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ABSTRACT 

 

Nonlinear Analysis of Beams Using Least-Squares Finite Element Models Based  

on the Euler-Bernoulli and Timoshenko Beam Theories. 

 (December 2009) 

Ameeta Amar Raut, B.E., Government College of Engineering, Pune, India 

Chair of Advisory Committee: Dr. J. N. Reddy 

   

The conventional finite element models (FEM) of problems in structural 

mechanics are based on the principles of virtual work and the total potential 

energy. In these models, the secondary variables, such as the bending moment 

and shear force, are post-computed and do not yield good accuracy. In addition, 

in the case of the Timoshenko beam theory, the element with lower-order equal 

interpolation of the variables suffers from shear locking. In both Euler-Bernoulli 

and Timoshenko beam theories, the elements based on weak form Galerkin 

formulation also suffer from membrane locking when applied to geometrically 

nonlinear problems. In order to alleviate these types of locking, often reduced 

integration techniques are employed. However, this technique has other 

disadvantages, such as hour-glass modes or spurious rigid body modes. Hence, 

it is desirable to develop alternative finite element models that overcome the 

locking problems. Least-squares finite element models are considered to be 

better alternatives to the weak form Galerkin finite element models and, 

therefore, are in this study for investigation. The basic idea behind the least-
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squares finite element model is to compute the residuals due to the 

approximation of the variables of each equation being modeled, construct 

integral statement of the sum of the squares of the residuals (called least-squares 

functional), and minimize the integral with respect to the unknown parameters 

(i.e., nodal values) of the approximations. The least-squares formulation helps to 

retain the generalized displacements and forces (or stress resultants) as 

independent variables, and also allows the use of equal order interpolation 

functions for all variables.  

In this thesis comparison is made between the solution accuracy of finite 

element models of the Euler-Bernoulli and Timoshenko beam theories based on 

two different least-square models with the conventional weak form Galerkin 

finite element models.  The developed models were applied to beam problems 

with different boundary conditions. The solutions obtained by the least-squares 

finite element models found to be very accurate for generalized displacements 

and forces when compared with the exact solutions, and they are more accurate 

in predicting the forces when compared to the conventional finite element 

models. 
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                                         NOMENCLATURE 

  

 

FEM   Finite Element Method 

EBT   Euler-Bernoulli beam Theory 

TBT   Timoshenko Beam Theory 

( )V x     Internal Transverse Shear Force 

xxN     Internal Axial Force 

xxM     Internal Bending Moment 

( )f x     External Axial Force 

( )q x     Transverse Distributed Load 

e

xx
A      Extensional Stiffness (EA) 

e

xx
B     Extensional-Bending Stiffness   

 e

xx
D      Bending Stiffness (EI) 

e

i
Q      Nodal Force  

e

i
∆     Nodal Displacement of the Element 

eA      Cross Sectional Area 

 eI     Second Moment of Area of the Beam 

j
ψ      Lagrange Interpolation Functions  
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j
φ      Hermite Interpolation Functions 

{R}    Residual Vector 

{T}    Tangent Matrix 

ij
σ    Cartesian Component of Stress Tensor 

ij
ε    Cartesian Component of Strain Tensor 

e

E
W      Work Done by External Forces 

e

I
W      Work Done by Internal Forces 

xx
S      Shear Stiffness (GAKs) 

 G     Shear Modulus 

E   Young’s Modulus 

Ks   Shear Correction Factor 
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1. INTRODUCTION 

1.1 Motivation 

  The finite element method (FEM) is a powerful technique originally 

developed for numerical solution of complex problems in structural mechanics. 

The two broad categories into which finite element models can be divided are 

those based on minimization principles (like in structural mechanics) [1,2] and 

those based on weighted-residual methods such as the Galerkin method, Petrov-

Galerkin method, subdomain method, least-squares method and so on. 

 There are some numerical challenges that are encountered with 

conventional finite element models based on the weak form Galerkin 

formulation, which is the most common in practice. In these models, the 

secondary variables such as the bending moment and shear force are post-

computed, typically at Gauss points and not at the nodes, and do not yield good 

accuracy. In addition, in the case of the Timoshenko beam theory, the element 

with lower-order equal interpolation of the generalized displacements suffers 

from shear locking. In both Euler-Bernoulli and Timoshenko beam theories, the 

elements based on the weak form Galerkin formulation also suffer from 

membrane locking [3,4] when applied to geometrically nonlinear problems. Both 

types of locking are a result of using inconsistent interpolation for the variables 

involved in the formulation.  In order to alleviate these types of locking, often 

reduced integration techniques are employed. However, such ad-hoc techniques 

have other disadvantages, such as hour-glass modes or spurious rigid body 

modes.  

 

This thesis follows the style and format of Finite Elements in Analysis and Design. 
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Thus, it is desirable to develop alternative finite element models that 

overcome the locking problems and yield good accuracy for stress resultants. 

Least-squares finite element models are considered to be alternatives to the 

weak form Galerkin finite element model and thus considered in this study for 

investigation. The least-squares formulation helps to retain the generalized 

displacements and forces (or stress resultants) as independent variables, and 

also allows the use of equal order interpolation functions for all variables. 

1.2 Objectives of the Present Study 

 The purpose of this study is to investigate the effectiveness of the least-

squares based finite element models in solving the beam bending problems to 

overcome shear and membrane locking and predict generalized forces 

accurately. This study is conducted using the Euler-Bernoulli and Timoshenko 

beam theories applied to straight beams. The solution accuracy of the least-

squares finite element models with conventional finite element models is also 

assessed.  

To achieve the defined objectives, different finite element models of the 

two beam theories are developed and are applied to beam problems with 

different boundary conditions. The solution obtained by the least-squares 

formulation is compared to the solutions obtained from the conventional, weak 

form Galerkin finite element models.  

The following discussion provides the background for the present study. 

1.3 Background and Literature Review 

A beam is a structural element that has a very large ratio of its length to 

its cross sectional dimension and is capable of carrying loads by stretching along 

its length and bending about an axis transverse to its length. When transverse 
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loads are applied on a beam, internal forces are generated which resist the 

deformation of the beam. If the applied load is large, the magnitude of the 

internal forces increases. At the same time the deformation of the beam also 

increases. Consequently, the linear relationship between loads and 

displacements of the beam is no longer valid.  

 Depending on the kinematic assumptions, two different theories are often 

used to model the structural behavior of beams: 

1) Euler- Bernoulli beam theory (EBT) 

2) Timoshenko beam theory(TBT) 

In the Euler Bernoulli beam theory, one neglects the effect of the transverse 

shear strain whereas in the Timoshenko beam theory it is taken into account. 

Both shear and membrane locking in beams are primarily due to the use 

of inconsistent interpolation of the variables. When equal and lower order 

interpolation of the displacement and rotation are used in the Timoshenko beam 

finite element, the element exhibits locking as it is unable to cope with the 

constraint that the slope should be compatible with the derivative of the 

deflection in the thin beam limit. The problem of shear locking is often overcome 

by numerically mimicking different variation (i.e., constant and linear) of the 

rotation function in shear energy and bending energy through numerical 

integration [2]. There are several other approaches that have been adopted to 

eliminate locking [1, 2, 5-10]. The concept of locking was first discussed by 

Kikuchi and Aizawa [5], and Zienkiewicz and Owen [11] advocated that the 

reduced integration technique is a means of obtaining accurate solutions. 

However, such ad-hoc approaches have other disadvantages, such as 

appearance of hour-glass modes or spurious rigid body modes. Hence, it is 
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desirable to develop alternative finite element models that overcome the locking 

problems.   

 In the past few years finite element methods based on least-squares 

variational principles have drawn considerable attention. It is a general 

methodology that produces a wide range of algorithms [9]. Given a set of 

differential equations, the least-squares method allows one to define a convex, 

unconstrained minimization principle so that the finite element model can be 

developed in Ritz or weak form Galerkin setting [2]. This model has proved to 

result in a positive-definite system of equations and significant savings in the 

computational cost [12]. 

 The least-square approach has been implemented in the finite element 

context to solve the problems of plate bending, shear-deformable shells, 

incompressible and compressible fluid flows [1, 13-15] etc. However, there has 

been no systematic study involving the development of least-squares finite 

element models of beam theories and their assessment in comparison to the 

conventional beam finite elements. The present study also accounts for 

geometric nonlinearity in the von karaman sense. 
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2. ALTERNATIVE FINITE ELEMENT MODELS 

2.1 Introduction 

 A mathematical model is a set of equations, algebraic as well as 

differential, which is used to describe the response of a physical system in terms 

of certain variables. The mathematical models of most mechanical systems are 

derived using the principles of physics, such as the conservation of mass, 

conservation of linear momentum, and conservation of energy. The derivation 

of the governing equations is not as challenging as solving them and computing 

accurate solution. Numerical methods help to convert these governing 

differential equations to a set of algebraic equations that can be solved using 

computers. While solving such equations proper care must be taken to preserve 

all features of the mathematical model (which reflects the physics of the 

problem) in the formulation and development of the associated computational 

model. 

 There are several methods to obtain numerical solutions of ordinary and 

partial differential equations. These include the finite difference method, traditional 

variational methods (e.g., Ritz and Galerkin methods), the finite element method, etc. In 

the finite difference method, the derivatives in the governing differential 

equations are replaced by discrete values. In a variational approach, the 

variable(s) of a differential equation are approximated as a linear combination of 

unknown parameters and known functions, 
0

1

( ) ( ) ( ) ( )

n

j j

j

u x U x c x xφ φ
=

≈ = +∑ , and the 

parameters 
i

c  are then determined by satisfying the differential equations in a 

weighted-residual sense (see Reddy [3]). In the finite element method, the 

domain of the problem is divided into a collection of subdomains (called finite 
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elements), and over each subdomain a variational method is used to set up the 

discrete problem. The element equations are then put together to obtain a 

system of algebraic equations for the assemblage of elements. Different types of 

finite element models are obtained by using different weighted-integral 

statement. These are discussed in the following section.  

2.2 Different Integral Formulations and Finite Element Models 

 Based on the method used to derive the algebraic equations of a 

mathematical model, different finite element models of the mathematical model 

can be developed. These alternative methods are discussed next. 

    1) The Ritz Method: Here the coefficients of the approximation are 

determined by minimizing a functional (i.e., first variation of I is equal to zero) 

equivalent to the governing differential equation 0Au f− = , 

                          
1

( ) ( , ) ( ), 0 ( , ) ( )
2

I u B u u l u I B u u l uδ δ δ= − = ⇒ =                              (1) 

Then the approximations  

                        ( ) ( ) ( ) ( )0

1 1

( ) ,
N N

N j j j j

j j

u x U x c x x u c xφ φ δ δ φ
= =

≈ = + ≈∑ ∑         (2) 

are substituted for u and uδ  into Eq. (1) to obtain the Ritz finite element model  

( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )( )
( )( ) ( ) ( )( )

0

1

0

1

1

0

, ,

                      1, 2,3,....

, ,

 ,

N

j j i

j

N

j i j i i

j

N

ij j i

j

ij j i

i i i

B c x x l x

B x x c l x B x x

or K c F i N

K B x x

F l x B x x

φ φ φ

φ φ φ φ φ

φ φ

φ φ φ

=

=

=

 
+ = 

 

= −

= =

=

= −

∑

∑

∑  
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2) Weighted Residual Method: In the weighted residual method, the 

approximate solution is substituted into the differential equation 0Au f− = and 

the resulting residual 0R AU f= − ≠ is minimized with respect to a weight 

function. Depending on the choice of the weight function various models can be 

derived.  Various subclasses of the weighted residual method are summarized 

below. In the general weighted-residual method, we require 

( ) ( )x x, 0                        ( 1,2..... )i jR c dxdy where i Nψ
Ω

= =∫  

where 

( ) ( ) ( )0

1

0
N

N j j

j

R A U f A c x x fφ φ
=

 
≡ − = + − ≠ 

 
∑  

(a) The Petrov-Galerkin Method The above weighted residual method is called 

Petrov-Galerkin method when i iψ φ≠  

( ) ( )0

j=1

N

i j j iA dx c f A dxψ φ ψ φ
Ω Ω

   = −  ∑ ∫ ∫  

(b) The Galerkin Method: If i iψ φ=  then the weighted residual method is called 

Galerkin method. 

( )

( )0

ij i j

i i

A A dx

F f A dx

φ φ

φ φ

Ω

Ω

=

 = − 

∫

∫
 

The approximation functions used here are of much higher order than the one 

used in the Ritz method. 

(c) The Collocation Method 

         Here the approximation functions are selected such that the residual will be 

zero simultaneously. Thus we have ( ), 0            ( 1,2.... )i

j
R x c i N= = . 
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(d) The Least-Squares Method 

        The basic concept behind the least squares method is that it minimizes the 

square of the residual. The parameter 
j

c  is determined by minimizing the 

integral of the square of the residual. 

( )2 x, 0
j

i

R c dx
c Ω

∂
=

∂ ∫  

where 

                                      2 2 2

1 2 1 2( ) ( ), ,
h h

R R R R A u f R B u g= + = − = −  and  

( ) ( )      in     and    B     in  A u f u g= Ω = Γ are the functions. 

 In the present study, the least squares method is used to formulate the finite 

element models of the Euler-Bernoulli beam theory (EBT ) and the Timoshenko 

beam theory (TBT). 

2.3 Summary 

  Thus FEM is a numerical method that can be a used to obtain a 

numerical solution where an analytical solution cannot be developed. FEM was 

originally developed for analysis of aircraft structures. However due to its 

general nature it has been applicable in a wide range of problems in structural 

mechanics, fluid mechanics, electrical engineering etc. This section discusses 

different types of formulations in finite element analysis. This thesis will discuss 

more about the theory, formulations and finite element model for least-squares 

based finite element formulation in details in the subsequent sections. This 

study will be conducted specifically for beams as they are widely used in many 

structural applications. 
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3. THEORETICAL FORMULATION OF EBT AND TBT 

3.1 Background  

 A beam is a structural element that has a very large ratio of its length to 

its cross section dimension. It can be subjected to a transverse load which 

includes the normal and the shear stress and the displacements are 

perpendicular to the normal axis. Beams can be straight or curved. A straight 

beam is usually modeled by a line segment with vertical displacement and 

rotations at each end. 

 When the load is applied on a beam, internal forces are generated which 

resist the deformation of the beam. If the applied load is large, the magnitude of 

the internal forces increases. At the same time the deformation of the beam also 

increases. Thus the linear relationship between load v/s deflection of the beam is 

no more valid. 

The following assumptions are made in the development of linear motion of 

solid bodies: 

1) The displacements are small. 

2) The strains developed are very large. 

3) The material is linearly elastic. 

Due to the small strains the changes in the geometry are ignored. The 

equilibrium equations are developed for the undeformed configuration. But if 

the load increases the linear relationships do not hold true. Hence for a general 

nonlinear formulation of straight or curved beams, the measures of stress and 

strain consistent with the deformations must be accounted in the formulation. 

The following assumptions are made in the study of nonlinear analysis of beams 

here: 
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1) The beam is long and thin 

2) The transverse displacements are large. 

3) The strains developed are very small. 

4) The rotations developed are small. 

The inplane forces are proportional to the square of the rotation of the transverse 

normal to the beam axis and are responsible for the nonlinearity. 

Depending on the assumptions for transverse shear strain there are two 

different theories to model the beams: 

3) Euler- Bernoulli beam theory (EBT) 

4) Timoshenko beam theory(TBT) 

The Euler Bernoulli beam theory neglects the effect of the transverse shear strain 

whereas the Timoshenko beam theory takes into account the effect of transverse 

shear strain in the formulation. 

3.2 Euler-Bernoulli Beam Theory 

 EBT is the simplest beam theory and is based on displacement field. The 

following sections will discuss about EBT in detail. 

3.2.1 Assumptions 

 The basic assumptions made in developing the governing equations of EB 

hypothesis are the plane cross sections perpendicular to the  beam axis  before 

deformation remain (a) plane  (b) rigid  (c) rotate such that they remain 

perpendicular to the beam axis after deformation. 

These assumptions neglect the Poisson’s effect and the transverse strain. 

These two assumptions are taken into account in Timoshenko beam theory. 
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Figure 3.1. Deformation of a beam in Euler-Bernoulli theory 

 

3.2.2 Displacement fields 

 The displacement field for beams having moderately large rotations but 

small strains derived from Figure 3.1 is:   

0
1 0 ( )

dw
u u x z

dx
= − , 2 0u =  and 3 0 ( )u w x=                                                                   (3.1)                              

where, 1 2 3( , , )u u u  are the displacement along (x, y, z) axis and  

0u  is the axial displacement of a point on the neutral axis and  

0w  is the transverse displacement of the point on the neutral axis  

3.2.3 Nonlinear strain-displacement relations 

  The following nonlinear strain-displacement relation is used to calculate 

the strains  

1 1

2 2

ji m m
ij

j i i j

uu u u

x x x x
ε

   ∂∂ ∂ ∂
= + +      ∂ ∂ ∂ ∂   

                                                                             (3.2) 

Substituting the values of 1u , 2u and 3u  in the above equations and eliminating 

the large strain terms but retaining the rotation terms of the transverse normal 

we get, 
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22

0 0 0
11 2

1

2
xx

du d w dw
z

dx dx dx
ε ε

 
= = − +  

 
 

                
2 2

0 0 0

2

1

2

du dw d w
z

dx dx dx

    
= + −    

     
 

                0 1

xx xx
zε ε= +                                                                                                     (3.3)  

where,  

2 2
0 10 0 0

2

1
,

2
xx xx

du dw d w

dx dx dx
ε ε

    
= + = −    

     
 

These strains are known as von Karman strains. 

3.2.4 Derivation of governing equations  

 According to the principle of virtual displacement, for a body in 

equilibrium, the virtual work done by the internal and external forces to move 

through their virtual displacements is zero. Thus based on this principle the 

following can be concluded. 

                                          0e e e

I E
W W Wδ δ δ≡ + =                                                       (3.4) 

where 

e

I
Wδ  is the virtual strain stored in the element due to 

ij
σ (Cartesian component 

of stress tensor) due to the virtual displacement 
ij

δε (Cartesian component of 

strain tensor)   and  

e

E
Wδ  is the work done by external forces 

Thus for a beam element we have, 

e

e

I ij ij
V

W dVδ δε σ= ∫  

6

0 0

1

b

e

a

x

e e e

E i i
V

ix

W q w dx f u dx Qδ δ δ δ
=

= + + ∆∑∫ ∫                                                                      (3.5) 



13 

 

where e
V  is the elemental volume, q(x) is the distributed transverse load (per 

unit length), f(x) distributed axial load  e

i
Q  is the nodal force and e

i
δ∆ is the nodal 

displacement of the element. The nodal displacements and nodal forces in 

Figure 3.2  are defined by, 

                  ( )0
1 0 2 0 3( ),  ( ),  

a

e e e

a a a

x

dw
u x w x x

dx
θ

 
∆ = ∆ = ∆ = − ≡ 

 
 

                  ( )0
4 0 5 0 6( ),  ( ),  

b

e e e

b b b

x

dw
u x w x x

dx
θ

 
∆ = ∆ = ∆ = − ≡ 

 
 

and 

( ) ( )

( ) ( )

1 4

0 0
2 5

3 6

,    

,     = 

,     

a b

e e

xx a xx b

e exx xx
xx xx

x x

e e

xx a xx b

Q N x Q N x

dw dM dw dM
Q N Q N

dx dx dx dx

Q M x Q M x

= − =

   
= − + +   

   

= − =

                                   (3.6) 

The nodal displacements and the nodal forces derived above can be denoted as 

follows: 

 

 

        
1 2

∆1

∆2

∆3

∆4

∆5

∆
6

h1          
1 2

Q1

Q
2

Q3

Q4

Q5

Q6

he  

                                       (a)                                                             (b) 

Figure 3.2.    (a) Nodal displacements for EBT        (b) Nodal forces for EBT 

 

 

The virtual strain energy equation can be simplified by substituting equation 

(3.3) in equation (3.5) as follows: 
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b

e
a

x
e

I xx xx
x A

W dAdxδ δε σ= ∫ ∫  

                                ( )0 1b

e
a

x

xx xx xx
x A

z dAdxδε δε σ= +∫ ∫  

                                
2

0 0 0 0

2

b

e
a

x

xx
x A

d u dw d w d w
z dAdx

dx dx dx dx

δ δ δ
σ

   
= + +   

    
∫ ∫  

                                
2

0 0 0 0

2

b

e
a

x

xx xx
x A

d u dw d w d w
N M dx

dx dx dx dx

δ δ δ   
= + +   

    
∫ ∫                  (3.7) 

here 
xx

N  is the axial force which can be expressed as 
exx xx

A
N dAσ= ∫  and 

xx
M  is the moment which can be expressed as 

exx xx
A

M zdAσ= ∫  

Thus virtual work statement can be written as 

( ) ( )

( ) ( )

2

0 0 0 0
02

6

0

1

0

      

b

e

a

b

a

x

xx xx
V

x

x

e e

i i

ix

d u dw d w d w
N M dx q x w x dx

dx dx dx dx

f x u x dx Q

δ δ δ
δ

δ δ
=

   
= + − − −   

    

− ∆

∫ ∫

∑∫

                 (3.8) 

By separating the two terms involving 0 0 and  u wδ δ  we get the following two 

equations  

( ) ( )

( ) ( )

0
0 1 1 4 2

2

0 0 0
0 2 2 3 3 5 1 6 22

0

0

b

a

b

a

x

e e e e

xx

x

x

e e e e e e e e

xx xx

x

d u
N f x u x dx Q Q dx

dx

d w dw d w
N M q x w x dx Q Q Q Q

dx dx dx

δ
δ δ δ

δ δ
δ δ δ δ δ

  
= − − ∆ − ∆  

  

  
= − − − ∆ − ∆ − ∆ − ∆  

  

∫

∫

                                                                                                                                       (3.9)       

Collecting the terms of 0uδ  and 0wδ  and simplifying the terms we get, 

( )

( )

0

2

0
0 2

:                   -

:                   -

xx

xx
xx

dN
u f x

dx

dw d Md
w N q x

dx dx dx

δ

δ

=

 
− = 

 

                                                       (3.10) 
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Thus the boundary conditions are: 

( ) ( )

( ) ( )

1 4

0 0
2 5

3 6

0,                                   0

0,                0 

 + =0 ,                                    + =0     

a b

e e

xx a xx b

e exx xx
xx xx

x x

e e

xx a xx b

Q N x Q N x

dw dM dw dM
Q N Q N

dx dx dx dx

Q M x Q M x

+ = − =

   
+ + = − + =   
   

                      (3.11)                             

 

3.2.5 Vector approach 

 In this method a beam element of length x∆  is analyzed by adding the 

forces and the moments acting on the beam.  

 

f(x)

q(x)

z

x

V
V+∆V

N Nxx xx+∆

M Mxx xx+∆∆x

q(x)

dw
dx

Mxx

Nxx

x

z

 

Figure 3.3.  A typical beam element with forces and moments under uniformly 

distributed load  

 

Consider the above beam element with forces and moments under uniformly 

distributed load is shown in Figure  3.3  where   ( )V x  is the internal vertical 

shear force, 
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xxN  is the internal axial force, 

xxM  is the internal bending moment, 

( )f x is the external axial force, 

( )q x is the distributed load. 

Using D Alembert’s principle and equating the forces in the X, Y and Z direction 

we get 

( ) ( )

( ) ( )

( ) ( ) ( )0

0 :            0

0 :            0

0 :            0

x xx xx xx

y

z xx xx xx xx

F N N N f x x

F V V V q x x

dw
F M M M V x N x q x x c x

dx

= − + + ∆ + ∆ =

= − + + ∆ + ∆ =

= − + + ∆ − ∆ + ∆ + ∆ ∆ =

∑
∑

∑

 

Thus taking the limit as 0x∆ →  we can conclude 

                                   

( )

( )

0

               0    

                  0

    0

xx

xx
xx

dN
f x

dx

dV
q x

dx

dM dw
V N

dx dx

+ =

+ =

− + =

                                                  (3.12) 

 

 

3.3 Timoshenko Beam Theory 

3.3.1 Assumptions 

 As discussed earlier, basic assumptions made in developing the 

governing equations of EB hypothesis are the plane cross sections perpendicular 

to the beam axis before deformation remains (a) plane (b) rigid (c) rotation is 

independent of the slope of the beam. In TBT the first two assumptions are the 

same and the third assumption is relaxed by assuming that the rotation of the 

beam is independent of the slope.  
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3.3.2 Displacement fields 

 The displacement field for beams having moderately large rotations but 

small strains as shown in Figure 3.4 is given by  

( )1 0 ( ) xu u x z xφ= + ,        2 0u =     and         3 0 ( )u w x=                                             (3.13)                                                      

where, 1 2 3( , , )u u u  are the displacement along (x, y, z) axis, 0u  is the axial 

displacement of a point on the neutral axis, and 0w  is the transverse 

displacement of the point on the neutral axis.  

 

 

 

x

z, w0

x,u0
z

Undeformed

(u ,w )0 0

(u,w)

u0

-dw0

dxTBT

Φ

 

Figure 3.4.  Deformation of a beam in Timoshenko theory 

 

 

 

3.3.3 Nonlinear strain-displacement relations 

  The following nonlinear strain-displacement relation is used to calculate 

the strains as follows 
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1 1

2 2

ji m m
ij

j i i j

uu u u

x x x x
ε

   ∂∂ ∂ ∂
= + +      ∂ ∂ ∂ ∂   

                                      (3.14) 

Substituting the values of 1u , 2u and 3u  in the above equations and eliminating 

the large strain terms but retaining the rotation terms of the transverse normal 

we get, 

2

0 0
11

1

2

x
xx

du d dw
z

dx dx dx

φ
ε ε

 
= = − +  

 
 

2

0 01

2

x
du dw d

z
dx dx dx

φ    
= + +    

     
 

                                              0 1

xx xx
zε ε= +                                                                     (3.15) 

                                        03 01
xz x xz

u dwu

x x dx
γ φ γ

∂∂
= − = + ≡

∂ ∂
                                          (3.16) 

where     0 1 00 0 0 0,     ,      x
xx xx xz x

d u dw d w d d w

dx dx dx dx dx

δ δ δφ δ
δε δε δγ δφ

   
= + = = +  
   

 

3.3.4 Derivation of governing equations  

  As discussed in EBT, the principle of virtual displacement states that for a 

body in equilibrium, the virtual work done by the internal and external forces to 

move through their virtual displacements is zero. Thus based on this principle 

the following can be concluded. 

                                          0e e e

I E
W W Wδ δ δ≡ + =                                                     (3.17) 

where e

I
Wδ the virtual strain is stored in the element due to 

ij
σ (Cartesian 

component of stress tensor) due to the virtual displacement 
ij

δε (Cartesian 

component of strain tensor)   and e

E
Wδ  is the work done by external forces. 

Thus for a beam element we have, 

e

e

I ij ij
V

W dVδ δε σ= ∫  
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6

0 0

1

b

e

a

x

e e e

E i i
V

ix

W q w dx f u dx Qδ δ δ δ
=

= + + ∆∑∫ ∫                                                                    (3.18) 

where e
V  is the elemental volume, q(x) is the distributed transverse load (per 

unit length), f(x) distributed axial load  e

i
Q  is the nodal force and e

i
δ∆ is the nodal 

displacement of the element.  

The virtual strain energy equation can be simplified as follows: 

                       ( )
b

e
a

x
e

I xx xx xz xz
x A

W dAdxδ δε σ δγ σ= +∫ ∫                                              

                                ( )0 1 0b

e
a

x

xx xx xx xz xz
x A

z dAdxδε δε σ δγ σ= + +∫ ∫  

                                0 1 0b

e
a

x

xx xx xx xx xz x
x A

N M Q dxδε δε δγ = + + ∫ ∫                                      (3.19) 

where  
xx

N  is the axial force which can be expressed as 
exx xx

A
N dAσ= ∫  and 

xxM  is the moment which can be expressed as 
exx xx

A
M zdAσ= ∫  

xQ  is the element force x s xz
A

Q K dAσ= ∫  

sK  is the shear correction coefficient which takes into account the difference 

between the shear energy calculated by equilibrium  and by Timoshenko beam 

theory. Solving in the same way as EBT and collecting the terms of 0uδ  and 0wδ  

and simplifying the terms we get, 

( )

( )

0

2

0
0 2

:                                                 

  :                                       0

:                   

xx

xx
xx

xx
xx

dN
u f x

dx

dM
Q

dx

dw d Md
w N q x

dx dx dx

δ

δφ

δ

− =

− + =

 
− − = 

 

                                                (3.20) 
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3.4 Summary 

 This section discusses the introduction to beams and the different 

assumptions made to derive the beam equation. A more detailed discussion 

about the two most important theories Euler-Bernoulli and Timoshenko beam 

theory regarding the derivation of the governing differential equations has been 

made in this section. The discussion of weak form development and finite 

element model for EBT and TBT has been done in the next section. 
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4. FINITE ELEMENT MODEL OF THE EBT 

  

4.1 Weak Form Development 

 Using the governing equations from equations (3.12) we can develop the 

weak form as follows: 

[ ]

( ) ( ) ( ) ( )

1

1
1 1

1
1 1 1

0

  

  

b

a

b

b

a

a

b

a

x

xx

x

x
x

xx xx x

x

x

xx a xx a b xx b

x

dN
v f dx

dx

dv
N fv dx v N

dx

dv
N fv dx v x N x v x N x

dx

 
= − − 

 

 
= − − − 

 

 
   = − − − − −     

 

∫

∫

∫

 

2

0
2 2

2

0 02 2 2
2 22

2

02 2
22

0

  

  

b

a

b bb

a aa

x

xx
xx

x

x xx

xx
xx xx xx xx

x xx

xx xx

dw d Md
v N q dx

dx dx dx

dw dw dMdv d v dv
N M qv dx v N M

dx dx dx dx dx dx

dwdv d v
N M qv

dx dx dx

  
= − − −  

  

          
= − − − − + −         

        

  
= − − −  

  

∫

∫

( )

( ) ( ) ( )

0
2

0 2 2
2            

b

a
a

a bb

x

xx
a xx

x x

xx
b xx xx a xx b

x xx

dw dM
dx v x N

dx dx

dw dM dv dv
v x N M x M x

dx dx dx dx

  
− − − −  

  

      
   − + − − − −         

     

∫

 

                                                                                                                                     (4.1) 

Here 1v  and 2v are the weight functions which correspond to 0uδ  and 0wδ . 

As mentioned in the assumptions earlier the EB has small to moderate 

rotations and the material is assumed to be linearly elastic which results in the 

following  

                                                       e

xx xxEσ ε=                                                            (4.2) 
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The above relationship which defines the relationship between the total stress 

and the total strain is called as the Hooke’s law.  

Thus we get 

                           
2 2

0 0 0

2

2 2

0 0 0

2

1
      

2

1
      

2

e e

e

e

xx xx xx
A A

e

A

e e

xx xx

N dA E dA

du dw d w
E z dA

dx dx dx

du dw d w
A B

dx dx dx

σ ε= =

    
= + −    

     

    
= + −    

     

∫ ∫

∫                                  (4.3)        

                          
2 2

0 0 0

2

2 2

0 0 0

2

1
      

2

1
      

2

e e

e

e

xx xx xx
A A

e

A

e e

xx xx

M zdA E zdA

du dw d w
E z zdA

dx dx dx

du dw d w
B D

dx dx dx

σ ε= =

    
= + −    

     

    
= + −    

     

∫ ∫

∫                                 (4. 4)        

where, e

xxA  is the extensional stiffness 

e

xxB is the extensional-bending stiffness  and  

e

xxD  is the bending stiffness.  

For isotropic material we have, 

e e e

xxA E A=  , 0e

xxB =  and e e e

xxD E I=  where eA  is the cross section area and eI is 

the second moment of inertia of the beam element. 

 

4.2 Finite Element Model 

 The interpolation functions for the axial and transverse deflection will be  

( ) ( )
2

0

1

j j

j

u x u xψ
=

=∑   And   ( ) ( )
4

0

1

j j

j

w x xφ
=

= ∆∑                                                         (4.5) 

( ) ( ) ( ) ( )1 0 2 3 0 4,      ,         ,           a a b bw x x w x xθ θ∆ ≡ ∆ ≡ ∆ ≡ ∆ ≡                              (4.6) 
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In the above equations jψ  are Lagrange interpolation functions and jφ  are 

Hermite interpolation functions. 

Substituting the interpolation function in the weak form equation we get 

( )

( )

2 4
11 12 1

1 1

2 4
21 22 2

1 1

0                 1,2

0                 1, 2,3,4

ij j iJ J i

j J

Ij j IJ J I

j J

K u K u F i

K u K u F I

= =

= =

= + − =

= + − =

∑ ∑

∑ ∑
                                                  (4.7) 

where 

11

12 0

21 21 120

1

2

,          =2     

b

a

b

a

b

a

x

ji
ij xx

x

x

i J
iJ xx

x

x

jI
Ij xx Ij iJ

x

dd
K A dx

dx dx

dw d d
K A dx

dx dx dx

ddw d
K A dx K K

dx dx dx

ψψ

ψ φ

ψφ

=

 
=  

 

=

∫

∫

∫

 

222
22 0

2 2

1

2

b b

a a

x x

J JI I
IJ xx xx

x x

d dw dd d
K D dx A dx

dx dx dx dx dx

φ φφ φ 
= +  

 
∫ ∫  

                             

1

2

ˆ
b

a

b

a

x

i i i

x

x

i I I

x

F f dx Q

F q dx Q

ψ

φ

= +

= +

∫

∫

                                                                            (4.8)       

here           

                       1 1 2 2

1 3 2 4 3 5 4 6

ˆ ˆ,            ,      and       

,           ,                and          

Q Q Q Q

Q Q Q Q Q Q Q Q

= =

= = = =
 

The stiffness matrix written above is unsymmetric.  Hence we will try to 

linearize the equation by another method as follows, 
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11

12 0

21 21 120

222
22 0

2 2

1

1

2

,          =2      

1

2

b

a

b

a

b

a

b b

a a

a

x

je i
ij xx

x

x

e i J
iJ xx

x

x

je I
Ij xx Ij iJ

x

x x

eJ JI I
IJ xx xx

x x

x

i

x

dd
K A dx

dx dx

dw d d
K A dx

dx dx dx

ddw d
K A dx K K

dx dx dx

d dw dd d
K D dx A dx

dx dx dx dx dx

F f

ψψ

ψ φ

ψφ

φ φφ φ

=

 
=  

 

=

 
= +  

 

=

∫

∫

∫

∫ ∫

2

ˆ
b

b

a

i i

x

i I I

x

dx Q

F q dx Q

ψ

φ

+

= +

∫

∫

                                           

2 2 4
1 2

1 1 1 1

,          or    ip p i ip p iP P i

p p P

K F K u K F
αγ γ α α α α

γ = = = =

∆ = + ∆ + =∑∑ ∑ ∑                                       (4.9) 

In matrix form it can be written as  

                                  
{ }

{ }

{ }

{ }

1 111 12

21 22 2 2

FK K

K K F

        ∆         =   
     ∆          

                                          (4.10)                              

where  

1

2

,                i=1,2

,               i=1,2,3,4

i i

i i

u∆ =

∆ = ∆
 

We thus split 12

iJK  into two parts one of which is taken from the previous 

solution  

     

2

0 0 0 0

2

0 0 0 0 0 0 0

1

2

1 1
                

2 2

b

a

b

a

x

e

xx

x

x

e

xx

x

d w dw du dw
A dx

dx dx dx dx

d w dw du du dw d w dw
A dx

dx dx dx dx dx dx dx

δ

δ δ

    
+   

     

    
= + +   

     

∫

∫

            (4.11) 

Thus now we get, 
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{ }

{ }
{ }

{ }

111 12

21 22 2

FK K u

K K F

                =   
  ∆              

                                         (4.12) 

where 

11 11

12 12 0

21 21 120

1

2

1
,          =      

2

b

a

b

a

b

a

x

je i
ij ij xx

x

x

e i J
iJ iJ xx

x

x

je I
Ij xx Ij iJ

x

dd
K K A dx

dx dx

dw d d
K K A dx

dx dx dx

ddw d
K A dx K K

dx dx dx

ψψ

ψ φ

ψφ

= =

 
= =  

 

=

∫

∫

∫

 

            

222
22 0 0

2 2

1

2

1

2

ˆ

b b

a a

b

a

b

a

x x

eJ JI I
IJ xx xx

x x

x

i i i

x

x

i I I

x

d dw du dd d
K D dx A dx

dx dx dx dx dx dx

F f dx Q

F q dx Q

φ φφ φ

ψ

φ

  
= + +  

   

= +

= +

∫ ∫

∫

∫

                    (4.13)                                              

4.3 Membrane Locking 

 Linearity is one of the assumptions of the EBT. This means that the beam 

is subjected to bending forces only and there are no axial forces. Thus ideally the 

beam should not stretch. Thus the axial strain should be zero. 

2 2

0 0 0 01
0        OR           

2

du dw du dw

dx dx dx dx

    
+ =    

     
�  

   In bending dominated deformations, the beam undergoes axial 

displacement along with transverse deflection even when there are no axial 

forces. In order to develop this transverse deflection the axial strain is developed 

in the beam. Thus as the load increases the axial stiffness increases. This results 

in computational difficulties and incorrect solutions. The inaccuracy in the 
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solution is because of the ambiguity between the degree of polynomial variation 

and the interpolation functions of  0u  and 0w . This phenomenon is called 

membrane locking. A normal way to solve such problems is to take the 

minimum interpolation of  0u  and 0w . 

4.4 Summary 

 This section discussed about the conventional weighted residual method 

for Euler-Bernoulli (EB) beam theory. This part of the research focuses mainly on 

the weak form development and finite element model. The element coefficients 

obtained in this finite element model will be assembled to form a global stiffness 

matrix and the solutions will be obtained by FORTRAN program. A detailed 

discussion about the solution procedure has been made in this section. A similar 

discussion about the Timoshenko beam theory (TBT) will be made in the 

following section. 
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5. FINITE ELEMENT MODEL OF THE TBT 

5.1 Weak Form Development 

 As mentioned in the assumptions earlier the  

                                  e

xx xxEσ ε=    and         e

xz xzGσ γ=                                              (5.1) 

The above relationship which defines the relationship between the total stress 

and the total strain is called as the Hooke’s law.  

From equation (5.1) and (3.20) we get 

                           
2

0 0

2

0 0

1
      

2

1
      

2

e e

e

e

xx xx xx
A A

e x

A

e e x
xx xx

N dA E dA

du dw d
E z dA

dx dx dx

du dw d
A B

dx dx dx

σ ε

φ

φ

= =

    
= + +    

     

    
= + +    

     

∫ ∫

∫                                    (5.2) 

                          
2

0 0

2

0 0

1
      

2

1
      

2

e e

e

e

xx xx xx
A A

e x

A

e e x
xx xx

M zdA E zdA

du dw d
E z zdA

dx dx dx

du dw d
B D

dx dx dx

σ ε

φ

φ

= =

    
= + +    

     

    
= + +    

     

∫ ∫

∫                                   (5.3) 

                             0
x xx x

dw
Q S

dx
φ

 
= + 

 
                                                                       (5.4) 

where, e

xxA  is the extensional stiffness 

e

xxB is the extensional-bending stiffness  and  

 e

xxD  is the bending stiffness.  

xxS  is the shear stiffness and is defined as xx s s
A

S K GdA K GA= =∫  where G is the 

shear modulus. 
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For isotropic material we have, e e e

xxA E A=  , 0e

xxB =  and e e e

xxD E I=  where eA  is 

the cross section area and eI is the second moment of inertia of the beam 

element. 

Thus, the governing equations for TBT are as follows, 

2

0 0

2

0 0 0 0

1
                                         

2

1

2

                               

e

xx

e

xx xx x

du dwd
A f

dx dx dx

dw du dw dwd d
A S q

dx dx dx dx dx dx
φ

    
− + =   

     

        
− + − + =      

        

0      0x
xx xx x

d dwd
D S

dx dx dx

φ
φ

   
− + + =   

   

                                    (5.5) 

5.2 Finite Element Model 

 For TBT the virtual work statement is equivalent to the following 

( ) ( ) ( ) ( )

( ) ( )

2

0 0 0
0 1 0 4

2

0 0 0 0 0
0

1
0

2

1
0

2

           

b

a

b

a

x

e e e

xx a b

x

x

e e

xx x xx

x

d u du dw
A f x u x dx Q u x Q x

dx dx dx

d w dw dw du dw
S A q x w x dx

dx dx dx dx dx

δ
δ δ δ

δ
φ δ

      = + − − −         

         = + + + − −      
           

∫

∫

( ) ( )

( ) ( )

2 0 5 0

0
3 6

   

0   

                                 

b

a

e e

a b

x

e e e ex x
xx xx x x x a x b

x

Q w x Q w x

d d dw
D S dx Q x Q x

dx dx dx

δ δ

δφ φ
δφ φ δφ δφ

−

  
= + + − −  

  
∫

   (5.6) 

 Thus the boundary conditions are : 

       

( ) ( )

( ) ( )

1 4

0 0
2 5

3 6

,                                   

,                

  ,                                    =      

a b

e e

xx a xx b

e e xx
xx x xx

x x

e e

xx a xx b

Q N x Q N x

dw dw dM
Q N Q Q N

dx dx dx

Q M x Q M x

= − =

   
= − + = +   

   

= −

                             (5.7)                              

The interpolation functions for the axial and transverse deflection will be  
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           ( ) (1)

0

1

m

j j

j

u x u ψ
=

=∑   ,   ( ) (2)

0

1

n

j j

j

w x w ψ
=

=∑  and  ( ) (3)

1

p

x j j

j

x sφ ψ
=

=∑                  (5.8) 

In the above equations jψ  are Lagrange interpolation functions substituting the 

interpolation function in the weak form equation we get 

11 12 13 1

1 1 1

21 22 23 2

1 1 1

31 32 33 3

1 1 1

0

0

0

pm n

ij j ij j ij j i

j j j

pm n

ij j ij j ij j i

j j j

pm n

ij j ij j ij j i

j j j

K u K w K s F

K u K w K s F

K u K w K s F

= = =

= = =

= = =

= + + −

= + + −

= + + −

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

                                                                   (5.9)                                

where 

(1)(1)
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(2)(1)
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(1)(2)
21 13 310

2(2)(2) (2)
22 0
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,          = =0     
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b

a
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b

a
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a

x

ji
ij xx

x

x

ji
ij xx

x

x

ji
ij xx ij ij

x

x

ji i
ij xx xx

x

dd
K A dx

dx dx

ddw d
K A dx

dx dx dx

ddw d
K A dx K K

dx dx dx

dd dw d
K S dx A

dx dx dx dx

ψψ

ψψ

ψψ

ψψ ψ
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=  
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∫

∫

∫

( ) ( )

(2)

(2)
23 (3) 32

(3)(3)
33 (3) (3)

1 (1) (1) (1)

1 4

b

a

b

a

b

a

b

a

x

j

x

x

i
ij xx j ij

x

x

ji
ij xx xx j i

x

x

i i i a i b

x

d
dx
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( ) ( )

( ) ( )

2 (2) (2) (2)

2 5

3 (3) (3)

3 6

b

a

x

i i i a i b

x

i i a i b

F q dx Q x Q x

F Q x Q x

ψ ψ ψ

ψ ψ

= + +

= +

∫
                                         (5.10)                              

 In matrix form it can be written as  

{ }

{ }

{ }

{ }

{ }

{ }

111 12 13

21 22 23 2

31 32 33 3

FK K K u

K K K w F

sK K K F

                            =             
                  

                                                                 (5.11)                             

5.3 Shear and Membrane Locking 

 The simplest Timoshenko element is one which has the linear 

interpolation of both 0w and xφ .This means that the slope 0dw

dx
 should be 

constant. In this beams the ratio of length to thickness is large and thus the slope 

will be xφ− .This contradicts our earlier discussion. Moreover xφ =constant results 

in zero bending energy while the transverse shear is nonzero. Thus the 

assumption of linear interpolation function is inconsistent and leads to a stiff 

thin beam. This phenomenon is called shear locking.  To overcome this technique 

reduced integration method is used. In this selective integration technique, the 

stiffness coefficients associated with the transverse shear strain are evaluated 

using equal interpolations are used for 0w and xφ  but xφ  is treated as constant 

and other coefficients are derived using full integration method. The shear strain 

is represented as 0
xz x

dw

dx
γ φ= +  and membrane is given by 

2

0 01

2
xx

du dw

dx dx
ε

 
= − +  

 
.The element experiences no stretching which means 

2

0 01
0

2
xx

du dw

dx dx
ε

 
= − + = 

 
. In order to satisfy the these constraints we must have 
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0
x

dw

dx
φ �  and 

2

0 0du dw

dx dx

 
 
 

� .Here is xφ is linear and 0w  is quadratic the constraint 

is satisfied. Similarly when 0w and 0u  are linear the constraint is automatically 

satisfied. If quadratic interpolation is used for both 0w and 0u  then 0du

dx
 is linear 

and 
2

0dw

dx

 
 
 

 is quadratic, this creates inconsistency. Here the element again 

starts experiencing locking. This is called membrane locking.  

5.4 Summary 

 In this section a detailed discussion on the derivation of governing 

equations ,weak form formulations , finite element model and solution 

procedures has been made. This section also discusses two different types of 

locking in TBT beams, shear locking and memebrane locking. In order to avoid 

the inconsistencies observed in EBT ant TBT different methods such as reduced 

integration method have been implemented in the past. But this method also has 

its disadvantages of hour-glass modes or spurious rigid body modes. Thus, it is 

desirable to develop alternative finite element models that overcome the locking 

problems. An effort has been made to develop models that can use higher order 

interpolation functions and finite element models were developed using least-

squares method. These models will be discussed in the next section. 
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6. LEAST-SQUARES THEORY & FORMULATION 

6.1 Introduction  

 In order to avoid the locking problems mixed least-squares based finite 

element models can be considered as an alternative approach to the 

conventional weighted residual weak form method. A detailed discussion on 

two different models using least-squares finite element analysis is made in this 

section.  

6.2 Basic Idea 

 The basic idea behind the least-squares finite element model is to 

compute the residuals due to the approximation of the variables of each 

equation being modeled, construct integral statement of the sum of the squares 

of the residuals (called least-squares functional), and minimize the integral with 

respect to the unknown parameters of the approximations. To be more explicit, 

consider an operator equation of the form 

( ) ( )      in     and    B     in  A u f u g= Ω = Γ  

We seek suitable approximation of u as
1

n

h j j

j

u c ϕ
=

=∑ .In the least squares method, 

we seek the minimum of the sum of squares of the residuals in the 

approximation of equations as follows 

                                                         ( )2 x, 0j

i

R c dx
c Ω

∂
=

∂ ∫  

where 

                                      2 2 2

1 2 1 2( ) ( ), ,
h h

R R R R A u f R B u g= + = − = −  

The necessary condition for the minimum is 
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( ) ( ) ( ){ }2 2

0 hI u A u f dx B u g dsδ δ
Ω Γ
   = = − + −   ∫ ∫�  

Thus the variational problem is to seek hu  such that ( ), ( )h h hB u u l uδ =  holds for 

all huδ . where  

( ) ( ) ( ) ( ) ( )

( ) ( )

, x

( ) x

h h h h h h

h h h

B u u A u A u d B u B u ds

l u A u fd B u gds

δ δ δ

δ δ

Ω Γ

Ω Γ

   = +   

   = +   

∫ ∫

∫ ∫

�

�

 

Using the above concept, the least-squares finite element models of the Euler-

Bernoulli beam theory (EBT) and the Timoshenko beam theory (TBT) are 

developed as discussed below. 

q(x)

x

z,w

F0

M0

q(x)

M M+∆
M

V V+∆V

f
L

 

Figure 6.1.  A typical beam element with forces and moments under uniformly 

distributed load          

 

 

where  q is the uniformly distributed load acting on the length L of the beam ,M 

is the bending moment and V is the shear force. 

Hence the  governing equations for the beam in Figure 6.1 are  
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0

0

0

0

f

dM
V

dx

dV
c w q

dx

d
M EI

dx

dw

dx

θ

θ

− =

− − =

+ =

+ =

                                                       (6.1) 

Or eliminating V we get  

                                                  

2

2

2

2

0

0

f

d M
c w q

dx

M d w

EI dx

+ − =

 
− + = 
 

                                                     (6.2) 

Here we use the approximation  

( ) ( )1 2

1 1

,         
m n

h j j h j j

j j

w w x M M xφ ϕ
= =

≈ = ∆ ≈ = ∆∑ ∑  

And the least squares functional will be as follows 

( )
2 2

2 2

2 2
,

b

a

x

h
h h f

x

d M M d w
I w M c w q dx

dx EI dx

    
 = − + − + − +   
    
∫                                          (6.3) 

In matrix form it can be written as  

                                     
{ }

{ }

{ }

{ }

1 111 12

21 22 2 2

FK K

K K F

        ∆         =   
     ∆           

                                          (6.3) 

where  
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=
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∫

∫

∫

∫

∫

( )
2

2

b

a

x

i

x

d
q x dx

dx

ϕ
∫

                                       (6.4) 

6.3 Least-squares Finite Element MODEL 1 for Euler-Bernoulli Beam Theory 

 This section discusses about the linear and nonlinear formulation of finite 

element model for EBT. 

6.3.1 Linear formulation 

 Consider the following governing equations,  

                                                      
dN

f
dx

− =  

                                  
2

2

d M d dw
N q

dx dx dx

 
− − = 

 
 

                                               
2

2
0

d w
M EI

dx
+ =                                                              (6.5) 

 where q(x) is the transverse distributed force and N is known in terms of u and 

as                              
du

N EA
dx

=  ,   
d u

N EA
dx

δ
δ =  

The least-squares functional associated with the above set of linearized 

equations over a typical element is  
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2 222 2

1 22 2
( , , )

a

b

x

h h h
L h h h h

x

d M dN d w
J u w M p q f p M EI

dx dx dx

      
= − − + − − + +     

      
∫          (6.6) 

where 1p  and 2p  are scaling factors to make the entire residual to have the same 

physical dimensions and quantities with bar are assumed to be known from the 

previous iteration and their variations are zero. 

The necessary condition for the minimum of LJ   is LJδ =0 

2 2 2 2

1 2 2 2 2

2 2

2 2 2

0

               

a

b

x

h h h h

x

h h
h h

d M d M d u d u
p q EA f EA

dx dx dx dx

d w d w
p M EI M EI dx

dx dx

δ δ

δ
δ

    
= + + + +    

   

  
+ + +   

  

∫
                                     (6.7) 

Since the physics of the Euler Bernoulli’s Beam theory requires the specification 

of , , , ,
dw dM

u w N MandV
dx dx

θ
   

= − = −   
   

  we seek Hermite cubic approximations 

of hu . hw  and hM  

                          
4

1

1

( )h j j

j

u xϕ
=

= ∆∑ ,   
4

2

1

( )h j j

j

w xϕ
=

= ∆∑  and 
4

3

1

( )h j j

j

M xϕ
=

= ∆∑   

Where 1 2 3,j j jand∆ ∆ ∆  denote the nodal values of , h
h

du
u

dx

 
− 

 
, , h

h

dw
w

dx

 
− 

 
 and 

, h
h

dM
M

dx

 
− 

 
 respectively at the jth node and ( )j xϕ  are the Hermite cubic 

interpolation functions. Substituting the above equations we get the finite 

element model as follows. 

                               

{ }

{ }

{ }

{ }

{ }

{ }

1 111 12 13

21 22 23 2 2

31 32 33 3 3

FK K K

K K K F

K K K F

          ∆          
          ∆ =             

       ∆             

                       (6.8) 

where             
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∫  

 

2
3

1 2

a

b

x

i
i

x

d
F p q dx

dx

ϕ
= − ∫                                                                                                      (6.9) 

6.3.2 Nonlinear formulation 

 The least-squares finite element model of the following set of nonlinear 

equations assuming EA and EI as constant was developed as follows:- 

                                                          
dN

f
dx

− =  

                                  
2

2

d M d dw
N q

dx dx dx

 
− − = 

 
                                                          (6.10) 

                                               

2

2
0

d w
M EI

dx
+ =

 

where q(x) is the transverse distributed force, and N is known in terms of u and 

was                               
2

1

2

du dw
N EA

dx dx

  
= +  

   
 

2 0iF =
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The linearization of the above equations that will be used are 

                                                 
2 2

2 2

d u dw d w
EA f

dx dx dx

 
− + = 

 
 

                 
2 2 2 2

2 2 2 2

d M d u dw d w dw d w
EA N q

dx dx dx dx dx dx

 
− − + − = 
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2
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                                                  (6.11) 

 where    

2
2

2

1
, 0

2

du d w
N EA N

dx dx
δ

  
 = + =    

 

The least-squares functional associated with the above set of linearized 

equations over a typical element is  

2
2 2 2 2

1 2 2 2 2

2 2
2 2 2

22 2 2

( , , )

                                        

a

b

x

h h h h h h
L h h h

x
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d M d u dw d w dw d w
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d u dw d w d w
EA f p M EI

dx dx dx dx

   
= + + + + +  
   

    
+ + + +    
     

∫
 

                                                                                                                                     (6.12) 

where 1p  and 2p  are scaling factors to make the entire residual to have the same 

physical dimensions and quantities with bar are assumed to be known from the 

previous iteration and their variations are zero. 

The necessary condition for the minimum of LJ   is LJδ =0 
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                    (6.13) 

 The above statement is equivalent to the following three integral statements: 
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2 2 2 2
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a

b

x

x

dw d M d u d w d M d w
EAp p MEI p EAN p M M

dx dx dx dx dx dx

d M d M d M
p p q dx

dx dx dx

δ δ
δ δ

δ δ


= + + + +




+ 



∫
     (6.15) 

where  
2

1
,

2

du dw
N

dx dx

  
= +  

   
     

2 2
3ˆ
2

dw du dw
N N

dx dx dx

    
= + = +    

     
 

Since the physics of the Euler Bernoulli’s Beam theory requires the specification 

of , , , , and
dw dM

u w N M V
dx dx

θ
   

= − = −   
   

 we seek Hermite cubic approximations 

of hu . hw  and hM  

                          
4

1

1

( )h j j

j

u xϕ
=

= ∆∑ ,   
4

2

1

( )h j j

j

w xϕ
=

= ∆∑  and 
4

3

1

( )h j j

j

M xϕ
=

= ∆∑   

where 1 2 3, andj j j∆ ∆ ∆  denote the nodal values of , h
h

du
u

dx

 
− 

 
, , h

h

dw
w

dx

 
− 

 
 and 

, h
h

dM
M

dx

 
− 

 
 respectively at the jth node and ( )j xϕ  are the Hermite cubic 
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interpolation functions. Substituting the above equations we get the finite 

element model as follows. 

                               

{ }

{ }

{ }

{ }

{ }

{ }

1 111 12 13

21 22 23 2 2

31 32 33 3 3

FK K K

K K K F

K K K F

          ∆          
          ∆ =             

       ∆             

                  (6.16)                 

where             

( ) ( )
22 22 2

2 211

12 2 2 2

a a

b b

x x

j ji i
ij

x x

d dd ddw
K EA dx p EA dx

dx dx dx dx dx

ϕ ϕϕ ϕ 
= +  

 
∫ ∫  

( ) ( )
22

212

1 2 2
ˆ1

a

b

x

ji
ij

x

dddw
K EA p N dx

dx dx dx

ϕϕ
= +∫  

22
13

1 2 2

a

b

x

ji
ij

x

dddw
K p EA dx

dx dx dx

ϕϕ
= ∫  

( ) ( )
22

221

1 2 2
ˆ1

a

b

x

ji
ij

x

dddw
K EA p N dx

dx dx dx

ϕϕ
= +∫  

( ) ( )
2 2 22 2

2 222 2

1 22 2 2 2
ˆ

a a

b b

x x

j ji i
ij

x x

d dd ddw
K EA p N dx p EI dx

dx dx dx dx dx

ϕ ϕϕ ϕ  
= + +  

   
∫ ∫  

22 2
23

1 22 2 2
ˆ

a a

b b

x x

ji i
ij j

x x

dd d
K p EAN dx p EI dx

dx dx dx

ϕϕ ϕ
ϕ= +∫ ∫  

22
31

1 2 2

a

b

x

ji
ij

x

dddw
K p EA dx

dx dx dx

ϕϕ
= ∫  

( )
22 2

232

1 22 2 2
ˆ

a a

b b

x x

ji i
ij j

x x

dd d
K p EA N dx p EI dx

dx dx dx

ϕϕ ϕ
ϕ= +∫ ∫  

22
33

1 22 2

a a

b b

x x

ji
ij i j

x x

dd
K p dx p dx

dx dx

ϕϕ
ϕ ϕ= +∫ ∫  
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2 2
1

12 2

a

b

x

i i
i

x

d ddw
F EA f qp dx

dx dx dx

ϕ ϕ 
= − + 

 
∫  

2
2

1 2
ˆ

a

b

x

i
i

x

ddw
F EAf qp EAN dx

dx dx

ϕ 
= − +  
∫  

2
3

1 2

a

b

x

i
i

x

d
F p q dx

dx

ϕ
= − ∫                                                                                                 (6.17) 

 From the terms of 33

ijK  it is clear that the terms 1p  and 2p should be taken such 

that 2

2 1 /p p h= , where h is the element length. 

 

6.4 Least-squares Finite Element MODEL 1 for Timoshenko Beam Theory 

6.4.1 Linear formulation 

 The equations that arise in connection with the Linear Timoshenko beam 

theory are                                                  
d du

EA f
dx dx

 
− = 

 
 

                   S

d dw d dw
GAK N q

dx dx dx dx
φ

    
− + − =    

    
 

                          
0S

d d dw
EI GAK

dx dx dx

φ
φ

   
− + + =   

                                                     (6.18) 

The least-squares functional associated with the above set of linearized 

equations over a typical element is  

2
2

1 2

22
2 2

2 2 2

( , , )

                       

a

b

x

h h
L h h h S

x

h h h
S h

d d w
J u w p GAK q

dx dx

d dw d u
p EI GAK EA f dx

dx dx dx

φ
φ

φ
φ

   
= − + − +  
   

      − + + + − −    
      

∫
       (6.19) 
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where 1p  and 2p  are scaling factors to make the entire residual to have the same 

physical dimensions and quantities with bar are assumed to be known from the 

previous iteration and their variations are zero. 

The necessary condition for the minimum of LJ   is LJδ =0         

2 2

1 2 2

2 2

2 2

2

2 2

0

                    

                  

a

b

x

h h h h
S S

x

h h

h h h
S h S h

d d w d d w
p GAK GAK q

dx dx dx dx

d u d u
EA f EA

dx dx

d w d dw
p GAK EI GAK

dx dx dx

δφ δ φ

δ

δ δφ
δφ φ

       
= − + − + + +       

       

 
+ + 

 

    
+ − +   

    

∫

2

2

                

hd
EI

dx

φ  
−  

 

  (6.20)                             

Since the physics of the Euler Bernoulli’s Beam theory requires the specification 

of , , , ,
dw dM

u w N MandV
dx dx

θ
   

= − = −   
   

  we seek Hermite cubic approximations 

of hu . hw  and hM  

                          
4

1

1

( )h j j

j

u xϕ
=

= ∆∑ ,   
4

2

1

( )h j j

j

w xϕ
=

= ∆∑  and 
4

3

1

( )h j j

j

M xϕ
=

= ∆∑   

where 1 2 3,j j jand∆ ∆ ∆  denote the nodal values of , h
h

du
u

dx

 
− 

 
, , h

h

dw
w

dx

 
− 

 
 and 

, h
h

dM
M

dx

 
− 

 
 respectively at the jth node and ( )j xϕ  are the Hermite cubic 

interpolation functions. Substituting the above equations we get the finite 

element model as follows. 

                               

{ }

{ }

{ }

{ }

{ }

{ }

1 111 12 13

21 22 23 2 2

31 32 33 3 3

FK K K

K K K F

K K K F

          ∆          
          ∆ =             

       ∆             

                       (6.21) 

where             
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( )
22

11

2 2

a

b

x

ji
ij

x

dd
K EA dxdx

dx dx

ϕϕ
= ∫  

12 21 13 31 0ij ij ij ijK K K K= = = =  

( )
22

22

1 22 2

a

b

x

j ji i
ij S S

x

d dd d
K p GAK dx p GAK dx

dx dx dx dx

ϕ ϕϕ ϕ 
= + 

  
∫  

22
23 32

1 22 2

a

b

x

j ji i
ij S S j ji

x

d dd d
K p GAK dx p EI GAK dx K

dx dx dx dx

ϕ ϕϕ ϕ
ϕ

  
= + − + =      
∫  

( )
22

33

1 2 2 2

a a

b b

x x

j ji i
ij S i S j

x x

d dd d
K p GAK p EI GAK dx

dx dx dx dx

ϕ ϕϕ ϕ
γ ϕ ϕ

   
= + − + − +        
∫ ∫  

2
1

2

a

b

x

i
i

x

d
F f dx

dx

ϕ 
= −  

 
∫  

2
2

1 2

a

b

x

i
i

x

d
F qp dx

dx

ϕ
= −∫  

3

1

a

b

x

i
i

x

d
F p q dx

dx

ϕ
= − ∫                                                                                                      (6.22) 

where 
S

EI

GAK
γ =  

6.4.2 Nonlinear formulation 

 The least-squares finite element model of the following set of nonlinear 

equations assuming EA , EI, GAKs as constant was developed as follows:- 

                                                                     
dN

f
dx

− =  

                   S

d dw d dw
GAK N q

dx dx dx dx
φ

    
− + − =    

    
                                              (6.23) 

                          0S

d d dw
EI GAK

dx dx dx

φ
φ

   
− + + =   
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where q(x) is the transverse distributed force, and N is known in terms of u and 

was                               
2

1

2

du dw
N EA

dx dx

  
= +  

   
 

The linearization of the above equations that will be used are 

                                                 
2 2

2 2

d u dw d w
EA f

dx dx dx

 
− + = 

 
 

                  
2 2 2

2 2 2S

d d w d u dw d w
GAK EA N q

dx dx dx dx dx

φ 
− + − − = 

 
  

                                     0S

d
d EI

dwdx
GAK

dx dx

φ

φ

 
 

  − + + = 
 

                                       (6.24) 

 where    

2
2

2

1
,

2

du d w
N EA

dx dx

  
 = +     

 

2
2

2

3ˆ
2

du d w
N EA

dx dx

  
 = +     

 

The least-squares functional associated with the above set of linearized 

equations over a typical element is  

2
2 2 2

1 2 2 2

22
2 2 2

2 2 2 2

ˆ( , , )

                        

a

b

x

h h h h h
L h h h S

x

h h h h h
S h

d d w d u dw d w
J u w p GAK EA N q

dx dx dx dx dx

d dw d u d w dw
p EI GAK EA f dx

dx dx dx dx dx

φ
φ

φ
φ

   
= − + + + + +  
   

      − + + + + +    
      

∫
 

                                                                                                                                     (6.25) 

where 1p  and 2p  are scaling factors to make the entire residual to have the same 

physical dimensions and quantities with bar are assumed to be known from the 

previous iteration and their variations are zero. 

The necessary condition for the minimum of LJ   is LJδ =0 
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2 2 2

1 2 2 2

2 2 2

2 2 2

2 2

2 2

ˆ0

ˆ                     

                        

a

b

x

h h h h h
S

x

h h h h h
S

h h h

d d w d u dw d w
p GAK EA N

dx dx dx dx dx

d d w d u dw d w
GAK EA N q

dx dx dx dx dx

d u dw d w
EA EA

dx dx dx

δφ δ δ δ

φ

   
= − + + +   

   

  
× − + + + + +  

  

+

∫

2 2

2 2

2 2

2 2 2
                   

h h h

h h h h
S h S h

d u dw d w
f

dx dx dx

d w d dw d
p GAK EI GAK EI dx

dx dx dx dx

δ δ

δ δφ φ
δφ φ

    
+ + +    

    

     
+ − + −      

     

 

                                                                (6.26) 

 The above statement is equivalent to the following three integral statement 

2 2 2

2 2 2

2 2 22

1 2 2 2 2

0

ˆ             

a

b

x

h

x

h h h h h
S

d u d u dw d w
EA EA EA f

dx dx dx dx

d d w dw d u d wdw d u
p EA GAK EA N q dx

dx dx dx dx dx dx dx

δ

φδ

  
= + + +  

 

  
− + + + +    

  

∫
  (6.27) 

2 2

2 2 2

2 2 2 2 2

12 2 2 2 2

2

2

0

ˆ              *

                  

a

b

x

h h h
S S h

x

h h h h h h h
S

h h
S

d w d dw
p GAK EI GAK

dx dx dx

dw d w d u dw d w d w d w
EA EA f p GAK N

dx dx dx dx dx dx dx

d d w
GAK

dx dx

δ δφ
φ

δ δ δ

φ

   
= − + + +   

  

    
+ + + +    

    

 
+ 

 

∫

2 2

2 2
ˆh h hdw d u d w

EA N q dx
dx dx dx

 
+ + +   

 

  

                                                                                                                                     (6.28)                                                           

2 2 2

1 2 2 2

2 2

2 2 2

ˆ0

              

a

b

x

h h h h h h
S S

x

h h h
S h S h

d d d w dw d u d w
p GAK GAK EA N q

dx dx dx dx dx dx

d dw d
p EI GAK GAK EI dx

dx dx dx

δφ φ

δφ φ
δφ φ

   
= − − + + + + +    

   

   
− + + −    

   

∫
      (6.29) 
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  where  
2

1
,

2

du dw
N

dx dx

  
= +  

   
     

2 2
3ˆ
2

dw du dw
N N

dx dx dx

    
= + = +    

     
 

Since the physics of the Euler Bernoulli’s Beam theory requires the specification 

of , , , ,
dw dM

u w N MandV
dx dx

θ
   

= − = −   
   

  we seek Hermite cubic approximations 

of hu . hw  and hM  

                          
4

1

1

( )h j j

j

u xϕ
=

= ∆∑ ,   
4

2

1

( )h j j

j

w xϕ
=

= ∆∑  and 
4

3

1

( )h j j

j

M xϕ
=

= ∆∑   

where 1 2 3,j j jand∆ ∆ ∆  denote the nodal values of , h
h

du
u

dx

 
− 

 
, , h

h

dw
w

dx

 
− 

 
 and 

, h
h

dM
M

dx

 
− 

 
 respectively at the jth node and ( )j xϕ  are the Hermite cubic 

interpolation functions. Substituting the above equations we get the finite 

element model as follows. 

                               

{ }

{ }

{ }

{ }

{ }

{ }

1 111 12 13

21 22 23 2 2

31 32 33 3 3

FK K K

K K K F

K K K F

          ∆          
          ∆ =             

       ∆             

                    (6.30) 

where             

  ( ) ( )
22 22 2

2 211

12 2 2 2

a a

b b

x x

j ji h i
ij

x x

d dd dw d
K EA dx p EA dx

dx dx dx dx dx

ϕ ϕϕ ϕ 
= +  

 
∫ ∫  

( )( )
22

12

1 1 2 2
ˆ

a

b

x

jh i
ij S

x

ddw d
K EA EA p N p GAK dx

dx dx dx

ϕϕ
= + +∫  

22
13

1 2 2

a

b

x

jh i
ij S

x

ddw d
K p GAK EA dx

dx dx dx

ϕϕ
= ∫  

( )( )
22

21

1 1 2 2
ˆ

a

b

x

jh i
ij S

x

ddw d
K EA EA p N p GAK dx

dx dx dx

ϕϕ
= + +∫  
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( ) ( ) ( )
22 22 2

2 2 222

1 22 2 2 2
ˆ

a

b

x

j j ji i h i
ij S S

x

d d dd d dw d
K p GAK N dx p GAK EA dx

dx dx dx dx dx dx dx

ϕ ϕ ϕϕ ϕ ϕ  
= + + +  

   
∫

( )
22

23

1 22 2
ˆ

a

b

x

j j ji
ij S S S S j

x

d d dd
K p GAK GAK N dx p GAK EI GAK dx

dx dx dx dx

ϕ ϕ ϕϕ
ϕ

  
= + + − +      
∫  

( )( )
22

31

1 2 2

a

b

x

jh i
ij S

x

ddw d
K p EA GAK dx

dx dx dx

ϕϕ
= ∫  

( )
2 2

32

1 22 2
ˆ

a

b

x

j i J i
ij S S S S i

x

d d d d
K p GAK GAK N dx p GAK EI GAK dx

dx dx dx dx

ϕ ϕ ϕ ϕ
ϕ

  
= + + − +  

   
∫  

( )
22

233

1 2 2 2

a a

b b

x x

j ji i
ij S S i S j

x x

d dd d
K p GAK p EI GAK EI GAK dx

dx dx dx dx

ϕ ϕϕ ϕ
ϕ ϕ

   
= + − + − +        
∫ ∫  

2 2
1

12 2

a

b

x

i h i
i

x

d dw d
F EA f qp dx

dx dx dx

ϕ ϕ 
= − + 

 
∫  

( )
2

2

1 2
ˆ

a

b

x

i
i S

x

ddw
F EAf qp GAK N dx

dx dx

ϕ 
= − + +  
∫  

3

1

a

b

x

i
i S

x

d
F p GAK q dx

dx

ϕ
= − ∫                                                                                       (6.31) 

 From the terms of 33

ijK  it is clear that the terms 1p  and 2p should be taken such 

that 2

2 1 /p p h= , where h is the element length. 
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6.5 Least-squares Finite Element MODEL 2 for Euler-Bernoulli Beam Theory 

6.5.1 Linear formulation 

 Consider the four first-order governing equations  

      0,                                0

0,                                   0

        0,                              0

dN N du
f

dx EA dx

dV dw
kw q

dx dx

M d dM
V

b dx dx

θ

θ

− − = − =

− + − = + =

− = − + =

                                                  (6.32) 

here b=EI 

The least-squares functional associated with the above six equations over a 

typical element is  

2 2 2 2

2

2 2

( , ,...)

                                                 

b

a

x

h h h h h
h h h h

x

h h h
h

dN N du dV dw
J u w f kw q

dx EA dx dx dx

M d dM
V dx

b dx dx

θ

θ

       
= + + − + − + − + + +       

       

   
− + − +    

    

∫
 

                                                                                                                                     (6.33) 

Here b=EI and the necessary condition for minimum of 2J  is  

0
b

a

x

h h h h h h

x

h h h h
h h h h

h h h h h h
h h

d N dN N d u N du
f

dx dx EA dx EA dx

d V dV d w dw
k w kw q

dx dx dx dx

M d M d d M dM
V V

EI dx EI dx dx dx

δ δ δ

δ δ
δ δθ θ

δ δθ θ δ
δ

     
= + + − − +    

    

     
− + − + − + + + +     
     

     
− − + − + − +     

     

∫

dx




                           (6.34) 

The four statements associated with the statement in the above equations are: 
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0

0

0

0

b

a

b

a

b

a

x

h h h

x

x

h h h
h h h

x

x

h h h h
h h

x

h h h h h

d u N du
dx

dx EA dx

dV d w dw
k w kw q dx

dx dx dx

dw d M d
dx

dx dx EI dx

d N dN N N du
f

dx dx EA EA dx

δ

δ
δ θ

δθ θ
δθ θ

δ δ

  
= − −  

  

    
= − + − + +    

    

    
= + − −    

    

    
= + + −    

    

∫

∫

∫

0

0

b

a

b

a

b

a

x

x

x

h h h h h
h

x

x

h h h
h h h

x

dx

M M d d M dM
V dx

b b dx dx dx

d V dV dM
kw q V V dx

dx dx dx

δ θ δ

δ
δ

 
 
 

     
= − + − +     

     

     
= − − + − − − +     

     

∫

∫

∫

                                       (6.35) 

In this model, all physical variables that enter the specification of the boundary 

conditions appear as unknowns. Hence they are all approximated by Lagrange 

interpolation functions. Let, 

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

,     ,        ,

,    ,      

m m m

h j j h j j h j j

j j j

m m m

h j j h j j h j j

j j j

u u x w w x x

N N x M M x V V x

ψ ψ θ θ ψ

ψ ψ ψ

= = =

= = =

= = =

= = =

∑ ∑ ∑

∑ ∑ ∑
 

Where , ,  and j j j jw M Vθ  denote the nodal values of , ,  and h h h hw M Vθ  respectively 

at the jth node. Thus we obtain the following finite element model 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44

51 52 53

61 62 63

   

   

K K K K K K

K K K K K K

K K K K K K

K K K K

K K K

K K K

                      

                      

                      

            

          

          

{ }
{ }
{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

1

2

3

45 46 4

54 55 56 5

64 65 66 6

F
u

Fw

F

NK K F

M
K K K F

V
K K K F

θ

  
   
   
   
   
    =
               
                 

                   

                       (6.36) 
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  where   

11

14

22 2

23

26

32

33

35

1

1

b

a

b

a

b

a

b

a

b

a

b

a

b

a

x

ji
ij

x

x

i
ij j

x

x

j ji
ij i

x

x

i
ij j

x

x

j

ij i

x

x

j

ij i

x

x

ji
ij j i

x

i
ij j

x

dd
K dx

dx dx

d
K dx

EA dx

d dd
K k dx

dx dx dx

d
K dx

dx

d
K k dx

dx

d
K dx

dx

dd
K dx

dx dx

d
K

EI dx

ψψ

ψ
ψ

ψ ψψ
ψ

ψ
ψ

ψ
ψ

ψ
ψ

ψψ
ψ ψ

ψ
ψ

=

= −

 
= + 

 

=

= −

=

 
= + 

 

= −

∫

∫

∫

∫

∫

∫

∫

( )

( )

41

44

2

53

55

2

56

62

1

1

1

1

b

a

b

a

b

a

b

a

b

a

b

a

b

a

x

x

j

ij i

x

x

ji
ij j i

x

x

j

ij i

x

x

ji
ij j i

x

x

i
ij j

x

x

i
ij j

x

dx

d
K dx

EA dx

dd
K dx

dx dxEA

d
K dx

EI dx

dd
K dx

dx dxEI

d
K dx

dx

d
K k dx

dx

ψ
ψ

ψψ
ψ ψ

ψ
ψ

ψψ
ψ ψ

ψ
ψ

ψ
ψ

= −

 
 = +
 
 

= −

 
 = +
 
 

= −

= −

∫

∫

∫

∫

∫

∫

∫
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65
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6.5.2 Nonlinear formulation 

 Here consider the first-order equations  
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The least-squares functional associated with the above six equations over a 

typical element is  

( )

2
2 2 2

2

2 2 2

( , ,...)
b

a

x

h h h h h
h h

x

h h h h
h h

dN N du dw dV d
J u w f N q

dx EA dx dx dx dx

dw M d dM
V dx

dx EI dx dx

θ

θ
θ

          = + + − + + − + − +               

     
+ + − + − +      

      

∫
 

                                                                                                                                    (6.39) 

The necessary condition for minimum of 2J  is  
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The statements associated with the statement in the above equations are: 
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In this model, all physical variables that enter the specification of the boundary 

conditions appear as unknowns. Hence they are all approximated by Lagrange 

interpolation functions. Let, 
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Where , ,  and j j j jw M Vθ  denote the nodal values of , ,  and h h h hw M Vθ  respectively 

at the jth node. Thus we obtain the following finite element model 
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6.6 Least-squares Finite Element MODEL 2 for Timoshenko Beam Theory 

6.6.1 Linear formulation 

Consider the first-order governing equations  
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The least-squares functional associated with the above six equations over a 

typical element is  
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The necessary condition for minimum of 2J  is  
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The statements associated with the statement in the above equations are: 
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In this model, all physical variables that enter the specification of the boundary 

conditions appear as unknowns. Hence they are all approximated by Lagrange 

interpolation functions. Let, 
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where , ,  and j j j jw M Vθ  denote the nodal values of , ,  and h h h hw M Vθ  respectively 

at the jth node. Thus we obtain the following finite element model 
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6.6.2 Nonlinear formulation 

 Here consider the first-order equations  
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The least-squares functional associated with the above six equations over a 

typical element is  
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The statements associated with the statement in the above equations are: 
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In this model, all physical variables that enter the specification of the boundary 

conditions appear as unknowns. Hence they are all approximated by Lagrange 

interpolation functions. Let, 
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where , ,  and j j j jw M Vθ  denote the nodal values of , ,  and h h h hw M Vθ  respectively 

at the jth node. Thus we obtain the following finite element model 
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 7. SOLUTION APPROACH 

 Different methods to develop the finite element model have been 

discussed so far. An interaction of local and global coordinates is used to obtain 

the results. The element coefficient matrices are assembled. During assembly the 

stiffness contributed by the adjacent element to the common coordinates will be 

doubled. Different boundary conditions are imposed and the value of {F} and 

{u} are computed. The elemental values of primary variables will be considered 

during the next cycle of iteration. Convergence is reached when the error is less 

than the tolerance value. For the practical purposes the absolute error should be 

small to at lower computational expense. The rate at which certain results 

approach the exact solution is very important. 

7.1 Solution Procedures 

 There are two different iterative methods discussed here 

(1) Direct iteration procedure       (2) Newton Raphson iteration procedure 

7.1.1 Direct iteration procedure 

 Here the solution of the coefficient matrix is computed using the known 

value from the previous solution of the (r-1) th iteration. The solution for the rth 

iteration can be determined from the following equation  

{ }( )( ) { } { } { }( )( ) { } { }
1 1

                 or                    
r r r r

K F K F
− −   ∆ ∆ = ∆ ∆ =

      
 

Thus the initial guess vector should satisfy the boundary conditions. 

7.2.2 Newton-Raphson iteration procedure   

 Consider the following equation, 

                                    { } [ ]{ } { } { }0R K U F≡ − =                                                       (7.1) 

where {R} is the residual vector. We expand {R} in the Taylor’s series as 
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Here {T} is the tangent matrix which is equal to, 
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For rth iteration we have,               { } { }( ) { }
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Thus we can write,  
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The coefficients of tangent matrices for EBT conventional weighted residual 

method can be found by substituting the stiffness coefficients in from equations 

(4.13) in equation (7.5). 
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Similarly for TBT conventional weighted residual method we get the following 

coefficients of tangent matrices. 

11 11

(2)(1)
12 12 120

13 13

1
2

2

b

a

ij ij

x

ji
ij ij xx ij

x

ij ij

T K

ddw d
T K A dx K

dx dx dx

T K

ψψ

=

 
= + = 

 

=

∫  

                                

21 21

2 (2)(2)
22 22 0 0

23 23

31 31

32 32

33 33

1

2

b

a

ij ij

x

ji
ij ij xx

x

ij ij

ij ij

ij ij

ij ij

T K

ddw du d
T K A dx

dx dx dx dx

T K

T K

T K

T K

ψψ

=

  
= + +  

   

=

=

=

=

∫

                     (7.7) 

A flowchart to explain the logic behind the computer implementation is shown 

in Figure 7.1. 
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Figure 7.1.  A computer implementation flowchart 
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8. DISCUSSION OF NUMERICAL RESULTS 

 The following example is considered for EBT and TBT model for 

conventional weak form and least-squares MODEL1 and MODEL2. 

8.1. Example  

Consider a linear elastic column which is subjected to a uniformly 

distributed load q= 10 in 10 load steps .Let L denote the length of the column, EI 

denote the flexural rigidity of the beam where E is the Young modulus and I is 

the moment of inertia of the cross section of the column, w(x) denote the 

deflection function, M denote the bending moment and  V denote the shear 

force. Here calculations have been made with the following data E=30msi, 

L=100 in, area (A) =1x1 in2. tolerance =0.001 maximum number of iterations=30 

Boundary conditions: 1) both ends hinged 2) both ends clamped 3) both ends 

pinned ( see Reddy [3]). The beam is analyzed for 4,8, and 32 elements. 

8.2. Results 

 For beam with both ends hinged. 

1) 4 ELEMENTS 

(A) Conventional weighted residual method (Table 8.1) 

 

Table 8.1: Comparison of displacements in EBT and TBT for hinged-hinged 

beam 

EBT TBT 

NODE X U W DW/DX U W PHI 

1 0.000 0.000 0.000 -0.017 0.000 0.000 -0.016 

2 12.500 0.000 0.202 -0.015 0.000 0.197 -0.015 
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Table 8.1 continued. 
 

EBT TBT 

NODE X U W DW/DX U W PHI 

3 25.000 0.000 0.371 -0.011 0.000 0.361 -0.011 

4 37.500 0.000 0.482 -0.006 0.000 0.470 -0.006 

5 50.000 0.000 0.521 0.000 0.000 0.508 0.000 

   

(B) a) Least-squares finite element MODEL1 –EBT (Table 8.2) 

 

Table 8.2:  Comparison of displacements and forces in EBT for hinged-hinged 

beam 

NODE X U DU/DX W DW/DX M DM/DX 

1 0.0000 0.0000 0.0000 0.0000 -0.0166 0.0000 -49.9310 

2 12.5000 0.0000 0.0000 0.2020 -0.0152 546.1200 -37.4480 

3 25.0000 0.0000 0.0000 0.3706 -0.0114 936.2000 -24.9650 

4 37.5000 0.0000 0.0000 0.4815 -0.0061 1170.2000 -12.4830 

5 50.0000 0.0000 0.0000 0.5201 0.0000 1248.3000 0.0000 

 

(B) b) Least-squares finite element MODEL1 –TBT (Table 8.3) 

 

Table 8.3:  Comparison of displacements and forces in TBT for hinged-hinged 

beam 

NODE X U DU/DX W DW/DX M DM/DX 

1 0.0000 0.0000 0.0000 0.0000 -0.0152 -0.0152 0.0000 

2 12.5000 0.0000 0.0000 0.1844 -0.0139 -0.0139 -0.0002 
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Table 8.3 continued. 
 

NODE X U DU/DX W DW/DX M DM/DX 

3 25.0000 0.0000 0.0000 0.3386 -0.0105 -0.0105 -0.0003 

4 37.5000 0.0000 0.0000 0.4402 -0.0056 -0.0056 -0.0004 

5 50.0000 0.0000 0.0000 0.4756 0.0000 0.0000 -0.0005 

 

 

(C) a) Least-squares finite element MODEL2 –EBT (Table 8.4) 

 

Table 8.4:  Comparison of displacements and forces in EBT for hinged-hinged 

beam 

NODE X U W THETA N M V 

1 0.0000 0.0000 0.0000 -0.0167 0.0000 0.0000 50.0000 

2 3.1250 0.0000 0.0520 -0.0166 0.0000 151.3700 46.8750 

3 6.2500 0.0000 0.1034 -0.0163 0.0000 292.9700 43.7500 

4 9.3750 0.0000 0.1536 -0.0158 0.0000 424.8000 40.6250 

5 12.5000 0.0000 0.2022 -0.0152 0.0000 546.8800 37.5000 

6 15.6250 0.0000 0.2487 -0.0145 0.0000 659.1800 34.3750 

7 18.7500 0.0000 0.2926 -0.0136 0.0000 761.7200 31.2500 

8 21.8750 0.0000 0.3335 -0.0126 0.0000 854.4900 28.1250 

9 25.0000 0.0000 0.3711 -0.0115 0.0000 937.5000 25.0000 

10 28.1250 0.0000 0.4050 -0.0102 0.0000 1010.7000 21.8750 

11 31.2500 0.0000 0.4350 -0.0089 0.0000 1074.2000 18.7500 

12 34.3750 0.0000 0.4608 -0.0076 0.0000 1127.9000 15.6250 

13 37.5000 0.0000 0.4822 -0.0061 0.0000 1171.9000 12.5000 

14 40.6250 0.0000 0.4990 -0.0046 0.0000 1206.1000 9.3750 

15 43.7500 0.0000 0.5111 -0.0031 0.0000 1230.5000 6.2500 

16 46.8750 0.0000 0.5184 -0.0016 0.0000 1245.1000 3.1250 

17 50.0000 0.0000 0.5208 0.0000 0.0000 1250.0000 0.0000 
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(C) b) Least-squares finite element MODEL2 –TBT (Table 8.5) 

 

Table 8.5:  Comparison of displacements and forces in TBT for hinged-hinged 

beam 

NODE X U W φ  N M V  

1 0.0000 0.0000 0.0000 -0.0167 0.0000 0.0000 50.0000 

2 3.1250 0.0000 0.0520 -0.0166 0.0000 151.3700 46.8750 

3 6.2500 0.0000 0.1034 -0.0163 0.0000 292.9700 43.7500 

4 9.3750 0.0000 0.1536 -0.0158 0.0000 424.8000 40.6250 

5 12.5000 0.0000 0.2022 -0.0152 0.0000 546.8800 37.5000 

6 15.6250 0.0000 0.2487 -0.0145 0.0000 659.1800 34.3750 

7 18.7500 0.0000 0.2926 -0.0136 0.0000 761.7200 31.2500 

8 21.8750 0.0000 0.3335 -0.0126 0.0000 854.4900 28.1250 

9 25.0000 0.0000 0.3711 -0.0115 0.0000 937.5000 25.0000 

10 28.1250 0.0000 0.4050 -0.0102 0.0000 1010.7000 21.8750 

11 31.2500 0.0000 0.4350 -0.0089 0.0000 1074.2000 18.7500 

12 34.3750 0.0000 0.4608 -0.0076 0.0000 1127.9000 15.6250 

13 37.5000 0.0000 0.4822 -0.0061 0.0000 1171.9000 12.5000 

14 40.6250 0.0000 0.4990 -0.0046 0.0000 1206.1000 9.3750 

15 43.7500 0.0000 0.5111 -0.0031 0.0000 1230.5000 6.2500 

16 46.8750 0.0000 0.5184 -0.0016 0.0000 1245.1000 3.1250 

17 50.0000 0.0000 0.5208 0.0000 0.0000 1250.0000 0.0000 

 

 

For beam with both ends clamped. 

1) 4 ELEMENTS 

(A)Conventional weighted residual method (Table 8.6) 
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Table 8.6:  Comparison of displacements in EBT and TBT for clamped-clamped 

beam. 

EBT TBT 

NODE X U W DW/DX U W PHI 

1 0.0000 0.0000 0.0000 -0.0167 0.0000 0.0000 -0.0167 

2 12.5000 0.0000 0.0199 -0.0152 0.0000 0.0199 -0.0150 

3 25.0000 0.0000 0.0585 -0.0115 0.0000 0.0585 -0.0113 

4 37.5000 0.0000 0.0914 -0.0061 0.0000 0.0914 -0.0061 

5 50.0000 0.0000 0.1040 0.0000 0.0000 0.1040 0.0000 

  

(B)a) Least-squares finite element MODEL1 –EBT (Table 8.7) 

 

Table 8.7:  Comparison of displacements and forces in EBT for clamped-clamped 

beam.  

NODE X U DU/DX W DW/DX M DM/DX 

1 0.0000 0.0000 0.0000 0.0000 0.0000 -832.1800 -49.9310 

2 12.5000 0.0000 0.0000 0.0199 -0.0027 -286.0600 -37.4480 

3 25.0000 0.0000 0.0000 0.0585 -0.0031 104.0200 -24.9650 

4 37.5000 0.0000 0.0000 0.0914 -0.0020 338.0700 -12.4830 

5 50.0000 0.0000 0.0000 0.1040 0.0000 416.0900 0.0000 
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(B)b) Least-squares finite element MODEL1 –TBT (Table 8.8) 

 

Table 8.8: Comparison of displacements and forces in TBT for clamped-clamped 

beam  

NODE X U DU/DX W DW/DX M DM/DX 

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 

2 12.5000 0.0000 0.0000 0.0185 -0.0025 -0.0025 0.0001 

3 25.0000 0.0000 0.0000 0.0543 -0.0029 -0.0029 0.0000 

4 37.5000 0.0000 0.0000 0.0847 -0.0018 -0.0018 -0.0001 

5 50.0000 0.0000 0.0000 0.0964 0.0000 0.0000 -0.0002 

 

(C) a) Least-squares finite element MODEL2 –EBT (Table 8.9) 

 

Table 8.9:  Comparison of displacements and forces in EBT for clamped-clamped 

beam  

NODE X U W THETA N M V 

1 0.0000 0.0000 0.0000 0.0000 0.0000 -833.2800 50.0000 

2 3.1250 0.0000 0.0015 -0.0009 0.0000 -681.9100 46.8750 

3 6.2500 0.0000 0.0057 -0.0017 0.0000 -540.3100 43.7500 

4 9.3750 0.0000 0.0120 -0.0023 0.0000 -408.4700 40.6250 

5 12.5000 0.0000 0.0199 -0.0027 0.0000 -286.4000 37.5000 

6 15.6250 0.0000 0.0290 -0.0030 0.0000 -174.1000 34.3750 

7 18.7500 0.0000 0.0387 -0.0032 0.0000 -71.5610 31.2500 

8 21.8750 0.0000 0.0487 -0.0032 0.0000 21.2130 28.1250 

9 25.0000 0.0000 0.0586 -0.0031 0.0000 104.2200 25.0000 

10 28.1250 0.0000 0.0681 -0.0029 0.0000 177.4600 21.8750 

11 31.2500 0.0000 0.0769 -0.0027 0.0000 240.9400 18.7500 

12 34.3750 0.0000 0.0848 -0.0023 0.0000 294.6500 15.6250 
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Table 8.9 continued. 
 

NODE X U W THETA N M V 

13 37.5000 0.0000 0.0916 -0.0020 0.0000 338.6000 12.5000 

14 40.6250 0.0000 0.0970 -0.0015 0.0000 372.7800 9.3750 

15 43.7500 0.0000 0.1009 -0.0010 0.0000 397.1900 6.2500 

16 46.8750 0.0000 0.1034 -0.0005 0.0000 411.8400 3.1250 

17 50.0000 0.0000 0.1042 0.0000 0.0000 416.7200 0.0000 

 

(C) b) Least-squares finite element MODEL2 –TBT (Table 8.10) 

 

Table 8.10: Comparison of displacements and forces in TBT for clamped-

clamped beam  

NODE X U W φ  N M V  

1 0.0000 0.0000 0.0000 0.0000 0.0000 -833.1500 49.9960 

2 3.1250 0.0000 0.0015 -0.0009 0.0000 -681.7900 46.8710 

3 6.2500 0.0000 0.0057 -0.0017 0.0000 -540.2000 43.7460 

4 9.3750 0.0000 0.0120 -0.0023 0.0000 -408.3800 40.6210 

5 12.5000 0.0000 0.0199 -0.0027 0.0000 -286.3200 37.4960 

6 15.6250 0.0000 0.0289 -0.0030 0.0000 -174.0300 34.3710 

7 18.7500 0.0000 0.0386 -0.0032 0.0000 -71.5020 31.2470 

8 21.8750 0.0000 0.0486 -0.0032 0.0000 21.2620 28.1220 

9 25.0000 0.0000 0.0585 -0.0031 0.0000 104.2600 24.9970 

10 28.1250 0.0000 0.0680 -0.0029 0.0000 177.4900 21.8720 

11 31.2500 0.0000 0.0768 -0.0027 0.0000 240.9600 18.7480 

12 34.3750 0.0000 0.0847 -0.0023 0.0000 294.6700 15.6230 

13 37.5000 0.0000 0.0914 -0.0020 0.0000 338.6100 12.4980 

14 40.6250 0.0000 0.0968 -0.0015 0.0000 372.7800 9.3738 

15 43.7500 0.0000 0.1008 -0.0010 0.0000 397.1900 6.2492 

16 46.8750 0.0000 0.1032 -0.0005 0.0000 411.8400 3.1246 

17 50.0000 0.0000 0.1040 0.0000 0.0000 416.7200 0.0000 
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For beam with both ends pinned. 

1) 4 ELEMENTS 

(A)Conventional weighted residual method  (Table 8.11) 

 

Table 8.11:  Comparison of displacements in EBT and TBT for  pinned-pinned 

beam 

EBT TBT 

NODE X U W DW/DX U W PHI 

1 0.000 0.000 0.000 -0.017 0.000 0.000 -0.016 

2 12.500 0.000 0.202 -0.015 0.000 0.197 -0.015 

3 25.000 0.000 0.371 -0.011 0.000 0.361 -0.011 

4 37.500 0.000 0.482 -0.006 0.000 0.470 -0.006 

5 50.000 0.000 0.521 0.000 0.000 0.508 0.000 

  

(B)a) Least-squares finite element MODEL1 –EBT (Table 8.12) 

 

Table 8.12:  Comparison of displacements and forces in EBT for pinned-pinned 

beam 

NODE X U DU/DX W DW/DX M DM/DX 

1 0.0000 0.0000 0.0000 0.0000 -0.0166 0.0000 -49.9310 

2 12.5000 0.0000 0.0000 0.2020 -0.0152 546.1200 -37.4480 

3 25.0000 0.0000 0.0000 0.3706 -0.0114 936.2000 -24.9650 

4 37.5000 0.0000 0.0000 0.4815 -0.0061 1170.2000 -12.4830 

5 50.0000 0.0000 0.0000 0.5201 0.0000 1248.3000 0.0000 

  

(B)b) Least-squares finite element MODEL1 –TBT (Table 8.13) 
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Table 8.13:  Comparison of displacements and forces in TBT for pinned-pinned 

beam 

NODE X U DU/DX W DW/DX M DM/DX 

1 0.0000 0.0000 0.0000 0.0000 -0.0152 -0.0152 0.0000 

2 12.5000 0.0000 0.0000 0.1844 -0.0139 -0.0139 -0.0002 

3 25.0000 0.0000 0.0000 0.3386 -0.0105 -0.0105 -0.0003 

4 37.5000 0.0000 0.0000 0.4402 -0.0056 -0.0056 -0.0004 

5 50.0000 0.0000 0.0000 0.4756 0.0000 0.0000 -0.0005 

  

(C)a) Least-squares finite element MODEL2 –EBT (Table 8.14) 

 

Table 8.14:  Comparison of displacements and forces in EBT for pinned-pinned 

beam 

NODE X U W THETA N M V 

1 0.0000 0.0000 0.0000 -0.0167 0.0000 0.0000 50.0000 

2 3.1250 0.0000 0.0520 -0.0166 0.0000 151.3700 46.8750 

3 6.2500 0.0000 0.1034 -0.0163 0.0000 292.9700 43.7500 

4 9.3750 0.0000 0.1536 -0.0158 0.0000 424.8000 40.6250 

5 12.5000 0.0000 0.2022 -0.0152 0.0000 546.8800 37.5000 

6 15.6250 0.0000 0.2487 -0.0145 0.0000 659.1800 34.3750 

7 18.7500 0.0000 0.2926 -0.0136 0.0000 761.7200 31.2500 

8 21.8750 0.0000 0.3335 -0.0126 0.0000 854.4900 28.1250 

9 25.0000 0.0000 0.3711 -0.0115 0.0000 937.5000 25.0000 

10 28.1250 0.0000 0.4050 -0.0102 0.0000 1010.7000 21.8750 
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Table 8.14 continued. 
 

 

NODE X U W THETA N M V 

11 31.2500 0.0000 0.4350 -0.0089 0.0000 1074.2000 18.7500 

12 34.3750 0.0000 0.4608 -0.0076 0.0000 1127.9000 15.6250 

13 37.5000 0.0000 0.4822 -0.0061 0.0000 1171.9000 12.5000 

14 40.6250 0.0000 0.4990 -0.0046 0.0000 1206.1000 9.3750 

15 43.7500 0.0000 0.5111 -0.0031 0.0000 1230.5000 6.2500 

16 46.8750 0.0000 0.5184 -0.0016 0.0000 1245.1000 3.1250 

17 50.0000 0.0000 0.5208 0.0000 0.0000 1250.0000 0.0000 

  

(C) b) Least-squares finite element MODEL2 –TBT (Table 8.15) 

 

Table 8.15:  Comparison of displacements and forces in TBT for pinned-pinned 

beam 

NODE X U W φ  N M d
dx

φ  

1 0.0000 0.0000 0.0000 -0.0167 0.0000 0.0000 49.9960 

2 3.1250 0.0000 0.0520 -0.0166 0.0000 151.3500 46.8710 

3 6.2500 0.0000 0.1033 -0.0163 0.0000 292.9400 43.7460 

4 9.3750 0.0000 0.1536 -0.0158 0.0000 424.7700 40.6210 

5 12.5000 0.0000 0.2022 -0.0152 0.0000 546.8200 37.4960 

6 15.6250 0.0000 0.2486 -0.0145 0.0000 659.1200 34.3710 

7 18.7500 0.0000 0.2925 -0.0136 0.0000 761.6500 31.2470 

8 21.8750 0.0000 0.3334 -0.0126 0.0000 854.4100 28.1220 

9 25.0000 0.0000 0.3710 -0.0115 0.0000 937.4100 24.9970 

10 28.1250 0.0000 0.4049 -0.0102 0.0000 1010.6000 21.8720 

11 31.2500 0.0000 0.4349 -0.0089 0.0000 1074.1000 18.7480 

12 34.3750 0.0000 0.4606 -0.0076 0.0000 1127.8000 15.6230 
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Table 8.15 continued. 
 

NODE X U W φ  N M d
dx

φ  

13 37.5000 0.0000 0.4820 -0.0061 0.0000 1171.8000 12.4980 

14 40.6250 0.0000 0.4988 -0.0046 0.0000 1205.9000 9.3738 

15 43.7500 0.0000 0.5109 -0.0031 0.0000 1230.3000 6.2492 

16 46.8750 0.0000 0.5182 -0.0016 0.0000 1245.0000 3.1246 

17 50.0000 0.0000 0.5207 0.0000 0.0000 1249.9000 0.0000 

 

A comparison of finite element results for deflection of beams with pinned-

pinned boundary conditions under uniformly distributed load for EBT is shown 

below in Table 8.16. 

 

Table 8.16: A comparison of results for deflection of beams with pinned-pinned 

boundary conditions under uniformly distributed load for EBT 

q 4 elements 8 elements 32 elements 

1 0.30146 0.30146 0.30146 

2 0.54802 0.54802 0.54802 

3 0.73099 0.73099 0.73099 

4 0.86628 0.86628 0.86628 

5 0.96642 0.96642 0.96642 

6 1.03840 1.03840 1.03840 

7 1.08530 1.08530 1.08530 

8 1.10720 1.10720 1.10720 
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Table 8.16 continued. 
 

q 4 elements 8 elements 32 elements 

9 1.10090 1.10090 1.10090 

10 1.05980 1.05980 1.05980 

 

A comparison of finite element results for deflection of beams with pinned-

pinned boundary conditions under uniformly distributed load for TBT is shown 

below in Table 8.17 . 

 

Table 8.17: A comparison of results for deflection of beams with pinned-pinned 

boundary conditions under uniformly distributed load for TBT 

q 4 elements 8 elements 32 elements 

1 0.30134 0.30134 0.30134 

2 0.54781 0.54781 0.54781 

3 0.73069 0.73069 0.73069 

4 0.86590 0.86590 0.86590 

5 0.96597 0.96597 0.96597 

6 1.03790 1.03790 1.03790 

7 1.08470 1.08470 1.08470 

8 1.10650 1.10650 1.10650 

9 1.10020 1.10020 1.10020 

10 1.05900 1.05900 1.05900 
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A comparison of finite element results for deflection of beams with hinged-

hinged boundary conditions under uniformly distributed load for EBT is shown 

below in Table 8.18. 

 

Table 8.18: A comparison of results for deflection of beams with hinged-hinged 

boundary conditions under uniformly distributed load for EBT 

q 4 elements 8 elements 32 elements 

1 0.52083 0.52083 0.52083 

2 1.04170 1.04170 1.04170 

3 1.56250 1.56250 1.56250 

4 2.08330 2.08330 2.08330 

5 2.60420 2.60420 2.60420 

6 3.12500 3.12500 3.12500 

7 3.64580 3.64580 3.64580 

8 4.16670 4.16670 4.16670 

9 4.68750 4.68750 4.68750 

10 5.20830 5.20830 5.20830 

 

A comparison of finite element results for deflection of beams with hinged-

hinged boundary conditions under uniformly distributed load for TBT is shown 

below in Table 8.19. 
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Table 8.19: A comparison of results for deflection of beams with hinged-hinged 

boundary conditions under uniformly distributed load for TBT  

q 4 elements 8 elements 32 elements 

1 0.52096 0.52096 0.52096 

2 1.04190 1.04190 1.04190 

3 1.56290 1.56290 1.56290 

4 2.08380 2.08380 2.08380 

5 2.60480 2.60480 2.60480 

6 3.12570 3.12580 3.12570 

7 3.64670 3.64670 3.64670 

8 4.16770 4.16770 4.16770 

9 4.68860 4.68860 4.68860 

10 5.20960 5.20960 5.20960 

 

A comparison of finite element results for deflection of beams with clamped-

clamped boundary conditions under uniformly distributed load for EBT is 

shown below in Table 8.20. 

 

Table 8.20: A comparison of results for deflection of beams with clamped-

clamped boundary conditions under uniformly distributed load for EBT 

q 4 elements 8 elements 32 elements 

1 0.10410 0.10410 0.10410 

2 0.20778 0.20778 0.20778 

3 0.31065 0.31065 0.31067 
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Table 8.20 continued. 

 

q 4 elements 8 elements 32 elements 

4 0.41234 0.41234 0.41234 

5 0.51250 0.51250 0.51259 

6 0.61086 0.61086 0.61104 

7 0.70718 0.70718 0.70750 

8 0.80128 0.80128 0.80180 

9 0.89305 0.89305 0.89390 

10 0.98239 0.98239 0.98349 

 

A comparison of finite element results for deflection of beams with clamped-

clamped boundary conditions under uniformly distributed load for TBT is 

shown below in Table 8.21. 

 

Table 8.21: A comparison of results for deflection of beams with clamped-

clamped boundary conditions under uniformly distributed load for TBT 

q 4 elements 8 elements 32 elements 

1 0.10422 0.10422 0.10422 

2 0.20803 0.20803 0.20803 

3 0.31102 0.31102 0.31103 

4 0.41282 0.41282 0.41286 

5 0.51310 0.51320 0.51319 

6 0.61157 0.61157 0.61175 

7 0.70799 0.70799 0.70831 
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Table 8.21 continued. 

 

q 4 elements 8 elements 32 elements 

8 0.80219 0.80219 0.80271 

9 0.89405 0.89405 0.89483 

10 0.98348 0.98348 0.98458 

 

 

8.3. Plots  

 The plot of x vs deflection (w) for different formulations and different 

elements is shown below in Figures 8.1 and 8.2. 

The following are the plots for comparison of a beam clamped at both ends and 

divided in 4 equal elements. 
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Figure 8.1. Comparison of x vs. deflection in different models for EBT,  

                 clamped-clamped, 4 elements 
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Figure 8.2. Comparison of x vs. deflection in different models for  TBT, clamped- 

                    clamped ,4 elements 

 

 

The following are the plots for comparison of a beam clamped at both ends and 

divided in 8 equal elements in Figures 8.3 and 8.4. 
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Figure 8.3.  Comparison of x vs. deflection in different models for EBT, clamped-               

                      clamped, 8 elements 
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Figure 8.4.  Comparison of x vs. deflection in different models for  

                         TBT, clamped-clamped, 8 elements 
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The following are the plots for comparison of a beam clamped at both ends and 

divided in 32 equal elements in Figures 8.5 and 8.6. 
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Figure 8.5.  Comparison of x vs. deflection in different models for EBT, clamped- 

                     clamped 32 elements 
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Figure 8.6.  Comparison of x vs. deflection in different models for TBT, clamped- 

                     clamped 32 elements 

 

The following are the plots for comparison of a beam hinged at both ends and 

divided in 4 equal elements in Figures 8.7and 8.8. 
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Figure 8.7.  Comparison of x vs. deflection in different models for EBT, hinged- 

                      hinged ,4 elements 
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Figure 8.8.  Comparison of x vs. deflection in different models for TBT, hinged- 

                      hinged, 4 elements 

 

The following are the plots for comparison of a beam hinged at both ends and 

divided in 8 equal elements in Figures 8.9and 8.10. 
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Figure 8.9.  Comparison of x vs. deflection in different models for  EBT, hinged- 

                     hinged,8 elements 
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 Figure 8.10.  Comparison of x vs. deflection in different models for  TBT,        

                         hinged-hinged,8 elements 
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The following are the plots for comparison of a beam hinged at both ends and 

divided in 32 equal elements in Figures 8.11and 8.12. 
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Figure 8.11.  Comparison of x vs. deflection in different models for  

                         EBT, hinged-hinged 32 elements 
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Figure 8.12.   Comparison of x vs. deflection in different models for  

                         TBT, hinged-hinged 32 elements 

 

The following are the plots for comparison of a beam pinned at both ends and 

divided in 4 equal elements in Figures 8.13and 8.14. 

 



93 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 10 20 30 40 50 60

d
e
fl

e
c
ti

o
n

 w

x

EBT - 4 elements

x vs LSFEM MODEL1

x vs conventional method

x vs LSFEM MODEL2

x vs exact solution

 

Figure 8.13.  Comparison of x vs. deflection in different models for  EBT, pinned-   

                        pinned ,4 elements 
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 Figure 8.14.  Comparison of x vs. deflection in different models for TBT, pinned-   

                         pinned, 4 elements 
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The following are the plots for comparison of a beam pinned at both ends and 

divided in 8 equal elements in Figures 8.15and 8.16. 
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Figure 8.15.  Comparison of x vs. deflection in different models for EBT, pinned- 

                        pinned, 8 elements 
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Figure 8.16.  Comparison of x vs. deflection in different models for TBT, pinned- 

                        pinned, 8 elements 

 

The following are the plots for comparison of a beam pinned at both ends and 

divided in 4 equal elements in Figures 8.17and 8.18. 
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Figure 8.17.  Comparison of x vs. deflection in different models for EBT, pinned- 

                        pinned, 32 elements 
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Figure 8.18.  Comparison of x vs. deflection in different models for TBT, pinned-   

                        pinned 32 elements 
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 A comparison of q vs. maximum deflection for the EBT and TBT using  the 

nonlinear formulation is shown below in Figures 8.19 ,8.20 and 8.21 for different 

boundary conditions . 
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Figure 8.19.  Comparison of q vs. maximum deflection for EBT and TBT for  

                        hinged-hinged boundary conditions. 
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Figure 8.20.  Comparison of q vs. maximum deflection for EBT and TBT for  

                       clamped-clamped boundary conditions. 
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Figure 8.21.  Comparison of q vs. maximum deflection for EBT and TBT for  

                        pinned-pinned boundary conditions. 
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A comparison of x vs. shear force and bending moment for LSFEM MODEL2 

and conventional method is shown below in Figure 8.22 and Figure 8.23. The 

shear forces obtained by LSFEM MODEL2 follow a smooth curve where with 

the conventional method it gives two different values at common points. 
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Figure 8.22.  Comparison of x vs. Shear force for LSFEM MODEL2 and  

                        conventional method 
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Figure 8.23.  Comparison of x vs. Bending Moments for LSFEM MODEL2 and  

                        conventional method. 
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9. SUMMARY AND CONCLUSIONS 

 From the results presented in section 8, the following observations and 

conclusions can be made: 

1) The plots of x vs. deflection for LSFEM MODEL 1, LSFEM MODEL 2, and 

conventional method closely fit the exact solution curve. A good solution 

accuracy for deflection of LSFEM MODEL2 can be observed even for 

lesser number of elements for various boundary conditions. 

2) As the number of elements increases, the plots of x vs. deflection for 

LSFEM MODEL 1, LSFEM MODEL 2, and conventional method coincide 

with the exact solution curve for different boundary conditions. 

3) The least-squares method helps introducing forces and moments as 

primary variables and helps increasing the accuracy of the solution. 

4) Another salient feature of least-squares method is that once the boundary 

conditions are imposed the discretization always leads to a positive-

definite system of equations which allow the use of fast iterative methods 

for solution. 

5) Thus the theoretical and computational advantages of using the least-

squares finite element model were discussed and verified using 

numerical examples with different boundary conditions and number of 

elements. 

6) Since the internal forces and bending moments serve as independent 

variables, they can be obtained simultaneously unlike the conventional 

weighted residual method. 
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9.1 Future Work 

 Based on the present study, a systematic and fair comparison of weak 

form Galerkin models with least-squares models for problems involving plates 

and shells as well as fluid dynamics can be done further.  
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APPENDIX A 

 

 

 

COMMON BEAM FORMULAE 
(http://structsource.com/analysis/types/beam.htm) 
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