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ABSTRACT

Randomized and Deterministic Parameterized Algorithms

and Their Applications in Bioinformatics. (December 2009)

Songjian Lu, B.S., Guangxi University;

M.S., Xi’an Jiaotong University;

M.S., University of Houston

Co–Chairs of Advisory Committee: Dr. Jianer Chen
Dr. Sing-Hoi Sze

Parameterized NP-hard problems are NP-hard problems that are associated with

special variables called parameters. One example of the problem is to find simple

paths of length k in a graph, where the integer k is the parameter. We call this

problem the p-path problem. The p-path problem is the parameterized version of

the well-known NP-complete problem – the longest simple path problem.

There are two main reasons why we study parameterized NP-hard problems.

First, many application problems are naturally associated with certain parameters.

Hence we need to solve these parameterized NP-hard problems. Second, if parameters

take only small values, we can take advantage of these parameters to design very

effective algorithms.

If a parameterized NP-hard problem can be solved by an algorithm of running

time in form of f(k)nO(1), where k is the parameter, f(k) is independent of n, and

n is the input size of the problem instance, we say that this parameterized NP-hard

problem is fixed parameter tractable (FPT). If a problem is FPT and the parameter

takes only small values, the problem can be solved efficiently (it can be solved almost

in polynomial time).
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In this dissertation, first, we introduce several techniques that can be used to

design efficient algorithms for parameterized NP-hard problems. These techniques

include branch and bound, divide and conquer, color coding and dynamic program-

ming, iterative compression, iterative expansion and kernelization. Then we present

our results about how to use these techniques to solve parameterized NP-hard prob-

lems, such as the p-path problem and the pd-feedback vertex set problem.

Especially, we designed the first algorithm of running time in form of f(k)nO(1) for

the pd-feedback vertex set problem. Thus solved an outstanding open problem,

i.e. if the pd-feedback vertex set problem is FPT. Finally, we will introduce how

to use parameterized algorithm techniques to solve the signaling pathway problem and

the motif finding problem from bioinformatics.
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CHAPTER I

INTRODUCTION

Traditionally, when a problem is proved to be NP-hard or NP-complete, it is believed

that this problem cannot be solved efficiently, i.e. most people believe that the prob-

lem cannot be solved in polynomial time in terms of the input size of the instance

of the problem. On the other hand, as in applications, such as in bioinformatics,

networks and operating systems, many problems are NP-hard. There is no way to

avoid them. Hence in effort to solve these practical problems, people study NP-hard

problems from different directions.

One direction is exact algorithms, which use exponential time to find exact so-

lutions with minimum or maximum sizes. One example is the minimum feedback

vertex set problem, i.e. given a graph G = (V, E), find a minimum size subset F

of V such that after removing F from graph G, the remaining graph has no cycles.

The minimum feedback vertex set problem can be solved by an algorithm of

running time O(1.9053n) in a graph with n vertices [106]. Another direction is poly-

nomial time approximation algorithms, which use polynomial time to find solutions

with sizes that are close to values of exact solutions with minimum or maximum sizes.

One example is using O(n2) time to find a feedback vertex set of size at most 2 times

as large as the size of the minimum feedback vertex set in a graph with n vertices [7].

The third direction is parameterized algorithms. This dissertation will present new

results about parameterized algorithms for parameterized NP-hard problems. The

dissertation will also show how our new parameterized algorithms can be applied to

problems in bioinformatics.

The journal model is Journal of Computer and System Sciences.
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A. Parameterized NP-hard Problems and Motivation

First, let us define parameterized NP-hard problems. Parameterized NP-hard

problems are NP-hard problems associated with special variables called parameters.

An example of the problem is to find simple paths of length k in a graph, where the

integer k is the parameter. This problem is called the p-path problem. The p-path

problem is the parameterized version of the well-known NP-complete problem – the

longest simple path problem, i.e. given a graph G = (V,E), find the longest

simple path in G.

Following two examples can help you to further understand the concept of pa-

rameterized NP-hard problems.

p-feedback vertex set: Given an undirected graph G = (V, E) and

an integer k, either find a set F of k vertices in G whose removal results

in an acyclic graph, or report that no such an F exists. We usually call

F the FVS of the graph.

p-node multiway cut: Given an undirected graph G = (V, E), a col-

lection of pairwise disjoint terminal sets {T1, . . . , Tl} (where each Ti is a

subset of vertices in G), and a parameter k, either construct a separa-

tor of at most k vertices in G, or report that no such a separator exists.

(Note: A separator is a vertex set that does not include any vertex from

any terminal set and if we remove it from the graph, then no two vertices

from different terminals are in the same connected component.)

The k in the p-feedback vertex set problem and in the p-node multiway

cut problem is the parameter. In the p-feedback vertex set problem, if instead

of finding a set F of k vertices in G, we find a set F with minimum size whose removal



3

results in an acyclic graph, then the problem becomes the minimum feedback ver-

tex set problem which is NP-hard. Similarly, the minimum node multiway cut

problem can be obtained.

There are two main reasons why we study parameterized NP-hard problems.

First, many application problems are naturally associated with certain parameters,

i.e. they are parameterized NP-hard problems. Second, if the values of the parameters

are small, we want to take advantage of these parameters to design very effective

algorithms.

One example in computational biology is to find signaling pathways in protein

interaction networks. This problem can be formulated as finding a set of short simple

paths (6 to 12 proteins) with top weights and then combining these paths into a path

structure. The corresponding algorithmic problem for the signaling pathway problem

is the pw-path problem, i.e. to find a simple path of k vertices with maximum weight

in a weighted graph. The formal definition of the pw-path problem is as following.

pw-path: Given a weighted undirected graph G of n vertices and m edges

and a parameter k, either construct a k-path in G whose weight is the

maximum over all k-paths in G, or report that no k-path exists in G.

As the pw-path problem can be solved in time O(4kk2.7m) by an algorithm [29],

where m is the number of edges in the graph, the algorithm is very efficient for small

k in the signaling pathway problem (note: the algorithm developed in [29] is for the

p-path problem. By a minor modification, it can be used to solve the pw-path

problem).
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B. Fixed Parameter Tractable Problems

For many parameterized NP-hard problems, such as the p-feedback vertex set

problem and the p-node multiway cut problem, their solutions are subsets of k

elements in a ground set of n elements. If a subset of k elements is given, whether this

subset is the solution can be verified in polynomial time. Therefore, if k is smaller

than a fixed number, such as k < 20, then these problems are solvable in polynomial

time by testing every subset of size k.

By this trivial method, the p-node multiway cut can be solved in time

O(nk+2). Though this trivial algorithm for the p-node multiway cut is simple

and easy to be implemented, its high time complexity makes it impractical even for

small k. The problem is that the time complexity increases too quickly when k in-

creases, as in a usual given instance, n can be very large. Can the p-node multiway

cut problem be solved by a better algorithm? The current best algorithm for the

p-node multiway cut problem has a time complexity of O(4kkn3) [26]. As usually,

n is large and k is small, an algorithm with running time bounded by O(4kkn3) is

much better than an algorithm with running time bounded by O(nk+2).

In general, if a parameterized NP-hard problem can be solved by an algorithm of

running time in form of f(k)nO(1), where f(k) is a function depending only on k and

n is the input size of the problem instance, we say that the parameterized NP-hard

problem is fixed-parameter tractable, simply called FPT.

The merit is obvious if a parameterized NP-hard problem is fixed-parameter

tractable. Since the time complexity is in form of f(k)nO(1), where f(k) depends only

on parameter k and is independent of instance size n, if the parameter k is not very

large, the problem can still be solved efficiently even when the size of the instance is

very large.
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There are a number of parameterized NP-hard problems from applications that

can be solved by algorithms that have time complexity in form of f(k)nO(1). For

example, the signalling pathway problem can be formulated as the pw-path problem

which can be solved by an algorithm of running time O(4kk2.7m). As for the signalling

pathway problem, the parameter k takes only small values (less than 15, the input

size is usually larger than 5, 000). Thus the problem can be solved very effectively.

A nature question is “Are all parameterized NP-hard problems fixed-parameter

tractable?”. It would be excellent if all parameterized NP-hard problems are fixed-

parameter tractable, for fixed-parameter tractable problems can be solved by algo-

rithms of running time in the form of f(k)nO(1), which is very effectively for small

k. Unfortunately, there are strong evidences that this is not the case. For example,

the following two problems are very famous problems that are believed to be not

fixed-parameter tractable.

p-independent set: Given a graph G = (V, E) and an integer k, either

find a subset I of size k in V such that no edge connects any two vertices

in I, or report that no such an I exists. We call subset I the independent

set.

p-dominating set: Given a graph G = (V, E) and an integer k, either

find a subset D of size k in V such that for any v ∈ V , if v /∈ D, then v

has a neighbor in D, or report that no such a D exists. We call subset D

the dominating set of the graph.

Just as many computer scientists believe that P 6= NP, most people who study

parameterized NP-hard problems believe that not all parameterized NP-hard prob-

lems are fixed-parameter tractable. It has been proved that the p-independent set

and p-dominating set problems cannot be solved by any algorithms of running time
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in form of O(no(k)) unless all problems in SNP are solvable in subexponential time

[23]. This is a very strong evidence that the p-independent set and p-dominating

set problems are not fixed-parameter tractable. Hence it is very possible that the

best algorithms we can have for the p-independent set and p-dominating set

problems have the time complexities of nO(k) which are not much better than the trial

algorithm that tests all subsets of size k and has the time complexity of O(nk).

There is a branch in complexity theory that focuses on parameterized NP-hard

problems that are not fixed-parameter tractable. As this dissertation concentrates on

designing algorithms for parameterized NP-hard problems that are fixed-parameter

tractable, we mainly present new techniques and algorithms for parameterized NP-

hard problems that are fixed-parameter tractable, while results about problems that

are not fixed-parameter tractable are not the fucus of the dissertation.

C. Dissertation Outline

The dissertation is organized as follows. In Chapter II, several general techniques to

design algorithms for problems that are fixed-parameter tractable will be introduced.

These techniques include branch and bound, divide and conquer, color coding and

dynamic programming, iterative compression, iterative expansion, and kernelization.

In Chapter III, branch and bound techniques are used to solve the p-node

multiway cut problem.

In Chapter IV, how to use divide and conquer techniques to solve the pw-path,

pw-r-d matching and pw-r-set packing problems will be presented. How to use

set partition technique to solve the pw-set splitting problem is also introduced.

In Chapter V, iterative expansion technique is combined with color coding and

dynamic programming techniques to solve the p-3-d matching problem.
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In Chapter VI, iterative compression and branch techniques are used to solve the

pd-feedback vertex set, p-feedback vertex set and pw-feedback vertex

set problems on directed and undirected graphs. Especially, we give the first algo-

rithm of running time in form of f(k)nO(1) for the pd-feedback vertex set, thus

solving a long-standing open problem.

In Chapter VII, the parameterized algorithms are used to solve the signalling

pathway and motif finding problems in bioinformatics.

In Chapter VIII, the summary of the dissertation and the future work will be

given.
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CHAPTER II

GENERAL TECHNIQUES FOR PARAMETERIZED NP-HARD PROBLEMS

The most basic method to deal with NP-complete problems is branch and bound.

This is also true for parameterized NP-hard problems. In addition to branch and

bound techniques, there are many other techniques that are suitable to solve param-

eterized NP-hard problems. A partial list of these techniques includes divide and

conquer, color coding and dynamic programming, iterative compression, iterative ex-

pansion, and kernelization. In this chapter, main principles of these techniques, that

are suitable for parameterized NP-hard problems, in this partial list will be intro-

duced. Hence you can acquire basic ideas of these techniques. In later chapters,

these techniques will be applied to solve parameterized NP-hard problems, especially

problems that are fixed parameter tractable, i.e. problems that can be solved by

algorithms of running time in form of f(k)nO(1).

A. Branch and Bound

The branch and bound method is the most general method to deal with NP-complete

problems. The basic idea of the branch and bound is very simple. Given an instance

of a problem, we branch the instance into two or more simpler sub-instances that

the solution of the original instance can be constructed from the solutions of all sub-

instances. Then we branch each sub-instance again and repeat this process until we

reach sub-instances that can be solved easily, i.e. that can be solved in constant time

or polynomial time. Let us use the p-vertex cover problem as an example to

explain this process.
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p-vertex cover: Given an graph G = (V, E) and an integer k, either

find a subset C, which is called the vertex cover, of size bounded by k in

V such that every edge in E has at least one end in C, or report that no

such a subset C exists. The instance of the p-vertex cover problem is

denoted as I = {(V,E), k}.

One simple way to solve this problem is that, for the given instance I = {(V, E), k},

we choose any edge [u, v] in E. It is obvious that either vertex u or vertex v must be

in the vertex cover C. Hence, the instance is branched into two cases. In one case, the

vertex u is included into C and a new sub-instance I1 = {(V −{u}, E−{[u, v]}), k−1}

is obtained. In other case, we include the vertex v into C and continue to solve sub-

instance I2 = {(V −{v}, E−{[u, v]}), k−1}. The same process is repeatedly applied

to each sub-instance until k = 0 or no edge exists in the sub-instance. As for each

branch, the parameter k will decrease by one, the parameter k will become 0 after

the original instance is branched at most k times, where in this case, the instances

can be solved in polynomial time.

How is the time complexity for this simple branch and bound algorithm cal-

culated? Let T (k) be the number of leaves in the branch tree for the instance

I = {(V,E), k} with parameter k. Then in each branch, T (k) = 2T (k − 1), i.e.

an instance with parameter k become two instances with parameter k − 1. It is easy

to deduce that T (k) ≤ 2k and the time complexity to solve the p-vertex cover is

bounded by O∗(2k) 1.

The most general branch for parameterized NP-hard problems has the relation

T (k) ≤ ∑k
i=1 aiT (k− i), where all ai are non negative integers and not all ai are zero.

1In this dissertation, O∗(f(k)) is used as a short for f(k)nO(1), where the polyno-
mial part nO(1) is neglected.
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Let T (i) = ti for all 0 ≤ i ≤ k. Then we can obtain an equation tk −∑k
i=1 ait

k−i = 0.

It can be proved that this equation has a unique positive root c and T (k) ≤ ck [25].

Hence we can deduce from this equation that the time complexity is O∗(ck). By the

way, a well-known algorithm that uses branch and bound for the p-vertex cover

has a time complexity of O∗(1.2852k) [25].

B. Divide and Conquer

The main idea of the divide and conquer method is to split an instance (x, k), where

k is the parameter and x is the remaining part of the input of the instance, of pa-

rameterized NP-hard problem into two sub-instances (x1, k/2) and (x2, k/2). Then

solve two sub-instances (x1, k/2) and (x2, k/2) independently. There are two impor-

tant criteria when we use divide and conquer to deal with parameterized NP-hard

problems. First, the time complexity to split an instance into two sub-instances must

be bounded by O∗(f(k)), where f(k) is a function depending only on k. Second, two

sub-instances must be independent, i.e. the solution of the first sub-instance does not

depend on the second sub-instance and the solution of the second sub-instance does

not depend on the first sub-instance.

There are many parameterized NP-hard problems whose solutions are subsets

of size k in a given set, such as the pw-path problem and the p-vertex cover

problem, where their solutions are subsets of k vertices in a given graph. Let the

instance of the original problem have n vertices {v1, v2, . . . , vn} and the unknown

solution for the instance be S = {vi1 , vi2 , . . . , vik}. In O(n) time, vertices in solution

set S can be split into two groups of equal size, for there must be a number j between

1 and n such that half of vertices in the solution set S are in {v1, v2, . . . , vj} and

another half of vertices in the solution S are in {vj+1, vj+2, . . . , vn}. However, if the
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solution set S should be split into two specific groups S1 and S2, i.e. certain elements

must be in the same group, polynomial time is not enough. There is a simple random

process that can split the solution set S into S1 and S2. If each vertex in the problem

is randomly put into either group 1 or group 2 with equal probability 0.5, then with

probability 1/2k, all elements in S1 are in group 1 and all elements in S2 are in

group 2. Hence if this simple random process is repeated 12 ·2k times, the probability

that S is split into S1 and S2 by at least one trial is greater than 0.99. There is an

(n, k)-universal set [93] that can be used to derandomize this random process. This

(n, k)-universal set will be discussed in detail in Chapter IV.

It seems that the divide and conquer method does not work for all parameterized

problems. For example, for the p-vertex cover problem, after the instance is split

into two sub-instances and the solution set S of size k is split into two subsets of size

k/2 such that each sub-instance has one subset, then both sub-instances will have a

vertex cover of size k/2. Howerver, when finding vertex cover of size k/2 in each sub-

instance, we need to consider edges between two sub-instances, i.e. the solution of the

first instance depends on the solution of the second instance if you want to combine

these two solutions in two sub-instances into one solution for the original instance.

Hence, the divide and conquer method is hard to be applied to the p-vertex cover

problem.

For the pw-path problem, suppose 〈ui1 , . . . , uik/2
, uik/2+1

, . . . , uik〉 is a simple

path of length k, where uij is connected to uij+1
for all 1 ≤ j < k. If, after the graph

is partitioned into two sub-graphs G1 and G2, ui1 , . . . , uik/2
are in sub-graph G1 while

uik/2+1
, . . . , uik are in sub-graph G2, then both sub-graphs will have a simple path of

length k/2. As any simple path of length k/2 that ends with vertex uik/2
in G1 and

any simple path of length k/2 that ends with vertex uik/2+1
in G2 can construct a

simple path of lenght k in the orginal graph, we can find simple paths of length k/2
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in two sub-graphs independently. Therefore we can use divide and conquer method to

solve the pw-path problem. Chapter IV will discuss how divide and conquer method

is used to solve the pw-path, pw-r-d matching and pw-r-set packing problems.

C. Color Coding and Dynamic Programming

Color coding and dynamic programming techniques were first introduced to solve

the parameterized NP-hard problem by Alon et al. [3]. In their paper [3], they

applied color coding and dynamic programming techniques to the p-path problem

(unweighted version of the pw-path problem) and improved the time complexity for

the p-path problem from O∗(kk) to O∗(ck) for a constance c.

The basic idea for color coding and dynamic programming is that first, all vertices

in the problem are colored with a number of colors, where each vertex is assigned with

one color and the total number of colors used is bounded by a function c(k) depending

only on k. Then, the dynamic programming is applied to find the solution. In the

coloring step, the goal is to color all vertices in the (unknown) solution set with

different colors, i.e. no two vertices in the solution set are colored with the same color.

The time to reach this goal should be bounded by O∗(g(k)), where g(k) is a function

depending only on k. In the dynamic programming step, only different combinations

of color sets, not different combinations of vertex sets, need to be remembered. As

the number of colors is bounded by c(k), the total number of different combinations

of color sets is bounded by 2c(k). This 2c(k) will dominate the time complexity in the

dynamic programming step.

A k-coloring function is coloring n elements in the problem instance with k colors.

If no two elements in a subset are colored with the same color, we say that this subset

is colored properly. A k-color coding scheme for set X is a collection of k-coloring
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functions such that every subset with k elements in X is colored properly by at least

one k-coloring function in the scheme. A k-color coding scheme of size O∗(6.4k) [29]

will be introduced in Chapter V. In the coloring step, all k-coloring functions in the

k-color coding scheme are enumerated. The unknown solution set of size k will be

colored properly by at least one k-coloring function.

In the coloring step, the k-color coding scheme can be replaced by a random

process. Let every element in the ground set be randomly assigned color i with

probability 1/k, where 1 ≤ i ≤ k. Then in each trial, the probability that a special

subset of size k is colored properly is k!/kk. Therefore, if we do O(12 · kk/k!) trials,

the probability that this special subset is colored properly by at least one trial is

larger than 0.99.

For any problem that the solution is a subset of size k in a ground set of size

n, the solution set can be colored properly by a k-color coding scheme or a random

coloring process. However the solution seems not necessary to be found in the dynamic

programming step by only remembering color sets, such as for the p-vertex cover

problem, even the solution subset is color properly, the solution is still hard be found

in the dynamic programming step. The difficulty is that two subsets with the same

color but with different vertices will cover different edges. Thus it is not enough to

remember only color sets. For the p-path problem, if two subsets with the same color

set form two sub-paths that share the same end, when a new vertex, that connects to

the common end and has a new color, is added to the color sets, the length of either

of this two sub-paths will increase by one. remembering either path will not effect

the path extension in later step. Hence for each vertex in the graph, we only need

to remember different combinations of color sets that are corresponding to sub-paths

using this vertex as one end. How to use color coding and dynamic programming to

solve the p-3-d matching problem will be discussed in Chapter V.
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D. Iterative Compression

The iterative compression technique was proposed by Reed et al. [107]. The tech-

nique is suitable for parameterized NP-hard problems whose corresponding NP-hard

optimization problems are to find the solution of minimum value, such as the p-

feedback vertex problem. The basic idea is that instead of finding a solution of

size k directly, which is very hard, we solve a serial of problems that find a solution

of size k under the condition that a solution of size k + 1 is given.

Let us use the p-feedback vertex problem as an example to explain this

technique in detail. Given an instance of the p-feedback vertex problem, first a

set of vertices from the graph are removed so that the remaining graph has an FVS

of size bounded by k. The extreme case is removing n − k vertices from the graph,

where n is the number of vertices in the graph. It is obvious that the remaining graph

with only k vertices has an FVS of size bounded by k. Then one by one, all removed

vertices will be added back. Each time, when one vertex is added back, the newly

added vertex and the FVS of size k for the previous instance form an FVS of size

k + 1. If an FVS of size k is found in this new instance, we continue to add another

vertex back, and so on until all vertices are added back. Thus, an FVS of size k in

the original graph can be found. If in one step, an FVS of size k does not exist, then

the original graph does not have an FVS of size k. It is obvious that in each step, we

only need to find an FVS of size k under the condition that an FVS of size k + 1 is

given. This iterative compression technique is combined with our other techniques to

solve the pd-feedback vertex, p-feedback vertex and pw-feedback vertex

problems in Chapter VI.
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E. Iterative Expansion

The iterative expansion is the opposite of the iterative compression. In iterative

expansion, we try to solve a serial of problems that find a solution of size k +1 under

the condition that a solution of size k is given.

The iterative expansion is a general technique that can be applied to any param-

eterized NP-hard problems whose corresponding NP-hard optimization problems are

to find the solution of maximum value. However you only want to use this technique

if you can take advantage of a solution of size k to find a solution of size k + 1. In

this case, the problem can be solved efficiently by beginning from a solution of size 1,

then finding a solution of size 2, further finding a solution of size 3, and so on until

finding a solution of required size.

In Chapter V, iterative expansion technique is combined with color coding and

dynamic programming techniques to solve the p-3-d matching problem.

F. Kernelization

In studying parameterized NP-hard problems, the kernelization is a process that uses

polynomial time (in term of the input size of the problem instance) to reduce an

instance (x, k), where k is the parameter and x is the remaining part of the input of

the instance, of problem
∏

to another instance (x′, k′) of problem
∏

such that

(1) (x, k) is a “yes” instance if and only if (x′, k′) is a “yes” instance.

(2) k′ ≤ k.

(3) |x′| < g(k), where g(k) is a function depending only on k.

One advantage for kernelization is that if the parameterized NP-hard problem is

kernelizable, we can use polynomial time to find the kernel and then solve the new
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instance, the kernel, with a very small input size. For example, the p-vertex cover

problem has a kernel which is a graph with at most 2k vertices. Hence instead of

finding a vertex cover of size k in a huge graph directly, we first use polynomial time

to find a kernel that has at most 2k vertices. Then we find a vertex cover of size

k′ ≤ k in the kernel. This means the hard part in computation is only on the kernel.

When k is small, the kernel is small. Hence, the problem can be solved efficiently.

If a problem is kernelizable, the input size of the kernel is bounded by a function

g(k) depending only on k. Usually, a parameterized NP-hard problem whose input

size is bounded by a function depending only on k can be solved trivially by an

algorithm that the time complexity is bounded by a function h(k) depending only on

k. This shows directly that the problem is fixed parameter tractable if the problem

is kernelizable. In fact, it can be proved that a problem is kernelizable if and only

if the problem is fixed parameter tractable. Examples of kernelization can be found

in papers [37, 50, 87]. In the dissertation, Chapter IV will introduce how to find the

kernel for the p-set splitting problem.



17

CHAPTER III

BRANCH-AND-BOUND∗

The branch and bound method is the most general method to deal with NP-complete

problems. The basic idea of the branch and bound method is very simple. Given an

instance of a problem, we branch the instance into two or more simpler sub-instances

that the solution of the original instance can be constructed from solutions of all

sub-instances. Then we branch each sub-instance again and repeat this process until

we reach sub-instances that can be solved easily. In this chapter, we will present in

detail how the branch and bound method is used to solve the p-node multiway

cut problem.

A. An Introduction to the Parameterized Node Multiway Cut Problem

The minimum cut problem is a well-known problem, and has been extensively stud-

ied ([18, 69, 94]). Applications of this problem are found in distributed computing

[115], VLSI [30], computer vision [16], and many other fields. The problem is defined

as follows: given an undirected graph G = (V, E) and a set of l vertices {t1, . . . , tl} in

G (the vertices ti are called terminals), find an edge set E ′ of minimum size in G such

that after the deletion of E ′, no two terminals are in the same connected component.

This problem is NP-hard for general graphs for any fixed integer l ≥ 3, and is also

NP-hard for planar graphs when l is not fixed [33].

A generalization of the minimum cut problem is the minimum node multiway

cut problem, which, for a given graph and a given set of terminals, is to find a vertex

∗Reprinted with permission from “An Improved Parameterized Algorithm for the
Minimum Node Multiway Cut Problem” by Jianer Chen, Yang Liu, Songjian Lu,
2009. Algorithmica, 55, 1-13, Copyright 2009 by Springer.
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set S of minimum size such that after the deletion of S, no two terminals are in

the same connected component. The minimum node multiway cut problem is

at least as hard as the minimum cut problem, as the latter can be reduced to the

former in time O(|V | + |E|), if we require that no terminal be in the separator S

[32]. Therefore, the minimum node multiway cut problem is also NP-hard if the

number l of terminals is at least 3.

When there are only two terminals s and t, the minimum cut problem and the

minimum node multiway cut problem become the edge version and the vertex

version of the minimum s-t cut problem, respectively. According to the max-flow

min-cut theorem [52], the minimum s-t cut problem, for both the edge version

and the vertex version, can be solved via algorithms for the maximum s-t flow

problem. For an undirected graph G of n vertices and m edges, the maximum s-t

flow problem can be solved in time O(n7/6m2/3) [70]. In consequence, when there are

only two terminals, the minimum cut problem and the minimum node multiway

cut problem can also be solved in time O(n7/6m2/3).

A natural extension of the minimum node multiway cut problem is to have

a collection of terminal sets, instead of a collection of individual terminals. Formally,

let G = (V,E) be an undirected graph, and let {T1, . . . , Tl} be a collection of terminal

sets where each Ti is a subset of vertices in G. A separator S for {T1, T2, . . . , Tl} is

a subset of vertices in G such that no vertex in S is in any terminal set, and after

deleting S from the graph G, no connected component in the resulting graph contains

vertices from more than one terminal set.

In certain real world applications, one may expect that the size of the separator

be small. For example, suppose that we are given a network (i.e., a graph) G = (V, E)

and a collection of network node groups {T1, . . . , Tl} in G, and we want to monitor the

message communication among the node groups. A separator for {T1, . . . , Tl} in the



19

network G will well serve for this purpose: any communication path between any two

node groups must pass through at least one node in the separator. Therefore, if we

set up a monitor process in each of the nodes in the separator, then we can monitor

all communications among the node groups. Naturally, we may want to limit the cost

of this monitoring system by using only a small number of “monitor nodes” in the

network G.

This motivates a parameterized version of the minimum node multiway cut

problem, which will be called the p-node multiway cut, i.e. given an undirected

graph G = (V,E), a collection of pairwise disjoint terminal sets {T1, . . . , Tl} (where

each Ti is a subset of vertices in G), and a parameter k, either construct a separator

of at most k vertices in G, or report that no such a separator exists. Our goal is, for

the p-node multiway cut problem, to develop a parameterized algorithm whose

running time is of the form f(k)nO(1) with a function f independent of the input size

n.

It can be derived from the graph minor theory of Robertson and Seymour [44]

that there is a parameterized algorithm whose running time is of the form f(k)nO(1)

for the p-node multiway cut problem. However, the proof is not constructive. An

explicit constructive algorithm for the problem was given by Marx [90], who developed

an algorithm of running time O(4k3
n5) for the p-node multiway cut problem for

its original version (i.e., in which each terminal set is restricted to contain a single

terminal). To our knowledge, this is the only known constructive parameterized

algorithm whose running time is of the form f(k)nO(1) for the problem.

In this chapter, we present an algorithm of running time O(k4kn3) for the p-

node multiway cut problem, which significantly improves the algorithm given in

[90]. In the real world of computing, this improvement makes it become possible

to practically solve the problem for some reasonable values of the parameter k. For
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example, for the case of k = 10, our algorithm has running time O(410n3), which is

practically feasible using the currently available computation power. On the other

hand, the algorithm in [90] in this case has running time O(41000n5), which is totally

infeasible from the practical point of view. Theoretically, our result gives the first

polynomial time algorithm for the minimum node multiway cut problem when

the size of the optimal separator is of order O(log n).

We only give an algorithm of finding a separator that has no vertices in any

terminal set. We call such a separator a restricted separator (simply call it a separator

in case of non confusion). If a separator is allowed to include vertices from terminal

sets, the separator is called an unrestricted separator. It can be verified easily that the

instance (G, {T1, . . . , Tl}, k) has an unrestricted separator of size k if and only if the

instance (G′, {{x1}, . . . , {xl}}, k) has a restricted separator of size k, where the graph

G′ is obtained from the graph G by adding l new vertices x1, . . . , xl and connecting

xi to each vertex in Ti for all 1 ≤ i ≤ l. Therefore, our algorithm can also be used to

construct unrestricted separators for undirected graphs.

Finally, we remark that the basic idea for techniques we developed for the p-

node multiway cut problem is branch and bound. The techniques we developed

seem to be very powerful for solving various kinds of multiway cut problems. In

particular, very recently the techniques have been extended to directed graphs, and

led to a parameterized algorithm of running time in form of f(k)nO(1) for the pd-

feedback vertex set problem [27], thus resolving an outstanding open problem

in the area of parameterized computation and complexity [44, 43].

Before our main algorithm is presented, we first introduce some terminology and

lemmas that are needed in the main algorithm.
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B. On Minimum V-cuts between Two Terminal Sets

We start with some terminology. All graphs in our discussion are supposed to be

undirected.

Let G = (V, E) be a graph and let u and v be two vertices in G. A path between

u and v is a simple path in G whose two ends are u and v, respectively. We say that

there is a path between a vertex u and a vertex subset V ′ if there is a path between

the vertex u and a vertex v in the subset V ′. For two vertex subsets V1 and V2, we

say that there is a path between V1 and V2 if there exist a vertex u in V1 and a vertex

v in V2 such that there is a path between u and v. Two paths are internally disjoint

if there is no vertex that is an internal vertex for both the paths.

Let G be a graph, and let {T1, . . . , Tl} be a collection of pairwise disjoint terminal

sets (each terminal set is a subset of vertices in G). A subset S of vertices in G is

a separator for {T1, . . . , Tl} if S contains no vertex in any of the sets T1, . . ., Tl, and

if after deleting all vertices in S from G, there is no path between any two different

subsets Ti and Tj in the resulting graph. In particular, a separator S for two terminal

sets T1 and T2 is also called a V-cut between the two sets T1 and T2.

Let T be a subset of vertices in the graph G = (V, E). By merging T (into a

single vertex), we mean the operation that first deletes all vertices in T then creates

a new vertex w adjacent to each v of the vertices in V − T where v is a neighbor of

a vertex in T in the original graph G.

Finally, for a subset V ′ of vertices in the graph G, we will denote by G[V ′] the

subgraph of G that is induced by the vertex subset V ′. Without any ambiguity, we

will denote by G − V ′ the induced subgraph G[V − V ′], and by G − w, where w is a

vertex in G, the induced subgraph G[V − {w}].

Proposition B.1 [20] (Menger’s Theorem–Vertex Version) Let u and v be two dis-
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tinct and nonadjacent vertices in a graph G. Then the maximum number of internally

disjoint paths between u and v in G is equal to the size of a minimum V-cut between

u and v in G.

Proposition B.1 can be generalized from the case for two vertices to the case of

two vertex subsets, as given in the following lemma.

Lemma B.2 Let T1 and T2 be two disjoint vertex subsets in a graph G such that no

vertex in T1 is adjacent to a vertex in T2. Then the maximum number h of internally

disjoint paths between T1 and T2 in G is equal to the size of a minimum V-cut between

T1 and T2 in G. Moreover, for any set π of h internally disjoint paths between T1 and

T2 in G, every minimum V-cut between T1 and T2 in G contains exact one vertex in

each of the paths in π.

Proof. Let G′ be the graph obtained from the graph G by merging the two vertex

subsets T1 and T2 into two vertices t1 and t2, respectively. Note that t1 and t2 are

not adjacent in G′.

By the definition of the merge operation, it is easy to verify that a vertex subset

S is a V-cut between the vertex subsets T1 and T2 in the graph G if and only if S

is a V-cut between the vertices t1 and t2 in the graph G′. In particular, the size of

a minimum V-cut between T1 and T2 in G is equal to the size of a minimum V-cut

between t1 and t2 in G′. Moreover, it is also easy to verify that for any integer h′,

from a set of h′ internally disjoint paths between T1 and T2 in G, we can construct a

set of h′ internally disjoint paths between t1 and t2 in G′, and vice versa. Therefore,

the maximum number of internally disjoint paths between T1 and T2 in G is equal to

the maximum number of internally disjoint paths between t1 and t2 in G′. Now the

first part of the lemma follows by applying Proposition B.1 to the graph G′.
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To prove the second part of the lemma, let S be a minimum V-cut, of size h,

between T1 and T2 in G, and let π be a set of h internally disjoint paths between T1

and T2. The vertex set S must contain at least one vertex from each of the paths in

π: otherwise there would be a path between T1 and T2 in G − S, contradicting the

assumption that S is a V-cut between T1 and T2. Moreover, the set S cannot contain

more than one vertex in any path in π: otherwise S would not be able to contain at

least one vertex for each of the paths in π (note that the paths in π are internally

disjoint).

Lemma B.2 provides an efficient algorithm that constructs the maximum number

of internally disjoint paths and a minimum V-cut between two given vertex subsets

in a graph.

Lemma B.3 Let T1 and T2 be two disjoint vertex subsets in a graph G = (V,E) such

that no vertex in T1 is adjacent to a vertex in T2. Then in time O((|V | + |E|)k), we

can decide if the size h of a minimum V-cut between T1 and T2 is bounded by k, and

in case h ≤ k, construct h internally disjoint paths between T1 and T2.

Proof. First we merge T1 into t1, T2 into t2 and transform the undirected graph

into a directed graph by replacing each edge by two reverse arcs. Then we modify

the new directed graph by replacing each vertex u (except the vertices t1 and t2) by

two vertices u1 and u2 with an arc from u1 to u2, connecting all u’s incoming arcs to

the vertex u1 and connecting all u’s outgoing arcs to the vertex u2. Finally we set all

edges to have capacity 1 and apply the Ford-Fulkerson algorithm k times.
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C. The Main Algorithm

Now we return back to the p-node multiway cut problem. Formally, an instance

(G, {T1, . . . , Tl}, k) of the p-node multiway cut problem consists of an undirected

graph G, a collection {T1, . . . , Tl} of pairwise disjoint terminal sets (each terminal set

is a vertex subset in G), and a parameter k. The objective is to either construct a

separator of at most k vertices for {T1, . . . , Tl}, or conclude that no such a separator

exists.

Before we formally present our algorithm, we give a less formal but intuitive

explanation on the basic idea of the algorithm. Let the size of a minimum V-cut

between T1 and
⋃

j 6=1 Tj be m.

Pick a vertex u that is not in any terminal set and has a neighbor in T1. If u

also has a neighbor in another terminal set Ti, i 6= 1, then we can directly include u

in the separator (this is necessary because the separator must separate T1 and Ti),

and recursively find a separator of size k − 1 in the remaining graph. On the other

hand, if u has no neighbor in other terminal sets, then we compute the size m′ of a

minimum V-cut between the sets T ′
1 = T1∪{u} and

⋃

i6=1 Ti. It can be proved that we

must have m ≤ m′. Note that by Lemma B.3, the values m and m′ can be computed

in polynomial time.

In the case m = m′, we will show that the instance (G, {T1, T2, . . . , Tl}, k) has

a separator of size bounded by k if and only if the instance (G, {T ′
1, T2, . . . , Tl}, k)

has a separator of size bounded by k. Then we recursively work on the new instance

(G, {T ′
1, T2, . . . , Tl}, k). Thus, in the case of m = m′, we can reduce the number of

vertices that are not in the separator by 1.

On the other hand, suppose m < m′. Then we branch on the vertex u in two

cases, one includes u in the separator and the other excludes u from the separator.
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In the case of including the vertex u in the separator, we recursively work on the

instance (G − {u}, {T1, T2, . . . , Tl}, k − 1), in which the parameter value is decreased

by 1; and in the case of excluding the vertex u from the separator, we recursively

work on the instance (G, {T ′
1, T2, . . . , Tl}, k), in which the size of the minimum V-cut

between T ′
1 and

⋃

i 6=1 Ti is increased by at least 1.

Therefore, for the given instance (G, {T1, T2, . . . , Tl}, k), we can either (1) apply

a polynomial time process that either decreases the parameter value by 1 or reduces

the number of vertices not in the separator by 1, or (2) branch into two cases, of

which one decreases the parameter value by 1 and the other increases the value m

by at least 1 (see the definition of m given in the second paragraph in this section).

Note that all these generated new instances will be “simpler” than the original given

instance: (i) reducing the number of vertices not in the separator will narrow down

our search space for the separator; (ii) an instance of parameter value bounded by 1

can be solved in polynomial time; and (iii) an instance in which the value m is larger

than the parameter value k obviously has no separator of size bounded by k.

To present our formal discussions, we fix an instance (G, {T1, . . . , Tl}, k) of the

p-node multiway cut problem, where G = (V, E) is a graph, and {T1, . . . , Tl} is

a collection of terminal sets in G. Let the size of a minimum V-cut between T1 and
⋃

j 6=1 Tj be m. Moreover, fix a vertex u that is not in any of the terminal sets but has

a neighbor in the terminal set T1. Let T ′
1 = T1 ∪ {u}.

Lemma C.1 Let m be the size of a minimum V-cut between the two sets T1 and
⋃

j 6=1 Tj, and let m′ be the size of a minimum V-cut between the two sets T ′
1 and

⋃

j 6=1 Tj. Then m′ ≥ m.

Proof. The lemma follows from the observation that every V-cut between the sets
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T ′
1 and

⋃

j 6=1 Tj is also a V-cut between the sets T1 and
⋃

j 6=1 Tj.

The following theorem is the most crucial observation for our algorithm.

Theorem C.2 If the minimum V-cuts between the sets T1 and
⋃

j 6=1 Tj and the min-

imum V-cuts between the sets T ′
1 and

⋃

j 6=1 Tj have the same size, then the instance

(G, {T1, T2, . . . , Tl}, k) has a separator of size bounded by k if and only if the instance

(G, {T ′
1, T2, . . . , Tl}, k) has a separator of size bounded by k.

Proof. If the instance (G, {T ′
1, T2, . . . , Tl}, k) has a separator S of size bounded by

k, then it is obvious that S is also a separator for the instance (G, {T1, T2, . . . , Tl}, k).

In consequence, the instance (G, {T1, T2, . . . , Tl}, k) also has a separator of size bounded

by k.

Now we consider the other direction. Suppose that the instance (G, {T1, T2, . . . ,

Tl}, k) has a separator Sk of size bounded by k.

To simplify the discussion, denote by Tother the set
⋃

j 6=1 Tj. Let Sm be a minimum

V-cut between T ′
1 and Tother (note that Sm does not contain u). Then Sm is also a

V-cut between T1 and Tother. In fact, by the assumption of the theorem, Sm is also

a minimum V-cut between T1 and Tother. Let C(T1) be the set of vertices x such

that either x ∈ T1 or there is a path between x and T1 in the subgraph G − Sm. In

particular, since u is not in Sm and u is adjacent to T1, we have u ∈ C(T1). Moreover,

let C(Tother) = V − C(T1) − Sm.

By Lemma B.2, there exist |Sm| internally disjoint paths between T1 and Tother,

each contains exactly one vertex in the set Sm. Therefore, each of these |Sm| paths

is cut into two subpaths by a vertex in Sm, such that one subpath is in the induced

subgraph G[C(T1)] and the another subpath is in the induced subgraph G[C(Tother)].

From this, we derive that there are |Sm| internally disjoint paths between T1 and Sm
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Fig. 1. Decomposition of separators

in the induced subgraph G[C(T1]∪Sm), each contains a distinct vertex in the set Sm.

Define A = Sk ∩ C(T1), B = Sk ∩ Sm, and C = Sk ∩ C(Tother). Finally, let S ′
m

be the set of vertices x in Sm such that there is a path between x and Tother in the

induced subgraph G[C(Tother)∪ Sm − Sk] (see Figure 1 for an intuitive illustration of

these sets).

We first prove that |A| ≥ |S ′
m|.

From the fact that there are |Sm| internally disjoint paths between T1 and Sm in

the induced subgraph G[C(T1)∪Sm] in which each path contains a distinct vertex in

the set Sm, we derive that there are |S ′
m| internally disjoint paths between T1 and S ′

m

in the induced subgraph G[C(T1) ∪ S ′
m]. If |A| < |S ′

m|, then there must be a path P1

between T1 and a vertex v′ in S ′
m in the subgraph G[C(T1) ∪ S ′

m − A] = G[C(T1) ∪

S ′
m − Sk]. Moreover, by the definition of the set S ′

m, there is also a path P2 between

v′ and Tother in the induced subgraph G[C(Tother) ∪ Sm − Sk]. The concatenation of

the paths P1 and P2 would give a path between T1 and Tother in the induced subgraph

G[V − Sk], which contradicts the assumption that Sk is a separator of the instance

(G, {T1, T2, . . . , Tl}, k). Therefore, we must have |A| ≥ |S ′
m|.
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Define a set S ′
k = S ′

m ∪ B ∪ C. We now prove that the set S ′
k is a separator of

the instance (G, {T ′
1, T2, . . . , Tl}, k). Suppose that the set S ′

k is not a separator of the

instance (G, {T ′
1, T2, . . . , Tl}, k), then there are two vertices v1 and v2 that are in two

different terminal sets in {T ′
1, T2, . . . , Tl} and there exists a path P between v1 and v2

in the induced subgraph G[V − S ′
k]. We discuss this in two possible cases.

Case 1: There is a vertex w in the path P such that w ∈ C(T1). Because (1) at

least one of the vertices v1 and v2 is in the set Tother, (2) there is a path between T1

and w in the induced subgraph G[C(T1)], and (3) Sm is a V-cut between T1 and Tother,

we conclude that there must be a vertex s ∈ Sm that is also on the path P . Without

loss of generality, we can suppose that the vertex v1 is in the set Tother, and that the

subpath P ′ of P that begins from v1 and ends at s has no vertices from C(T1) – for

this we only have to pick the first vertex s in Sm when we traverse on the path P from

v1 to v2. Then the path P ′ is in the induced subgraph G[C(Tother)∪ Sm − S ′
k], which

is a subgraph of the induced subgraph G[C(Tother)∪Sm −Sk]. Now by the definition

of the set S ′
m, the vertex s is in the set S ′

m, thus in the set S ′
k. But this is impossible

because we assumed that the path P is in the induced subgraph G[V − S ′
k].

Case 2: All vertices of the path P come from the induced subgraph G[V −S ′
k −

C(T1)]. Then neither of the vertices v1 and v2 can be from the set T1. Moreover, since

G[V − S ′
k − C(T1)] is a subgraph of the induced subgraph G[V − Sk], the path P ,

which is between two different terminal sets in {T2, . . . , Tl}, would contain no vertex

in Sk. But this again contradicts the assumption that Sk is a separator of the instance

(G, {T1, T2, . . . , Tl}, k).

Combining the discussions in Case 1 and Case 2, we conclude that the set S ′
k is

a separator for the instance (G, {T ′
1, T2, . . . , Tl}, k).

Since |A| ≥ |S ′
m|, Sk = A ∪ B ∪ C, and S ′

k = S ′
m ∪ B ∪ C, and A does

not intersect B ∪ C, we conclude that |Sk| ≥ |S ′
k|. In particular, if the instance
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(G, {T1, T2, . . . , Tl}, k) has the separator Sk of size bounded by k, then the instance

(G, {T ′
1, T2, . . . , Tl}, k) has the separator S ′

k of size also bounded by k.

This completes the proof of the theorem.

The proof of Theorem C.2 becomes complicated partially because the vertex u

may be included in a separator for the instance (G, {T1, T2, . . . , Tl}, k). If we restrict

that the vertex u is not in the separators for the instance (G, {T1, T2, . . . , Tl}, k),

then a result similar to Theorem C.2 can be obtained much more easily, even without

the need of the condition that the minimum V-cuts between T1 and
⋃

j 6=1 Tj and the

minimum V-cuts between T ′
1 and

⋃

j 6=1 Tj have the same size. This is given in the

following lemma. This result will also be needed in our algorithm.

Lemma C.3 Let S be a vertex subset in the graph G such that S does not include

the vertex u. Then S is a separator for the instance (G, {T1, T2, . . . , Tl}, k) if and only

if S is a separator for the instance (G, {T ′
1, T2, . . . , Tl}, k).

Proof. If S is a separator for the instance (G, {T ′
1, T2, . . . , Tl}, k), then as explained

in Theorem C.2, S is also a separator for the instance (G, {T1, T2, . . . , Tl}, k).

For the other direction, suppose that S is a separator for the instance (G, {T1, T2,

. . . , Tl}, k). We show that S is also a separator for the instance (G, {T ′
1, T2, . . . , Tl}, k).

Suppose that S is not a separator for the instance (G, {T ′
1, T2, . . . , Tl}, k). Then there

is a path P in G − S between two different terminal sets in {T ′
1, T2, . . . , Tl}. Let one

of these two terminal sets in {T ′
1, T2, . . . , Tl} be Ti, where i 6= 1. The path P must

contain the vertex u (recall that S does not contain u) – otherwise the path P in

G− S would be between two different terminal sets in {T1, T2, . . . , Tl}, contradicting

the assumption that S is a separator for (G, {T1, T2, . . . , Tl}, k). However, this would

imply that the path from T1 to u (recall that u has a neighbor in T1) then following
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the path P to the terminal set Ti would give a path in G − S between T1 and Ti,

again contradicting the assumption that S is a separator for (G, {T1, T2, . . . , Tl}, k).

This contradiction shows that the set S must be also a separator for the instance

(G, {T ′
1, T2, . . . , Tl}, k).

Now, we are ready to present our algorithm. For an instance (G, {T1, . . . , Tl}, k)

of the p-node multiway cut problem, a vertex in the graph G that does not belong

to any terminal sets will be called a “non-terminal”.

The algorithm is given in Figure 2.

Algorithm NMC(G, {T1, T2, . . . , Tl}, k)
input: an instance (G, {T1, T2, . . . , Tl}, k) of the p-node multiway cut

problem (l ≥ 2)
output: a separator of size bounded by k for (G, {T1, T2, . . . , Tl}, k),

or report “No” (i.e., no such a separator)

1. if an edge has its two ends in two different terminal sets then
return “No”;

2. if a non-terminal w has two neighbors in two different terminal sets then
return {w} ∪ NMC(G − w, {T1, . . . , Tl}, k − 1); ‡

3. find the size m1 of a minimum V-cut between T1 and
⋃l

j=2 Tj;
4. if m1 > k then return “No”;
5. if (m1 = 0 and l = 2) then return ∅;
5.1.if (m1 = 0 and l > 2) then return NMC(G, {T2, . . . , Tl}, k);
6. else pick a non-terminal u that has a neighbor in T1; let T ′

1 = T1 ∪ {u};
6.1. if the size of a minimum V-cut between T ′

1 and
⋃l

j=2 Tj is equal to m1 then
return NMC(G, {T ′

1, T2, . . . , Tl}, k);
6.2. else S = {u} ∪ NMC(G − u, {T1, T2, . . . , Tl}, k − 1);

if S is not “No” then return S;
6.3. else return NMC(G, {T ′

1, T2, . . . , Tl}, k).

‡To simplify the expression, we suppose that “No” union any vertex set gives a “No”.

Fig. 2. An algorithm for the p-node multiway cut problem

Theorem C.4 The algorithm NMC(G, {T1, T2, . . . , Tl}, k) solves the p-node mul-

tiway cut problem in time O(n3k4k).
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Proof. We first prove the correctness of the algorithm. Let (G, {T1, T2, . . . , Tl}, k)

be an input to the algorithm, which is an instance of the p-node multiway cut

problem, where G = (V, E) is a graph, {T1, T2, . . . , Tl} is a collection of terminal sets,

and k is the upper bound of the size of the separator we are looking for.

If there is an edge whose two ends are in two different terminal sets, then we

have no way to separate these two terminal sets since all vertices in a separator are

supposed to be non-terminals. Step 1 handles this case correctly.

If a non-terminal w has two neighbors that are in two different terminal sets,

then w must be in the separator because otherwise the two terminal sets will not be

separated. Thus, we can simply include the vertex w in the separator, and recursively

find a separator of size bounded by k − 1 for the same collection of terminal sets

{T1, T2, . . . , Tl} in the remaining graph G−w. This case is correctly handled by step

2.

Step 3 computes the size m1 of a minimum V-cut between the sets T1 and
⋃l

j=2 Tj.

By Lemma B.3, the value m1 can be computed in time O((|V | + |E|)k).

If m1 > k, then the size of a minimum V-cut between T1 and
⋃l

j=2 Tj is larger

than k, which means that even separating the set T1 from the other sets
⋃l

j=2 Tj

requires more than k vertices. Thus, no separator of size bounded by k can exist for

the terminal sets T1, T2, . . ., Tl. This is handled by step 4.

In step 5 we handle the case m1 = 0 and l = 2, which we do not need to remove

any vertex to separate T1 and T2, i.e. the problem is solved. So we return an empty

set ∅ as a separator of size 0 (note that because of step 4, here we must have k ≥ 0). In

step 5.1, m1 = 0 and l > 2, which means that T1 is already separated from T2, . . . , Tl.

Hence we only need to find a separator to separate T2, . . . , Tl. Therefore, step 5.1

handles this case correctly.
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When the algorithm reaches step 6, the following conditions hold true: (1) no

edge has its two ends in two different terminal sets (because of step 1); (2) no non-

terminal has two neighbors in two different terminal sets (because of step 2); (3)

0 < m1 ≤ k (because of steps 4-5). In particular, by condition (3), there must be a

non-terminal u that has a neighbor in T1.

Let T ′
1 = T1∪{u} and let m′ be the size of a minimum V-cut between the sets T ′

1

and
⋃l

j=2 Tj. If m′ = m1, then by Theorem C.2, the instance (G, {T1, T2, . . . , Tl}, k)

has a separator of size bounded by k if and only if the instance (G, {T ′
1, T2, . . . , Tl}, k)

has a separator of size bounded by k. In particular, as shown in the proof of Theo-

rem C.2, a separator of size bounded by k for the instance (G, {T ′
1, T2, . . . , Tl}, k) is

actually also a separator for the instance (G, {T1, T2, . . . , Tl}, k). Therefore, in this

case, we can recursively work on the instance (G, {T ′
1, T2, . . . , Tl}, k), as given in step

6.1. On the other hand, if m′ 6= m1, which means m′ > m1, then we simply branch

on the vertex u in two cases: (1) including u in the separator and recursively working

on the remaining graph for a separator of size bounded by k − 1, as given by step

6.2; and (2) excluding u from the separator thus looking for a separator that does

not include u and is of size bounded by k for the instance (G, {T1, T2, . . . , Tl}, k). By

Lemma C.3, the second case is equivalent to finding a separator of size bounded by

k for the instance (G, {T ′
1, T2, . . . , Tl}, k). This case is thus handled by step 6.3.

This completes the proof of the correctness of the algorithm. Now we analyze

the complexity of the algorithm.

The recursive execution of the algorithm can be described as a search tree T . We

first count the number of leaves in the search tree T . Note that only steps 6.2-6.3 of

the algorithm correspond to branches in the search tree T . Let D(k, m1) be the total

number of leaves in the search tree T for the algorithm NMC(G, {T1, T2, . . . , Tl}, k),

where m1 is the size of a minimum V-cut between the sets T1 and
⋃l

j=2 Tj. Then
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steps 6.2-6.3 induce the following recurrence relation:

D(k, m1) ≤ D(k − 1, m′′) + D(k, m′′′) (3.1)

where m′′ is the size of a minimum V-cut between T1 and
⋃l

j=2 Tj in the graph G− u

as given in step 6.2, and m′′′ is the size of a minimum V-cut between T ′
1 and

⋃l
j=2 Tj

in the graph G as given in step 6.3. Note that m1 − 1 ≤ m′′ ≤ m1 because removing

the vertex u from G cannot increase the size of a minimum V-cut between two sets,

and can decrease the size of a minimum V-cut between the two sets by at most 1.

Moreover, by Lemma C.1 and because of step 6.1, the size m′′′ of a minimum V-cut

between T ′
1 and

⋃l
j=2 Tj in step 6.3 is at least m1 + 1. Summarizing these, we have

m1 − 1 ≤ m′′ ≤ m1 and m′′′ ≥ m1 + 1 (3.2)

Define a measure function M such that M(D(k, m1)) = 2k−m1. Then M(D(k−

1,m′′)) = 2(k − 1) − m′′, and M(D(k, m′′′)) = 2k − m′′′. By Inequalities (3.2),

2(k − 1) − m′′ < 2k − m1, and 2k − m′′′ < 2k − m1. Hence M(D(k − 1,m′′)) <

M(D(k,m1)) and M(D(k, m′′′)) < M(D(k, m1)), i.e. in every branching step, the

measures of two search tree corresponding to the two new branched instances will

reduce by at least 1.

We also point out that certain non-branching steps (i.e., steps 2, 5.1, and 6.1) may

also change the values of k and m1, thus changing the value M(D(k,m1)) = 2k−m1.

However, none of these steps increases the value M(D(k, m1)) = 2k − m1: (1) step

2 decreases the value k by 1 and the value m1 by at most 1, which as a total will

decrease the value M(D(k, m1)) = 2k − m1 by at least 1; (2) step 5.1 keeps the

value k unchanged and, since we have m1 = 0 before the execution of this step, the

new value m1 is at least as large as the old value m1. As a consequence, the value

M(D(k,m1)) = 2k − m1 is not increased; (3) finally, step 6.1 does not change the
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values k and m1, thus neither changes the value M(D(k, m1)) = 2k−m1. In summary,

the value M(D(k, m1)) = 2k − m1 after a branching step to the next branching step

can never be increased.

Our initial instance starts with M(D(k, m1)) = 2k − m1 ≤ 2k. In the case

M(D(k,m1)) = 2k − m1 = 0, because we also have the conditions k ≥ m1 ≥ 0,

we must have m1 = 0 and k = 0, in this case the algorithm can solve the instance

without further branching. Therefore, the original instance is branched at most 2k

times. Combining Inequalities (3.1), we have

D(k, m1) ≤ 22k,

and the search tree T has at most 22k leaves.

Finally, it is easy to verify that along each root-leaf path in the search tree

T , the running time of the algorithm is bounded by O(kn3), where n is the num-

ber of vertices in the graph. In conclusion, the running time of the algorithm

NMC(G, {T1, T2, . . . , Tl}, k) is bounded by O(k4kn3).

This completes the proof of the theorem.

D. Chapter Conclusion

In this chapter, we developed new and powerful techniques that lead to a more efficient

branch and bound algorithm of running time O(k4kn3) for the p-node multiway

cut problem. The algorithm significantly improves previous algorithms for the prob-

lem. More recently, our techniques have been extended to directed graphs that lead

to a parameterized algorithm whose running time is of the form f(k)nO(1) for the pd-

feedback vertex set problem [27], thus resolving an outstanding open problem

in parameterized computation and complexity.
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One interesting place in this chapter is the extended idea for the branch and

bound method in designing our algorithm for the p-node multiway cut problem.

Usually, when we use the branch and bound method to design parameterized algo-

rithms, the original instance, that is related to a parameter k, is branched into two

or more sub-instances that each is related to a parameter k′ < k. We continue the

process of branching until we reach sub-instances that their parameters are 0, where

in this case, all sub-instances can be solved in polynomial time. Basically, every time

when we branch, we have only one direction to make the instance simpler, i.e. we

reduce the value of the only parameter. Correspondingly, we have only one condition

to stop branching, i.e. we stop branching when the parameter is 0. However, when

solving the p-node multiway cut problem, we had more than one direction (i.e.

values of more than one parameter are changed) to simplify the instance and more

than one condition to stop branching. In each branch, we obtained two sub-instances

such that for one sub-instance, k was reduced by 1 and m1 was reduced by at most

1 (m1 might keep the same value), where for another sub-instance, k kept the same

value and m1 was increased by 1. The condition to stop branching was either k = 0

or k < m1.

This new idea about branch and bound helped us to develop improved algorithm

for the p-node multiway cut problem and will further help us to design effective

parameterized algorithms for parameterized NP-hard problems.
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CHAPTER IV

DIVIDE-AND-CONQUER∗

The main idea of the divide and conquer method is to split an instance (x, k), where

k is the parameter and x is the remaining part of the input of the instance, of pa-

rameterized NP-hard problems into two sub-instances (x1, k/2) and (x2, k/2). Then

two sub-instances (x1, k/2) and (x2, k/2) are solved independently. In this chapter,

we will use divide and conquer method to design improved parameterized algorithms

for the pw-path, pw-r-d matching and pw-r-set packing problems. We also use

the subset partition technique to solve the pw-set splitting problem.

A. Parameterized Path, Matching and Packing Problems

1. Introduction

The path, matching, and packing problems are well-known NP-hard problems. As

their new applications in bioinformatics, the study of new parameterized algorithms

for the parameterized path, matching, and packing problems has recently drawn

considerable attention [3, 22, 50, 66, 73, 75, 91, 92, 101, 110].

Let G be an undirected graph. A path ρ in G is a sequence of vertices 〈v1, . . . , vk〉

in G such that for all 1 ≤ i ≤ k − 1, [vi, vi+1] is an edge in G, where k is called the

length of ρ. The path ρ is simple if no vertex is repeated in the sequence. A k-path in

∗Reprinted with permission from “Randomized Divide-and-Conquer: Improved
Path, Matching, and Packing Algorithms” by Jianer Chen, Joachim Kneis, Songjian
Lu, Daniel Mölle, Stefan Richter, Peter Rossmanith, Sing-Hoi Sze, Fenghui Zhang,
2009. SIAM Journal on Computing, 38, 2526-2547, Copyright 2009 by Society for
Industrial and Applied Mathematics (SIAM).

∗Reprinted with permission from “Improved Parameterized Set Splitting Algo-
rithm: A Probabilistic Approach” by Jianer Chen, Songjian Lu, 2009. Algorithmica,
54, 472-489, Copyright 2009 by Springer.
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G is a simple path of length k in G. If the graph G is weighted (i.e., if each vertex in

G is assigned a weight that is a real number), then the weight of the path ρ is equal

to the sum of weights of the vertices in ρ.

pw-path: Given a weighted undirected graph G of n vertices and m edges

and a parameter k, either construct a k-path in G whose weight is the

maximum over all k-paths in G, or report that no k-path exists in G.

There is an unweighted version for the pw-path problem, i.e. the p-path prob-

lem, in which the input graph is unweighted. The unweighted version can be trivially

reduced to the general version by regarding an unweighted graph as a weighted graph

in which all vertices are assigned weight 1. There is also a version of the problem on

directed graphs, where we are looking for a directed k-path of the maximum weight

in a weighted and directed graph. We will be focused on the problem on undirected

graphs, and in certain places, extend our discussion to directed graphs.

A set M of points in the r-dimensional Euclidean space R
r is a matching if no

two points in M agree in any coordinate. A k-matching is a matching consisting of

exactly k points in R
r. If each point in R

r is assigned a weight, then the weight of a

matching M is equal to the sum of weights of the points in M .

pw-r-d matching: Given a set S of n points in the r-dimensional Eu-

clidean space R
r and a parameter k, where each point in S is assigned a

weight, either construct a k-matching in S whose weight is the maximum

over all k-matchings in S, or report that no k-matching exists in S.

We also have an unweighted version for the pw-r-d matching problem, which

assumes that all points in the input set S are assigned weight 1. We usually call it

the p-r-d matching problem.
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An r-set is a set containing exactly r elements. A collection P of r-sets is a

packing if no two r-sets in P intersect. A k-packing is a packing consisting of exactly

k r-sets. If each r-set is assigned a weight, then the weight of a packing P is the sum

of weights of the r-sets in P.

pw-r-set packing: Given a collection C of n r-sets and a parameter k,

where each r-set in C is assigned a weight, either construct a k-packing in

C whose weight is the maximum over all k-packings in C, or report that

no k-packing exists in C.

The unweighted version of the pw-r-set packing problem assumes that all r-

sets in the input collection C are assigned weight 1. we usually call it the p-r-set

packing problem.

It is easy to see that the pw-r-d matching problem can be trivially reduced to

the pw-r-set packing problem. Therefore, any algorithm solving the latter can be

directly used to solve the former.

Most previous algorithms for the pw-path, pw-r-d matching and pw-r-set

packing problems were presented for the unweighted versions of the problems. Many

of these algorithms, with minor modifications, also work for the general versions of

the problems.

The pw-path problem is closely related to a number of well-known NP-hard

problems, such as the longest path, hamiltonian path, and traveling sales-

man problems. Earlier algorithms [12, 92] for the p-path problem have running time

bounded by 2kk!nO(1). Papadimitriou and Yannakakis [97] studied a restricted version

of the problem, and conjectured that it is solvable in polynomial time to determine

if a graph contains a (log n)-path. This conjecture was confirmed by Alon, Yuster,

and Zwick [3], who presented for the p-path problem randomized and deterministic
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algorithms of running time 2O(k)nO(1). Recently, the pw-path problem has found

applications in bioinformatics for detecting signaling pathways in protein interaction

networks [110] and for biological subnetwork matchings [73].

The p-r-d matching and p-r-set packing problems were first studied by

Downey and Fellows [44], where they developed deterministic algorithms of run-

ning time (rk)!(rk)3rknO(1). Based on the greedy localization techniques [22], Chen

et al. improved complexities of these problems to (r − 1)k((r − 1)k/e)k(r−2)nO(1)

[22, 66] . Koutis [75] developed randomized algorithms of time 10.88rknO(1) and

space O(2rk +rn), and deterministic algorithms of time 2O(rk)nO(1) and space O(2rk +

rn) for the problems. The deterministic upper bound was further improved to

25rk−4k
(

6(r−1)k+k
rk

)

nO(1) (still with exponential space) by Fellows et al. [50]. The prob-

lems of packing a small subgraph in a given graph, such as the p-triangle packing

problem, can be transformed into the pw-r-set packing problem directly. Algo-

rithms for this kind of graph packing problems have also been studied [50, 91, 101].

Currently, the best randomized and deterministic algorithms for the p-path, p-r-

d matching, and p-r-set packing problems [3, 50, 75] are based on the color-coding

technique developed by Alon, Yuster, and Zwick [3]. The technique is based on con-

structing an (n, k)-family of perfect hash functions and a dynamic programming pro-

cess on k-colored instances. For example, the randomized algorithm for the p-path

problem given in [3] based on this technique runs in time (2e)knO(1) = 5.44knO(1) and

space 2knO(1). Because of the lower bound Ω(ek) on the size of (n, k)-families of per-

fect hash functions [95], and of the nature of dynamic programming, it seems difficult

to further improve the time complexity and to avoid exponential space complexity

for algorithms based on this technique.

In this section, we develop new exponential-time algorithmic techniques that

lead to improved randomized and deterministic algorithms for the pw-path, pw-r-d
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matching, and pw-r-set packing problems. Our main idea is using a divide-and-

conquer method, as follows. Suppose that we are looking for a subset Sh of h elements

in a universal set U . Moreover, we assume that the subset Sh is “hierarchical” in the

sense that such a subset is constituted by smaller subsets of similar properties. We

first randomly partition the universal set U into two disjoint parts U1 and U2. A simple

probabilistic analysis shows that with an effective probability, the desired subset Sh

is evenly split by this random partition into two smaller subsets of similar properties.

This enables us to recursively look in each of the parts U1 and U2 for a smaller subset

of h/2 elements in Sh and of similar properties, and to finally combine the smaller

subsets to obtain the desired subset Sh in the original universal set U .

Take the pw-3-set packing problem as an example. For a given collection C of

3-sets and a parameter k, the universal set U is the set of all elements that appear in

the 3-sets in C, and the desired subset S3k consists of the 3k elements from k 3-sets

that make a k-packing Pk of the maximum weight in C. It is not difficult to see

that with a probability of at least 1/23k, a random partition of U into two parts U1

and U2 includes all 3k/2 elements from k/2 3-sets in Pk in the part U1 and all 3k/2

elements from the other k/2 3-sets in Pk in the part U2.
3 Moreover, the two parts U1

and U2 induce two subcollections C1 and C2 of C, respectively, after deleting all 3-sets

that contain both elements in U1 and U2. Therefore, a k-packing of the maximum

weight in C can be constructed by combining a (k/2)-packing of the maximum weight

in C1 and a (k/2)-packing of the maximum weight in C2, which can be recursively

constructed.

This simple method leads directly to randomized algorithms with improved run-

ning time and with polynomial space. For the pw-path problem, this new method

3We will show in subsection 4 that with a more careful analysis, we can derive a
better probability.
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gives a randomized algorithm of time O(4kk2.7m) and space O(nk log k +m), improv-

ing the previously best randomized algorithm for the problem of time O(5.44kkm)

and space O(2kkn + m) [3]. For the pw-r-d matching and pw-r-set packing

problems, the method gives randomized algorithms of time 4(r−1)kklog k/3nO(1) and

space (rk log k + rn), improving the previously best randomized algorithms for the

problems of time 10.88rknO(1) and space O(2rk+rn) [75]. Furthermore, these random-

ized algorithms can be derandomized, which leads to deterministic algorithms that

significantly improve previous best deterministic algorithms for the corresponding

problems.

The major techniques and results reported in this section were independently

discovered by our research group at Texas A&M University and by the research group

at RWTH Aachen University. Preliminary results from the two groups were reported

independently at SODA’2007 and WG’2006, respectively [29, 74].

2. On a class of recurrence relations

The analysis of many of our randomized and deterministic algorithms presented in

this section requires solving recurrence relations of a special form, which seems neither

standard nor trivial. This subsection is devoted to giving a thorough and formal study

of this class of recurrence relations.

Theorem A.1 Let T (k, n) be a function satisfying the following conditions: there

are functions t(n), f(k) and h(n), and a real number a ≥ 1 such that

(A) T (k, n) ≤ O(a2kt(n)) for all k ≤ h(n); and

(B) for k > h(n), the function T (k, n) satisfies T (k, n) ≤ f(k)ak[t(n)+T (k1, n)+

T (k2, n)],

where k1 = ⌈k/2⌉ and k2 = ⌊k/2⌋.
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Then T (k, n) = O(a2kg(k)t(n)), where g(k) is any function satisfying:

(C) g(k) ≥ 1, for all k ≥ 1; and

(D) there exist an integer k0 ≥ 1 and a positive real number d0 < 1 such that for

all k ≥ k0,

H(a, k, f(k), g(k))
def
==

a2k1f(k)g(k1) + a2k2f(k)g(k2)

akg(k)
≤ d0.

Proof. Pick a constant c0 so that d0(1 + 1/(2c0)) ≤ 1. We claim

T (k, n) ≤ c0a
2kg(k)t(n), (4.1)

which will prove the theorem.

We prove (4.1) by induction on k. For the values of k that are bounded by h(n),

(4.1) holds true by Condition (A) if the constant c0 is sufficiently large. Applying

induction on Condition (B) when k > h(n), we obtain

T (k, n) ≤ f(k)ak[t(n) + T (k1, n) + T (k2, n)]

≤ f(k)ak[t(n) + c0a
2k1g(k1)t(n) + c0a

2k2g(k2)t(n)]

= c0a
2kg(k)t(n)

[

f(k)

c0akg(k)
+

a2k1f(k)g(k1) + a2k2f(k)g(k2)

akg(k)

]

. (4.2)

By Condition (D), the second term in the bracket in (4.2) is H(a, k, f(k), g(k)), which

is bounded by d0. Combining Condition (D) with the fact that the values k1, k2, g(k1),

g(k2), a, and k are all larger than or equal to 1, we also get the following bound for

the first term in the bracket in (4.2):

f(k)

c0akg(k)
≤ d0

2c0

.

By the way we selected the value of c0, we have d0 + d0/(2c0) = d0(1 + 1/(2c0)) ≤ 1.
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Therefore,

T (k, n) ≤ c0a
2kg(k)t(n),

and the induction goes through.

Applying Theorem A.1, we obtain a sequence of corollaries that give the bounds

that are specifically needed in the analysis of our algorithms presented in this section.

Corollary A.2 below will be used in the analysis of our algorithm for the pw-path

problem.

Corollary A.2 Suppose that a function T (k, n) satisfies T (1, n) = O(t(n)) and the

following recurrence relation for k ≥ 2:

T (k, n) ≤ c0a
k[t(n) + T (k1, n) + T (k2, n)],

where k1 = ⌈k/2⌉, k2 = ⌊k/2⌋, and c0 and a ≥ 1 are constants. Then T (k, n) =

O(a2kkαt(n)), where α is any constant satisfying α > log2(c0(a
2 + 1)/a).

Proof. Using the notations in Theorem A.1, here we have f(k) = c0 and h(n) ≡ 1.

We verify that the function g(k) = kα satisfies Conditions (C) and (D) in Theo-

rem A.1. Condition (C) is trivially satisfied. To verify Condition (D), we have

H(a, k, c0, g(k)) =
c0a

2k1kα
1 + c0a

2k2kα
2

akkα
.

If k is even, we have

H(a, k, c0, g(k)) =
c0a

k(k/2)α + c0a
k(k/2)α

akkα
=

c0

2α−1
.

Since α > log2(c0(a
2 + 1)/a) and it is easy to see that (a2 + 1)/a ≥ 2, we get

c0/2
α−1 < 1.
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On the other hand, suppose that k is odd, then

H(a, k, c0, g(k)) =
c0a

k+1((k + 1)/2)α + c0a
k−1((k − 1)/2)α

akkα

=
c0

2αa

[

a2

(

1 +
1

k

)α

+

(

1 − 1

k

)α]

. (4.3)

Since when k → ∞, a2(1+1/k)α +(1−1/k)α → a2 +1, the above value approaches to

c0(a
2+1)/(2αa). From α > log2(c0(a

2+1)/a), we have c0(a
2+1)/(2αa) < 1. Therefore,

there must be a constant k0 such that d = c0[a
2(1 + 1/k0)

α + (1− 1/k0)
α]/(2αa) < 1,

and for all odd numbers k ≥ k0, we have H(a, k, c0, g(k)) ≤ d.

Now if we let d0 = max{c0/2
α−1, d}, then d0 < 1 and for all k ≥ k0, we have

H(a, k, c0, g(k)) ≤ d0.

Thus, the function g(k) = kα satisfies Condition (D) in Theorem A.1. The corollary

follows.

Corollary A.3 below will be used in the analysis of our algorithms for the pw-r-d

matching and pw-r-set packing problems.

Corollary A.3 Suppose that a function T (k, n) satisfies T (1, n) = O(t(n)) and the

following recurrence relation for k ≥ 2:

T (k, n) ≤ c0k
bak[t(n) + T (k1, n) + T (k2, n)],

where k1 = ⌈k/2⌉, k2 = ⌊k/2⌋, and c0, b > 0, and a ≥ 1 are all constants. Then

T (k, n) = O(a2kkα log kt(n)), where α is any constant satisfying α > b/2.

Proof. Using the notations in Theorem A.1, here we have f(k) = c0k
b and

h(n) ≡ 1. We verify that the function g(k) = kα log k satisfies Conditions (C) and

(D) in Theorem A.1. Condition (C) is trivially satisfied. To verify Condition (D), we
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have

H(a, k, c0k
b, g(k)) =

c0k
ba2k1kα log k1

1 + c0k
ba2k2kα log k2

2

akkα log k

≤ c0k
bak+1((k + 1)/2)α log((k+1)/2) + c0k

bak+1((k + 1)/2)α log((k+1)/2)

akkα log k

=
2α+1c0k

ba

(k + 1)2α
· (k + 1)α log(k+1)

kα log k

≤ 2α+1c0a

(k + 1)2α−b
· (k + 1)α log(k+1)

kα log k
.

To see the limit of this value when k approaches ∞, note that if we let r > 1 be a

constant such that 2α − b − 2α log r > 0 (note α > b/2), then the above expression

can be rewritten as

2α+1c0a

(k + 1)2α−b
· (k + 1)α log(k+1)

kα log k
=

2α+1c0a

rα log r(k + 1)2α−b−2α log r
· ((k + 1)/r)α log((k+1)/r)

kα log k
.

Now since r > 1, (k + 1)/r < k when k is sufficiently large. Therefore, the value

approaches 0 when k → ∞. In particular, this implies that there is an integer k0 and

a constant d0 < 1 such that when k ≥ k0, H(a, k, c0k
b, g(k)) ≤ d0. This completes

the proof of the corollary.

3. A randomized algorithm for the pw-path

Now we are ready to present our randomized algorithms. The first problem we are

dealing with is the pw-path problem that looks for a k-path of the maximum weight

in a weighted graph.

Fix a weighted graph G = (V,E). For any V ′ ⊆ V , denote by G[V ′] the subgraph

of G induced by V ′. The concatenation of two paths ρ1 = 〈v1, . . . , vl〉 and ρ2 =

〈w1, . . . , wh〉 in G, where [vl, w1] is an edge in G, is the path 〈v1, . . . , vl, w1 . . . , wh〉.

We denote by ρ∅ the special 0-path (i.e., the empty path containing no vertex), and

define that the concatenation of ρ∅ and any path ρ gives the path ρ. An h-path ρ is
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also called a (v, h)-path if v is an end vertex of ρ.

Let Pl be a set of l-paths in G, and let V ′ ⊆ V such that no vertex in V ′ is on

any path in Pl. A (v, h)-path ρ is in Pl ⊙ V ′ if v ∈ V ′ and ρ is a concatenation of an

l-path in Pl and an (h− l)-path in G[V ′]. In particular, for P0 = {ρ∅}, any (v, 1)-path

in P0 ⊙ V ′ consists of the single vertex v in V ′.

On a set Pl of l-paths in G and V ′ ⊆ V , where Pl contains at most one (v, l)-

path for each vertex v, and no vertex in V ′ is on any path in Pl, our algorithm

find-paths(Pl, V
′, h) returns a set Pl+h of (l + h)-paths in Pl ⊙ V ′. In particular,

the algorithm find-paths({ρ∅}, V, k) returns a set of k-paths in the graph G. The

algorithm is given in Figure 3.

Theorem A.4 Let Pl and V ′ be defined as above. For any vertex v in V ′, if there

are (v, l + h)-paths in Pl ⊙ V ′, then with probability larger than 1− 1/e > 0.632 (here

e is the base of the natural logarithm), the set Pl+h returned by the algorithm find-

paths(Pl, V
′, h) contains a (v, l + h)-path in Pl ⊙ V ′ whose weight is the maximum

over all (v, l + h)-paths in Pl ⊙ V ′. The algorithm find-paths(Pl, V
′, h) runs in time

O(4hh2.7m) and in space O(n(l + h) log h + m).

Proof. First note that by steps 2.4–2.6 and steps 3.6–3.8, if the set Pl+h contains

a (v, l+h)-path ρ, then ρ must be a valid (v, l+h)-path in Pl⊙V ′. Therefore, if there

is no (v, l + h)-path in Pl ⊙ V ′, then the set Pl+h cannot contain a (v, l + h)-path.

Thus we assume that in the graph G there are (v, l + h)-paths in Pl ⊙ V ′. Let

ρl+h = 〈u1, . . . , ul, w1, . . . , wh〉

be a (v, l + h)-path in Pl ⊙ V ′ whose weight is the maximum over all (v, l + h)-paths

in Pl ⊙ V ′, where 〈u1, . . . , ul〉 is an l-path in Pl, 〈w1, . . . , wh〉 is an h-path in G[V ′],
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find-paths(Pl, V
′, h)

input: a set Pl of l-paths; V ′ ⊆ V and no vertex in V ′ is on a path in Pl; an
integer h ≥ 1;

output: a set Pl+h of (l + h)-paths in Pl ⊙ V ′;

1. Pl+h = ∅;
2. if h = 1 then
2.1. if Pl = {ρ∅} then Pl+1 contains a (u, 1)-path for each vertex u ∈ V ′;

return Pl+1;
2.2. else for each (w, l)-path ρl in Pl and each u ∈ V ′, where [w, u] is

an edge in G, do
2.3. concatenate ρl and u to make a (u, l + 1)-path ρl+1 in Pl ⊙ V ′;
2.4. if Pl+1 contains no (u, l + 1)-path then add ρl+1 to Pl+1;
2.5. else if the (u, l + 1)-path ρ′

l+1 in Pl+1 has a weight smaller than
that of ρl+1 then

2.6. replace ρ′
l+1 in Pl+1 by ρl+1;

2.7. return Pl+1;
3. loop 2.51 · 2h times do
3.1. randomly partition the vertices in V ′ into two parts VL and VR;
3.2. PL

l+⌈h/2⌉ = find-paths(Pl, VL, ⌈h/2⌉);
3.3. if PL

l+⌈h/2⌉ 6= ∅ then

3.4. PR
l+h = find-paths(PL

l+⌈h/2⌉, VR, ⌊h/2⌋);
3.5. for each (u, l + h)-path ρl+h in PR

l+h do
3.6. if Pl+h contains no (u, l + h)-path in Pl ⊙ V ′ then

add ρl+h to Pl+h;
3.7. else if the (u, l + h)-path ρ′

l+h in Pl+h has a weight smaller than that
of ρl+h then

3.8. replace ρ′
l+h in Pl+h by ρl+h;

4. return Pl+h.

Fig. 3. A randomized algorithm for the pw-path problem

and wh = v. We prove the theorem by induction on h ≥ 1.

Consider the case h = 1. If Pl = {ρ∅} (in this case l = 0), then the set Pl+1

returned by step 2.1 contains the (unique) (v, 1)-path in Pl ⊙ V ′, which is obviously

of the maximum weight. On the other hand, if l > 0, then when the (ul, l)-path

〈u1, . . . , ul〉 in Pl and the vertex wh = w1 = v are examined in step 2.2, the path

ρl+1 is constructed in step 2.3, and steps 2.4–2.6 ensure that a (v, l + 1)-path of the

maximum weight is included in the set Pl+1. This proves the case h = 1.
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Now suppose that h > 1. We rewrite the path ρl+h as

ρl+h = 〈u1, . . . , ul, w1, . . . , wh1 , . . . , wh〉,

where h1 = ⌈h/2⌉. With probability 1/2h, step 3.1 of the algorithm puts vertices

w1, . . . , wh1 into VL, and vertices wh1+1, . . . , wh into VR. If this is the case, then the

path

ρl+h1 = 〈u1, . . . , ul, w1, . . . , wh1〉

is a (wh1 , l+h1)-path in Pl⊙VL. By the induction hypothesis, with probability larger

than 1 − 1/e, the set PL
l+h1

obtained in step 3.2 contains a (wh1 , l + h1)-path ρl+h1

in Pl ⊙ VL whose weight is at least as large as that of ρl+h1 . Now the concatenation

of the path ρl+h1
and the path 〈wh1+1, . . . , wh〉 is a (wh, (l + h1) + (h − h1))-path

(i.e., a (v, l + h)-path) in PL
l+h1

⊙ VR. Thus, by our induction hypothesis again, with

probability larger than 1− 1/e, the set PR
l+h obtained in step 3.4 contains a (v, l +h)-

path ρl+h in PL
l+h1

⊙ VR whose weight is at least as large as the sum of the weight

of the path ρl+h1
and the weight of the path 〈wh1+1, . . . , wh〉. Since the weight of

ρl+h1
is not smaller than that of ρl+h1 , we conclude that the weight of the path ρl+h

is not smaller than that of ρl+h. Finally, since the path ρl+h is a concatenation of a

(w, l +h1)-path ρ′
l+h1

in Pl ⊙VL (for some vertex w ∈ VL) and a path in G[VR], where

the path ρ′
l+h1

is a concatenation of a path in Pl and a path in G[VL], we derive that

ρl+h is actually a (v, l+h)-path in Pl⊙V ′. Since the weight of ρl+h is not smaller than

the weight of ρl+h, and by our assumption, the path ρl+h has the maximum weight

over all (v, l+h)-paths in Pl⊙V ′, we conclude that ρl+h must also be a (v, l+h)-path

of the maximum weight in Pl ⊙ V ′.

In conclusion, with probability 1/2h, step 3.1 includes the vertices w1, . . ., wh1 in

VL and the vertices wh1+1, . . ., wh in VR. If this is the partition, then with probability
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larger than 1− 1/e, the set PL
l+h1

in step 3.2 contains the (wh1 , l + h1)-path ρl+h1
. In

case the set PL
l+h1

contains the path ρl+h1
, with probability larger than 1 − 1/e, the

set PR
l+h in step 3.4 contains a (v, l + h)-path of the maximum weight. Therefore, by

steps 3.5–3.8, in each loop of step 3, the probability q that the set Pl+h contains a

(v, l + h)-path of the maximum weight is larger than

(1 − 1/e)2

2h
>

1

2.51 · 2h
.

Since step 3 of the algorithm loops 2.51 · 2h times, the overall probability that

the algorithm returns the set Pl+h that contains a (v, l + h)-path of the maximum

weight is

1 − (1 − q)2.51·2h

> 1 −
(

1 − 1

2.51 · 2h

)2.51·2h

> 1 − 1

e
.

This proves the first part of the theorem.

To analyze the time complexity, let T (h,m) be the running time of the algorithm

find-paths(Pl, V
′, h), where m is the number of edges in the original graph G. Clearly

we have T (1,m) = O(m). From the algorithm, we have the following recurrence

relation when h > 1:

T (h,m) = 2.51 · 2h[cm + T (⌈h/2⌉,m) + T (⌊h/2⌋,m)],

where c > 0 is a constant. Using the notations in Corollary A.2, here we have c0 =

2.51, a = 2, and t(n) = cm. Now log2(c0(a
2 + 1)/a) ≥ 2.64. Thus, by Corollary A.2,

the running time T (h,m) of the algorithm find-paths(Pl, V
′, h) is O(4hh2.7m).

In terms of the space complexity, each recursive call to the algorithm find-

paths(Pl, V
′, h) uses O(n(l+h)) space (mainly for the sets PL

l+h1
, PR

l+h, and Pl+h, not-

ing that for each vertex w in the graph G, each of these sets contains at most one (w,×

∗)-path). Since the recursive depth of the algorithm find-paths(Pl, V
′, h) is O(log h),
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we conclude that the space complexity of the algorithm find-paths(Pl, V
′, h) is

O(n(l + h) log h + m).

To obtain a randomized algorithm solving the pw-path problem with a required

error bound, we simply run find-paths({ρ∅}, V, k) sufficiently many times, each tak-

ing O(4kk2.7m) time and O(nk log k + m) space. For example, to achieve an error

bound of 0.0001, we can run the algorithm t times, where t satisfies (1/e)t ≤ 0.0001

(e.g., t = 10). Note that the set Pk returned by the algorithm find-paths({ρ∅}, V, k)

contains at most one (v, k)-path for each vertex v in the graph G. Therefore, by

picking the (v, k)-path of the maximum weight in Pk, this process returns a k-path

of the maximum weight in the graph G with an arbitrarily small error bound.

Corollary A.5 There is a randomized algorithm of running time O(4kk2.7m) and

space O(nk log k + m) that solves the pw-path problem with an arbitrarily small

error bound.

Remark. The algorithm find-paths can be used directly to solve the pw-path

problem on directed graphs, as long as we interpret the edge [w, u] in step 2.2 of the

algorithm as a directed edge from w to u. The proof of Theorem A.4 can be applied

to directed graphs with no change.

We compare our algorithm in Corollary A.5 with previously known algorithms for

the p-path problem. To our knowledge, there are two kinds of randomized algorithms

for the problem. The first kind is based on random permutations of vertices followed

by searching in a directed acyclic graph [3, 73]. The algorithm runs in time O(mk!)

and space O(m). The second kind, proposed by Alon, Yuster, and Zwick [3], is

based on random coloring of vertices in a graph followed by dynamic programming

to search for a simple path of length k in the colored graph. The algorithm runs in
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time O((2e)kkm) = O(5.44kkm) and space O(2kkn + m) (the space is mainly for the

dynamic programming phase). Compared to these algorithms, our algorithm has a

significantly improved running time and uses polynomial space. In fact, if we are only

interested in knowing whether the graph has a path of length k, a slight modification

of our algorithm can further reduce the space complexity to O(n log k + m).

4. Randomized algorithms for pw-matching and pw-packing

The randomized divide-and-conquer method described in the previous subsection can

also be used to develop improved algorithms for pw-matching and pw-packing

problems.

Recall that any algorithm solving the pw-r-set packing problem can be used

directly to solve the pw-r-d matching problem. Therefore, our discussion in this

subsection will be focused on the pw-r-set packing problem, which looks for a

k-packing of the maximum weight in a collection of r-sets. We have the following

result.

Theorem A.6 There is a randomized algorithm that solves the pw-r-set packing

problem in time O(4(r−1)kklog k/3rn) and space O(rk log k+rn), where n is the number

of r-sets in the given instance of the pw-r-set packing problem.

Proof. Consider the algorithm in Figure 4. Let k1 = ⌈k/2⌉. We first prove, by

induction on the parameter k, that if the collection C contains k-packings, then with

probability larger than 1− 1/e, the algorithm set-packing(C, k) returns a k-packing

in C whose weight is the maximum over all k-packings in C.

This is obviously true when k = 1. Now suppose that k > 1. Again first

note that if the collection C has no k-packings, then the algorithm set-packing(C, k)
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set-packing(C, k)
input: a collection C of r-sets, in which each r-set is assigned a weight,

and an integer k ≥ 1;
output: a k-packing in C that has the maximum weight over all k-packings

in C, or ∅ if C has no k-packing.

1. if k = 1 then
if C 6= ∅ then return an r-set of the maximum weight in C
else return ∅;

2. P = ∅;
3. loop 2.51 · 2rk/

(

k
⌈k/2⌉

)

times do
3.1. randomly partition the set elements into two parts SL and SR;
3.2. let CL be the sub-collection of r-sets in C in which all elements are in SL;
3.3. let CR be the sub-collection of r-sets in C in which all elements are in SR;
3.4. PL = set-packing(CL, ⌈k/2⌉)); PR = set-packing(CR, ⌊k/2⌋));
3.5. if PL 6= ∅, PR 6= ∅, and the sum of the weights of PL and PR

is larger than the weight of P then P = PL ∪ PR;
4. return P .

Fig. 4. A randomized divide-and-conquer algorithm for the pw-r-set packing prob-

lem

must return the empty set ∅. Now suppose that C contains k-packings, and let Pk

be a k-packing in C whose weight is the maximum over all k-packings in C. With

a probability
(

k
k1

)

/2rk, step 3.1 of the algorithm partitions the rk elements in the k

r-sets in Pk such that the rk1 elements in (any) k1 r-sets in Pk are in SL while the

r(k−k1) elements in the other k−k1 r-sets in Pk are in SR. If this is the case, let PL
k1

be the set of k1 r-sets in Pk whose elements are all in SL and let PR
k−k1

be the set of

k − k1 r-sets in Pk whose elements are all in SR. Note that PL
k1

is a k1-packing in CL

and that PR
k−k1

is a (k−k1)-packing in CR. Thus, by the induction hypothesis, with a

probability larger than (1−1/e)2, step 3.4 of the algorithm generates a k1-packing PL

in CL and a (k−k1)-packing PR in CR, such that the weight of PL is not smaller than

that of PL
k1

and that the weight of PR is not smaller than that of PR
k−k1

. Note that

the union of PL and PR must be a k-packing in C because no set element appears in

both CL and CR. Since the union of PL
k1

and PR
k−k1

is the k-packing Pk that has the
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maximum weight over all k-packings in C, we conclude that the union of PL and PR

must be a k-packing of the maximum weight in C. In summary, if the collection C

contains k-packings, then with a probability q larger than

(1 − 1/e)2
(

k
k1

)

2rk
>

(

k
k1

)

2.51 · 2rk
,

an execution of steps 3.1–3.5 of the algorithm will make P a k-packing of the maximum

weight in C. Now since the loop in step 3 is executed 2.51 · 2rk/
(

k
k1

)

times, with

probability at least

1 − (1 − q)
2.51·2rk/( k

k1
) > 1 −

(

1 −
(

k
k1

)

2.51 · 2rk

)2.51·2rk/( k
k1

)

> 1 − 1

e
,

the algorithm set-packing(C, k) returns a k-packing of the maximum weight in C.

To analyze the complexity of the algorithm, let T (k, n) be the running time of the

algorithm set-packing(C, k), where n is the total number of r-sets in the collection

C. Clearly we have T (1, n) = O(rn). Moreover, for k > 1,

T (k, n) =

(

2.51 · 2rk

(

k
k1

)

)

· [crn + T (k1, n) + T (k − k1, n)]

≤ 14
√

π
√

k(2r−1)k[crn + T (⌈k/2⌉, n) + T (⌊k/2⌋, n)],

where c is a constant, and based on Stirling’s formula [57], we have used the inequality
(

k
k1

)

≥ 2k/(2e
√

πk). Using the notations in Corollary A.3, here we have c0 = 14
√

π,

kb =
√

k = k1/2, a = 2r−1, and t(n) = crn. By Corollary A.3, the running time of the

algorithm set-packing(C, k) is bounded by

T (k, n) = O((2r−1)2kklog k/3rn) = O(4(r−1)kklog k/3rn).

Moreover, since the recursion depth of the algorithm is bounded by O(log k), it

is easy to see that the space complexity of the algorithm is O(rk log k + rn).
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The theorem now follows by an argument similar to that given for Corollary A.5.

Corollary A.7 The pw-r-d matching problem can be solved (by a randomized al-

gorithm) in time O(4(r−1)kklog k/3rn) and space O(rk log k+rn), where n is the number

of points in the given instance of the pw-r-d matching problem.

The previously best randomized algorithms for the p-r-d matching and p-r-

set packing problems are due to Koutis and have running time 10.88rknO(1) and

space complexity O(2rk + rn). Therefore, Theorem A.6 and Corollary A.7 not only

give significantly improved running time but also bring the space complexity from

exponential down to polynomial.

The techniques used in Theorem A.6 can be used to solve graph packing problems

in a very general form. Let H be a fixed graph. A k-H-packing of a graph G is a

collection of k vertex disjoint subgraphs Pk = {H1, . . . , Hk} of G such that each Hi

is isomorphic to the graph H. Suppose that there is also a weight function fW from

the subgraphs of G to real numbers (that is, for each subgraph G′ of G, fW (G′) is a

real number that is the weight of the subgraph G′). Then we define the weight of a

k-H-packing Pk to be the sum of the weights of the subgraphs in Pk. Now we can

define a graph packing problem as follows.

pw-H-graph packing: Given a graph G and a parameter k, where

there is a weight function fW from the subgraphs of G to real numbers,

either construct a k-H-packing of G that has the maximum weight over

all k-H-packings of G, or report that no k-H-packing exists in G.

Suppose that the graph H contains r vertices. Then the pw-H-graph packing

problem can be reduced to the pw-r-set packing problem, as follows. On the input
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graph G, let CG be the collection of all subsets Vr of r vertices in G such that the

induced subgraph G[Vr] contains the graph H (or more formally, H is isomorphic to

a subgraph of G[Vr]). For each subset Vr in CG, define the weight of Vr to be the

weight of H ′, where H ′ is the subgraph in G[Vr] that is isomorphic to H, and the

weight of H ′ is the maximum over all subgraphs of G[Vr] that are isomorphic to H.

It is easy to verify that there is a one-to-one mapping between the k-packings of the

maximum weight in the collection CG and the k-H-packings of the maximum weight

of the graph G. Thus, the pw-H-graph packing problem on the graph G can be

solved directly by applying the algorithm given in Theorem A.6 to the collection CG.

Furthermore, we can avoid the explicit construction of the collection CG and further

reduce the complexity of the algorithm. The detailed algorithm is given in Figure 5.

H-graph packing(G, k)
input: a graph G, an integer k ≥ 1, and a weight function fW

from subgraphs of G to real numbers;
output: a k-H-packing of G that has the maximum weight over all

k-H-packings of G,or ∅ if there is no k-H-packing of G.

1. if k = 1 then
if H is isomorphic to a subgraph of G then

let H ′ be the subgraph of G that is isomorphic to H and has the maximum
weight over all subgraphs of G that are isomorphic to H, return H ′;

else return ∅;
2. Pk = ∅;
3. loop 2.51 · 2rk/

(

k
⌈k/2⌉

)

times do
3.1. randomly partition the vertices of G into two parts VL and VR;
3.2. PL = H-graph packing(G[VL], ⌈k/2⌉);

PR = H-graph packing(G[VR], ⌊k/2⌋);
3.3. if PL 6= ∅, PR 6= ∅, and the sum of the weights of PL and PR

is larger than the weight of Pk then
Pk = PL ∪ PR;

4. return Pk.

Fig. 5. A randomized divide-and-conquer algorithm for the pw-H-graph packing

problem
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Theorem A.8 Let H be a fixed graph of r vertices. Then the algorithm H-graph

packing solves the pw-H-graph packing problem in time O(4(r−1)kklog k/3nrr2) and

space O(rk log k + n2) on a graph of n vertices.

Proof. The correctness proof and the complexity analysis of the algorithm H-

graph packing are completely similar to that of Theorem A.6, except for the case

k = 1 in step 1. To find the subgraph H ′ in G that is isomorphic to H and has the

maximum weight, we enumerate all subsets of r vertices in G. For each subset Vr, we

consider all possible vertex mappings from H to G[Vr]. Note that each isomorphic

mapping from H to a subgraph of G is uniquely determined by a subset Vr of r vertices

in G and a vertex mapping from H to G[Vr]. Therefore, this process enumerates all

possible isomorphic mappings from H to subgraphs of G. There are
(

n
r

)

subsets of

r vertices in G, and for each subset Vr, there are r! vertex mappings from H to

G[Vr]. For such a vertex mapping from H to G[Vr], it takes time O(r2) to check if the

mapping induces an isomorphic mapping from H to a subgraph of G[Vr], assuming

the graph G being given by an adjacency matrix. In summary, step 1 takes time

O(
(

n
r

)

r2r!) = O(nrr2). That is, we have

T (1, n) = O(nrr2).

The rest of the derivation of the running time of the algorithm follows directly from

Corollary A.3.

For space complexity, since the recursion depth is bounded by O(log k), and

all copies of the graph H are disjoint, the space complexity of the algorithm is

O(rk log k + n2), where we assume that the graph G is given by an adjacency matrix

that takes space O(n2).
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We have finished the introduction of our new randomized algorithms for pw-

path, pw-matching and pw-packing problems. In next section, we will introduce

how to use the subset partition technique to solve the pw-splitting problem.

B. The Parameterized Set Splitting Problem

1. Introduction

Let X be a set. A partition of X is a pair of subsets (X1, X2) of X such that

X1 ∪X2 = X and X1 ∩X2 = ∅. We say that a subset S of X is split by the partition

(X1, X2) of X if S ∩X1 6= ∅ and S ∩X2 6= ∅. The set splitting problem is defined

as follows: given a collection F of subsets of a ground set X, construct a partition of

X that maximizes the number of split subsets in F .

A more generalized version of the set splitting problem is the weighted set

splitting problem, in which each subset in the collection F is associated with a

weight that is a real number, and the objective is to construct a partition of the

ground set that maximizes the sum of the weights of the split subsets.

The set splitting problem is an important NP-hard problem [56]. A number

of well-known NP-complete problems are related to the set splitting problem,

including the hitting set problem that is to find a small subset of the ground X

that intersects all subsets in a given collection F , and the set packing problem that

is to find a large sub-collection F ′ of a given collection F of subsets such that the

subsets in F ′ are all pairwise disjoint.

In terms of approximability, the set splitting problem is APX-complete [6].

Andersson and Engebretsen [4] gave a polynomial time approximation algorithm for

the problem that has an approximation ratio bounded by 0.724. Zhang and Ling [121]

presented an improved polynomial time approximation algorithm of approximation
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ratio 0.7499 for the problem. Better polynomial time approximation algorithms can

be achieved if we further restrict the number of elements in each subset in the input

[68, 121, 122, 123].

On certain applications, such as the analysis of micro-array data, people have

studied the parameterized version of the set splitting problem, by associating

each instance of the problem with a parameter k, which is in general a small positive

integer [37]. The p-set splitting problem is defined as follows: given a triple

(X,F , k), where X is a ground set, F is a collection of subsets of the ground set X,

and k is the parameter that is a non-negative integer, decide if there is a partition of

the ground set X that splits at lease k subsets in F .

In this section, we are mainly concerned with parameterized algorithms for the

p-set splitting problem, i.e. the algorithms run in time f(k)nO(1), with f(k) being

a function that only depends on the parameter k.

The p-splitting problem has been studied in the literature. Dehne, Fellows,

and Rosamond [37] were the first to study the problem and provided a parameterized

algorithm of running time O∗(72k) for the problem In the same paper, the authors

also proved that the p-set splitting problem has a kernel of fewer than 2k subsets:

that is, there is a polynomial time algorithm that on a given instance (X,F , k) of

p-set splitting, produces another instance (X ′,F ′, k′) for the problem such that

|X ′| ≤ |X|, |F ′| < 2k, k′ ≤ k, and that the set X has a partition that splits k subsets

in the collection F if and only if the set X ′ has a partition that splits k′ subsets in

the collection F ′. Later, Dehne, Fellows, Rosamond, and Shaw [38] developed an

improved algorithm of running time O∗(8k) for the problem. The improved algorithm

was obtained by combining the recently developed techniques of greedy localization

and modeled crown reduction in the study of parameterized algorithms. The current

best algorithm for the p-set splitting problem is developed by Lokshtanov and
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Sloper [87], where they used Chen and Kanj’s result for p-max-sat problem [24] and

reached a time complexity of O∗(2.65k).

A natural generalization of the p-set splitting problem is the pw-set split-

ting problem defined as follows: given a triple (X,F , k), where X is a ground set,

F is a collection of subsets of the ground set X, in which each subset is assigned a

weight (that is a real number), and k is the parameter that is a non-negative integer,

either construct a partition of X that maximizes the weighted sum of k split subsets

in F , or report that no partition of X can split k subsets in F . Note that there

is an essential difference between p-set splitting and pw-set splitting. p-set

splitting is a decision problem that only requires a yes/no answer, while pw-set

splitting is an optimization problem that, in case a partition of the ground set X

splitting k subsets in F exists, requires to construct such a partition that maximizes

the weighted sum of the split subsets.

No parameterized algorithms of running time of the form f(k)nO(1) have been

known for the pw-set splitting problem. In fact, none of the techniques developed

previously for the p-set splitting problem, such as those in [37, 38, 87], seems to

be extendable to the weighted case.

In this section, we develop new techniques in dealing with the p-set splitting

and the pw-set splitting problems. First, we develop a new and effective technique

based on a probabilistic method that allows us to develop a deterministic kerneliza-

tion algorithm for the p-set splitting problem. The new kernelization algorithm is

simpler and more efficient compared with the previous kernelization algorithm given

in [37]. We then propose a randomized algorithm for the pw-set splitting problem

(thus, also for the p-set splitting problem) that is based on a new subset partition

technique and has its running time bounded by O∗(2k). The running time of our ran-

domized algorithm is significantly better than that of the previous best deterministic
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algorithm of running time O∗(2.65k) given in [87], which only works for the (simpler)

p-set splitting problem. We will show in section D that, using the structure of

(n, k)-universal sets developed by Naor, Schulman, and Srinivasan [93], we can de-

randomize our randomized algorithm, which leads to a parameterized algorithm of

running time O∗(4k+o(k)) for the pw-set splitting problem and gives the first proof

that the problem is fixed parameter tractable.

2. A new kernelization algorithm for the p-set splitting

In this subsection, we focus on the p-set splitting problem. By a kernelization

algorithm for p-set splitting, we mean a polynomial time algorithm that, on an

instance (X,F , k) of p-set splitting, produces another instance (X ′,F ′, k′) for the

problem such that k′ ≤ k and the size of the instance (X ′,F ′, k′) only depends on

the parameter k. The instance (X ′,F ′, k′) will be called a kernel for the instance

(X,F , k). Dehne, Fellows, and Rosamond [37] developed a kernelization algorithm

by which the kernel (X ′,F ′, k′) satisfies the conditions |F ′| < 2k and that each

subset in F ′ has at most 2k elements. Lokshtanov and Sloper [87] used the crown

decomposition method to obtain a kernel such that both |F ′| and |X ′| are less than

2k. We introduce a new method to find the kernel for the p-set splitting problem.

What is interesting in our method is that we use a probabilistic method to derive a

deterministic kernelization algorithm. In particular, our method is simpler, has lower

time complexity, and can also obtain a better kernel in term of the number of subsets

in F ′ if there are subsets in F ′ whose size is larger than 2.

Lemma B.1 Given an instance (X,F , k) of the p-set splitting problem, let m1

be the number of subsets in F that have only one element. If |F| − m1 ≥ 2k, then a

partition of X exists that splits at least k subsets in F .
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Proof. For each subset S ∈ F , if S has at least two elements, we pick any two

elements from S. Let V be the set of all these elements picked from the subsets in

F that have more than one element. Note that for two subsets S1 and S2 in F that

have more than one element, the two elements in S1 and the two elements in S2 may

not be disjoint.

Suppose |V | = t. We randomly partition V into two subsets Vl and Vr, such that

|Vl| = ⌊t/2⌋, |Vr| = t − |Vl|, i.e. we randomly pick ⌊t/2⌋ elements of V and put them

in Vl and let the remaining t − ⌊t/2⌋ elements of V be in Vr. Thus, for any subset S

in F :

Pr(S is split)











≥ 2( t−2
⌊t/2⌋−1)
( t
⌊t/2⌋)

= 2⌊t/2⌋(t−⌊t/2⌋)
t(t−1)

> 1
2
, if S has more than one element

= 0, otherwise.

If we let:

XS =











1, if S is split,

0, otherwise,

then the expectation of the number of split subsets in F satisfies

E

(

∑

S∈F

XS

)

≥ 1

2
(|F| − m1),

Therefore, if |F| − m1 ≥ 2k, then the expectation of the number of split subsets in

F is larger than or equal to k. That is, there must exist a partition of the ground set

X such that the number of split subsets in F is at least k. This completes the proof

of the lemma.

The result of Lemma B.1 was first observed by Lokshtanov and Sloper, who

presented a proof in [87]. Our proof above is very different from that given in [87] and

takes a probabilistic approach. Furthermore this new approach can lead to a better
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result for the kernelization when many subsets in F have more than 2 elements, as

described in Lemma B.4.

The following lemma shows that we can directly include subsets of at least k

elements in our split subsets while we are solving the p-set splitting problem.

Lemma B.2 Let (X,F , k) be an instance of the p-set splitting problem, and let

S be a subset in F that contains at least k elements. Then there is a partition of

X that splits k subsets in F if and only if there is a partition of X that splits k − 1

subsets in F − {S}.

Proof. Suppose that there is a partition (Xl, Xr) of the ground set X that splits

k subsets in F . Then it is obvious that (Xl, Xr) splits (at least) k − 1 subsets in

F − {S}.

On the other hand, suppose that there is a partition (Xl, Xr) of the ground set

X that splits k − 1 subsets S1, . . ., Sk−1 in F − {S}. Let li, ri ∈ Si, li ∈ Xl, and

ri ∈ Xr, for all 1 ≤ i ≤ k − 1. Since S has at least k elements, there are at least

two different elements l and r in S such that l 6∈ {r1, . . . , rk−1} and r 6∈ {l1, . . . , lk−1}.

Therefore, if we modify the partition (Xl, Xr) to enforce l in Xl and r in Xr (note

that this modification still keeps li in Xl and ri in Xr for all 1 ≤ i ≤ k − 1), then the

new partition of X splits the subset S, as well as the k − 1 subsets S1, . . ., Sk−1 in

F − {S}. In consequence, the new partition of the ground set X splits (at least) k

subsets in the collection F .

Now we are ready to state our first kernelization result. For a given instance

(X,F , k) of the p-set splitting problem, consider the following reduction rules.

Rule R1. If a subset S in F has only one element, remove S from F .
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Rule R2. If a subset S in F has at lease k elements, remove S from F and decrease

k by 1.

The correctness of Rule R1 is obvious: a subset of a single element can never be

split by any partition of the ground set X. The correctness of Rule R2 follows from

Lemma B.2.

Theorem B.3 Given an instance (X,F , k) of the p-set splitting problem, we can

construct a kernel (X1,F1, k1) such that |F1| < 2k1, k1 ≤ k, |X1| < 2k2
1, and that

each subset in F1 has at most k1 − 1 elements. The running time of this process is

bounded by O(N), where N is the input size in terms of (X,F , k).

Proof. For the given instance (X,F , k), we first apply Rule R1 to remove all

subsets that contain a single element. Then, we apply bucket-sort to sort in linear

time the remaining subsets in F in non-increasing order in terms of their sizes. Finally,

we apply Rule R2 on the subsets in order in the sorted list, and stop at a subset on

which Rule R2 is not applicable or when the parameter value k reaches 0. This

process obviously takes time O(N).

Suppose that the instance produced by the above process is (X1,F1, k1). If k1 = 0

or |F1| ≥ 2k1, then by Lemma B.1 (note that F1 contains no subsets of one element),

(X1,F1, k1) (as well as the original instance (X,F , k)) is a “Yes” instance. In this

case, our algorithm returns a trivial “Yes” instance ({a, b}, {{a, b}}, 1). Otherwise,

the correctness of the reduction rules R1 and R2 ensure that (X1,F1, k1) is a “Yes”

instance if and only if (X,F , k) is a “Yes” instance for the p-set splitting problem.

So our algorithm simply returns (X1,F1, k1).

To see that the instance (X1,F1, k1) satisfies the conditions in the lemma, first

note that if a non-trivial instance is returned by the process, then we must have
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|F1| < 2k1. Moreover, since the subsets in F1 are sorted in non-increasing order in

terms of their sizes, and Rule R2 is not applicable to the first subset in the list,

no subset in F1 contains more than k1 − 1 elements. In consequence, we also have

|X1| < 2k2
1. This completes the proof of the lemma.

Theorem B.3 improves the time complexity of the kernelization algorithm given

in [37], which takes time O(N + n4), as well as that given in [87], which takes time

O(N + n2), where n is the maximum of |F| and |X|.

Intuitively, when we randomly partition X into Xl∪Xr such that each element in

X has a probability of 1/2 to be assigned to Xl and a probability of 1/2 to be assigned

to Xr, larger subsets (i.e., subsets with more elements) will have a better chance to be

split. The following lemma confirms this intuition. Thus, if the collection F contains

many large subsets, then we can obtain a better kernel, or a kernel with fewer subsets.

Lemma B.4 Let (X,F , k) be an instance of the p-set splitting problem. Suppose

that the number of subsets of i elements in F is mi for 1 ≤ i ≤ k − 1, and that the

number of subsets that have at least k elements is m′
k. If

∑k−1
i=2

2i−2
2i mi +m′

k ≥ k, then

a partition of X exists that splits at least k subsets in F .

Proof. Let S1, · · · , Sm′
k

be the subsets in F that have at least k elements and let

F<k = F − {S1, · · · , Sm′
k
}.

We use a randomized process to partition X into (Xl, Xr) and let each element

in X go to Xl with a probability of 1/2 and go to Xr with a probability of 1/2, then

for any subset S ∈ F<k that has i elements:

Pr(S is split) =
2i − 2

2i
.
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If we let:

XS =











1, if S is split,

0, otherwise.

then the expectation of the number of split subsets in F<k satisfies

E





∑

S∈F<k

XS



 =
k−1
∑

i=1

∑

|S|=i

E(S is split) =
k−1
∑

i=1

2i − 2

2i
mi.

So there exists a partition of X such that the number of subsets in F<k that are split

is at least
∑k−1

i=1
2i−2
2i mi. Hence if

∑k−1
i=1

2i−2
2i mi ≥ k−m′

k, there must exist a partition

of X such that k−m′
k subsets in F<k are split. By repeatedly using Lemma B.2, there

is a partition of X that splits k − m′
k + 1 subsets in F<k ∪ {S1}; there is a partition

of X that splits k−m′
k + 2 subsets in F<k ∪{S1, S2}; and so on. In conclusion, there

is a partition of X that splits k subsets in F<k ∪ {S1, · · · , Sm′
k
} = F .

Using the procedure that is similar to Theorem B.3, but counting the number of

subsets in F of different size and using the result of Lemma B.4, we have the following

theorem that is stronger than Theorem B.3.

Theorem B.5 Given an instance (X,F , k) of the p-set splitting problem, we can

find a kernel (X1,F1, k1) in time O(N) such that |F1| < 2k1 −
∑k1−1

i=3
2i−1−2
2i−1 mi, that

k1 ≤ k, that each subset in F1 has at most k1 − 1 elements, and that |X1| < 2k2
1,

where N is the input size in terms of (X,F , k), and mi is the number of subsets of i

elements in F1, 1 ≤ i ≤ k1 − 1.

Proof. We use the same procedure as the one presented in Theorem B.3 to find

the kernel. Let the resulting instance be (X1,F1, k1). We also calculate the values mi

from F1, for 1 ≤ i ≤ k1−1. If
∑k1−1

i=2
2i−2
2i mi ≥ k1 (note that no subset in F1 contains

more than k1 − 1 elements), then by Lemma B.4, the instance (X1,F1, k1) is a “Yes”
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instance so we return a trivial “Yes” instance. Otherwise, we have
∑k1−1

i=2
2i−2
2i mi < k1,

which gives |F1| =
∑k1−1

i=2 mi < 2k1−
∑k1−1

i=3
2i−1−2
2i−1 mi. In this case, we obtain a kernel

(X1,F1, k1) such that |F1| < 2k1 −
∑k1−1

i=3
2i−1−2
2i−1 mi, that k1 ≤ k, that each subset in

F1 has at most k1 − 1 elements, and that |X1| < 2k2
1.

3. A randomized algorithm for the pw-set splitting

For the p-set splitting problem, Lokshtanov and Sloper [87] have currently the best

parameterized algorithm, whose time complexity is bounded by O∗(2.65k). Unfortu-

nately, their method does not seem to be extendable to the weighted case, neither do

the methods presented in [37, 38] for the unweighted case. In fact, no previous work

is known that gives a parameterized algorithm of running time of the form f(k)nO(1)

for the pw-set splitting problem.

In this section, we present a randomized algorithm to solve the pw-set split-

ting problem. Our basic idea is that if a given instance (X,F , k) of the pw-set

splitting problem has a partition of the ground set X that splits k subsets in the

collection F , then there exists a subset X ′ of at most 2k elements in X such that a

proper partition of the elements in X ′ can split at least k subsets in F . If we use

a randomized process to partition X into (Xl, Xr) and let each element in X go to

Xl with a probability of 1/2 and go to Xr with a probability of 1/2, then the proba-

bility that the elements in X ′ are partitioned properly is at least 2/22k. Thus, if we

try O(4k) times of the randomized partitioning of the ground set X, we have a good

chance to find the proper partition of X ′ if it exists. In fact, a more thorough analysis

reveals that only O(2k) trials are needed in this randomized algorithm.

Theorem B.6 The pw-set splitting problem can be solved by a randomized algo-

rithm of running time O(2kN), where N is the input size in terms of (X,F , k).
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Algorithm-1 SetSplitting(X,F , k)
input: A ground set X, a collection F of subsets of X, and an integer k
output: A partition (Xl, Xr) of X and k subsets in F that are split by

(Xl, Xr), or report ”no partition of X splits k subsets in F”.

1. Q0 = ∅;
2. for i = 1 to 10 · 2k do
2.1. randomly partition X into Xl and Xr such that each element

in X has a probability 1/2 in Xl and a probability 1/2 in Xr;
2.2. let Q be the collection of subsets in F that are split by (Xl, Xr);
2.3. if Q contains at least k subsets then

delete all but the k subsets of maximum weight in Q;
2.4. if the weighted sum of subsets in Q is larger than that in Q0 then Q0 = Q;
3. return Q0.

Fig. 6. Randomized algorithm for the pw-set splitting problem

Proof. Let (X,F , k) be an instance of the pw-set splitting problem. Suppose

that there is a partition of the ground set X that splits at least k subsets in the

collection F . Let (Xl, Xr) be a partition of the ground set X and let S1, . . ., Sk be

k subsets in the collection F that are split by the partition (Xl, Xr), such that the

weighted sum of S1, . . ., Sk is the maximum over all collections of k subsets in F

that can be split by a partition of X. More specifically, let (l1, r1), . . ., (lk, rk) be k

pairs of elements in the ground set X such that li, ri ∈ Si, li ∈ Xl, and ri ∈ Xr for

all 1 ≤ i ≤ k. Note that it is possible that li = lj or ri = rj for some i 6= j. In

consequence, each of the sets {l1, . . . , lk} and {r1, . . . , rk} may contain fewer than k

elements.

We construct a graph G = (V, E), where V = {l1, l2, · · · , lk}∪{r1, r2, · · · , rk} and

E = {[li, ri] | 1 ≤ i ≤ k}. It is obvious that G is a bipartite graph with the left vertex

set L = {l1, l2, · · · , lk} and the right vertex set R = {r1, r2, · · · , rk}. Suppose that the

graph G has t connected components C1, · · · , Ct, where Ci = (Vi, Ei), with ni = |Vi|



68

and mi = |Ei|, for 1 ≤ i ≤ t. Then ni ≤ mi + 1 for 1 ≤ i ≤ t and
∑t

i=1 mi = k. If we

use a randomized process to partition X into (Xl, Xr) and let each element in X go

to Xl with a probability of 1/2 and go to Xr with a probability of 1/2, then for each

connected component Ci of the graph G, the probability that the vertex set Vi of Ci

is properly partitioned, i.e., either L∩ Vi ⊆ Xl and R ∩ Vi ⊆ XR, or R ∩ Vi ⊆ Xl and

L∩Vi ⊆ XR, is 2/2ni . Therefore, the total probability that the vertex set Vi for every

connected component Ci is properly partitioned, i.e., that the pair (li, ri) intersects

with both Xl and Xr for all 1 ≤ i ≤ k, is not less than

2

2n1
· 2

2n2
· · · · · 2

2nt
≥ 2

2m1+1
· 2

2m2+1
· · · · · 2

2mt+1
=

2t

2
∑t

i=1 mi+t
=

1

2k
.

The algorithm in Figure 6 implements the above idea. By the above discussion,

each random partition (Xl, Xr) constructed in step 2.1 has a probability of at least

1/2k to split the k subsets S1, . . ., Sk (recall that S1, . . ., Sk are the k subsets in F

whose weighted sum is the maximum over all collections of k subsets in F that are

split by a partition of X). Since step 2 loops 10 · 2k times, with a probability of at

least

1 −
(

1 − 1

2k

)10·2k

≥ 99.99%,

one partition (Xl, Xr) constructed by step 2.1 splits the k subsets S1, . . ., Sk. For

this partition (Xl, Xr), steps 2.2-2.4 produces a collection Q of k subsets in F whose

weighted sum is the maximum over all collections of k subsets in F that can be split

by a partition of the ground set X.

Since each execution of steps 2.1-2.4 obviously takes time O(N), we conclude

that the running time of the algorithm SetSplitting is bounded by O(2kN).

For a general error bound ǫ > 0, we can simply run the algorithm SetSplitting

c times, where the constant c satisfies the condition (1 − 0.9999)c ≤ ǫ, which will
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produce, in time O(2kN) and with a probability at least 1 − ǫ, a collection Q of k

subsets in F whose weighted sum is the maximum over all collections of k subsets in

F that can be split by a partition of the ground set X.

Obviously, the randomized algorithm SetSplitting of running time O(2kN) can

be directly used to solve the simpler p-set splitting problem, and its running

time is significantly better than that of the previous best deterministic algorithm

[87] for the problem. Moreover, the algorithm SetSplitting is much simpler than

the one presented in [87]. The algorithm in [87] needs to call the algorithm for the

parameterized p-max-sat problem developed in [24], which is quite involved.

By combining the kernelization algorithm, the time complexity for the p-set

splitting problem can be further improved.

Theorem B.7 The p-set splitting problem can be solved by a randomized algo-

rithm of running time O(2kk2 + N), where N is the input size in terms of (X,F , k).

The introduction of our new randomized algorithm for the pw-set splitting

problem is finished. In next section, we will introduce how to construct the (n, k)-

universal set developed by Noar, Schulman, and Srinivasan. In section D, we will use

this (n, k)-universal set to derandomized our randomized algorithms for the pw-path,

pw-matching, pw-packing and pw-set splitting problems.

C. (n, k)-universal Sets

Naor, Schulman, and Srinivasan developed a deterministic construction of (n, k)-

universal sets [93]. The construction was described via the construction of a more

general structure, i.e., (n, k, l)-splitters. Moreover, the construction was presented in

an extended abstract [93] in which many details were omitted. For the completeness
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of our discussion, we will reproduce in this section a slightly different and simpler

construction and its analysis specifically for (n, k)-universal sets. The presentation

here is more precise with all needed details provided. These (n, k)-universal sets

will be used to derandomized our algorithms in sections A and B for the pw-path,

pw-r-d matching, pw-r-set packing, and pw-set splitting problems.

We start with some terminologies and definitions in probability theory.

Let (Ω, Pr) be a probability space, where Ω is a finite set and Pr is the probability

measure. The size of (Ω, Pr) is the number of elements in Ω. The probability space

(Ω, Pr) is uniform if Pr(a) = 1/|Ω| for all a ∈ Ω (in this case, we will simply write

the probability space as Ω).

A {0, 1}-random variable ξ over the probability space (Ω, Pr) is a function from Ω

to {0, 1}. A group of h {0, 1}-random variables ξ1, ξ2, . . ., ξh are mutually independent

if for any combination of h binary bits b1, . . ., bh in {0, 1}, the following holds:

Pr(ξ1 = b1, ξ2 = b2, . . . , ξh = bh) = Pr(ξ1 = b1)Pr(ξ2 = b2) · · ·Pr(ξh = bh).

A group of n {0, 1}-random variables ξ1, ξ2, . . ., ξn are k-wise independent if ev-

ery group of k different {0, 1}-random variables among ξ1, ξ2, . . ., ξn are mutually

independent.

Assume that n and k are integers such that n ≥ k. Denote by Zn the set

{0, 1, . . . , n− 1}. A splitting function over Zn is a {0, 1} (i.e., Boolean) function over

Zn. A subset S of Zn is a k-subset if S consists of exactly k elements. Let (S0, S1)

be a partition of the k-subset S, i.e., S0 ∪ S1 = S and S0 ∩ S1 = ∅. We say that

a splitting function f over Zn implements the partition (S0, S1) if f(x) = 0 for all

x ∈ S0 and f(y) = 1 for all y ∈ S1.

Definition [93] A set Ψ of splitting functions over Zn is an (n, k)-universal set if for
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every k-subset S of Zn and any partition (S0, S1) of S, there is a splitting function f

in Ψ that implements (S0, S1). The size of an (n, k)-universal set Ψ is the number of

splitting functions in Ψ.

Before we present the (n, k)-universal set, a proposition need to be introduced.

A function f on Zn is injective from a subset S of Zn if for any two different

elements x and y in S, f(x) 6= f(y).

By Bertrand’s postulate, proved by Chebyshev in 1850 (see [113], Section 5.2),

there is a prime number q such that n ≤ q < 2n. Moreover, the smallest prime

number q0 between n and 2n can be constructed in time O(n), as follows. By the

Prime Number Theorem (see [113], Theorem 5.19), there is a constant d0 such that

for any integer n ≥ 2, there is a prime number between n and n+d0 log n. Therefore,

by checking each of the integers between n and n + d0 log n, and testing its primality

using the trivial primality testing algorithm of running time O(
√

n), we can always

find the smallest prime number q0 between n and 2n in time O(
√

n log n) = O(n).

Proposition C.1 [54] Let n and k be integers, n ≥ k, and let q0 be the smallest

prime number such that n ≤ q0 < 2n. For any k-subset S in Zn, there is an in-

teger z, 0 ≤ z < q0, such that the function ψz,k2,n over Zn, defined as ψz,k2,n(x) =

(zx mod q0) mod k2, is injective from S.

The following lemma is crucial to our construction, and was first proved in [1].

Lemma C.2 [1] Let n = 2d − 1 for an integer d and let k be an odd number, k ≤ n.

There is an algorithm of running time O(n(n + 1)(k−1)/2) that constructs a uniform

probability space Ω of size 2(n+1)(k−1)/2 and a group of n k-wise independent {0, 1}-

random variables ξ1, . . . , ξn over Ω such that Pr(ξi = 0) = Pr(ξi = 1) = 1/2 for all

1 ≤ i ≤ n.
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We start with a simple observation.

Lemma C.3 For every integer n ≥ 1, there is an (n, 1)-universal set of size 2.

Proof. The splitting functions f0 ≡ 0 and f1 ≡ 1 over Zn obviously form an

(n, 1)-universal set for Zn.

Now we present a construction of a general (n, k)-universal set of small size that,

however, is not sufficiently efficient. Compared to the work presented in [93], the size

of our structure is more precise (and slightly improved), which will be important for

the later construction. Moreover, the time complexity of our construction is lower

than that described in [93].

Lemma C.4 Let k be an odd number, n ≥ k and n ≥ 2. There is an (n, k)-universal

set of size bounded by 2kk log n, which can be constructed in time O(
(

n
k

)

2kk(2n)(k−1)/2).

Proof. The lemma is true for k = 1 by Lemma C.3. Thus, we assume k ≥ 3.

Let n1 = 2d − 1, where d is the smallest integer such that n ≤ n1 (note that n ≤

n1 ≤ 2n−1). By Lemma C.2, we can construct, in time O(n1(n1+1)(k−1)/2), a uniform

probability space Ω of size 2(n1+1)(k−1)/2 and a group of n1 k-wise independent {0, 1}-

random variables ξ1, . . . , ξn1 over Ω such that Pr(ξi = 0) = Pr(ξi = 1) = 1/2 for all

1 ≤ i ≤ n1. By picking the first n of these n1 random variables, we get a group of

n k-wise independent {0, 1}-random variables ξ1, . . ., ξn over the uniform probability

space Ω such that Pr(ξi = 0) = Pr(ξi = 1) = 1/2 for all 1 ≤ i ≤ n. All these can be

constructed in time O(n(2n)(k−1)/2).

Note that the uniform probability space Ω and the random variables ξ1, . . .,

ξn constructed above actually make a collection P of D = 2(n1 + 1)(k−1)/2 splitting

functions over Zn. In fact, for each element a in Ω, the values of the random variables
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ξ1, . . ., ξn make a binary string ξ1(a) · · · ξn(a) of length n, which can be interpreted

as a splitting function over Zn.

Construct a bipartite graph G = (V1∪V2, E) with the vertex bipartition (V1, V2),

where V1 consists of D vertices, corresponding to the D splitting functions in the

collection P , and the vertex set V2 consists of D′ =
(

n
k

)

2k vertices such that for each

k-subset S of Zn and each partition (S1, S2) of S, there is a corresponding vertex in

V2. An edge [v, w] is created in G if the splitting function corresponding to the vertex

v ∈ V1 implements the partition (S1, S2) of a k-subset S of Zn that correspond to the

vertex w ∈ V2.

Claim. Each vertex in V2 has a degree D/2k.

Proof of the Claim. Let S = {h1, . . . , hk} be any k-subset of Zn and let (S1, S2)

be a partition of S. Define k binary bits bhi
, 1 ≤ i ≤ k such that bhi

= 0 if hi ∈ S1

and bhi
= 1 if hi ∈ S2. Consider the k mutually independent random variables ξh1 ,

. . ., ξhk
(they are mutually independent because the random variables ξ1, . . ., ξn are

k-wise independent), we have

Pr(ξh1 = bh1 , . . . , ξhk
= bhk

) = Pr(ξh1 = bh1) · · ·Pr(ξhk
= bhk

) = 1/2k.

Thus, there are D/2k elements a in Ω such that ξhi
(a) = bhi

for 1 ≤ i ≤ k. By

the interpretation above, there are D/2k splitting functions in the collection P that

implement the partition (S1, S2) of the k-subset S. By our construction of the graph

G, the vertex w in V2 corresponding to the partition (S1, S2) of the k-subset S has

degree D/2k. The claim now is proved because S is an arbitrary k-subset in Zn and

(S1, S2) is an arbitrary partition of S. End of the Claim

Since there are D′ vertices in V2, the above claim shows that the bipartite graph
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G contains exactly (D′D)/2k edges. Now since there are D vertices in V1, there is a

vertex v1 in V1 in the graph G whose degree is at least D′/2k. In other words, there

is a splitting function in the collection P that implements at least D′/2k partitions

of k-subsets of Zn (these partitions can be partitions for different k-subsets of Zn).

We perform the following operations on the graph G: mark the vertex v1 in

V1 and remove all vertices in V2 that are adjacent to v1 (or, equivalently, we mark

a splitting function f in P and remove all partitions of k-subsets of Zn that are

implemented by f). Let D′
1 be the number of vertices in V2 in the remaining bipartite

graph G′. D′
1 ≤ (1 − 1/2k)D′.

Note that each vertex in V2 in the remaining graph G′ still has degree D/2k.

Therefore, by repeating the above process, in the remaining graph G′, we can find

a vertex v2 in V1 that is adjacent to at least D′
1/2

k vertices in V2. Now we mark

v2, and remove the vertices in V2 that are adjacent to v2. Now there are at most

D′
2 ≤ (1 − 1/2k)D′

1 ≤ (1 − 1/2k)2D′ vertices in V2 in the remaining graph.

Repeat the above process until all vertices in V2 are removed. The number t′

of times the above process is repeated is not larger than the smallest integer t such

that (1 − 1/2k)tD′ < 1. For k = 3, we can directly verify that t′ ≤ 2kk log n; and for

k ≥ 5, since D′ =
(

n
k

)

2k ≤ nk and (1− 1/2k)2k
< 1/e, we can also formally prove that

t′ ≤ 2kk log n.

Each execution of the above process marks a vertex in V1, therefore, there are

at most 2kk log n vertices in V1 that are marked in the above process. By our con-

struction, all vertices in the set V2 are adjacent to at least one marked vertex in V1.

Accordingly, there are D′′ ≤ 2kk log n splitting functions in the collection P such

that every partition of any k-subset in Zn is implemented by at least one of these D′′

splitting functions. That is, these D′′ splitting functions make an (n, k)-universal set

P ′ of size bounded by 2kk log n.
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Now we analyze the time complexity for the entire construction of the (n, k)-

universal set P ′. As given earlier, the construction of the uniform probability space

Ω and the {0, 1}-random variables ξ1, . . ., ξn takes time O(n(2n)(k−1)/2). The con-

struction of the bipartite graph G takes time O(k|V1||V2|) = O(kDD′) = O(
(

n
k

)

k2k

(2n)(k−1)/2). To perform the above iteration process of marking vertices in V1, we can

represent the bipartite graph G as a D×D′ matrix, and keep an array for the degrees

of the vertices in V1. It is not difficult to verify that on such data structures, the entire

vertex marking process takes time O(t′(D+D′)+DD′) = O(
(

n
k

)

2k(2n)(k−1)/2). Thus,

the total construction of the (n, k)-universal set P ′ takes time O(
(

n
k

)

2kk(2n)(k−1)/2).

The size of the (n, k)-universal set constructed in Lemma C.4 is quite small.

Unfortunately, the time complexity for constructing such an (n, k)-universal set given

in the lemma is unacceptably high. Therefore, we need to use additional techniques

to reduce the construction time.

Fix n and k, where n ≥ k. At the moment, we assume k ≥ 2. Define

k1 = the largest odd number bounded by k/(4 log k),

t = ⌈k/k1⌉, (it is not hard to verify that t ≤ 4 log k + 2),

k2 = k − k1(t − 1), (note that k2 ≤ k1), (4.4)

n1 = k2, and

p = a prime number such that n ≤ p < 2n,

where the existence of the prime number p above is guaranteed by Bertrand’s postu-

late [113].

Consider the set Zk2 = {0, 1, . . . , k2 − 1}. Pick any t− 1 elements i2, i3, . . ., it in

Zk2 , such that i2 < i3 < · · · < it. These t − 1 elements naturally divide the set Zk2
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into t sets consisting of consecutive elements (where X1 may be an empty set):

X1 = {0, . . . , i2 − 1}, X2 = {i2, . . . , i3 − 1}, . . . , Xt = {it, . . . , k2 − 1}.

Such a division (X1, X2, . . . , Xt) of the set Zk2 based on t−1 selected elements in Zk2

will be called a t-grouping of the set Zk2 .

According to Lemma C.4, we can construct (note that k1 is an odd number,

and that n1 ≥ 4) an (n1, k1)-universal set P1 of size D1 ≤ k12
k1 log n1 in time

O(
(

n1

k1

)

2k1k1(2n1)
(k1−1)/2). Moreover, we define k′

2 = k2 if k2 is odd, and k′
2 = k2 + 1

if k2 is even, and construct an (n1, k
′
2)-universal set P2 of size D2 ≤ k′

22
k′
2 log n1 ≤

k12
k2+1 log n1 in time O(

(

n1

k1

)

2k1k1(2n1)
(k1−1)/2) (we can replace k′

2 by k1 because by

definition k′
2 ≤ k1). Using the definitions of k1, k2, and n1, it is not hard to verify

that

D1 ≤ k2k1−1 and D2 ≤ k2k2 . (4.5)

Lemma C.5 Let P be an (n, k)-universal set. Then for any n′, k ≤ n′ ≤ n, P is

also an (n′, k)-universal set; and for any k′ ≤ k, P is also an (n, k′)-universal set.

Proof. Each splitting function in P can be regarded as a splitting function over

Zn′ . Since every k-subset of Zn′ is also a k-subset of Zn, we conclude that any partition

of any k-subset in Zn′ is implemented by a splitting function in P, i.e., P is also an

(n′, k)-universal set.

Every partition (S ′
1, S

′
2) of any k′-subset S ′ of Zn can be extended to a partition

(S1, S2) of a k-subset of Zn by adding k − k′ elements in Zn − S ′ to S ′
1. Now the

splitting function in P that implements (S1, S2) also implements the partition (S ′
1, S

′
2)

of S ′. Thus, P is also an (n, k′)-universal set.

Now we are ready to construct our (n, k)-universal set P. Each splitting function
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over Zn in P is defined based on an integer z between 0 and p − 1, a t-grouping

(X1, . . . , Xt) of the set Zk2 , t − 1 splitting functions f1, . . ., ft−1 in the (n1, k1)-

universal set P1, and a splitting function ft in the (n1, k
′
2)-universal set P2. The

splitting function over Zn is defined in Figure 7.

Splitting fz,(X1,...,Xt),(f1,...,ft−1,ft)(a)
where a ∈ Zn is the input of the function, 0 ≤ z < p, (X1, . . . , Xt)
is a t-grouping of Zk2 , f1, . . ., ft−1 are splitting functions in P1,
and ft is a splitting function in P2.

1. x = (az mod p) mod k2;
2. suppose that x is the j-th smallest element in Xi;
3. return fi(j).

Fig. 7. A splitting function over Zn

First note that the function fz,(X1,...,Xt),(f1,...,ft−1,ft)(a) is a well-defined splitting

function. In fact, by step 1, x is an element in Zk2 . Since (X1, . . . , Xt) is a t-grouping

of Zk2 , x must belong to a unique Xi and have a unique rank j in Xi. Thus, step 3

will return a Boolean value fi(j).

Definition Let P be the collection of all possible splitting functions over Zn defined

in Figure 7, over all integers z, 0 ≤ z < p, all t-groupings (X1, . . . , Xt) of Zk2 , all

possible lists (f1, . . . , ft−1) of splitting functions in the (n1, k1)-universal set P1 (where

the same function may appear more than once in the list), and all splitting functions

ft in the (n1, k
′
2)-universal set P2.

Now we are ready for our main result.

Theorem C.6 [93] For all integers k ≥ 1 and n ≥ k, there is an (n, k)-universal set

of size bounded by n2k+12 log2 k+2, which can be constructed in time O(n2k+12 log2 k).
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Proof. The theorem holds true for k = 1 by Lemma C.3. Thus, we assume

k ≥ 2. We prove that the collection P given in the definition before this theorem is

an (n, k)-universal set that satisfies the conditions given in the theorem.

We first consider the size of the collection P . There are p < 2n possible integers

z. As described earlier, each t-grouping of Zk2 can be given by t−1 different elements

in Zk2 . Therefore, the total number of different t-groupings of Zk2 is bounded by
(

k2

t−1

)

≤ k2(t−1). The number of possible lists (f1, . . . , ft−1) of splitting functions in P1

is |P1|t−1 = Dt−1
1 , and finally, the number of splitting functions in P2 is |P2| = D2.

Putting all these together, and recall the definitions and inequalities in (4.4) and

(4.5), we conclude that the size of P is bounded by

2nk2(t−1)Dt−1
1 D2

≤ 2nk2(t−1)(k2k1−1)t−1(k2k2)

= 2nk3t−22(k1−1)(t−1)+k2

≤ 2nk12 log k+42(k1−1)(t−1)+(k−k1(t−1))

= n212 log2 k+4 log k+12k−(t−1)

≤ n2k+12 log2 k+2,

where the last inequality has used the facts t = ⌈k/k1⌉ ≥ k/k1 ≥ k/(k/(4 log k)) =

4 log k.

To construct the collection P, we first construct the collections P1 and P2. As dis-

cussed earlier, these two collections can be constructed in O(
(

n1

k1

)

2k1k1(2n1)
(k1−1)/2) =

O(2k) time. Once the collections P1 and P2 are available, the integers z, the t-

groupings (X1, . . . , Xt) of Zk2 , and the lists (f1, . . . , ft−1) of splitting functions in

P1 and the splitting functions ft in P2 can be systematically enumerated, in con-
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stant time per combination, which gives a representation of the corresponding split-

ting function in P. In conclusion, the collection P can be constructed in time

O(|P|) = O(n2k+12 log2 k).

What remains is to show that P is an (n, k)-universal set. For this, let S be a

given k-subset of Zn and let (S1, S2) be a partition of S. By Proposition C.1, there is

an integer z0, 0 ≤ z0 < p, such that the function ψz0,k2,n over Zn is injective from S.

Let S ′, S ′
1, and S ′

2 be the subsets of Zk2 that are the images of S, S1, and S2 under

ψz0,k2,n, respectively. By the definitions, we have |S ′| = |S|, |S ′
1| = |S1|, |S ′

2| = |S2|,

and (S ′
1, S

′
2) is a partition of the k-subset S ′ in Zk2 .

It is easy to see that there is a t-grouping (X0
1 , . . . , X

0
t ) of the set Zk2 such that

each of the first t − 1 subsets X0
1 , . . ., X0

t−1 contains exactly k1 elements in S ′, and

the last subset X0
t contains k2 elements in S ′. Let Ti = X0

i ∩ S ′ for 1 ≤ i ≤ t. Then

Ti is a k1-subset of X0
i for 1 ≤ i ≤ t − 1, and Tt is a k2-subset of X0

t . Moreover, the

partition (S ′
1, S

′
2) of S ′ induces a partition (Ti,1, Ti,2) for each Ti, 1 ≤ i ≤ t, where

Ti,1 = Ti ∩ S ′
1 and Ti,2 = Ti ∩ S ′

2.

Since P1 is an (n1, k1)-universal set, which by Lemma C.5 is also a (|X0
i |, k1)-

universal set, for each i, 1 ≤ i ≤ t − 1, there is a splitting function f0
i in P1 that

implements the partition (Ti,1, Ti,2) of the k1-subset Ti of X0
i (note that the subset X0

i

can be regarded as the set Z|X0
i |
), for 1 ≤ i ≤ t− 1. That is, f0

i (x) = 0 if x ∈ Ti,1 and

f 0
i (y) = 1 if y ∈ Ti,2. Similarly, there is a splitting function f0

t in P2 that implements

the partition (Tt,1, Tt,2) of the k2-subset Tt.

Now consider the splitting function fz0,(X0
1 ,...,X0

t ),(f0
1 ,...,f0

t ). On an element a in the

subset S1, step 1 of the algorithm Splitting produces an element x = ψz0,k2,n(a) in

the set S ′
1. Suppose that x is in the set X0

i , then x is in the set Ti,1. By the way

we selected the splitting function f 0
i , we have f0

i (x) = 0. In summary, on an element

a in the subset S1, we have fz0,(X0
1 ,...,X0

t ),(f0
1 ,...,f0

t )(a) = 0. Using the same reasoning,
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we can show fz0,(X0
1 ,...,X0

t ),(f0
1 ,...,f0

t )(a) = 1 for every element a in S2. Therefore, the

function fz0,(X0
1 ,...,X0

t ),(f0
1 ,...,f0

t ) in the collection P implements the partition (S1, S2) of

the k-subset S of Zn.

Since S is an arbitrary k-subset of Zn and (S1, S2) is an arbitrary partition of S,

we conclude that the collection P is an (n, k)-universal set.

we have introduced in detail how to construct the (n, k)-universal set developed

by Noar, Schulman, and Srinivasan. Next, we will use this (n, k)-universal set to

derandomized our randomized algorithms for pw-path, pw-r-d matching, pw-r-

set packing, and pw-set splitting problems.

D. Derandomization

In this section, we discuss how the randomized algorithms presented in the previous

sections can be derandomized. Our derandomization process is based on the con-

struction of (n, k)-universal sets, which we discussed in the last section, proposed by

Naor, Schulman, and Srinivasan [93].

For a function ψz,k2,n from Zn to {0, 1, . . . , k2−1}, as defined in Proposition C.1,

we say that the function ψz,k2,n partitions the set Zn into k2 pairwise disjoint subsets

{W0,W1, . . . , Wk2−1} if for all 0 ≤ i ≤ k2 − 1, Wi = {a ∈ Zn | ψz,k2,n(a) = i}.

Now let us introduce our derandomized algorithms. First consider the pw-path

problem. Without loss of generality, we assume that the vertices in the input graph G

are labeled by the integers {0, 1, . . . , n−1}. The algorithm for the pw-path problem

is given in Figure 8.

Theorem D.1 For a graph G of n vertices and m edges, the algorithm D-paths(G, k)

solves the pw-path problem in time 4k+O(log3 k)nm.
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D-paths(G, k)
input: a weighted graph G with vertex set V = {0, 1, . . . , n − 1},

and an integer k ≥ 1;
output: a k-path of the maximum weight in G if G contains k-paths;

1. for h = 1 to k do construct a (k2, h)-universal set Ψh;
2. let q0 be the smallest prime number such that n ≤ q0 < 2n;
3. ρ0 = ∅; {suppose that ∅ is a virtual k-path of infinitely small weight.}
4. for each z, 0 ≤ z < q0 do
4.1. Pk = path-ext({ρ∅}, V, z, k);
4.2. if Pk contains a k-path whose weight is larger than that of ρ0 then

replace ρ0 by the k-path of the maximum weight in Pk;
5. return ρ0.

path-ext(Pl, V
′, z, h)

input: a set Pl of l-paths in G; a subset V ′ of vertices in G (V ′ contains no vertex
in Pl); an integer z that lets the function ψz,k2,n give an initial partition of V ′;
and an integer h ≥ 1;

output: a set Pl+h of (l + h)-paths in Pl ⊙ V ′;

1. Pl+h = ∅;
2. if h = 1 then
2.1. if Pl = {ρ∅} then Pl+1 contains a (u, 1)-path for each vertex u ∈ V ′;

return Pl+1;
2.2. else for each (w, l)-path ρl in Pl and each u ∈ V ′, where [w, u] is n edge

in G, do
2.3. oncatenate ρl and u to make a (u, l + 1)-path ρl+1 in Pl ⊙ V ′;
2.4. if Pl+1 contains no (u, l + 1)-path then add ρl+1 to Pl+1;
2.5. else if the (u, l + 1)-path ρ′

l+1 in Pl+1 has a weight smaller than that
of ρl+1 then

2.6. replace ρ′
l+1 in Pl+1 by ρl+1;

2.7. return Pl+1;
3. for each splitting function f in the (k2, h)-universal set Ψh do
3.1. VL = {v, | v ∈ V ′ and f(ψz,k2,n(v)) = 0};
3.2. VR = {v, | v ∈ V ′ and f(ψz,k2,n(v)) = 1};
3.3. PL

l+⌈h/2⌉ = path-ext(Pl, VL, z, ⌈h/2⌉);
3.4. if PL

l+⌈h/2⌉ 6= ∅ then

3.5. PR
l+h = path-ext(PL

l+⌈h/2⌉, VR, z, ⌊h/2⌋);
3.6. for each (u, l + h)-path ρl+h in PR

l+h do
3.7. if Pl+h contains no (u, l + h)-path in Pl ⊙ V ′ then add ρl+h to Pl+h;
3.8. else if the (u, l + h)-path ρ′

l+h in Pl+h has a weight smaller than that
of ρl+h then

3.9. replace ρ′
l+h in Pl+h by ρl+h;

4. return Pl+h.

Fig. 8. A deterministic algorithm for the pw-path problem
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Proof. First consider the correctness of the algorithm. Note that the path

ρ0 returned by the algorithm D-paths remains ∅ unless step 4.2 of the algorithm

replaces ρ0 by a real k-path in G. In particular, the algorithm works correctly if the

graph G contains no k-paths.

Now let ρk be a k-path of the maximum weight in the graph G. By Proposi-

tion C.1, there is an integer z0, 0 ≤ z0 < q0, such that the function ψz0,k2,n is injective

from the k-subset consisting of the k vertices in the path ρk. Consider the execu-

tion of step 4.1 in algorithm D-paths on this particular integer z0, which calls the

subroutine path-ext({ρ∅}, V, z0, k).

The subroutine path-ext has a similar structure as that of the algorithm find-

paths in Figure 3, and our discussion will concentrate on the differences. For the

integer z0 and for any subset V ′ of V , we say that a path ρ is (z0, V
′)-separated if for

any two vertices u1 and u2 in ρ, where u1, u2 ∈ V ′, we have ψz0,k2,n(u1) 6= ψz0,k2,n(u2).

For a general input (Pl, V
′, z0, h) to the subroutine path-ext, we prove the following

claim:

For any vertex v ∈ V ′, there is a (z0, V
′)-separated (v, l + h)-path in

Pl ⊙ V ′ if and only if the set Pl+h constructed by the subroutine path-

ext(Pl, V
′, z0, h) contains a (z0, V

′)-separated (v, l + h)-path in Pl ⊙ V ′

whose weight is the maximum over all (z0, V
′)-separated (v, l + h)-paths

in Pl ⊙ V ′.

One direction is trivial: it suffices to ensure the existence of a (z0, V
′)-separated

(v, l + h)-path in Pl ⊙ V ′ if the set Pl+h contains a (z0, V
′)-separated (v, l + h)-path

in Pl ⊙ V ′. We prove the other direction by induction on h. For the case h = 1, the

algorithm path-ext proceeds in exactly the same way as that of the algorithm find-
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paths in Figure 3. Since every (v, l + 1)-path in Pl ⊙ V ′ is (z0, V
′)-separated, in this

case the corresponding part of the proof for algorithm find-paths (i.e., Theorem A.4)

is directly applied to derive the correctness of the above claim. Now consider the case

h > 1. Suppose that there is a (z0, V
′)-separated (v, l + h)-path in Pl ⊙ V ′, and let

ρl+h = 〈u1, . . . , ul, w1, . . . , wh1 , . . . , wh〉

be a (z0, V
′)-separated (v, l + h)-path of the maximum weight in Pl ⊙ V ′, where

〈u1, . . . , ul〉 is a path in Pl, wj ∈ V ′ for all j, h1 = ⌈h/2⌉, and wh = v. Since the path

ρl+h is (z0, V
′)-separated, the set Sh = {ψz0,k2,n(w1), . . . , ψz0,k2,n(wh)} consists of ex-

actly h elements in the set Zk2 , and ({ψz0,k2,n(w1), . . . , ψz0,k2,n(wh1)}, {ψz0,k2,n(wh1+1),

. . . , ψz0,k2,n(wh)}) is a partition of Sh. By the definition of the (k2, h)-universal set

Ψh, there is a splitting function f0 in Ψh such that f0(ψz0,k2,n(wj)) = 0 for 1 ≤ j ≤ h1,

and f0(ψz0,k2,n(wj)) = 1 for h1 + 1 ≤ j ≤ h. Therefore, when this splitting function

f0 is picked in step 3 of the algorithm path-ext(Pl, V
′, z0, h), the set VL obtained in

step 3.1 contains the vertices w1, . . ., wh1 , and the set VR obtained in step 3.2 contains

the vertices wh1+1, . . ., wh.

Note that the path ρl+h1 = 〈u1, . . . , ul, w1, . . . , wh1〉 is a (z0, VL)-separated (wh1 , l+

h1)-path in Pl ⊙ VL. By the induction hypothesis, the set PL
l+h1

obtained in step 3.3

contains a (z0, VL)-separated (wh1 , l + h1)-path ρl+h1
in Pl ⊙ VL whose weight is at

least as large as that of ρl+h1 . Now the concatenation of the path ρl+h1
and the path

〈wh1+1, . . . , wh〉 is a (z0, VR)-separated (wh, (l + h1) + (h− h1))-path (i.e., a (v, l + h)-

path) in PL
l+h1

⊙VR. Thus, by our induction hypothesis again, the set PR
l+h obtained in

step 3.5 contains a (z0, VR)-separated (v, l + h)-path ρl+h in PL
l+h1

⊙ VR whose weight

is at least as large as the sum of the weights of the paths ρl+h1
and 〈wh1+1, . . . , wh〉.

Since the weight of ρl+h1
is not smaller than that of ρl+h1 , we conclude that the weight

of the path ρl+h is not smaller than that of ρl+h. Finally, since the path ρl+h is a
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concatenation of a (w, l +h1)-path ρ′
l+h1

in PL
l+h1

and a path in G[VR] that is (z0, VR)-

separated, where by the induction hypothesis, ρ′
l+h1

is a (z0, VL)-separated path in

Pl ⊙ VL, we derive that ρl+h is actually a (z0, V
′)-separated (v, l + h)-path in Pl ⊙ V ′

(note that for two vertices w ∈ VL and w′ ∈ VR, the values ψz0,k2,n(w) and ψz0,k2,n(w′)

are always different because they are mapped to different values under the splitting

function f0). Since the weight of ρl+h is not smaller than the weight of ρl+h, and by

our assumption, the path ρl+h has the maximum weight over all (z0, V
′)-separated

(v, l + h)-paths in Pl ⊙ V ′, we conclude that ρl+h must also be a (z0, V
′)-separated

(v, l + h)-path of the maximum weight in Pl ⊙ V ′. Therefore, the collection Pl+h

returned by the subroutine path-ext(Pl, V
′, z0, h) must contain a (z0, V

′)-separated

(v, l + h)-path of the maximum weight. This completes the proof for the claim.

Now the correctness of the algorithm D-paths can be easily derived from the

above claim: by our assumption on the integer z0, the k-path ρk of the maximum

weight in the graph G is actually a (z0, V )-separated (v, k)-path in {ρ∅} ⊙ V (i.e., in

the graph G). Therefore, the above claim concludes that the set Pk obtained in step

4.1 of the algorithm D-paths by calling the subroutine path-ext({ρ∅}, V, z0, k) must

contain a (v, k)-path of the maximum weight. In consequence, the path ρ0 returned

in step 5 of the algorithm D-paths(G, k) must be a k-path of the maximum weight.

For the running time of the algorithm, note that the running time of the algorithm

D-paths is dominated by step 4, which is a q0-time iteration of the subroutine path-

ext, where q0 = O(n). Let T (h,m) be the running time of the recursive subroutine

path-ext(Pl, V
′, z, h), where m is the number of edges in the input graph G to the

main algorithm D-paths(G, k). By Theorem C.6, the (k2, h)-universal set Ψh has

at most k22h+12 log2 h+2 splitting functions. Therefore, the value T (h,m) satisfies the
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following recurrence relations (where c1 and c2 are constants):

T (1, m) ≤ c1m;

T (h,m) ≤ k22h+12 log2 h+2[c2m + T (⌈h/2⌉,m) + T (⌊h/2⌋,m)]. (4.6)

Let X0 = k2212 log2 k+2 = 212 log2 k+2 log k+2. Since k ≥ h for all values h used in the

subroutine path-ext(Pl, V
′, z, h), we derive from (4.6) that

T (1,m) ≤ c1m;

T (h,m) ≤ 2hX0[c2m + T (⌈h/2⌉,m) + T (⌊h/2⌋,m)]. (4.7)

Since the value X0 is independent of the variables h and m, we can apply Corollary A.2

to the recurrence relations in (4.7), and obtain T (h,m) = O(4hhαm), where α is any

number larger than log2(X0(4 + 1)/2). In particular, if we pick α = log2 X0 + 2 =

12 log2 k + 2 log k + 4, we have

hα ≤ kα = 2α log k = 2O(log3 k),

which gives

T (h,m) = O(4h2O(log3 k)m) = 4k+O(log3 k)m.

Combining this with our previous discussion, we conclude that the running time of

the algorithm D-paths is bounded by 4k+O(log3 k)nm.

Using the same technique, we can develop improved deterministic algorithms for

the matching and packing problems discussed in section A.

Theorem D.2 There is a deterministic algorithm that solves the pw-r-set packing

problem in time 4rk+O(log3(rk))n2, where n is the number of r-sets in the input instance.

Proof. The deterministic algorithm for the pw-r-set packing problem is a
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derandomization of the algorithm given in Figure 4. The procedure is very similar

to that described in Theorem D.1 for the pw-path problem. The only difference is

that here we use an ((rk)2, rh)-universal set in which a splitting function splits the

(implicit) h-packing of the maximum weight into two packings of sizes ⌈h/2⌉ and

⌊h/2⌋, respectively. We leave the details for interested readers to verify.

Corollary D.3 There is a deterministic algorithm that solves the pw-r-d matching

problem in time 4rk+O(log3(rk))n2, where n is the number of points in the input instance.

Corollary D.4 Let H be a fixed graph of r vertices. There is a deterministic al-

gorithm that solves the pw-H-graph packing problem in time 4rk+O(log3(rk))nr+1,

where n is the number of vertices in the input graph G.

Using Theorem C.6, we can also derandomize our algorithm for the pw-set

splitting problem in section B, and obtain a deterministic parameterized algorithm

of running time O∗(4k+o(k)) for the pw-set splitting problem. This also provides

the first proof for the fixed parameter tractability of the problem.

Theorem D.5 The pw-set splitting problem can be solved by a deterministic

algorithm of running time O(N24k+6 log2 k+6 log k) = O(N24k+o(k)), where N is the in-

stance size of the problem.

Proof. Let (X,F , k) be an instance of the pw-set splitting problem, where

without loss of generality, let the set X be Zn. Then in O(n22k+12 log2(2k)+12 log(2k)) =

O(n4k+o(k)) time, we can construct an (n, 2k)-universal set P based on Theorem C.6.

We use each splitting function in P to partition the ground set X, and see if

the corresponding partition of X splits at least k subsets in F . If so, we record the

collection of the k subsets of the largest weight that are split by this partition. We
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repeat this process for all splitting functions in P . The output of our algorithm is

either “No” if no partition of X is constructed in this process that splits k subsets in

F , or the collection of the k subsets of the largest weight over all collections recorded

in this process.

If the answer to the instance (X,F , k) is “No”, then the above algorithm obvi-

ously returns “No” because the algorithm does not return “No” only if it actually

constructs a partition of X that splits k subsets in F . On the other hand, if the

answer to the instance is not “No”, then there is a partition of X that splits k sub-

sets S1, . . ., Sk in F whose total weight is the largest over all k split subsets caused

by partitions of X. As we explained in the previous section, there is a set W of at

most 2k elements in X and a partition (W1,W2) of W such that W1 ∩ Si 6= ∅ and

W2 ∩ Si 6= ∅, for all 1 ≤ i ≤ k. Therefore, when we perform the above process using

a splitting function f in P that implements (W1,W2) (note by Lemma C.5, f is an

(n, |W |)-universal set even if |W | < 2k), the corresponding partition of X will split

all these k subsets S1, . . ., Sk, and record the collection of k subsets of largest weight

in F that can be split by a partition of the ground set X.

E. Chapter Conclusion

In section A of the chapter, we developed improved randomized algorithms for the pw-

path, pw-r-d matching and pw-r-set packing problems. The time complexity for

the pw-path problem is improved from O∗(5.5k) to O∗(4k), and time complexities

for the pw-r-d matching and pw-r-set packing problems are improved from

O∗(5.5rk) to O∗(4(r−1)k). These improvements are based on our newly developed

technique, divide-and-conquer, which is a general technique that has been used to

solve the pw-path, pw-r-d matching and pw-r-set packing problems, and will
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also be applied to other parameterized NP-hard problems.

In section B, we designed a randomized algorithm, that is based on the subset

partition technique and has a running time bounded by O∗(2k) for the pw-set split-

ting problem. This algorithm is significantly better than the previous best known

algorithm of running time bounded by O∗(2.65k) (which is a deterministic algorithm

that only works for the simpler p-set splitting problem). In section B, we also

proposed an effective technique based on a probabilistic method that allows us to

develop a simpler and more efficient (deterministic) kernelization algorithm for the

p-set splitting problem. This new technique has also led to a better kernel if many

subsets in the instance have more than two elements.

In section C, we introduced (n, k)-universal sets which were first constructed by

Naor, Schulman, and Srinivasan [93]. As the orginal construction was presented in

an extended abstract [93], in which many details were omitted, for a more general

problem. For the completeness of our discussion, we reproduced a slightly different

and simpler construction and its analysis specifically for (n, k)-universal sets. The

presentation in section C is more precise with all needed details provided.

In section D, we used the (n, k)-universal sets to de-randomize our algorithms in

sections A and B. This leads to improved deterministic algorithms for the pw-path,

pw-r-d matching, pw-r-set packing, and pw-set splitting problems.
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CHAPTER V

COLOR CODING AND ITERATIVE EXPANSION

A k-color coding scheme is a collection of k-coloring functions (color a set with k

colors) such that every subset of size k in the ground set of size n is colored properly,

i.e. no two elements in the subset are assigned with the same color, by at least one

k-coloring function in the scheme. Hence if we enumerate all coloring functions in

the scheme, the unknown solution subset of size k must be colored properly by at

least one coloring function. The goal to color the solution subset properly is that it is

helpful to find the solution through dynamic programming. The time complexity in

the coloring step is decided by the number of k-coloring functions in the color coding

scheme and the time complexity in the dynamic programming step is decided by the

number of colors used in the scheme.

For some problems, if a solution of size k is given, it is helpful to find a solution

of size k +1. Hence, we can begin from a solution of size 1. Using the solution of size

1, we find a solution of size 2. Then using the solution of size 2, we find a solution

of size 3, and so on until we find a solution of the proper size. This method is called

the iterative expansion. In this chapter, we will introduce how to construct a k-color

coding scheme of size O∗(6.4k) and how iterative expansion technique helps us to

solve the p-3-d matching problem.

A. Introduction

The 3-d matching problem is one of the six “basic” NP-complete problems according

to Garey and Johnson [56]. Since Downey and Fellows’ initial work [44], the parame-

terized version of the 3-d matching problem, or the p-3-d matching problem has

attracted considerable interests in recent years, where one is looking for a matching
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of size k. The research has resulted in a number of new algorithmic techniques and

an impressive list of improved algorithms [29, 22, 38, 44, 50, 66, 74, 75, 76, 86, 119].

There have been three popular new techniques in developing improved algorithms for

p-3-d matching:

• Greedy localization. This method tries to apply local optimization to effectively

reduce the search space when one is looking for a matching of size k. Using

this method, Chen et al. [22] obtained an O∗((5.7k)k) time algorithm for the

problem, and Jia et al. [66] extended the technique to p-3-set packing that

is a generalization of p-3-d matching.

• Color coding. This method considers the construction of a collection of parti-

tions of a universal set so that the symbols in the desired matching are effectively

separated. Using this method, Koutis [75] developed an O∗(10.883k) time ran-

domized algorithm for p-3-d matching. The algorithm can be de-randomized

using a method suggested in [3], resulting in an O∗(c3k
1 ) time deterministic algo-

rithm, where c1 is a very large constant. Fellows et al. [50] revised the technique

and presented an improved randomized algorithm of running time O∗(5.443k)

and an improved deterministic algorithm of running time O∗(c3k
2 ), where one can

deduce that c2 ≥ 132. Chen et al. [29] used an improved color coding scheme

and developed an improved deterministic algorithm of running time O∗(12.83k).

• Randomized divide-and-conquer. This more recent technique uses randomiza-

tion to effectively partition the desired matching so that the classical divide-and-

conquer method can be applied. The method was independently proposed by

Kneis et al. [74] and by Chen et al. [29], who both developed an O∗(2.513k) time

randomized algorithm for the p-3-d matching problem. A de-randomization

process was proposed in [74] that leads to an O∗(163k) time deterministic algo-
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rithm, and another de-randomization process was proposed in [29] that leads

to an O∗(43k+o(k)) time deterministic algorithm. Very recently, Wang and Feng

[119] further refined the method, and developed an O∗(3.523k) time determin-

istic algorithm for the problem.

We remark that recently, a fourth method has been announced by Koutis [76],

who proposed an algebraic method that leads to a randomized algorithm of running

time O∗(23k) for p-3-d matching. However, it is unknown whether his algorithm can

be de-randomized to result in an improved deterministic algorithm for the problem.

Moreover, we point out that all these techniques are also applicable to the p-3-set

packing problem, which is a generalization of the p-3-d matching problem. On the

other hand, it is unknown whether any of these techniques can take any advantage

of the structure of p-3-d matching and lead to more efficient algorithms for p-3-d

matching.

Table I summaries these algorithmic results and the corresponding employed

techniques for the p-3-d matching problem. We have also included our results

in this chapter for comparison. The bound O∗(3.523k) given in [119] stands as the

best previous upper bound for deterministic algorithms for p-3-d matching. Our

new results presented in the current chapter give an O∗(2.803k) time deterministic

algorithm for p-3-d matching.

Our approach, which is named iterative expansion, proceeds based on the inte-

gration and improvements of a number of previous techniques. First, we present an

O∗(6.4k) time deterministic construction of a k-color coding scheme, which signifi-

cantly improves the previous construction [3], and also directly implies improvements

on all previous deterministic algorithms for a variety of problems that are based on

the color coding method, including those for p-3-d matching as given in [75, 50].
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Table I. Algorithms for the p-3-d matching problem

References randomized deterministic main techniques

Downey and Fellows [44] — O∗((3k)!(3k)9k+1) H

Chen et al. [22] — O∗((5.7k)k) G

Koutis [75] O∗(10.883k) O∗(2O(k)) C, D

Fellows et al. [50] O∗(5.443k) O∗(1323k) C, D

Chen et al. [29] O∗(5.443k) O∗(12.83k) C, D

Kneis et al. [74] O∗(2.513k) O∗(163k) R

Chen et al. [29] O∗(2.513k) O∗(43k+o(k)) R

Wang and Feng [119] O∗(3.523k) O∗(3.523k) C, R

Koutis [76] O∗(23k) — A

This chapter O∗(2.323k) O∗(2.803k) C, D, G, I

Techniques: [A] algebraic methods [C] color coding

[D] dynamic programming [G] greedy localization

[H] hashing [I] iterative expansion

[R] randomized divide-and-conquer

Secondly, by a more careful investigation on the structures of p-3-d matching, we

prove that if a triple set contains a matching of k+1 triples, then every matching of k

triples is overlapping with some matching of k+1 triples by at least 2/3 of its symbols.

This structural result significantly improves the one given in [22] that was the basis

for the greedy localization method. Moreover, we replace the enumeration phase in

the greedy localization method by a more efficient phase that uses the improved color

coding and dynamic programming method. Finally, by taking advantage of symbol

order in a triple, we show that the dynamic programming phase in the above process
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can be further improved. The combination of all these improvements leads to an

improved O∗(2.803k) time deterministic algorithm for p-3-d matching.

Finally, we remark that all previous parameterized algorithms for p-3-d match-

ing and p-3-set packing have the same time complexity, although it is obvious

that p-3-set packing is a nontrivial generalization of p-3-d matching. For the

first time, we take advantage of the structure of p-3-d matching and present a

faster algorithm for p-3-d matching.

B. An Improved Color Coding Scheme

For an integer n, denote by Zn the set {0, 1, . . . , n − 1}. If n is a prime number,

then Zn is a field under addition and multiplication modulo n. A function f on Zn

is injective from a subset S of Zn if for any x, y ∈ S, x 6= y, we have f(x) 6= f(y). A

k-coloring of Zn is a function mapping Zn to Zk, and a coloring of Zn is a k-coloring

of Zn for some integer k. A collection C of k-colorings of Zn is a k-color coding scheme

if for every subset Sk of k elements in Zn, there is a k-coloring f in C that is injective

from Sk (in this case, we also say that the coloring f colors Sk properly). The size of

the k-color coding scheme C is the number of colorings in C.

The concept of the color coding method was proposed by Alon, Yuster, and Zwick

in their seminal work [3], and the efficiency of the method depends directly on the

size of the color coding scheme. An explicit construction of a k-color coding scheme

was suggested in [3] based on the construction of a perfect hash function given in

[108], which has size Ω(ck), where c ≥ 4000 (this bound was not made explicit in [3]

but is estimated based on the construction in [108]).

In this section, we present a k-color coding scheme of significantly improved size.
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1. A special collection of color coding schemes

We start with a few simple lemmas on color coding schemes.

Lemma B.1 For any integers n and k, n ≥ k, there is a k-color coding scheme for

Zn of size bounded by
(

n
k

)

.

Proof. For each subset W of k elements in Zn, construct a k-coloring fW for

Zn that assigns each element in W a distinct color and colors all other elements

in Zn arbitrarily. The k-coloring fW is obviously injective from W . The collection

{fW | W ⊆ Zn, |W | = k} of
(

n
k

)

k-colorings is a k-color coding scheme for the set Zn.

Lemma B.2 For n ≥ 2, there exist (1) a 1-color coding scheme of size 1 for Zn; (2)

an n-color coding scheme of size 1 for Zn; and (3) a 2-color coding scheme of size

≤ ⌈log n⌉ for Zn.

Proof. Facts (1) and (2) are obvious. We prove Fact (3) by induction on n. The

fact can be easily verified for the cases of n ≤ 4. Inductively, suppose that for n ≤ 2g,

g ≥ 2, Fact (3) holds true. Now we consider the case 2g < n ≤ 2g+1.

Partition the n elements in Zn into two subsets Z ′ and Z ′′ such that |Z ′| = 2g and

|Z ′′| = n− 2g ≤ 2g. By the inductive hypothesis, there exist a 2-color coding scheme

F ′ = {f ′
1, . . . , f

′
g′} of size g′ for Z ′ and a 2-color coding scheme F ′′ = {f ′′

1 , . . . , f ′′
g′′}

of size g′′ for Z ′′, where g′ ≤ ⌈log |Z ′|⌉ = g and g′′ ≤ ⌈log |Z ′′|⌉ ≤ g. Without loss of

generality, we assume that g′ ≥ g′′.

Construct g′ 2-colorings for Zn:

(f ′
1, f

′′
1 ), (f ′

2, f
′′
2 ), . . . , (f ′

g′′ , f
′′
g′′), (f

′
g′′+1, f

′′
g′′), . . . , (f

′
g′ , f

′′
g′′), (5.1)
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where the coloring (f ′
i , f

′′
j ) colors the elements in Z ′ using the 2-coloring f ′

i , and the

elements in Z ′′ using the 2-coloring f ′′
j (both f ′

i and f ′′
j use the color set {0, 1}). We

also introduce a new 2-coloring f0 for Zn that assigns 0 to all elements in Z ′ and 1

to all elements in Z ′′. It is straightforward to verify that the 2-coloring f0 plus the

g′ 2-colorings in (5.1) makes a 2-color coding scheme for the set Zn, whose size is

g′ + 1 ≤ g + 1 = ⌈log n⌉. This proves the lemma.

For general k, we have the following recurrence relation.

Lemma B.3 Let n = n1 + · · ·+ nr, where all nj ≥ 1 are integers. Let τ(n′, k′) be an

upper bound for the size of a k′-color coding scheme for the set Zn′, where n′ < n and

k′ ≤ k. Then there is a k-color coding scheme for the set Zn whose size is bounded by

k1+···+kr=k
∑

0≤k1≤n1,...,0≤kr≤nr





τ(#[kj ≤ 1], #[kj = 1])
(

#[kj≤1]
#[kj=1]

)

∏

kj≥2

τ(nj, kj)



 ,

where #[kj ≤ 1] and #[kj = 1] are the numbers of kj’s in the list [k1, . . . , kr] such

that kj ≤ 1 and kj = 1, respectively.

Proof. Arbitrarily partition the set Zn into r disjoint subsets Y1, . . ., Yr, where

|Yj| = nj for all j. Let L be the collection of all lists [k1, . . . , kr] of r integers satisfying

k1 + · · · + kr = k and 0 ≤ kj ≤ nj for all j. We say that two lists [k1, . . . , kr] and

[k′
1, . . . , k

′
r] in L are conjugate if for every j, either kj ≥ 2 or k′

j ≥ 2 will imply

kj = k′
j. It is clear that this conjugation is an equivalence relation and partitions the

lists in L into equivalence classes. A conjugation equivalence class will be called a

(k1, . . . , kr)-class for any list [k1, . . . , kr] in the class. Each (k1, . . . , kr)-class contains

exactly
(

#[kj≤1]
#[kj=1]

)

lists in L.

Fix a (k1, . . . , kr)-class. For each j such that kj ≥ 2, let Fnj ,kj
be a kj-color

coding scheme of size bounded by τ(nj, kj) for the set Znj
. Moreover, let F be a
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(#[kj = 1])-color coding scheme of size bounded by τ(#[kj ≤ 1], #[kj = 1]) for the

set Z#[kj≤1]. Suppose that the color sets used by all these schemes are disjoint. We

construct a set of at most

τ(#[kj ≤ 1], #[kj = 1])
∏

kj≥2

τ(nj, kj)

k-colorings for the set Zn: each of these k-colorings consists of a kj-coloring from

the scheme Fnj ,kj
for the set Yj for each kj ≥ 2, plus a (#[kj = 1])-coloring from

the scheme F that treats each set Yj with kj ≤ 1 as a single element and assigns all

elements in Yj with the same color.

We apply the above process to each (k1, . . . , kr)-class, which gives a collection of

k1+···+kr=k
∑

0≤k1≤n1,...,0≤kr≤nr





τ(#[kj ≤ 1], #[kj = 1])
(

#[kj≤1]
#[kj=1]

)

∏

kj≥2

τ(nj, kj)





k-colorings for the set Zn (note that each (k1, . . . , kr)-class contains exactly
(

#[kj≤1]
#[kj=1]

)

lists in the collection L). To complete the proof of the lemma, it remains to show

that this collection makes a k-color coding scheme for the set Zn.

Let W be an arbitrary subset of k elements in Zn. Suppose that for each j, W

has exactly kj elements in the set Yj. Note that [k1, . . . , kr] is a list in the collection L.

For each kj ≥ 2, since Fnj ,kj
is a kj-color coding scheme for Yj, one kj-coloring fj in

Fnj ,kj
must be injective from the kj elements of W that are in Yj. On the other hand,

since F is a (#[kj = 1])-color coding scheme for the set Z#[kj≤1], one (#[kj = 1])-

coloring f in F assigns each of the #[kj = 1] sets Yj with kj = 1 a distinct color.

Therefore, the combination of these kj-colorings fj and the (#[kj = 1])-coloring f ,

which is one of the k-colorings constructed above, makes a k-coloring for the set Zn

that is injective from the subset W . This completes the proof of the lemma.
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By Lemma B.2 and Lemma B.3, for small values of n and k, we can construct a

k-color coding scheme for the set Zn and derive an upper bound τ(n, k) for its size.

We did this for special pairs (n, k) for small values of n and k, where n = k(k − 1),

using a computer program based on Lemma B.3. Our computation results are given

in Table II (the last column in the table will be used for later discussion).

The main result of this subsection is the following lemma, which will be used in

bounding the size of our final color coding scheme.

Lemma B.4 Let [c0, c1, . . . , cr] be a list of non-negative integers such that
∑r

j=0 cj =

k and
∑r

j=0 cj(cj − 1) ≤ 4k. Then there is a collection {Fc0 ,Fc1 , . . . ,Fcr} of color

coding schemes, where Fcj
is a cj-color coding scheme for the set Zcj(cj−1), such that

∏

cj≥2 |Fcj
| ≤ 2.4142k.

Proof. For 2 ≤ cj ≤ 18, we use the cj-color coding scheme Fcj
for the set Zcj(cj−1)

given in Table II, whose size is bounded by τ(cj(cj −1), cj) in the third column of the

table. For cj > 18, we simply use the trivial cj-color coding scheme Fcj
for the set

Zcj(cj−1) given in Lemma B.1, whose size is bounded by τ(cj(cj − 1), cj) =
(

cj(cj−1)
cj

)

.

Let Bcj
= (τ(cj(cj − 1), cj))

4/cj(cj−1). It is easy to verify from Table II that

Bcj
≤ 2.4142 for cj ≤ 18 (see the fourth column in the table). For cj > 18, by the

definition of τ(cj(cj − 1), cj), Bcj
= (τ(cj(cj − 1), cj))

4/cj(cj−1) =
(

cj(cj−1)
cj

)4/cj(cj−1)
.

Consider
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Table II. Upper bound on the size of a k-color coding scheme for Zn

k n = k(k − 1) upper bound τ(n, k) Bk = (τ(n, k))4/n

2 2 1 1

3 6 3 2.0801

4 12 12 2.2895

5 20 82 2.4142

6 30 434 2.2474

7 42 2,937 2.1394

8 56 16,960 2.0050

9 72 115,251 1.9108

10 90 655,756 1.8136

11 110 4,731,907 1.7488

12 132 33,489,268 1.6906

13 156 260,723,566 1.6437

14 182 1,426,381,707 1.5893

15 210 13,008,846,025 1.5584

16 240 58,465,192,360 1.5117

17 272 676,712,910,839 1.4928

18 306 6,079,615,220,515 1.4693
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f(x) =

(

x(x − 1)

x

) 1
x(x−1)

=

[

[x(x − 1)][x(x − 1) − 1] · · · [x(x − 1) − x + 1]

x!

] 1
x(x−1)

≤
[

[x(x − 1) − x−1
2

]x√
2πx(x/e)x

]

1
x(x−1)

<

[

(2x(x−1)−(x−1)
2

)x

(x/e)x

] 1
x(x−1)

=

(

e(2x − 1)(x − 1)

2x

) 1
x−1

,

where in the first inequality, we have used the inequalities ab ≤ ((a + b)/2)2 and

x! ≥
√

2πx(x/e)x.

Let g(x) = [e(2x − 1)(x − 1)/(2x)]1/(x−1). It can be verified that when x ≥ 7,

g(x) is strictly decreasing. In particular, for cj ≥ 19, we have

Bcj
= (f(cj))

4 < (g(cj))
4 ≤ (g(19))4 ≤ 2.3599.

Thus, Bcj
≤ 2.4142 for all cj. Combining this with

∑r
j=0 cj(cj − 1) ≤ 4k, we

obtain

∏

cj≥2

|Fcj
| ≤

∏

cj≥2

τ(cj(cj − 1), cj) =
∏

cj≥2

Bcj(cj−1)/4
cj

≤
∏

cj≥2

2.4142cj(cj−1)/4

= 2.4142
∑

cj≥2 cj(cj−1)/4
= 2.4142

∑r
j=0 cj(cj−1)/4 ≤ 2.4142k.

This completes the proof of the lemma.

2. A k-coloring algorithm with a given set of parameters

In the rest of the discussion in this section, we fix integers n and k, where n ≥ k. At

the moment, we assume that k is divisible by 4 (this constraint will be removed in
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our final construction). We will concentrate on k-color coding schemes for the set Zn.

Let p0 and p be prime numbers satisfying n ≤ p0 < 2n and k2 < p < 2k2 (such

prime numbers exist by Bertrand’s Conjecture [63]). The prime numbers p0 and p

can be obtained in time O(n
√

n) and O(k2
√

k2) = O(k3), respectively, using a trivial

primality testing algorithm.

We present a k-coloring algorithm for the set Zn. The algorithm is associated

with a set of parameters satisfying the following conditions:

C0. an integer a0, where 0 ≤ a0 ≤ p0 − 1;

C1. a pair of integers (a, b), where 0 < a ≤ p − 1 and 0 ≤ b ≤ p − 1;

C2. an ordered list C = [c0, c1, . . . , ck′ ] of non-negative integers, where k′ = k/4 − 1,
∑k′

j=0 cj = k, and
∑k′

j=0 cj(cj−1) ≤ 4k. Let C>1 be the sublist of C by removing

all cj ≤ 1;

C3. an ordered list L = [(a1, b1), (a2, b2), . . . , (ar, br)] of pairs of integers, where 0 <

ai ≤ p − 1, 0 ≤ bi ≤ p − 1, and r ≤ log |C>1|;

C4. a mapping from the elements in the list C>1 to the elements in the list L such

that at least one half of the cj’s in C>1 are mapped to (a1, b1), at least one

half of the cj’s that are not mapped to (a1, b1) are mapped to (a2, b2), at least

one half of the cj’s that are not mapped to (a1, b1) and (a2, b2) are mapped to

(a3, b3), and so on.

C5. an ordered list of colorings [fc0 , fc1 , . . . , fck′
], where for each cj ≥ 2, fcj

is a

cj-coloring from the cj-color coding scheme Fcj
for Zcj(cj−1) in Lemma B.4 (for

cj ≤ 1, fcj
is irrelevant).

We also define two functions as follows. For an integer m, let pm be the smallest

prime number such that m ≤ pm < 2m. For two given integers s and a, where
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1 < s < m and 0 ≤ a ≤ pm − 1, we define a function ψa,s,m from Zm to Zs by

ψa,s,m(x) = (ax mod pm) mod s, (5.2)

and for three given integers s, a, b, where 1 < s < m, 0 < a ≤ pm − 1, and

0 ≤ b ≤ pm − 1, we define a function φa,b,s,m from the set Zm to the set Zs by

φa,b,s,m(x) = ((ax + b) mod pm) mod s. (5.3)

Our k-coloring algorithm on the set Zn is given in Figure 9.

Coloring
input: parameters as specified in C0–C5;
output: a k-coloring of the set Zn;

0. for each x ∈ Zn do x̄ = ψa0,k2,n(x);
1. for j = 0 to k′ = k/4 − 1 do Uj = {x | x ∈ Zn, φa,b,k/4,k2(x̄) = j};
2. for each Uj such that cj > 1, suppose that in C4, cj is mapped to (ai, bi) do

for t = 0 to cj(cj − 1) − 1 do Uj,t = {x | x ∈ Zn, φai,bi,cj(cj−1),k2(x̄) = t};
create cj new colors τj,0, τj,1, . . ., τj,cj−1;
assign all elements in Uj,t with color τj,s if the cj-coloring fcj

in C5
for Zcj(cj−1) assigns color s to the element t;

3. for each cj = 1, create a new color τj and assign all elements in Uj the color τj;
4. assign all elements in

⋃

cj=0 Uj arbitrary colors using the colors created in
steps 2–3.

Fig. 9. A coloring algorithm

We make some remarks on the algorithm Coloring:

(1) the function ψa0,k2,n in step 0 is from Zn to Zk2 , so x̄ ∈ Zk2 ;

(2) the function φa,b,k/4,k2 in step 1 is from Zk2 to Zk/4, so φa,b,k/4,k2(x̄) ∈ Zk/4;

(3) for each j such that cj > 1, the function φai,bi,cj(cj−1),k2 in step 2 is from Zk2

to Zcj(cj−1),

so φai,bi,cj(cj−1),k2(x̄) ∈ Zcj(cj−1);

(4) by steps 2–3, for each cj ≥ 1, we create cj new colors. By C2,
∑k/4−1

j=0 cj = k.
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Therefore,

the total number of colors used by the algorithm Coloring is exactly k. In

consequence,

the algorithm produces a k-coloring for the set Zn.

For each given set of parameters satisfying conditions C0–C5, the algorithm

Coloring produces a k-coloring for the set Zn. A collection F of k-colorings of

Zn can be obtained by running over all possible sets of parameters that satisfy the

conditions. In the next subsection, we consider the size of this collection F .

3. The size of the collection F

To derive an upper bound for the size of the collection F constructed in the previ-

ous subsection, we discuss the number of possible combinations of the parameters

satisfying conditions C0–C5.

Condition C0: the parameter a0 satisfies 0 ≤ a0 ≤ p0 − 1, where p0 < 2n.

Therefore, there are at most 2n − 1 = O(n) possible values for the parameter a0.

Condition C1: the parameters a and b satisfy 0 < a ≤ p − 1 and 0 ≤ b ≤ p − 1,

where p < 2k2. Therefore, there are at most O(k4) pairs of integers (a, b) satisfying

condition C1.

Condition C2: we represent each list C = [c0, . . . , ck′ ] satisfying condition C2

using a single binary string BC of length 5k/4− 1 in which there are exactly k/4− 1

0-bits. The k/4 − 1 0-bits in BC divide BC into k/4 “segments” such that the j-th

segment contains exactly cj 1-bits (in particular, the segment between two consecutive

0’s in BC corresponds to cj = 0). It is easy to verify that any list C satisfying

condition C2 is uniquely represented by such a binary string BC . Note that the

number of binary strings of length 5k/4 − 1 with exactly k/4 − 1 0-bits is equal to
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(

5k/4−1
k/4−1

)

≤ 1.8692k. We conclude that the total number of different lists satisfying

condition C2 is bounded by 1.8692k. Note that all these lists can be systematically

enumerated based on the binary string representation described above.

Condition C3: since r ≤ log(|C>1|) ≤ log(k/4) = log k − 2, there are at most

log k − 2 pairs in each list L satisfying condition C3. By condition C3, for each pair

(ai, bi), there are at most O(p2) = O(k4) possible different cases. Thus, the total

number of lists L satisfying condition C3 is O(k4 log k−8).

Condition C4: now we discuss that when a list C = [c0, . . . , ck′ ] satisfying con-

dition C2 and a list L = [(a1, b1), . . . , (ar, br)] satisfying condition C3 are given, how

many different mappings from C>1 to L can be there that satisfy condition C4. Let

q = |C>1| ≤ k/4. We use a binary string A>1 to represent a mapping from C>1 to

L, as follows. The binary string A>1 has q 0-bits, which divide A>1 into q segments,

each starting with a 0-bit. For each j, the j-th segment of form 01i−1 in A>1 repre-

sents the mapping from the j-th element in C>1 to the integer pair (ai, bi) in L. By

Condition C4, at least one half of the segments in A>1 have no 1-bit, at least one

half of the remaining segments in A>1 have the form 01, and at least one half of the

remaining segments that are not of the form 0 or 01 in A>1 have the form 011, and

so on. Therefore, the length of the binary string A>1 is bounded by

q

2
+ 2

q

22
+ 3

q

23
+ · · · < 2q ≤ k

2
.

In consequence, the number of different mappings from the list C>1 to the list L

satisfying condition C4 is bounded by 2k/2 = 1.4143k.

Condition C5: in the list [fc0 , fc1 , . . . , fck′
] of colorings, for each cj ≥ 2, fcj

is

a cj-coloring from the cj-color coding scheme Fcj
for Zcj(cj−1) given in Lemma B.4.

Moreover, by Lemma B.2(1), for cj = 1, we have |Fcj
| = 1. Therefore, the to-

tal number of different lists [fc0 , fc1 , . . . , fck′
] satisfying condition C5 is equal to
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∏k′

j=0 |Fcj
| =

∏

cj≥2 |Fcj
|, which, by Lemma B.4, is bounded by 2.4142k (note that

the list [c0, c1, . . . , ck′ ] satisfies condition C2).

Summarizing the above discussion, we obtain the following theorem.

Theorem B.5 Running the algorithm Coloring in Figure 9 over all possible pa-

rameters satisfying conditions C0–C5 gives a collection F of O(6.383kk4 log k−4n) k-

colorings for the set Zn. These k-colorings can be constructed in O(6.383kk4 log k−4n2)

time.

Proof. By the above analysis, the total number of possible combinations of the

parameters satisfying conditions C0–C5 is bounded by

O(n) · O(k4) · 1.8692k · O(k4 log k−8) · 1.4143k · 2.4142k = O(6.383kk4 log k−4n).

From the above discussion, these k-colorings can be constructed systematically. Since

each k-coloring of the set Zn can be represented using n digits in Zk, the collection

F can be constructed in time O(6.383kk4 log k−4n2).

4. The collection F is a k-color coding scheme for Zn

We derive in this subsection that the collection F of k-colorings for the set Zn in

Theorem B.5 is a k-color coding scheme for the set Zn. For this, we need to prove

that for any subset W of k elements in Zn, there is a combination of parameters

satisfying conditions C0–C5 on which the algorithm Coloring produces a k-coloring

for the set Zn that is injective from W . In the following discussion, we fix a subset

W = {w1, . . . , wk} of Zn.

First we consider the function ψa,s,n used in step 0 of the algorithm Coloring.

The function ψa,s,n has been thoroughly studied for its use in the construction of
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universal hashing functions [54, 108]. This is the construction suggested in [3] for the

implementation of k-color coding schemes. In particular, the following result holds:

Theorem B.6 ([54]) For the subset W of k elements in Zn, there is an integer a0,

0 ≤ a0 ≤ p0 − 1, such that the function ψa0,k2,n is injective from W .

Therefore, there is an integer a0 satisfying condition C0 such that if we let

wi = ψa0,k2,n(wi) for all 1 ≤ i ≤ k, then the set W = {w1, w2, . . . , wk} is a subset of

k elements in Zk2 . For each 1 ≤ i ≤ k, define a subset Wi of Zn by Wi = {x | x ∈

Zn & ψa0,k2,n(x) = wi}. Let W = {W1, . . . , Wk} be the collection of these subsets.

Now consider the function φa,b,s,k2 used in steps 1–2 in the algorithm Coloring,

which has been studied by Carter and Wegman for other purposes [19]. To discuss its

use in the construction of k-color coding schemes, we first study some basic properties

of the function.

Consider the following two sets of ordered pairs of integers (recall that p is a

prime number satisfying k2 < p < 2k2):

F1(p) = {(a, b) | 0 < a ≤ p − 1 and 0 ≤ b ≤ p − 1},

F2(p) = {(r, q) | 0 ≤ r, q ≤ p − 1 and r 6= q}.

Fix two distinct integers x and y, 0 ≤ x, y ≤ p−1, we construct a mapping as follows:

πx,y : (a, b) −→ ((ax + b) mod p, (ay + b) mod p).

We have the following lemma.

Lemma B.7 For any two integers x and y such that 0 ≤ x, y ≤ p− 1 and x 6= y, the

mapping πx,y is a one-to-one mapping from F1(p) to F2(p).

Proof. Since p is a prime number, the set Zp is a field in terms of addition
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and multiplication modulo p. For a pair (a, b) in F1(p), from (ax + b) mod p =

(ay + b) mod p, we would get x = y (recall that p is a prime and a 6= 0). Therefore,

the mapping πx,y maps each element in F1(p) to an element in F2(p). Moreover, for

a pair (r, q) in F2(p), where r 6= q, the linear equations (ax + b) mod p = r and

(ay + b) mod p = q have a unique solution (a, b), where a, b ∈ Zp and a 6= 0, i.e.,

(a, b) ∈ F1(p). The lemma now follows directly from the fact that both sets F1(p)

and F2(p) have exactly p(p − 1) elements.

Let 0 < a ≤ p − 1, 0 ≤ b ≤ p − 1, and 1 < s ≤ k2. For the subset W of k

elements in Zk2 and for each integer j, 0 ≤ j ≤ s − 1, denote by B(a, b, s, W, j) the

number of integers x in W such that φa,b,s,k2(x) = j. We have the following lemma.

Lemma B.8 Suppose that p mod s = h. Then for the subset W of k elements in

Zk2, we have

∑

(a,b)∈F1(p)

s−1
∑

j=0

(

B(a, b, s, W , j)

2

)

=
k(k − 1)(p − h)(p − (s − h))

2s
. (5.4)

Proof. Let p = gs + h, where g is an integer. Then Zp = {0, 1, . . . , gs + h − 1}.

Let

A0 =
∑

(a,b)∈F1(p)

s−1
∑

j=0

(

B(a, b, s, W, j)

2

)

=
s−1
∑

j=0

∑

(a,b)∈F1(p)

(

B(a, b, s, W , j)

2

)

.

The value A0 is equal to the number of different ways of picking an ordered pair (a, b)

in F1(p), and two different elements x and y in W such that φa,b,s,k2(x) = φa,b,s,k2(y),

or equivalently

((ax + b) mod p) mod s = ((ay + b) mod p) mod s.
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By Lemma B.7, for two different elements x and y in W , the mapping

πx,y : (a, b) −→ ((ax + b) mod p, (ay + b) mod p)

is a one-to-one mapping from F1(p) to F2(p). Therefore, the value A0 is also equal

to the number of different ways of picking an ordered pair (r, q) in F2(p) and two

different elements x and y in W such that

r mod s = q mod s.

The number of different ways to pick two different elements x and y in W is equal

to k(k − 1)/2. Therefore, the value A0 is equal to k(k − 1)/2 times the number of

different ways of picking an ordered pair (r, q) in F2(p) such that r mod s = q mod s.

For each j, if 0 ≤ j ≤ h−1, there are g+1 elements q in Zp such that q mod s = j;

while if h ≤ j ≤ s−1, there are g elements q in Zp such that q mod s = j. Therefore,

for each j, 0 ≤ j ≤ h − 1, there are g(g + 1) ordered pairs (r, q) in F2(p) such that

r mod s = q mod s = j; while for each j, h ≤ j ≤ s − 1, there are g(g − 1) ordered

pairs (r, q) in F2(p) such that r mod s = q mod s = j. In summary, there are totally

hg(g + 1) + (s − h)g(g − 1) = g(p − (s − h)) = (p − h)(p − (s − h))/s ordered pairs

(r, q) in F2(p) such that r mod s = q mod s.

Therefore, we have proved

A0 =
∑

(a,b)∈F1(p)

s−1
∑

j=0

(

B(a, b, s, W, j)

2

)

=
k(k − 1)(p − h)(p − (s − h))

2s
.

This completes the proof of the lemma.

Corollary B.9 Let 1 < s ≤ k2. For the subset W of k elements in the set Zk2, there
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is an ordered pair (a, b) in F1(p) such that

s−1
∑

j=0

(

B(a, b, s, W , j)

2

)

<
k(k − 1)

2s
.

Proof. Since there are exactly p(p − 1) ordered pairs in F1(p), from Lemma B.8,

there is at least one ordered pair (a, b) in F1(p) such that

s−1
∑

j=0

(

B(a, b, s, W , j)

2

)

≤ k(k − 1)(p − h)(p − (s − h))

2sp(p − 1)
.

Since p = gs+h is a prime number, we have 1 ≤ h ≤ s−1 and 1 ≤ s−h ≤ s−1.

Therefore, both (p − h) and (p − (s − h)) are not larger than p − 1. In particular,

(p − h)(p − (s − h)) is strictly smaller than p(p − 1). Now the corollary follows.

We remark that Corollary B.9 gives a significant improvement over the bound

given in [54], which is the bound used to implement the color coding scheme suggested

in [3]. In particular, the bound derived in [54] uses the function ψa,s,k2 , and the

corresponding bound is k2/s. We will see that the bound improvement from k2/s to

k(k− 1)/(2s) will induce a very significant improvement on the size of k-color coding

schemes.

Lemma B.10 For the subset W of k elements in Zk2, there is a pair (a, b) in F1(p)

such that
k/4−1
∑

j=0

B(a, b, k/4, W , j)(B(a, b, k/4, W , j) − 1) < 4k.

Proof. Let s = k/4. From Corollary B.9, there is a pair (a, b) in F1(p), such that

k/4−1
∑

j=0

(

B(a, b, k/4,W , j)

2

)

< 2(k − 1),

which directly implies the lemma.
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Corollary B.11 For the subset W of k elements in Zk2, there is a pair (a, b) satis-

fying condition C1, such that if we let W j = {w | w ∈ W & φa,b,k/4,k2(w) = j} and

let cj = |W j| for all 0 ≤ j ≤ k′ = k/4 − 1, then the list C = [c0, . . . , ck′ ] satisfies

condition C2.

Since each element wi in the set W corresponds uniquely to an element wi in

the set W , according to Corollary B.11, there is a pair (a, b) satisfying condition C1,

such that each set Uj, 0 ≤ j ≤ k′ = k/4 − 1, constructed in step 1 of the algorithm

Coloring contains exactly cj elements in W , and the list C = [c0, . . . , ck′ ] satisfies

condition C2.

Lemma B.12 Let W be a collection of some of the subsets W j with cj = |W j| > 1,

as given in Corollary B.11. Then there is a pair (a, b) satisfying condition C1 such

that for at least one half of the subsets W j in W, the function φa,b,cj(cj−1),k2 is injective

from W j to Zcj(cj−1).

Proof. Fix a subset W j in W , where cj = |W j| > 1. Applying Lemma B.8 to W j

and let s = cj(cj − 1) (where we have let p mod s = h > 0), we get:

∑

(a,b)∈F1(p)

s−1
∑

i=0

(

B(a, b, s, W j, i)

2

)

=
cj(cj − 1)(p − h)(p − (s − h))

2s

<
cj(cj − 1)p(p − 1)

2s
=

p(p − 1)

2
.

Since the set F1(p) totally has p(p − 1) pairs, the above relation shows that for at

least one half of the pairs (a, b) in F1(p), the equality

s−1
∑

i=0

(

B(a, b, s, W j, i)

2

)

= 0

holds, i.e., B(a, b, s, W j, i) ≤ 1 for all i. Therefore, for at least one half of the pairs
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(a, b) in F1(p), the function φa,b,cj(cj−1),k2 is injective from the subset W j. Applying

this analysis to each subset W j in W and using a simple counting argument, we derive

that there is at least one pair (a, b) in F1(p) (i.e., a pair (a, b) satisfying condition

C1) such that for at least one half of the subsets W j in W, the function φa,b,cj(cj−1),k2

is injective from W j.

Corollary B.13 Let W>1 be the collection of all subsets W j in Corollary B.11 with

cj = |W j| > 1. Then there is an ordered list L = [(a1, b1), . . . , (ar, br)] satisfying

condition C3 such that for at least one half of the subsets W j in W>1, the function

φa1,b1,cj(cj−1),k2 is injective from W j to Zcj(cj−1), for at least one half of the remaining

subsets W j in W>1, the function φa2,b2,cj(cj−1),k2 is injective from W j to Zcj(cj−1), and

for at least one half of the remaining subsets W j in W>1, the function φa3,b3,cj(cj−1),k2

is injective from W j to Zcj(cj−1), and so on.

Proof. Applying Lemma B.12 to W>1, we get a pair (a1, b1) satisfying con-

dition C1 such that for at least one half of the subsets W j in W>1, the function

φa1,b1,cj(cj−1),k2 is injective from W j to Zcj(cj−1). Let W ′

>1 be the remaining subsets

in W>1. Applying Lemma B.12 to W ′

>1, we get a pair (a2, b2) satisfying condi-

tion C1 such that for at least one half of the subsets W j in W ′

>1, the function

φa2,b2,cj(cj−1),k2 is injective from W j to Zcj(cj−1); and so on. This process stops after

at most r ≤ log q steps, where q is the total number of subsets in W>1. The list of

pairs L = [(a1, b1), . . . , (ar, br)] constructed this way satisfies condition C3.

From Corollary B.13, we get immediately

Corollary B.14 Let W j be the subset, 0 ≤ j ≤ k′, as given in Corollary B.11,

cj = |W j|, and C = [c0, . . . , ck′ ]. Then there is a list L = [(a1, b1), . . . , (ar, br)]

satisfying condition C3 and a mapping from C>1 to L satisfying condition C4, such
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that for all j, if cj > 1 is mapped to (ai, bi), then the function φai,bi,cj(cj−1),k2 is

injective from W j to Zcj(cj−1).

Therefore, for the pair (a′, b′) and the list C ′ = [c′0, . . . , c
′
k′ ] in Corollary B.11,

which satisfy conditions C1 and C2, respectively, and for the list L′ = [(a′
1, b

′
1), . . . ,

(a′
r, b

′
r)] and the mapping from C ′

>1 to L′ in Corollary B.14, which satisfy conditions

C3 and C4, respectively, each function φa′
i,b

′
i,c

′
j(c

′
j−1),k2 is injective from the subset

W j to Zc′j(c
′
j−1) for all j. For each j, let W ′

j be the image of W j under the function

φa′
i,b

′
i,c

′
j(c

′
j−1),k2 , then W ′

j ⊆ Zc′j(c
′
j−1) and |W ′

j| = c′j. Now since Fc′j
is a c′j-color coding

scheme for the set Zc′j(c
′
j−1), one fc′j

of the c′j-colorings in Fc′j
is injective from W ′

j .

According to the algorithm Coloring, when this c′j-coloring fc′j
is used for the algo-

rithm, the c′j elements in W whose images are in W j are colored with distinct colors.

Running this for all j, we conclude that there is a list [fc′0
, fc′1

, . . . , fc′
k′
], where fc′j

is

a c′j-coloring in the c′j-color coding scheme Fc′j
, satisfying condition C5 such that all

elements in the subset W are colored with distinct colors.

Summarizing the above discussion, we conclude

Theorem B.15 For each subset W of k elements in Zn, there is a combination of

parameters satisfying conditions C0–C5 on which the algorithm Coloring produces

a k-coloring for Zn that is injective from W .

Combining Theorem B.15 with Theorem B.5, and let n = k2, we get

Theorem B.16 Let k be an integer divisible by 4. There is a k-color coding scheme of

size O(6.383kk4 log k−2) for the set Zk2, which can be constructed in time O(6.383kk4 log k).

Using Theorem B.6, we can easily extend Theorem B.16 to general values of n.
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Theorem B.17 For any integer n, and an integer k divisible by 4, where n ≥ k,

there is a k-color coding scheme of size O(6.383kk4 log k−2n) for the set Zn, which can

be constructed in time O(6.383kk4 log k−2n2).

5. Extension to general k

To extend Theorem B.17 to general values of k, suppose that k = 4k′ − h, where

1 ≤ h ≤ 3. We first construct a (4k′)-color coding scheme F ′ of size

O(6.3834k′

(4k′)4 log(4k′)−2n) = O(6.383kk4 log(k+h)−2n)

for the set Zn. Now for each (4k′)-coloring f in F ′, we construct
(

4k′

h

)

= O(k3)

k-colorings for Zn by selecting every subset of h colors in f and replacing them

arbitrarily by the remaining k = 4k′ − h colors. This gives a collection F of

O(k36.383kk4 log(k+h)−2n) = O(6.4kn)

k-colorings for the set Zn. To see that this is a k-color coding scheme for the set

Zn, let W be any subset of k elements in Zn. Let W ′ be a subset of 4k′ elements

in Zn obtained from W by adding arbitrarily h elements. Since F ′ is a (4k′)-color

coding scheme for Zn, there is a (4k′)-coloring f ′ in F ′ that is injective from W ′. In

particular, this (4k′)-coloring f ′ is also injective from W . Now the k-coloring f in

F obtained from f ′ by removing the other h colors is injective from W . This shows

that the collection F is a k-color coding scheme for the set Zn. This proves the main

result of this section, as given in the following theorem.

Theorem B.18 For any integers n and k, where n ≥ k, there is a k-color coding

scheme of size O(6.4kn) for the set Zn, which can be constructed in time O(6.4kn2).
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C. An Improved Matching Algorithm

In this section, we present an improved algorithm for the p-3-d matching problem.

The improved algorithm is based on a method that will be named iterative expansion.

The method is developed based on a structural property of p-3-d matching that is a

significant improvement over the one used in the previous greedy localization method

[22, 66], on the improved color coding scheme presented in the previous section, and

on a new dynamic programming process that significantly improves those suggested

in the literature for solving p-3-d matching [29, 50].

A set M of points in the 3-dimensional Euclidean space R
3 is a matching if no two

points in M agree in any coordinate. A k-matching is a matching consisting of exactly

k points in R
3. Each point t = (x, y, z) in R

3 is called a triple. For a triple t = (x, y, z)

in R
3, denote by Val(t) the set {x, y, z}, and let Val1(t) = {x}, Val2(t) = {y}, and

Val3(t) = {z}. Let S be a set of triples in R
3. Denote Val(S) =

⋃

t∈S Val(t), and

Vali(S) =
⋃

t∈S Vali(t) for i = 1, 2, 3.

The p-3-d matching problem is formally defined as follows.

p-3-d matching: Given a set S of n points in the 3-dimensional Eu-

clidean space R
3 and a parameter k, either construct a k-matching in S,

or report that no k-matching exists in S.

Instead of working on this problem, we will concentrate on the following related

problem.

3-d matching augmentation: Given a pair (S, Mk), where S is a set of

n triples, and Mk is a k-matching in S, either construct a (k+1)-matching

in S, or report that no such a matching exists.

The following lemma shows how the problems p-3-d matching and 3-d match-
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ing augmentation are related.

Lemma C.1 For any constant c > 1, 3-d matching augmentation is solvable in

time O∗(ck) if and only if p-3-d matching is solvable in time O∗(ck).

Proof. Suppose that the original p-3-d matching problem can be solved in time

O∗(ck). Then for an instance (S, Mk) of 3-d matching augmentation, we simply

solve the instance (S, k + 1) of p-3-d matching in time O∗(ck+1) = O∗(ck), which

gives a correct solution to the instance (S, Mk) of 3-d matching augmentation.

On the other hand, suppose that 3-d matching augmentation can be solved

in time O∗(ck) by an algorithm A. For a given instance (S, k) of p-3-d matching, we

trivially pick a matching M1 of one triple in S, then iteratively apply the algorithm

A to the instance (S, Mi) for each i, where Mi is an i-matching, to get an (i + 1)-

matching Mi+1 in S. If the algorithm A reports that “S has no (i + 1)-matching” on

an instance (S, Mi) for some i ≤ k − 1, then obviously there is no k-matching in the

set S. On the other hand, the algorithm A on the instance (S, Mk−1) will construct

a k-matching for the set S. The running time of this process is bounded by

O∗(c1) + O∗(c2) + · · · + O∗(ck−1) = O∗(ck).

Therefore, the p-3-d matching problem can be solved in time O∗(ck).

By Lemma C.1, we can focus on 3-d matching augmentation. Note that

the formulation of 3-d matching augmentation provides the basis for iterative

expansion, where we iteratively expand a given solution to obtain a larger solution

until we get a solution of the desired size. In the rest of this section, we study

the problem structures and algorithmic techniques that make the iterative expansion

process efficient for 3-d matching augmentation.
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Lemma C.2 Let (S, Mk) be an instance of 3-d matching augmentation, where

Mk is a k-matching in the triple set S. If S also has (k + 1)-matchings, then there

exists a (k + 1)-matching Mk+1 in S such that every triple in Mk contains at least

two symbols in Val(Mk+1).

Proof. We prove the lemma by contradiction. Suppose that the lemma does not

hold. Then for every (k + 1)-matching M in S, there is a triple in Mk that contains

at most one symbol in Val(M). Let Mk+1 be a (k + 1)-matching in S such that the

number of common triples in Mk and Mk+1 is maximized over all (k + 1)-matchings

in S.

By our assumption, there is a triple ρ in Mk that contains at most one symbol

in Val(Mk+1). We distinguish two different cases.

Case 1. Exactly one symbol a in the triple ρ is in Val(Mk+1). Then let ρ′ be the

triple in Mk+1 that contains the symbol a. Since no other symbol in ρ is in Val(Mk+1),

if we replace the triple ρ′ in Mk+1 by the triple ρ, we get a new (k + 1)-matching

that has one more common triple (i.e., the triple ρ) with the k-matching Mk (note

that the triple ρ′ cannot be in Mk because ρ′ and ρ share a common symbol a while

ρ contains another two symbols not in Val(Mk+1)). This contradicts our assumption

that the (k + 1)-matching Mk+1 maximizes the number of common triples with Mk.

Case 2. No symbol in ρ is in Val(Mk+1). Since Mk contains k triples while

Mk+1 contains k + 1 triples, there must be a triple ρ′′ in Mk+1 that is not in Mk.

Since ρ contains no symbol in Val(Mk+1), replacing ρ′′ in Mk+1 by ρ gives a new

(k + 1)-matching that has one more common triple (i.e., the triple ρ) with Mk, again

contradicting the assumption that the (k +1)-matching Mk+1 maximizes the number

of common triples with Mk.

This contradiction shows that the triple ρ in Mk that contains at most one symbol
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in Val(Mk+1) cannot exist. The lemma then follows.

Lemma C.2 significantly improves a result given in [22], which observed that for

each k-matching Mk in S, there is a (k + 1)-matching Mk+1 (if (k + 1)-matchings

exist in S) such that every triple in Mk contains at least one symbol in Mk+1. More

importantly, the result of Lemma C.2 significantly narrows down the search space

when we look for the (k + 1)-matching Mk+1: there are at most k + 3 symbols in

Val(Mk+1) that are not in Val(Mk).

Definition Let S be a triple set, let p and q be any two indices in the index set

{1, 2, 3}, and let f be a coloring of the set Valp(S)∪Valq(S). A matching M in the set

S is (p, q)-properly colored by f if no two symbols in Valp(M) ∪ Valq(M) are colored

with the same color under f .

In the following, we present a dynamic programming process that constructs

a (p, q)-properly colored k-matching. This process is an improvement over those

proposed in previous work on p-3-d matching. In previous work [50, 75], it is known

that if a coloring f of the set Val(S) is given such that the symbols in Val(M) are

colored properly by f for some k-matching M , then a k-matching can be constructed

by a dynamic programming process. On the other hand, our next lemma shows that

as long as the symbols in any two columns of a k-matching are properly colored, a

k-matching can be constructed by a dynamic programming process.

Theorem C.3 Let p and q be two indices in the index set {1, 2, 3}. There is an

algorithm of running time O∗(
∑k

i=0

(

g
2i

)

) that, on an integer k, a triple set S, and

a g-coloring f on the set Val p(S) ∪ Val q(S), constructs a (p, q)-properly colored k-

matching in S if such a matching exists.
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Algorithm 3DMatch(S, k, f, g; p, q)
input: A triple set S, an integer k, a g-coloring f of the symbols in Valp(S) ∪ Valq(S)
output: A (p, q)-properly colored k-matching in S if such a matching exists

1. remove any triples in S in which any two symbols have the same color under f ;
2. let the set of remaining triples be S ′;
3. r = {1, 2, 3} − {p, q};
4. let the symbols in Valr(S ′) be x1, x2, . . ., xm;
5. Qold = {∅}; Qnew = {∅};
6. for i = 1 to m do
6.1. for each set C of symbol pairs in Qold do
6.2. for each triple t in S ′ with Valr(t) = xi do
6.3. if no symbol in C is of the same color as a symbol in

Valp(t) ∪ Valq(t) then
6.4. C ′ = C ∪ {(Valp(t), Valq(t))};
6.5. if C ′ contains no more than k symbol pairs and Qnew contains no set of

symbol pairs that uses exactly the same colors as that used by C ′ then
6.6. add C ′ to Qnew;
6.7. Qold = Qnew;
7. if Qold contains a set Ck of k symbol pairs then

extend Ck to a (p, q)-properly colored k-matching Mk, and return Mk.

Fig. 10. Dynamic programming for the p-3-d matching problem

Proof. Consider the algorithm in Figure 10. By steps 6.3–6.6 of the algorithm,

for every set C in the collection Qold, all symbols in C are from Valp(S) ∪ Valq(S),

and no two symbols in C are of the same color. We say that a set C = {w1, . . . , wh}

of h symbol pairs is extendable to an h-matching in S if there is an h-matching

M = {t1, . . . , th} in S such that for all j, the pair (Valp(tj), Valq(tj)) is identical to

the symbol pair wj. For each i, let S ′
i be the set of triples t in S ′ such that Valr(t) is

in {x1, x2, . . . , xi}. For a matching M , denote by cl(M) the set of colors used by the

symbols in Valp(M) ∪ Valq(M).

We prove the following claim by induction on i:

Claim. For each i, 0 ≤ i ≤ m, and for all h ≤ k, there is a (p, q)-properly
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colored h-matching Mh in S ′
i if and only if after the i-th execution of the

loop 6.1–6.7 of algorithm 3DMatch(S, k, f, g; p, q), the collection Qold

contains a set Ch of h symbol pairs such that the set of colors used for

the symbols in Ch is exactly the set cl(Mh). Moreover, each set Ch of

h symbol pairs in the collection Qold after the i-th execution of the loop

6.1–6.7 is extendable to a (p, q)-properly colored h-matching in S ′
i.

The case i = 0 is obvious because we initially set Qold to {∅}. Now we consider

a general case for i ≥ 1. First note that the claim is always true for h = 0 because

the collection Qold always contains the empty set ∅ while the set S ′
i always contains

a 0-matching (which by definition is (p, q)-properly colored).

Suppose that after the i-th execution of the loop 6.1–6.7, the collection Qold

contains a set Ch of h symbol pairs, where h ≥ 1. Suppose that the set Ch was

created during the j-th execution of the loop 6.1–6.7, where j ≤ i, by adding a

symbol pair (Valp(t), Valq(t)) to a set Ch−1 of h − 1 symbol pairs, where t is a triple

with Valr(t) = xj and the set Ch−1 is contained in Qold after the (j − 1)-st execution

of the loop 6.1–6.7. By the inductive hypothesis, the set Ch−1 is extendable to an

(h − 1)-matching Mh−1 in S ′
j−1, which is obviously (p, q)-properly colored. Since no

symbol in Ch−1 uses the same color as a symbol in Valp(t)∪Valq(t), and the matching

Mh−1 does not contain the symbol xj, the set Mh = Mh−1 ∪ {t} makes a (p, q)-

properly colored h-matching in S ′
j. Since j ≤ i and S ′

j ⊆ S ′
i, we conclude that the set

S ′
i contains a (p, q)-properly colored h-matching Mh such that the symbols in the set

Ch use exactly the color set cl(Mh). Moreover, it is obvious that the symbol set Ch

is extendable to the h-matching Mh.

To prove the other direction, suppose that the set S ′
i contains a (p, q)-properly

colored h-matching Mh. We distinguish two different cases.
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Case 1. There is a (p, q)-properly colored h-matching M ′
h in S ′

j for some j < i

such that cl(M ′
h) = cl(Mh). In this case, by the inductive hypothesis, after the j-th

execution of the loop 6.1–6.7, the collection Qold contains a set Ch of h symbol pairs

such that (1) the set of colors used for the symbols of Ch is exactly the set cl(M ′
h);

and (2) Ch is extendable to an h-matching in S ′
j. Since j < i, S ′

j ⊆ S ′
i, and we never

remove symbol pairs from Qold, we conclude that in this case, after the i-th execution

of the loop 6.1–6.7, the set Ch is still contained in the collection Qold such that (1)

the set of colors used for the symbols of Ch is exactly the set cl(M ′
h) = cl(Mh); and

(2) Ch is extendable to an h-matching in S ′
j ⊆ S ′

i.

Case 2. There is no (p, q)-properly colored h-matching M ′
h in S ′

j for any j < i

such that cl(M ′
h) = cl(Mh). Then by the inductive hypothesis, after the j-th execution

of the loop 6.1–6.7 for any j < i, the collection Qold contains no set C of symbol pairs

such that the symbols in C use exactly the color set cl(Mh). Let the (p, q)-properly

colored h-matching Mh be Mh = {t1, . . . , th}, where for each j, Valr(tj) = xdj
, with

d1 < · · · < dh−1 < dh. In this case, we must have dh = i and Valr(th) = xi. Let

y = Valp(th) and z = Valq(th). Since dh−1 < dh = i, the triple set Mh−1 = Mh − {th}

is a (p, q)-properly colored (h − 1)-matching in S ′
i−1. By the inductive hypothesis,

after the (i− 1)-st execution of the loop 6.1–6.7 in the algorithm, the collection Qold

contains a set Ch−1 of h − 1 symbol pairs such that the set of colors used for the

symbols in Ch−1 is exactly the set cl(Mh−1). Now in the i-th execution of the loop

6.1–6.7 when the set Ch−1 and the triple th are examined in step 6.3, a set C of symbol

pairs using the color set cl(Mh−1)∪{f(y), f(z)} = cl(Mh) will be created. Therefore,

after the i-th execution of the loop 6.1–6.7, a set Ch of h symbol pairs using the color

set cl(Mh) must be contained in the collection Qold. Suppose that the set Ch was

created during the i-th execution by adding a symbol pair (Valp(t′h), Valq(t′h)) to a

set C ′
h−1 of h− 1 symbol pairs, where the triple t′h satisfies Valr(t′h) = xi and C ′

h−1 is
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contained in the collection Qold after the (i−1)-st execution of the loop 6.1–6.7 (note

that t′h and C ′
h−1 are not necessarily th and Ch−1, respectively). By the inductive

hypothesis, the set C ′
h−1 is extendable to a (p, q)-properly colored (h − 1)-matching

M ′
h−1 in S ′

i−1. In consequence, the set Ch is extendable to the (p, q)-properly colored

h-matching M ′
h−1 ∪ {t′h} in S ′

i. This completes the proof of the claim.

By the claim and let i = m, we conclude that when the algorithm 3DMatch(S, k,

f, g; p, q) reaches step 7, the collection Qold contains a set Ck of k symbol pairs if and

only if the triple set S contains a (p, q)-properly colored k-matching Mk, and Ck is

extendable to a (p, q)-properly colored k-matching. To construct such a k-matching

from Ck, we can use a method suggested in [22]. Formally, from the set Ck of symbol

pairs, we construct a bipartite graph Bk = (VL∪VR, E), where VL contains k vertices,

corresponding to the k symbol pairs in Ck, and VR is the set of all symbols in Valr(S).

There is an edge in Bk from a vertex (y, z) in VL to a vertex x in VR if and only if the

symbols y, z, and x form a triple in S. It is easy to see that a (p, q)-properly colored

k-matching in S extended from Ck corresponds to a graph matching of k edges in

the graph Bk, which can be constructed in polynomial time [31]. This completes the

proof for the correctness of the algorithm.

For the time complexity, note that the collection Qold keeps at most one set

of symbol pairs for each set of 2i colors, thus, totally contains at most
∑k

i=0

(

g
2i

)

sets of symbol pairs. For each set C of symbol pairs in Qold, steps 6.2–6.6 run in

polynomial time. Therefore, each execution of the loop 6.1–6.7 of the algorithm

runs in time O∗(
∑k

i=0

(

g
2i

)

). In consequence, the running time of the algorithm

3DMatch(S, k, f, g; p, q) is bounded by O∗(
∑k

i=0

(

g
2i

)

).

The next lemma shows that when compared to previously proposed color coding

methods for p-3-d matching, it is much more efficient to construct a collection
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of colorings such that some (k + 1)-matching becomes (p, q)-properly colored by a

coloring in the collection.

Lemma C.4 Let (S, Mk) be an instance of 3-d matching augmentation, where

S is a triple set and Mk is a k-matching in S. There are two indices p, q ∈ {1, 2, 3}

and a collection C of O∗(6.42k/3) (⌈8k/3 + 2⌉)-colorings for the set Valp(S) ∪Valq(S)

such that if S contains (k + 1)-matchings, then at least one (k + 1)-matching of S is

(p, q)-properly colored by a coloring in C. Moreover, the collection C can be constructed

in time O∗(6.42k/3).

Proof. Suppose that the triple set S has (k + 1)-matchings. By Lemma C.2,

there is a (k + 1)-matching Mk+1 in S such that each triple in the k-matching Mk

contains at least two symbols in Mk+1. In particular, there are two indices p and

q in {1, 2, 3}, such that at least ⌈4k/3⌉ symbols in the set Valp(Mk) ∪ Valq(Mk) are

contained in the set Valp(Mk+1)∪Valq(Mk+1). Since the set Valp(Mk+1)∪Valq(Mk+1)

has exactly 2k+2 symbols, at most ⌈2k/3+2⌉ symbols in Valp(Mk+1)∪Valq(Mk+1) are

missing in the set Valp(Mk)∪Valq(Mk). Let D be the set of symbols in (Valp(Mk+1)∪

Valq(Mk+1)) − (Valp(Mk) ∪ Valq(Mk)), then |D| ≤ ⌈2k/3 + 2⌉. Let D0 be any set of

⌈2k/3+2⌉ symbols in (Valp(S)∪Valq(S))−(Valp(Mk)∪Valq(Mk)) such that D ⊆ D0.

According to Theorem B.18, we can construct, in O∗(6.4⌈2k/3+2⌉) = O∗(6.42k/3)

time, a collection C0 of O∗(6.42k/3) (⌈2k/3 + 2⌉)-colorings for the set (Valp(S) ∪

Valq(S))−(Valp(Mk)∪Valq(Mk)) in which at least one (⌈2k/3+2⌉)-coloring f0 properly

colors the set D0. In particular, f0 also properly colors the set D. Each (⌈2k/3+2⌉)-

coloring f in C0 induces a (⌈8k/3+2⌉)-coloring on the set Valp(S)∪Valq(S), in which

each of the 2k symbols in Valp(Mk) ∪ Valq(Mk) is colored by a distinct color, and

the symbols in (Valp(S)∪Valq(S))− (Valp(Mk)∪Valq(Mk)) are colored by the color-
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ing f . Therefore, in time O∗(6.42k/3), we can construct a collection C of O∗(6.42k/3)

(⌈8k/3 + 2⌉)-colorings for the set Valp(S) ∪ Valq(S). In particular, let f ′
0 be the

(⌈8k/3+2⌉)-coloring in C that is induced from the (⌈2k/3+2⌉)-coloring f0 in C0, where

f0 properly colors the set D = (Valp(Mk+1) ∪ Valq(Mk+1)) − (Valp(Mk) ∪ Valq(Mk)).

By definition, the (⌈8k/3 + 2⌉)-coloring f ′
0 in the collection C (p, q)-properly colors

the (k + 1)-matching Mk+1. This completes the proof of the lemma.

Now we are ready for our main result in this section.

Theorem C.5 The 3-d matching augmentation problem can be solved in time

O∗(2.803k).

Proof. Let (S, Mk) be an instance of the 3-d matching augmentation problem,

where S is a triple set and Mk is a k-matching in S. Consider the following algorithm:

3DMA. For each pair p and q of indices in {1, 2, 3}, construct a collection

Cp,q of O∗(6.42k/3) (⌈8k/3 + 2⌉)-colorings for the set Valp(S)∪Valq(S), as

given in Lemma C.4. Then for each coloring f in the collection Cp,q, call

the algorithm 3DMatch(S, k + 1, f, ⌈8k/3 + 2⌉; p, q) to see if a (k + 1)-

matching (p, q)-properly colored by f can be constructed.

By Lemma C.4, if the triple set S contains (k + 1)-matchings, then there are

indices p and q in {1, 2, 3} and a (⌈8k/3 + 2⌉)-coloring f0 in Cp,q such that a (k + 1)-

matching M of S is (p, q)-properly colored by f0. By Theorem C.3, the algorithm

3DMatch(S, k + 1, f0, ⌈8k/3 + 2⌉; p, q) on this particular coloring f0 and the indices

p and q will return a (k + 1)-matching in S. Therefore, the algorithm 3DMA solves

the 3-d matching augmentation problem correctly.

Now we analyze the complexity of the algorithm 3DMA. By Theorem C.3, the

running time of each call on the algorithm 3DMatch(S, k + 1, f, ⌈8k/3 + 2⌉; p, q)
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is O∗(
∑k+1

i=0

(

⌈8k/3+2⌉
2i

)

) = O∗(28k/3). Since there are totally O∗(6.42k/3) (⌈8k/3 + 2⌉)-

colorings in the collection Cp,q, the algorithm on each pair of indices p and q in {1, 2, 3}

runs in time

O∗(6.42k/3) · O∗(28k/3) = O∗(2.803k).

Now the theorem follows since there are only three different pairs of indices in {1, 2, 3}.

Combining Theorem C.5 with Lemma C.1, we get immediately

Corollary C.6 The p-3-d matching problem can be solved in time O∗(2.803k).

Corollary C.6 gives a significant step towards the improvements on deterministic

algorithms for p-3-d matching. The best previous upper bound for p-3-d match-

ing is O∗(3.523k) by Wang and Feng [119]. Moreover, we remark that if we replace

the deterministic construction of the color coding scheme given in Theorem B.18 by

a randomized construction as described in [3], we will obtain a randomized algorithm

of running time O∗(2.323k) for the p-3-d matching problem. This randomized al-

gorithm was reported in 2006 in a preliminary version of the current paper [86], and

stood as the best randomized algorithm for p-3-d matching until very recently when

Koutis announced his randomized algorithm of running time O∗(23k) for the p-3-d

matching and p-3-set packing problems [76].

D. Chapter Conclusion

In this chapter, we studied and improved a number of algorithmic techniques, includ-

ing color coding, dynamic programming, and greedy localization, which have been

very useful in recent research in the development of improved algorithms for the

p-3-d matching and other parameterized problems.
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A k-color coding scheme is a collection of k-coloring functions such that every

subset of size k can be colored properly, i.e. no two elements in the subset are

assigned with the same color, by at least one coloring function in the scheme. Hence

if we enumerate all k-coloring functions in the scheme, the unknown solution subset of

size k will be colored properly by at least one k-coloring function in the scheme, which

in this case, we can find the solution efficiently through dynamic programming. The

time in coloring step is decided by the size, i.e. the number of k-coloring functions, of

the scheme. In this chapter, we constructed a k-color coding scheme of size O∗(6.4k)

which is a significantly progress comparing with the previous best scheme of size

O∗(16k). With our better scheme, all previous algorithms based on color coding

technique can be improved.

The iterative expansion method seems especially suitable for parameterized prob-

lems whose corresponding optimization problems are to find the solution of maximum

value. In general, the method starts from a trivial small solution, and iteratively “ex-

pands” a given solution into a larger one until a solution of the desired size is obtained.

For example, in solving the p-3-d matching problem, we started from a matching

of 1 triple. Using the matching of 1 triple, we found a matching of 2 triples. Then

using the matching of 2 triples, we found a matching of 3 triples, and so on, until we

found a matching of k triples. The reason that we want to use iterative expansion

method for the p-3-d matching problem is that every matching of i triples will have

2i symbols in a matching of i + 1 triples if there is a matching of i + 1 triples. Hence,

we can take advantage of a matching of i triples to find a matching of i + 1 triples.

In addition to the improved color coding scheme of size O∗(6.4k) and iterative

expansion method, we also used a property for the matching problem to develop our

algorithm in the chapter. As symbol sets from different columns are not intersected,

after sorting all triples by the order of symbols from on column, we only need to color
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symbols of a matching from remaining two columns properly. This technique can

greatly save the time for the coloring and the time for the dynamical programming.

This is also the key technique that we can developed a more efficient algorithm for

the p-3-d matching problem than the p-3-set packing problem.

Combining above three techniques, we improved the running time of the deter-

ministic algorithm for the p-3-d matching problem to O∗(2.803k). We believe that

this group of methods should be of general interest for the development of parame-

terized algorithms.
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CHAPTER VI

BRANCH AND ITERATIVE COMPRESSION∗

We have introduced branch and bound techniques before. The basic idea of the branch

and bound is very simple. Given an instance of a problem, we branch the instance

into two or more simpler sub-instances that the solution of the original instance can

be constructed from solutions of all sub-instances. Then we branch each sub-instance

again and repeat this process until we reach sub-instances that can be solved easily,

i.e. that can be solved in polynomial time.

The iterative compression technique was proposed by Reed et al. [107]. The

technique is suitable for parameterized NP-hard problems whose corresponding NP-

hard optimization problems are to find the solution of minimum value. The basic idea

is that instead of finding a solution of size k directly, which is very hard, we solve a

serial of problems that find a solution of size k under the condition that a solution

of size k + 1 is given. One example is the p-feedback vertex set problem on

undirected graph G. If we remove n − k vertices from graph G, the remaining graph

G1 will have an FVS of size at most k. We add one vertex back to G1 to get graph

G2. Then G2 will have an FVS of size at most k + 1. If we can find an FVS of size k

in G2, we add another vertex back to G2, and so on, until we add all vertices back.

In this chapter, we will combine iterative compression technique with branch

and bound techniques to solve the pd-feedback vertex set, p-feedback vertex

∗Reprinted with permission from “A fixed-parameter algorithm for the di-
rected feedback vertex set problem” by Jianer Chen, Yang Liu, Songjian Lu, Barry
O’Sullivan, Igor Razgon, 2008. Journal of the ACM, (accepted), Copyright 2009 by
ACM.

∗Reprinted with permission from “Improved algorithms for feedback vertex set
problems” by Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, Yngve Villanger,
2008. Journal of Computer and System Sciences, 74, 1188-1198, Copyright 2009 by
Elsevier.
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set and pw-feedback vertex set problems.

A. The Feedback Vertex Set Problem on Directed Graphs

1. Introduction

Let G be a directed graph. A feedback vertex set F (briefly, dFVS) for G is a set of

vertices in G such that every directed cycle in G contains at least one vertex in F , or

equivalently, that the removal of F from the graph G leaves a directed acyclic graph

(i.e., a DAG). The (parameterized directed) feedback vertex set problem, i.e.

pd-feedback vertex set problem, is defined as follows: Given a directed graph

G and a parameter k, either construct a dFVS of at most k vertices for G or report

that no such set exists.

The pd-feedback vertex set problem is a classic NP-complete problem that

appeared in the first list of NP-complete problems in Karp’s seminal paper [71], and

has a variety of applications in areas such as operating systems [112], database systems

[55], and circuit testing [84]. In particular, the pd-feedback vertex set problem

has played an essential role in the study of deadlock recovery in database systems and

in operating systems [112, 55]. In such a system, the status of system resource allo-

cations can be represented as a directed graph G (i.e., the system resource-allocation

graph), and a directed cycle in G represents a deadlock in the system. Therefore, in

order to recover from deadlocks, we need to abort a set of processes in the system,

i.e., to remove a set of vertices in the graph G, so that all directed cycles in G are

broken. Equivalently, we need to find a dFVS in the graph G. In practice, one may

expect and desire that the number of vertices removed from the graph G, which is the

number of processes to be aborted in the system, be small. This motivates the study

of parameterized algorithms for the pd-feedback vertex set problem that find a
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dFVS of k vertices in a directed graph of n vertices and run in time f(k)nO(1) for a

fixed function f ; thus, the algorithms become practically efficient when the value k

is small.

This work has been part of a systematic study of the theory of fixed-parameter

tractability [44], which has received considerable attention in recent years. The fixed-

parameter tractability of the pd-feedback vertex set problem was posted as

an open problem in the very first papers on the study of fixed-parameter tractability

[41, 43]. After numerous significant efforts, however, the problem still remained open.

In the past fifteen years, the problem has been constantly and explicitly posted as an

open problem in a large number of publications in the literature (see [62] for a recent

survey on this study). The problem has become a well-known and outstanding open

problem in parameterized computation and complexity.

In this section, we develop new algorithmic techniques that lead to the conclusion

that the pd-feedback vertex set problem is fixed-parameter tractable, and thus

resolve the above open problem in parameterized computation and complexity. We

first show that the pd-feedback vertex set problem can be reduced in time

f(k)nO(1) for some function f to a special version of the multi-cut problem, which

will be called the pd-skew separator problem. We then develop an algorithm that

shows the fixed-parameter tractability of the pd-skew separator problem. The

combination of these two results gives an algorithm with running time 4kk!nO(1) for the

pd-feedback vertex set problem, which proves its fixed-parameter tractability.

The relationship between the pd-feedback vertex set problem and multi-

cut problems has been studied in the research of approximation algorithms for the d-

feedback vertex set problem [48, 83]. However, our problem formulations and the

corresponding techniques are significantly different from those studied in the approx-

imation algorithms. In particular, our formulations and techniques seem especially
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suitable for developing faster and more effective exact algorithms (of exponential-

time) for NP-hard multi-cut problems. First of all, instead of seeking a multi-cut

that separates a given set of terminal vertices, as formulated in most multi-cut prob-

lems, our problem is more general: we wish to construct a multi-cut that separates

a collection of terminal vertex-subsets. This more general version of the multi-cut

problem enables us to effectively reduce the search space size when we are searching

for an optimal solution of a given problem instance. Secondly, unlike most multi-cut

problems whose solutions are multi-cuts that are in general symmetric to the given ter-

minal vertices, the multi-cuts for the pd-skew separator problem are asymmetric

to the terminal vertex-subsets. Thirdly, we develop an (exponential-time) reduction

that effectively reduces the problem of multi-cuts for multiple terminal vertex-subsets

to the problem of minimum cuts from a single source vertex to a single sink vertex.

Note that the latter is solvable in polynomial time via algorithms for the maximum

flow problem. Such an exponential-time reduction is obviously very different from

the polynomial-time processes used in the development of polynomial-time approx-

imation algorithms. Finally, unlike most parameterized algorithms that are focused

on effectively decreasing the sole parameter value k, our algorithm for the pd-skew

separator problem adds another dimension of bounds in terms of the size of a min-

imum cut between two properly chosen terminal vertex-subsets. This dimension of

bounds has become crucial in our development of the algorithm for the pd-skew

separator problem because it effectively bounds the number of branches in which

the parameter value k is not decreased.

Before we move to the technical discussion of our algorithms, we remark that

the p-feedback vertex set problem (the parameterized feedback vertex set

problem on undirected graphs) has also been an interesting and active research topic in

parameterized computation and complexity. Since the first fixed-parameter tractable



130

algorithm for the p-feedback vertex set problem was published almost twenty

years ago [12], there has been an impressive list of improved algorithms for the prob-

lem. Currently the best algorithm for the p-feedback vertex set problem runs

in time O(5kkn2) [21], where we will discuss this new result in next section. The pd-

feedback vertex set problem seems very different from the problem on undirected

graphs (i.e., the p-feedback vertex set problem). This fact has also been reflected

in the study of approximation algorithms for the problems. The feedback vertex

set on undirected graphs is polynomial-time approximable with a ratio 2. This holds

true even for weighted graphs [7]. On the other hand, it still remains open whether the

feedback vertex set problem on directed graph (i.e. the d-feedback vertex

set problem) has a constant-ratio polynomial-time approximation algorithm. The

current best polynomial-time approximation algorithm for the problem on directed

graphs has a ratio O(log τ log log τ), where τ is the size of a minimum dFVS for the

input graph [48].

2. Preliminaries

Let G = (V, E) be a directed graph and let e = [u, v] be a (directed) edge in G. We

say that the edge e goes out from the vertex u and comes into the vertex v. The edge

e is called an outgoing edge of the vertex u, and an incoming edge of the vertex v.

These concepts can be extended from single vertices to general vertex sets. Thus, for

two vertex sets S1 and S2, we can say that an edge goes out from S1 and comes into

S2 if the edge goes out from a vertex in S1 and comes into a vertex in S2. Moreover,

we say that an edge goes out from S1 if the edge goes out from a vertex in S1 and

comes into a vertex not in S1, and that an edge comes into S2 if the edge goes out

from a vertex not in S2 and comes into a vertex in S2.

A path P from a vertex v1 to a vertex vh in the graph G is a sequence {v1, . . . , vh}
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of vertices in G such that [vi, vi+1] is an edge in G for all 1 ≤ i ≤ h − 1. The path P

is simple if no vertex is repeated in P . The path P is a cycle if v1 = vh, and the cycle

is simple if no other vertices are repeated. We say that a path is from a vertex set S1

to a vertex set S2 if the path is from a vertex in S1 to a vertex in S2. The graph G

is a DAG (i.e., directed acyclic graph) if it contains no cycles.

For a vertex subset V ′ ⊆ V in the directed graph G = (V, E), we denote by G[V ′]

the subgraph of G that is induced by the vertex subset V ′. Without any ambiguity,

we will denote by G − V ′ the induced subgraph G[V − V ′], and by G − w, where w

is a vertex in G, the induced subgraph G[V − {w}].

A vertex subset F in the directed graph G is a feedback vertex set (dFVS) if the

graph G − F is a DAG. Since a vertex v with a self-loop (i.e., an edge that both

goes out from and comes into v) must be included in every dFVS for the graph G,

we will assume, without loss of generality, that the graphs in our discussion have no

self-loops.

Definition Let [S1, . . . , Sl] and [T1, . . . , Tl] be two collections of l vertex subsets in a

directed graph G = (V, E). A skew separator X for the pair ([S1, . . . , Sl], [T1, . . . , Tl])

is a vertex subset in V −⋃l
i=1(Si ∪ Ti) such that for any pair of indices i and j satis-

fying l ≥ i ≥ j ≥ 1, there is no path from Si to Tj in the graph G − X.

The subsets S1, . . ., Sl will be called the source sets and the subsets T1, . . ., Tl will

be called the sink sets. A vertex is a non-terminal vertex if it is not in
⋃l

i=1(Si ∪ Ti).

Note that by definition, all vertices in a skew separator must be non-terminal vertices.

Moreover, a skew separator X is asymmetric to the source sets and the sink sets: a

path from Si to Tj with i < j may exist in the graph G − X.

When there is only one source set S1 and one sink set T1, a skew separator for the
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pair ([S1], [T1]) becomes a regular cut for S1 and T1, i.e., a vertex set whose removal

leaves a graph in which there is no path from the set S1 to the set T1. Therefore, a

skew separator for the pair ([S1], [T1]) is also called a cut from S1 to T1. A cut from

S1 to T1 is a min-cut (i.e., a minimum cut) if it has the smallest cardinality over all

cuts from S1 to T1.

The following lemma can be easily derived based on standard maximum flow

techniques [109]. Thus, we omit its proof.

Lemma A.1 There is an O(kn2) time algorithm that for two given vertex subsets

S and T in a directed graph G of n vertices, and a parameter k, either constructs a

min-cut from S to T whose size is bounded by k, or reports that the min-cut from S

to T has a size larger than k.

The algorithm for the pd-feedback vertex set problem is obtained through

careful development of algorithms for a series of problems. In the following, we give

the formal definitions of these problems.

pd-skew separator: given (G, [S1, . . . , Sl], [T1, . . . , Tl], k), where G is a

directed graph, [S1, . . . , Sl] is a collection of l source sets and [T1, . . . , Tl]

is a collection of l sink sets in G, and a parameter k, such that

(1) all sets S1, . . ., Sl, T1, . . ., Tl are pairwise disjoint;

(2) for each i, 1 ≤ i ≤ l − 1, there is no edge coming into the source set

Si; and

(3) for each j, 1 ≤ j ≤ l, there is no edge going out from the sink set Tj,

either construct a skew separator of at most k vertices for the pair ([S1, . . . , Sl],

[T1, . . . , Tl]), or report that no such separator exists.
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Note that in an instance of the pd-skew separator problem, condition (2) on

source sets and condition (3) on sink sets are not completely symmetric. Although

the first l − 1 source sets are not allowed to have incoming edges, the last source set

Sl is allowed to have incoming edges. On the other hand, all sink sets are not allowed

to have outgoing edges.

We remark that conditions (1)-(3) in the definition of the pd-skew separator

problem (plus the restriction that the skew separator can consist of only non-terminal

vertices) may be relaxed, and our techniques for the problem may still be applicable.

However, the above formulation of the problem will make our discussion simpler, and

will also be sufficient for our solution to the pd-feedback vertex set problem,

which is the focus of the current section. We leave the investigation of the separator

problems of more general forms to later research.

Let G = (V,E) be a directed graph, and let (D1, D2) be a bi-partition of the

vertex set V of G, i.e., D1 ∪ D2 = V and D1 ∩ D2 = ∅. The bi-partition (D1, D2) is

a DAG-bipartition for the graph G if both induced subgraphs G[D1] and G[D2] are

DAGs. A vertex subset F in the graph G is a D1-FVS if F is a dFVS for G and

F ⊆ D1.

pd-dag-bipartition feedback vertex set: given (G,D1, D2, k), where

G is a directed graph, (D1, D2) is a DAG-bipartition for G, and k is the

parameter, either construct a D1-FVS of size bounded by k for the graph

G, or report that no such D1-FVS exists.

We will be also interested in a special version of the d-feedback vertex set

problem.

d-feedback vertex set reduction: given a triple (G,F, k), where G

is a directed graph and F is a dFVS of size k + 1 for G, either construct
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a dFVS of size bounded by k for G, or report that no such dFVS exists.

Finally, our central problem in this section is as follows.

pd-feedback vertex set: given a pair (G, k), where G is a directed

graph and k is the parameter, either construct a dFVS of size bounded

by k for G, or report that no such dFVS exists.

3. Solving the pd-skew separator problem

In this subsection, we study the complexity of the pd-skew separator problem.

Let (G, [S1, . . . , Sl], [T1, . . . , Tl], k) be an instance of the pd-skew separator

problem. Define Tall =
⋃

1≤i≤l Ti. There are a few cases in which we can directly

reduce the instance size:

Rule R1. There is no path from Sl to Tall, i.e., the size of a min-cut from Sl to Tall is

0: then we only need to find a skew separator of size k that separates Si from Tj

for all indices i and j satisfying l−1 ≥ i ≥ j ≥ 1, i.e., we can work instead on the

instance (G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k). Note that in this case, by definition,

if l = 1, then the solution to the instance (G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k) is

simply the empty set ∅;

Rule R2. There is an edge from Sl to Tall: then there is no way to even separate

Sl from Tall – we can simply stop and claim that the given instance is a “No”

instance;

Rule R3. There exists a non-terminal vertex w, an edge from Sl to w, and an edge

from w to Tall: then the vertex w must be included in the skew separator

in order to separate Sl and Tall – we can simply work on the instance (G −
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w, [S1, . . . , Sl], [T1, . . . , Tl], k − 1) and recursively find a skew separator of size

k − 1.

Note that in Rules R1 and R3, the reduced instances (G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k)

and (G − w, [S1, . . . , Sl], [T1, . . . , Tl], k − 1) are still valid instances of the pd-skew

separator problem.

In the following discussion, assume that for the input instance (G, [S1, . . . , Sl], [T1,

. . . , Tl], k), none of the rules above is applicable. In particular, since Rule R1 is not

applicable, a min-cut from Sl to Tall has size larger than 0. Because Rules R1-R3 are

not applicable, there must be a non-terminal vertex u0 such that (1) there is an edge

from Sl to u0; and (2) there is no edge from u0 to Tall. Such a vertex u0 will be called

an Sl-extended vertex. Fix an Sl-extended vertex u0, let S ′
l = Sl ∪ {u0}.

We start with the following simple but important lemma. The proof of this

lemma is straightforward. Thus, we omit the proof.

Lemma A.2 Let X be a subset of vertices in the graph G that does not contain the Sl-

extended vertex u0. Then X is a skew separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl])

if and only if X is a skew separator for the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]).

Lemma A.2 also directly implies the following two useful corollaries.

Corollary A.3 A skew separator for the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]) is

also a skew separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]).

Corollary A.4 The size of a min-cut from S ′
l to Tall in the graph G is at least as

large as the size of a min-cut from Sl to Tall in G.

Now we are ready for our main theorem in this subsection.
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Theorem A.5 If the size of a min-cut from Sl to Tall is equal to the size of a min-cut

from S ′
l to Tall, then the pair ([S1, . . . , Sl], [T1, . . . , Tl]) has a skew separator of size

bounded by k if and only if the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]) has a skew

separator of size bounded by k.

Proof. ⇐: Suppose that the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]) has a skew

separator X ′ of size bounded by k. By Corollary A.3, X ′ is also a skew separator

for ([S1, . . . , Sl], [T1, . . . , Tl]). In consequence, ([S1, . . . , Sl], [T1, . . . , Tl]) has a skew

separator of size bounded by k.

⇒: Suppose that the pair ([S1, . . . , Sl], [T1, . . . , Tl]) has a skew separator X of

size bounded by k. If the skew separator X does not contain the Sl-extended vertex

u0, then by Lemma A.2, X is also a skew separator of size bounded by k for the pair

([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]), and the theorem is proved. Therefore, we can

assume that the set X contains the Sl-extended vertex u0. We will define another

set X ′ that does not contain u0. We will show that |X ′| ≤ |X| and that X ′ is a skew

separator for ([S1, . . . , Sl], [T1, . . . , Tl]). Then the theorem will immediately follow.

Let Y be a min-cut from S ′
l to Tall. Then Y does not contain the Sl-extended

vertex u0. Moreover, since there is no edge coming into Si from outside of Si for all

i ≤ l − 1, the set Y does not contain any vertex in
⋃l−1

i=1 Si. In consequence, the set

Y consists of only non-terminal vertices. By Corollary A.3, Y is also a cut from Sl to

Tall. Moreover, by the assumption of the theorem that the size of a min-cut from Sl

to Tall is equal to the size of a min-cut from S ′
l to Tall, Y is actually also a min-cut

from Sl to Tall. Let RY (Sl) be the set of vertices v such that either v ∈ Sl or there

is a path from Sl to v in the subgraph G − Y . In particular, u0 ∈ RY (Sl) because Y

does not contain u0 and there is an edge from Sl to u0.
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We introduce a number of sets as follows.

Z = X ∩ Y ;

Xin = X ∩ RY (Sl);

Xout = X − (Xin ∪ Z).

That is, the skew separator X for ([S1, . . . , Sl], [T1, . . . , Tl]) is decomposed into three

disjoint subsets Z, Xin, and Xout (note that by definitions, RY (Sl) and Y do not

intersect).

Let YT be the set of vertices v in the min-cut Y such that there is a path from

v to Tall in the subgraph G − X. By definition, we have YT ∩ Z = ∅. Let

YS = Y − (YT ∪ Z).

Thus, the min-cut Y from Sl to Tall is decomposed into three disjoint subsets Z, YT ,

and YS. Figure 11 gives an intuitive illustration of the sets Z, Xin, Xout, YT , YS, and

RY (Sl).

We first show that the set Y ′ = YS ∪ Z ∪ Xin is also a cut from Sl to Tall. If

by contradiction Y ′ is not a cut from Sl to Tall, then there is a path P1 from Sl to

Tall in the subgraph G − Y ′. The path P1 must contain vertices in the set Y since

Y is a cut from Sl to Tall. Let w be the first vertex on the path P1 that is in Y

when we traverse from Sl to Tall along the path P1. Then w must be in YT since Y ′

contains both YS and Z. Now the partial path P ′
1 of P1 from Sl to w (not including

w) must be entirely contained in RY (Sl) (note that the path P1 does not intersect

YS ∪Z). Moreover, the path P ′
1 contains neither vertices in Xin ∪Z (by the definition

of the set Y ′) nor vertices in Xout (since the sets Xout and RY (Sl) are disjoint). In

summary, the subpath P ′
1 from Sl to w contains no vertex in the set X. Moreover,
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Fig. 11. Sets in the proof of Theorem A.5

by the definition of the set YT , and w ∈ YT , there is a path P ′′
1 from w to Tall in

the subgraph G−X. Now the concatenation of the paths P ′
1 and P ′′

1 would result in

a path from Sl to Tall in the graph G − X, contradicting the fact that X is a skew

separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]). This contradiction shows that the set

Y ′ must be a cut from Sl to Tall.

Since Y is a min-cut from Sl to Tall, we have |Y | ≤ |Y ′|. By definition, Y =

YS ∪ Z ∪ YT and Y ′ = YS ∪ Z ∪ Xin. Also note that YS, Z, and YT are pairwise

disjoint, and that YS, Z, and Xin are also pairwise disjoint. Therefore, we must have

|YT | ≤ |Xin|.

Consider the set X ′ = Xout ∪ Z ∪ YT . The set X ′ has the following properties:

(1) X ′ consists of only non-terminal vertices (because both X and Y consist of only

non-terminal vertices); (2) |X ′| ≤ |X| (because |YT | ≤ |Xin|), so the size of X ′ is

bounded by k; and (3) the set X ′ does not contain the Sl-extended vertex u0 (this is
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because u0 is in Xin and Y does not contain u0). Therefore, if we can prove that X ′ is

a skew separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]), then by Lemma A.2, X ′ is also

a skew separator of size bounded by k for the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]).

This will complete the proof of the theorem.

Therefore, what remains is to prove that the set X ′ = Xout ∪ Z ∪ YT is a skew

separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]). Let RY (Tall) be the set of vertices v

such that either v ∈ Tall, or there is a path from v to Tall in the subgraph G − Y .

Suppose by contradiction that X ′ is not a skew separator for ([S1, . . . , Sl], [T1, . . . ,

Tl]). Then there is a path P2 in the subgraph G − X ′ from Si to Tj for some i ≥ j.

The path P2 has the following properties:

1. The path P2 must contain a vertex in RY (Sl): since X is a skew separator for

the pair ([S1, . . . , Sl], [T1, . . . , Tl]), the path P2 from Si to Tj with i ≥ j must

contain at least one vertex w1 in X = Xin ∪Z ∪Xout. Now since the path P2 is

in the subgraph G − X ′, where X ′ = Xout ∪ Z ∪ YT , the vertex w1 must be in

Xin, which is a subset of RY (Sl);

2. The path P2 must contain a vertex in YS: by Property 1, P2 contains a vertex

w1 in RY (Sl). From the vertex w1 to Tall along the path P2, there must be

a vertex w2 in Y = YS ∪ Z ∪ YT since Y is a cut from Sl to Tall while w1 is

reachable from Sl in the subgraph G − Y . Now since X ′ = Xout ∪ Z ∪ YT , and

the path P2 is in the subgraph G − X ′, the vertex w2 on the path P2 must be

in the set YS;

3. The path P2 must end at a vertex in RY (Tall); this is simply because P2 is ended

in Tall. Note that by definition, no vertex in YS can be in RY (Tall).

By Properties 2-3, the path P2 contains a vertex not in RY (Tall) and ends at a vertex

in RY (Tall). Thus, there must be an internal vertex w in the path such that w is not in
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RY (Tall) but all vertices after w along the path P2 (from Si to Tj) are in RY (Tall). Note

that no vertex w′ after the vertex w along the path P2 can be in the set X: w′ in X

would imply w′ in Xin (since P2 is a path in the subgraph G−X ′), which would imply

that there is another vertex after w′ that is in Y thus is not in RY (Tall). Moreover,

the vertex w must be in the set Y (otherwise, w would be in RY (Tall)). Since P2 is a

path in G−X ′ and X ′ = Xout∪Z ∪YT , the vertex w must be in the set YS. However,

this derives a contradiction: the subpath of P2 from w to Tall shows that the vertex w

should belong to the set YT (note that all vertices after w on the path are not in X),

and the sets YS and YT are disjoint. This contradiction proves that the set X ′ must

be a skew separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]). Since the size of the set X ′

is bounded by k and X ′ does not contain the Sl-extended vertex u0, by Lemma A.2,

the set X ′ is also a skew separator for the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]),

and the size of X ′ is bounded by k.

This completes the proof of the theorem.

Theorem A.5 enables us to develop a parameterized algorithm for the pd-skew

separator problem. The algorithm is presented in Figure 12.

Theorem A.6 The algorithm SMC(G, [S1, . . . , Sl], [T1, . . . , Tl), k] solves the pd-skew

separator problem in O(4kkn3) time, where n is the number of vertices in the input

graph G.

Proof. We first prove the correctness of the algorithm. Let (G, [S1, . . . , Sl], [T1, . . . ,

Tl], k) be an input to the algorithm, which is an instance of the pd-skew separator

problem, where G = (V, E) is a directed graph, [S1, . . . , Sl] and [T1, . . . , Tl] are the

source sets and the sink sets, respectively, and k is the upper bound of the size of the

skew separator we are looking for.
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Algorithm SMC(G, [S1, . . . , Sl], [T1, . . . , Tl], k)
input: an instance (G, [S1, . . . , Sl], [T1, . . . , Tl], k) of the pd-skew separator

problem.
output: a skew separator of size bounded by k for the pair ([S1, . . . , Sl], [T1, . . . , Tl]),

or report “No” (i.e., no such separator exists).

1. if l = 1 then solve the problem in time O(kn2);
2. if Rule R2 applies or k < 0 then return “No”;
3. if Rule R1 applies then

return SMC(G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k);
4. if Rule R3 applies on a vertex w then

return {w} ∪ SMC(G − w, [S1, . . . , Sl], [T1, . . . , Tl], k − 1); §

5. pick an Sl-extended vertex u0; let S ′
l = Sl ∪ {u0};

6. let m be the size of a min-cut from Sl to Tall =
⋃l

i=1 Ti;
7. if m > k then return “No”;
8. let m′ be the size of a min-cut from S ′

l to Tall;
9. if (m = m′) then
9.1. return SMC(G, [S1, . . . , Sl−1, S

′
l], [T1, . . . , Tl−1, Tl], k);

9.2.else X = {u0} ∪ SMC(G − u0, [S1, . . . , Sl], [T1, . . . , Tl], k − 1);
if X 6= “No” then return X;

9.3. else return SMC(G, [S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl], k).

§ To simplify our description, we assume that a “No” plus anything gives a “No”.

Fig. 12. An algorithm for the pd-skew separator problem

If l = 1, then the problem becomes the construction of a min-cut of size bounded

by k from S1 to T1, which can be solved in O(kn2) time by Lemma A.1. Steps 2-4

were justified in the discussions of Rules 2, 1, 3, respectively, at the beginning of this

subsection (note that we have also consistently defined that an instance is a “No”

instance if the parameter k has a negative value). Therefore, if the algorithm reaches

step 5, then none of the Rules 1-3 are applicable. In particular, since Rule 1 is not

applicable and the sets Sl and Tall are disjoint, there must be an edge [v, w], where

v ∈ Sl and w 6∈ Sl. Since Rule 2 is not applicable, the vertex w is not in the set Tall.

The vertex w also cannot be in any source set Si for i < l because there is no edge

coming into Si from outside of Si. Therefore, the vertex w is a non-terminal vertex.
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Finally, since Rule 3 is not applicable, there is no edge from w to Tall. Thus, w must

be an Sl-extended vertex. This proves that at step 5, the algorithm can always find

an Sl-extended vertex u0.

In the case m > k in step 7, i.e., the size m of a min-cut from Sl to Tall is larger

than the parameter k, then even separating a single source set Sl from the sink sets

Tall =
⋃l

j=1 Tj requires more than k vertices. Thus, no skew separator of size bounded

by k can exist to separate Si from Tj for all l ≥ i ≥ j ≥ 1. Step 7 correctly handles

this case by returning “No”.

In the case m = m′ in step 9, i.e., the size m of a min-cut from Sl to Tall

is equal to the size m′ of a min-cut from S ′
l to Tall, by Theorem A.5, the pair

([S1, . . . , Sl], [T1, . . . , Tl]) has a skew separator of size bounded by k if and only if

the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]) has a skew separator of size bounded by

k. Moreover, by Corollary A.3, a skew separator of size bounded by k for the pair

([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]) is also a skew separator for the pair ([S1, . . . , Sl],

[T1, . . . , Tl]). Therefore, in this case we can recursively call SMC(G, [S1, . . . , Sl−1, S
′
l],

[T1, . . . , Tl−1, Tl], k), and look instead for a skew separator of size bounded by k for

the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]), as handled by step 9.1.

In the case m 6= m′, then the algorithm branches into two subcases: step 9.2

includes the Sl-extended vertex u0 in the skew separator and recursively looks for a

skew separator of size bounded by k − 1 in the remaining graph G − u0 for the pair

([S1, . . . , Sl], [T1, . . . , Tl]); and step 9.3 excludes the Sl-extended vertex u0 from the

skew separator and recursively looks for a skew separator that does not contain u0 and

is of size bounded by k in the graph G for the pair ([S1, . . . , Sl], [T1, . . . , Tl]) (which, by

Lemma A.2, is a skew separator of size bounded by k for the pair ([S1, . . . , Sl−1, S
′
l], [T1,

. . . , Tl−1, Tl])). This completes the verification of the correctness of the algorithm.

Now we analyze its complexity.
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The recursive execution of the algorithm can be described as a search tree T . We

first count the number of leaves in the search tree T . Note that only steps 9.2-9.3 of the

algorithm correspond to branches in the search tree T . Let D(k, m) be the total num-

ber of leaves in the search tree T for the algorithm SMC(G, [S1, . . . , Sl], [T1, . . . , Tl], k),

where m is the size of a min-cut from Sl to Tall. Then steps 9.2-9.3 induce the following

recurrence relation:

D(k, m) ≤ D(k − 1,m1) + D(k,m2) (6.1)

where m1 is the size of a min-cut from Sl to Tall in the graph G− u0 as given in step

9.2, and m2 is the size of a min-cut from S ′
l to Tall in the graph G as given in step

9.3. Note that m − 1 ≤ m1 ≤ m because removing the vertex u0 from the graph G

cannot increase the size of a min-cut from Sl to Tall, and can decrease the size of a

min-cut for the two sets by at most 1. Moreover, by Corollary A.4, in step 9.3 we

must have m2 ≥ m + 1. Summarizing these, we have

m − 1 ≤ m1 ≤ m and m2 ≥ m + 1. (6.2)

We prove, by induction on t = 2k − m, that D(k, m) ≤ 22k−m. First note that

we always have t = 2k − m ≥ 0 because by the definitions of k and m we always

have k ≥ m ≥ 0. In particular, in the initial case when t = 2k − m = 0, we must

have k = m = 0; in this case the algorithm can solve the instance without further

branching. Therefore, we have D(k, m) = 1 when t = 2k − m = 0. For the inductive

step, note that by Inequalities (6.2), we have

t1 = 2(k − 1) − m1 ≤ 2(k − 1) − (m − 1) = 2k − m − 1,

and

t2 = 2k − m2 ≤ 2k − (m + 1) = 2k − m − 1.
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Therefore, we can apply the inductive hypothesis on Inequality (6.1), which gives

D(k, m) ≤ D(k − 1,m1) + D(k,m2)

≤ 22(k−1)−m1 + 22k−m2

≤ 22k−m−1 + 22k−m−1

= 22k−m. (6.3)

This completes the inductive proof. Moreover, we also note that certain non-branching

steps (i.e., steps 3, 4, and 9.1) may also change the values of k and m, thus changing

the value t = 2k − m. However, none of these steps increases the value t = 2k − m:

(i) step 3 keeps the value k unchanged and does not decrease the value m (because in

this case the size of a min-cut from Sl to Tall is 0 that cannot be larger than the size

of a min-cut from Sl−1 to
⋃l−1

j=1 Tj); (ii) step 4 decreases the value k by 1 and the value

m by at most 1 (because removing a vertex from G can reduce the size of a min-cut

from Sl to Tall by at most 1), which as a total will decrease the value t = 2k − m

by at least 1; (iii) by the condition assumed, step 9.1 keeps both the values k and m

unchanged, thus unchanging the value t = 2k −m. As a result, the value t = 2k −m

after a branching step to the next branching step can never be increased.

Summarizing the above discussion, we conclude that the total number of leaves,

D(k,m), in the search tree T for the algorithm SMC(G, [S1, . . . , Sl], [T1, . . . , Tl], k),

where m is the size of a min-cut from Sl to Tall, satisfies the following inequality

D(k,m) ≤ 22k−m ≤ 4k.

The running time of each execution of the algorithm SMC, not counting the

time for the recursive calls in the execution, is bounded by O(kn2), where n is the

number of vertices in the input graph. In particular, by Lemma A.1, step 1 that looks
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for a min-cut of size bounded by k from S1 to T1, steps 6-7 that determine if the size

m of a min-cut from Sl to Tall is bounded by k, and steps 8-9 that determine if the

size of a min-cut from S ′
l to Tall is equal to m (m ≤ k at this point), all have their

running time bounded by O(kn2).

Observe that for each recursive call in an execution of the algorithm SMC,

either the number of source-sink pairs in the instance is decreased by 1 (step 3), or

the number of non-terminal vertices in the instance is decreased by 1 (steps 4, 9.1, 9.2,

and 9.3). When the number of source-sink pairs is equal to 1, the problem is solved

in time O(kn2) by step 1, and when the number of non-terminal vertices is equal to

0, either step 2 or step 3 can be applied directly. In conclusion, along each root-leaf

path in the search tree T , there are at most O(n) recursive calls to the algorithm

SMC. Therefore, the running time along each root-leaf path in the search tree T is

bounded by O(kn3).

Summarizing the above discussions, we conclude that the running time of the

algorithm SMC is bounded by O(4kkn3). This completes the proof of the theorem.

4. Solving the pd-dag-bipartition feedback vertex set problem

In this subsection, we describe how to use the results in the previous subsection to

solve the pd-dag-bipartition feedback vertex set problem.

Recall that an instance of pd-dag-bipartition feedback vertex set is

given as a tuple (G,D1, D2, k), where G is a directed graph, (D1, D2) is a DAG-

bipartition of G, and k is the parameter, with the objective of finding a dFVS X for

the graph G such that X ⊆ D1 (recall that such a dFVS is called a D1-FVS) and

that the size of X is bounded by k.

Let π = {v1, v2, . . . , vh} be a topologically sorted order of the vertices in the
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induced DAG G[D2]. We construct an instance of the pd-skew separator problem

as follows:

1. Let G′ be the graph obtained from G by removing all edges in G[D2].

2. In the graph G′, replace each vertex vi in D2 by a pair (ti, si) of vertices such

that all incoming edges into vi are now coming into the vertex ti, and that all

outgoing edges from vi are now going out from the vertex si. Let the resulting

graph be Gπ.

Note that in the resulting graph Gπ, the vertices si, 1 ≤ i ≤ h, have no incoming

edges, and the vertices tj, 1 ≤ j ≤ h, have no outgoing edges. Moreover, since we have

removed all edges between the vertices in G[D2], every edge going out from a vertex si

must come into a vertex in the set D1, and every edge coming into a vertex tj must go

out from a vertex in the set D1. In particular, (Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k)

is a valid instance for the pd-skew separator problem, which will be called an

instance of the pd-skew separator induced by the instance (G,D1, D2, k) of pd-

dag-bipartition feedback vertex set and the topologically sorted order π of

the vertices in G[D2].

Thus, each vertex vi in the set D2 in the graph G is now “split” into the two

vertices si and ti in the graph Gπ. Moreover, there is a one-to-one mapping between

the vertices in the set D1 in the graph G and the non-terminal vertices in the graph

Gπ. Thus, in case of no ambiguity, we will use the same vertex name to refer to

both a non-terminal vertex in the graph Gπ and a vertex in the set D1 in the graph

G. In particular, a skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in

the graph Gπ corresponds to a subset of D1 in the graph G. We have the following

important theorem.
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Theorem A.7 Let (G,D1, D2, k) be an instance of the pd-dag-bipartition feed-

back vertex set problem, and let X be a D1-FVS for the graph G. Then there is

a topologically sorted order π = {v1, . . . , vh} of the vertices in G[D2] such that in the

instance (Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k) induced by (G, D1, D2, k) and π: (1)

X is a skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in the graph Gπ;

and (2) every skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in Gπ is

a D1-FVS for the graph G.

Proof. As assumed in the theorem, let (G, D1, D2, k) be an instance of the pd-

dag-bipartition feedback vertex set problem, and let X be a D1-FVS for the

graph G. Consider the subgraph G−X. Since X is a dFVS for G, the graph G−X is

a DAG. Therefore, the vertices in G−X can be topologically sorted into an ordered

list π′ such that there is no edge in G−X that goes out from a later vertex in π′ and

comes into an earlier vertex in π′. Let π = {v1, . . . , vh} be the order of the vertices

in D2 that is induced from the order π′ (i.e., π is obtained from π′ by removing the

vertices not in D2. Note that all vertices in X are in D1). The order π is obviously

a topologically sorted order for the DAG G[D2]. We show that this order π of the

vertices in D2 and the corresponding instance (Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k)

induced by (G,D1, D2, k) and π satisfy the conclusions of the theorem.

We first show that the set X is a skew separator for the pair ([{s1}, . . . , {sh}], [{t1},

. . . , {th}]) in the graph Gπ. If this were not the case, then there would be a path P

in the graph Gπ − X that starts from a vertex si and ends at a vertex tj with i ≥ j.

Since no vertex in {s1, . . . , sh} has incoming edges and no vertex in {t1, . . . , th} has

outgoing edges, all internal vertices on the path P are non-terminal vertices in Gπ.

In consequence, all internal vertices on P are vertices in the set D1 in the graph G.

Therefore, the path P in Gπ − X corresponds to a path P ′ in the graph G − X that
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starts from the vertex vi and ends at the vertex vj, where i ≥ j, with all internal

vertices of P ′ in the set D1. But it is impossible: (1) if i = j then the path P ′ would

be a cycle in the graph G − X, contradicting the assumption that X is a dFVS for

the graph G; and (2) if i > j, then P ′ would become a path from vi to vj with i > j

in the graph G − X, contradicting the assumption that π = {v1, . . . , vh} is an order

of the vertices in D2 that is induced from the topologically sorted order π′ of the

vertices in the DAG G−X. In conclusion, the path P does not exist, and the set X

is a skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in the graph Gπ.

Now we prove that every skew separator X ′ for the pair ([{s1}, . . . , {sh}], [{t1}, . . . ,

{th}]) in the graph Gπ is a D1-FVS for the graph G. First of all, by definition, a skew

separator consists of only non-terminals, thus, all vertices in X ′ are in the set D1.

Suppose for a contradiction that X ′ is not a D1-FVS for the graph G. Then there

is a cycle C in the graph G − X ′. Without loss of generality, we can assume that

C is a simple cycle. Since both the induced subgraphs G[D1] and G[D2] are DAGs,

the cycle C must contain both vertices in D1 and vertices in D2. We consider two

different cases.

Case 1. The cycle C contains a single vertex vi in the set D2. Then all other

vertices in the cycle C are in the set D1. But then the cycle C would correspond to

a path P1 in the graph Gπ −X ′ that starts with the vertex si and ends at the vertex

ti (with all internal vertices being non-terminal vertices). But this contradicts the

assumption that X ′ is a skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}])

that should have cut all paths from si to ti.

Case 2. The cycle C contains more than one vertex in the set D2. Let {vi1 , vi2 , . . . ,

vid , vi1} be the order of the vertices in D2 that we encounter when traversing along

the cycle C (starting from an arbitrary vertex vi1 in D2), where d > 1. Then there

must be an index j such that ij > ij+1 (where we take ij+1 = i1 if j = d). Now
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consider the subpath P2 of C that starts from the vertex vij and ends at the vertex

vij+1
. The path P2 cannot be a single edge from vij to vij+1

since π = {v1, v2, . . . , vh}

is a topologically sorted order for the vertices in the DAG G[D2] and ij > ij+1. Thus,

the path P2 contains at least one internal vertex. Since all internal vertices on the

path P2 are not in D2 thus correspond to non-terminal vertices in the graph Gπ −X ′,

the path P2 would correspond to a path P ′
2 in the graph Gπ − X ′ that starts from

the vertex sij and ends at the vertex tij+1
, with ij > ij+1. Again this contradicts the

assumption that X ′ is a skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]),

which should have cut all paths from sij to tij+1
when ij > ij+1.

This proves that the skew separator X ′ for the pair ([{s1}, . . . , {sh}], [{t1}, . . . ,

{th}]) in the graph Gπ must be a D1-FVS for the graph G. This completes the proof

of the theorem.

Theorem A.7 enables us to reduce the pd-dag-bipartition feedback vertex

set problem to the pd-skew separator problem. An algorithm for the pd-dag-

bipartition feedback vertex set problem is given in Figure 13.

Algorithm DBF(G,D1, D2, k)
input: an instance (G,D1, D2, k) of the pd-dag-bipartition

feedback vertex set problem.
output: a D1-FVS of size bounded by k for G, or report “No”

(i.e., no such D1-FVS exists).

1. for each topologically sorted order π = {v1, . . . , vh} of the vertices in G[D2] do
1.1. construct the instance (Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k) of the

pd-skew separator problem induced by (G,D1, D2, k) and π;
1.2. let X = SMC(Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k);
1.3. if X is a D1-FVS of size bounded by k for G then

return X;
2. return “No”.

Fig. 13. An algorithm for the pd-dag-bipartition feedback vertex set problem
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Theorem A.8 The algorithm DBF(G, D1, D2, k) solves the pd-dag-bipartition

feedback vertex set problem in time O(4kkn3h!), where h is the number of ver-

tices in the set D2, and n is the number of vertices in the input graph G.

Proof. The running time of the algorithm is obvious: the for-loop in step 1

is executed at most h! times, and the time for each execution is dominated by the

subroutine call to the algorithm SMC in step 1.2. By Theorem A.6, the running

time of each execution of step 1.2 is bounded by O(4kkn3).

For the correctness of the algorithm, first note that the algorithm always returns

“No” unless it actually constructs a D1-FVS of size bounded by k for G in step 1.3.

In particular, if the input instance (G,D1, D2, k) contains no D1-FVS of size bounded

by k for the graph G, then the algorithm always correctly reports “No”.

On the other hand, suppose that there is a D1-FVS X0 of size bounded by k

for the graph G. Then by Theorem A.7, there is a topologically sorted order π =

{v1, . . . , vh} of the vertices in the DAG G[D2] such that in the instance (Gπ, [{s1}, . . . ,
⊗{sh}], [{t1}, . . . , {th}], k) of the pd-skew separator problem induced by π and

(G,D1, D2, k), the set X0 is a skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . ,

{th}]) in the graph Gπ, and every skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . ,

{th}]) in Gπ is a D1-FVS for the graph G. In particular, the pair ([{s1}, . . . , {sh}], [{t1},

. . . , {th}]) has at least one skew separator of size bounded by k (e.g., X0) in the graph

Gπ. Therefore, step 1.2 of the algorithm DBF must return a skew separator X of

size bounded by k for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in the graph Gπ (the

set X may be different from the set X0), and this set X is a D1-FVS for the graph

G. In conclusion, if there is a D1-FVS of size bounded by k for the graph G, then

the algorithm DBF(G,D1, D2, k) will correctly return a D1-FVS of size bounded by

k in step 1.3.
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5. Solving the pd-feedback vertex set problem

We present our algorithm for the pd-feedback vertex set problem. We start with

a more restricted version of the problem, the d-feedback vertex set reduction

problem, defined as follows.

d-feedback vertex set reduction: given a triple (G,F, k), where G

is a directed graph and F is a dFVS of size k + 1 for G, either construct

a dFVS of size bounded by k for G, or report that no such dFVS exists.

Lemma A.9 The d-feedback vertex set reduction problem on a triple (G,F, k)

is solvable in time O(n34kk3k!), where n is the number of vertices in the input graph

G.

Proof. Let G = (V,E) be the input directed graph with n = |V | vertices, and let

F be the input dFVS of size k + 1 for the graph G. Every dFVS F ′ of size bounded

by k for G can be split into two disjoint subsets F1 and F2, where F2 consists of j

vertices in F for some integer j, 0 ≤ j ≤ k, and F1 consists of at most k − j vertices

in V − F . Note that since we assume that no vertex in F − F2 is in the dFVS F ′,

the induced subgraph G[F − F2] must be a DAG. Therefore, for each j, 0 ≤ j ≤ k,

we enumerate all subsets of j vertices in F . For each such subset F2 of F such that

G[F −F2] is a DAG, we seek a subset F1 of at most k− j vertices in V −F such that

F1 ∪ F2 makes a dFVS for the graph G.

Fix a subset F2 of F , such that |F2| = j and that the induced subgraph G[F −F2]

is a DAG. Note that the graph G has a dFVS F1 ∪ F2 of size bounded by k, where

F1 ⊆ V − F , if and only if the subset F1 of V − F is a dFVS for the graph G − F2

and the size of F1 is bounded by k − j. Therefore, to solve the original problem, we

can instead consider how to construct a dFVS F1 for the graph G − F2 such that
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|F1| ≤ k − j and F1 ⊆ V − F .

Since F is a dFVS for G, we have that the induced subgraph G[V −F ] = G−F

is a DAG. Moreover, by our assumption, the induced subgraph G[F − F2] is also

a DAG. Note that (V − F ) ∪ (F − F2) = V − F2, which is the vertex set for the

graph G′ = G − F2. Therefore, (V − F, F − F2) is a DAG-bipartition of the graph

G′. Thus, a dFVS F1 for the graph G′ such that |F1| ≤ k − j and F1 ⊆ V − F , is

actually a (V − F )-FVS of size bounded by k − j for the graph G′ with the DAG-

bipartition (V −F, F −F2). Therefore, the set F1 can be constructed by the algorithm

DBF(G′, V − F, F − F2, k − j).

Since |F | = k+1 and |F2| = j, we have |F −F2| = k+1−j. Therefore, the DAG

G[F −F2] contains exactly k+1−j vertices. By Theorem A.8, the running time of the

algorithm DBF(G′, V −F, F −F2, k− j) is bounded by O(4k−j(k− j)n3(k +1− j)!).

Now for all integers j, 0 ≤ j ≤ k, we enumerate all subsets F2 of j vertices in

F and apply the algorithm DBF(G′, V − F, F − F2, k − j) for those F2 such that

G[F −F2] is a DAG. As we discussed above, the graph G has a dFVS of size bounded

by k if and only if for some F2 of j vertices in F , where 0 ≤ j ≤ k, the algorithm

DBF(G′, V − F, F − F2, k − j) produces a dFVS F1 of size bounded by k − j for the

graph G′. The running time of this process is bounded by the order of

k
∑

j=0

(

k + 1

j

)

(

4k−j(k − j)n3(k + 1 − j)!
)

= O(n34kk3k!).

This completes the proof of the lemma.

The rest of our process for solving the original pd-feedback vertex set prob-

lem is to apply the iterative compression method. The method was proposed by Reed,

Smith, and Vetta [107] and has been used for solving the p-feedback vertex set

problem [36, 59, 60]. Here we extend the method and apply it to solve the pd-
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feedback vertex set problem.

Theorem A.10 The pd-feedback vertex set problem can be solved in time

O(n44kk3k!).

Proof. Let (G, k) be an instance of the pd-feedback vertex set problem,

where G = (V, E) is a directed graph with n = |V | vertices, and k is the parameter.

Pick any subset V0 of k + 1 vertices in G, and let F0 be any subset of k vertices in

V0. Note that the set F0 is a dFVS of k vertices for the induced subgraph G0 = G[V0]

since the graph G0 −F0 consists of a single vertex (note that by our assumption, the

graph G contains no self-loops).

Let V − V0 = {v1, v2, . . . , vn−k−1}. Let Vi = V0 ∪ {v1, . . . , vi}, and let Gi = G[Vi]

be the subgraph induced by Vi, for i = 0, 1, . . . , n − k − 1. Inductively, suppose that

for an integer i, 0 ≤ i < n − k − 1, we have constructed a dFVS Fi of size bounded

by k for the induced subgraph Gi (this has been the case for i = 0). Without loss

of generality, we can assume that the set Fi consists of exactly k vertices – otherwise

we simply pick k − |Fi| vertices (arbitrarily) from Gi − Fi and add them to the set

Fi. Now consider the set F ′
i+1 = Fi + vi+1. Since Gi+1 − F ′

i+1 = Gi − Fi and Fi is a

dFVS for Gi, the set F ′
i+1 is a dFVS of size k + 1 for the induced subgraph Gi+1. In

particular, the triple (Gi+1, F
′
i+1, k) is a valid instance for the d-feedback vertex

set reduction problem.

Apply Theorem A.9 to the instance (Gi+1, F
′
i+1, k), which either returns a dFVS

Fi+1 of size bounded by k for the graph Gi+1, or claims that no such dFVS exists. It

is easy to see that if the induced subgraph Gi+1 = G[Vi+1] does not have a dFVS of

size bounded by k, then the original graph G cannot have a dFVS of size bounded by

k. Therefore, in this case, we can simply stop and conclude that there is no dFVS of
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size bounded by k for the original input graph G. On the other hand, suppose that

a dFVS Fi+1 of size bounded by k is constructed for the graph Gi+1 in the above

process, then the induction successfully proceeds from i to i + 1 with a new pair

(Gi+1, Fi+1).

In conclusion, the above process either stops at some point and correctly reports

that the input graph G has no dFVS of size bounded by k, or eventually ends with a

dFVS Fn−k−1 of size bounded by k for the graph Gn−k−1 = G[Vn−k−1] = G.

This process is involved in solving at most n−k−1 instances (Gi, Fi, k) of the d-

feedback vertex set reduction problem, for 0 ≤ i ≤ n−k−2. By Theorem A.9,

the running time of the process is bounded by O(n34kk3k!(n−k−1)) = O(n44kk3k!),

and the process correctly solves the pd-feedback vertex set problem.

Remark. The running time of the algorithm in Theorem A.10 can be further

improved by taking advantage of existing approximation algorithms for the pd-

feedback vertex set problem. Even, Naor, Schieber, and Sudan [48] have de-

veloped a polynomial time approximation algorithm for the d-feedback vertex

set problem that for a given directed graph G, produces an dFVS F of size bounded

by c · τ log τ log log τ in time O(n2M(n) log2 n), where c is a constant, τ is the size

of a minimum dFVS for the graph G, and M(n) = O(n2.376) is the complexity of

the multiplication of two n × n matrices. Therefore, for a given instance (G, k) of

the pd-feedback vertex set problem, we can first apply the approximation al-

gorithm in [48] to construct a dFVS F for the graph G. If |F | > c · k log k log log k,

then we know that the graph G has no dFVS of size bounded by k. On the other

hand, suppose that |F | ≤ c · k log k log log k. Then we pick a subset F0 of arbitrary

k vertices in F , and let G0 = G − (F − F0). The set F0 is an dFVS of size k

for the graph G0. Now we can proceed exactly the same way as we did in Theo-
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rem A.10: let F − F0 = {v1, v2, . . . , vh}, where h ≤ c · k log k log log k − k, and let

Vi = V0 ∪{v1, . . . , vi}, and Gi = G[Vi], for i = 0, 1, . . . , h. By repeatedly applying the

algorithm in Lemma A.9, we can either stop with a certain index i where the induced

subgraph Gi+1 has no dFVS of size bounded by k (thus the original input graph G has

no dFVS of size bounded by k), or eventually construct a dFVS Fh of size bounded

by k for the graph Gh = G[Vh] = G. This process calls for the execution of the

algorithm in Lemma A.9 at most h = O(k log k log log k) times, and each execution

takes time O(n34kk3k!). In conclusion, the pd-feedback vertex set problem can

be solved in time O(n34kk4k! log k log log k + n4.376 log2 n), where the second term in

the complexity is due to the approximation algorithm given in [48].

6. Remarks and future research

We presented a parameterized algorithm of running time O(n44kk3k!) for the pd-

feedback vertex set problem, which shows that the problem is fixed-parameter

tractable, and resolves an outstanding open problem in parameterized computation

and complexity. Before we close the section we give a few remarks on our results and

on directions for future research.

There is an edge version of the pd-feedback set problem, which is called the

pd-feedback arc set problem on directed graph: given a directed graph G and a

parameter k, either construct a set of at most k edges in G whose removal leaves a

DAG, or report that no such edge set exists. The pd-feedback arc set problem is

also a well-known NP-complete problem [56]. As shown by Even, Naor, Schieber, and

Sudan [48], the pd-feedback arc set problem and the pd-feedback vertex set

problem can be reduced in linear time from one to the other with the same parameter.

Therefore, our results also imply an O(n44kk3k!) time algorithm for the pd-feedback

arc set problem.



156

The techniques developed in this section for solving the pd-skew separator

problem seem to be powerful and generally useful in the study of a variety of separator

problems. For example, it has been used recently in developing improved algorithms

for a multi-cut problem on undirected graphs in which a separator is sought to (uni-

formly) separate a set of given terminals [26]. It will be interesting to identify the

conditions for the multi-cut problems under which these techniques (and their vari-

ations and generalizations) are applicable. In particular, it will be interesting to see

if the techniques are applicable to derive the fixed-parameter tractability of the p-

feedback vertex set problem on weighted and directed graphs. Note that the

fixed-parameter tractability of the problem on weighted and undirected graphs has

been derived recently [21].

It will be interesting to develop new techniques that lead to faster parameterized

algorithms for the pd-feedback vertex set problem and other related problems.

For example, is it possible that the pd-feedback vertex set problem can be solved

in time O(cknO(1)) for a constant c? Another direction is to look at the kernelization

of the pd-feedback vertex set problem, by which we refer to a polynomial-time

algorithm that on an instance (G, k) of the pd-feedback vertex set problem,

produces a (smaller) instance (G′, k′) of the problem, such that the size of the graph

G′ (the kernel) is bounded by a function g(k) of k (but independent of the size of the

original graph G), that k′ ≤ k, and that the graph G has a dFVS of size bounded

by k if and only if the graph G′ has a dFVS of size bounded by k′. Since now it

is known that the pd-feedback vertex set problem is fixed-parameter tractable,

by a general theorem in parameterized complexity theory [44], such a kernelization

algorithm exists for the pd-feedback vertex set problem. However, how small

can the size of the kernel G′ be? In particular, can the kernel G′ have its size bounded

by a polynomial of the parameter k? We note that recently there has been progress
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in the study of kernelization for the p-feedback vertex set problem. Bodlaender

[13] was able to give a kernel of size O(k3) for the p-feedback vertex set problem,

and Bodlaender and Penninkx [14] have shown that the p-feedback vertex set

problem has a kernel of size O(k).

This is the end of the introduction for the pd-feedback vertex set problem.

In next section, we will introduce our new algorithm for the p-feedback vertex

set and pw-feedback vertex set problems.

B. The Feedback Vertex Set Problem on Undirected Graphs

1. Introduction

A feedback vertex set (FVS) F in G is a set of vertices in an undirected graph G

whose removal results in an acyclic graph (or equivalently, every cycle in G contains

at least one vertex in F ). The problem of finding a minimum feedback vertex set in

a graph is one of the classic NP-complete problems [71] and has many applications.

The history of the problem can be traced back to the early ’60s. For several decades,

many different algorithmic approaches were tried on this problem, including approx-

imation algorithms, linear programming, local search, polyhedral combinatorics, and

probabilistic algorithms (see the survey of Festa et al. [51]). There are also exact

algorithms that find a minimum FVS in a graph of n vertices in time O(1.8899n) [106]

and in time O(1.7548n) [53]. In this section, we only discuss parameterized feed-

back vertex set problem on undirected graphs, i.e. the p-feedback vertex set.

Hence unless we specify the graph is directed, all graphs we mention are undirected

graphs.

The p-feedback vertex set problem is the simplification of the pd-feedback

vertex set problem. As the importance of the dead-lock problem in application,
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before people made progress in the pd-feedback vertex set problem on directed

graphs, the p-feedback vertex set problem on undirected graphs has received

considerable attention, The first group of parameterized algorithms of running time

f(k)nO(1) for the p-feedback vertex set problem was given by Bodlaender [11]

and by Downey and Fellows [42]. Since then a chain of dramatic improvements was

obtained by different researchers (see Figure 1 for references.)

Bodlaender, Fellows [11, 42] O(17(k4)!nO(1))

Downey and Fellows [44] O((2k + 1)kn2)

Raman et al.[105] O(max{12k, (4 log k)k}n2.376)

Kanj et al.[67] O((2 log k + 2 log log k + 18)kn2)

Raman et al.[104] O((12 log k/ log log k + 6)kn2.376)

Guo et al.[59] O((37.7)kn2)

Dehne et al.[36] O((10.6)kn3)

Fig. 14. The history of parameterized algorithms for the p-feedback vertex set

problem

Randomized parameterized algorithms have also been studied in the literature

for the p-feedback vertex set and pw-feedback vertex set problems. The

best known randomized parameterized algorithms for the p-feedback vertex set

and pw-feedback vertex set problems are due to Becker et al. [9], who devel-

oped a randomized algorithm of running time O(4kkn2) for the p-feedback ver-

tex set problem, and a randomized algorithm of running time O(6kkn2) for the

pw-feedback vertex set problem. To our knowledge, no deterministic algorithm

of running time f(k)nO(1) for any function f was known prior to our results for the

pw-feedback vertex set problem.
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2. Our results

The main result of this subsection is an algorithm for the pw-feedback vertex set

problem, i.e. for a given integer k and a weighted graph G, either finds a minimum

weight FVS in G of at most k vertices, or correctly reports that G contains no FVS

of at most k vertices. The running time of our algorithm is O(5kkn2). This improves

and generalizes a long chain of results in parameterized algorithms. Let us remark

that the running time of our (deterministic) algorithm comes close to that of the best

randomized algorithm for the p-feedback vertex set problem and is better than

the running time of the previous best randomized algorithm for the pw-feedback

vertex set problem.

The general approach of our algorithm is based on the iterative compression

method [107], which has been successfully used recently for improved algorithms for

the p-feedback vertex set and other problems [36, 59, 107]. This method makes

it possible to reduce the original p-feedback vertex set problem on general graphs

to the p-feedback vertex set problem on graphs with a special decomposition

structure. The main contribution of the current section is the development of a general

algorithmic technique that identifies a dual parameter in problem instances that limits

the number of times where the original parameter k cannot be effectively reduced

during a branch and search process. In particular, for the p-feedback vertex

set problem on graphs of the above special decomposition structure, a measure is

introduced that nicely combines the original parameter and the dual parameter and

bounds effectively the running time of a branch and search algorithm for the p-

feedback vertex set problem. This technique leads to a simpler but significantly

more efficient parameterized algorithm for the p-feedback vertex set problem.

Moreover, the introduction of the measure greatly simplifies the processing of degree-2
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vertices in a weighted graphs, and enables us to solve the pw-feedback vertex set

problem in the same complexity as that for the p-feedback vertex set problem.

Note that this is significant because no previous algorithms for the p-feedback

vertex set problem on unweighted graphs can be extended to weighted graphs

mainly because of the lack of an effective method for handling degree-2 vertices.

Finally, the technique of dual parameters seems to be of general usefulness for the

development of parameterized algorithms, and has been used more recently in solving

other parameterized problems [26, 27].

The remaining part of this section is organized as follows. In subection 3, we

provide in full details a simpler algorithm and its analysis for unweighted graphs. This

is done for clearer demonstration of our approach. We also indicate why this simpler

algorithm does not work for weighted graphs. In subection 4, we obtain the main

result of this section, the algorithm for the pw-feedback vertex set problem.

This generalization of the results from subection 3 is not straightforward and requires

a number of new structures and techniques.

3. On feedback vertex sets on unweighted graphs

In this subsection, we consider the p-feedback vertex set problem. We start with

some terminologies. A forest is a graph that contains no cycles. A tree is a forest

that is connected (therefore, a forest can be equivalently defined as a collection of

disjoint trees). Let W be a subset of vertices in a graph G = (V, E). We will denote

by G[W ] the subgraph of G that is induced by the vertex set W . For simplicity we

will use the notation G − w and G − W for respectively G[V − {w}] and G[V − W ]

where w ∈ V and W ⊆ V . A pair (V1, V2) of vertex subsets in a graph G = (V, E)

is a forest bipartition of G if V1 ∪ V2 = V , V1 ∩ V2 = ∅, and both induced subgraphs
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G[V1] and G[V2] are forests. For a vertex u ∈ V the degree of u will be the number

of edges incident to u.

Let G be a graph and let F be a subset of vertices in G. The set F is a feedback

vertex set (shortly, FVS) of G if G−F is a forest. The size of an FVS F is the number

of vertices in F .

Our main problem is formally defined as follows.

p-feedback vertex set: given a graph G and an integer k, either find

an FVS of size at most k in G, or report that no such FVS exists.

Before we present our algorithm for the p-feedback vertex set problem, we

first consider a special version of the problem, defined as follows:

p-f-bipartition feedback vertex set: given a graph G, a forest

bipartition (V1, V2) of G, and an integer k, either find an FVS of size at

most k for the graph G in the subset V1, or report that no such an FVS

exists.

Note that the main difference between the p-f-bipartition feedback vertex set

problem and the original p-feedback vertex set problem is that we require that

the FVS in the p-f-bipartition feedback vertex set is contained in the given

subset V1.

Observe that certain structures in the input graph G can be easily processed and

then removed from G. For example, if a vertex v has a self-loop (i.e., an edge whose

both ends are incident to v), then the vertex v is necessarily contained in every FVS

in G. Thus, we can directly include v in the objective FVS. If two vertices v and w

are connected by multiple edges (i.e., there are more than one edge whose one end is v

and the other end is w), then one of v and w must be contained in the objective FVS.

Thus, we can branch into two recursive calls, one includes v, and the other includes
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w, in the objective FVS. All these operations are more efficient than the algorithm of

running time O(5kkn2) developed in the current section. Therefore, for a given input

graph G, we always first apply a preprocessing that applies the above operations and

removes all self-loops and multiple edges in the graph G. In consequence, we can

assume, without loss of generality, that the input graph G contains neither self-loops

nor multiple edges.

Algorithm-1 Feedback(G, V1, V2, k)
Input: G = (V,E) is a graph with a forest bipartition (V1, V2), k is an integer.
Output: An FVS F of G such that |F | ≤ k and F ⊆ V1; or report “No” (i.e.,

no such an FVS exists).

1. if (k < 0) or (k = 0 and G is not a forest) then return “No”;
2. if (k ≥ 0) and G is a forest then return ∅;
3. if a vertex w in V1 has at least two neighbors in V2 then
3.1. if two of the neighbors of w in V2 belong to the same tree in G[V2] then

F1 = Feedback(G − w, V1 − {w}, V2, k − 1);
if F1 = “No” then return “No” else return F1 ∪ {w};

3.2. else
F1 = Feedback(G − w, V1 − {w}, V2, k − 1);
F2 = Feedback(G, V1 − {w}, V2 ∪ {w}, k);
if F1 6= “No” then return F1 ∪ {w} else return F2;

4. else pick any vertex w that has degree ≤ 1 in G[V1];
4.1. if w has degree ≤ 1 in the original graph G then

return Feedback(G − w, V1 − {w}, V2, k);
4.2. else return Feedback(G, V1 − {w}, V2 ∪ {w}, k).

Fig. 15. Algorithm for the p-feedback vertex set problem

The algorithm, Feedback(G, V1, V2, k), for the p-f-bipartition feedback ver-

tex set problem is given in Figure 15. We first discuss the correctness of the algo-

rithm. The correctness of step 1 and step 2 of the algorithm is obvious. Now consider

step 3. Let w be a vertex in V1 that has at least two neighbors in V2.

If the vertex w has two neighbors in V2 that belong to the same tree T in the

induced subgraph G[V2], then the tree T plus the vertex w contains at least one cycle.
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Since our search for an FVS is restricted to V1, the only way to break the cycles in

T ∪{w} is to include the vertex w in the objective FVS. Moreover, the objective FVS

of size at most k exists in G if and only if the remaining graph G−w has an FVS of

size at most k − 1 in the subset V1 − {w} (note that (V1 − {w}, V2) is a valid forest

bipartition of the graph G − w). Therefore, step 3.1 correctly handles this case.

If no two neighbors of the vertex w belong to the same tree in the induced

subgraph G[V2], then the vertex w is either in the objective FVS or not in the objective

FVS. If w is in the objective FVS, then we should be able to find an FVS F1 in the

graph G−w such that |F1| ≤ k−1 and F1 ⊆ V1−{w} (again note that (V1−{w}, V2)

is a valid forest bipartition of the graph G − w). On the other hand, if w is not

in the objective FVS, then the objective FVS for G must be contained in the subset

V1−{w}. Also note that in this case, the subgraph G[V2∪{w}] induced by the subset

V2 ∪ {w} is still a forest since no two neighbors of w in V2 belong to the same tree in

G[V2]. In consequence, (V1 − {w}, V2 ∪ {w}) still makes a valid forest bipartition for

the graph G. Therefore, step 3.2 handles this case correctly.

Now we consider step 4. At this point, every vertex in V1 has at most one

neighbor in V2. Moreover, since the induced subgraph G[V1] is a forest, there must

be a vertex w in V1 that has degree at most 1 in G[V1] (note that V1 cannot be empty

at this point since otherwise the algorithm would have stopped at step 2). If the

vertex w also has degree at most 1 in the original graph G, then removing w does

not help breaking any cycles in G. Therefore, the vertex w can be discarded. This

case is correctly handled by step 4.1. Otherwise, the vertex w has degree at most 1

in the induced subgraph G[V1] but has degree larger than 1 in the original graph G.

Observing that w has at most one neighbor in V2, we can derive that the degree of w

in the original graph G must be exactly 2. Moreover, w has exactly two neighbors u

and v such that v is in V1 and u is in V2.
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Since the vertex w has degree 2 in the original graph G, and the vertex v is

adjacent to w, we have that every cycle in G that contains w has to contain v. In

consequence, if w is contained in the objective FVS, then we can simply replace it

by v. Therefore, in this case, we can safely assume that the vertex w is not in the

objective FVS. This can be easily implemented by moving the vertex w from the set

V1 to the set V2, and recursively working on the modified instance, as given in step

4.2 of the algorithm (note that (V1 − {w}, V2 ∪ {w}) is a valid forest bipartition of

the graph G, because by our assumption, the vertex w will be a degree-1 vertex in

the induced subgraph G[V2 ∪ {w}]).

Now we are ready to present the following lemma.

Lemma B.1 The algorithm Feedback(G, V1, V2, k) correctly solves the p-f-bipar-

tition feedback vertex set problem. The running time of the algorithm is

O(2k+ln2), where n is the number of vertices in G, and l is the number of connected

components in the induced subgraph G[V2].

Proof. The correctness of the algorithm has been verified by the above discussion.

Now we consider the complexity of the algorithm.

The recursive execution of the algorithm can be described as a search tree T .

We first count the number of leaves in the search tree T . Note that only step 3.2

of the algorithm corresponds to branches in the search tree T . Let T (k, l) be the

total number of leaves in the search tree T for the algorithm Feedback(G, V1, V2, k),

where l is the number of connected components (i.e., trees) in the forest G[V2]. Induc-

tively, the number of leaves in the search tree T1 corresponding to the recursive call

Feedback(G − w, V1 − {w}, V2, k − 1) is at most T (k − 1, l). Moreover, we assumed

at step 3.2 that w has at least two neighbors in V2 and that no two neighbors of w
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in V2 belong to the same tree in G[V2]. Therefore, the vertex w “merges” at least

two trees in G[V2] into a single tree in G[V2 ∪ {w}]. Hence, the number of trees in

G[V2 ∪ {w}] is at most l − 1. In consequence, the number of leaves in the search tree

T2 corresponding to the recursive call Feedback(G, V1 −{w}, V2 ∪ {w}, k) is at most

T (k, l − 1). This gives the following recurrence relation:

T (k, l) ≤ T (k − 1, l) + T (k, l − 1).

Also note that none of the (non-branching) recursive calls in the algorithm (steps 3.1,

4.1, and 4.2) would increase the values k and l, and that T (0, l) = 1 for all l and

T (k, 0) = 1 for all k (by steps 1-2). From all these facts, we can easily derive that

T (k, l) = O(2k+l).

Finally, observe that along each root-leaf path in the search tree T , the total

number of executions of steps 1, 2, 3, 3.1, 4.1, and 4.2 of the algorithm is O(n)

because each of these steps either stops immediately, or reduces the size of the set

V1 by at least 1 (and the size of V1 is never increased during the execution of the

algorithm). It remains to explain how each of the steps can be executed in O(n)

time.

Before the first call to the Feedback algorithm, we use O(n2) time, because

this will happen only once. The three graphs, G1 = G[V1], G2 = G[V2], and G12 =

(V, E − (E(G1)∪E(G2))) can be trivially constructed in O(n2) time. G1 and G2 are

forests, and G12 is a bipartite graph with the two vertex sets V1 and V2 as independent

sets.

Steps 1, 2, 4.1, and 4.2 can be easily performed in O(n) time. For step 3, we

simply search for a vertex of V1 that has degree at least 2 in G12, and for step 4 we

search in G1 for a leaf (vertex of degree at most 1). The condition for step 3.1 is that

no two neighbors of w belong to the same tree in G[V2], which can be checked by
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simply marking each neighbor of w, and doing a search in the forest G[V2].

Each of the steps 3.1, 3.2, 4.1, and 4.2 changes one or more of the graphs

G1, G2, G12, and we have to argue that these manipulations can also be done in

O(n) time. Looking closely at these steps, we can observe that only two operations

are required. The first is to delete a vertex in V1, which corresponds to deleting the

vertex and all incident edges in G1 and G12. The second operation is to move a vertex

w from V1 to V2, which corresponds to deleting w from G1 and updating G2 and G12

as follows: add w to V (G2) and to V2 of G12, and read the set of edges incident to

w in G, and add edges between w and vertices in V2 to G2 and between w and V1 to

G12. Using double linked lists and pointers it is possible to delete a vertex and all

incident edges in O(n) time, and to insert edges in O(1) time.

Therefore, the computation time along each root-leaf path in the search tree T

is O(n2). In conclusion, the running time of the algorithm Feedback(G, V1, V2, k) is

O(2k+ln2). This completes the proof of the lemma.

Following the idea of iterative compression proposed by Reed et al. [107], we

formulate the following problem:

feedback vertex set reduction: given a graph G and an FVS F of

size k +1 for G, either construct an FVS of size at most k for G, or report

that no such an FVS exists.

Lemma B.2 The feedback vertex set reduction problem on an n-vertex graph

G can be solved in time O(5kn2).

Proof. We use the algorithm Feedback to solve the feedback vertex set

reduction problem. Let F be the FVS of size k +1 in the graph G = (V, E). Every

FVS F ′ of size at most k for G is a union of a subset F1 of at most k − j vertices in
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V − F and a subset F2 of j vertices in F , for some integer j, 0 ≤ j ≤ k. Note that

since we assume that no vertex in F − F2 is in the FVS F ′, the induced subgraph

G[F − F2] must be a forest. For each j, 0 ≤ j ≤ k, we enumerate all subsets of j

vertices in F . For each such subset F2 in F such that G[F − F2] is a forest, we seek

a subset F1 of at most k − j vertices in V − F such that F1 ∪ F2 is an FVS in G.

Fix a subset F2 in F , where |F2| = j. Note that the graph G has an FVS F1 ∪F2

of size at most k, where F1 ⊆ V −F , if and only if the subset F1 of V −F is an FVS

for the graph G − F2 and |F1| ≤ k − j. Therefore, to solve the original problem, we

construct an FVS F1 for the graph G − F2 such that |F1| ≤ k − j and F1 ⊆ V − F .

Since F is an FVS for G, we have that the induced subgraph G[V −F ] = G−F

is a forest. Moreover, by our assumption, the induced subgraph G[F − F2] is also

a forest. Note that (V − F ) ∪ (F − F2) = V − F2, which is the vertex set for the

graph G′ = G − F2. Therefore, (V − F, F − F2) is a forest bipartition of the graph

G′. Thus, an FVS F1 for the graph G′ such that |F1| ≤ k− j and F1 ⊆ V −F can be

constructed by the algorithm Feedback(G′, V − F, F − F2, k − j).

Since |F | = k + 1 and |F2| = j, we have that |F − F2| = k + 1 − j. There-

fore, the forest G[F − F2] contains at most k + 1 − j connected components. By

Lemma B.1, the running time of the algorithm Feedback(G′, V − F, F − F2, k − j)

is O(2(k−j)+(k+1−j)n2) = O(4k−jn2). Now for all integers j, 0 ≤ j ≤ k, we enumerate

all subsets F2 of j vertices in F and apply the algorithm Feedback(G′, V − F, F −

F2, k − j) for those F2 such that G[F − F2] is a forest. As we discussed above, the

graph G has an FVS of size at most k if and only if for some F2 ⊆ F , the algorithm

Feedback(G′, V −F, F−F2, k−j) produces an FVS F1 for the graph G′. The running

time of this procedure is

k
∑

j=0

(

k + 1

j

)

· O(4k−jn2) =
k

∑

j=0

(

k + 1

k − j + 1

)

O(4k−j+1n2) = O(5kn2).
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This completes the proof of the lemma.

Finally, by combining Lemma B.2 with iterative compression, we obtain the main

result of this subsection.

Theorem B.3 The p-feedback vertex set problem on an n-vertex graph is solv-

able in time O(5kkn2).

Proof. To solve the p-feedback vertex set problem, for a given graph G =

(V, E), we start by applying Bafna et al.’s 2-approximation algorithm for the minimum

feedback vertex set problem [7]. This algorithm runs in O(n2) time, and either

returns an FVS F ′ of size at most 2k, or verifies that no FVS of size at most k

exists. If no FVS is returned, the algorithm is terminated with the conclusion that

no FVS of size at most k exists. In the case of the opposite result, we use any

subset V ′ of k vertices in F ′, and put V0 = V ′ ∪ (V − F ′). Of course, the induced

subgraph G[V0] has an FVS of size k, namely the set V ′ (G[V0 − V ′] is a forest). Let

F ′−V ′ = {v1, v2, . . . , v|F ′|−k}, and let Vi = V0∪{v1, . . . , vi} for i ∈ {0, 1, . . . , |F ′|−k}.

Inductively, suppose that we have constructed an FVS Fi for the graph G[Vi], where

|Fi| = k. Then the set F ′
i+1 = Fi ∪ {vi+1} is obviously an FVS for the graph G[Vi+1]

and |F ′
i+1| = k + 1.

Now the pair (G[Vi+1], F
′
i+1) is an instance for the feedback vertex set re-

duction problem. Therefore, in time O(5kn2), we can either construct an FVS Fi+1

of size k for the graph G[Vi+1], or report that no such an FVS exists. Note that if the

graph G[Vi+1] does not have an FVS of size k, then the original graph G cannot have

an FVS of size k. In this case, we simply stop and claim the non-existence of an FVS

of size k for the original graph G. On the other hand, with an FVS Fi+1 of size k for

the graph G[Vi+1], our induction proceeds to the next graph G[Vi+1], until we reach
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the graph G = G[V|F ′|−k]. This process runs in time O(5kkn2) since |F ′| − k ≤ k, and

solves the p-feedback vertex set problem.

4. Feedback vertex set on weighted graphs

In this subsection, we discuss the pw-feedback vertex set problem. A weighted

graph G = (V,E) is an undirected graph, where each vertex u ∈ V is assigned a

weight that is a positive real number. The weight of a vertex set A ⊆ V is the sum

of the vertex weights of all vertices in A. We denote by |A| the cardinality of A. The

pw-feedback vertex set problem is formally defined as follows:

pw-feedback vertex set: given a weighted graph G and an integer

k, either find an FVS F of minimum weight for G such that |F | ≤ k, or

report that no FVS of size at most k exists in G.

The algorithm for the weighted case has several similarities with the unweighted

case, but has also a significant difference. The difference is that step 4.2 of Algorithm-

1 becomes invalid for weighted graphs. A degree-2 vertex w in the set V1 cannot simply

be excluded from the objective FVS. If the weight of w is smaller than that of its

parent v in G[V1], it may become necessary to include w instead of v in the objective

FVS.

To overcome this difficulty, we introduce a new partition structure of the vertices

in a weighted graph.

Definition A triple (V0, V1, V2) is an independent-forest partition (IF-partition) of a

graph G = (V,E) if (V0, V1, V2) is a partitioning of V (i.e., V0 ∪ V1 ∪ V2 = V , and V0,

V1, and V2 are pairwise disjoint), such that

(1) G[V1] and G[V2] are forests;
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(2) G[V0] is an independent set;

(3) Every vertex u in V0 is of degree 2 in G, with both neighbors in V2.

The following problem is the analogue of the p-f-bipartition feedback ver-

tex set problem on unweighted graphs.

pw-if-partition feedback vertex set: given a weighted graph G,

an IF-partition (V0, V1, V2) of G, and an integer k, either find an FVS

F of minimum weight for G that satisfies the conditions |F | ≤ k and

F ⊆ V0 ∪ V1, or report that no such an FVS exists.

To develop and analyze our algorithm for the pw-if-partition feedback ver-

tex set problem, we need the following concept of measure for the problem instances.

For a vertex subset V ′ in the graph G, we will denote by #c(V ′) the number of con-

nected components in the induced subgraph G[V ′].

Definition Let (G, V0, V1, V2, k) be an instance of the pw-if-partition feedback

vertex set problem with an IF-partition (V0, V1, V2). The deficiency of the instance

(G, V0, V1, V2, k) is defined as

τ(k, V0, V1, V2) = k − (|V0| − #c(V2) + 1),

Intuitively, τ(k, V0, V1, V2) of the instance (G, V0, V1, V2, k) is an upper bound

on the number of vertices in the objective FVS that are in the set V1 (this will
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become clearer during our discussion below). Our algorithm for the pw-if-partition

feedback vertex set problem is based on the following observation: once we have

correctly determined all vertices in the objective FVS that are in the set V1, the

problem will become solvable in polynomial time, as shown in the following lemma.

Lemma B.4 Let (G, V0, V1, V2, k) be an instance of the pw-if-partition feedback

vertex set problem with an IF-partition (V0, V1, V2) of an n-vertex graph G. If V1 =

∅, or V2 = ∅, or τ(k, V0, V1, V2) ≤ 0, then a solution to the instance (G, V0, V1, V2, k)

can be constructed in time O(n2).

Proof. First of all, note that if k < 0, then the solution to the instance is “No”:

we cannot remove a negative number of vertices from G. Thus, in the following

discussion, we assume that k ≥ 0.

If V2 = ∅, then by the definition, V0 should also be an empty set. Thus, the

graph G = G[V1] is a forest, and the solution to the instance (G, V0, V1, V2, k) is the

empty set ∅.

Now consider the case V1 = ∅. Then we need to find a minimum-weight subset

of at most k vertices in the set V0 whose removal from the graph G = G[V0 ∪ V2]

results in a forest. We will solve this problem by creating a new graph H, such that

an optimal solution for (G, V0, V1, V2, k) corresponds to the edges which are not used

in a maximum weight spanning tree of H.

Construct a new graph H = (V, E), where each vertex µ in V corresponds to

a connected component in the induced subgraph G[V2], and each edge [µ, ν] in E

corresponds to a vertex v in the set V0 such that the two neighbors of v are in

the connected components in G[V2] that correspond to the two vertices µ and ν,

respectively, in H. Intuitively, the graph H can be obtained from the graph G =
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G[V0 ∪ V2] by “shrinking” each connected component in G[V2] into a single vertex

and “smoothing” each degree-2 vertex in V0 (note that the graph H may contain

multiple edges and self-loops). Moreover, we give each edge in H a weight that is

equal to the weight of the corresponding vertex in V0. Thus, the graph H is a graph

with edge weights. Observe that there is a one-to-one correspondence between the

connected components in the graph H and the connected components in the graph

G. Moreover, since each connected component in the induced subgraph G[V2] is a

tree, a connected component in the graph H is a tree if and only if the corresponding

connected component in the graph G is a tree. Most importantly, removing a vertex

in V0 in the graph G corresponds to removing the corresponding edge in the graph

H. Therefore, the problem of constructing a minimum-weight vertex set in V0 whose

removal from G results in a forest is equivalent to the problem of constructing a

minimum-weight edge set in the graph H whose removal from H results in a forest.

Let H1, . . ., Hs be the connected components of the graph H, where for each

i, the component Hi has ni vertices and mi edges. An edge set Ei in Hi whose

removal from Hi results in a forest is of the minimum weight if and only if the

complement graph Hi − Ei is a spanning tree of the maximum weight in Hi. Thus,

the union E ′ =
⋃s

i=1(Hi − Ti) is a minimum-weight edge set whose removal from H

results in a forest, where for each i, Ti is a maximum-weight spanning tree in the

graph Hi. Since the maximum-weight spanning tree Ti in Hi can be constructed

in time O(n2
i ) by modifying the well-known minimum spanning tree algorithms (the

algorithms work even for graphs with self-loops and multiple edges) [31], we conclude

that the minimum-weight edge set E ′ in H can be constructed in time
∑s

i=1 O(n2
i ) =

O(n2). Also note that the number of edges in the set E ′ is equal to
∑s

i=1(mi−ni+1) =

|E| − |V| + s.
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Correspondingly, in case V1 = ∅, each minimum-weight FVS in V0 for the graph

G contains exactly |E| − |V| + s vertices, and such an FVS can be constructed in

time O(n2). Note that |E| = |V0|, |V| is equal to the number #c(V2) of connected

components in the induced subgraph G[V2], and s (which is the number of connected

components in H) is equal to the number #c(G) of connected components in the

graph G = G[V0 ∪ V2]. Thus, each minimum-weight FVS in V0 for the graph G

contains exactly |V0| − #c(V2) + #c(G) vertices, and such a minimum-weight FVS

can be constructed in time O(n2). Therefore, for the given instance (G, V0, V1, V2, k)

of the pw-if-partition feedback vertex set problem with V1 = ∅, the solution

is “No” if k < |V0|−#c(V2)+#c(G); and the solution is an O(n2) time constructible

FVS of |V0| − #c(V2) + #c(G) vertices in V0 if k ≥ |V0| − #c(V2) + #c(G).

This completes the proof that when V1 = ∅, a solution to the instance (G, V0, V1,

V2, k) can be constructed in time O(n2).

Now consider the case τ(k, V0, V1, V2) ≤ 0. If V2 = ∅, then by the first part of

the proof, the lemma holds. Thus, we assume that V2 6= ∅. As analyzed above, to

break every cycle in the induced subgraph G[V0 ∪ V2] we have to remove at least

|V0| − #c(V2) + #c(V0 ∪ V2) vertices in the set V0. Therefore, if τ(k, V0, V1, V2) ≤ 0,

then k ≤ |V0| − #c(V2) + 1 ≤ |V0| − #c(V2) + #c(V0 ∪ V2) (note that V2 6= ∅ so

#c(V0 ∪ V2) ≥ 1). Thus, in this case, all k vertices in the objective FVS must be in

the set V0 in order to break all cycles in the induced subgraph G[V0 ∪ V2], and no

vertex in the objective FVS can be in the set V1. Hence, if the induced subgraph

G[V1 ∪ V2] contains a cycle, then the solution to the instance is “No”. On the other

hand, suppose that G[V1 ∪ V2] is a forest, then the graph G has another IF-partition

(V ′
0 , V

′
1 , V

′
2), where V ′

0 = V0, V ′
1 = ∅, and V ′

2 = V1 ∪ V2. It is easy to verify that in

this case the instance (G, V ′
0 , V

′
1 , V

′
2 , k) with the IF-partition (V ′

0 , V
′
1 , V

′
2) has the same

solution set as the instance (G, V0, V1, V2, k) with the IF-partition (V0, V1, V2). Since
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V ′
1 = ∅, by the second part of the proof, a solution to the instance (G, V ′

0 , V
′
1 , V

′
2 , k)

with the IF-partition (V ′
0 , V

′
1 , V

′
2) can be constructed in time O(n2). This completes

the proof of the lemma.

We are now in a position to introduce our main algorithm, which is given in

Figure 16 and solves the pw-if-partition feedback vertex set problem. The

subroutine min-w(S1, S2) on two vertex subsets S1 and S2 in the algorithm returns

among S1 and S2 the one with a smaller weight (or any one of them if the weights

are tied). To simplify our descriptions, we take the conventions that “No” is a special

vertex set of an infinitely large weight and that any set plus “No” gives a “No”.

Therefore, the value of min-w(S1, S2) will be (1) “No” if both S1 and S2 are “No”;

(2) S1 if S2 is “No”; (3) S2 if S1 is “No”; and (4) the one of smaller weight among S1

and S2 if both S1 and S2 are not “No”.

For each tree in the forest G[V1], we fix a root so that we can talk about the

“lowest leaf” in a tree in G[V1].

Lemma B.5 In time O(2τ(k,V0,V1,V2)n2), the algorithm W-Feedback(G, V0, V1, V2, k)

correctly solves the pw-if-partition feedback vertex set problem, where n is

the number of vertices in the graph G.

Proof. We first verify the correctness of the algorithm. Step 1 of the algorithm is

justified by Lemma B.4. Justifications for steps 2, 3, 4, 4.1, and 4.2 are exactly the

same as that for steps 1, 4.1, 3, 3.1, and 3.2 in Algorithm-1 for unweighted graphs.

Now consider step 5. When the algorithm reaches step 5, the following conditions

hold:

(1) the sets V1 and V2 are not empty;

(2) every vertex in the set V1 has degree at least 2 in the graph G; and
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Algorithm-2 W-Feedback(G, V0, V1, V2, k)
Input: G = (V,E) is a graph with an IF-partition (V0, V1, V2), k is an integer.
Output: a minimum-weight FVS F of G such that |F | ≤ k and F ⊆ V0 ∪ V1;

or report “No” (i.e., no such an FVS exists).

1. if (V1 = ∅) or (V2 = ∅) or (τ(k, V0, V1, V2) ≤ 0) then
solve the problem in time O(n2);

2. if (k < 0) or (k = 0 and G is not a forest) then return “No”;
3. if a vertex w in V1 has degree less than 2 in G then

return W-Feedback(G − w, V0, V1 − {w}, V2, k);
4. else if a vertex w in V1 has at least two neighbors in V2 then
4.1 if two neighbors of w are in the same tree of G[V2] then

return ({w} ∪ W-Feedback(G − w, V0, V1 − {w}, V2, k − 1));
4.2 else

F1 = W-Feedback(G − w, V0, V1 − {w}, V2, k − 1);
F2 = W-Feedback(G, V0, V1 − {w}, V2 ∪ {w}, k);
return min-w(F1 ∪ {w}, F2);

5 else pick a lowest leaf w1 in any tree T in G[V1];
let w be the parent of w1 in T , and let w1, . . ., wt be the children of w in T ;

5.1 if (w has a neighbor in V2) or (w has more than one child in T ) then
F1 = W-Feedback(G − w, V0, V1 − {w}, V2, k − 1);
F2 = W-Feedback(G, V0 ∪ {w1, . . . , wt}, V1 − {w,w1, . . . , wt}, V2 ∪ {w}, k);
return min-w(F1 ∪ {w}, F2);

5.2 else
if the weight of w1 is larger than the weight of w then

return W-Feedback(G, V0, V1 − {w1}, V2 ∪ {w1}, k);
else return W-Feedback(G, V0 ∪ {w1}, V1 − {w, w1}, V2 ∪ {w}, k).

Fig. 16. Algorithm for the pw-feedback vertex set problem

(3) every vertex in the set V1 has at most one neighbor in the set V2.

Condition (1) holds because of step 1; condition (2) holds because of step 3; and

condition (3) holds because of step 4.

By condition (1) and because the induced subgraph G[V1] is a forest, step 5 can

always pick the vertex w1. By conditions (2) and (3), the vertex w1 has a unique

neighbor in V2. Also by conditions (2) and (3), the vertex w1 must have a parent

w in the tree T in G[V1]. In consequence, the vertex w1 has degree exactly 2 in G.

Finally, since w1 is the lowest leaf in the tree T , all children w1, . . ., wt of w in the
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tree T are also leaves in T . By conditions (2) and (3) again, each child wi of w has

a unique neighbor in the set V2, and every child wi of w has degree exactly 2 in the

graph G.

Step 5.1 simply branches on the vertex w. To include the vertex w in the objective

FVS, we simply remove w from the graph G (and from the set V1), and recursively

look for an FVS in V0 ∪ (V1 − {w}) of size at most k − 1. Note that in this case,

the sets V0 and V2 are unchanged, and the triple (V0, V1 − {w}, V2) obviously makes

a valid IF-partition for the graph G − w. On the other hand, to exclude the vertex

w from the objective FVS, we move w from V1 to V2. First note that since the

vertex w has at most one neighbor in V2, the induced subgraph G[V2 ∪ {w}] is still a

forest. Moreover, since all children w1, . . ., wt of w have degree 2 in the graph G and

each wi has a unique neighbor in the set V2, after moving w from V1 to V2, all these

degree-2 vertices w1, . . ., wt have their both neighbors in the set V2 ∪{w}. Therefore,

these vertices w1, . . ., wt now can be moved to the set V0. In particular, the triple

(V0 ∪{w1, . . . , wt}, V1 −{w, w1, . . . , wt}, V2 ∪{w}) is a valid IF-partition of the vertex

set of the graph G. This recursive branching is implemented by the two recursive

calls in step 5.1.

If we reach step 5.2, then the two conditions in step 5.1 do not hold. Therefore,

in addition to conditions (1)-(3), the following two conditions also hold:

(4) the vertex w has no neighbor in V2; and

(5) the vertex w has a unique child w1 in the tree T .

By conditions (2), (4), and (5), the vertex w has degree exactly 2 in the graph G

(and w is not the root of the tree T ). Therefore, the vertices w1 and w are two

adjacent degree-2 vertices in the graph G. Observe that in this case, a cycle in

the graph G contains the vertex w1 if and only if it also contains the vertex w.
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Therefore, we can safely assume that the one of larger weight among w1 and w is

not in the objective FVS. If the larger weight vertex is w1, then the first recursive

call in step 5.2 is executed, which moves w1 from set V1 to set V2 (note that the

triple (V0, V1 − {w1}, V2 ∪ {w1}) is a valid IF-partition of G because w1 has a unique

neighbor in V2). If the larger weight vertex is w, then the second recursive call in step

5.2 is executed, which moves w from V1 to V2. Note that since both neighbors of the

degree-2 vertex w1 are in the set V2 ∪ {w}, after adding w to the set V2, we can also

move the vertex w1 from V1 to V0. Thus, the triple (V0∪{w1}, V1−{w, w1}, V2∪{w})

is a valid IF-partition of the graph G.

We also remark that by our assumption, the input graph G contains neither

multiple edges nor self-loops. Moreover, the graph in each of the recursive calls in the

algorithm is either the original G, or G with a vertex deleted. Therefore, the graph

in each of the recursive calls in the algorithm also contains neither multiple edges nor

self-loops.

Since all possible cases are covered in the algorithm, we conclude that when the

algorithm W-Feedback stops, it must output a correct solution to the given instance

(G, V0, V1, V2, k).

To analyze the running time, as in the unweighted case, we first count the num-

ber of leaves in the search tree corresponding to the execution of the algorithm.

Let T (k, V0, V1, V2) be the number of leaves in the search tree for algorithm W-

Feedback(G, V0, V1, V2, k). We prove by induction on the value τ(k, V0, V1, V2) that

T (k, V0, V1, V2) ≤ max(1, 2τ(k,V0,V1,V2)). First of all, if τ(k, V0, V1, V2) ≤ 0, then by step

1 of the algorithm, we have T (k, V0, V1, V2) = 1.
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First consider the branching steps, i.e., step 4.2 and step 5.1. In case step 4.2 of

the algorithm is executed, we have recursively

T (k, V0, V1, V2)

≤ T (k − 1, V0, V1 − {w}, V2) + T (k, V0, V1 − {w}, V2 ∪ {w}). (6.4)

Since

τ1 = τ(k − 1, V0, V1 − {w}, V2)

= (k − 1) − (|V0| − #c(V2) + 1)

= τ(k, V0, V1, V2) − 1

< τ(k, V0, V1, V2),

and

τ2 = τ(k, V0, V1 − {w}, V2 ∪ {w})

= k − (|V0| − #c(V2 ∪ {w}) + 1)

≤ k − (|V0| − (#c(V2) − 1) + 1)

= τ(k, V0, V1, V2) − 1

< τ(k, V0, V1, V2),

where we have used the fact #c(V2 ∪ {w}) ≤ #c(V2) − 1 because in this case, we

assume that the vertex w has two neighbors in two different trees in G[V2], therefore,

adding w to V2 merges at least two connected components in G[V2] and reduces the

number of connected components by at least 1.
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Therefore, by the inductive hypothesis, T (k − 1, V0, V1 − {w}, V2) ≤ 2τ1 , and

T (k, V0, V1 − {w}, V2 ∪ {w}) ≤ 2τ2 . Combining these with Inequality (6.4), we get

T (k, V0, V1, V2) ≤ T (k − 1, V0, V1 − {w}, V2) + T (k, V0, V1 − {w}, V2 ∪ {w})

≤ 2τ1 + 2τ2

≤ 2τ(k,V0,V1,V2)−1 + 2τ(k,V0,V1,V2)−1

= 2τ(k,V0,V1,V2)

In conclusion, the induction goes through for step 4.2 of the algorithm.

Now we consider step 5.1, which is the least trivial case, and makes the ma-

jor difference from the unweighted cases. Let V ′
0 = V0 ∪ {w1, . . . , wt}, V ′

1 = V1 −

{w, w1, . . . , wt}, and V ′
2 = V2 ∪ {w}. The execution of step 5.1 gives the following

inequality:

T (k, V0, V1, V2) ≤ T (k − 1, V0, V1 − {w}, V2) + T (k, V ′
0 , V

′
1 , V

′
2).

As we have shown above, by the inductive hypothesis, we have

T (k − 1, V0, V1 − {w}, V2) ≤ 2τ(k,V0,V1,V2)−1. (6.5)

To estimate the value T (k, V ′
0 , V

′
1 , V

′
2), first note that |V ′

0 | = |V0| + t. Moreover, at

this point, we must have either that the vertex w has a neighbor in V2 or that the

vertex w has more than one child in the tree T in G[V1].

If w has a neighbor in V2, then adding w to V2 will “attach” the vertex w to a

connected component in G[V2]. In consequence, the number of connected components

in G[V2] will be equal to that in G[V2 ∪ {w}] (recall that w has only one neighbor in
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V2). In this case (note that t ≥ 1), we have

τ(k, V ′
0 , V

′
1 , V

′
2) = k − (|V ′

0 | − #c(V ′
2) + 1)

= k − ((|V0| + t) − #c(V2) + 1)

≤ τ(k, V0, V1, V2) − 1

Now let us assume that the vertex w has no neighbor in V2 but has more than

one child in the tree T in G[V1] (i.e., t ≥ 2). Then |V ′
0 | = |V0| + t ≥ |V0| + 2.

In this case, adding the vertex w to the set V2 increases the number of connected

components in G[V2] by 1 (since w has no neighbor in V2, the vertex w will become

a single-vertex connected component in the induced subgraph G[V2 ∪ {w}]). That is,

#c(V2 ∪ {w}) = #c(V2) + 1. Therefore,

τ(k, V ′
0 , V

′
1 , V

′
2) = k − (|V ′

0 | − #c(V ′
2) + 1)

= k − ((|V0| + t) − #c(V2 ∪ {w}) + 1)

≤ k − ((|V0| + 2) − (#c(V2) + 1) + 1)

≤ τ(k, V0, V1, V2) − 1

In conclusion, in all cases in step 5.1, we have τ(k, V ′
0 , V

′
1 , V

′
2) ≤ τ(k, V0, V1, V2)−1.

Therefore, now we can apply the induction and get

T (k, V ′
0 , V

′
1 , V

′
2) ≤ 2τ(k,V ′

0 ,V ′
1 ,V ′

2) ≤ 2τ(k,V0,V1,V2)−1

Combining this with the inequalities (6.4) and (6.5), we conclude that

T (k, V0, V1, V2) ≤ 2τ(k,V0,V1,V2)

holds for the case of step 5.1.
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We should also remark that it can be verified that for all non-branching recursive

calls in the algorithm, i.e., steps 3, 4.1, and 5.2, the instance deficiency is never

increased. In particular, if the first recursive call in step 5.2 is executed, then since

the vertex w1 has a unique neighbor in V2, #c(V2) = #c(V2 ∪ {w1}). Thus,

τ(k, V0, V1 − {w1}, V2 ∪ {w1}) = k − (|V0| − #c(V2 ∪ {w1}) + 1)

= k − (|V0| − #c(V2) + 1)

= τ(k, V0, V1, V2).

If the second recursive call in step 5.2 is executed, then #c(V2 ∪ {w}) = #c(V2) +

1 because w has no neighbor in V2 and w will become a single-vertex connected

component in the induced subgraph G[V2 ∪ {w}]. Therefore,

τ(k, V0 ∪ {w1}, V1 − {w, w1}, V2 ∪ {w})

= k − (|V0 ∪ {w1}| − #c(V2 ∪ {w}) + 1)

= k − ((|V0| + 1) − (#c(V2) + 1) + 1)

= τ(k, V0, V1, V2).

Summarizing all the above discussions, we complete the inductive proof that the

number of leaves in the search tree for the algorithm W-Feedback(G, V0, V1, V2, k)

is at most 2τ(k,V0,V1,V2).

In the same way as in the proof for the unweighted case, we observe that along

each root-leaf path in the search tree, the total number of executions of steps 1, 2,

3, 4, 4.1, 4.2, 5, 5.1, and 5.2 of the algorithm is O(n) because each of these steps

either stops immediately, or reduces the size of the set V1 by at least 1. Step 1

is only preformed in leaf nodes of the tree, and thus only adds O(n2) time to the

total. By similar arguments as the one used for the unweighted case, all steps except
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step 1 can be preformed in O(n) time. Therefore, the running time of the algorithm

W-Feedback(G, V0, V1, V2, k) is O(2τ(k,V0,V1,V2)n2).

With Lemma B.5, we can now proceed in the same way as for the unweighted case

to solve the original pw-feedback vertex set problem. Consider the following

weighted version of the feedback vertex set reduction problem.

w-feedback vertex set reduction: given a weighted graph G and

an FVS F of size k + 1 for G, either construct an FVS F ′ of minimum

weight that satisfies |F ′| ≤ k, or report that no such an FVS exists.

Note that in the definition of w-feedback vertex set reduction, we do not

require that the given FVS F of size k + 1 have the minimum weight.

Lemma B.6 The w-feedback vertex set reduction problem on an n-vertex

graph is solvable in time O(5kn2).

Proof. The proof proceeds similarly to the proof of Lemma B.2. For the given

FVS F of size k + 1 in the graph G = (V,E), every FVS F ′ of size at most k for G

(including the one with the minimum weight) is a union of a subset F1 of at most k−j

vertices in V − F and a subset F2 of j vertices in F , for some integer j, 0 ≤ j ≤ k,

where (V − F, F − F2) is a forest bipartition of the graph G0 = G − F2. Therefore,

we can enumerate all subsets F2 of j vertices in F , for each j, 0 ≤ j ≤ k, such that

(V − F, F − F2) is a forest bipartition of the graph G0 = G − F2, and construct the

minimum-weight FVS F0 of G0 satisfying |F0| ≤ k−j. Note that the forest bipartition

(V −F, F −F2) of G0 is in fact a special IF-partition (V0, V1, V2) of G0, where V0 = ∅,

V1 = V − F , and V2 = F − F2. Therefore, by Lemma B.5, a minimum-weight FVS
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F0 of G0 satisfying |F0| ≤ k − j can be constructed in time

O(2τ(k−j,V0,V1,V2)n2) = O(2(k−j)−(0−#c(F−F2)+1)n2) = O(4k−jn2),

where we have used the fact #c(F−F2) ≤ |F−F2| = k+1−j. Now the proof proceeds

exactly the same way as in Lemma B.2, and concludes that the w-feedback vertex

set reduction problem can be solved in time O(5kn2).

Using Theorem B.3 and Lemma B.6, we obtain the main result of this section.

Theorem B.7 The pw-feedback vertex set problem on an n-vertex graph is

solvable in time O(5kkn2).

Proof. Let (G, k) be a given instance of the pw-feedback vertex set problem.

As we explained in the proof of Theorem B.3, we can first construct, in time O(5kkn2),

an FVS F of size k + 1 for the graph G (the weight of F is not necessarily the

minimum). Then we simply apply Lemma B.6.
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C. Chapter Conclusion

In this chapter, we studied the pd-feedback vertex set, p-feedback vertex

set, and pw-feedback vertex set problems. We gave the fist algorithm of run-

ning time in form of f(k)nO(1) for the pd-feedback vertex set problem, where

f(k) is independent of n. Thus we proved that the pd-feedback vertex set

problem is fixed parameter tractable and solved an outstand open problem, i.e. if
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pd-feedback vertex set is fixed parameter tractable. For the p-feedback ver-

tex set and pw-feedback vertex set problems, we improved the running time

to O∗(5k) for both of them. The running time of our (deterministic) algorithm for the

pw-feedback vertex set problem is even better than that of the previous best

(randomized) algorithm, which has a running time of O∗(6k) for the pw-feedback

vertex set problem.

Like using branch and bound method to solve the p-node multiway cut prob-

lem, when we used branch and bound to solve the pd-feedback vertex set,

p-feedback vertex set, and pw-feedback vertex set problems, we had more

than one direction to simplify instances and more than one condition to stop branch-

ing. For example, for the pd-feedback vertex set problem, we first transformed

it into the pd-skew separator problem that is related to two parameters k and m.

Then we used branch and bound to solve the pd-skew separator problem. In each

branch, we obtained two sub-instances such that for one sub-instance, k was reduced

by 1 and m was reduced by at most 1 (m might keep the same value), where for an-

other sub-instance, k kept the same value and m was increased by 1. The condition to

stop branching was either k = 0 or k < m. Similarly, when solving the p-feedback

vertex set problem, we first transformed it into the p-f-bipartition feedback

vertex set problem that is related to two parameters k and l. Then we used branch

and bound to solve the p-f-bipartition feedback vertex set problem. In each

branch, we obtained two sub-instances such that for one sub-instance, k was reduced

by 1 and l kept the same value, where for another sub-instance, k kept the same value

and l was reduced by 1. The condition to stop branching was either k = 0 or l = 1.

In solving the pw-feedback vertex set problem, the instance was even branched

in three directions, i.e. values for three parameters were changed. Accordingly, we

also have more conditions to stop branching.
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Branch and conquer method is a very general way to design parameterized al-

gorithms. Using this method more flexibly will lead us to solve more parameterized

NP-hard problems.
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CHAPTER VII

APPLICATIONS IN BIOINFORMATICS∗

Bioinformatics is the application of information technology to the field of molecular

biology. Usually, when we study bioinformatics problems, first we formulate biology

problems into computational problems. Then we design algorithms for computational

problems. Finally, we implement algorithms and test data.

As many computational problems from bioinformatics are NP-hard, it is very

hard to solve those problems efficiently. For most NP-hard problems, as current

algorithms are so ineffective, even we have the best supercomputer, we cannot find

optimal solutions for those NP-hard problems in million years. Hence, traditionally,

people try to avoid using NP-hard problems in applications. If they cannot avoid

NP-hard problems, they usually use heuristic algorithms to solve them. Heuristic

algorithms are fast, but performance is not guaranteed, i.e. we are not guaranteed to

find optimal solutions.

We found that many bioinformatics problems are naturally related to parame-

ters. they can be formulated as parameterized NP-hard problems. Furthermore, in

applications, those parameters only take very small values. As we introduced be-

fore, if parameters only take small values, taking advantage of these small values to

develop parameterized algorithms is a good way to find optimal solution for those

parameterized NP-hard problems.

In this chapter, we will discuss our new results about using parameterized al-

gorithms to solve the signaling pathway problem and the motif finding problem in

∗Reprinted with permission from “Finding Pathway Structures in Protein Inter-
action Networks” by Songjian Lu, Fenghui Zhang, Jianer Chen, Sing-Hoi Sze, 2007.
Algorithmica, 48, 363-374, Copyright 2007 by Springer.
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bioinformatics.

A. Pathway Structure and Protein Interaction Networks

1. Introduction

By representing a biological network as a graph in which vertices represent genes

or proteins and edges represent interactions between them, many algorithms have

been proposed to study substructures in these graphs in order to understand the

organization of interacting components within these networks [34, 64, 73, 77, 79, 96,

99, 110, 111, 114, 118]. The increased availability of these networks that describe

interactions at a genome scale presents serious computational challenges since they

can be very large, with thousands of vertices and tens of thousands of edges. In

protein interaction networks, one important biological problem is to find chains of

proteins that belong to a functional pathway, which corresponds to finding simple

paths in the network with closely interacting proteins and is already a very difficult

NP-hard problem [56]. In reality, biological pathways are not linear since there may

be multiple interacting paths within a pathway. In order to understand these complex

interactions, a more accurate model is to find a collection of closely related chains

of proteins that form a pathway structure, which can be achieved by identifying a

subgraph of the given network that includes the chains.

To address this problem, Steffen et al. [114] employed an exhaustive search pro-

cedure to find short simple paths in a given network that contain functional related

proteins and combine top scoring paths into a path structure. Kelley et al. [73] devel-

oped a probabilistic algorithm that allows the identification of longer optimal simple

paths in k!nO(1) time, where n is the number of vertices and k is the path length. Scott

et al. [110] proposed an improved probabilistic algorithm for finding simple paths that
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runs in 5.44knO(1) time by using the color coding technique [3] and allowed the iden-

tification of more complicated substructures such as trees and series-parallel graphs.

A few other approaches allow the identification of arbitrary biological substructures,

but these algorithms either can only identify small substructures optimally or have

to use heuristics to find large substructures. Koyutürk et al. [77] used a branch-and-

bound procedure to identify small frequent subgraphs that occur in many networks.

Hu et al. [64] employed a few graph-theoretic reductions to find dense subgraphs that

occur in many networks. Sharan et al. [111] defined the notion of a network alignment

graph and used a greedy heuristic to identify conserved subnetworks that occur in

multiple species. Koyutürk et al. [79] defined the notion of local network alignment

and used a greedy heuristic to identify conserved substructures in two graphs.

We are interested in developing algorithms with at least a probabilistically guar-

anteed performance that allows systematic investigation of pathway structures. A

popular previous technique is to employ a two stage approach that first identifies

high scoring simple paths and then combines these paths into a graph (that is a sub-

graph of the original network) to represent the path structure [73, 110, 114]. One

drawback of this approach is that potential interactions between related paths are

not taken into account. We investigate a different formulation that models a pathway

structure directly as a leveled structure of proteins in which proteins from adjacent

levels are connected together to represent a collection of closely related chains of pro-

teins. We develop a divide-and-conquer algorithm to find an optimal path structure

with high probability under a scoring scheme that models characteristics of biological

pathways. Since the scoring scheme may not perfectly model biological reality, we

also consider a variant of the algorithm that provides probabilistic guarantees for the

top suboptimal path structures with a slight increase in time and space. We show

that our algorithm can identify biological pathway structures by applying it to protein
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interaction networks in the DIP database [120].

2. Problem formulation

Let k be the number of vertices in the target path structure and t be the maximum

number of vertices at each level of the structure. We use the following notion of a

(k, t)-path to represent a path structure.

Definition Given an undirected graph G, two disjoint sets of vertices S1 and S2 are

said to be connected if each vertex in S1 is adjacent to at least one vertex in S2 and

each vertex in S2 is adjacent to at least one vertex in S1. A (k, t)-path is a subgraph

of G with k vertices that are partitioned into l disjoint subsets S1, S2, . . . , Sl such that

(1) |Si| ≤ t for 1 ≤ i ≤ l, and (2) Si is connected to Si+1 for 1 ≤ i < l. We denote

the (k, t)-path as [S1, S2, . . . , Sl], and call S1 and Sl the ends of the (k, t)-path (see

Figure 17).

A (k, t)-path represents a path structure of size k with l levels in which each level

is of size at most t, with the property that each vertex is included in a simple path

of length l within the path structure. With this formulation, multiple interacting

paths within a pathway can be modeled and proteins within the same level in a path

structure are likely to play similar roles within the pathway. By imposing appropri-

ate vertex or edge weights in G, it becomes possible to investigate these interacting

paths in biological networks directly. Although the formulation only considers edges

between adjacent levels in the structure, no restrictions are imposed on edges that

can exist between non-adjacent levels. Furthermore, complicated path structures can

be represented even when t is small (e.g., t ≤ 2 or 3). To study paths between two

vertices in G, one can impose a source and a sink in the path structure (i.e., both
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Fig. 17. Illustration of the definition of a (k, t)-path and the probabilistic divide-and–

conquer algorithm. The parameters are k = 10, t = 2 and l = 7. S1 and S7

are the ends of the (k, t)-path. Only edges between adjacent levels are shown

(there may be many other edges in G that connect vertices from non-adjacent

levels). One iteration of step 3 of the algorithm in Figure 18 is shown in which

G is randomly partitioned into two parts G
(0)
L and G

(0)
R that also subdivides

the (k, t)-path into two smaller path structures of roughly equal sizes. The

recursion within G
(0)
L returns a set of path structures, in which [S1, S2, S3, S4]

is among one of them. G
(0)
R is further partitioned into G

(1)
L and G

(1)
R . The path

structure [S1, S2, S3, S4] is then concatenated to [S5] before [S6, S7] is finally

added

the first and the last levels have only one vertex). Since vertices in different levels

are distinct, a (k, t)-path then represents multiple simple paths of length l between

the source and the sink. Note that in this formulation, the number of levels l is not

a parameter and the best path length l (with respect to a given (k, t) pair) will be

found automatically during the computation. Since it is sometimes necessary to find

paths of a specific length l that form a path structure, an alternative strategy is to

consider l as a parameter. We will show that a variant of our algorithm can be used

to find multiple (k, t)-paths for each value of l simultaneously without a significant

increase in time and space.

Our formulation is different from the series-parallel graph formulation in Scott

et al. [110] which defines a different type of non-linear structure. Our representa-

tion of the path structure is also different from a path-decomposition of bounded
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pathwidth [10] which allows vertex groupings that may overlap and has additional

constraints on edges within a vertex group. Since very extensive overlaps can occur

within a vertex group in a path-decomposition, much more complicated structures

than multiple simple paths are allowed, which may not be biologically useful since

meaningless paths with very high scores that contain many repeated vertices can be

included.

Even for the case t = 1, the problem is difficult since it corresponds to the NP-

hard problem of finding simple paths of length k [56]. Despite significant efforts,

there is no practical deterministic approach that guarantees that the optimal path

is found unless the path length is very short [114]. The best previous deterministic

algorithm uses the color coding technique [3], which, when coupled with the dynamic

programming technique in Scott et al. [110], gives an algorithm that runs in dknO(1)

time, where d is an impractically large constant. The best previous probabilistic

algorithm combines the probabilistic version of the color coding technique in Alon

et al. [3] with the dynamic programming technique in Scott et al. [110] to give an

approach that guarantees to find the optimal path with high probability and runs in

(2e)knO(1) = 5.44knO(1) time and O(nk2k +m) space, which are both exponential in k.

Kelley et al. [73] gave the best previous probabilistic algorithm that uses polynomial

space by imposing acyclic edge orientations and runs in k!nO(1) time and O(m + n)

space. For the special case t = 1, our probabilistic algorithm that runs in 4knO(1) time

and O(nk log k + m) space offers a significant improvement over these probabilistic

approaches, with a much lower constant in the exponential part of the time complexity

while requiring only polynomial space.
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3. Probabilistic algorithm

For simplicity, we first consider finding an arbitrary (k, t)-path in G. Suppose that

such a (k, t)-path exists and t is small. The idea is to use a divide-and-conquer

approach to randomly partition G into two subgraphs. Consider this partition a

success if it subdivides a (hidden) (k, t)-path into two smaller path structures of

roughly equal sizes, which results in two subproblems of finding (k′, t)-paths with k′

roughly equal to k/2 that can connect together to form a (k, t)-path. Continue to

recursively partition into smaller subgraphs until the base case k ≤ t is reached, in

which the (k, t)-paths can be enumerated exhaustively as follows.

Lemma A.1 Let G be an undirected graph with n vertices and let k ≤ t. There are at

most (2n)k (k, t)-paths in G and these (k, t)-paths can be constructed in O(k(2n)k) =

O(t(2n)t) time.

Proof Let S = {v1, . . . , vk} be any set of k vertices in G. We first consider how

many (k, t)-paths can be obtained from these vertices in S. Let π be a permutation

of S. We insert “separators” between the vertices in π to partition π into non-empty

segments (we require that at most one separator be inserted between two vertices in

π). We call this a partitioned permutation of S. Any (k, t)-path formed from S can be

represented by a partitioned permutation of S, in which segments correspond to levels

in the (k, t)-path. Although each (k, t)-path formed from S may be represented by

more than one partitioned permutation of S, each partitioned permutation of S can

represent at most one valid (k, t)-path. Thus the number of partitioned permutations

of S gives an upper bound on the number of (k, t)-paths that can be obtained from

S. Fix a permutation π and let T (k) be the total number of partitioned permutations

that can be formed from π. Since for each i, 0 < i ≤ k, there are T (k− i) partitioned

permutations in which the first segment consists of the first i vertices in π, we have
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the following recurrence

T (k) = T (k − 1) + T (k − 2) + · · · + T (0),

which gives T (k) ≤ 2k (since T (0) = 1). Since there are k! permutations of the

vertices in S, there are at most 2kk! partitioned permutations of the vertices of S.

Thus at most 2kk! (k, t)-paths can be obtained from S. Since there are
(

n
k

)

≤ nk/k!

sets of k vertices in G, we conclude that the total number of (k, t)-paths in G is

bounded by (nk/k!)(2kk!) = (2n)k. These (k, t)-paths can be easily constructed in

O(k(2n)k) = O(t(2n)t) time by the exhaustive enumeration method described above.

To allow the merging of two disjoint smaller path structures p and p′ to form a

larger path structure, one end of p must be connected to an end of p′. We introduce

the following notations. Let S and S ′ be two sets of vertices of size at most t in G. An

(S, k, t)-path is a (k, t)-path in which one end is S. Similarly, an (S, S ′, k, t)-path is a

(k, t)-path in which one end is S and the other end is S ′. Our algorithm recursively

constructs a set P0 of (k′, t)-paths for a subgraph G0, where for each set S of size

at most t in G0, at most one (S, k′, t)-path is stored in P0. Suppose that we have

constructed such a set P0 of (k′, t)-paths for a subgraph G0 and let G be a graph that

shares no vertices with G0. The algorithm find-paths(G,P0, k, t) returns a set P of

(k+k′, t)-paths in the induced subgraph of G formed by the vertices in G0 and G, with

at most one (S, k + k′, t)-path in P for each vertex set S of size at most t in G, and

each (S, k + k′, t)-path is a concatenation of a (k′, t)-path in P0 and an (S, k, t)-path

in G. The initial call to the algorithm is find-paths(G, ∅, k, t), which returns a set of

(k, t)-paths in G. Figure 18 illustrates the details of the algorithm, where we assume

that no path structure in P0 contains a vertex in G (see also Figure 17). Step 2 of
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the algorithm represents the base case in which exhaustive enumeration is possible

and step 3 represents the recursive partition step.

Algorithm find-paths(G,P0, k, t)
{Assume that no path structure in P0 contains a vertex in G}

1. P = ∅;
if k ≤ t then

2. for each (S, S ′, k, t)-path p in G do
if P0 = ∅ then

2.1. add p to P if no (S ′, k, t)-path is in P ;
else

2.2. for each (S ′′, k′, t)-path p′ in P0 do
if S ′′ is connected to S then

2.3. concatenate p and p′ into an (S ′, k + k′, t)-path p′′;
2.4. add p′′ to P if no (S ′, k + k′, t)-path is in P ;

else
3. loop 2.51 · 2k times do
3.1. randomly partition the vertices in G into two parts VL and VR;
3.2. let GL and GR be the subgraphs induced by VL and VR respectively;
3.3. for i = k − ⌊(k + t)/2⌋ to ⌊(k + t)/2⌋ do
3.4. PL = find-paths(GL, P0, i, t);

if PL 6= ∅ then
3.5. PR = find-paths(GR, PL, k − i, t);
3.6. for each (S, k + k′, t)-path p in PR do
3.7. add p to P if no (S, k + k′, t)-path is in P ;
4. return P ;

Fig. 18. Illustration of the find-paths algorithm

Theorem A.2 Let G be an undirected graph with n vertices and m edges and let S be

a set of vertices of size at most t in G. If G contains an (S, k, t)-path, then with prob-

ability larger than 1−1/e > 0.632, the set P returned by find-paths(G, ∅, k, t) contains

an (S, k, t)-path. The algorithm find-paths(G, ∅, k, t) runs in O(4kn2tkt+log(t+1)+2.92t2)

time and O(ntk log k + m) space.

Proof We prove the following claims by induction on k.



195

1. If P0 = ∅ and G has an (S, k, t)-path, then with probability larger than 1− 1/e,

the set P returned by find-paths(G,P0, k, t) contains an (S, k, t)-path.

2. If P0 is a non-empty set of (k′, t)-paths, and G has an (S, k, t)-path such that its

other end is connected to a (k′, t)-path in P0, then with probability larger than

1 − 1/e, the set P returned by find-paths(G,P0, k, t) contains an (S, k + k′, t)-

path that is a concatenation of an (S, k, t)-path in G and a (k′, t)-path in P0.

The claims are obviously true when k ≤ t since all (k, t)-paths in G are exhaus-

tively enumerated. We let k > t and first consider the case when P0 = ∅. Suppose

that [S1, S2, . . . , Sk1 , Sk1+1, . . . , Sl] is an (S, k, t)-path in G, where each Si is a level

in the (S, k, t)-path of size at most t, Sl = S,
∑k1

i=1 |Si| = d1 ≤ (k + t)/2 and
∑l

i=k1+1 |Si| = d2 ≤ (k + t)/2. Such a choice of k1 is always possible since |Si| ≤ t for

all i. With probability 1/2k, step 3.1 puts the vertices in S1, S2, . . . , Sk1 into VL and

the vertices in Sk1+1, . . . , Sl into VR. In this case, GL contains the (Sk1 , d1, t)-path

[S1, . . . , Sk1 ], and GR contains the (S, k − d1, t)-path [Sk1+1, . . . , Sl]. By the induc-

tive hypothesis, with probability larger than 1 − 1/e, PL from step 3.4 contains an

(Sk1 , d1, t)-path. When this is the case, the (S, k−d1, t)-path [Sk1+1, . . . , Sl] in GR has

its other end Sk1+1 connected to the (Sk1 , d1, t)-path in PL. By the inductive hypoth-

esis, with probability larger than 1− 1/e, PR from step 3.5 contains an (S, k, t)-path.

Thus the probability ρ that an (S, k, t)-path is added to P in step 3 is larger than

(1 − 1/e)2

2k
>

0.6322

2k
>

1

2.51 · 2k
.

When P0 6= ∅, we follow the same argument as before except that we require

that the (S, k, t)-path in G has its other end connected to a (k′, t)-path in P0, PL

contains an (Sk1 , d1 + k′, t)-path that is a concatenation of an (Sk1 , d1, t)-path in GL

and a (k′, t)-path in P0, and PR contains an (S, k + k′, t)-path that is a concatenation
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of an (S, k − d1, t)-path in GR and a (d1 + k′, t)-path in PL.

Since step 3 loops 2.51·2k times, the overall probability that the set P returned by

find-paths(G,P0, k, t) contains an (S, k, t)-path when P0 is empty or an (S, k + k′, t)-

path when P0 is not empty is

1 − (1 − ρ)2.51·2k

> 1 −
(

1 − 1

2.51 · 2k

)2.51·2k

> 1 − 1

e
.

This completes the first part of the proof.

We now analyze the complexity of the algorithm. Let T (k) be the time com-

plexity of find-paths(G,P0, k, t). When k ≤ t, by Lemma A.1, there are at most

(2n)t (k, t)-paths in G, and these (k, t)-paths can be constructed in O(t(2n)t) time.

Since P0 contains at most one (S, k′, t)-path for each set S of size at most t, the

number of path structures in P0 is at most
(

n
1

)

+
(

n
2

)

+ · · · +
(

n
t

)

≤ nt. For each

(S ′′, k′, t)-path in P0 and each (S, S ′, k, t)-path in G, since both S ′′ and S are of size

at most t, it takes O(t2) time to check if S ′′ and S are connected. Thus we have

T (k) = O(t(2n)t + (2n)tntt2) = O(n2t2tt2) when k ≤ t.

When k > t, since there are at most nt path structures in PR, steps 3.6-3.7 take

O(knt) time. We have the following recurrence

T (k) = 2.51·2k

⌊(k+t)/2⌋
∑

i=k−⌊(k+t)/2⌋

(

T (i)+T (k−i)+cknt
)

≤ 2.51(t+1)2k
(

2T (⌊(k+t)/2⌋)+cknt
)

,

where c is a constant. We can assume that cknt ≤ T (⌊(k + t)/2⌋). Thus

T (k) ≤ 7.53(t + 1)2kT (⌊(k + t)/2⌋) ≤ 7.53(t + 1)2kT (k/2 + t/2).

To solve this, note that a general form derived from the recurrence is

T (k) ≤ (7.53(t + 1))i2g(k,t,i)T (k/2i + t/2i + t/2i−1 + · · · + t/2),
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where

g(k, t, i) = k+(k/2+t/2)+(k/22+t/22+t/2)+· · ·+(k/2i−1+t/2i−1+t/2i−2+· · ·+t/2).

Let i = log k and note that T (k) = O(n2t2tt2) when k ≤ t, we have

T (k) = O((7.53(t + 1))log k22k+t(log k−1)n2t2tt2) = O(4kn2tkt+log(t+1)+2.92t2).

We now analyze the space complexity of the algorithm. Since each recursive call

of find-paths uses O(ntk) space (mainly for the sets PL, PR, and P ) and the depth of

recursion is log k, find-paths(G, ∅, k, t) uses O(ntk log k + m) space.

The algorithm is thus practical when k is moderately large and t is small, with

4k being the dominating term in the time complexity. Note that as t becomes larger

relative to k, the running time increases to compensate for the more unbalanced

subdivisions of the target path structure into two smaller path structures of different

sizes in step 3.3. To achieve an arbitrarily small error bound ǫ, we can run the

algorithm r times so that r satisfies 1/er < ǫ (e.g., for ǫ = 0.001, we have r = 7).

To allow (k, t)-paths for each value of l to be found independently, instead of storing

at most one (S, k, t)-path in steps 2.4 and 3.7, at most one (S, k, t)-path is stored for

each value of l. This increases the time and space complexity by at most a factor of

k.

4. Optimization for t ≤ 2

Since protein interaction graphs are often sparse, we replace steps 2 and 2.2–2.4 (k ≤ t

and P0 6= ∅) of our algorithm by the following procedure to lower the running time

when t = 1: concatenate each ({v}, k′, t)-path in P0 (if it exists) and each edge (v, w)

in G to obtain a ({w}, k′ + 1, t)-path, while storing at most one ({w}, k′ + 1, t)-path
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for each w. When t = 2, a slightly more complicated procedure is used: for each

pair of edges (v1, w1) and (v2, w2) in G such that v1 and v2 appear among the path

structures in P0 and w1 and w2 are in G (v1 and v2, w1 and w2 are not necessarily

distinct), concatenate the ({v1, v2}, k′, t)-path in P0 (if it exists) with {w1, w2} to

obtain a ({w1}, k′ + 1, t)-path if w1 = w2 or a ({w1, w2}, k′ + 2, t)-path if w1 6= w2,

while storing at most one path structure for each {w1, w2}. This procedure gives

(S, k′ + 1, t)-paths for all S of size 1 and (S, k′ + 2, t)-paths for all S of size 2, with at

most one path structure for each S. Since k ≤ t = 2, the other (S, k′ + 2, t)-paths for

S of size 1 can be obtained from the (k′ + 1, t)-paths by starting from each vertex v

in G and search among all its adjacent edges (v, w) to find a ({w}, k′ + 1, t)-path to

concatenate into a ({v}, k′ + 2, t)-path. The above procedures for t ≤ 2 take O(mt)

time, which are much better than the original O(n2t) time for step 2 when G is sparse

and also lead to the same improvement for the entire algorithm. Note that since we

have m = O(n2) in the worst case, the worst case time complexity of the algorithm

stays the same, but it is much faster in practice for interaction graphs. Also note that

this technique is applicable only when t ≤ 2, since it may take more than t edges in

G to fully specify a connection between two sets of vertices of size t when t ≥ 3.

5. Scoring path structures

In reality, for given k and t, there may be many (k, t)-paths in a biological network.

We need to assign a score to each (k, t)-path so that biologically relevant structures

are likely to get better scores. Since we are interested in identifying paths between

two proteins in G, we assume that an additional source and sink are given in addition

to G. Since the proteins that are related to the source and the sink in biological

function are more likely to belong to the same pathway, we assign a weight to each

vertex in G to reflect its functional relatedness to the source and the sink. For yeast
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protein interaction networks, we estimate the functional relatedness of proteins by

using a compendium set of expression profiles corresponding to 300 mutations and

chemical treatments from Hughes et al. [65]. We define the functional similarity

s(p1, p2) between two proteins p1 and p2 to be the Pearson correlation coefficient ρ of

the log(expression ratio) across experiments, which is given by

ρ =

( n
∑

i=1

(xi − x)(yi − y)

)

/

√

√

√

√

n
∑

i=1

(xi − x)2

n
∑

i=1

(yi − y)2,

where n is the number of experiments, xi and yi are the log(expression ratio) of

proteins p1 and p2 respectively in the ith experiment, and x and y are the means of

xi and yi respectively. The weight of a vertex v in G is defined to be s(v, source) +

s(v, sink), with a higher value representing better functional relatedness to the source

and the sink. We then define the score of a (k, t)-path to be the sum of the weight

of its k vertices. This allows different (k, t)-paths to be compared directly for a fixed

(k, t) pair.

To accommodate the source and the sink, we make the following changes to our

algorithm. In step 2.1 (k ≤ t and P0 = ∅), only return (S, k, t)-paths with the other

end connected to the source. After the algorithm is completed, only consider the

best (S, k, t)-paths with S connected to the sink. Instead of storing an arbitrary

(S, k, t)-path, we remember one currently best (S, k, t)-path with the highest score

in steps 2.1, 2.4 and 3.7. Since only vertex weights are used, merging two disjoint

optimal path structures always gives a larger optimal path structure. Thus the opti-

mal substructure property is satisfied for our divide-and-conquer technique and the

probabilistic guarantee in Theorem A.2 is valid for optimal (S, k, t)-paths.

One problem of the current algorithm is that only one (S, k, t)-path is stored for

each fixed S within each iteration, and thus not many distinct path structures may
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be obtained from one run. Since many relevant biological path structures may have

suboptimal scores, it would be desirable to return as many distinct path structures as

possible in one run. Without significantly increasing the time and space complexity,

we modify our algorithm to store top x suboptimal (S, k, t)-paths for each S in steps

2.4 and 3.7. A similar argument shows that a probabilistically guaranteed perfor-

mance can be obtained for each of the top x suboptimal path structures and the time

complexity increases by at most a factor of x2. To verify that these path structures

are sufficiently different from random path structures, we assume that the weights of

each vertex are normally distributed and check that the score of a (k, t)-path is at

least a few standard deviations away from the mean score of random (k, t)-paths in

which k vertices are chosen independently.

6. Application to protein interaction networks

We test our algorithm on the core protein interaction network of yeast [35] from the

DIP database [120], which has 3170 vertices and 6600 edges. Figures 19 and 20 show

top scoring path structures on a few pairs of source and sink that correspond to

the endpoints of four mitogen-activated protein kinase (MAPK) cascades in Gustin

et al. [61], including the pheromone response pathway, the filamentation/invasion

pathway, the cell integrity pathway and the high osmolarity pathway, in which detailed

biological models are available. The main characteristics of these pathways are that

each of them contains a MAPKK kinase, a MAPK kinase and a MAP kinase in series

[61]. To further validate our results, we compare our results to the computational

results in Steffen et al. [114] and Scott et al. [110]. With t = 2, it takes minutes to

obtain the results for k = 10 from one run of the algorithm, hours for k = 11, and

many hours to a day for k = 12. It takes only slightly more time to guarantee a high

probability of finding more than one top suboptimal path structure when compared
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to finding only the optimal path structure.

In general, a larger value of k results in more interacting proteins found within a

path structure and also provides more information. Note that in order to investigate

multiple paths, all the results in Steffen et al. [114] and some of the results in Scott

et al. [110] are aggregates of many linear paths. Since our path structure allows

multiple paths in its definition, we can investigate each path structure separately.

Due to the relatively small values of k we used, each of our path structure generally

contains a smaller number of proteins than their aggregate results. However, our

algorithm makes it easier to identify related proteins at the same level of the path

structure that may indicate that they play similar roles than looking at aggregates of

simple paths.

Figure 19 shows the top path structures obtained between Ste3 and Ste12 that

correspond to the pheromone response pathway and between Ras2 and Ste12 that

correspond to the filamentation/invasion pathway. On the test between Ste3 and

Ste12 for the pheromone response pathway, most proteins in the main chain in Gustin

et al. [61], including Ste3, Ste18, Ste4, Ste5, Ste7, Fus3 and Ste12, were found. A few

other proteins that are present in the biological model in Gustin et al. [61], including

Far1, Bem1, Cdc42 and Gpa1, were also found. The proteins Akr1 and Kss1 are also

present in the results in Steffen et al. [114] and Scott et al. [110], while the protein

Sst2 is also present in the results in Steffen et al. [114]. Akr1 and Sst2 are both related

to the pathway, while Kss1 is related to the almost identical filamentation/invasion

pathway that replaces Fus3 by Kss1 [61]. On the test between Ras2 and Ste12 for the

filamentation/invasion pathway, our algorithm identified many of the same proteins

as above due to the strong resemblance of the two pathways. The proteins Cdc25 and

Hsp82 are also present in the results in Steffen et al. [114] and Scott et al. [110], while

the proteins Cyr1 and Srv2 are also present in the results in Steffen et al. [114]. Some
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Between Ste3 and Ste12: (pheromone response)

k = 10: Ste3–Akr1–Ste18–Ste4–Ste5–Fus3–Gpa1–Sst2–Kss1–Ste12

Ste3–Akr1–(Ste18,Ste5)–(Ste4,Fus3)–Gpa1–Sst2–Kss1–Ste12

k = 11: Ste3–Akr1–Ste4–Far1–Bem1–Ste5–Fus3–Gpa1–Sst2–Kss1–Ste12

Ste3–Akr1–Ste18–Ste4–Ste5–Ste7–Fus3–Gpa1–Sst2–Kss1–Ste12

k = 12: Ste3–Akr1–Ste18–Ste4–Far1–Bem1–Ste5–Fus3–Gpa1–Sst2–Kss1–Ste12

Ste3–Akr1–Ste4–Far1–Cdc42–Bem1–Ste5–Fus3–Gpa1–Sst2–Kss1–Ste12

Between Ras2 and Ste12: (filamentation/invasion)

k = 10: Ras2–Ras1–Cdc25–Ssa2–Gpa1–(Ste4,Fus3)–Ste5–Kss1–Ste12

Ras2–Cdc25–Ssa2–Gpa1–Ste4–Ste5–Fus3–Ste7–Kss1–Ste12

k = 11: Ras2–Cdc25–Ssa2–Gpa1–Ste4–Ste5–Fus3–Mpt5–Sst2–Kss1–Ste12

Ras2–Cdc25–Hsp82–Skp1–Cln1–Far1–Ste4–Gpa1–Sst2–Kss1–Ste12

k = 12: Ras2–Cyr1–Dbf2–Sec27–Prp11–Ssk2–Far1–Ste4–Gpa1–Sst2–Kss1–Ste12

Ras2–Cyr1–Srv2–Abp1–Cla4–Cdc42–Far1–Ste4–Gpa1–Sst2–Kss1–Ste12

Fig. 19. Top two path structures from the find-paths algorithm on the core protein

interaction network of yeast between two pairs of source and sink with k from

10 to 12 and t = 2. Two path structures with the same end are stored within

the algorithm and the algorithm is run seven times to guarantee a 99.9%

probability of finding each of the top two path structures. Proteins within

the same level in a path structure are enclosed in parentheses while adjacent

levels are connected by a horizontal line
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Between Rho1 and Rlm1: (cell integrity) Between Sln1 and Hog1: (high osmolarity)

Rho1–Rga1–Cdc28–Swi6–Slt2–Rlm1 Sln1–Rvs167–Abp1–Tup1–Sko1–Hog1

Rho1–Rga1–Cdc28–Spa2–Slt2–Rlm1 Sln1–Ypd1–Ssk1–Ssk2–Pbs2–Hog1

Rho1–Rga1–Cdc28–Kin2–Slt2–Rlm1 Sln1–Rvs167–Rxt1–Cyc8–Sko1–Hog1

Rho1–Bni1–Myo3–Bck1–Slt2–Rlm1 Sln1–Rvs167–Idh1–Slt2–Ptp2–Hog1

Rho1–Bni1–Bck1–Mkk2–Slt2–Rlm1 Sln1–Rvs167–Lys12–Slt2–Ptp2–Hog1

Rho1–Pkc1–Mkk1–Bck1–Slt2–Rlm1 Sln1–Rvs167–Idh1–Slt2–Ptp3–Hog1

Fig. 20. Top six path structures from the find-paths algorithm on the core protein

interaction network of yeast between two pairs of source and sink with k = 6

and t = 2. Six path structures with the same end are stored within the algo-

rithm and the algorithm is run seven times to guarantee a 99.9% probability

of finding each of the top six path structures

number of other proteins were also included that may not be related to the pathway.

Figure 20 shows the top path structures obtained between Rho1 and Rlm1 that

correspond to the cell integrity pathway and between Sln1 and Hog1 that correspond

to the high osmolarity pathway. Since these pathways are short [61], we set k = 6

(we were not able to obtain good results for larger k). On the test between Rho1 and

Rlm1 for the cell integrity pathway, the sixth suboptimal path structure that includes

the proteins Rho1, Pkc1, Mkk1, Bck1, Slt2 and Rlm1 had the best agreement with

the biological model in Gustin et al. [61], which contains all the components in the

main chain. The fifth suboptimal path structure that includes the proteins Rho1,

Bni1, Bck1, Mkk2, Slt2 and Rlm1 also agreed extremely well, which includes the

protein Bni1 that is related to the pathway. Steffen et al. [114] used a different path

length seven to find the pathway, while Scott et al. [110] missed the MAPKK kinase

Bck1. On the test between Sln1 and Hog1 for the high osmolarity pathway, the second
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suboptimal path structure that includes the proteins Sln1, Ypd1, Ssk1, Ssk2, Pbs2

and Hog1 had the best agreement with the biological model in Gustin et al. [61],

which contains all the components in the main chain. Steffen et al. [114] was unable

to find the pathway, while Scott et al. [110] only found the pathway among lower

ranked suboptimal paths.

7. Discussion

We have developed a new formulation that allows the direct modeling of biological

pathways by a non-linear path structure and gave an algorithm that guarantees that

the top suboptimal path structures are found with high probability. Our approach

can be easily adapted to analyze directed graphs and it can be applied to other types

of biological networks such as metabolic networks. It is also possible to apply the

algorithm to analyze conserved path structures in multiple graphs, by following a

similar idea as in Kelley et al. [73], Sharan et al. [111] and Koyutürk et al. [79] to

first construct a combined graph from the given graphs to represent desirable vertex

correspondences, and then identify high scoring path structures in the combined graph

to obtain alignments of the conserved structures.

One limitation of our current model is that all paths within a path structure must

be of the same length l. Although other edges can exist outside the path structure

that allow some of the paths to have different lengths and different path structures

can have different path lengths, it would be desirable to extend the model to allow

multiple paths of different lengths to be included in a path structure directly. Another

difficulty is that since the algorithm still has exponential time complexity, it can only

be used when k and t are not large. Although our algorithm is asymptotically faster

than the previous approaches, for these relatively small values of k and t, we did

not observe significant improvements in actual running time when compared to the
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previous approaches and most of the path structures found were almost linear.

Since the false positive rate of edges in protein interaction networks can be quite

high, it may be desirable to also take edge reliability into account [35, 39, 110, 114].

One way to do this is to incorporate edge weights in addition to vertex weights. Al-

though no modifications to the algorithm are necessary since the optimal substructure

property is still satisfied, one has to make sure that it is still meaningful to directly

compare the scores of two path structures that have different number of edges when

both vertex and edge weights are used.

We finished the discussion of the signaling pathway problem. Let us go to the

next section and discuss the motif finding problem.

B. Motif Finding and DNA Sequences

1. Introduction

The motif finding problem is among the most well-studied problems in computa-

tional biology, with important applications in the computational identification of

regulatory sites given a set of genes believed to be co-regulated. Most early motif

finding approaches used conventional statistical optimization techniques to identify

the most over-represented patterns in a sample of sequences (Stormo and Hartzell

[116]; Lukashin et al. [88]; Lawrence et al. [81]; Bailey and Elkan [8]). Pevzner and

Sze ([98]) proposed a combinatorial graph-theoretic formulation and suggested algo-

rithms WINNOWER and SP-STAR demonstrating that, at least for artificial samples

with uniform background distribution, these previous approaches have not reached

the limit of prediction yet: they are not able to find implanted patterns in the cases

when these patterns should be found. More recently, a steady stream of combinatorial

approaches were proposed which investigate the theoretical prediction limit of motif
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finding algorithms and further improve both prediction performance and computa-

tional speed (Marsan and Sagot [89]; Buhler and Tompa [17]; Eskin and Pevzner [47];

Keich and Pevzner [72]; Price et al. [100]). Instead of looking for the motif instances

directly as in early sample-driven approaches, most of these later approaches assume

the existence of a single string which is close to each motif instance and try to lo-

cate this string directly by a pattern-driven technique. These approaches fall roughly

into two categories: either a fast heuristic is used which does not guarantee that the

best solution is found, or an exact algorithm is employed which is often quite slow in

practice.

In this section, we propose an integrated approach utilizing both sample-driven

and pattern-driven techniques which allows us to develop a fast exact approach for

moderate size problems. We employ the clique formulation from Pevzner and Sze

([98]) to represent each candidate motif as a clique containing a set of motif instances

as in the sample-driven approach, while further requiring the existence of a string

that is close to every motif instance in the clique as in the pattern-driven approach.

This reduces the motif finding problem to finding large cliques which satisfy the close

string constraint. Computational experiments show that the new technique is able to

solve some of the most difficult motif finding problems which were unsolvable before

using the clique formulation alone.

One possible approach to solve the problem is to employ a branch-and-bound

technique to repeatedly expand a growing clique (Bomze et al. [15]), while pruning

those branches which will not possibly lead to a clique that satisfies the constraint.

However, a recent result (Chen et al. [23]) showed that unless unlikely consequences

occur in parameterized complexity theory, the clique finding problem (and many other

NP-hard problems) cannot be solved in no(k) time, where n is the size of the graph

(number of vertices) and k is the size of the maximum clique. Thus this kind of
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clique-based approach is not likely to be efficient enough for large samples if we do

not take advantage of special structures inherent in the given graphs.

The key observation is that we can restrict our attention to k-partite graphs,

which are graphs consisting of k parts with no edges between vertices within the same

part. Although the clique finding problem in k-partite graphs is still an intrinsically

difficult computational problem, we will show that a divide-and-conquer approach

can be used to circumvent the difficulties in the cases when every sequence contains

a motif instance, by subdividing the original graph into smaller subgraphs, using a

branch-and-bound algorithm to solve each subproblem independently, and combining

the results. To cope with imperfect biological samples, we will demonstrate how to

generalize this approach to handle the cases when almost all sequences contain a

motif instance. When many sequences do not contain a motif instance, we will show

an improved branch-and-bound approach to handle realistically sized samples. When

there can be more than one motif instance in a sequence, we will show how to reduce

the more general problem of having at most p instances per sequence, for a small p,

to the original problem so that we still have an efficient algorithm.

One very important requirement of the proposed algorithm is to be able to quickly

decide if a close string exists when given a clique containing a set of strings of the

same length. Unfortunately, this problem has been proven to be NP-hard (Lanctot et

al. [80]). Although branch-and-bound techniques for this problem have been proposed

(Gramm et al. [58]), they are too slow for our purpose if used directly. One way to

solve this problem is not to check for the existence of a close string every time when

we expand a clique, but check only when a clique potentially larger than before is

found. To reduce the number of intermediate cliques, weaker necessary conditions

are used instead during every clique expansion to prune impossible branches.

A further concern is that while this model is adequate in many cases, it is not
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a sufficient model when some position within the motif has more than one dominant

letter, since we are forced to choose only one letter in each position of the close string.

We will discuss various possibilities to address this problem. Recently, Price et al.

([100]) and Eskin ([46]) tried to address this problem by using a profile instead of a

single string to represent a motif.

2. Problem formulation

We use the combinatorial (l, d)-motif model proposed in Pevzner and Sze ([98]): start

from a set of random sequences {s1, . . . , sk}, each of a fixed length, implant an (l, d)-

motif by fixing a pattern P of length l and putting a randomly mutated pattern

with exactly d substitutions from P at a randomly chosen position in each sequence.

Without knowing P and where the implantations are, the motif finding problem is

to recover the locations of the implanted patterns. Notice that making exactly d

substitutions gives a more difficult model than another alternative of making at most

d substitutions since distances between the motif instances will be greater.

A graph-theoretic approach was proposed in Pevzner and Sze ([98]): for each

position j in sequence si, construct a vertex sij representing the substring of length

l starting at position j in si. Connect two vertices sij and spq by an edge if i 6= p

and the distance (number of substitutions) between them does not exceed 2d. In this

formulation, an (l, d)-motif is modeled by a clique of size k. In light of substantial

computational difficulty, Pevzner and Sze ([98]) developed the WINNOWER algo-

rithm to find large clique-like structures instead of cliques. Liang ([82]) made a few

refinements to WINNOWER to make it more sensitive.

The typical size of a motif finding problem consists of 10 to 50 sequences with

sequence lengths ranging from a few hundred to about 2000, and thus there can be

from a few thousand to tens of thousands of vertices in the constructed graph. Despite
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the large graph size, an important observation is that the size of the maximum clique

is small. Since edges are constructed only between vertices in different sequences

in the (l, d)-motif model, the resulting graph is k-partite, with all the vertices of a

sequence residing in the same part. This restricts the size of the maximum clique to be

at most k. In fact, in the (l, d)-motif model, each sequence contains exactly one motif

instance and the maximum clique size is k. We will take advantage of these two facts

to develop a divide-and-conquer approach for the problem. For simplicity of analysis,

we assume that the length of each sequence is the same, and thus, the number of

vertices in each part of the graph is the same. We formulate the unconstrained clique

finding problem as follows.

CLIQUEkP: Given a k-partite graph G with n vertices in each part, find

a maximum clique in G.

Unfortunately, the problem is still hard to solve.

Proposition B.1 CLIQUEkP is NP-hard.

We introduce the close string constraint as follows.

CLIQUEkP(l, d): Given a k-partite graph G with n vertices in each

part, where each vertex represents a string of length l and an edge is

connected between two vertices if they are in different parts and their

distance (number of substitutions) is at most 2d, find a maximum clique

in G such that there exists a string s of length l with distance at most d

to every string in the clique.

Computational experiments show that with this constrained formulation, we are

able to solve very difficult motif finding problems, such as samples containing 20
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sequences each of length 600 with (16,5)- or (18,6)-motifs, which were unsolvable

before due to an exceedingly large number of unconstrained maximum cliques (> 106)

that do not represent the implanted motif (these results were obtained by running

our clique finding program without the close string constraint). In fact, if we think of

a solution as the close string s instead of the corresponding clique, this constrained

formulation has exactly the same solutions as a pure pattern-driven approach. The

major advantage of including cliques in the formulation is that it allows the use of a

fast divide-and-conquer approach when the size of the maximum clique is very close

to k.

With the above formulation, there is no guarantee that the letter at each position

of a close string s is among the most frequent letters at that position in the motif

instances, and thus s may not characterize the motif very well. When it is desirable

to address this requirement, define the consensus pattern of a set of strings to consist

of the most frequent letter at each position (in case of ties, include all the tied letters

in the consensus pattern at that position), and define a consensus string to be any

string obtained by picking one letter from each position of the consensus pattern. We

revise the model as follows.

CLIQUE
′

kP
(l, d): The problem is CLIQUEkP(l, d), with the additional

requirement that s is among one of the consensus strings.

3. Finding cliques of size k in k-partite graph

Instead of addressing the full problem directly, we first consider the simpler problem

of finding cliques of size k only. This corresponds to the case when every sequence

contains a motif instance, which can be applied to more confident samples involving

confirmed co-regulated genes. Later we will generalize the approach to find maximum
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cliques not necessarily of size k. We first consider the basic problem of finding k-

cliques without imposing the close string constraint.

k-CLIQUEkP: Given a k-partite graph G with n vertices in each part,

find a k-clique in G.

We will use a divide-and-conquer approach to handle the problem. The idea is to

subdivide the given k-partite graph into several k0-partite subgraphs with k0 < k and

solve each smaller subproblem independently using a branch-and-bound approach, as

long as the number of cliques of size k0 in each subproblem is not too high. This

approach reduces the waste due to repeated computations within the same subgraphs

in conventional branch-and-bound techniques when the search is applied to the entire

graph. These cliques can then be used as vertices in a second graph in which cliques

from the same subproblem reside in the same part and two vertices are connected

by an edge if the corresponding cliques together form a larger clique. There is an

one-to-one correspondence between cliques in this graph and cliques in the original

graph, and a recursive procedure can be used to find them.

Fig. 21 shows the divide-and-conquer algorithm utilizing a recursive procedure.

One detail is that k0 may not divide k evenly. In this case, the last subgraph will

have overlapping parts with other subgraphs, requiring a slight modification to the

algorithm.

One difficulty with the above approach is that it is hard to determine what k0 to

use. One could use a random k-partite graph model and estimate appropriate values

of k0 based on average case analysis, but significant correlations between adjacent

vertices and severe non-randomness around the implanted patterns make such an

estimate very unreliable. This problem can be corrected by an automatic approach

which subdivides the original graph dynamically.
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Algorithm find-clique(G = ({V (1), . . . , V (k)}, E))

for i ← 1 to k/k0 do
C(i) ← set of all k0-cliques in the induced subgraph G[V ((i−1)k0+1), . . . , V (ik0)];

if (k0 < k) then
construct G′ = ({C(1), . . . , C(k/k0)}, E ′), where for cp ∈ C(p) and
cq ∈ C(q) with p 6= q, (cp, cq) ∈ E ′ if and only if cp ∪ cq is a clique in G;
C(1) ← set of all cliques from find-clique(G′) transformed to
cliques in G;

return C(1);

Fig. 21. Algorithm find-clique(G) for finding k-cliques in a k-partite graph

Given a threshold t denoting the maximum number of cliques allowed in a sub-

graph, the idea is to find the smallest induced subgraph G[V (1), . . . , V (i)] such that

the number of cliques of size i is at most t by trying each i incrementally. To utilize

intermediate results as much as possible, we follow a combined breadth-first depth-

first approach based on the branch-and-bound technique. Consider each target clique

size i in turn (starting from 2), and keep an ordered list L of cliques representing

all partial results computed so far, initialized to a single entry containing an empty

clique with no vertices. Initialize a pointer P pointing to this entry. Repeat the

following: suppose that the clique c pointed by P is of size j with one vertex from

each of V (1), . . . , V (j). If j < i, replace c by a list of all cliques of size j +1 that form a

clique with c by adding one vertex from V (j+1); otherwise j = i and we advance P to

the next entry in L. If the number of cliques in L before P is more than t, the current

subgraph has too many cliques: increment i by 1, reset P to point to the first entry

in L and continue to look into the next part V (i). If there is no more entry in L, we

are done finding all cliques in the subgraph G[V (1), . . . , V (i)], repeat this procedure

starting with the next part V (i+1) to determine the next subgraph.
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By choosing t = O(n), we can make sure that the second clique finding problem

is not more complicated than the original. Since the procedure does not waste any

partial results, its computational performance should be similar to the previous ap-

proach. In terms of memory requirement, with appropriate data structures we only

need space for at most t cliques (entries before P ) in addition to the normal space

requirement for depth-first search (entries after P ). To further decrease the number

of cliques that need to be considered, when expanding a clique of size j to a clique

of size j + 1, vertices that do not have a neighbor in all the remaining parts are

discarded.

We now incorporate the close string constraint in the model. As discussed before,

instead of imposing it every time when a clique is expanded, we check only when

the clique size becomes i. During every clique expansion, the following necessary

conditions are used to prune impossible branches (proofs omitted).

Proposition B.2 Given three strings s1, s2 and s3 each of length l, assume that

the maximum pairwise distance (number of substitutions) is between s1 and s2 with

d(s1, s2) = d′, where d < d′ ≤ 2d. Without loss of generality, assume that all these

differences are in the last d′ positions of s1 and s2, and cut each string si into two

parts s′i and s′′i with |s′′i | = d′ (in other words, we have s′1 = s′2 and d(s′′1, s
′′
2) = d′). Let

x = d(s′1, s
′
3) = d(s′2, s

′
3), y = d(s′′1, s

′′
3), and z = d(s′′2, s

′′
3). Then a string s of length l

with distance at most d to each of the three strings exists if and only if x+y+z ≤ 3d.

Proposition B.3 Given a set S of strings all of length l, if there exists a string s of

length l with distance (number of substitutions) at most d to every string in S, then

(i) for every pair of strings s1 and s2 in S with distance d(s1, s2) = 2d, the jth letter

of s must either be the jth letter of s1 or the jth letter of s2; (ii) for every pair of

strings s1 and s2 in S with distance d(s1, s2) = 2d − 1, when the jth letter of s1 and
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the jth letter of s2 are the same, the jth letter of s must be this letter.

In the first condition, if the maximum pairwise distance between three strings is

at most d, a close string s always exists. Otherwise, it is in the form of an inequality

which can be easily checked given any sub-clique of size 3. To use the second condition,

whenever a clique c is expanded to include a vertex v, v is checked against each vertex

in c and also against the old constraints on c. It is very useful since the vast majority of

edges in the graph have a distance of either 2d (typically over 50%) or 2d−1 (typically

over 20%). If any inconsistencies are found, the branch is pruned. Computational

experiments show that these conditions help to reduce the subdivision size k0 in many

cases and make the problem much easier to solve (as opposed to not using them).

When a new clique of size i is found, we use the branch-and-bound algorithm from

Gramm et al. ([58]) to search for a close string s, modifying it to avoid trying letters

disallowed from the above constraints to further reduce the search space.

To address the revised model where the close string s is required to be among one

of the consensus strings, when a clique reaches size i, we compute its consensus pattern

(which may consist of more than one letter at some positions in case of frequency ties)

and use it to further restrict the letters that can appear in each position of s. When i

is large enough, most positions of the consensus pattern consist of only one letter and

thus this requirement eliminates almost all the need to search for s. However, one

must be careful not to use the consensus patterns to prune the search branch since it

is still possible that the clique will expand into a solution.

Pevzner and Sze ([98]) used samples containing 20 random sequences each of

length 600 as test samples (which are typical sizes of realistic biological samples)

and found that finding (15,4)-motifs is very challenging. Buhler and Tompa ([17])

found that the (15,4)-motif problem is not the hardest, but (14,4)-, (16,5)- and (18,6)-
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motif problems are considerably more challenging. They showed, by a probabilistic

analysis of the (l, d)-motif model, that these problems are already at the prediction

limit of motif finding algorithms, which include any sample-driven or pattern-driven

approaches. Table III shows the performance of the divide-and-conquer approach for

two classes of limiting motif finding problems. The correct motif was found in all

cases.

Table III. Typical values of k0 and typical computation times of the divide-and-con-

quer approach after the graph construction phase. In each case, the values

are consistently obtained over a few runs with t set to 600 on random sam-

ples with 20 sequences each of length 600 containing an (l, d)-motif

(l, d) (11,2) (13,3) (15,4) (17,5) (19,6) (10,2) (12,3) (14,4) (16,5) (18,6)

k0 2 3 4 6 8 3 5 8 10 13

speed secs secs secs mins mins secs secs mins mins hrs

These results showed that in almost all cases we were able to subdivide the

original problem containing 20 sequences into at least two subproblems. Note that

for easier samples (data not shown), it is almost always the case that k0 = 2 and thus

the algorithm is very fast. We found that even for the most difficult motif finding

problems, the graphs become so sparse in subsequent recursion levels that it is almost

always the case that k0 = 2 in these deeper levels and thus the running time becomes

negligible when compared to the outermost level. For most samples in Table III, the

total number of 20-cliques with a close string was more than one, sometimes even in

the tens or hundreds, suggesting that these samples become so difficult that there are

random patterns which can serve as motif variances. However, for all these cliques

the close string is unique and is always the correct one, and thus at least for these

simulated samples, it is sufficient to find only one solution. Price et al. ([100], Table 1)
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compared the performance of several algorithms on the (15,4)-motif problem. From

this table, we found that on this problem while the exact divide-and-conquer approach

is not as fast as the fastest heuristics with 99.7% success rate (in a few seconds), it is

much faster than other exact algorithms with 100% success rate (in minutes).

4. Finding maximum cliques in k-partite graph

A similar divide-and-conquer technique can be used to find maximum cliques when

their size k′ is less than k, by subdividing the original k-partite graph into r subgraphs

Gi, 1 ≤ i ≤ r, such that Gi is ki-partite and
∑r

i=1 ki = k, and finding cliques within

the subgraphs independently. In each subgraph Gi, we need to look for cliques of size

k′
i ≤ ki such that

∑r
i=1 k′

i = k′ over all possible combinations of k′
1, . . . , k

′
r. Individual

clique finding in subgraphs can be accomplished by branch-and-bound approaches.

To find maximum cliques of unknown size, one can start the search with k′ = k, and

iteratively reducing k′ until maximum cliques are found.

One drawback with the above approach is that it is difficult to determine the

subdivision sizes ki so that there are not too many cliques within each subgraph.

Alternatively, a straightforward direct reduction is possible so that the original divide-

and-conquer approach can be used. For each choice of k′ parts out of k parts to form

an induced k′-partite subgraph, run the original k′-partite clique algorithm (with

automatic determination of subdivision sizes) on each subgraph to find k′-cliques.

The problem is that there are a total of
(

k
k′

)

possible choices and this number grows

very quickly as k − k′ increases.

To avoid this combinatorial explosion, we employ a reduction at the graph level

to construct a single k′-partite graph G′ = ({W (1), . . . , W (k′)}, E ′) to represent all

k′-cliques in the original k-partite graph G = ({V (1), . . . , V (k)}, E), where W (i) (=

W (i)(k, k′)) is a set of new vertices representing the vertices in V (i) ∪ . . . ∪ V (i+k−k′),
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and for i < j, a vertex v in W (i) is connected to a vertex w in W (j) if v ∈ V (i+p)

and w ∈ V (j+q) are connected in G with p ≤ q. It is evident that there is an one-to-

one correspondence between k′-cliques in G′ and k′-cliques in G, and thus only one

application of the divide-and-conquer algorithm is needed to find them. One problem

with this reduction is that the size of G′ grows very quickly as k − k′ increases: if G

contains nk vertices, G′ contains n(k − k′ + 1)k vertices. Although G′ is less dense,

given threshold t the number of parts in the subgraphs after subdivision and the

running time increase substantially as k − k′ increases.

The above two reductions stand at two extremes: the first reduction employs

a large number of small k′-partite graphs while the second reduction uses a single

k′-partite graph G′ with many vertices. One approach that lies between these two

extremes is to decompose G′ into an intermediate number of k′-partite graphs with

an intermediate number of vertices. Recall that in the first attempt we subdivide G

into r subgraphs such that the ith subgraph Gi is ki-partite and
∑r

i=1 ki = k. Let si

(=
∑i−1

j=1 kj +1) be the index of the first part of Gi within G. By applying the previous

reduction to each ki-partite subgraph Gi, Wi = {W (si)(ki, k
′
i), . . . , W

(si+k′
i−1)(ki, k

′
i)}

includes all vertices for constructing a single k′
i-partite graph to represent all k′

i-

cliques in Gi. For each fixed combination of k′
1, . . . , k

′
r such that

∑r
i=1 k′

i = k′, the

induced k′-partite subgraph G′[∪r
i=1Wi] represents all k′-cliques to which the dynamic

subdivision algorithm can be applied.

In effect, we have decomposed G′ into smaller induced subgraphs, one for each

combination of k′
1, . . . , k

′
r, which together specify exactly the same set of k′-cliques as

G′ and can be searched separately. For each value of r and for each choice of values

of ki, we get one decomposition and the number of decomposed subgraphs increases

as r increases, which is a tradeoff against the smaller sizes of these subgraphs. We

found that r = 2 and k1 = k2 work well, with a linear increase in the number of
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decomposed subgraphs as k−k′ increases. When almost all sequences contain a motif

instance, the above technique reduces the motif finding problem to a manageable

number of subproblems to which the divide-and-conquer approach is applied. We

have successfully applied it (with reasonable computation times) to find motifs in

very difficult motif finding problems such as samples containing (14,4)- or (16,5)-

motifs where 20 out of 21, 22 or 23 sequences each of length 600 contain a motif

instance.

To handle the more general case when there can be at most p motif instances

per sequence, for a small p, we reduce this problem to the original problem as fol-

lows: instead of constructing only one part for each sequence, construct p parts each

representing the same sequence, resulting in a kp-partite graph. As before, connect

vertices from different parts by an edge if the distance between them does not exceed

2d, except that vertices representing overlapping positions within the same sequence

are not connected.

5. Branch-and-bound algorithm

The above divide-and-conquer approach is very fast when every sequence contains a

motif instance (i.e., k′ = k), but its running time requirement increases rapidly as

k−k′ increases. To handle cases when many sequences do not contain a motif instance,

we have to resort back to traditional branch-and-bound approaches. Standard branch-

and-bound techniques employ the following recursive algorithm find-clique(G) to find

a maximum clique in G = (V,E): let Cv be the set of cliques returned from applying

find-clique on the graph induced by all neighbors of vertex v, output the largest set

{v} ∪ Cv over all v ∈ V (Bomze et al. [15]). Although these approaches were shown

to be feasible only on unrestricted graphs with at most a few hundred vertices, we

will show that with appropriate optimizations these approaches can still be applied
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to motif finding.

If the goal is to find at most u maximum cliques, once a maximal clique of size m

is found, there is no need to look for maximal cliques of size less than m. Also, once

more than u maximal cliques of size m are found, there is no need to look for maximal

cliques of size m. These observations help us to prune the search tree branches when

it is no longer possible to obtain a large enough clique. With the above optimization,

it is advantageous to consider the vertices in non-increasing degree order (denoted

by ≻) so that it is more likely to get large cliques during the earlier branches. To

make each maximum clique appear uniquely while simultaneously trying to further

reduce the running time, when a vertex v is considered in the search tree, only the

vertices w satisfying v ≻ w and (v, w) ∈ E are included in the subgraph at the next

recursion level to build larger cliques. During every clique expansion, we use the

necessary conditions for the existence of a close string to prune impossible branches.

Only when a new potential maximal clique is found, we look for a close string.

Computational experiments show that except in the cases when almost every

sequence contains a motif instance (when the divide-and-conquer approach can be

many times faster), this enhanced branch-and-bound algorithm is faster than the

divide-and-conquer approach. By also allowing edges between vertices in the same

sequence, the branch-and-bound approach can be further generalized to handle the

cases when there can be at most p motif instances per sequence, for a small p, or even

to the case when there can be at most p motif instances in total, without restrictions

on the number of motif instances in any particular sequence.

6. Biological samples

Since Price et al. ([100]) reported considerable difficulties in obtaining experimentally

confirmed samples with biological motifs that are very difficult to find, our goal here
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is simply to show that our model is appropriate and our new algorithms are effective

by testing on a few published data sets. For these data sets, most standard sample-

driven or pattern-driven approaches are also able to find the motifs. In each case, we

assume that l is known while d is unknown and the general strategy is to start with

d = 0 and try successively larger d. Since the motif finding problem is usually much

easier when d is small, this approach does not add much to the computation time.

The sample in Stormo and Hartzell ([116]) contains 18 sequences each of length

105 with experimentally confirmed E.coli CRP binding sites. Using l = 16, the most

accurate solution returned correct sites in 16 out of 18 sequences when d = 6. There

are three samples in Sze et al. ([117]) (also from E.coli), all containing sequences

of length 200. The first (ARG) sample contains 9 upstream sequences from genes

regulated by the arginine repressor ArgR, with a two-part site in each sequence,

where each part is of length 18. The patterns in the two parts are very similar and

they are separated by 3 positions in 8 out of 9 sequences. When the patterns were

treated as one long motif of length 39, all the 8 two-part sites were found when d = 14.

With such a large d, this is the only case when the consensus string requirement is

required in addition to the close string constraint to limit the search space so as to get

reasonable computation time (in the other cases, this is optional). When the patterns

were treated as independent motifs of length 18 and we looked for at most two motif

instances per sequence, most of the sites were found when d = 6. The second (PUR)

sample contains 19 upstream sequences from genes regulated by the purine repressor

PurR with sites of length 16, and most sequences contain one site. Almost all of these

sites were found when d = 5. Many of the above cases reduce to either the (16,5)-

or (18,6)-motif problems and the divide-and-conquer approach was able to finish the

computation within seconds or minutes. The third (CRP) sample is a much more

difficult variant of the sample in Stormo and Hartzell ([116]) containing 33 sequences
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with variable number of weak sites in each sequence and many sequences contain no

sites. Unfortunately, the divide-and-conquer approach was not applicable, and with

l = 16, the branch-and-bound approach was not able to terminate in a reasonable

amount of time when d = 5. Partial results revealed that more than 10 correct sites

and an approximately correct close string were found when d = 4.

7. Discussion

By employing a constrained clique formulation to model motifs, we provide two exact

algorithms: a very fast divide-and-conquer approach to handle the cases when almost

all sequences contain a motif instance and an optimized branch-and-bound algorithm

for the other cases when many sequences do not contain a motif instance. There are a

few additional complications that need to be addressed before the new algorithms can

be applied in all situations: most biological samples have a non-uniform nucleotide

composition, and both l and d are unknown. A good strategy is to use weighted

distance values according to the background distribution and try different values

of d over a range of values of l, while employing heuristics to avoid wasting time on

unrealistically large d for a given l. To compare motifs of different lengths and different

number of instances, for each motif a score can be computed based on similarity

between predicted motif instances.

To further improve the formulation to better model biological reality, one pos-

sibility is to allow degenerate letters in the close string. Although this allows motifs

to have more than one dominant letter in some positions, the search space becomes

much larger. In fact, one can go a step further to use a profile instead of a string

to model a motif, which takes into consideration the relative frequency of all letters

within a position. However, it is unclear whether a graph-theoretic approach will be

able to help to limit the search space.
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C. Chapter Conclusion

In this chapter, we used parameterized algorithms to solve the signaling pathway

problem and the motif finding problem from bioinformatics. The signaling path-

way problem is a very important problem in molecular biology. Understanding the

mechanism of how signals are transmitted in living body can help us to study many

fundamental problems in biology. In this chapter, we used the (k, t)-path to formulate

the signaling pathway problem into a graph problem. As we designed an algorithm

of running time O(4kn2tkt+log(t+1)+2.92t2) for the (k, t)-path problem and in applica-

tions, k is usually from 6 to 15 and t is from 1 to 3, the signaling pathway problem

was solved very effectively. Furthermore, the (k, t)-path is a generalization of the

k-path which was used to formulate the signaling pathway problem before by other

researchers. Hence in addition to pathways that have been founded by other models,

we also found more pathways that cannot be found by the previous k-path model.

The motif finding problem is among the most well-studied problem in bioinfor-

matics, with important application in the computational identification of regulatory

sites given a set of genes believed to be co-regulated. The motif finding problem

can be formulated by (l, d) model (proposed by Pevzner and Sze [98]) into a graph

problem problem, where l is less than 20 and the d is less than 7. In the chapter, we

combined parameter algorithm techniques that take advantage of these small l and k

with pattern driven and sample driven techniques to solve the motif finding problem.

From the result, our method is very effective and found patterns that could not be

found by previous methods for the problem.

Many computational problems from bioinformatics are related to parameters that

take only small values. We believe that using parameterized algorithms is a good way

to find optimal solutions for NP-hard problems from bioinformatics. With further
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improvement of algorithms, more and more NP-hard problems from bioinformatics

will be solved efficiently.
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CHAPTER VIII

CONCLUSIONS

A. Summary

In this dissertation, we studied parameterized NP-hard problems and their appli-

cations in bioinformatics. We are especially interested in parameterized NP-hard

problems that are fixed parameter tractable, i.e. that can be solved by algorithms of

running time in form of f(k)nO(1), where f(k) depends only on k. Hence if k is not

very large, those algorithms are very effective.

In Chapter II, we introduced basic principles of techniques that are suitable for

designing parameterized algorithms. These techniques include divide and conquer,

color coding and dynamic programming, iterative compression, iterative expansion,

and kernelization. All these techniques have been used to solve parameterized NP-

hard problems in later chapters.

In Chapter III, we used the branch and bound to study the p-node multiway

cut problem, where we improved the time complexity of the best previous algorithm

for the problem from O∗(4k3
) to O∗(4k). The p-node multiway cut problem has

important applications in networks, such as finding a separator to segregate a set of

terminals. This separator can be used to monitor communication among terminals. In

addition to significant progress of the algorithm, the method developed in this chapter

is very interesting. This new method helped us to solve a long standing open problem

– the pd-feedback vertex set problem on directed graphs. Another high point

in this chapter is the extended idea about the branch and bound method. In solving

the problem, we extended the traditional branch and bound method such that the

instance was branched in more than one direction to make the instance simpler, i.e.
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values of more than one parameter were changed. This idea enhances the power of

using branch and bound method to solve parameterized NP-hard problems.

In Chapter IV, by our newly developed divide and conquer technique for param-

eterized NP-hard problems, we first designed a randomized parameterized algorithm

of running time O∗(4k) for the pw-path problem. Comparing with the previous

best algorithm for the problem, our new algorithm not only significantly improves

the time complexity, but also greatly improves the space complexity, where the pre-

vious best algorithm has a time complexity of O∗(5.5k) and a space complexity of

O∗(2k) while our new algorithm has a time complexity of O∗(4k) and a space com-

plexity of O(nk log k). The divide and conquer is a general technique to deal with

parameterized NP-hard problems. In this chapter, we also used this technique to

develop improved randomized parameterized algorithms for the pw-r-d matching

and pw-r-set packing problems. Then we introduced how to use random set par-

tition technique to solve the p-set splitting problem. Especially, we gave the first

parameterized algorithm of running time in form of f(k)nO(1) for the pw-set split-

ting problem. Finally, we introduced (n, k)-universal sets that were first developed

by Noa et. al. [93] and used (n, k)-universal sets to derandomize our new randomized

algorithms for the pw-path, pw-r-d matching, pw-r-set packing and pw-set

splitting problems.

In Chapter V, first, we introduced a color coding scheme of size O∗(6.4k). A

color coding scheme for a set X is a collection of k-coloring functions such that every

subset of k elements in X is colored properly by at least one k-coloring function in the

scheme. The color coding scheme can be used to derandomized algorithms based on

random coloring technique. With our improved scheme, many previous algorithms for

the p-path, p-matching and p-packing problems are greatly improved. Then we

combined this new color coding scheme with other two new techniques to improve the
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algorithm for the p-3-d matching problem. One technique is the iterative expansion,

which in the searching for a solution of size k, begins from a solution of size 1 and

iteratively finds a solution of size i+1 on the base of a solution of size i until a solution

of size k is found. Another technique is that instead of coloring symbols from all three

columns of the problem, we only color symbols from two columns. By this technique,

we designed an algorithm for the p-3-d matching problem that is better than the

algorithm for the more general p-3-set packing problem (note: other algorithms

usually solve both problems in the same time complexity).

In Chapter VI, we studied parameterized feedback vertex set problems on

directed (unweighted), undirected unweighted and undirected weighted graphs (pd-

feedback vertex set, p-feedback vertex set and pw-feedback vertex

set). Especially, the algorithm for the pd-feedback vertex set problem is the

first algorithm that has the running time in form of f(k)nO(1). Hence solved a long-

standing open problem, i.e. if pd-feedback vertex set problem is FPT. In the

process of solving the pd-feedback vertex set problem, we first used O∗(g(k))

time, where g(k) depends only on k, to transform the pd-feedback vertex set

problem into a new problem called the pd-skew separator problem. Then we

solved the pd-skew separator problem by techniques that are similar to techniques

in Chapter III for the p-node multiway cut problem. Both of our algorithms

for p-feedback vertex set and pw-feedback vertex set problems have the

running time O∗(5k), where the running time for the p-feedback vertex set is

very close to the running time of O∗(4k) for the previous best (randomized) algorithm

and the running time for the pw-feedback vertex set problem is better than the

running time of O∗(6k) for the previous best (randomized) algorithm. One important

technique we have used to solve these three problems is the iterative compression

which was proposed by Reed et. al. [107]. Other important techniques are extended
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branch and bound techniques. Unlike traditional branch and bound techniques that

have only one direction (reduce the value of the only parameter) to do branching and

one condition to stop branching (when k = 0), we have more than one direction to

do branching and also more than one condition to stop branching. These extended

techniques let us have more flexibility to solve parameterized NP-hard problems.

In Chapter VII, we used parameterized algorithm techniques to solve the signal-

ing pathway problem and the motif finding problem in bioinformatics. The signaling

pathway problem is a very important problem in biology, such as to understand how

signals are transmitted in living body can help us to study cancers. In this chap-

ter, first we used a better model, the (k, t)-path, to formulate the pathway problem

into a parameterized NP-hard problem on graphs. Then we designed a very effec-

tive algorithm to find the (k, t)-path on graphs. Our model and algorithm enable

us to find pathways more quickly and also to find pathways that cannot be found

by other models. The motif finding problem is one of most well-studied problems in

bioinformatics. This problem is to find the regulatory sites in DNA sequences. These

sites can help us to understand where specific genes are located in DNA sequences

and how these genes work. In our study, we first used (l, d) model to formulate the

motif finding problem into a graph problem. We then combined our parameterized

algorithm techniques with sample-driven and pattern-driven techniques to find more

sites that are hard to be found by previous methods.

In the process of solving above problems, we proposed new general techniques

that can be used to solve other parameterized NP-hard problems. These techniques

include divide and conquer, iterative expansion, probabilistic method to deduce a

deterministic kernalization algorithm etc. We have used them to obtain some exciting

results. We believe that those new techniques will be used to solve more NP-hard

problems.
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B. Future Work

Studying parameterized algorithms is a very exciting research direction. In recent

years, much improvement has been made in this direction, including better algo-

rithms, methods and techniques. Currently, by parameterized algorithm techniques,

even using a normal PC, we can find optimal solutions practically for some NP-hard

problems from applications. This is a big progress for solving NP-hard problems.

Traditionally, people try to avoid using NP-hard problems to formulate appli-

cation problems. As it is hard to find effective algorithms to deal with NP-hard

problems, most people think that finding optimal solutions for NP-hard problems is

impractical. If people have to solve NP-hard problems, they usually use heuristic

methods which can not guarantee to find optimal solutions. However, parameterized

algorithms provide new ways to find optimal solutions for NP-hard problems from

applications.

We believe that in next 10 years, studying parameterized algorithms is a very

important research direction to find optimal solutions for NP-hard problems from

applications. Currently, some parameterized algorithms are so effective that they can

solve parameterized NP-hard problems quickly in a normal PC even when parameters’

values are between 60 to 70. Hence, if we further improve those parameterized algo-

rithms, more NP-hard problems from applications will be solved practically. Progress

in computer hardwares or using super computers will further guarantee the possibil-

ity of using parameterized techniques to solve NP-hard problems from applications.

All above are important motivation that we pay much attention to parameterized

algorithms and their applications in our future research. Examples of problems for

our further study follows.

pd-feedback vertex set problem: The pd-feedback vertex set prob-
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lem comes from the dead-lock problem in database systems and operating systems.

We gave the first algorithm of running time in form of f(k)nO(1), where f(k) = k!4k.

The running time of this algorithm is still large. Hence, our next task is trying to

improve the time complexity of the algorithm to cknO(1) for a constant c, such as

4knO(1) which is more practical. Another interesting direction is to design an algo-

rithm for the weighted pd-feedback vertex set problem, i.e. to find an FVS

F of size bounded by k with minimum weight, where the weight of F is the weight

sum of all vertices in F . In applications, such as the dead lock problem in operat-

ing systems, the weight of a vertex can be the priority of the process or the CPU

time that the process has used. A minimum weight solution means the minimum

expense for removing processes to solve the dead lock. Therefore, in applications,

the weighted pd-feedback vertex set problem is even more important. By the

way, the problem of whether the pw-feedback vertex set problem is FPT is still

open.

Motif finding problem: The motif finding problem, i.e. to find special pat-

terns in a set of given DNA sequences, is among the most important problems in

computational biology, with applications to the identification of transcription factor

binding sites given a set of upstream sequences of potentially co-expressed genes. We

developed a method that combines parameterized algorithm techniqurs with sample

driven and pattern driven techniques that can find (l, d)-motif quickly and determi-

nately. But our new algorithm cannot find motifs that do not appear in all sequences.

This is a place in which we continue working. We are trying to use our new color

coding technique for this problem, such as suppose a motif appears in k sequences of

n given sequences, we color all n sequences with k colors and make sure that all k

sequences with the motif are colored properly, then concatenate sequences with the

same color together. After that, the motif will appear in every sequence in the new
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instance.

Genome alignment problems: The problem is: given several (eg. 3) DNA

sequences of length n from different species, each sequence has several genomes that

we can see each as a substring of length l, where l is small. The alignment is to find

how these genomes from different species are related. To solve the problem, first,

noting that each sequence has n − l + 1 substrings of length l, we find a score for

every group of substrings from different sequences, then we try to find k groups with

maximum score such that two substrings from the same sequence intersect. If we see

each substring as a symbol, then the problem is similar to the matching problem,

but each symbol is associated to 2l − 2 symbols, and the final solution is a matching

that does not allow any two symbols to be associated.

There are also many other application problems that are NP-hard and associ-

ated with parameters from Bioinformatics, Database Systems, Operating Systems,

Networks and other areas. Designing parameterized algorithms of running time in

form of f(k)nO(1) is a promising direction to solve these problems practically. With

more techniques for designing parameterized algorithms and progress of hardware in

computers, designing parameterized algorithms will become a more important way to

solve NP-hard problems from applications.
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