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ABSTRACT 

 
Magnetic Field-Induced Phase Transformation and Power Harvesting Capabilities in 

Magnetic Shape Memory Alloys. (December 2009) 

Burak Basaran, B.S., Osmangazi University, Eskisehir, Turkey; 

M.S., Gazi University, Ankara, Turkey;  

M.S., Texas A&M University,  

Chair of Advisory Committee: Dr. Ibrahim Karaman 

 

Magnetic Shape Memory Alloys (MSMAs) combine shape-change/deformation-

recovery abilities of heat driven conventional shape memory alloys (SMA) and magnetic 

field driven magnetostrictives through martensitic transformation. They are promising 

for actuator applications, and can be employed as sensors/power-harvesters due to their 

capability to convert mechanical stimuli into magnetic response or vice versa.  

The purpose of the present work was to investigate magneto-thermo-mechanical 

(MTM) response of various MSMAs, under simultaneously applied magnetic field, heat 

and stress. To accomplish this, two novel testing systems which allowed absolute control 

on magnetic field and stress/strain in a wide and stable range of temperature were 

designed and manufactured. 

MTM characterization of MSMAs enabled us to determine the effects of main 

parameters on reversible magnetic field-induced phase transformation (FIPT), such as 

magnetocrystalline anisotropy energy, Zeeman energy, stress hysteresis, thermal 

hysteresis, critical stress to start stress induced phase transformation and crystal 

orientation. Conventional SMA characteristics of single crystalline Ni2MnGa and 

NiMnCoIn and polycrystalline NiMnCoAl and NiMnCoSn MSMAs were investigated 

using the macroscopic MTM testing system to reveal how these conventional properties 

were linked to magnetic-field-induced actuation. An actuation stress of 5 MPa and a 

work output of 157 kJm−3 were obtained by the field-induced martensite variant 
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reorientation (VR) in NiMnGa alloys. FIPT was investigated both in Ni2MnGa MSMA 

and in NiMnCoIn metamagnetic SMA. It proved as an alternative governing mechanism 

of field-induced shape change to VR in Ni2MnGa single crystals: one-way and reversible 

(0.5% cyclic magnetic field induced strain (MFIS) under 22 MPa) stress-assisted FIPTs 

were realized under low field magnitudes (< 0.7 Tesla) resulting in at least an order of 

magnitude higher actuation stress levels than those in shape memory alloys literature.  

The possibility of harvesting waste mechanical work as electrical power by 

means of VR in NiMnGa MSMAs was explored: without enhanced pickup coil 

parameters or optimized power conditioning circuitry, 280 mV was harvested at 10 Hz 

frequency within a strain range of 4.9%. 

For the first time in magnetic shape memory alloys literature, a fully recoverable 

MFIS of 3% under 125 MPa was attained on single crystalline metamagnetic SMA 

NiMnCoIn by means of our microscopic MTM testing system to understand the 

evolution of FIPT under simultaneously applied magnetic field and stress.  

Conventional SMA characteristics of polycrystalline bulk NiMnCoAl and 

sintered compacted-powder NiMnCoSn metamagnetic SMAs were also investigated, 

with and without applied field. 
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CHAPTER I 

INTRODUCTION 
 

 

I.1 Motivation & Objectives  

 In this Ph.D. study, Ferromagnetic Shape Memory Alloys (FSMA) are put under 

investigation. This newly discovered class of smart materials combines the shape 

changing/deformation recovery abilities of heat driven conventional shape memory 

alloys (SMA) and the magnetic field driven magnetostrictives through martensitic 

transformation. Besides being promising for actuation applications by making up for the 

sluggish response of heat driven SMAs, they can also be employed as sensors and/or 

power harvesters due to their capability to convert mechanical stimuli into magnetic 

response.  

The coupled effects of stress, magnetic field and temperature on the magnetic 

field induced strain response and cyclic repeatability should be explored in detail before 

allowing these materials in service. Moreover, it is critical to establish a clear 

understanding of the microstructural mechanisms responsible for macroscopic behavior 

to tailor microstructures for improved magneto-thermo-mechanical response.  

To shed light on the aforementioned issues, the study was planned to consist of 

these main objectives: 

1. Design, build and verify the functionality of and experimentation system to 

magneto-thermo-mechanically characterize recently invented magnetic shape 

memory alloys (MSMAs) in bulk form while maintaining complete control on 

simultaneously applied magnetic field and stress/strain in a wide and stable 

temperature range.  
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2. Evaluate the magneto-thermo-mechanical (MTM) response of Ni2MnGa single 

crystal MSMA utilizing this test setup and reveal materials parameters critical for 

increasing the actuation stress for NiMnGa actuator applications.  

3. Determine conventional shape memory alloy (SMA) characteristics of single 

crystalline Ni2MnGa and NiMnCoIn, and polycrystalline NiMnCoAl and 

NiMnCoSn MSMAs to find out how these conventional properties are linked to 

magnetic-field-induced actuation and actuation stress.  

4. Explore the possibility of harvesting waste mechanical work as electrical power by 

means of NiMnGa MSMAs. 

5. Investigate the magnetic-field-induced martensitic phase transformation (FIPT) in 

Ni2MnGa MSMA and recently discovered NiMnCoIn metamagnetic SMA as an 

alternative mechanism to field-induced martensite reorientation as the governing 

mechanism of field-induced shape change. 

6. Design, manufacture and verify the functionality of the miniature MTM system 

which would fit into superconducting magnet bearing magnetometer test setups to 

understand magneto-thermo-mechanical coupling in metamagnetic SMAs by 

simultaneous measurement of strain and magnetization under precisely applied 

stress, magnetic field and temperature. 

7. Characterize metamagnetic SMAs including single crystalline NiMnCoIn by 

means of this miniature MTM system to understand the fundamentals of field-

induced martensitic phase transformation under simultaneously applied magnetic 

field and stress. 

Essential parameters to be derived from our experimental studies will guide us 

to: 

1. Figure out how to increase the actuation stress in MSMAs,  

2. Determine how reversible field-induced phase transformation is influenced by 

magnetocrystalline anisotropy energy (MAE), Zeeman energy (ZE), transformation 

hystereses, saturation magnetization and crystal orientation.  
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I.2 Smart (Active) Materials 

In order to understand the magnetic and conventional shape memory materials, it 

is best to have a brief background on the class of materials they belong to. Smart (a.k.a., 

active) materials exhibit coupling between multiple physical domains and thus can 

convert energy from one form into another. A domain is any physical quantity that 

consists of a set of two state variables. A pair of state variables is a means of defining 

size or location within a physical domain. For instance, a mechanical domain can be 

identified through state variables stress and strain in a material. Electrical, thermal, 

magnetic and chemical domains can be cited among other examples for physical 

domains. Coupling occurs when alteration of a state variable in one physical domain 

gives way to a change in a state variable which belongs to a separate physical domain. 

As an example thermomechanical coupling can be given; i.e., changing the temperature 

(state variable in the thermal domain) of a material can lead to a change in the strain 

(state variable of the mechanical domain) [1].  

Active materials experience a significant change in one or more of their 

properties in response to a variation in external conditions such as applied loads, altering 

temperature, electrical or magnetic fields. Piezoelectrics, magnetostrictives, shape 

memory alloys (SMAs) and recently discovered magnetic shape memory alloys 

(MSMAs) are the main groups of active materials which have found use in commercial 

industrial applications. They are capable of transforming one type of energy into 

another. In addition, they are able to display direct and inverse effects which lead to 

applications such as actuators and sensors, respectively. An ideal active material, in this 

sense, should exhibit high-frequency response, large strain and force outputs, high 

durability and low cost.  

 

I.2.1 Piezoelectric Materials 

Piezoelectric materials are among the most commonly employed smart materials. 

At microscopic scale, the movement of the off-center charged-ion in a tetragonal unit 

cell from one axis to another upon the application of an electric field or stress causes the 
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piezoelectric phenomenon [2, 3]. As this ion changes its position, strain occurs in the 

material. Poling is necessary to observe bulk strain in piezoelectrics [2]. They present 

two unique characteristics: 

a) The “direct” piezoelectric effect, which occurs when a piezoelectric material is 

subjected to a mechanical stress and the material becomes electrically charged, 

b) The “converse” piezoelectric effect, which occurs when the piezoelectric material 

becomes strained upon being placed in an electric field [2, 4]. 

By utilizing the direct piezoelectric effect, they can be used to detect strain, movement, 

force, pressure, or vibration by developing appropriate electrical responses. By means of 

the converse piezoelectric effect, they can be used to generate a movement, force, 

pressure, or vibration by applying a suitable electric field. 

The most popular commercial piezoelectric materials are lead Zirconate-Titanate 

(PZT) and Polyvinylidene-Fluoride (PVDF) [2]. Piezoelectric materials can perform 

strains up to 0.18% (PZT) and 0.1% (PVDF) under an electric field in the frequency 

range of up to 100 kHz [2]. They are available for numerous applications as both 

actuators and sensors such as accelerometers, force transducers, ultrasonic motors, 

helicopter rotor blades [4].  

 

I.2.2 Magnetostrictive Materials 

Magnetostrictive materials can convert energy between the magnetic and 

mechanical (elastic) domains. Due to the bidirectional nature of this energy exchange, 

magnetostrictive materials can also be employed for both actuation and sensing, just like 

piezoelectrics. Alloys based on the transition metals such as, Iron, Nickel, and Cobalt, in 

combination with certain rare-earth elements, are currently employed in actuator and 

sensor systems in a broad range of industrial, biomedical, and defense applications [2, 

4].  

In magnetostrictive materials, at a microscopic scale, when a magnetic field is 

applied, an electron spin tries to align with it. Then, the orbit of that electron also tends 

to be reoriented with the applied field. However, because the orbit is strongly coupled to 
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the crystal lattice, the orbit resists the rotation of the spin axis. Therefore, the energy 

required to rotate the spin system of a domain away from the preferred orientations is the 

energy required to overcome spin–orbit coupling. When magnetic field rotates the spins, 

the orbital moments rotate, and this results in significant distortion, which is called as 

magnetostriction [2, 5]. The change in sample dimensions in the direction of applied 

field is called the Joule magnetostriction. The Villari effect is the change in 

magnetization due to applied stress and is the inverse of Joule magnetostriction. 

Magnetostrictives can be employed in sensors and power harvesting applications due to 

the Villari effect [2]. 

Since magnetostriction is an inherent property of ferromagnetic materials, on 

contrary to some poled piezoelectric substances, it does not degrade over time. Due to 

the required solenoid and related magnetic circuit components, magnetostrictive 

transducers are usually larger and bulkier than their piezoelectric or electrostrictive 

equivalents. That’s why; they are employed mostly in applications that require high 

strains and forces where weight is not of problem. Advanced magnetostrictive materials 

are costly due to their complex manufacturing needs [4]. 

Terfenol-D is the most popular commercially available magnetostrictive material. 

The best magnetostriction based strain for Terfenol-D is 1,6 % under a saturation field of 

0.16 MA/m at room temperature [2]. Terfenol-D is expensive and highly brittle [3, 4]. 

Recently discovered magnetostrictive, Galfenol, sounds promising. It is more 

ductile and displays higher strength compared to Terfenol-D. However, lower strain 

levels of about 0.03 % stand out as a major drawback, besides, its high permeability 

results in low cut-off frequencies due to eddy currents [6]. 

 

I.2.3 Shape Memory Alloys & Fundamentals of Shape Memory Phenomenon 

 Some metallic alloys undergo a solid to solid first order phase transformation in 

their metastable solid state and display many unique functional properties. After 

deformation, recovery of the original shape of the alloy upon heating, perhaps, is the 

most well-known of these properties. The aforementioned diffusionless, shear-like 
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transformation is called Martensitic Transformation (MT) and the metallic alloys which 

can recover their undeformed shape through this reversible MT are called as Shape 

Memory Alloys (SMAs) [7, 8]. Since it is reversible, MT is also termed as thermoelastic 

transformation and does not cause any change in the composition of the alloy. SMAs can 

produce very high recoverable strains (up to 20%) through reversible MT. Although the 

same type MT can occur in steels during hardening when quenched, no shape memory 

exists since there is no reversibility, i.e., the MT in steels is not thermoelastic. In the 

course of forward MT, the low symmetry/low temperature solid phase obtained upon 

cooling is named martensite (M) and the high symmetry/high temperature parent phase 

which transforms into martensite is named austenite (A). The critical temperatures at 

which forward (A�M) and reverse (M�A) martensitic transformations start and finish 

are known as martensite start (MS), martensite finish (MF) and austenite start (AS), 

austenite finish (AF) temperatures, respectively (see Figure I.1). These temperatures are 

functions of alloy composition and microstructural constitution, and the microstructure 

can be affected by thermomechanical processing [7, 8].  

In an ordered alloy, different species of atoms occupy particular, distinct atomic 

sites. Since MT is diffusionless, the product phase, martensite, is ordered just like the 

parent phase, austenite. The SMA martensite phase manifests itself in a plate-shaped (as 

opposed to lath-shaped) morphology. 

In thermoelastic transformations, an incremental decrease in temperature 

between MS and MF results in a slight growth of existing martensite plates and the 

nucleation of new ones. However, as the temperature is incrementally raised, those 

newly nucleated martensitic plates disappear and the grown ones shrink back some, 

accordingly. That is, the martensitic plate undergoes a backward (reverse) shear as it 

diminishes. Reversal of the given plate on heating is just the inverse of the formation 

process upon cooling as a consequence of thermoelastic nature of the MT in SMAs. 

These martensite plates self-accommodate each other and as a whole they produce no net 

microscopic shape change. 
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Figure I.1. Schematic representation of isobaric thermal cycling curve and the critical 
temperatures of forward and reverse martensitic transformations. �tr is transformation 
strain, �T is temperature hysteresis. 
 

 

Each individual plate shows a characteristic crystallographic habit plane. By 

definition, a habit plane is the interface between A and M phases and coincides with the 

plane that accommodates the occurring transformation shear [7]. Figure I.2 shows the 

habit plane separating martensite and austenite phases. The crystallographic 

transformation associated with the martensite formation takes place in such a way that, 

provided the martensite displays a tetragonal structure, the c-axis of this tetragonal 

martensite can be parallel to any one of the several equivalent crystallographic directions 

in the cubic austenite phase.  
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Figure I.2. Schematic representation of habit plane [9]. 
 

 

Therefore, as many as two or three different martensite variants come about 

within a single martensitic plate. These variants can be related with twins and can yield 

to formation of internally twinned martensite plates. As the martensite forms within the 

austenite, misfit strains associated with shear can be accommodated internally within 

each plate by different deformation mechanisms such as slip or twinning as seen in 

Figure I.3. The detail view (encircled by the interrupted-line ellipse) shown on the 

twinned structure represents the four possible ways to generate a rhombic martensite 

from the cubic austenite. Each of these rhombic orientations (symbolized by arrows) can 

return to its parent condition in only one way; by going through the inverse 

transformation distortion [7, 10].  

Basically, a SMA is deformed in the martensitic condition and the shape 

recovery occurs during heating when the specimen undergoes the reverse MT. This is 

the essence of shape memory effect (SME). SME is only possible when transformation 

strain is relatively small. Otherwise, a large scale strain associated with an irreversible 

deformation mechanism such as plastic flow is accommodated without thermoelastic 

transformation. There occurs no change in the shape of the SMA specimen when cooled 

from above AF to below MF. As the specimen is deformed below MF temperature, it 

remains deformed until it is heated. The shape change occurs by favoring of one twin 

variant over the others, and/or by the growth of those martensite plates in which the 

favored variant is predominant at the expense of the neighboring plates provided that the 
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corresponding boundaries and interfaces are mobile. Recovery of the shape starts at AS 

temperature and gets completed at AF. Once it is fully recovered, there is no further 

change observed in the shape of the specimen even when cooled below MF. The shape 

memory mechanism can be only activated again by deforming the specimen in its 

martensitic state. This means that SME is a one-time-only happening and hence referred 

to as one way shape memory (see figure on page 11), as well [7]. 
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Figure I.3. Schematic representation of martensitic transformation and the alternative 
accommodation mechanisms for the associated misfit strains. Blue cubes represent 
austenite and yellow rhombohedra represent martensite. See text for details. 
 

 

Because of self-accommodation, the four rhombic variants given in detail of 

Figure I.3 tend to group and fit together in more or less equal portions. Figure I.4 shows 
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self-accommodated martensite plates in 3D. If such a self-accommodated martensite 

structure is put under tension in the sense of the arrows shown right below the detail 

view in Figure I.3, three of the variants out of the total of four will be unstable with 

respect to the application direction of tensile stress. The variant aligned parallel to the 

direction of the applied stress will be favored and grow at the expense of the others. 

Eventually, a single crystal of martensite of this favored-direction-variant will be 

formed. In summary, the initially formed martensite must be deformed below MF in 

order to obtain a select variant, which then displays SME when heated to above AF so 

that the austenite phase is recreated [7, 8]. 

 

 

 
Figure I.4. 3D schematic representation of self-accommodating martensite plates with 
habit plane variants grouped together to yield a net transformation distortion of zero [7]. 
 

 

Temperature independent shape memory is also possible. As mentioned before, 

martensite forms at MS upon cooling without stress. The very same material can produce 

martensite above MS temperature when external stress is applied and it reaches a critical 

level (σC). This type of martensite is termed as stress induced martensite (SIM). SIM 

transfers back into the parent phase upon unloading of stress. As opposed to the 

thermally driven shape memory mechanism, then, this can be named as mechanically 

driven shape memory mechanism. Figure I.5 shows (see also the third figure on page 15) 

a schematic representation of pseudoelastic (or superelastic) behavior (stress vs. strain 
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loop). The upper plateau corresponds to formation of SIM from austenite upon loading. 

At the end of the plateau, the linear region is the elastic deformation of martensite. The 

lower plateau represents back transformation from SIM to parent austenite phase when 

the load is released [7, 8].  
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Figure I.5. Schematic representation of pseudoelastic (superelastic) behavior (stress-
strain loop). �σ is stress hysteresis, �tr is transformation strain and the red dot represents 
critical stress level, σC, at which A�M transformation starts.  

 

 

SIM consists of only one variant of martensitic plates which has a habit plane 

sympathetic with the direction of the applied stress. Since only one martensite variant 

occurs due to the applied stress, the consequence is a net shape change associated with 

this single variant. This is different than the self-accommodated martensitic structure 
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which consists of many variants and thus yields to no net shape change. When applied 

above MS, the critical stress required to create SIM increases linearly with increasing 

temperature.  

This trend in stress to induce martensite as a function of temperature obeys 

Clausius-Clapeyron relationship; 
VT

H
dT
dP

∆
∆=  where, P is pressure, T is temperature, �H 

is transformation latent heat and �V is change in volume during transformation. As an 

alternative the same relationship can be written in the following form for convenience: 

OS

applied

T
H

dM

d

ε
σ ∆−=  where σapplied is applied stress, �O is transformation strain resolved 

along the direction of applied stress and MS is the martensite start temperature [7]. There 

exists a critical temperature, Md, above which stress cannot induce martensite formation 

but the parent phase undergoes common plastic deformation. It is noteworthy that the 

stress required to deform the parent phase above Md temperature is approximately ten 

times more than the stress needed to deform martensite at temperatures below MF.  

If the self-accommodated structure is permanently biased (generally by forming 

dislocations and internal stresses through training), a large fully recoverable macroscopic 

strain can be induced in the course of consecutive forward and back transformations 

upon heating/cooling. This is called two-way shape memory effect (TWSME) [11].  

In summary, shape memory phenomenon manifests itself in the form of there 

major effects: 

1) One way shape memory effect as explained in 3D space (strain, temperature, 

stress) in Figure I.6. At a temperature less than MF, the SMA spring is in the martensitic 

state (A). Upon application of stress (B), the martensite is deformed and when the load is 

removed, the deformation is preserved (C). The spring transforms from martensite to 

austenite and recovers the deformation when heated above AF (D). There happens no 

change in the shape if it is cooled below MF once again (D�A).  

2) Two way shape memory effect as explained in 3D space (strain, temperature, 

stress) in Figure I.7. Besides one way shape memory, SMAs are also capable of 
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demonstrating indefinitely repeatable recovery through two-way shape memory effect 

provided they are trained, i.e., the same spring can show shape change upon 

heating/cooling without external load. After being compressed in martensite condition 

(below MF), the spring can be mechanically constrained, then thermally cycled between 

MF and AF several times. This training treatment builds micro-stresses in the parent 

phase and they bias the MT by dictating a preferred variant in martensite. In Figure I.7, 

the difference of two-way SME from one way SME is depicted clearly.  

3) Pseudoelastic (or superelastic) effect, as mentioned previously, is another 

mechanism that allows SMAs to perform indefinitely repeatable recovery by SIM 

formation. In Figure I.8, at a constant temperature above AF, the spring is loaded and 

deformed (A�B), then unloaded (C). The pre-deformed shape is fully recovered upon 

unloading and the area enclosed by the loop is a measure of energy dissipation in one 

pseudoelastic cycle. 

Many distinct alloy systems exhibit MT and they are generally classified as 

ferrous or non-ferrous martensites. Tables I.1 and I.2 present lists of Nonferrous and 

Ferrous Martensites, respectively [12]. Among all conventional SMAs, Fe based, Cu 

based and Ni-Ti alloys have found the most employment in industrial applications. 
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Table I.1. Classification of nonferrous alloys that display martensitic transformation 
[12]. 

Group Alloy System 

A. Terminal Solid Solutions based 
on an element that has allotropic 
phases 

1. Cobalt and its alloys 
2. Rare-earth metals and their alloys 
3. Titanium, Zirconium and their alloys 
4. Alkali metals and their alloys and Thallium 
5. Other metals such as Pu, Ur, Hg and their alloys 

B. Intermetallic solid solutions that 
have a bcc parent phase 

1. �-Hume-Rothery phases of Cu, Ag and Au based 
alloys 
2. �-Ni-Al alloys 
2. Ni-Ti-X alloys 

C. Alloys that show cubic to 
tetragonal transformation (including 
quasi martensite) 

1. Indium based alloys 
2. Manganese based alloys (paramag.��antiferromag.) 
3. A15 compounds 
4. Miscellaneous: La-AgX-In1-x, Ru-Ta, Ru-Nb, Y-Cu, 
La-Cd 

 

 

Table I.2. Classification of ferrous alloys which exhibit complete or nearly complete 
shape memory effect [12]. 
Alloy System Composition Crystal Structure Nature of transformation 

1. Fe-Pt 25 at. % Pt 
25 at. % Pt 

bct (α’) 
fct 

Thermoelastic 
Thermoelastic 

2. Fe-Pd 30 at. % fct Thermoelastic 

3. Fe-Ni-Co-Ti 23% Ni-10%Co-4%Ti 
33% Ni-10%Co-4%Ti 

bct (α’) 
bct (α’) 

--- 
Thermoelastic 

4. Fe-Ni-C 31% Ni-0.4%C bct (α’) Non-thermoelastic 

5. Fe-Mn-Si 31% Ni-0.4%C 
31% Ni-0.4%C 

hcp (�) 
hcp (�) 

Non-thermoelastic 
Non-thermoelastic 
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Figure I.6. 3D illustration of one way SME; at a temperature below MF, sample is loaded and deformed (A�B), then unloaded (C). 
Upon heating to a temperature above AF, the pre-deformed shape is recovered. Axes L, T and F stand for strain, temperature and 
stress, respectively [8]. 
 
 
 

 
Figure I.7. 3D illustration of two-way SME; spontaneous shape change occurs during cooling the sample from a temperature above 
AF to a temperature below MF (A�B) without any external stress involved. Upon heating back to a temperature above AF, the pre-
deformed shape is recovered. Axes L, T and F stand for strain, temperature and stress, respectively [8]. 
 
 
 

 
Figure I.8. 3D illustration of pseudoelasticity; at a temperature above AF, sample is loaded and deformed (A�B), then unloaded (C). 
The pre-deformed shape is fully recovered upon unloading and the area enclosed by the loop is a measure of energy dissipation in 
one superelastic cycle. Axes L, T and F stand for strain, temperature and stress, respectively [8]. 
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I.2.3.1 Iron Based Shape Memory Alloys  

The austenite (fcc-� phase) in ferrous alloys can be transformed to these three 

kinds of martensites, depending on composition or stress: �-�’ (bcc), ��� (hcp) and  

��fct martensite. Although a shape-memory effect has been observed in all three types 

of transformation, most attention in developing a commercial alloy has been given to the 

alloys that have a ��� transformation. These alloys have a low stacking fault energy in 

austenite (Fe–Cr–Ni, Fe–high Mn alloys). The austenite to �-martensite transformation 

proceeds through Shockley partial dislocations and change the crystal. The shape 

memory effect (only one-way) results mainly from reverse motion of the Shockley 

partial dislocations during heating [12].  

Complete shape-memory effect has been reached in both single-crystal and 

polycrystalline Fe–Mn–Si alloys that contain suitable amounts of Mn and Si. Shape-

memory strains of 9% in single crystals and 5% in polycrystals have been reported. Any 

factors that impede the reversibility of the motion of partial dislocations lead to 

incomplete recovery and in turn a poor shape-memory effect. The internal factors that 

hamper recovery include alloy composition, Neel temperature, transformation 

temperature, and lattice defects. External factors are applied stress and strain, 

deformation, recovery annealing temperature, and thermomechanical treatment. Fe-

based alloys exhibit only a (limited) one-way shape-memory effect after a labor-

intensive thermomechanical training treatment. No significant two-way effect or 

pseudoelastic properties have been reported, whereas only moderate damping capacity 

might have attracted some interest. Therefore the only reported successful applications 

of these Fe-based alloys are couplings. This type of application is based on the one-way 

effect. The recovery stresses are moderate but sufficient [12]. 

 

I.2.3.2 Copper Based Shape Memory Alloys  

Copper-based shape-memory alloys are derived from Cu–Zn, Cu–Al, and Cu–Sn 

systems. The composition range of these alloys corresponds to that of the well-known �-

Hume–Rothery phase. In most shape-memory alloys, this phase has a disordered bcc 
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structure at high temperatures but orders to a B2, D03 or L21 form at lower temperatures. 

The temperature of the transformation to martensite, MS, varies with the alloy 

composition. Cu–Zn and Cu–Al martensites are of three types �’, �’ or �’. Some 

conversion from one martensitic structure to another, for example �’��’, may also take 

place. The net result is a coalescence of plates within a self-accommodating group and 

even coalescence of groups. Heating this deformed martensitic microstructure 

transforms it to the � phase, and the shape-memory effect accompanies the structural 

change [12].  

In Cu based alloys, two criteria are important when selecting an alloy composition to 

obtain a complete � microstructure that transforms to martensite. The first one is having 

the � phase stable across as wide a temperature range as possible. The less wide this 

temperature range, the faster the cooling rate required to retain the � phase without 

diffusional decomposition. The second one is having transformation temperatures fall 

within a range that satisfies the requirement for the shape-memory application (−150 to 

200 oC) [12].  

Copper-based shape-memory alloys presently used are derived from Cu–Zn and Cu–

Al systems, and for their ternary alloys, elements are added for various metallurgical 

reasons. The working martensite in these alloys is only or predominantly the �’ with 

D03, B2 or L21 structure [12]. 

 

I.2.3.3 Nickel–Titanium Shape Memory Alloys  

Nitinol (Ni-Ti) is the most well known SMA which has been discovered by 

Buehler and his co-workers at the U.S Naval Ordinance Laboratory (NOL) in 1962 [13]. 

Ni50–Ti50 and near equiatomic Ni–Ti alloys are the best explored system of all shape-

memory alloys and occupy almost the whole SMA market. Ni50–Ti50 is an intermetallic 

phase that has some solubility at higher temperature.  

The basic concept of processing Ni-Ti alloys is that the martensitic and � phases 

have to be strengthened to avoid plastic deformation during shape-memory or 

pseudoelastic loading. This occurs by classic methods such as strain hardening (during 
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cold deformation), solution hardening, and precipitation hardening. Ni–Ti alloys have 

the significant advantage that these techniques can be easily applied due to excellent 

ductility and a very interesting but complicated precipitation process [12].  

The compositions of Ni–Ti SMA are approximately between 48 and 52 at. % Ni 

and the transformation temperatures of the B2 structure to the martensitic phase that has 

a monoclinic B19’ structure are very sensitive to the nickel content (a decrease of about 

150 oC for an increase of 1 at. % Ni). Transformation temperatures can be chosen 

between −40 and +100 oC.  

Ni–Ti alloys have the best shape-memory behavior of all SMA. Even in the 

polycrystalline state, 8% shape recovery is possible. Furthermore, 8% pseudoelastic 

strain is completely reversible above AF and the recovery stress is of the order of 800 

MPa [12].  

In some cases, the martensitic transformation is preceded by the so-called R-

phase transition. The R transition is a B2 �� rhombohedral transformation that also 

has second-order characteristics. The most specific characteristics of this R-phase 

transition are that it shows clear one- and two-way shape memory effects of the order of 

1% recoverable strain with very small hysteresis of only a few degrees, which creates 

possibilities for applications involving accurate regulating devices. Note that, further 

cooling transforms the R phase into B19’ martensite. During heating, generally only the 

reverse martensitic transformation is observed. It has been shown that the appearance of 

the R phase depends on composition, alloying elements, and thermomechanical 

processing. The major common point is that all effects that depress the martensitic 

forward transformation below room temperature favor the appearance of the R-phase 

transition that is quite stable near 30 oC [12]. 

Addition of a third element and thus having relative replacement of Ni and/or Ti 

influences the transformation temperatures and also affects hysteresis, strength, ductility, 

shape-memory characteristics, and the B2 � (R) � B19’ sequence. Although more 

application oriented, one can distinguish four purposes to add third elements [12]: 

1. To decrease (Cu) or increase (Nb) hysteresis, 
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2. To lower transformation temperatures (Fe, Cr, Co, Al), 

3. To increase transformation temperatures (Hf, Zr, Pd, Pt, Au), and 

4. To strengthen the matrix (Mo, W, O, C). 

Some ternary alloys including Ni–Ti–Cu and Ni–Ti–Nb have been developed for 

large-scale applications. Among these especially, pseudoelastic Ni–Ti–Nb alloys have 

significant superiorities from the binary alloy such as much lower stress rate, much 

higher critical stress levels to start A�M forward transformation and much larger 

pseudoelastic window [12]. 

 

I.2.4 A Comparison of Ferromagnetic Shape Memory Alloys with Other Smart 

Materials as Potential Actuator Materials 

Figure I.9 depicts a comparison of some active materials against pneumatic and 

hydraulic systems in regard with their actuation frequencies and actuation strains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure I.9. A comparison of active materials potentially to be used as actuators against 
pneumatic and hydraulic systems in terms of actuation frequency and actuation strain. 
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As mentioned in section I.2.1, piezoelectric materials (PZT) are compact and 

light weight, can operate over a large temperature range, and can function at high 

frequencies. They have excellent stability and fast response to applied voltage and show 

no wear or tear. However they are brittle, can only produce small strains compared to 

SMAs and magnetostrictives, also cannot withstand high shear and tension, and can 

become depolarized under high voltage and/or temperature [4, 14].  

Magnetostrictive material Terfenol-D, as narrated in detail in section I.2.2, 

displays fast response time (µsec), high Curie temperature, relatively high strain and 

force capabilities compared to piezoelectrics. It shows no aging effect, and it can operate 

over a large temperature range. However, its low tensile strength, brittle structure and 

high cost due to the rare earth metals involved are major drawbacks. Furthermore, 

Terfenol-D requires intensive equipment in order to produce the magnetic field under 

which it can function [4, 14]. 

Conventional SMA NiTi, displays good ductility, large stroke, substantial 

actuation force and good work output levels, however its frequency range is very low [4, 

14, 15] (see section I.2.3 for a detailed discussion).  

Table I.3 provides a quantification of the aforementioned properties for all active 

materials we discussed so far [14]. Obviously, a new class of smart materials, magnetic 

shape memory alloys surpasses the actuation frequency capabilities of conventional 

SMAs by almost three orders of magnitude as they provide the same amount of superior 

strain. Following chapters will tell us the reasons behind this unique capability. 

 

 

 

 

 



 

 

21 

Table I.3 Comparison of actuation strain, stress and operating frequencies of active 
materials [14]. PT: phase transformation, VR: Variant reorientation. 

Driving 
Force Active Material Strain 

% Stress MPa 
Operating 
Frequency 

Hz 

Heat Shape-Memory Alloy (NiTi) 2-8 400 1 

Ferroelectric  0.1 3 100.000 Electric 
Field 

Piezoelectric (PZT) 0.2 70 100.000 

Magnetostrictive (Terfenol-D) 0.2 80 10.000 

VR  5-10 5 1.000 
Magnetic 

Field MSMA 
(Ni2MnGa)  

PT 0.5-4 20-100   

 

 

I.2.5 Magnetic Shape Memory Alloys 

 A brief look into the history of magnetic shape memory alloys (MSMAs) 

development is enough to clearly see that for a long time, researchers have been 

speculating on achieving relatively larger strains (in comparison with magnetostriction) 

via thermoelastic shape memory effect (just like in conventional SMA Ni-Ti), but 

through stimulation by magnetic field instead of heat in some certain martensites which 

also demonstrate ferromagnetism [16-18].  

 In 1996, when Ullakko et al reported 0.2% magnetic field induced strain in 

Heusler alloy Ni2MnGa [19], ferromagnetic shape memory alloys emerged as a potential 

family of active materials to challenge the long existing magnetostrictives and 

piezoelectrics. Just like heat driven SMAs, MSMAs can display large reversible strains 

by rearrangement of martensites, this time not only by means of the thermo-mechanical 

coupling but by magneto-mechanical coupling as well, i.e., by the effect of magnetic 

field on the magnetic domain structure of ferromagnetic martensites. Magnetization 

through displacement of magnetic domain walls is possible in the presence of high 

magnetocrystalline anisotropy energy, when martensitic structure rearrangement is 
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energetically favorable over the reorientation of magnetic moments (a.k.a. magnetization 

rotation) [20].  

 All the shape memory related effects we described in section I.2.3 are realized in 

the stress vs. temperature plane. Thanks to the presence of the magnetic subsystem in 

MSMAs, the martensitic transformation phenomena they undergo require the use of 

three coordinates for analysis: stress, magnetic field, and temperature. A magnetic field 

can be used to shift the temperatures of the structural phase transformations and to affect 

the structure of the martensitic phase where the parameters of the magnetic subsystem of 

the ferromagnet play a leading role. The difference in the magnetization of austenite and 

martensite determines the size of the shift in the critical temperatures of a phase 

transformation in the presence of a magnetic field [20].  

 The magnetoelastic coupling and magnetocrystalline-anisotropy constants 

determine the possibility of having the martensitic variants transform by magnetic field 

application. Therefore, the same phenomena that are observed in conventional 

nonmagnetic SMAs in the load vs. temperature plane can, in principle, be realized in the 

magnetic field vs. temperature plane in MSMAs [20]. Magnetically induced strains (up 

to 10% [21]) that are two orders of magnitude greater than simple single-ion 

magnetostriction have been observed in some alloys and in a number of intermetallic 

compounds, such as the Heusler alloy Ni2MnGa.  

 

I.2.5.1 Crystal Structure of MSMA NiMnGa 

 Heusler alloys are ternary intermetallic compounds with the general formula 

X2YZ. Ni2MnGa alloy belongs to this family and has L21 structure at room temperature 

[20]. As shown in Figure I.10, L21 structure can be represented by a bcc lattice in which 

Ni atoms occupy the position at the center of the cube, while Mn and Ga atoms 

alternatively occupy the positions at the apexes [22].  
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Figure I.10. L21 structure of the high temperature austenitic parent phase of Ni2MnGa 
MSMA [22]. 
 

 

 In principle, the formation of such a structure from the melt (the melting point of 

Ni2MnGa is 1380 K) is possible either from the fully disordered phase A2 (A2 � L21) 

or through the partially ordered intermediate phase B2’ (A2 � B2’ � L21), in which Ni 

atoms already form the frame of the lattice, while Mn and Ga atoms still occupy 

arbitrary positions as seen in Figure I.11 [20, 23].  
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Figure I.11. Schematic representations of the disordered A2, ordered B2’ and L21 
structures. In the A2 structure, three atom species are randomly distributed over all 
lattice sites. In B2’ , two sub-lattices are present, with, for Ni2MnGa, Ni on one lattice 
(light gray) and Mn/Ga disordered on the other sub-lattice. In the L21 structure, further 
ordering occurs on the second sub-lattice [23]. 
 

 

 However, formation of Ni2MnGa is different from both of the above-mentioned 

scenarios. With decreasing temperature, this compound passes from the melt directly 

into the partially ordered phase B2’, and this phase then experiences a second-order 

phase transition of the disorder-order type [24, 25]. The B2’ � L21 transition 

temperature for Ni2MnGa is about 1070 K. Down to Tm ~ 200 K, Ni2MnGa remains in 

the L21 phase, and this Heusler alloy then undergoes a first- order phase transition to a 

martensitic tetragonal phase, with c/a < 1. At room temperature the cubic lattice constant 

of Ni2MnGa is a = 5.825 Å and the unit cell volume Vaustenite = 198 Å3 (the number of 

formula units per unit cell is Z = 4). At low temperatures the parameters of the tetragonal 

lattice are a =b = 5.920 Å and c = 5:566 Å, with c/a = 0:94, and the unit cell volume is 

195 Å3 [22]. Ni2MnGa alloys can experience premartensitic and intermartensitic 

transformations. It must also be noted that for samples of nonstoichiometric composition 

a martensitic phase with orthorhombic and monoclinic distortions has been reported. 
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Almost all parameters of Ni2MnGa have proven to be very sensitive to the chemical 

composition of the specimens; for instance, the transformation temperatures and the 

formation of super-structures in the austenitic and martensitic states [20]. 

 X-ray and neutron diffraction studies on Ni2MnGa reveal the presence of super-

structural reflections, in addition to the main reflections of the low-temperature 

martensitic phase. In the neutron diffraction studies of a sample of stoichiometric 

composition it was found that there are additional reflections of the tetragonal phase and 

it was assumed that this phase is modulated along the [ ]100  direction [22]. Further 

studies of the crystal structure of the low temperature phase in nonstoichiometric 

compounds revealed a complex pattern of formation of different martensitic phases and 

the presence of intermartensitic phase transitions in the system Ni2+x+yMn1-xGa1-y. In the 

early stages of such studies the super-structural motifs were described as static 

displacement waves (modulations) [26], although an alternative approach was then 

developed, in which the super-structural reflections of martensite are interpreted as long-

period rearrangements of closely packed planes of the { }100  type [27-29]. A 

comparative analysis of these two approaches in describing the crystal structure of 

martensite in NiMnGa is given in reference [30], where it is shown that they often lead 

to the same results.  

 The schematic representation of martensite with five- and seven-layered 

modulations (10M and 14M) along the crystallographic direction [ ]110  can be seen in 

Figure I.12. There have also been reports about observations of longer-period 

modulations and about intermartensitic transformations in Ni2+x+yMn1-xGa1-y induced by 

temperature or uniaxial strain.  



 

 

26 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.12. (a) Detail schematic of the unit cell corresponding to the 10-layered 
martensite. Comparison of the unit cells obtained from the modulated lattice approach 
and Ni-Al-type approach for the five-layered (b) and seven-layered (c) martensites [30]. 
 

 

 Five-layered modulation of the low-temperature tetragonal phase was observed 

by the method of diffraction of electrons and X-rays on single crystals of 

Ni51.5Mn23.6Ga24.9 (MS = 293 K) [26], Ni49.2Mn26.6Ga24.2 (MS = 180K) [31], 

Ni52.6Mn23.5Ga23.9 (MS = 283 K) [32], Ni52Mn23Ga25 (MS = 227 K) [27, 33], and 

Ni48.5Mn30.3Ga21.2 (MS = 307 K) [33]. In the process of formation of superstructures in 

the martensitic phase of these Heusler alloys, the X-ray patterns showed, besides the 

main diffraction reflections, a number of additional reflections. Modulation occurs in 

such a way that each fifth ( )110  plane does not undergo displacements, while the other 

four are displaced from their regular positions in the body-centered tetragonal lattice 

along the [ ]110  direction [20].  

 Seven-layered modulation of the martensitic phase was observed in single 

crystals of Ni52Mn25Ga23 (MS = 333 K) [26] and Ni48.8Mn29.7Ga21.5 (MS = 337 K) [34]. X-

ray studies of Ni48.8Mn29.7Ga21.5 have shown that, as in the case of five-layered 

(a) (b) (c)(a) (b) (c)
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martensite, besides the main reflections there are additional diffraction reflections that 

lie along the [ ]110  direction. The crystal structure of the seven-layered martensite in 

Ni48.8Mn29.7Ga21.5 was found to be rhombic with the lattice parameters a = 6.19 Å, b = 

5.80 Å, and c = 5.53 Å [34]. In contrast to this, the crystal structure of seven-layered 

martensite in Ni52Mn25Ga23 was interpreted as monoclinic with the lattice parameters a = 

6.14 Å, b = 5.78 Å, and c = 5.51 Å with γ = 90.5o [26]. Unmodulated martensite was 

observed in single-crystal samples and thin films of alloys of the following 

compositions: Ni53.1Mn26.6Ga20.3 (MS = 380 K) [35, 36] and Ni48.5Mn30.3Ga21.2 (MS = 307 

K) [33]. The crystal structure of the unmodulated martensitic phase proved to be 

tetragonal, but the ratio c/a = 1.18 for it is much higher than for the tetragonal 

martensitic phases considered above. The experimental data on modulations of the 

crystal lattice in the martensitic phase suggest that the type of martensite (modulation 

period) depends on the composition of the alloys [20]. It is convenient to classify these 

types according to the martensitic transition temperature MS [30]. Five-layered 

martensite has a crystal lattice of tetragonal symmetry and is formed in the process of 

cooling in alloys that have MS < 270 K. Seven-layered martensite is formed in alloys 

with a higher MS and has a crystal structure differing from the tetragonal one [20].  

 

I.2.5.2 Magnetics Fundamentals for Magnetic Shape Memory Alloys 

To understand the origins of magneto-mechanical coupling (the effect of 

magnetic field on the magnetic domain structure of ferromagnetic martensites as a 

function of applied stress) in MSMAs, in the next sections we will look at the 

magnetization phenomenon in its manifestation in ferromagnetics. 

 

I.2.5.2.1 A Brief Survey on Physical Origins of Magnetization & Types of Magnetic 

Materials 

The macroscopic magnetic properties of materials are a result of magnetic 

moments associated with individual electrons. Magnetic moments rise from two distinct 

sources:  
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 The first one comes from the assumption that each electron can be taken as 

spinning around an axis: The magnetic moment originates from this electron spin, which 

is directed along the spin axis as shown in Figure I.13a. Spin magnetic moments may be 

only in an “up” direction or in an antiparallel “down” direction. Thus each electron in an 

atom may be thought of as being a small magnet having permanent orbital and spin 

magnetic moments [37-39]. 

 The second one is the electron’s orbital motion around the nucleus. Since it is a 

moving charge, an electron may be considered as a small current loop, generating a very 

small magnetic field, and having a magnetic moment along its axis of rotation, as 

schematically illustrated in Figure I.13b [37-39]. 

 

 

 
Figure I.13. Schematic demonstration of the magnetic moments associated with (a) a 
spinning electron and (b) an orbiting electron [38]. 

 

 

Bohr magneton, �B, is the most fundamental magnetic moment and its magnitude 

is 9.27 x 10-24 A.m2 [39]. For each electron in an atom, the spin magnetic moment is 

designated as � �B (plus for spin up, minus for spin down). In addition, the orbital 

magnetic moment contribution is equal to ml*�B, where ml is the magnetic quantum 

number of the electron [39, 40]. 

The externally applied magnetic field is at times called the magnetic field 

strength, and is designated by H. The magnetic induction, or magnetic flux density, 

denoted by B, represents the magnitude of the internal field strength within a substance 
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that is subjected to an H field. Both B and H are field vectors. They are characterized not 

only by magnitude, but also by direction in space. Another field quantity, M, called the 

magnetization (response) of the solid, is defined by the expression [40, 41]; 

B = �0H+ �0M        (Eqn. I.1) 

where �0  is the permeability of a vacuum, a universal constant, which has a value of 4� 

x 10-7 (1.257 x 10-6) H/m [37, 40]. 

Diamagnetism (see Figure I.14) is a very weak form of magnetism that is 

nonpermanent and persists only while an external field is being applied. It is induced by 

a change in the orbital motion of electrons due to an applied magnetic field. The 

magnitude of the induced magnetic moment is extremely small, and in a direction 

opposite to that of the applied field [37, 38].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.14. Comparison among magnetization responses of ferro, ferri, para and 
diamagnetic materials when magnetic field is applied [38]. 
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Paramagnetic materials (see Figure I.14) have only partial cancellation of their 

magnetic moments leaving the atom with a net moment [38, 40]. In the absence of an 

external magnetic field, the orientations of these atomic magnetic moments are random, 

such that a piece of material possesses no net macroscopic magnetization. When a field 

is applied to a paramagnetic material, the atomic moments align themselves with the 

field to an extent determined by the magnitude of the field and the temperature.  

In ferromagnetic materials (see Figure I.14), an additional alignment of the 

moments due to quantum mechanical exchange forces occurs when the material is 

cooled below a critical temperature, TC, the Curie temperature [37, 40, 41]. They possess 

a permanent magnetic moment even in the absence of an external field, and manifest 

very large permanent magnetizations (spontaneous magnetization) [5, 40, 41]. 

Ferromagnetic materials are composed of small-volume regions, named as magnetic 

domains in which there is a mutual alignment in the same direction of all magnetic 

dipole moments and they magnetized to their saturation magnetization (MS) [40, 41]. 

Adjacent domains are separated by domain boundaries or domain walls, across which 

the direction of magnetization gradually changes. In an unmagnetized state, the total 

magnetization of samples is zero due to formation of multiple magnetic domain 

formation where the magnetization vectors cancel each other.  

 

I.2.5.2.2 Magnetic Domains in Ferromagnetic Materials 

A ferromagnetic material, as demagnetized, i.e., when there is no applied 

magnetic field, is divided into a number of small regions (Figure I.15a). These regions 

are called magnetic domains [5].  

Each domain is spontaneously magnetized to the saturation value MS. The total 

magnetization of a ferromagnetic material is zero due to the presence of these magnetic 

domains since their existence reduces the magnetization of the material by reducing the 

sum of exchange, magnetostatic, magnetocrystalline, and domain wall energies. This 

happens because the directions of magnetization of various domains are directed such 

that the specimen, as a whole, has no net magnetization [5, 40]. 
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Figure I.15 Schematic representation of (a) general view of magnetic domains and the 
random magnetization directions within (b) change in orientation of magnetic dipoles in 
a 180o twist boundary or domain (Bloch) wall [38]. 
 

 

The process of magnetization is then, converting the material from a multi-

domain structure to a single domain with one magnetization direction parallel to that of 

the applied field. On the other hand, the formation of a magnetic domain results in an 

increase in domain wall length which costs energy. Domain walls are the boundary 

regions that separate two magnetic domains with spontaneous magnetizations in 

opposite directions (Figure I.15b). They are virtual regions of a crystal in which the net 

magnetization is zero. Also, at or within the wall, the magnetization needs to change 

direction from one easy crystallographic direction to another. The thickness of domains 

walls are determined by the exchange and anisotropy energies and can range from 10 nm 

to several �m [5, 39, 41]. 

Generally domain walls can be classified into 180o or non-180o domain walls. 

180o domain walls occur in almost all materials and are not affected by applied stress. In 

180o domain walls, the directions of magnetization in the neighboring domains are 

antiparallel and consequently the moments in these two domains lie in equivalent 

crystallographic directions [40]. In cubic materials, when K > 0, the non-180o walls are 

all 90o walls. This assures that the directions of the moments in neighboring domains are 
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at right angles with respect to one another. Thus in iron, where the easy axes are 100 , 

the domain walls between [ ]100  and [ ]001  directions are 180o domain walls. The walls 

between [ ]100  and [ ]010  are 90o walls. On the other hand, when K < 0 such as in nickel, 

where the easy axes are 111 , the non-180o domain walls will be either 71o or 109o but 

not 90o [40].  

 

I.2.5.2.3 Definition & Origins of Magnetocrystalline Anisotropy 

 One of the factors which dictate the magnetization response of a magnetic 

material when subjected to an applied magnetic field (M-H curves) is magnetic 

anisotropy. Simply, it means the dependence of the magnetic properties of the material 

on the crystallographic directions in which they are measured. Crystal anisotropy or 

magnetocrystalline anisotropy is an intrinsic property of a magnetic material. 

Ferromagnetic materials with higher anisotropy display greater magnetic hysteresis. In 

an isotropic solid, certain crystallographic axes are favored by the magnetic moments to 

attain minimization of energy. Magnetic moments can be dislodged from the direction 

they occupy by application of a magnetic field; this happens by jumping to 

crystallographically equivalent axes closer to the direction of the applied field, hence 

with lower energy. This process yields a discontinuous and irreversible rotation of the 

magnetic moments with a switching action [40]. 

 Results of magnetization measurements along 100 , 110  and 111  directions 

for bcc iron and fcc nickel is shown in Figures I.16a and I.16b, respectively. As evident 

by the figure, saturation of magnetization for iron can be achieved with quite low fields 

in the 100  direction where the same is valid in the 111  direction for nickel. 

Accordingly, these special directions are called the easy axis of magnetization for these 

respective metals. A domain wall separates two magnetic domains in a crystal, and can 

be moved by a magnetic field. 
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Figure I.16. Magnetization vs. magnetic field curves for single crystalline (a) iron and 
(b) nickel [5].  
 

 

 Figure I.17 shows a possible domain structure for a demagnetized iron crystal 

disk cut parallel to ( )001  plane with the assumption that the domains in the 

demagnetized state of iron are spontaneously magnetized to saturation in directions of 

100 . The schematic in (a) shows four different partitions in the main domain with 

magnetization vectors Ms of each directing along [ ]010 , [ ]100 , [ ]010  and [ ]001  directions, 

respectively. When a magnetic field is applied in [ ]010  direction as shown in (b), the 

partition with its magnetization vector in the same direction as the magnetic field will 

start growing at the expense of the others by the motion of the domain walls in order to 

lower the magnetic potential energy of the crystal. Continued application of the field 

finally eliminates all but the favored partition and thus the crystal reaches saturation. The 

direction of easy magnetization of a crystal then, can also be identified as the direction 

of spontaneous domain magnetization in the demagnetized state [5]. 
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Figure I.17. Evolution in magnetic domain structure in single crystalline iron specimen 
under applied magnetic field in [ ]010  easy direction, (a) before application of magnetic 
field, (b) onset of domain wall motion under magnetic field (c) saturation of 
magnetization [5]. 
 

 

 As can be seen in Figure I.16a, more magnetic field is necessary to saturate iron 

in 110  medium magnetization direction compared to that of in 100 . The change in 

domain structure of iron under an applied field in [ ]110  is depicted by Figure I.18. 

Domain wall motion proceeds until there are only two partitions left as seen in (c) where 

each of them has equal potential energies. For the magnetization to increase further and 

reach the level of saturation, the magnetization vectors Ms of both domains need to rotate 

until they are parallel to the direction of the applied field, i.e., [ ]110 . This process is 

named domain magnetization rotation. The domain itself, which is a group of atoms, 

does not rotate. It is merely the net magnetic moment of each atom that rotates. Domain 

magnetization rotation is only possible at relatively higher fields since the field is then 

acting against the force of crystal anisotropy which is usually fairly strong. Crystal 

anisotropy may therefore be regarded as a force which tends to conserve the 



 

 

35 

magnetization in certain equivalent crystallographic directions. When the rotation 

process is complete (d), the domain wall disappears and crystal becomes saturated [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure I.18. Evolution in magnetic domain structure in single crystalline iron specimen 
under applied magnetic field in [ ]110  medium direction, (a) before application of 
magnetic field, (b) onset of domain wall motion under magnetic field, (c) energetically 
equipotent two domain structure (d) achievement of saturation following domain 
magnetization rotation [5]. 
 

 

 The applied field must do work against the anisotropy force to turn the 

magnetization vector Ms away from any easy direction. This means, there must be some 

energy stored in any crystal in which Ms points towards any non-easy direction. This 

energy is called magnetocrystalline anisotropy energy (MAE) and denoted by Eanisotropy. 

It is possible to express MAE in terms of a series expansion of the direction cosines of 

Ms that are relative to the crystal axes. In a cubic crystal, if Ms is assumed to make 

angles a, b, c with the crystal axes x, y, z and to have α1, α2, α3 as the direction cosines 

of these angles, then, 
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where, K0, K1, K2, …. are constants for a particular materials at a particular temperature 

and have the unit erg/cm3 or J/m3 [5].  

 Usually higher terms are not necessary in Eqn.I.2. Sometimes even K2 can be too 

small to not be neglected. K0 is not dependent of the angles and is usually neglected 

since the main interest is in the change of MAE when magnetization vector Ms rotates 

from one direction into another. When K2 is zero, direction of easy magnetization is 

determined by the sign of K1. If K1 is positive, then [ ]100
anisotropyE < [ ]110

anisotropyE < [ ]111
anisotropyE . This 

means, 100  is the easy direction (like in bcc iron) and MAE is minimum when Ms is 

aligned in this direction. If K1 is negative, then [ ]100
anisotropyE > [ ]110

anisotropyE > [ ]111
anisotropyE . This 

means, 111  is the easy direction (like in fcc nickel) and MAE is minimum when Ms is 

aligned in this direction. When K2 is nonzero, then the easy direction depends on the 

values of both K2 and K1 [5].  

 Exchange interaction is between two neighboring spins and can be expressed as 

spin-spin coupling. It can be very strong and dictates these neighboring spins parallel or 

antiparallel to each other. However, the associated exchange energy is isotropic and only 

depends on the angle between adjacent spins. It does not depend on the direction of the 

spin axis relative to the crystal lattice. Spin-spin coupling does not contribute to 

magnetocrystalline anisotropy [5, 39, 40]. 

 The orbit-lattice coupling is also strong. The orientations of the orbits are fixed 

very strongly to the lattice since the orbital magnetic moments are almost entirely 

quenched [5, 39, 40].  

 There also exists a coupling between the spin and orbital motion of each electron. 

Crystal anisotropy mainly stems from this spin-orbit coupling. When a magnetic field is 

applied not only does it attempt to reorient the spin of an electron but also the orbit of 

that same electron. The orbit is strongly coupled to the lattice and thus the attempt to 

rotate the spin axis faces strong resistance. MAE, which is the energy required to rotate 

the spin system of a domain away from the easy magnetization direction, is just the 
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energy to overcome the spin-orbit coupling. This coupling is relatively weak compared 

to the aforementioned two [5, 39, 40].  

 The strength of the anisotropy is measured by the magnitude of the anisotropy 

constants. The magnitude of crystal anisotropy usually diminishes with temperature 

more rapidly than magnetization and vanishes at Curie temperature [5, 39, 40].  

 

I.2.5.3 Structure of Magnetic Domains in MSMA NiMnGa 

 The structure of the magnetic domains in Ni2+x+yMn1-xGa1-y studied in bulk single 

crystals [42] was reported to be faceted along { }100  planes. Different methods were used 

for investigation including magnetic force microscopy [43]. The results of these studies 

show that the domain structure of the austenitic phase is formed primarily by 180o 

domains with magnetization vectors Ms parallel to [ ]100 . The magnetic domain structure 

changes dramatically in the course of a martensitic transformation, upon formation of the 

martensitic variants. In the low-temperature phase several magnetic domains are located 

within a single martensitic variant. Since adjacent martensitic variants are separated by a 

twin boundary, this leads to the appearance of a relief on the sample's surface, and the 

magnetization vectors in adjacent martensitic variants prove to be directed at a certain 

angle with respect to each other [44]. The domain structure within a single martensitic 

variant consists of 180o domains, just as in the austenitic phase. Pan et al. [44] studied 

the evolution of a hierarchical domain structure. They reported that when a small 

magnetic field (1-2 kOe) is applied to the sample, the ferromagnetic and martensitic 

domain structures change, resulting in a formation of a fir-tree pattern meeting at the 

twin boundaries such as shown in Figure I.19a. As the field is increased to an 

intermediate level, it changes the topology of the ferromagnetic domains which come to 

resemble a ‘herringbone’ structure (Figure I.19b) with a common domain wall 

coinciding with the twin boundary [44]. As the magnetic field strength is increased 

further, the process of reorientation of the magnetic moments in the ferromagnetic 

domains and the process of displacement of the boundaries between the martensitic 

variants begin to compete. With larger fields (8-9 kOe), the magnetization vector that 
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was previously orthogonal to the field will rotate in the field direction and eliminate 

domain structure within a variant, so each twin band coincides with one magnetic 

domain. 

 

 

 
(a)     (b) 

Figure I.19. Domain structures of NiMnGa alloys determined using a) the magnetic 
garnet film technique [45] and b) scanning electron microscopy images [46]. 
 

 

 A martensite magnetic domain structure phase reconstruction of a Fresnel 

through-focus series obtained from the martensite plates whose c-axis is oriented in the 

plane of a foil with a nominal composition of Ni50Mn27Ga23 is shown in Figure I.20 [47]. 

The input Fresnel images I.20a – I.20c show a few domain walls coincident with the 

twin plate boundaries and others within the twin plates. The reconstructed phase in I.20d 

clearly shows a pair of white and black phase ridges, similar to a herringbone structure. 

The gray scale induction components in I.20e and I.20f show the different directions of 

magnetic induction [47]. 
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Figure I.20. Phase reconstruction of herringbone martensite domain structure [47]. 

 

 The integrated induction orientations are more clearly seen in the color plot I.20g 

that is indexed with the color map I.20h. The color profile delineates two types of 

domain walls, a 90o wall and a 180o wall, similar to observations of some other 

researchers [48-50]. While the walls coincident with the twin boundaries have a 90o 

character, those within the twin variants are 180o walls. The schematic representation of 

the domain structure (Figure I.20i) is drawn from the color map and shows both the 90o 

and 180o domain walls. Magnetic measurements in the 5-period modulated martensite 
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phase (10M) have indicated that the easy axis of magnetization is along the [ ]001  

direction, i.e., along the shorter c-axis [19, 22]. The 180o domain walls within a single 

variant correspond to two magnetic domains whose c-axes are oriented in opposite 

directions. The twin boundaries separate variants oriented along different cubic axes, 

resulting in the 90o walls [47].  

 

I.2.5.4 Magnetocrystalline Anisotropy in MSMA NiMnGa 

 Magnetocrystalline anisotropy can be considered as the determining parameter 

for the realization of MFIS in shape memory ferromagnets since the formation and 

growth of the structural domains (variants) favorably oriented with respect to the 

application direction of the magnetic field are directly related to it. Magnetocrystalline 

anisotropy determines the path along which the ferromagnetic system proceeds and 

reaches the state with the lowest possible energy as the variant reorient. Measurements 

of magnetization in single-crystalline Ni51.3Mn24.0Ga24.7 showed that the easy 

magnetization axis in the cubic austenite phase is oriented along the crystallographic 

[ ]100  axis and that the magnetocrystalline anisotropy constant K1 in this phase is 

relatively moderate. As a result of the transition to the martensitic phase the 

magnetocrystalline anisotropy changes significantly [51].  

 The field dependences of the magnetization of Ni51.3Mn24.0Ga24.7 in the 

martensitic phase are given in Figure I.21a. In order to measure the magnetocrystalline 

anisotropy, Tickle and James [51] employed a thin single-crystal plate whose faces 

coincided with the crystallographic planes of the { }100  type. They compressed the 

sample to a single variant state in a spring driven mini-press. Measurements of the M vs. 

H dependence were done in a magnetic field that was parallel or perpendicular to the 

direction along which the sample was compressed. The sample was first cooled below 

the martensitic transformation temperature in a 6 kOe magnetic field directed along the 

compression axis in such a way that both the magnetic field and the applied stress 

facilitated the formation of a single variant of martensite. The sample size in the 

direction of compression was selected such that in the martensitic phase the sample 
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would be of square shape. In this case the demagnetization factors for two orientations of 

the magnetic field proved to be the same, and the uniaxial anisotropy constant Ku could 

be evaluated by the area between the curves. The field dependences of the magnetization 

of the single-variant martensite in Figure I.21b show that the c axis is indeed the easy 

magnetization axis and that the curves demonstrate uniaxial anisotropy. The results of 

measurements under a 1.9 MPa load were used to calculate the areas between the M axis 

and the curves of magnetization along the easy and hard axes. The uniaxial anisotropy 

constant in the martensitic phase calculated in this manner (Ku = 2.45x106 erg/cm3 at T = 

256 K) proved to be greater than the constant K1 in the austenitic phase by a factor of 

100.  

 Studies of the magnetocrystalline anisotropy of single-crystals with different 

compositions (the samples were converted to a single-domain state) have shown that the 

values of Ku at room temperature vary from 1.7x106 erg/cm3 for Ni48Mn31Ga21 [52] to 

2.48x106 erg/cm3 for Ni49.7Mn28.7Mn21.6 [53]. The temperature dependences of the 

uniaxial magnetocrystalline anisotropy constant for martensite have been measured for 

polycrystalline Ni2MnGa [54] and for single-crystal Ni48.8Mn28.8Ga22.6 [55]. For the 

polycrystalline sample it was found that Ku = 2.5 x106 erg/cm3 at T = 220 K. 

 It is important to note that saturation magnetization is temperature dependent and 

decreases with increasing temperature so does the anisotropy constants [56, 57]. Sozinov 

et al. [56] reported the room temperature anisotropy constants, lattice parameters, 

theoretical detwinning strain, detwinning stresses and observed MFIS values of three 

martensite types of NiMnGa alloys as shown in Table I.4. As the temperature is lowered, 

the value of Ku increases linearly and at 77 K reaches the value of 3.8x106 erg/cm3. The 

increase in Ku with decreasing temperature has also been observed for a single-domain 

single-crystal sample of Ni48.8Mn28.6Ga22.6. At 283 K the magnetocrystalline anisotropy 

constant Ku = 2x106 erg/cm3, while at 130 K its value proved to be equal to 2.65x106 

erg/cm3.  
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Table I.4. Summary of lattice parameters, cell volume, transformation strain, detwinning 
stress, MAE and MFIS of three types of martensite structures [56]. In the table, 5M, T 
and 7M stand for 10M, non-modulated, and 14M martensitic structures.  

 
 

 

 The theoretical analysis of magnetocrystalline anisotropy done by Enkovaara et 

al. [58] showed that magnetic anisotropy changes sign at c/a = 1, which corresponds to a 

change in the easy magnetization axis from [ ]100  for c/a < 1 to [ ]110  for c/a > 1. Just as 

the other physical parameters, the magnetocrystalline anisotropy of the Ni2+x+yMn1-xGa1-y 

alloys varies with the chemical composition of these compounds.  
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Figure I.21. (a) Field dependences of magnetization of Ni51.3Mn24.0Ga24.7 single crystal 
for a multi variant martensitic state; 1) H parallel to [ ]100 , 2) H parallel to [ ]110 , and 3) 
H parallel to [ ]111 . The orientation of the single crystal was done in the austenitic phase. 
(b) Field dependences of magnetization of the Ni51.3Mn24.0Ga24.7 single crystal for a 
single- variant martensitic state: 1) easy magnetization axis, and 2) hard magnetization 
axis [51].  
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I.2.5.5 A Potential Substitute for NiMnGa: Concise History & Crystal Structure of 

NiMnCoIn Metamagnetic Shape Memory Alloys 

 Recently, a new group of Heusler alloys was introduced as a potential 

replacement for NiMnGa. Meta-magnetic shape memory alloys, Ni2MnX, were invented 

by substitution of Ga with In, Sn or Sb and sometimes with the addition of Co as the 

fourth element [59-63]. They have been under investigation to reveal their peculiar 

magnetism related properties [64]. In 2004, Sutou et al. [63] investigated these alloys for 

their potential to demonstrate MFIS. In 2006, Kainuma et al. [61] reported that in a 

NiMnCoIn alloy, a ferromagnetic parent phase transformed to a paramagnetic martensite 

phase and with increased applied magnetic field the transformation temperatures 

decreased. In this study, they also showed that NiMnCoIn was capable of reversible 

phase transformation under the magnetic fields larger than 4 Tesla where martensite 

transformed to austenite and the critical magnetic field for phase transformation was 

temperature dependent. One-way 3% MFIS in a pre-deformed single crystal sample was 

achieved with an applied field of 4T. They reported that the parent and martensite phases 

had L21 Heusler-type ordered (a = 0.5978 nm) and 14M modulated (a = 0.4349 nm, b = 

0.2811 nm, c = 2.9892 nm and = 93.24°) structures, respectively [61]. Later, they have 

also observed the same behavior in NiMnCoSn polycrystalline alloy and reported about 

1% one-way and 0.3% reversible MFIS [62]. Wang et al. [65] observed reversible MFIS 

in a NiMnCoIn alloy under 50 MPa which is one orders of magnitude higher than the 

actuation stress in NiMnGa alloys and they determined the martensite to be 14M. 

Recently Krenke et al. [66] reported 0.12 % reversible MFIS in NiMnIn alloys with the 

required applied magnetic field of 4T. They have also reported the crystal structure is 

similar to NiMnGa where the parent phase has L21 structure with a=0.6011 nm and 

martensite has 10M modulated martensite structure having a monoclinic unit cell with 

�=86.97° and lattice constants a=0.4398 nm, b=0.5635 nm, and c=2.1720 nm [66].

 In the later chapters, experimental results pertaining conventional shape memory 

and magnetic field governed responses of NiMnCoIn metamagnetic shape memory alloy 

will be given in detail in a comparative manner with those of NiMnGa. 
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CHAPTER II 

EXPERIMENTAL PROCEDURES  

 

 

Methods employed for the synthesis and preparation of our NiMnGa and 

NiMnCoIn MSMA specimens are narrated in this chapter. Furthermore, a detailed 

explanation of the successful computer-aided-design and manufacturing processes of 

two different novel testing systems (macroscopic and microscopic MTMs) utilized to 

attain the response of MSMA specimens in the course of simultaneously applied 

magnetic, thermal and mechanical stimulations is provided. 

 

 

II.1 Specimen Synthesis & Preparation  

Ingots of NiMnGa with a nominal composition of 50Ni-25Mn-25Ga (at. %) and 

NiMnCoIn with a nominal composition of Ni45-Mn36.5-Co5-In13.5 (at. %) were 

synthesized using vacuum induction melting. Single crystals were grown using the 

Bridgman technique in a He atmosphere. The compositions were determined as 

Ni51.1Mn24.0Ga24.9 (using inductively coupled plasma-atomic emission spectrometry) and 

as Ni45.7Mn35.6Co4.8In13.8 for the matrix and Ni42.0Mn40.3Co16.0In1.6 for the second phase 

(using wavelength-dispersive spectroscopy). The difference between the nominal and 

actual compositions is thought to be due to the Mn evaporation during single crystal 

growth [67]. The single crystal samples were then cut into rectangular prisms with 

dimensions of 4 mm x 4 mm x 8 mm using electro-discharge machining to assure that 

both magnetic field and stress can be applied along known crystallographic directions. 

As an exception, the specimens used in NiMnGa energy harvesting tests were 16 mm 

long. 

The face normal of the NiMnGa samples were along [ ]100 , [ ]011 , and ]101[  

directions in the austenite phase (L21 ordered structure). Compressive stress was applied 

along the [ ]100  orientation, while the field was applied along the [ ]011  direction. 
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NiMnGa single crystals have a 10M tetragonal structure in martensite as evidenced by 

the strain levels achieved in our martensite reorientation experiment which will be 

reported in the subsequent chapters.  

For the NiMnCoIn single crystals, the austenite orientations also are used to 

describe the directions of the single crystal samples even if the sample might be in 

martensitic phase. We had four different orientations in hand as [ ]100 , [ ]110 , [ ]123  and 

[ ]111 , each indicating the long axis of the rectangular prisms. After homogenization at 

900 oC for 24 h in vacuum and water quenching, second-phase particles inherited from 

the as-grown crystals are detected in the microstructure [68].  

The Ni40Mn33 Co10Al17 (at. %) polycrystalline bulk specimen was prepared by 

induction melting under an argon atmosphere. The polycrystalline ingot was annealed at 

1373 K for 168 hours in vacuum and quenched in ice water. Several compression 

specimens with dimensions near to 3.0×2.5×5.5 mm3 were cut out of the annealed ingot 

by wire-electrical discharge machining [69]. 

The Ni43Mn39Co7Sn11 (at. %) polycrystalline compacted-powder specimen was 

prepared through a process which consisted of multiple steps. The first step was melting 

of the ingot by high frequency induction. Next, the powders with particle diameters of 

10 to 250 µm were obtained using conventional nitrogen gas atomization under argon 

atmosphere (1.5 to 5 MPa pressure). For the present study, a powder with particle 

diameter sizes between 25 to 63 µm was compacted into pellets by pressure application. 

The compacted powder was sealed in quartz tubes under argon atmosphere and annealed 

at 1173 K for 6 days and then quenched in ice water. Several compression specimens 

with dimensions close to 3.0×2.5×5.5 mm3 were cut out of the sintered pellets by wire-

electrical discharge machining [70].  

 

II.2 Development of Novel Testing Systems for Characterization of Magnetic Shape 

Memory Alloys 

In order to understand the variant reorientation and phase transformation based 

behaviors of MSMAs sourcing from their magneto-mechanically and thermo-
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mechanically coupled nature, development of original, robust test systems which would 

allow simultaneous magnetic, mechanical, thermal control and measurements was 

required. For this purpose two different magnetomechanical testing systems, one 

macroscopic and one miniature, were designed and manufactured in the course of this 

research.  

 

II.2.1. Magneto-Thermo-Mechanical (MTM) Macroscopic Testing System  

The first of the aforementioned custom designed and manufactured two novel 

systems is the magneto-thermo-mechanical macroscopic testing system (macro MTM) 

(Figure II.1) which consists of seven different subsystems: 

1) Servo-hydraulic tension/compression load platform (MTS 810, 50 kip) with 

hydraulic collet grips and custom load cell,  

2) Interchangeable head/easy alignment titanium alloy tension and compression 

custom design grips, 

3) Thermal control subsystem consisting of heating/cooling assembly with optimized 

number/no slack 3/16 diameter copper tube windings surrounded by mica SS band 

heaters (Watlow 240V, model STB2CAA4), step-up transformers (ACME model 

T-2-53007-S, 120V�240V), 160 liter liquid Nitrogen dewar (Warton), solenoid 

on/off valves (Jefferson, cryogenic grade brass) and PID temperature controllers 

(Omega model CN8202-R1-CD2-C2), 

4) Temperature feedback and data logging assembly with T type thermocouples 

(Omega) and RS-232 connection data logger (Hotmux), 

5) Magnetic field application assembly with a 3 Tesla capable electromagnet 

(LakeShore model EM4-CS), gaussmeter (LakeShore model 450), transverse Hall 

sensor and DC power supply (LakeShore model 662), 

6) High degree of freedom, electric motor driven custom design carrier frame for 

electromagnet, 

7) Cryogenic grade capacitive displacement sensor (Capacitec model HPC-75) and its 

peripherals.  
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Figure II.1. General view of the components that compose the Magneto-Thermo-
Mechanical (MTM) macroscopic testing system. 
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II.2.1.1 Servo-Hydraulic Tension/Compression Load Platform 

As the main component in the experimental setup, the servo-hydraulic load 

platform, an MTS 810 Material Testing System, is capable of producing approximately 

250 kN of force. Force is measured using an array of different load cells depending upon 

the type of experiment to be conducted. The MTS brand 250 kN load cell came 

integrated with the platform. For pseudoelasticity tests, where large stresses are required, 

an Interface model 1010ACK-2.5K-B load cell rated to 2500 lbf. is used to measure 

force. Meanwhile, for the thermal cycling experiments where low, constant stress levels 

are needed 500 lbf. Interface model 1010ACK-500-B load cell is employed. For these 

load cells to be properly attached to the load train, custom design steel adaptors were 

manufactured. Crosshead displacement and load data is recorded using the MTS 

controller and data acquisition systems. The system is retrofit with both upper and lower 

hydraulic collet grips. An overall view of the system can be seen in Figure II.1. 

 

II.2.1.2 Custom-Design Compression &Tension Grips 

In order not to have interference between the compression/tension grip material 

and the applied magnetic field, custom nonmagnetic grips bodies and heads were 

designed and fabricated out of Ti6Al-4V. The actual photos and 3D CAD models of the 

custom grip heads for compression can be seen in Figures II.2a and II.2b, respectively. 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure II.2a. Actual photograph of the custom narrow grip heads for compression. 
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Figure II.2b. 3D CAD models assembly consisting of the magnet pole pieces, capacitive 
displacement sensor, grip body, grip head, heating/cooing assembly and polymer 
chamber half created during the design phase of the custom narrow grip heads for 
compression. 
 

 

Each titanium alloy grip was designed as an assembly of two pieces, grip body 

and grip head, to constitute a pair to work together. For easy switch between different 

grip systems (tension or compression) the head parts are connected to the grip bodies by 

titanium studs. The top assembly pair fits into the top hydraulic collet grip on the 

crosshead of the MTS platform, stays rigidly in place upon application of pressure by the 

collet, and is also responsible to harbor the capacitive displacement sensor. In the design 

phase, various grip geometries were taken into consideration to achieve the optimum 

heating/cooling performance by conduction. The narrow compression grip head design 

was stimulated by the need to increase the magnitude of the available magnetic field 

through decreasing the air gap between the magnet pole pieces.  

Capacitive sensor

Electromagnet pole pieceStandard 
compression 

specimen Capacitive sensor

Electromagnet pole pieceStandard 
compression 

specimen Capacitive sensor
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Figure II.3 shows a pair of tension grips retrofitted with the heating/cooling 

assembly. This specific design employs the concept of contoured groove to smoothly 

accommodate the bone shaped tension specimens without any stress concentrations. The 

groove fits the contours of the specimen like a glove and supports the specimen at its pits 

by the groove shoulders. Furthermore, to compensate for the instantaneous misalignment 

in the axis of the load train due to the deformation of the specimen in the course of the 

martensitic transformation, a universal joint is introduced at the end of the bottom grip 

body. The universal joint increases the degree of freedom of the bottom grip assembly 

and helps avoid premature failure of the specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.3. Actual photograph of the custom grip heads for tension featuring the 
concepts of contoured groove and universal joint. 
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II.2.1.3 Custom Thermal Control Subsystem 

In order to experimentally observe martensitic transformation and accurately 

identify the associated transformation temperatures, the thermal control system, 

components of which are shown in the subsequent figures, was engineered to meet the 

following requirements: 

• Capable of cooling the samples down to approximately -120°C. 

• Capable of heating sample to approximately 300°C. 

• Capable of heating/cooling at a rate of approximately 10°C/min. 

• Capable of maintaining set temperature within ±1°C. 

In this system, the sample temperature is controlled by either heating or cooling 

the compression grips since mode of heat transfer employed is conduction. In order to 

ensure the stability of the rate of change of temperature in the specimen, conduction 

must remain as the sole mechanism of heat transfer during testing.  

To provide a control volume around the specimen, a transparent polymer 

chamber was built and successfully employed to minimize the heat transfer by the air 

surrounding the sample, ultimately reducing the temperature fluctuation due to 

convection. This custom built chamber was made out of Lexan and is displayed in 

Figure II.4. Lexan was chosen as the material of the chamber since it is durable to 

extreme heat/cold and is easy to machine. The chamber consists of two identical halves, 

which fit and securely stay on the electromagnet pole pieces and between the magnet 

coils. The recess holes at the top and the bottom of the chamber allow for unrestricted 

movement of the grip assemblies in the course of testing. Extra holes on the front and 

back of the chamber assembly provide access for the Hall probe, thermocouples, Cu tube 

extensions form the heating/cooling assembly and many other various cabling therein. 

Each half of the chamber was covered with self sticking reflector foil to increase the 

durability of Lexan where it gets close to the heating source. 
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Figure II.4. Lexan was used to build the custom polymer chamber to have a transparent 
view of the specimen inside. The recess holes on the sides nest the pole pieces of the 
electromagnet while the ones at the top and the bottom allow the grips to function freely. 
 
 

In order to achieve a minimum operating temperature of approximately -120°C, 

the compression grips are cooled using liquid nitrogen. The liquid nitrogen flow is 

regulated via two Jefferson brand, brass, ON/OFF solenoid valves (see Figure II.1). 

They are corrosion resistant, and compatible with cryogenic fluids such as liquid 

oxygen, nitrogen, argon, and carbon dioxide. Temperature range for dependable service 

is -200 to +50 oC. The piston inside is type 304 stainless steel, and seal is PTFE. Valves 

are closed until electrically energized (normally closed) and operates on 120 VAC, 60 

Hz. The pipe connections are NPT female.  

Past the valves, the liquid nitrogen is then channeled through a pair of Cu coil 

windings press-fit to both the upper and lower grip bodies. The Cu coil windings were 

made out of 3/16 in diameter Cu tubing (Figure II.5). 
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Figure II.5. Cu coil windings used to channel liquid nitrogen. 

 

 

The sample is heated using a pair of austenitic stainless steel thin-band mica 

heaters (Watlow, STB2C2AA-4) securely fastened around the Cu coil windings on both 

the upper and lower grip bodies. The thin-band mica heaters can be seen in Figure II.6.  

 

 

 
Figure II.6. Watlow thin-band mica heater used to heat compression grips. 

 

 

These thin-band mica heaters are approximately 2 inch wide and have a thickness 

of about 1/16 inch. For maximum power output, the heaters require 1A current and 

240V. In order to supply sufficient power to the heaters, wall outlet voltage was 
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increased from 120V to roughly 240V using two step-up transformers at 1A each. The 

transformers (ACME, T-2-53007-S) are shown in Figure II.7. Under maximum 

operating conditions, the heaters are capable of reaching nearly 500°C. 

 

 

 
Figure II.7. ACME step-up transformer used to increase the voltage supplied to heaters. 
 

 

In order to administer the heating/cooling assembly during testing, a custom 

thermal management system, utilizing Proportional-Integral-Derivative (PID) control, 

was designed and fabricated. The thermal management system consists of two separate 

circuits, each consisting of an Omega brand temperature controller (model CN8202-R1-

DC2-C2), which has multiple output capability. To maintain better thermal control and 

response, the temperature of each grip assembly is controlled separately via one 

temperature controller, which can be seen in Figure II.8.  
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Figure II.8. Temperature controller used to control thermal management system. 

 

 

The temperature controller’s first output manages the cooling system, while the 

second output dictates the heating system. Nonmagnetic T-type thermocouples are 

affixed to the top and bottom grips at locations very near to the heating/cooling 

assemblies and each provides feedback to its respective temperature controller. If the 

input temperature is greater than the user-defined setpoint temperature, then the cooling 

system is activated. Likewise, if the input temperature is lower than the setpoint 

temperature, then the heating system is activated. After auto-tuning, the thermal 

management system is capable of maintaining the temperature of the specimen to within 

±1°C. Also, by using the temperature controller’s ramp-soak function, a heating-cooling 

recipe can be programmed resulting in user-defined heating/cooling rate of 10°C/min. 

 

II.2.1.4 Temperature Feedback & Data Logging Subassembly 

Five different T type nonmagnetic thermocouples (Omega) are used as a part of 

the heating/cooling assembly. As mentioned in the previous section, two of these 

provide feedback from the top and the bottom grips to their respective temperature 

controllers. Out of the remaining three, two more are also affixed to the top and the 

bottom grips, and they go into the temperature data logger, Hotmux. Through an RS-232 

connection the data logger saves the temperature data taken from the grips to the 
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harddisk of the dedicated computer. The last thermocouple is directly in contact with the 

specimen and is solely used for the purpose of logging the specimen temperature. 

 

II.2.1.5. Magnetic Field Application Subassembly 

A LakeShore Model EM4-CS electromagnet was combined with the MTS servo-

hydraulic load frame and utilized to generate uniform magnetic fields up to 1.6 Tesla in 

a 2.5 cm x 2.5 cm x 2.5 cm control volume. The maximum attainable level of magnetic 

field is inversely proportional to the gap (standard is 1 inch) between the pole pieces. 

The electromagnet is energized by a LakeShore switching power supply (model 662) 

which is capable of producing ±35V and ±70A. The electromagnet is pictured in Figure 

II.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure II.9. Lake Shore model EM4-CS water cooled electromagnet. 
 

 

The magnetic field measurements are performed by a LakeShore model 450 

gaussmeter utilizing a LakeShore high sensitivity cryogenic transverse Hall probe with a 
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resolution of ±0.00001 Tesla within ±30 Tesla range. The probe is positioned away from 

the specimen lying perpendicular to the magnetic field lines in between the pole pieces 

of the electromagnet. The gaussmeter and Hall probe sensor can be seen in Figure II.10. 

 

 

 
Figure II.10. LakeShore 450 Gaussmeter and cryogenic transverse Hall Probe used to 
provide feedback and control the electromagnet. 
 

 

II.2.1.6 Custom Design Electric Motor Driven Carrier Frame  

As specimen size and/or the test type (tension or compression) changes, the 

location of the specimen also moves substantially with respect to the reference frame of 

the test platform. Therefore, the applied field must also be aligned, both vertically and 

horizontally, in tandem with the new location of the specimen so that the specimen can 

be embraced by the uniform magnetic flux. The electric motor driven custom design 

carrier frame was designed and manufactured with high degree of freedom to provide the 

user of MTM with versatility. While bearing the weight of the magnet, as shown in 

Figure II.11, the frame is capable of sliding back and forth in the X direction so that the 

grips (i.e., the load train) can remain in between the pole pieces of the magnet. 
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Figure II.11. High degree of freedom, electric motor driven custom design carrier frame 
is seen in 3D CAD model with the electromagnet mounted on it. 
 

 

A remote controlled electric motor driven chain-sprocket mechanism shown in 

Figure II.12, precisely ascends and descends the magnet in the Z direction (Figure II.11) 

by means of three square profile threaded rods so that the specimen in between the grips 

can be exactly located in the homogeneous flux of the applied field. 
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Figure II.12. Remote controlled electric motor drives the chain-sprocket mechanism 
shown allowing precise up and down movement of the magnet by means of three square 
profile threaded rods. 
 

 

II.2.1.7 Cryogenic Grade Capacitive Displacement Sensor 

A nonmagnetic capacitive displacement probe, Capacitec model HCP-75-21943, 

with a linear range of 0-1.25 mm is attached to the grip head in use to measure the 

change in length between the end points of the specimen (Figure II.13). The precision of 

the measurements is ±0.001 mm. Strain is calculated by dividing the change in length to 

the initial length of the sample. 

The capacitive displacement sensor provides an input signal to the conditioner 

box unit which is connected to an analog input of the designated computer. This 

computer is the same one which controls the MTM system hydraulics; hence the 
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processed analog signal from the conditioner directly goes into the commanding 

software and can be observed/processed for further use. Figure II.13 shows the sensor as 

it is attached to the upper grip head. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure II.13. The capacitive displacement sensor attached to the grip head. 
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II.2.2 Experiments Conducted by Means of the Macroscopic MTM System 

The macroscopic MTM system has been in service since early 2005 to 

investigate the conventional and magnetic SM behaviors of various MSMAs such as 

single crystalline NiMnGa, NiFeGa, CoNiGa, CoNiAl, NiFeGaCo, NiMnCoIn and 

polycrystalline NiMnCoAl and NiMnCoSn. All of the possible experiments which can 

be carried out by the macro MTM system are tabulated in Table II.1. Isobaric thermal 

cycling tests and isothermal pseudoelasticity tests, with/without magnetic field, are the 

most general two experiments. During thermal cycling and pseudoelasticity tests, the 

experimental data recorded includes actual time, MTS actuator displacement, force, 

capacitive sensor displacement, temperatures from both grips and the specimen and 

amplitude of applied magnetic field (Figure II.14). 
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Figure II.14. A plot of the representative data obtained during the magneto-thermo-
mechanical experiments by macroscopic MTM testing system. 
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For thermal cycling tests, the externally applied compressive stress is held 

constant, while the temperature is cycled at a constant rate of 10 °C/min. For 

pseudoelasticity tests, the temperature is held constant while the sample is loaded under 

displacement control at a strain rate of 0.004 mm/s and unloaded under force control at a 

rate of 25 N/s.  

In all of the experiments conducted, a non-magnetic T-type thermocouple is 

attached to the outer surface of the specimen by wrapping with multithreaded 

nonmagnetic Cu wires. This thermocouple provides specimen temperature feedback to 

the Hotmux system for data logging purposes, as mentioned in the previous section in 

detail. 

Figure II.15 shows a schematic representation of the typical experiment layout 

for the compression tests under magnetic field via macro MTM system. Note that the 

direction of applied stress and magnetic field are perpendicular to each other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.15. The typical experiment layout for the compression tests (isobaric thermal 
cycling and isothermal pseudoelasticity) under magnetic field via macro MTM system. 
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Table II.1. Text matrix showing the possible experiments that could be performed using 
the macroscopic magneto-thermo-mechanical testing system and their targeted outputs. 
MFI: magnetic field induced, MFIPT: magnetic field induced phase transformation, VR: 
variant reorientation, σ: stress, H: magnetic field, �: Strain, T: temperature, Ms: 
martensite start temperature, Mf: martensite finish temperature, As: austenite start 
temperature, Af: austenite finish temperature, PE: Pseudoelasticity. 

 Temp � H � T done Target Output 

<Mf 1 

or <As 

Fixed Variable Measured Fixed Yes Butterfly curves 

<Mf 

2 

or <As 

Variable Fixed Measured Fixed Yes Magnetoelastic response 

<Mf 

3 

or <As 

Fixed Variable 
f(�) Measured Fixed Yes Magnetic Field Rate Effect 

<Mf 

4 

or <As 

Measured Variable Fixed Fixed No Magnetostress 

5 >Af Fixed Variable Measured Fixed Yes MFI phase transformation 

6 >Af Variable Fixed Measured Fixed Yes Effect of H on PE Curves 

7 >Af Measured Variable Fixed Fixed No Magnetostress 

8  Fixed Fixed Measured Variable No 
Magnetic Field vs. T and Stress vs. 

T 
Phase Diagrams 

9 >Af Variable Fixed Incremental Fixed No Effect of Strain on Hysteresis 
 (mechanical training) 

MFIPT 

10 Ms<T<Af Variable Fixed Measured Fixed Yes 

VR 
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II.2.3 Magneto-Thermo-Mechanical Microscopic Testing System  

The second system designed and manufactured is the microscopic-magneto-

thermo-mechanical testing system (micro MTM), shown as in Figures II.16 and II.17. 

This gadget consists of a precipitation hardened nonmagnetic Cu-Be body and 

inner components (refer to figure on page 70 for details). It is meant to apply 

compressive stress on a 2x2x4 mm3 specimen by means of SS302 type Belleville springs 

so that the level of stress remains nearly constant during phase transformation. A 0.5 mm 

pitch screw mechanism is driven by an amount of displacement which corresponds to the 

desired stress level to be applied on the specimen as acquired from compression 

calibration tests on the springs. The micro MTM system was designed to harbor a 

custom made miniature (OD 3mm) capacitive sensor, Capacitec model HPC40-

27601(L3-15’) (Figure II.17a), to directly measure transformation strains during 

magnetic field induced phase transformation (FIPT) of NiMnCoIn alloys.  

 

 

 

Capacitive displacement 
sensor 

Specially designed low stiffness, 
high strength springs (enclosed) 

Specimen compartment 

Cu-Be body 

Alignment pins 
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length 50 mm 

 
Figure II.16. 3D CAD model of micro MTM system, and its integrated 3mm 
diameter miniature-capacitive-displacement-sensor. This assembly was exclusively 
built to fit in the 18 Tesla extraction type magnetometer. 
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Figure II.17. (a) Micro MTM and its miniature-capacitive-displacement-sensor. (b) 
Displacement sensor is set inside the micro MTM and the micro MTM is secured to the 
extraction train of the 18 Tesla magnetometer.  
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This whole system (Figure II.17b) was employed in a custom built extraction-

type high-field magnetometer which is capable of magnetic fields as high as 18 Tesla 

shown in Figure II.18. Micro MTM system was built since the macro MTM system was 

not capable of reaching the high magnetic field values required for the NiMnCoIn alloy 

to display reversible FIPT. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure II.18. 18 Tesla extraction type magnetometer in High Field Laboratory for 
Superconducting Materials, Institute for Materials Research, Tohoku University, Japan. 
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Figure II.20b shows the electronics used to log the displacement data acquired by 

the miniature capacitive sensor. The analog signal conditioner unit of Capacitec (not 

shown) is connected to an HP high sensitive voltmeter via the A/D converter. Then, the 

converted digital signal (in volts) is processed by the LabView software in the laptop 

computer and logged as displacement data. The same software is also capable of 

simultaneous logging of change in magnetic field by means of an extra connection 

between the laptop and the computer that governs the magnetometer.  

The 18 Tesla magnetometer testing system consists of the following major 

components: 

1)  18 Tesla field capable superconducting magnet (Figure II.18), 

2)  PID controlled DC power supply to govern the applied field, 

3)  Stepper motor to stimulate the extraction train up and down so that the specimen 

oscillates between a pair of pickup coils in the magnetic field (Figure II.18), 

5)  Auxiliary electronic units (stepper motor controller, A/D signal converter, 

specimen temperature controller, gain control for the pickup coils, Figure II.20a), 

6 Computer to run the control software of the system and for magnetization/magnetic 

field data logging (Figure II.20a).  

A detailed discussion regarding the working principles, components and 

functional features of the magnetometer can be found elsewhere [71, 72].  

Once the compression specimen is put under the desired level of compressive 

stress, the miniature Capacitec is set inside the micro MTM at an optimum distance from 

the Cu-Be plunger that bears the specimen (displacement referencing) and secured by 

the setscrews. Then, the micro MTM is retrofitted into the polymer extension at the end 

of the stainless steel pipe, which altogether constitute the extraction train of the 18 Tesla 

magnetometer. Having the end that has the micro MTM go first, this long assembly is 

inserted through the guide piping and immersed into the liquid He filled well which also 

harbors the 18 Tesla capable superconducting magnet. Next, the portion of the extraction 

train (the stainless steel pipe) that extrudes out of the guide piping is linked to the 

stepper motor so that the motor can drive the extraction train up and down, hence having 
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the specimen oscillate between the pickup coils in the magnetic field. As the test 

specimen rests inside the micro MTM, the relative location of the specimen with respect 

to the reference frame of the magnetometer needs be arranged to coincide with the 

midpoint of the pickup coils located at the end of the guide pipe inside the well. After 

the referencing of specimen location, the temperature can be set to the desired level and 

the magnetic field is cycled at a rate of 70 mA/s (	 50 Gauss/s).  

In order to attain the real magnetization response of the specimen, the effect of 

the micro MTM and the miniature displacement sensor must be excluded from the total 

magnetization response picked up by the coils. For this reason, a calibration routine is 

carried out prior to the actual magnetization vs. magnetic field (M-H) experiments. First, 

a nickel specimen with given weight and volume is tested and its magnetization response 

is recorded by the magnetometer while it is confined in a polymer specimen holder. 

Having achieved the pure response from the nickel specimen, next step is installing it to 

the micro MTM and get the combined response of both. Hence, the subtraction of 

nickel’s response from the combined leaves us with the pure response of the micro 

MTM and the miniature capacitive sensor system.  

 

II.3 Other Test Systems Used for Materials Characterization 

The magnetic properties of MSMAs were determined by the Quantum Design 

Superconducting Quantum Interference Device (SQUID) model MPMS-XL 

magnetometer.  

A PerkinElmer differential scanning calorimeter (DSC) was used to determine 

the martensitic transformation temperatures.  

 



 

 

70 Figure II.19. CAD technical drawing of the micro MTM providing the manufacturing details. 
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Figure II.20. (a) Electronics of 18 Tesla magnetometer for superconducting magnet and 
stepper motor control and data logging. (b) Electronics used for miniature Capacitec 
displacement data logging. 
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CHAPTER III 

MAGNETIC FIELD-INDUCED MARTENSITE VARIANT 

REORIENTATION IN Ni2MnGa MSMAs 

 

 
In this chapter, the first of the two mechanisms to achieve magnetic field induced 

strain (MFIS), martensite variant reorientation (VR), is explained. Besides MFIS, the 

other two major parameters for actuation performance in MSMAs, namely; blocking 

stress and magnetostress are also defined. Results of magnetic field-induced strain by 

martensite variant reorientation under constant stress and stress-induced martensite 

variant reorientation under constant magnetic field tests are reported in a comparative 

manner with those from the literature to better understand the effect of alloy composition 

and test temperature on the magneto-thermo-mechanical response of NiMnGa MSMAs, 

including workout put. 

 

 

III.1 Magnetic Field-Induced Variant Reorientation 

Rearrangement of martensite variants or detwinning by the application of 

magnetic field is the most common mechanism in MSMAs yielding magnetic field 

induced strain [19, 73-75]. Due to their low detwinning stress and high 

magnetocrystalline anisotropy energy, NiMnGa alloys attracted quite an attention [74, 

76] as compared to other MSMAs among which are FePt [77], FePd [73, 78], CoNiAl 

[79-81], CoNiGa [82], CoNi [83], NiFeGa [84, 85], NiFeGaCo [86]. 

Unless there is an external magnetic field, magnetization direction of magnetic 

domains tend to remain parallel to the easy axis of magnetization in NiMnGa MSMAs. 

However, upon application of a field along a direction other than the easy axis, the 

domains will have their magnetization directions rotate from their easy axis towards the 

direction of the applied field. Magnetocrystalline anisotropy energy (MAE) is defined as 

the energy required for the magnetization rotation from the easy axis to the applied field.  
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In MSMAs, provided the MAE is higher than the energy needed for detwinning 

to occur, the field-induced variant reorientation can take place. As a consequence, the 

variant with its easy axis of magnetization parallel to the direction of the applied field is 

favored and it grows at the expense of the other variants, resulting in a net shape change 

which is termed as magnetic field-induced strain (MFIS) [75].  

A schematic representation of field induced variant reorientation mechanisms in 

MSMAs is presented in Figure III.1a.  

 

 

 
Figure III.1 Schematic representation of effect of applied magnetic field, H, (a) on the 
reorientation of the martensite twin variants and (b) on phase transformation in MSMAs 
[87]. 
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With the application of an increasing magnetic field, assuming the MAE is 

higher than the energy needed for detwinning; twin motion occurs instead of the 

competing magnetization rotation, so that the magnetization directions of the domains 

arrange themselves to be parallel with the magnetic field direction. 

Let’s assume that our martensite has a tetragonal crystal structure with its easy 

magnetization axis parallel to its shorter c-axis. As a result of the twin motion (i.e., 

detwinning) external shape change occurs and the microstructural product is a single 

variant of martensite, magnetization direction of which is parallel with applied magnetic 

field, provided that the applied field strength is sufficiently high. In a single crystalline 

NiMnGa specimen, maximum MFIS can be attained if the reorientation takes place 

between a single martensite variant with its c-axis parallel to the application direction of 

compressive stress and another single variant with its c-axis along the application 

direction of the magnetic field, where the field and stress are applied perpendicular to 

each other. 

Besides MFIS, two other major parameters can be mentioned as figures of merit 

in MSMAs: 

a) Blocking stress (a.k.a. maximum actuation stress); which can be described as the 

external stress level above which magnetic field-induced strain through variant 

reorientation is not possible. 

b) Magnetostress, which can be defined as the increase in stress required for detwinning 

under a constant magnetic field.  

In MSMAs, low blocking and magnetostress levels (<2 MPa) [88, 89] come 

forward as the main issues for applications where high actuation forces are required. The 

maximum MFIS of NiMnGa alloys reported to date is approximately 6% in 10M 

martensite [88, 89] and 10% in 14M martensite [90]. Provided that the stress and 

magnetic field are applied perpendicular to each other or alternatively the field is applied 

along two perpendicular axes in a plane, MFIS via variant reorientation in NiMnGa can 

be easily reversed upon the removal of the applied magnetic field. In literature, 

methodical investigations on the reversible MFIS response of NiMnGa alloys under 
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different applied stress levels are presented [52, 88, 91]. Tickle [91] reported 2% MFIS 

with a blocking stress of 4-6 MPa at -18 ˚C. Murray et al. [88] and Heczko et al. [52] 

reported 6% MFIS with a blocking stress of 2 MPa at 25 ˚C. 

 

III.2 Magnetization Response  

The magnetization response of Ni51.1Mn24.0Ga24.9 as a function of temperature 

under a low applied magnetic field of 200 Gauss (G) is detected using SQUID 

magnetometer as shown in Figure III.2. Forward transformation (A�M) takes place with 

decreasing temperature. Upon heating, back transformation (M�A) occurs. The 

hysteretic form of magnetization vs. temperature is the characteristic of martensitic 

transformations in SMAs.  
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Figure III.2 Magnetization as a function of temperature under magnetic field of 200 G. 
Determination of transformation temperatures for the parent to I-phase to 10M 
transformation carried out on the derivative curve. 
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It is noteworthy that martensite has a higher MAE than that of austenite. 

Magnetization response is differentiated with respect to temperature and the resulting 

dM/dT curve illustrates two separate phase transformations. The first one is from parent 

austenite to premartensitic I-phase, represented by the petty peak at high temperature. 

The low temperature, sharper peaks represent the phase transformation from the I-phase 

to 10M martensite or vice versa.  

The magnetization response of the Ni51.1Mn24.0Ga24.9 single crystals as a function 

of temperature under various constant fields is given in Figure III.3a. As applied field is 

increased, the transformation start and finish temperatures also increase (under  200 G,  

-60 °C and -100 °C; under 10 kG at -58 °C and -88 °C).The drop in magnetization upon 

cooling in the courser of forward transformation (A�M) under low magnetic field is due 

to the higher magnetic anisotropy of martensite [92]. Under a higher magnetic field of 10 

kG, however, the magnetization increases during the forward transformation. This 

increase might be because of the higher saturation magnetization of martensite than that 

of austenite at the same temperature. Figure III.3b shows the magnetization vs. applied 

magnetic field response of Ni51.1Mn24.0Ga24.9 single crystal, in fully austenite (at 25 ˚C) 

and in fully martensite (at -125 ˚C) phases. As clearly seen, saturation magnetization and 

critical field values to reach saturation magnetization are higher for martensite than those 

of austenite because of the low test temperature and high MAE of martensite. The 

arrows in the figure may indicate start and finish of field-induced martensite 

reorientation, respectively.  
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(b) 

Figure III.3 (a) Magnetization response as a function of temperature under constant 
magnetic fields of 200 G, 500 G and 10 kG. (b) Trend in magnetization as applied 
magnetic field changes at -125 °C and 25 °C constant temperatures. 
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III.3 Conventional Shape Memory Effect in NiMnGa 

Thermal cycling under stress results in the selection of certain martensitic 

variants and yields external strain. Figure III.4 shows cooling/heating response of a 

Ni51.1Mn24.0Ga24.9 single crystal where 10 MPa is applied along the [100] orientation 

initially at 25 ˚C (fully austenite) without magnetic field. The detwinning stress of 10M 

martensite is relatively low, so 10 MPa is enough to form single variant of tetragonal 

martensite with its short c-axis along the applied compressive stress and this results in a 

strain of 3.8 % under 10 MPa, however, application of higher stress values do not 

increase the strain magnitude. From the figure, the MS temperature is found to be around 

-80 ˚C while the AS temperature is close to -67 ˚C. 
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Figure III.4 Cooling/heating response of Ni51.1Mn24.0Ga24.9 single crystal under a 
compressive load of 10 MPa along the [100] orientation. 
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III.4 Magnetic Field-Induced Strain via Field–Induced Martensite Variant 

Reorientation under Constant Stress 

The evolution of MFIS in Ni51.1Mn24.0Ga24.9 as a function of applied magnetic 

field under constant compressive stress and temperature are shown in Figures 5a and 5b. 

These curves are known as butterfly curves. 6 MPa bias stress was applied at room 

temperature while the specimen was in austenite phase and cooled under stress to obtain 

single variant martensite morphology and then unloaded to the desired stress level. A 

total of three magnetic field cycles were applied between 16 kG and -16 kG at each 

stress level. Subsequent to the completion of three magnetic cycles, the stress level was 

increased to 6 MPa to assure the sample had again stress biased single martensite variant 

morphology before the stress was lowered to the next test level and another set of three 

magnetic cycles was applied. The response under both increasing and decreasing stress 

levels are presented to show that there is no significant change in the strain and 

hysteresis trends.  

In Figure III.5, there is a significant difference between the first and second cycle 

responses although the difference between the second and third cycles is negligible 

under all stress levels. This is attributed to the difficulty of nucleation of a new variant 

during the first cycle which vanishes with field training.   

The MFIS response in the form of butterfly curves is also observed in 

ferroelectric crystals [93]. These curves are symmetric since the magnetic force on a 

twinning dislocation is insensitive to the sign of the magnetic field [94]. With increasing 

magnetic field, MFIS starts to evolve when a critical field value is reached and then 

saturates at a maximum. Increasing the field further does not make any changes on the 

maximum MFIS level. Applied stress level dictates the maximum MFIS level and the 

critical field values to start and finish the variant reorientation. As it can be observed in 

Figure III.5, when the applied stress level increases, MFIS decreases. This is expected 

since the magnetic energy provided by the applied field (MAE) needs to overcome the 

total mechanical energy demanded by the applied stress and the twin boundary motion. 

The higher the opposing mechanical energy by external stress, the lower the energy used 
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for detwinning. Depending on the applied stress level, when the magnetic field is 

reduced and switched off, martensite variant favored by the field reorients back to the 

original variant favored by the stress. From Figure III.5b, we can see that 1 MPa is not 

enough for the reorientation of field biased variant back to stress biased variant in full; at 

least 3 MPa is needed. Therefore, the detwinning stress can be estimated between 1-3 

MPa. 

For each level of applied stress, the maximum MFIS for the first cycle is always 

greater than the one for the second cycle. The blocking stress is determined to be about 5 

MPa. The irrecoverable MFIS, the MFIS difference between the first cycle and the 

second cycle, diminishes with stress level and vanishes completely for the stress levels 

of 5 MPa. It is also obvious that the critical magnetic field needed for martensite 

reorientation increases with stress magnitude.   

The measured first and second cycle MFIS data are used to construct a maximum 

MFIS vs. applied stress plot shown in Figure III.6 along with previously reported MFIS 

levels from the literature for comparison [43, 52, 88, 91]. The highest MFIS of 

approximately 6.0 % was reported by Murray et al. [88], under 0.8 MPa, while in the 

present study the maximum MFIS of about 5.8% was measured under 1 and 2 MPa. In 

general, all the first cycle MFIS values decrease with increasing stress levels. This 

tendency holds until the blocking stress level is reached where no strain related to 

variant reorientation can be induced by the applied magnetic field. For the second cycle, 

MFIS increases from 3.2% to 4.9% in the present alloy as the stress increases from 1 

MPa to 2 MPa. MFIS values under 2 and 3 MPa are the same and additional increase in 

stress decreases the MFIS. For stress levels higher than 4 MPa, the first and second cycle 

responses are almost identical. The difference in the MFIS between the first and second 

cycle can be due to the stress levels not being sufficient for a full reverse reorientation 

upon unloading the field following the first cycle. The MFIS magnitudes around 4-6 % 

under 2-4 MPa in our study are the highest reported so far in the literature [43, 52, 88, 

91]. 
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(b) 

Figure III.5 Magnetic field-induced strain in the Ni51.1Mn24.0Ga24.9 single crystals as a 
function of magnetic field under different constant compressive stress levels at -95 oC. 
Three cycles are shown; (a) Stress levels from 2 to 6 MPa, (b) Stress levels from 5 MPa 
to 1 MPa [95].  
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In the present study, the blocking stress is around 6 MPa where for the 

experiments conducted at room temperature by Murray et al. [88] and Heczko et al. [52] 

was reported to be around 2 MPa. The results reported by Tickle et al. [91] show a 

similar blocking stress level but the maximum MFIS of 2% is significantly lower. The 

blocking stress, however, cannot be easily identified, since at very low strain levels 

ordinary magnetostriction of MSMA materials is harder to be neglected [73, 96]. 

 

 

7

6

5

4

3

2

1

0

M
ag

ne
tic

 F
ie

ld
 In

du
ce

d 
S

tra
in

, %

876543210
Stress, MPa

 Current Study 1st Cycle, -95 °C
 Current Study 2nd Cycle, -95 °C
 Murray et al. , 25 °C
 James et al. , -18 °C
 Tickle et al. , -18 °C
 Heczko et al. , 25 °C

Ni2MnGa Single Crystals 
[100] (110) Orientation
10M Martensitic Structure

180 kJm-3

20 kJm-3

40 kJm-3

60 kJm-3

80 kJm-3

100 kJm-3

120 kJm-3

140 kJm-3

160 kJm-3

10 kJm-3

5 kJm-3

 
Figure III.6 Comparison of maximum MFIS as a function of stress for the current study 
and literature data. A grid of constant actuation work output hyperbolas ranging from 10 
to 180 kJm−3 has been superimposed [97]. 
 

 

The aforementioned stress levels and maximum MFIS provide limited 

information about the actuation performance of MSMAs. Actuation work output per unit 
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volume, maxMFISW ×σ= , can be a better means of performance assessment. Here, σ  

is the constant applied stress during the experiment, and MFISmax is the maximum strain 

level attained at that specific stress. The actuation performances of some of the 

published NiMnGa MSMA compositions are given in comparison with our present 

results in Figure III.6 in terms of the mechanical work output per unit volume. 

The maximum work output for the present composition is calculated to be 157 

kJm−3 and 147 kJm−3 for the first and second cycles, respectively, showing an increase in 

the actuation work output of more than 100 % in the present study compared to the 

compositions studied by Murray et al. [52, 88, 91], Heczko et al. [52] and Tickle et al. 

[52, 88, 91]. This enhancement in performance can be related to the following: The 

major difference between our NiMnGa specimen and those of the prior studies in 

literature comes from the differences in the operating temperature (To) and MS 

temperature. The compositions of the alloys can be slightly different; nevertheless, the 

saturation magnetization and Curie temperature, Tc, do not change drastically with 

composition in near Heusler compositions of NiMnGa [98, 99]. It is believed that 

detwinning stress levels are not very different as the detwinning stress in the present 

work is somewhat high for what has been generally reported for NiMnGa alloys. In our 

specimens, there is a large gap between Tc and To as compared to the [Tc-To] window in 

the previous studies. This brings in mind that the MAE must be significantly higher in 

our case. Besides, the To is right below MF temperature, and thus, the detwinning stress 

is at its minimum possible value. Since the applied magnetic field has to overcome the 

externally applied stress and detwinning stress, the minimum detwinning stress 

maximizes the blocking stress with the available stored MAE. Being a schematic 

representation, Figure III.7 helps to identify the blocking stress levels for two cases with 

the same Curie temperature but different MS and operating temperatures. In Figure III.7a 

MS is high and To is chosen close to MS so that the detwinning stress is minimized. The 

red curve represents the detwinning stress; it increases as temperature decreases. The 

blue curve represents the magnetostress which is calculated through dividing the MAE, 

Ku, by the transformation strain, �0. MAE is known to increase as temperature decreases 
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since the saturation magnetization increases as temperature decreases [56, 57]. In this 

case both the [Tc -To] and [Ms-To] differences are small. This means low magnetostress, 


mag, and low detwinning stress, 
detwin. By definition, the blocking stress is [
mag- 
detwin] 

and shown in the figure as the operating stress range. It is clear that, as far as (
mag> 


detwin) MFIS can be obtained. Also, it is evident that with decreasing temperature the 

blocking stress decreases due to a more rapid increase in detwinning stress compared to 

that in magnetostress. Below a certain temperature MFIS cannot be obtained, therefore, 

only decreasing the temperature cannot improve blocking stress levels. Figure III.7b 

shows the schematic for a sample with the same Tc but lower MS and To. In this case  

[Tc -To] difference is larger and [MS -To] difference is smaller. This means a higher 
mag 

and lower 
detwin, resulting in a higher blocking stress compared to the previous case. It 

is important to mention the assumption that Tc was considered constant while MS was 

shifted to a lower temperature. Thus, the magnetostress curve remains constant while 

detwinning stress curve is shifted to lower temperatures. Indeed, such change in MS can 

be achieved in NiMnGa system with compositional variation without affecting Tc as Tc 

is not sensitive to the composition near Heusler Ni2MnGa alloys. This approach is what 

we have followed and shown as a notable improvement in the actuation work output. 
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Figure III.7 Two schematics to identify the blocking stress levels for two cases with the 
same Tc but different MS and operating temperatures. (a) MS temperature is high and (b) 
MS temperature is low, To is kept close to MS. Stress and temperature ranges are 
hypothetical and not to scale.  
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III.5 Stress-Induced Martensite Variant Reorientation under Constant Magnetic 

Field 

In this section, compressive stress is applied under different constantly applied 

magnetic fields. Figure III.8 shows the effect of magnetic field on the stress-strain 

behavior of martensite at -95 ºC. Prior to each experiment, single variant martensite was 

obtained by applying 16 kG under 1MPa as a reference. Then the magnetic field was set 

to the desired field magnitude and compressive stress was gradually applied to reach a 

maximum of 14 MPa for each case. The applied magnetic field magnitude was 

decreased 2 kG for each successive test. For the sake of clarity only selected responses 

are shown in the figure. Starting strains for the 4 kG and 0 G cases are not at zero. The 

reason is the variant reorientation from field biased variant to stress biased variant du to 

1 MPa stress kept on the sample during decreasing the magnetic field from 16 kG to 4 

kG and 0 kG.  
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Figure III.8 The effect of magnetic field on the stress-strain response the 
Ni51.1Mn24.0Ga24.9 single crystals during martensite reorientation. The test temperature 
was -95 °C [95]. 



87 

 

 In Figure III.8, upon the application of stress, the single variant martensite 

elastically deforms first, then the reorientation to the stress biased variant follows 

(plateau region) and the elastic deformation of the same variant finalizes the loop as is it 

starts undergoing elastic deformation.  

 Obviously, the applied field shifts the stress levels up. The stress-strain behavior 

under magnetic fields at and above 8 kG is similar to the rubber-like or pseudoelastic 

response of shape memory alloys. The incomplete back transformation under 4 kG and 0 

kG cases are completed when a magnetic field of 16 kG is applied after unloading.  

The resulting strain due to stress-induced variant reorientation (rubber-like 

behavior) is 5.7%. This value is almost the same as the strain magnitude obtained by 

magnetic field induced variant reorientation under constant stress (butterfly curves). 

Conforming strain levels in these different tests are an indication of complete and 

repeatable reorientations since the field and the applied stress competitively favor 

different variants with short axes along their respective applied directions. As will be 

discussed in the next chapter, aforementioned variant favoring by stress and magnetic 

field gives way to the utilization of the rubber-like behavior in Ni2MnGa for energy 

harvesting applications. 

Magnetostress, by definition, is the difference in the critical stress levels to start 

detwinning with and without magnetic field. Here, we take it as the difference in the 

flow stress levels with and without magnetic field at 3% applied strain.  
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Figure III.9 shows the magnetostress obtained from Figure III.8 where other 

reported MFIS levels are also included for comparison [74, 89, 100, 101]. The 

magnetostress increases with magnetic field up to 14 kG in our results and then 

saturates. The maximum magnetostress observed is 5.7 MPa.  

The magnetocrystalline anisotropy energy can be determined using [101];  

0maguK ε×σ=        (Eqn. III.1) 

where 
mag is the magnetostress and �o is the reorientation strain. If �o is taken as 5.8 % 

and 
mag as 5.7 MPa , Ku is calculated as 3.30 x105 J/m3. Our NiMnGa single crystals 

have a greater MAE than what has been reported in the literature (~2.65x105 J/m3) [89] 

supporting our explanation in section III.4 and Figure III.7. The difference in 

magnetostress levels between the present study and previous works is due to the high 

MAE originating from the low operating temperature of our single composition.  

It can be inferred from Figure III.9 that magnetostress is linearly proportional to 

the magnetic field up to 10 kG. An empirical linear relation can be written to determine 

the change in stress as a function of magnetic field for MSMAs considering the MAE, 

reorientation strain and saturation magnetic field, as [95]: 

( )0*ε
σ

S
um

H
K

H
=

∆
∆

       (Eqn. III.2) 

where �
m is the change in stress with applied field (magnetostress), ∆H is the change in 

magnetic field and HS is the saturation magnetic field.  
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Figure III.9 Magnetostress as a function of applied magnetic field for NiMnGa single 
crystals with different martensite modulation [74, 89, 100, 101].  
 

 

The slopes of the linear regions in Figure III.9 for all NiMnGa compositions with 

10M martensitic structure is close to 0.55 MPa/kG. Additionally, the slope of the linear 

region in the figure for the NiMnGa single crystals with 14M martensite structure (0.23 

MPa/kG) is lower than that for the 10M martensite cases which can be attributed to the 

higher reorientation strain of the 14M martensite (ε0 ~ 10%, Eqn. III.2) [90]. This 

observation indeed indicates that there is basically no substantial difference between the 

present alloy and the others reported in the literature, but the difference in MS 

temperatures. In our alloy, we simply take advantage of increasing Ku and HS with 

decreasing temperature 
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CHAPTER IV 

STRESS-ASSISTED FIELD-INDUCED PHASE 

TRANSFORMATION IN Ni2MnGa SINGLE CRYSTALS 
 

 

In this chapter, the second of the two mechanisms to achieve magnetic field 

induced strain (MFIS), field induced phase transformation (FIPT), is explained. The 

conditions to realize the cyclic magnetic field-induced phase transformation by stress 

assistance in NiMnGa is elaborated following the demonstration of successful test 

results. Using the data from pseudoelastic (PE) stress vs. strain and isobaric strain vs. 

temperature test results, a stress vs. temperature phase diagram is constructed to shed 

light on the multistage phase transformations phenomenon in NiMnGa alloys. Starting 

with effect of magnetic field on PE response, the required condition to achieve reversible 

FIPT is also identified. 

 

 

IV.1 Magnetic Field-Induced Phase Transformation 

In addition to magnetic field-induced martensite variant reorientation, an 

alternative mechanism to achieve significant MFIS is the magnetic field-induced phase 

transformation. This mechanism is schematically depicted in Figure III.1b; upon 

application or removal of the magnetic field, the phase front between martensite and 

austenite moves and phase transformation takes place provided the amount of the 

magnetic energy is adequate to drive the phase front. Iron based alloys such as Fe-C and 

Fe-Ni [77, 102-104] were reported to demonstrate irreversible field-induced martensitic 

phase transformation under very high fields (>15 Tesla), nevertheless without any report 

on the MFIS levels. Applied magnetic field is known to cause alterations in the 

temperatures, behavior and structures of the mutually transforming phases [104]. Under 

high pulsed magnetic fields (up to 30 Tesla) Fe-Ni-Co-Ti was found to undergo 

reversible field-induced martensitic transformation [77]. If the austenite is paramagnetic 
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and the martensite is ferromagnetic, application of magnetic field can increase the 

transformation temperatures of NiMnGa and following this observation Cherechukin et 

al. [105] obtained irreversible MFIS by phase transformation mechanism. Realization of 

field-induced reversible phase transformation in NiMn(In,Sn) based alloys was reported, 

lately [59, 61, 62]. For this mechanism to work in these alloy systems in a reversible 

manner, it is necessary for the applied magnetic field to suppress the transformation 

temperatures to an extent that is greater than the thermal hysteresis observed without 

applied magnetic field [59, 61, 62]. In other words, austenite finish temperature under 

applied field, H
FA , should be below martensite start temperature under zero field, SM . 

However, the required magnetic field for phase transformation was reported to be more 

than 4 Tesla and still remains as a major obstacle in front of practical applications since 

the most potent permanent magnets are known to reach around 2 Tesla. 

 

IV.2 Stress-Assisted Magnetic Field-Induced Phase Transformation in MSMAs 

As a function of their chemical composition, single crystal orientation, and the 

test temperature, NiMnGa alloy family may display a complete or partial (up to) four 

stage transformation sequence: 

L21 parent �Intermediate (I) � 10M tetragonal martensite � 14M orthorhombic (or 

monoclinic) martensite � Non-modulated 2M tetragonal martensite [106, 107].  

The stress levels that come from the available magnetic energy in MSMAs are 

only a few MPa and they are enough to induce motion of phase front [88, 91]. The 

critical stresses required for stress–induced phase transformation are usually a few tens 

of MPa. Figure IV.1 compares the stress induced variant reorientation and phase 

transformation in NiMnGa single crystal via stress versus strain response at -90 and -40 

˚C, respectively. The prospect of inducing phase transformation via magnetic field has 

been overlooked due to the large difference between these two aforementioned stress 

levels. Only in a few studies, mechanical stress and magnetic field were applied 

simultaneously to induce phase transformation [108, 109] and the specimens, at first in 

austenitic phase, were mechanically loaded until partial stress induced martensitic 
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transformation occurred and this was followed by application of magnetic field and 

hence MFIS was observed. Murray et al. [108] reported 0.2% strain by martensite to 

“ferromagnetic” austenite phase transformation under 108 MPa in polycrystalline 

specimens. Jeong et al. [109] reported 0.82% strain, which was not recovered upon the 

removal of the  magnetic field, by “paramagnetic” austenite to martensite phase 

transformation under 126 MPa also in polycrystalline NiMnGa alloys. In our study, it 

will be shown that the applied field can result in austenite to martensite phase 

transformation (or vice versa), depending on the saturation magnetization, MAE and 

directions of applied magnetic field and compressive stress. 
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Figure IV.1 Stress-induced phase transformation and variant reorientation response of 
Ni2MnGa single crystal of the present work at -40 and -90 ˚C, respectively.  

 

 

Figure IV.2a shows the reversible phase transformation response in conventional 

SMAs under applied stress. The high temperature phase, austenite, transforms to 

martensite as temperature decreases and since a bias stress is applied, certain martensite 
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variants are selected among others; resulting in an external macroscopic strain. Upon 

heating, martensite transforms back to austenite and strain is recovered fully in the 

absence of plastic deformation.  

 

 

 
(a) 

 
(b) 

Figure IV.2 Schematics of reversible martensitic phase transformation upon cycling, (a) 
temperature in conventional shape memory alloys and (b) magnetic field in magnetic 
shape memory alloys due to field-induced phase transformation. In both cases the stress 
is kept constant during the phase transformation [87].  
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The main goal of working with MSMAs is to replace the effect of temperature on 

phase transformation by a magnetic field, and thus, obtain the same response under 

stress by variation in magnetic field, which would lead to a much faster response. Under 

a constant stress and temperature, phase transformation can be induced by a magnetic 

field in Ni2MnGa single crystals, which results in a response as shown in Figure IV.2b. 

As the applied field decreases, single magnetic domain austenite transforms into multi 

domain martensite and vice versa. This phenomenon is termed stress-assisted field-

induced phase transformation and is analogous to stress-assisted thermally-induced 

phase transformation as shown in Figure IV.2a. 

 

IV.3 Pseudoelastic Response 

Figure IV.3 portrays the pseudoelastic (stress vs. strain) response of the 

Ni51.1Mn24.0Ga24.9 single crystals under compression along the [100] orientation as a 

function of temperature without any magnetic field applied. A two-stage martensitic 

transformation is observed in the course of loading within a temperature window of -70 

to -40 ˚C. For this temperature interval, the initial phase is the intermediate I-phase 

(please refer to the magnetization results in Figure III.2). Subsequent to the elastic 

deformation of the I-phase, a two-stage stress-induced martensitic transformation takes 

place during loading. These martensitic phases fully recover upon unloading, hence 

leading to pseudoelasticity.  

A similar stress-strain response of Ni2MnGa single crystals was observed by Kim 

et al. [110]. The first stage was reported to be from the I-phase to an unknown 

martensitic phase (X-phase) and the second stage from X-phase to the 10M tetragonal 

martensite. The I phase is thermally induced between the parent and 10M tetragonal 

martensite [111]. The X-phase, on the other hand, shows up under stress only and 

demonstrates some peculiar behavior. Its crystallographic structure has not been revealed 

so far. At -80 ˚C, I-phase transforms to 10M martensite without transforming first to the 

X-phase (not shown in the figure). 
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At temperatures above -20 ˚C, the two stage transformation disappears and 

parent austenite (A) to 10M martensite take place upon mechanical loading. With 

increasing temperature, the critical stress for I-phase to X-phase transformation 

decreases whilst critical stresses for X-phase to 10M martensite and parent phase to 10M 

martensite both increase. 
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Figure IV.3 Pseudoelastic response of Ni51.1Mn24.0Ga24.9 single crystals as a function of 
temperature under compression along the [100] orientation. The critical stress for SIM 
formation increases with temperature for the second stage while it decreases for the first 
stage [87].  
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IV.4 Isobaric Thermal Cycling 

Thermal cycling experiments were conducted at stress levels ranging from 5 MPa 

up to 100 MPa to determine the phase transformation strain and temperature as a 

function of applied stress. It was observed that the transformation temperature for the I-

phase to 10M martensite transformation increases with increasing bias stress, resulting in 

a positive Clausius-Clapeyron slope. The X-phase to I-phase transformation occurs at 

stress levels at or below 20 MPa, while the X-phase to 10M martensite transformation 

occurs above 25 MPa. The temperatures for X-phase to I-phase transformation decrease 

with increasing stress level, up to about 25 MPa resulting in a negative Clausius-

Clapeyron slope. On the other hand, the transformation temperatures for parent phase to 

X-phase and I-phase to 10M martensite increase with increasing stress levels. 

 

 

 
Figure IV.4 Parent phase to X-phase to I-phase to 10M martensite transformation 
sequence under 20 MPa compressive stress in the course of isobaric thermal cycling 
[112]. 
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The multiple phase transformation sequence that occurs in Ni51.1Mn24.0Ga24.9 

under 20 MPa is shown in Figure IV.4 [112].Upon cooling, the specimen transforms 

from the parent phase to the X-phase, first. This transformation is evident by the slight 

increase in strain. Then, specimen transforms from the X-phase to the I-phase. However, 

as the specimen transforms to the I-phase, the strain obtained from the prior 

transformation, diminishes. This is due to the fact that the I-phase is similar in structure 

to the parent phase, thus the X-phase to I-phase transformation results in a tensile strain. 

At last, when the level of cooling suffices, the specimen transforms from the I-phase to 

10M martensite and gives the major transformation strain. 

 

IV.5 Construction of Stress-Temperature Phase Diagram 

By combining the results from pseudoelasticity and thermal cycling under 

constant stress experiments, the stress-temperature phase diagram for Ni51.1Mn24.0Ga24.9 

shown in Figure IV.5 is constructed. The isobaric cooling/heating experiments are used 

to determine the following transformation temperatures as a function of externally 

applied compressive stress: Martensite start (MS), X-phase start (Xs), and the I-phase 

start (Is) temperatures. Critical stress levels for phase transformation start (σc) are 

extracted from pseudoelasticity experiments as shown in Figure IV.3. All of these are 

compiled and combined to construct the phase diagram in Figure IV.5 which represents 

the Clausius-Clapeyron relationship of each phase transformation. The solid markers 

represent data from isobaric thermal cycling and hallow markers represent data from the 

pseudoelasticity experiments, respectively. 

Figure IV.5 allows us to determine the stable phase for a given pair of stress and 

temperature. The slopes (rate of increase in the critical stress level) for the X-phase to 

10M transformation and parent phase to X-phase transformation are positive; 2.0 and 8.1 

MPa/˚C, respectively. On the contrary, the slope for the I-phase to X-phase 

transformation is negative; -0.4 MPa/˚C. Kim et al. [110] reported similar values of 2.0 

MPa/˚C for the X-phase to 10M and -0.25 MPa/˚C for the I-phase (or parent phase) to X-

phase transformations.  
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The transformation sequence during stress loading at a given temperature can be 

clearly followed by the stress-temperature phase diagram in Figure IV.5. For 

temperatures lower than -90 ˚C, martensite reorientation takes place in 10M martensite. 

I-phase transforms directly to 10M martensite for the temperature range between -90 ˚C 

and -70 ˚C. I phase transforms to X-phase and then 10M martensite within the 

temperature range of -70 ˚C to -20 ˚C. Austenite transforms to X-phase and then 10M 

martensite at temperatures between -20 ˚C and 0 ˚C, while at temperatures above 0 ˚C 

austenite transforms to 10M martensite directly. 
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Figure IV.5 Stress-temperature diagram for Ni51.1Mn24.0Ga24.9 illustrating the multiple 
stage phase transformations. 
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IV.6 Effect of Magnetic Field on Pseudoelastic Response 

Figure IV.6 shows the effect of magnetic field on the pseudoelastic response at -

70 ˚C. Prior to loading, the magnetic field was applied along the [011] direction, which 

is perpendicular to the [100] loading direction and kept constant during the test. For each 

subsequent stress cycle, the applied field was increased by a step of 0.1 Tesla, finally 

reaching 1.6 Tesla (16 kG) for the last cycle (for the sake of clarity, selected results are 

given in figure). When complete pseudoelasticity was not observed at this temperature 

(e.g., under 0, 0.2, and 0.4 Tesla ), the field was increased to 1.6 Tesla following 

unloading in order to recover the residual strain and then reduced down to the field under 

which the next test was conducted.  
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Figure IV.6 Effect of magnetic field on the pseudoelastic response of the 
Ni51.1Mn24.0Ga24.9 single crystals at -70 ˚C. The critical stress levels for inducing the 
phase transformation increase with field up to a certain level and saturate at higher 
fields. The inset shows the change in the critical stresses with applied magnetic field for 
the first and second stages. 
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The critical stress levels for phase transformation in both first and second stages 

increase with the magnetic field up to a certain level and then stay constant at higher 

fields. The inset in the figure demonstrates the tendency of the critical stress values for 

phase transformation to start with applied magnetic field for the first and second stages.  

Magnetostress is defined as the difference between the plateau stress levels with 

and without magnetic field in the pseudoelastic loops. The magnetostress levels for both 

the first and second stages are determined to be around 8 MPa at -70 °C. The critical 

stresses start increasing at magnetic fields above 0.2 Tesla and the rate of increase for 

the first stage is higher than that of the second stage (see inset in Figure IV.6). While the 

critical stress reaches saturation at 0.7 T for the first stage transformations, so does it at 

1.0 T for the second stage transformations. This difference can be attributed to the 

dissimilar magnetization behavior along the respective hard axes of the mutually 

transforming phases. 

Figure IV.7 shows the effect of temperature on the compressive stress-strain 

response of the single crystals under zero and 1.6 Tesla. Obviously, the critical stress 

required to induce the phase transformation is shifted to higher levels by the applied 

field, i.e. magnetic field stabilizes the initial phase (either X, I or P phases), without 

having a substantial effect on the stress hysteresis and the transformation strain. In 

Figure IV.7, for the loops without magnetic field, the critical stresses to start forward and 

reverse transformations are depicted by forward,cσ  and reverse,cσ , respectively, whereas 

H
forward,cσ and H

reverse,cσ , mark the critical stresses to start forward or reverse 

transformations under magnetic field. The effect of magnetic field on the stress levels 

fades away with increasing temperature. Therefore, the magnetostress and the 

transformation strain both decrease with increasing temperature. At higher temperatures, 

the compatibility (the measure of elastic lattice mismatch between transforming phases) 

between the parent and product phases increases, which could result in an increase in the 

stress required for phase front propagation and thus, yield to nucleation of multi 

martensite phase fronts. The decrease in transformation strain with increasing 
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temperature can be attributed to incomplete transformation/detwinning process under the 

present applied stress levels. 

 

 

 
Figure IV.7 Pseudoelastic response of Ni51.1Mn24.0Ga24.9 single crystals as a function of 
temperature and magnetic field under compression along the [100] orientation. cσ : 
Critical stress at the onset of phase transformation [87]. 

 

 

Figure IV.8 intends to demonstrate the differences in the pseudoelastic response 

between the first and the second stages (at -60 °C) with and without applied magnetic 

field. For both stages, the applied field shifts the pseudoelastic loops to higher stress 

levels. When the first stage transformation is completed, upon unloading, a pseudoelastic 

loop with very small stress hysteresis is observed. 
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(b) 

Figure IV.8 (a) Comparison of the pseudoelastic response in Ni51.1Mn24.0Ga24.9 at -60 ˚C 
under zero (solid lines) and 1.6 T applied magnetic field (broken lines), (b) Temperature 
dependence of the critical stress levels and stress hysteresis during the first stage 
transformation only, with and without magnetic field [87]. 
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In the first stage, the magnetic field and the resulting magnetostress are sufficient 

to completely separate the pseudoelastic loop with the magnetic field from the one 

without magnetic field (see Figure IV.8b). On the other hand, for the second stage, magσ  

level is not sufficient to realize a complete separation of the loops due to the large stress 

hysteresis (depicted by σ∆  in the figure). The effect of magnetic field on the first stage 

transformation as a function of temperature is clearly observed in Figure IV.8.b as the 

field separates the pseudoelastic loops in a certain temperature interval. The separation is 

possible whenever the magnetostress is larger than the stress hysteresis [87]. 

 

IV.7 Magnetic Field-Induced Phase Transformation during the First Stage 

Transformation 

The full separation observed between the pseudoelastic loops of the first stage 

with and without magnetic field is an indication of the capability to induce reversible 

transformation among the aforementioned phases (refer to Figure IV.5) by switching the 

field on and off under constant applied stress. We call this phenomenon as stress-assisted 

reversible field-induced martensitic phase transformation. It can be realized by loading 

the single crystalline specimen under a magnetic field to a stress level which is lower 

than H
reverse,cσ  but higher than forward,cσ . Upon removal of the magnetic field, forward 

transformation takes place since the parent phase (the I-phase in this case) is not stable at 

that stress level without the support of magnetic field. Following this route, the forward 

and reverse transformations can be induced in a cyclic manner by switching the field on 

and off within the stress range limited between forward,cσ  and H
reverse,cσ . 

Likewise, a magnetic field-induced reverse transformation can also be induced, 

provided that the crystal is loaded without magnetic field to a stress magnitude greater 

than forward,cσ  allowing forward transformation to take place. Then, this stress level is 

kept steady between the H
reverse,cσ  and forward,cσ , and upon the application of the magnetic 

field the reverse transformation happens because the martensite (the X-phase in this 

case) is not stable at that stress under the applied magnetic field. Figure IV.9a 
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demonstrates an example of this alternative mechanism. Figure IV.9b shows the MFIS 

vs. magnetic field response at -55 °C to better explain the alternative mechanism. Here, 

the specimen was loaded from point zero till the stress reached up to #1 (> forward,cσ ) 

yielding to I�X forward transformation and then unloaded to #2 (< H
reverse,cσ ) without 

any magnetic field applied. At #2, the stress magnitude was stabilized at 22 MPa and the 

magnetic field was applied, to start the reverse transformation X�I at around 0.7 Tesla 

in the first cycle and at 0.5 Tesla in the subsequent cycles.  

Switching the field on and off continuously induces forward and reverse 

transformations without noteworthy modification in the critical magnetic field values 

(loops between #3 & #6) therefore allowing the magnetic field to do work against stress 

levels above 20 MPa. Due to the low transformation strain along the [100] orientation, 

the MFIS accompanying the I�X transformation turned out to be 0.5%. When the stress 

was reduced, the field necessary to trigger the forward and reverse transformations 

decreased, accordingly. For example, at 18 MPa (#7 in Figure IV.9), the field only 

induced reverse transformation at 0.2 Tesla because the stress level was smaller 

than forward,cσ . 

In addition, the critical magnetic field values to induce reverse transformation 

decrease with decreasing applied constant stress level. In accord with this observation, it 

can be inferred that under higher stress levels, magnetic field needs to provide more 

energy to overcome the barrier to bring phase transformation. 
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(b) 

Figure IV.9 The stress-assisted reversible (cyclic) field-induced phase transformation at 
low field magnitudes at -55 ˚C. (a) Stress vs. Strain and (b) Strain vs. magnetic field, 
data presented are from the same experiment. The numbers (#) are meant to describe the 
loading path.  
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From other test results not shown here, at 18, 20 and 22 MPa applied stress, the 

critical magnetic field values for the reverse transformations to start are reported 

approximately as 0.15, 0.23 and 0.32 Tesla, respectively. The transformation strain and 

the critical stress levels to for the first stage transformation increase as temperature 

decreases, whilst the differences between H
reverse,cσ  and forward,cσ  decrease. For example, 

at -70 ˚C, forward,cσ  is already greater than H
reverse,cσ , therefore only allowing one-way 

field-induced phase transformation to be accomplished Reversible MFIS levels were 

found to be less than 0.1% above 26 MPa and attributed to magnetostriction or elastic 

strain as observed in other NiMnGa MSMAs [3]. Even though the recoverable magnetic 

field induced strain magnitude is relatively small compared to the phase transformation 

strain, it is still big enough compared to that of other magnetostrictives [3, 113]. 

 

IV.8 Magnetic Field-Induced Phase Transformation during the Second Stage 

Transformation 

Figure IV.10a and Figure IV.10b demonstrate the stress vs. strain and strain vs. 

magnetic field responses during the second stage transformation, X�10M martensite, at 

-60 ˚C. The field-induced one way shape memory effect was accomplished by loading 

the sample to 64 MPa under 1.6 Tesla (depicted by #1 in figure). Here, 64 MPa was 

chosen since it is below H
forward,cσ  but above forward,cσ .Then, the magnetic field was taken 

away whereas the stress was kept constant. The forward phase transformation was 

observed along with a 2.4% strain (#2) as the magnetic field diminished from 0.7 to 0.5 

Tesla. However, upon re-application of the magnetic field, reverse transformation was 

not induced at this stress level (#3). Following the forward transformation, the sample 

was unloaded to 24 MPa (#5) without magnetic field. Here, 24 MPa was chosen since it 

is between H
reverse,cσ  and reverse,cσ . Then, the magnetic field was applied and a MFIS 3.1 % 

(#6) was observed sourcing from the reverse transformation starting at 0.1 Tesla and 

ending at 0.6 Tesla.  
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Figure IV.10 Demonstration of the field-induced one-way shape memory effect via X to 
10M martensitic transformation or vice versa at low field magnitudes. Data in (a) and (b) 
are from the same experiments. The number sequence demonstrates the loading path 
[87].  
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Furthermore, upon the cycling of magnetic field between 0 and 1.6 Tesla under a 

constant stress value of 24 MPa, a fully reversible MFIS of 0.3% was accomplished 

related to the reversible field-induced I��X martensitic phase transformation since 24 

MPa is between forward,cσ  and H
reverse,cσ  for the I��X transformation (the first stage). 

Unloading the load under 1.6 Tesla field brings the pseudoelastic cycle to completion 

(#9). The phenomena detailed in Figure IV.10 is the proof that activation of both 

reversible and one-way field-induced phase transformations in one pseudoelastic cycle is 

possible depending on the level of applied stress. 

 

IV.9 Work Output in NiMnGa 

As mentioned in the previous section, 28 MPa is the maximum stress level for 

the reversible field-induced phase transformation to occur in the course of the first stage 

transformation of our NiMnGa single crystalline specimen. This value is almost 10 times 

greater than the blocking stress levels observed for the field-induced martensite variant 

reorientation in the same specimen. Mechanical work output per unit volume can be 

employed as a measure of performance in order to compare the actuation performance of 

previously reported Ni2MnGa compositions with our present results, and is plotted in 

Figure IV.11 [87]. In the case of the stress-assisted field-induced phase transformations, 

the work output values reflect the contributions from both magnetic 

( maxmag
mag MFISW ×σ= ) and mechanical energy ( max

mech MFISW ×σ= ) terms 

[Ersin’s dissertation]. Therefore, actuation performance by the stress-assisted field-

induced phase transformation is considered as the total work output response of the 

material, activated in a reversible fashion by the applied magnetic field. 

Figure IV.11 presents three main groups enclosed by ellipses: The first ellipse on 

the left hand side shows the actuation stress and work output levels by field-induced 

martensitic variant reorientation which was introduced in Chapter III [43, 52, 88, 91]. 

The second ellipse at the lower right hand corner displays our results for the reversible 

field-induced phase transformation in the first transformation stage (I � X). The work 

output in this region is similar to that from the field-induced variant reorientation (the 
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first ellipse); however, the actuation stress is almost 10 times higher than that of the 

former. The third ellipse at the upper right hand corner shows the actuation stress, MFIS, 

and work output levels from the one-way field-induced phase transformation (one-way 

shape memory effect) in the second transformation stage of the present alloy (between -

80 and -40 °C). Here, the work output ranges from 660 to 1848 kJm−3 while the 

temperature increases from -80 to -40 ˚C. This means that one-way field-induced phase 

transformation is likely to achieve more than one order of magnitude higher work output 

and actuation stress when compared to those by field-induced variant reorientation. The 

third ellipse also covers the region of anticipated performance which may be achieved by 

future compositions and phase structures in NiMnGa and in other MSMAs to provide us 

with separated pseudoelastic stress hysteresis loops with and without field, as discussed 

in the previous section (refer to Figure IV.8). A work output of 115 kJm−3 was obtained 

for the cyclic MFIS in the first stage transformation under 24 MPa actuation stress. The 

maximum work output of 1848 kJm−3 was obtained in the second stage phase 

transformation at -40 oC under 84 MPa. It is important to note that these values are 

considerably higher than those of currently available ferroelectrics and magnetostrictives 

[6, 87, 113, 114].  

It is a fact that in various NiMnGa alloys composition, orientation and stress state 

dependent multi-stage martensitic transformations have been reported [106]. The multi-

stage phase transformations in off-stoichiometric Ni2MnGa alloys can be a part of the 

four stage transformation sequence [106]. However, our alloy composition demonstrates 

just the first two stages and, only the first stage can be realized in a reversible fashion by 

application of magnetic field. In this study, pseudoelastic stress hysteresis and 

magnetostress levels were demonstrated to evolve in different ways with temperature for 

two different martensitic transformations (first stage, I��X and second stage, X�10M 

martensite). This outcome is enough to imply the importance of temperature dependence 

of the material properties. Even though the multi-stage martensitic transformation is not 

a requisite for the field-induced phase transformation to occur, studying it is beneficial to 
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get a grasp of the supplementary parameters to modify, and thus increase the possibility 

of reversible field-induced phase transformation realization. 
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Figure IV.11 MFIS and total work output vs. the actuation stress plots showing the 
literature data obtained to date utilizing field-induced martensite reorientation 
mechanism and the present results of field-induced reversible and irreversible phase 
transformations in NiMnGa MSMAs [87].  
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CHAPTER V 

INVESTIGATION OF POWER HARVESTING CAPABILITY IN 

Ni2MnGa MSMAs 

 

 
Harvesting power from waste mechanical vibrations using smart materials has 

been of interest since it would allow self sustainment to autonomous systems in terms of 

energy supply. Prototypes working with piezoelectric and magnetostrictive materials 

have already been under trial. This chapter reports a preliminary study on the feasibility 

of NiMnGa magnetic shape memory alloys as a promising alternative in power 

harvesting applications. 

 

 

V.1 Power Harvesting via Smart Materials 

In Chapter I, it was explained in detail how magnetic shape memory alloys 

(MSMAs) have the capability to convert mechanical, thermal, and magnetic stimuli into 

each other for potential applications in actuation, sensing, and power generation. 

Magnetic field-induced strain via reorientation of martensite variants mechanism [19, 

115, 116] in MSMAs can result in reversible strain levels as high as 10% [34],which are 

about two orders of magnitude higher than those of Terfenol-D, Galfenol, and 

piezoelectrics [117]. MSMAs are metallic materials, thus, they can be reshaped easier 

than brittle piezoelectrics. They also cost less compared to piezoelectrics and Terfenol-

D. Some MSMAs can be used under tension with large strain outputs [118]. Recently 

discovered Galfenol has also good tensile strength but its high permeability results in 

eddy current generation even at low frequencies which limits its utility in energy 

harvesting applications [117]. 

MSMAs have mainly been investigated for conversion of magnetic stimuli into 

mechanical response. However, the effect of external mechanical stimuli on the 

magnetic behavior of MSMAs has received limited attention [100, 116, 119, 120]. Strain 
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induced changes in the flux density have been determined in NiMnGa single crystals 

under constant bias magnetic field [100, 116]. Suorsa et al. [119] reported magnetization 

measurements at various discrete levels ranging from 0% to 6% for strain and from 5 to 

120 kA/m for magnetic field. Sarawate and Dapino [120] determined the bias field for 

maximum recoverable flux density change in a commercial NiMnGa. The investigations 

on the potential of these materials in energy harvesting are, however, still lacking. 

Moreover, there has been no report on the voltage or power output due to cyclic 

martensite variant reorientation which has the potential to convert free vibrations to 

electrical power.  

 

V.2 Experimental Setup & Testing Methodology 

In order to fill this gap, a set of power harvesting experiments was conducted on 

4x4x16 mm3 Ni51.1Mn24Ga24.9 single crystal compression specimens. Our macro MTM 

testing system (Figure V.1a) is combined with a copper pickup coil of 1000 turns (Figure 

V.1b), and an analogue oscilloscope.  

The long axes of the specimens are along the [ ]100  orientation of the high 

temperature L21 austenite phase while the other two perpendicular orientations are [ ]011  

and ]101[ . Compressive load is applied along the long axis and bias field is applied 

perpendicular to the compression axis. A Hall sensor is used to measure the bias field. 

Note that in a practical application, instead of an electromagnet, a permanent magnet 

would be used to provide the bias field, as in the case of magnetostrictive energy 

harvesters.  

The single crystal specimen was cooled down to -90 °C under 6 MPa to obtain a 

single variant tetragonal martensite with its short axis along the stress direction (variant 

1) shown by #1 in Figure V.2. The room temperature phase is a cubic L21 phase (#0 in 

Figure V.2). Upon application of a bias field of 1.6 T, the field induced variant 

reorientation formed another martensite variant (variant 2), the long axis of which is 

parallel to the compression direction, shown by #2. While the field was being kept 
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constant, the sample was loaded up to 20 MPa during which variant 2 reoriented into 

variant 1, (#4 in Figure V.2). 

 

 

 
Figure V.1a Schematics of the experimental setup and pickup coil. c, diameter of the 
wire in the pickup coil, D, diameter of the MSMA specimen, lc, length of the pickup 
coil, T, thickness of the coil [121]. 
 

 
Figure V.1b Actual photo of the 1000 turn pickup coil and 4x4x16 mm3 
Ni51.1Mn24Ga24.9 single crystal compression specimen. 
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Figure V.2 Compressive stress-strain-bias magnetic field response of [100] oriented 
Ni51.1Mn24Ga24.9 single crystal at -90 °C. A, austenite; V1 and V2, martensite variants; a0 
lattice parameter of austenite; a and c, lattice parameters of martensite [121]. 
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In the course of unloading, variant 1 reoriented back to variant 2 due to the bias 

field, #3 in Figure V.2. The corresponding stress versus strain (magnetoelastic) response 

is portrayed in Figure V.2 with the schematics representing the ongoing magneto-

microstructural evolution. The detailed magnetoelastic response of these single crystals 

can be found in section III.5 of this dissertation. 

 

V.3 Experimental Results 

In MSMAs, reorientation from one variant to another under a bias field yields a 

change in magnetization since the easy magnetization direction of the variants is along 

their short axes. The magnitude of this change depends on the difference in 

magnetization of the hard and easy axes of martensite under the given bias field. Such 

change in magnetization and magnetic flux leads to voltage generation which can be 

detected using an oscilloscope. Utilizing this fact, several experiments were conducted 

by systematically changing the bias field, applied strain range (i.e., the amount of 

reoriented material volume), and loading frequency in the region where both martensite 

variants existed in the microstructure (#3 in Figure V.2). Figure V.3 shows the peak 

induced voltage output as a function of the bias field for a strain range of 1.25% under 

the loading frequencies of 1 and 5 Hz. As frequency increases, induced voltage output 

increases. Similarly, increasing bias field increases the voltage output up to 60 mV under 

5 Hz but then decreases with further increase. The reason for this nonlinear behavior is 

the different critical magnetic fields of the easy and hard axes to reach saturation 

magnetization (MS). Initially, the difference between the magnetizations of these axes 

increases with the increasing bias field where the magnetization along the easy axis as a 

function of magnetic field has a higher slope. After MS is reached along the easy axis, a 

further increase in the bias field results in a decrease in the magnetization difference. 

From Figure V.3, the critical field to reach MS along the easy axis is determined to be 

1.2 T. This is much higher than expected, since demagnetization has a substantial effect 

on the real material behavior due to the experimental setup. Kiefer and Lagoudas [122] 

calculated the demagnetization factor as 0.65 for a sample with an aspect ratio of 2:1:1 
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under the present experimental conditions. The demagnetization factor is expected to be 

slightly smaller for the samples with the aspect ratio of 4:1:1. If a demagnetization factor 

of 0.6 is used, the field inside the sample under the external bias field of 1.2 T would be 

0.65 T, showing that the material itself requires much lower fields to saturate.  

 
Figure V.3. Peak induced voltage output as a function of bias magnetic field under the 
loading frequencies of 1 and 5 Hz at a constant applied strain range of 1.25% [121]. 

 

 

Figure V.4 shows the direct readings of the peak voltage output from the 

oscilloscope as a function of strain range (a) and excitation frequency (b) under the bias 

field of 1.6 T. Figure V.5a presents the combined 3D plot of Figures V.4a and V.4b. 

Strain ranges up to 4.9% were applied in the form of sinusoidal excitation with 

frequencies ranging from 0.5 to 10 Hz. The observed increase in voltage with strain 

(Figure V.4b) is due to the increase in the fraction of the material that undergoes variant 

reorientation, resulting in higher total magnetization change.  
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(b) 
Figure V.4. Direct readings of the peak voltage output as a function of strain range (a) 
and excitation frequency (b) under the bias field of 1.6 Tesla. 
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Also, as frequency increases, the rate of change of magnetization increases 

which, in turn, affects the output voltage (Figure V.4a). The maximum voltage of 280 

mV is obtained with the strain range of 4.9% at 10 Hz frequency under 1.6 T. However, 

as seen in Figure V.3, a higher voltage level would have been expected under 1.2 T. To 

predict the power outputs that could possibly be achieved in the present alloy, the 

maximum reversible magnetic flux density change upon full martensite reorientation is 

taken to be 0.2 T [120]. Referring back to Figure V.1, if the volume of the coil is fixed 

by appropriate choices of D, lc, and T, the number of turns N in the coil can be 

approximated as 2c
Tl

N c≈ where lc is the length, T is the thickness and D is the inner 

diameter of the coil, and c is the wire diameter. Resistance of the coil can be calculated, 

assuming that the wire is made of copper with the resistivity of (1/6)x10-7 �m, as 

�
�

�
�
�

� ×=
×

≈ −
4

9
72 1067.66
)106()2/( c
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R c
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   (in �)  (Eqn. V.1) 

whereas the peak voltage induced in the coil can be found as 
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Figure V.5. Comparison of experimental (a) and computed (b) peak induced voltage 
outputs as a function of strain range under the bias field of 1.6 T for different excitation 
frequencies [121]. 
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Assuming a sinusoidal excitation, the change in the magnetic induction can be 

modeled by B = B0 r sin(�t) where B0 is half of the reversible magnetic flux density 

change upon martensite reorientation and r is the volume fraction of the material 

undergoing reorientation which is defined as 
maxε

ε  is the applied strain range and �max 

is the maximum reorientation strain for the present crystals which is measured as 5%. 

Since B0 depends on applied strain range, [120] the term r is explicitly included in the 

formulation. It is important to note that B0 is also a function of bias magnetic field [120] 

which can be deduced from Figure V.3. Bias magnetic field dictates what the maximum 

B0 would be when the variant reorientation is complete. Using Eqn. V.2 and  

B = B0 r sin(�t), the rms voltage generated can be expressed as  

2
0

2

488.3
c

rfBTDl
V c

rms =    (in V)     (Eqn. V.3) 

where f is the excitation frequency. If N is known for pickup coils, then the peak induced 

voltage can be found using 
2

2

0
2 D

rfBNVpeak π=     (Eqn. V.4) 

The rms power delivered to a matching electrical load impedance can then be calculated 

as 222
0

361062.45 frBTDlP crms ×=   (in W)    (Eqn. V.5) 
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Figure V.5b shows the peak induced voltage output predicted using Eqn. V.4 and 

the current materials and pickup coil parameters (B0 =0.1 T, N=1000 turns, and D=7 

mm). The predictions agree well with the experimental results, confirming the validity of 

the above approach at least for the low frequency range used. As a comparison, similar 

voltage output levels were detected under 7–15 MPa in Terfenol-D and Galfenol at a 

frequency of about 60 Hz using a 3000 turn pickup coil [117]. In similar hardware and 

frequency conditions, the present alloy could result in much larger voltage outputs 

according to Eqn. V.4. To reveal the potential of the present NiMnGa alloy for power 

generation, Eqn. V.3 and Eqn. V.5 were used to calculate the Vrms and Prms values as 

functions of wire diameter and excitation frequency for the experimental pickup coil 

parameters of D=7 mm, T=5 mm, and lc =12 mm. It is clear in Figure V.6 that at 

relatively low frequencies around 200 Hz, it might be possible to achieve power out- 

puts above 1 W.  

 

 

 
Figure V.6. Predicted induced voltage (a) and power outputs (b) in NiMnGa MSMA 
power harvesters, with fixed specimen and coil volume as shown in Figure V.1 as a 
function of wire diameter and excitation frequency [121]. 
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Although the power delivered to a matching electrical load is independent of the 

wire diameter as seen in Figure V.6, the inductance and the resistance of the coil 

primarily depend on c. This provides flexibility during the optimization of coil 

parameters and allows maximum power transfer to a given electrical load impedance. 

However, we did not attempt to enhance the coil parameters in this study. Similarly, the 

above calculations do not consider optimized power conditioning circuitry which, 

together with the enhanced conversion unit, could make it possible to achieve power 

outputs as high as 1 W below 100 Hz. As a conclusion, power harvesting experiments on 

NiMnGa MSMA single crystals demonstrated that it is possible to obtain a few milliwatt 

power output utilizing martensite reorientation mechanism under slowly fluctuating 

loads (10 Hz). This can be increased over 1 W at frequencies over a hundred hertz by 

optimizing the power conversion hardware which would make these materials 

comparable and possibly better energy harvesters than magnetostrictive and piezoelectric 

materials at low frequencies. There is an optimum bias field where induced voltage and 

power output maximize. Voltage generation increases linearly with excitation frequency 

and strain range, and decreases linearly with the square of wire diameter. 
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CHAPTER VI 

ULTRA HIGH MAGNETOSTRESS & MAGNETIC WORK 

OUTPUT IN NiMnCoIn METAMAGNETIC SMAs VIA MAGNETIC 

FIELD-INDUCED PHASE TRANSFORMATION  
 

 

This chapter reports the effects of the applied magnetic field on the 

transformation temperatures, magnetization and pseudoelasticity (PE) responses of 

Ni45Mn36.5Co5In13.5 single crystalline metamagnetic shape memory alloys via 

magnetization measurements as a function of temperature or magnetic field, isobaric 

thermal cycling and isothermal mechanical loading experiments. In the light of these 

findings, magnetic field-induced phase transformation mechanism (FIPT) in NiMnCoIn 

results in much higher magnetic work outputs as compared FIPT and magnetic field-

induced variant reorientation (VR) observed in NiMnGa alloys. 

 

 

VI.1 Magnetic Field-Induced Phase Transformation in NiMnX Alloys 

As it was already explained comprehensively in Chapter III, magnetic field-

induced martensite variant reorientation (VR) is one of the two main mechanisms 

utilized for magnetic field-induced shape change in MSMAs. Although NiMnGa can 

display a magnetic field-induced strain (MFIS) of ~10% via magnetic field-induced VR 

mechanism [34], its actuation stress remains at best around 10 MPa even with the 

contribution of size effect [123]. In Chapter IV, a necessary condition for realization of 

FIPT was identified as the pseudoelasticity (PE) stress hysteresis being lower than the 

magnetostress. Likewise, transformation thermal hysteresis should be lower than the 

change in transformation temperatures under the field. Fulfilling these conditions, our 

NiMnGa composition demonstrated a FIPT which yielded in an actuation stress on the 

order of 20 MPa accompanied by a cyclic MFIS of 0.5% with stress assistance (Figure 

IV.9 in Chapter IV) [87]. Since the actuation stress in NiMnGa is intrinsically limited by 
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the limited magnetocrystalline anisotropy energy (MAE) of martensite, new alternatives 

have been sought for to replace the NiMnGa system. NiMnX (X= In, Sn, Sb, Al) [67, 

124] alloy families were introduced as promising alternatives where the replacement of 

Ga with In, Sb, Al or Sn in appropriate amounts results in the overlap of the magnetic 

and martensitic transformations and leads to weakly magnetic martensitic phases. In 

these new alloys, FIPT is observed as the main mechanism for the shape change between 

a ferromagnetic austenite parent phase (A) and a paramagnetic/antiferromagnetic 

martensite phase (M) for which the Zeeman energy serves as the driving energy source. 

This kind of magnetic FIPT is called as “metamagnetic phase transition” and was 

previously reported in other alloys systems such as MnAs, FeSiLa, etc. [125] besides 

NiMnCoIn [61]. In the NiMnGa system, on contrary to metamagnetic SMAs, the 

magnetocrystalline anisotropy energy (MAE) is responsible for the magnetic field 

induced twin boundary motion which in turn amounts to a net shape change. While the 

MAE is sensitive to crystal orientation and limited with the saturation magnetization 

(MS) of martensite; the Zeeman energy is not as orientation dependent and can 

continuously increase with the increasing applied field since it depends on the 

magnetization difference between austenite and martensite phases [126]. Figure VI.1 

schematically demonstrates the differences between magnetocrystalline anisotropy 

energy and Zeeman energy. The aforementioned distinction of NiMnX alloys seem to be 

promising in utilizing polycrystals as potential actuator materials and achieving much 

higher actuation stress levels than those of NiMnGa alloys. Cobalt has the highest Curie 

point, 1120 oC, of any known material [127]. Addition of Co is found to increase the 

Curie temperature and saturation magnetization of parent austenite in Ni-Mn-In [61], 

NiMnSn [128], and NiMnAl [129]. Among the members of NiMnCoX family, X= In is 

the easiest one to grow in single crystalline form resulting in the largest transformation 

strain (6.3%) with a moderate magnetic hysteresis (an average of 3 Tesla for the range of 

150 to 250 K without bias stress), where X= Sn is only possible to fabricate in 

polycrystalline form with a comparatively limited performance. Despite having a single 

crystalline structure, X= Al displays a large transformation hysteresis [129] hence is not 
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desirable for actuation applications. After Kainuma et al [61] showed that in NiMnCoIn, 

4 Tesla field was sufficient to recover 3% of pre-applied strain in martensite at room 

temperature, many studies on metamagnetic SMAs which mainly focused on the 

magnetocaloric properties and compositional effects on the transformation temperatures 

followed [130-141]. Kainuma et al also [61] predicted that the magnetostress levels in 

NiMnCoIn alloys should be on the order of tens of MPa, but there has been no 

systematic experimental study to prove this prediction. Wang et al. [141] reported 

reversible FIPT under 50 MPa with the application of 5 Tesla in Ni45Mn36.6Co5In13.4 

alloys with unknown MFIS values using in-situ high energy XRD measurements. The 

actuation stress level achieved in the study of Wang et al. [141] is an order of magnitude 

higher than that in Ni-Mn-Ga alloys obtained via field-induced martensite reorientation 

[95]. Investigating the conventional shape memory properties of Ni45Mn36.5Co5In13.5 

single crystals along the [100] orientation, we recently reported fully reversible 

pseudoelastic response with strain levels more than 6% accompanied with large stress 

and temperature hystereses [68] as the details of which will be provided later in this 

chapter. It is a must to have an applied magnetic field at a critical level:  

a)  To be able to induce the phase transformation,  

b)  To have martensite completely transform into austenite, 

c) To obtain MFIS levels as high as the transformation strain levels. 

It should be kept in mind that the critical levels of magnetic field which mark the 

start and finish of forward and back transformations are functions of temperature. 

Apparently, the necessary magnetic field for FIPT in NiMnCoIn alloys is still high for 

practical applications due the large transformation hysteresis. There are some 

microstructural factors influencing conventional shape memory properties [142] that can 

be engineered to decrease the hysteresis of these alloys. However, this initially requires a 

systematic work on the shape memory and pseudoelastic response of MSMAs to assess 

hysteretic transformation behavior. Without a proper understanding of the SMA 

characteristics, it is not possible to fully comprehend their magnetic shape memory 

response. 
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Figure VI.1. Schematics showing (a) the maximum magnetocrystalline anisotropy 
energy (Ku) for ferromagnetic martensite in Ni2MnGa responsible for the field-induced 
martensite variant reorientation, b) Zeeman energy difference between two phases which 
reversibly transform into each other, can be responsible for field-induced phase 
transformation. MS: Saturation magnetization. 
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Thus, one of the aims of the study reported in this chapter is to reveal the shape 

memory response of NiMnCoIn single crystal characterized along the [ ]100  orientation. 

The effects of stress and/or temperature on the transformation temperatures, strain and 

hysteresis were investigated, along with the critical stress for transformation. The [ ]100  

orientation was chosen since, in similar alloys, transformation strain and resistance 

against plastic deformation are relatively high in this orientation under uniaxial loading 

[80].  

 

VI.2 Isobaric Thermal Cycling & Isothermal Pseudoelastic Responses of 

NiMnCoIn 

Figure VI.2 shows the results of isobaric cooling/heating experiments which 

were conducted [68] in order to determine the shape memory response and the effect of 

applied stress on the transformation temperatures. The stress was isothermally applied in 

austenite and the sample was thermally cycled between a temperature below MF and a 

temperature above AF at the given stress level. After the completion of the cycle, the 

stress was increased further and thermal cycling was repeated. It is worth to note that the 

transformation strain (�tr) increases with stress from 0.2% under 10 MPa to 5.4% under 

125 MPa. 

This type of evolution in �tr is a consequence of the evolution of martensite 

variants as a function of external stress. In the course of cooling under low stresses, the 

measured low �tr levels imply that the stress is not enough to bias the formation and 

propagation of only a single martensite variant, and a self-accommodating martensite 

structure forms partially. Under high stress levels, the volume fraction of the stress-

biased martensite variant increases, so does the �tr level [68]. The possible evolution of 

martensite variants in two cases, i.e., under bias stresses of 50 MPa and 125 MPa, during 

the forward transformation is also depicted in Figure VI.2.  

As mentioned earlier in Chapter II, analysis of the nominal composition 

Ni45Mn36.5Co5In13.5 vacuum induction melted ingot by SEM revealed the presence of 
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second-phase particles inherited from the as-grown crystals. These were not possible to 

be eliminated by the selected heat treatment. Wavelength-dispersive spectroscopy 

(WDS) was utilized to find the composition of the matrix and the second phase as 

Ni45.7Mn35.6Co4.8In13.8 and Ni42.0Mn40.3Co16.0In1.6, respectively [126]. Note that the 

second-phase particles do not transform. 

 

 

 

 
Figure VI.2. The strain vs. temperature response of Ni45Mn36.5Co5In13.5 single crystals 
under constant compressive stress levels applied along the [100] orientation. The insets 
show the possible microstructural evolution under the different stress levels as discussed 
in the main text [68].  

 

 

Pseudoelastic response of the present NiMnCoIn single crystals along the [ ]001  

orientation at 0 oC, 20 oC and 50 oC are shown in Figure VI.3a. The experiments were 

conducted above AF temperature, resulting in a transformation strain of about 5.2 % in 
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the plateau region at 0 °C which is in good agreement with �tr detected in Figure VI.2. If 

the initial part of the unloading curve is extrapolated to zero stress, transformation strain 

can be determined as 6.3 %. As the stress increases, austenite (L21 cubic phase) deforms 

elastically and then transforms to martensite (6 layered modulated structure [126]) with 

notable hardening in the plateau region, followed by further transformation of remnant 

austenite and simultaneous elastic deformation of martensite. Upon unloading, 

martensite relaxes elastically and transforms back to austenite before the elastic 

relaxation of austenite takes place. The stress hysteresis is approximately 110 MPa at 0 
oC and increases with temperature [68]. 

Figure VI.3b presents the MS temperature as a function of applied stress, 

determined from the isobaric thermal cycles in Figure VI.2 and also the critical stress for 

the forward transformation as a function of test temperature, extracted from Figure 

VI.3a. It is clear that the critical stress for the transformation increases linearly with 

temperature, with a rate of 2.1 MPa/oC. The linear dependence between the critical stress 

and temperature can be expressed following the Clausius-Clapeyron (CC) relation: 

max
tro

enth

T
H

T ε
σ ∆−=

∆
∆

       (Eqn. VI.1)  

where σ∆  is the change in the critical stress, T∆  is the change in temperature, enthH∆  is 

the transformation enthalpy, To is the equilibrium temperature, and max
trε  is the 

transformation strain from a single crystal austenite to a single variant martensite. 
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Figure VI.3. (a) Superelastic response of the Ni45Mn36.5Co5In13.5 single crystals along 
the [100] orientation under compression at 0˚C, 20˚C and 50˚C. (b) Critical stress for 
phase transformation vs. temperature phase diagram constructed using the data extracted 
from Figures VI.3a and VI.2 [68]. 
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The CC slope for the [ ]100  orientation (2.1 MPa/oC) matches the CC slope of the 

austenite to 10M martensite transformation in Ni2MnGa single crystals along the same 

orientation for similar transformation temperatures. However, max
trε  of the NiMnCoIn 

(5.4%) is greater than that of Ni2MnGa (4%), suggesting a larger enthH∆  in the 

NiMnCoIn crystals. �tr and thermal hysteresis as a function of stress were determined 

from the thermal cycling experiments and are depicted in Figure VI.4.  

 

 

 
Figure VI.4. Transformation strain (left axis) and temperature hysteresis (right axis) of 
Ni45Mn36.5Co5In13.5 single crystals along the [100] orientation as a function of applied 
stress [68]. 
 

 

�tr increases with stress and saturates above 100 MPa. Such progression in �tr can 

be a consequence of the evolution of martensite variants as a function of external stress. 

During cooling under low stresses, the measured low �tr levels imply that the stress is 

not sufficient to bias the formation of one single variant; hence, a self-accommodating 
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martensite structure partially forms. The phase front propagation seems to be hard, most 

likely because of the second-phase particles and defect generation as a result of lattice 

incompatibility between austenite and martensite. Under high stress levels, a stress-

biased martensite variant must have formed and grown hindering propagation of other 

variants’ nuclei since the attained 5.4% of stain is near the calculated theoretical �tr level 

(6.61% for [ ]100  orientation [126]).  

The possible evolution of martensite variants in two cases, at 50 and 125 MPa, 

are depicted as simple schematics in Figure VI.2. At 50 MPa, multiple variants form. 

However, at 125 MPa, only one variant favored by the external stress can grow thanks to 

the stress being high enough to bias the propagation.  

The observed �tr saturates above 100 MPa which is really high as compared to 

the corresponding 6 MPa in Ni2MnGa [95]. Possible factors that may be responsible for 

such a large difference are higher lattice friction in NiMnCoIn alloys due to solid 

solution hardening and off stoichiometry, more defect generation during transformation 

due to larger lattice incompatibility between transforming phases, and local internal 

stress near precipitates, which do not exist in Ni2MnGa.  

Thermal hysteresis in Figure VI.4 also increases with stress up to 50 MPa and 

then decreases with further increase in stress. The hysteresis was determined to be 

between 50 and 75 oC, depending on the stress level, which is large compared with those 

of other MSMAs, such as NiFeGa [143]. Large hysteresis or high-energy dissipation in 

SMAs arises from structural defect formation, such as dislocations, during 

transformation and frictional energy spent on the movement of phase fronts and on 

multiple phase front interactions. The individual contributions of these factors on the 

hysteresis depend on the lattice compatibility between transforming phases, their elastic 

moduli and strength, and the lattice friction, which is dictated by the crystal structure and 

stoichiometry. If phases are relatively soft, lattice incompatibility would be mainly 

accommodated with irreversible local defects increasing hysteresis [142]. If they are 

strong, it could be accommodated elastically or with internal twin formation. Since, in 

the present case, there is no irrecoverable strain during thermal cycling, we conclude that 
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the transforming phases have high strength with negligible irrecoverable defect 

generation. Then, the frictional loss can be expected to be more prominent in the present 

material, which is also supported by the large thermal hysteresis of 50 oC under stress-

free conditions. 

Moreover, multiple phase fronts and their interactions associated with self-

accommodating morphology should increase frictional energy dissipation. Macro 

segregation during the single crystal growth using the Bridgman technique can be 

another reason for high lattice friction due to the formation of second-phase particles. 

The presence of second-phase particles can strongly influence the hysteresis and the 

stress dependence of �tr [142]. The large particles, as in the present case, are likely to be 

incoherent without any notable coherency stress. However, under applied stress, 

modulus mismatch between the particles and matrix can initiate local internal stress, 

which in turn can oppose external stress and bias martensite variants other than the one 

favored by external stress. Interactions between these variants increase the dissipation 

and hysteresis. Furthermore, large untransformed particles in a transforming matrix can 

delay the relaxation of stored elastic energy of transformation due to the need to 

accommodate the large transformation shape change around the untransformed second-

phase particles. This should lead to additional dissipation, contributing to the overall 

hysteresis. Thus, in Figure VI.4, thermal hysteresis increases to 75 oC with increasing 

stress up to 50 MPa. Upon further stress increase, the number of variant interactions is 

reduced, as is the dissipation and hysteresis, since most of the sample transforms to a 

single martensite variant. In addition, the local internal stress around the particles cannot 

sufficiently oppose the high external stresses in biasing the single variant. Therefore, for 

stresses 100 MPa and higher, the sample transforms to a single variant and the maximum 

�tr is reached [68].  

The relaxation of elastic energy due to the non-transforming second-phase should 

not increase with stress once a complete single variant morphology is reached, since the 

shape change to be accommodated does not change further. On the other hand, the 

decrease in hysteresis with stresses above 100 MPa, even though �tr saturates, can be 
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attributed to the uneven change in lattice parameters of the phases with increasing stress 

and temperature. Lattice parameters are a function of composition, temperature and 

stress, and can vary differently with temperature and stress for martensite and parent 

phases [143]. The compatibility between transforming phases is usually dictated by 

lattice parameters and crystal structures of these phases [144]. Since elastic moduli of 

transforming phases are quite different from each other in many SMAs, increasing stress 

alters the lattice parameters of the phases disproportionately, leading to a change in 

compatibility. The change usually occurs in a positive manner, and thus brings about a 

reduction in thermal hysteresis with increasing stress, until plasticity or some other 

dissipative mechanisms become more pronounced.  

One way to reduce thermal hysteresis in SMAs is to improve the lattice 

compatibility with compositional modifications and enhance the strength to suppress 

defect-induced dissipation. For instance, off stoichiometric alloy compositions in SMAs 

in general, possess higher strength levels than the stoichiometric ones due to solid-

solution hardening. Coherent precipitates can both increase strength and help bias single 

variant martensite via aligned coherency stress field [68].  

 

VI.2.1 Effect of Magnetic Field on Pseudoelastic Response of NiMnCoIn 

As mentioned earlier in sections IV.4 and IV.7 of Chapter IV, there are two ways 

to realize reversible FIPT in MSMAs:  

(i) Separation of thermal cycling loops, and/or  

(ii) Separation of isothermal pseudoelastic loops, both with and without an 

applied field. 

Once one of these is achieved, it is possible to find a temperature or stress window at 

which martensite is the stable phase under no magnetic field and austenite is the one 

under the field. Cycling the field in this window would then result in reversible FIPT 

with an associated external strain. Large thermal or stress hysteresis, however, increases 

the critical magnetic field required for the complete separation of these loops. The 

change in MS temperature for the present material is measured as 13 oC/Tesla using a 
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superconducting quantum interference device (refer to figure on page 140) Thus at least 

4 Tesla field would be required to separate the loops hysteresis values of which are 

shown in Figure VI.4. 

In order to reveal the effect of a magnetic field on the compressive superelastic 

response, the compressive behavior along the [ ]100  orientation was investigated under 

constant magnetic fields at 0 oC, as well. The field was applied prior to the loading, and 

kept constant throughout the experiment along the [ ]011  orientation, perpendicular to the 

direction of the applied stress. Field magnitudes ranging from 0 Tesla to 1.6 Tesla with 

increments of 0.4 Tesla were applied in order to capture the magnetostress levels as a 

function of magnetic field magnitude as depicted in Figure VI.5a. It is clear that the 

superelastic response exhibited a shift to higher stress levels with increasing magnetic 

field magnitudes. The magnitude of this shift is determined at 4% strain (the center of 

the superelastic loop) and plotted as a function of the field level in Figure VI.5b. The 

crystal exhibits approximately 30 MPa magnetostress under 1.6 Tesla which is much 

higher than other MSMAs (2 to 6 MPa for NiMnGa alloys [87]). The magnetostress 

increases from 2.5 MPa to 30 MPa when the applied magnetic field increases from 0.4 

Tesla to 1.6 Tesla. In these alloys, the magnetization of martensite and austenite 

saturates at an applied field of around 0.5 Tesla (refer to figure on page 144). In order to 

determine the rate of increase in the transformation stress with field without considering 

the initial non-linear region due to saturation, the points for 0.4 Tesla and above are 

taken into account and the transformation stress (or magnetostress) vs. magnetic field 

( H∆∆ /σ ) slope is determined as 22.9 MPa/Tesla. In other words, up to the saturation 

field, the difference between MAEs of austenite and martensite is responsible for 

magnetostress. On the other hand, above the saturation field, field dependence is 

expected to be linear as can be seen in Figure VI.1 due to the Zeeman energy being the 

responsible energy contribution for the increase in transformation stress level.  
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Figure VI.5. Effect of magnetic field on PE response of Ni45Mn36.5Co5In13.5. The 
magnetic field was applied along [011] orientation, perpendicular to the applied stress 
direction of [100], prior to loading and kept constant throughout the experiment. (a) 
Experimental results at 0 oC, and (b) the increase in transformation stress (determined at 
4% strain) vs. magnetic field plot [126]. 
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VI.3 Magnetization Response under Isothermal & Constant Applied Field 

Conditions 

Figure VI.6a shows the effect of applied magnetic field on the magnetization 

response of Ni45Mn36.5Co5In13.5 single crystals as a function of temperature. A magnetic 

field of 0.05 Tesla was applied at 390 K and the sample was cooled down to 100 K and 

heated back to 390 K. Then, the field was increased to 3, 5 and 7 Tesla and the thermal 

cycling was repeated in each case. Under 0.05 Tesla, the forward A�M transformation 

starts at 230 K (MS) and finishes at 205 K (MF) upon cooling. The reverse M�A 

transformation starts at 225 K (AS) and finishes at around 250 K (AF) upon heating. The 

transformation is reversible with a minute thermal hysteresis (~20 K). As the applied 

magnetic field increases, the transformation temperatures shift to lower temperatures, 

e.g. MS decreases from 230 K to 165 K as the field increases from 0.05 to 5 Tesla. Here, 

the applied magnetic field favors the phase with the higher saturation magnetization 

(ferromagnetic austenite in this case). Additional undercooling is needed to supply the 

required chemical energy to overcome the magnetic energy opposing phase 

transformation.  

Figure VI.6b shows the change in transformation temperatures as a function of 

magnetic field extracted from the experiments partially shown in Figure VI.6a. The 

change in AS is approximately -12.6 K/Tesla. As a benchmark, the same value is around 

+6 K/Tesla for NiMnGa alloys [109] since martensite has slightly higher saturation 

magnetization than that of austenite in NiMnGa alloys which yields to a positive 

temperature change. 

For applied magnetic fields higher than 3 Tesla, the magnetization of austenite is 

saturated and does not increase with the field at all temperatures. During forward 

transformation, the magnetization of the single crystal drops from 130 emu/g to 30 

emu/g under 3 Tesla, and to 100 emu/g under 5 Tesla upon transformation. Under 7 

Tesla, there was no change in magnetization for this particular sample and thus, no 

transformation down to 100 K.  
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Figure VI.6. (a) Change in magnetization of Ni45Mn36.5Co5In13.5 single crystals oriented 
along the [ ]100  orientation as a function of temperature under different constant applied 
magnetic fields. (b) Change in transformation temperatures as a function of magnetic 
field extracted from the experiments partially shown in Figure VI.6a [126]. 
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The increase in magnetization at low temperatures with increasing constant field 

upon the transformation can be due to either partial transformation of austenite to 

martensite or an anomalous increase in the magnetization of martensite. Ito et al [145] 

observed a similar behavior in a Ni45Mn36.7Co5In13.3 alloy and they attributed this 

behavior to the former, i.e. to the kinetic arrest of martensitic transformation. They 

argued that there is an abnormal change in entropy and extremely low mobility of phase 

interfaces, resulting in lack of complete phase transformation at low temperatures. 

Nevertheless, the reason for such low mobility under high fields and at low temperatures 

is not known.  

A parallel study on Ni50Mn34In16 polycrystals by Krenke et al [136] did not 

report a similar increase in low temperature magnetization after transformation under 

high magnetic fields. The degree of change in magnetization due to martensitic 

transformation (i.e. MS: the difference between the magnetization right below MF and 

the magnetization right above MS as shown in Figure VI.6a) continuously increases with 

increasing magnetic field in the Ni50.3Mn33.8In15.9 alloy polycrystals and then it saturates 

above 1 Tesla as seen in Figure VI.7. However, it first increases and then decreases with 

increasing field in the present single crystals with Co addition due to the partial 

transformation of austenite to martensite. The comparison in Figure VI.7 indicates the 

strong influence of Co addition on the kinetic arrest of martensitic transformation in 

NiMnIn alloys which requires further investigation. 

Figure VI.8a shows the magnetization vs. temperature cooling curve under 7 

Tesla (the curve between #1 and #2) with only a small amount of martensitic 

transformation below 150 K. When the field is reduced down to 0 Tesla at 50 K, the 

magnetization vs. field curve (the curve between #2 and #3) in Figure VI.8b 

demonstrates that the magnetization starts to decrease at a field level considerably above 

the saturation fields of both austenite and martensite. Thus, this should be a consequence 

of an austenite to martensite phase transformation upon field removal. When the field is 

increased to 7 Tesla again at 50 K, the magnetization vs. field curve (between #3 and #4) 

shows a typical saturation curve of martensite. Heating the specimen to room 
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temperature under 7 Tesla (the curve between the #4 and #6) causes martensite to 

austenite reverse transformation above 150 K with the austenite magnetization level 

being exactly the same as during the cooling response under 7 Tesla.  
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Figure VI.7. Comparison of change in magnetization between austenite and martensite 
upon transformation (defined in Figure VI.6a) in Ni50.3Mn33.8In15.9 and 
Ni45Mn36.5Co5In13.5 alloys showing the effect of Co addition on the kinetic arrest of 
martensitic transformation [126]. 

 

 

Apparently, cooling under a field of 7 Tesla causes the kinetic arrest of the 

transformation even if the temperature level is much lower than what one would expect 

for the transformation start temperature under the field, according to Figure VI.6.  
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Figure VI.8 Change in magnetization of Ni45.7Mn35.6Co4.8In13.8 single crystal as a 
function of (a) temperature (b) magnetic field. Sample is cooled down from 300 K to 50 
K. The sequence of numbers denotes the path of magnetic field application [126]. 
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On the other hand, martensite happens to be the stable phase at that low 

temperature under zero field (upon removal of the magnetic field). Reloading up to 7 

Tesla is not sufficient to induce the reverse transformation at 50 K. The reverse 

transformation temperature (AS) upon heating under 7 Tesla is close to what one would 

expect from Figure VI.6b according to the linear slope. 

The shift in transformation temperatures with magnetic field provides a 

distinguishing chance to induce reversible phase transformation within a certain 

temperature range. Figure VI.9 shows the change in magnetization of the [ ]100  single 

crystal as a function of applied magnetic field at 350, 250, 220 and 140 K.  
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Figure VI.9. Change in magnetization of Ni45Mn36.5Co5In13.5 single crystals oriented 
along the [ ]100  orientation as a function of applied magnetic field at different 
temperatures demonstrating fully reversible magnetic field-induced phase transformation 
[126]. 
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At 350 and 250 K, the single crystal is in the austenitic phase and it shows a 

typical response expected of a ferromagnetic material; i.e., the magnetization increases 

quickly and saturates at low fields (< 0.5 Tesla).  

At 220 K, most of the material is in the martensite state with a small amount of 

coexisting austenite according to Figure VI.6a. The initial magnetization response up to 

1 Tesla that seems to saturate at 25 emu/g is due to the magnetization of martensite and 

residual austenite. Further increase in the applied field results in a sudden alteration in 

magnetization due to M�A reverse transformation. At 4 Tesla, the magnetization 

saturates again where the structure becomes fully austenite. Removal of the magnetic 

field results in forward transformation A�M with a hysteresis of about 1.5 Tesla. At 140 

K, the magnetization response is similar to the one at 220 K where the initial saturation 

magnetization is lower since the structure becomes fully martensite.  

The necessary magnetic field for the reverse phase transformation at 140 K is 

higher than the one at 220 K since the sample temperature is much lower than the AS 

under zero field and more magnetic energy is needed to initiate and support austenite 

formation. In this case, the reverse transformation is not complete up to 7 Tesla. Upon 

unloading, austenite to martensite transformation starts immediately, continues at a 

faster rate below 5.5 Tesla and is completed just below 1 Tesla. Clearly, loading-

unloading of the magnetic field can trigger fully reversible phase transformation without 

any stress-assistance which is promising for actuator applications.  
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VI.4 Crystal Structure & Lattice Parameters of Single Crystalline 

Ni45Mn36.5Co5In13.5 

In order to determine the crystal structure and lattice parameters of the austenite 

and martensite phases of our NiMnCoIn single crystals, 2D diffraction patterns were 

collected as a function of temperature using synchrotron high-energy x-ray diffraction 

(XRD) technique which provide in-situ tools for advancing the understanding of many 

physical processes such as deformation, phase transformation, and recrystallization [65]. 

Patterns covering a large reciprocal space confirmed that the austenite phase has 

L21 structure with Fm3m symmetry, as also reported in the literature [61, 130]. Through 

analysis of the peak positions seen in Figure VI.10, the austenite lattice constant was 

determined to be a= 0.5979 nm at room temperature.  

The single crystal was then cooled down to 180 K (< MF) where it became 

completely martensitic. The martensite demonstrated a modulated and more complex 

structure than austenite which was determined to be a (12M) six-layered monoclinic 

structure with lattice parameters of a= 0.439 nm, b= 0.557 nm, c= 2.593 nm, and �= 

93.82o[126]. 
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(a) 

 
(b) 

Figure VI.10. Intensity vs. 2θ graphs of Ni45Mn36.5Co5In13.5 single crystal in (a) 
austenite phase at 300 K with L21 cubic (b) martensite phase at 180 K with 6-layered 
monoclinic structures [126]. 



145 

 

VI.5 Prediction of Magnetostress in NiMnCoIn Alloys 

Actuation strain was mentioned before as a figure of merit on the performance of 

MSMAs when employed in actuator applications. In NiMnCoIn alloys, the actuation 

strain is a consequence of the phase transformation mechanism and orientation 

dependent as well. The orientation dependence of the shape memory strain is mainly due 

to the crystallographic relation between the applied stress direction and possible 

crystallographic transformation systems. A crystallographic system consists of a 

transformation shear plane (a.k.a. habit plane) and a shear direction which characterizes 

the deformation geometry during the parent to martensite transformation. Using “Energy 

Minimization Theory”, it is possible to determine habit plane and direction as well as 

twinning shear and direction for given lattice parameters and detailed discussions on the 

pertaining theoretical framework can be found elsewhere [146, 147].  

In NiMnCoIn alloys, parent phase has L21 structure while martensite has 5-

layered (10M) or seven-layered (14M) modulated monoclinic or 6-layered (12M) 

modulated orthorhombic crystal structures [61, 66, 126]. There are total of 12 variants 

for cubic to monoclinic phase transformation [146]. It is important to note that for 

NiMnGa alloys (Chapter IV, Figure IV.1) the stress required for detwinning is very low 

compared to NiMnCoIn [112] and NiTi [146], and for these alloys it is better to compare 

the experimental results with the theoretical results with detwinning.  

The lattice parameters determined from high energy X-ray diffraction [126] are 

used to determine volume fraction, habit plane normal, transformation shear and 

twinning direction and the achieved results on the experimental and calculated 

theoretical transformation strains are summarized in Table VI.1 [126]. 
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Table VI.1 Comparison of experimentally observed and theoretically calculated phase 
transformation strains of Ni45Mn36.5Co5In13.5 single crystals under compression along 
four orientations [126]. 

% Strain for L21 ���� 12M phase transformation 
Experimental Theoretical 

 SME Transformation Detwinned 
[ ]100  6.5 6.61 6.61 
[ ]123  --- 4.04 4.14 
[ ]110  --- 3.25 3.47 
[ ]111  --- 1.22 1.22 

 
 

Provided that the change of critical stress with temperature (the slope of CC 

curves) and the change of transformation temperature with applied field are known, it is 

probable to calculate the magnetostress as a function of applied magnetic field. Recalling 

Eqn. VI.1, the change in critical stress with temperature is written as; 

max
tro

enth

T
H

T ε
σ ∆

−=
∆
∆

       (Eqn. VI.1)  

where  enthH∆  is the change in enthalpy during transformation, oT  is the chemical 

equilibrium temperature, and max
trε  is the transformation strain. The transformation 

strains of single crystals can be calculated or can be determined from pseudoelasticity 

and/or isobaric thermal cycling experiments. The change in transformation temperatures 

with applied field can be determined from the magnetization results as shown in Figure 

VI.6. Then the magnetostress as a function of field can be determined as; 

H
T

x
TH ∆

∆
∆
∆=

∆
∆ σσ

       (Eqn. VI.2) 

Calculated values of the compressive transformation strains for the [ ]100 , [ ]123  

[ ]110  and [ ]111  orientations are listed in Table VI.1. The theoretical strain value of 

6.61% for the [ ]100  direction is in good agreement with our experimental result [68] 

reported in the previous section, in Figures VI.3 and VI.4. From Figure VI.3b, the 

change in critical stress with temperature can be determined as 2.1 MPa/K. CC slopes 
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for other orientations can be calculated assuming the same enthalpy and chemical 

equilibrium temperature for all samples since they are not a function of orientation. The 

change in transformation temperatures as a function magnetic field can be determined 

from Figure VI.6 as -12.6 K/Tesla. This value is considered to be orientation 

independent as well, thus neglecting the effect of MAE. Table VI.2 shows the calculated 

magnetostress per unit field as a function of orientation. The calculated 
ltheoreticaH∆

∆σ
 for 

the [ ]100  orientation is 26.6 MPa/Tesla, and it is fairly close to 
erimentalH exp∆

∆σ
of 22.9 

MPa/Tesla from Figure VI.5b [126].  

 
Table VI.2 Orientation dependence of magnetostress as a function of applied field. The 
symbol * indicates experimental values where all others are theoretical values [126].  

 
max
trε  
% 

T∆
∆σ

  

MPa/K 
H
T

∆
∆

 

K/Tesla 
ltheoreticaH∆

∆σ
 

MPa/Tesla 
erimentalH exp∆

∆σ
 

MPa/Tesla 

[ ]100  6.61 2.1* 12.6* 26.5 22.9* 
[ ]123  4.14 3.35 12.6* 42.2 --- 
[ ]110  3.47 4.0 12.6* 50.4 --- 
[ ]111  1.22 11.3 12.6* 143.4 --- 

 

 

The difference between the experimental and theoretical values is attributed to 

the demagnetization effect that would result in a lower magnetic field inside the material 

and to the difference between the theoretical calculations and experimental observations 

of the transformation strain [126]. It is important to note that the value for 
ltheoreticaH∆

∆σ
 

along the [ ]111  orientation (143.4 MPa/Tesla) is more that 5 times larger than that in the 

[ ]100  orientation (26.5 MPa/Tesla). However, the transformation strain along the [ ]100  

orientation (6.61%) is more than 5 times larger that along the [ ]111  orientation (1.22%). 

In the light of these comparisons, it can be inferred that, specific to the demands of 
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application, an orientation with superior actuation stress or actuation strain can be 

chosen among the listed above.  

 

VI.6 Evaluation of Magnetostress & Work Output Levels of NiMnCoIn as 

Compared to Other Active Materials 

Magnetostress is one of the key parameters to assess the potential of MSMAs for 

actuator applications. Furthermore, it is directly related to the actuation stress and is 

defined by the change in the critical stress levels for phase transformation (or for 

martensite variant reorientation in the case of NiMnGa) upon the application of magnetic 

field. Figure VI.11 displays a comparison on the magnetostress levels as a function of 

magnetic field. Compared data are from our present study for phase transformation along 

the [ ]100  (experimental) and [ ]111  (predicted) orientations in the NiMnCoIn alloy, and 

from the literature on NiMnGa alloys for both phase transformation and variant 

reorientation [52, 74, 95, 100, 148-150]. In the case of NiMnGa alloys, magnetostress 

increases linearly with the field at first and then saturates above a certain field value. The 

reason for this is the MAE being the driving force behind the magnetostress (see Figure 

VI.1). Since MAE is limited with the saturation field so is the magnetostress. However, 

in the case of NiMnCoIn alloys, magnetostress always increases with applied magnetic 

field since there is no limit for the contribution of the ZE (refer to Figure VI.1). Figure 

VI.11 shows that for magnetic fields above 0.7 Tesla, magnetostress of NiMnCoIn alloys 

is larger than those of the other MSMA systems. When a magnetic field of 1.6 Tesla is 

applied, the magnetostress for phase transformation in the NiMnCoIn alloy is 30 MPa. 

On the other hand, at the same magnetic field level, it is 5.7 MPa [95] and 1.5 MPa [149] 

through variant reorientation in the 10M and 14M martensites of NiMnGa alloys, 

respectively. Also, for the phase transformation from austenite to 10M martensite in the 

Ni51.1Mn24Ga24.9 alloy, magnetostress is 7.6 MPa [148, 151]. 

The magnetic work output per unit volume, εσ ×=W , where σ  is the 

magnetostress and ε  is the strain induced by the magnetic field, is the next figure of 

merit for the actuation performance of MSMAs . The maximum work output for variant 
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reorientation in NiMnGa alloys was reported to be 156 kJm-3 by Karaca et al. [151]. The 

work outputs for the field-induced two-stage martensitic phase transformation in the 

Ni51.1Mn24Ga24.9 alloy were determined as 36.4 kJm-3 and 160 kJm-3, respectively for 

each stage, in our recent work [148]. In NiMnGa alloys, magnetostress stems from the 

MAE of martensite, only. Regardless of whether the variant reorientation or phase 

transformation mechanism is in action, the maximum work output will be similar. 

Because the saturation magnetization levels of austenite and martensite phases are about 

the same, it can be assumed that the ZE is negligible in the NiMnGa alloys family.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure VI.11. Magnetostress levels as a function of applied magnetic field for the 
martensitic phase transformation in the present Ni45Mn36.5Co5In13.5 single crystals, 
obtained from Figure VI.5 and the predictions introduced in Table VI.2, and for the 
phase transformation and variant reorientation of 10M and 14M martensite structures in 
several NiMnGa alloys extracted from the literature [52, 74, 95, 100, 148-150]. Adapted 
from [126].  
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The magnetic work output of the present NiMnCoIn alloy, on the other hand, is 

about 1600-1800 kJm−3 which is one order of magnitude higher than the work output of 

NiMnGa alloys [148]. 

Figure VI.12 provides the benchmark among the aforementioned magnetostress, 

MFIS, and magnetic work output levels for NiMnGa alloys from the literature and the 

present Ni45Mn36.5Co5In13.5 single crystals [43, 52, 88, 95, 148, 152]. It is obviously seen 

that the NiMnCoIn alloy demonstrates a drastically enhanced work output level, which 

very promising for MSMAs in actuator applications.  
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Figure VI.12. MFIS and magnetic work output vs. the magnetostress plots showing the 
literature data obtained to date in NiMnGa MSMAs utilizing field-induced martensite 
reorientation and field-induced phase transformation mechanisms, and the present results 
on the Ni45Mn36.5Co5In13.5 single crystals. A grid of constant magnetic work output 
hyperbolas ranging from 2 and 2000 kJ m-3 has been superimposed. Logarithmic scale is 
used for both axes for easy comparison. Adapted from [126].  
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Figure VI.13 compares the experimentally reported actuation stress, strain, and 

work outputs for the several different actuator materials including MSMAs. The data 

presented in this figure for the materials other than MSMAs are adapted from [153] and 

[154].  
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Figure VI.13. Comparison of actuation stress, actuation strain, and actuation work 
output levels that are reported for different active materials [153, 154] with those from 
MSMAs. The values resulting from the field-induced variant reorientation and phase 
transformation are presented separately. The results for the MSMAs showing field-
induced phase transformation include experimental observations in NiMnGa alloys and 
the realistic estimates for the new NiMnCoIn alloys which are predicted in the present 
work. Adapted from [126]. 
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We have also included in this figure, magnetostress level, MFIS, and magnetic 

work output for the NiMnCoIn alloy for 1 Tesla applied field. The work output levels for 

the NiMnCoIn alloy are not the experimental actuation work outputs but instead the 

magnetic work output per 1 Tesla observed in the present study. Part of the magnetic 

work output would be spent for dissipation during the forward and reverse phase front 

motion, and the remaining could be used as mechanical work output. Considering that 

slightly higher magnetic field levels can be applied to overcome the dissipation, the 

work output levels for the NiMnCoIn alloy in Figure VI.13 show a realistic estimate of 

the actuation work output levels that can be easily achieved in these new alloys. 

In the figure, MSMAs utilizing the field-induced phase transformation 

mechanism for actuation fill a gap between conventional SMAs and other actuator 

materials. It should be kept in mind that, one advantage of MSMAs over conventional 

SMAs is notably faster actuation frequency which makes these materials prime 

candidates for high work output, high stroke, and medium frequency actuators of the 

future.  
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CHAPTER VII 

SHAPE MEMORY CHARACTERISTICS OF Ni40Mn33Co10Al17 & 

Ni43Mn39Co7Sn11 POLYCRYSTALLINE METAMAGNETIC SMAs 
 

 

In this chapter, isobaric thermal cycling and isothermal pseudoelastic responses 

of polycrystalline bulk Ni40Mn33Co10Al17 and polycrystalline sintered compacted-

powder Ni43Co7Mn39Sn11 alloys are reported in the search of inexpensive alternatives to 

replace NiMnCoIn single crystalline metamagnetic shape memory alloys. Using the 

experimental data, stress vs. transformation temperatures phase diagrams are constructed 

for both materials. A detailed comparison between calculated figures of merit for 

actuation performance via Clausius-Clapeyron slopes from the phase diagram is 

presented. 

 

 

VII.1 Polycrystalline Bulk Ni40Mn33Co10Al17 MSMA 

Newly discovered Ni-Mn-X (X= In, Sn and Sb) family Heusler alloy systems 

where the magnetization of the martensite (M) phase is considerably smaller than that of 

the parent austenite (A) phase [63], and especially the Co-doped NiMnIn and NiMnSn 

quaternary alloys, attracted a lot of attention due to showing drastic changes in 

magnetization response in the course of martensitic transformations [61, 128, 134]. 

Furthermore, it was revealed that the martensitic transformation temperatures of these 

alloys drastically decreased by the application of magnetic fields and both alloys showed 

magnetic field-induced reverse transformation. An almost perfect shape memory effect 

induced by magnetic field (which is called as ‘metamagnetic shape memory effect’) was 

observed in NiMnCoIn single crystalline and the NiMnCoSn polycrystalline alloys near 

room temperature [61, 128]. In Ni45Mn36.5 Co5In13.5 single crystals, oriented along [ ]100  

direction of the parent phase, as reported in Chapter VI of this dissertation, a 

transformation strain of 5.4% via thermal cycling under 125 MPa compressive stress was 
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realized. We also demonstrated in Chapter VI that actuation stress and work output 

levels in the NiMnCoIn alloys is at least one order magnitude higher than those in the 

conventional MSMAs. Moreover, accompanying this martensitic transformation, giant 

magnetoresistance (GMR) [145, 155, 156] and large magnetocaloric effects (MCE) [131, 

157] have also been reported by other researchers. Thus, these alloys deserve more 

research for being promising candidates in actuation applications. 

Regardless of being single or polycrystalline, NiMnCoIn alloys are costly due to 

the expensive In element. Brittle natures of both NiMnCoIn and NiMnCoSn alloys 

(especially in polycrystalline form when obtained by conventional melting) are among 

the major drawbacks in front of their employment in practical applications. Furthermore, 

the thermal hysteresis and interval during the martensitic transformation are too broad. 

In the line of the efforts made to address these issues, Kainuma et al. [129] have recently 

replaced In and Sn with Al and showed that NiMnCoAl quaternary alloys demonstrate 

magnetic field induced reverse phase transformation between a paramagnetic M phase 

with L10 structure and a ferromagnetic A phase with B2 structure.  

Another effort made to overcome the abovementioned difficulties pertaining 

polycrystal structure was synthesizing of NiMnCoSn via powder metallurgy techniques 

[70], characterization efforts details of which will be provided in the subsequent section.  

To evaluate the full potential of these new alloys for actuation applications, first, 

it is necessary to reveal their conventional shape memory characteristics such as 

transformation strain levels and stress vs. temperature phase diagram. Therefore, in this 

chapter, we are reporting the shape memory effect via isobaric thermal cycling and 

isothermal pseudoelastic response of Ni40Mn33Co10Al17 polycrystalline bulk and 

Ni43Mn39Co7Sn11 polycrystalline compacted-powder metamagnetic shape memory alloy 

specimens. 

The Ni40Mn33 Co10Al17 (at.%) specimen was prepared by induction melting under 

an argon atmosphere. The polycrystalline ingot was annealed at 1373 K for 168 hours in 

vacuum and quenched in ice water. Several compression specimens with dimensions 

near to 3.0×2.5×5.5 mm3 were cut out of the annealed ingot by wire-electrical discharge 
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machining. The latent heat of the martensitic transformation was determined using the 

differential scanning calorimetry (DSC) measurements, where the heating and cooling 

rate was 10 K/min [69]. 

Figure VII.1 shows the strain vs. temperature response during thermal cycling 

under various compressive stresses across the phase transformation temperature interval 

in Ni40Mn33Co10Al17 polycrystalline bulk specimen. The application of stress was 

executed at 473 K in the parent phase for all tests and the temperature was cycled 

between 283 and 473 K under this designated constant stress level. The level of applied 

compressive stress was started from 10 MPa and incrementally (by 25 MPa steps) raised 

for each thermal cycle up to 200 MPa.  

 

 

 
Figure VII.1 Strain vs. temperature response of the Ni40Co10Mn33Al17 polycrystalline 
alloy under various constant compressive stresses across the phase transformation 
temperature interval, figure adapted from [69].  
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In Figure VII.1, only selected data are shown for the sake of clarity. The drastic 

change in strain due to the transformation is observed at every stress level and the strain 

change increases monotonically with increasing stress. In the experiments under high 

stress levels, it is apparent that there is a noticeable residual strain subsequent to each 

thermal cycle. The martensitic transformation temperatures for A�M forward 

transformation (MS and MF) and M�A reverse transformation (AS and AF) were 

determined for each stress level, as demonstrated on the curve under 200 MPa in Figure 

VII.1. These transformation temperatures are plotted in Figure VII.2 for 

Ni40Mn33Co10Al17. It is important to note that for the martensitic transformation 

temperatures under 0 MPa, the data was acquired from other tests [129] conducted by 

means of a SQUID magnetometer. The data for each transformation temperature can be 

easily represented by a line due to its linear tendency. The slope of 4.1 MPa/K is almost 

the same for MF, AF and AS fit lines. On the other hand, the slope of the fit line (5.6 

MPa/K) for MS turned out to be slightly greater compared to that of the others.  

Similarly, the transformation strain εtr and the residual strain εr were defined at 

the temperature A* � (AS + AF)/2 using the base lines method in A and M phase regions 

as demonstrated on the 200 MPa curve in Figure VII.1 for Ni40Mn33Co10Al17. The data 

extracted from Figure VII.1 for εtr and εr are plotted in Figure VII.3a and VII.3b, 

respectively. εtr increases with increasing stress and saturates at around 3.6% under 200 

MPa and εr starts to drastically increase at about 150 MPa. Therefore, the maximum 

transformation strain obtained from this specimen is about 3.6%.  

 

 



157 

 

 
Figure VII.2 Compressive stress vs. transformation temperatures phase diagram of the 
Ni40Co10Mn33Al17 polycrystalline alloy. The values for each point were extracted from 
the experiments in Figure VII.1 [69]. 
 

 

In the case of the uniaxial stress-induced martensitic transformation, the slope of 

the critical stress for the onset of the transformation is given by the Clausius-Clapeyron 

equation [132]: 

 
m

c

V
S

T ⋅∆
∆≈

∂
∂

ε
σ

        (Eqn VII.1) 

where �S is the change in transformation entropy, ��  is the change in strain in the 

corresponding direction during the transformation and Vm is the molar volume of the 

specimen.  
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Figure VII.3 Transformation strain �tr (a) and the residual strain �r (b) as a function of 
stress level for the Ni40Co10Mn33Al17 polycrystalline specimen, figure adapted from [69]. 
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For the Ni40Co10Mn33Al17 polycrystalline alloy in hand, a value of 4.5 MPa/K 

can be obtained for Tc ∂∂σ from Eqn G.1 by substituting ∆S (= 1.21 J mol-1 K-1) which 

is experimentally determined by ∆S = L/T* using the latent heat L (= 463 J mol-1) and 

the reverse transformation peak temperature T* (= 383 K) obtained from the DSC 

heating curve. It is in good agreement with the experimental value 4.1 MPa/K for AF, AS 

and MF. The reason why the slope for the MS temperature is larger than that of the others 

is not clear. 

The slopes of the stress vs. transformation temperature phase diagram are 

important in practice if the materials are to be used as magnetic actuators. For instance, 

if the desired actuation strain level and the temperature range of actuation are known, it 

would be possible to determine the magnetic field required for the onset and completion 

of the magnetic field induced transformation under a particular stress level. It is also 

possible to predict the magnetostress level achievable in this material using the 

following relation [126]: 

H
T

TH
cc

∂
∂⋅

∂
∂

=
∂
∂ σσ

        (Eqn. VII.2) 

where H is the magnetic field applied to the specimen. In the present case, Tc ∂∂σ  (= 

4.1 MPa/K) has already been determined in the phase diagram (Figure VII.2) and the 

HT ∂∂ (= 3.6 K/Tesla) can be estimated using the previously published data from the 

thermal cycling experiments in SQUID magnetometer under the magnetic fields of 0.05 

and 7 Tesla [129]. From these values, the magnetostress Hc ∂∂σ  is estimated to be 14.8 

MPa/Tesla for the Ni40Mn33Co10Al17 polycrystalline bulk specimen. This magnetostress 

level, a direct indication of the achievable actuation stress per unit applied field in this 

material, is significantly higher than what is reported for NiMnGa single crystalline 

MSMAs, i.e. < 5MPa [95], where the field-induced martensite reorientation is the 

mechanism responsible for MFIS. Furthermore, it is surprisingly close to magnetostress 

levels of the [ ]100  oriented NiMnCoIn single crystalline MSMAs at 20 MPa/Tesla [126].  
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Figure VII.4 shows the stress vs. strain pseudoelastic curves for the NiMnCoAl 

polycrystalline specimen, where a compressive strain of about 2.5% was applied at 364, 

386 and 405 K. At every temperature, an almost perfect pseudoelastic behavior with full 

recovery of the applied strain is confirmed. The critical stress σc for the stress-induced 

martensitic transformation increases with increasing temperature, being consistent with 

the plot of the MS temperature under the fixed stress levels shown in Figure VII.2.  

 

 

 
Figure VII.4 Compressive stress-strain response of the Ni40Co10Mn33Al17 
polycrystalline specimen at 364, 386 and 405 K showing almost perfect pseudoelastic 
behavior, figure adapted from [69]. 
 

 

  Figure VII.5 demonstrates the trend in thermal hysteresis as a function of applied 

compressive stress in the course of isobaric thermal cycling tests. The temperature 

hysteresis was evaluated at the mid point of transformation strain value on each heating 



161 

 

cooling curve. As clearly seen in Figure VII.5, temperature hysteresis increases 

following a linear trend from 10 MPa to 100 MPa, then saturates between 100 MPa and 

150 MPa. Finally, with the further increasing stress level, it starts declining.  

As explained in detail in Chapter VI, large hysteresis or high-energy dissipation 

in SMAs arises from structural defect formation, such as dislocations, during 

transformation and frictional energy spent on the movement of phase fronts and on 

multiple phase front interactions. The individual contributions of these factors on the 

hysteresis depend on the lattice compatibility between transforming phases, their elastic 

moduli and strength, and the lattice friction, which is dictated by the crystal structure and 

stoichiometry. If transforming phases are relatively soft, lattice incompatibility would be 

mainly accommodated with irreversible local defect generation which increase thermal 

hysteresis [142]. If they are strong, it could be accommodated elastically or with internal 

twin formation in martensite. Since, in the present cases, there is some irrecoverable 

strain during thermal cycling, we conclude that the transforming phases have relatively 

lower strength with some irrecoverable defect generation. In addition, multiple phase 

front interactions, especially around grain boundaries, can be expected to be more 

prominent in the present polycrystalline materials and increase frictional energy 

dissipation. Furthermore, different levels of volume fractions in neighboring grains may 

delay the relaxation of stored elastic energy of transformation due to the need to 

accommodate the large transformation shape change allover the polycrystalline 

specimen when compared to single crystalline materials. This should lead to additional 

dissipation, contributing to the overall hysteresis.  

Thus, in Figure VII5, thermal hysteresis increases from around 20 oC to 40 oC 

with increasing stress from 10 MPa to 125 MPa. Upon further stress increase, the 

number of variant interactions is reduced, as is the dissipation and hysteresis, since most 

of the sample transforms to single martensitic variant structures within each respective 

grain. 
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Figure VII.5 Change in temperature hysteresis as a function of compressive bias stress 
in Ni40Co10Mn33Al17 polycrystalline bulk specimen. The values for each point were 
derived from the thermal cycling experiments. 
 

 

In addition, the local internal stresses within each grain cannot sufficiently 

oppose the high external stresses in biasing the single variant. Therefore, for stresses 125 

MPa and higher, the sample transforms to a single variant and the maximum �tr is 

reached. The decrease in hysteresis with stresses above 125 MPa, even though �tr 

saturates (see Figure VII.3a), can be attributed to the uneven change in lattice parameters 

of the phases with increasing stress and temperature. Lattice parameters are a function of 

composition, temperature and stress, and can vary differently with temperature and stress 

for martensite and parent phases [143]. The compatibility between transforming phases 

is usually dictated by lattice parameters and crystal structures of these phases [144]. 

Increasing stress alters the lattice parameters of the phases disproportionately thus 

leading to a change in compatibility and a reduction in thermal hysteresis with increasing 

stress, until plasticity or some other dissipative mechanisms become more pronounced.  

In summary, the stress vs. strain curves in Figure VII.4 indicate that the 

NiMnCoAl polycrystalline alloys have some ductility, much better than those in the 
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polycrystalline NiMnCoIn and NiMnCoSn [62, 69] alloys, and exhibit not only shape 

memory effect, but also perfect pseudoelasticity. The NiMnCoAl alloy, in which the 

magnetic field-induced reverse transformation has been confirmed [129], is expected to 

display metamagnetic shape memory effect, as well. The NiMnCoAl polycrystalline 

alloys sound potent in providing a relatively inexpensive and more ductile alternative to 

single crystalline NiMnCoIn metamagnetic shape memory alloys. 

 

VII.2 Characterization Results for Ni43Mn39Co7Sn11 Polycrystalline Compacted-

Powder MSMA 

The Ni43Mn39Co7Sn11 (at%) polycrystalline compacted-powder specimen was 

prepared through a process which consisted of multiple steps. The first step was melting 

of the ingot by high frequency induction. Next, the powders with particle diameters of 

10 to 250 µm were obtained using conventional nitrogen gas atomization under argon 

atmosphere (1.5 to 5 MPa pressure). For the present study, a powder with particle sizes 

between 25 to 63 µm was compacted into pellets by pressure application. The compacted 

powder was sealed in quartz tubes under argon atmosphere and annealed at 1173 K for 6 

days and then quenched in ice water. Several compression specimens with dimensions 

close to 3.0×2.5×5.5 mm3 were cut out of the sintered pellets by wire-electrical 

discharge machining [70]. 

Figure VII.6 depicts the strain vs. temperature response during thermal cycling 

under various compressive stresses across the phase transformation temperature interval 

for the Ni43Mn39Co7Sn11 polycrystalline compacted-powder specimen. The application 

of stress was executed at 155 oC in the parent phase for all tests and the temperature was 

cycled between -40 oC and 140 oC under this designated constant stress level. The level 

of applied compressive stress was started from 10 MPa and incrementally (by 25 MPa 

steps) raised for each thermal cycle up to 175 MPa. Change in transformation strain with 

applied compressive stress and some accompanying irrecoverable strain are clearly seen 

in Figure VII.6 and the related tendencies are portrayed separately in detail (see Figure 

VII.8).  
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(b) 

Figure VII.6 Strain vs. temperature response of the Ni43Mn39Co7Sn11 polycrystalline 
compacted-powder specimen under various constant compressive stresses across the 
phase transformation temperature interval. 
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The transformation temperatures of Ni43Mn39Co7Sn11 polycrystalline compacted-

powder specimen for forward and reverse transformations are derived from the 

heating/cooing curves in Figure VII.6 and compiled as functions of applied compressive 

stress to construct a stress vs. transformation temperatures phase diagram as shown in 

Figure VII.7.  
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Figure VII.7 Compressive stress vs. transformation temperatures phase diagram of 
Ni43Mn39Co7Sn11 polycrystalline compacted-powder specimen. The values for each 
point were extracted from the experiments in Figure VII.6. 
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In Figure VII.7, the slopes of the fitted lines for MS, MF, AS and AF temperatures 

are 4.14, 10.71, 14.97 and 4.11 MPa/oC, respectively.  

For the Ni43Mn39Co7Sn11 polycrystalline compacted-powder specimen, Tc ∂∂σ  

value is acquired as 4.14 MPa/oC (slope of the MS fit line in the figure above). HT ∂∂ (= 

3.8 oC/Tesla) can be estimated using the previously published data from the thermal 

cycling experiments in SQUID magnetometer under the magnetic fields of 0.05 and 4 

Tesla [70]. Plugging these values into Eqn. VII.2 allows us to estimate the magnetostress 

Hc ∂∂σ  as 15.5 MPa/Tesla for the Ni43Mn39Co7Sn11 polycrystalline compacted-powder 

specimen, which is interestingly close to that of the Ni40Mn33Co10Al17 polycrystalline 

bulk specimen (14.8 MPa/Tesla, [69]) and NiMnCoIn single crystalline bulk specimen 

(20 MPa/Tesla, [126]). 

Figure VII.8 displays the transformation strain, �tr, and the irrecoverable 

(residual) strain, �irr, as a function of compressive bias stress applied in the course of 

isobaric thermal cycling tests. εtr increases exponentially with increasing stress and 

saturates at around 3 % under 175 MPa and εr shows a linear increase from 10 MPa to 

175 MPa with a maximum value of 0.2%.  
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Figure VII.8 Transformation strain �tr and the irrecoverable (residual) strain �irr as a 
function of stress level for the Ni43Mn39Co7Sn11 polycrystalline compacted-powder 
specimen. The values for each point were extracted from the heating/cooling 
experiments in Figure VII.6. 
 

 

The stress vs. strain plots of pseudoelastic behavior for the Ni43Mn39Co7Sn11 

polycrystalline compacted-powder specimen, where a compressive strain of about 3% 

was applied at 70 oC is shown in Figure VII.9. Almost perfect pseudoelastic loops with 

full recovery of the applied strain are confirmed. There is no clear plateau region in any 

of the curves. Right after the critical stress σc for the stress-induced martensitic 

transformation is reached, a continuous hardening is evident from the almost linearly 

increasing stress level as deformation proceeds. Also, σc decreases with the increasing 

number of cycles indicating a softening phenomenon in the compacted and sintered 

structure of the powder specimens. 
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Figure VII.9 Compressive stress vs. strain response of the Ni43Mn39Co7Sn11 
polycrystalline compacted-powder specimen at 70 oC showing almost perfect 
pseudoelastic behavior. As the number of tests increase, softening is pronounced more, 
evident by the decreasing values of σC. 
 

 

Figure VII.10 demonstrates the trend in thermal hysteresis as a function of 

applied compressive stress in the course of isobaric thermal cycling tests. The 

temperature hysteresis was evaluated at the mid point of transformation strain value on 

each heating cooling curve. As clearly seen in Figure VII.10, temperature hysteresis 

increases following an almost linear trend from 10 MPa to 150 MPa, then starts 

declining with the further increasing stress level.  
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Figure VII.10 Change in temperature hysteresis as a function of compressive bias stress 
in Ni43Mn39Co7Sn11 polycrystalline compacted-powder specimen. The values for each 
point were derived from the heating/cooling experiments in Figure VII.6. 



170 

 

CHAPTER VIII 

EFFECT OF EXTERNAL BIAS STRESS ON MAGNETIC FIELD-

INDUCED PHASE TRANSFORMATION & DIRECT 

MEASUREMENT OF REVERSIBLE MAGNETIC-FIELD-INDUCED 

STRAIN IN NiMnCoIn METAMAGNETIC SMAs 
 

 

This chapter reports the direct measurement results of reversible magnetic-field-

induced strain (MFIS) on a single crystalline Ni45Mn36.5Co5In13.5 metamagnetic shape 

memory alloy which were successfully attained for the first time in literature by means 

of our custom designed microscopic magneto-thermo-mechanical testing system. 

Magnetization response and MFIS levels are reported as functions of temperature, 

applied magnetic field and external bias stress. Also, at various temperatures starting 

with 150 K, kinetic arrest phenomenon of austenite phase was confirmed in the course of 

forward transformation under magnetic field.  

 

 

VIII.1 Effect of External Stress on Magnetic Field-Induced Phase Transformation 

Behavior in NiMnCoIn 

In conventional SMAs, in order to observe an external shape change, martensitic 

structure formation during phase transformation must be biased either by an applied 

external stress or internal residual stresses. Zero stress thermal cycling through 

transformation temperatures will not result in large external shape changes typical of 

SMAs although the material can completely transform to another phase. Temperature 

cannot bias specific martensite variants, hence, either prior thermo-mechanical training 

should be performed or a constant external stress should be applied during thermal 

cycles to bias a martensite variant. This very same principle ought to be valid for field-

induced phase transformation in metamagnetic SMAs during magnetic cycling. Since the 

MAE of the weakly magnetic martensite is negligible in the present NiMnCoIn alloy, 
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applied magnetic field should neither favor any specific martensite variant nor yield an 

external strain. As a result, to be able to obtain reversible field-induced phase 

transformation accompanied with MFIS, either of the following requirements should be 

fulfilled: a) Development of internal local stresses through thermo-mechanical and/or 

magneto-mechanical training, b) Application of a simultaneous stress which is high 

enough to bias a variant [68]. Furthermore, it is a must to have an applied magnetic field 

at a critical level: a) To be able to induce the phase transformation, b) To have 

martensite completely transform into austenite, c) To obtain MFIS levels as high as the 

(thermally driven) transformation strain levels. Here, it should be kept in mind that the 

critical level of magnetic field is function of temperature [126].  

From this point of view, a magnetic field in the case of the present metamagnetic 

NiMnCoIn alloy is analogous to temperature, as both do not have a significant effect on 

the microstructure formation of martensite, but martensite transforms to austenite when 

they are increased, and austenite transforms back to martensite when they are reduced. 

Up to date, no systematic study has been conducted to understand the effects of 

simultaneously applied magnetic field and stress on FIPT in any metamagnetic SMA 

system as well as in NiMnCoIn. In an actuator application utilizing this alloy, magnetic 

field has to do work against external load. While the magnetic field makes the 

martensitic transformation temperatures diminish, on the contrary, the external stress 

increases them. Therefore, as this alloy is a prospective actuator material with a large 

actuation work output, it is of utmost importance to characterize this metamagnetic 

shape memory alloy under simultaneously applied magnetic field and external stress 

through evaluation of its transformation temperatures, transformation hysteresis and 

magnetization response and understand the effect of bias stress levels on its field-

induced phase transformation behavior during field cycling. 
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VIII.1.1 Effect of Magnetic Field on Martensitic Transformation Temperatures  

Figure VIII.1a shows the change in magnetization as a function of temperature 

under different magnetic field levels obtained from the magnetization vs. temperature 

(M-T) curves measured using a SQUID magnetometer. Under 0.05 T, the austenite to 

martensite transformation started at 260 K (MS: martensite start temperature) and 

finished at 238 K (MF: martensite finish temperature) upon cooling.  

The reverse transformation started at 254 K (AS: austenite start) and finished at 

around 277 K (AF: austenite finish) upon heating. The transformation is reversible with a 

small thermal hysteresis (~20 K, see Figure VIII.2a). As the applied magnetic field 

increased, the transformation temperatures were reduced; e.g., MS decreased from 260 to 

168 K as the field increased from 0.05 to 7 T. This is due to the fact that the applied 

magnetic field favors the phase with the higher saturation magnetization (austenite in 

this case). Additional undercooling is needed to supply the required chemical energy to 

overcome the magnetic energy opposing the forward phase transformation. Figure 

VIII.1b shows the change in AS, AF, and MS temperatures as a function of magnetic field, 

extracted from the experiments shown in Figure VIII.1a. The level of change in AS as a 

function of bias field is -10.6 K/Tesla. Other transformation temperatures, MS and AF, 

show a similar trend as they decrease with magnetic field at the rates of 10.2 K/Tesla and 

-9.8 K/Tesla, respectively. 

Suppression of the transformation temperatures and the separation of the M-T 

curves under different field levels is an indication of the possibility of reversible FIPT in 

the metamagnetic SMAs [63]. The reason for the shift in transformation temperatures is 

the requirement of additional undercooling which in turn supplies the required chemical 

energy to overcome the magnetic energy opposing the forward phase transformation 

since the applied magnetic field favors austenite.  
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Figure VIII.1. (a) Magnetization vs. temperature response of Ni45Mn36.5Co5In13.5 single 
crystals under different constant applied magnetic field levels and (b) the transformation 
temperatures as a function of these field levels extracted from (a). 
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The variation in saturation magnetization of martensite for each curve under 

different levels of applied field is also noteworthy in Figure VIII.1a. The reason for this 

variation is the fact that upon cooling under relatively high magnetic fields, the forward 

transformation is not completed even though the temperature reaches much below the 

“apparent” MF. We have confirmed the existence of austenite at very low temperatures 

using neutron diffraction measurements when cooled under high magnetic fields (not 

shown here). This phenomenon is known as kinetic arrest of martensitic transformation, 

reason of which is not clear at this point [158].  

It was stated before that magnetic field favored ferromagnetic austenite and 

opposed forward transformation (A�M) by making it harder for the weakly magnetic 

martensite to nucleate and its phase front to propagate. During reverse transformation 

(M�A) magnetic field aligns and eventually merges the magnetic domains in the 

ferromagnetic austenite so that the austenite phase reaches saturation magnetization, MS. 

The martensitic phase in NiMnCoIn has been termed as antiferromagnetic/paramagnetic 

[61] or weakly magnetic (showing an antiferromagnetic to ferromagnetic transformation) 

[145]. Therefore, it sounds logical that magnetic field may not impose as much a 

pronounced effect on martensite as it does on austenite. At that point, temperature 

change (also the external stress as it will be discussed later) remains to be the only 

driving force which favors martensite for forward transformation to take place. On the 

other hand, it was also argued that the martensitic variants in Ni-Mn-X (X= In, Sn, Sb), 

when acquired upon cooling beyond MS under applied field, can nucleate and grow 

along a preferred orientation within the austenitic matrix in tandem with the direction of 

the applied field and the direction of magnetization easy axis which belongs to that 

specific martensitic variant. It is reported that easy magnetization axis in martensite is 

parallel to the long axis in NiMnSb and NiMnIn systems while in NiMnSn it is either 

along a short axis or in the plane bounded by the short axes [159].  

Directly derived from the SQUID M-T curves (Figure VIII.1), Figure VIII.2a 

depicts the change in the temperature hysteresis (�T) as a function of applied magnetic 
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field. Temperature hysteresis was taken as the difference between AF and MS 

temperatures.  

Along with the certain fraction of kinetically arrested austenite, the 

transformation temperature hysteresis increases with increasing applied field as shown in 

Figure VIII.2a. Obviously, the hysteresis does not alter much up to 5 Tesla along with 

the increasing applied field. However, at 7 Tesla, it exhibits an abrupt change. Hysteresis 

is a measure of lattice incompatibility between austenite and martensite phases and in 

NiMnCoIn one of the reasons it could be associated with is the internal friction sourcing 

from the movement of phase fronts and their interactions to some extent. We mentioned 

earlier that the magnetic field, energy wise, favors the ferromagnetic austenite and 

makes it harder for weakly magnetic martensite to nucleate and propagate, thus 

deteriorate the compatibility in between.  

Therefore, the sudden increase in �T can be taken as a sign of the magnetic field 

reaching a critical point where incompatibility between magnetic field favored austenite 

phase and temperature favored martensite phase gets much more pronounced due to this 

briefly mentioned mechanism. However at this time, it is not certain whether this 

increase in hysteresis is due to kinetic arrest of austenite or low temperature levels 

increasing the lattice friction, or even due to high magnetic field levels changing the 

compatibility between austenite and martensite thru magnetostriction and thus, 

transformation hysteresis. 

Figure VIII.2b shows the relative change in magnetization as a function of 

decreasing temperature between M-T loops under 7, 5 and 3 Tesla vs. the loop under 1 

Tesla. Change in magnetization is directly related to the volume fraction of remnant 

austenite in the course of forward (A�M) transformation. The increase in �T could be 

explained by the interaction between multiple martensite and austenite fronts due to the 

austenite stabilization and the associated dissipation there in. Austenite stabilization 

might be coming from the pinning of phase boundaries by the magnetic domain walls 

which in turn leading to additional dissipation, i.e., increase in �T. This phenomenon is 

somewhat similar to martensite stabilization in conventional SMAs such as CoNiGa 
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[160] where once detwinning occurs in martensite, it requires further energy to go back 

to austenite due to the need for martensite to twin prior to reverse transformation 

(M�A). 
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Figure VIII.2. Trends of change in (a) Temperature Hysteresis (AF-MS) and 
Magnetization Hysteresis as a function of applied field (b) Magnetization 
Hysteresis as a function of temperature. Graph is deduced from SQUID 
measurements in Figure VIII.1. 
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VIII.1.2 Effect of External Bias Stress on Magnetization Response as Functions of 

Applied Field & Temperature 

Following the SQUID experiments, the Ni45Mn36.5Co5In13.5 metamagnetic shape 

memory specimen was subjected to a series of experiments by using the microscopic 

MTM testing system in order to observe its magnetization response under different stress 

levels (0, 75 and 125 MPa) at different temperatures so that we could construct stress vs. 

magnetic field and magnetic field vs. temperature phase diagrams. The experiments were 

conducted at fixed temperatures of 4.2, 50, 100, 150, 180, 200, 230 and 245 K. During 

each test, the magnetization response of the specimen was recorded while the applied 

magnetic field was increased from a minimum of 0.5 Tesla to a maximum of 18 Tesla 

(or lower depending on the completion of the reverse (M�A) transformation). Upon 

reaching the maximum, the field then was unloaded to 0.05 Tesla. In order to guarantee 

the full recovery of the M-H curves which indicates a complete (A�M) transformation, 

prior to reapplication of magnetic field for the next test, the specimen was first cooled 

down to 100 K and then heated up to the designated test temperature under zero field, to 

restore the fully martensitic structure.  

Figure VIII.3 represents the magnetization response of NiMnCoIn single crystal 

with increasing field at different temperatures under 0 MPa (Figure VIII.3a) and 75 MPa 

(Figure VIII.3b). For the sake of clarity, not all but only a few of curves representing the 

aforementioned test temperatures are given here. Results for 125 MPa were not shown 

since the trends they followed in terms of stress effect are similar to that of 75 MPa 

curves as will be presented in figure on page 185. All curves in Figure VIII.3 reveal 

metamagnetic transformation behavior in association with a reversible FIPT between 

austenite and martensite phases. Upon increasing magnetic field, reverse transformation 

(M�A) takes place. It can be seen that the saturation magnetization of austenite 

decreases with increasing temperature, as expected. The trend is in good agreement with 

that of SQUID results shown in Figure VIII.1. As the test temperature gets closer to the 

Curie temperature, the capability of austenite to get magnetized (i.e., the level of 

ferromagnetism) diminishes, thus decreases MS.  
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Figure VIII.3. Change in magnetization with applied magnetic field at different 
temperatures measured by 18 Tesla magnetometer. (a) under 0 MPa external stress, (b) 
under 75 MPa external stress. 
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It is very clearly seen in Figure VIII.3b that external stress increases the critical 

field value to start (M�P) transformation. This trend will be presented by means of 

Clausius-Clapeyron phase diagrams and discussed later in this section.  

In the course of reverse transformation, over the portion of M-H curves prior to 

the critical magnetic field value SAH , the saturation magnetization level of martensite 

also reduces with decreasing test temperature following a monotonic trend, with the 

exception of the test at 4.2 K. This monotonic reduction may be explained in the light of 

the abovementioned behavior of magnetization easy axis of martensite under magnetic 

field: Due to the reduced symmetry of martensite compared to that of austenite, the 

number of easy axes can diminish, which in turn can be accompanied by an increase in 

magnetic anisotropy. The increase in anisotropy is reflected in the low field region of M-

H curve where initial slope of the magnetization decreases with decreasing temperature 

[161, 162].  

Under 75 MPa, the change in austenite saturation magnetization levels with 

increasing temperature is notably smaller in comparison with that of without stress. In 

Figure VIII.3b (not all temperatures are given for the sake of clarity), magnetization of 

austenite remains constant around 118 emu/g for 180 and 200 K loops. On the other 

hand, for loops at 230 and 245 K, the same quantity alleviates to 114 emu/g. This 

observation can be attributed to the effect of stress which energy vise promotes 

martensitic nucleation and propagation. Saturation magnetization levels of austenite 

ranges between 125-114 emu/g at temperatures 180-245 K, respectively for austenite 

free of applied stress (Figure VIII.3a). Combined with the effect of test temperatures 

getting closer to the Curie temperature which diminish the ferromagnetism of austenite, 

introduction of stress obviously stabilizes the presence of martensite in the portion of the 

M-H curves after the critical point of magnetic field where reverse transformation 

(M�A) is supposed to be 100% completed. Under stress, decreasing test temperature 

shifts up the critical magnetic-field-levels of reverse and forward 

transformations, SAH , FAH , SMH and FMH , as well, just like it did on the stress free 
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experiments. A comparative picture of this trend will be given by magnetic field vs. 

temperature phase diagrams in Figure VIII.4. 

The M-H curves at 4.2 K, with and without external stress both indicate different 

characteristics in comparison with the others at higher temperatures. In Figure VIII.3a, 

M-H curve at 4.2 K reaches a higher magnetization of 140 emu/g accompanied with a 

burst type, intermittent progression both for reverse and back transformations. It is well 

known that thermal energy causes misalignment in the directions of magnetic moments 

within the magnetic domains, i.e., spontaneous magnetization within a magnetic domain 

decreases as temperature increases above 0 K. Since 4.2 K is very close to absolute zero, 

the higher level of magnetization of ferromagnetic austenite can be related to the 

lowered thermal energy [34]. Moreover, the same burst type phenomenon was reported 

in other publications and was explained by the hindrance on the mobility of habit planes 

(martensite/austenite interphase) due to low temperatures since martensitic 

transformation occurs on a basis of a thermally activated process [145, 163]. In Figure 

VIII.3b, for 75 MPa, the M-H curve at 4.2 K obviously looks far from attaining 

saturation magnetization of the austenite phase. It requires a higher value of magnetic 

field well beyond 18 Tesla which is the magnetic field application limit of the test setup. 

This is a clear indication of the substantial suppression effect on austenite nucleation and 

propagation by the external stress. 
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Figure VIII.4 shows the magnetic field vs. temperature phase diagrams 

(Clausius-Clapeyron relationship) which represent the effect of external stress on the 

critical magnetic-field-levels of reverse and forward transformations. Decreasing test 

temperature shifts all critical magnetic-field-levels for forward and reverse 

transformations up, which are SAH , FAH , SMH and FMH for austenite start, austenite 

finish, martensite start and martensite finish, respectively. This is expected due to the 

same phase-favoring-mechanism acting on austenite and martensite, summarized to 

explain the M-T curves from SQUID results. Since the difference in the chemical free 

energies of martensite and austenite increases with decreasing temperature favoring 

martensite, reverse transformation (M�A) requires a greater field value to start, thus 

occurs the aforementioned shift.  

Initial regions of the 0, 75 and 125 MPa curves above 150 K; show an almost 

linear trend in Figure VIII.4. For the 0 MPa curves, these portions include data points 

from Figure VIII.1 as well, to complement the data derived from 18 Tesla M-H curves 

under zero stress. The good match between the data from SQUID M-T and 18 Tesla 

magnetometer M-H curves indicates the repeatability of our test results. Stress, 

obviously, translates the critical magnetic-field-points of transformation to higher values, 

although their rates of change with temperature (slopes of initial regions as indicated on 

each curve in Figure VIII.4) remain close to each other for the cases with and without 

stress. 
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Figure VIII.4. Magnetic field vs. temperature phase diagrams showing the effect of 
stress on the critical magnetic-field-levels of reverse & forward transformations. 
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Figure VIII.5 reflects the effect of external stress up to 125 MPa on the 

magnetization response of NiMnCoIn single crystalline bulk specimen to applied 

magnetic field at various temperature levels. Regardless of the test temperature, applied 

stress opposes the nucleation and progression of the austenite phase, yielding an 

incomplete (M�A) transformation as indicated by the diminishing saturation 

magnetizations as stress level increases. Also with stress, the distance between 

manganese atoms (Mn-Mn distance) changes and this can be another reason for smaller 

saturation magnetization levels up to 18 Tesla magnetic field. 

Magnetic field hysteresis observed in this metamagnetic shape memory alloy is 

an indication of the field-induced martensitic transformation taking place between the 

(ferromagnetic) austenite and (weakly magnetic) martensite phases. As can be clearly 

seen in Figure VIII.3, the magnetic field hysteresis in the course of FIPT increases with 

decreasing temperature. At lower temperatures, especially lower than 150 K, this 

behavior was thought be linked to kinetic arrest of austenite [134, 145]. Application of 

external stress amplifies this trend. At low temperatures, the thermal component of the 

dissipation process is expected to be less effective; hence its athermal component must 

be dictating the increasing magnetic field hysteresis, in our case. There is a need to study 

magnetic domain and structure interaction and kinetics of FIPT as a function of 

temperature to shed light on the contribution of athermal component of energy 

dissipation.  
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Figure VIII.5. Change in magnetization response simultaneously applied magnetic 
field and external stress at 245, 230, 100, 50 and 4.2 K. 
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Figure VIII.5 continued.  

 

 

Figure VIII.6 is derived from Figure VIII.3 and portrays the trend in the variation 

of magnetic field hysteresis ( SF MA HH − ). Magnetic field hysteresis increases with 

decreasing temperature, however under the influence of simultaneously applied external 

stress, this decrease becomes more pronounced. Stress introduces imperfections such as 

dislocations which are known to pin down and deteriorate the mobility of the magnetic 

domain walls. 
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Figure VIII.6. Change in magnetic field hysteresis by ( SF MA HH − ) & midpoint 
methods for 0 MPa and 75 MPa taken from M-H curves. 
 

 

Due to the magneto-mechanical coupling, interactions of domain walls with the 

above mentioned defects, impurities like precipitations and secondary phases, and also 

structural boundaries (e.g. of grains, twins, secondary phases) all manipulate the internal 

friction, hence its measure in magnetic terms; magneto-hysteresis. In Figure VIII.3, 

although not pronounced at 4.2 K, the increasing slopes along the reverse transformation 

portions of M-H curves for 230 and 245 K as (M�A) evolves is an indication of the 

change in elastic moduli and the internal friction dynamics in the martensite/austenite 

mix. 

 

VIII.2 Direct Measurement of Reversible Magnetic Field-Induced Strain in 

NiMnCoIn Metamagnetic SMAs 

In magnetic shape memory alloy literature, besides indirect evidences through 

magnetization vs. magnetic field [134], magnetization vs. temperature [134], electrical 
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resistivity vs. magnetic field [164, 165] and DSC measurements [134, 136], there exists 

no report in literature on reversible MFIS as a direct evidence of fully recoverable phase 

transformation in metamagnetic SMAs, up to date. By means of our microscopic MTM 

testing system integrated with a miniature capacitive displacement sensor, we succeeded 

to measure fully reversible magnetic field-induced strains in a metamagnetic shape 

memory alloy.  

Figures VIII.7a and VIII.7b demonstrate direct measured MFIS response of the 

Ni45Mn36.5Co5In13.5 single crystalline specimen as a function of magnetic field at various 

test temperatures and under two different compressive bias stress levels, i.e., 75 and 125 

MPa, respectively. These results provide the direct evidence of reversible MFIS utilizing 

FIPT mechanism, for the first time in literature. It should be noted that under zero stress 

level, there was no notable MFIS levels observed supporting our initial argument on the 

inability of magnetic field biasing a particular martensite variant. In Figure VIII.7, as the 

test temperature decreases, all the critical magnetic field values required to start and 

finish reverse ( )FS AA HH ,  and forward ( )FS MM HH ,  transformations are shifted towards 

higher field values since martensite is more stable at low temperatures and more 

magnetic energy is needed to reach the energy level of austenite. The sense of this shift 

is similar to the increase in transformation temperatures in conventional SMAs under 

constant stress, i.e. the higher the stress levels are applied, the more the transformation 

temperatures and critical magnetic fields shifts to higher levels. 

The maximum MFIS achieved in this study was 3.13% at 250 K under 125 MPa 

with an irrecoverable strain of 0.26%. The reason for the irrecoverable strain is the 

incomplete forward transformation because 250 K is higher than the MF temperature 

under zero field. Fully recoverable MFIS values were attained as 2.92% and 2.39% at 

200K under 125 and 75 MPa, respectively. Figure on page 194 was constructed using 

the results in Figure VIII.7 and it depicts the trend in transformation strain and magnetic 

transformation hysteresis as a function of bias stress. 
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Figure VIII.7. Magnetic field induced strain vs. applied magnetic field response of 
Ni45Mn36.5Co5In13.5 single crystals oriented along the [100] direction under (a) 75 MPa 
and (b) 125 MPa compressive bias stress at different test temperatures in the course of 
metamagnetic phase transition. 
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The strain levels observed here is smaller than what we expect from this material 

theoretically, i.e. approximately 6.5% (see Chapter VI), if the austenite has L21 and the 

martensite has six layered monoclinic structure. However, in the present crystal, the 

austenite could be either B2 or L21 and the martensite can be a mixture of L10 and six-

layered monoclinic structure according to the magnetization results in Fig. 3.a and 

following the recent study by Ito et al. [166] on the different structure of the 

transforming phases depending on the order heat treatments. Therefore, one of the 

reasons for the lower transformation strains than expected from our previous work might 

be due to the different heat treatment in the present crystal. To validate this argument, 

the structures of the transforming phases need be determined in the future.  

In our previous work on the isobaric thermal cycling experiments of the same 

material which was narrated in Chapter VI, we reported the transformation strain to 

increase with bias stress and saturate above a certain stress level before it starts 

decreasing under high stress levels due to simultaneous plasticity. Such changes in 

transformation strain are a consequence of the evolution of martensite variants as a 

function of applied stress. During thermal or magnetic cycling under low stresses, the 

measured lower transformation strain levels imply that the applied stress may not be 

sufficient to bias a single variant martensitic structure; therefore a self-accommodating 

martensite structure may partially form. Difficulty of biasing a single variant martensite 

at low stress levels depends on the presence of second-phase particles and defect 

generation during phase transformation which is a direct consequence of lattice 

incompatibility between austenite and martensite phases. From the significant increase in 

the transformation strain (Figure VIII.8) when the stress increased from 75 to 125 MPa, 

it is reasonable to assume that maximum transformation strain and single variant 

martensite morphology will be reached above much higher stress levels. These stress 

levels are significantly larger than 6 MPa required for reaching maximum transformation 

strain in Ni2MnGa [95]. Such a large difference in the saturation stress can originate 

from the second phase particles in the NiMnCoIn samples [68] and the higher lattice 

friction in NiMnCoIn alloys due to solid solution hardening and o�-stoichiometry which 
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in turn yields more defect generation during transformation. As a reminder, for the alloy 

used in this study, the composition of the matrix and the second phase were determined 

as Ni45.7Mn35.6Co4.8In13.8 and Ni42.0Mn40.3Co16.0In1.6, respectively using WDS [68]. 

The small variations in the MFIS levels under each bias stress at different test 

temperatures (Figure VIII.7) can be attributed to several different reasons: (1) a small 

change in the spring constant of the spring used in the micro MTM as a function of 

temperature, which in turn affects the level of stress, (2) the effect of temperature on the 

lattice parameters of austenite and martensite, thus on the transformation strain, (3) the 

effect of temperature dependent magnetostriction on lattice parameters of austenite and 

martensite, and (4) incomplete reverse transformation even under 18 T at low 

temperatures and under 125 MPa. 

As shown in Figure VIII.8, the magnetic transformation hysteresis remains 

almost constant around 4 - 4.5 Tesla in the 125 MPa experiments for a temperature range 

of 100K to 250K, whereas it slowly declines under 75 MPa from 4.5 Tesla to 2.5 Tesla 

for the same temperate range. In the entire temperature range investigated, magnetic 

transformation hysteresis increases with decreasing temperature under 75 MPa. Applied 

stress also increases the field hysteresis at a given temperature (not shown here). This 

trend is opposite of what we observed during isobaric thermal cycling experiments 

where the transformation thermal hysteresis diminishes with increasing bias stress as 

discussed in Chapter VI (see Figures VI.2 and VI.4). Since transformation hysteresis is a 

measure of compatibility between the transforming phases and energy dissipation during 

the transformation, this discrepancy in the hysteresis trends is attributed to temperature 

dependent lattice friction and change in compatibility. It is well-known that Peierls-

Nabarro stress is very high in bcc like structures, and at low temperatures this stress 

governs the lattice friction. Therefore, since magnetic field suppresses transformation 

temperatures, the phase transformation occurs at low temperatures, and the phase front 

motion has to move in the presence of high lattice friction causing large dissipation. 
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Figure VIII.8. Magnetic field-induced strain levels and magnetic transformation 
hysteresis in Ni45Mn36.5Co5In13.5 single crystals oriented along the [100] direction as a 
function of temperature under 75 MPa and 125 MPa compressive bias stresses. 
 

 

From thermal cycling and pseudoelastic (PE) experiments on similar NiMnCoIn 

crystals, the rate of change in the critical stress for the onset of martensitic 

transformation (i.e.  sMσ ) was determined to be KMPa
dT
d

/1.2=σ
under zero magnetic 

field, in Chapter VI. From the magnetization response of the same material, the rate of 

change in MS as a function of applied magnetic field is determined to be 

TeslaK
dH
dT

/0.14−=  (Figure VIII.1b). Multiplying these two values gives us the shift in 

critical magnetic field required to start forward transformation as a function of applied 

bias stress as MPaTesla
d
dH

/034.0−=
σ

. Figure VIII.9 shows the change in critical 

magnetic field levels as a function of temperature under the influence of bias stress. In 
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order to verify the increase in the critical field level for the onset of forward 

transformation as a function of stress, we can compare the predicted value, -0.034 

Tesla/MPa, with the experimental results presented in Figure VIII.9. According to this 

prediction, there should be 2.55 Tesla difference between the 0 and 75 MPa curves. 

Indeed, the measured differences are 2.6 Tesla at 200 K and 2.8 Tesla at 175 K.  
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Figure VIII.9. Magnetic field vs. temperature phase diagram of Ni45Mn36.5Co5In13.5 
single crystals oriented along the [100] direction under three stress levels, 0, 75, and 125 
MPa. 
 

 

Since these two values are close to the prediction, we can conclude that the 

results from the magnetization and conventional isobaric thermal cycling or 

pseudoelastic experiments can be used to roughly predict the change in required 

magnetic field values for the onset of transformation under different bias stress levels. If 
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we use this simple approach, then it is possible to estimate the approximate value for the 

real stress level on the sample under 125 MPa at room temperature, which should be 

around 115 MPa at 200 K due mainly to the change in the spring constant with 

temperature and due to the transformation strain relaxing the spring force. 

Figures VIII.10a and VIII.10b show the magnetic field vs. temperature phase 

diagram under 75 and 125 MPa bias stress levels, respectively. It is clearly observed that 

for both stress levels, the change in critical field values with temperature follow a linear 

trend down to 150 K. However, at temperatures lower than 150 K, this linear trend 

ceases and the field levels changes only slightly with reduction in temperature. The 

equilibrium magnetic field, HO, where Gibbs free energies of austenite and martensite 

phases are equal, can be defined as the arithmetic mean of SMH  and FAH . HO gradually 

increases with decreasing temperature and saturates at temperatures lower than 150 K, 

while magnetic hysteresis continuously increases below 150 K. 

If a bias stress is applied, both HO and �H curves shift upwards to higher 

magnetic field values, indicating that stress makes it harder for reverse transformation to 

take place. Umetsu et al. [163] explained the aforementioned trends in HO and �H 

curves by the diminishing transformation entropy during forward transformation which 

in turn yielding kinetic arrest of austenite making it thermodynamically more stable than 

martensite during cooling under magnetic field. The reason for the kinetic arrest is not 

clearly known at this point.  
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Figure VIII.10. Magnetic field vs. temperature phase diagram of 
Ni45Mn36.5Co5In13.5 single crystals oriented along the [100] direction under (a) 75 
and (b) 125 MPa. 
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CHAPTER IX 

SUMMARY & CONCLUSIONS 
 

 

In this Ph.D. study, Magnetic Shape Memory Alloys (MSMAs) are put under 

investigation. This newly discovered class of smart materials combines the shape-

change/deformation-recovery abilities of heat driven conventional shape memory alloys 

(SMA) and the magnetic field driven magnetostrictives through martensitic 

transformation. Besides being promising for actuation applications they can also be 

employed as sensors and/or power harvesters due to their capability to convert 

mechanical stimuli into magnetic response or vice versa. The coupled effects of stress, 

magnetic field and temperature on the magnetic field induced strain response and cyclic 

repeatability should be explored in detail to understand the underlying microstructural 

mechanisms for improved magneto-thermo-mechanical response.  

To shed light on the aforementioned issues, it was necessary to design and build 

novel testing systems which would allow simultaneous magnetic, thermal and 

mechanical characterization of single crystalline and polycrystalline MSMAs in bulk 

form while maintaining complete control on simultaneously applied magnetic field and 

stress/strain in a wide and stable temperature range. Thus, the development of two 

distinct magneto-thermo-mechanical (MTM) testing systems, one macroscopic and one 

microscopic, was realized.  

Extensive experimental work on MTM characterization of these materials 

enabled us to determine the effects of main parameters on reversible FIPT, such as 

magnetocrystalline anisotropy energy (MAE), Zeeman energy (ZE), stress hysteresis, 

thermal hysteresis, critical stress for the stress induced phase transformation and crystal 

orientation. The magnetic field and external stress were applied perpendicular to each 

other. Conventional shape memory alloy (SMA) characteristics of single crystalline 

Ni2MnGa and NiMnCoIn oriented along the [100] direction, and polycrystalline 

NiMnCoAl and NiMnCoSn MSMAs were investigated using the macroscopic MTM 
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testing system to reveal how these conventional properties were linked to magnetic-

field-induced actuation. The actuation stress of 5 MPa and work output of 157 kJm−3 are 

obtained by the field-induced martensitic variant reorientation in NiMnGa alloys. 

Both in Ni2MnGa MSMA and in NiMnCoIn metamagnetic SMA, FIPT was 

investigated implying an alternative mechanism to field-induced martensite variant 

reorientation, as the governing mechanism of field-induced shape change. One-way and 

reversible (0.5% cyclic MFIS under 22 MPa) stress-assisted field-induced phase 

transformations in Ni2MnGa single crystals were realized under low field magnitudes (< 

0.7 Tesla) and resulted in at least an order of magnitude higher actuation stress levels 

compared to those previously reported in the literature. Magnetic field-induced phase 

transformation (FIPT) mechanism provided higher work output levels (at lower 

operating temperatures) than variant reorientation mechanism did in NiMnGa alloys. 

Also, the possibility of harvesting waste mechanical work as electrical power by 

means of magnetic field induced martensite variant reorientation (rubber-like behavior) 

in NiMnGa MSMAs was explored.  

For the first time in literature, a fully recoverable magnetic field-induced strain 

(MFIS) of 3% under 125 MPa was attained on single crystalline metamagnetic SMA 

NiMnCoIn by means of the microscopic MTM testing system to understand the 

evolution of FIPT under simultaneously applied magnetic field and stress.  

Conventional SMA characteristics of polycrystalline bulk NiMnCoAl and 

sintered compacted-powder NiMnCoSn metamagnetic SMAs were investigated, with 

and without applied field, to discover their performance against that of their single 

crystalline counterparts, since polycrystalline alloys are relatively easier and inexpensive 

to synthesize.  

 

The following conclusions can be drawn from this study: 

1. The maximum MFIS level is a function of constant bias stress. In NiMnGa, 

increasing stress decreases the MFIS and no MFIS is observed above the 

blocking stress. The blocking stress in the present study was about 5 MPa two 
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times higher than the maximum MFIS reported in the literature. The maximum 

MFIS was 5.8% which is close to the theoretical maximum reorientation strain 

for the 10M tetragonal martensite.  

2. In NiMnGa, the cyclic MFIS evolution is different than that of the first field 

cycle. Significant irrecoverable MFIS is possible during first cycle as a function 

of the bias stress level. This difference maybe due to the competition between the 

stress and magnetic field favored martensite variants in the course of magnetic 

field-induced reorientation. The MFIS in the first cycle is considerably higher 

compared to those of the subsequent cycles under low bias stress.  

3. The stress induced martensite reorientation under constant magnetic field led to 

the observation of magnetoelasticity (rubber-like behavior). In other words this is 

recoverable magnetic field-induced martensite reorientation, similar to the stress 

induced martensite formation during pseudoelastic behavior conventional SMAs. 

When carried out under constant magnetic field, the critical stress for detwinning 

increased at the onset of reorientation, and the difference is named as 

magnetostress. 5.7 MPa magnetostress in the present study is the highest reported 

to date. 

4. For 10M martensite NiMnGa alloys, the combination of magnetostress (5.7 

MPa), blocking stress (5 MPa) and MFIS (5.8%) in this study is the highest 

reported to date. This was a consequence of two parameters: i) The large 

difference between the operating temperature (-95 °C) and the Curie temperature 

(means high MAE), ii) The small difference between the operating temperature 

and the martensite start temperature (means low detwinning stress). These 

together maximized the blocking stress and magnetostress. The 

magnetocrystalline anisotropy energy was calculated as 3.30 x 105 J/m3 at -95 °C 

and was reported elsewhere as 2.65 x 105 J/m3 at room temperature. 

5. A magnetic field applied perpendicular to the compressive stress increases the 

flow stress levels during the two-stage phase transformation. The magnetostress 

levels were on the order of 7 to 10 MPa. The pseudoelastic stress hysteresis loops 



198 

 

with and without magnetic field were separated in the temperature range of -60 

°C to -40 °C for the first stage transformation. The separation of the 

pseudoelastic loops with and without magnetic field was identified as the 

necessary mechanical condition for the reversible field-induced phase 

transformation in MSMAs.  

6. Actuation stress and work output levels achieved by employing stress-assisted 

field-induced phase transformation in this study are more than one order of 

magnitude higher than the results previously reported for NiMnGa MSMAs.  

7. The field-induced reversible phase transformation in NiMnCoIn alloys is 

determined by both measuring the change in magnetization and using high 

energy x-ray diffraction with in situ magnetic field capability. The required 

magnetic fields for reversible phase transformation were found to be high (>4 T) 

compared to field-induced variant reorientation and stress-assisted field-induced 

phase transformation in NiMnGa alloys (<1.5 T). 

8. The crystal structure of austenite and martensite phases of NiMnCoIn single 

crystals used in this study is determined to be L21 and 12M, respectively. 12M 

structure is determined for the first time in NiMnCoIn alloys. 

9. Direct measurement of magnetic field induced strains during metamagnetic phase 

transition was attained in a metamagnetic SMA, for the first time in literature, by 

means of novel microscopic MTM system integrated with a miniature capacitive 

displacement sensor. Up to 3% fully recoverable MFIS was confirmed at 125 

MPa. 

10. Magnetization vs. temperature behavior of Ni45Mn36.5Co5In13.5 single crystals 

oriented along the [100] direction were reported without bias stress where kinetic 

arrest of austenite was confirmed. Also, form magnetization vs. magnetic field 

behavior at various temperatures, it was found that increasing bias stress 

increased both magnetic field hysteresis and the critical magnetic field levels for 

forward and reverse phase transformations to start.  
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11. Shape memory effect and pseudoelastic response of polycrystalline 

Ni40Mn33Co10Al17 bulk and Ni43Mn39Co7Sn11 sintered compacted-powder alloys 

were investigated under compression. Transformation strains of 3.6% under 200 

MPa and 3.2% under 175 MPa were observed for NiMnCoAl and NiMnCoSn 

specimens, respectively, during isobaric thermal cycling. 2.5% strain fully 

recoverable pseudoelasticity was confirmed in both specimens. It was confirmed 

that NiMnCoAl and NiMnCoSn polycrystalline alloys could provide relatively 

inexpensive and more ductile alternatives to single crystalline NiMnCoIn 

metamagnetic shape memory alloys. 
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