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ABSTRACT

Nonlinear Estimation for Model Based Fault Diagnosis

of Nonlinear Chemical Systems. (December 2009)

Chunyan Qu, B.Eng., Zhejiang University;

M.Eng., National University of Singapore

Chair of Advisory Committee: Dr. Juergen Hahn

Nonlinear estimation techniques play an important role for process monitoring

since some states and most of the parameters cannot be directly measured. There

are many techniques available for nonlinear state and parameter estimation, i.e.,

extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filtering (PF)

and moving horizon estimation (MHE) etc. However, many issues related to the

available techniques are to be solved. This dissertation discusses three important

techniques in nonlinear estimation, which are the application of unscented Kalman

filters, improvement of moving horizon estimation via computation of the arrival cost

and different implementations of extended Kalman filters.

First the use of several estimation algorithms such as linearized Kalman filter

(LKF), extended Kalman filter (EKF), unscented Kalman filter (UKF) and moving

horizon estimation (MHE) are investigated for nonlinear systems with special empha-

sis on UKF as it is a relatively new technique. Detailed case studies show that UKF

has advantages over EKF for highly nonlinear unconstrained estimation problems

while MHE performs better for systems with constraints.

Moving horizon estimation alleviates the computational burden of solving a full

information estimation problem by considering a finite horizon of the measurement

data; however, it is non-trivial to determine the arrival cost. A commonly used ap-

proach for computing the arrival cost is to use a first order Taylor series approximation
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of the nonlinear model and then apply an extended Kalman filter. The second contri-

bution of this dissertation is that an approach to compute the arrival cost for moving

horizon estimation based on an unscented Kalman filter is proposed. It is found that

such a moving horizon estimator performs better in some cases than if one based on

an extended Kalman filter. It is a promising alternative for approximating the arrival

cost for MHE.

Many comparative studies, often based upon simulation results, between ex-

tended Kalman filters (EKF) and other estimation methodologies such as moving

horizon estimation, unscented Kalman filter, or particle filtering have been published

over the last few years. However, the results returned by the extended Kalman filter

are affected by the algorithm used for its implementation and some implementations

of EKF may lead to inaccurate results. In order to address this point, this disser-

tation investigates several different algorithms for implementing extended Kalman

filters. Advantages and drawbacks of different EKF implementations are discussed

in detail and illustrated in some comparative simulation studies. Continuously pre-

dicting covariance matrix for EKF results in an accurate implementation. Evaluating

covariance matrix at discrete times can also be applied. Good performance can be ex-

pected if covariance matrix is obtained from integrating the continuous-time equation

or if the sensitivity equation is used for computing the Jacobian matrix.
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CHAPTER I

INTRODUCTION

A. Motivation

Process monitoring as well as accurate and early fault detection and diagnosis

are essential components of operating modern chemical plants as the level of instru-

mentation in chemical plants increases. These procedures play an essential role in

reducing downtime and costs, increasing safety and product quality and minimizing

the impact on the environment.

While alarm management is one form of process monitoring, the information

contained in the HAZOP (Hazard and Operability) Studies is often very qualitative

in nature and the exact threshold for initiating alarms are determined from past

experience with the plant. Additionally, alarm management is usually performed by

setting threshold for individual variables, thereby neglecting the effect of variables on

one another. As a result of this, it often happens that several alarms are initiated at

the same time which complicates the response to the abnormal situation. These points

need to be addressed by investigating a fault diagnosis system which will be able to

determine the type and location of the fault (sensor fault, process fault, actuator

fault) as well as the magnitude in the presence of measurement noise and uncertainty

in the model of the plant. Subsequently appropriate verification of HAZOP results

and alarm thresholds could be determined.

Traditionally fault diagnosis is based on use of extra sensors, actuators, comput-

ers and software to measure, monitor or control a variable of interest. The drawbacks

in this ”hardware redundancy” method are obvious when cost and time of mainte-

The journal model is IEEE Transactions on Automatic Control.
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nance and space for accommodating equipments are concerned. Additionally, root

cause analysis for faults is not possible when multiple alarms are triggered.

With the rapid progress of modern computer technology and the development of

powerful techniques of mathematical modeling, state estimation and parameter iden-

tification, quantitative model-based method such as analytical redundancy techniques

for fault diagnosis become feasible. In addition, knowledge-based approach such as

expert systems or fuzzy logic and process history-based methods such as qualitative

trend analysis(QTA) or principle component analysis (PCA) also receive a high level

of attention.

In the area of quantitative model-based methods, first principles model-based

techniques such as Luenberger observers or Kalman filters have been extensively in-

vestigated. However, much of the work on fault diagnosis of nonlinear systems has

focused on aerospace, mechanical, or electrical engineering applications. Work has

to be done on the study of fault diagnosis schemes using nonlinear estimators in

complex chemical plants since many important industrial processes such as high pu-

rity distillation columns, exothermic chemical reactors and batch systems can exhibit

highly nonlinear behavior. Specifically, many techniques are available for designing

nonlinear estimators. The question to what degree the results are affected by the

approaches used for computing the values of unmeasured states and parameters has

not been addressed.

B. Literature Survey

“Hardware redundancy” as early fault detection methods could be found in

digital flight control systems such as the AIRBUS 320 and its derivatives [1]. Some

other application areas are in safety-critical systems such as nuclear power plants. Due
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to the obvious cost and space constraints, however, it is sensible to attempt to use

analytical or functional relationships between various process and measured variables

to diagnose any abnormal event [2] [3] [4]. Within the last three decades, numerous

research work and accomplishments in computer-based fault diagnosis methodologies

have been published. In terms of the manner how to tackle the problem of fault

diagnosis, the classification of quantitative model-based, qualitative model based and

process history-based provides a good perspective to understand the different as-

sumptions, deficiencies as well as advantages of various techniques [5] [6] [7]. Figure

1 shows the classification of fault diagnostic algorithms.
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Fig. 1. Classification of Fault Diagnostic Algorithms.

In quantitative model-based (such as first principles, state-space or statistical
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model) approaches, the most frequently used are diagnostic observers, parity relations,

Kalman filters based methods. Some earlier work using diagnostic observers approach

can be found in [8] [9] [10]. A comprehensive review of first principles model based

fault diagnosis using closed-loop observers or Kalman filters is provided in [11][12][13].

Frank [4] provided a solution to the fundamental problem of robust fault detection

by decoupling the effects of faults from each other and from the effects of modeling

errors. Diagnostic observers for nonlinear systems have also been generated in the

literature. Dingli et al. [14] designed observers for bilinear systems. Yang and Saif

[15] developed observers based on differential geometric methods for fault-affine model

forms. The main concern of observer-based fault detection and identification(FDI) is

to generate a set of residuals which detect and uniquely identify different faults. A

major advantage of this technique is that residual’s sensitivity to faults of a specific

frequency range can be tailored. These residuals should be robust in the sense that

the decisions are not corrupted by such unknown inputs as unstructured uncertainties

like process and measurement noise and modeling uncertainties. The method develops

a set of observers, each one of which is sensitive to a subset of faults while insensitive

to the remaining faults and the unknown inputs.

Using mechanistic first principle models, Raja et. al [16] have proposed an

observer-based methodology for diagnosing unknown sensor faults in systems with

parametric uncertainties. However, the contribution of first principles model-based

fault diagnosis approaches to industrial practice has not been pervasive due to the

cost and time required to develop a sufficiently accurate process model for a com-

plex chemical plant [17]. Therefore, Raja et. al [18] extended their work to sensor

fault diagnosis based on subspace model, which was constructed entirely from his-

torical process data. By performing fault reconstruction and subspace identification

at different scales, model identification accuracy and faults detection, isolation and
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reconstruction for dynamic systems whose normal operational input-output data is

known were achieved. However, both of the two methods estimate linear systems

via Luenberger observer, which is not adequate in nonlinear applications due to the

complexities of nonlinear chemical process.

Dynamic parity relations approach was first introduced by [19] and further ex-

plored by [20] [21] [22]. The use of short-term averages of steady state balance equa-

tion residuals was suggested by Vaclavek [23] while Almasy and Sztano [24] utilized

residuals to identify gross bias faults. The idea is to rearrange model structure and

to check the consistency of the plant models with sensor outputs and known pro-

cess inputs [25]. In 1991, several residual generation methods including diagnostic

observers, parity relations, Kalman filters in a consistent framework by [26] , which

shows that parity equation and observer based design lead to identical and equivalent

residual generators once the desired residual properties have been selected.

Kalman filter (KF) is the optimal estimator for linear systems subject to Gaus-

sian noise and has been widely applied in chemical plants based on the properties that

plant disturbances are random and most of the time only their statistical parameters

are known. Basseville [27] has demonstrated that Kalman filters can be used for fault

isolation when designed on the available process models. In practice, many physi-

cal systems exhibit nonlinear dynamics and have states subject to hard constraints,

such as nonnegative concentrations and temperatures. Therefore, Kalman filtering

which is designed for linear unconstrained systems is no longer directly applicable.

As a result, many different types of nonlinear state estimators have been proposed.

Daum [28] provides a highly readable and tutorial summary of many of these meth-

ods, and Soroush [29] reviews nonlinear estimation with a focus on applications on

process control. For state estimation in a probabilistic setting, i.e., both the model

and the measurement are potentially subject to random disturbances, estimate tech-
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niques such as the extended Kalman filter, unscented Kalman filter, moving horizon

estimation and Bayesian estimation etc. receive much attention.

The most common application of the KF to nonlinear systems is in the form of

extended Kalman filter [30] [31]. Numerous successful EKF applications have been

reported in the literature [32] [33] [34] [35]. Huang et. al [36] reported an application

of EKF-based FDI system. Mosallaei et al. [37] presented an integrated framework

to utilize EKF data fusion algorithm for detecting and diagnosing sensor and process

faults. The most famous applications of EKF are probably in Boeing 777 and Apollo

moon landing [38].

Due to linearization at each time step for EKF application, large errors and di-

vergence of the filter may occur [39][40]. Over 30 years of industrial experience also

shows that EKF is difficult to implement and tune for real applications [41]. Al-

though higher order Kalman filters exist, they are more prone to instability. Grewal

and Andrews [42] proposed measures to improve numerical stability of EKF as well

as Mostov [43] introduced a method to stabilize high order EKF. Chang and Hwang

[44] [45] justified suboptimal filtering in fault diagnosis so that the original EKF al-

gorithm can be more robust. Schei [46] proposed a method to improve EKF where a

central difference was used to avoid explicit calculation of the Jacobian while Quine

developed an implicit way to compute Jacobians [47] and a derivative-free implemen-

tation of EKF [48]. Another derivative-free state estimators based on polynomial

approximations are derived by Norgarrd et al and this estimator performs better

than estimators based Taylor approximations under certain assumptions [49]. For a

class of state constraints, Ungarala and his coworkers proposed a constrained EKF

for nonlinear state estimation [50].

Unscented Kalman filter (UKF) was developed to address the deficiencies of lin-

earization by providing a more direct and explicit mechanism for transforming mean
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and covariance information. Julier and Uhlmann [41] describes the general unscented

transformation along with a variety of special formulations that can be tailored to

the specific requirements of different nonlinear filtering and control applications. A

new recursive linear estimator that is not restricted to Gaussian distributions was also

proposed and demonstrated by Julier and coworkers [51] [52] [53] [54] [55]. The perfor-

mance of the new estimator lies between those of the modified, truncated second-order

filter [56] and the Gaussian second-order filter [57]. The performance of UKF-based

nonlinear filtering was evaluated by Xiong and coworkers [58]. Aguirre et al. used the

UKF to estimate observed variables of nonlinear systems [59] and LaViola applied

UKF for estimating quaternion motion [60]. Qu and Hahn [61] investigated the per-

formance of UKF in a large number of case studies including batch reactors, mildly

nonlinear CSTRs and highly nonlinear Van de Vusse reactors etc. The application

of Unscented transformation was extended to nonlinear dynamic data reconciliation

along with optimization strategy by Vachhani and coworkers [62]. Wan and Van de

Merwe extended the use of the UKF to a broader class of nonlinear estimation prob-

lem, including nonlinear system identification, training of neural networks, and dual

estimation problem [63] [64] [65]. In addition, they also explored the use of the UKF

as method to improve Particle Filters [66], as well as an extension of the UKF by

using a direct Bayesian update [67]. The square-root UKF for state and parameter

estimation was also proposed by Van de Merwe and Wan to add benefits of numerical

stability and guaranteed positive semi-definiteness of the state covariances [68]. Van

de Merwe summarized UKF as one type of Sigma-Point Kalman filters in his Ph.D

thesis [69]. Beyer and his coworkers applied a Sigma-point Kalman filter to batch

polymerization reactors for adaptive exact linearization control [70]. Constrained

state estimation using the Unscented Kalman filter was developed by Kandepu et al

[71].
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The optimal solution to the nonlinear filtering problem requires that a complete

description of the conditional probability density is maintained and is infinite di-

mensional [72]. This exact description requires a potentially unbounded number of

parameters and therefore a large number of suboptimal approaches have been de-

veloped [31] [73]. These methods usually employ analytical approximations [74] [75]

[76] to probability distributions, derivatives of the state transition and observation

equations, or numerical Monte Carlo methods [77] which require the use of many

thousands of points to approximate the conditional density.

Particle filtering(PF), also called Monte Carlo estimation methods, does not as-

sume a fixed shape of any probability density but approximates the densities of inter-

est via samples or particles. PF can capture the time-varying nature of distributions

commonly encountered in nonlinear dynamic problems and any moment can be com-

puted from the sampled particles. In addition, this sampling based approach can solve

the estimation problem in a recursive manner without resorting to model approxima-

tion. Marseguerra [78] showed the power of particle filtering for fault diagnosis by

applying sampling importance resampling to a case study of multi-dimensional states

while Li and Kadirkamanathan [79] investigated the PF based likelihood ratio ap-

proach to fault diagnosis in nonlinear stochastic systems. T. Chen and his coworkers

used particle filters for dynamic data rectification and process change detection [80]

[81] and also applied PF for state and parameter estimation in batch processes [82].

Oppenheim et al. [83] extended the applications of PF to polymerization reactor,

tracking moving bio-cell and depollution of waste water. With the additional use of

heuristic optimization methods, Schwaab et al. showed that the so called particle

swarm optimization method is efficient for both minimization and construction of the

confidence region of parameter estimates. W. Chen and Lang and their coworkers

described and illustrated Bayesian estimation via sequential Monte Carlo sampling
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for both unconstrained and constrained dynamic systems [84] [85].

Ensemble Kalman filter (EnKF) [86] [87], is related to the particle filter but the

EnKF makes the assumption that all probability distributions involved are Gaussian;

when it is applicable, it is much more efficient than the particle filter [88] [89]. The

cell filter is a piecewise constant approximation of the conditional probability density

of the states, whose temporal evolution is modeled by an aggregate Markov chain [90]

[91]. Both EnKF and cell filter belongs to Bayesian estimation, as well as particle

filters.

Although constrained EKF, UKF and PF were proposed and investigated [50]

[71] [85], clipping technique were commonly used, which may result in the failure of

filters on providing the accurate estimation. Moving horizon estimation (MHE) [92]

[93] [94] [95] has been suggested as a practical strategy to incorporate inequality con-

straints in estimation building on the success of receding horizon control. The basic

strategy of MHE is to reformulate the estimation problem as a quadratic program

using a moving, fixed-size estimation window, which is necessary to bound the size

of the quadratic program. Stability questions arise as only a subset of the data is

considered for estimation. Rao et al. proved the stability of MHE for both linear

and nonlinear constrained estimation [96][97]. Rao and Rawlings [98] also discussed

the application of MHE to constrained process monitoring. Russo and Young [99]

applied MHE to an industrial polymerization process while Bemporad et al. [100]

proposed a new approach via MHE for fault detection and state estimation of hy-

brid systems. A MHE that evaluates the data obtained by temperature oscillation

calorimetry was introduced by Mauntz and his coworkers [101]. While the power of

MHE is demonstrated, the computational requirements of real time constrained opti-

mization may make it impractical for large dimensional systems. Darby and Nikolaou

[102] addressed the computational efficiency by proposing a parametric programming
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that bypassed real time optimization. Efficient MHE and data reconciliation via non-

linear programming were also proposed by Tenny and Rawlings [103] and Liebman

and coworkers [104].

Data reconciliation is also a model-based filtering technique that attempts to

reduce the inconsistency between measured process variables and a process model.

Robertson et al. [92] showed a typical formulation of the dynamic data reconcilia-

tion problem could be presented as a special case of a more general moving horizon

state estimation formulation. A technique for dynamic data reconciliation using lin-

ear balancing equations to reconcile measured states was described by Almasy [105],

and using nonlinear programming techniques for reconciling nonlinear balance equa-

tions was demonstrated by Liebman [106]. Ramamurthi et al. [107] showed a similar

moving horizon data reconciliation strategy to improve closed-loop nonlinear model

predictive control performance. Dynamic data reconciliation techniques are also used

to detect gross errors, identify bias in measurements and detect outliers [108] [109]

[110] [111]. Bias detection and nonlinear dynamic data reconciliation was applied to

a single vessel in a process by McBrayer et al. [112] and Soderstrom and his cowork-

ers [113] implemented a dynamic data reconciliation application at an ExxonMobil

Chemical Company plant. Later a technique that combines data reconciliation and

the detection and identification of gross errors within a mixed integer optimization

framework was developed by Soderstrom et al. [114]. Yelamos et al. [115] recently

developed an efficient Genetic algorithm for determining time delays to enhance dy-

namic data reconciliation performance and demonstrated its robustness in a highly

nonlinear Tenessee Eastman benchmark process. For simultaneous dynamic opti-

mization strategies, also known as direct transcription methods for solving nonlinear

estimation problem or data reconciliation, Kameswaran and Biegler [116] discussed

recent advances and outlined a number of challenges.
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More reviews on KF-based or optimization-based estimators are found in Chap-

ters III, IV and V.

Under Qualitative model-based method, signed directed graph(SDG), fault trees

and qualitative physics are some explored method. In contrast to quantitative method,

qualitative models are usually developed based on qualitative functions centered

around different units in a process [117] [118]. Then a search strategy, either to-

pographic search or symptomatic search, is used to perform malfunction analysis.

After Iri et al. [119] first used SDG for fault diagnosis, considerable research work

has been done in the area. Oyeleye and Kramer [120] presented a brilliant work in the

field of steady state qualitative simulation using SDG to eliminate spurious solutions

without losing completeness. Chang and Yu [121] gave special attention to control

loops and reported various techniques that are useful in simplifying SDGs for fault

diagnosis. Another important work is the use of fuzzy set theory to improve fault

resolution in SDG models by [122]. Later Shih and Lee [123] [124] discussed the use

of fuzzy logic principles with SDGs for the removal of spurious solutions. Fault trees

have also been developed from digraphs [125]. Ulerich and Powers [126] constructed

an AND gate at each primal event to set up a fault detection tree and used the avail-

able real-time data to verify events in the fault tree. Considerable work has also been

done in the area of derivation of qualitative behavior and representation of causal

knowledge [127] [128] [129]. Qualitative simulation (QSIM) and qualitative process

theory (QPT) [130] [131] are the popular approaches with respect to applications of

qualitative models in fault diagnosis. The major disadvantage of qualitative model is

the generation of spurious solutions. Moreover, these methods cannot estimate the

shape and size of the fault accurately.

Process history based method extracts either qualitative or quantitative infor-

mation from the available large amount of historical process data. The extracted
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information is then presented as a priori knowledge to a diagnostic system. It is

based on the fact that more or less model errors exist no matter how accurately the

available models are developed. Therefore, process history based method could avoid

the inaccuracy by model mismatch. Expert systems [117] [132] and trend modeling

methods [133] [134] are the two of major methods which extract qualitative history

information while neural networks [135] [136] and multivariate statistics based fault di-

agnosis using principal component analysis (PCA) [137] [138] and partial least squares

(PLS) [139] [140] [141] techniques are those methods that extract quantitative infor-

mation. There are a number of papers discussing expert systems applications since

Henley [142] [143] [144] initially attempted to do so. However, representation power

of a specifically developed expert system is quite limited and they are difficult to

update. Trend analysis can detect the fault earlier and lead to quick control but false

alarms are often triggered due to change in the input level or in operating conditions.

Neural networks perform well in terms of robustness to noise and isolability require-

ments but have weak generalization capability outside of the training data. Among

the exhaustive papers on statistical methods, Qin [145] comprehensively reviews the

field of statistical process monitoring methods for FDI. Multivariate statistics based

methods relies on static models, which assumes that the process operates at a prede-

fined steady-state condition. This is often not the case as the process may undergo

throughput changes or exhibit highly nonlinear behavior, which result in dynamic

transitions of the process variables [12].

The list of literature in fault diagnosis is far from complete. Among the numerous

available methods, not a single method has all the desirable features such as quick

detection, robustness, adaptability or less computational requirements. There is al-

ways a trade-off between completeness (the proposed fault set includes all the actual

faults) and resolution (the fault set to be as minimal as possible) for designing a sys-
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tem of fault diagnosis. Developing diagnostic systems by using some of the available

methods which can complement each other is intuitively appealing and practical.

C. Dissertation Overview

Chapter II reviews concepts of nonlinear estimation and several widely-known

approaches. Important issues for implementation such as linearization, discretiza-

tion, scaling and optimization are also described as they are the core bases for this

dissertation.

Nonlinear estimation techniques play an important role for process monitoring

since some states and most of the parameters cannot be directly measured. Chapter

III investigates the use of several estimation algorithms such as linearized Kalman

filter (LKF), extended Kalman filter (EKF), unscented Kalman filter (UKF) and

moving horizon estimation (MHE) for nonlinear systems with special emphasis on

UKF as it is a relatively new technique. Detailed case studies show that UKF has

advantages over EKF for highly nonlinear unconstrained estimation problems while

MHE performs better for systems with constraints.

Moving horizon estimation alleviates the computational burden of solving a full

information estimation problem by considering a finite horizon of the measurement

data, however, it is non-trivial to determine the arrival cost. A commonly used ap-

proach for computing the arrival cost is to use a first order Taylor series approximation

of the nonlinear model and then apply an extended Kalman filter. In Chapter IV,

an approach to compute the arrival cost for moving horizon estimation based on an

unscented Kalman filter is proposed. The performance of such a moving horizon es-

timator is compared with the one based on an extended Kalman filter and illustrated

in a case study.
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Many comparative studies, often based upon simulation results, between ex-

tended Kalman filters (EKF) and other estimation methodologies such as moving

horizon estimation, unscented Kalman filter, or particle filtering have been published

over the last few years. However, the results returned by the extended Kalman filter

are affected by the algorithm used for its implementation and some implementations

of EKF may lead to inaccurate results. In order to address this point, Chapter V

investigates several different algorithms for implementing extended Kalman filters.

Advantages and drawbacks of different EKF implementations are discussed in detail

and illustrated in a comparative simulation study.

Chapter VI summarizes findings on nonlinear estimation and thoughts for po-

tential future work and extended research areas. The major conclusions are drawn

with respect to strength and weakness of each investigated filter. The applicable or

inapplicable cases or areas found in the dissertation work are also discussed. Sugges-

tions on future work include a further study on other advanced filters such as Particle

filtering or Ensemble filtering, detailed thoughts on selection of a proper filter and

extensions of estimation techniques to fault diagnosis.
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CHAPTER II

REVIEW OF ESTIMATION TECHNIQUES AND THEIR IMPLEMENTATIONS

This chapter reviews linear estimation and the famous Kalman filter in the first

section. Section 2 provides background information for nonlinear state and parame-

ter estimation and briefly reviews existing algorithms for nonlinear estimation, i.e.,

linearized Kalman filter, extended Kalman filter, moving horizon estimation. Imple-

mentation related issues are discussed in the last section as they are the core bases

for enhancing the overall performance of numerical algorithms.

A. Linear Estimation

State estimation is to estimate the system states x from measurements y. Esti-

mate x is required to model the system but is often corrupted with process noise w

and y with sensor noise v. Therefore it is of interest to estimate the system states x

from a set of economically or conveniently measurable variables y which are usually a

subset of x. The challenge of state estimation lies in determining a good state estimate

in the face of noisy and incomplete output measurements. The desired properties of

estimators are

• Unbiased, i.e., expected value of the estimate is the same as that of the quantity

being estimated

• Consistent i.e., estimate converges to the true value of x, as no. of measurement

increases

• Efficient, i.e., error variance is less than or equal to that of any other unbiased

estimate
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Consider the linear, time invariant model with Gaussian noise

xk = Axk−1 + wk−1

yk = Cxk + vk

w ∼ N(0, Q), v ∼ N(0, R), x0 ∼ N(x(0), p(0))

(2.1)

The parameters of the initial state distribution, x(0) and P (0), are usually not known

and often assumed. Probability theory is used to model fluctuations in the data and

to develop an optimal state estimator.

A Kalman filter is the optimal estimator for linear unconstrained systems subject

to Gaussian noise. It was invented in 1960 by Rudolf. E. Kalman [146] and addresses

the age-old question: How to get accurate information out of inaccurate data, i.e.,

How to estimate the system states x or unknown parameter p from measurements y.

The first version was derived as a discrete filter. Figure 2 shows the recursive form of

discrete-time Kalman filter and the mechanism of the filter approach is illustrated in

Figure 3. The state estimate model is projected forward to obtain the state prediction

x̂−. Then a state update occurs at time t1, which updates the value of the projected

state x̂− to the new state x̂+. Finally this state is used as the initial condition to

project the state estimate model to time t2. The scheme continues forward in time,

projecting the state through system models and updating the state with an available

measurement. Appendix B describes the derivation of the discrete-time Kalman filter.

Kalman and Bucy extended the filter to the continuous version in 1961 [147].

The famous application of Kalman filter is in Boeing 777 and Apollo moon landing.
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Fig. 2. Kalman Filter Recursion

B. Nonlinear Estimation

1. State Estimation

A class of nonlinear systems of interest in state estimation is given by:

xk = f(xk−1, uk−1, wk−1)

yk = h(xk, uk, vk)

(2.2)

where xk ∈ R
n is a vector of the state variables, the functions f and h are differentiable

functions of the state vector x, wk ∈ R
n is a vector of plant noise, with E[wk] = 0

and E[wkw
T
k ] = Qk; yk ∈ R

m is a vector of the measured variables and vk ∈ R
m is a

vector of measurement noise, with E[vk] = 0 and E[vkv
T
k ] = Rk; n is the number of

states, m refers to the number of measurement variables. The distributions of w and

v are not necessarily Gaussian. The initial value x0 may be assumed to be a Gaussian

random variable with known mean and known n × n covariance matrix P0.
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Fig. 3. Mechanism for Kalman Filter

The objective is to find an estimate x̂k of xk to minimize the weighted mean-

squared error E(xk−x̂k)M(xk−x̂k)
T , where M is any symmetric nonnegative definite

weighting matrix. If all estimates weight equally, the objective becomes to minimize

the error covariance matrix for an unbiased estimator, given by P = E(xk − x̂k)(xk −

x̂k)
T . More specifically, the trace of P is chosen to be minimized resulting in the

performance index J = 1
2
Tr[E(xk − x̂k)(xk − x̂k)

T ].

2. Parameter Estimation

Parameter estimation involves a nonlinear mapping of the form:

xk = f(xk−1, uk−1, wk−1, θk)

yk = h(xk, uk, vk, θk)

(2.3)

where θk is a vector parameterizing the nonlinear function f . The description of θk

corresponds to a stationary process with identity state transition matrix, driven by

process noise wk−1.

One technique for estimating parameters is to augment the state vector with

the parameters to be estimated: zk = [xT
k θT

k ]T . The estimation of both states and
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parameters can be done recursively by writing the state-space representation as :

zk =







f(xk−1, uk−1, wk−1, θk−1)

θk−1 + wk−1






. (2.4)

3. Linearized Kalman Filter

A linearized Kalman filter is the local solution for nonlinear estimation problems

based on linearization about a nominal state value. The following equations define

the discrete-time form of the LKF:

Prediction equations:

x̂k|k−1 = A(x̂k−1|k−1 − x0) + x0 + Buk−1

ŷk = Cx̂k|k−1 + Duk

(2.5)

Update equations:

Pk|k−1 = APk−1|k−1A
T + GQGT

Kk = Pk|k−1C
T (CPk|k−1C

T + HRHT )−1

Pk|k = (I − KkC)Pk|k−1

x̂k|k = x̂k|k−1 + Kk(yk − ŷk)

(2.6)

where A ≈ ∂f
∂x
|x0

, B ≈ ∂f
∂u
|u0

, C ≈ ∂h
∂x
|x0

, D ≈ ∂h
∂u
|u0

, G ≈ ∂f
∂w

|w0
and H ≈ ∂h

∂v
|v0

are

the matrices of the linearized system model around the norminal value of the states

x0. The matrices Q and R are the tuning parameters of the Kalman filter. Q is

used as a measure of confidence in the process model while R represents a measure of

confidence for the sensor readings. If the process noise or uncertainties are relatively

large compared to the observation noise, then Q has large values compared to R, and

vice versa. The matrix P0 provides a measure of confidence in the knowledge of the
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initial states x0. The notation involving Q, R, and P0 also applies to other estimation

methods such as EKF, UKF or MHE mentioned throughout this thesis.

It is shown from the algorithm that there are no inputs to linear approximation

equations from the rest of the estimator. Therefore, the Kalman gain and error

covariance can be precomputed off-line. However, the deviation of the actual values

from the initial states or steady states tends to be large when input changes or state

perturbations occur.

4. Extended Kalman Filter

Linearized Kalman filters assume that a process stays close to the nominal oper-

ation point. However, the values of the states can be quite different from the nominal

values due to input changes. As a result, offset between state estimates and the ac-

tual values may occur for sustained input excitations. Schmidt proposed the idea of

an extended Kalman filter to address some of LKF’s shortcomings by linearizing the

system model along a state trajectory [148].

For different models, there are different forms for EKF. For continuous-time

models with discrete-time measurements, as given by

ẋ(t) = f(x(t), u(t)) + Gw(t) (2.7)

yk = h(x(tk)) + vk (2.8)

x(0) ∼ N(x̄0, Px0
), w(t) ∼ N(0, Q), vk ∼ N(0, Rk), (2.9)

where x ∈ R
n is a vector of the state variables; w ∈ R

n is a vector of plant noise;

yk ∈ R
m is a vector of the measured variables and vk ∈ R

m is a vector of measurement

noise, the following equations define the continuous-discrete form of the EKF:
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Prediction equations:

˙̂x = f(x̂, u)

Ṗ = A(x̂)P + PA(x̂) + GQG
′

ŷk = h(x̂(tk), u)

(2.10)

Update equations:

Kk = P (tk)H
′

k(HkP (tk)H
′

k + R)−1

Pk = (I − KkHk)P (tk)

x̂k = x̂(tk) + Kk(yk − ŷk)

(2.11)

where A(x̂) ≈ ∂f
∂x
|x̂ and Hk ≈ ∂h

∂x
|x̂(tk) are the matrices of the linearized system model,

and computed as functions of the estimate for linearization about the estimated tra-

jectory. Lyapunov equations need to be solved at each step for computing the Kalman

gain Kk and updating state estimates, x̂k.

Finite difference is the most commonly used method found in the literature for

model discretization or computing a Jacobian matrix A(x̂) for EKF [93][40]. The

estimation errors and computation times are greatly dependent on the step size for

computing the finite difference.

5. Moving Horizon Estimation

From a perspective of Bayesian theory, the constrained state estimation problem

can be formulated as the solution of the following optimization problem

φ∗
T = min

x0,{wk}
T−1

k=0

φT (x0, {wk})

= min
x0,{wk}

T−1

k=0

T−1
∑

k=0

v′
kR

−1vk + w′
kQ

−1wk + (x0 − x̂0)
′Π−1

0 (x0 − x̂0)

(2.12)
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subject to

xk = f(xk−1, uk−1, wk−1)

yk = h(xk, uk, vk)

xk ∈ X, wk ∈ W, vk ∈ V

(2.13)

where the sets X, W and V are constraints, xk := x(k; x0, {wj}k−1
j=0) denotes the

estimate of the system (2.13) at time k when the initial state is x0, {wj}k−1
j=0 is the

process noise sequence and vk := yk − Cx(k; x0, {wj}k−1
j=0). Since all of the available

measurements are used to generate an estimate, the problem given by (2.12) and

(2.13) is referred to the full information estimator (FIE).

There exist efficient strategies for solving the FIE, which is a nonlinear program.

When the process model is stiff or has unstable dynamics, it is beneficial to perform

the discretization and optimization simultaneously [149]. When the process model is

linear and the constraints are polyhedral convex sets, the nonlinear program simplifies

to a quadratic program, which is far less computationally complex. Regardless of the

complexity of problems, real time solution to FIE is impossible to be obtained because

the size of problems grows unbounded with the number of points in time considered

as more data need to be processed. One strategy to make the estimation problem

tractable is to bound the problem size by employing a moving horizon approach.

It is fundamental to introduce an arrival cost, resulting in the following opti-

mization problem

min
x0,{wk}

T−1

k=0

φT (x0, {wk}) = min
z,{wk}

T−1

k=T−N

T−1
∑

k=T−N

v′
kR

−1vk + w′
kQ

−1wk + θT−N(z). (2.14)

where θT−N(z) is referred to as the arrival cost, which summarizes the effect of the data

{yk}T−N−1
k=0 on the state xT−N and makes it possible to transform the optimization

problem into one of lower dimension. However, the best choice of the arrival cost
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remains an open issue for MHE.

For unconstrained, linear systems, the arrival cost can be expressed explicitly

since the MHE optimization simplifies to the Kalman filter and its covariance update

formula can be used [98]. Subject to the initial condition Π0 and assuming the matrix

ΠT−N is invertible, the arrival cost can then be expressed as

θT−N(z) = (z − x̂T−N)′Π−1
T−N(z − x̂T−N) + φ∗

T−N . (2.15)

where x̂T−N denotes the optimal estimate at time T−N given all of the measurements

yk from time 0 to T − N − 1, φ∗
T−N represents the optimal cost at time T − N and

ΠT−N is computed from the Kalman filter covariance update

ΠT = AΠT−1A
T + GQGT − AΠT−1C

T (CΠT−1C
T + HRHT )−1CΠT−1A

T . (2.16)

The solution to the problem described by equations (2.14) and (2.15) is the unique

optimal pair (z∗, {ŵ∗
k}T−1

k=T−N) and it can be integrated to yield the optimal state es-

timates {x̂∗
k}T

k=T−N+1, where x̂∗
k := x(k; z∗, {ŵ∗

j}k−1
j=T−N) denotes the optimal estimate

of the system at time k when the initial state is z∗ and the estimated process noise

sequence is {ŵ∗
j}k−1

j=T−N .

For constrained, linear systems, general analytical expressions for the arrival cost

are not available. One reasonable strategy is to approximate the arrival cost by the

one for the unconstrained problem. The approximation is exact when the inequality

constraints are inactive. For nonlinear systems, Tenny and Rawlings estimate the

arrival cost by approximating a constrained, nonlinear system as an unconstrained,

linear time-varying system [103]. In their work the model functions f(.) and h(.) in

Eq.(2.13) are supposed to be sufficiently smooth so that a first-order Taylor series

approximation of the model can then be applied, i.e. Ak := ∂f
∂x
|x̂k|k−1

, Ck := ∂h
∂x
|x̂k|k−1

,

Gk := ∂f
∂w

|wk
and Hk := ∂h

∂v
|vk

can be obtained. The arrival cost θT−N(z) in Eq.(2.15)
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can be computed by solving the matrix Riccati Eq.(2.16) subject to the initial con-

dition Π0. This is called the MHE problem with an arrival cost computed by EKF.

The horizon length N is a tuning parameter for MHE. As a general rule, the

larger the horizon length, the more accurate the estimation results will be, however,

this comes at the expense of an increase of the computational burden. A practical

rule of thumb is that the length of the horizon should not be less than the number

of the system states. Rao and Rawlings recommend to choose the horizon length as

twice the order of the system [98].

MHE fixes the computational burden of solving FIE by considering a finite hori-

zon of the previous measurements, however, the computational complexity of itself

remains a significant research challenge. Due to advances in numerical optimization,

real time solutions to small dimensional nonlinear models could be found in the work

of Rawlings [103].

One way to construct an analytic expression for the arrival cost θT−N(z) is to use

the Kalman filter covariance update formula from equations (2.10) and (2.11), where

P is denoted as Π in MHE.

C. Implementation Issues

1. Nonlinear Dynamic Stochastic Systems

A vast majority of nonlinear models are given in continuous-time and measure-

ments are given in discrete-time. Therefore the nonlinear continuous models with

discrete measurements are of the major interest in this dissertation. Applications on

nonlinear discrete-time models are straightforward and the discretization techniques

mentioned in the dissertation could be easily extended and applied to continuous

measurements.
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The nonlinear continuous model with discrete measurements and gaussian noise

can be written as

ẋ(t) = f(x(t), u(t)) + Gw(t) (2.17)

yk = h(x(tk)) + vk

x(0) ∼ N(x̄0, Px0
), w(t) ∼ N(0, Q), vk ∼ N(0, Rk) (2.18)

where x ∈ R
n is a vector of the state variables; The functions f and h are differentiable

functions of the state vector x, w ∈ R
n is a vector of plant noise, with E[w] = 0 and

E[wwT ] = Q; yk ∈ R
m is a vector of the measured variables and vk ∈ R

m is a vector

of measurement noise, with E[vk] = 0 and E[vkv
T
k ] = Rk; n is the number of states,

m refers to the number of measurement variables. The distributions of w and v are

Gaussian. The initial value x0 is also a Gaussian random variable with known mean

x̄0 and known n × n covariance matrix Px0
. The sampling time for measurements

is T . x(t),u(t) and w(t) are referred to x, u and w, respectively, in the rest of the

chapter unless specified.

2. Linearization

Linearization of nonlinear systems is needed in order to apply linear systems

theory and solutions to nonlinear systems. The common approach is to expand a

nonlinear vector function f(x) in a Taylor series around some nominal point x̄, defin-

ing x̃ = x − x̄:

f(x) = f(x̄) +
∂f

∂x

∣

∣

∣

∣

x̄

x̃ +
1

2!

∂2f

∂x2

∣

∣

∣

∣

x̄

x̃2 +
1

3!

∂3f

∂x3

∣

∣

∣

∣

x̄

x̃3 + . . . (2.19)

where x is assumed a scalar. When the higher orders of x̃ are small, f(x) can be

approximated by f(x̄) + ∂f
∂x

∣

∣

∣

∣

x̄

x̃.
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Supposing that x is a vector, the Taylor expansion becomes

f(x) = f(x̄) + Dx̃f +
1

2!
D2

x̃f +
1

3!
D3

x̃f + . . . (2.20)

where the operation Dk
x̃f is defined as

Dk
x̃f =

( n
∑

i=1

x̃i
∂

∂xi

)k

f(x)

∣

∣

∣

∣

x̄

(2.21)

If f(x) is expanded around a point that x is closed to x̄, then x̃ will be small and

the higher powers of x̃ in Equation (5.16) will be negligible. Therefore, f(x) could

also be approximated by

f(x) ≈ f(x̄) +
∂f

∂x

∣

∣

∣

∣

x̄

x̃ (2.22)

3. Discretization

State estimation is almost always implemented through a digital computer while

the majority of the nonlinear systems are given in continuous-time. This often requires

a discretization of continuous-time systems.

For a continuous-time deterministic linear system,

ẋ = Ax + Bu (2.23)

where x is the state vector, u is the control vector, A is the system matrix, B is the

input matrix. If matrices A and B are constant, the solution to Equation (2.23) is

given by

x(t) = eA(t−t0) +

∫ t

t0

eAτBu(t − τ)dτ (2.24)
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Let t = tk at the discrete time instant k and t0 = tk−1 at the previous time instant

k − 1. Assuming that A(t) and B(t) are approximately constant in the integration

interval, it is obtained that

x(tk) = eA(tk−tk−1)x(tk−1) +

∫ tk

tk−1

eAτBu(tk − τ)dτ (2.25)

Define T = tk − tk−1 to obtain that

xk = eAT xk−1 +

∫ T

0

eAτBu(T − τ)dτ. (2.26)

This is a linear discrete-time approximation to the continuous-time dynamics

given in Equation (2.23). It is called accurate discretization as compared to the

method of Euler approximation, where

xk = (I + AT )xk−1 + BTuk. (2.27)

4. Simulation of Continuous-time Systems

As important as the discretization and linearization in the sections 2 and 3 is the

simulation of continuous-time systems on a digital computer.

For a general ordinary differential equation describing nonlinear systems,

ẋ = f(x, u, t) (2.28)

Solving for x(ts) at some user-specified value of ts

x(ts) = x(t0) +

∫ ts

t0

f [x(t), u(t), t]dt (2.29)

is of the interest.

Rectangular integration, trapezoidal integration or Runge-Kutta integration are
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often used for computing the Equation (2.29) [150]. Commercial softwares such as

Matlabr′
s ode45 can also be used for solving the integration of nonlinear function.

Simulation for stochastic continuous-time systems is not as straightforward as for

deterministic systems. It is extremely difficult to simulate a continuous-time system

that process noise w enters nonlinearly. For a system that w enters linearly as de-

scribed by Equation (2.17), process noise w need to be added into the simulated x(ts)

strategically. Such a system is approximately equivalent to the following discrete-time

system:

xk = xk−1 +

∫ tk

tk−1

f [x(t), u(t), t]dt + wk

yk = h(xk) + vk

wk ∼ N(0, QT ), vk ∼ N(0, Rk)

(2.30)

5. Optimization

Optimization is to find the best solution to a system or process that is given

with constraints. The objective function is an indicator of goodness of solution,

for example, cost, yield or profit etc. Constraints are usually physical constraints,

or subject to resources or specifications. Decisions variables can be adjusted for

optimization.

Optimization is to develop theoretical properties such as convergence or existence

from the perspective of mathematicians. To numerical analysts, the implementation

of optimization methods is of their interests and therefore the ease of computations,

performance and stability for efficient and practical use are their concerns. While from

engineers’ points of view, it is the most important to apply optimization methods or

tools to solve real problem and therefore robustness and efficiency are of the main
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concerns. The three perspectives are of equal importance to academic researchers.

Given an optimization problem,

max f(x) (n variables)

s.t. gi(x) = 0, i ∈ E (m equality constraints)

gi(x) 6 0, i ∈ I (l inequality constraints)

m < n (n − m degrees of freedom)

(2.31)

A function is defined to be linear if it could be described by a constant weighted

sum of variables and a constant; otherwise it is nonlinear. A variable is continuous

if any value can be employed in a specified interval. It is discrete if it is limited to a

countable set of values, the choices are generally 0 and 1.

Based on the definitions, the types of optimization problems can be categorized

as follows:

• An optimization model is a linear programming (LP) model if the objective

function f and all constraints g are linear functions in the decision variables x

and all decision variables are continuous.

• An optimization model is a nonlinear programming (NLP) model if the objective

model f or any of the constraints g is a nonlinear function in the decision

variables x, and all decision variables are continuous.

• An optimization model is a mixed-integer linear programming (MILP or MIP) if

the objective function f and all constraints g are linear functions in the decision

variables x, and there is at least one discrete variable.

• An optimization model is a mixed-integer nonlinear programming (MINLP if

the objective model f or any of the constraints g is a nonlinear function in the

decision variables x,, and there is at least one discrete variable.
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Table I summarizes the classifications. Nonlinear programming and mixed-integer

programming are commonly seen in the applications for chemical engineering.

Table I. Classifications of Optimization Algorithms

Constraints

Linear Nonlinear

Continuous LP NLP

Variables Discrete IP INLP

Both MIP(MILP) MINLP

6. Scaling and Initial Guess

Scaling is an important factor in obtaining a solution for nonlinear estimation,

where numerical methods are often used. Uniform scaling is a linear transformation

that enlarges or increases or diminishes state variables. If the original differential

equations are not scaled uniformly, nonlinear estimation, especially those solved by

optimization, will be solved to different degrees of accuracy.

Take a nonisothermal continuous stirred tank reactor as an example. The CSTR

model includes coolant jacket dynamics, where the following exothermic irreversible

reaction between sodium thiosulfate and hydrogen peroxide is taking place [16]:

2Na2S2O3 + 4H2O2 → Na2S3O6 + Na2SO4 + 4H2O (2.32)

A mole balance for species A (The capital letters A is used to denote the chemical

compounds Na2S2O3) and energy balances for the reactor and the cooling jacket result
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in the following nonlinear process model:

dCA

dt
=

F

V
(CAin − CA) − 2k(T )C2

A

dT

dt
=

F

V
(Tin − T ) + 2

(−∆H)R

ρcp

k(T )C2
A − UA

V ρcp

(T − Tj)

dTj

dt
=

Fw

V
(Tjin − Tj) +

UA

Vwρwcpw

(T − Tj)

(2.33)

The nonlinear model without process noise exhibits multiple steady states, of which

the upper steady state (i.e. CAss = 0.019mol/L; Tss = 384.0 K; Tjs = 371.3 K;

Fw = 30L/min) is chosen as the point of operation. Clearly concentration is less than

temperature by four orders of magnitude. The steady state is used as the nominal

point for scaling the process variables to make them dimensionless, which turns the

initial states from [0.018 382 371.3] to [0.947 0.995 1] for numerical efficiency.

Initial guess is critical to find a solution for state estimation or optimization.

Good initial guess can provide faster convergence and more accurate estimates in

solving estimation problems. Normally the measurements provide the best available

information and can be used as initial guess for the estimates. At the subsequent

time steps, initial guesses can be replaced by the estimates from the previous time

step.

7. Sensitivity Analysis

Sensitivity analysis is the study of how uncertainty in the output of a model

(numerical or otherwise) can be apportioned to different sources of uncertainty in the

model input [151].

Sensitivity Analysis is common in physics and chemistry, in financial applica-

tions, risk analysis, signal processing, neural networks and any area where models

are developed. It is used as a tool to ensure the quality of the modeling. There are
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several important classes of methods to perform sensitivity analysis:

• Local methods is the simple derivative of the output Y with respect to an input

factor Xi, where the subscript i indicates that the derivative is taken at some

fixed point in the space of the input.

• A sampling-based sensitivity [152] is the method in which the model is executed

repeatedly for combinations of values sampled from the distribution of the input

factors. Once the sample is generated, several strategies such as simple input-

output scatter plots can be used to derive sensitivity measures for the factors.

– Screening methods is a particular instance of sampling based methods. The

objective is to estimate a few active factors in models with many factors

[153] [154].

– Monte Carlo filtering [155] [156] is also sampling-based and the objective is

to identify regions in the space of the input factors corresponding particular

values e.g. high or low of the output.

• A Bayesian approach [157] is that the value of the output Y of a factor Xi

is treated as a stochastic process and estimated from the available computer-

generated data points.

• Variance based methods [158] [159] [160] [161] is that the unconditional variance

V (Y ) of Y is decomposed into terms due to individual factors and terms due

to interaction among factors.

• High Dimensional Model Representations [162] [163] [164] is a particular case

of the variance based methods where the output Y is expressed as a linear

combination of terms of increasing dimensionality.
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Local methods for sensitivity analysis is very useful for computing Jacobian ma-

trix of a nonlinear discrete-time model that is not in an explicit form.

Consider a differential equation that describes a nonlinear continuous-time sys-

tem

ẋ = f(x, u, t) (2.34)

Using any numerical method for discretizing the continuous-time system, the

following nonlinear discrete-time system is obtained:

xk+1 = F (xk, u, t), (2.35)

where F is computed from numerical methods and do not have an explicit mathe-

matical expression, which poses a challenge for computing its jacobian matrix.

The jacobian matrix A of the nonlinear function F is

Ak =
∂F (xk)

∂xk

, (2.36)

which is not expressed in a mathematical formula. However, it is obtained from Eq.

(5.30) that

Ak =
∂xk+1

∂xk

, (2.37)

which is a form of the sensitivity of xk+1 to its initials xk.

Taking the derivative of the Eq. (2.34) with respect to x0, it follows that

∂

∂x0

ẋ =
∂

∂x0

f (2.38)

Re-arranging the terms of ∂t and ∂x0,

∂

∂t

∂x

∂x0

=
∂f

∂x
· ∂x

∂x0

(2.39)
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Denoting ∂x
∂x0

as A, Eq. (2.39) becomes

Ȧ =
∂f

∂x
A A(0) = I (2.40)

Solving Eq. (2.40) and (2.34) numerically, the Jacobian matrix A can be computed

at any time instant kT , where T is the sampling interval and Ak = A(kT ).
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CHAPTER III

PROCESS MONITORING AND PARAMETER ESTIMATION VIA

UNSCENTED KALMAN FILTERING*

A. Introduction

One important aspect of process safety is detection of abnormal operating condi-

tions. A common approach to this problem is that important states and parameters

in a process are monitored and compared against their upper and lower bounds. How-

ever, some of these states and most of the parameters cannot be directly measured

and instead have to be computed from plant data. This raises the question to what

degree the results are affected by the procedure used for computing the values of

unmeasured states and parameters.

There are many techniques available for nonlinear state and parameter estima-

tion. Extended Kalman filters (EKF) have found wide-spread use and moving horizon

estimation (MHE) is an optimization-based estimator aimed for constrained problems.

Unscented Kalman filters (UKF), as recently proposed by Julier and Uhlman [41],

could in theory improve upon EKF for state and parameter estimation since lineariza-

tion is avoided by an unscented transformation and at least second order accuracy is

provided. This last point is achieved by carefully choosing a set of sigma points, which

capture the true mean and covariance of the given distribution and then passing the

mean and covariances of estimated states through a nonlinear transformation. As a

result UKF is capable of estimating the posterior mean and covariances accurately

* Part of this chapter is reprinted with permission from “Process Monitoring and Pa-
rameter Estimation via Unscented Kalman Filtering” by C. Qu and J. Hahn, 2009. Journal

of Loss Prevention in the Process Industries, doi:10.1016/j.jlp.2008.07.012, Copyright [2009]
by Elsevier.
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to a high order. Despite UKF’s potential for good performance for state and pa-

rameter estimation, only few applications in chemical engineering have been reported

[94][39][40].

This chapter investigates advantages and disadvantages of UKF for nonlinear

state and parameter estimation and presents a detailed comparison between several

state estimation methodologies with a specific emphasis on unscented Kalman filtering

as it is a relatively new technique. Each filter has been applied to a CSTR with

exothermal irreversible reaction [18] for a variety of scenarios. The case studies show

that for a reasonably small sampling time UKF performs as well as EKF. For some

applications where a Jacobian matrix is not easy to obtain, UKF may be preferable

because the derivation of a Jacobian matrix is not required. Moreover, for applications

where the sampling time is rather large it was found that UKF may provide an

acceptable performance whereas the same has not been true for EKF. In terms of

process monitoring for systems with constraints, UKF as well as EKF have limitations

for computing an estimate. However, these limitations were found to be negligible

for UKF if physically realistic values of the covariance estimates are used.

This chapter is organized as follows: The UKF algorithm for nonlinear estimation

is presented in Section B. Section C compares the performance of each filter for state

and parameter estimation and concluding remarks are given in Section D.

B. Process Monitoring via Unscented Kalman Filter

An unscented Kalman filter is the application of the unscented transformation

to recursive estimation. The main idea behind UKF is to use an unscented trans-

formation to address the deficiencies of linearization by providing a mechanism for

transforming means and covariances information. In the unscented transformation
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procedure, a set of weighed sigma points are deterministically chosen such that cer-

tain properties of these points (e.g., a given mean and covariance) match those of the

prior distribution. These sigma points are propagated through a nonlinear mapping

and then weighted means and covariances are computed. One approach to determine

a set of sigma points that have the same first two moments and all higher odd-ordered

central moments as the given distribution is given by the following:

1. Augment the system state vector to an na = n + q + r dimensional vector

xa = [xT wT vT ]T to obtain its augmented mean and covariance,

x̂a
k−1|k−1 =













x̂k−1|k−1

0q×1

0r×1













P a
k−1|k−1 =













Pk−1|k−1 0n×q 0n×r

0q×n Qk−1 Pwv
k−1

0r×n P vw
k−1 Rk−1













(3.1)

where n is the dimension of original state vector, q and r are the dimensions of the

original system and measurement noise vectors, respectively and P vw
k−1 and Pwv

k−1 are

the correlations between the system and measurement noise. For ease of computation,

P vw
k−1 and Pwv

k−1 are usually set to zero.

2. Generate a set of 2na + 1 symmetric sigma points

χa
k−1 = X̂a

k−1|k−1 +

(

0
√

(na + κ)P a
k−1|k−1 −

√

(na + κ)P a
k−1|k−1

)

(3.2)

where X̂a
k−1|k−1 is the expanded na × (2na + 1) matrix with x̂a

k−1|k−1 as each column.

The means are the center points of the set. The reminder of the set is symmetrically

located around the means with a distance of the square root of the covariances. κ ∈ ℜ

is a parameter which determines how far the symmetrical 2na points are placed from
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the center point and provides flexibility to fine tune the higher order moments of the

approximation. The more higher order moments are taken into account, the less the

overall prediction error will be [52]. A useful heuristic is to select na + κ = 3 if x(k)

follows a Gaussian distribution.

After a set of sigma points is selected, each of them is propagated through the

nonlinear model functions f(.) and h(.). Weighted means and covariances are then

computed from the transformed set of points. In the final step, the Kalman filter

gain is calculated from the covariances and the predicted states are updated based

on the available measurements. This procedure results in the equations defining the

unscented Kalman filter as follows:

Prediction equations:

χx
k = f(χx

k−1, χ
w
k−1, uk−1)

x̂k|k−1 =
2na+1
∑

i=1

Wiχ
x
i,k

γk = h(χx
k, χ

v
k−1, uk)

ŷk =
2na+1
∑

i=1

Wiγi,k

(3.3)
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Update equations:

Pk|k−1 =
2na+1
∑

i=1

Wi[χ
x
i,k − x̂k|k−1][χ

x
i,k − x̂k|k−1]

T (3.4)

Py,k =
2na+1
∑

i=1

Wi[γi,k − ŷk][γi,k − ŷk]
T (3.5)

Pxy,k =
2na+1
∑

i=1

Wi[χ
x
i,k − x̂k|k−1][γi,k − ŷk]

T (3.6)

Kk = Pxy,kP
−1
y,k (3.7)

Pk|k = Pk|k−1 − KkPy,kK
T
k (3.8)

x̂k|k = x̂k|k−1 + Kk(yk − ŷk) (3.9)

where χa = [(χx)T
1×n (χw)T

1×q (χv)T
1×r]

T and Wi are weights as given by Eq. (3.10)

Wi =











κ
2(na+κ)

, if i=1;

1
2(na+κ)

, otherwise.
(3.10)

It is worth noting that if process noise or observation noise enter the system

and measurements linearly, the system states and the covariance matrix need not be

augmented as shown in Eq. (5.16). However, Q and R are then added linearly to Eq.

(5.17) and (5.1), respectively.

The most computationally expensive operation of the UKF procedure corre-

sponds to calculating the new set of sigma points at each time update. This task

requires computing a matrix square-root of the state covariance matrix, P = SST .

Since computing the square-root of P is an integral part of the UKF, Merwe and

Wan [68] developed the square root UKF (SR-UKF), which makes use of three linear

algebra techniques: QR decomposition, Cholesky factor updating and least squares

computation. In the SR-UKF implementation, S is propagated directly, which avoids

refactorization of P at each time step. This improved numerical algorithm can alter-
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natively be used for UKF.

The properties that a set of sigma points can capture are not limited to the first

two moments because the unscented transformation offers flexibility to allow more

information than mean and covariance to be incorporated. Algorithms that capture

the first four moments of a Gaussian distribution and the first three moments of an

arbitrary distribution have been presented in [52] [?]. Lerner and Tenne also provide

results for capturing higher order moments [165][166].

C. Case Studies

To compare the performance of UKF against LKF, EKF and MHE, all algorithms

have been applied to a variety of models and a large number of scenarios such as

different operating conditions, different tuning parameters Q and R, and different

levels of process and measurement noise. This section presents three representative

case studies for models with mild nonlinearity, severe nonlinearity and one for a

constrained problem. The choice of these three examples highlights observations that

have been made about the estimators.

50 Monte Carlo simulations were carried out for each case. Direct numerical

integration was used to compute the predicted states for EKF and the transformed

points for UKF in order to reduce estimation errors. Additionally, the Jacobian

matrices A were directly computed from numerical integration for EKF as this leads

to a significant increase in accuracy.

The performance is evaluated using the overall mean-squared error (MSE). The

MSE is first averaged over all simulations for each time point and then over time to

indicate the long-term behavior of each estimator and the distributions of errors over

time.
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1. CSTR with Exothermic Irreversible Reaction

The model for this case study is a nonisothermal continuous stirred tank reactor

which involves coolant jacket dynamics, where the following exothermic irreversible

reaction between sodium thiosulfate and hydrogen peroxide is taking place:

2Na2S2O3 + 4H2O2 → Na2S3O6 + Na2SO4 + 4H2O (3.11)

The capital letters A and B are used to denote the chemical compounds Na2S2O3 and

H2O2 in the following. The reaction kinetic law is reported in the literature to be

[167]:

−rA = k0e
−E/RT CACB

where k0 is the pre-exponential factor, E is the activation energy, R is the gas constant,

T is the temperature, and CA and CB are the concentrations of species A and B,

respectively. A stoichiometric proportion of species A and B in the feed stream is

assumed which results in CB(t) = 2CA(t). A mole balance for species A and energy

balances for the reactor and the cooling jacket result in the following nonlinear process

model:

dCA

dt
=

F

V
(CAin − CA) − 2k(T )C2

A

dT

dt
=

F

V
(Tin − T ) + 2

(−∆H)R

ρcp

k(T )C2
A − UA

V ρcp

(T − Tj)

dTj

dt
=

Fw

Vw

(Tjin − Tj) +
UA

Vwρwcpw

(T − Tj)

(3.12)

where F is the feed flow rate, V is the volume of the reactor, CAin is the inlet feed

concentration, Tin is the inlet feed temperature, Fw is the feed flow rate of the cooling

jacket, Vw is the volume of the cooling jacket, Tjin is the inlet coolant temperature, cp

is the heat capacity of the reacting mixture, cpw is the heat capacity of the coolant,
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ρ is the density of the reaction mixture, ρw is the density of the coolant, U is the

overall heat-transfer coefficient, and A is the area over which the heat is transferred.

The process parameter values are given in the work by Rajaraman et al. [16].

The nonlinear model without process noise exhibits multiple steady states, of

which the upper steady state (CAss = 0.019mol/L; Tss = 384.0 K; Tjs = 371.3 K;

Fw = 30L/min) is chosen as the point of operation. This is also used as the nominal

point for scaling the process variables to make them dimensionless. A plot of steady

states CA, T and Tj as a function of input feed rate Fw, shown in Figure 4 reveals that

the system exhibits mild linearity at Point A. Although the system may exhibit severe

nonlinearities at Point B where Fw = 225L/min, the operating temperature would

be below the freezing point, which is not realistic in plant operations. Therefore the

performance of each filter is investigated only over the mild nonlinear point A in the

case study.

Process and observation noise are assumed to enter the system linearly. A discrete

model of the form

xk = f(xk−1, uk−1) + Gwk−1

yk = Cxk + vk (3.13)

is obtained from Eq. (4.13), where xk =

[

CA T Tj

]T

, wk−1 ∼ N (0, Qk−1) and

vk ∼ N (0, Rk) are zero mean Gaussian noise and ∆t = 0.012 is used for discretizing

the systems. The third state Tj is chosen as the only measurable state in this case

study.
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Fig. 4. Steady States as a Function of Reactor Feed Rate for the Nonisothermal Re-

actor.

The remaining EKF and UKF filter parameters before scaling are

x̂0 =

[

0.018 382 371.3

]T

, R0 = 2.5 and κ = −4,

P̂0 =













10−8 0 0

0 0.25 0

0 0 0.25













, Q0 =













10−8 0 0

0 0.25 0

0 0 0.25













. (3.14)

For fairness of comparison, κ is not further adjusted to fine tune the higher order

moments of the approximation for improvement of UKF performance.
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Different simulation tests are carried out with different measurement noise pa-

rameters. Table II lists the MSE values and computation times for varying measure-

ment noise levels. The nonlinear system behavior and the performance of each filter

for R = 10−4 are shown in Figure 5.

Table II. MSEs/Computation Time by Varying Measurement Noise Levels for an

Exothermic Reaction

R = 10−6 R = 10−4 R = 10−2

MSE EKF 4.331 × 10−4 6.187 × 10−4 3.940 × 10−3

UKF 4.321 × 10−4 6.194 × 10−4 3.862 × 10−3

% Difference 0.23 0.12 2.02

Computation EKF 2.03 2.05 2.07

Time UKF 16.57 16.32 16.21

As shown in Table II and Figure 5, UKF results in a comparable accuracy to

EKF. This may be due to system being close to a linear system around the operating

point such that EKF is able to sufficiently correct its predictions from the measure-

ments. Additionally, the kurtosis and higher order moments are negligible since the

magnitudes of the covariance estimates are significantly smaller than unity. Therefore

UKF may not fully utilize its potential for a mildly nonlinear scenario. Computation

cost-wise, both algorithms are acceptable, even though UKF requires approximately

an order of magnitude more computation time than EKF because a transformation of

15 sigma points is required at each time step compared to one integration performed

for EKF.

In the case study it is assumed that the initial conditions of the unmeasured

states are not precisely known. Therefore, there are offsets for the first two states by
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Fig. 5. Performance Comparison for Mildly Nonlinear CSTR.

using LKF. However, UKF exhibits the ability of tracking the system behavior and

provide rather good estimates for the system states.

A simulation evaluating UKF’s implementation for parameter estimation is also

performed. The product of the heat transfer coefficient and the heat transfer area

UA = 4.8 × 10−6J/s.K is considered as the parameter to be estimated. The filter

parameters are the same as shown in Eq. (4.18). At time = 150 there is a sudden

change in the heat transfer coefficient UA. Figure 6 illustrates the performance of

LKF, EKF and UKF for estimating the heat transfer coefficient. Both UKF and

EKF perform comparably well. The difference in the results achieved by these two
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estimators is again minor because the system does not exhibit a strong degree of

nonlinearity. However, there is a significant difference between the results computed

from EKF, UKF and those returned by LKF.

0 50 100 150 200 250 300 350 400
0.8

1

1.2

1.4
C

A

0 50 100 150 200 250 300 350 400
0.98

1

1.02

T

0 50 100 150 200 250 300 350 400
0.9

1

1.1

1.2

T
j

0 50 100 150 200 250 300 350 400
−5

0

5

10

U
A

t

Simulaton Data

EKF

LKF

UKF

Fig. 6. Performance Comparison for State and Parameter Estimation.

2. Production of Cyclopentanol in a CSTR with van de Vusse Reaction.

In this section performance of UKF and EKF is evaluated for a highly nonlinear

system. An isothermal nonlinear CSTR is considered with a competing side reaction
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governed by van de Vusse reaction kinetics [168]:

A
k1−→ B

k2→ C

2A
k3→ D.

(3.15)

Component A is the the reactant cyclopentadiene, B is the product cyclopentanol,

C and D are the side products cyclopentandiol and dicylopentadiene. The nonlinear

system model is given by the following three differential equations:

dCA

dt
=

u

V
(CAin − CA) − k1e

−E1/RT CA − k3e
−E3/RT C2

A (3.16)

dCB

dt
= − u

V
CB + k1e

−E1/RT CA − k2e
−E2/RT CB (3.17)

dT

dt
=

1

ρcp

[k1e
−E1/RT CA(−∆H1) + k2e

−E2/RT CB(−∆H2) (3.18)

+ k3e
−E3/RT C2

A(−∆H3)] +
u

V
(Tin − T ) +

Q

V ρcp

where the feed flow rate u is the only controlled variable. The values of the parameters

can be found in Tables III and IV [169].

Table III. The Values of the Parameters: Part I

Variable Value

k1 1.287 × 1012h−1

k2 1.287 × 1012h−1

k3 9.043 × 109h−1/(mol h)

E1/R 9758.3 K

E2/R 9758.3 K

E3/R 8560.0 K

The nonlinear model exhibits multiple steady states, of which the upper steady
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Table IV. The Values of the Parameters: Part II

Variable Value

∆H1 4.2 kJ/mol

∆H2 -11.0 kJ/mol

∆H3 -41.85 kJ/mol

CA,Feed 5.1 mol/L

TFeed 403.15 K

V 10.0 L

Q -4496 kJ/h

ρ 0.9342 kg/L

cp 3.01 kJ/(kg K)

state (CAss = 2.4946mol/L; CBss = 1.1004mol/L; Tss = 411.08 K; u = 800L/h) is

chosen as the point of operation. A plot (Figure 7) of steady states CA, CB and T

as a function of input feed rate u reveals regions where the system exhibits stability

(for example, point A) or instability (for example, point B). Parameters for the two

operating points are point A ( CA,ss = 2.4946mol/L; CB,ss = 1.1004mol/L; Tss =

411.08 K; uss = 800.0 L/h) and point B ( CA,ss = 1.0562mol/L; CB,ss = 0.8123mol/L;

Tss = 399.02 K; uss = 92.5 L/h).

In this case study, the system and measurement noise are again assumed to

appear linearly. Discretization of continuous differential equations is implemented

using finite differences with ∆t = 0.002. The measurable variables are assumed to

be the concentration of B and the reactor temperature T . Initial conditions x̂0 =
[

2.5 1.09 411.2

]T

. All process variables were scaled to be dimensionless using

the upper steady state as the nominal point.
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The remaining filter parameters after scaling are given by

P̂0 = diag{10−4, 10−4, 10−4} (3.19)

Q = diag{10−4, 10−4, 10−4} (3.20)

R = diag{10−6, 10−6}, (3.21)

κ = −4. (3.22)

Several simulation tests were conducted for different scenarios. Table V lists the

MSEs generated by EKF and UKF when the system is subjected to different mea-

surement noise levels. UKF outperforms EKF in this case as is illustrated in Figure
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Table V. MSEs/Computation Time by Varying Measurement Noise Levels for the Van

de Vusse Reactor

R = 10−6 R = 10−4 R = 10−2

MSE EKF 1.978 × 10−4 0.0023 0.0173

UKF 1.984 × 10−4 0.0014 0.0134

% Difference 0.40 39.13 22.54

Computation EKF 1.57 1.58 1.57

Time UKF 15.42 15.28 15.64

8, which shows the performance of EKF and UKF when the measurement noise level

is set to R = 10−2. Similar performance is found when R = 10−4. UKF outperforms

EKF when the measurement noise level is comparable to or larger than the process

noise, because the filters put more emphasis on the model as the measurement noise

increases.

3. A Batch Reactor

It should be noted that some of the states of the investigated CSTR reactor mod-

els may be subject to constraints, for example, concentrations can not be negative.

As neither EKF or UKF can directly deal with constraints, it is warranted to also

perform a comparison with MHE. The following reversible gas phase reactions are

taking place in a batch reactor [93]:

A
k1

⇋
k2

B + C

2B
k3

⇋
k4

C

(3.23)

The first principles model for a well-mixed, constant volume, isothermal batch
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reactor is given by the following equations:

dCA

dt
= −k1CA + k2CBCC (3.24)

dCB

dt
= k1CA − k2CBCC − 2k3C

2
B + 2k4CC (3.25)

dCC

dt
= k1CA − k2CBCC + k3C

2
B − k4CC (3.26)

where Cj denotes the concentration of species j and [k1 k2 k3 k4] = [0.5 0.05 0.2 0.01].

The states are defined as x = [CA CB Cc]
T and the measurement is the pressure which

is given by y = [RT RT RT ]x. RT = 32.84mol atm/L for the case study. A non-

negative constraint is enforced on the concentrations at each time step, k. Scaling

is not performed given that all the states are concentrations, whose values have the
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same order of magnitude.

The initial values and filter parameters for state estimation are

∆t = tk+1 − tk = 0.25, (3.27)

x0 = [0.5 0.05 0]T , (3.28)

x̂0 = [0 0 4]T , (3.29)

P̂0 = diag(0.52, 0.52, 0.52), (3.30)

Q0 = diag(0.0012, 0.0012, 0.0012), (3.31)

R0 = 0.252, (3.32)

κ = −4, N = 3

Figure 9 illustrates the estimation results of UKF and EKF as compared to MHE. The
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solid line represents the system behavior. The dotted line shows the UKF estimates

while the EKF results are illustrated by the dashed line. Neither UKE nor EKF

converge to the correct state estimates due to their inability to handle constraints.

The results using MHE are shown in Figure 10. MHE converges to the correct state

values since the state constraints prevent estimation of negative concentrations. It can

be concluded that both UKF and EKF may have limitations for computing reasonably

good estimates when constraints exist.

D. Conclusions

This chapter presents a comprehensive comparison of UKF with traditional es-

timation techniques such as LKF, EKF and MHE. It can be seen that the unscented

Kalman filter provides a good estimate of the states and parameters and is compa-
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rable in performance to EKF when system nonlinearities are not significant. UKF

outperforms EKF when severe nonlinearities exist and the measurement noise levels

are high.

Additionally, when the structures of the process and measurement functions are

not differentiable or are discontinuous, UKF also offers a benefit because it does not

require to calculate Jacobian matrices. It should be noted that both EKF and UKF

may fail to converge to the true values of the states for constrained problems; MHE

may be a better option for constrained problems, however, MHE results in a higher

computational burden.
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CHAPTER IV

COMPUTATION OF ARRIVAL COSTS FOR MOVING HORIZON

ESTIMATION VIA UNSCENTED KALMAN FILTERING*

A. Introduction

For the last two decades, full information estimation (FIE) or optimization-based

moving horizon estimation (MHE) have been used in state estimation, data recon-

ciliation and fault detection for nonlinear constrained problems. Many applications

of this approach have been investigated [104], [170], [93]. MHE reduces the compu-

tational burden as compared to FIE by considering a finite horizon of the available

measurements, however, it is non-trivial to summarize the effect of the discarded data

on the current states, which is the so called arrival cost. For linear unconstrained

systems, the Kalman filter covariance can be used to express arrival cost explicitly.

However, for nonlinear or constrained systems, a general analytical expression for the

arrival cost is rarely available. Tenny and Rawlings [103] estimate the arrival cost

by approximating the constrained, nonlinear system as an unconstrained linear time-

varying system and applying linearization and standard Kalman Filter. However, this

approximation may not be ideal for computing the arrival cost. The best choice of

the arrival cost still remains an open issue.

Unscented Kalman filters (UKF), as proposed by Julier and Uhlman [41], avoid

the linearization in the Kalman filter update formula by an unscented nonlinear trans-

formation. By carefully choosing a set of sigma points, which capture the true mean

* Part of this chapter is reprinted with permission from “Computation of Ar-
rival Costs for Moving Horizon Estimation via Unscented Kalman Filtering” by
C. Qu and J. Hahn, 2009. Journal of Process Control, Vol. 19, No. 2, pp. 358-363,
doi:10.1016/j.jprocont.2008.04.005, Copyright [2009] by Elsevier.
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and covariance of the given distribution and then passing the mean and covariances

of estimated states through a nonlinear transformation, UKF is capable of estimating

the posterior mean and covariances accurately to an order higher than two. Therefore,

UKF can improve the Kalman filter performance in nonlinear estimation. Because

of its potential for good performance in nonlinear estimation, a MHE filter based on

UKF, which is employed to approximate the arrival cost, is proposed in this paper

and its performance is illustrated.

The chapter is organized as follows: The MHE with arrival cost determined

by UKF for nonlinear constrained estimation is proposed in Section B. Section C

compares the performance of the MHE via EKF to that via UKF for nonlinear state

estimation and lastly concluding remarks are given in Section D.

B. Moving Horizon Estimation via Unscented Transformation

As mentioned in Chapter II, algebraic expressions for the arrival cost, which

account for data not included in the estimation window, are not available for the

majority of systems. Therefore an approximation of the arrival cost is required to

implement an estimator.

The main idea behind the presented MHE algorithm is to make use of the advan-

tages that UKF offers over EKF for approximating the arrival cost. A set of weighted

sigma points χk are selected for computing the arrival cost based on two consider-

ations: Firstly the means and covariances of the set of sigma points need to match

those of the prior distribution at time k = T − N in the absence of active bounds.

Secondly the distribution of the selected sigma points should be within the feasible

region if bounds are active. If sk,i = ±(
√

P a
k|k)i, i = 1, ..., n are considered as the

directions along which the sigma points are selected and rk,i as the step sizes along
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these directions, then the step sizes for the selected sigma points in Eq.(??) for a

general UKF are all equal to
√

na + κ. In other words all the sigma points chosen are

located symmetrically around the current estimate. This selection of sigma points

can be applied to the MHE via UKF when the constraints are inactive. However,

such selection is not adequate when constraints are active. To better approximate

the covariance and then the arrival cost in the presence of active constraints, the set

of sigma points is chosen in each direction with a step size of

rk,i = min(
√

na + κ, (xU,i − x̂a
k|k,i)/sk,i, (xL,i − x̂a

k|k,i)/sk,i). (4.1)

where xU,i and xL,i are the upper and lower bounds in the direction sk,i. The central

point x̂a
k|k,0 is the same as in the general UKF formulation. The rest of selected

sigma points may be asymmetrically around the central point due to the presence of

active constraints. These sigma points are identical to those for conventional UKF

for an unconstrained problem or if the constraints are not active. However, under

the condition that the current estimate is close to the bounds, the selection process

takes the constraints into account so that none of the selected sigma points violate

the constraints on the state variables.

Considering that weights of all sigma points sum up to unity and that these are

the same as those for UKF in Eq.(3.10) in the absence of active bounds, i.e.,

a

2n
∑

i=1

θi + (2n + 1)b = 1

a
√

n + κ + b =
1

2(n + κ)
,

(4.2)
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weights Wi for each sigma point can be calculated as follows:

Wi =











κ
2(na+κ)

, if i=1;

ari + b, otherwise.
(4.3)

where

a =
2κ − 1

2(na + κ)(Sr − (2na + 1)(
√

na + κ))

b =
1

2(na + κ)
− 2κ − 1

2
√

na + κ(Sr − (2na + 1)(
√

na + κ))

Sr =
2na

∑

i=1

ri.

(4.4)

The procedure to compute the weights with constraints is similar to the work pre-

sented by Vachhani et al. [62], where a complete mathematical derivation of the

weight equations albeit for different purposes can be found.

After a set of sigma points is obtained, each of these sigma points is instantiated

through the nonlinear model functions f(.) and h(.) to obtain the transformed sets

χx
k and γk.

χx
k = f(χx

k−1, χ
w
k−1, uk−1)

γk = h(χx
k, χ

v
k−1, uk)

(4.5)

The weighted means of system states and measurements and weighted covari-

ances of process and observation noise are then computed from the transformed sets.

It should be noted that the weighted predicted estimates x̂k|k−1 may not satisfy the
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constraints.

x̂k|k−1 =
2na+1
∑

i=1

Wiχ
x
i,k

ŷk =
2na+1
∑

i=1

Wiγi,k

Pk|k−1 =
2na+1
∑

i=1

Wi[χ
x
i,k − x̂k|k−1][χ

x
i,k − x̂k|k−1]

T

Py,k =
2na+1
∑

i=1

Wi[γi,k − ŷk][γi,k − ŷk]
T

Pxy,k =
2na+1
∑

i=1

Wi[χ
x
i,k − x̂k|k−1][γi,k − ŷk]

T

(4.6)

Finally the matrix Pk is calculated from the filter gain and is used to compute

the arrival cost in Eq.(4.7). The MHE problem described in the Eq.(2.14) and (2.15)

is solved with the approximated arrival cost to obtain the updated estimates x̂k|k as

the solutions:

Kk = Pxy,kP
−1
y,k

Pk|k = Pk|k−1 − KkPy,kK
T
k

θk(z) = (z − x̂k)
′P−1

k (z − x̂k) + φ∗
k

(4.7)

The proposed approach to approximate the arrival cost for MHE does not require

linearization of the system and measurement functions. As in any MHE filter, the

matrices Q and R can be chosen to take uncertainty in the model and measurement

noise into account and the size of the estimation horizon serves as an additional tuning

parameter.
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C. Case Studies

To illustrate the performance of MHE based on UKF (uMHE) compared against

the one based on EKF (eMHE), both algorithms have been applied to a variety of

models and a large number of scenarios such as different operating conditions, differ-

ent tuning parameters Q and R, and different process and measurement noise. This

section revisits the case studies in Chapter III and shows the performance of uMHE

as compared to eMHE. Monte Carlo simulations with 50 sample points have been

conduct for each procedure so as not to bias results to one set of data. The perfor-

mance is evaluated by the overall mean-squared error (MSE). MSE is first averaged

over all simulations for each time point and then over time to to take the behavior

over the entire time horizon into account. Numerical algorithms for minimizing or

maximizing a function provided by commercial software NAG c© are used for solving

MHEs.

1. A Batch Reactor

In this section, the gas phase reversible reactions in the following are revisited

[93].

A
k1

⇋
k2

B + C

2B
k3

⇋
k4

C

(4.8)

The first principle model for a well-mixed, constant volume, isothermal batch
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reactor is described by the following equations:

dCA

dt
= −k1CA + k2CBCC (4.9)

dCB

dt
= k1CA − k2CBCC − 2k3C

2
B + 2k4CC (4.10)

dCC

dt
= k1CA − k2CBCC + k3C

2
B − k4CC (4.11)

where Cj denotes the concentration of species j, [k1 k2 k3 k4] = [0.5 0.05 0.2 0.01].

The state is defined to be x = [CA CB Cc]
T and the measurement y = [RT RT RT ]x.

It is assumed that the ideal gas law holds (high temperature and low pressure).

The initial values and filter parameters for state estimation are

∆t = tk+1 − tk = 0.25

x0 = [0.5 0.05 0]T

x̂0 = [0 0 4]T

P̂0 = diag(0.52, 0.52, 0.52)

Q0 = diag(0.0012, 0.0012, 0.0012)

R0 = 0.252, κ = −4, N = 3

The performance of MHE via either EKF or UKF is presented in Figure 11.

As a comparison to the performance of EKF and UKF in Chapter III, Both MHE

approaches converge to the true state estimates after the state constraints are ap-

plied to prevent estimation of negative concentrations. The MSE error of uMHE is

0.0067 while eMHE generates a MSE error of 0.0133. uMHE provides slightly better

performance than eMHE does.
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2. CSTR with Exothermal Irreversible Reaction

The model of this section is the nonisothermal continuous stirred tank reactor

with coolant jacket dynamics, where the following exothermic irreversible reaction

between sodium thiosulfate and hydrogen peroxide is taking place:

2Na2S2O3 + 4H2O2 → Na2S3O6 + Na2SO4 + 4H2O (4.12)

The capital letters A and B are used to denote the chemical compounds Na2S2O3 and

H2O2 in the following. The reaction kinetic law is reported in the literature to be
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[167]:

−rA = k0e
−E/RT CACB

where k0 is the pre-exponential factor, E is the activation energy, R is the gas constant,

T is the temperature, and CA and CB are the concentrations of species A and B,

respectively. A stoichiometric proportion of species A and B in the feed stream is

assumed which results in CB(t) = 2CA(t). A mole balance for species A and energy

balances for the reactor and the cooling jacket result in the following nonlinear process

model:

dCA

dt
=

F

V
(CAin − CA) − 2k(T )C2

A

dT

dt
=

F

V
(Tin − T ) + 2

(−∆H)R

ρcp

k(T )C2
A − UA

V ρcp

(T − Tj)

dTj

dt
=

Fw

V
(Tjin − Tj) +

UA

Vwρwcpw

(T − Tj)

(4.13)

where F is the feed flow rate, V is the volume of the reactor, CAin is the inlet feed

concentration, Tin is the inlet feed temperature, Fw is the feed flow rate of the cooling

jacket, Vw is the volume of the cooling jacket, Tjin is the inlet coolant temperature, cp

is the heat capacity of the reacting mixture, cpw is the heat capacity of the coolant,

ρ is the density of the reaction mixture, ρw is the density of the coolant, U is the

overall heat-transfer coefficient, and A is the area over which the heat is transferred.

The process parameter values are given in the work by Rajaraman et al. [16].

The nonlinear model without process noise exhibits multiple steady states, of

which the upper steady state (i.e. CAss = 0.019mol/L; Tss = 384.0 K; Tjs = 371.3

K; Fw = 30L/min) is chosen as the point of operation.

Process and observation noise are assumed to enter the system linearly. By
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discretizing the system model in (4.13), a discrete model of the form

xk = f(xk−1, uk−1, k − 1) + Gwk−1

yk = Cxk + vk (4.14)

is obtained, where xk =

[

CA T Tj

]T

, wk−1 ∼ N (0, Qk−1) and vk ∼ N (0, Rk) are

zero mean Gaussian noise and a sampling rate of 1.4Hz is used. The third state Tj is

chosen as the only measurable state in this case.
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The initial conditions and filter parameters are as follows:

x̂0 =

[

0.018 382 371.3

]T

, (4.15)

P̂0 = diag{10−7, 2.5, 2.5}, (4.16)

Q0 = diag{10−8, 0.25, 0.25}, (4.17)

R0 = 0.25. (4.18)
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The dimension of the augmented state vector is 7 and the set of sigma points is
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Fig. 13. Performance Comparison of uMHE and eMHE (N=6, R=0.25)

composed of 15 elements. The additional tuning parameter of the UKF, κ, is set to

−4 for the case study according to the heuristic mentioned in Section B. For fairness

of comparison, κ is not further adjusted to fine tune the higher order moments of the

approximation. A non-negative constraint is enforced on the concentration CA for

both MHE formulations.

Figure 12 illustrates the system behavior and the performance of the uMHE and

the eMHE with a horizon length set to 3 for one simulation. Based on the overall

mean-squared error, the performance of each MHE is evaluated for horizon lengths

N=3, 4, 6, and 10. Figure 13 shows the performance for N=6 and R=0.25, where

both MHEs perform similarly well.

Further simulations have also been carried out by varying measurement noise

parameters for a fixed horizon length. Figure 14 presents the performance of eMHE
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Table VI. MSEs Comparison for uMHE & eMHE by Varying Measurement Noise Lev-

els and Horizon Lengths for an Exothermic Reaction

N=3 N=4 N=6 N=10

MSE
eMHE uMHE eMHE uMHE eMHE uMHE eMHE uMHE

R = 25 8.45 5.64 5.56 4.94 5.14 4.76 2.66 2.52

R = 0.25 2.69 1.45 1.43 1.21 0.89 0.84 0.87 0.70

R = 0.01 1.01 0.86 0.80 0.78 0.59 0.56 0.48 0.45

and uMHE with R0 = 25, N = 3, while the results when process noise dominates

(R0 = 0.01, N = 3) are shown in Figure 15. Both of the figures demonstrate that

uMHE performs slightly better than eMHE.
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Table VI provides a summary of the results by varying measurement noise pa-

rameters and horizon lengths. It can be seen that uMHE performs better than eMHE



67

0 10 20 30 40 50 60
0.018

0.02

0.022

C
A

0 10 20 30 40 50 60
380

382

384

386

T

0 10 20 30 40 50 60
368

370

372

374

T
j

t

System

ukfMHE

ekfMHE

Fig. 15. Performance with Small Measurement Noise(N=3, R=0.01)

for all the investigated horizon lengths and measurement noise levels. The MSEs for

both uMHE and eMHE are decreasing with increasing lengths of the horizons, i.e,

the performance of both uMHE and eMHE improves as more data are included in

a horizon. If N is chosen to be large, the arrival cost could be accurately computed

with either approach. Therefore the advantages of uMHE over eMHE decrease for

large N.

Table VII presents the computation time for eMHE and uMHE for varying mea-

surement noise levels and horizon lengths. Since the computation time depends upon

the specific algorithm used for implementing a MHE, all shown results are scaled

by the time required for eMHE, N=3, R=0.25. As the horizon length increases, the

computational burden increases. When comparing computation times for uMHE and

eMHE, no clear trend can be observed.

The MSEs for MHE without arrival cost are shown in Table VIII. As com-
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Table VII. Computation Cost for uMHE & eMHE by Varying Measurement Noise

Levels and Horizon Lengths for an Exothermic Reaction

Computation N=3 N=4 N=6 N=10

Ratio
eMHE uMHE eMHE uMHE eMHE uMHE eMHE uMHE

R = 25 1 1.05 1.86 1.97 4.37 3.93 9.97 9.87

R = 0.25 1.97 2.60 2.85 2.87 5.91 5.57 10.12 11.06

R = 0.01 1.03 0.92 2.28 2.21 8.93 10.24 13.99 18.47

pared to uMHE and eMHE, MHE without arrival cost generates significantly large

MSEs. Therefore approximating arrival cost is important for obtaining a good MHE

performance.

Table VIII. MSEs Comparison for uMHE & eMHE by Varying Measurement Noise

Levels for an Exothermic Reaction

R = 25 R = 0.25 R = 0.01

MHE w/o arrival cost 16.991 8.5659 2.2010

eMHE 3.8349 2.2187 0.8516

uMHE 2.9231 1.1557 0.6553

3. Production of Cyclopentanol in a CSTR with van de Vusse Reaction.

In this section, the performance of the eMHE and the uMHE is evaluated on

an isothermal, perfectly mixed, nonlinear CSTR with a myriad of competing side

reactions governed by the van de Vusse reaction kinetics shown in equation (5.30)
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[169]

A
k1−→ B

k2→ C

2A
k3→ D

(4.19)

Component A is the the reactant cyclopentadiene, B is the product cyclopentanol, C

and D are the side products cyclopentandiol and dicylopentadiene. Three differential

equations given by eq.(5.31)–(5.33) describe the nonlinear system model.

dCA

dt
=

u

V
(CAin − CA) − k1e

−E1/RT CA − k3e
−E3/RT C2

A (4.20)

dCB

dt
= − u

V
CB + k1e

−E1/RT CA − k2e
−E2/RT CB (4.21)

dT

dt
=

1

ρcp

[k1e
−E1/RT CA(−∆H1) + k2e

−E2/RT CB(−∆H2) (4.22)

+ k3e
−E3/RT C2

A(−∆H3)] +
u

V
(Tin − T ) +

Q

V ρcp

where the feed flow rate u is the only controlled variable. The measurable variables

are assumed to be the concentration of B and the reactor temperature T . The values

of the parameters can be found by Hahn and Edgar [169].

The nonlinear model exhibits multiple steady states. A plot of steady states CA,

CB and T as a function of input feed rate u (Figure 16) reveals regions where the

system exhibits stability (for example, point A) or instability (for example, point B).

Steady states of each operating point are listed in Table IX.

In this case study, the system and measurement noise are again assumed to

appear linearly. Discretization of continuous differential equations is implemented

using finite differences with ∆t = 0.002. The measurable variables are assumed to be

the concentration of B and the reactor temperature T .
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Fig. 16. Steady States as a Function of Reactor Feed Rate for the van de Vusse Reactor

The initial conditions for operating point A, B and D are as follows

x̂A0 =

[

2.5 1.09 411.2

]T

, (4.23)

x̂B0 =

[

1.04 0.8 399

]T

, (4.24)

x̂D0 =

[

1.12 0.91 407.8

]T

. (4.25)
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Table IX. Parameters at Steady States for the van de Vusse Reactor

Point A Point B Point C Point D

CA (mol/L) 2.4946 1.0562 1.195 1.273

CB (mol/L) 1.1004 0.8123 0.877 0.9168

T (K) 411.08 399.02 387.9 407.9

u (L/h) 800 92.5 55.5 203.5

The remaining filter parameters are given by

P̂0 = diag{10−2, 10−2, 1}, (4.26)

Q = diag{10−4, 10−4, 1}, (4.27)

R = diag{10−4, 1}, (4.28)

κ = −4, N = 3. (4.29)

Table X. MSEs Comparison for uMHE & eMHE by Varying Input Rates for the van

de Vusse Reactor

eMHE uMHE

u = 800 1.2958 0.9480

u = 92.5 1.2595 1.1881

u = 203.5 0.7950 0.7682

u varies 0.9552 0.9434

Several simulation tests were conducted for different input rates. Table X lists

the MSEs generated by uMHE and eMHE when the system is subjected to different

input flowrate u. uMHE performs again insignificantly better than eMHE. This is
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Fig. 17. Performance Comparison of uMHE and eMHE (u=800)
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Fig. 18. Performance Comparison of uMHE and eMHE (u=92.5)

further illustrated by Figures 17 ∼ 19, which shows the performance of each filter

at the operating point A, B and D respectively. The performance of each filter is

further investigated by enlarging the operating region by operating between point D

and point C, where the sign of the first derivative of nonlinearities changed. At time

t = 50 when the input feed rate is decreased from 203.5 L/h to 55.5 L/h, the system

is driven from steady state D to steady state C. uMHE slightly outperforms eMHE

again with a MSE error of 0.9434 versus 0.9552.
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Fig. 19. Performance Comparison of uMHE and eMHE (u=203.5)

D. Conclusions

This chapter presented a MHE formulation where the arrival cost is computed

by UKF. The unscented transformation and a set of selected sigma points are used

to compute the covariances and then the arrival cost. The selection procedure for

the sigma points is the same as the one used for unscented Kalman filtering if the

constraints are inactive, however, a modification is used that satisfies the state variable

constraints when the constraints are active. Linearization of the model is not required

for the presented approach.

The presented method performed slightly better than the commonly used eMHE

for all investigated cases. Therefore, the method can be a promising alternative for

approximating the arrival cost for MHE.



74

CHAPTER V

INVESTIGATION OF DIFFERENT EXTENDED KALMAN FILTER

IMPLEMENTATIONS

A. Introduction

Extended Kalman filters have found wide-spread use in nonlinear state and pa-

rameter estimation. In order to apply Kalman filters to nonlinear systems, EKF uses a

first-order Taylor series expansion to linearize the nonlinear model along its trajectory

and assumes a Gaussian noise distribution. This inevitably leads to EKF’s limita-

tions when applied to nonlinear systems or non-Gaussian noise processes. Numerous

estimation methodologies have been proposed in the literature to address the prob-

lems that EKF encounters and comparisons between the presented new approaches

and EKF have often been made. To name a few, Rawlings and coworkers compared

moving horizon estimation (MHE) to EKF for estimation of constrained problem

and pointed out that EKF may fail to converge to the true values [93]. Chen et

al. investigated particle filtering (PF) performance in industrial batch processes and

compared the results to EKF [82]. Similar comparisons on a continuous stirred-tank

reactor (CSTR) were made by Chen and his coworkers [84]. In the area of unscented

Kalman filter (UKF) applications, Romanenko et al. applied EKF and UKF to a

nonlinear exothermic chemical CSTR [39] and a pH system [40]. The authors showed

improvements in the performance of UKF over EKF in both cases. Kandepu et al.

conducted comparisons between UKF and EKF for four cases including a Van der Pol

oscillator and a reversible reaction [171]. They also showed that the UKF performs

better than the EKF in terms of robustness and speed of convergence. Contrary to

some of these findings, the work by Qu and Hahn [61] found the difference between
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UKF and EKF to be minor for mildly nonlinear systems and the advantages of UKF

over EKF can be mainly seen for highly-nonlinear systems. It is evident from several

of these findings that only a few generally applicable conclusions can be drawn when

comparing different estimators. This is especially so as the implementation of an

estimator can affect its performance.

This work performs a detailed study of EKF implementations with a focus on

several key procedures such as discretization, first order linearization and computation

of the Jacobian matrix for nonlinear continuous-time model functions. Comparisons

among the implementations are made based upon a chemical reactor model with Van

de Vusse reaction kinetics.

This chapter is organized as follows. Section B presents different approaches

for EKF implementations. Remarkable notes on each of those methods are given in

Section C. Section D compares the performance of each EKF implementation based

upon application to a continuous stirred tank reactor exhibiting nonlinear dynamic

behavior. Concluding remarks are given in Section E.

B. Implementations of EKF

In order to implement an extended Kalman filter, attention has to be paid to

discretization and linearization of nonlinear continuous-time model along its trajec-

tory. The order in which discretization and linearization are performed may result in

differences in performance. The approach used for discretizing systems, such as Eu-

ler’s method or Runge-Kutta method, may also lead to different results. In addition,

computation of Jacobian matrices via sensitivity equations or via finite differences

affect the accuracy of EKF.

Taking these points into account, several different EKF implementations are
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discussed in this section. The reason for doing so is that when results for EKF and

other estimation methods are reported in the literature, there is often very little

discussion of the discretization scheme used, yet the choice of a discretization scheme

has a major effect on the outcome. In this work, the system model is assumed to be

a nonlinear continuous dynamic system with discrete measurements, such as the one

shown in Eqs. (B.6) - (2.9). The functions f and h are differentiable functions of the

state vector x, w ∈ R
n is a vector of plant noise, with E[w] = 0 and E[wwT ] = Q;

yk ∈ R
m is a vector of the measured variables and vk ∈ R

m is a vector of measurement

noise, with E[vk] = 0 and E[vkv
T
k ] = Rk; n is the number of states, m refers to the

number of measurement variables. The distributions of w and v are Gaussian. The

initial value x0 is also a Gaussian random variable with known mean x̄0 and known

n × n covariance matrix Px0
. The sampling time for measurements is T . x(t),u(t)

and w(t) are referred to x, u and w, respectively, in the rest of the chapter unless

specified.

1. Implementations via Linearization and Continuous KF for Covariance

Prediction

This algorithm (Algorithm 1) linearizes the model along its trajectory and then

predicts the covariance matrix P via continuous KF.

The state estimate x̂ is computed from the nonlinear differential equation, i.e.,

˙̂x = f(x̂, u)1 (5.1)

1Consider the first-order Taylor series expansion of f(x,u) about the current esti-
mate (i.e., conditional mean) x̂:

f(x, u) ∼= f(x̂, u) +
∂f

∂x

∣

∣

∣

∣

x=x̂

[x − x̂],
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The Jacobian matrix A(x̂) of f(x̂) is found to be

A(x̂) =













∂f1

∂x̂1

· · · ∂f1

∂x̂n

...
. . .

...

∂fm

∂x̂1

· · · ∂fm

∂x̂n













. (5.2)

The covariance matrix P is then propagated through the Lyapunov equation

Ṗ = A(x̂)P + PA(x̂)
′

+ GQG
′

. (5.3)

Since the initial values x̂0 and P0 are known, ODEs (5.1) ∼ (5.3) form an initial value

problem that can be solved using commercial ODE solvers such as Matlabr′
s ode45.

The predictions at any sampling point kT are given by

x̂(kT ) = x̂−
k , P (kT ) = P−

k . (5.4)

Since measurements are only available at the sampling time, the Kalman gain is

calculated based on the predicted discrete covariance:

Kk = P−
k H

′

k(HkP
−
k H

′

k + R)−1, where Hk =
∂h

∂x

∣

∣

∣

∣

x=x̂−
k

. (5.5)

In a last step, corrections are made based upon the predictions and the new

available measurement.

Pk = (I − KkHk)P
−
k (5.6)

x̂k = x̂−
k + Kk[yk − h(x̂−

k )]. (5.7)

Table XI provides a summary of this algorithm. In this algorithm, both mean

where x̂ is close to x. Taking the expectation of both sides of the above equation
gives

E{f(x, u)} = f(x̂, u),

Therefore the state estimate x̂ is predicted via ˙̂x = f(x̂, u).
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x̂ and covariance matrix P are solved in a continuous manner. The numerical solver

determines the step size for integration of x̂ and P during each sampling interval.

This increases the accuracy of integration compared to methods with a fixed step

size. This method produces an error resulting from linearization at each integration

step only.

Table XI. Summary of Procedure for Algorithm 1

Initialization x̂0 = x̄0, P0 = Px0

Prediction ˙̂x = f(x̂, u)

Ṗ = A(x̂)P + PA(x̂)
′
+ GQG

′
, where A(x̂) = ∂f

∂x

∣

∣

∣

x=x̂

x̂(kT ) = x̂−
k , P (kT ) = P−

k

Kalman gain Kk = P−
k H

′

k(HkP
−
k H

′

k + R)−1, where Hk = ∂h
∂x

∣

∣

∣

x=x̂−
k

Correction Pk = (I − KkHk)P
−
k

x̂k = x̂−
k + Kk[yk − h(x̂−

k )]

Remark: There are possible alternatives to this implementation. In Algorithm

1, the Jacobian matrix A is considered to be time-varying for solving the ODEs. If A

is assumed to be time-invariant, the matrix could be calculated at each sampling in-

terval, i.e., A(x̂k) = ∂f
∂x

∣

∣

∣

x=x̂k

. The ODEs (5.1) and (5.3) thus can be solved separately

(Algorithm 1.1), which may reduce computation costs. However,the computation

accuracy may be decreased concurrently since the error is affected by linearization at

each sampling interval, which is usually significantly larger than the integration step

size used in Algorithm 1.
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2. Implementations via Linearization and Discrete KF for Covariance Prediction

In the second algorithm (Algorithm 2), linearization of the nonlinear continuous-

time model along its trajectory is performed and the covariance predictions are com-

puted from discrete information.

As in Algorithm 1, the nonlinear differential equation

˙̂x = f(x̂, u) (5.8)

is used for predicting the state vector x̂k. The Jacobian matrix A is then computed

at each sampling time,

A(x̂k) =
∂f

∂x

∣

∣

∣

∣

x=x̂k

. (5.9)

The linearized model is given by

˙̃x = A(x̂k)x̃ + Bũ + f(x̂k, uk), (5.10)

where x̃ = x̂ − x̂k and ũ = u − uk.

Solving the ODEs (5.10) and (5.3) for computing the discrete covariance matrix

P results in

x̂k+1 = Akx̂k + Bk (5.11)

P−
k+1 = AkPA

′

k + GQkG
′

(5.12)

where Ak = eA(x̂k)T is the state transition matrix, GQkG
′
=

∫ T

0
eA(x̂k)τGQG

′
eA(x̂k)

′
τdτ

is the process noise matrix, and Bk =
∫ T

0
eA(x̂k)τ [Bu(T −τ)+f(x̂k, uk)]dτ is the input

matrix with B = ∂f
∂u

∣

∣

∣

u=uk

.

Corrections for mean and covariance matrices using a Kalman filter are computed

by Eqs. (5.5) ∼ (5.7) as discrete measurements are the source for estimation updates.

Table XII summarizes the procedure of this algorithm. During each measurement
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sampling interval, the nonlinear system is considered as a linear first-order system

with constant coefficients, which results in Eqn. (5.11) and (5.12). This incurs a

larger error for computing the covariance matrix P than Algorithm 1, where P is

integrated using a time-varying state transition matrix A.

Table XII. Summary of Procedure for Algorithm 2

Initialization x̂0 = x̄0, P0 = Px0

Prediction ˙̂x = f(x̂, u)

P−
k+1 = AkPA

′

k + GQkG
′

where A(x̂k) = ∂f
∂x

∣

∣

∣

x=x̂k

, Ak = eA(x̂k)T ,

GQkG
′
=

∫ T

0
eA(x̂k)τGQG

′
eA(x̂k)

′
τdτ

Kalman gain Kk = P−
k H

′

k(HkP
−
k H

′

k + R)−1, where Hk = ∂h
∂x

∣

∣

∣

x=x̂−
k

Correction Pk = (I − KkHk)P
−
k

x̂k = x̂−
k + Kk[yk − h(x̂−

k )]

An alternative (Algorithm 2.1) to this algorithm is to use an Euler approx-

imation for discretization of continuous-time models. The matrices for covariance

prediction are then replaced by the following:

Ak = I + A(x̂k)T, Qk = QT, and Bk = BTu(kT ). (5.13)

Due to the lower accuracy of Euler’s method compared to, e.g., a Runge-Kutta method

used by conventional ODE solvers, Algorithm 2.1 will in theory result in poorer perfor-

mance than Algorithm 2. The errors are due to both linearization and discretization

of nonlinear continuous-time models. Additionally, when large sampling times are

used, this method may produce unstable results.
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3. Implementations via Discretization Followed by Linearization

In this algorithm (Algorithm 3), the nonlinear continuous-time model is dis-

cretized first and then linearized along its trajectory. It is well known that ODE

solvers or Euler approximations are two common methods used for discretization of

continuous-time models. Euler’s method discretizes models with a fixed step size

while the step size for discretization is adjusted for different dynamic behaviors when

ODE solvers are used. Therefore ODE solvers can result in more accurate discrete

data than if Euler approximations are used.

In order to use ODE solvers such as Matlabr′
s ode45 for discretization, however,

a continuous noise signal w(t) in Eq. (2.9) is needed. This is unlikely to be simulated

and implemented in a digital computer. As a compromise, a discrete signal wk =

w(kT ) can be generated. After solving an initial value problem for finding a solution

of the ODE

ẋ = f(x, u), (5.14)

wk is linearly added to xk = x(kT ) at each sampling interval kT .

Once a discrete-time model is obtained, the next step is to compute the Jaco-

bian matrix Ak of the nonlinear function f at each time step kT . Since numerical

discretization of the continuous-time model is executed at the first step, no analytical

form for the model is available and Ak also needs to be computed numerically. One

approach uses the sensitivity matrix

Ȧ =
∂f

∂x′ A. (5.15)

The state vector predictions x̂−
k and the Jacobian matrix Ak of f can be solved
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simultaneously

˙̂x = f(x̂, u) (5.16)

Ȧ =
∂f

∂x̂′ A (5.17)

with x̂0 = x̄0 and A0 = I.

Remarks: One alternative (Algorithm 3.01) is to compute Ak by using finite

difference such as central differences, i.e.,

Ak =
f(x̂k + ∆x) − f(x̂k − ∆x)

2∆x
. (5.18)

Numerically it is non-trivial to find an appropriate difference ∆x. A finite difference

method may be less accurate than solving the sensitivity equation.

Once the state vector estimate x̂−
k and the matrix Ak are computed using Eqs.

(5.16) and (5.17), the covariance matrix P is computed

P−
k+1 = AkPkA

′

k + GQkG
′

, (5.19)

where Qk is approximated by QT .

The Kalman gain is calculated in the same discrete-time form as in Eq. (5.5),

Kk = P−
k H

′

k(HkP
−
k H

′

k + R)−1, where Hk =
∂h

∂x

∣

∣

∣

∣

x=x̂−
k

. (5.20)

Updates for the state estimate x̂k and the covariance matrix Pk are made in the

same manner as in Eqs. (5.6) and (5.7),

Pk = (I − KkHk)P
−
k (5.21)

x̂k = x̂−
k + Kk[yk − h(x̂−

k )]. (5.22)

Table XIII summarizes the procedure, where the sensitivity matrix is used for
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Table XIII. Summary of Procedure for Algorithm 3

Initialization x̂0 = x̄0, P0 = Px0
, A0 = I

Prediction ˙̂x = f(x̂, u), Ȧ = ∂f

∂x̂
′ A

x̂(kT ) = x̂−
k , A(kT ) = Ak

P−
k+1 = AkPkA

′

k + GQkG
′

Kalman gain Kk = P−
k H

′

k(HkP
−
k H

′

k + R)−1, where Hk = ∂h
∂x

∣

∣

∣

x=x̂−
k

Correction Pk = (I − KkHk)P
−
k

x̂k = x̂−
k + Kk[yk − h(x̂−

k )]

computing the Jacobian matrix of the nonlinear function f at each time step.

As mentioned in Algorithm 2.1, a discretization of continuous-time models can

be replaced by an Euler approximation. Algorithm 3 then results in:

x̂−
k+1 = x̂k + Tf(x̂k, uk) (5.23)

Ak = I + T
∂f(x̂, uk)

∂x̂

∣

∣

∣

∣

x̂=x̂k

(5.24)

P−
k+1 = AkPkA

′

k + GQTG
′

, (5.25)

which is referred to as Algorithm 3.1 here. The Kalman gain and correction equa-

tions remain the same. Unstable filters may be generated when the step size is large

for the Euler approximation. This method results in errors from linearization of the

nonlinear model along its trajectory at each sampling interval and discretization of

continuous-time models for computing the covariance matrix, similar to Algorithm

2.1. Additionally, an error is resulting from prediction of the states using an Euler

approximation. It is estimated that this method performs worse than Algorithm 2.1.
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C. Discussions

The algorithms discussed in the last section involve linearization and discretiza-

tion of nonlinear continuous-time models at different steps. The sequence and the

specific technique for executing them define each algorithm. To be more specific,

Algorithms 1 and 1.1 execute linearization of the model along its trajectory first and

then use a continuous KF to predict the covariance P. Algorithms 2 and 2.1 also

linearize the model along its trajectory first but use a discrete KF to propagate P.

Algorithms 3, 3.01 and 3.1 first discretize the model and then linearize the model

along its trajectory for computing P. With respect to linearization, Algorithm 1, 3

and 3.01 evaluate the Jacobian matrix A continuously while the others compute it

only at the sampling time.

Table XIV. Summary of the Algorithms

Initialization x̂0 = x̄0, P0 = Px0
, A0 = I

Mean ˙̂x = f(x̂, u)

Prediction (Exception : x̂−
k+1 = x̂k + Tf(x̂k, uk) for Algorithm 3.1)

Covariance

Prediction

Evaluate A at x(t) Evaluate A at xk

Ṗ = A(x̂)P Algorithm 1 Algorithm 1.1

+PA(x̂)
′
+ GQG

′

P−
k+1 = AkPkA

′

k Algorithm 3, 3.01 Algorithm 2, 2.1, 3.1

+GQkG
′

Kalman gain Kk = P−
k H

′

k(HkP
−
k H

′

k + R)−1, where Hk = ∂h
∂x

∣

∣

∣

x=x̂−
k

Correction
Pk = (I − KkHk)P

−
k

x̂k = x̂−
k + Kk[yk − h(x̂−

k )]



85

In spite of the classifications, all algorithms share the same formulation for state

predictions and mean and covariance corrections with the exception of Algorithm

3.1 where the state is predicted via an Euler approximation. The main differences

between the methods are given by the computation of the covariance matrix P and

the approaches used to evaluate the Jacobian matrix A. Table XIV summarizes the

results. Algorithm 1 and 1.1 propagate P via a continuous KF while a discrete KF

is used to compute P for the other algorithms. Further, Algorithms 1, 3 and 3.01

evaluate A continuously while Algorithms 1.1, 2 and 2.1 compute A at each sampling

point xk.
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Fig. 20. Comparison of Different Algorithms for Implementing EKF.

Figure 20 provides a graphic overview of the discussed EKF implementations for

a continuous-time model with discrete-time measurements.
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Remarks:

1. Algorithms 1 and 1.1 predict P via solution of the Lyapunov Eq. Ṗ = A(x̂)P +

PA(x̂)
′
+ GQG

′
which distinguishes them from the other algorithms. The dif-

ference between 1 and 1.1 lies in the Jacobian matrix calculation of model

functions. Algorithm 1 computes the Jacobian A at each integration step x(t)

while Algorithm 1.1 computes A only at time kT which implies that Ak is time-

invariant during each integration period. Algorithm 1.1 should be less accurate

than Algorithm 1 though it can save computation time.

2. Algorithms 2, 2.1, 3, 3.01 and 3.1 propagate P in a discrete manner P−
k+1 =

AkPkA
′

k + GQkG
′
.

3. Algorithms 2 and 2.1 linearize the model along its trajectory first and then

carry out discretization of the state equations. Algorithm 2 uses Ak = eA(x̂k)T

for discretization while Algorithm 2.1 makes use of an Euler approximation

which results in Ak = I + A(x̂k)T . If the sampling time T is small, then

Algorithm 2.1 may produce results comparable to Algorithm 2. Additional

note: For computing the integral
∫ T

0
eA(x̂k)τGQG

′
eA(x̂k)

′
τdτ for Algorithm 2, a

simple alternative involving the matrix exponential computation is presented

by Van Loan [172].

4. Algorithms 3, 3.01 and 3.1 implement discretization of the model first and then

use linearization for the same model along its trajectory. Similar to Algorithms

2 and 2.1, the discretization scheme distinguish Algorithms 3 and 3.01 from

Algorithm 3.1 where an Euler approximation is used. Therefore both Algorithm

3 and 3.01 should be superior to Algorithm 3.1 in terms of accuracy. Algorithm

3 and 3.01 differ in the approach for computing the Jacobian matrix A. The
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former uses solution of the sensitivity equation while finite differences are chosen

for the latter.

5. Algorithms 2.1 and 3.1 are identical except for how they predict the state x̂. The

former uses direct integration while the latter makes use of an Euler approxima-

tion. Therefore Algorithm 2.1 potentially performs better than 3.1. However,

both of them may produce unstable filters when the sampling interval is large

due to the Euler approximation for discretizing the model.

6. Algorithm 2 is identical to Algorithm 1.1 although the implementations are not

the same. Please refer to the Appendix for a detailed proof.

D. Case Studies

To evaluate the performance of EKF using each implementation, the algorithms

given in Section C have been applied to models including ones with mild nonlinearity

as well as some with strong degrees of nonlinearity and a large number of scenarios

such as different operating conditions, different tuning parameters Q and R, and

different process and measurement noise levels. Monte Carlo simulations of 50 runs

were carried out for each scenario. The performance is evaluated by the overall mean-

squared error (MSE). The MSE is first averaged over all simulations for each time

point and then over time to indicate the long-term behavior of each estimator and

the distribution of errors over time.

This section shows two representative case studies: Van der Pol oscillator and a

CSTR with Van de Vusse reactions.
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1. Van der Pol Oscillator

The model for this case study is the Van der Pol oscillator which is widely used

in the literature. The Van der Pol oscillator is a type of nonconservative oscillator

with nonlinear damping. It evolves in time according to the second order differential

equation:

d2x

dt2
+ µ(x2 − 1)

dx

dt
+ x = 0 (5.26)

where x is the position coordinate which is a function of the time t, and µ is a scalar

parameter indicating the strength of the nonlinear damping. When µ < 0 the system

will be damped and exhibit an unstable limit cycle. When µ = 0, there is no damping

function and the system is a form of the simple harmonic oscillator. When µ ≥ 0,

the system will enter a stable limit cycle where energy continues to be conserved.

The state and measurement equations chosen in the study of a stable limit cycle

are

ẋ1 = x2

ẋ2 = 0.2(1 − x2
1)x2 − x1

y = [x1 x2]
T

(5.27)

The system is discretized with a sampling interval of 0.1. The remaining EKF filter

parameters are

x0 =

[

0.5 0

]T

, x̂0 =

[

5 −1

]T

, (5.28)

P̂0 =







1 0

0 1






, Q0 = R0 = 10−3







1 0

0 1






. (5.29)

Figure 21 ∼ Figure 24 shows the results of each algorithm for EKF implemen-
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Fig. 21. EKF Performance by Algorithm 3 and Its Derivatives for van der Pol Oscil-

lator.

0 50 100 150 200 250 300 350 400
−2

−1

0

1

2

3

4

5

x
1

Simulated System
1.0
2.0
3.0

0 50 100 150 200 250 300 350 400
−3

−2

−1

0

1

2

3

x
2

t

Fig. 22. EKF Performance Comparison for van der Pol Oscillator.

tations. All algorithms provide good estimates for both system states except that

Algorithm 3.1 where Euler approximation is used for discretization generates a sig-

nificant large error than the other algorithms.

2. Production of Cyclopentanol in a CSTR with van de Vusse Reaction.

The first case study in last section provides a overview of the performance of each

EKF implementation. In this section, a detailed examination on the performance of

each algorithm is conducted through an isothermal nonlinear CSTR with a competing
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Fig. 23. EKF Performance by Algorithm 1 and Its Derivatives for van der Pol Oscil-

lator.
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Fig. 24. EKF Performance by Algorithm 2 and Its Derivatives for van der Pol Oscil-

lator.

side reaction governed by van de Vusse reaction kinetics used for the production of

Cyclopentanol [168]:

A
k1−→ B

k2→ C

2A
k3→ D.

(5.30)

Component A is the the reactant cyclopentadiene, B is the product cyclopentanol,

C and D are the side products cyclopentandiol and dicylopentadiene. The nonlinear
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system model is given by the following three differential equations:

dCA

dt
=

u

V
(CAin − CA) − k1e

−E1/RT CA − k3e
−E3/RT C2

A (5.31)

dCB

dt
= − u

V
CB + k1e

−E1/RT CA − k2e
−E2/RT CB (5.32)

dT

dt
=

1

ρcp

[k1e
−E1/RT CA(−∆H1) + k2e

−E2/RT CB(−∆H2) (5.33)

+ k3e
−E3/RT C2

A(−∆H3)] +
u

V
(Tin − T ) +

Q

V ρcp

where the feed flow rate u is the only controlled variable. The values of the parameters

can be found in the work by Hahn and Edgar [169].

The nonlinear model exhibits multiple steady states, of which the upper steady

state (CAss = 2.49mol/L; CBss = 1.1mol/L; Tss = 411K; u = 800L/h) is chosen

as the point of operation. The measurable variable is assumed to be the reactor

temperature T . Initial conditions are chosen to be x̂0 =

[

2.5 1.09 411

]T

and all

process variables were scaled to be dimensionless using the upper steady state as the

nominal point. The sampling time for the measurements is 0.02 min.

The remaining filter parameters after scaling are given by

P̂0 = diag{100, 100, 100},

Q = diag{10−2, 10−2, 10−2},

R = diag{10−2, 10−2}.

Table XV. MSEs for Algorithms (∆t = 0.02, R = 0.01I) for EKF Implementations

Algorithms 1 1.1 2 2.1 3 3.01 3.1

MSEs 0.626 0.627 0.627 1.039 0.653 0.675 1.537

The overall MSEs for ∆t = 0.02, R = 0.01I are shown in Table XV and it can
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Fig. 25. EKF Performance Comparison for the van de Vusse Reactor.

be seen that Algorithms 1, 2 and 3 produce relatively small MSEs. The predictions

of the states made by these algorithms are also shown in Figure 25.

Compared to Algorithm 1, Algorithm 1.1 also performs reasonably well although

its performance is slightly worse than Algorithm 1 for large variations in the operating

conditions.

As discussed in Remark 3, Algorithm 2 produces more accurate results than

Algorithm 2.1 due to the Euler approximations used in the latter. This can be seen

by comparing the MSEs, which are 0.627 for Algorithm 2 and 1.039 for Algorithm

2.1. As shown in the Appendix, Algorithm 1.1 and 2 are identical and generate the

same MSEs.

The MSE Results using Algorithms 3, 3.01 and 3.1 are 0.653, 0.675, and 1.537,

respectively. Algorithm 3.01 has poorer performance than Algorithm 3 because of the

finite differences used for computing the Jacobian instead of solving the sensitivity

equation. The difference between Algorithm 3 and 3.1 is significant as Algorithm 3.1

failed to produce reasonably good estimates when the sampling interval is large due
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to the Euler approximation.

Methods that involve Euler approximations, such as Algorithm 2.1 and 3.1, pro-

duce relatively large values of the MSEs as given by 1.039 and 1.537, respectively.

The two methods share the formulation for the covariance matrix propagation but

differ in their mean predictions.

Further investigations are also carried out for different measurement noise levels

and different sampling interval lengths, and are summarized in Table XVI. When

measurement noise is relatively small (∆t = 0.02, R = 0.0001I), methods involving

Euler approximations such as Algorithm 2.1 and 3.1 generate acceptable MSEs. How-

ever, for large measurement noise(∆t = 0.02, R = 1I), both Algorithm 2.1 and 3.1

exhibit unstable properties due to the Euler Approximation. Similarly, all algorithms

perform comparably well when the sampling time is relatively small (∆t = 0.002).

However unstable filters can result from Algorithm 2.1 or 3.1 when large sampling

intervals are used. Therefore approaches such as Algorithm 2.1 or 3.1 should only be

considered when measurement noise levels and the sampling time are relatively small.

Table XVI. Summary of MSEs for All Algorithms for EKF Implementations

Algorithm 1 1.1 2 2.1 3 3.01 3.1

∆t = 0.02, R = 0.0001I 0.250 0.247 0.247 0.339 0.361 0.368 0.420

∆t = 0.02, R = 1I 0.686 0.686 0.686 6.158 0.689 0.691 11.370

∆t = 0.002, R = 0.01I 0.151 0.152 0.152 0.151 0.151 0.151 0.151

∆t = 0.2, R = 0.01I 3.233 3.249 3.249 23.842 3.059 3.064 423.310

Scenarios with input changes are investigated for different measurement noise

levels and different sampling times. Table XVII provides a summary of MSE re-

sults for the case where the input flowrate increases from 800L/h to 1200L/h at the
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1500th sampling interval. This set of results are consistent with the case without

input changes or any disturbance. Algorithm 1, 2 and 3 provide reasonably good per-

formance for EKF while Algorithm 2.1 and 3.1, which involve Euler approximations,

generate unstable filters.

Table XVII. MSEs for Algorithms with a 50% Input Change for EKF Implementations

Algorithm 1 1.1 2 2.1 3 3.01 3.1

∆t = 0.02, R = 0.01I 1.297 1.297 1.297 17.090 1.296 1.296 380.76

∆t = 0.02, R = 0.0001I 0.978 0.986 0.986 7.658 1.095 1.140 24.654

∆t = 0.2, R = 0.01I 5.678 5.692 5.692 NaN 5.763 5.768 NaN

E. Conclusions

This chapter compares different implementations of EKF for a class of continuous-

time nonlinear models with discrete-time measurements. The algorithm can be clas-

sified by the sequence and methods used for linearization and discretization of non-

linear continuous-time models. The main difference between the methods lies in the

methodology for computing the covariance matrix P . The conclusions are that con-

tinuously predicting P for EKF results in an accurate implementation. Evaluating P

at discrete times can also be applied. In this case, good performance can be expected

if P is obtained from integrating the continuous-time equation or if the sensitivity

equation is used for computing the Jacobian matrix A. Instead, if a finite difference

approach is chosen for computing A, the sampling time of the finite difference scheme

needs to be small for acceptable performance of EKF. Approaches involving Euler

approximations show good behavior only when the sampling interval is reasonably
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small and therefore they are not recommended for processes with long sampling time

intervals.
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CHAPTER VI

CONCLUSIONS

A. Findings and Contributions

This dissertation addresses some key issues in nonlinear estimation for process

monitoring and fault diagnosis. Specifically, the application of unscented Kalman

filters, improvement of moving horizon estimation via computation of the arrival cost

and different implementations of extended Kalman filters are investigated.

Chapter III compares UKF with traditional estimation techniques such as LKF,

EKF and MHE. It is found that the unscented Kalman filter provides a good estimate

of the states and parameters and is comparable in performance to EKF when system

nonlinearities are not significant. UKF outperforms EKF when strong nonlinearities

exist and the measurement noise levels are high.

Additionally, when the structures of the process and measurement functions are

not differentiable or are discontinuous, UKF also offers a benefit because it does not

require to calculate Jacobian matrices. Moreover, UKF is applicable to any black

box models given the properties of input and output information. This distinguishes

UKF from EKF and makes UKF preferable in industrial applications as first principle

models are often not available.

However, both EKF and UKF may fail to converge to the true values of the states

for constrained problems; MHE may be a better option for constrained problems,

however, MHE results in a higher computational burden.

Another important property of these advanced estimation algorithms is that

UKF reduces to the Kalman filter for linear systems; simulations were conducted to

investigate this finding. MHE also simplifies to the Kalman filter for unconstrained
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linear systems.

In chapter IV a MHE formulation where the arrival cost is computed by UKF

is proposed and MHE performance is further investigated. The unscented transfor-

mation and a set of selected sigma points are used to compute the covariances and

then the arrival cost. The selection procedure for the sigma points is the same as the

one used for unscented Kalman filtering if the constraints are inactive, however, a

modification is used that satisfies the state variable constraints when the constraints

are active. Linearization of the model is not required for the presented approach.

The presented method performed slightly better than the commonly used eMHE

for all investigated cases. Therefore, the method can be a promising alternative for

approximating the arrival cost for MHE.

Case studies without the approximating arrival cost were also investigated. It

was shown that the estimates were much less accurate than those with arrival cost

approximation, which implied that it is important to compute arrival cost for imple-

menting MHE accurately.

Scaling is a key factor for obtaining an optimal solution for MHE in the applica-

tion of numerical algorithms. It is common in chemical engineering to be concerned

with a system which is composed of concentrations and temperatures. The units of

concentrations and temperatures usually differ by several orders of magnitude. Poor

scaling of such a system results in ill-posed problems.

Chapter V compares different implementations of EKF for a class of continuous-

time nonlinear models with discrete-time measurements. The algorithm can be clas-

sified by the sequence and methods used for linearization and discretization of non-

linear continuous-time models. The main difference between the methods lies in the

methodology for computing the covariance matrix P . The conclusions are that con-

tinuously predicting P for EKF results in an accurate implementation. Evaluating P
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at discrete times can also be applied. In this case, good performance can be expected

if P is obtained from integrating the continuous-time equation or if the sensitivity

equation is used for computing the Jacobian matrix A. Instead, if a finite difference

approach is chosen for computing A, the sampling time of the finite difference scheme

needs to be small for acceptable performance of EKF. Approaches involving Euler

approximations show good behavior only when the sampling interval is reasonably

small and therefore they are not recommended for processes with long sampling time

intervals.

This portion of the work provides a good reference for practicing engineers as it

is found from the literature that Euler approximations are commonly chosen for EKF

implementations where inaccuracy of EKF performance and biased conclusions are

usually given.

B. Suggestions for Further Work

Besides the EKF, UKF and MHE discussed in the dissertation there are sev-

eral important filtering methods, e.g. particle filtering, ensemble Kalman filtering.

Particle filter (PF), also known as the sequential Monte Carlo method (SMC), is an

advanced estimation technique based on simulations. It can be an alternative to EKF

or UKF with the advantage that the Bayesian optimal estimate is approximated di-

rectly by the method and a more accurate estimation can be made than either the

EKF or UKF. However, particle filtering requires much more computational resources

since a sufficiently large number of samples are required in the simulation. The en-

semble Kalman filter (EnKF) has been proposed as a version of the Kalman filter

where the covariance matrix is replaced by the sample covariance. EnKF is related to

the PF but EnKF makes the assumption that all probability distributions involved
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are Gaussian. Due to this assumption, it is much more efficient than the particle

filter. These approaches would benefit from detailed studies to gain a more complete

understanding of nonlinear estimation. Each filtering technique can also be combined

with optimization strategies for nonlinear systems with constraints, where efficient

numerical methods are commonly required. This is an area that industry shows great

interest in.

It may also be interesting to investigate different implementations of UKF or

MHE since the implementation of a filtering method is not unique. This disserta-

tion addresses the work of different implementations for EKF and it is evident that

different implementations lead to significantly different mean squared errors and the

difference in the results is even larger than that returned by different filtering methods.

Investigation of the implementation is of great importance to attain a good perfor-

mance for a filter. For UKF there are also different implementations, e.g. calculation

of the squared root of the covariance matrix and these different implementations in

UKF can be investigated in the future work. For MHE the implementation plays an

even more important role since a lot of numerical algorithms for nonlinear optimiza-

tion exist and the estimate of MHE is highly dependent on the quality of the optimal

solution found. Generally it is difficult in practice to guarantee that the global opti-

mal solution is found. Therefore it may be worthwhile to investigate the decrease in

the performance of MHE if a local solution is found.

The horizon length of MHE is an important tuning parameter. The performance

of MHE improves as the horizon length increases. Theoretically, the horizon length

needs to be greater than the order of the system in order to make MHE stable.

Though sufficiently large moving horizon leads to diminishing returns, the computa-

tional cost also increases with the length of horizon. The choice of horizon length

is a compromise between computation efforts and estimation accuracy. At the same
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time, time constant of a process may affect the selection of horizon length. Similar to

Model predictive control strategies, the larger the time constant, i.e., the slower the

system dynamics, the greater the horizon length is required. On the other hand, it

is difficult to design a MHE method if the time constant of a system is significantly

small. Investigating how the time constant affects the choice of horizon length and

the computational cost would be beneficial to improve MHE performance. Adap-

tive horizon length may also enhance MHE performance as a fixed horizon length is

sub-optimal. Work on choosing horizon length adaptively would be valuable as well.

The comparison of different filters in the dissertation focuses on the performance

where the model used in filtering is assumed to be accurate. However, in practice

mismatch of model is inevitable. Investigation of robustness of filters is important

for applications to real systems. A large number of methods are developed to search

for optimal H2 filtering to minimize the variance of the estimate. The robust H2

filtering aims to design a filter such that the worst case mean square estimation error

is minimized for all admissible uncertainties under the assumption of the process noise

input and the structure of the model uncertainty. Robust filtering is able to guarantee

the performance of the filter under the model uncertainty. However robust filtering is

much more difficult than the conventional filters even for linear time invariant systems

and reports of the nonlinear robust filtering are rare.

EKF is a linearization method and it is recognized that EKF is able to achieve

an adequately good performance if the nonlinearity of a model is mild while it has a

poor performance if the nonlinearity of a system is severe. However, quantitatively

there is no criteria to measure to what degree of the nonlinearity EKF is likely to fail.

Many methods have been developed to test the nonlinearity of a dynamic system [173]

[174] [175] [176] [169] and to check if a linearized model accurately approximates the

nonlinear model. If some quantitative relationship can be built between a nonlinearity



101

measure and the performance of EKF it can be used to provide a guide for choosing

a proper filter given the fact that EKF is often the first choice among various filters

and an alternative advanced filter is desired only when EKF fails.

It can be also helpful for selection of a filter to investigate how large the difference

in mean squared error (MSE) of state estimates is practically significant as the MSE is

often used to evaluate the performance of filters. Subsequently, it may also be possible

to discover if the difference in MSE may generate different results for a fault diagnosis

system that is based on a certain estimator, i.e., an approach of fault diagnosis is

sensitive to the state estimates provided by a selected filter. If a fault diagnosis is not

sensitive to the state estimates a simple filter of EKF may be a proper choice even

though it returns an apparently larger MSE than advanced one. While the difference

in MSE significantly affects the performance of a fault diagnosis an advanced filter

may be needed even though the difference in MSE is small in numerical value.

Applying available estimation techniques to fault diagnosis could be advanta-

geous such that the location and nature of a fault can be diagnosed. For example,

an actuator fault will influence the behavior of the process which will then result in

sensor readings of several process variables deviating from normal behavior. While

this may set off several alarms at the same time, this does not mean that there are

several faults occurring instantaneously which have to be counteracted. Instead, the

abnormal readings are the result of one fault affecting several process variables to

varying degrees. Desired is a fault diagnosis system via nonlinear estimation that is

able to determine that an actuator fault has occurred and what needs to be done in

order to counteract this effect. At the same time it could also indicate that it is suf-

ficient to sound one alarm for the actuator instead of several for each of the variables

affected by the fault. Particularly, it may be interesting to find out what the statis-

tical properties of the estimates are after they undergo a nonlinear transformation
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since they could be used to be a guide for setting up thresholds for alarms. In most

cases it is believed that the statistical properties such as the second moment, i.e.,

covariance, are changed and therefore it may not be reasonable to use the previously

known covariance σ based on industrial experience for setting the alarm thresholds

in alarm management systems.

In addition to applying such a method for fault diagnosis, it may also be used for

design, verification and validation of HAZOP results. While application of HAZOP

studies to new facilities is always required, the constant demand of HAZOP efforts as

a part of Management of Change issues has indicated that alarms are a common and

growing addition to the plant safeguard system, but without any real study as to the

effectiveness of the alarm or its impact on the identification of that particular fault

to the DCS operator. Hence growing alarm systems can sometimes cloud the actual

event from the operator, with resulting alarm floods. Since it will be possible to study

the effect of different faults on a system, it can be directly used in order to determine

thresholds for the individual alarms. It is especially important to determine with

high confidence when a fault can be detected in the presence of measurement noise

and also in the presence of other parameters that may signal alarm condition as a

result of the original fault. Countermeasures can be initiated quickly if a fault has

been detected early and the occurrence of plant shutdowns can be minimized.
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APPENDIX A

PROOF THAT ALGORITHM 2 IS EQUIVALENT TO ALGORITHM 1.1.

It is adequate to show that P−
k+1 in both algorithms is identical for proving that

Algorithm 2 is equivalent to Algorithm 1.1.

From Algorithm 2 in Table XII, it can be seen that,

P−
k+1 = AkP

+
k A

′

k + GQkG
′

= eA(x̂k)T P+
k eA(x̂k)

′
T +

∫ T

0

eA(x̂k)τGQG
′

eA(x̂k)
′
τdτ, where A(x̂k) =

∂f

∂x

∣

∣

∣

∣

x=x̂k

.

(A.1)

Also Algorithm 1.1 states that

Ṗ = A(x̂k)P + PA(x̂k)
′

+ GQG
′

, where A(x̂k) =
∂f

∂x

∣

∣

∣

∣

x=x̂k

(A.2)

with P (0) = P+
k and P (T ) = P−

k+1.

Noting that A(x̂k) in Eqn. (A.1) and Eqn. (A.2) is identical, it can be replaced

by A as a change of notation.

If it can be shown that

P (t) = eAtP+
k eA

′
t +

∫ t

0

eAτGQG
′

eA
′
τdτ (A.3)

is the solution of

Ṗ = AP + PA
′

+ GQG
′

, with P (0) = P+
k , (A.4)

then it can be concluded that Algorithm 2 is identical to Algorithm 1.1.
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It can be derived from Eqn. (A.3) that for t = 0,

P (0) = e0P+
k e0 +

∫ 0

0

eAτGQG
′

eA
′
τdτ = P+

k . (A.5)

Taking the derivative of Eqn. (A.3), it is derived that

Ṗ = AeAtP+
k eA

′
t + eAtP+

k eA
′
tA

′

+ eAtGQG
′

eA
′
t. (A.6)

On the other hand, substituting Eqn. (A.3) into the right side of Eqn. (A.4),

the following equations

AP + PA
′

+ GQG
′

= AeAtP+
k eA

′
t +

∫ t

0

AeAτGQG
′

eA
′
τdτ

+ eAtP+
k eA

′
tA

′

+

∫ t

0

eAτGQG
′

eA
′
τA

′

dτ + GQG
′

(A.7)

are obtained.

Examining the second and the fourth terms in the above equation, it is found

that

∫ t

0

AeAτGQG
′

eA
′
τdτ +

∫ t

0

eAτGQG
′

eA
′
τA

′

dτ

=

∫ t

0

d(eAτ )GQG
′

eA
′
τ +

∫ t

0

eAτGQG
′

d(eA
′
τ )

=

∫ t

0

d(eAτGQG
′

eA
′
τ )

= eAτGQG
′

eA
′
τ
∣

∣

∣

t

0

= eAtGQG
′

eA
′
t − GQG

′

(A.8)

Therefore Eqn. (A.7) becomes

AP + PA
′

+ GQG
′

= AeAtP+
k eA

′
t + eAtP+

k eA
′
tA

′

+ eAtGQG
′

eA
′
t. (A.9)
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Comparing Eqn. (A.6) to Eqn. (A.9), it can be shown that

Ṗ = AP + PA
′

+ GQG
′

. (A.10)

Taking Eqn.(A.5) into account, it can be concluded that Eqn. (A.3) is the

solution of Eqn. (A.4). Therefore Algorithm 2 is equivalent to Algorithm 1.1.
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APPENDIX B

DERIVATION OF DISCRETE-TIME KALMAN FILTER

Consider the linear, dynamic, discrete-time, stochastic system:

xk = Φk−1xk−1 + wk−1 (B.1)

zk = Hkxk + vk (B.2)

where it is assumed that,

• Initial statistical properties of a prior distribution are known, i.e., x0 = E[x(0)]

and P0 = E[(x(0) − x0)(x(0) − x0)
T )] and

• Statistical models of the system and measurement noises are known. wk ∼

N(0, Qk) and vk ∼ N(0, Rk) are zero mean, Gaussian white noise processes and

• wk, vk, and x(0) are mutually uncorrelated E[wkv
T
k ] = E[x(0)wT

k ] = E[x(0)vT
k ] =

0

The objective is to find optimal estimates x̂ for the given noisy system, i.e., to

minimize the mean squared error (variance). In this case, the cost function is chosen

as the trace (i.e., the sum of the diagonal elements) of the error covariance matrix

Pk = E[(x̂k − xk)(x̂k − xk)
T ], (B.3)

which is equivalent to minimize the mean squared error for an unbiased estimator.

The choice of the cost function offers mathematical convenience for derivation of a

solution.
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Define the estimation error

x̃+
k = x̂+

k − xk (B.4)

x̃k = x̂−
k − xk (B.5)

where xk represents the true value of the system states, x̂−
k is a prior state estimate

and x̂+
k is a posterior state estimate at time tk.

Given a prior estimate x̂−
k , an update estimate x̂+

k is sought, based on the

measurement zk. In order to avoid a growing memory lter, the estimate is sought in

the linear recursive form:

x̂+
k = Mkx̂

−
k + Kkzk (B.6)

where Mk and Kk are time-varying weighting matrices, as yet un- specified. Clearly,

there is no need to store past measurements for the purpose of computing present

estimates.

From the recursive Eq. (B.6), an equation for the estimation error can be ob-

tained

x̃+
k = Mkx̂

−
k + Kkzk − xk (B.7)

Substitute the measurement zk in Eq. (B.7),

x̃+
k =Mkx̂

−
k + Kk(Hkxk + vk) − xk (B.8)

=Mkx̂
−
k + (KkHk − I)xk + Kkvk (B.9)

=Mkx̃
−
k + (Mk + KkHk − I)xk + Kkvk (B.10)

By assumption E[vk] = 0 and E[x̃−
k ] = 0. To seek an unbiased estimator, E[x̃+

k ] =

0 only if

Mk = I − KkHk. (B.11)
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Therefore, the estimator takes the form

x̂+
k = (I − KkHk)x̂

−
k + Kkzk (B.12)

or alternatively,

x̂+
k = x̂−

k + Kk(zk − Hkx̂
−
k ) (B.13)

which is the update equation for x̂+
k based on the measurements. Kk is the matrix

for weighting measurement residual, as to be specified.

ERROR COVARIANCE UPDATE

From the posterior state update equation, the estimation error equation

x̃+
k = (I − KkHk)x̃

−
k + Kkvk (B.14)

Substituting x̃+
k into the error covariance matrix

P+
k = E[(x̃+

k )(x̃+
k )T ] (B.15)

gives

P+
k =E[{(I − KkHk)x̃

−
k + Kkvk}{(I − KkHk)x̃

−
k + Kkvk}T ] (B.16)

=E[(I − KkHk)x̃
−
k x̃−T

k (I − KkHk)
T + (I − KkHk)x̃

−
k vT

k KT
k (B.17)

+ Kkvkx̃
−T
k (I − KkHk)

T ) + Kkvkv
T
k KT

k ] (B.18)

By definition,

E[(x̃−
k )(x̃−

k )T ] = P−
k (B.19)

E[vkv
T
k ] = Rk (B.20)
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and, as a result of measurement errors being uncorrelated,

E[x̃−
k vT

k ] = E[vkx̃
−T
k ] = 0 (B.21)

Thus,

P+
k = (I − KkHk)P

−
k (I − KkHk)

T + KkRkK
T
k (B.22)

OPTIMUM CHOICE OF Kk The criterion is to minimize

Jk = trace[P+
k ]. (B.23)

To find the optimal value of Kk, it is necessary to take the partial derivative of

Jk with respect to Kk and equate it to zero, i.e.,

∂Jk

∂Kk

= 0 (B.24)

Since

∂

∂A
[trace(ABAT )] = 2AB, (B.25)

it is obtained that

∂

∂Kk

[trace(P+
k )] = −2(I − KkHk)P

−
k HT

k + 2KkRk = 0. (B.26)

Solving for Kk,

Kk = P−
k HT

k [HkP
−
k HT

k + Rk]
−1 (B.27)

which is referred to as the Kalman gain matrix. Examination of the Hessian of Jk

reveals that this value of Kk does indeed minimize Jk.

Substituting Kk into P+
k gives, after some manipulation,

P+
k = (I − KkHk)P

−
k . (B.28)

Thus far, the discrete state estimate and error covariance matrix behavior across
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a measurement has been described. The equations

x̂+
k = x̂−

k + Kk(zk − Hkx̂
−
k ) (B.29)

P+
k = (I − KkHk)P

−
k (B.30)

are so called update equations or measurement update.

The following section discusses the discrete state estimate and error covariance

matrix behavior x̂ and P between measurements.

PROPAGATION OF STATE VECTOR AND ERROR COVARIANCE

The system equation is x

xk = Φk−1xk−1 + wk−1. (B.31)

The known state transition matrix Φk is used to predict the estimate (E[wk] = 0),

x̂−
k = Φk−1x̂

+
k−1. (B.32)

The estimation error

x̃−
k = x̂−

k − xk (B.33)

= Φk−1x̂
+
k−1 − Φk−1xk−1 − wk−1 (B.34)

= Φk−1x̃
+
k−1 − wk−1. (B.35)

The expected value of the error is

E[x̃−
k ] = Φk−1E[x̃+

k−1] − E[wk−1] = 0 (B.36)

under the assumptions that x̃+
k−1 and wk−1 are unbiased. This is, extrapolation of the

state vector estimate through the state transition matrix Φk−1 does not introduce a

bias to x̂−
k .
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The error covariance matrix P projected from time tk−1 to tk is

P−
k = E[x̃−

k x̃−T
k ] (B.37)

= E[Φk−1x̃
+
k−1x̃

+T
k−1Φ

T
k−1 − wk−1x̃

+T
k−1Φ

T
k−1 − Φk−1x̃

+
k−1w

T
k−1 + wk−1w

T
k−1] (B.38)

= Φk−1P
+
k−1Φ

T
k−1 + Qk−1. (B.39)

The equations

x̂−
k = Φk−1x̂

+
k−1 (B.40)

P−
k = Φk−1P

+
k−1Φ

T
k−1 + Qk−1. (B.41)

are called prediction equations or time update.



134

APPENDIX C

MATLAB CODE FOR CASE STUDIES



135

E:\TAMU research\work\Estimation\uMHE\ode_CSTR_ukfMHEvs_ekfMHE.m

March 27, 2009

Page 1

1:57:45 PM

%model of an Exothermic Irreversible CSTR reactor,
%in 5. Case study Ind. Eng. Chem. Res., Vol43, No.21,2004
%
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~
%MHE method ( ukf based vs ekf based ) HORIZON the SAME

clear all;
close all;
clc;

format long;
%process parameters

global F V CAin k0 E Tin N_deltaH_R rho c_p Fw UA Vw rho_w c_pw Tjin R D
elta_t
global G C DeltaFw dFw dim W0 WW Rr Qr 
global xw v x_hat_1 P_1 horizon xpast w_len n y Am ii yopt

F = 120; % L/min
V=100; % L
CAin = 1;
CA(1) = 0.0192;% mol/L
Tin = 275;
T(1) = 384 ;% K
Tjin = 250;
Tj(1) = 371.3 ;% K
k0 = 4.11*10^13; %L/min.mol
E = 76534.704 ; %J/mol
N_deltaH_R =596619 ;% J/mol
rho=1000 ;% g/L
c_p= 4.2 ;% J/g.K
Fw = 30 ; %L/min
DeltaFw=0;
dFw=1;
UA = 20000 * 60 ;% J/s.K
Vw = 10 ;% L
rho_w = 1000 ;% g/L
c_pw = 4.2 ;% J/g.K
R=8.314; % J/mol.K

%discretized interval
Delta_t=0.012;
Dis_int= 100* Delta_t;
t_span = round( Dis_int / Delta_t );

%model parameters
Tj_st = Tj(1);
B=[0;0;(Tjin-Tj_st)/Vw];
C=[0 0 1];
G = [1 0 0;0 1 0;0 0 1];

%UKF tuning parameters
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E:\TAMU research\work\Estimation\uMHE\ode_CSTR_ukfMHEvs_ekfMHE.m

March 27, 2009

Page 2

1:57:45 PM

n=3;
q=3;
r=1;
na=n+q+r;
kapa=3-na;
dim=2*na+1;

%UKF weights of sigma points
W0=kapa/(na+kapa);
WW=1/(2*(na+kapa));
W=WW;

Ca_hat=0.018;
T_hat=382;
x_1 = [0.0192 384 371.3]';
xt(:,1) = x_1;
xc(:,1) = x_1; % true initial values of system
xd(:,1) = x_1;
x_hat_1 = [Ca_hat; T_hat; Tj(1);];
x_hat_e(:,1) = x_hat_1 ; % initial guess for EKF
x_hat_l(:,1) = x_hat_1 ;% initial guess for LKF
x_hat_u(:,1) = x_hat_1 ; % initial guess for UKF
xa_hat_u(:,1) = [x_hat_u(:,1); zeros(q+r,1)]; % initial guess for UKF (a
ugmented)
x_hat_mh(:,1) = x_hat_1 ; % initial guess for MHE
x_hat_mh_e(:,1) = x_hat_1 ;

%assign horizon
horizon = 5 ;
hori = horizon;   %horizon needs to be the same when comparing ekf based
 MHE to ukf based MHE

%noise covariance
ss = 0.5e0 ; 
sigma1 = 2e-4;
sigma2 = ss;
sigma3 = ss;
sigma = [sigma1; sigma2; sigma3];
v1 = 0.5;

%regulating R&Q
qr=1;
rr=10;
Qr=qr * diag( sigma.^2 );% measurement noise is bigger, smaller Qr is ne
eded to be able to filter, size of G
Rr=rr*v1^2; % measurement noise is smaller, Bigger Rr is needed to be ab
le to filter, size of column of C

pp = 1e1 ;
%initial data
P_1 = pp * diag( sigma.^2 );
Pl(:,:,1)= P_1 ; %w1^2*G*G'; %error covariance matrix of LKF
Pe(:,:,1)= P_1; %error covariance matrix of EKF
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March 27, 2009

Page 3

1:57:45 PM

Pm(:,:,1)= P_1; %error covariance matrix of MHE
P(:,:,1) = P_1; %error covariance matrix of UKF, n*n*k, 3*3*k in this ca
se
Pa(:,:,1)= [P_1 zeros(n) zeros(n,size(C,1)); zeros(n) Qr zeros(n,size(C,
1)); zeros(size(C,1),n) zeros(size(C,1),n) Rr]; %error covariance matrix
 of UKF (augmented), na*na*k, 7*7*k in this case

for i = 1 : horizon -1
xw_hat(:,i) = [0.00106676821136 8.75647813213838 -3.72903355051045]';
end

for i = 1 : hori - 1
xw_hat_e(:,i) = xw_hat(:,1);
end

xpast  = x_hat_1; %[Ca_hat; T_hat; 380;];

%upper and lower bounds for optimized variables x
lp( 1 , 1 ) = 0 ;  %for ukf based MHE
lp( 2 : 3, 1) = -1e6 ;
up( 1 : 3, 1 ) = 1e6 ; 

lp_e( 1 , 1 ) = 0 ; % for ekf based MHE
lp_e( 2 : 3, 1) = -1e6 ;
up_e( 1 : 3, 1 ) = 1e6 ;

for ts = 1:10 % Start Monte Carlo simulations

    %noise
    xw1 = sigma1.*randn(1,t_span); % input noise, Delta_t for modifying 
discrete-time model
    xw2 = sigma2.*randn(1,t_span);
    xw3 = sigma3.*randn(1,t_span);
    xw = [xw1; xw2; xw3];
    v = v1.* randn(1,t_span); % Output noise;
    y(1) = C*xc(:,1) + v(1);

    for k = 2:t_span
        %measurement with noise
        %discrete time model using ode solver
        [tt,x_temp] = ode45('Cfun' , [0 Delta_t], xc(:,k-1)); 
        xc(:,k) = x_temp(size(x_temp,1),:)' + xw(:,k-1); 
        y(k) = C*xc(:,k) + v(k);

    end

    for k = 2:t_span

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        %%MHE UKF based
        tic;
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        %assign optimized variables x and w

        if k >= horizon ;

            ii = k - horizon + 1; %optim = [x(k - horizon + 1), w(k - ho
rizon + 1), w1, ..., w(k-1)] and its dimension grows with w

            %set initial guess for optimizer --start fr x0 or x(k-horizo
n+1)
            optim( 1 : 3, 1) =  x_hat_mh(:,ii) ;
            xpast = x_hat_mh(:,ii);

            jj = ii ;
            for i = 2 : horizon

                %upper and lower bounds for optimized variables w
                lp( 3*i - 2 : 3*i, 1) = -1e6 ;
                up( 3*i - 2 : 3*i, 1 ) = 1e6 ;
                %set initial guess for optimizer --dimension changes
                optim( 3*i-2 : 3*i, 1) = xw_hat(:,jj) ;

                jj = jj + 1;
            end

            % solve optimization problem

            x_len = length(optim) ;
            w_len = ( length(optim) - n )/ n  ;

            % get optimized initial state x_mh(0) and process noise seri
es xw (1...k or N of them)(column vector)
            %~~~~~~dimension of optim grows with the available measureme
nts
            optimnew(:, k) = e04jaf(optim, lp, up);

            x_hat_mh(:,ii) = optimnew( 1:n, k);
            %********************************************
            xw_hat(:, ii:(k-1))  = reshape ( optimnew ( n+1 : x_len, k),
 n, w_len) ;
            % assign w
            xw_hat(:,k) = xw_hat(:,k-1);

            %integrate to obtain the current N estimates based on the
            %current optimized initials 
            for j = ii : (k - 1)
                %update x_hat_mh from estimated x0 and w sequence for th
e
                %initial values in optim when k > horizon
                [tt,x_mh] = ode45('Cfun' , [0 Delta_t], x_hat_mh(:,j)); 
%ode solver
                x_hat_mh(:,j+1) = x_mh(size(x_mh,1),:)' + xw_hat(:,j);

            end
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            %arrival cost by UKF %update P_1 by UKF
            xa_hat_mh(:,ii) = [x_hat_mh(:,ii); zeros(q+r,1)];
            Pa_mh(:,:,ii)= [P_1 zeros(n) zeros(n,size(C,1)); zeros(n) Qr
 zeros(n,size(C,1)); zeros(size(C,1),n) zeros(size(C,1),n) Rr];
            [Chi_mh(:,:,ii), Chi_0_mh(:,:,ii)] = UF(xa_hat_mh(:,ii),Pa_m
h(:,:,ii),na,kapa);

            %update sigma points by nonlinear function
            for i=1:dim
                [tt,x_mh] = ode45('Cfun' , [0 Delta_t], Chi_mh(1:3,i,ii)
); %system model
                Chi_mh(1:3,i,ii+1) = x_mh(size(x_mh,1),:)' +  [Chi_mh(4,
i,ii), Chi_mh(5,i,ii), Chi_mh(6,i,ii)]';

            end

            %prediction
            [x_hat_p_mh(:,ii+1),dx_mh(:,:,ii+1)] = UKF_Pred(Chi_mh(1:n,:
,ii+1),n);

            %measurement
            Chi_y_mh(1,:,ii+1) = C*Chi_mh(1:n,:,ii+1) + Chi_mh(n+4,:,ii+
1-1); %1*15*k
            y_hat_mh(ii+1) = W0*Chi_y_mh(1,1,ii+1) + W*(sum(Chi_y_mh(1,2
:dim,ii+1),2)) ;
            Y_hat_mh(1,:,ii+1) =y_hat_mh(ii+1)*ones(1,dim); %1*dim*k
            dy_mh(1,:,ii+1) =Chi_y_mh(1,:,ii+1) - Y_hat_mh(1,:,ii+1); %1
*dim*k
            dymh(ii+1) = y(ii+1) - y_hat_mh(ii+1);

            %UKF mean and covariance update
            [x_hat_mh(:,ii+1), P_1, xa_hat_mh(:,ii+1), Pa_mh(:,:,ii+1)] 
= UKF_upd( x_hat_p_mh(:,ii+1), dx_mh(:,:,ii+1), dy_mh(r,:,ii+1), dymh(ii
+1), Qr, Rr, n, q, r);

        end

        tm(k) = toc; 

    end

   P_1 = pp * diag( sigma.^2 );

     for k = 2:t_span

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        %%MHE ekf based
        tic;

        %assign optimized variables x and w
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        if k >= hori ;

            ii = k - hori + 1; %optim = [x(k - hori + 1), w(k - hori + 1
), w1, ..., w(k-1)] and its dimension grows with w

            %set initial guess for optimizer --start fr x0 or x(k-hori+1
)
            optim_e( 1 : 3, 1) =  x_hat_mh_e(:,ii) ;
            xpast = x_hat_mh_e(:,ii);

            jj = ii ;
            for i = 2 : hori

                %upper and lower bounds for optimized variables w
                lp_e( 3*i - 2 : 3*i, 1) = -1e6 ;
                up_e( 3*i - 2 : 3*i, 1 ) = 1e6 ;
                %set initial guess for optimizer --dimension changes
                optim_e( 3*i-2 : 3*i, 1) = xw_hat_e(:,jj) ;

                jj = jj + 1;
            end

            x_len = length(optim_e) ;
            w_len = ( length(optim_e) - n )/ n  ;

            % get optimized initial state x_mh(0) and process noise seri
es xw (1...k or N of them)(column vector)
            %~~~~~~dimension of optim grows with the available measureme
nts
            optimnew_e(:, k) = e04jaf(optim_e, lp_e, up_e);

            x_hat_mh_e(:,ii) = optimnew_e( 1:n, k);
            %********************************************
            xw_hat_e(:, ii:(k-1))  = reshape ( optimnew_e( n+1 : x_len, 
k), n, w_len) ;
            % assign w
            xw_hat_e(:,k) = xw_hat_e(:,k-1);

           for j = ii : (k - 1)

                x_int = [x_hat_mh_e(:,j)' 1 0 0 0 1 0 0 0 1] ;
                %update x_hat_mh from estimated x0 and w sequence for th
e
                %initial values in optim when k > hori
                [tt,x_mh_e] = ode45('Efun_cstr' , [0 Delta_t], x_int); %
ode solver
                x_hat_mh_e(:,j+1) = x_mh_e( size(x_mh_e , 1), 1 : 3 )' +
 xw_hat_e(:,j);
                Am( : , 1 , j+1 ) = x_mh_e( size(x_mh_e , 1), 4 : 6 )' ;
                Am( : , 2 , j+1 ) = x_mh_e( size(x_mh_e , 1), 7 : 9 )' ;
                Am( : , 3 , j+1 ) = x_mh_e( size(x_mh_e , 1), 10 : 12 )'
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 ;
            end

            P_1 = Am( : , : , ii ) * P_1 * Am( : , : , ii )' + G * Qr * 
G';
            LL = P_1 * C' * inv(C * P_1 * C' + Rr);
            P_1 = (eye(n,n) - LL*C) * P_1;

        end

        tm_e(k) = toc; 

     end  %end for k = 2:t_span

   xx(:, :, ts) = xc;
   xx_hat_mh(:, :, ts) = x_hat_mh;
   xx_hat_mh_e(:, :, ts) = x_hat_mh_e;

   %for next round
   clear   xw_hat;
   clear   xw_hat_e;
   clear   lp;
   clear   lp_e;
   clear   up;
   clear   up_e;
   clear   optim;
   clear   optim_e;
   clear   optimnew;
   clear   optimnew_e;

   for i = 1 : horizon -1
xw_hat(:,i) = [0.00106676821136 8.75647813213838 -3.72903355051045]';
end

for i = 1 : hori - 1
xw_hat_e(:,i) = xw_hat(:,1);
end

   xpast  = x_hat_1; 
   P_1 = pp * diag( sigma.^2 );

    %upper and lower bounds for optimized variables x
    lp( 1 , 1 ) = 0 ;
    lp( 2 : 3, 1) = -1e6 ;
    up( 1 : 3, 1 ) = 1e6 ; 

    lp_e( 1 , 1 ) = 0 ;
    lp_e( 2 : 3, 1) = -1e6 ;
    up_e( 1 : 3, 1 ) = 1e6 ;

end % End monte carlo simulations
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tms = sum(tm);
tmes = sum(tm_e);
ratio = tms/tmes 

for i = 1: n
    for j = 1: t_span
        x_m (i, j) = mean ( xx( i, j, :) );
        x_hat_mh_m (i, j) = mean ( xx_hat_mh( i, j, :) );
        x_hat_mh_m_e (i, j) = mean ( xx_hat_mh_e( i, j, :) );
    end
end

%calculate MSE
for j = 1:t_span
         %calculating MSE error
         for k = 1:ts
            x_err_mh_e( :, j, k) = xx_hat_mh_e( :, j, k) - xx( :, j, k);
            x_err_mh( :, j, k) = xx_hat_mh( :, j, k) - xx( :, j, k);
            x_msek_mh_e( j, k ) = x_err_mh_e( :, j, k)' * x_err_mh_e( :,
 j, k) ; %at j instant
            x_msek_mh( j, k ) = x_err_mh( :, j, k)' * x_err_mh( :, j, k)
 ;
         end

         x_mseR_mh_e( j ) = sum ( x_msek_mh_e( j , :) )/ts ;
         x_mseR_mh( j ) = sum ( x_msek_mh( j , :) )/ts ; 

end

         x_mse_mh_e = sum ( x_mseR_mh_e )/t_span 
          x_mse_mh = sum ( x_mseR_mh )/t_span

%plot
linewidth = 2 ;
xxis = 60;
subplot(3,1,1), plot(x_m(1,:),'r'); ylabel('CA'); hold on;
AX = AXIS;
%AXIS([0 xxis 0.017 0.022])
%title('Performance of each filter - A CSTR process')
subplot(3,1,2), plot(x_m(2,:),'r');  ylabel('T');  hold on;
AX = AXIS;
%AXIS([0 xxis 380 387])
subplot(3,1,3), plot(x_m(3,:),'r'); ylabel('Tj'); hold on;
AX = AXIS;
%AXIS([0 xxis 369 374])
xlabel('t')

subplot(3,1,1), plot(x_hat_mh_m(1,:),'g--','LineWidth',linewidth);
subplot(3,1,2), plot(x_hat_mh_m(2,:),'g--','LineWidth',linewidth);
subplot(3,1,3), plot(x_hat_mh_m(3,:),'g--','LineWidth',linewidth);

subplot(3,1,1), plot(x_hat_mh_m_e(1,:),'m:.','LineWidth',linewidth);  ho
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ld off;
legend('System','uMHE','eMHE')
subplot(3,1,2), plot(x_hat_mh_m_e(2,:),'m:.','LineWidth',linewidth);  ho
ld off;
subplot(3,1,3), plot(x_hat_mh_m_e(3,:),'m:.','LineWidth',linewidth);  ho
ld off;
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% different EKF implementations for the Van de Vusse reactions

clear all
close all

% nominal value of parameters
NVP = [ 1.287e12 , 1.287e12 , 9.043e9 , 9758.3 , 9758.3 , 8560 , 4.2 , -
11 , -41.85 , 5.1 , 403.15 , 0.9342 , 3.01 , 10 , -4496 800 2.4946 1.100
4 411.08 ]' ;
% time range
DT = 200e-3 ; % sampling time of measurements
tspan = [ 0 : DT : 0.7 ]' ;
n_time = length( tspan ) ;
n_state = 3 ;

C = [ 0 1 0 ; 0 0 1 ] ;
n_output = size( C , 1 ) ;

sigma_v = 1e-1 ;
R = ( sigma_v )^2 * eye( size( C , 1 ) ) ;

% % generate the simulation data
% sigma_wc = 1e-1 * ones( 1 , n_state ) ;
% dt = 2e-5 ;
% n_dt = round( max( tspan ) / dt ) + 1 ;
% xc = ones( n_dt ,  n_state ) ;
% for ii = 2 : n_dt
%     [ t , x ] = ode45( @state_func , [ 0 dt ] , xc( ii - 1 , : ) , [] 
, NVP ) ;
%     xc( ii , : ) = x( size( x , 1 ) , : ) + sqrt( dt ) * sigma_wc .* r
andn( 1 , n_state ) ;
% end
% plot( ( 0 : dt : ( n_dt - 1 ) * dt )' , xc )
% save( 'xc.mat' , 'xc' , 'sigma_wc' , 'dt' ) ;
% return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

load( 'xc.mat' )
Qc = diag( sigma_wc .^ 2 ) ;
% sampling
n_step = round( DT / dt ) ;
xt = ones( n_time , n_state ) ;
for ii = 1 : n_time
    xt( ii , : ) = xc( ( ii - 1 ) * n_step + 1 , : ) ;
end
yo = xt * C' + sigma_v * randn( n_time , n_output ) ;
% filtering
n_op = 7 ;
xh = ones( n_time , n_state ) ;
xhs = ones( n_time , n_state , n_op ) ;
es = zeros( n_time , n_state , n_op ) ;
P = 1e2 * eye( n_state ) ;
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for nf = 1 : n_op
    for ii = 2 : n_time
        switch nf
            case 1 % algorithm 1.0
                x0 = [ xh( ii - 1 , : ) P( : , 1 )' P( : , 2 )' , P( : ,
 3 )' ] ;
                [ t , x ] = ode45( @xp_func , [ 0 DT ] , x0 , [] , NVP ,
 Qc ) ;
                xf = x( size( x , 1 ) , : ) ;
                P = [ xf( 4 : 6 )' xf( 7 : 9 )' xf( 10 : 12 )' ] ;
            case 2 % algorithm 1.1
                x0 = [ xh( ii - 1 , : ) P( : , 1 )' P( : , 2 )' , P( : ,
 3 )' ] ;
                A = dfx( x0( 1 : 3 ) , NVP ) ;
                [ t , x ] = ode45( @xp_func , [ 0 DT ] , x0 , [] , NVP ,
 Qc , A ) ;
                xf = x( size( x , 1 ) , : ) ;
                P = [ xf( 4 : 6 )' xf( 7 : 9 )' xf( 10 : 12 )' ] ;
            case 3 % algorithm 2.0
                [ t , x ] = ode45( @state_func , [ 0 DT ] , xh( ii - 1 ,
 : ) , [] , NVP ) ;
                xf = x( size( x , 1 ) , : ) ;
                Ac = dfx( xh( ii - 1 , : ) , NVP ) ;
                Ad = expm( Ac * DT ) ;
                M = expm( [ -Ac' Qc ; zeros( n_state ) Ac ] * DT ) ;
%                 Qd = M( n_state + 1 : 2 * n_state , n_state + 1 : 2 * 
n_state )' * M( 1 : n_state , n_state + 1 : 2 * n_state ) ;
                Qd = Qc * DT ;
                P = Ad * P * Ad' + Qd ;
            case 4 % algorithm 2.1
                [ t , x ] = ode45( @state_func , [ 0 DT ] , xh( ii - 1 ,
 : ) , [] , NVP ) ;
                xf = x( size( x , 1 ) , : ) ;
                Ac = dfx( xh( ii - 1 , : ) , NVP ) ;
                Ad = eye( n_state ) + Ac * DT ;
                Qd = Qc * DT ;
                P = Ad * P * Ad' + Qd ;
            case 5 % algorithm 3.0
                % estimation of covariance of noise
                Ac = dfx( xh( ii - 1 , : ) , NVP ) ;
                Ad = expm( Ac * DT ) ;
                M = expm( [ -Ac' Qc ; zeros( n_state ) Ac ] * DT ) ;

                Qd = Qc * DT ;
                x0 = [ xh( ii - 1 , : ) , [ 1 0 0 0 1 0 0 0 1 ] ] ; 
                [ t , x ] = ode45( @xs_func , [ 0 DT ] , x0 , [] , NVP )
 ;
                xf = x( size( x , 1 ) , : ) ;
                Ak = [ xf( 4 : 6 )' xf( 7 : 9 )' xf( 10 : 12 )' ] ;
                P = Ak * P * Ak' + Qd ;
            case 6 % algorithm 3.01
                % estimation of covariance of noise
                Ac = dfx( xh( ii - 1 , : ) , NVP ) ;
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                Ad = expm( Ac * DT ) ;
                M = expm( [ -Ac' Qc ; zeros( n_state ) Ac ] * DT ) ;

                Qd = Qc * DT ;
                x0 = xh( ii - 1 , : ) ;
                [ t , x ] = ode45( @state_func , [ 0 DT ] , x0 , [] , NV
P ) ;
                xf = x( size( x , 1 ) , : ) ;
                dx = 2e-3 ;
                for jj = 1 : n_state
                    dx0 = x0 ;
                    dx0( jj ) = ( 1 + dx ) * dx0( jj ) ;
                    [ t , x ] = ode45( @state_func , [ 0 DT ] , dx0 , []
 , NVP ) ;
                    Ak( : , jj ) = ( x( size( x , 1 ) , : ) - xf )' / dx
 ;
                end
                P = Ak * P * Ak' + Qd ;
            case 7 % algorithm 3.1
                xf = xh( ii - 1 , : ) + state_func( -1 , xh( ii - 1 , : 
) , NVP )' * DT ;
                Ac = dfx( xh( ii - 1 , : ) , NVP ) ;
                Ad = eye( n_state ) + Ac * DT ;
                Qd = Qc * DT ;
                P = Ad * P * Ad' + Qd ;
        end
        K = P * C' * inv( C * P * C' + R ) ;
        xh( ii , : ) = xf( 1 : 3 ) + ( yo( ii , : ) - xf( 1 : 3 ) * C' )
 * K' ;
        P = ( eye( n_state ) - K * C ) * P * ( eye( n_state ) - K * C )'
 + K * R * K' ;
    end
    xhs( : , : , nf ) = xh ;
    es( : , : , nf ) = xhs( : , : , nf ) - xt ;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
% plot the results
n_b = find( tspan == 0.2 ) ;
tspan = tspan( n_b : n_time ) ;
xt = xt( n_b : n_time , : ) ;
xhs = xhs( n_b : n_time , : , : ) ;
es = es( n_b : n_time , : , : ) ;
n_time = n_time - n_b + 1 ;

for ii = 1 : n_state
    figure
    plot( tspan , [ xt( : , ii ) reshape( xhs( : , ii , : ) , n_time , n
_op ) ] );
    legend( 'true' , '1.0' , '1.1' , '2.0' , '2.1' , '3.0' , '3.01' , '3
.1' ) ;
    xlabel( 'time' )
    xlim( [ 0.2 max( tspan ) ] )
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end

for ii = 1 : n_state
    figure
    plot( tspan , reshape( es( : , ii , : ) , n_time , n_op ) );
    legend( '1.0' , '1.1' , '2.0' , '2.1' , '3.0' , '3.01' , '3.1' ) ;
    xlabel( 'time' )
    xlim( [ 0.2 max( tspan ) ] )
    mese( ii , : ) = sqrt( sum( reshape( es( : , ii , : ) , n_time , n_o
p ) .* reshape( es( : , ii , : ) , n_time , n_op ) ) ) ;
end
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% The state function of Van de Vusse reactions

function y = state_func( t , x , Para )

y = [

    Para(16)/Para(14)*(Para(10)/Para(17)-x(1))-Para(1)*exp(-Para(4)/x(3)

/Para(19))*x(1)-Para(3)*exp(-Para(6)/x(3)/Para(19))*x(1)^2*Para(17)

    -Para(16)/Para(14)*x(2)+Para(1)*exp(-Para(4)/x(3)/Para(19))*x(1)/Par

a(18)*Para(17)-Para(2)*exp(-Para(5)/x(3)/Para(19))*x(2)

    1/Para(12)/Para(13)*(-Para(1)*exp(-Para(4)/x(3)/Para(19))*x(1)/Para(

19)*Para(17)*Para(7)-Para(2)*exp(-Para(5)/x(3)/Para(19))*x(2)/Para(19)*P

ara(18)*Para(8)-Para(3)*exp(-Para(6)/x(3)/Para(19))*x(1)^2/Para(19)*Para

(17)^2*Para(9))+Para(16)/Para(14)*(Para(11)/Para(19)-x(3))+Para(15)/Para

(14)/Para(12)/Para(13)/Para(19)

] ;
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% update state variable x and covariance matrix P

function y = xp_func( t , x , Para , Q , A ) 

if nargin == 4

    A = dfx( x( 1 : 3 ) , Para ) ;

end

P = [ x( 4 : 6 ) x( 7 : 9 ) x( 10 : 12 ) ] ;

dP = A*P + P*A' + Q ;

y = [ state_func( -1 , x( 1 : 3 ) , Para ) ; dP( : , 1 ) ; dP( : , 2 ) ;

 dP( : , 3 ) ] ;
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