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ABSTRACT

Traversal, Case Analysis, and Lowering

for C++ Program Analysis. (August 2009)

Luke A. Wagner, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Bjarne Stroustrup

To work effectively, programmers need tools to support their typical develop-

ment activities, such as the creation, analysis, and transformation of source code.

Analysis and transformation tools can be difficult to write for modern programming

languages and, without a reusable framework, each tool must separately implement

nontrivial algorithms like name lookup and type checking. This thesis describes an

extension to one such framework, named Pivot, that focuses on programs written in

C++. This extension, named Filter, assists the tool builder in traversal, case analysis,

and lowering of the data structure representing C++ programs. Comparisons described

in the thesis show a 2-4x code reduction when solving basic problems (e.g., searching

for uses of a given declaration) using the extension and a performance overhead that

drops below 2x for larger problems (e.g., checking C++ layout compatibility).



iv

To my teammate, Jennifer



v

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Filter library overview . . . . . . . . . . . . . . . . . . . . 4

1. Traversal and case analysis . . . . . . . . . . . . . . . 4

2. Lowering . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Lightweight view . . . . . . . . . . . . . . . . . . . . . 6

4. Inversion of Control considered harmful . . . . . . . . 9

B. Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . 11

II TUTORIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

B. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C. “Hello, Unit!” . . . . . . . . . . . . . . . . . . . . . . . . . 20

D. The Filter library . . . . . . . . . . . . . . . . . . . . . . . 22

E. Semantic grep . . . . . . . . . . . . . . . . . . . . . . . . . 27

1. Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2. Collecting global declarations . . . . . . . . . . . . . . 29

3. Collecting member variables . . . . . . . . . . . . . . 32

4. Traversal . . . . . . . . . . . . . . . . . . . . . . . . . 37

5. Finding and printing uses . . . . . . . . . . . . . . . . 42

6. Postmortem . . . . . . . . . . . . . . . . . . . . . . . 47

F. Big picture . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

III DESIGN AND IMPLEMENTATION . . . . . . . . . . . . . . . 54

A. Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B. Lowering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1. Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2. Runtime expressions . . . . . . . . . . . . . . . . . . . 63

3. Default arguments . . . . . . . . . . . . . . . . . . . . 69

4. Labeled statements . . . . . . . . . . . . . . . . . . . 71

5. Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6. The discern functions . . . . . . . . . . . . . . . . . . 73

C. A lightweight library design . . . . . . . . . . . . . . . . . 74

1. Lowering . . . . . . . . . . . . . . . . . . . . . . . . . 74



vi

CHAPTER Page

2. Performance . . . . . . . . . . . . . . . . . . . . . . . 77

D. Type discovery . . . . . . . . . . . . . . . . . . . . . . . . 81

1. Alternatives . . . . . . . . . . . . . . . . . . . . . . . 81

2. Implementation . . . . . . . . . . . . . . . . . . . . . 86

E. Implementing ranges and iteration . . . . . . . . . . . . . . 88

1. Overview of sequence composition . . . . . . . . . . . 89

2. Segment interface / move algorithm . . . . . . . . . . 93

3. Iterator implementation . . . . . . . . . . . . . . . . . 97

4. Segment implementation . . . . . . . . . . . . . . . . 102

5. Range optimization . . . . . . . . . . . . . . . . . . . 106

IV COMPARISON . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

1. Characterization of the traditional approach . . . . . . 110

2. Performance test setup . . . . . . . . . . . . . . . . . 113

3. Measuring lines of code . . . . . . . . . . . . . . . . . 114

B. Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

1. uda-single . . . . . . . . . . . . . . . . . . . . . . . . . 116

2. expr-single . . . . . . . . . . . . . . . . . . . . . . . . 120

3. whole . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4. expr-tree1 and expr-tree2 . . . . . . . . . . . . . . . . 128

5. layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

V RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . 146

A. Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B. Type discovery . . . . . . . . . . . . . . . . . . . . . . . . 153

C. Iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

VI CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A. Design goals revisited . . . . . . . . . . . . . . . . . . . . . 158

B. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 159

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185



vii

LIST OF TABLES

TABLE Page

I logical correspondence between iterators and Filter types . . . . . . . 23

II uda-single LLOC results . . . . . . . . . . . . . . . . . . . . . . . . . 117

III uda-single performance results . . . . . . . . . . . . . . . . . . . . . . 119

IV expr-single LLOC results . . . . . . . . . . . . . . . . . . . . . . . . . 123

V expr-single performance results . . . . . . . . . . . . . . . . . . . . . 124

VI whole LLOC results . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

VII whole performance results . . . . . . . . . . . . . . . . . . . . . . . . 128

VIII expr-tree LLOC results . . . . . . . . . . . . . . . . . . . . . . . . . . 133

IX expr-tree1 performance results . . . . . . . . . . . . . . . . . . . . . . 133

X expr-tree2 performance results . . . . . . . . . . . . . . . . . . . . . . 134

XI layout LLOC results . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

XII layout performance results . . . . . . . . . . . . . . . . . . . . . . . . 143



viii

LIST OF FIGURES

FIGURE Page

1 IPR and Filter representations of a type use . . . . . . . . . . . . . . 7

2 Essential nodes and edges of ipr2dot output . . . . . . . . . . . . . . 18

3 ipr2dot output with auxiliary nodes and edges removed . . . . . . . 19

4 The Pivot pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 A more concrete correspondence between iterators and Filter types . 25

6 A class for iterative pre-order depth-first traversal . . . . . . . . . . . 40

7 Traverse modified to prune edges . . . . . . . . . . . . . . . . . . . . 42

8 Overall organization of the Filter library . . . . . . . . . . . . . . . . 52

9 Filter model of templates . . . . . . . . . . . . . . . . . . . . . . . . 57

10 Decision tree for expression lowering . . . . . . . . . . . . . . . . . . 68

11 A smart pointer class for non-intrusive embedded reference counting 87

12 The Rope data structure . . . . . . . . . . . . . . . . . . . . . . . . . 92

13 An algorithm to lift move from segments to ropes . . . . . . . . . . . 95

14 Example rope for the move algorithm . . . . . . . . . . . . . . . . . . 96

15 The implementation of the Single segment . . . . . . . . . . . . . . . 104

16 The implementation of the Seq segment . . . . . . . . . . . . . . . . 104

17 A model of Ptr that merges actual and default arguments . . . . . . 105



1

CHAPTER I

INTRODUCTION

To work effectively, programmers need an environment that supports their typical

development activities. The need for a reusable set of “sharp tools” was an early

realization [1] that today is more true than ever. A large class of such tools are

programs that take programs as input. These tools read and process source code (in

a language like FORTRAN or C++) analogous to how a finance tool might read and

process bank statements. Families of examples include:

• Tools that check source code:

– Coding standard conformance: Coding standards establish a set of

guidelines for naming, formatting, feature use, and design. Standard-

checking tools [2–4] can be used to automatically detect and report guide-

line violations.

– Error detection: These “bug finding” tools [5–7] look for errors such as

memory leaks, uses of uninitialized data, invalid pointer dereference, and

out-of-bounds array access. In general, while these tools do not guarantee

the absence of errors, they are automatic and non-intrusive.

– Type checking: Type systems also prevent undesirable program behav-

iors, often with guarantees, by requiring that the user annotate their code

in a way that “convinces” a type-checking tool [8–10] that the undesirable

behavior cannot occur.

– Verification: For mission-critical applications, the programmer writes

The journal model is IEEE Transactions on Automatic Control.
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not only code, but also a rigorous proof of correctness with respect to a

specification. A verification tool [11–13] then reads all three to ensure the

proof is valid.

• Tools that generate some type of output from source code:

– Compilation: Compilers are the quintessential programming tool for con-

verting source code to executable machine code.

– Search indexing: Cross-indexing tools [14] collect and index the names

of all program entities to allow the programmer to immediately search an

entire project.

– Documentation: Documentation generation tools [15, 16] automatically

create diagrams, collect source code comments, and hyperlink related pro-

gram entities based on information directly available in the source code.

– Boilerplate generation: Code generation tools [17,18] can automatically

write code that is long, tedious and error prone, but otherwise straightfor-

ward.

• Tools that improve source code:

– Optimization: Using expensive algorithms, or taking advantage of domain-

specific information, optimization tools [19–21] can transform source code

into a faster, but equivalent, form.

– Parallelization: To take advantage of modern multi-core processors, ap-

plications need to be written in a parallel style. Tools that perform auto-

matic parallelization [22–24] examine applications written in a sequential

style to find portions that can be run in parallel without changing the

meaning of the program.
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– Code refactoring/renovation: Over time, code tends to accumulate

awkward designs and general cruftiness [25] resulting from years of piece-

meal growth. Refactoring tools [26–28] expedite tedious maintenance ac-

tivities aimed at improving code quality.

This thesis focuses on programs that analyze source code and thus the class of tools

just described will henceforth be referred to as program analyses.

In general, and as seen in the above examples, program analyses differ dramat-

ically in complexity and sophistication. For example, a tool that solves the problem

“find all occurrences of the name ‘Scott’ in the source code” can simply view the

source code as a string of characters and use the appropriate string-matching algo-

rithm. On the other hand, problems like “find all variables with a given type” or “find

all uses of a given variable” require understanding the meaning of the characters in

the source code, i.e., applying the rules of the language to interpret the source code.

Even for simple languages, interpreting the source code may take more work

than writing the entire rest of the program analysis. Moreover, for a modern complex

language like C++, a correct interpretation requires several language experts and years

of work [29]. The practical solution to this problem is to write this interpretation

logic once, separately, so that it can be reused by all program analyses. In this way,

program analyses that perform a simple task can be written simply, even if they are

analyzing a complicated language.

The Pivot framework serves program analyses of C++ source code in the way just

described. Specifically, Pivot provides reusable functionality which takes in raw source

code and produces a data structure in memory that describes the interpreted meaning

of the source code. This data structure is called the Internal Program Representation

(IPR). A program analysis using Pivot can then work directly with the IPR instead



4

of the raw source, thereby avoiding the complex task of interpretation.

This thesis describes the Filter library, a new addition to the Pivot framework

that assists the program analysis writer in using the IPR. The Filter library does this

by providing reusable functionality that further decreases the work required to write

a program analysis in the Pivot framework. Filter targets a smaller class of program

analyses than Pivot. This allows Filter to hide and collapse (i.e., filter) information in

the IPR that is irrelevant or overly-detailed with respect to the needs of this smaller

class. By supporting the development of program analyses, the Filter library supports

the overall goal of providing programmers with more, better, and sharper tools.

A. Filter library overview

The Filter library can be explained at a high level in terms of two functional goals and

two stylistic goals. These four initial decisions determine, to a great degree, the rest

of the design of Filter. This section explains what these goals are and leaves the why

for the discussion in Chapter III. Also, these goals are introduced by metaphor and

example, saving their realization in the Filter library for the tutorial in Chapter II.

1. Traversal and case analysis

The first functional goal is to simplify traversal and case analysis. The traversal

problem appears in program analyses any time the algorithm being implemented

requires finding all entities in —a part of— the program matching a criterion. Simple

examples include finding all functions, to check their bodies, or finding all classes to

build an inheritance graph. A more sophisticated traversal might involve searching

all function bodies in a given namespace, looking for assignments to a given variable.

Regarding the diversity of traversal needs, an additional subgoal of Filter is thus to
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avoid locking the user into a fixed traversal strategy.

Somewhat dual to traversal, the case analysis problem appears in program anal-

yses whenever it is necessary to consider every possible situation that may occur for

a fixed piece of the program. As recognized by the following epigram, case analysis

is a central programming activity.

Programmers are not to be measured by their ingenuity and their logic

but by the completeness of their case analysis.

—Alan Perlis

Examples include analyzing an expression to determine if it can be evaluated at

compile-time and syntax-directed type checking.

When performing case analysis, it is necessary to know a priori all the cases

that need to be handled. This can be seen, for example, in the implementations of

type systems throughout Pierce’s Types and Programming Languages [30]. Thus, an

additional subgoal of the Filter library is to make the cases that need to be handled

syntactically evident, in the same way they are made evident by the Algebraic Data

Types in Pierce’s ML code.

Although traversal and case analysis are different activities, their usage is often

interleaved. For example, an analysis might start with a traversal to find uses of a

library of which it has extra semantic knowledge, and then switch to a case analysis

of the surrounding code to identify optimizations that can be made based on this

additional knowledge. Hence, the last subgoal is to not only simplify these two

activities, but also their combined usage.
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2. Lowering

The second functional goal is to perform lowering of the IPR. Here, the term “lower-

ing” refers to transformations of the IPR that discard purely syntactic information.

Of course, the syntactic/semantic distinction is entirely relative to the analysis; to

a low-level optimization, anything above Three-Address Code [31] is syntactic, while

to the analysis used by an IDE’s automatic completion feature, only macros and

typedef statements might be considered syntactic. For this reason, the IPR captures

practically all of the syntactic information available after pre-processing.

To justify lowering, the Filter library targets a more specific group of analyses,

described at the beginning of Chapter III, than the Pivot. For a small example of the

type of lowering performed by the Filter, consider the following input:

namespace N { class C {}; }
N::C x;

Looking only at the representation of the variable declaration on the second line, the

resulting tree of nodes produced by the IPR and Filter are shown in Figure 1. Even

without knowing the exact meaning of the nodes in these trees, it is evident that, in

addition to specifying which user-defined type was used, the IPR also represents how

this type was named and found. The Filter library operates under the assumption

that the program analysis is not interested in these details and collapses them into a

single node summarizing the result. This allows the Filter user to write less code to

achieve the same effect.

3. Lightweight view

The first stylistic goal is to provide a lightweight view of the IPR. A model for this

design style are the iterators in the C++ Standard Template Library (STL) [32] and

the Boost Iterator library [33]. For example, when using an iterator to examine the
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Fig. 1. IPR and Filter representations of a type use
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contents of a list:

list<Big> ls = ...
for (list<Big>::iterator i = ls.begin(); i != ls.end(); ++i)
... use i

our understanding of the iterator object i is that it refers back into ls, which

holds the Big objects. Thus, while copying Big objects—and lists thereof—may be

expensive, operations like creating, copying, and destroying iterator objects are

cheap. In this way, iterators provide a “lightweight view” of the underlying list.

Taking the example farther, let’s say we wanted to iterate over only the Big

objects satisfying a certain predicate. One solution would be to first create a copy of

ls containing only the desired Big objects, and then iterate over this “filtered” list.

This solution would be expensive up front, but would pay off if we iterated over the

same filtered list many times. A “lightweight” solution would be to use the Boost

filter_iterator:

typedef boost::filter_iterator<Pred, list<Big>::iterator> Iter_t;

list<Big> ls = ...
Iter_t beg(ls.begin(), ls.end()), end(ls.end(), ls.end());
for (Iter_t i = beg; i != end; ++i)
... use i

Here, filter_iterator performs filtering on the fly, silently skipping over Big objects

that do not meet the given predicate Pred. This solution is lightweight because there

is no large, up-front computation nor is there a large auxiliary data structure required.

In the same spirit as these two examples, the Filter library refers into the IPR

and builds its view of the IPR on the fly, without any significant auxiliary data

structures. While this goal poses a challenge—which is met—for maintaining an

acceptable performance overhead, it allows the Filter to be used with the IPR on

an as-needed basis, without penalty for switching back and forth. Alternatively, if

a separate data structure was desired, perhaps for performance reasons, the Filter
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could be used in the algorithm which created this data structure.

4. Inversion of Control considered harmful

The second stylistic goal is to avoid imposing any Inversion of Control (IoC) [34]

on user code. IoC refers to a library design whereby, to use the library, the user

must provide functions to the library that get called by the library. When used in

the design of software frameworks, IoC has been called the “Hollywood Principle”

(“Don’t call us, we’ll call you”) [35,36].

Essentially, IoC changes the classic library use:

int i = library_query(); /* perform query and receive result */
... use i

into:

void query_result_function(int i) /* step 2: receive result */
{
... use i

}
library_query(&query_result_function); /* step 1: perform query */

While the second solution may seem like an exercise in obfuscation, in some problem

domains (as described in the above references) the use of IoC has been recognized to

promote software engineering ideals like modularity and encapsulation.

Central to any program analysis using a framework like Pivot is a graph (a

collection of nodes and edges between nodes) that represents the interpreted meaning

of the program. Because a program may be composed of many different types of

entities, this graph must contain a heterogeneous set of nodes, i.e., nodes of different

types. This leads to the type discovery problem: after following an edge to a new

node, how does the analysis determine the new node’s type?

A common solution in object-oriented frameworks [37–40] is the Visitor pat-

tern [41], which uses IoC to reveal a node’s type to the analysis in a “safe” way. For
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reasons presented on pg. 81 and measured in Chapter IV, the Filter library avoids

the Visitor pattern because of its negative effects on the resulting user code. In gen-

eral, while the recursion induced by IoC seems acceptable or even desirable, based

on the mathematical nature of recursion, it can also lead to an unnecessarily com-

plex solution to simple problems. To quote an observation made by Dijkstra on the

subject [42]:

I found a confirmation in the temptation—I myself yielded to it once, in

a moment of weakness!—to define the semantics of

“while B do S od”

as that of the call

“while(B, S)”

of the recursive procedure

“proc while(B, S): if B then S; while(B, S) fi corp”

but is not that cracking an egg with a sledgehammer?

Indeed, even in functional programming, where recursion is the general modus operandi,

the type discovery problem for Algebraic Data Types is solved by using special IoC-

free match/case statements. (As this second reference indicates, in addition to itera-

tors, the design of the Filter library also resembles aspects of Algebraic Data Types.)



11

B. Thesis overview

The main work described by this thesis is the design, implementation, and evaluation

of the Filter library. Breaking this into independent problems, the contributions of

this thesis are:

• the design of a lowered view of the IPR suitable for high-level semantic analysis

(pg. 59);

• an integrated solution to the case analysis and traversal problems described

above (pg. 48, pg. 125, pg. 128, pg. 146);

• an implementation scheme for efficient, lightweight iteration over dynamically

transformed and composed ranges (pg. 88); and

• an evaluation of the library (Chapter IV).

To evaluate Filter, a comparison is made to the “traditional approach” by solving

six problems and comparing the solutions’ code complexity and performance. The

results show that Filter allows a consistent 2-4x reduction in Logical Lines of Code

(LLOC) and produces an average 2-4x slowdown on small, synthetic problems. On

larger, more realistic problems, this slowdown drops below 2x, and when Filter allows

the user to write more precise traversals, the result can be up to 230x faster. Thus,

we can conclude that, for many analyses, using Filter will be a win-win situation.

The rest of the thesis is organized as follows. Chapter II is a tutorial of the

Filter library, providing the necessary Pivot background. Chapter III describes the

reasoning behind the Filter design and related implementation details. Chapter IV

explains the evaluation mentioned above and goes over the results. Chapter V de-

scribes related libraries and approaches. The conclusion revisits the design decisions

listed on pg. 4 and describes future work. Finally, the attached appendix provides
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input listings for all the tests described in Chapter IV as well as the implementations

of a few large functions used in the solutions to the test described on pg. 134.
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CHAPTER II

TUTORIAL

This tutorial introduces the Pivot framework using the Filter library. The tutorial

begins with an overview of what the Pivot framework is and what it provides. Next,

the tutorial explains how to build a basic Pivot application. Once these basics have

been established, the tutorial gives a tour of Pivot by demonstrating how to write a

small “semantic grep.”

A. Motivation

Pivot is a framework for analyzing and transforming C++ programs. This framework

consists of tools and libraries that allow the user to work with C++ code at the ab-

stract syntax level. This abstract syntax representation preserves almost all of the

information available about the source code, and thus is higher-level than the internal

representations used by compiler back-end frameworks like LLVM [43], Phoenix [44],

Open64 [45], and GCC’s GIMPLE and RTL phases [46]. However, this abstract syn-

tax representation also contains more information than the raw output of a parser by

storing the results of complicated language rules like name lookup, overload resolu-

tion, and template instantiation. Thus, in a traditional compilation pipeline, Pivot

fits in the middle-end, after front-end syntax analysis and before back-end optimiza-

tion and code generation.

To see an example of an analysis that would benefit from the Pivot framework,

consider trying to replace the following sequential loop with a version that runs each

iteration in parallel:

void mult_copy(vector<int> &v1, vector<int> &v2, T x)
{
vector<int>::iterator i1 = v1.begin(), i2 = v2.begin();
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for (; i1 != v1.end() && i2 != v2.end(); ++i1, ++i2)
*i2 = x * *i1;

}

In order to justify this parallelization, a back-end would need to know that the range

of elements iterated over by i1 did not overlap with that of i2. However, these

iterators will be compiled down to raw pointers, and thus the back-end will have to

do a full alias analysis. In doing so, the analysis will find that i1 and i2 receive their

values from the fields of the records pointed to by v1 and v2. Without an expensive

field-sensitive pointer analysis [47], the optimizer will probably be forced to take the

conservative route and give up.

However, with full source information, we can see that v1 and v2 both have a

type that is an instantiation of the standard C++ vector. Using this extra semantic

information, we know that no two vectors’ [begin,end) ranges overlap and thus we

can immediately see that the ranges of i1 and i2 either overlap completely (if v1 and

v2 are aliased) or do not overlap at all. In either case, the parallelization is valid. With

the introduction of concepts in C++0x [48], we can extend this semantic knowledge

to arbitrary user-defined containers that model standard C++ concepts, e.g., doubly-

linked lists. However, to do any of this requires preserving source code information

like nominal type, instantiation relationships, and modeling relationships.

This example illustrates just one family of analyses that could benefit from a

typed abstract syntax representation of C++. Other examples include coding guideline

conformance, automatic syntax completion, and tools for program understanding.

Often, such analyses are based on parsers and support simple C++ usage, but break

down when sophisticated C++ features are used. For example, consider the type of x

in the following code which uses C++ template meta-programming techniques:

template <class T> struct pairify { typedef pair<T,T> ret; };
template <class> struct const_first {};
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template <class T, class U> struct const_first<pair<T,U> > {
typedef pair<const T,U> ret;

};
const_first<pairify<int>::ret>::ret x;

Here, determining that x’s type is pair<const int, int> involves significant work.

In Pivot, given the abstract syntax node representing x, it is possible to either go

directly to its type, or recover the intermediate templates that were used to generate

this type.

B. Overview

Central to the Pivot framework is a C++ data structure called the Internal Program

Representation (IPR). The IPR represents the program’s typed abstract syntax in

memory, so that it can be analyzed and manipulated. Most of the tools in Pivot are

concerned with producing, consuming, and transforming the IPR. Similarly, most of

the libraries provided aim to simplify common usage of the IPR. The primary goals

of the IPR are:

1. to be extensible, by allowing future standard C++ features and existing non-

standard C++ extensions to be added to the IPR without disrupting existing

code;

2. to be efficient in both space and time so as to be able to represent entire pro-

grams in memory, thereby allowing whole-program analysis; and

3. to be independent of the front-end that was used to generate the IPR. Currently,

both EDG [29] and GCC [49] front-ends are used.

Essentially, the IPR is a labeled directed graph whose nodes represent the atomic

pieces of a C++ program and whose edges represent the relationships between these

pieces. A subset of these edges form the classic typed abstract syntax tree that is
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often used to describe the nesting of program elements [31]. The full graph can be

understood as this basic tree augmented with edges to provide useful or necessary

information, e.g. the result of name lookup and type evaluation.

Each node in the IPR has a C++ interface which enumerates the node’s properties

and out-edges. All node types are defined in the public header file pivot/include/ipr

/interface which also includes documentation for each type. The abstract nature of

some IPR nodes can make the IPR difficult to learn from this documentation alone,

so a better way is to visualize graphs generated from small examples. To help do

this, the Pivot includes the ipr2dot tool, located in pivot/bin. This tool describes

the IPR graph in DOT, a graph language which can be rendered in many formats

by the GraphViz package [50]. Using ipr2dot and the GraphViz dot command, the

following Unix pipeline will render the C++ code in test.cpp as a PNG image:

ipr2dot test.cpp | dot -Tpng > test.png

To see an example, we start with the following code:

int main()
{
int a = 1;
return a + 2 - 3;

}

Even with this small program, the output of ipr2dot can be overwhelming at first, so

we will tip-toe in by looking at graphs with nodes and edges removed. We begin with

Figure 2, which shows only the IPR nodes and edges that map directly to the source.

In this graph, we almost have a classical abstract syntax tree; only the unification of

the identifier “a” breaks the tree property.

In Figure 2, the labels of nodes are the names of IPR types (except for the quoted

strings) and the labels of edges are the operations of the source’s IPR type that were

used to get to the destination node. For example the member function ipr::Return

::value was called on the node labeled “Return” to get the node labeled “Minus.”
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Note that nodes represent logical entities in the code and are not simply a record of

which C++ grammar rules were used to parse the tokens.

The root of every IPR graph is always a node of type ipr::Unit. A Unit rep-

resents either a single translation unit or multiple translation units that have been

merged together. A translation unit, as defined by Section 2.1 of the C++ standard [32],

roughly means a source file after preprocessing. Leveraging the partial compilation

model of C++, an IPR graph does not necessarily have to contain an entire program.

However, if all the units of a program are merged together, it may.

From a Unit, it is possible to begin traversing the program by calling Unit::

get_global_scope to get a node representing the global namespace. A Unit serves

other purposes too, such as providing a central point of resource management. Below

the Unit, the meaning of each node is fairly self-explanatory except for the node

labeled “Id expr.” The ipr::Id_expr type represents the use of a name, like a variable

name, in an expression. In the example, we can see the use of the name “a.” However,

with only the information in the above DAG, we do not know what “a” refers to.

To answer this question, we move on to Figure 3, where we show the IPR for

the same code, except with fewer auxiliary nodes and edges elided. Two types of

additional information are represented in this graph: types and resolution. We can

see that the question of the resolution of “a” is answered by the Id_expr::resolution

member function. Additionally, all nodes are given their C++ type as assigned by the

C++ typing rules. Here we can see how unification (e.g., the sharing of “Int”) can save

considerable memory since many nodes will have the same type.

As a general rule, the IPR provides edges like resolution and type above when

recovering the target of the edge would involve understanding complicated C++ rules.

In this way, Pivot allows its users to avoid much of the difficulty associated with static

analysis of C++ over, say, C.
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Fig. 2. Essential nodes and edges of ipr2dot output



19

����

������	
���

��	������	
���

�����
�


������

����
���

��������

���

��������

���

�����

����������

�������	��
�

�������


�������


����

���

�����

���

� ��!


����
���

"����"


�����

#��

�������

$����

�����%�

��� ��������

���

&�����

����������

'���


(���

"�"


��������

"%"


�����

���

���


���
�

&�����


����

���

��	)��

���
�

&�����


����

���

"*"


�����

���

�
�������

���

���

"+"


�����

Fig. 3. ipr2dot output with auxiliary nodes and edges removed
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Fig. 4. The Pivot pipeline

C. “Hello, Unit!”

As mentioned earlier, an IPR graph is rooted and contained in an object of type ipr

::Unit. Thus, the first step to analyze a piece of code is to acquire the Unit of that

code. The Pivot framework allows Unit objects to be created from various sources

by providing a separate interface, in the ipr::impl namespace, for generating IPR

nodes. Additionally, a few ready-to-use generators are provided.

The most direct way to generate a Unit is by transforming the output of a C++

compiler front-end. Pivot officially contains one such implementation, using the EDG

front-end [29], but there is also an experimental front-end based on GCC. In either

case, the pipeline followed by the analyzed code is shown in Figure 4. From this figure,

we can see that the front-end takes in a source file, and any other files included by

pre-processing, and passes the results to Pivot code that generates a Unit which is

passed to user’s analysis.

The official entry point of an analysis which obtains a Unit in this manner is a

function ipr_main with the following signature:

int ipr_main(const ipr::Unit &unit, int argc, char **argv, int sep)

where sep is an integer in the range [0, argc] that indicates the position, in argv, of

an optional --pivotargs flag. This flag separates command-line arguments read by

the front-end from arguments intended for the analysis. Thus, --pivotargs is like an
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escape character that tells the front-end to ignore all subsequent arguments.

Using ipr_main, we can write a minimal first Pivot application:

#include <ipr/interface>
#include <iostream>
int ipr_main(const ipr::Unit &u, int argc, char **argv, int sep)
{
std::cout << "Hello, Unit with its ";
std::cout << u.get_global_scope().members().size();
std::cout << " global namespace declarations!\n";

}

To compile this file, the include path must be set to the pivot/include directory so

that ipr/interface is found:

g++ -c -I PIVOT_INSTALL_FOLDER/include analysis.cpp

To generate an executable, the object file must be linked with two libraries: ipr and

edg, both of which are found in the pivot/lib folder:

g++ -L PIVOT_FOLDER/lib analysis.o -ledg -lipr -o analysis

Note that, for some linkers, the order in which libraries are listed is important. The

edg library depends on definitions in the ipr library, so for GCC, -lipr must be after

-ledg.

Finally, the executable can be run with the standard compiler command-line

arguments:

> echo "int a; void b();" > test.cpp
> analysis test.cpp
Hello, Unit with its 2 global namespace declarations!

Here, argc will be 2 and sep will be 2. If we make the following call:

> analysis test.cpp -DNDEBUG --pivotargs foo bar

then argc will be 6 and sep will be 3.
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D. The Filter library

Given an ipr::Unit, we can call its get_global_scope member to obtain a node

representing the global namespace, and then go on our merry way traversing the

graph. Before we get very far, however, we are faced with the practical question

encountered below:

int ipr_main(const ipr::Unit &unit, int, char **, int)
{
const ipr::Namespace &gns = unit.get_global_scope();
const ipr::Sequence<ipr::Decl> &glo_decls = gns.members();
for (int i = 0, end = glo_decls.size(); i != end; ++i) {
const ipr::Decl &d = glo_decls[i];
// how do we find out which specific type of declaration d is?

}
}

Here, we have a reference to an ipr::Decl, but ipr::Decl is just a base class shared by

all the nodes that can appear in a namespace. While Decl has some useful members

common to all declarations, like Decl::name, to do anything useful with the node, we

will need a more specific interface. For example, if we want to look at the bodies

of functions, we will need a reference to an ipr::Fundecl so that we can use its

Fundecl::initializer member (shown in Figure 3).

This type of problem is not specific to global declarations; throughout the IPR,

there are many situations where an edge can point to one of many different types of

nodes. Examples include the branches of an if statement, the operands of an addition,

the members of a class, and the parameter types of a function type. In general, this

question will have to be answered whenever there is a tree of heterogeneous nodes.

As described on pg. 81, there are many ways to solve this problem, each with different

trade-offs. In this section, and for the rest of the tutorial, we will focus on only one

solution: the one provided by the Filter library.
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Table I. logical correspondence between iterators and Filter types

C++ STL IPR + Filter

Data structure container (e.g. std::set) Program (ipr::Unit)

View and traversal iterator Filter nodes

The Filter library provides a lightweight view of the IPR that makes navigation

among nodes easier. Filter is considered lightweight because it has no persistent data

structures. Thus, there is no upfront cost to using Filter and it may be used and

discarded on an as-needed basis. Filter is said to provide a view of the IPR because

the library does not hold any information, it just presents a transformed version the

information already in the IPR.

A familiar example of the relationship between the IPR and the Filter library

is the relationship between a C++ Standard Template Library (STL) container and

its iterators. The iterators are lightweight objects and provide a way of viewing

the internal nodes of the container. Similarly, Filter provides lightweight objects

for looking at the IPR nodes inside an ipr::Unit. This metaphor is summarized in

Table I.

Returning to the example at the beginning of the section, we can use the Filter

library to write:

int ipr_main(const ipr::Unit &unit, int, char **, int)
{
Env env(unit);
Namespace gns(env, unit.get_global_scope());
for (ns_ctx::Range ds = gns.members(); !ds.empty(); ++ds.first) {
ns_ctx::Variant d = *ds.first;
if (d.which() == ns_ctx::glo_func_e) {
Glo_func gf = d.get<Glo_func>();
// ...

}
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}
}

Thus, the question “which type of Decl is d?” is answered by the Filter library’s

ns_ctx::Variant type using its which member. This approach is based on the common

“type switch” pattern that can be found in object-oriented programming, starting

with the Simula 67 inspect statement [51], and functional programming, for example,

using the ML match operation [52].

We now consider the above code in more detail. The first statement creates an

object of type filter::Env (“using namespace filter” is assumed for this and sub-

sequent code samples). This is an “environment object” that is needed to construct

any other Filter type, such as gns on the next line. The environment is used to

store a reference to the ipr::Unit, hold configuration options, and provide caching

for common IPR queries. To construct a filter::Namespace, we need to pass it an

ipr::Namespace which we obtain from get_global_scope. In general, each Filter node

type has a corresponding IPR type which is needed to explicitly construct the Filter

node. These two steps—creating an environment and constructing an initial Filter

node—are all that is needed to get started with the Filter library.

Given an initial Filter object (gns), we can use its members to obtain other

Filter nodes which represent different underlying IPR nodes. In this manner, we can

navigate through the IPR. We do this in the above code by using Namespace::members

to get a Range, then a Variant, and then a Glo_func. To stop using the Filter library,

we simply extract the underlying IPR node of any Filter node we are using. For

example, continuing the above code at the “// ...”, we can write:

const ipr::Fundecl &fd = gf.ipr();

Once the underlying IPR node has been extracted, the Filter nodes may be used

further or ignored and destroyed.
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Fig. 5. A more concrete correspondence between iterators and Filter types

With this example code, we can return to the metaphor summarized in Table I

and look at the more concrete correspondence given in Figure 5. The left and right

diagrams show the “data structure” below the dotted line and the “view and traversal”

above. On the left-hand side, since the elements are homogeneous and the order is

fixed, there is only one iterator type and traversal operation used. On the right-hand

side, the elements are heterogeneous, so an intermediate Variant object is used to

moderate the branching between the possible types. Also, since the view is a tree,

several different operations are available at each node to get to other nodes. In both

cases, there is an operation to get to the underlying element.

From this type of usage, we can view the Filter library as a highway for travel-

ling around the IPR. In the sample code, we exited the highway immediately after

we entered, but, as we will see in subsequent examples, we can go much farther. One

important thing to remember, though, is that the environment object is being im-

plicitly passed to each new Filter node. Thus, the environment object passed to the

initial Filter node must be kept alive for as long as any Filter node, obtained directly
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or indirectly from the first, is alive.

From a performance perspective, the expensive operations of the Filter library are

performed during the construction of fresh Variant objects (which is done indirectly

by Range construction and iterator increment). Thus, iterator dereference, Variant

::which, Variant::get, all copy, and all assignment operations are cheap and can be

used freely. Chapters III and IV go into more detail about the implementation and

performance of these operations.

One last thing to point out in the code above is the ns_ctx:: prefix in front of

the Range and Variant types. This prefix stands for the context of these types, which,

in this case, is the “namespace context.” A context represents where the choice of

nodes occurred and implies the set of possibilities presented by the Variant. Without

context information, there would be only one Variant which would necessarily contain

a choice of every possible node, and thus the user would have to decide for themselves

which of the cases actually needed to be handled. As we will see, this is not always

apparent, hence the presence of context in types is an important feature of the Filter

library.

Currently, the Filter library identifies 5 contexts: namespaces, user-defined ag-

gregates (viz. classes and unions), function bodies, expressions, and types. The first

three of these have a high degree of overlap, while the last two are almost disjoint

from the rest and each other. Like ns_ctx, each other context has its own names-

pace (uda_ctx, func_ctx, expr_ctx, and type_ctx) which contains a Variant, Which

enumeration type (returned by Variant::which), Iter, and Range.

[NOTE: when the Pivot project structure stabilizes for release, an additional

paragraph should be added here explaining how to include and link the Filter library.]
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E. Semantic grep

Moving past the IPR and Filter basics, we shall now look at how the variety of

different C++ elements are represented in Pivot (using the Filter library) and how

Pivot assists the user in writing analyses. To illustrate the concepts covered, we

guide the discussion with an extended example, which will be developed throughout

the next five sections. In walking through the implementation, the goal is not to build

an in-depth understanding of every piece covered, but to give an overall picture of

how the pieces fit together. Thus, the discussion will move quickly, saving a topical

discussion for subsequent chapters.

The extended example we will use is a tool for searching source code for uses and

declarations of variables that meet a few conditions. A classic tool for this job is the

standard Unix grep command, which treats source code as text and allows regular

expression-based matching. However, grep is limited to describing the lexical prop-

erties of a variable and its surroundings. The tool we shall build uses the semantics

of the text, viz. that it is C++ code, to allow the programmer to specify additional

constraints on occurrences of variables such as their type and whether they are dec-

larations or uses. Hence, we are building a kind of “semantic grep.” In addition

to a real tool with the same name [53], this example represents a class of program

understanding tools as well [54–58].

1. Skeleton

To keep the example short, we focus on only a few properties, and only for global and

member variables. The intended usage of the tool is roughly as follows:

sgrep FILE --pivotargs NAME [-type NAME] [-only [use|decl]]
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The first argument is the C++ source file, the second is the argument separator that

was mentioned on pg. 20, the third is a regular expression for the variable name, and

the last two are optional constraints. The -type flag is a regular expression to match

the variable’s type. The -only flag allows only uses or declarations to be found.

To go directly to the use of Filter, we will assume that we have already written

the boilerplate code to parse the incoming command-line argument vector. This code

takes the form of a function parse:

bool parse(int argc, char **argv);

which populates a global structure with the interpreted command-line options:

struct Cmdline_args {
Pattern name;
bool has_type;
Pattern type;
bool find_decls, find_uses;

} cmdline;

We also assume we already have a class that implements regular-expression matching:

class Pattern {
public:
bool match(const string &) const;

};

Using this, we can write the skeleton for our sgrep application as follows, putting the

body of work in analyze:

int ipr_main(const ipr::Unit &u, int argc, char **argv, int sep)
{
if (sep == argc || !parse(argc - (sep + 1), argv + (sep + 1)))
return -1;

Env env(u);
Namespace gns(env, u.get_global_scope());
analyze(gns);
return 0;

}

The offset added to argc and argv is necessary to skip all the arguments up to and

including the --pivotargs flag.



29

Instead of working directly towards the final goal, we will grow the solution

from sub-problems. This will allow us to see the various challenges in analyzing C++.

Hence, the reader should suspend judgment if the code used to solve a sub-problem

seems ungainly in the context of the larger problem; it is, and it will probably be

fixed.

2. Collecting global declarations

We can now begin to implement analyze by breaking it into the following steps:

void analyze(Namespace gns)
{
vector<const ipr::Decl *> decls;
collect_decls(gns, decls); // find matches in ‘gns’, insert into ‘decls’
if (cmdline.find_decls)
print_decls(decls);

if (cmdline.find_uses)
print_uses(gns, decls); // find and print matches in ‘gns’ using ‘decls’

}

Thus, the first sub-problem is to collect a list of global variables that match the

criteria in cmdline. This list is then used to print declarations and efficiently find

uses.

Focusing now on collect_decls, we start by writing the following recursive func-

tion:

void collect_decls(Namespace ns, vector<const ipr::Decl *> &decls)
{
for (ns_ctx::Range r = ns.members(); !r.empty(); ++r.first)
switch (r.first->which()) {
case ns_ctx::namespace_e:
collect_decls(r.first->get<Namespace>(), decls); // recurse
break;

case ns_ctx::glo_var_e:
if (match(r.first->get<Glo_var>()))
decls.push_back(&r.first->get<Glo_var>().ipr());

break;
}

}
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Here, we look for global variables which match the user’s pattern, using the match

function we will write shortly. Since global variables can be found in nested names-

paces, the function must recursively examine all namespaces found as well.

We now consider this code in more detail. As seen before, we use an ns_ctx

::Range to iterate over the contents of namespaces. This type is simply a pair of

ns_ctx::Iter objects with a few convenience functions, like Range::empty, which

returns (first == last). The ns_ctx::Iter type mostly models the Standard C++

bi-directional iterator concept [32], where the “element type” of Iter is a Variant in

the same context. The difference with Standard C++ iterators, however, is that the

pointer returned by the dereference operators (* and ->) is only valid until the next

increment/decrement operation. Thus, the following code:

vector<ns_ctx::Variant *> vs;
for (ns_ctx::Range r = gns.members(); !r.empty(); ++r.first)
vs.push_back(&*r.first);

collects a list of dangling pointers, as opposed to the behavior of a standards-conforming

C++ iterator. Thus, to hold onto the current element of an iterator, a copy should be

made (which, as already mentioned, is an inexpensive operation):

vector<ns_ctx::Variant> vs;
for (ns_ctx::Range r = gns.members(); !r.empty(); ++r.first)
vs.push_back(*r.first);

In collect_decls, we switch on the return value of ns_ctx::Variant::get. The

type of the value returned by this member function is an enumeration ns_ctx::

Members with the following enumerators:

namespace_e,
glo_var_e, class_var_e, /* variables */
class_e, union_e, enum_e, /* user-defined types */
glo_func_e, class_func_e, mem_func_e, /* functions */
class_family_e, union_family_e, func_family_e /* templates */
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This list contains everything that can be found in the context of a namespace in-

cluding some non-obvious things, like out-of-body member function definitions and

static member variable definitions (class variables). The three “families” refer to C++

templates (this viewpoint will be described more on pg. 59). Associated with every

enumerator foo_bar_e is a Filter wrapper type Foo_bar. The Variant::get<T> func-

tion template can be instantiated with only this set of types. Hence, the following

code is incorrect (and will assert in debug builds):

ns_ctx::Variant nsv = ...
if (nsv.which() == ns_ctx::glo_var_e) {
Class_var cv = nsv.get<Class_var>();
...

}

We now return to the task of implementing the match function called in collect_decls

. The approach we will use is to convert the name and type of a variable to strings,

and then perform matching on these strings. To get the name and type of a global

variable, we use filter::Glo_var’s underlying IPR node, ipr::Var:

bool match(Glo_var gv)
{
const ipr::Var &iv = gv.ipr();
const ipr::Name &name = iv.name();
const ipr::Type &type = iv.type();
// ...

}

Since names and types can be complex expressions, we use the Pivot Pretty-

printer library to give us their textual representation. Describing the Pretty-printer

library is beyond the scope of this library, so we will assume that the following stream

insertion operators have been defined:

std::ostream &operator<<(std::ostream &, const ipr::Name &); // print name
std::ostream &operator<<(std::ostream &, const ipr::Type &); // print type

With these, we can continue writing match at the “// ...” above:

std::stringstream ss;
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ss << name;
if (!cmdline.name.match(ss.str()))
return false;

if (!cmdline.has_type)
return true;

ss.str("");
ss << type;
return cmdline.type.match(ss.str());

This completes the implementation of collect_decls for the case of global variables.

3. Collecting member variables

We now extend our analysis to match member variables. To do this, we can use an

approach similar to that of global variables, this time searching through the bodies

of classes and unions instead of namespaces. By design, classes and unions in C++ are

very similar, including what members they may have and where they may be defined.

To reflect this, the Filter library has a common base class, Uda (UDA is an acronym

for User Defined Aggregate), that is derived by the Filter Class and Union types.

Using Uda, we can write a new function uda_collect_decls:

void uda_collect_decls(Uda uda, vector<const ipr::Decl *> &decls)
{
if (!uda.has_def()) // declared, but not defined
return;

for (uda_ctx::Range r = uda.def_members(); !r.empty(); ++r.first)
switch (r.first->which()) {
case uda_ctx::class_e:
case uda_ctx::union_e:
uda_collect_decls(get_uda(*r.first), decls); // recurse into class/union
break;

case uda_ctx::mem_var_e:
if (match(r.first->get<Mem_var>()))
decls.push_back(&r.first->get<Mem_var>().ipr());

break;
}

}
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This code does a few new things. First, as opposed to namespaces, where there is no

distinction between declarations and definitions, it is possible to find a declaration

of a class and union with no definition. Thus, Uda::has_def must be checked before

accessing parts of the definition. The Filter library distinguishes parts of the definition

by the prefix def_ as a reminder that calling def_x assumes there is a definition.

Because classes and unions are so similar, we often want to handle both their

cases at once, as in the above code. The Uda base class helps us do this, but due

to implementation limitations, Variant does not allow us to write “Uda u = v.get<

Uda>()”. To get around this, the Filter library provides the get_uda function, used

above, which achieves the same thing. Similar functions, get_func and get_var, are

provided for other reusable bases which will soon be used.

The only remaining problem is that match, as written on pg. 29, takes a Glo_var

and above we are passing a Mem_var. To fix this problem, we can change match to take

a filter::Var, which is a base class inherited by all Filter variable types. Strangely,

the underlying IPR node of a filter::Var is not an ipr::Var, but the more general

ipr::Decl. This is no matter, though, as ipr::Decl provides the required name and

type members, making the change to match trivial:

bool match(filter::Var v)
{
const ipr::Decl &d = v.ipr();
... same as before

}

Notice that in passing by value, we are slicing Filter nodes at the match call-sites

in collect_decls and uda_collect_decls. While slicing is generally a dangerous

operation, the Filter library takes care to ensure that no problems arise from slicing

Filter nodes, and the above code is fine.
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Having written uda_collect_decls, we now hook it into collect_decls by adding

the following cases to the main switch statement:

case ns_ctx::class_e: case ns_ctx::union_e:
uda_collect_decls(get_uda(*r.first), decls);
break;

With these changes, we can successfully find even deeply-nested member variables

like:

namespace A { namespace B { class A { class B { int x; }; }; } }

However, trickier cases remain, namely, local classes:

class A { void foo() { class B { int x; }; } };

In fact, looking at func_ctx::Members, we can see that global variable declarations

can also appear in function bodies. Thus, we must also find and examine functions.

While these may seem like corner cases that could be ignored for our semantic grep

example, we pursue it here as it leads to a more general point. Furthermore, as a

matter of correctness, some analyses require that all functions (and therefore classes)

are found.

Continuing the pattern of code we have been writing, we write a new function

func_collect_decls that gets called whenever we find a function in a namespace or

UDA. Like UDAs and variables, there are several Filter types for functions (Glo_func

, Class_func, and Mem_func) and all share a common base class Func. Using this,

we can add the following cases to collect_decls and uda_collect_decls (with the

context prefixes changed accordingly):

case ns_ctx::glo_func_e:
case ns_ctx::class_func_e:
case ns_ctx::mem_func_e:
func_collect_decls(get_func(*r.first), decls);
break;

Moving on to the implementation of func_collect_decls, like namespaces and

UDAs, functions have a context associated with the discovery of nodes in vari-
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ants. However, if we were to use the same “switch and recurse” technique as in the

last two collection functions, func_collect_decls would require a lot of—seemingly

boilerplate—code. For example, consider finding the class buried in the following

input:

void foo() {
if (true)
switch (1) {
case 1: while (false) {

class A { int x; };
}

}
}

Conceptually, this is no different than if A were nested inside three namespaces

or classes: the algorithm is just tree traversal. Practically, however, traversing this

tree requires handling every type of node in the tree, including curly-brace blocks, if,

else, while, for, do, switch, try, and catch. For our analysis, this means littering

our main switch statement with cases like:

case func_ctx::if_e:
func_collect_decls(v.get<If>().then_branch(), decls);
func_collect_decls(v.get<If>().else_branch(), decls);
break;

with only one case where we find what we are actually looking for, classes. This

problem will be further exacerbated when examining the expression and type contexts,

where there are even more node types to consider. If we take a step back, we can see

that any analysis that wanted to look, more or less, over the whole program would

have to write the same boilerplate code.

The Filter library allows this mess to be factored out by providing functions to

retrieve all the children of a given Filter node without knowing that node’s exact

type. Specifically, for each context X, each X_ctx::Variant has a set of child_Y

member functions that return a Y_ctx::Range of child nodes, for each other context
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Y. For example, if v1 and v2 are func_ctx::Variant objects holding the following

statement-trees:

// v1 =
for (e1; e2; e3)
S1;

// v2 =
if (e4)
S2;

else
S3;

then v1.child_expr will return the expr_ctx::Range [e1,e2,e3], v1.child_func will

return the func_ctx::Range [S1], v2.child_expr will return the expr_ctx::Range [

e4], and v2.child_func will return the func_ctx::Range [S2,S3]. Any other child_Y

function will return an empty Y_ctx::Range.

Collectively, these child_Y functions are called polymorphic child-functions, since

they act like virtual functions. Using child-functions, func_collect_decls becomes

much easier to write. We start with the following recursive function, which does most

of the work:

void func_impl(func_ctx::Variant v, vector<const ipr::Decl *> &decls)
{
switch (v.which()) {
case func_ctx::class_e: case func_ctx::union_e:
uda_collect_decls(get_uda(v), decls);
break;

case func_ctx::glo_var_e:
if (match(v.get<Glo_var>()))
decls.push_back(&v.get<Glo_var>().ipr());

break;
default:
for (func_ctx::Range r = v.child_func(); !r.empty(); ++r.first)
func_impl(*r.first, decls);

}
}

and kick off the recursion in func_collect_decls:

void func_collect_decls(Func f, vector<const ipr::Decl *> &decls)
{
if (!f.has_def())
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return;
func_impl(b.def_body().variant(), decls);

}

Notice that all the boilerplate cases mentioned earlier have been reduced to the single

default case in func_impl.

The expression b.def_body().variant() has two interesting features. First, it

returns the body of the function as a func_ctx::Variant, instead of a Range. This

is because the root of a function is either a try statement or a curly-brace block,

not a list of statements. The second interesting feature is def_body. Looking at the

class Func in filter.h, we can see that Func::def_body returns an object of type

Func::Body. Nested classes are used in the Filter library to signify that the returned

object is elaborating the same node as the parent class. Nested classes are used to

allow lazy evaluation and improve performance by eliminating unnecessary calls or

checks.

4. Traversal

The code described thus far implements the declaration-finding stage of our semantic

grep. Before moving on, in this section we consider the code we have written and

look at a new Filter feature that can simplify the code further.

To find all member and global variables, we first identified all the contexts in

which they could occur, and then wrote code to search for these contexts and then to

search through these contexts. In doing so, we only examined contexts which might

possibly contain the target nodes, ignoring a large percentage of the program that

exists in type and sub-statement expressions. This “pruning” of the whole program

graph is desirable because it improves the performance of our analysis.

The problem is, we had to write a lot more code than if we had a reusable traversal
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algorithm at our disposal. While a discussion of traversal strategies is outside the

scope of this traversal, the basic pattern is that the user first writes code to handle

each type of node, and then passes this code (by a pointer, type, or function value)

to an algorithm that applies the code to every node in the program graph. Thus, if

we could have used a traversal algorithm to do declaration-finding, the only code we

would have had to write would be the cases to accept global and member variables

and the match function.

Instead of providing a set of traversal algorithms, the Filter library takes a differ-

ent route. The basic idea has already been demonstrated with child-functions; these

functions allow us to generically walk over the nodes in a tree without handling every

node along the way. Using them, we can approximate a traversal function with only

a few lines of code:

template <class Variant, class F>
void traverse(Variant v, F f)
{
f(v);
for (ns_ctx::Range r = v.child_ns(); !r.empty(); ++r.first)
traverse(*r.first, p);

for (uda_ctx::Range r = v.child_uda(); !r.empty(); ++r.first)
traverse(*r.first, p);

for (func_ctx::Range r = v.child_func(); !r.empty(); ++r.first)
traverse(*r.first, p);

for (expr_ctx::Range r = v.child_expr(); !r.empty(); ++r.first)
traverse(*r.first, p);

for (type_ctx::Range r = v.child_type(); !r.empty(); ++r.first)
traverse(*r.first, p);

}

Here, f is a callable value that accepts Variant objects, which can then be queried

for the desired node. Since traverse is a template, it is actually a family of five

functions, one for each context’s Variant.

While traverse is a good start, it breaks one of the Filter’s design goals by

imposing an inversion of control on the user: the user must package their code into a
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function/object that gets called by traverse. An alternative design that avoids this

inversion would be an iterator that lazily walks the tree each time it is incremented.

Using this iterator (named Traverse), we could replace our three mutually recursive

collect-functions with:

void collect_decls(Namespace ns, vector<const ipr::Decl *> &decls)
{
for (Traverse t(ns); !t.done(); t.step())
switch (t->which())
case ?_ctx::glo_var_e:
case ?_ctx::mem_var_e:
if (match(get_var(*t)))
decls.push_back(&get_var(*t).ipr());

}

However, as shown by the ? in the above code, we run into the problem that we don’t

have a variant “big enough” to hold all possible Filter nodes. In fact, the whole goal

of putting variants into contexts was to enumerate the precise subset of nodes that

could actually occur.

To solve these and a family of related problems, Filter provides the Any context,

which represents the union of the five other contexts. As one might expect, the Any

context has a namespace, any_ctx, which contains Variant, Iter, Which, and Range

types. Using the Any context, we can implement a pre-order depth-first Traverse

as shown in Figure 6. Notice that the constructor of Traverse takes an any_ctx::

Variant while the calling code above passes a Namespace. This works because the

Any context provides a constructor for every node type.

Considering the relatively concise implementation of Traverse, we can see that,

by encapsulating the complexity of child-enumeration in the Any context’s child-

functions, the user is free to design custom traversals that fit their needs. In con-

trast, while pre-packaged, library-supplied traversal algorithms can meet the common

needs (depth-first, breadth-first, nested, etc.), they ultimately constrain the user to a



40

class Traverse {
vector<any_ctx::Range> st_;

public:
Traverse(any_ctx::Variant v) { st_.push_back(v); }
bool done() const { return st_.empty(); }
any_ctx::Variant &operator*() const { return *st_.back().first; }
any_ctx::Variant *operator->() const { return &*st_.back().first; }

void step()
{
any_ctx::Range r = st_.back().first->child_any();
if (!r.empty())
st_.push_back(r);

else {
++st_.back().first;
while (st_.back().empty()) {
st_.pop_back();
if (!st_.empty())
++st_.back().first;

else
break;

}
}

}
};

Fig. 6. A class for iterative pre-order depth-first traversal



41

framework. This comparison is discussed with additional details in Chapter IV and

on pg. 146.

As it is presented above, using the Any context will forfeit the performance

advantages mentioned at the beginning of this section. That is, Traverse will visit all

reachable children of the node given on construction. To provide fine-tuning of this

traversal, child_any has an optional “pruning” parameter which takes the following

record:

struct Prune {
bool ns, uda, func, expr, type;
Prune()
: ns(true), uda(true), func(true), expr(true), type(true) {}
Prune(bool n, bool u, bool f, bool e, bool t)
: ns(n), uda(u), func(f), expr(e), type(t) {}

};

Next, Traverse can be modified, as shown in Figure 7, to forward the user’s pruning

choices to child_any. With this new Traverse, the user can avoid visiting expressions

and types by clearing the corresponding flags in the Prune argument:

Prune pr(true,true,true,false,false)
for (Traverse t(ns, pr); !t.done(); t.step())
... as before

The end result is that we are able to visit the same nodes in the graph as before, but

with a fraction of the code. Hopefully the reader will forgive the indirect route to this

solution. Altogether, we can see that the Filter library offers three levels of navigation:

coarse-grained, through the Any context’s child-functions; medium-grained, through

the five specific contexts’ child-functions; and fine-grained, through the direct use of

Filter node member functions.
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class Traverse {
Prune pr_;
vector<any_ctx::Range> st_;

public:
Traverse(any_ctx::Variant v, Prune p) : pr_(p) { st_.push_back(v); }
... unchanged
void step()
{
Range_t r = st_.back().first->child_any(pr_);
... unchanged

}
};

Fig. 7. Traverse modified to prune edges

5. Finding and printing uses

Having finished and refined the declaration-finding stage, we now turn to the use-

finding stage, where the goal is to find and print all uses of variables that match the

pattern in cmdline. Using the developments of the first four parts, we can accomplish

this in just one section.

One approach to implementing use-finding would be to first find all uses of vari-

ables and then use the match function to decide what uses to print. As there are often

many uses in a program for every declaration, this would be a wasteful approach, as

match would be performed on the same variable many times. Instead we will use the

list of declarations found in the previous stage.

The key feature for efficient use-finding is the identity property of IPR nodes.

Consider Figure 3, shown earlier in this tutorial, and the resolution edge from

Id_expr to Var. Since the edges of the graph represent C++ pointers/references in

the IPR, we can see that the ipr::Var object found at the declaration site (as a child

of Block) is the same object found at the use site (as the resolution of Id_expr).

This means that C++ pointer equality suffices to check whether a declaration and use
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refer to the same entity.

The Filter library represents uses of declarations (through their names) in ex-

pressions with the Name_expr node. Using Name_expr, we can start implementing

print_uses as follows. (Recall from pg. 29 that print_uses is called by analyze.)

void print_uses(Namespace ns, const vector<const ipr::Decl *> &vec)
{
unordered_set<const ipr::Decl *> decls(vec.begin(), vec.end());
for (Traverse t(ns); !t.done(); t.step())
switch (t->which()) {
case any_ctx::name_expr_e: {
Name_expr ne = t->get<Name_expr>();
if (ne.which() == Name_expr::glo_var_e &&

decls.find(&ne.glo_var().ipr()) != decls.end())
print_use(t);

break;
}

}
}

The basic approach is to look through the whole program for Name_expr nodes, see

if the declaration used is a global variable, and then test whether its underlying ipr

::Decl is in the set of ipr::Decl objects found in the first stage. To improve the

performance of this lookup, a hash table is used. Once a match is found, the use is

printed by the print_use function, which is shown further below.

We now consider this code in more detail, starting with the Name_expr node type.

Its abbreviated declaration (from filter.h) is shown below:

struct Name_expr : Variant_node
{
enum Which {
this_e, enum_val_e, loc_var_e, glo_var_e, class_var_e, parm_e,
glo_func_e, class_func_e

};
Which which() const;

cross_edge::Enum::Val enum_val() const;
cross_edge::Loc_var loc_var() const;
cross_edge::Glo_var glo_var() const;
...
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};

Here we can see that Name_expr is like the Variant types: it provides a which member

and an enumeration of possibilities. However, instead of providing a get member,

Name_expr provides a member foo_bar(), for each enumerator foo_bar_e. This mem-

ber is used to get more information about the declaration that was used, such as,

which global variable was named.

What about the cross_edge prefix? Looking at the cross_edge namespace in

filter.h, we can see that cross_edge::X is just a typedef for X. So why the sub-

terfuge? The cross_edge typedefs allow a Filter member to syntactically specify

that the node being returned is not a child, but another node’s child. Thus, the

consistent use of cross_edge prefixes throughout the Filter library give a syntactic

characterization of the tree structure inherent in the source code.

One last note about the above code is that, by using polymorphic child-functions

(through Traverse), we easily find all the subtle places expressions can be used, such

as the five uses of G in:

const int G = 5;
template <int I = G> struct A {
int m : 2*G;

};

struct B : A<G+1> {
int m;
B(int i = G) : m(4*G-3) {}

};

To catch all cases like these, a feature like polymorphic child-functions, or a library-

supplied traversal algorithm, is absolutely necessary.

Broadening the search to include member variables, we can see that member

variables are conspicuously absent from Name_expr::Which. The reason for this is

that member variables can only appear in a limited context. In particular, they may
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only be used to access the member of another expression or have their address taken.1

These two cases are represented by the Member and Address node types, respectively.

Using these, we can add the following two cases to the switch statement in print_uses:

case any_ctx::member_e:
if (t->get<Member>().which() == Member::mem_var_e &&

decls.find(&t->get<Member>().mem_var().ipr()) != decls.end())
print_use(t);

break;
case any_ctx::address_e:
if (t->get<Address>().which() == Address::mem_var_e &&

decls.find(&t->get<Address>().mem_var().ipr()) != decls.end())
print_use(t);

break;

Looking at filter.h, we can see that Member and Address follow the same which-

switch style as Name_expr. In the case of Member, which indicates whether the member

is accessed by its declared name or by an expression resulting in pointer-to-member.

For Address, which indicates whether the address is taken of a normal expression or

a member.

With these cases added, our analysis will find all global and member variables.

All that remains is to implement print_use. However, there is a difficulty in doing

this: the IPR only stores source-position information for nodes of type ipr::Stmt

, which is inherited by ipr::Decl but not by ipr::Expr. Furthermore, there are

no direct links from ipr::Expr nodes to the ipr::Stmt that contains them. These

decisions were made to save space: since there are a large number of expression and

type nodes, the space required for each should be minimal, so each pointer counts.

To solve the problem, we take advantage of the tree-like structure of the program.

Specifically, the first members of all the Range objects stored in the internal stack of

1In the upcoming C++ Standard, member variables may also appear as the argu-
ment of a sizeof or typeid expression, but, for brevity, we will ignore these cases in
our analysis.
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Traverse represent a path from the root of the traversal to the current node. Using

this, we can find an expression’s parent statement by simply walking backwards over

this path until we reach a node derived from ipr::Stmt. Thus, if searching for uses

of “x” in the following code:

int x;
void foo() {
if ((1 < 2 ? x + 1 : 0) == 1)
;

}

our algorithm will first find the addition, then the conditional, then the equality, until

it finally finds the if statement.

To implement this algorithm, we first need to expose the internal Traverse stack:

class Traverse {
...
const vector<any_ctx::Range> &path() const { return st_; }

};

On pg. 81, we will see an efficient way to test inheritance using the Visitor pattern [41].

For now, we can simply use dynamic_cast. Thus, we implement print_use as follows:

void print_use(const Traverse &t)
{
typedef vector<any_ctx::Range>::const_reverse_iterator Iter_t;
for (Iter_t i = t.path().rbegin()+1, end = t.path().end(); i != end; ++i) {
any_ctx::Variant v = *i->first; // pull the current node from the Range
const ipr::Node *n = v.node().ipr(); // pull the IPR out of the Variant
if (const ipr::Stmt *s = dynamic_cast<const ipr::Stmt *>(n)) {
cout << "Use at line: " << s->unit_location().line << ’\n’;
return;

}
}

}

Looking at this code, there are a few new bits that deserve explanation. First, Variant

types have a member Variant::node which returns a reference to the Filter node held

inside the Variant. Using this reference, we can ask the Filter node for its underlying

IPR node. As indicated by the ipr::Node* return type, this pointer can be 0, which
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indicates that there is no underlying IPR node and the node has been synthesized as

part of the lowering performed by the Filter.

Putting all these pieces together, we are finished with the use-finding stage. The

only remaining code to write is print_decls:

void print_decls(const vector<const ipr::Decl *> &decls)
{
for (int i = 0; i < decls.size(); ++i)
std::cout << "Decl at: " << decls[i]->unit_location().line << ‘\n’;

}

This concludes the implementation of sgrep.

6. Postmortem

Using the IPR with the Filter and Pretty-printer libraries, only about 60 lines of code

were required to implement sgrep. In this code, we saw examples of how to analyze

the declarations, statements, and expressions of C++ programs. Missing from this list

are types in C++ programs. Analyzing types is described in more detail onpg. 59.

Part of the reason we ultimately had to write only a small amount of code was

the direct IPR representation of the results of name lookup, overload resolution,

specialization matching, type evaluation, and other hard C++ problems. For example,

in the following code:

namespace A {
struct S {};
void f(S);

}
int main() {
A::S s;
f(s);

}

an analysis using Id_expr::resolution will be able to find the variable declaration

named by “s” just as easily as the function declaration named by “f,” despite the



48

latter dependency on the more complex Argument Dependent Lookup mechanism.

The same argument applies, mutatis mutandis, for the other hard C++ problems.

Another feature that clearly shortened the code was the polymorphic child-

functions. These allowed us to easily write a custom Traverse iterator to fit our

needs (which changed over time), instead of using a pre-packaged algorithm with a

fixed mode of traversal.

A last noteworthy feature, that didn’t shorten code but assisted in writing it, is

the context maintained by Filter types. Without context, there would be only one

Variant in the Filter library—the any_ctx::Variant. Knowing the context in which

a Variant is found, however, allows the Variant to enumerate a more precise set of

nodes that it may actually contain. In this way, the X_ctx::Members enumerations

save the user the trouble of looking at the C++ language definition to determine what

may actually occur in every context. Thus, the Filter library effectively encapsulates

this logic in one place, instead of having it scattered throughout every analysis.

F. Big picture

To conclude the tutorial, this section builds a simple, coherent picture of the various

Filter concepts that have been introduced. While there are many classes in the Filter

library, making the task of learning how to effectively use the library seem onerous, the

user can “compress” their understanding by keeping this picture—literally, Figure 8,

shown later—in mind.

First, we need to be precise about some terminology that has been used loosely

up to this point. The term Filter type refers to a C++ class in the Filter library, and

thus is a static entity. A Filter object refers to an object of a Filter type, and thus

is a runtime entity. We can sort the Filter types into groups based on their role:
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variants, ranges, iterators, nodes, and node bases. The variant, range, and iterator

groups consist of all the Variant, Range, and Iter types, respectively, found in the

six X_ctx namespaces. The node group consists of all the Filter types that represent

individual IPR nodes. The nodes that have been described so far are Namespace,

Glo_func, Glo_var, Class, Union, and Name_expr. Additionally, there are more than

40 types that collectively complete Filter’s view of the IPR. Lastly, the node base

group contains the types Func, Var, and Uda introduced so far as well as one other

base, Initable_var.

With these groups defined, we now enumerate the functions between them, i.e.,

the ways to take a Filter object of one Filter type and produce an object of another.

In this list, statements involving X and Y can be seen as applying to each of the six

contexts, by substituting for X and Y.

1. IPR node ↔ Filter node : The left-to-right direction is accomplished by the

various node constructors, which take an appropriately-typed IPR node and a

reference to the environment. The right-to-left direction uses the ipr member

function found in most node types. (pg. 22)

2. IPR node → X-context variant/range : Although not shown in the tutorial, the

Filter library contains the following five functions for going directly from an

IPR node to a variant or range:

maybe<ns_ctx::Variant> ns_ctx::discern(Env_ct &, const ipr::Decl &);
maybe<uda_ctx::Variant> uda_ctx::discern(Env_ct &, const ipr::Decl &);
func_ctx::Range func_ctx::discern(Env_ct &, const ipr::Stmt &);
expr_ctx::Variant expr_ctx::discern(Env_ct &, const ipr::Expr &);
type_ctx::Variant type_ctx::discern(Env_ct &, const ipr::Type &);

The discern functions returning a maybe type indicate that the given IPR node

may be found to be purely syntactic, and thus not represented by any Filter
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node. The function context returns a Range since a single IPR statement may

be lowered into zero or more Filter nodes.

3. X-context variant ↔ node : The left-to-right direction is accomplished by the

Variant::get<T> member, which returns the node object currently inside the

given variant object. The type T must correspond to an enumerator in the

X_ctx::Which enumeration and must match the actual runtime return value of

X_ctx::Variant::which. (pg. 22)

The right-to-left direction uses the fact that X_ctx::Variant types have con-

structors for each node in X_ctx::Members. Thus, a ns_ctx::Variant can be

constructed from a Glo_func, while trying to construct from a Name_expr will

fail at compile time. (pg. 37)

4. X-context variant → X-context range : Although not shown in the tutorial, it

is possible to construct a range from a variant. The resulting range will be a

singleton sequence containing a copy of the variant.

5. X-context variant → Y-context range : The member functions X_ctx::Variant

::child_Y return the children of the node object contained by the variant object

that are in the Y-context. (pg. 32)

6. X-context iterator ↔ X-context range : Simply, each range can be constructed

from two iterators in the same context, and iterators can be extracted from a

range by its first and last members. (pg. 27)

7. X-context iterator → X-context variant : Dereferencing an X-context iterator

returns a X-context variant. (pg. 29)

8. X-context variant → Any-context variant : Following from the fact that the
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Any context logically represents the union of the other five contexts, any_ctx::

Variant has constructors taking each of the other five Variant types:

expr_ctx::Variant ev = ...
any_ctx::Variant av(ev);
assert(ev.which() == static_cast<any_ctx::Members>(ev.which()));

The final assertion only makes sense because, as can be seen in filter.h, enu-

merators in X_ctx::Members are defined to have the same integral values as the

corresponding enumerators in any_ctx::Members.

9. X-context range → Any-context range : Building on the previous conversion in

the obvious way, there is an any_ctx::Range constructor that accepts any other

X_ctx::Range. This can be seen as a special case of covariant subtyping, which

is safe when ranges are immutable [59].

These conversions are summarized in Figure 8. Ignoring the arrow for item 5, this

graph is actually a commutative diagram, i.e., [with a little hand-waving and the

appropriate projection/concatenation operations inserted where ranges are involved]

any two paths between two nodes will take equal objects to equal objects, and any

path that forms a loop will yield the same object.

One consequence of the diagram in Figure 8 is that the Filter library user can

easily “tweak” the type they have in order to fit their needs. For example, assume

the user has written a recursive traversal over ranges:

void examine_stmts(func_ctx::Range r)
{
... // examine the linear sequence of statements
examine_stmts(...); // recursively descend into a nested sequence

}

but wants to iniate the recursion given a single node, say, a an ipr::Stmt, Block, or

func_ctx::Variant. Looking at Figure 8, we can see a clear path for converting what

we have into a func_ctx::Range:
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IPR Nodes Variants any_ctx::Variant

any_ctx::RangeRanges

Nodes
1

2

3

2 54 Iterators

6

7

8

9

4 any_ctx::Iter

7

6

Fig. 8. Overall organization of the Filter library

const ipr::Stmt &stmt = ...
examine_stmts(func_ctx::discern(env, stmt));

Block b = ...
examine_stmts(func_ctx::Range(func_ctx::Variant(b)));

func_ctx::Variant v = ...
examine_stmts(v); // implicit conversion to Range via constructor

Moreover, when there are two ways to do the conversion, except for uses of child_func

(the arrow for item 5 in Figure 8), both paths will produce the same results.

Finally, we now revisit the earlier claim (pg. 11) that the Filter integrates traver-

sal and case analysis. Recall that traversal using the Filter is achieved through vari-

ants and polymorphic child-functions. The nodes considered during such a traversal

are controlled by the context of the variants used. Thus, choosing the context of a

traversal is an effective way to “prune” large parts of the program tree. Using the

abovementioned conversions, we can also see how the context of a traversal can be

broadened, by injecting into an Any-context variant, or refined, by using a non-Any

child-function. Combined with the ability to use polymorphic child-functions in an

ad hoc manner, this allows the user to easily build precise, custom traversals.
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As an example of this integration, consider the following solution to the problem:

“find all uses of a given variable in the conditions of if-statements in a given function.”

void find_all_x_in_cond(Func f, Loc_var x)
{
for (Traverse<func_ctx::Range> t1(f.def_body().variant());

!t1.done(); t1.step())
if (t1->which() == func_ctx::if_e)
for (Traverse<expr_ctx::Range> t2(t1->get<If>().condition());

!t2.done(); t2.step())
if (t2->which() == expr_ctx::name_expr_e &&

t2->get<Name_expr>().which() == Name_expr::loc_var_e &&
&t2->get<Name_expr>().loc_var().ipr() == &x.ipr())

... found one!
}

Here, we assume that we have parameterized Traverse over range type, instead of

fixing any_ctx::Range as in Figure 6.

Now, we consider how this might be accomplished with a “traditional” traversal

library, i.e., without (1) the ad hoc nesting of traversals used above or (2) the auto-

matic pruning performed based on context. The approach that first comes to mind

would be to write a traversal that searches for all uses of the given variable and then,

when one is found, walks up the ancestors of the use site to determine whether the use

occurs as the condition of an if statement. This assumes that the traversal maintains

and exposes such a stack of ancestors to the user, which is not always the case [38,60].

One downside of this approach is that it will visit all types and expressions, instead

of just the runtime expressions in conditions. On average, this will more than dou-

ble the running time compared to the Filter solution. To regain efficiency, the user

would need to match on every statement node to carefully control descent into types

and expressions. This also requires that the library traversal provide the user with

fine-grained traversal control (viz. the ability to descend into some, but not all, child

nodes).
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CHAPTER III

DESIGN AND IMPLEMENTATION

Having introduced the Filter library, this chapter describes the design and implemen-

tation in more detail. On pg. 4, four basic goals—two functional, two stylistic—were

outlined. The way Filter achieves the first goal (simplify traversal and case analysis)

was demonstrated in the tutorial in Chapter II. The second functional goal (perform

lowering on the IPR) was used implicitly throughout the tutorial and is outlined ex-

plicitly in this chapter by §A and §B. The two stylistic goals (provide a lightweight

view and avoid inversion of control) were also used implicitly throughout the tutorial

and are detailed in §C and §D. These four sections build a list of functional and

performance requirements for the implementation of ranges and the final section (§E)

concludes by describing this implementation in detail.

As mentioned at the beginning of Chapter I, Filter simplifies the IPR for the

user by focusing on a more specific set of use cases than Pivot. In particular, the

class of analyses targeted by the Filter library are the “high-level semantic analyses.”

Examples include the automatic parallelization example from pg. 13, semantically

enhanced library languages [61], safety analyses [6, 62], and code generation to an

IR like LLVM [43]. Non-examples include code-style checking and pretty printing.

Thus, statements made in this chapter about what information is necessary and what

information is just syntactic detail are made with respect to the class of high-level

semantic analyses.

Lastly, there is one syntactic convention to discuss. In general, the IPR is a

graph, as shown in Figure 3. However, in many cases we are only interested in

viewing a tree-like subgraph of the overall graph. In these cases, a concise LISP-like

representation can be used instead of an image. For example, to show the IPR rooted
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at the Return node in Figure 3, the following syntax is used, ignoring children with

“...” and dropping fields when they are not relevant:

(Return value:(Minus first:(Plus first:(Id_expr resolution:(Var ...)
second:(Literal "2"))

second:(Literal "3")))

A. Templates

In C++, there are two ways to look at a template. In the first view, a template

is a single concrete entity with associated syntax. In the second view, a template

is a family of concrete entities, each with associated syntax, that are generated by

instantiations of the template. To illustrate the difference between these two views,

consider the following example:

template <class T>
bool reflexive(const T& x, const T& y) { return x == y && y == x; }

bool b1 = reflexive(1, 2);
bool b2 = reflexive(string(), string());

We now consider this code from both points of view. In the first view, the sam-

ple contains three declarations: a template and two global variables. The template

declaration has a body, which contains an expression-statement. Looking at this ex-

pression, it is not exactly clear what operations are being performed. Is the “==”

a built-in operation or a call to a user-defined function? Even the call to “&&” is

unresolved, since the result type of equality comparison might not be bool. As for

the initializers of b1 and b2, both are calls to a template function which pass two

runtime arguments and one compile-time template argument.

Despite these unknowns in the representation of reflexive, this information is

useful. For example, a concept analysis can look at this code and derive the syntactic

requirements on the parameter T [63]. Alternatively, assuming T was known to provide
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certain minimal syntactic and semantic guarantees, it is possible to prove properties

about the generic algorithm itself [64]. Additionally, on the caller side, we can examine

the template arguments to determine whether they satisfy all the semantic properties

required by the generic algorithm.

Changing to the second view, the same code looks different. There are still three

declarations, but the first is a “family of functions.” Looking at this family, we don’t

consider the syntax of its body, just the family members, which look like normal

non-template functions. In the sample code, we can find two different instantiations,

reflexive<int> and reflexive<string>, thus the family has two members. Because

these members are fully-instantiated, we can be sure that all the unknowns mentioned

in the first view have been resolved. Thus, in reflexive<int>, the call to “==” shows

up as a C++ built-in, while in reflexive<string>, “==” is a call to string::operator

==. Lastly, the calls to reflexive in the initializers of b1 and b2 are viewed as calls

to fully-instantiated functions.

With this view of templates, we can now more easily apply traditional analysis

frameworks like monotonic data-flow analysis [65] and abstract interpretation [66]. In

fact, we can almost ignore the presence of templates in C++ altogether. To do this,

we just view instantiations, like reflexive<int>, as normal functions with strange

names.

Clearly, both views of the code are useful and, for certain applications, neces-

sary. While the second view could technically be derived from the first by simulating

template instantiation as needed, this process is complicated and, since it is already

done by the front-end, wasteful. Thus, Pivot represents both views in the IPR, simul-

taneously. Furthermore, these views are tightly integrated and they allow the user

to shift back and forth between templates and their instantiations. A more detailed

description of how templates are represented in the IPR is beyond the scope of this
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Fig. 9. Filter model of templates

thesis; see the Pivot framework documentation.

With this background, we can now examine how templates are treated in the

Filter library. The basic model corresponds to the second view described above and

is shown in more detail in Figure 9. In this figure, edges without labels correspond

to the ordinary “child” or “contains” relationship. The important edges are the

“member” and “member of” edges between families and members. The key property

of this graph is that it avoids entering the uninstantiated context of a template body.

This is key because it allows Filter to provide a simpler view of the program than

the raw IPR can. Specific instances of this simplification are described on pg. 59 and

pg. 63.

We conclude by showing how to analyze templated C++ code with the Filter

library. Unfortunately, as opposed to the rest of the discussion in this thesis, this

demonstration is hypothetical: these interfaces have not been fully implemented in

Filter. This is due to the fact that the exact representation of templates in the IPR

currently lacks a detailed specification and hence is not fully implemented by the un-

derlying IPR generation tools.
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Templates in Filter are represented by the Class_family, Union_family, and

Func_family Filter nodes. These nodes can be used to obtain their respective family

members as follows:

void analyze_class(Class);

void analyze_ns(Ns ns)
{

for (ns_ctx::Range nr = ns.members(); !r.empty(); ++r.first)
switch (nr.first->which()) {

case ns_ctx::class_e: // found single [non-template] class
analyze_class(nr.first->get<Class>());
break;

case ns_ctx::class_family_e: { // found family of classes
Class_family cf = nr.first->get<Class_family>();
for (Class_family::Range cfr = cf.members();

!cfr.empty();
++cfr.first)

analyze_class(*cfr.first);
break;

}
}

}

As shown, Class_family::members corresponds to the “member” edge of Figure 9.

Note that Class_family::Range contains a pair of iterators that, when dereferenced,

return a Class. Altogether, this code shows how an analysis that only cares about

non-template classes (analyze_class) can be “lifted” to analyze template classes by

analyzing their members.

Another way to find the instantiations of a template is through the polymorphic

child-functions, based on the view that instantiations are child nodes of the template.

Thus, an analysis using the Traverse class defined onpg. 37, which internally uses

child_any to traverse the tree, would examine all instantiations.

The other direction, corresponding to the “member of” edge in Figure 9, is

provided by the members of Class, Union, and Func:

for (Traverse t(...); !t.done(); t.step())
if (t->which() == any_ctx::class_e)



59

if (t->get<Class>().has_family()) {
Class_family cf = t->get<Class>().family();
...

}

The uses of templated classes and functions stays the same as the use of non-templated

classes and functions, which are discussed on pg. 59 and pg. 63, respectively. Thus,

in the following code:

class C {};
template <class> class T {};
C x;
T<int> y;

both x and y’s types will appear as uses of a Class. To determine that y’s type is

actually an instantiation of a template, the analysis can take the extra step of testing

Class::has_family.

B. Lowering

In this section we consider a set of lowering operations that are commonly needed

for high-level semantic analysis. Not a great deal of code is required for most of the

individual lowering operations performed and each could therefore be written by an

IPR user as needed. However taken together, they represent a significant amount of

code and knowledge of C++ and the IPR. Thus, one of the goals of the Filter library is

factor out this common lowering code by providing a view of the IPR where lowering

has already been performed.

1. Types

In C++, types can be thought of as expression trees, where “*”, “&”, “[]”, and “()

” are operators that construct compound types from their arguments. The IPR

represents this expression tree directly by using nodes to represent each of these type
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constructors. For example, the types of the variables in the following code:

int ar[4];
float (*pf)(char);

are represented by the following IPR nodes:

ar : (Array element_type:(Int) bound:(Literal "4"))
pf : (Pointer points_to:(Function source:((Char)) target:(Float)))

Additionally, there is a loose one-to-one correspondence between the IPR and Filter

for these node types. In fact, the only reason for the Filter library to wrap these

nodes at all is to support seamless use of the library when traversing the IPR.

However, the representation of the use of user-defined types is less straightforward

in the IPR. For example, given the following code:

class C {};
C c;

one might guess that the IPR for c’s type would look like:

c : (Class ...)

However, the following is the actual IPR produced:

c : (As_type expr:(Id_expr name:(Identifier "C")
resolution:(Typedecl initializer:(Class ...))))

This is for a good reason; the meaning of these nodes is as follows. As_type represents

the use of a general expression as a type. Here, the expression is an Id_expr, which

represents a name that has been resolved to a declaration. The declaration is a

Typedecl, which represents the named declaration of some type which, in this case,

is a Class. Together, this representation captures many of the variations that can

appear in C++ source code: for example, names can qualified or unqualified and types

can be named or unnamed.

For the purpose of high-level semantic analysis, however, we often only care to

find out the type being used. Furthermore, for new users, understanding each IPR

node of an expression can be daunting. To both simplify usage and factor out common
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code, the Filter library begins by providing the Udt_use node type. Its abbreviated

signature is as follows:

struct Udt_use {
enum Which { class_e, union_e, enum_e };
Which which() const;

cross_edge::Class the_class() const;
cross_edge::Union the_union() const;
cross_edge::Enum the_enum() const;
...

};

Recall, from pg. 42, that the cross_edge prefix means that, with respect to the

program tree, the returned node is not a child of the node whose member was called.

With Udt_use, picking out uses of user-defined types is as easy as picking out

the type constructors introduced at the beginning of this section. For example, the

following code harvests the classes of all the variables in the given namespace:

void harvest_classes(Namespaces ns, vector<Class> &out)
{
for (Traverse t(ns); !t.done(); t.step())
if (t->which() == any_ctx::udt_use_e &&

t->get<Udt_use>().which() == Udt_use::class_e)
out.push_back(t->get<Udt_use>().the_class());

}

Additionally, in the process of discerning the right Filter node type for a given ipr::

Type, Filter’s algorithm handles the following intricacies for the user:

• There are two ways to determine the kind of user-defined types being declared

by a Typedecl: looking at Typedecl::type or the type of the node returned

by Typedecl::initializer. The former method can always be used, but it

requires several virtual function calls. The latter method is faster, wasting no

virtual calls if the initializer is needed anyway, but only possible when Typedecl

::has_initializer is true. Thus, to be efficient and correct, a hybrid strategy

employing both should be used.



62

• A user-defined aggregate may be declared but not defined, or defined but not

declared:

class C; // Typedecl with no initializer
struct { int i; } x; // type of Var is Class with no Typedecl

Filter allows uniform treatment by merging both cases.

• In addition to representing the use of user-defined types, As_type also represents

primitive types by holding an Identifier containing the name of the primi-

tive type (e.g. int becomes (As_type expr:(Identifier "int"))). Filter can

identify standard and non-standard primitive types without looking into this

Identifier: Standard C++ primitive types are picked out by visitation, leaving

non-standard primitive types as the only possible meaning of an As_type hold-

ing an Identifier. These two cases are presented to the user as the Filter node

types Cpp_builtin and Non_cpp_builtin.

• The special case of parameter types breaks the assumption stated in the pre-

vious bullet, since Ellipsis derives As_type and has an Identifier expression

containing “...”. To keep this special case out of type_ctx::Variant, ellipses

are caught where they occur: in function signatures and catch statements.

• Lastly, As_type may refer to an Alias node (which represents the C++ typedef).

These are iteratively followed to an eventual non-Alias type.

As this list illustrates, As_type can be used in a number of ways. On the other

hand, this is a fairly restricted set of possibilities compared to As_type’s description as

“the use of a general expression as a type.” For Standard C++, this list is a complete

characterization of all legal uses of As_type. Thus, the Filter library encapsulates the

case analysis needed to interpret As_type. More than just saving code, though, by
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replacing As_type with all its “semantic” cases, Filter saves the user from the need to

consider all possible C++ types that might be represented as a “general expression.”

Instead, when considering the type of a variable or expression, the Filter user is simply

given a type_ctx::Variant whose which member function returns one of the following

enumerators:

enum type_ctx::Members {
cpp_builtin_e, non_cpp_builtin_e, udt_use_e,
qualified_e, ptr_e, ref_e, array_e, ptr_to_member_e, func_t_e

}

On a final note, ipr::Product and ipr::Sum are also missing from this list. This

is because these types only show up in specialized circumstances, like the parameter

list of an ipr::Function. To keep them out of type_ctx::Variant where they make

little C++ sense, they are represented by a type_ctx::Range in the Filter interface

wherever they may occur.

2. Runtime expressions

We now consider the portion of the IPR which represents runtime expressions. The

qualification “runtime” is necessary because the IPR notion of “expression” repre-

sented by ipr::Expr is very broad and includes declarations, statements, and types.

Since runtime expressions are key to semantic analyses—used, for example, to deter-

mine the transfer functions in data-flow analysis—Filter focuses on this subset.

In many cases, the representation of runtime expressions in the IPR mirrors

traditional ASTs. For example, the expression “1+2*3” is represented as:

(Plus first:(Literal "1")
second:(Mul first:(Literal "2") second:(Literal "3")))

The representation of function calls also has a straightforward mapping to the syntax.

For example, the expression “p->foo()” is represented:

(Call function:(Arrow base:(Id_expr name:(Identifier "p")
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resolution:(...) )
member:(Id_expr name:(Identifier "foo")

resolution:(...)))
args:())

This is a good choice of representation because it can be uniformly applied in tem-

plated and non-templated contexts. For example, in this function:

template <class T> void call_foo_member(T *p) { p->foo(); }

the structure of the IPR representation of “p->foo()” stays the same, replacing the

second Id_expr node with a weaker Identifier node since the resolution of “foo” is

unclear. Notice that, from the point of the view of the template, “foo” can legally be

a member function, member variable of type pointer-to-function, or member variable

with an overloaded operator().

While this representation is good for both pretty-printing and uninstantiated

contexts, it is not ideal for analyzing the execution of an expression. For example,

Arrow has no behavioral meaning by itself; it has to be interpreted in the context of

its parent and children. In instantiated contexts, all this information is present in

the IPR, so Filter lowers the view of these IPR nodes so as to give each Filter node

an operational meaning: member access, member function call, and non-member

function call.

Member access is represented by the Member node, whose abbreviated signature

is shown here:

struct Member {
expr_ctx::Variant object() const;

enum Which { mem_var_e, ptr_expr_e };
Which which() const;

cross_edge::Mem_var mem_var() const;
expr_ctx::Variant ptr_expr() const;

};

The object member returns the runtime expression that evaluates to the object whose
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member is being accessed. The Which values respectively indicate whether the member

is accessed directly, with an identifier, or indirectly, through an expression that results

in a pointer-to-member.

The abbreviated signature for Mem_call (the Filter node for a member function

call) resembles Member, with the addition of an argument list:

struct Mem_call {
expr_ctx::Variant object() const;

enum Which { mem_func_e, ptr_expr_e };
Which which() const;

cross_edge::Mem_func mem_func() const;
expr_ctx::Variant ptr_expr() const;

expr_ctx::Range args() const;
};

Notice here that, in the program tree, Mem_call has up to three classes of child

edges: an edge to the receiver (object), a possible edge to an expression resulting

in a pointer-to-member-function (ptr_expr), and an edge to each function argument

(args). Thus, if an expr_ctx::Variant holds an expression “(a->*b)(c,d)”, which is

rooted at a Mem_call, child_expr must return [a,b,c,d]. To implement this, since

there is no underlying ipr::Sequence with the elements [a,b,c,d], the Filter library

must be able to synthesize this sequence.

Compared to member invocations, non-member invocations take away the re-

ceiver expression and add new choices for what function is called:

struct Call {
enum Which { builtin_e, glo_func_e, class_func_e, ptr_expr_e };
Which which() const;

ipr::Category_code builtin() const;
cross_edge::Glo_func glo_func() const;
cross_edge::Class_func class_func() const;
expr_ctx::Variant ptr_expr() const;

expr_ctx::Range args() const;
};
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Notice that, with the builtin_e enumerator, Call treats expressions like “a+b” as

calls to a built-in function “+”. Thus, in addition to hiding the syntactic IPR nodes

Arrow, Dot, Arrow_star, and Dot_star, this node unifies the more than 50 expression

nodes like Plus, Minus, Div, etc. A benefit of this design is that, when the actual

operation described by a node is not important, to get to the arguments, the user

does not have to handle every type of node.

As a result of lowering to these three node types, semantic analysis of calls and

member access is much easier. For example, the task of finding all calls to a given

member function in a given namespace can be written:

void find_calls_to(Namespace ns, Mem_func mf)
{
for (Traverse t(ns); !t.done(); t.step())
if (t->which() == any_ctx::mem_call_e &&

t->get<Mem_call>().which() == Mem_call::mem_func_e &&
&t->get<Mem_call>().mem_func().ipr() == &mf.ipr())

... found!
}

This one short piece of code actually matches three very different IPR patterns rep-

resented by the three member function invocations written below:

struct P { A *operator->(); };
struct A { B foo(); };
struct B { B operator+(B); };

void uses() {
P p;
B b;
b + p->foo();

}

Notice that find_calls_to did not have to bother with the language rules, or differ-

ent IPR representations, for operator overloading and the unique case of operator->.

Moreover, the following calls, which superficially resemble member function invoca-

tions in the IPR, will be correctly recognized as Call nodes by Filter:

typedef void (*Ptr_func_t)();
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struct A { Ptr_func_t m; void foo(); };
Ptr_func_t operator->*(A, void (A::*)());

void uses() {
A a, *pa = &a;
a.m(); // pointer-to-function call
pa->m(); // pointer-to-function call
(a->*(&A::foo))(); // then pointer-to-function call

}

Ultimately, the case analysis required to correctly categorize the IPR along these lines

is rather complex; the optimized algorithm in the Filter library requires around 200

lines of code. Figure 10 shows the basic decision tree used. Thus, the lowering of

runtime expressions done by Filter can offer a significant reduction in user code.

Moving beyond calls and member access, another type of runtime expression

that is lowered is uses of declarations, represented by the Filter node Name_expr.

Thus, Name_expr replaces ipr::Id_expr in runtime expressions much like Udt_use

replaced ipr::As_type/ipr::Id_expr in type expressions. Name_expr has already

been described on pg. 42.

A choice of runtime expressions in Filter is represented by the expr_ctx::Variant.

Thus, the condition of an if statement, the expression returned by a return state-

ment, and the arguments of a function call all return expr_ctx::Variant objects. The

expr_ctx::Members enumeration contains:

name_expr_e, member_e, call_e, mem_call_e, literal_e, datum_e, new_e,
delete_e, address_e, cast_e, typeid_e, sizeof_e, throw_e, conditional_e

Comparing this set to the set of derived classes of ipr::Expr, we can see how expr_ctx

::Variant simplifies case analysis by significantly reducing the set of possibilities that

must be considered.

The expert C++ user may have noticed that certain nodes that can appear in

expressions in special cases, such as local variables, are missing. This is not incom-

pleteness; these special cases are kept out of the expr_ctx::Variant by introducing
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Fig. 10. Decision tree for expression lowering
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the possibility at the special case. For example, variable declarations with initializers

can be used in the conditions of statements. Thus, the interface for If has a special

pair of members:

struct If {
bool cond_is_var() const;
Var cond_var() const; // precondition: cond_is_var is true

expr_ctx::Variant condition() const;
...

};

that describe the variable, while condition returns an expression using this declared

variable.

By keeping these special cases out of expr_ctx::Variant, the general case is kept

more concise and the user does not have to consider the meaning of a Var that occurs

in the middle of an ordinary expression. Another example is ipr::Phantom. These

nodes represent special situations where an expression is optional, like the increment

of a for statement. Thus, Phantom is kept out of expr_ctx::Variant by catching it at

each of the places where expressions are optional (e.g., by adding Loop::has_inc and

Return::has_expr which must return true before asking for the expression). Again,

this prevents the user from having to consider optional expressions in the general

case.

As a general rule, Filter tries to maintain the property that the nodes enumerated

by a variant are actual possibilities anywhere the variant is used, although clearly

there are limits to this precision. This assists the user in case analysis since the user

is reminded of special cases by corresponding special cases in the Filter interface.

3. Default arguments

For a high-level semantic analysis, it often is not important whether an argument was

supplied or a default was used. Thus, the following two calls mean the same thing:
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void foo(int i = 1);
foo();
foo(1);

In the more general usage scenarios supported by the Pivot framework, this syntactic

information could be useful, thus it is preserved in the IPR. For example, the above

code is represented as:

(Fundecl parameters:((Parameter default_value:(Literal "1") ...)) ...)
(Call function:(Id_expr name:"foo" resolution:...) args:())
(Call function:(Id_expr name:"foo" resolution:...) args:((Literal "1")))

To recover the actual arguments passed, it is necessary to follow Call::function

through the Id_expr to the Fundecl, get its parameter list, and find the corresponding

Parameter’s default_value.

To simplify this common task, Filter performs a slight lowering, inside Call and

Mem_call, whereby the argument list is transparently extended to include the default

values that are used. Thus, the Filter library will show the two calls to foo above

as having equivalent argument lists. In addition to saving code, this prevents the

possible mistake of assuming all runtime arguments are present in the Call::args

list.

The same lowering also applies to arguments in template identifiers:

template <class T = int> class C {};
C<> c1;
C<int> c2;

As before, the types of c1 and c2 are the same although the argument lists of their

types are different; Filter fills in the missing arguments using the defaults.

These default-completed argument lists (exposed to the Filter user as expr_ctx::

Range objects) exist in the IPR as two ipr::Sequence objects (one for the arguments,

one for the parameters). Thus, they must be transparently merged by the Filter

Range implementation.
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4. Labeled statements

In C++, labels are not complete statements by themselves, but are instead attached to

other statements, forming compound statements without the need for curly braces:

int x;
A: x = 1; // single labeled statement
if (b)
B: x = 2; // legal without curly-braces

switch (i)
case 1: case 2: x = 3; // also legal

The IPR preserves this information about the syntax by making ipr::Labeled_stmt

hold the statement it labels as a child node. On the other hand, Labeled_stmt can

be frustrating when trying to iterate over a linear list of statements. For example,

the loop:

ipr::Sequence<ipr::Stmt> &stmts = ...
for (int i = 0, sz = stmts.size(); i < sz; ++i)
use(stmt[i]);

will skip over the “x = 1” in the statement “A: x = 1;”. To fix this, the loop can be

changed to:

ipr::Sequence<ipr::Stmt> &stmts = ...
for (int i = 0, sz = stmts.size(); i < sz; ++i) {
ipr::Stmt *s = &stmts[i];
while (true) {
use(*s);
if (s->category == ipr::labeled_stmt_cat)
s = &static_cast<const ipr::Labeled_stmt *>(s)->stmt();

else
break;

}
}

or an analogous version using a visitor. Reverse iteration is much trickier.

To alleviate this inconvenience, the Filter library lowers ipr::Labeled_stmt by

treating its child as its next sibling. Thus, the following loop:

func_ctx::Range r = ...
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for (; !r.empty(); ++r.first)
use(*r.first);

will examine the same statements as the previous nested loop.

This lowering represents yet another case where Filter ranges do not map di-

rectly to IPR sequences. A particular challenge is supporting bidirectional iteration

efficiently and without penalizing the average case.

5. Aliases

The last and smallest lowering to describe is the hiding of ipr::Alias, which repre-

sents typedef statements, using declarations, using directives, and namespace aliases.

These statements are purely syntactic as they only affect the names which can be used

to refer to declarations. In general, this information might be useful to an analysis,

so it is preserved in the IPR. For example, an analysis might want to give a warning

for the following misuse:

typedef int Policy_number;
typedef int Policy_date;
void remove_policy(Policy_number);

void do_work(Policy_date pd, Policy_number pn)
{
...
remove_policy(pd); // legal C++, but probably intended ‘pn’

}

However, for a semantic analysis, we often want to ignore this syntactic informa-

tion. Thus, the Filter library slims down the number of cases to analyze by hiding

ipr::Alias both when it is declared and used. On pg. 59, it is mentioned that uses

of Alias are unfolded during type lowering. For example, in the following code:

namespace N {
typedef const char *Str_t;
Str_t name;

}
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Filter views the namespace N as containing only one declaration and views the type

of name as “const char *”. Considering the implementation of the ns_ctx::Range

which enumerates the members of N; there is an underlying ipr::Sequence, but to

use it, the implementation must filter out elements.

6. The discern functions

While raw IPR nodes can be wrapped in Filter nodes and then injected into a Variant,

the Filter library exposes another way to inject IPR nodes into variants (mentioned on

pg. 48) which can be significantly more useful. Every context has a discern function

which takes a raw IPR base type and returns some form of Variant for the context

directly. In the case of expressions and types, discern has a simple signature:

typedef const Env Env_ct;
expr_ctx::Variant discern(Env_ct &, const ipr::Expr &);
type_ctx::Variant discern(Env_ct &, const ipr::Type &);

because there is a mapping from every runtime expression and type to a Filter node.

Note that, as described on pg. 63, ipr::Expr includes more nodes than just runtime

expressions. Thus, it is the caller’s responsibility to ensure the given node does not

just derive ipr::Expr, but is actually an expression found in a runtime context.

The discern functions for the other three contexts are not so simple:

maybe<ns_ctx::Variant> discern(Env_ct &, const ipr::Decl &);
maybe<uda_ctx::Variant> discern(Env_ct &, const ipr::Decl &);
func_ctx::Range discern(Env_ct &, const ipr::Stmt &);

The first two signatures reflect the fact that, because of the lowering described on

pg. 72, some ipr::Decl nodes are not represented by any Filter node. The maybe

type supports boolean tests and dereference to access its contents. The last signature

reflects the situation, described in pg. 71, where a single ipr::Stmt refers to multiple

Filter nodes.
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Using these functions, the Filter user can immediately jump into the Filter li-

brary without knowing the exact type of the IPR node used to construct the initial

Filter object. For example, this allows the following code to use the case analysis

encapsulated by the Filter library, while working directly with the IPR before and

after:

const ipr::Decl &ipr_in = ...
maybe<ns_ctx::Variant> mv = ns_ctx::discern(env, ipr_in);
if (mv && mv->which() == ns_ctx::class_func_e) {
const ipr::Fundecl &ipr_out = mv->get<Class_func>().ipr();
...

}

C. A lightweight library design

As already stated, one of the design goals of the Filter library is to be a lightweight

library on top of Pivot. This lightweight design is already demonstrated in Chap-

ter II, particularly on pg. 22, where Filter nodes are created and destroyed as needed

without any significant initialization or finalization work. This section describes how

this design choice interacts with the lowering described on pg. 59 and the library’s

performance.

1. Lowering

In trying to achieve the goals of being a lightweight library and doing lowering there is

an apparent conflict: the natural way to describe lowering is as a transformation from

an un-lowered data structure to a lowered one, and the natural way to implement this

is as a giant recursive function that does all the lowering in one shot. However, this

strategy is clearly not lightweight: such a transformation would be a large up-front

cost to using the Filter and the resulting data structure would consume memory

commensurate with the original ipr::Unit.
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In addition to breaking the “lightweight” design goal, the separate-data-structure

approach raises another design question which does not seem to have a good answer:

after the lowering transformation, should both data structures be kept in memory? If

they are, then memory usage will [roughly] double and performance will be reduced

due to increased paging. However, if the IPR is released, the user will be cut off

from the syntactic origins of the code. These origins may still be useful; it is not

unreasonable for an analysis writer to want to work on the lowered model offered by

Filter while occasionally requiring the syntactic details offered by the IPR.

For these reasons, the classic separate-data-structure route is undesirable. For-

tunately, there are several properties of lowering that can be used to our advantage.

First, compared to the lowering of IRs described in [67] or the code generation de-

scribed in [31], the logical distance between the un-lowered and lowered forms is small.

Furthermore, the information required to lower is local and the computation required

is light—usually just a case analysis on a few reachable nodes.

Taking advantage of these properties, an alternative to the upfront creation of a

separate data structure is a model where IPR nodes are lowered to Filter nodes as each

individual node is requested by the user. For example, consider the implementation

of filter::If. Its abbreviated signature is:

struct If {
expr_ctx::Variant condition() const;
func_ctx::Variant then_branch() const;
func_ctx::Variant else_branch() const;

};

In the on-demand model, filter::If simply stores a pointer to the underlying

IPR node. When the Filter user calls If::condition, the implementation first calls

condition on the underlying ipr::If_then or ipr::If_then_else node to get an ipr

::Expr node. Next, Filter performs lowering on this IPR node, as described on pg. 63,
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to determine what Filter node to put inside the returned expr_ctx::Variant. Thus,

using the expr_ctx::discern function described on pg. 73, the implementation can

be written something like this:

expr_ctx::Variant If::condition() const
{
return expr_ctx::discern(

ipr_->category == ipr::if_then_cat
? static_cast<const ipr::If_then *>(ipr_)->condition()
: static_cast<const ipr::If_then_else *>(ipr_)->condition());

}

(The actual Filter implementation pushes the type test earlier and catches errors.)

Importantly, inside discern, the Filter node that gets created does not immediately

lower its children. This means that the only lowering performed by calling If::

condition is on the IPR node[s] at the root of If’s condition. In this way, the Filter

library acts as a tool for selective, on-demand lowering.

Another, more figurative, way to picture the on-demand lowering done by the

Filter library is to imagine a boulder being transported over land by rolling it over logs.

Here, only a small number of logs are needed to cover large distances by reusing the

same logs. Going back to Filter, the boulder is the analysis, the ground is the graph

of IPR nodes, and the logs are the memory used by the Filter library. Filter nodes

are thus represented by a single use of a log to carry the boulder a short distance.

Just like how, when the boulder moves past a log, the log can be reused to cover new

ground by placing it in front, when an analysis no longer needs a given Filter node,

it can be deleted and the memory reused to construct new Filter nodes. By keeping

Filter nodes on the stack, this is the strategy used in the examples throughout this

thesis.
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2. Performance

While the on-demand model addresses the goals of being lightweight, it appears to

do so at the cost of performance. Specifically, if the Filter user creates and destroys

several Filter nodes from the same IPR nodes, a lowering cost is incurred each time.

For example, consider the following algorithm which counts the number of variables

in a list that are objects of a given class:

int count_class_objects(Class c, const vector<Loc_var> &vars)
{
int ct = 0;
for (auto i = vars.begin(); i != vars.end(); ++i)
if (i->type().which() == type_ctx::udt_use_e &&

i->type().get<Udt_use>().which() == Udt_use::class_e &&
i->type().get<Udt_use>().the_class().ipr() == c.ipr())

++ct;
return ct;

}

Here, each expression “i->type()” invokes the lowering of the same IPR nodes. That

means that each iteration calls ipr::Var::type followed by type_ctx::discern three

times! Because, as described on pg. 59, several IPR nodes are used to represent the

use of a user-defined type, and each node access implies a virtual function call, we

can expect this sloppiness to more than double the running time of the algorithm.

Thus, a more efficient approach is to hold on to the type_ctx::Variant:

int count_class_objects(Class c, const vector<Loc_var> &vars)
{
int ct = 0;
for (auto i = vars.begin(); i != vars.end(); ++i) {
type_ctx::Variant tv = i->type();
if (tv.which() == type_ctx::udt_use_e &&

tv.get<Udt_use>().which() == Udt_use::class_e &&
tv.get<Udt_use>().the_class().ipr() == c.ipr())

++ct;
}
return ct;

}
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As was briefly mentioned on pg. 22 and will be described on pg. 81, get<Udt_use> is

very fast, so its redundancy is negligible.

As this example shows, the value semantics of Filter nodes are crucial to allowing

the user to extract good performance from the Filter library. Unfortunately, it is up

to the user to detect logically redundant sources of lowering. Even assuming user

cooperation, though, the Filter still needs to take extra steps to avoid performance

pitfalls.

The first case to guard against is unnecessary node access. To achieve a binary

interface, the IPR hides all fields behind virtual functions. Thus, if the Filter ac-

cesses fields that would not have been needed in a traversal without the Filter, the

overhead can be significant. Consider the implementation of filter::Return, whose

abbreviated interface is:

struct Return : Normal_node<ipr::Return> {
bool has_expr();
expr_ctx::Variant expr();

};

There is a temptation to check for ipr::Phantom, as described on pg. 63, in the Return

’s constructor. This would allow the result to be computed and stored once, rather

than accessing ipr::Return::value in both has_expr and expr. However, if the Filter

user does not care about the returned expression—perhaps they are only looking for

local variables—then the Filter will have imposed the cost of an extra virtual function

call unnecessarily on any such analysis that creates a Return node, but does not call

has_expr or expr.

The solution to the Return question, and the many situations like it, is to use lazy

evaluation and caching. That is, avoid any up-front field access in the constructor, but

also avoid duplicate field access in members by caching the results of each member’s

query. For example, applying this strategy to Return yields:
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class Return : Normal_node<ipr::Return> {
mutable const ipr::Expr *value_;
public:
Return(Env_ct &e, Ipr_ct &i) : /* base constructor */, value_(0) {}

bool has_expr() const
{
if (value_ == 0)
value_ = &ipr().value();

return value_->category != ipr::phantom_cat;
}

expr_ctx::Variant expr() const
{
if (value_ == 0)
value_ = &ipr().value();

assert(has_expr());
return expr_ctx::discern(env(), *value_);

}
};

Altogether, this strategy imposes a small overhead from the extra branching involved

in cache checks but prevents the performance hits associated with unnecessary virtual

function calls.

The other performance concern is dynamic allocation. While individual Filter

node types can simply use member variables to store their data, the Variant and Range

types need to store data of varying size: an object of a single type (e.g. expr_ctx::

Variant) must store data describing one of many types (viz. all the types listed in

expr_ctx::Members).

Making excessive calls to malloc and free is a simple way to dominate the

execution time of an otherwise efficient library [68, 69]. To avoid this cost, a logical

first attempt would be to make more sophisticated use of the in-place storage provided

by member variables. This could take the form of a C++ union or just raw memory:

namespace expr_ctx {
class Variant {
char mem_[max<sizeof(Member), sizeof(Mem_call), ...>::result];
...
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};
}

Here, the max template meta-program is used to calculate the maximum memory

required to store a fully constructed copy of whatever node ends up inside the variant.

While this approach escapes malloc and free, it has several drawbacks. First, the

complexity of variants and ranges increases drastically. Second, for an average-sized

node (around 5 words), much of the space in the variant is wasted since the variant

must be large enough for the biggest node (around 11 words). The discrepancy for

ranges is even worse (3 words compared to more than 10, for each iterator). If the

user stores the resulting variant or range in a std::vector, as Traverse does, this

waste would then be magnified.

To motivate the solution used by Filter, we can observe a few properties of the

data that needs to be stored:

1. except for the lazy evaluation mentioned above, the data is read-only;

2. while there are many types allocated, they come only in a few fixed sizes; and

3. there is a high turn-over rate of objects.

Observation 1 immediately suggests a reference-counting scheme for variants and

ranges. Thus, the variant copy operation can require only a few instructions, com-

pared to the polymorphic clone required for in-place allocation. Observation 2 sug-

gests a classic fixed-size pool allocator, like the one described in §19.4.2 of [70] and

implemented in [71]. As shown in Chapter IV, these two techniques allow Filter to

do limited dynamic allocation without significant overhead.

On the other hand, in a concurrent environment, both of these techniques can

create race-conditions in seemingly race-free user code. Fortunately, both techniques

can be made thread-safe without adding a large synchronization overhead. For ref-
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erence counting, this issue is well-understood from copy-on-write implementations

of C++ string classes [72]. One low-cost solution is to use atomic increment and

decrement primitives, as described in [73]. This does not, however, synchronize the

lazy-cache update operations. For pool allocation, a more sophisticated algorithm

may be used to avoid locking the entire pool during allocation and deallocation. Ex-

amples include the slab allocator [74] used in Linux and the magazine allocator [75]

used in GNOME. However, neither of these options have been tested for this thesis.

D. Type discovery

A key use case of the Filter library is the case analysis commonly found in syntax-

directed algorithms like type systems [30] and structured flow analysis [76]. In any

heterogeneous data structure, a necessary part of the case analysis is discovering

the type of a node. The Filter library’s solution to the type discovery problem is

described in Chapter II and revolves around the use of Variant types. This section

describes why this solution was chosen from among the alternatives and how variants

are implemented.

1. Alternatives

Although it can take many literal forms, the type discovery problem always starts

the same way: the program follows a reference from a source node to a target, and

the target node does not have a single, statically-determined type. This can be seen

by following the path from an ipr::Namespace to its members:

const ipr::Namespace &ns = ...
ipr::Sequence<const ipr::Decl> &decls = ns.members();
for (int i = 0, sz = decls.size(); i != sz; ++i) {
const ipr::Decl &d = decls[i];
... now what?

}
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Hence the question is: once we have d, what can we do with it?

By nature of being a typed abstract-syntax graph, the IPR gives us a partial

answer. Looking at the signature of ipr::Decl, we can see members like name, type,

and initializer, so we can call those directly. However, none of these operations,

or the types they return, reveal to us what exactly we have found in the global

namespace. However, this established commonality between all nodes, represented

by ipr::Decl, can be useful. For example, if we were simply looking for all entities

named “foo,” we would be satisfied knowing only that we had found an ipr::Decl.

In general, though, we need to find out more about the node pointed to by decl,

which means first discovering its most-derived [public interface] type. One way is to

use the built-in C++ dynamic_cast operation:

if (const ipr::Fundecl *fd = dynamic_cast<const ipr::Fundecl *>(&decl))
... now we can use fd

However, this is not an efficient route when performing many such tests in a row.

This is common for many analyses, like type systems, that intend to analyze every

case:

if (const ipr::Fundecl *fd = dynamic_cast<const ipr::Fundecl *>(&decl))
... now we can use fd

else if (const ipr::Typedecl *td = dynamic_cast<const ipr::Typedecl *>(&decl))
... now we can use td

else if (const ipr::Var *v = dynamic_cast<const ipr::Var *>(&decl))
... now we can use v

What we would rather do is ask a node “what type are you?” instead of asking

“are you an X,” for every X. With some indirection, the Visitor pattern [41] lets us

do exactly that. To receive the answer, we write a class that overrides one member

function for every possible answer:

struct Question : ipr::Visitor {
void visit(const ipr::Fundecl &fd) { ... now we can use fd }
void visit(const ipr::Typedecl &td) { ... now we can use td }
void visit(const ipr::Var &v) { ... now we can use v }
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};

Note that Question must derive ipr::Visitor so that we can ask our specific question

through the node’s general interface. In Pivot, the question is asked with the accept

member of any IPR node:

Question q;
decl.accept(q);

From inside accept, the node calls the appropriate visit overload of Question, based

on the most-derived IPR type.

Despite the more convoluted route, the Visitor pattern solves the problem effi-

ciently. The reason is that, no matter how many different visit overloads are present,

accept only costs 2 virtual function dispatches. In general, this is faster than a single

dynamic_cast, thus, the Visitor method outperforms dynamic_cast even when only

a single test is needed. Furthermore, in the specific case of Pivot, the deep single-

inheritance of IPR nodes (much of it in the implementation) makes the performance

advantage of the Visitor method even greater. This is due to the fact that the run-

ning time of dynamic_cast can be observed (in GCC [49]) to be proportional to the

distance between the source type of the cast and the most-derived type of the object.

Unfortunately, visitors can be awkward to use for several reasons. Underlying

all these reasons is the Inversion of Control (IoC, also known as the “Hollywood

Principle” as in, “Don’t call us; we’ll call you” [36]) required by the Visitor pattern.

While IoC is often used in object-oriented frameworks to protect invariants, protocols,

or other high-level properties encapsulated by the framework, these advantages do not

transfer over to type discovery, while the awkwardness does.

A first source of frustration appears if the operations inside a visitor are part of

a larger algorithm. In this case, the algorithm’s state must be “threaded” into and

out of the visitor. For example, to implement the following pseudo-code:
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int print_var_names(std::ostream &os, const ipr::Sequence<ipr::Decl> &seq)
{
int num = 0;
for (int i = 0, sz = seq.size(); i != sz; ++i)
if (... seq[i] is an ipr::Var ...)
if (... seq[i].name() is an ipr::Identifier ...) {
os << seq[i].name().string() << ‘ ’;
++num;

}
return num;

}

two visitors are needed, one for each type-discovery question:

struct Var_id_vis : ipr::Visitor {
std::ostream &os;
int &num;
Var_id_vis(std::ostream &o, int &n) : os(o), num(n) {}
void visit(const ipr::Var &v) { v.name().accept(Id_vis(os, num)); }

};

struct Id_vis : ipr::Visitor {
std::ostream &os;
int &num;
Id_vis(std::ostream &o, int &n) : os(o), num(n) {}
void visit(const ipr::Identifier &id) { os << id.string() << ‘ ’; ++num; }

};

int print_var_names(std::ostream &os, const ipr::Sequence<ipr::Decl> &seq)
{
int num = 0;
for (int i = 0, sz = seq.size(); i != sz; ++i)
seq[i].accept(Var_id_vis(os, num));

return num;
}

Furthermore, the local state used in the inner loop must be manually threaded into

both visitors so that Id_vis can perform the print and increment operations.

Of course, this code is not entirely realistic since it does not use any of the

abstractions that immediately leap to mind; pg. 153 describes an entire line of Visitor-

based research that minimizes the amount of code the user must write. However,

even with these developments, the IoC remains and thus some amount of threading
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is required.

Another problem is the fragmentation of logic that results from application of

the Visitor pattern. To see this we need only compare the pseudo-code with the

implementation using visitors. This effect can be further seen throughout the tests

described in Chapter IV.

The last problem with visitors is that they make it hard to be in two places at

the same time. That is, they favor analyses where there is only a single focal point

that moves through the program. As a counter-example, consider an analysis which

compares user-defined types to see if they are compatible, in some sense like structural

subtyping [30] or the C++ One Definition Rule ( [32], §3.2). Without a language feature

like multi-methods [77] or an explicit design emulating multi-methods, the Visitor

pattern cannot visit two trees simultaneously. This assumption tends to be enforced

by abstractions built on top of the Visitor pattern such that explicit support, like the

Data.Generics.Twins module in SYB [60], is required for simultaneous traversal. A

clear example of this effect can be seen in the layout-compatible test on pg. 134.

For all of these reasons, the Filter library went instead with the type-switch

design that has already been presented in Chapter II. However, one downside of this

design choice is that, without language support, the type-switch offered by the Filter

cannot catch a specific type of error at compile time. Specifically, if the user makes

the following error:

func_ctx::Variant v = ...
switch (v.which()) {
case func_ctx::loop_e: {
If i = v.get<If>(); // v holds a Loop, not an If!
...

}
}
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the Filter can only report a run-time assertion. In contrast, the language-supported

type-switches described on pg. 146 both catch the error and allow the switch to be

written more concisely. However, as far as programmer errors go, this one is fairly

easy to catch due to its locality.

2. Implementation

As mentioned on pg. 22, the Variant members get and which, as well as copy and

assignment, are meant to be efficient operations. To implement this, a Variant holds a

pointer to a fully-constructed node. This node is dynamically allocated and managed

by Variant using the techniques described on pg. 77, namely reference counting and

pool allocation.

The smart pointer filter::detail::shared_node is used to encapsulate the man-

agement of nodes contained in variants and allow RAII techniques ( [70], §14.4.1).

To save memory, the smart pointer embeds the reference count in the node. How-

ever, to avoid imposing this overhead on Filter nodes that are not stored inside a

Variant, this is done non-intrusively, as shown in Figure 11. By controlling construc-

tion, shared_node is able to embed the node in a composite that also contains the

reference count. The pool allocation is handled by deriving pool_alloc_base, which

overloads new and delete to allocate from the pool, instead of malloc and free.

The Variant_node base is derived by all Filter node types that can go into a

Variant. It adds a small virtual interface (needed for the implementation described

on pg. 88) and three members that, for performance reasons, are kept non-virtual:

class Variant_node {
Env_ct *env_;
const ipr::Expr *ipr_;
any_ctx::Members node_type_;
public:
virtual ~Variant_node() {}
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class shared_node {
struct ref_ct_base : util::pool_alloc_base {
virtual ~ref_ct_base() {}
unsigned int ct;
Variant_node &node;
ref_ct_base(Variant_node &vn) : ct(1), node(vn) {}

};

template <class T>
struct ref_ct_wrap : T, ref_ct_base {
ref_ct_wrap(const T &t) : T(t), ref_ct_base(*this) {}

};

ref_ct_base *ptr_;

public:
template <class T> shared_node(const T &t)
: ptr_(new ref_ct_wrap<T>(t)) {}

... copy, assignment use normal intrusive ref-counting
Variant_node &operator*() const { return ptr_.node; }

};

Fig. 11. A smart pointer class for non-intrusive embedded reference counting

... virtual interface

... inline accessors of the three member variables
};

The most important of these fields is node_type_, whose value is returned by Variant

::which. Note, however, that node_type_ is of type any_ctx::Members, while each

X_ctx::Variant will return X_ctx::Members. To allow this problem to be solved by a

simple static_cast, all enumerators of X_ctx::Members are carefully defined to have

the same values as the corresponding enumerators in any_ctx::Members. Using this,

a runtime-checked Variant::get can be implemented efficiently:

template <class T> void Variant::get()
{
assert(node_->node_type() == any_ctx::node_type_to_code<T>::result);
return static_cast<const T &>(*node_);

}

Here, node_ is the sole member of Variant and has type shared_node. The “node
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type to code” template meta-function is a simple utility for mapping from types to

their any_ctx::Member value.

Since get and most other members of X_ctx::Variant are the same, they are

factored into a Variant_base class. In fact, only one important job is done in each

Variant class: provide constructors for each type of node, as already mentioned on

pg. 48. These constructors simply forward the parameter to shared_node member’s

constructor. Altogether, Variant types are little more than smart-pointer wrappers

with a few additional operations that catch static and dynamic misuse.

E. Implementing ranges and iteration

This section concludes the chapter by describing the implementation of iterators and

ranges in the Filter library. This is the most complicated part of the implementation

due to the list of simultaneous constraints and requirements accumulated by the

preceding chapters. Summarizing this list:

1. Ranges and iterators must fit in with the overall goal of being lightweight and

efficient, as described on pg. 74.

2. The elements of a Filter sequence must be describable by a transformation of

several underlying IPR sources, such as the lowering described on pg. 59.

3. Filter sequences must be able to describe the arbitrary concatenation of IPR

sequences and IPR node singletons, such as the children of Mem_call described

on pg. 63.

4. Several elements of a Filter sequence must be able to be extracted from a sin-

gle underlying IPR node, such as from an ipr::Labeled_stmt, as described on

pg. 71.
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To describe the solution to these goals, the rest of this section is broken into subsec-

tions describing the individual parts of the implementation.

1. Overview of sequence composition

To motivate the implementation strategy used, we consider how the Range objects re-

turned by polymorphic child-functions are created. As described on pg. 86, a Variant

is just a thin wrapper around a Variant_node pointer. Therefore, the implementation

of Variant::child_x simply calls a corresponding virtual function in Variant_node

which gets overridden by each concrete node type. Thus, each node is responsible for

listing its own children.

With this design, we now consider how the node types build Range objects. To

demonstrate the issue, consider filter::Loop, whose abbreviated signature is shown

here:

struct Loop {
enum Which_init { none_e, expr_e, loc_vars_e };
Which_init which_init() const; // what type of initializer is used?

expr_ctx::Variant init_expr() const; // if which_init == expr_e
Var_range init_loc_vars() const; // if which_init == loc_vars_e

bool has_cond() const; // does the loop have a condition?
bool cond_is_var() const; // if so, does condition declare a variable?
Loc_var cond_var() const; // if so, what is the variable?
expr_ctx::Variant condition() const; // what expr is tested?

func_ctx::Range body() const;

bool has_inc() const;
expr_ctx::Variant inc() const;

};

Looking at this signature, we can see several potential children. For child_expr, Loop

should return an expr_ctx::Range containing init_expr, if which_init is expr_e,

condition, if has_cond is true, and inc, if has_inc is true. The func_ctx::Range

returned by child_func should contain the variables in Var_range, if which_init is
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loc_vars_e, the single variable cond_var, if has_cond and cond_is_var are both true,

and body.

So, how are these Range objects built? The first part of the answer is: by com-

posing sequence primitives. For the current Filter implementation, these primitives

are:

• a single IPR node,

• a sequence of IPR nodes held by an ipr::Sequence,

• a sequence of IPR nodes represented by a dispatch table,

• a sequence of IPR nodes extracted from an ipr::Stmt (pg. 71).

Here, dispatch table refers to a static array of member-function pointers which, when

applied to an object, yield the desired sequence. For example, we can associate the

following array with the node ipr::Plus:

[ &ipr::Plus::first, &ipr::Plus::second ]

so that, for a particular ipr::Plus node, we can get its members by calling the

members in the list. Why go through all this trouble? The reason is that these static

arrays can be generated automatically for any ipr::Classic node by a template meta-

program that uses the IPR types Unary, Binary, and Ternary to provide compile-time

reflection. This allows us to write a utility function:

typedef const ipr::Expr &(* const Dispatch_entry_t)(const ipr::Classic &);
struct Dispatch_table {
Dispatch_entry_t (&arr)[];
int arr_sz;

};

Dispatch_table get_dispatch_table(const ipr::Classic &);

which takes an ipr::Classic and returns an array of pointers to functions which,

when given the same ipr::Classic node, return its children.
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With the abovementioned sequence primitives, the next question is how to rep-

resent these primitives and their composition in a data structure. An initial idea is

to use template meta-programming to generate, for each list of primitives, a custom

class representing the composition. For example, assuming Single and Sequence are

the types of sequence primitives and Compose is a template meta-program, we could

write the following to refer to the composition of two single IPR nodes and one IPR

sequence:

Compose<Single, Single, Sequence>::result

The result type could then be allocated with exactly the storage required and with

a static knowledge of the composed sequence.

The problem with this approach is that it forces all composition to occur at

once. Thus, for any composed sequence with conditionally included members (e.g.,

the children of Loop described above), every different combination of primitives must

use a different type. This can lead to a combinatorial explosion of branching in

the implementation. This effect is particularly pronounced in the implementation of

child_any, which conditionally combines children based on the Prune parameter.

To overcome this inflexibility, the Filter library composes sequence primitives

dynamically using the data structure shown in Figure 12. In this data structure, each

sequence primitive is a separately-allocated segment that is composed with other

segments in a doubly-linked list. The whole composition is contained by a rope.

Regarding resource management, the iterators are managed by the user, usually being

passed by value as part of a Range; ropes are pool-allocated and reference-counted by

the iterators; and segments are pool-allocated and managed exclusively by a single

rope.

Ropes are implemented by the filter::detail::Rope class, and are fairly simple:

they contain only the first/last pointers shown in Figure 12 and an embedded reference
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Fig. 12. The Rope data structure

count used by the iterators. The key member function provided by Rope is append,

which takes ownership of a dynamically-allocated Segment by adding it to the end of

the linked list. With this, polymorphic child-functions can be implemented by having

nodes append their custom segments. For example, the following code builds the rope

for the func_ctx::Range returned by child_func on a Loop:

void Loop::append_func(detail::Rope &r) const
{
if (which_init() == loc_vars_e)
r.append(new Seq<...>(...)); // append loop init vars

if (has_cond() && cond_is_var())
r.append(new Single<...>(...)); // append loop condition vars

r.append(new Single<...>(...)); // append loop body
}

The segments Seq and Single will be explained in the following subsections. Note

that the logic in append_func closely matches the earlier informal description of what

Loop’s children should be.

As shown in the above code for the function context, there are a set of virtual

append_X functions, for each context X, in the Variant_node base class that are over-

ridden by each node. These append_X functions can then be used to implement the

Variant::child_X member functions as follows:

func_ctx::Range Variant::child_func() const
{
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Rope r(...);
node_->append_func(r);
return range_from_rope<func_ctx::Iter>(r);

}

Here, Rope is first allocated on the stack and filled with dynamically-allocated seg-

ments. If the Rope is not empty, range_from_rope will dynamically allocate a Rope and

have it “steal” (or, in C++0x terms, “move construct” [78] from) the segments of the

stack-allocated rope. This new Rope will then be used to initialize the returned Range.

Otherwise, if the stack-allocated Rope is empty, range_from_rope will call a special

Range constructor that avoids the need for a dynamically-allocated Rope altogether.

With this organization, append_any can be implemented as follows:

void Loop::append_any(Rope &r, Prune p) const
{
if (p.func)
Loop::append_func(r);

if (p.expr)
Loop::append_expr(r);

}

Notice, though, that append_any is implemented for each specific node. This is an

optimization, made at the cost of extra boilerplate: Loop::append_any can call the

other append_x functions statically. If all these append_any calls were factored out into

Variant::child_any, each call to append_X would have to be dynamically dispatched.

The other parts of Figure 12 are discussed in the next subsections.

2. Segment interface / move algorithm

More important than the implementation of iterators and segments is the interface

between them, which is key to minimizing the number of virtual dispatches to the

polymorphic segment while supporting all the features listed at the beginning of this

section. Overall, there are two types of operations needed: creating iterators at the
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beginning/end of a range, and increment/decrement operations. The challenge with

implementing these operations is that, for reasons like those described on pg. 72, each

segment represents a lazily-filtered sequence, not unlike the Boost filter_iterator

[33]. This means that each operation requires a subsequent “settling” phase, to place

the iterator on an un-filtered element, which must work correctly between segments.

To support the above usage, Segment provides the following five operations:

class Segment {
public:
Segment *next() const;
Segment *prev() const;
int pre() const;
int post() const;
virtual shared_node move(Env_ct &, int &i, bool forward) const = 0;

};

Notice that the first four members are non-virtual—in fact, they are inline functions.

The next and prev members are the links in the doubly-linked list of segments. The

list is acyclic, so these members return 0 when at the ends. The pre and post

operations produce indices that are one-past-the-beginning and one-past-the-end,

respectively.

The last operation, move, merges increment/decrement and settling into a single

operation. The Env_ct reference is needed for the underlying calls to discern. The i

parameter is the index into the segment and, as a precondition, must be in the range [

pre, post]. Note that i is passed by mutable reference, which allows move to change

the index as it skips over IPR nodes in the aforementioned settling process. The

forward parameter indicates whether to increment or decrement and, when settling,

which direction to settle. Lastly, the return value is the smart pointer introduced on

pg. 86. This smart pointer has a testable null value; returning this null value is how

move indicates that a valid Filter node was not found.

Using this interface, we can build an algorithm to “lift” Segment::move to the
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template <class Op>
Segment *Rope::move(Segment &first_seg, int &i, Op found, bool forward)

{
for (Segment *seg = &first_seg; true; )
if (shared_node n = seg->move(env_, i, forward)) {
found(n);
return seg;

}
else
if (forward)
if ((seg = seg->next()) != 0)
i = seg->pre();

else
return 0;

else
if ((seg = seg->prev()) != 0)
i = seg->post();

else
return 0;

}

Fig. 13. An algorithm to lift move from segments to ropes
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Fig. 14. Example rope for the move algorithm

entire rope. This algorithm is a member of Rope and shown in Figure 13. We first

consider its signature:

template <class Op>
Segment *Rope::move(Segment &first_seg, int &i, Op found, bool forward);

The first_seg argument is the segment indexed by i. The found parameter is a

callable value that receives a valid element, if one is found, in the form of a non-null

shared_node. If found is called, the return value of move is a pointer to the segment

containing the node and i is its index. On the other hand, if no node was found, the

return value is 0 and i should be regarded as garbage.

From this specification and the interface provided by Segment::move, the imple-

mentation in Figure 13 follows directly. To illustrate the combination of Rope::move

and Segment::move, we now consider the example rope in Figure 14. To abstract from

the implementation of segments, we will view segments simply as linear sequences of

“good” and “bad” elements, with bad elements labelled “X.” The numbers under

each element represent their index in the segment. Thus, numbers under the dotted

boxes are the values of pre and post for the segment. The arrows between segments

are the next pointers—prev pointers have been elided.

We start by calling Rope::move, passing the leftmost segment for first_seg and

i set to “first_seg.pre()”, which is -1. Thus, this call represents a request for the

first non-filtered element of the sequence. Inside, the call to “seg->move” returns a

non-null shared_node and sets i to 2. Thus, Rope::move returns a pointer to the first
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segment, keeping i set to 2.

Now we call Rope::move again, passing the Segment returned from the last call

and the same i. Inside, the first call to “seg->move” reaches the end of the segment

and returns null. The algorithm then moves to the next segment and resets i to its

pre value, which is -1. This segment also fails to find any valid element, returning

null. On the third iteration, a valid element is found and so Rope::move returns a

pointer to the third segment with i set to 0.

Calling Rope::move a third time will first fail to find an element with “seg->move”

and then fail to find a next segment with “seg->next”. Thus, Rope::move will return

0 and leave i in an undefined state.

Altogether, these three calls to Rope::move reveal the three good elements dis-

tributed through the segments. While “good” here is an abstract property, pg. 102

describes how this abstract interface and algorithm give segment implementations

enough flexibility to realize the rest of the required functionality.

3. Iterator implementation

We now consider just the iterator side of the interface described on pg. 93 and how

Rope::move can be put to work. Before going any further, though, we have to address

a problem that appears for any iterator that dynamically creates its elements: how

to implement the dereference operations (operator* and operator->).

The normal strategy for these operations is simply to return a reference or pointer

to the element in the underlying data structure. However, as described on pg. 74,

there are no permanent elements to which a reference can be made. Returning by

value for these operations is also not an option: for operator*, it is inefficient, and

for operator->, even using the proxy pattern, a value type prevents the iterator from

being used to build composite iterators, like the Traverse class from the tutorial.
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One option would be to use an iterator’s rope to store permanent elements since,

because of reference counting, ropes live longer than their iterators. However, this

would either require creating all these elements up-front, breaking the lazy evaluation

strategy of the Filter library (pg. 77), or creating them as needed, which would require

a dynamic data structure to hold the elements. Either way would make ropes bigger

and slower.

The alternative used by Filter is to store a single element inside the iterator

itself. Because of the compact representation of variants (a single pointer), the space

required is minimal. With this in-place element, the dereference operations can simply

return references/pointers. The downside, however, is that these references will be

invalidated after any operation that changes the iterator’s current element. Thus, we

can see the reason behind the limitation, described on pg. 29, that a reference should

not be stored to the current element of an iterator.

Since the iterators for each context differ primarily in the type of variant returned,

iterators are implemented by a class template:

namespace filter {
namespace detail {
template <class Policy>
class Rope_iter {
typedef typename Policy::Variant_t Variant_t;
...
Variant_t &operator*() const;
Variant_t *operator->() const;

};
}

}

Here, Policy is a collection of types and functions used by iterators and segments to

capture the variation between the contexts.

Inside Rope_iter, only four words are required to maintain the state of the iter-

ator, making it the same size as a std::deque iterator:
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Rope_ptr rope_; // reference-counting smart pointer
Segment *seg_; // current segment of the iterator
int i_; // current index within the current segment
Variant_t elem_; // current element

The Rope_ptr type is a utility class that provides intrusive reference counting and

allows RAII techniques ( [70], §14.4.1). The seg_ member is 0 when the iterator is

one past the end of the sequence. When seg_ is not 0, elem_ holds the last valid

element found and i_ holds its index. Otherwise, when seg_ is 0, these two variables

should not be used except for destruction.

With these members, copy construction, assignment, and destruction can all use

the compiler-generated defaults. Construction of iterators is implemented as follows,

using the empty End_t type as a flag to construct the end iterator:

Rope_iter(Rope &r) : rope_(r), seg_(0)
{
if (!r.empty()) {
i_ = rope_->first().pre();
seg_ = rope_->move(rope_->first(), i_, Assign_to(elem_.node_), true);

}
}

Rope_iter(Rope &r, End_t) : rope_(r), seg_(0) {}

Here we see code corresponding to the example described at the end of pg. 93: to

settle on the first valid element, i_ is set to the element before the first element of

the first segment and then the move operation is called. When and if a valid element

is found, Assign_to is the function object, substituted for found in Figure 13, which

will be called. Its implementation is simply:

struct Assign_to {
shared_node &sn_;
Assign_to(shared_node &sn) : sn_(sn) {}
void operator()(const shared_node &new_node) { sn_ = new_node; }

};

Thus, valid nodes are assigned to the smart pointer inside the iterator’s internal
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Variant. Increment is even simpler:

Rope_iter &operator++()
{
assert(seg_ != 0);
seg_ = rope_->move(*seg_, i_, Assign_to(elem_.node_), true);
return *this;

}

Decrement is a bit more complicated, since it has to handle decrements starting at

the one-past-the-end state, similar to how the constructor handles starting at the

beginning:

Rope_iter &operator--()
{
if (seg_ == 0) {
assert(!rope_->empty());
seg_ = &rope_->last();
i_ = seg_->post();

}
seg_ = rope_->move(*seg_, i_, Assign_to(elem_.node_), false);
return *this;

}

In addition to iterating over ropes, Filter iterators also provide two special cases:

iterating over a singleton sequence, and iterating over an empty sequence. These

special cases forego the need for a dynamically allocated rope and thus offer opti-

mizations like the one in range_from_rope described on pg. 89. To implement this,

we can reuse the space used by seg_, since it is no longer required. Specifically, we

replace seg_ with a union member containing a segment pointer:

union Rope_iter_union {
Segment *seg_; // normal case
struct {
bool single_ : 8; // singleton or empty sequence?
bool end_ : 8; // if singleton sequence, at beginning or end?

} s;
} u;

Here, bitfields are used so that the two bool members fit into the single word used

by seg_.
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Since C++ unions are not discriminated, we need some way to tell which union

member to use. We find this discriminant in rope_, which we set to 0 when there

is no rope. For the empty sequence, this is all the state needed. However, for the

singleton sequence, we need somewhere to store the single element. For this, we can

use elem_ (further supporting the earlier decision to use in-place storage).

The constructors that initialize iterators for these two cases simply set rope_ to

0 and set the members of u.s accordingly. For the singleton constructor, the single

element must be passed to the constructor for both the begin and end iterators.

Additionally, the increment and decrement operations are modified to toggle u.s.

end_ when rope_ is 0.

With this new conditional state, one operation that becomes significantly more

complicated is equality:

bool operator==(const Rope_iter &rhs) const {
return rope_ ? (u.seg_ == rhs.u.seg_ && (i_ == rhs.i_ || u.seg_ == 0))

: (u.s.single_ == rhs.u.s.single_ &&
(!u.s.single_ || u.s.end_ == rhs.u.s.end_));

}

Since Rope_iter is an implementation template, it is brought to the public in-

terface through a set of typedefs:

namespace filter {
namespace ns_ctx {
typedef detail::Rope_iter<detail::Ns_policy> Iter;
typedef Range<Iter> Range;

}
namespace uda_ctx {
typedef detail::Rope_iter<detail::Uda_policy> Iter;
typedef Range<Iter> Range;

}
...

}

Here, X_policy contains a typedef declaring Variant_t to mean X_ctx::Variant.

Finally, we return to the implementation of the range_from_rope template func-
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tion, mentioned on pg. 89 and used throughout the implementation of Filter nodes:

template <class Iter>
inline Range<Iter> range_from_rope(Rope &local_range)
{
if (local_range.empty())
return Range<Iter>(); // empty-range optimization

Rope *new_range = new Rope(local_range.env()); // safe: no throw below
new_range->steal(local_range);
return Range<Iter>(Iter(*new_range, false), Iter(*new_range, true));

}

Thus, range_from_rope abstracts the creation of iterators in order to use the above

empty-range constructor when possible.

4. Segment implementation

The last piece of range iteration to describe is the implementation of segments. As

with iterators, there are many variations on segments differing only superficially in

the types used, so we start with two general segment templates:

template <class Policy, class Ptr> class Single;
template <class Policy, class Ptr> class Seq;

The Policy parameter here has the same meaning, and will receive the same argu-

ments, as the Policy parameter in Rope_iter. The second parameter, Ptr, is used to

abstract the type of the underlying pointer-like object given to the segment. Some

common segments are:

Seq<Ns_policy, const ipr::Sequence<ipr::Decl> *> // namespace members
Seq<Uda_policy, const ipr::Sequence<ipr::Decl> *> // class/union members
Single<Expr_policy, const ipr::Expr *> // sub-expression
Single<Type_policy, const ipr::Type *> // part of compound type

However, IPR types are not the only arguments passed to Single and Seq. To see

the concepts (in the Standard C++ use of the word) required of Ptr, we can look at the

implementations of Single and Seq, shown in Figures 15 and 16, respectively. At the

heart of both classes’ move implementations is a call to Policy::discern. With this,
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each context’s policy can ensure that the right discern function is called to interpret

the raw IPR. In Single, this raw IPR is acquired by dereferencing ptr_ (of type Ptr),

and in Seq, it comes from dereferencing and then subscripting seq_ (of type Ptr).

Thus, these two operations are the valid use patterns required of Ptr in Single and

Seq, respectively.

Looking at the type “const ipr::Sequence<ipr::Decl> *”, it clearly satisfies

the concept requirements of Ptr for Seq. However, Filter uses several other types to

transform the sequence of raw IPR nodes fed to discern. To see a first example,

consider calling child_expr on the ns_ctx::Variant containing:

enum E {
A = 1,
B = 5,
C = 10

};

The returned expr_ctx::Range should clearly contain the expressions “1”, “5”, and

“10”. However, there is no ipr::Sequence<Expr> in the IPR corresponding to this

list. However, there is an ipr::Sequence<Enumerator>, thus we can translate this into

a sequence of ipr::Expr nodes with the following model of Ptr:

struct Enum_init_seq {
const ipr::Sequence<ipr::Enumerator> &seq_;
Enum_init_seq(const ipr::Sequence<ipr::Enumerator> &s) : seq_(s) {}
const Enum_init_seq &operator*() { return *this; }
const ipr::Expr &operator[](int i) { return seq_[i].initializer(); }

};

Thus, the “(*seq_)[i]” expression in Seq::move will yield the expressions “1”, “5”,

and “10” instead of the enumerators “A”, “B”, and “C”. Enum_init_seq can then be

plugged into Seq by the Filter Enum class as follows:

void Enum::append_expr(Rope &r) const {
const ipr::Sequence<ipr::Enumerator> &s = ipr().members();
r.append(new Seq<Expr_policy, Enum_init_seq>(Enum_init_seq(s),

s.size()));
}
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template <class Policy, class Ptr>
class Single : public Segment {

Ptr ptr_;
public:
Single(const Ptr &ptr) : Segment(1), ptr_(ptr) {}

shared_node move(Env_ct &env, int &i, bool forward) const
{
assert(i >= this->pre() && i <= this->post());
i += (forward ? 1 : -1);
assert(i >= this->pre() && i <= this->post());
if (i == 0)
return Policy::discern(env, *ptr_);

return shared_node();
}

};

Fig. 15. The implementation of the Single segment

template <class Policy, class Ptr>
class Seq : public Segment {

Ptr seq_;
public:
Seq(const Ptr &seq, int end)
: Segment(end), seq_(seq) {}

shared_node move(Env_ct &env, int &i, bool forward) const
{
int inc = forward ? 1 : -1;
assert(i >= this->pre() && i <= this->post());
i += inc;
assert(i >= this->pre() && i <= this->post());
for (; i > this->pre() && i < this->post(); i += inc)
if (shared_node n = Policy::discern(env, (*seq_)[i]))
return n;

return shared_node();
}

};

Fig. 16. The implementation of the Seq segment
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class Args_with_defs_seq {
const ipr::Sequence<ipr::Expr> &actuals_;
int num_actuals_;
const ipr::Sequence<ipr::Parm> &parms_;

public:
...
const ipr::Expr &operator[](int i) const
{
if (i < num_actuals_)
return actuals_[i];

return parms_[i].default_value();
}

};

Fig. 17. A model of Ptr that merges actual and default arguments

The transformation done by Enum_init_seq is fairly simple. A more interesting

transformation, shown in Figure 17, is needed to merge default and actual arguments

to support the lowering described on pg. 69. Transformations are also used to extract

lists of types from lists of parameters, and lists of variables and blocks from lists of

catch statements.

In some cases, however, segments cannot be generated by Single or Seq and re-

quire a custom segment type. One example are segments which represent sequences

that are lazily generated from dispatch tables (as described on pg. 89). The other ex-

ample is segments representing statements. Recall, from pg. 71, that Filter linearizes

nested chains of ipr::Labeled_stmts. Implementing efficient bidirectional iteration

over such statements, while not penalizing the average case, requires an unexpectedly

complex solution.

The basic issue is how to map the integer index passed to move to a sequence of

nested labeled statements. Normally, the integer can be translated into the index of

an ipr::Sequence, but in this case, we need to handle the possible stack of statements

nested inside each element of the ipr::Sequence. One solution would be to gener-
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alize the iterator state passed to move so that, for the special case of iteration over

statements, the segment would have additional state to work with. This direction was

pursued initially, however, each approach penalized the average case performance and

memory usage of func_ctx::Iter and any_ctx::Iter.

The solution to the problem used by the Filter library is rather involved and

would not contribute much to the overall discussion, so only a rough sketch is given.

The basic ideas are: first, have the statements’ segment store an auxiliary data struc-

ture allowing any statement to be described by two indices; second, pack these two

integers into the single integer given to move with bitwise operations. Thus, for a

K-bit word, use L bits to store the ipr::Sequence<ipr::Stmt> index and K-L bits

to store the index into the list of ipr::Labeled_stmt nested underneath. Assuming

a maximum label-nesting depth is 511, on a 32-bit architecture this leaves 23 bits

for the ipr::Sequence index. The auxiliary data structure is only created if a label

is actually found during iteration, otherwise, the segment just keeps a null pointer

indicating the absence of any auxiliary data. Thus, for the average case, there is

no per-iterator space overhead and only a slight performance overhead for statement

iteration due to the additional bitwise operations and logic.

5. Range optimization

We describe one last optimization of the range implementation that significantly

reduces the amount of dynamic allocation and dynamic dispatch. Recall that the

function range_from_rope delays the dynamic allocation of a Rope until it is known

whether the Range will be empty or not. Experimentally, this has a big payoff, avoiding

1/3 to 1/2 of all dynamic rope allocations. While dynamic allocation is inexpensive

using the techniques described on pg. 86, at the micro-scale compared in Chapter IV,

it can still introduce a factor overhead.
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To take the optimization further, recall from pg. 97 that singleton ranges can

also be constructed without ropes. However, with the current design, by the time it

is known that a range will only contain a single element, a segment has already been

dynamically allocated. Thus, the solution is to again delay dynamic allocation until

the last possible moment.

The first step is to abstract rope and segment creation behind a factory called,

for brevity, the Ropery. The Ropery has the following interface:

class Ropery {
public:
// normal cases: add a single IPR node, or a sequence of them
template <class Policy> void pt(const typename Policy::Ipr_t &);
template <class Policy>
void seq(const ipr::Sequence<typename Policy::Ipr_t> &,

unsigned int seq_sz);

// special case: add a custom segment
void custom(Segment *);

// done adding segments, create Range now
template <class Policy> Range<Rope_iter<Policy>> finish();

};

The way this class works is as follows. A Ropery is like a construction bay for one

Range. To add children to the Range, nodes call pt or seq and pass IPR nodes. For

all the special cases already outlined, the segments can be created manually and

passed through custom. When no more segments need to be added, finish is called

to produce the Range to return to the user.

From the nodes’ perspective, appending children via Ropery is a little easier than

what was done on pg. 93. However, the Ropery is now in a position to easily do

several effective optimizations. First, in its private data, the Ropery can store the

last IPR node added. When finish is called, if only one IPR node has been added,

Ropery can use the Range singleton constructor. This even works if the node calls

seq passing an ipr::Sequence of size 1 or calls pt and then passes an empty ipr::
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Sequence. In experiments, more than half of the Range objects created require no

dynamically allocated Rope or Sequence objects by this small addition.

Going farther, the Ropery also coalesces individual calls to pt and seq into a

single segment instead of allocating segments for each. To do this, Ropery keeps a

fixed-size buffer of the K most recent IPR nodes passed via pt or seq in an array

member variable. When the buffer overflows or finish is called, Ropery puts the

contents of this buffer into a dynamically allocated segment. Thus, the two children

of the Mem_call expression “a->foo(x)” will be placed into a single segment, instead

of two separate segments, even though the receiver and arguments are added by two

separate calls to pt and seq, respectively. In this way, Ropery further decreases the

number of segments created.
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CHAPTER IV

COMPARISON

Based on the introduction and description of the Filter library in Chapters II and III,

this chapter presents an evaluation of the Filter library by comparing solutions to

several test problems using both Filter and traditional Visitor-based designs. These

tests measure the effects of both Filter lowering (pg. 59) and the Filter’s interface—

namely the choice of type switching (pg. 81) and the inclusion of polymorphic child-

functions (pg. 32).

From the results described in this chapter, we can see that, for tiny problems

that require little work outside the Filter library, the Filter library incurs a 2-4x

performance penalty when compared to the analogous Visitor-based solution. In the

worst case, where Filter’s lowering computations are unnecessary, this overhead can

be as high as 9x. However, for larger, less synthetic problems, this overhead is shown

to drop below 2x. Finally, compared to an existing whole-program graph traversal

library in Pivot, custom traversal with the Filter library shows up to two orders of

magnitude speedup.

The chapter starts by describing the method of evaluation in §A, and then, in

§B, goes through the six tests conducted in detail. Finally, §C pulls the test results

together to make some overall conclusions.

A. Method

This chapter compares two approaches to program analysis in Pivot: the way sup-

ported by the Filter library and the traditional approach. The comparison takes into

account both performance, measured on a variety of inputs, and code complexity,

measured by Logical Lines of Code (LLOC). While LLOC is generally an inaccurate
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measure of any software engineering quality, in the examples shown, the discrepancy

between the solutions still makes a clear point. The rest of this section goes into

detail about the approaches compared and how the measurements were made.

1. Characterization of the traditional approach

We now examine what is meant by “traditional approach.” First, the traditional

approach uses only the public IPR interface and pre-existing libraries in the Pivot

framework. This means that, at the moment, the only traversals available are graph-

based breadth- and depth-first visitors. These traversals are slow and, lacking any

tree structure to provide a traversal context, of limited utility. Hence, only one test

is included in the evaluation that requires whole-program traversal.

Other than the IPR public interface and graph traversal, the test cases use four

small library utilities, which we introduce here. The first utility, Noop_visitor, is a

simple class which derives ipr::Visitor, turning it from an abstract to concrete base

class by overriding all visit functions with empty bodies:

struct Noop_visitor : ipr::Visitor {
void visit(const ipr::Node &) {}
void visit(const ipr::Annotation &) {}
... 154 more overrides doing the same

};

The second utility, Visitor_to_overload, is useful for building visitors based on

overload resolution instead of type equality. For example, to write a visitor that looks

at all Classic operations, one might try to write:

struct Classic_visitor : Noop_visitor {
void visit(const ipr::Classic &c) { found_classic(c); }

};

Unfortunately, when visiting any derived Classic node, like Plus, the overload res-

olution inside Plus::accept will call the Plus overload of visit. One solution to
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this problem would be to design a “percolate visitor” which, by default, recursively

forwards calls to visit(const X &) to visit(const B &), where B is the immediate

base class of X. Thus, if Classic_visitor was derived from this percolate visitor,

visiting Plus would percolate the call up until it reached the intended visit(const

ipr::Classic &) overload.

The problem with this “pure” Visitor pattern solution is that each call to a

less-derived visit overload requires a virtual dispatch. The Visitor_to_overload

template class achieves the same effect without any additional virtual dispatch:

template <class Action>
struct Visitor_to_overload {
Action act;
Visitor_to_overload() : act() {}
Visitor_to_overload(Action a) : act(a) {}
virtual visit(const ipr::Node &n) { act(n); }
virtual visit(const ipr::Annotation &n) { act(n); }
... 154 more overrides doing the same

};

Now, the Action type argument can use the C++ overload resolution rules, which

include derived-to-base conversion:

struct Classic_action {
void operator()(const ipr::Classic &c) { found_classic(c); }
void operator()(const ipr::Node &) {}

};

const ipr::Expr &e = ...
Visitor_to_overload<Classic_action> vis;
e.accept(vis);

Notice here that Classic_action is not an ipr::Visitor and thus must provide an

ipr::Node overload to catch all the non-Classic cases. While Visitor_to_overload

is difficult to understand at first, it is an extremely useful utility.

The last two utilities simulate the C++ typeid and dynamic_cast operators by

building IPR visitors to achieve the same effect:

template <class To> const To *ipr_dynamic_cast(const ipr::Node &);
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template <class To> const To *ipr_typeid(const ipr::Node &);

In both cases, the To parameter is restricted to IPR public interface types. The first

function asks whether the given Node derives To. The second function asks whether the

given Node has To as its most-derived public interface. Both implementations require

only a single visitation to resolve the query and thus outperform dynamic_cast. The

disadvantage of using ipr_dynamic_cast, however, is that it uses Visitor_to_overload

, which generates a lot of code through template instantiation, and can noticeably

slow down compilation compared to ipr_typeid.

The second characteristic of the “traditional approach” is the use of the Visitor

pattern to perform type discovery. The Visitor pattern is introduced and contrasted

with the type-switch style of the Filter library on pg. 81. A key property of visitors

mentioned on pg. 81 is their use of callbacks to safely control the type casting that

must occur during type discovery. Thus, when the traditional approach is applied

to problems, we try to maintain this property. However, strict adherence to this

principle can lead to obfuscated code. For example, consider the following use of a

visitor (through ipr_dynamic_cast):

const ipr::Expr &e = ...
if (const ipr::Id_expr *i = ipr_typeid<ipr::Id_expr>(e))
examine(*i);

Although a visitor is used, this can be seen as breaking the above principle. A pure

version takes the form:

struct Custom_id_expr_visitor : Noop_visitor {
void operator()(const ipr::Id_expr &i) { examine(i); }

};

const ipr::Expr &e = ...
e.accept(Custom_id_expr_visitor());

Notice how the simple logic of the original text has been muddied. Furthermore,

what would be a simple linear set of tests with the first style becomes an increasingly
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nested call stack with the second. Since no reasonable engineer would write more

than a few such tests the second way before reverting to the first, the traditional

approach presented in this chapter goes the impure route in practical cases where a

simple use of ipr_typeid or ipr_dynamic_cast will suffice.

Another avenue not explored in this chapter is the “visitor combinator” ap-

proach [79]. While this style can lead to highly reusable visitors and traversals, it

does by using significantly more virtual dispatch and dynamic allocation. Instead,

the visitors presented in this chapter attempt to minimize the amount of virtual dis-

patch required and exclusively place visitors on the stack. In this way, it is easier

to observe the overhead of the Filter’s lightweight design (pg. 74) without worrying

whether the Filter’s positive relative performance was due to its merits or the high

price of reusability imposed by visitor combinators.

2. Performance test setup

All performance tests were conducted on a Pentium 4, 2.4 GHz with 512 MB RAM.

The operating system distribution used was CentOS 4 running Linux kernel 2.6.18.

The reported results are the average of three runs. All tests were run without any

other user applications running to reduce background noise. The resulting variance

is low compared to the measured difference between test cases.

All tests were built with GCC 4.1.2 using full optimization (-O3). Performance

measurements were made using the librt library function clock_gettime. Each test

run is wrapped in a function that takes an IPR node as input. This function is

executed between 10K to 1M times per measurement to amortize the cost of mea-

surement and background noise. To avoid synthetic speedups due to training of the

processor’s branch predictor, each iteration tests the function over a different IPR

node. The resulting test harness takes the form (modulo IPR type):
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template <void (*F)(const ipr::Expr &)>
void test(Result &r, int iters, const vector<const ipr::Expr *> inputs)
{
... begin measurement
for (int i = 0; i != iters; ++i)
for (int j = 0; j != inputs.size(); ++j)
F(r, *inputs[j]);

... end measurement
}

Here, the Result value r holds data computed by F that is printed to the console after

test returns. This way, the optimizer cannot decide to remove the call to F. For all

tests, the overhead of the loops in test is small compared to the cost of each call to

F.

3. Measuring lines of code

To measure Logical Lines of Code (LLOC), the source code for each function (exclud-

ing the test harness mentioned) was hand counted using the following criteria:

• Whitespace and comments are not counted.

• Lines containing only braces are not counted.

• Function signatures and class declarations are counted.

• The declaration and body of trivial member functions may share a line.

• Statements spanning multiple lines still count for multiple lines.

The third criteria may not seem “logical” enough for LLOC, however, signatures and

declarations in C++ play an important role in program semantics through overloading,

overriding, and conversion. The final criteria seems to reward long lines, however, all

code is formatted for 80-character columns, so the line cost of a complex expression

cannot be avoided.
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B. Tests

This section presents each test case and discusses the results. Briefly, the test cases

are:

• uda-single (§1) : Given an ipr::Decl found in a class, identify the non-static

member variables and functions.

• expr-single (§2) : Given an ipr::Expr found in a runtime expression, identify

whether it is a call to a given free or member function.

• whole (§3) : Find all class definitions in the program.

• expr-tree1 (§4) : Given an ipr::Expr found in a runtime expression, identify all

calls to a given free or member function found anywhere in the tree rooted at

the expression.

• expr-tree2 (also §4) : Given an ipr::Expr found in a runtime expression, identify

all calls to the built-in operator+ found anywhere in the tree rooted at the

expression.

• layout (§5) : Given two user-defined aggregates, are they “layout compatible,”

in the sense of Standard C++?

For each of these tests, there is a question of: “What should the test do once it

finds what it is looking for?” Technically, some operation is needed to prevent the

optimizer from determining that the computation is not used. Since this operation is

included in the measurement time, an expensive operation (like printing to standard

output) will amortize the cost of the mechanism being tested, namely the Filter

library. Hence, the overhead could be arbitrarily reduced by introducing an arbitrarily

large operation. To prevent this effect, a cheap operation is chosen: the increment

of a counter. Thus, it is important to keep in mind that the performance differences
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shown are purely in the mechanism and do not indicate the overall effect on a program

using the Filter library.

1. uda-single

The problem statement for the uda-single test is:

Given an ipr::Decl found in a class, identify the non-static member vari-

ables and functions.

To report the results, a counter is kept for each case and incremented each time a

match is found. These counters are stored in a Results structure used by all solutions:

struct Results {
int vars, funcs;

};

This test is a good starting point because it does not involve much work and

so, when comparing the Filter solution to the traditional solution, the test mostly

measures the overhead of the staple Filter operations: creating variants with discern

and querying their contents. First though, we look at the baseline traditional solution.

Here, traditional_uda_single_test is the function fed into the test harness described

on pg. 113:

struct Uda_decl_visitor : Noop_visitor
{
Results &r;
Uda_decl_visitor(Results &r) : r(r) {}

void visit(const ipr::Field &) { ++r.vars; }
void visit(const ipr::Bitfield &) { ++r.vars; }

void visit(const ipr::Fundecl &fd)
{
if (ipr_typeid<ipr::Class>(fd.membership()) != 0 && // member of a class

(fd.specifiers() & ipr::Decl::Static) == 0) // not declared ‘static’
++r.funcs;

}
};
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Table II. uda-single LLOC results

Filter Traditional

LLOC 5 12

void traditional_uda_single_test(Results &r, const ipr::Decl &decl)
{
Uda_decl_visitor vis(r);
decl.accept(vis);

}

In this code, we can see that, for function declarations, a little extra work is required

after uncovering the ipr::Fundecl to understand its full meaning. Specifically, we

need to distinguish static member functions and free functions (possible through

friend declarations). Also, we have to remember the two ways member variables can

be expressed in the IPR. These two details are lowered away by the Filter library,

allowing the following solution:

void filter_uda_single_test(Results &r, const ipr::Decl &d)
{
if (maybe<uda_ctx::Variant> mv = uda_ctx::discern(*g_env, d))
switch (mv->which()) {
case uda_ctx::mem_var_e: ++r.vars; break;
case uda_ctx::mem_func_e: ++r.funcs; break;

}
}

Here, g_env is a global variable pointing to the Filter’s environment. The reason for

the maybe type is described on pg. 73.

Applying the rules for measuring LLOC described on pg. 114, we get the results

shown in Table II. Looking beyond the LLOC difference, we can see how, by not

requiring the callback style implied by the Visitor pattern, the Filter allows a more

concise expression of the solution. This theme will be more evident in later tests.
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To better frame the performance results, we consider two more solutions to the

problem which provide reference points for performance. The first uses an implemen-

tation detail of the Pivot to achieve maximal performance:

void category_uda_single_test(Results &r, const ipr::Decl &d)
{
switch (d.category) {
case ipr::field_cat: case ipr::bitfield_cat:
++r.vars;
break;

case ipr::fundecl_cat:
{
const ipr::Fundecl &fd = static_cast<const ipr::Fundecl &>(d);
if (fd.membership().category == ipr::class_cat &&

(fd.specifiers() & ipr::Decl::Static) == 0)
++r.funcs;

break;
}

}
}

Without going into Pivot category codes, we can see that they are similar in spirit to

the Filter which codes. By switching on category codes, this solution uses the least

possible indirection to get to the result.

On the other end of the performance spectrum, we can use the built-in C++

dynamic_cast:

void dynamic_cast_uda_single_test(Results &r, const ipr::Decl &d)
{
if (dynamic_cast<const ipr::Field *>(&d) != 0 ||

dynamic_cast<const ipr::Bitfield *>(&d) != 0)
++r.vars;

else if (const ipr::Fundecl *fd = dynamic_cast<const ipr::Fundecl *>(&d))
if (dynamic_cast<const ipr::Class *>(&fd->membership()) != 0 &&

(fd->specifiers() & ipr::Decl::Static) == 0)
++r.funcs;

}

This is a useful example because it illustrates the high speed of the other three

solutions compared to the general case represented by dynamic_cast.
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Table III. uda-single performance results

Filter Traditional Ratio Category dynamic_cast

All .93s .26s 3.57x .090s 2.92s

Some 1.12s .32s 3.5x .11s 4.70s

None .86s .23s 3.74x .062s 3.59s

To measure the performance of all four solutions, three input sets are used, named

“All,” “Some,” and “None.” These sets represent a list of ipr::Decl nodes where,

respectively, all, some, and none of the nodes are non-static member functions or

member variables. The appendix, pg. 174, lists the input file with the three input

sets enclosed in classes with the same name.

Running 1M iterations over these input sets yields the results shown in Table III.

On first glance, we can see that the Filter solution is 3-4x slower than the traditional

solution. However, the traditional solution itself is 2-4x slower than the category

solution. This illustrates that, at the microscopic level of this test, tiny performance

differences are magnified into factors, not percent. Lastly, considering that the Filter

is 3-5x faster than dynamic_cast, we can see that the Filter is still a very efficient

mechanism for type discovery.

However, it still remains to identify the source of the 3-4x slowdown with the

Filter compared to the traditional solution, especially since, externally, the Filter

solution looks like the efficient category solution. In the Visitor pattern, a visitation

costs 2 virtual dispatches (one for accept, one for visit). Thus, the traditional

solution will use either 2 or 6 virtual dispatches, the latter only for the member

function case. Considering now the Filter solution, based on the implementation

details given in Chapter III, at a minimum the Filter requires:
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• a function call to enter the library code,

• a category switch to uncover the IPR type,

• a pool allocation to allocate the internal node of the variant (pg. 86), and

• the switch shown in the user code.

Clearly, the pool allocation will involve some computation to pick the pool, extract

a free chunk of memory, and adjust the free list. However, since the performance

“quanta” here is single virtual dispatch, even the expense of extra function calls is

significant since a virtual dispatch is only 20-25% slower than a statically resolved

call [80]. Taken together, it is easy to see how these factors can add up to 6-8 virtual

dispatches.

Another performance impediment of the Filter is that it fully discerns the type

of a given node, even if these results are not used. For example, when uda_ctx

::discern encounters an ipr::Typedecl, it must check the Typedecl’s initializer

(after calling has_initializer) to determine whether the returned variant holds a

class_e, union_e, or enum_e. Of course, the distinction is not needed in this test, so

these virtual dispatches are entirely unnecessary. This overhead can be seen in the

comparatively worse ratio for the Empty input.

2. expr-single

The problem statement for the expr-single test is:

Given an ipr::Expr found in a runtime expression, identify whether it is

a call to a given free or member function.

Thus, this test maintains the same basic “discern and test” model as uda-single, but

involves greater lowering to solve the problem. To report the results, a counter is kept
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for each case. These counters, as well as pointers to the target functions, are stored

in a Results structure used by both solutions:

struct Results {
const ipr::Fundecl const *free_func, const *mem_func;
int free_calls, mem_calls;

};

We first consider the Filter solution, which is only slightly more complicated

than the solution for uda-single. This code makes use of the Call and Mem_call node

types, which are described on pg. 63:

void filter_expr_single_test(Results &r, const ipr::Expr &e)
{
v = expr_ctx::discern(*g_env, e);
switch (v.which()) {
case expr_ctx::call_e:
if (v.get<Call>().which() == Call::glo_func_e &&

r.free_func == &v.get<Call>().glo_func().ipr().master())
++r.free_calls;

break;
case expr_ctx::mem_call_e:
if (v.get<Mem_call>().which() == Mem_call::mem_func_e &&

r.mem_func == &v.get<Mem_call>().mem_func().ipr().master())
++r.mem_calls;

break;
}

}

Notice that this code takes advantage of the close connection between Filter nodes

and IPR nodes to use the master field of ipr::Decl and the identity property of IPR

declarations (pg. 42) to efficiently finish the job.

The traditional solution requires more code in order to check all the places where

function calls can be represented in the IPR:

// test whether the given Decl is one of the given functions
inline void process_decl(Results &r, const ipr::Decl &d)
{
// don’t need to check for ‘Fundecl’ first, since using node identity
if (r.free_func == &d)
++r.free_calls;



122

else if (r.mem_func == &d)
++r.mem_calls;

}

// visitor for the ‘Call::function’ field that looks for matching calls
struct Func_expr_visitor : Noop_visitor
{
Results &r;
Func_expr_visitor(Results &r) : r(r) {}

void visit(const ipr::Id_expr &i)
{
// found a call of the form: ‘foo(...)’
process_decl(r, i.resolution());

}

// reused for ‘Dot::member’ and ‘Arrow::member’
void process_member(const ipr::Expr &e)
{
// check the ‘x’ in ‘a->x(...)’ to see if it is a member function
if (const ipr::Id_expr *i = ipr_typeid<ipr::Id_expr>(e))
process_decl(r, i->resolution());

}
void visit(const ipr::Dot &n) { process_member(n.member()); }
void visit(const ipr::Arrow &n) { process_member(n.member()); }

};

// look for matching calls (called by Visitor_to_overload)
struct Expr_action
{
Results &r;
Expr_action(Results &r) : r(r) {}

void operator()(const ipr::Node &) {}

void operator()(const ipr::Classic &c)
{
// check for call to overloaded operator. if not, ignore
if (c.has_impl_decl())
process_decl(r, c.impl_decl().master());

}

// ‘Call’ is a special ‘Classic’
void operator()(const ipr::Call &c)
{
// don’t forget about overloaded operator()
if (c.has_impl_decl())
process_decl(r, c.impl_decl());
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Table IV. expr-single LLOC results

Filter Traditional

LLOC 13 34

// strip possible parentheses around function name
const ipr::Expr *func = &c.function();
while (const ipr::Paren_expr *p = ipr_typeid<ipr::Paren_expr>(*func))
func = &p->expr();

// visit function expression, looking for calls
Func_expr_visitor vis(r);
func->accept(vis);

}
};

void traditional_expr_single_test(Results &r, const ipr::Expr &expr)
{
Expr_action act(r);
Visitor_to_overload<Expr_action> vis(act);
expr.accept(vis);

}

Here, we can see that the two-level case analysis of ipr::Call nodes translates into

two visitors with two recursive calls. Also, we can see the importance of having a

structure like Results for visitors: Results collects all the data that needs to be

passed around into one object which can be passed by a single reference.

Counting the LLOC for each solutions produces the results in Table IV. We can

attribute most of the extra code of the traditional solution to the manual lowering

required to solve the problem.

Moving on to performance, again three input files are used which have the same

characteristics as with uda-single: “All” contains only matches, “Some” contains

about half matches, and “None” contains no matches. These sets of expressions are

listed in the appendix, pg. 175. Running 1M iterations over these inputs yields the
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Table V. expr-single performance results

Filter Traditional Ratio

All 2.14s .81s 2.64x

Some 1.88s .65s 2.89x

None 1.55s .36s 4.3x

results shown in Table V.

Compared to the uda-single results, these results are more polarized. We consider

first the “None” case, whose ratio of 4.3 is worse than any of the uda-single ratios.

Based on the explanation of runtime-expression lowering given on pg. 63, more com-

putation is needed in expr_ctx::discern than uda_ctx::discern to determine which

Filter node type to return. This does not count as overhead as long as this compu-

tation was required to solve the problem at hand. By definition, the “None” input

contains only expressions that are not relevant to the problem, therefore this lowering

computation is mostly wasted. This effect was already observed, to a lesser degree,

in uda-single.

Considering the first two inputs, however, the ratio is better than it was for uda-

single. The reason is that, with more essential computation required for each node,

the library overhead described on pg. 116 is less significant. Actually, the ratios would

be better, but there are a few cases where the library must waste computation. To

see why, consider the process_decl function, which is part of the traditional solution.

In process_decl, it is not necessary to determine whether the given ipr::Decl is a

[non-]static member function, free function, or even an ipr::Fundecl, since we can

simply test pointer equality and be done. However, expr_ctx::discern needs to make

this determination to decide whether to return a Call or Mem_call node.
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3. whole

The problem statement for the “whole” test is:

Find all class definitions in the program.

The Results type, in this case, is simply an int that keeps track of the number of

definitions found.

Recall, from pg. 32, that classes can appear deeply nested in many parts of a

C++ program. Thus, while this problem statement is simple, its solution requires a

significant amount of work that is best done by a reusable library. The Filter solution

to this problem uses polymorphic child-functions. Using the Traverse utility built on

pg. 37, we can write the following solution:

void filter_whole_test(int &r, const ipr::Namespace &ns)
{
Prune p = Prune::type_expr(); // prune types and runtime expressions
for (Traverse t(expr_ctx::discern(*g_env, ns), p); !t.done(); t.step())
if (t->which() == uda_ctx::class_e && t->get<Class>().has_def())
++r;

}

Note that Traverse is not a large library-defined traversal, but a tiny (<20 LLOC)

user-defined class. In fact, a recursive version that does not maintain a context-stack

can be re-implemented in 5 LLOC:

void filter_rec_whole_test(int &ct, any_ctx::Variant v)
{

if (v.which() == any_ctx::class_e && v.get<Class>().has_def())
++ct;

for (any_ctx::Range r = v.child_any(Prune::type_expr()); \
!r.empty(); \
++r.first)

filter_rec_whole_test(ct, *r.first);
}

In both cases, we are using the Prune parameter of child_any to ignore runtime

expressions and types, since class definitions cannot possibly occur in these contexts.
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Moving on to the traditional solution, we have a problem because, in general,

the IPR forms a graph. While there is a simple tree embedded in this graph (viz. the

one traversed by Filter), there is no simple way to project this tree from the IPR’s

interface and currently no tree-based traversal algorithms in the Pivot library. There

is, however, a family of graph-based traversals which can be used to visit nodes via

depth- and breadth-first search. These graph-based traversals use a Visitor-based

design and thus fit the traditional approach. Specifically, to perform a traversal, the

user derives a class from the library class DFSVisitor and overrides virtual functions

in the base class:

struct Graph_visitor : DFSVisitor
{
int &r;
Graph_visitor(int &r) : r(r) {}

bool on_discover_node(const ipr::Node &n) // called by DFSVisitor
{
if (ipr::ipr_typeid<ipr::Class>(n) != 0)
++r;

return true;
}

};

void traditional_whole_test(int &r, const ipr::Namespace &ns)
{
Graph_visitor vis(r);
ns.accept(vis);

}

Here, on_discover_node is called for every node found during traversal. There is also

an analogous on_discover_edge called for every edge. With the booleans returned

from both these functions, DFSVisitor offers the ability to prune parts of the graph.

However, without any coherent entity like Filter’s contexts, it is highly non-trivial

to achieve pruning equivalent to the Filter solution. The reason is that the graph

traversal can be visualized as a flood fill of nodes along edges, so if a single edge

into an otherwise-pruned component is left un-pruned, the entire component will be
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Table VI. whole LLOC results

Filter Traditional

LLOC 5 10

traversed.

Comparing the two solutions on LLOC, we get the results shown in Table VI.

Without any extra lowering performed by the traditional solution, the syntactic over-

head here is primarily due to the inversion of control imposed by the Visitor pattern.

Two test input files, named “Small” and “Medium,” are used to test the solutions.

As the names suggest, they differ primarily in size. Both files attempt to capture

“ordinary code” by employing a wide mix of language constructs. The Small input is

13 LOC and the Medium input is 81 LOC. Each test performs 10,000 iterations over

the input. In order to isolate the effects of pruning, which cannot be done effectively

in the traditional solution, Filter is measured with and without pruning. Additionally,

since on_discover_edge is not used, it is made non-virtual and inline.

The results from these tests are shown in Table VII. The drastic performance

differences can be attributed to the fact that, with or without pruning, there are

many nodes Filter completely hides in the underlying IPR. Such nodes include ipr::

Region, ipr::Scope, and all ipr::Name-derived classes. Together, these nodes make

up a significant fraction of all IPR nodes. Thus, even compared to the un-pruned

Filter, the traditional solution is visiting more nodes.

It is important not to read too much into this test about the traditional ap-

proach since DFSVisitor is not representative of a normal Visitor-based traversal.

As explained on pg. 146, most frameworks include a collection of tree traversal algo-

rithms which would perform better against the Filter solution. However, this test does
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Table VII. whole performance results

Filter (pruning) Filter (no pruning) Traditional

Small .06s .27s 13.80s

Medium .33s 1.52s 54.11s

make a few clear recommendations for any future design of Visitor-based traversals

in Pivot. First, the concept of “context” provides a simple and effective way to prune

traversals. Second, for performance, at least some traversals should be designed not

to span the IPR graph, focusing on a subset of nodes needed for a target use case.

4. expr-tree1 and expr-tree2

Even after the test on pg. 125, the question of Filter iterator performance (the focus

of pg. 88) remains open due to the weak upper bound provided by the DFSVisitor.

This section gives a much clearer picture by building a custom tree-traversal visitor

for runtime expressions that is able to exactly achieve the pruning and node elision of

the Filter library. Once the high-performance of the traditional solution has been re-

gained, the relative performance of Filter depends on whether the lowering it performs

is necessary. To better illustrate this, this section presents two tests:

expr-tree1: Given an ipr::Expr found in a runtime expression, identify

all calls to a given free or member function found anywhere in the tree

rooted at the expression.

expr-tree2: Given an ipr::Expr found in a runtime expression, identify

all calls to the built-in operator+ found anywhere in the tree rooted at

the expression.
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The idea is that expr-tree1 will perform the expr-single test, which requires the low-

ering done by Filter, on each node during traversal while expr-tree2 can be solved

with a simple IPR type query by the traditional approach.

For the expr-tree1 test, the Results type will be the same as for the expr-single

test. For the expr-tree2 test, the Results type will simply by an int counter. With

these types, and reusing the test function from expr-single, the Filter solution to

expr-tree1 can be written:

void filter_expr_tree1_test(Results &results, expr_ctx::Variant v)
{
filter_expr_single_test(results, v);
for (expr_ctx::Range r = v.child_expr(); !r.empty(); ++r.first)
filter_expr_tree1_test(results, *r.first);

}

Using an iterative strategy, the solution to expr-tree2 can be written:

std::vector<expr_ctx::Variant> st; // global to reduce new/delete calls

void filter_expr_tree2_test(Results &results, expr_ctx::Variant v)
{
st.push_back(v);
while (!st.empty()) {
if (st.back().which() == expr_ctx::call_e &&

st.back().get<Call>().which() == Call::builtin_e &&
st.back().get<Call>().builtin() == ipr::plus_cat)

++results;
expr_ctx::Range r = st.back().child_expr();
st.pop_back();
for (; !r.empty(); ++r.first)
st.push_back(*r.first);

}
}

The reason for choosing different strategies for the two solutions is two-fold: first, it

demonstrates that the Filter library is conducive to both strategies (as opposed to

the traditional approach, which requires recursion); second, the iterative approach is

measurably faster for expr-tree2.
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To build the traditional solution, we first build a reusable expression traversal.

Using generative programming techniques, we take advantage of the Unary, Binary,

and Ternary classes derived by all IPR runtime expressions. The type arguments

of these classes describe the types of the operands and thus provide us with all the

information needed to stay inside the runtime expression context.

// meta-function: generates visitor calls if T is an Expr or Expr_list
template <class T> struct visit_if_expr {
static void args(T, ipr::Visitor &) {} // base case: no call

};
template <> struct visit_if_expr<const ipr::Expr &> {
static void args(const ipr::Expr &e,ipr::Visitor &v) {e.accept(v);}

};
template <> struct visit_if_expr<const ipr::Expr_list &> {
static void args(const ipr::Expr_list &e,ipr::Visitor &v) {v.visit(e);}

};

// called by Visitor_to_overload. visit current node with ‘node_vis’,
// then recurse on children by calling the same Visitor_to_overload that
// called us (given by ‘outer’)
struct Visit_and_recurse_action
{
ipr::Visitor &node_vis;
ipr::Visitor *outer;
Visit_and_recurse_action(ipr::Visitor &v) : node_vis(v), outer(0) {}
void set_outer(ipr::Visitor &v) { outer = &v; }

void operator()(const ipr::Node &) {} // base case: do nothing

template <class C, class T>
void operator()(const ipr::Unary<C, T> &e)
{
e.accept(node_vis);
visit_if_expr<T>::args(e.operand(), *outer);

}

template <class C, class T1, class T2>
void operator()(const ipr::Binary<C, T1, T2> &e)
{
e.accept(node_vis);
visit_if_expr<T1>::args(e.first(), *outer);
visit_if_expr<T2>::args(e.second(), *outer);

}

template <class C, class T1, class T2, class T3>
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void operator()(const ipr::Ternary<C, T1, T2, T3> &e)
{
e.accept(node_vis);
visit_if_expr<T1>::args(e.first(), *outer);
visit_if_expr<T2>::args(e.second(), *outer);
visit_if_expr<T3>::args(e.third(), *outer);

}

// otherwise, nullary expr
void operator()(const ipr::Expr &e) { e.accept(node_vis); }

// special case: list of Expr
void operator()(const ipr::Expr_list &e)
{
node_vis.visit(e);
const ipr::Sequence<ipr::Expr> &seq = e.elements();
for (int i = 0, sz = seq.size(); i != sz; ++i)
seq[i].accept(*outer);

}
};

void visit_expr_tree(const ipr::Expr &expr, ipr::Visitor &v)
{
Visit_and_recurse_action act(v);
Visitor_to_overload<Visit_and_recurse_action> vis(act);
vis.act.set_outer(vis);
expr.accept(vis);

}

The technique shown here allows a very concise way to visit the children of the hun-

dreds of concrete IPR expression types by using the unique inheritance scheme of the

IPR (viz. the use of arity classes). In a way, the combined use of Visitor_to_overload

and arity classes is similar to the polymorphic child-functions of the Filter library.

The technique can also be applied to work on ipr::Type and ipr::Name in the same

way since they also make regular use of the arity classes. However, the technique

does not [currently] apply to statements and declarations.

Using visit_expr_tree, we can write the traditional solution to expr-tree1:

struct Call_expr_single
{
Results &r;
Examine_action(Results &r) : r(r) {}
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void operator()(const ipr::Node &) {}
void operator()(const ipr::Expr &e) { \
traditional_expr_single_test(r, e); \

}
};

void traditional_test(Results &r, const ipr::Expr &expr)
{
Examine_action act(r);
Visitor_to_overload<Examine_action> vis(act);
visit_expr_tree(expr, vis);

}

Similarly, the solution to expr-tree2 can be written:

struct Find_builtin_plus_action
{
int &r;
Find_builtin_plus_action(int &r) : r(r) {}

void operator()(const ipr::Node &) {}

void operator()(const ipr::Plus &p)
{
if (!p.has_impl_decl())
++ct_;

}
};

void traditional_test(int &r, const ipr::Expr &expr)
{
Find_builtin_plus_action act(r);
Visitor_to_overload<Find_builtin_plus_action> vis(act);
visit_expr_tree(expr, vis);

}

In applying the LLOC measure, the implementation of visit_expr_tree is in-

cluded because it was specially crafted for the present purpose of traversing runtime

expressions; if the problem was changed to search a function body for runtime expres-

sions, a different custom traversal visitor would need to be written, and so on. The

resulting LLOC counts are shown in Table VIII. As these numbers clearly indicate,

aside from lowering, the second major facility of the Filter library is allowing precise,

ad hoc traversal. We say ad hoc because Filter does not fix a traversal strategy,
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Table VIII. expr-tree LLOC results

Filter Traditional

expr-tree1 4 81

expr-tree2 12 49

Table IX. expr-tree1 performance results

Filter Traditional Ratio

All 6.14s 2.56s 2.40x

Some 7.45s 2.60s 2.87x

None 6.20s 2.15s 2.88x

providing instead the necessary information to perform traversal.

Moving on to performance, for expr-tree1, three inputs named “All,” “Some,”

and “None” were used, with the same meaning as in earlier tests. Each input consists

of a single expression tree, listed on pg. 176. The results of running 1M iterations

are shown in Table IX. Notice here that the “None” input does not produce worse

performance as it did in previous tests. The reason for this is that the lowering

required for Call, Mem_call, and Member is the only expensive lowering done by Filter

for runtime expressions. In their absence, there is little computation to waste.

To test expr-tree2, three different input expressions are used, each of a differ-

ent size and containing different expression constructors. These are named “Small,”

“Medium,” and “Large” and listed on pg. 176. The results of running 1M iterations

are shown in Table X. As expected, the ratios are much worse than the previous tests.

Specifically, this is due to the fact that the only work required of the traditional solu-
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Table X. expr-tree2 performance results

Filter Traditional Ratio

Small 1.99s .22s 9.05x

Medium 6.39s 1.16s 5.51x

Large 8.87s 1.51s 5.87x

tion, at each node in the traversal, is a single visitation (done by Visitor_to_overload

). The Filter library, on the other hand, is doing the same lowering that it did for

expr-tree1 and expr-single since the library has no way of knowing the limited way in

which the result will be used.

An important conclusion to draw from these two tests and the whole-program

traversal test on pg. 125 is that the performance impact of precise traversal is much

greater than that of using the Filter library. Thus, if the concise way in which Filter

allows traversal to be expressed leads the user to write more precise traversals, we

can view Filter as providing an overall speedup, even in situations like expr-tree2.

5. layout

The problem statement for the final test is:

Given two user-defined aggregates, are they “layout compatible,” in the

sense of Standard C++?

This test gives more insight into the use of Filter for doing the type of recursive

case analysis for which it was designed. While uda-single and expr-single gave tiny

examples of case analysis, their primary goal was to measure the performance of

variants. This test provides a more realistic scenario.



135

“Layout compatibility” is described in the C++ standard [32] by the following

clauses:

• 3.9.11 : If two types T1 and T2 are the same type, then T1 and T2 are layout-

compatible types.

• 7.2.8 : Two enumeration types are layout compatible if they have the same

underlying type.

• 9.2.15 : Two POD-struct types are layout compatible if they have the same

number of non-static data members, and corresponding non-static data mem-

bers (in order) have layout-compatible types.

• 9.2.16 : Two POD-union types are layout compatible if they have the same

number of non-static data members, and corresponding non-static data mem-

bers (in any order) have layout-compatible types.

To keep the implementations relatively simple, we will take a few shortcuts: to

sidestep the issue of underlying type, clause 7.2.8 is ignored (so enumerations are

only compatible if they are identical); because POD-checking is a separate analysis

problem altogether, the POD requirement of 9.2.15 and 9.2.16 is ignored; and the “in

any order” flexibility of unions is ignored, allowing unions and structs to be checked

in the same way.

To solve this problem, two types of checks are needed. The first applies clause

9.2.15 to recursively check user-defined aggregates for compatibility. The second takes

two non-UDA types and checks that they are identical. Thus, when comparing S1

and S2 in the following code:

struct A {};
struct B {}
struct S1 { A a; int *x; };
struct S2 { B b; int *y; };
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the compatibility check is applied to the types of a and b, and the equality check is

applied to the types of x and y.

Using the type unification performed by the IPR, a first attempt might be to use

C++ pointer equality to test type equality. Unfortunately, any types involving non-

type expressions, like Id_expr, will not be unified, even though they may be equal.

For example, in:

struct X { A *x1; };
struct Y { A *y1; };

the variables x1 and y1 have equal types, but have different ipr::Type nodes because

of the Id_expr used to describe the use of the name of a user-defined type.

Type equality is implemented in the Filter and traditional solutions by the func-

tions:

bool filter_equal(type_ctx::Variant, type_ctx::Variant);
bool traditional_equal(const ipr::Type &, const ipr::Type &);

The difference between the implementations of these functions is not as illustrative

as the compatibility checks, thus we skip their presentation here and refer to the

appendix, pg. 176, for the listing.

Using the equality check, the Filter compatibility check can be implemented as

follows:

// skip declarations that are not member variables
inline void skip(uda_ctx::Range &r)
{

while (!r.empty() && r.first->which() != uda_ctx::mem_var_e)
++r.first;

}

bool filter_compatible(Uda u1, Uda u2)
{

uda_ctx::Range r1 = u1.def_members(), r2 = u2.def_members();

// iterate over uda, skipping everything except member variables
for (skip(r1), skip(r2);

!r1.empty() && !r2.empty();
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++r1.first, skip(r1), ++r2.first, skip(r2))
{
// bitfield checks
Mem_var mv1 = r1.first->get<Mem_var>(), \

mv2 = r2.first->get<Mem_var>();
if (mv1.is_bitfield() != mv2.is_bitfield() ||

mv1.is_bitfield() && !same_literal(mv1.precision(), \
mv2.precision()))

return false;

// get types
type_ctx::Variant v1 = mv1.type(), v2 = mv2.type();
if (v1.which() != v2.which())

return false;

if (v1.which() != type_ctx::udt_use_e) {
// use equality for non-udt
if (!filter_equal(v1, v2))
return false;

}
else {

// use equality for enums, compatibility for udas
Udt_use udt1 = v1.get<Udt_use>(), udt2 = v2.get<Udt_use>();
if (udt1.which() != udt2.which())
return false;

if (&udt1.udt_ipr() != &udt2.udt_ipr() &&
(udt1.which() == Udt_use::enum_e ||
!filter_compatible(udt1.uda(), udt2.uda())))

return false;
}

}

// require equal number of member variables
return r1.empty() && r2.empty();

}

This code follows directly from the problem definition. The loop iterates simultane-

ously over the members of the given UDA, resting only on pairs of member variables.

In the special case that the members are bitfields, they must be the same width

(checked by a function same_literal that is already implemented as part of type

equality). Next, both members’ types are checked, using compatibility for UDAs

and equality otherwise. If the loop completes successfully and no member variables
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remain in either list, the UDAs are compatible.

We now consider the traditional solution, which will be presented in parts. Using

a top-down order, we start with traditional_compatible and the utility classes/func-

tions it requires:

// visitor for uncovering Fields and Bitfields, used in ‘skip’
struct Is_member : Noop_visitor {

bool is_member;
Is_member() : is_member(false) {}
void visit(const ipr::Field &) { is_member = true; }
void visit(const ipr::Bitfield &) { is_member = true; }

};

// skip non-Field/Bitfield Decls
inline void skip(const ipr::Sequence<ipr::Decl> &seq, int &i, int sz)
{

for (; i != sz; ++i) {
Is_member vis;
seq[i].accept(vis);
if (vis.is_member)

return;
}

}

// pull out the ‘members’ sequence from a Class or Union
struct Get_members_visitor : Noop_visitor {

const ipr::Sequence<ipr::Decl> *members;
Get_members_visitor() : members(0) {}
void visit(const ipr::Class &c) { members = &c.members(); }
void visit(const ipr::Union &u) { members = &u.members(); }

};

bool traditional_compatible(const ipr::Udt &t1, const ipr::Udt &t2)
{

// compatible if the same IPR node
if (&t1 == &t2)
return true;

// pull the members out of user-defined aggregates
Get_members_visitor gm1, gm2;
t1.accept(gm1);
t2.accept(gm2);
if (!gm1.members || !gm2.members)
return false;
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// iterate through member variables
const ipr::Sequence<ipr::Decl> &seq1 = *gm1.members, \

&seq2 = *gm2.members;
int sz1 = seq1.size(), sz2 = seq2.size();
int i1 = 0, i2 = 0;
for (skip(seq1, i1, sz1), skip(seq2, i2, sz2);

i1 != sz1 && i2 != sz2;
++i1, skip(seq1, i1, sz1), ++i2, skip(seq2, i2, sz2))

{
// pull out type of Field/Bitfield, check precisions of Bitfields
Check_bitfield_and_get_type decl_vis(seq2[i2]);
seq1[i1].accept(decl_vis);
if (!decl_vis.compatible)

return false;
const ipr::Type &type1 = *decl_vis.type1, &type2 = *decl_vis.type2;

// check compatibility of member variables’ types
Compatible_action1 act(type2);
Visitor_to_overload<Compatible_action1> type_vis(act);
type1.accept(type_vis);
if (!type_vis.act.compatible)

return false;
}

// no hanging members
return i1 == sz1 && i2 == sz2;

}

From this code, we can see the same high-level organization as the Filter solution.

Without the Uda common base, a visitor is required to pull out the members sequence.

Also, without Field and Bitfield being lowered to the same node, skip requires a

visitor. In the body of the loop, the work has been split into two visitors: one to pull

out types and check bitfields, and one to handle member compatibility.

The Check_bitfield_and_get_type visitor is implemented as follows:

struct Check_bitfield_and_get_type : Noop_visitor
{
bool compatible;
const ipr::Decl &decl2;
const ipr::Type *type1, *type2;

Check_bitfield_and_get_type(const ipr::Decl &d2)
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: compatible(false), decl2(d2), type1(0), type2(0)
{}

void visit(const ipr::Field &n)
{
type1 = &n.type();
if (const ipr::Field *f = ipr_typeid<ipr::Field>(decl2)) {
type2 = &f->type();
compatible = true;

}
}

void visit(const ipr::Bitfield &n)
{
type1 = &n.type();
if (const ipr::Bitfield *bf = ipr_typeid<ipr::Bitfield>(decl2)) {
type2 = &bf->type();
compatible = same_literal(n.precision(), bf->precision());

}
}

};

Notice that, to discover the full types of both declarations, we need nested visitation.

The outer visitor discovers the first type and then, from within this context, invokes

the inner visitor. Fortunately, for the problem at hand, the second visitation can

be done using only ipr_typeid. However, this illustrates the general problem that

the Visitor pattern makes it difficult to “be in two places at the same time.” This

effect becomes more pronounced in the implementation of Compatible_action1 (used

in traditional_compatible above):

// Called by Visitor_to_overload: uncovers the first type
struct Compatible_action1
{
bool compatible;
const ipr::Type &type2;

Compatible_action1(const ipr::Type &t2):compatible(false),type2(t2) {}

void operator()(const ipr::Udt &n)
{
Compatible_action2 act(n);
Visitor_to_overload<Compatible_action2> vis(act);
type2.accept(vis);
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compatible = vis.act.compatible;
}

void operator()(const ipr::As_type &n)
{
if (const ipr::Udt *u = reduce_to_udt(n)) {
Compatible_action2 act(*u);
Visitor_to_overload<Compatible_action2> vis(act);
type2.accept(vis);
compatible = vis.act.compatible;

}
else
// fall back on type equality
compatible = visitor_equal(n, type2);

}

void operator()(const ipr::Type &n)
{
compatible = visitor_equal(n, type2);

}

void operator()(const ipr::Node &) { assert(false); }
};

// Called by Visitor_to_overload: uncovers the second type
struct Compatible_action2
{
bool compatible;
const ipr::Udt &type1;

Compatible_action2(const ipr::Udt &t1):compatible(false),type1(t1) {}

void operator()(const ipr::Udt &type2)
{
compatible = traditional_compatible(type1, type2);

}

void operator()(const ipr::As_type &n)
{
if (const ipr::Udt *type2 = reduce_to_udt(n))
compatible = traditional_compatible(type1, *type2);

else
// fall back on type equality
compatible = traditional_equal(type1, n);

}

void operator()(const ipr::Type &n)
{
compatible = traditional_equal(type1, n);
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Table XI. layout LLOC results

Filter Traditional

LLOC 69 188

}

void operator()(const ipr::Node &) {}
};

This code uses the well-known “double dispatch” technique to simulate multi-methods

[77]. The simulation, however, makes the logic, represented by the above pair of

classes, difficult to understand. The basic idea is that, if both type1 and type2

are Udts (or in the case of As_type, can be converted to Udts), recursively check

compatibility. Otherwise, use type equality.

To complete the traditional solution, we also need an implementation for the

function reduce_to_udt, used above. The code to do this mainly deals with lowering

As_type, so we skip the implementation here and refer to the appendix, pg. 176.

Combining the LLOC for checking type equality and the code shown here, the

final results are shown in Table XI. Looking at the two solutions, part of this overhead

can be attributed to the lowering done by the Filter library. The most significant

lowering done in the traditional solution involves the As_type node, requiring both

the reduce_to_udt and reduce_to_td functions. However, a large part of the overhead

in the traditional solution results not from lowering, but the forced-recursion of the

Visitor pattern.

As an additional informal comparison: the Filter solution took around 2 hours to

write and debug, while the traditional solution took a full day (even after writing the

Filter solution). Thus, the extra LLOC are in no way mindless boilerplate. In fact,
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Table XII. layout performance results

Filter Traditional Ratio

Deep 4.16s 2.35s 1.77x

Shallow 1.03s .47s 2.19x

as one might expect from an attempted reading, the profusion of recursion requires

significantly more mental effort than Filter’s “first-order” solution. Together, both

the LLOC and informal complexity differences between the two solutions make a

strong supporting argument for the design discussion on pg. 81.

Moving on to performance, two input sets of pairs of classes were used: “Deep”

and “Shallow.” The Deep input set was distinguished by requiring several levels

of member examination to make a positive or negative determination. These input

sets are listed on pg. 182. The results for running 100K iterations for each input

set are shown in Table XII. Compared to previous tests, this test shows the least

Filter overhead. This follows from the general observation that, when measuring

the overhead of a mechanism, as the problem size increases, the overhead of the

mechanism decreases.

C. Summary

Taking into account the test results presented in this chapter, we can now ask the

question: do Filter’s benefits outweigh its costs? The benefits are the code reduc-

tion seen in every test and the performance improvements compared to an imprecise

traversal (pg. 125). The costs are the performance overhead shown in every test,

except “whole,” and the mental overhead of learning an extra library. Notice that,

because of the lightweight design described on pg. 74, this cost/benefit analysis does



144

not need to consider whether Filter lowers too much (since the IPR is still present),

whether the extra lowered data will exhaust memory too quickly (since there is no

persistent data structure), or whether the upfront cost of lowering is justified by its

use (since lowering is incremental).

We start by considering the performance cost. As already established at the end

of pg. 128, if the Filter’s polymorphic child-functions allow the user to write a more

precise traversal, the resulting speedup dwarfs the library overhead. In particular,

Filter contexts provide a simple, yet effective, way to prune the program tree that is

difficult to emulate on a per-edge basis. Even without traversal, the performance cost

decreases as the complexity of the user’s analysis grows and the work done outside

Filter amortizes the overhead inside Filter. This effect can be seen in the progression

of tests going from uda-single to expr-single to layout.

Moving to the software engineering benefits of the Filter library, we can see

that Filter solutions to the test problems are consistently 2-4x shorter. Part of this

reduction is primarily due to the lowering done by Filter and could be equivalently

achieved by a library of utility functions which could be used within the traditional

solution. However, in all cases, the code reduction is also related to the mandatory

use of callbacks. Also, when traversal is required (viz. expr-tree and layout), Filter’s

polymorphic child-functions represent a distinct code reduction.

The differences in the code were more than just the LLOC formally measured.

For each test, the Filter solution was more “structured,” in the sense of the ideals of

Structured Programming expounded by Dijkstra in [81]:

In vague terms we may state the desirability that the structure of the pro-

gram text reflects the structure of the computation. Or, in other terms,

“What can we do to shorten the conceptual gap between the static pro-
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gram text (spread out in “text space”) and the corresponding computa-

tions (evolving in time)?”

In fact, from the perspective described in this quote, the Visitor pattern, applied

to the problem of heterogeneous tree traversal, may be viewed as an anti-pattern.

But how can this be the case? After all, Visitor is a Design Pattern. The first point

to remember is that the Visitor pattern is not the solution to the problem “how to

discover an object’s type in a heterogeneous data structure,” but rather “how to non-

intrusively add operations to a class hierarchy” [41]. While it is possible to force the

latter perspective, as shown by the traditional solutions in this chapter, it is hardly

the natural one. Thus, that the Visitor pattern does not produce a clean solution is

a simple consequence of using a design pattern when its problem statement does not

naturally describe the problem at hand.

Taking these arguments into account, we can see that as analyses using Filter

become large and complex, the relative costs drop and the benefits increase, and thus

Filter should definitely be used when it applies. As a counter-example, the charac-

teristic application which should not use Filter would be small and have high per-

formance requirements. In this case, however, even the traditional approach imposes

unnecessary overhead; the analysis writer should consider the category-/switch-based

approach demonstrated on pg. 116.
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CHAPTER V

RELATED WORK

The general problem addressed by the Filter library is how to access information in

trees of heterogeneous nodes. Since heterogeneous trees appear in many situations, es-

pecially when dealing with languages and compilation, there are many other libraries,

language features, and tools that explore the same design space as the Filter library.

Instead of listing them independently, we will consider two orthogonal sub-problems

and describe the related work in terms of these sub-problems.

A. Traversal

For simple tree structures, it is not much trouble for the user to write code that

directly works with the tree. However, when the tree has many different types of

nodes, the user can end up writing a lot of “boilerplate” code that only serves the

purpose of ensuring that an “interesting” computation reaches all nodes in the tree.

A nice example of this phenomena is given in [60] as the motivation for the “Scrap

Your Boilerplate” library.

A common reaction to this problem is to factor out this boilerplate into a reusable

library that allows the user to write only the interesting code. In object-oriented

programming, this solution often takes the form of the Visitor [41] pattern and a

reusable traversal algorithm. For example, if the goal is to collect all the functions in

a program, Elsa [38] (based on the Elkhound parser [82]) will allow the user to write:

struct CollectVisitor : public ASTVisitor {
vector<Function *> funcs;
virtual bool visit(Function *f) { funcs.push_back(f); }

};

vector<Function *> findFuncs(TranslationUnit *unit) {
CollectVisitor v;
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unit->traverse(v);
return v.funcs;

}

Here, traverse is supplied by the library and calls visit on every Function-typed node

in the tree. This basic strategy is used by the Eclipse [39], Elsa [38], JJTraveler [83],

Rose [40], SableCC [37] projects, and others.

On the functional programming side, early work was done not so much to avoid

boilerplate code, but to allow more structured reasoning about algorithms [84,85]. For

example, [86] describes the cata-, ana-, hylo-, and para-morphism families of recursive

algorithms, each supporting algebraic equations that can be used for calculational

reasoning about the program. For these frameworks, the reduction in boilerplate is

just a “perk” of casting your algorithm in terms of one of given morphisms.

More recent work in functional programming has focused less on the algebraic

properties and more on writing less code. Examples include Strafunksi [87], the

“Scrap Your Boilerplate” (SYB) approach [60,88,89], and Generic Haskell [90]. These

approaches place less restrictions on the data types traversed and allow more ad hoc

specification of operations to be performed on each node. For example, SYB allows

us to write code analogous to the Visitor-based code above:

collectFunc :: Function -> [Function]
collectFunc f = [f]

findFuncs :: Program -> [Function]
findFuncs p = (everything (++) (mkQ [] collectFunc)) p

Here, everything is a library-defined reduction that applies its second argument to

every node in the tree and collects the results with its first argument (++ is concate-

nation). Additionally, mkQ is a library-defined function, analogous to the ASTVisitor

base, that takes an argument interested in a single type and produces a query over

any type. Reusable traversals that transform the tree are also available.
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While these traversal algorithms are useful, by the nature of both the object-

oriented and functional solutions, the user is locked into a specific traversal strategy.

This strategy includes: the order of visitation, the context available when the “in-

teresting” code is called, which nodes are visited or ignored, and when the traversal

terminates. For example, in the cases of Elsa, this lock-in means that the user is out of

luck if they require the traversal context [91]. Other libraries try to cover more cases

by offering several versions of the traversal algorithm. For example, Rose provides

the user with two traversal orders and a mechanism, similar to attribute grammars,

for passing information from parent to child or child to parent. Eclipse allows the

user to prune sub-trees by returning false from visit. Lastly, SYB allows the user

to traverse two trees simultaneously with the traversals in Data.Generics.Twins.

Ultimately, however, it is difficult to satisfy all the traversal needs of the user

in this manner, and a more sophisticated approach is needed. Hence, newer libraries

in both the object-oriented and functional worlds have worked to provide the user

composable primitives which span the entire design space of traversals. For object-

oriented approaches, this effort has taken the form of visitor combinators [79]. JJ-

Traveler, which is part of the ASF+SDF Meta-Environment project [92], supplies

tens of such combinators. For example, a top-down traversal can written:

public class TopDown implements Visitor {
private Visitor impl;
public TopDown(Visitor v) {
impl = new Sequence(v, new All(this));

}
public void visit(Visitable x) throws VisitFailure {
impl.visit(x);

}
}

Thus, visitors are assembled using composition, not inheritance. To put the new

TopDown combinator to work, we can write:
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public class CollectFunc extends NodeVisitor {
ArrayList funcs = new ArrayList;
public void visit(Function f) {
funcs.add(f);

}
public static ArrayList findFuncs(Node root) {
Visitor v = new TopDown(new CollectFunc);
root.accept(v);
return v.funcs;

}
}

In the functional world, the combinatorial style of traversal, sometimes called

“strategic programming” [93, 94], is supported by the higher-order features of the

language. Building on previous classifications of traversal strategies, Ren and Er-

wig [95] describe a highly-parameterized library, Reclib, built on top of SYB. One

common thread in both the object-oriented and functional approaches is the inspira-

tion by the work done in term-rewriting [96, 97], particularly the traversal strategies

available in Stratego/XT [98].

While this direction of development strives to build up a general library of traver-

sals, another direction has been to burrow down to find the underlying primitives that

can be used to implement any traversal. Here, again, both object-oriented and func-

tional styles have arrived at the same basic idea: provide a reusable mechanism to

“get to” the children of a node, without knowing the parent node’s full type. The

meaning of “get to” is different for the two styles. In object-oriented programming,

this means returning a list of references to the children. For example, the AnyVisitor

class is used to implement visitor combinators [79]:

class AnyVisitable {
void accept_Any(AnyVisitor);
int nrOfKids();
AnyVisitable[] getKid(int);

}

Using this interface, the All combinator can be written:
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class All implements Visitor {
Visitor v;
public All(Visitor v) { this.v = v; }
public void visit(AnyVisitable x) {
for (int i = 0; i < x.nrOfKids(); i++) {
x.getKid(i).accept(this.v);

}
}

}

It is easy to see how several different traversals can be implemented with this

functionality. In fact, similar interfaces can be found as undocumented functionality

of Rose and Eclipse, which is presumably used to implement the public traversals

described earlier.

In functional programming, the analogous enumeration of children is done with

what Lämmel and Peyton Jones [60] call “the non-recursive map trick” (although

they explain that the technique goes back to Meijer et al. [86]). Here, instead of

providing a mapping

children :: Node -> [Node]

each data type provides a function which applies a functional argument to each child.

Then, from this 1-layer traversal, N-layer traversals (like everything) can be built

easily. Commenting on the appropriateness of this design, Lämmel and Peyton Jones

state:

The beautiful thing about building a recursive traversal strategy out of

non-recursive gmapT is that we can build many different strategies using a

single definition of gmapT.

Despite offering this child enumeration functionality, all these libraries focus on

the traversal as the primary (or only) public interface. (A notable exception is the

Polaris [99] optimizing compiler, whose child enumeration for FORTRAN expressions
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was the inspiration for Filter child enumeration.) This is a little surprising because,

with child enumeration, the user can compose their own ad hoc traversals with very

little boilerplate, which was one of the initial reasons for doing all this work in the

first place! Based on this observation, the Filter library avoids the research problem

of finding a “basis” for the space of traversals by just providing child enumeration

directly and integrating the feature well with the rest of the library.

On the other hand, boilerplate reduction is not the only advantage of using

library-defined traversals: since traversals have more structure than raw iterations/re-

cursions, they can be more easily optimized and support simpler program reason-

ing [86]. Thus, there are advantages to a traversal-centric library design that are not

present at all in the Filter library.

Filter does have one convenient property that is not immediately present in

the approaches described above. As explained at the end of Chapter II and used

throughout Chapter IV, Filter integrates case analysis in a way that is shown to

provide simple and effective pruning of traversals. With other libraries’ mechanisms

for child enumeration, all context is lost in the queried list of children, which means

there is no simple way to partition the children into lists of “do traverse” and “don’t

traverse.”

To better see this point, we first more precisely describe the correspondence be-

tween the Filter and SYB libraries. The five non-Any context variants correspond

to five mutually recursive Haskell algebraic data types. The Filter nodes that can

appear in a given variant correspond to constructors for the corresponding data type.

The Any-context variant then corresponds to the universe of types that a transforma-

tion/query built by mkT/mkQ operates over. The recursive invocations made by gfoldl

for each child correspond to the nodes returned by child_any. Hence, everywhere and

everything correspond to recursion over Any-context variants (using child_any), such
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as done by Traverse in Figure 6.

From this correspondence, a natural question is: what corresponds to a traversal

over other X_ctx::Variant types (using child_X)? This has been a key technique

for efficiency and correctness in several Filter solutions shown thus far. For example,

pg. 48 poses the analysis problem: find the uses of a given variable in the conditions of

if statements in a given function. Assuming the following subset of Filter, translated

into Haskell data types:

data Stmt = Block [Stmt] | If Expr Stmt Stmt | Loc_var Type String
data Expr = Call Expr [Expr] | New Type [Expr] | Name_expr String
data Type = Ptr Type | Array Type Expr | Udt_use String

a fairly direct mapping of the Filter solution shown on pg. 48 is the following SYB

code:

findUse :: String -> Expr -> Bool
findUse name (Name_expr s) = (name = s)
findUse _ _ = False

findIf :: String -> Stmt -> Bool
findIf name (If cond _ _) = everything (||) (False ‘mkQ‘ (findUse name)) cond
findIf _ _ = False

varInIfCond :: String -> Block -> Bool
varInIfCond name body = everything (||) (False ‘mkQ‘ (findIf name)) body

However, while this code is technically correct, it will wastefully examine all the

expressions and types in the body at least once (twice for expressions in if conditions).

One solution to this waste would be to use a pruning traversal, like everythingBut

. However, this is a subtractive method which requires that we enumerate all the nodes

we do not want to visit. What we would rather do is indicate, additively, the nodes

we do want to visit. Thus, experience with the Filter library suggests a new addition

to the Data.Generics.Schemes module:

only :: Term a => (r -> r -> r) -> (b -> r) -> r -> a -> r

In this signature, the domain of the second argument (b above) corresponds to the
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choice of X_ctx::Variant. This function can be implemented in terms of the same

gfoldl and cast methods used by the other traversal combinators (here, using the

simpler gmapQ derived from gfoldl):

only k f r x = case cast x of
Just b -> foldl k (f b) (gmapQ (only k f r) x)
Nothing -> r

Analogous changes can be made for the transformation and monadic traversal ver-

sions. With these traversals, the SYB user can express the same type of traversal

pruning as the Filter user.

Applying this perspective to the object-oriented libraries, we can see that the

Visitor base class central to the Visitor pattern effectively forces all nodes to use a

single recursive algebraic data type. In Filter terms, this means that library users must

deal exclusively with any_ctx::Variant during traversal. One approximation of Filter

variants/Haskell data types for the purpose of pruning is inheritance. Inheritance

allows, for example, the AnyVisitable user to use instanceof/dynamic_cast in the

same way as cast in only. However, whereas Filter variants and Haskell data types

represent a set of possibilities, base classes represent commonality in signatures and

implementation, which is unlikely to coincide with the former notion. Hence, there

does not appear to be a simple way to modify Visitor-based libraries to achieve

context-based pruning analogous to the Filter library.

B. Type discovery

Since the nodes in a program are heterogeneous, a common task is to discern the

actual type of a node found through a parent or a traversal. For example, if you start

with a node of type If, representing the if statement in a programming language:

class If {
public:
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const Expr &condition() const;
const Stmt &then_branch() const;
const Stmt &else_branch() const;

};

after calling If::condition, it is necessary to find out the specific type of Expr that

was returned. The same problem appears in functional programming with algebraic-

data types. For example, when examining the first argument of the If constructor,

shown in the following Haskell code:

data Stmt = If Expr Stmt Stmt | Do ... | Seq ... | ...
data Expr = Test ... | Call ... | ...

we have to ask: “is this Expr a Test, Call, or one of the other choices?”

There are two main ways to answer this question. In the callback style, the

user provides a set of functions, one for each node type of interest, and one of these

functions is called if that node is found. Notable examples of the callback style are

the Visitor pattern [41] and the transformations in SYB.

Here is an example of the Visitor pattern being used to discern the type of a

Stmt node in Pivot:

class Stmt_visitor : ipr::Visitor {
void visit(const ipr::For &n) { ... use f }
void visit(const ipr::If_then &n) { ... use n }
...

};

namespace ipr {
class For : ipr::Stmt {
void accept(ipr::Visitor &v) { v.visit(*this); }
...

};
... the same for every other ipr::Stmt

}

void take_stmt(const ipr::Stmt &s) {
Stmt_visitor v;
s.accept(v);

}



155

Tracing the order of execution, we can see the inversion of control characteristic of the

callback style. We start in the user code, take_stmt, then go into the library code, ipr

::For::accept (or whatever the most-derived type of s is), and finally return to the

user code, Stmt_visitor::visit. The callback style is widely used in source analysis

frameworks, including Eclipse, Elsa, Rose, SableCC, and parts of the ASF+SDF

Meta-Environment project.

In the second style, which we call the type-switch style, the programmer writes

something that looks like a switch statement over types. For example in Simula 67,

one of the earliest examples of a type-switch, we can write:

stmt :- ...
INSPECT stmt
WHEN For DO ...
WHEN If_then DO ...
...
OTHERWISE ...

...

Following the execution through this statement, we can see that there is no inversion

of control from user-code to library-code and back again, as in the previous example.

Instead, control flow jumps from Inspect to the appropriate When X do Y or Otherwise

clause, and then continues after.

Although the syntax varies, type-switches are present in many languages. One

example is the typecase operation in Common Lisp [100] and Scala [101]. When

derived classes (in OO languages) are translated to data constructors of Algebraic

Data Types in functional languages, type-switching is just a special case of the more

general pattern-matching facilities, such as the match operation in ML [52] and case

operation in Haskell [102]. If not present as a single operation, type-switching can be

emulated with dynamic type tests, such as dynamic_cast in C++ [32] and instanceof

in Java [103].
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The Filter library uses this type-switching style, but it has a disadvantage com-

pared to some of the above techniques. When the Filter user writes:

func_ctx::Variant v = ...
switch (v.which()) {
case func_ctx::loop_e:
... v.get<Loop>() ...

}

there is a chance to make a typing error, for example calling get<If> when v.which is

not if_e. This error is caught by both statements like INSPECT and match, by nature of

being language features that affect the typing rules. The Visitor pattern also catches

this type of error, which we suspect is one of the reasons behind its popularity.

C. Iterators

The design of iterators in popular C++ libraries, notably the Standard Template Li-

brary (STL) [32] and Boost.Iterator library [33], was the primary inspiration for the

lightweight design of the Filter library. Ignoring the fact that iterators present a

homogeneous sequence to the user while Filter nodes present a heterogeneous tree,

Table I (pg. 22) establishes a metaphor between Filter nodes and iterators to illus-

trate the way Filter nodes can be created and destroyed as needed. The metaphor

goes beyond this, though.

For most STL iterators, the iterator’s data consists of a single pointer into the

iterated container. However, some iterators need more sophisticated mechanisms: std

::deque iterators store 4 pointers which are used to view the underlying sequence-of-

segments-of-elements as a sequence-of-elements; input stream iterators store a stream

pointer and the last object extracted from the stream in order to split the effectful

operation of stream extraction into an effectful increment and pure dereference. Sim-

ilarly, Filter nodes generally hold two pointers: one to the underlying IPR node and
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another to the Env structure. Occasionally, extra state is used to cache the result of

queries to the IPR. Like STL iterators, though, this state is kept simple and small

enough that construction, copying, and destruction is fast.

The Boost.Iterator library provides iterators that significantly modify the user’s

view of the underlying data. For example, filter_iterator allows elements of an un-

derlying sequence to be selectively ignored by a user-specified function object passed

to filter_iterator on construction. As another example, transform_iterator ap-

plies a user-specified unary function object to the elements of an underlying sequence

to present a new view of the underlying sequence. Similarly, the Filter applies the

lowering logic in its discern functions (pg. 73) to transform the IPR’s interface into

the interface of the Filter nodes.
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CHAPTER VI

CONCLUSION

This chapter concludes the thesis by revisiting the four design goals described in the

Introduction, summarizing how each was realized in the Filter library, and discussing

future work.

A. Design goals revisited

In §A of the Introduction, two functional and two stylistic goals were given for the

Filter library. We now reconsider these goals, how they have been realized in the

Filter library, and the results.

The first functional goal stated was to simplify case analysis and traversal. This

goal has been realized in the Filter library by context-specific variants (pg. 22) and

polymorphic child-functions (pg. 32), respectively. When applied in the tutorial, the

case analysis support helped us remember to consider all the corner cases of the

language and, in both the tutorial and comparison, the traversal support allowed us

to scrap a lot of boilerplate (pg. 37). Finally, the integration of these two features

was shown to provide an effective way to prune traversals (pg. 48, pg. 125, pg. 146).

The second functional goal stated was to perform lowering on the IPR. This goal

has been realized by the Filter node types and the lowering algorithm (pg. 59) that

produces these nodes. Although each type of lowering performed is unimpressive, the

comparison demonstrated a significant overall code reduction (pg. 120). Additionally,

this lowering simplified the tutorial due to the absence of, for example, the ipr::

As_type node (pg. 59).

The first stylistic goal stated was to provide a lightweight view of the IPR. This

goal has been realized by the choice of value semantics for Filter types (pg. 22) and
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fast implementations for the associated operations (pg. 74, pg. 88). By keeping the

Filter close to the IPR, the user is able to easily slip back and forth between the two, as

used in the tutorial (pg. 29) and comparison (pg. 134). Unfortunately, when combined

with the functional goal of lowering, this choice results in a factor of performance loss

for some raw operations (pg. 116). However, this overhead drops off as the amount

of “real work” in the analysis increases (pg. 134).

The second stylistic goal stated was to avoid imposing any inversion of control

on user code. This has been realized by the use of the type-switch method of type

discovery instead of the Visitor pattern (pg. 81, pg. 153). Comparison tests (pg. 128,

pg. 134) showed that this method allows Filter user code to be written in a more

readable manner. This point is made again in the context of Structured Programming

(pg. 143).

B. Future work

There are several ways in which this work could be extended in the future to better

serve the writer of high-level semantic analyses. In this final section, three promising

directions are considered.

The first direction would be to build a traversal library, in the spirit of those

described on pg. 146, to provide the performance and reasoning benefits mentioned.

Using the child enumeration facilities of the Filter library, such a library could be

written with little boilerplate and thus be able to focus on the algorithmic design of

the traversals, not the intricacies of C++.

Another direction for extending Filter would be to add new contexts, i.e., new

Filter namespaces containing a set of Variant, Members, Iter, and Range types, as well

any new Filter node types needed. One idea for a new context would be the context of
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constant expressions. These are expressions that appear, for example, in the bounds

of arrays, the precision of bitfields, the non-type arguments of template identifiers,

and the initializers of inline global static constants. This context would consist of the

subset of runtime expressions that may be used in these cases and would assist the

user in writing analyses like constant propagation and dependency analysis.

A second context to consider adding would be that of uninstantiated templates.

This would in fact require adding four new contexts (templ_uda_ctx, templ_func_ctx

, templ_expr_ctx, and templ_type_ctx) that mimicked the instantiated versions but

allowed the additional possibility of unresolved syntax. This would allow the Filter

user to treat templates like concrete entities, rather than families of instantiations.

For example, an analysis could be performed once for a template instead of once for

every instantiation, yielding better performance. Alternatively, a verification analysis

for generic algorithms would also need to analyze uninstantiated bodies.

The last direction for extension would be to support program transformation

for the same class of high-level semantic analyses as targeted by Filter. Currently,

program transformation is supported in Pivot through a low-level impl interface to

the IPR. A transformation library based on Filter would allow the user to specify

intended transformations directly in terms of Filter types. Thus, the user would

be able to seamlessly analyze and transform programs in terms of the lowered view

presented by the Filter library.
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[60] R. Lämmel and S. P. Jones, “Scrap your boilerplate: a practical design pattern

for generic programming,” ACM SIGPLAN Notices, vol. 38, no. 3, pp. 26–37,

Mar. 2003.

[61] B. Stroustrup, “A rationale for semantically enhanced library languages,” in

Proceedings of the First International Workshop on Library-Centric Software

Design (LCSD ’05), 2006, as Technical Report 06-12 of Rensselaer Polytechnic

Institute, Computer Science Department.

[62] S. Guyer and C. Lin, “Broadway: A compiler for exploiting the domain-specific

semantics of software libraries,” Proceedings of the IEEE, vol. 93, no. 2, pp.

342–357, Feb. 2005.



168

[63] G. D. Reis and B. Stroustrup, “Specifying C++ concepts,” in POPL ’06: Con-

ference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages. New York: ACM Press, 2006, pp. 295–308.

[64] A. Stepanov and P. McJones, Elements of Programming. New York: Addison-

Wesley Professional, 2009.

[65] J. B. Kam and J. D. Ullman, “Global data flow analysis and iterative algo-

rithms,” J. ACM, vol. 23, no. 1, pp. 158–171, 1976.

[66] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints,” in

Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages. Los Angeles, CA: ACM Press, New

York, 1977, pp. 238–252.

[67] S. S. Muchnick, Advanced Compiler Design and Implementation. San Fran-

cisco, CA: Morgan Kaufmann Publishers Inc., 1997.

[68] P. Pirkelbauer, S. Parent, M. Marcus, and B. Stroustrup, “Runtime concepts

for the C++ standard template library,” in SAC ’08: Proceedings of the 2008

ACM Symposium on Applied Computing. New York: ACM, 2008, pp. 171–177.

[69] T. L. Veldhuizen, “Expression templates,” C++ Report, vol. 7, no. 5, pp. 26–31,

Jun. 1995.

[70] B. Stroustrup, The C++ Programming Language (Third Edition and Special

Edition). New York: Addison-Wesley Publishing Co., 1997.

[71] Boost Pool Library, C++ Boost, Mar. 2009, http://www.boost.org/libs/pool.



169

[72] H. Sutter, More Exceptional C++: 40 New Engineering Puzzles, Programming

Problems, and Solutions. Boston, MA: Addison-Wesley Longman Publishing

Co., Inc., 2002.

[73] D. L. Detlefs, P. A. Martin, M. Moir, and G. L. Steele, Jr., “Lock-free reference

counting,” in PODC ’01: Proceedings of the Twentieth Annual ACM Sympo-

sium on Principles of Distributed Computing. New York: ACM, 2001, pp.

190–199.

[74] J. Bonwick, “The slab allocator: an object-caching kernel memory allocator,”

in USTC’94: Proceedings of the USENIX Summer 1994 Technical Conference

on USENIX Summer 1994 Technical Conference. Berkeley, CA: USENIX

Association, 1994, pp. 6–6.

[75] J. Bonwick and J. Adams, “Magazines and vmem: Extending the slab allo-

cator to many cpus and arbitrary resources,” in Proceedings of the General

Track: 2002 USENIX Annual Technical Conference. Berkeley, CA: USENIX

Association, 2001, pp. 15–33.

[76] B. K. Rosen, “High-level data flow analysis,” Commun. ACM, vol. 20, no. 10,

pp. 712–724, 1977.

[77] P. Pirkelbauer, Y. Solodkyy, and B. Stroustrup, “Open multi-methods for

C++,” in GPCE ’07: Proceedings of the 6th International Conference on Gen-

erative Programming and Component Engineering. New York: ACM, 2007,

pp. 123–134.

[78] H. E. Hinnant, B. Stroustrup, and B. Kozicki, “A brief introduction to rvalue

references,” ISO/IEC JTC 1, Information technology, Subcommittee SC 22,

Programming language C++, Tech. Rep. N2027=06-0097, 2006.



170

[79] J. Visser, “Visitor combination and traversal control,” in OOPSLA ’01: Pro-

ceedings of the 16th ACM SIGPLAN Conference on Object-oriented Program-

ming, Systems, Languages, and Applications. New York: ACM, 2001, pp.

270–282.

[80] “Technical report on C++ performance,” ISO/IEC JTC 1, Information Tech-

nology, Subcommittee SC 22, Programming Language C++, Tech. Rep.

N1487=03-0070, 2003.

[81] E. W. Dijkstra, “Notes on structured programming,” in Structured Program-

ming, O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Eds. London, UK:

Academic Press Ltd., 1972, ch. 1.

[82] S. G. McPeak, “Elkhound: A fast, practical GLR parser generator,” University

of California at Berkeley, Berkeley, Tech. Rep., 2003.

[83] A. van Deursen and J. Visser, “Source model analysis using the JJTraveler

visitor combinator framework,” Softw., Pract. Exper., vol. 34, no. 14, pp. 1345–

1379, 2004.

[84] R. S. Bird, “An introduction to the theory of lists,” in Logic of Programming

and Calculi of Discrete Design, M. Broy, Ed. New York: Springer-Verlag,

1987, pp. 3–42.

[85] L. Meertens, “Algorithmics — towards programming as a mathematical activ-

ity,” in Mathematics and Computer Science, ser. CWI Monographs Volume 1,

J. de Bakker, M. Hazewinkel, and J. Lenstra, Eds. Amsterdam: North-Holland

Publishing Company, 1986, pp. 289–334.

[86] E. Meijer, M. M. Fokkinga, and R. Paterson, “Functional programming with



171

bananas, lenses, envelopes and barbed wire,” in Proceedings of the 5th ACM

Conference on Functional Programming Languages and Computer Architecture.

London, UK: Springer-Verlag, 1991, pp. 124–144.

[87] R. Lämmel and J. Visser, “A Strafunski Application Letter,” in Proc. of Prac-

tical Aspects of Declarative Programming (PADL’03), ser. LNCS, V. Dahl and

P. Wadler, Eds., vol. 2562. Berlin: Springer-Verlag, Jan. 2003, pp. 357–375.
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APPENDIX A

LISTINGS

The appendix contains the input files and code listings referred to by Chapter IV.

A. uda-single

The declarations in each class form the input sets to the uda-single test described on

pg. 116.

class All
{
int x1;
void foo() {}
int y1 : 3;
int y2 : 8;
int x2;
void bar() {}
void baz() {}
int x3;

};
class Some
{
friend void foo();
static int x;
void bar() {}
typedef int X;
static void baz();
union U {};
int f : 8;
enum E { E1, E2 };
typedef float F;
int y;

};
class None
{
friend void foo();
static int x;
typedef int X;
static void baz();
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union U {};
enum E { E1, E2 };
class D {};

};

B. expr-single

The expressions in each function form the input sets to the expr-single test described

on pg. 120.

namespace N { void foo(); } // for use in tests
struct A { A operator+(A); }; // for use in tests

void all(A a)
{
::N::foo();
(::N::foo)();
N::foo();
(N::foo)();
a + a;
a.operator+(a);
a.::A::operator+(a);
a.A::operator+(a);

}
void some(A a)
{
N::foo();
throw 1;
dynamic_cast<A *>(&a);
a + a;
1 + 2;
a.::A::operator+(a);
new A;
(a.*(&A::operator+))(a);

}
void none(A a)
{
throw 1;
dynamic_cast<A *>(&a);
1 + 2;
(a.*&A::operator+)(a);
throw 1;
dynamic_cast<A *>(&a);
1 + 2;
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(a.*&A::operator+)(a);
}

C. expr-tree1

The three expressions in foo are the inputs to the expr-tree1 test described on pg. 128.

struct A { A operator+(A); }; // for use in tests
namespace N { A foo(A); } // for use in tests

void foo(A a)
{
a.operator+(N::foo(a + ::N::foo(a)) + a.A::operator+(a.operator+(a)));
(&N::foo(a) == &a) ? 1 : ((&(a + a) + 2) == (new A) ? sizeof(A) : 4);
*((1 == 2) ? new int(1) : ((int *)4)) = (sizeof(A) > 1 ? 0 : throw "things");

}

D. expr-tree2

The three expressions in foo are the inputs to the expr-tree2 test described on pg. 128.

void foo(int i, int j, int k)
{
(i + j) * k;
::a(i + j, sizeof(j), *(new int (1))), delete new double, a(1,2,3);
(*(&i < &j ? &j : &k)) = (*(new int) = (i > k ? j + j : throw 5));

}

E. layout-compatible

1. Implementation

The following implements filter_equal from pg. 134:

// utility function to test whether two expressions are literals with the same
// exact value. does not perform constant-folding
inline bool same_literal(expr_ctx::Variant e1, expr_ctx::Variant e2)
{
if (e1.which() != e2.which() || e1.which() != expr_ctx::literal_e)
return false;

return equal(e1.get<Literal>().string(), e2.get<Literal>().string());
}
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// return whether the types are equal
inline bool filter_equal(type_ctx::Variant v1, type_ctx::Variant v2)
{
// ipr::Type* implies equal types, but has false negatives
if (v1.node().ipr() == v2.node().ipr() && v1.node().ipr() != 0)
return true;

// handle equality at the node
if (v1.which() != v2.which())
return false;

switch (v1.which())
{
// definitely not equal because ipr::Type* equality test above failed
case type_ctx::cpp_builtin_e:
case type_ctx::non_cpp_builtin_e:
return false;

// use of UDT equal if ipr::Udt* equal
case type_ctx::udt_use_e:
if (v1.get<Udt_use>().which() != v2.get<Udt_use>().which())
return false;

return &v1.get<Udt_use>().udt_ipr() == &v2.get<Udt_use>().udt_ipr();

// check equality at node, then ’break’ to check equality at children
case type_ctx::ptr_e:
case type_ctx::ref_e:
case type_ctx::ptr_to_member_e:
break;

case type_ctx::qualified_e:
if (v1.get<Qualified>().ipr().qualifiers() !=

v2.get<Qualified>().ipr().qualifiers())
return false;

break;
case type_ctx::array_e:
if (!v1.get<Array>().has_bound() || !v2.get<Array>().has_bound() ||

!same_literal(v1.get<Array>().bound(), v2.get<Array>().bound()))
return false;

break;
case type_ctx::func_t_e:
if (v1.get<Func_t>().ellipsis() != v2.get<Func_t>().ellipsis())
return false;

break;
}

// test equality of children, same number of children
type_ctx::Range r1 = v1.child_type(), r2 = v2.child_type();
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for (; !r1.empty() && !r2.empty(); ++r1.first, ++r2.first)
if (!filter_equal(*r1.first, *r2.first))
return false;

if (!r1.empty() || !r2.empty())
return false;

return true;
}

The following implements traditional_equal and reduce_to_udt from pg. 134:

// utility function for checking that two expressions refer to the same Literal
inline bool same_literal(const ipr::Expr &e1, const ipr::Expr &e2)
{
const ipr::Literal *l1 = ipr_typeid<ipr::Literal>(e1),

*l2 = ipr_typeid<ipr::Literal>(e2);
if (!l1 || !l2)
return false;

return equal(l1->string(), l2->string());
}

// utility function for removing unneeded Scope_refs from As_type::expr
inline const ipr::Expr &strip_scope_ref(const ipr::Expr &in)
{
const ipr::Expr *e = &in;
while (const ipr::Scope_ref *s = ipr_typeid<ipr::Scope_ref>(*e))
e = &s->member();

return *e;
}

const ipr::Typedecl *reduce_to_td(const ipr::As_type &);

// visitor for Id_expr::resolution() that pulls out Typedecls
struct Get_typedecl_visitor : Noop_visitor
{
const ipr::Typedecl *td;

Get_typedecl_visitor() : td(0) {}

void visit(const ipr::Typedecl &n) { td = &n; }

// Alias may eventually resolve to Typedecl
void visit(const ipr::Alias &n)
{
if (const ipr::As_type *a = ipr_typeid<ipr::As_type>(n.type()))
td = reduce_to_td(*a);

}
};

// if this As_type refers to the use of a Typedecl, return it
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const ipr::Typedecl *reduce_to_td(const ipr::As_type &at)
{
const ipr::Expr &e = strip_scope_ref(at.expr());
if (const ipr::Id_expr *i = ipr_typeid<ipr::Id_expr>(e)) {
Get_typedecl_visitor vis;
i->resolution().accept(vis);
return vis.td;

}
return 0;

}

const ipr::Udt *reduce_to_udt(const ipr::As_type &);

// visitor for Id_expr::resolution() that pulls out Udts
struct Get_uda_action
{
const ipr::Udt *udt;

Get_uda_action() : udt(0) {}

void operator()(const ipr::Udt &n) { udt = &n; }

// typedecl may be for a Udt
void operator()(const ipr::Typedecl &n)
{
if (n.has_initializer()) {
if (const ipr::Udt *u = ipr_dynamic_cast<ipr::Udt>(n.initializer()))
udt = u;

}
}

void operator()(const ipr::Alias &n)
{
if (const ipr::As_type *a = ipr_typeid<ipr::As_type>(n.type()))
udt = reduce_to_udt(*a);

}

void operator()(const ipr::Node &) {}
};

// if this As_type refers to the use of a Udt, return it
const ipr::Udt *reduce_to_udt(const ipr::As_type &at)
{
const ipr::Expr &e = strip_scope_ref(at.expr());
if (const ipr::Id_expr *i = ipr_typeid<ipr::Id_expr>(e)) {
Visitor_to_overload<Get_uda_action> vis;
i->resolution().accept(vis);
return vis.act.udt;

}
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return 0;
}

bool traditional_equal(const ipr::Type &t1, const ipr::Type &t2);

struct Equal_types_check : Noop_visitor
{
bool equal;
const ipr::Type &type2;

Equal_types_check(const ipr::Type &t2) : equal(false), type2(t2) {}

// reused by visit(Product) and visit(Sum)
bool equal_seq(const ipr::Sequence<ipr::Type> &seq1,

const ipr::Sequence<ipr::Type> &seq2)
{
int sz1 = seq1.size(), sz2 = seq2.size();
if (sz1 != sz2)
return false;

for (int i = 0; i != sz1; ++i)
if (!traditional_equal(seq1[i], seq2[i]))
return false;

return true;
}

// for each case below, compare equality at node and then check children:

void visit(const ipr::Pointer &n)
{
if (const ipr::Pointer *p = ipr_typeid<ipr::Pointer>(type2))
equal = traditional_equal(n.points_to(), p->points_to());

}

void visit(const ipr::Reference &n)
{
if (const ipr::Reference *r = ipr_typeid<ipr::Reference>(type2))
equal = traditional_equal(n.refers_to(), r->refers_to());

}

void visit(const ipr::Array &n)
{
if (const ipr::Array *a = ipr_typeid<ipr::Array>(type2))
equal = same_literal(n.bound(), a->bound()) &&

traditional_equal(n.element_type(), a->element_type());

}

void visit(const ipr::Function &n)
{
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if (const ipr::Function *f = ipr_typeid<ipr::Function>(type2))
equal = traditional_equal(n.source(), f->source()) &&

traditional_equal(n.target(), f->target()) &&
traditional_equal(n.throws(), f->throws());

}

void visit(const ipr::Ptr_to_member &n)
{
if (const ipr::Ptr_to_member *p = ipr_typeid<ipr::Ptr_to_member>(type2))
equal = traditional_equal(n.containing_type(), p->containing_type()) &&

traditional_equal(n.member_type(), p->member_type());
}

void visit(const ipr::Qualified &n)
{
if (const ipr::Qualified *q = ipr_typeid<ipr::Qualified>(type2))
equal = n.qualifiers() == q->qualifiers() &&

traditional_equal(n.main_variant(), q->main_variant());
}

void visit(const ipr::Product &n)
{
if (const ipr::Product *p = ipr_typeid<ipr::Product>(type2))
equal = equal_seq(n.elements(), p->elements());

}

void visit(const ipr::Sum &n)
{
if (const ipr::Sum *s = ipr_typeid<ipr::Sum>(type2))
equal = equal_seq(n.elements(), s->elements());

}

void visit(const ipr::As_type &n)
{
// Since &n != &type2, only chance for equality is:
// As_type -> Id_expr -> Typedecl, and the two Typedecls are equal
if (const ipr::Typedecl *td1 = reduce_to_td(n))
if (const ipr::As_type *a = ipr_typeid<ipr::As_type>(type2))
if (const ipr::Typedecl *td2 = reduce_to_td(*a))
equal = td1 == td2;

}
};

// return whether two types are equal (identical)
bool traditional_equal(const ipr::Type &t1, const ipr::Type &t2)
{
// ipr::Type* implies equal types, but has false negatives
if (&t1 == &t2)
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return true;

// test equality with structural recursion
Equal_types_check vis(t2);
t1.accept(vis);
return vis.equal;

}

2. Inputs

The sets of pairs of classes in Deep and Shallow form the inputs to the layout-

compatible test on pg. 134.

namespace N // contents used in tests below
{
struct X { float x; };
struct Y { float y; };
struct U { Y y; X *p; };
struct V { X x; X *px; };
struct W { Y y; Y *py; };

}
namespace Deep
{
struct A {
int i;
N::X x;

};
struct B {
int j;
N::Y y;

};

struct C {
int *(*pf)(N::X *);
N::V v;

};
struct D {
int *(*pf)(N::X *);
N::W w;

};

struct E {
A pa;
A *pb;
N::U u;
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};
struct F {
B pa;
A *pb;
N::V v;

};

struct H
{
F f;
int i;

};
struct I {
A a;
E e;

};
}
namespace Shallow
{
struct A {
One::A a1;
One::E e1;
One::A a2;
One::E e2;

};
struct B {
One::A a1;
One::E e1;
One::A a2;
One::E e2;

};

struct C {
int i;
float *j;
double k;

};
struct D {
int i;
float *j;
double k;

};

struct E {
float f;
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int *i;
};
struct F {
float g;
float *j;

};

struct G {
N::X *x;

};
struct H {
N::Y *y;

};
}
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