivalent to each other and the control. 

 

 
 
 
 
 
 
 
 



 58 

Table 7 

Pairwise Comparison: PCV  

 
Comparison of PCV for each experimental group. 
 

Based on estimated marginal means 

* The mean difference is significant at the .05 level. 
a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments) 
b Dependent Variable: PCV 

                

  

 

 

Pairwise Comparison 
b
 

 
 

(I) Vaccine         (J) Vaccine 

 
 

Mean 
Difference 

(I-J) 

 
 

Std. 
Error 

 
 

df 

 
 

Sig. 
a
 

 
95% Confidence 

Interval for Difference
a 

 

Lower 
Bound 

Upper 
Bound 

 

BmAMA1            BmCP1 

                            BmAMA1/CP1 

                Control 

 

BmCP1               BmAMA1 

                            BmAMA1/CP1 

                            Control 

 

BmAMA1/CP1    BmAMA1 

                  BmCP1 

                 Control 

 

Control               BmAMA1 

                            BmCP1    

                            BmAMA1/CP1 

 

-2.000 

1.300 

1.433 

 

2.000 

3.300* 

3.433* 

 

-1.300 

-3.300* 

.133 

 

-1.433 

-3.433* 

-.133 

 

1.299 

1.299 

1.299 

 

1.299 

1.299 

1.299 

 

 1.299 

1.299 

1.299 

 

1.299 

1.299 

1.299 

 

49.230 

49.230 

49.230 

 

49.230 

49.230 

49.230 

 

49.230 

49.230 

49.230 

 

49.230 

49.230 

49.230 

    

.130 

.322 

.275 

 

.130 

.014 

.011 

 

.322 

.014 

.919 

 

.275 

.011 

.919 

 

-4.611 

-1.311 

-1.178 

 

-.611 

.689 

.822 

 

-3.911 

-5.911 

-2.478 

 

-4.044 

-6.044 

-2.744 

 

.611 

3.911 

4.044 

 

4.611 

5.911 

6.044 

 

1.311 

-.689 

2.744 

 

1.178 

-.822 

2.478 



 59 

4. DISCUSSION AND SUMMARY 
 
 

Babesia bovis is an arthropod-transmitted apicomplexan pathogen infecting cattle 

in tropical and subtropical regions of the world. Babesia bovis infections cause 

significant morbidity and mortality resulting in devastating production and economic 

losses. Control of this parasite remains an important issue for cattle industries 

worldwide. Although B. bovis and the vector responsible for transmission were 

eradicated from the U.S. by 1943, reintroduction is a significant threat. Attenuated forms 

of the parasite have been used for effective control in endemic areas such as Australia; 

however, due to their drawbacks noted previously (Introduction, page 13), the 

development of recombinant vaccines is a more promising method for protection. The 

recently sequenced B. bovis genome (http://www.ncbi.nlm.nih.gob/BLAST/) allows the  

identification of a number of vaccine candidates, including Cysteine Protease-2 and 

Apical Membrane Antigen-1.  

Cysteine proteases are critical to the pathogenicity of many parasites. 

Recombinant cysteine protease antigens have been used to stimulate 

a strong Th1 immune response, increase the rate of survival of infected animals, and 

inhibit parasites (Engle et al., 1998; McKerrow et al., 1999; Somanna et al., 2002; 

Rosenthal, 2004). Bart et al. (1997) reported that a cysteine protease-deficient mutant 

of Leishmania mexicana greatly reduced parasite infectivity to macrophages in vitro. 

The prophylactic potential of cysteine proteases has also been used in both cutaneous 

Leishmaniasis and visceral Leishmaniasis models of mice and dogs (Rafati et al., 2001; 

Rafati et al., 2005). Khoshgoo et al. (2008) reported that the parasite load of mice 
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vaccinated with Leishmania infantum Cysteine Proteinase Type III was significantly 

lower than control animals. Similar studies involving Trypanosoma cruzi, Toxoplasma 

gondii and Plasmodium spp. have given encouraging results in the use of cysteine 

proteases as vaccine targets (McKerrow et al., 1999; Teo et al., 2007).  In the current 

study, to optimize exposure of specific T- cell receptors, the hydrophilic region of 

B. microti CP-1 was selected for expression in the pCMVCD5Flag vector.    

AMA-1 is a microneme protein that is highly conserved among apicomplexan 

parasites including Plasmodium spp. Toxoplasma gondii and Babesia spp. (Chesne-Seck 

et al., 2005). Experimental evidence has shown that Plasmodium spp. AMA-1 is 

involved in merozoite invasion of erthrocytes, and is essential to the proliferation and 

survival of malaria (Triglia et al., 2000). Plasmodium AMA-1 is a highly immunogenic 

protein. The majority of individuals exposed to malaria develop anti-AMA-1 antibodies 

after only a few exposures (Riley et al., 2000).  Toxoplasma gondii tachyzoites depleted 

of TgAMA1 are severely compromised in their ability to invade host cells, providing 

direct evidence that AMA-1 functions during host cell invasion (Mital et al., 2005). For 

this study, the ectodomain of B. microti AMA-1 was incorporated into the 

pCMVCD5Flag expression vector. The ectodomain is the area of the protein will be 

exposed on the parasite cell surface so it is the most likely region to encounter antibody, 

and therefore the best candidate for inclusion in the vector. 

The choice of vaccine targets for this study was predicated on considerable 

evidence of the potential of both cysteine protease and AMA-1 to be effective vaccine 

components.  Cysteine proteases have long been known for their involvement in 



 61 

parasitic disease; however, they are also known for their involvement in tumor 

progression, arthritis, osteoporosis and virus replication (Selzer et al, 1999; Turk et al., 

2004). Targeting cysteine proteases appears to be a promising strategy in the 

development of new chemotherapy for a number of diseases, including babesiosis. 

Immunization of animals with the ectodomain of AMA-1 induces protective immunity 

against challenge with asexual blood-stage malaria parasites in murine and simian 

models (Crewther et al., 1996; Stowers et al., 2002) and, thus, has recently been tested in 

a phase II clinical vaccine trial for P. falciparum-human malaria (Sagara et al., 2009).   

 To create an efficient detection and purification system based upon fusion 

polypeptides, a specific sequence encoding for the FLAG marker peptide (amino acid 

sequence, DYKDDDDK) is included at the C-terminus of the pCMV-2CD5Flag vector 

(Sigma-Aldrich). Because of its hydrophilic nature, the FLAG peptide is likely to be 

located on the surface of a fusion protein making it readily accessible to anti-FLAG 

antibodies (McIlhinney, 2004). Our lab has yet to obtain either B. microti CP-1 and 

AMA-1 antigen in substantial amounts, thus we have no specific antibody raised against 

these proteins. Adding a FLAG-tag to these recombinant proteins has allowed us to 

detect them using antibody against the FLAG sequence.  

BALB/c mice are useful for immunology research involving protozoan parasites 

because they are highly susceptible to trypanosomiasis, toxoplasmosis, various forms of 

leishmaniasis and malaria as well as infections from B. microti and Babesia rodhaini 

(Shimada et al., 1996; Rafati et al., 2000; Narum et al., 2000; Boyle et al., 2007; 

Antoine-Moussiaux et al., 2008). BALB/c mice are an inbred strain and are therefore 
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isogenic (genetically identical). These mice are considered ideal for experimental work 

because they do not possess the genetic variability that often contributes to inconsistent 

data. Babesia bovis is host specific for bovines, thus cannot infect mice or other small 

animal laboratory models.  Undoubtedly, differences will be seen between murine 

models of B. microti and bovine B. bovis. However, this shouldn’t be considered as an 

obstacle to studying bovine babesiosis through mouse models because the advantage lies 

in the highly conserved genomes found among Babesia spp.  

Subunit vaccines generally require the addition of an adjuvant to be effective 

(Singh and O’Hagan, 2002). Given their potent immunostimulatory capacity, bacterial 

substances are an excellent source of potential adjuvants (Klinman et al., 1999; Klinman 

et al., 2004). Bacterial cell wall peptidoglycans enhance the immune response without 

themselves being highly immunogenic. The demonstration that mycobacterial DNA had 

adjuvant activity led to the discovery that the adjuvant activity is correlated with a higher 

content of CpG motifs (Introduction, page 21) present in bacterial nucleic acids. DNA 

that contains CpG motifs is one of the most potent cellular adjuvants, increasing antigen-

specific immune responses 5 to 500-fold (Klinman et al., 2004). CpG acts via activation 

of a Toll receptor pathway thereby promoting the production of T helper 1 (Th1) and 

pro-inflammatory cytokines (van Duin et al., 2006). Plasmid DNA, apart from encoding 

the antigen, can also be optimized to include adjuvants such as CpG. The expression 

vector used in this study incorporates a CpG motif as its adjuvant.  

The use of a priming dose of DNA constructs followed by a recombinant protein 

boost has been reported to be effective in invoking T-cell production against 
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Plasmodium berghei in mice and P. falciparum in Rhesus monkeys (Schneider et al., 

1999; Jones et al., 2001; Dunachie and Hill, 2003). However, this method of vaccination 

requires ample amounts of recombinant protein. Despite having high protein expression 

in an in vitro cell model prior to use in this study, sufficient amounts of the recombinant 

proteins from the BmCP1 and BmAMA1 plasmid constructs used in this study could not 

be obtained through affinity purification. Lysates of BmCP1 and BmAMA1 proteins 

expressed in HEK293F cells were sampled prior to loading on the purification column 

and samples of the agarose beads from the loaded purification column indicated the 

presence of the proteins in both the lysates and the columns by western blotting. 

However, western blotting also indicated that the protein was not successfully eluted in 

the expected amounts. There are various reasons that might explain why the proteins are 

not being purified with high yield: 1) The elution conditions (pH) are not sufficient to 

disrupt the binding to remove the protein from the column; 2) The proteins may fold in 

such a way that they are bound too tightly to be effectively eluted and 3) The ratio of 

resin to protein was not optimal.   

Biolistic particle delivery systems such as the Helios Gene Gun (Bio-Rad) have 

been used successfully to deliver DNA vaccines to humans and experimental animals 

(Larregina, 2000; Cesco-Gaspere et al., 2008). By accelerating DNA-particle complexes 

into target tissue, DNA is effectively introduced without the pain and discomfort 

associated with needles and without the stress/danger of anesthetic. Studies indicate that 

DNA immunization using conventional needle methodologies is less successful than 

gene gun immunization in non-human primates and humans. As reported in HIV, DNA 
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immunization via needle injection is only effective in priming human immune 

responses when it is given in high (mg) DNA doses (Wang et al., 2008a). Gene gun 

technology enhances DNA vaccination because it requires only a small amount to elicit a 

protective immune response, usually less than 2 µg (Pertmer et al., 1995). DNA 

immunization by the gene gun-mediated delivery approach has been the only vaccination 

technique able to elicit protective levels of immunity in healthy, adult human volunteers 

without the use of another vaccine system, i.e. target protein with adjuvant, as a boost 

(Wang et al., 2008b). 

In this study, the protective response to challenge B. microti infection that was 

induced by gene gun DNA vaccination by BmCP1, BmAMA1, or BmCP1 and 

BmAMA1 combined was compared based on parasitemia and clinical presentation upon 

challenge infection. The BmCP1 gene and the BmAMA1 gene vaccines induced 

enhanced protection against B. microti parasitemia compared to that of the plasmid 

control vaccine, P = 0.000 and 0.037, respectively. Although the BmCP1 group and the 

BmAMA1 group were both significantly superior to the control at protecting the mice 

against progression of the parasitemia, the BmCP1 vaccine induced greater protection 

than the BmAMA1 vaccine group (P = 0.047). BmCP1 vaccine was also significantly 

more effective than BmCP1/BmAMA1 vaccine (P = 0.016); however, there was no 

significant difference between BmAMA1 and the BmCP1/BmAMA1 vaccines (P = 

0.660). This concludes that BmCP1, and to a lesser extent BmAMA1, are effective in 

decreasing the mean parasitemia of mice challenged with B. microti.  However, the 

ability to reduce parasitemia is irrelevant if it fails to prevent clinical manifestations of 
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the disease. Evaluation of the packed cell volumes of the mice throughout the vaccine 

showed that only BmCP1 was able to reduce this effect with any level of significance (P 

= 0.011).  

It was anticipated that the dual vaccine, BmCP1 and BmAMA1 combined, would 

provide the best protection against B. microti challenge.  Optimal protective responses 

from Gene Gun delivery have been reported to be dependent on the delivery of a 

sufficient number of DNA-coated particles, as well as how much DNA coats the gold 

particles (Eisenbraun et al., 1993).  It is possible that the combination vaccine containing 

a total of 4 µg/shot was too much DNA to properly precipitate onto the 0.5 mg of 1.6 µm 

diameter gold beads used. Future experiments might incorporate more beads or 0.5 mg 

of smaller beads to increase the surface volume, thereby allowing better binding of the 

DNA. In the future, optimization of DNA binding on the beads could be evaluated by in 

vitro transfection of cell lines to quantitate expression of the recombinant proteins.  

Using smaller beads also might facilitate their dispersal on the cartridges used to deliver 

the dose so that a more uniform dose is obtained.  A wide range in response to challenge 

was seen in all of the vaccine groups, which is contrary to the expected results in an 

inbred mouse strain.  This may have been in part a result of uneven dispersal of the 

DNA-gold complexes as they were coated in a long tube that was then cut into 

individual dose cartridges for use.   

Based on the work of previous researchers and observations of infected BALB/c 

mice in this laboratory, animals were challenged with 107 infected erythrocytes (Iseki et 

al., 2007). However, because of the rapid onset of parasitemia it is suspected that 
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this dose may have been too high. The parasites used for challenge were collected 

from immume-deficient C.B-17/IcrHsd-Prkdc-scid mice. Although 107 infected 

erythrocytes were administered, the number of parasites per erythrocytes was not 

quantified. C.B-17/IcrHsd-Prkdc-scid mice lack lymphocytes therefore, the parasite 

replicates at a higher rate in the erythrocytes of these mice resulting in more parasites 

within a single erythrocyte compared to immunocompetent BALB/c mice. In future, the 

challenge dose should be determined based on parasite number as much as possible.  

This study would be enhanced by the inclusion of assays to determine immune 

responses of the vaccinated mice and confirmation that cysteine protease and 

AMA-1 are expressed in vivo.  Ideally, seroconversion and cytokine production in the 

recipients should be examined during the course of the trial.  For this trial, recombinant 

antigen and specific antibody were not available in order to design assays to evaluate the 

serologic response to vaccination.  The standard assay used to evaluate seroconversion is 

an ELISA assay. Cytokine quantification, particularly the production of IFN-γ, is best 

measured by an ELISPOT assay. Both the ELISA and ELISPOT assay require specific 

antigen in order to produce the necessary data. If an antigen was available and serology 

had been possible, the dosing of the vaccines could have been optimized. The 

vaccination protocol used in this study was based on successful Gene Gun administered 

vaccines against apicomplexan parasites (Ishii et al., 2006; Dautu et al., 2007). Ideally, 

titer levels should be determined by ELISA assays throughout the course of vaccination. 

Recombinant protein expression in the recipients was not determined during this 

study.  Larger groups of mice would need to be employed so that animals could be 
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euthanized at critical timepoints throughout the trial and evaluated for specific protein 

expression.  This might be accomplished through western blotting (Dautu et al., 2007).  

Typically, a larger sample size leads to increased precision when making 

statistical inferences. This study required daily data collection, and the sample size was 

limited based on cost and available manpower. If repeated, a large sample size should be 

utilized to ensure greater statistical significance. 

While it is obvious that the pBmCP1 and pBmAMA1 pDNA vaccines were able 

to reduce the mean parasitemia of the vaccinated animals, it did not confer total 

protection. Ideally, the most successful vaccine would confer protection against the 

establishment of infection, rather than just reducing the number of parasites. The 

multiallelic P. falciprum AMA1-C1 vaccine currently in Phase II clinical trials is an 

equal mixture of the correctly folded ectodomain portion of recombinant AMA-1 

proteins (Sagara et al., 2009). The success seen with this vaccine suggests that 

recombinant proteins are most effective at conferring total protection against protozoan 

parasites. Future efforts should focus on obtaining the recombinant BmCP1 and 

BmAMA1 proteins in high yield for incorporation into a vaccination either alone or in 

conjunction with BmCP1 and BmAMA1 plasmids. 

In conclusion, although a significant protective response was seen 

using B. microti CP-1 and AMA-1 plasmid constructs, vaccine optimization is necessary 

to confer total protection against the parasite. Secondly, these results indicate future 

application to a potential B. bovis vaccination. This laboratory was able to 
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obtain B. bovis Cysteine Protease-2 and Apical Membrane Antigen-1 for use towards the 

development of a bovine babesiosis vaccine.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 69 

REFERENCES 

 

Adler, H., Frech, B., Thony, H., Pfister, H., Peterhans, E., Jungi, T.W., 1995. Inducible 
nitric oxide synthase in cattle: differential cytokine regulation of nitric oxide 
synthase in bovine and murine macrophages. J. Immunol. 154, 4710-4718. 

Akbari, O., Panjwani, N., Garcia, S., Tascon, R., Lowrie, D., Stockinger, B., 1999. DNA 
vaccination: transfection and activation of dendritic cells as key events for 
immunity. J. Exp. Med. 189, 169-178. 

 
Allsopp, M.T., Cavalier-Smith, T., De Waal, D.T., Allsopp, B.A., 1994. Phylogeny and 

evolution of the piroplasms. Parasitol. 108, 147-152. 
 
Altschul, S.F., Gish, W., Miller, E., Myers, W., Lipman, D.J., 1990. Basic local 

alignment search tool. J. Mol. Biol. 215, 403-410. 
 
Anders, R.F., Crewther, P.E., Edwards, S., Margetts, M., Matthew, M.L., Pollock, B., 

Pye, D., 1998. Immunisation with recombinant AMA-1 protects mice against 
infection with Plasmodium chabaudi. Vaccine 16, 240-247. 

 
Antoine-Moussiaux, N.,  Magez, S., Desmecht, D., 2008. Contributions of experimental 

mouse models to the understanding of African trypanosomiasis. Trends Parasitol. 
24, 411-418. 

 
[APHIS] Animal Plant and Health Inspection Service, Veterinary Services Factsheet. 

February 2002. Controlling Cattle Fever Ticks. USDA APHIS Riverdale, MD. 
 
Bart, G., Frame, M.J., Carter, R., Coombs, G.H., Mottram, J.C.,1997. Cathepsin B-like 

cysteine proteinase-deficient mutants of Leishmania mexicana. Mol. Biochem. 
Parasitol. 88, 53-61. 

 
 Bock, R., Jackson, L., De Vos, A., Jorgenson, W., 2004. Babesiosis of cattle. 

Parasitology 129, S247-S269. 
 
Boshart, M., Weber, F., Jahn, G., Dorsch-Hasler, K., Fleckenstein, B., Schaffner, W., 

1985. A very strong enhancer is located upstream of an immediate early gene of 
human cytomegalovirus, Cell 41, 521-530. 

 
Bowman, A.S., Coons, L.B., Needham, G.R., Sauer J.R., 1997. Tick saliva: recent 

advances and implications for vector competence. Med. Vet. Entomol. 11, 277-
285. 

 



 70 

 Boyle, J.P., Saeij, J.P.J., Boothroyd, J.C., 2007. Toxoplasma gondii: inconsistent 
dissemination patterns following oral infection in mice. Exp. Parasitol. 116, 302-
305. 

 

Bram, R.A., Gray, J.H., 1983. Eradication–an alternative to tick and tick-borne disease 
control. FAO Animal Health and Production Paper 36, 54-59. 

 
Bram, R.A., George, J.E., Reichard, R.E., Tabachnick, W.J., 2002. Threat of foreign 

arthropod-borne pathogens to livestock in the United States. J. Med. Entomol. 39, 
405-416. 

 
Brayton, K.A., Lau, A.O., Herndon, D.R., Hannick, L., Kappmeyer, L.S., Berens, S.J., 

Bidwell, S.L., Brown, W.C., Crabtree, J., Fadrosh, D., Feldblum, T., Forberger, 
H.A., Haas, B.J., Howell, J.M., Khouri, H., Koo, H., Mann, D.J., Norimine, J., 
Paulsen, I.T., Radune, D., Ren, Q., Smith, R.K., Suarez, C.E., White, O., Wortman, 
J.R., Knowles, D.P., McElwain, T.F., Nene, V.M., 2007. Genome sequence of 
Babesia bovis and comparative analysis of  apicomplexan hemoprotozoa. PLoS 
Pathog. 3, 1401-1413. 

 
Brown, W.C., Woods, V.M., Dobbelaere, D.A.E., Logan, K.S., 1993. Heterogeneity in 

cytokine profiles of Babesia bovis-specific bovine CD4+ T cell clones activated in 
vitro. Infect. Immun. 61, 3273-3281. 

 
Brown, W.C., McElwain, T.F., Ruef, B.J., Suarez, C.E., Shkap, V., Chitko-McKown, 

C.G., Tuo, W., Rice-Ficht, A.C., Palmer, G.H., 1996. Babesia bovis rhoptry-
associated protein-1 is immunodominant for T helper cells of immune cattle and 
contains T cell epitopes conserved among geographically distant B. bovis strains. 
Infect. Immun. 64, 3341-335. 

 
Brown, W.C., Palmer, G.H., 1999. Designing blood-stage vaccines against Babesia 

bovis and B. bigemina. Parasitol. Today 15, 275-281. 
 
Brown, W.C., Norimine, J., Knowles, D.P., Goff, W.L., 2006a. Immune control of 

Babesia bovis infection. Vet. Parasitol. 138, 75-87. 
   
Brown, W.C., Norimine, J., Goff, W.L., Suarez, C.E., McElwain, T.F., 2006b. Prospects 

for recombinant vaccines against Babesia bovis and related parasites. Paras. 
Immunol. 28, 315-327. 

 
Callow, L.L., Mellors, L.T., 1966. A new vaccine for Babesia argentina infection 

prepared in splenectomized calves. Aust. Vet. J. 42, 464. 
 



 71 

Callow, L.L., Tammemacli, L., 1967. Vaccination against bovine babesiosis. Infectivity 
and virulence of blood from animals either recovered from or reacting to Babesia 

argentina. Aust. Vet. J. 43, 249-256. 
 
Callow, L. L., 1979. Some aspects of the epidemiology and control of bovine babesiosis 

in Australia. J.S. Afr. Vet. Assoc. 50, 353-356. 
 
Callow, L.L., 1984. Protozoal and Rickettsial Diseases, Australian Bureau of Animal 

Health. Animal Health in Australia, Vol. 5. Australian Government Publishing 
Series, Canberra, Austrailia. pp. 121-216. 

 
Cesco-Gaspere, M., Zentilin, L., Giacca, M., Borrone, O.R., 2008. Boosting anti-

idiotype immune response with recombinant AAV enhances tumour protection 
induced by gene gun vaccination. Scand. J. Immunol. 68, 58-66. 

 
Chesne-Seck, M.L., Pizarro, J.C., Vulliez-Le Normand, B., Collins, C.R., Blackman, 

M.J., Faber, B.W., Remarque, E.J., Kocken, C.H.M., Thomas, A.W., Bentley, 
G.A., 2005. Structural comparison of apical membrane antigen 1 orthologues and 
paralogues in apicomplexan parasites. Mol. Biochem. Parasitol. 144, 55-67. 

 
Christensson, D.A., 1987. Clinical and serological response after experimental 

inoculation with Babesia divergens of newborn calves with and without maternal 
antibodies. Acta. Vet. Scand. 28, 381-392. 

 
Coban, C., Philipp, M.T., Purcell, J.E., Keister, D.B., Okulate, M., Martin, D.S., Kumar, 

N. 2004. Induction of Plasmodium falciparum transmission-blocking antibodies in  
 nonhuman primates by a combination of DNA and protein immunizations. Infect.  
 Immun. 72, 253-259. 
 
Corson, M.S., Teel, P.D., Grant, W.E., 2004. Microclimate influence in a physiological 

model of cattle-fever tick (Boophilus spp.) population dynamics. Ecol. Modell. 
180, 487-514. 

 
Crewther, P.E., Matthew, M.L., Fleg, R.H., Anders, R.F., 1996. Protective immune 

responses to apical membrane antigen 1 of Plasmodium chabaudi involve 
recognition of strain-specific epitopes. Infect. Immun. 64, 3310-3317. 

 
Criado-Fornelia, A., Martinez-Marcos, A., Buling-Saraña, A., Barba-Carretero, J.C., 

2004. Molecular studies on Babesia, Theileria, and Hepatozoon in southern 
Europe. Part II. phylogenetic analysis and evolutionary history. Vet. Parasitol. 114, 
173-194. 

 
Dalrymple, B.P., Casu, R.E., Peters, J.M, Dimmock, C.M., Gale, K.R., Boese, R., 

Wright, I.G., 1993. Characterization of a family of multi-copy genes encoding 



 72 

rhoptry protein homologues in Babesia bovis, Babesia ovis and Babesia canis. 
Mol. Biochem. Parasitol. 57, 181-192. 

 
Dautu, G., Munyaka, B., Carmen, G., Zhang, G., Omata, Y., Xuenan, X., Igarashi, M., 

2007. Toxoplasma gondii: DNA vaccination with genes encoding antigens MIC2, 
M2AP, AMA1 and BAG1 and evaluation of their immunogenic potential. Exp. 
Parasitol. 116, 273-282.  

 
Davey, R.B., George, J.E., Miller, R.J., 2006. Comparison of the reproductive biology 

between acaricide-resistant and acaricide susceptible Rhipicephalus (Boophilus) 

microplus (Acari: Ixodidae). Vet. Parasitol. 139, 211-220. 
 
de Waal, D.T., Combrink, M.P., 2006. Live vaccines against bovine babesiosis. Vet. 

Parasitol. 138, 88-96.  
 
Dobrowolski, J.M., Sibley, L.D., 1996. Toxoplasma invasion of mammalian cells is 

powered by the actin cytoskeleton of the parasite. Cell 84, 933-939. 
 
Dolman, C.E., 1969. Texas cattle fever: a commemorative tribute to Theobald Smith. 

Clio. Medica. 4, 131. 
 
Donahue, C. G., Carruthers, V. B., Gilk, S. D., Ward, G. E., 2000. The Toxoplasma 

homolog of the Plasmodium apical membrane antigen-1 (AMA-1) is a microneme 
protein secreted in response to elevated intracellular calcium levels. Mol. Biochem. 
Parasitol. 111, 15-30. 

 
Duan, J., Mu, J., Thera, M.A., Joy, D., Pond, S.L.K., Diemert, D., Long, C., Zhou, H., 

Miura, K., Ouattara, A., Dolo, A., Doumbo, O., Su, X., Miller, L., 2008. 
Population structure of the genes encoding the polymorphic Plasmodium 

falciparum apical membrane antigen 1: Implications for vaccine design.  PNAS. 
105, 7857-7862. 

 
Dubremetz, J.F., Garcia-Réguet, N., Conseil, V., Fourmaux, M.N., 1998. Apical 

organelles and host-cell invasion by Apicomplexa. Int. J. Parasitol. 28, 1007-1013. 
 
Dunachie, S.J., Hill, A.V.S., 2003. Prime-boost strategies for malaria vaccine 

development. J. Exp. Biol. 206, 3771-3779. 
 
Edwards, C. P., Aruffo. A., 1993. Current applications of COS cell based transient 

expression systems. Curr. Opin. Biotechnol. 4, 558-563. 
 
Eisenbraun, M.D., Fuller, D.H., Haynes, J.R., 1993. Examination of parameters affecting 

the elicitation of humoral immune responses by particle bombardment-mediated 
genetic immunization. DNA Cell Biology. 9, 791-792. 



 73 

 
Engel, J.C., Doyle, P.S., Hsieh, I., McKerrow, J.H., 1998. Cysteine protease inhibitors 

cure an experimental Trypanosoma cruzi Infection. J. Exp. Med. 188, 725-734. 
 
Estes, D.M., Brown, W.C., 2002. The type 1/type 2 paradigm and regulation of humoral 

immune responses in cattle. Vet. Immunol. Immunopathol. 90, 1-10. 
 
Estrada-Peña, A., Venzal, J.M., 2006. High-resolution predictive mapping for Boophilus 

annulatus and B. microplus (Acari: Ixodidae) in Mexico and Southern Texas. Vet. 
Parasitol. 142, 350-358. 

 
Everett, C., 2008. Fever ticks lay claim to a million acres in Texas. Texas Veterinarian. 

70, 5-7. 
 
Fahrimal, Y., Goff, W.L., Jasmer, D.P., 1992. Detection of Babesia bovis carrier cattle 

by using polymerase chain reaction amplification of parasite DNA. J. Clin. 
Microbiol. 30, 2091-2096. 

 
[FAO] Food and Agriculture Organization of the United Nations. 1971. Recommended 

methods for the detection and measurement of resistance of agricultural pests to 
pesticides Ðtentative method for larvae of cattle ticks, Boophilus microplus spp. 
FAO method No. 7. Food and Agriculture Organization of the United Nations. 
Plant Proc. Bull. 19, 15-18. 

 
Foecking, M.K., Hofstetter, H.,1986. Powerful and versatile enhancer-promoter unit for 

mammalian expression vectors. Gene 45, 101-105. 
 
Gaffar, F.R., Yatsuda, A.P., Franssen F.F., de Vries, E., 2004. Erythrocyte invasion by 

Babesia bovis merozoites is inhibited by polyclonal antisera directed against 
peptides derived from a homologue of Plasmodium falciparum apical membrane 
antigen 1. Infect Immunol. 72, 2947-2955. 

 
Gale, K.R., Waltisbuhl, D.J., Bowden, J.M., Jorgensen, W.K., Matheson, J., East, I.J., 

Zakrzewski, H., Leatch, G., 1998. Amelioration of virulent Babesia bovis infection 
in calves by administration of the nitric oxide synthase inhibitor aminoguanidine. 
Paras. Immunol. 20, 441-445. 

 
George, J.E., 1989. Wildlife as a constraint to the eradication of Boophilus spp. (Acari: 

Ixodidae). J. Agric. Entomol. 7, 119-125. 
 
George J.E., Davey, R.B., Pound, J.M., 2002. Introduced ticks and tick-borne diseases: 

the threat and approaches to eradication. Vet. Clin. Food Anim. 18, 401-416. 
 



 74 

Girard, M.P., Reed, Z.H, Friede, M., Kieny, M.P., 2007. A review of human vaccine 
research and development: malaria. Vaccine 1567-1580. 

 
Goff, W.L., Johnson, W.C., Parish, S.M., Barrington, G.M., Wenbin, T., Valdez, R.A., 

2001. The age-related immunity in cattle to Babesia bovis infection involves the 
rapid induction of interleukin-12, interferon-g and inducible nitric oxide synthase 
mRNA expression in the spleen. Paras. Immunol. 23, 463-471. 

 
Goodger, B.V., Commins, M.A., Wright, I.G., Waltisbuhl, D.J., Mirre, G.B., 1987.  

Successful homologous vaccination against Babesia bovis using a heparin-binding 
fraction of infected erythrocytes. Int. J. Parasitol. 17, 935-940. 

 
Graham, O.H., Hourrigan, J.L., 1977. Eradication programs for the arthropod parasites 

of livestock. J. Med. Entomol. 13, 629-658. 
 
Greenbaum, D.C., Baruch, A., Grainger, M., Bozdech, Z., Medzihradszky, K.F., Engel, 

J., DeRisi, J., Holder, A.A., Bogyo, M., 2002. A role for the protease falcipain 1 in 
host cell invasion by the human malaria parasite. Science 298, 2002–2006. 

 
Grunathan, S., Klinman, D.M., 2000. DNA vaccines: immunostimulatory, application 

and optimization. Ann. Rev. Immunol. 18, 927-974. 
 
Hillman, B. 2008a. ―Tick Riders‖ Texas-style border guards protect livestock health. 

News Release, Texas Animal Health Commission. Austin, TX. 
 
Hillman, B. 2008b. Progress slow in fight against fever ticks. March 2008 News 

Release, Texas Animal Health Commission. Austin, TX. 
 
Hines, S.A., Palmer, G.H., Jasmer, D.P., McGuire, T.C., McElwain, T.F., 1992. 

Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by 
members of a polymorphic gene family. Mol. Biochem. Parasitol. 55, 85-94. 

 
Hines, S.A., Palmer, G.H., Jasmer, D.P., Goff, W.L., McElwain, T.F., 1995. 

Immunization of cattle with recombinant Babesia bovis merozoite surface antigen-
1. Infect. Immun. 63, 349-352. 

 
Hodder, A.N., Crewther, P.E., Anders, R.F., 2001. Specificity of the protective antibody 

response to apical membrane antigen 1. Infect. Immun. 69, 3286–3294. 
 
Holman, P.J., Hseigh, M.M., Nix, J.L., Bendele, K.G., Wagner, G.G., Ball, J.M., 2002. 

A cathepsin l-like cysteine protease is conserved among Babesia equi isolates. 
Mol. Biochem. Parasitol. 119, 295–300. 

 



 75 

Homer, M.J., Aguilar-Delfin, I., Teleford, R., Krause, J., Persing, D.H., 2000. 
Babesiosis. Clin. Microbiol. Rev. 13, 451-469. 

 
Horak, I., Camicas, J.L., Kairans, J.E., 2003. The Argasidae, Ixodidae and Nuttalliellidae 

(Acari: Ixodida): a world list of valid names. Exp. Appl. Acarol. 28, 27-54. 
 
Howell, J.M., Ueti, M.W., Palmer, G.H., Scoles, G.A., Knowles, D.P., 2007. 

Transovarial transmission efficiency of Babesia bovis tick stages acquired by 
Rhipicephalus (Boophilus) microplus during acute infection. J. Clin. Microbiol. 45, 
426-431. 

 
Hu, R., Yeh, M.T., Hyland, K.E., Mather, T.N. 1996. Experimental Babesia microti 

infection in golden hamsters: immunoglobulin G response and recovery from 
severe hemolytic anemia. J. Parasitol. 82, 728-32. 

 
Hunfeld, K.P., Hildebrandt, A., Grey, S.J., 2008. Babesiosis: recent insights into an 

ancient disease. Int. J. Parasitol. 38, 1219-1237. 
 
Igarashi, I., Waki, S., Ito, M., Omata, Y., Saito, A., Suzuki, N., 1994. Role of CD4+ T 

cells in the control of primary infection with Babesia microti in mice. J. Protozool. 
Res. 4, 164-171. 

 
Igarashi, I., Suzuki, R., Waki, S.,  Tagawa, Y., Seng, S., Tum, S., Omata, Y., Saito, A., 

Nagasawa, H., Iwakura, Y., Suzuki, N., Mikami, T., Toyoda, Y., 1999. Roles of 
CD4+ T cells and gamma interferon in protective immunity against Babesia 

microti infection in mice. Infect. Immun. 67, 4143–4148.  
 
Iseki, H., Takabatake, N., Ota, N., Ishigame, T., Yokoyama, N., Igarashi, I., 2007. 

Babesia: The protective effects of killed Propionibacterium acnes on the infections 
of two rodent Babesia parasites in mice. Exp. Parasitol. 20118, 543-548. 

 
Ishii, K., Hisaeda, H., Duan, X., Imai, T., Sakai, T., Fehling, H.J., Murata, S., Chiba, 

T.,Tanaka, K., Hamano, S., Sano, M.,Yano, A., Himeno, K., 2006. The 
involvement of immunoproteasomes in induction of MHC class I-restricted 
immunity targeting Toxoplasma SAG1. Microbes Infect. 8, 1045-1053. 

 
Ivory, C., Chadee, K., 2004. DNA Vaccine: designing strategies against parasite 

infection. Genet. Vaccine Ther. 2, 17. 
 
James, M.A., 1989. Application of exoantigens of Babesia and Plasmodium in vaccine 

development. Trans. Roy. Soc. Trop. Med. Hyg. 83, 67-72. 
 



 76 

Jamroz, R.C., Guerrero, F.D., Pruett, J.H., Oehler, D.D., Miller, R.J., 2000. Molecular 
and biochemical survey of acaricide resistance mechanisms in larvae from 
Mexican strains of southern cattle tick. J. Insect Physiol. 46, 685-695. 

 
Jasmer, D.P., Reduker, D.W., Hines, S.A., Perryman, L.E., McGuire, T.C., 1992. 

Surface epitope localization and gene structure of a Babesia bovis 44-kilodalton 
variable merozoite surface antigen. Mol. Biochem. Parasitol. 55, 75-84. 

 
Jones, T.R., Narum, D.L., Gozalo, A.S., Aguiar, J., Fuhrmann, S.R., Liang, H., Haynes, 

J.D., Moch, J.K., Lucas, C., Luu, T., Magill, A.J., Hoffman, S.L., Sim, B.K., 2001. 
Protection of Aotus monkeys by Plasmodium falciparum EBA-175 region II DNA 
prime-protein boost immunization regimen. J. Infect. Dis. 183, 303-312. 

 
Kennedy, M.C., Wang, J.W., Zhang, Y., Miles, A.P., Chitsaz, F., Saul, A., Long, C.A., 

Miller, L.H., Stowers, A.W., 2002. In vitro studies with recombinant Plasmodium 

falciparum apical membrane antigen 1 (AMA1): production and activity of an 
AMA1 vaccine and generation of a multiallelic response. Infect. Immun. 70, 6948-
6960. 

Klinman, D.M., Barnhart, K.M., Conover, J., 1999. CpG motifs as immune adjuvants. 
Vaccine 17, 19-25. 

Klinman, D. M., Currie, D., Gursel, I., Verthelyi, D., 2004. Use of CpG 
oligodeoxynucleotides as immune adjuvants. Immunol. Rev. 199, 201-216. 

Khoshgoo, N., Zahedifard, F., Azizi, H., Taslimi, Y., Alonso, M.J., Rafati, S., 2008. 
Cysteine proteinase type III is protective against Leishmania infantum infection in 
BALB/c mice and highly antigenic in visceral leishmaniasis individuals. Vaccine 
26, 5822–5829. 

 
Kistner, T.P., Hayes, F.A., 1970. White-tailed deer as hosts of cattle fever-ticks. J. Wildl. 

Dis. 6, 437-440. 
 
Kocken, C.H., Narum, D.L., Massougbodji, A., Ayivi, B., Dubbeld, M.A., van der Wel, 

A., Conway, D.J., Sanni, A., Thomas, A.W., 2000. Molecular characterization of 
Plasmodium reichenowi apical membrane antigen-1 (AMA-1), comparison with 
Plasmodium falciparum AMA-1, and antibody-mediated inhibition of red cell 
invasion. Mol. Biochem. Parasitol. 109, 147-156. 

 
Krause, P.J., 2002. Babesiosis. Med. Clin. North Am. 86, 361-373.  

Larregina, A.T., Falo, L.D.J., 2000. Generating and regulating immune responses 
through cutaneous gene delivery. Hum. Gene Ther. 11, 2301-2305. 

Larregina, A.T., Watkins, S.C., Erdos, G., Spencer, L.A., Storkus, W.J., Beer Stolz, D., 
Falo, L.D., 2001. Direct transfection and activation of human cutaneous dendritic 
cells. Gene Ther. 8, 608-617. 



 77 

Levine, N.D., 1971. Taxonomy of piroplasms. Trans. Am. Microsc. Soc. 90, 2-33. 
 
Levine, N.D., 1985. Veterinary Protozoology, 1st Edition. Iowa State University Press, 

Ames, IA. 
 
Levy, M.G., Clabaugh, G., Ristic, M., 1982. Age resistance in bovine babesiosis: role of 

blood factors in resistance to Babesia bovis. Infect. Immun. 37, 1127-1131. 
 
Lew, A.E., Dluzewski, A.R., Johnson, A.M., Pinder, J.C., 2002. Myosins of Babesia 

bovis: molecular characterization, erythrocyte invasion, and phylogeny. Cell Motil. 
Cytoskeleton 52, 202-220. 

 
Lew, V.L., Tiffert, T., Ginsburg, H., 2003. Excess hemoglobin digestion and the osmotic 

stability of Plasmodium falciparum-infected red blood cells. Blood 101, 4189-
4194. 

 
Li, A.Y., Davey, R.B., Miller, R.J., George, J.E., 2003. Resistance to Coumaphos and 

Diazinon in Boophilus microplus (Acari: Ixodidae) and evidence for the 
involvement of an oxidative detoxification mechanism. J. Med. Entomol. 40, 482-
490. 

 
Liu, J., Yin, H., Liu, G., Guan, G., Ma, M., Liu, A., Liu, Z., Li, Y., Ren, Q., Dang, Z., 

Gao, J., Bai, Q., Zhao, H., Luo, J., 2008. Discrimination of Babesia major and 
Babesia ovata based on ITS1–5.8S–ITS2 region sequences of rRNA gene. 
Parasitol. Res. 102, 709-713. 

 
Mackenstedt, U., Gauer, M., Fuchs, P., Zapf, F., Schein, E., Mehlhorn, H., 1995. DNA 

measurements reveal differences in the s of Babesia bigemia and B. canis. 
Parasitol. Res. 81, 595-605. 

 
Mahmoud, M., Hsieh, M., Bendele, K., Holman, P., 2002. Multiple cysteine protease 

genes in Babesia microti and Babesia equi. Proceedings from the Tenth 
International Congress of Parasitology. Vancouver, Canada. 

 
Mahoney, D. F., 1967. Bovine babesiosis: the passive immunization of calves against 

Babesia argentina with special reference to the role of complement fixing 
antibodies. Exp. Parasitol. 20, 119-124. 

 
Mahoney, D.F., Ross, D.R., 1972. Epizootiological factors in the control of bovine 

babesiosis. Aust. Vet. J. 48, 292-298. 
 
Mahoney, D.F., Wright, I.G., Mirre, G.B., 1973. Bovine babesiasis: the persistence of 

immunity to Babesia argentina and B. bigemina in calves (Bos taurus) after 
naturally acquired infection. Ann. Trop. Med. Parasitol. 67, 197-203. 



 78 

 
Mahoney, D.F., Mirre, G. B., 1979. A note on the transmission of Babesia bovis (syn 

B. argentina) by the one-host tick, Boophilus microplus. Res. Vet. Sci. 26, 253-
254. 

 
Mahoney, D.F., Wright, I.G., Goodger, B.V., 1979. Immunity in cattle to Babesia bovis 

after single infections with parasites of various origins. Aust. Vet. J. 55, 10-12. 
 
Mahoney, D. F., Wright, I.G., Goodger, B.V., 1981. Bovine babesiosis: the 

immunisation of cattle with fractions of erythrocytes infected with Babesia bovis 
(syn. B. argentina). Vet. Immunol. Immunopathol. 2, 145-156. 

 
McElwain, T.F., Palmer, G.H., Goff, W.L., McGuire, T.C., 1988. Identification of 

Babesia bigemina and Babesia bovis merozoite proteins with isolate- and species-
common epitopes recognized by antibodies in bovine immune sera. Infect. Immun. 
56, 1658-1660. 

 
McIlhinney, R. A., 2004. Generation and use of epitope-tagged receptors. Methods Mol. 

Biol. 259, 81-98. 
 
McKerrow, J.H., 1993. The proteases and pathogenicity of parasitic protozoa. Annu. 

Rev. Microbiol. 47, 821-853. 
 
McKerrow, J.H., Engel, J.C., Caffrey, C.R., 1999. Cysteine protease inhibitors as 

chemotherapy for parasitic infections. Bioorg. Med. Chem. 7, 639-644. 
 
Mehlhorn, H., Schein, E., 1984. The piroplasms: and sexual stages. Adv. Parasitol. 23, 

37-103. 
 
Meirelles, M.N.L., Juliano, L., Carmona, E., Silva, S.G., Costa, E.M., Murta, A.C.M., 

Scharfstein, J., 1992. Inhibitors of the major cysteinyl proteinase (GP57/51) impair 
host cell invasion and arrest the intracellular development of Trypanosoma cruzi in 
vitro. Mol. Biochem. Parasitol. 52, 175-184. 

 
Menard, R., 2001. Gliding motility and cell invasion by Apicomplexa: insights from the 

Plasmodium sporozoite. Cell. Microbiol. 3, 63-73. 
 
Mendez, S., Gurunathan, S., Kamhawi, S., Belkaid, Y., Moga, M.A., Skeiky, Y.A., 

Campos-Neto, A., Reed, S., Seder, R.A., Sacks, D., 2001. The potency and 
durability of DNA- and protein-based vaccines against Leishmania major 

evaluated using low-dose, intradermal challenge. J. Immunol. 166, 5122-5128. 
 



 79 

Miller, R.J., Davey, R.B., George, J.E., 2005. First report of Organophosphate-resistant 
Boophilus microplus (Acari: Ixodidae) within the United States. J. Med. Entomol. 
42, 912-917. 

 
Mital, J., Meissner, M., Soldati, D., Ward, G.E., 2005. Conditional expression 

of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that 
TgAMA1 plays a critical role in host cell invasion. Mol. Biol. Cell. 16, 4341-4349. 

 
Mitchell, G. H., Thomas, A.W., Margos, G., Dluzewski, A.R., Bannister, L.H., 2004. 

Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close 
attachment of invasive merozoites to host red blood cells. Infect. Immun. 72, 154-
158. 

 
Mohamed, R.M., Aosai, F., Chen, M., Mun, H.S., Norose, K., Belal, U.S., Piao, L.X., 

Yano, A., 2003. Induction of protective immunity by DNA vaccination with 
Toxoplasma gondii HSP70, HSP30 and SAG1 genes. Vaccine 21, 2852-2861. 

 
Montenegro-James, S., Benitez, M.T., Leon, E., Lopez, R., Ristic, M., 1987. Bovine 

babesiosis: induction of protective immunity with culture-derived Babesia bovis 
and Babesia bigemina immunogens. Parasitol. Res. 74, 142-150. 

 
Murrell, A., Barker, S.C., 2003. Synonymy of Boophilus Curtice, 1891 with 

Rhipicephalus Koch, 1844 (Acari: Ixodidae). Syst. Parasitol. 56, 169-172. 

 

Nair, M., Hinds, M.G., Coley, A.M., Hodder, A.N., Foley, M., Anders, R.F., Norton, 
R.S., 2002. Structure of domain III of the blood-stage malaria vaccine candidate. 
Plasmodium falciparum apical membrane antigen 1 (AMA1). J. Mol. Biol. 322, 
741-753. 

 
Narum, D.L, Solabomi, A. O., Thomas, A.W., Holder, A.A., 2000. Immunization with 

parasite-derived apical membrane antigen 1 or passive immunization with a 
specific monoclonal antibody protects BALB/c mice against lethal Plasmodium 

yoelii yoelii YM blood-stage infection. Infect. Immun. 68, 2899-2906. 
 
National Agricultural Statistics Service (NASS). Agricultural Statistics Board, U.S. 

Department of Agriculture. Texas State Agriculture Overview. 2007. 
 
Needham, G.R., Teel, P.D., 1991. Off-host physiological ecology of ixodid ticks. Annu. 

Rev. Entomol. 36, 659-81. 
 
Norimine, J., Mosqueda, J., Suarez, C., Palmer, G.H., McElwain, T.F., Mbassa, G., 

Brown, W.C., 2003. Stimulation of T helper cell IFN-gamma and IgG responses 
specific for Babesia bovis rhoptry associated protein 1 (RAP-1) or a RAP-1 protein 



 80 

lacking the carboxy terminal repeat region is insufficient to provide protective 
immunity against virulent B. bovis challenge. Infect. Immun. 71, 5021-5032. 

 
Nott, A., Meislin, S. H., Moore, M. J., 2003. A quantitative analysis of intron effects on 

mammalian gene expression. RNA 9, 607-617. 
 
O'Connor, R. M., Long, J.M, Allred, D.R., 1999. Cytoadherence of Babesia bovis-

infected erythrocytes to bovine brain capillary endothelial cells provides an in vitro 
model for sequestration. Infect. Immun. 67, 3921-3928. 

 
Okubo, K., Yokoyama, N., Govind, Y., Alhassan, A., Igarashi, I., 2007. Babesia bovis: 

effects of cysteine protease inhibitors on in vitro growth. Exp. Parasitol. 117, 214-
217. 

 
Pelzel, A., 2005. Cattle Fever Tick Surveillance in Texas. NAHSS Outlook. United 

States Department of Agriculture, Laredo, Texas. 
 
Pertmer, T.M., Eisenbraun, M.D., McCabe, D., Prayaga, S.K., Fuller, D.H., Haynes, 

J.R., 1995. Gene gun-based nucleic acid immunization: elicitation of humoral and 
cytotoxic T lymphocyte responses following epidermal delivery of nanogram 
quantities of DNA, Vaccine 13, 1427-1430. 

 
Pinder, J.C., Fowler, R.E., Dluzewski, A.R., Bannister, L.H., Lavin, F. M., Mitchell, 

G.H., Wilson, R.J.M., Gratzer, W.B., 1998. Actomyosin motor in the merozoite of 
the malaria parasite, Plasmodium falciparum: implications for red cell invasion. J. 
Cell Sci. 11, 1831-1839. 

 
Rafati, S., Baba, A.A., Bakhshayesh, M., Vafa, M., 2000. Vaccination of BALB/c mice 

with Leishmania major amastigote-specific cysteine proteinase. Clin. Exp. 
Immunol. 120, 134-138. 

 
Rafati, S., Salmanian, A., Taheri, T., Vafa, M., Fasel, N., 2001. A protective cocktail 
 vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine 

proteinases of Leishmania major. Vaccine 19, 3369-3375.  
 
Rafati, S., Nakhaee, A., Taheri, T., Taslimi, Y., Darabi, H., Eravani, D., Sanos, S., Kaye, 

P., Taghikhani, M., Jamshidi, S., Rad, M.A., 2005. Protective  vaccination against 
experimental canine visceral leishmaniasis using a combination of  DNA and 
protein immunization with cysteine proteinases type I and II 
of L. infantum. Vaccine 23, 3716-3725.  

 
Riek, R. F., 1963. Immunity to babesiosis. In: Garnham, P., Peirce, A., Roitt, I (Eds), 

Immunity to Protozoa. Blackwell Scientific Publications, Oxford, UK. pp. 160-
179. 



 81 

 
Riley, E.M., Wagner, G.E., Ofori, M.F., Wheeler, J.G., Akanmori, B.D., Tetteh, K., 

McGuinness, D., Bennett, S., Nkrumah, F.K., Anders, R.F.  Koram, K.A., 2000. 
Lack of association between maternal antibody and protection of African infants 
from malaria infection. Infect. Immun. 68, 5856–5863. 

 
Rodriguez-Vivas, R.I., Alonso-Dı´az, M.A., Rodrı´guez-Arevalo, F., Fragoso-Sanchez, 

H., Santamaria, V.M., Rosario-Cruz, R., 2006. Prevalence and potential risk factors 
for organophosphate and pyrethroid resistance in Boophilus microplus ticks on 
cattle ranches from the state of Yucatan. Mex. Vet. Parasitol. 136, 335-342. 

 
Rosenthal, P.J., 1995. Plasmodium falciparum: effects of proteinase inhibitors on globin 

hydrolysis by cultured malaria parasites. Exp. Parasitol. 80, 272-281. 
 
Rosenthal, P.J., 2004. Cysteine proteases of malaria parasites. Int. J. Parasitol. 34, 1489-

1499. 
 
Sagara, I., Dicko, A., Ellis, R.D., Fay, M.P., Diawara, S.I., Assadou, M.H., Sissoko, 

M.S., Kone, M., Diallo, A.I., Saye, I., Guindo, M.A., Kante, O., Niambele, M.B., 
Miura, K., Mullen, G.E.D., Pierce, M., Martin, L.B., Dolo, A., Diallo, D.O., 
Doumbo, O.K., Miller, L.H., Saul, A., 2009. A randomized controlled phase 2 trial 
of the blood stage AMA1-C1/Alhydrogel malaria vaccine in children in 
Mali.Vaccine 27, 3090-3098. 

 
Sajid, M., McKerrow, J.H., 2002. Cysteine proteases of parasitic organisms. Mol. 

Biochem. Parasitol. 120, 1-21. 
 
Sauer, J.R., McSwain, J.L., Bowman, A.S., Essenberg, R.C., 1995. Tick salivary gland 

physiology. Annu. Rev. Entomol. 40, 245-267. 
 
Schetters, T.H.P.M., Kleuskens, J., Scholtz, N., Bos, H.J., 1995. Strain variation limits 

protective activity of vaccines based on soluble Babesia canis antigens. Paras. 
Immunol. 17, 215-218. 

 
Schetters, T.H.P.M., Kleuskens, J.A.G.M., Scholtes, N.C., Gorenflot, A., Moubri, K., 

Vermeulen, A.N., 2001. Vaccination of dogs against heterologous Babesia canis 
infection using antigens from culture supernatants. Vet. Parasitol. 100, 75-86. 

 
Schneider, J., Gilbert, S.C., Hannan, C. M., De´gano, P., Prieur, E., Sheu, E.G., 

Plebanski, M., Hill, A.V., 1999 Induction of CD8+ T cells using heterologous 
prime-boost immunisation strategies. Immunol. Rev. 170, 29-38. 

 
Selzer, P.M., Pingel, S., Hsieh, I., Ugele, B., Chan, V.J., Engel, J.C., Bogyo, M., Russell, 

G., Sakanari, J.A., McKerrow, H., 1999. Cysteine protease inhibitors as 



 82 

chemotherapy: lessons from a parasite target. Proc Natl. Acad. Sci. USA. 96 (20), 
11015-11022. 

 
Shimada, T., Shikano, S., Hashiguchi, R., Matsuki, N., Ono, K., 1996. Effects of 

depletion of T cell subpopulations on the course of infection and anti-parasite 
delayed type hypersensitivity response in mice infected with Babesia microti and 
Babesia rodhaini. J. Vet. Med. Sci. 58, 343-347. 

 
Shoda, L.K, Kegerreis, K.A., Suarez, C.E., Roditi, I., Corral, R.S., Bertot, G.M., 

Norimine, J., Brown, W.C., 2001. DNA from protozoan parasites Babesia bovis, 
Trypanosoma cruzi, and T. brucei is mitogenic for B lymphocytes and stimulates 
macrophage expression of interleukin-12, tumor necrosis factor alpha, and nitric 
oxide. Infect. Immun. 69, 2162-2171. 

 
Sibinovic, K.H., Sibinovic, S., Ristic, M., Cox, H.W., 1967. Immunogenic properties of 

babesial serum antigens. J. Parasitol. 53, 1121-1129. 
 
Singh, M., O’Hagan, D. T., 2002. Recent advances in vaccine adjuvants. Pharm. Res. 19, 

715-728. 
 
Smith, T., Kilborne, E.L., 1893. Investigation into the nature, causation and prevention 

of southern cattle fever. US Dept. Agr. Bur. Anim. Indust. Bull. 1, 177-304. 
 
Somanna, A., Vasanthakrishna, M., Gedamu, L., 2002. Functional analysis of cathepsin 

B-like cysteine proteases from Leishmania donovani complex. J. Biol. Chem. 277, 
25305-25312. 

 
SPSS for Windows, Rel. 11.0.1. 2001. SPSS Inc., Chicago. 
 
Stephens, R., Langhorne, J., 2007. Priming of CD4+ T cells and development of CD4+ T 

cell memory; lessons for malaria. Paras. Immunol. 28, 25-30. 
 
Stowers, A.W., Kennedy, M.C., Keegan, B.P., Saul, A., Long, C.A., Miller, L.H., 2002. 

Vaccination of monkeys with recombinant Plasmodium falciparum apical 
membrane antigen 1 confers protection against blood-stage malaria. Infect. Immun. 
70, 6961-6967. 

 
Suarez, C.E., Palmer, G.H., Jasmer, D.P., Hines, S.A., Perryman, L.E., McElwain, T.F., 

1991. Characterization of a gene encoding a 60-kilodalton Babesia bovis merozoite 
protein with conserved and surface exposed epitopes. Mol. Biochem. Parasitol. 46, 
45-52. 

 



 83 

Suarez, C.E., Palmer, G.H., Hotzel, I., Hines, S.A., McElwain, T.F., 1998. Sequence and 
functional analysis of the intergenic regions separating babesial rhoptry-associated 
protein-1 (rap-1) genes. Exp. Parasitol. 90, 189-194. 

Teel, P., Wagner, G., 2001. Update on Parasitic Diseases Foreign to the U.S. NIAA 
Annual Meeting Proceedings. Colorado Springs, CO. 

 
Teo, C.F., Zhou, X.W., Bogyo, M., Carruthers, V.B., 2007. Cysteine protease inhibitors 

block Toxoplasma gondii microneme secretion and cell invasion. Antimicro. 
Agents Chemother. 51, 679-688.  

 
Timms, P., Dalgliesh, R. J., Barry, D. N., Dimmock, C. K., Rodweli, B. J., 1983. 

Babesia bovis: comparison of culturederived parasites, non-living antigen and 
conventional vaccine in the protection of cattle against heterologous challenge. 
Aust. Vet. J. 60, 75-77. 

 
Triglia, T., Healer, J., Caruana, S. R., Hodder, A. N., Anders, R. F., Crabb, B. S., 

Cowman, A. F., 2000. Apical membrane antigen 1 plays a central role in 
erythrocyte invasion by Plasmodium species. Mol. Microbiol. 38, 706-738. 

 
Trueman, K.F., Blight, G.W., 1978. The effects of age on resistance of cattle to Babesia 

bovis. Aust. Vet. J. 54, 301-305. 
 
Turk, V., Kos, J., Turk, B., 2004. Cysteine cathepsins (proteases)—on the main stage of 

cancer? Cancer Cell. 5, 409-410.  

US Environmental Protection Agency. 1996: Prevention, Pesticides And Toxic 
Substances: Coumaphos Reregistration. US EPA, Washington, DC. 

van Duin, D., Medzhitov, R., Shaw, A.C., 2006. Triggering TLR signaling in 
vaccination. Trends Parasitol. 27, 49-55. 

 
Wang, R., Epstein, J., Charoenvit, Y., Baraceros, F.M., Rahardjo, N., Gay, T., Banania, 

J.G., hattopadhyay, R., de la Vega, P., Richie, T.L., Tornieporth, N., Doolan, D.L., 
Kester, K.E., Heppner, D.G., Norman, J., Carucci, D.J., Cohen, J.D., Hoffman, 
S.L., 2004. Induction in humans of CD8+ and CD4+ T cell and antibody responses 
by sequential immunization with malaria DNA and recombinant protein. J. 
Immunol. 172, 5561-5569. 

 
Wang, S., Kennedy, J., West, K., Montefiori, D.C., Coley, S., Lawrence, J., Shen, S., 

Green, S., Rothman, A.L., Ennis, F.A., Arthos, J., Pal, R., Markham, P., Lu, S., 
2008a. Cross-subtype antibody and cellular immune responses induced by a 
polyvalent DNA prime–protein boost HIV-1 vaccine in healthy human volunteers. 
Vaccine 26 (8), 1098-1110. 

 



 84 

Wang, S., Zhang, C., Zhang, L., Li, J., Huang, Z., Lu, S., 2008b. The relative 
immunogenicity of DNA vaccines delivered by the intramuscular needle injection, 
electroporation and gene gun methods. Vaccine 26 (17), 2100-2110.  

 
Waters, A.P., Thomas, A.W., Deans, J.A., Mitchell, G.H., Hudson, D.E., Miller, L.H., 

McCutchan, T. F., Cohen, S., 1990. A merozoite receptor protein from 
Plasmodium knowlesi is highly conserved and distributed throughout Plasmodium. 
J. Biol. Chem. 265, 17974-17979. 

 
Wickham, M.E., Culvenor, J.G., Cowman, A.F., 2003. Selective inhibition of a two-step 

egress of malaria parasites from the host erythrocyte. J. Biol. Chem. 278, 37658-
37663. 

 
Wilkowsky, S.E., Farber, M., Echaide, I., Torioni de Echaide, S., Zamorano, P.I., 

Dominguez, M., Suarez, C.E., Florin-Christensen, M., 2003. Babesia bovis 
merozoite surface protein-2c (MSA-2c) contains highly immunogenic, conserved 
B-cell epitopes that elicit neutralization-sensitive antibodies in cattle. Mol. 
Biochem. Parasitol. 127, 133-141. 

 
Wright, I.G., White, M., Tracey-Patte, P.D., Donaldson, R.A., Goodger, B.V., 

Waltisbuhl, D.J., Mahoney, D.F., 1983. Babesia bovis: isolation of a protective 
antigen by using monoclonal antibodies. Infect. Immun. 41, 2442-2450. 

 
Wright, I.G., Goodger, B.V., Clark, I. A., 1988. Immunopathophysiology of Babesia 

bovis and Plasmodium falciparum infections. Parasitol. Today 4, 214-218. 
 

Wright, I. G., Riddles, P. W., 1989. Biotechnology in tick-borne diseases: present status, 
future perspectives. In FAO Expert Consultation of Biotechnology for Livestock 
Production and Health, pp. 325–340. FAO, Rome. 

 
Yokoyama, N., Suthisak, B., Hirata, H., Matsuo, T., Inoue, N., Sugimoto, C., Igarashi, I., 

2002. Cellular localization of Babesia bovis merozoite rhoptry-associated protein 1 
and its erythrocyte-binding activity. Infect. Immun. 70, 5822-5826. 

 
Yokoyama, N., Okamura, M., Igarashi, I., 2006. Erythrocyte invasion by Babesia 

parasites: current advances in the elucidation of the molecular interactions between 
the protozoan ligands and host receptors in the invasion stage. Vet. Parasitol. 138, 
22-32. 

 
Yoshida, A., Nagata, T., Uchijima, M., Higashi, T., Koide, Y., 2000. Advantage of gene 

gun-mediated over intramuscular inoculation of plasmid DNA vaccine in 
reproducible induction of specific immune responses. 18, 1725-1729. 

 



 85 

Zhou, J., Huang, B., Suzuki, H., Fujisaki, K., Igarashi, I., Xuan, X., 2006. Isolation and 
identification of an actin gene from Babesia gibsoni. J. Parasitol. 92, 208-210. 

 
 



 86 

VITA 

 

Name: Juliette E. Carroll 

Address: c/o Dr. Patricia Holman TAMU 4467 College Station, TX 77843 
 
Email Address: JCarroll@CVM.TAMU.EDU 
 
Education: B.S., Animal Science, Tarleton State University, 2006 
 M.S., Veterinary Parasitology, Texas A&M University, 2009 
  

  


