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ABSTRACT

Nonlinear Analysis of Beams Using Least-Squares Finite Element Models Based
on the Euler-Bernoulli and Timoshenko Beam Theories.
(December 2009)
Ameeta Amar Raut, B.E., Government College of Engineering, Pune, India

Chair of Advisory Committee: Dr. J. N. Reddy

The conventional finite element models (FEM) of problems in structural
mechanics are based on the principles of virtual work and the total potential
energy. In these models, the secondary variables, such as the bending moment
and shear force, are post-computed and do not yield good accuracy. In addition,
in the case of the Timoshenko beam theory, the element with lower-order equal
interpolation of the variables suffers from shear locking. In both Euler-Bernoulli
and Timoshenko beam theories, the elements based on weak form Galerkin
formulation also suffer from membrane locking when applied to geometrically
nonlinear problems. In order to alleviate these types of locking, often reduced
integration techniques are employed. However, this technique has other
disadvantages, such as hour-glass modes or spurious rigid body modes. Hence,
it is desirable to develop alternative finite element models that overcome the
locking problems. Least-squares finite element models are considered to be
better alternatives to the weak form Galerkin finite element models and,

therefore, are in this study for investigation. The basic idea behind the least-
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squares finite element model is to compute the residuals due to the
approximation of the variables of each equation being modeled, construct
integral statement of the sum of the squares of the residuals (called least-squares
functional), and minimize the integral with respect to the unknown parameters
(i.e.,, nodal values) of the approximations. The least-squares formulation helps to
retain the generalized displacements and forces (or stress resultants) as
independent variables, and also allows the use of equal order interpolation
functions for all variables.

In this thesis comparison is made between the solution accuracy of finite
element models of the Euler-Bernoulli and Timoshenko beam theories based on
two different least-square models with the conventional weak form Galerkin
finite element models. The developed models were applied to beam problems
with different boundary conditions. The solutions obtained by the least-squares
finite element models found to be very accurate for generalized displacements
and forces when compared with the exact solutions, and they are more accurate
in predicting the forces when compared to the conventional finite element

models.
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Finite Element Method
Euler-Bernoulli beam Theory
Timoshenko Beam Theory

Internal Transverse Shear Force
Internal Axial Force

Internal Bending Moment
External Axial Force
Transverse Distributed Load
Extensional Stiffness (EA)
Extensional-Bending Stiffness
Bending Stiffness (EI)

Nodal Force

Nodal Displacement of the Element

Cross Sectional Area

Second Moment of Area of the Beam

Lagrange Interpolation Functions
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Hermite Interpolation Functions

Residual Vector
Tangent Matrix

Cartesian Component of Stress Tensor
Cartesian Component of Strain Tensor
Work Done by External Forces

Work Done by Internal Forces

Shear Stiffness (GAKs)
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1. INTRODUCTION
1.1 Motivation

The finite element method (FEM) is a powerful technique originally
developed for numerical solution of complex problems in structural mechanics.
The two broad categories into which finite element models can be divided are
those based on minimization principles (like in structural mechanics) [1,2] and
those based on weighted-residual methods such as the Galerkin method, Petrov-
Galerkin method, subdomain method, least-squares method and so on.

There are some numerical challenges that are encountered with
conventional finite element models based on the weak form Galerkin
formulation, which is the most common in practice. In these models, the
secondary variables such as the bending moment and shear force are post-
computed, typically at Gauss points and not at the nodes, and do not yield good
accuracy. In addition, in the case of the Timoshenko beam theory, the element
with lower-order equal interpolation of the generalized displacements suffers
from shear locking. In both Euler-Bernoulli and Timoshenko beam theories, the
elements based on the weak form Galerkin formulation also suffer from
membrane locking [3,4] when applied to geometrically nonlinear problems. Both
types of locking are a result of using inconsistent interpolation for the variables
involved in the formulation. In order to alleviate these types of locking, often
reduced integration techniques are employed. However, such ad-hoc techniques
have other disadvantages, such as hour-glass modes or spurious rigid body

modes.

This thesis follows the style and format of Finite Elements in Analysis and Design.



Thus, it is desirable to develop alternative finite element models that
overcome the locking problems and yield good accuracy for stress resultants.
Least-squares finite element models are considered to be alternatives to the
weak form Galerkin finite element model and thus considered in this study for
investigation. The least-squares formulation helps to retain the generalized
displacements and forces (or stress resultants) as independent variables, and
also allows the use of equal order interpolation functions for all variables.

1.2 Objectives of the Present Study

The purpose of this study is to investigate the effectiveness of the least-
squares based finite element models in solving the beam bending problems to
overcome shear and membrane locking and predict generalized forces
accurately. This study is conducted using the Euler-Bernoulli and Timoshenko
beam theories applied to straight beams. The solution accuracy of the least-
squares finite element models with conventional finite element models is also
assessed.

To achieve the defined objectives, different finite element models of the
two beam theories are developed and are applied to beam problems with
different boundary conditions. The solution obtained by the least-squares
formulation is compared to the solutions obtained from the conventional, weak
form Galerkin finite element models.

The following discussion provides the background for the present study.
1.3 Background and Literature Review

A beam is a structural element that has a very large ratio of its length to
its cross sectional dimension and is capable of carrying loads by stretching along

its length and bending about an axis transverse to its length. When transverse



loads are applied on a beam, internal forces are generated which resist the
deformation of the beam. If the applied load is large, the magnitude of the
internal forces increases. At the same time the deformation of the beam also
increases. Consequently, the linear relationship between loads and
displacements of the beam is no longer valid.

Depending on the kinematic assumptions, two different theories are often
used to model the structural behavior of beams:

1) Euler- Bernoulli beam theory (EBT)
2) Timoshenko beam theory(TBT)

In the Euler Bernoulli beam theory, one neglects the effect of the transverse
shear strain whereas in the Timoshenko beam theory it is taken into account.

Both shear and membrane locking in beams are primarily due to the use
of inconsistent interpolation of the variables. When equal and lower order
interpolation of the displacement and rotation are used in the Timoshenko beam
finite element, the element exhibits locking as it is unable to cope with the
constraint that the slope should be compatible with the derivative of the
deflection in the thin beam limit. The problem of shear locking is often overcome
by numerically mimicking different variation (i.e., constant and linear) of the
rotation function in shear energy and bending energy through numerical
integration [2]. There are several other approaches that have been adopted to
eliminate locking [1, 2, 5-10]. The concept of locking was first discussed by
Kikuchi and Aizawa [5], and Zienkiewicz and Owen [11] advocated that the
reduced integration technique is a means of obtaining accurate solutions.
However, such ad-hoc approaches have other disadvantages, such as

appearance of hour-glass modes or spurious rigid body modes. Hence, it is



desirable to develop alternative finite element models that overcome the locking
problems.

In the past few years finite element methods based on least-squares
variational principles have drawn considerable attention. It is a general
methodology that produces a wide range of algorithms [9]. Given a set of
differential equations, the least-squares method allows one to define a convex,
unconstrained minimization principle so that the finite element model can be
developed in Ritz or weak form Galerkin setting [2]. This model has proved to
result in a positive-definite system of equations and significant savings in the
computational cost [12].

The least-square approach has been implemented in the finite element
context to solve the problems of plate bending, shear-deformable shells,
incompressible and compressible fluid flows [1, 13-15] etc. However, there has
been no systematic study involving the development of least-squares finite
element models of beam theories and their assessment in comparison to the
conventional beam finite elements. The present study also accounts for

geometric nonlinearity in the von karaman sense.



2. ALTERNATIVE FINITE ELEMENT MODELS
2.1 Introduction

A mathematical model is a set of equations, algebraic as well as
differential, which is used to describe the response of a physical system in terms
of certain variables. The mathematical models of most mechanical systems are
derived using the principles of physics, such as the conservation of mass,
conservation of linear momentum, and conservation of energy. The derivation
of the governing equations is not as challenging as solving them and computing
accurate solution. Numerical methods help to convert these governing
differential equations to a set of algebraic equations that can be solved using
computers. While solving such equations proper care must be taken to preserve
all features of the mathematical model (which reflects the physics of the
problem) in the formulation and development of the associated computational
model.

There are several methods to obtain numerical solutions of ordinary and
partial differential equations. These include the finite difference method, traditional
variational methods (e.g., Ritz and Galerkin methods), the finite element method, etc. In
the finite difference method, the derivatives in the governing differential
equations are replaced by discrete values. In a variational approach, the

variable(s) of a differential equation are approximated as a linear combination of

unknown parameters and known functions, u(x)=U(x) = Zn:cj¢j(x)+¢0(x), and the
j=1

parameters ¢, are then determined by satisfying the differential equations in a

weighted-residual sense (see Reddy [3]). In the finite element method, the

domain of the problem is divided into a collection of subdomains (called finite



elements), and over each subdomain a variational method is used to set up the
discrete problem. The element equations are then put together to obtain a
system of algebraic equations for the assemblage of elements. Different types of
finite element models are obtained by using different weighted-integral
statement. These are discussed in the following section.
2.2 Different Integral Formulations and Finite Element Models
Based on the method used to derive the algebraic equations of a
mathematical model, different finite element models of the mathematical model
can be developed. These alternative methods are discussed next.
1) The Ritz Method: Here the coefficients of the approximation are
determined by minimizing a functional (i.e., first variation of I is equal to zero)

equivalent to the governing differential equation Au-f =0,
I(u)=%B(u,u)—l(u), 01 =0= B(du,u)=1(ou) (1)

Then the approximations

u(x)=U, (x)= ZN:cj¢j (x)+¢,(x), Su= ZN:é'cj@ (x) (2)

Jj=1

are substituted for u and 6u into Eq. (1) to obtain the Ritz finite element model

B S0 00 |=ila ()



2) Weighted Residual Method: In the weighted residual method, the

approximate solution is substituted into the differential equation Au-f =0and
the resulting residual R=AU-f=0is minimized with respect to a weight

function. Depending on the choice of the weight function various models can be
derived. Various subclasses of the weighted residual method are summarized

below. In the general weighted-residual method, we require

IQ%(X)R(X,cj)dxdyzO where(i=1,2.....N)

where
k= a(0,)- =4[ Sep () ra )| 20

(a) The Petrov-Galerkin Method The above weighted residual method is called

Petrov-Galerkin method when v, # ¢,

S [ walo )ik, =] Lr-A(@))as

(b) The Galerkin Method: If v, =¢ then the weighted residual method is called
Galerkin method.
A, :,[QQA(qjj)dx
F=| o[ f-A(4)]dx
The approximation functions used here are of much higher order than the one
used in the Ritz method.
(c) The Collocation Method
Here the approximation functions are selected such that the residual will be

zero simultaneously. Thus we have R (xi .C; ) =0 (i=12...N).



(d) The Least-Squares Method
The basic concept behind the least squares method is that it minimizes the

square of the residual. The parameter c; is determined by minimizing the

integral of the square of the residual.

aiciJ-QRz (x,cj)dxzo
where

R*=R’+R., R =A@, - f, R, =B(u,)— g and
A(u)=f in Qand B(u)=g inT are the functions.

In the present study, the least squares method is used to formulate the finite
element models of the Euler-Bernoulli beam theory (EBT ) and the Timoshenko
beam theory (TBT).
2.3 Summary

Thus FEM is a numerical method that can be a used to obtain a
numerical solution where an analytical solution cannot be developed. FEM was
originally developed for analysis of aircraft structures. However due to its
general nature it has been applicable in a wide range of problems in structural
mechanics, fluid mechanics, electrical engineering etc. This section discusses
different types of formulations in finite element analysis. This thesis will discuss
more about the theory, formulations and finite element model for least-squares
based finite element formulation in details in the subsequent sections. This
study will be conducted specifically for beams as they are widely used in many

structural applications.



3. THEORETICAL FORMULATION OF EBT AND TBT
3.1 Background

A beam is a structural element that has a very large ratio of its length to
its cross section dimension. It can be subjected to a transverse load which
includes the normal and the shear stress and the displacements are
perpendicular to the normal axis. Beams can be straight or curved. A straight
beam is usually modeled by a line segment with vertical displacement and
rotations at each end.

When the load is applied on a beam, internal forces are generated which
resist the deformation of the beam. If the applied load is large, the magnitude of
the internal forces increases. At the same time the deformation of the beam also
increases. Thus the linear relationship between load v/s deflection of the beam is
no more valid.

The following assumptions are made in the development of linear motion of
solid bodies:

1) The displacements are small.

2) The strains developed are very large.

3) The material is linearly elastic.
Due to the small strains the changes in the geometry are ignored. The
equilibrium equations are developed for the undeformed configuration. But if
the load increases the linear relationships do not hold true. Hence for a general
nonlinear formulation of straight or curved beams, the measures of stress and
strain consistent with the deformations must be accounted in the formulation.
The following assumptions are made in the study of nonlinear analysis of beams

here:
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1) The beam is long and thin
2) The transverse displacements are large.
3) The strains developed are very small.
4) The rotations developed are small.
The inplane forces are proportional to the square of the rotation of the transverse
normal to the beam axis and are responsible for the nonlinearity.
Depending on the assumptions for transverse shear strain there are two
different theories to model the beams:
3) Euler- Bernoulli beam theory (EBT)
4) Timoshenko beam theory(TBT)
The Euler Bernoulli beam theory neglects the effect of the transverse shear strain
whereas the Timoshenko beam theory takes into account the effect of transverse
shear strain in the formulation.
3.2 Euler-Bernoulli Beam Theory
EBT is the simplest beam theory and is based on displacement field. The
following sections will discuss about EBT in detail.
3.2.1 Assumptions
The basic assumptions made in developing the governing equations of EB
hypothesis are the plane cross sections perpendicular to the beam axis before
deformation remain (a) plane (b) rigid (c) rotate such that they remain
perpendicular to the beam axis after deformation.
These assumptions neglect the Poisson’s effect and the transverse strain.

These two assumptions are taken into account in Timoshenko beam theory.
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Undeformed
#g *************** I E— %x,uo
X
-dw,
. i
Z, W, |
dw,
EBT ¢ - | b )T ax
; (u()’w(])

Figure 3.1. Deformation of a beam in Euler-Bernoulli theory

3.2.2 Displacement fields
The displacement field for beams having moderately large rotations but

small strains derived from Figure 3.1 is:

dw,

u, =uy(x)—z , U, =0 and u, =w,(x) (3.1)

X

where, (u,,u,,u;) are the displacement along (x, y, z) axis and
u, is the axial displacement of a point on the neutral axis and
w, is the transverse displacement of the point on the neutral axis

3.2.3 Nonlinear strain-displacement relations
The following nonlinear strain-displacement relation is used to calculate

the strains

g =L du; 0w, ), 1w, du, (3.2)
7o 2(ox; odx, | 2{ dx, dx,

Substituting the values ofu,,u,and u, in the above equations and eliminating

the large strain terms but retaining the rotation terms of the transverse normal

we get,



12

dx dx* 2\ dx
_ % l(dwo jz —z dzwo
dx 2\ dx dx*
=& +ze (3.3)

where,

2
8)(5))5 = %4_1 dWO ’8)10( = — dZMZ}O
dx 2\ dx dx

These strains are known as von Karman strains.

3.2.4 Derivation of governing equations

According to the principle of virtual displacement, for a body in
equilibrium, the virtual work done by the internal and external forces to move
through their virtual displacements is zero. Thus based on this principle the

following can be concluded.

oW =oW,S +oW, =0 (3.4)
where
oW, is the virtual strain stored in the element due to o, (Cartesian component
of stress tensor) due to the virtual displacement J¢,(Cartesian component of
strain tensor) and
oW, is the work done by external forces

Thus for a beam element we have,

W, = jvp 5¢,0,dV

y-y

oWy = qowdx+ j fSuydx+ Zﬁl Q¢ oA (3.5)
¢ x, i=1



13

where V¢ is the elemental volume, q(x) is the distributed transverse load (per
unit length), f(x) distributed axial load Qf is the nodal force and JA;is the nodal
displacement of the element. The nodal displacements and nodal forces in

Figure 3.2 are defined by,

e e e dW
Al =uy(x,), Ay =wy(x,), A :(_ Oj EH(xa)

e e e dW
Ay =uy(x,), Ay =wy(x,), Ay :(_ Oj Ee(xh)

Qle:_Nxx('xa)’ Q::Nxx('xb)

. dw, am . dw, dM
and Q; :—{ dxo N_+ dx’“} , Q= [ ON_ + } (3.6)

Q’;:_Mxx(xa)’ Qg:Mxx('xh)

The nodal displacements and the nodal forces derived above can be denoted as

follows:

Az As Qz QS
s b rhe e

Al%lo : A, QIT'O Q‘)z—'Q
h |

(a) (b)
Figure 3.2. (a) Nodal displacements for EBT (b) Nodal forces for EBT

The virtual strain energy equation can be simplified by substituting equation

(3.3) in equation (3.5) as follows:
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W/ jj&adAdx

XX XX

= J'X” J' (0", +28¢" ) o, dAdx
x, 44

ZIXbI _(d&/to +dw0 d5w0j+z d*Sw, o dAdx
WAl \dx odx o dx dx’ .

B 2
:j bj | (d&to N dw, d5w0ijx M. d 5:1/0 m 37)
X JA i dx dx dx dx

here N is the axial force which can be expressed as N = J-Ap o.dA and

M _ is the moment which can be expressed as M I o zdA

Thus virtual work statement can be written as

ddu, dw, dow, d’*ow,
0= IH 0420 OJNH—MM{ y zoﬂdx—j%q(x)é'wo(x)dx—

dx dx x

6 (3.8)
[rx)u (x)dx =30/ 81

By separating the two terms involving Ju, and dw, we get the following two

equations

%[ ds
0= | ( d;‘ON —f(x )5u0(x)jdx—Qf5Af—Qjé'A;}dx

x [ 2
0=| M(% N”j_ M O () 6w, (x)}zx—Q;aA; — QL8NS — QL SN — QLS

Lodx \dx dx
(3.9)
Collecting the terms of du, and Jw, and simplifying the terms we get,
dN
O, : - d;)‘ = f(x)
(3.10)

d (dw d*M
Sw, : S| 2N |-
"o dx( dx ”j q(x)
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Thus the boundary conditions are:

Qle+NXX(xa):O’ Q:_Nxx(xb):()
dw, am dw, dM
¢y ON + XX :0’ ¢ _ ON + XX =0 3.11
o { de T dx L o [ d« T dx L G-11)
05 +M  (x,)=0., Qs +M . (x,)=0
3.2.5 Vector approach

In this method a beam element of lengthAx is analyzed by adding the

forces and the moments acting on the beam.

q(x)

] e
\ VAT\W—T_T_’\ v

/> — > —>——>x

v q(x)

_:_ -— <o __ j ) ® _»x
er 7& = ‘“ ! —-— - ;N‘—x+ANa d_W
2/ B d
\M ~-4dx
- ‘ XA
<

Figure 3.3. A typical beam element with forces and moments under uniformly

distributed load

Consider the above beam element with forces and moments under uniformly

distributed load is shown in Figure 3.3 where V(x) is the internal vertical

shear force,
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N_, is the internal axial force,

M _ is the internal bending moment,
f (x)is the external axial force,
¢(x)is the distributed load.

Using D Alembert’s principle and equating the forces in the X, Y and Z direction

we get

> F, =0: ~N_+(N_+AN_ )+ f(x)Ax=0

D> F,=0: ~V+(V+AV)+g(x)Ax=0

> F. =0: —Mxx+(Mxx+AMM)—VAx+NXXAxC;W°+q(x)Ax(ch):0
X

Thus taking the limit as Ax - 0 we can conclude

dN
=+ =0
dx f(x)
d—v+q(x) =0 (3.12)
dx
dM _V+N, dw, ~0
dx X

3.3 Timoshenko Beam Theory
3.3.1 Assumptions

As discussed earlier, basic assumptions made in developing the
governing equations of EB hypothesis are the plane cross sections perpendicular
to the beam axis before deformation remains (a) plane (b) rigid (c) rotation is
independent of the slope of the beam. In TBT the first two assumptions are the
same and the third assumption is relaxed by assuming that the rotation of the

beam is independent of the slope.
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3.3.2 Displacement fields

The displacement field for beams having moderately large rotations but
small strains as shown in Figure 3.4 is given by
u, =uy(x)+z¢, (x), u,=0 and i, = wy(x) (3.13)
where, (u,,u,,u,) are the displacement along (x, y, z) axis, u, is the axial
displacement of a point on the neutral axis, and w, is the transverse

displacement of the point on the neutral axis.

Undeformed
Q\/i S A X,U,
X
‘ D |
z, W,
dw,
TBT N dx

(u()’W())

Figure 3.4. Deformation of a beam in Timoshenko theory

3.3.3 Nonlinear strain-displacement relations
The following nonlinear strain-displacement relation is used to calculate

the strains as follows
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. Odu.
g =L O O | 1) O, Ou, (3.14)
T 2(ox; odx, | 2{ dx, dx,

Substituting the values ofu,,u,and u, in the above equations and eliminating

the large strain terms but retaining the rotation terms of the transverse normal

we get,

2
g =g = du, _Zd¢x +l dw,
dx dx 2\ dx

2
_ %Q(Mj “(%]
dx 2\ dx dx
= gfx + Zgix (3.15)

du, du, dw,
== + =
Vs ox ox = dx 731

where ¢! = [d&to + Iy d§w0] ol = (%j, 5, =0, + dow,
dx dx dx dx dx

(3.16)

3.3.4 Derivation of governing equations
As discussed in EBT, the principle of virtual displacement states that for a
body in equilibrium, the virtual work done by the internal and external forces to
move through their virtual displacements is zero. Thus based on this principle
the following can be concluded.
oW =W, + oW, =0 (3.17)
where JOW,“the virtual strain is stored in the element due to o, (Cartesian

component of stress tensor) due to the virtual displacement J¢,(Cartesian

component of strain tensor) and JoW,° is the work done by external forces.

Thus for a beam element we have,

oW/ = J-Ve og,0,dV
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Xp 6
oWy = [ qowydx+ [ foudx+ QoA (3.18)
¢ x, i=1

where V¢ is the elemental volume, q(x) is the distributed transverse load (per
unit length), f(x) distributed axial load Qf is the nodal force and JA;is the nodal
displacement of the element.

The virtual strain energy equation can be simplified as follows:

owy =["| (.0, +8y.0,)dAdx

X X2

- Lh J'Ae (0°,, +28¢' )0, + Y0, dAdx

X~ X2

= j [ [0e0N  +M B¢, +57.0, Jdx (3.19)
where N _ is the axial force which can be expressed as N = .[Ae o, dA and
M _ is the moment which can be expressed as M = Le o 2dA
Q. is the element force O, =K, J.A o dA

K, is the shear correction coefficient which takes into account the difference
between the shear energy calculated by equilibrium and by Timoshenko beam
theory. Solving in the same way as EBT and collecting the terms of Ju, and Jw,
and simplifying the terms we get,

—— =1 (%)
op - —%+Qﬂ =0 (3.20)
dx

d (dw d*M
ow, : - N |- = —g(x
0 dx( dx ”j dx’ a(%)
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3.4 Summary

This section discusses the introduction to beams and the different
assumptions made to derive the beam equation. A more detailed discussion
about the two most important theories Euler-Bernoulli and Timoshenko beam
theory regarding the derivation of the governing differential equations has been
made in this section. The discussion of weak form development and finite

element model for EBT and TBT has been done in the next section.
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4. FINITE ELEMENT MODEL OF THE EBT

4.1 Weak Form Development

Using the governing equations from equations (3.12) we can develop the

weak form as follows:

Here v, and v, are the weight functions which correspond to ou, and dw, .

As mentioned in the assumptions earlier the EB has small to moderate
rotations and the material is assumed to be linearly elastic which results in the

following

o, =Ee€, (4.2)
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The above relationship which defines the relationship between the total stress
and the total strain is called as the Hooke’s law.

Thus we get

NXX = jAe GXXdA = IAL EegXXdA
du aw, Y d*w
=[ E { —+ ( dx‘)j }—z( e JJA (4.3)
:Ae %+l(dw0 jz _Be deO
“dxe 2\ dx Todx?
Mxx = IAe O-xxsz = _[Ae EeSxxsz
d aw, Y d>
=[ E {‘Z‘O (;‘)j }—z( d;?jsz 4. 4)
2 2
=B, %4_1(‘[%] -D" d V‘z’o
dx 2\ dx dx

where, A is the extensional stiffness

B: is the extensional-bending stiffness and

D¢ is the bending stiffness.

For isotropic material we have,

Al =E°A° , B =0 and D =E‘I° where A° is the cross section area and [‘is

the second moment of inertia of the beam element.

4.2 Finite Element Model

The interpolation functions for the axial and transverse deflection will be

wy,(x) And w(x)= YA, (x) (45)

<
(=)
—_
-
N—
Il
EMN

A=wy(x,), A,=6(x,), Ay =w,(x,), A;=6(x,) (4.6)
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In the above equations ¥, are Lagrange interpolation functions and ¢, are

Hermite interpolation functions.

Substituting the interpolation function in the weak form equation we get

2 4
=Z JFYKS (i=1,2)
o~ ’: 4.7)
=ZK21u +ZK,,u, (1=1,2,3,4)
where
K“ J‘ dl/f l//
*odx dx
K}z _I( jd’// d¢1d
dx dx
K21 J‘ dWo d¢1 / dx, K2 oK1
“odx dx dx b Y
M d 2X" dx dx dx
= [ fydx+0,
K (4.8)
F’ = [ q¢,dx+0,
here

0 =0, 0,=0,, and
0,=0, 0,=0,, 0,=Q, and Q,=0,

The stiffness matrix written above is unsymmetric. Hence we will try to

linearize the equation by another method as follows,



24

11 dl// W
Ky J- *odx dx

K}z :lj(A;%j%%dx
2x dx ) dx dx

K21 J‘ dWo d¢1 jd K21 2K12
“odx dx dx
2
ID d ¢I d ¢J d +- J'Ae (dwoj d¢] d¢] dx
dx dx dx

= j fwdx+Q,

= .[C]¢1dx+ QI
2 4 _
DD KA =F, or ZK;;lup D KA, +=F" (4.9)
r=1 p=1 p=1 P=1

In matrix form it can be written as

LS RESINICHINIG

- 4.10
LRSI -
where
Al =u, i=1,2
A=A, i=1,2,3,4

We thus split K into two parts one of which is taken from the previous

solution
2
.[ A dow, dw, | du, 1 1 (dwoj I
. dx dx | dx 2\ dx
X 2
:lIA;x dow, dw, du, N du, +l dw, \ |ddow, dw, i
2 M dx dx dx dx 2\ dx dx dx

Thus now we get,

(4.11)
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Kl 2 Fl
] (7] _fir) .
(&) [&=]]1aY ({F7)
where
K= gl ]‘Ae ‘// l/jjd
’ L Yodx dx
— __J'( jdl// d¢] d
- dx dx
1 j A P d0 W g
dx dx dx !
K= ID d¢,d¢,d jAe (dwoj2+duo dg, dg, |
dx’ dx | dx dx
| waerd @13)
J-Q¢1dx+Q1
4.3 Membrane Locking

Linearity is one of the assumptions of the EBT. This means that the beam
is subjected to bending forces only and there are no axial forces. Thus ideally the

beam should not stretch. Thus the axial strain should be zero.
2 2
duy Lfdw g or B[ 4%
dx 2\ dx dx dx
In bending dominated deformations, the beam undergoes axial
displacement along with transverse deflection even when there are no axial
forces. In order to develop this transverse deflection the axial strain is developed

in the beam. Thus as the load increases the axial stiffness increases. This results

in computational difficulties and incorrect solutions. The inaccuracy in the
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solution is because of the ambiguity between the degree of polynomial variation

and the interpolation functions of u, andw,. This phenomenon is called

membrane locking. A normal way to solve such problems is to take the

minimum interpolation of u, and w,.

4.4 Summary

This section discussed about the conventional weighted residual method
for Euler-Bernoulli (EB) beam theory. This part of the research focuses mainly on
the weak form development and finite element model. The element coefficients
obtained in this finite element model will be assembled to form a global stiffness
matrix and the solutions will be obtained by FORTRAN program. A detailed
discussion about the solution procedure has been made in this section. A similar
discussion about the Timoshenko beam theory (TBT) will be made in the

following section.
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5. FINITE ELEMENT MODEL OF THE TBT
5.1 Weak Form Development

As mentioned in the assumptions earlier the
o, =E¢_ and c.=G7, 6.1)

The above relationship which defines the relationship between the total stress

and the total strain is called as the Hooke’s law.

From equation (5.1) and (3.20) we get

N.=[ o.dA=] E€.dA
2
=[ E o| o | (dw()j +z(%jdA (5.2)
dx dx dx
e g )| e (d,
“lode 2\ dx A\ dx
Mxx = IAe O-xxsz = _[Ae EeSxxsz
du, | 1( dw, ’ d
= + L 1zdA 5.3
'[ {dx (dxj} Z(dsz (5:3)
2
=B, %4_1(‘[“’0] "‘Djx(d@j
dx 2\ dx dx
0- ("W‘) +g, ] (5.4)

where, A is the extensional stiffness

B! is the extensional-bending stiffness and

D¢, is the bending stiffness.

S, is the shear stiffness and is defined as S = KSJ-A GdA =K ,GA where G is the

shear modulus.
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For isotropic material we have, A =E‘A° , B; =0 and D =E‘I° where A° is
the cross section area and [¢is the second moment of inertia of the beam
element.

Thus, the governing equations for TBT are as follows,

2
g )
dx dx 2\ dx

2
_i A° dw, | du, +l dw, _i s, dw, 6. ||=q (5.5)
dx dx | dx 2\ dx dx dx
- i DXX d¢x + SXX dWO + ¢X = O
dx dx dx
5.2 Finite Element Model

For TBT the virtual work statement is equivalent to the following

(aou, . [du, 1(dw, Y e o
0—;[ ( o A‘{dx +5( 0 j } f(x)é‘uo(x)]dx Oy Su, (x,) Q45(xb)]
X I d 5 WO e dWO . dWO duo 1 dWO 2
0_;[ dx {{SXX(E+¢XJ:|+AXX dx|:dx +5( dxj:l}_Q(X)§Wo(X)}dx—
050w, (x,)—0:6w,(x,) (5.6)
_ [ pr 490,49, c. 5, (o o (e 1o
O_;[ D dx dx +S""5¢X( dx +¢Xﬂdx 0569, (x,)— 0569, (x,)

Thus the boundary conditions are :

Qle:_Nxx('xa)’ Q::Nxx(xb)
dw, dw, dM
e —_ N_+ , | 0N 5.7
QZ l: d.x XX Qx j|xn QS l: d.x xx dx j|x’ ( )
Q3e :_Mxx(‘xa) ’ Q6e :Mxx('xb)

The interpolation functions for the axial and transverse deflection will be
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m n p
uy (x)= Zujwj“) , wy(x)= ZWJ.I/,.(Z) and ¢ (x)= Zsjlﬂj@ (5.8)

j=1 j=1 j=1

In the above equations ¥, are Lagrange interpolation functions substituting the

interpolation function in the weak form equation we get
0= ZK;luj +ZKIZW‘ +Z:K13 ;=
= =
_ O 210 S 0 23 2
O_Z;KU”/_"Z;KU WJ+Z:4KU s; - F, 5.9)
J= J= J=

m n )4
_ 31 3 33 3
0= Kj'u,+ D Ki'w,+> Kj's,~F,
j=1 Jj=1 j=1

where
<1) <1)
K\'= j A,
1 X, dl//(l) dl//(z)
Ky == (Au ) dx
2 M dx dx dx

M
21
K, =

aw, dl//(z) dl// 13 31
j A, 0 dx,  KJ'=K])'=0

dx dx

(2) <2) %, @ Ju?
K> = I S —_dx +l j A dwy a’lﬂ Vi dx
! 2 dx dx  dx

Xa

K2 = j S, Ty Vdx =K

Xy 3 d (3)
K;' =] (Dxx—d? Z +5, w“)w<3)Jd

F'= j furPdx+ QY (x,)+ o’ (%)
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£ = [ a0 () + 0w (x) 510
Fi3 = Qal//im ('xa ) + Qél//i(S) (xb )
In matrix form it can be written as
L) ] LR ) (12
K] (k2] K23 {wh=1{F"} (5.11)
(k] [ke] [ke]jUst) ({7}
5.3 Shear and Membrane Locking

The simplest Timoshenko element is one which has the linear

interpolation of both wjand ¢ .This means that the slope d;vo should be
x

constant. In this beams the ratio of length to thickness is large and thus the slope

will be —¢_.This contradicts our earlier discussion. Moreover ¢ =constant results

in zero bending energy while the transverse shear is nonzero. Thus the
assumption of linear interpolation function is inconsistent and leads to a stiff
thin beam. This phenomenon is called shear locking. To overcome this technique
reduced integration method is used. In this selective integration technique, the
stiffness coefficients associated with the transverse shear strain are evaluated

using equal interpolations are used for w,and ¢_but ¢ _is treated as constant

and other coefficients are derived using full integration method. The shear strain

. d . .
is represented as @y =9 + ;)0 and membrane is given by
x
2
du, 1( dw, . . .
£, :d__+§ e .The element experiences no stretching which means
x X

—%_4_1 dWO
o dx 2\ dx

2
j =0. In order to satisfy the these constraints we must have
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dw,

[
2 dx

2

d dw, . . . . .

and % O (d—oj Here is ¢ is linear and w, is quadratic the constraint
X X

is satisfied. Similarly whenw,and u, are linear the constraint is automatically

satisfied. If quadratic interpolation is used for both w,and u, then% is linear

X

2
and (d;;oj is quadratic, this creates inconsistency. Here the element again
starts experiencing locking. This is called membrane locking.
5.4 Summary

In this section a detailed discussion on the derivation of governing
equations ,weak form formulations , finite element model and solution
procedures has been made. This section also discusses two different types of
locking in TBT beams, shear locking and memebrane locking. In order to avoid
the inconsistencies observed in EBT ant TBT different methods such as reduced
integration method have been implemented in the past. But this method also has
its disadvantages of hour-glass modes or spurious rigid body modes. Thus, it is
desirable to develop alternative finite element models that overcome the locking
problems. An effort has been made to develop models that can use higher order

interpolation functions and finite element models were developed using least-

squares method. These models will be discussed in the next section.
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6. LEAST-SQUARES THEORY & FORMULATION

6.1 Introduction

In order to avoid the locking problems mixed least-squares based finite
element models can be considered as an alternative approach to the
conventional weighted residual weak form method. A detailed discussion on
two different models using least-squares finite element analysis is made in this
section.
6.2 Basic Idea

The basic idea behind the least-squares finite element model is to
compute the residuals due to the approximation of the variables of each
equation being modeled, construct integral statement of the sum of the squares
of the residuals (called least-squares functional), and minimize the integral with
respect to the unknown parameters of the approximations. To be more explicit,
consider an operator equation of the form

A(u)=f in Qand B(u)=g inD
We seek suitable approximation of uasu, = ic ;@; In the least squares method,
=

we seek the minimum of the sum of squares of the residuals in the

approximation of equations as follows

d

B_J-QRZ (x,cj)dxzo
Ci

where
R*=R'+R}, R =A(,)—f, R, =B(u,)—g

The necessary condition for the minimum is
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0=51(w,)=8{[ [A(u)- ] de+f[B(w)-g] ds}
Thus the variational problem is to seek u, such that B(du,,u,)=1I(u,) holds for
all du, . where
B(du,,u,) zj 5 A(u )]A u, dx+[ﬂ_5 B(uh):lB(uh)ds
1) = [ 6] A(w,) |rdx +[f] 8] B(u,)Jeds
Using the above concept, the least-squares finite element models of the Euler-
Bernoulli beam theory (EBT) and the Timoshenko beam theory (TBT) are

developed as discussed below.

q(x)

T T T BR

\/
Z;W

Figure 6.1. A typical beam element with forces and moments under uniformly

distributed load

where q is the uniformly distributed load acting on the length L of the beam ,M
is the bending moment and V is the shear force.

Hence the governing equations for the beam in Figure 6.1 are



M+El—=0

6+=0

X

Or eliminating V we get

d2

—tc,w—g=0

dx?

M d*w
| —+—5 |=0
El dx

Here we use the approximation

w=w, :ZAW/‘ (x), M=M, :ZAiQi (x)
=1

And the least squares functional will be as follows

I(w,.M,)

X

_IK

'XH

_d’M,

dx*

In matrix form it can be written as

where

|

("] [x]
(k] [x7]

|

+c,w— 2+— £+dzw 2 dx
e El  dx’

()] [tr)
SIRGE
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(6.1)

(6.2)

(6.3)

(6.3)
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- (6.4)

6.3 Least-squares Finite Element MODEL 1 for Euler-Bernoulli Beam Theory

This section discusses about the linear and nonlinear formulation of finite

element model for EBT.
6.3.1 Linear formulation

Consider the following governing equations,

dN
!
2
dx dx dx
2
M+EIC:;V2V=O (6.5)
X

where q(x) is the transverse distributed force and N is known in terms of u and

as N=EA@, SN = padou

dx dx

The least-squares functional associated with the above set of linearized

equations over a typical element is
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2 2 2
d’M dN d*w
JL(uh7Wh’Mh)_;!{p1|:_ dxzh_Q} +[ dh } +p2(Mh+EI dxzhj } (6.6)

where p, and p, are scaling factors to make the entire residual to have the same

physical dimensions and quantities with bar are assumed to be known from the
previous iteration and their variations are zero.
The necessary condition for the minimum of J, is dJ,=0

Xq 2 2
0= J‘{ 5M [dM +q}+{EAdu”+f}EA 5””+
dx dx’

dx?

2 2
+p, {5M,, +EI dj;"h j[M +EI dd H dx

X X

(6.7)

Since the physics of the Euler Bernoulli’s Beam theory requires the specification

j N,MandV = (—dﬂj we seek Hermite cubic approximations

dx

dw

of u,w,&z(
dx

of u,.w, and M,

4 4 4
=Y alp 00, =3 a0 and M, = Alp,
j=1 Jj=1 =1

Where A',A’andA’ denote the nodal values of (uh,—%j,(wh,—%j and
dx dx

(M o= df” j respectively at the jth node and ¢;(x) are the Hermite cubic
x

interpolation functions. Substituting the above equations we get the finite
element model as follows.
(k"] [&°] [&°]][{a] [{F)
(][] [ ][ at =177 (68)
(<) (<] [« ]]laY) 1)

where
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F’ ——plj-q L dx (6.9)

6.3.2 Nonlinear formulation

The least-squares finite element model of the following set of nonlinear

equations assuming EA and EI as constant was developed as follows:-

dN
dx_f
dM d dw
N—|= 6.10
dx* dx( dxj 1 ( )
2
M+Eld =0
dx’

where q(x) is the transverse distributed force, and N is known in terms of u and

was N=pa| B 1 dwY
dx 2 dx
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The linearization of the above equations that will be used are

d*u dw d*w
—FA| —+— =
(d)c2 dx dx? j f

q

2 2 — 2 — 2
CM _pp| e dwdwidw gdw_
dx dx dx dx” ) dx dx

2
M| 4 =0 (6.11)
dx*

_ 5 \2
where N=EA d—u+l d\;V LON=0
dx 2\ dx

The least-squares functional associated with the above set of linearized

equations over a typical element is

g 2 2 — 32 — 2 2
JL(uh,Wh,Mh):J-I:pl|:d Mh+EA[d uh+dwh d Whjdwh—i-]vd Wh+q:| +

dx? dx* dx dx* ) dx dx?

2 2

d*u, dw, d*w d*w

EA h o —h by + M, +EI k
{ (alx2 dx dx* j f} PZ( g dx? j }

(6.12)

Xp

where p, and p, are scaling factors to make the entire residual to have the same
physical dimensions and quantities with bar are assumed to be known from the
previous iteration and their variations are zero.

The necessary condition for the minimum of J, is 6J,=0



+1Vd2w”

¥ dzM d’u
0= +EA h
;[{pl{ dx? [ dx?

> T4

dx dx*

dwh d*w, \dw,
dx dx

dzé'wh_

2

dx dx?

2 2
){d M, +EA(d Su,

aw, d25v2vh v, | 2
dx dx dx dx

2
EA{EA(d 4,

d*Sw

2

s (5Mh +EI
dx

dwh d’w, . d*éu, +dv_vh d*ow,
dx? dx dx* dx* dx dx*

2
"](Mh vErd v‘;hﬂdx
dx
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(6.13)

The above statement is equivalent to the following three integral statements:

Xq 2 2
0= | 40U papa9™ | pAE WA par |+
dx dx dx’

dx*

2 2
dwd 5”(EA M

dx dx? dx*

y > d*ou d’u d*Su d*u > dw d*Ou d*w
= EA FA —+(EA) —
;ﬂ( ) dx’ ? p( ) (dxj dx* dx’ ( ) dx dx’
»dw ~ d*ou d*w dw d*Su d*M 2&{
EA N —_— ——+FA + p,—
pl( ) dx dx* a’x2 Udx dxt dx’ dx? fn q
X, 2 2 2
j EAﬂd 5”’ EAS Yy gAY AW  p prOV dowl iy
dx* dx dx* dx® dx®
~d*ow( d’M dw d’u ~d*w
EAN + E. -+ dx
b dx® ( dx* dx dx* qﬂ

+ EAE. +(EA) K

dw al2
dx dx

(6.13)
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> d*ow d*w N
dx*  dx?

+P2(EI)

— -+ N__
dx dx* dx* P dx dx* dx*

X, — 42 2 — 72 2
:I{(EA)zdwdﬁwdu (EA)2 lAdwdé'wdu
—\2 42 2 2 2 2
2 dw ) dowdw 2 a,dowdw d ow
(EA) (Ej RS +(EA) plNZ—dxz e +szI—dx2 M+ (6.14)

. d?ow d*M
EAp N e e

— 2
+(EAd—wf+EAp1qud {W dx
dx dx

dx

o[ 2 2 — 72 2 2
0= n oM (—ddjf +EADY AU pay (fixvzv+qJ+p25M (M +EI1° Vfﬂdx

Wl e dx dx dx
[ dw d*SM d’u d*w ~ d*SM d’w

=|| EAp —————+ p,OMEI ——+ p,EAN — 4+ p, MM +
j Py dx dx* dx’ & dx? b dx*  dx* P

e (6.15)
d*SM d*M N d*SM i
P dx*  dx? dx? P

—_ —\2 —\2 —_— —\2
where N = d_u+l(d_wj , ]{7:]\_]+(d_wj - d_u_'_é(d_wj
dx 2\ dx dx dx 2\ dx

Since the physics of the Euler Bernoulli’s Beam theory requires the specification

of u,w,0= (—?j, N,M and V = (_‘i’ﬂj we seek Hermite cubic approximations
X X

of u,.w, and M,

4 4 .
u, = 2 A9,(0), w, =3, A0¢,(x) and M, =3 Ajg,(x)
Jj= /= -

where A',A% and A} denote the nodal values of (uh,—%j ’(Wh’_ d:xhj and
X

(M o™ df” j respectively at the jth node and ¢;(x) are the Hermite cubic
x



interpolation functions. Substituting the above equations we get the finite

element model as follows.

(k'] [x°] (&2 ]][{ah ] (iR
(k] L] [k ]|{a%}=1{F} (6.16)
LRSI RESN G

where
X,y 2 d
:j(EA)Zd(/j (p’d+ jEA (dwjd(/j g
M dx*  dx* dx ) dx* dx?
12 _ 't 2 o\ dw dz(”i d2¢j
K} —;[(EA) (1+p1N)E -
dw d’ (p ¢’
K3 = FA—
Y j dx dx* dx*

K :](EA)Z(H pN)

b

— 42 d2 '
dw d (/2)1 (IZJ I
dx dx° dx

dwY ., |d*e d’e,
(EA)2 {(Ej +p1N2:l dx(/; 12 Ldx+ p

Il
Fe—

R

23 ¢ ¢
K} j \EAN o vt p Elj 2(0dx
K= j padrde d 7]

dx dx* dx’

32 _Xﬂ 23 dzﬂ d2¢j 't dzﬂ

K?= j pi(EA) N= 2t S dx+ p,El j o
Xa d ¢ Xa

K = j D dxzj dx+ pzjq)l.(pjdx

41
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¢ do,
F'=- L dx 6.17
P =-p]q e (6.17)

From the terms of K. it is clear that the terms p, and p,should be taken such

that p, = p,/ h*, where h is the element length.

6.4 Least-squares Finite Element MODEL 1 for Timoshenko Beam Theory
6.4.1 Linear formulation

The equations that arise in connection with the Linear Timoshenko beam

d du
theory are —— | EA— |=
Y dx( dxj 4

g, [pa )L ),
dx dx dx dx

i(EI%j+GAKS (¢+d—wj=0
d dx

dx » (6.18)

The least-squares functional associated with the above set of linearized
equations over a typical element is

2
't d d*w
JL(uh,Wha¢h)= j!pl {—GAKS {d;ih-l_?zhj_q} +

b

2 2
d’g dw d’u
D, {—EI?;%GAKS (¢h+ dxh H {—EA( dxth_f} }dx
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where p, and p, are scaling factors to make the entire residual to have the same

physical dimensions and quantities with bar are assumed to be known from the
previous iteration and their variations are zero.
The necessary condition for the minimum of J, is dJ,=0

Xq 2 2
0= { P, {—GAKS {@+&:V”H{—GAKS [‘;—@wd—?’jw}

x dx X dx

2 2
[EAC;“h +f}EAd Oty

X2 dx? (6.20)
dow d 2§¢ ( dw j d 2(/‘)
GAK .| 60, + h - EI — || GAK +—" |- EI h
P { s ( 2 dx j dx? j( s( 9 dx dx?

Since the physics of the Euler Bernoulli’'s Beam theory requires the specification

of u,w@= (——j ,N,MandV = (_";ﬂj we seek Hermite cubic approximations
X

of u,.w, and M,

4 4 4
u, = ZIA;(pj (x), w,= ZlAi(pj (x) and M, = Z}A?,.(pj (x)
Jj= Jj= Jj=

where A\, A%andA’ denote the nodal values of(uh,—%j ) (Wh’_ dw,
X

j and
dx

(M o= df” j respectively at the jth node and ¢;(x) are the Hermite cubic
x

interpolation functions. Substituting the above equations we get the finite
element model as follows.
(k'] [x°] (&2 ]][{ah ] [iF)
(] [x=] [ ] [j{at =477 (621)
(<] &) [ [{F)

where
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xa d2¢ d2¢
11 _ i J
Klj - ;[ (EA) dxz dxz

dxdx

K’=K'=K’=K)'=0

y g g g

Xy d2¢)l d2 ) d¢)l d¢
K;zz;[pl|:GAKS dxz ?ZjdX'sz(GAKS)Ed—x] dx
X, dZ¢ d¢ d¢ dZ¢
23 _ i . i _ 32
sz —Xh plGAKS {Wd_xldx-i_ng —E17+GAKS¢J. dx—Kji

33 _X" d i dq)j 't dzq’i dzq)j
K; _;[p{(GAKS)E - +p2j Y5 || Bl S+ GAK g, | |dx

R

:d
2 == ap, dx(f’ dx
F=-n[q L (6.22)
EI
where ¥ = GAK
S

6.4.2 Nonlinear formulation

The least-squares finite element model of the following set of nonlinear
equations assuming EA , EI, GAK; as constant was developed as follows:-

_anN _
dx

d dw d dw)
—E{GAKS (¢+Eﬂ —E(NEJ =q (6.23)

—i(EId—¢j+GAKS (¢+d—wj =0
dx dx dx

f
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where q(x) is the transverse distributed force, and N is known in terms of u and

2
was N=ga| 1w
dx 2\ dx

The linearization of the above equations that will be used are

d*u dw d*w
—-FA| —+—— |=
(d)c2 dx dxzj f

2 2 — 2
—GAK,| LV _ppdudy_gdw_,
dx dx dx” dx dx
d(m‘”’j
A, GAK (¢+d—wj =0 (6.24)
dx dx

— 2 — 2 _ 0 2
where N =EA d—u+l d\;V , N=EA d—u+§ dvzv
dx 2\ dx dx 2\ dx

The least-squares functional associated with the above set of linearized

equations over a typical element is

X, 2 2 _ 5 2
J w00 =[ | p, {—GAKS {%+MJ+EACZ u, dw, | g d 24 +q} +

2

M dx dx? dx® dx dx
[ d% aw \ | dPu,  d*w, di ’
—EI—+ GAK +—L || +| EA ko h —_h 14 dx
P2 i dx* S (¢h dx H { ( dx*  dx’ dx j f}

(6.25)
where p, and p, are scaling factors to make the entire residual to have the same
physical dimensions and quantities with bar are assumed to be known from the
previous iteration and their variations are zero.

The necessary condition for the minimum of J, is dJ,=0
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dx dx? dx*  dx dx?

2 2 — 2
~GAK 49 AW, | pa s dw”+1§7dv2”+q +
dx dx

Xq 2 2 — 2
o:j{p{—GAK{M% d 5whj+EAd Su, dw, o d §wh}

X

dx2 2

dx” dx
2 2 2
EA{EA(d u, dwh d w;h}_f}(d 5;/th dw, d*w, ]4_

dx? dx dx dx dx dx®

pz(GAKS(5¢h+@j—EI %, j(GAK (;/ﬁh dwhj Elﬂihﬂdx
dx dx’ dx

dx
(6.26)

The above statement is equivalent to the following three integral statement

Xg 2
0= j{dﬁ‘h EA(EAM +EADY A W+fj+
X

dx* dx dx*

6.27

d*ou dg, d*w dw, d’u \ d*w ( :

p—EA -GAK by bl EA—" by N byg||dx
! dx* S\ dx

dx dx dx?

dw, D
+
dx

— 2 2 — 2 2 2
EAdWh d 5w’{EA(d uh+dwh d WhJ+f}+pl(GAst 5wh+]\7d 5whj*

dx dx? 2

X

Xq 2 2
0= { p,GAK diwh ( —EI djf’h +GAK, (;/ﬁh +

b

dx de dxz dx dxz de dxz
2 — 2 2
dx  dx dx dx dx
(6.28)
Xa 5 B , )
K dx dx  dx dx dx dx
b (6.29)

. d’op, dw, d’g,
p{ EI= 5+ GAK 5¢hj(GAK (gz)h dxj Bl ﬂdx



—_ —\2 —\2 —_— —\2
where N = d_u_i_l(d_wj , N:N—i_(ﬂj - d_”+§(d_wj
dx 2\ dx dx dx 2\ dx

47

Since the physics of the Euler Bernoulli’s Beam theory requires the specification

of u,w,0= (——j ,N,MandV = (—dﬂ) we seek Hermite cubic approximations

dx

of u,.w, and M,

4 4 -
0, = Z;Alj%(x), W, = ZlAico,»(x) and M, = ZlAiq)j(x)
= j= J=

where A',A’andA’ denote the nodal values of(uh,—%j , (wh,— aw, j and
o ‘ dx dx

(M o d?l/l" j respectively at the jth node and ¢,(x) are the Hermite cubic
x

interpolation functions. Substituting the above equations we get the finite

element model as follows.

(&) [k7] (k=] |[{a}] {1
[k ] [&x=] [k ]| {at}=4{r"} (6:30)
(&) (k2] (& ][] ({F)

where
% d’p d*¢, o o(dw, Y d*e d’o,
K" = [(EA)Y =2 —Lax+p [ (EA h L Ty
v ;[ (£4) dx*  dx* P ;[ (£4) dx ) dx* dx?

b, . dw, d*p d’,
K; ‘I(EA)(EA+p1N+pIGAKS) dxh dx’? dxzj

R

dx

dw, d*p, d°¢,
dx dx* dx*

K}’ = pGAK, | EA

n . dw, d*p. d’°9,
K; _I(EA)(EA+p1N+p1GAKS) dxh dx* dxzj

dx

b
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dx*  dx* dx dx dx dx*  dx?

 do. — \2 ;2 ,d2 ‘
K2 = J-pll:(GAK +N) f ¢d+p2(GAKS)2%ﬂ+(EA)2(dWhj d’e ¢’}dx

b

de. do, d’e.
K 23 GAK |GAK; +N b 27 dx+p ,GAK ¢ —| —EI L +GAK .. | |dx
J- P ( ){ dx*  dx dx dx? s@i

dw, ¢, 9,
dx dx* dx*

K;'= [ p,(EA)(GAKy) dx

R

K} = j p.GAK, (GAK +N){ Y199 11+ p,GAK, dd(”’ (—Eld g +GAKS¢H

5 dx® dx x dx’
K = Tp (Gak, ) 2299, , j e .+ GAK g, 9, o ||dx
o dx dx dx* dx* ST
Eode dw, d’o,

F'=—EA Lt d

: j [f P e }x

2_ Y dVT/ A d2¢l
F ——;[[EAfE+qpl(GAKS+N) o

. t de,
F}=—pGAK, [ q=""dx (6.31)
M dx

From the terms of K. it is clear that the terms p, and p,should be taken such

that p, = p,/h*, where h is the element length.



49

6.5 Least-squares Finite Element MODEL 2 for Euler-Bernoulli Beam Theory

6.5.1 Linear formulation

Consider the four first-order governing equations

g N _du_
FA dx
—d—V+kw q =0, 0+ﬂ=0 (6.32)
dx dx
M _do_, Ly
b dx dx
here b=FEI

The least-squares functional associated with the above six equations over a

typical element is

dN, .\ (N, du\ [ av, 2( dwj2
J,(u,,w,,. +f | 4+ | L+ kw, + Lo+
2 (ty Wyr-e) = j{(d fj (EA dxj ( dx qj (A
2 2
M, 46,1, —Vh+dM” dx
b dx dx
(6.33)
Here b=EI and the necessary condition for minimum of J, is
ozj dé'Nh(th_i_fj_i_(dN dé'uhj(N duhj_i_
dx dx EA dx EA  dx
( d‘w +kSw j(—%wwh—q}(&eh+d5whj(9h+dwhj+ (6.34)
dx dx dx dx
oM, _ds6,\(M, df,), _§Vh+d5Mh e,
EI dx El  dx dx dx

The four statements associated with the statement in the above equations are:



50

v (6.35)
0 d§Nh(th+fj+(5Nhj(&_%j i

L dx dx EA )\ EA dx
0t _(§Mh j(Mh _ dé, j+ déM, (—v . thj .

AU Ub dx dx " odx

0= (_dﬁvhj(_%wh_qj_avh(_vﬁthﬂdx

dx dx dx

In this model, all physical variables that enter the specification of the boundary
conditions appear as unknowns. Hence they are all approximated by Lagrange

interpolation functions. Let,

=2 uy (), wo=2wy(x),  6,=20w,(x),
= =1

Ny=2 Ny (x), My =2 My;(x), V=2 Vy,(x)
= =

Wherew,,6,,M ; and V; denote the nodal values of w,,8,,M, and V, respectively

at the jth node. Thus we obtain the following finite element model

('] [x°] [ [T (€] (k7] 0y ()
(k] [k2] (k] [&*] [&*] [&*]| 1 | |17}
(&) [x°] [&°] [&*] [&°] [x*]| {8} | |{r} o0
(k] [k2] [k°] [&*] [k*] [&*]| M| |{F}
(k] (k2] [k°] [&%] [&*] [&*] }VM}} (7}
(ko] [&2] [&°] [k*] [*] [&*]] (F}




where
L dw. dy .
= v, 4V, dx
/ dx dx

Xb dw
23 i
S
Xb dlﬂ
K*=—| k—Lw.dx
; I v
Xb dlﬂ
K L w.dx
; I v

n\(EA)
;3:_dewj
Y Ely dx

W\ (ED)
Xp dw_i
K = X Vi

51
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i

6 _ [ dy, dy,
= Iy

'Xll

F? = [ kqydx (6.37)
Xb dw
F'=—| f—"idx
, j r
Xb dW
F’=—|g—ldx
= fa

6.5.2 Nonlinear formulation

Here consider the first-order equations

2
Ao N [du faw]
dx EFA | dx dx
_ 4 (Ng)—g =0, 9+ _¢ (6.38)
dx dx dx
ﬁ—ﬁzo, —V+dﬂ=0
EI dx dx

The least-squares functional associated with the above six equations over a

typical element is
2
H(anN, Y [N, |du, (dw,Y v, d ’
J, @, w,,...) = e A I R B o =L C (NOYV=g | +
2 (12 W) ;[(dx fj {EA {dx (dij ( dx dx( ) qj

2 2 2
(0h+dw’“) +(ﬂ——d0hj +(—Vh+dM"j dx
dx El  dx dx

The necessary condition for minimum of J, is

(6.39)
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s e e

dx
dév, v, d
— 5N 6, +N,o6 ——= N,6, )—
( dx + + )j( dx +dx( h h) QJ"'
(562 N dé'whj( 4 dwhj+(§Mh _ déﬁhj(Mh _dthJr
dx EI dx El  dx

( oV, + dom, j(—vh + M, de
dx

The statements associated with the statement in the above equations are:

X 0 2
0= f| 40| Ny _ %Q(%) i

M dx | EA | dx 2\ dx
O:T _déw, dw,| N, | du, +l(dwh)2 +d5wh (0 +dwhj 5

il dx dx |EA | dx 2( dx de " dx
0:.[ 50, 0h+dwh _ddb, Mh_dHh doe, LN, + ”50h N

i dx de \ EI dx dx dx

dV d0N thH—q I
dx "

(6.40)

S e )|

(d@h sy + 40N o j( v, de, LUV dN, Hh—qﬂdx

dx dx dx dx dx

O:T_(_(?th(Mh_thj+d5Mh (_V +th) "
|\ EI \EI  dx dx " odx

0=j (_davhj( dv, +kw,,—qj—d§v( av, , db, - dN, eh_qj .
i dx dx dx dx dx dx

(6.41)
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In this model, all physical variables that enter the specification of the boundary
conditions appear as unknowns. Hence they are all approximated by Lagrange

interpolation functions. Let,

m

=2 uy(x), w=2 wy,(x),  6,=30y,(x),
= J

Ny=2 Ny, (x), My=2 My (x), V,=3Vy,(x)
A '

Wherew,,6,,M ; and V; denote the nodal values of w,,8,,M, and V, respectively

at the jth node. Thus we obtain the following finite element model

('] [x°] [ [T (€] (k7] 0y ()

(k] [k2] [&*] [&*] [&*] [&*]| 1 | |17}

(&) [x°] [&°] [&*] [&°] [&*]| {8} | |{r} o
(k] [k2] [k°] [&*] [k*] [&*]| M| |{F}

(k] [k2] [k°] [k*] [k*] [&*] }VM}} (F)

[k [k2] [k] [&*] [k*] [&*]] ()

where

K= [ WMy n fldwdv 4V,

ol de dx Pl 2dy deodx
% dw % dy

Kl.l.4 :_L %l//.dx, Kl%l = d_W% l///dx

/ EA; dx / / . dx dx dx

X 2

o CA T AT

/ H dx dx 2 dx dx \ dx

3 t dy, 2 _ T dl//j
sz —J-El//jdx, szj —;[El//,dx



y dy,dy, (dy, . dN \(dN dy,
KX =[|yy+ | N+ Ty, | Sy e N
ij J-(l/jjl//t dx dx ( dx dx l/’,j( dx l//j dx !

35 1t dy, 36 ! dl//j (d‘//‘ dN jd
=——|—Vydx, K’=—|—"|—"N+—
v EI;[ dx Vi Y ;!- dx \ dx d. Vi
RO 7RI B 7N
" EAY dx T BA2] dx T dx
dy, 5 d6 \(dN dy
KX =|—"0+y,— | ——y,+N—-=
i ( dx Vi dxj( dx Vi dx j
w_fl 1 dy, 4y
+__
iy ;[((EA)Z l///l//l dx d
46 _ ]dl/// %9.,_ ﬁ K> = 1]£dl//j d
P e ax , Y EL dx

(6.43)
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6.6 Least-squares Finite Element MODEL 2 for Timoshenko Beam Theory
6.6.1 Linear formulation

Consider the first-order governing equations

dx EA dx

_d_V_q:()’ V:GAK(d—W+¢j (6.44)
dx dx

M_d9_, v My

El dx dx

The least-squares functional associated with the above six equations over a

typical element is
X, 2 2 2 2
| (dN N, du dv, dw
J,(u,,w,,...) = by f| 4| = ——L| 4| ——L—q| +|V,-GAK| —+ +
At ) I{( dx fj (EA dxj ( dx qj ( h (dx ¢hD
M, do,Y au, Y
—L— 4 -V, +— | |dx
EI  dx dx
The necessary condition for minimum of J, is
o:xf dSN, th+f N ON, ddu, (N, du, N
Y odx \ dx EA  dx J)\EA dx
dov, %+q +| 8V, —GAK dow, +09, |||V, —GAK w, +0, ||+
dx dx dx dx

(5Mh _ddb, j(Mh _ de, j{_&/h L doM, j(—Vh Lam, j i
EI dx ElI  dx dx dx

(6.45)

(6.46)



57

The statements associated with the statement in the above equations are:

O_T‘_déuh(&_%j .
| dx \EA dx

0= 59;1( v, _%_%j_daah(Mh_dehj .
L GAK dx dx \ EI dx

0= d§Nh(th+fj+(5Nhj(&_%j "
L dx dx EA )\ EA dx

o:j (ath(Mh_dethrdaMh (_Vh+thj .
|\ EI El  dx dx dx

1) B )
L dx dx dx GAK \ GAK dx

In this model, all physical variables that enter the specification of the boundary

(6.47)

conditions appear as unknowns. Hence they are all approximated by Lagrange

interpolation functions. Let,

where wj,Bj,M ;and 'V, denote the nodal values of w,,6,,M, and V, respectively

at the jth node. Thus we obtain the following finite element model
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[K“] [Ku} [Kn] [KM] I:K15] [Km} {u} {Fl}

[KZI} [K22] [KB} [qu [Kzs} I:Kzé] {w} {Fz}

] (] (] [ [ [ 6 | |17 -
Lk ] &) (ko] (k%] [k*] (K] }Z}} {F}

L&) k] [k ] [k ] (k][R ") {7}

L&) (k2] (k7] (k7] [&7] [K*] {r}

where

1" dy, ay, w_ 1 fdy 2 dy, ay;

e dx ’_EA;[dxl//’ Kij_J.(dx dxjd

23 26 1 Y, 32 dy,

K _J-_l/;l//jdx, / _XHGA—K dx vidr, K, j dx i

33 dy, ay; 35 1 ¢dy

Ky _J-( e dx dx jdx, i EIJ-EI//’

41:_L v, d K44_J' 1 dy, dy;

/ EAY dx ! (EA)2 / dx dx

53__i v, 55 1 d_l// v,

P e T e j{(151)2 T dx d Jd

Kj6——H%wjd K = j liil//jdx Kf3:—J:wl//jdx

Kt]6_5 :_j[ ddtj w.dx, K;G :T(WiWi+%%de (6.49)

6.6.2 Nonlinear formulation

Here consider the first-order equations
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2
N N [ (aw)]_g
EA | dx dx
—d—V+i (——qﬁj L—(d—w+¢]:0 (6.50)
dx dx GAK GAK dx
K—ﬁ =0, -V + dM =0
El  dx dx

The least-squares functional associated with the above six equations over a

typical element is
dN, [N, |du, (dw,Y 2
= [ (Ges) [a{d_(d_j D )
av  d ’
550l
dx dx GAK
2 2 2
(o) (-2 (oo Jo
GAK \ dx EI  dx dx
The necessary condition for minimum of J, is
O:j d§N( fj"‘ ON, | ddu, +(dwh d5whj N, %+(%j2 .
. dx dx EA dx dx dx EA | dx dx
el 22
dx dx GAK dx dx GAK
(i_[awd&whn[ v _(¢+dwhD+(5Mh_ddehj(Mh_dth+
dx GAK dx EI dx EI  dx

GAK
(—éVh + doM, j(—Vh + M, H dx
dx dx

(6.51)

(6.52)

The statements associated with the statement in the above equations are:
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0= f|-40u| M d_l(dij i
M dx | EA dx 2\ dx

O_T _déw, dw,| N, | du, +l(dwh)2 +d5wh( V, _dw, _¢) m
y dx dx | EA dx 2\ dx dx \ GAK dx

¢ wh _dse, (M, a6,
| o GAK dc \EI dx
0= 450, &V daN V. N dv dé . d dx
( LN, + h50hj(— L ANV, N, h—N—¢—¢—N—qj
dx dx dx dx GAK GAK dx dx dx

0= dfho(th+ @{%] Ny %g(dwhjz R
M dx dx EA )| EA dx 2\ dx
(daNh Vi ON, th_d5Nh¢_d¢h 5Nhj*
dx GAK GAK dx dx dx

(th V, . N, aV, dN, e d;/)hN_dV _qﬂdx

dx GAK GAK dx dx dx
Mh_deh +d5Mh _Vh+th 5
El  dx dx dx

o=t & ( Vi g M) sy Ly dML),(dSV, dN, &, N, dov,
h dx h h

dx dx dx GAK GAK dx

*(_th+th Vo , N, dv, dN¢ dgz)th i
dx dx GAK GAK dx dx
(6.53)

In this model, all physical variables that enter the specification of the boundary
conditions appear as unknowns. Hence they are all approximated by Lagrange

interpolation functions. Let,
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where wj,Bj,M ;and 'V, denote the nodal values of w,,6,,M, and V, respectively

at the jth node. Thus we obtain the following finite element model

[0 [x] [&°] [ev] [k°] [6°]) 0y (1)

L) [ ] [ ] [ ] [k ] (& ]|y | | 1F)

e (k][] [k &) [k ] ey | [{F 650
(k] [k [&2] [&*] [&%] [ke]) ]| {F) |
(<] [] [«] [«] [] [e]) 0] | (P

(&) [x=] [&°] [&*] [&°] [&°]] {r}

where

= %d%dx

! dx dx

o[ vy dv,,

v L 2dx dx dx

K= —é dwl//

ZI_I fz:ddz dclzi

-l ()

K53=Xh%l//jdx

dx
Xﬂ
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- [ — iy d
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K*» = WAt L TNy Ty || —y + N—L
! j (‘/’, Vit ( dx dx W’j( ax a )"

a

s_ 1 jdy,
K =g v
36_T d‘/f v, d_N+ N dy; (d%N —l//j+ v, dx
dx GAK dx GAK dx dx GAK
1 tdy,
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42— Ly —"dx
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1
ZW‘//

X

b
44 J‘
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J
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Kﬁf’ :_.[ l/jj |4 dl/jz + L d_V_% _%Wi X
/ . dx \ GAK dx GAK dx dx dx

Xp

53 _ _Lj dl//j
Y ElY dx

X, 1 dl// dw
K.S.S = . ,+_’_J
’ X{((EI)Z YV }dx

st dy,
Kij ——J-El//jdx

W.dx

62



K?ZZ_T%L
Y Jdx GAK

y . , : : dv .
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J : dx dx dx GAK dx ! dx dx

GAK

dy .
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1 1 dy, dNdy, N dy,
K.6.6: W. + V. |+ — Ly — Ly i
! I [((GAK)Z viv W’W’} ( dx dx dx GAK dxj
dy; : dy,
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F=—[ ¢ iax
f=-fa
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7. SOLUTION APPROACH

Different methods to develop the finite element model have been
discussed so far. An interaction of local and global coordinates is used to obtain
the results. The element coefficient matrices are assembled. During assembly the
stiffness contributed by the adjacent element to the common coordinates will be
doubled. Different boundary conditions are imposed and the value of {F} and
{u} are computed. The elemental values of primary variables will be considered
during the next cycle of iteration. Convergence is reached when the error is less
than the tolerance value. For the practical purposes the absolute error should be
small to at lower computational expense. The rate at which certain results
approach the exact solution is very important.
7.1 Solution Procedures

There are two different iterative methods discussed here
(1) Direct iteration procedure  (2) Newton Raphson iteration procedure
7.1.1 Direct iteration procedure

Here the solution of the coefficient matrix is computed using the known
value from the previous solution of the (r-1) th iteration. The solution for the rth

iteration can be determined from the following equation
KA [fay =7 or R [fay =7
Thus the initial guess vector should satisfy the boundary conditions.
7.2.2 Newton-Raphson iteration procedure
Consider the following equation,
{Ry=[K]{U}-{F}={0} (7.1)

where {R} is the residual vector. We expand {R} in the Taylor’s series as



(r-1)
{R({U})}={R({U}“‘”)}+(%} {SU}+......

(r-1)
2 tor=—{els)
{7 (™ )Houy =~ r({wy™)}

Here {T} is the tangent matrix which is equal to,

o) e

1

For rth iteration we have, {AY ={A}"" +{an}

Thus we can write,

ZKQ/IAI ZK?)ZA; _Ea
p=1
2

- K+ KGR, -

=
v |9 (&
T {aA—’ﬁj :aA—ﬂ(zzKﬁ“Z —E»”’J

o S o S o
= szﬁ +;an(K"PI)uP +;aT§i(KiP2)MP
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(7.2)

(7.3)

(7.4)

(7.5)

The coefficients of tangent matrices for EBT conventional weighted residual

method can be found by substituting the stiffness coefficients in from equations

(4.13) in equation (7.5).
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=K}
= K]
7;}2 = 2](1,52 (7.6)
X 2
T2 =24 L [ A, dy |y duy 140, A9,
2 dx dx | dx dx

Similarly for TBT conventional weighted residual method we get the following

coefficients of tangent matrices.

TRt
7—;7 _Kii
5, @)
/ T2 dx ) dx dx /
13 13
i _KU
2 21
i KU
5 2 @)
T? =K +lexx dw, + duy |dy;” 4y, dx
/ o2 dx dx | dx dx
23 3
17 =K 7.)
31 _ 3l
T;j _Klj
2R 3
7—;7 - Kij
3 33
7—;7 _Kij

A flowchart to explain the logic behind the computer implementation is shown

in Figure 7.1.
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LOAD LOOFP

Write a
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DO L=
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: Impose boundary conditions &
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i

Figure 7.1. A computer implementation flowchart
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The following example is considered for EBT and TBT model for

conventional weak form and least-squares MODEL1 and MODEL2.

8.1. Example

Consider a linear elastic column which is subjected to a uniformly

distributed load g=10 in 10 load steps .Let L denote the length of the column, EI

denote the flexural rigidity of the beam where E is the Young modulus and I is

the moment of inertia of the cross section of the column, w(x) denote the

deflection function, M denote the bending moment and V denote the shear

force. Here calculations have been made with the following data E=30msi,

L=100 in, area (A) =1x1 in?. tolerance =0.001 maximum number of iterations=30

Boundary conditions: 1) both ends hinged 2) both ends clamped 3) both ends

pinned ( see Reddy [3]). The beam is analyzed for 4,8, and 32 elements.
8.2. Results

For beam with both ends hinged.

1) 4 ELEMENTS

(A) Conventional weighted residual method (Table 8.1)

Table 8.1: Comparison of displacements in EBT and TBT for hinged-hinged

beam
EBT TBT
NODE X U W DW/DX U W PHI
1 0.000 0.000 0.000 -0.017 0.000 0.000 -0.016
2 12.500 0.000 0.202 -0.015 0.000 0.197 -0.015




Table 8.1 continued.
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EBT TBT
NODE X U W DW/DX U \4 PHI
3 25.000 0.000 0.371 -0.011 0.000 0.361 -0.011
4 37.500 0.000 0.482 -0.006 0.000 0.470 -0.006
5 50.000 0.000 0.521 0.000 0.000 0.508 0.000

(B) a) Least-squares finite element MODEL1 -EBT (Table 8.2)

Table 8.2: Comparison of displacements and forces in EBT for hinged-hinged

beam
NODE X U DU/DX W% DW/DX M DM/DX
1 0.0000 0.0000 0.0000 0.0000 -0.0166 0.0000 -49.9310
2 12.5000 0.0000 0.0000 0.2020 -0.0152 546.1200 | -37.4480
3 25.0000 0.0000 0.0000 0.3706 -0.0114 936.2000 | -24.9650
4 37.5000 0.0000 0.0000 0.4815 -0.0061 1170.2000 | -12.4830
5 50.0000 0.0000 0.0000 0.5201 0.0000 1248.3000 0.0000

(B) b) Least-squares finite element MODEL1 -TBT (Table 8.3)

Table 8.3: Comparison of displacements and forces in TBT for hinged-hinged

beam

NODE X U DU/DX W% DW/DX M DM/DX
1 0.0000 0.0000 0.0000 0.0000 -0.0152 -0.0152 0.0000
2 12.5000 0.0000 0.0000 0.1844 -0.0139 -0.0139 -0.0002
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NODE X U DU/DX W DW/DX M DM/DX
3 25.0000 0.0000 0.0000 0.3386 -0.0105 -0.0105 -0.0003
4 37.5000 0.0000 0.0000 0.4402 -0.0056 -0.0056 -0.0004
5 50.0000 0.0000 0.0000 0.4756 0.0000 0.0000 -0.0005

(C) a) Least-squares finite element MODEL2 —EBT (Table 8.4)

Table 8.4: Comparison of displacements and forces in EBT for hinged-hinged

beam
NODE | X U W THETA | N M \Y%
1 0.0000 0.0000 0.0000 -0.0167 0.0000 0.0000 | 50.0000
2 3.1250 0.0000 0.0520 -0.0166 0.0000 151.3700 | 46.8750
3 6.2500 0.0000 0.1034 -0.0163 0.0000 292.9700 | 43.7500
4 9.3750 0.0000 0.1536 -0.0158 0.0000 424.8000 | 40.6250
5 12.5000 0.0000 0.2022 -0.0152 0.0000 546.8800 | 37.5000
6 15.6250 0.0000 0.2487 -0.0145 0.0000 659.1800 | 34.3750
7 18.7500 0.0000 0.2926 -0.0136 0.0000 761.7200 | 31.2500
8 21.8750 0.0000 0.3335 -0.0126 0.0000 854.4900 | 28.1250
9 25.0000 0.0000 0.3711 -0.0115 0.0000 937.5000 | 25.0000
10 28.1250 0.0000 0.4050 -0.0102 0.0000 | 1010.7000 | 21.8750
11 31.2500 0.0000 0.4350 -0.0089 0.0000 | 1074.2000 | 18.7500
12 34.3750 0.0000 0.4608 -0.0076 0.0000 | 1127.9000 | 15.6250
13 37.5000 0.0000 0.4822 -0.0061 0.0000 | 1171.9000 | 12.5000
14 40.6250 0.0000 0.4990 -0.0046 0.0000 | 1206.1000 9.3750
15 43.7500 0.0000 0.5111 -0.0031 0.0000 | 1230.5000 6.2500
16 46.8750 0.0000 0.5184 -0.0016 0.0000 | 1245.1000 3.1250
17 50.0000 0.0000 0.5208 0.0000 0.0000 | 1250.0000 0.0000




(C)b) Least-squares finite element MODEL2 —TBT (Table 8.5)
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Table 8.5: Comparison of displacements and forces in TBT for hinged-hinged

beam
NODE X U W ¢ N M v
1 0.0000 0.0000 0.0000 -0.0167 0.0000 0.0000 50.0000
2 3.1250 0.0000 0.0520 -0.0166 0.0000 151.3700 | 46.8750
3 6.2500 0.0000 0.1034 -0.0163 0.0000 292.9700 | 43.7500
4 9.3750 0.0000 0.1536 -0.0158 0.0000 424.8000 | 40.6250
5 12.5000 0.0000 0.2022 -0.0152 0.0000 546.8800 | 37.5000
6 15.6250 0.0000 0.2487 -0.0145 0.0000 659.1800 | 34.3750
7 18.7500 0.0000 0.2926 -0.0136 0.0000 761.7200 | 31.2500
8 21.8750 0.0000 0.3335 -0.0126 0.0000 854.4900 | 28.1250
9 25.0000 0.0000 0.3711 -0.0115 0.0000 937.5000 | 25.0000
10 28.1250 0.0000 0.4050 -0.0102 0.0000 1010.7000 | 21.8750
11 31.2500 0.0000 0.4350 -0.0089 0.0000 1074.2000 | 18.7500
12 34.3750 0.0000 0.4608 -0.0076 0.0000 1127.9000 | 15.6250
13 37.5000 0.0000 0.4822 -0.0061 0.0000 1171.9000 | 12.5000
14 40.6250 0.0000 0.4990 -0.0046 0.0000 1206.1000 | 9.3750
15 43.7500 0.0000 0.5111 -0.0031 0.0000 1230.5000 | 6.2500
16 46.8750 0.0000 0.5184 -0.0016 0.0000 1245.1000 | 3.1250
17 50.0000 0.0000 0.5208 0.0000 0.0000 1250.0000 | 0.0000

For beam with both ends clamped.

1) 4 ELEMENTS

(A)Conventional weighted residual method (Table 8.6)
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Table 8.6: Comparison of displacements in EBT and TBT for clamped-clamped
beam.
EBT TBT
NODE X U W DW/DX U W PHI
1 0.0000 0.0000 0.0000 -0.0167 0.0000 0.0000 -0.0167
2 12.5000 0.0000 0.0199 -0.0152 0.0000 0.0199 -0.0150
3 25.0000 0.0000 0.0585 -0.0115 0.0000 0.0585 -0.0113
4 37.5000 0.0000 0.0914 -0.0061 0.0000 0.0914 -0.0061
5 50.0000 0.0000 0.1040 0.0000 0.0000 0.1040 0.0000

(B)a) Least-squares finite element MODEL1 —-EBT (Table 8.7)

Table 8.7: Comparison of displacements and forces in EBT for clamped-clamped

beam.

NODE X U DU/DX W DW/DX M DM/DX
1 0.0000 0.0000 0.0000 0.0000 0.0000 -832.1800 | -49.9310
2 12.5000 0.0000 0.0000 0.0199 -0.0027 -286.0600 | -37.4480
3 25.0000 0.0000 0.0000 0.0585 -0.0031 104.0200 -24.9650
4 37.5000 0.0000 0.0000 0.0914 -0.0020 338.0700 -12.4830
5 50.0000 0.0000 0.0000 0.1040 0.0000 416.0900 0.0000




(B)b) Least-squares finite element MODEL1 -TBT (Table 8.8)
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Table 8.8: Comparison of displacements and forces in TBT for clamped-clamped

beam

NODE X U DU/DX Y DW/DX M DM/DX
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003
2 12.5000 0.0000 0.0000 0.0185 -0.0025 -0.0025 0.0001
3 25.0000 0.0000 0.0000 0.0543 -0.0029 -0.0029 0.0000
4 37.5000 0.0000 0.0000 0.0847 -0.0018 -0.0018 -0.0001
5 50.0000 0.0000 0.0000 0.0964 0.0000 0.0000 -0.0002

(C) a) Least-squares finite element MODEL2 —EBT (Table 8.9)

Table 8.9: Comparison of displacements and forces in EBT for clamped-clamped

beam

NODE | X U W THETA | N M \Y
1 0.0000 0.0000 0.0000 0.0000 0.0000 -833.2800 | 50.0000
2 3.1250 0.0000 0.0015 -0.0009 0.0000 -681.9100 | 46.8750
3 6.2500 0.0000 0.0057 -0.0017 0.0000 -540.3100 | 43.7500
4 9.3750 0.0000 0.0120 -0.0023 0.0000 -408.4700 | 40.6250
5 12.5000 0.0000 0.0199 -0.0027 0.0000 -286.4000 | 37.5000
6 15.6250 0.0000 0.0290 -0.0030 0.0000 -174.1000 | 34.3750
7 18.7500 0.0000 0.0387 -0.0032 0.0000 -71.5610 31.2500
8 21.8750 0.0000 0.0487 -0.0032 0.0000 21.2130 28.1250
9 25.0000 0.0000 0.0586 -0.0031 0.0000 104.2200 | 25.0000
10 28.1250 0.0000 0.0681 -0.0029 0.0000 177.4600 | 21.8750
11 31.2500 0.0000 0.0769 -0.0027 0.0000 240.9400 | 18.7500
12 34.3750 0.0000 0.0848 -0.0023 0.0000 294.6500 | 15.6250
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NODE | X U W THETA | N M Vv
13 37.5000 0.0000 0.0916 -0.0020 0.0000 338.6000 | 12.5000
14 40.6250 0.0000 0.0970 -0.0015 0.0000 372.7800 9.3750
15 43.7500 0.0000 0.1009 -0.0010 0.0000 397.1900 6.2500
16 46.8750 0.0000 0.1034 -0.0005 0.0000 411.8400 | 3.1250
17 50.0000 0.0000 0.1042 0.0000 0.0000 416.7200 0.0000
(C) b) Least-squares finite element MODEL2 -TBT (Table 8.10)

Table 8.10: Comparison of displacements and forces in TBT for clamped-

clamped beam

NODE X §) W ¢ N M 14

1 0.0000 0.0000 0.0000 0.0000 0.0000 -833.1500 | 49.9960
2 3.1250 0.0000 0.0015 -0.0009 0.0000 -681.7900 | 46.8710
3 6.2500 0.0000 0.0057 -0.0017 0.0000 -540.2000 | 43.7460
4 9.3750 0.0000 0.0120 -0.0023 0.0000 -408.3800 | 40.6210
5 12.5000 0.0000 0.0199 -0.0027 0.0000 -286.3200 | 37.4960
6 15.6250 0.0000 0.0289 -0.0030 0.0000 -174.0300 | 34.3710
7 18.7500 0.0000 0.0386 -0.0032 0.0000 -71.5020 | 31.2470
8 21.8750 0.0000 0.0486 -0.0032 0.0000 21.2620 28.1220
9 25.0000 0.0000 0.0585 -0.0031 0.0000 104.2600 | 24.9970
10 28.1250 0.0000 0.0680 -0.0029 0.0000 177.4900 | 21.8720
11 31.2500 0.0000 0.0768 -0.0027 0.0000 240.9600 | 18.7480
12 34.3750 0.0000 0.0847 -0.0023 0.0000 294.6700 | 15.6230
13 37.5000 0.0000 0.0914 -0.0020 0.0000 338.6100 | 12.4980
14 40.6250 0.0000 0.0968 -0.0015 0.0000 372.7800 9.3738
15 43.7500 0.0000 0.1008 -0.0010 0.0000 397.1900 6.2492
16 46.8750 0.0000 0.1032 -0.0005 0.0000 411.8400 | 3.1246
17 50.0000 0.0000 0.1040 0.0000 0.0000 416.7200 0.0000




For beam with both ends pinned.

1) 4 ELEMENTS

(A)Conventional weighted residual method (Table 8.11)
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Table 8.11: Comparison of displacements in EBT and TBT for pinned-pinned

beam
EBT TBT
NODE X U W% DW/DX U W% PHI
1 0.000 0.000 0.000 -0.017 0.000 0.000 -0.016
2 12.500 0.000 0.202 -0.015 0.000 0.197 -0.015
3 25.000 0.000 0.371 -0.011 0.000 0.361 -0.011
4 37.500 0.000 0.482 -0.006 0.000 0.470 -0.006
5 50.000 0.000 0.521 0.000 0.000 0.508 0.000

(B)a) Least-squares finite element MODEL1 —-EBT (Table 8.12)

Table 8.12: Comparison of displacements and forces in EBT for pinned-pinned

beam
NODE X U DU/DX W DW/DX M DM/DX
1 0.0000 0.0000 0.0000 0.0000 -0.0166 0.0000 -49.9310
2 12.5000 0.0000 0.0000 0.2020 -0.0152 546.1200 -37.4480
3 25.0000 0.0000 0.0000 0.3706 -0.0114 936.2000 -24.9650
4 37.5000 0.0000 0.0000 0.4815 -0.0061 1170.2000 | -12.4830
5 50.0000 0.0000 0.0000 0.5201 0.0000 1248.3000 0.0000

(B)b) Least-squares finite element MODEL1 —-TBT (Table 8.13)
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Table 8.13: Comparison of displacements and forces in TBT for pinned-pinned
beam
NODE X U DU/DX W DW/DX M DM/DX

1 0.0000 0.0000 0.0000 0.0000 -0.0152 -0.0152 0.0000
2 12.5000 0.0000 0.0000 0.1844 -0.0139 -0.0139 -0.0002
3 25.0000 0.0000 0.0000 0.3386 -0.0105 -0.0105 -0.0003
4 37.5000 0.0000 0.0000 0.4402 -0.0056 -0.0056 -0.0004
5 50.0000 0.0000 0.0000 0.4756 0.0000 0.0000 -0.0005

(C)a) Least-squares finite element MODEL2 —EBT (Table 8.14)

Table 8.14: Comparison of displacements and forces in EBT for pinned-pinned

beam

NODE | X U W THETA | N M \Y%
1 0.0000 0.0000 0.0000 -0.0167 0.0000 0.0000 50.0000
2 3.1250 0.0000 0.0520 -0.0166 0.0000 151.3700 | 46.8750
3 6.2500 0.0000 0.1034 -0.0163 0.0000 292.9700 | 43.7500
4 9.3750 0.0000 0.1536 -0.0158 0.0000 424.8000 | 40.6250
5 12.5000 0.0000 0.2022 -0.0152 0.0000 546.8800 | 37.5000
6 15.6250 0.0000 0.2487 -0.0145 0.0000 659.1800 | 34.3750
7 18.7500 0.0000 0.2926 -0.0136 0.0000 761.7200 | 31.2500
8 21.8750 0.0000 0.3335 -0.0126 0.0000 854.4900 | 28.1250
9 25.0000 0.0000 0.3711 -0.0115 0.0000 937.5000 | 25.0000
10 28.1250 0.0000 0.4050 -0.0102 0.0000 1010.7000 | 21.8750




Table 8.14 continued.

77

NODE | X U \4 THETA | N M \Y%
11 31.2500 0.0000 0.4350 -0.0089 0.0000 1074.2000 | 18.7500
12 34.3750 0.0000 0.4608 -0.0076 0.0000 1127.9000 | 15.6250
13 37.5000 0.0000 0.4822 -0.0061 0.0000 1171.9000 | 12.5000
14 40.6250 0.0000 0.4990 -0.0046 0.0000 1206.1000 | 9.3750
15 43.7500 0.0000 0.5111 -0.0031 0.0000 1230.5000 | 6.2500
16 46.8750 0.0000 0.5184 -0.0016 0.0000 1245.1000 | 3.1250
17 50.0000 0.0000 0.5208 0.0000 0.0000 1250.0000 | 0.0000

(C) b) Least-squares finite element MODEL2 —-TBT (Table 8.15)

Table 8.15: Comparison of displacements and forces in TBT for pinned-pinned

beam
NODE X U W ¢ N M d qy
dx
1 0.0000 0.0000 0.0000 -0.0167 0.0000 0.0000 49.9960
2 3.1250 0.0000 0.0520 -0.0166 0.0000 151.3500 | 46.8710
3 6.2500 0.0000 0.1033 -0.0163 0.0000 292.9400 | 43.7460
4 9.3750 0.0000 0.1536 -0.0158 0.0000 424.7700 | 40.6210
5 12.5000 0.0000 0.2022 -0.0152 0.0000 546.8200 | 37.4960
6 15.6250 0.0000 0.2486 -0.0145 0.0000 659.1200 | 34.3710
7 18.7500 0.0000 0.2925 -0.0136 0.0000 761.6500 | 31.2470
8 21.8750 0.0000 0.3334 -0.0126 0.0000 854.4100 | 28.1220
9 25.0000 0.0000 0.3710 -0.0115 0.0000 937.4100 | 24.9970
10 28.1250 0.0000 0.4049 -0.0102 0.0000 1010.6000 | 21.8720
11 31.2500 0.0000 0.4349 -0.0089 0.0000 1074.1000 | 18.7480
12 34.3750 0.0000 0.4606 -0.0076 0.0000 1127.8000 | 15.6230




Table 8.15 continued.
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NODE X U W ¢ N M d¢7
dx
13 37.5000 0.0000 0.4820 -0.0061 0.0000 1171.8000 | 12.4980
14 40.6250 0.0000 0.4988 -0.0046 0.0000 1205.9000 9.3738
15 43.7500 0.0000 0.5109 -0.0031 0.0000 1230.3000 6.2492
16 46.8750 0.0000 0.5182 -0.0016 0.0000 1245.0000 | 3.1246
17 50.0000 0.0000 0.5207 0.0000 0.0000 1249.9000 0.0000

A comparison of finite element results for deflection of beams with pinned-

pinned boundary conditions under uniformly distributed load for EBT is shown

below in Table 8.16.

Table 8.16: A comparison of results for deflection of beams with pinned-pinned

boundary conditions under uniformly distributed load for EBT

q 4 elements 8 elements 32 elements
1 0.30146 0.30146 0.30146
2 0.54802 0.54802 0.54802
3 0.73099 0.73099 0.73099
4 0.86628 0.86628 0.86628
5 0.96642 0.96642 0.96642
6 1.03840 1.03840 1.03840
7 1.08530 1.08530 1.08530
8 1.10720 1.10720 1.10720




Table 8.16 continued.

79

q 4 elements 8 elements 32 elements
9 1.10090 1.10090 1.10090
10 1.05980 1.05980 1.05980

A comparison of finite element results for deflection of beams with pinned-

pinned boundary conditions under uniformly distributed load for TBT is shown

below in Table 8.17 .

Table 8.17: A comparison of results for deflection of beams with pinned-pinned

boundary conditions under uniformly distributed load for TBT

q 4 elements 8 elements 32 elements
1 0.30134 0.30134 0.30134
2 0.54781 0.54781 0.54781
3 0.73069 0.73069 0.73069
4 0.86590 0.86590 0.86590
5 0.96597 0.96597 0.96597
6 1.03790 1.03790 1.03790
7 1.08470 1.08470 1.08470
8 1.10650 1.10650 1.10650
9 1.10020 1.10020 1.10020
10 1.05900 1.05900 1.05900




A comparison of finite element results for deflection of beams with hinged-
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hinged boundary conditions under uniformly distributed load for EBT is shown

below in Table 8.18.

Table 8.18: A comparison of results for deflection of beams with hinged-hinged

boundary conditions under uniformly distributed load for EBT

q 4 elements 8 elements 32 elements
1 0.52083 0.52083 0.52083
2 1.04170 1.04170 1.04170
3 1.56250 1.56250 1.56250
4 2.08330 2.08330 2.08330
5 2.60420 2.60420 2.60420
6 3.12500 3.12500 3.12500
7 3.64580 3.64580 3.64580
8 4.16670 4.16670 4.16670
9 4.68750 4.68750 4.68750
10 5.20830 5.20830 5.20830

A comparison of finite element results for deflection of beams with hinged-

hinged boundary conditions under uniformly distributed load for TBT is shown

below in Table 8.19.
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Table 8.19: A comparison of results for deflection of beams with hinged-hinged

boundary conditions under uniformly distributed load for TBT

q 4 elements 8 elements 32 elements
1 0.52096 0.52096 0.52096
2 1.04190 1.04190 1.04190
3 1.56290 1.56290 1.56290
4 2.08380 2.08380 2.08380
5 2.60480 2.60480 2.60480
6 3.12570 3.12580 3.12570
7 3.64670 3.64670 3.64670
8 4.16770 4.16770 4.16770
9 4.68860 4.68860 4.68860
10 5.20960 5.20960 5.20960

A comparison of finite element results for deflection of beams with clamped-

clamped boundary conditions under uniformly distributed load for EBT is

shown below in Table 8.20.

Table 8.20: A comparison of results for deflection of beams with clamped-

clamped boundary conditions under uniformly distributed load for EBT

q 4 elements 8 elements 32 elements
1 0.10410 0.10410 0.10410
2 0.20778 0.20778 0.20778
3 0.31065 0.31065 0.31067




Table 8.20 continued.
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q 4 elements 8 elements 32 elements
4 0.41234 0.41234 0.41234
5 0.51250 0.51250 0.51259
6 0.61086 0.61086 0.61104
7 0.70718 0.70718 0.70750
8 0.80128 0.80128 0.80180
9 0.89305 0.89305 0.89390
10 0.98239 0.98239 0.98349

A comparison of finite element results for deflection of beams with clamped-

clamped boundary conditions under uniformly distributed load for TBT is

shown below in Table 8.21.

Table 8.21: A comparison of results for deflection of beams with clamped-

clamped boundary conditions under uniformly distributed load for TBT

q 4 elements 8 elements 32 elements
1 0.10422 0.10422 0.10422
2 0.20803 0.20803 0.20803
3 0.31102 0.31102 0.31103
4 0.41282 0.41282 0.41286
5 0.51310 0.51320 0.51319
6 0.61157 0.61157 0.61175
7 0.70799 0.70799 0.70831




Table 8.21 continued.
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q 4 elements 8 elements 32 elements

8 0.80219 0.80219 0.80271

9 0.89405 0.89405 0.89483

10 0.98348 0.98348 0.98458
8.3. Plots

The plot of x vs deflection (w) for different formulations and different

elements is shown below in Figures 8.1 and 8.2.

The following are the plots for comparison of a beam clamped at both ends and

divided in 4 equal elements.

EBT- 4 elements
0.1200
ey P
0.1000 =
PX

3 0.0800 el
g —&— x vs LSFEM MODELA1
S 0.0600 —— x vs conventional method |-
% —A— x vs LSFEM MODEL2
© 0.0400 » X vs exact solution i

0.0200 /Z/

0.0000 == a - T T T T T 1

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Figure 8.1. Comparison of x vs. deflection in different models for EBT,

clamped-clamped, 4 elements
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TBT- 4 elements
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% ,/‘/ —— x vs conventional method
S 0.0400 - // —&—x vs LSFEM MODEL?2

v/’ X vs exact solution
0.0200 —
0.0000 =%~ : : : : :
0.00 10.00 20.00 X 30.00 40.00 50.00 60.00

Figure 8.2. Comparison of x vs. deflection in different models for TBT, clamped-

clamped ,4 elements

The following are the plots for comparison of a beam clamped at both ends and

divided in 8 equal elements in Figures 8.3 and 8.4.
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EBT -8 elements
0.1200 -
0.1000 o AR
e

0.0800 A A
E 2
c Vs
2 A"
g 0.0600 5 —e— X vs LSFEM MODEL
® A/X —B— x vs conventionall method
T 0.0400 %

X —&— x vs LSFEM MODEL2
) & X vs exact solution
0.0200 -+ A)If
a 3
0-0000 }“'@: T T T T T 1
0.00 10.00 20.00 X 30.00 40.00 50.00 60.00

Figure 8.3. Comparison of x vs. deflection in different models for EBT, clamped-

clamped, 8 elements
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Figure 8.4. Comparison of x vs. deflection in different models for

TBT, clamped-clamped, 8 elements
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The following are the plots for comparison of a beam clamped at both ends and

divided in 32 equal elements in Figures 8.5 and 8.6.

EBT -32 elements
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0.0000 === . . . : \
0.00 10.00 20.00 x 30.00 40.00 50.00 60.00

Figure 8.5. Comparison of x vs. deflection in different models for EBT, clamped-

clamped 32 elements
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TBT -32 elements
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Figure 8.6. Comparison of x vs. deflection in different models for TBT, clamped-

clamped 32 elements

The following are the plots for comparison of a beam hinged at both ends and

divided in 4 equal elements in Figures 8.7and 8.8.
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EBT - 4 elements
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Figure 8.7. Comparison of x vs. deflection in different models for EBT, hinged-

hinged ,4 elements
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TBT - 4 elements
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Figure 8.8. Comparison of x vs. deflection in different models for TBT, hinged-

hinged, 4 elements

The following are the plots for comparison of a beam hinged at both ends and

divided in 8 equal elements in Figures 8.9and 8.10.
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EBT -8 elements
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Figure 8.9. Comparison of x vs. deflection in different models for EBT, hinged-

hinged,8 elements
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Figure 8.10. Comparison of x vs. deflection in different models for TBT,

hinged-hinged,8 elements



The following are the plots for comparison of a beam hinged at both ends and

divided in 32 equal elements in Figures 8.11and 8.12.
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Figure 8.11. Comparison of x vs. deflection in different models for

EBT, hinged-hinged 32 elements
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TBT -32 elements
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Figure 8.12. Comparison of x vs. deflection in different models for

TBT, hinged-hinged 32 elements

The following are the plots for comparison of a beam pinned at both ends and

divided in 4 equal elements in Figures 8.13and 8.14.
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Figure 8.13. Comparison of x vs. deflection in different models for EBT, pinned-

pinned ,4 elements
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Figure 8.14. Comparison of x vs. deflection in different models for TBT, pinned-

pinned, 4 elements
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The following are the plots for comparison of a beam pinned at both ends and

divided in 8 equal elements in Figures 8.15and 8.16.
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Figure 8.15. Comparison of x vs. deflection in different models for EBT, pinned-

pinned, 8 elements
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TBT-8 elements
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Figure 8.16. Comparison of x vs. deflection in different models for TBT, pinned-

pinned, 8 elements

The following are the plots for comparison of a beam pinned at both ends and

divided in 4 equal elements in Figures 8.17and 8.18.
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Figure 8.17. Comparison of x vs. deflection in different models for EBT, pinned-

pinned, 32 elements
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Figure 8.18. Comparison of x vs. deflection in different models for TBT, pinned-

pinned 32 elements



A comparison of q vs. maximum deflection for the EBT and TBT using the
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nonlinear formulation is shown below in Figures 8.19 ,8.20 and 8.21 for different

boundary conditions .
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Figure 8.19. Comparison of q vs. maximum deflection for EBT and TBT for

hinged-hinged boundary conditions.
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Figure 8.20. Comparison of q vs. maximum deflection for EBT and TBT for

clamped-clamped boundary conditions.
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Figure 8.21. Comparison of q vs. maximum deflection for EBT and TBT for

pinned-pinned boundary conditions.
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A comparison of x vs. shear force and bending moment for LSFEM MODEL2

and conventional method is shown below in Figure 8.22 and Figure 8.23. The

shear forces obtained by LSFEM MODEL2 follow a smooth curve where with

the conventional method it gives two different values at common points.

x vs shear force

shear force
o
|

—e— X Vs shear force LSFEM
MODEL2

—m— x Vs shear force
conventional method

Figure 8.22. Comparison of x vs. Shear force for LSFEM MODEL2 and

conventional method
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x vs bending moments
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Figure 8.23. Comparison of x vs. Bending Moments for LSFEM MODEL2 and

conventional method.
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9. SUMMARY AND CONCLUSIONS

From the results presented in section 8, the following observations and

conclusions can be made:

D)

2)

3)

4)

5)

6)

The plots of x vs. deflection for LSFEM MODEL 1, LSFEM MODEL 2, and
conventional method closely fit the exact solution curve. A good solution
accuracy for deflection of LSFEM MODEL2 can be observed even for
lesser number of elements for various boundary conditions.

As the number of elements increases, the plots of x vs. deflection for
LSFEM MODEL 1, LSFEM MODEL 2, and conventional method coincide
with the exact solution curve for different boundary conditions.

The least-squares method helps introducing forces and moments as
primary variables and helps increasing the accuracy of the solution.
Another salient feature of least-squares method is that once the boundary
conditions are imposed the discretization always leads to a positive-
definite system of equations which allow the use of fast iterative methods
for solution.

Thus the theoretical and computational advantages of using the least-
squares finite element model were discussed and verified using
numerical examples with different boundary conditions and number of
elements.

Since the internal forces and bending moments serve as independent
variables, they can be obtained simultaneously unlike the conventional

weighted residual method.
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9.1 Future Work
Based on the present study, a systematic and fair comparison of weak
form Galerkin models with least-squares models for problems involving plates

and shells as well as fluid dynamics can be done further.
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COMMON BEAM FORMULAE
(http://structsource.com/analysis/types/beam.htm)
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