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ABSTRACT 

 

Seismic Imaging of Receiver Ghosts of Primaries  

Instead of Primaries Themselves. (August 2009) 

Nan Ma, B.S., China University of Petroleum, Beijing 

Chair of Advisory Committee: Dr. Luc T. Ikelle 

 

The three key steps of modern seismic imaging are (1) multiple attenuation, (2) 

velocity estimation, and (3) migration. The multiple-attenuation step is essentially 

designed to remove the energy that has bounces at the free surface (also known as 

“multiples”), since velocity estimation and migration assume that data contain only 

primaries (i.e., seismic events that have reflected or diffracted only once in the subsurface 

and have no free-surface reflection). The second step consists of estimating the velocity 

model such that the migration step can be solved as a linear inverse problem. 

This thesis concerns the multiple attenuation of towed-streamer data. We have 

proposed a new method for attenuating multiples and discussed how this method affects 

velocity estimation and migration. 

The multiple-attenuation approach used today in the E&P industry is based on the 

scattering theory. It is carried out in two steps: (1) the prediction of multiples using data 

only, and (2) the subtraction of multiples contained in the data using predicted multiples. 

One of the interesting features of these multiple-attenuation methods is that they do not 

require any knowledge of the subsurface. However there are still two drawbacks that 



 iv 

limit the usage of these methods. They are (1) the requirement of acquiring very large 3D 

datasets which are beyond the capability of current seismic acquisition technology, and 

(2) the requirement of acquiring near-offset (including zero-offset) data. The method 

developed in this thesis can potentially overcome these two problems. 

The novelty of our approach here is to image receiver ghosts of primaries—events 

which have one bounce in the subsurface and one bounce at the free-surface that is also 

the last bounce—instead of primaries themselves. We propose to predict two wavefields 

instead of a single wavefield, as is presently done. One wavefield contains all free-

surface reflections, including receiver ghosts of primaries, ghosts of multiples, and 

multiples. The other wavefield does not contain receiver ghosts of primaries. We pose the 

problem of reconstructing receiver ghosts of primaries as solving a system of two 

equations with three unknowns. The two wavefields are used to construct the two 

equations. The three unknowns are (1) the receiver ghosts of primaries, (2) the multiples 

contained in the wavefield containing the receiver ghosts of primaries, and (3) the 

multiples contained in the other wavefield. We solve this underdetermined system by 

taking advantage of the fact that seismic data are sparse. 

We have validated our approach using data generated by finite-difference modeling 

(FDM), which is by far the most accurate modeling tool for seismic data. Starting with a 

simple 1D model, we verified the effectiveness of predicting data containing multiples 

and receiver ghosts of primaries. Then we used the sparsity of seismic data to turn the 

system of two equations with three unknowns into a system of two equations with two 

unknowns on a datapoint basis. We have also validated our method for complex 
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geological models. The results show that this method is effective, irrespective of the 

geology. These examples also confirm that our method is not affected by missing near-

offset data and does not require special seismic 3D acquisition.  
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CHAPTER I 

INTRODUCTION: DEMULTIPLE-BASED ON  

KIRCHHOFF SCATTERING SERIES 

 

The two widely used marine acquisitions for petroleum exploration and production 

are: (1) towed-streamer experiments, in which sources and receivers are located near the 

sea surface; and (2) ocean-bottom-seismic (OBS) experiments, in which the sources are 

in the water column and the receivers are at the seafloor. About 95% of all marine 

acquisition today is conducted with the towed-streamer experiment as illustrated in 

Figure 1.1 (Ikelle and Amundsen, 2005). The method described in this thesis is designed 

for towed-streamer experiment. We will make a couple of remarks about the ocean-

bottom-seismic experiment at the end of Chapter II. 

Events in towed-streamer data (Figure 1.2) can be divided into two categories. One 

category consists of events which include at least one free-surface (sea-surface) reflection 

in their wavepaths, and the other category consists of events without free-surface 

reflection in their wavepaths. Events without free-surface reflections are: (1) direct waves 

(events which do not include any reflection in wavepaths), (2) primaries (events with no 

free-surface reflection and with reflection only in the subsurface), and (3) internal 

multiples (events with more than one reflection in the subsurface but not at the free 

surface). Note that internal multiples in towed-streamer data are generally weak compa- 

____________ 
This thesis follows the style and format of Geophysics. 
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red to primaries, and we will consider them negligible for the purpose of this thesis. 

Events with free-surface reflections include ghosts of primaries, free-surface multiples 

and ghosts of free-surface multiples. Ghosts of primaries are events which have only one 

free-surface reflection in the wavepaths, and this free-surface refection is either the first 

reflection to occur in the wavepath of these events (i.e.,the source ghost of primaries) or  

the last reflection to occur in the wavepath of these events (i.e., the receiver ghost of 

primaries). All the other events are either free-surface multiples (when the wavepath of 

events includes one or more free-surface reflections and none is the first or last reflection 

to occur) or ghosts of free-surface multiples (when the wavepath of events includes two 

or more free-surface reflections, with either the first or last reflection being a free-surface 

reflection). Free-surface multiples can be distinguished by the number of bounces at the 

free-surface. Free-surface multiples that have only one bounce are called first-order free-

surface multiples. Second-order free-surface multiples involve two bounces at the free-

surface, and so on.  

Note that the sources and receivers are very close to the sea surface (less than 5 m) in 

towed-streamer survey. The receiver ghosts of primaries, which are the particular focus 

of this thesis, arrive at almost the same time as primaries (see Figure 1.3). Actually, this 

observation is central to the demultiple algorithm that we will propose in Chapter II. 

The modern seismic imaging has three key steps: (1) multiple attenuation; (2) velocity 

estimation; and (3) migration. We will focus on multiple attenuation (demultiple) as a 

reconstruction of receiver ghosts of primaries instead of primaries in this thesis and will 
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discuss the effects of our demultiple approach to velocity estimation and migration in 

Chapter II.  

 

 

 

Figure 1.1. Illustration of towed-streamer acquisition. Typical acquisition vessels can tow 12 to 16 streamers spaced 50 

m to 100 m apart.  
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The multiple-attenuation approach used today in the exploration & production 

industry is based on the scattering theory. In this chapter, we will follow Ikelle et al. 

(2003) and discuss demultiple technology based on Kirchhoff scattering series. The 

Kirchhoff scattering series will be described in three sections. We will start by briefly 

reviewing the construction of multiples based on scattering diagrams. In the second part, 

we will use the representation theorem to derive Kirchhoff scattering series. The 

applications of this demultiple method currently have two impediments and we will 

discuss them at the end of this chapter.  

 

 

 

Figure 1.2. Examples of events in towed-streamer data. These events can be grouped into direct waves, primaries, 

internal multiples, free-surface multiples, receiver ghosts, source ghosts and a combination of source ghosts and 

receiver ghosts. 
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Figure 1.3. Illustration of primaries and receiver ghosts of primaries. In towed-streamer survey, sources and 

receivers are close to the sea surface. So primaries and receiver ghosts of primaries have almost the same arrivals.  

 

Constructions of Multiples Based on Scattering Diagrams  

 

As illustrated in Figure 1.4, seismic events generally consist of several wavepaths. 

Each event can be split into two or more events at the scattering point. We can see that 

seismic events can be described as a combination of two or more events whose 

connecting point (i.e., scattering point) is either at the sea surface (free surface) or in the 

subsurface.  
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Figure 1.4. Illustration of how seismic events can be constructed. The model used in this illustration consists of a solid 

layer and a solid half-space overlain by a water layer. 
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From Figure 1.4, ghosts and free-surface multiples can be constructed with scattering 

points at free surface or alternatively in the subsurface, whereas primaries and internal 

multiples can be constructed only with scattering points in the subsurface. Since we do 

not have receivers in the subsurface, primaries and internal multiples cannot be 

constructed directly from data recorded at the sea surface. However, ghosts and free-

surface multiples have scattering points at the free surface, as we can use recorded data to 

construct them. In summary, by using only the scattering points located at the free 

surface, we can construct ghosts and free-surface multiples from seismic data recorded. 

Therefore, if we are interested in constructing ghosts and free-surface multiples, as we 

are here, our theory must be constructed for seismic events with scattering points at the 

free surface. 

Let us now concentrate on events with scattering points at the free surface (i.e., on 

ghosts and free-surface multiples). Figure 1.5 shows a couple of constructions of seismic 

events. We can see that events with one bounce at the free surface are first-order free-

surface multiples and receiver ghosts of primaries. There is only one way of splitting 

these events with respect to scattering points at the free surface, as illustrated in Figure 

1.5. First-order free-surface multiples are constructed as a combination of two primaries. 

And receiver ghosts of primaries can be constructed as a combination of primary and 

direct wave.  
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Figure 1.5. Illustration of how ghosts and free-surface multiples can be constructed. The model used in this illustration 

consists of a solid layer and a solid half-space overlain by a water layer. 
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As see in Figure 1.5, we can make observations along the same line for higher-order 

multiples and their ghosts. Here are the summaries of our observations: 

1) No primary can be constructed with a scattering point at the free surface. 

     2) We can construct ghosts of primaries only if the data contain direct wave. Thus, we 

can eliminate the possibility of constructing ghosts of primaries by muting direct 

waves from our data results. This point will play an important role in discussing the 

method in Chapter II. 

3) First-order multiples are constructed as a combination of primaries only. 

     4) Second-order multiples can be constructed as a combination of primaries and first-

order multiples with one scattering point. Moreover, with two scattering points, we 

can also construct second-order multiples as a combination of three primaries.  

     5) Third-order multiples can be constructed as either a combination of two first-order 

multiples or as a combination of primary and second-order multiples. Notice that 

there are three ways to construct third-order multiples with one connecting point, 

three ways to construct third-order multiples based on two connecting points, and 

one way to construct third-order multiples based on three interconnections, and so 

on. 

Note that sources and receivers generally are quite close to the sea surface, especially 

in the towed-streamer experiment considered in the above construction of multiples, as 

Figure 1.5 suggests. Thus, it is essential to recognize that the data have to be extrapolated 

from the source to the sea surface or from the receiver to the sea surface. 

 



10 

 

Derivation of Kirchhoff Scattering Series 

 

The Representation Theorem 

 

We consider a 3D model of the earth consisting of an inhomogeneous solid half-space 

overlain by a homogeneous fluid (water) layer, as shown in Figure 1.6 (Ikelle and 

Amundsen, 2005). The position in the configuration is specified by the coordinate 𝑥 =

(𝔁, 𝑧), where 𝔁 =  𝑥, 𝑦  represents the horizontal coordinates with respect to a fixed 

Cartesian referred frame with the origin at O and the three mutually perpendicular base 

vectors  𝑖1, 𝑖2, 𝑖3 . The unit vector 𝑖3 points vertically downward. 

We start by rewriting the wave equation that governs the recorded pressure field in the 

frequency domain. If 𝑝(𝔁, 𝜔, 𝔁𝒔) denotes the recorded pressure field for a receiver at 𝔁 

and a point source at 𝔁𝒔, it obeys the following equation: 

where 

with the condition that the pressure field vanishes at the surface (i.e., at the sea surface); 

that is, 

where 𝐾 𝐱  is the compressibility (the reciprocal of the bulk modulus), 𝜎(𝐱)  is the 

specific volume (the reciprocal of density), and 𝑠(𝜔) is the source signature at point 𝔁𝒔. 

𝐿(𝐱,𝜔)𝑝 𝔁,𝜔, 𝔁𝒔 =  −𝑠(𝜔)𝛿(𝔁 − 𝔁𝒔),                                                                      (1.1) 

𝐿 𝐱,𝜔 =  𝜔2𝐾 𝐱 +  𝑑𝑖𝑣[𝜎(𝐱)𝒈𝒓𝒂𝒅],                                                                       (1.2) 

𝑝 𝔁, z = 0, 𝜔, 𝔁𝒔 =  0,                                                                                                  (1.3) 
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We also introduce Green’s function, which is associated with (1.1) and is denoted by 

𝐺 𝔁, 𝜔; 𝔁′ , as follows: 

The boundary conditions for Green’s function are not specified here. We will know 

that we are free to choose the boundary condition in the representation theorem in later 

discussion. 

 

 

 

Figure 1.6. Geometry of physical and hypothetical seismic experiments. The surface 𝜕𝐷 =  𝑆0 + 𝑆𝑅 , with an outward-

pointing normal vector n, encloses a volume D consisting the water layer and the solid. (a) In the physical experiment, 

𝑆0 is a free surface with vanishing pressure. The source is positioned at a center location 𝔁𝒔, and the receiver is located 

at 𝔁𝒓. The free surface is a perfect reflector for all upgoing waves, which are reflected downward, thereby giving rise to 

multiples. (b) In the hypothetical experiment,  𝑆0 is a nonphysical boundary: All upgoing waves from the subsurface 

continue to propagate in the upward direction. No free surface multiples are generated. The source is a monopole point 

source located at 𝔁𝒔, and the receiver is located at 𝔁𝒓. 

𝐿 𝐱,𝜔 𝐺 𝔁,𝜔, 𝔁′ =  −𝛿(𝔁 − 𝔁′).                                                                               (1.4) 
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The representation theorem (Gangi, 1970; Aki and Richards, 1980) is expressed in 

terms of integrals over surfaces enclosing a volume. The question here is how to 

reconcile this requirement with our limited towed-streamer measurement along an open 

surface parallel to the sea surface. Our approach to this question is similar to that of 

Amundsen (2001), Amundsen et al. (2001), and Ikelle et al. (2003). We consider a 

volume D enclosed by the surface 𝜕𝐷 =  𝑆0 + 𝑆𝑅 , with an outward-pointing normal 

vector n, as depicted in Figure 1.6, where 𝑆0 is the air-water surface and 𝑆𝑅 represents a 

hemisphere of radius R. The representation theorem solves for the pressure field inside 

volume D, assuming that the pressure on surface 𝜕𝐷, which bounds volume D, is known: 

The first term on the right-hand side is included here, because the sources are inside 

the volume. If we let radius R go to infinity, surface 𝑆𝑅→∞ gives a zero contribution to the 

surface integral in equation (1.5). This is Sommerfield’s (1954) radiation condition. 

Furthermore, using the boundary conditions (1.3), equation (1.5) becomes 

where 𝜎0 =  𝜎(𝔁, 0) is the specific volume in the water. Using the fact that in 𝑆0, 

𝑝 𝔁𝒓, 𝜔, 𝔁𝒔 = 𝐺 𝔁𝒓, 𝜔, 𝔁𝒔 𝑠 𝜔  + 

                               𝑑𝑆 𝐱 
𝜕𝐷

𝜎 𝐱  𝐺 𝔁, 𝜔, 𝔁𝒓 
𝜕𝑝  𝔁,𝜔,𝔁𝒔 

𝜕𝑛
− 𝑝 𝔁,𝜔, 𝔁𝒔 

𝜕𝐺 𝔁,𝜔,𝔁𝒓 

𝜕𝑛
 .   (1.5)                                              

𝑝 𝔁𝒓, 𝜔, 𝔁𝒔 = 𝐺 𝔁𝒓, 𝜔, 𝔁𝒔 𝑠 𝜔 +  𝜎0  𝑑𝑆 𝐱 𝐺 𝔁, 0, 𝜔, 𝔁𝒓 𝑠0

𝜕𝑝  𝐺 𝔁,0,𝜔,𝔁𝒔  

𝜕𝑛
,           (1.6) 

𝜕

𝜕𝑛
=  −

𝜕

𝜕𝑧
,                                                                                                                      (1.7) 
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and taking the vertical component of the force equilibrium equation, we have the 

following relationship between the vertical component of the particle velocity and the 

vertical derivative of the pressure field: 

Hence, equation (1.6) can also be written as follows: 

Any Green’s function in equation (1.4) can be used in equation (1.9). In other words, 

we are free to choose boundary for the Green’s problem that suits our problem. Thus, we 

have chosen a Green’s function for an infinite medium that has the same 3D 

homogeneous solid medium as that corresponding to the recorded data and that has an 

infinite water layer, as described in Figure 1.6b. We will denote it as 𝐺𝑝 𝔁,𝜔, 𝔁𝒓 . Thus, 

the pressure field containing no free-surface multiples, source ghosts, or receiver ghosts 

can be written 

where 𝑝𝑝 𝔁𝒓, 𝜔, 𝔁𝒔  denotes data without free-surface multiples and hence with no 

receiver or source ghosts. Using equation (1.10), equation (1.9) becomes 

 

 

 

 

𝑖𝜔𝑣𝑧 𝔁,𝜔, 𝔁𝒔 =  𝜎0
𝜕𝑝  𝔁,𝜔,𝔁𝒔 

𝜕𝑧
.                                                                                      (1.8) 

𝑝 𝔁𝒓, 𝜔, 𝔁𝒔 = 𝐺 𝔁𝒓, 𝜔, 𝔁𝒔 𝑠 𝜔 −  𝑖𝜔  𝑑𝑆 𝐱 𝐺 𝔁, 0, 𝜔, 𝔁𝒓 𝑣𝑧 𝔁, 0, 𝜔, 𝔁𝒔 𝑠0
.         (1.9) 

𝑝𝑝 𝔁𝒓, 𝜔, 𝔁𝒔 = 𝐺𝑝 𝔁𝒓, 𝜔, 𝔁𝒔 𝑠 𝜔 ,                                                                            (1.10) 

𝑝 𝔁𝒓, 𝜔, 𝔁𝒔 = 𝑝𝑝 𝔁𝒓, 𝜔, 𝔁𝒔 + 𝑎 𝜔  𝑑𝑆 𝐱 
𝑠0

𝑝𝑝 𝔁, 0, 𝜔, 𝔁𝒓 𝑣𝑧 𝔁, 0, 𝜔, 𝔁𝒔 .        (1.11) 
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where 

Equation (1.11) is the desired integral relationship between the pressure field without 

free-surface multiples 𝑝𝑝 𝔁𝒓, 𝜔, 𝔁𝒔  and the recorded data 𝑝 𝔁𝒓, 𝜔, 𝔁𝒔  with free-surface 

multiples. 

Let us now interpret equation (1.11) physically, which relates seismic data containing 

primaries, free-surface multiples, and source and receiver ghosts to data that do not 

contain these components. The first term on the right-hand side contains primaries and 

internal multiples. As illustrated in Figure 1.7, the second term (which is a combination 

of 𝑝𝑝  and 𝑣𝑧) predicts all free-surface multiples and receiver and source ghosts. Note that 

fields 𝑝𝑝  and 𝑣𝑧  contain direct waves, which allows us to predict receiver and source 

ghosts of primaries. 

 

 

 

 

 

 

 

 

 

 

𝑎 𝜔 =  −
𝑖𝜔

𝑠(𝜔)
.                                                                                                            (1.12) 
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Figure 1.7. Examples of the construction of free-surface multiples and source and receiver ghosts. They can be 

constructed as a combination of pressure data, containing only primaries with the vertical components of the particle-

velocity data; 𝐳𝒓 and 𝐳𝒔 are the depths of the receiver points and shot points, respectively. The symbol * here denotes 

the multidimensional convolution operations in the second term of equation (1.11), which allows us to combine v𝑧  

and 𝑝𝑝 . 
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Extrapolation of the Vertical Component of the Particle Velocity from the Receiver 

Positions to the Sea Surface 

 

Before we discuss the solution of integral equation (1.11), let us remark that equation 

(1.11) requires 𝑣𝑧  at the free surface 𝑠0. Therefore it is necessary to extrapolate from the 

actual receiver point  𝒙, 𝑧𝑟  to the point at the free surface (𝒙, 𝑧 = 0). Similarly, we need 

to extrapolate the pressure field inside the integral from the source point at the free 

surface (𝒙, 𝑧 = 0) to the actual source point  𝒙, 𝑧𝑠 . 

The particle-velocity field 𝑣𝑧 𝔁, 𝑧𝑟 , 𝜔, 𝔁𝒔  consists of an upgoing component 

𝑢𝑣 𝔁, 𝑧𝑟 , 𝜔, 𝔁𝒔  and a downgoing component  𝑑𝑣 𝔁, 𝑧𝑟 , 𝜔, 𝔁𝒔 . To get the particle-

velocity field at the sea surface, we must forward-extrapolate the upgoing component 

from  𝔁, 𝑧𝑟  to  𝔁, 𝑧 = 0  and backward-extrapolate the downgoing component from 

 𝔁, 𝑧𝑟  to  𝔁, 𝑧 = 0 . These two extrapolated fields must then be recombined to give the 

total particle-velocity field  𝑣𝑧 𝔁, 𝑧 = 0, 𝜔, 𝔁𝒔 . Because of the free-surface boundary 

condition at the sea surface, we have 

and because 

we get 

𝑢𝑣 𝔁, 𝑧 = 0, 𝜔, 𝔁𝒔 =  𝑑𝑣 𝔁, 𝑧 = 0, 𝜔, 𝔁𝒔  ,                                                                (1.13)             

𝑣𝑧 𝔁, 𝑧 = 0, 𝜔, 𝔁𝒔 =  𝑢𝑣 𝔁, 𝑧 = 0, 𝜔, 𝔁𝒔 + 𝑑𝑣 𝔁, 𝑧 = 0, 𝜔, 𝔁𝒔  ,                            (1.14) 

𝑣𝑧 𝔁, 𝑧 = 0, 𝜔, 𝔁𝒔 =  2𝑢𝑣 𝔁, 𝑧 = 0, 𝜔, 𝔁𝒔 = 2𝑑𝑣 𝔁, 𝑧 = 0, 𝜔, 𝔁𝒔 .                        (1.15) 
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Thus, we can get the total particle-velocity field at the sea surface by either forward 

extrapolating the upgoing component or backward-extrapolating the downgoing 

component from the receiver location  𝔁, 𝑧𝑟  to location 𝔁, 𝑧 = 0 . We opted to forward-

extrapolate the upgoing component. 

Because we assume a dual measurement of a pressure field and its vertical derivative, 

we can use the Osen et al. (1999) formula to obtain the upgoing vertical particle velocity 

field; that is, 

with  

where 𝒌 = (kx , ky)  represents the wavenumbers for the horizontal coordinates 𝒙 =

 𝑥, 𝑦 , and where 𝑉𝑧 𝒌, 𝑧𝑟 , 𝜔, 𝔁𝒔  and P 𝒌, 𝑧𝑟 , 𝜔, 𝔁𝒔  are, respectively, the 2D Fourier 

transforms of 𝑣𝑧 𝔁, 𝑧𝑟 , 𝜔, 𝔁𝒔  and p 𝒙, 𝑧𝑟 , 𝜔, 𝔁𝒔  with respect to 𝒙 . The quantity 

𝑈𝑣 𝒌, 𝑧𝑟 , 𝜔, 𝔁𝒔  denotes the upgoing wavefield of the vertical particle velocity in the 

wavenumber domain. 

The other field that occurs in the surface integral of equation (1.11) is pressure 

𝒫𝑝 𝔁, 0, 𝜔, 𝔁𝒓  corresponding to the case of an infinite water layer. The desired pressure 

is 𝒫𝑝 𝔁, 𝑧𝑠 , 𝜔, 𝔁𝒓 , rather than 𝒫𝑝 𝔁, 0, 𝜔, 𝔁𝒓 . To get the desired field, we extrapolate 

the field 𝒫𝑝 𝔁, 𝑧𝑠 , 𝜔, 𝔁𝒓  from the source location  𝔁, 𝑧𝑠  to (𝔁, 𝑧 = 0) with regard to 

particle velocity, the pressure field 𝒫𝑝 𝔁, 𝑧𝑠 , 𝜔, 𝔁𝒓  consists of an upgoing 

component, 𝑢𝑃 𝔁, 𝑧𝑠 , 𝜔, 𝔁𝒓  and a downgoing component 𝑑𝑣 𝔁, 𝑧𝑟 , 𝜔, 𝔁𝒔 . To get desired 

𝑈𝑣 𝒌, 𝑧𝑟 , 𝜔, 𝔁𝒔 =  
1

2
  𝑉𝑧 𝒌, zr , 𝜔, 𝔁𝒔 − σ0

κ𝓏

ω
P 𝒌, 𝑧𝑟 , 𝜔, 𝔁𝒔   ,                                 (1.16) 

𝑘𝑧 =   
𝜔2

𝑐2 − 𝑘𝑥
2 − 𝑘𝑦

2,                                                                                                  (1.17) 
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pressure at the sea surface, we forward-extrapolate the upgoing component and 

backward-extrapolate the downgoing component. However, here we must distinguish 

between the case in which the source is located above the receiver and that in which the 

source is below the receiver. If the source lies above the receiver, when the reciprocity 

theorem is invoked, that is, when, 

or  

the result is a simulated source that lies below a simulated receiver. The complete desired 

pressure field at the simulated receiver, located at  𝔁, 𝑧𝑠 , consists of the sum of the 

upgoing direct wave and the upgoing response from the subsurface. To get the complete 

desired pressure field at the level of the sea surface  𝒫𝑝 𝔁, 0, 𝜔, 𝔁𝒓 , this sum of the 

upgoing direct wave and the upgoing response from the subsurface must be forward-

extrapolated from  𝔁, 𝑧𝑠  to (𝔁, 𝑧 = 0). On the other hand, if the source lies below the 

receiver, when reciprocity is invoked the result is a simulated receiver, located at  𝔁, 𝑧𝑠 , 

which consists of the sum of the downgoing direct wave and the upgoing subsurface 

response.  

 

 

 

 

 

𝒫𝑝 𝔁, 𝑧𝑠 , 𝜔, 𝔁𝒓 =  𝒫𝑝 𝔁𝒓, 𝜔, 𝒙, 𝑧𝑠 ,                                                                           (1.18) 

𝒫𝑝 𝔁, 0, 𝜔, 𝔁𝒓 =  𝒫𝑝 𝔁𝒓, 𝜔, 𝒙, 0 ,                                                                             (1.19) 
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To get the complete desired pressure field at the level of the sea surface for this case, 

the direct wave must be isolated and backward-propagated, and the subsurface response 

must be isolated and forward-extrapolated from  𝔁, 𝑧𝑠  to (𝔁, 𝑧 = 0). The result must 

then be summed to get  𝒫𝑝 𝔁, 0, 𝜔, 𝔁𝒓 . The subsequent algebra is identical for both 

cases; that is, the source is located above or below the receiver, as long as the adequate 

extrapolation factors are used. In seismic acquisition, sources are commonly located 

above receivers; therefore the derivations that follow are based on this case. 

After some reorganization, equation (1.11) becomes 

where  

and where the term exp{𝑖𝑘𝑧𝑧𝑠} is introduced by the extrapolation of the pressure field, 

𝑝𝑝 , inside the integral in equation (1.20) from the source point at the free surface 

 𝔁, 𝑧𝑠 = 0  to the actual source point  𝔁, 𝑧𝑠 , and the term exp{𝑖𝑘𝑧𝑧𝑟} is introduced by 

the extrapolation of the vertical particle velocity field, 𝑈𝑧 , from a receiver point  𝔁, 𝑧𝑟  to 

a point at the free surface. Figure 1.8 illustrates field  𝑣𝑧  and the way it interacts with 

field 𝑝𝑝  to predict free-surface multiples and ghosts. 

 

𝑝 𝔁𝒓, 𝜔, 𝔁𝒔 = 𝒫𝑝 𝔁𝒓, 𝜔, 𝔁𝒔 + 𝑎 𝜔  𝑑𝑆 𝐱 
𝑠0

𝒫𝑝 𝔁, 𝑧𝑠 , 𝜔, 𝔁𝒓  𝑣𝑧  𝔁, 𝑧𝑠 , 𝜔, 𝔁𝒔 ,    (1.20) 

 𝑣𝑧  𝔁, 𝑧𝑠 , 𝜔, 𝔁𝒔 =   𝑑𝒌 𝑈𝑣 𝒌, 𝑧𝑟 , 𝜔, 𝔁𝒔 exp{𝑖𝑘𝑧(𝑧𝑠 + 𝑧𝑟)}exp{𝑖𝑘𝒙}
+∞

−∞
,                   (1.21) 
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Figure 1.8. Illustration of how the construction of free-surface multiples and source and receiver ghosts in Figure 1.7 is 

modified when using equation (1.20) instead of (1.11). Notice that the construction of free-surface multiples and ghosts 

in Figure 1.7 and 1.8 yields the same events, despite their difference. 

 



21 

 

A Kirchhoff Scattering Series 

 

Assuming that the recorded pressure field,  𝑝0 𝔁𝒓, 𝜔, 𝔁𝒔  and the recorded vertical 

component of the particle velocity  𝑣𝑧  𝔁, 𝑧𝑠 , 𝜔, 𝔁𝒓 , are available, our next task is to 

construct the demultiple data 𝑝𝑝 𝒙,𝜔, 𝔁𝒔 , by solving the integral equation (1.20). We 

propose to solve this integral equation in the form of a series expansion that we will call 

the Kirchhoff scattering series. 

To construct the Kirchhoff scattering series, we start by rewriting equation (1.20) in 

the form  

where 

and  

By expanding equation (1.22) as a Taylor series, we arrive at the Kirchhoff scattering 

series: 

with 

Explicitly, the Kirchhoff scattering series in equation (1.25), which removes free-

surface multiples from 3D multi-offset marine data, can be written as follows: 

 𝑑𝑆 𝒙   𝐼 𝒙, 𝒙𝒔  +  𝐵𝑘𝑖𝑟  𝒙, 𝑧𝑠 , 𝜔, 𝒙𝒔  × 𝒫𝑝 𝒙𝒓, 𝜔, 𝒙, 𝑧𝑠 =  𝑃0(𝒙𝒓, 𝜔, 𝒙𝒔)
𝑆0

,         (1.22) 

𝐵𝑘𝑖𝑟  𝒙, 𝑧𝑠 , 𝜔, 𝒙𝒔 = 𝑎(𝜔) 𝑣𝑧  𝔁, 𝑧𝑠 , 𝜔, 𝔁𝒔 ,                                                                  (1.23) 

𝐼 𝒙, 𝒙𝒔 =  𝛿(𝒙 − 𝒙𝒔).                                                                                                 (1.24) 

𝒫𝑝 =  𝑃0 −  𝑎𝑃1 +  𝑎2𝑃2 − 𝑎3𝑃3 +  … ,                                                                     (1.25) 

𝑃𝑛 =   𝑣𝑧 𝑃𝑛−1,    𝑛 = 1, 2, 3, … .                                                                                    (1.26) 
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The fields 𝑃1,  𝑃2, etc., are given by 

Most examples of attenuating free-surface multiples from towed-streamer data are 

based on equation (1.27). Therefore, it is important to reiterate the different terms of this 

equation. The term 𝑃0 in equation (1.27) is the actual data that contain primaries, internal 

multiples, free-surface multiples, and ghosts. The objective of equation (1.27) is to 

remove free surface multiples and ghosts from 𝑃0. This objective is achieved through 

computation of the terms 𝑃𝑛  in equation (1.28), which allows us to predict multiples. 

Notice that the computation of 𝑃𝑛  must be scaled by (−𝑎)𝑛  to produce the removal of 

free-surface multiples and ghosts. Because 𝑎, as defined in equation (1.12), is the inverse 

source signature multiplied by a complex constant, we will call 𝑎  the inverse source 

signature. 

Note that by using the relationship between the vertical component of the particle 

velocity and the pressure in equation (1.8), we can also derive the Kirchhoff series for the 

vertical component of the particle velocity. 

We have summarized the demultiple process based on the Kirchhoff scattering series 

as illustrated in Figure 1.9. Basically, using the input data will predict the terms of the 

Kirchhoff scattering series. Then we estimate the inverse source signature, which can be 

used to subtract multiples from the data. We have also illustrated this process with 

𝒫𝑝 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 , 𝜔, 𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠 = 𝑃0 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 , 𝜔, 𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠    

       – 𝑎 𝜔 𝑃1 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 , 𝜔, 𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠  +  𝑎2 𝜔 𝑃2 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 , 𝜔, 𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠 − … .   (1.27) 

𝑃𝑛 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 , 𝜔, 𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠 =                               

               𝑑𝑥
+∞

−∞
 𝑑𝑦

+∞

−∞
𝑃𝑛−1 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 , 𝜔, 𝑥, 𝑦, 𝑧𝑠 ×  𝑣𝑧  𝑥, 𝑦, 𝑧𝑠 , 𝜔, 𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠 .      (1.28) 
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synthetic data in Figure 1.10 (Ikelle and Amundsen, 2005). Note that this process does 

not require any information of subsurface. We basically have one data set made of three 

primaries. The second primary and first-order free-surface multiples interfere in the near 

offset. Yet, we can remove first-order free-surface multiples while preserving primaries 

despite the interference by using the Kirchhoff scattering series we described above.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. Processing flow of a multiple attenuation scheme based on the Kirchhoff scattering series.  

Input Data: 𝑷𝟎 

Predictions of multiples: 𝑷𝟏, 𝑷𝟐, …,  

(Equation (1.26)) 

Estimation of Inverse Source 

Signature 𝒂 (Ikelle and 

Amundsen, 2005) 

𝓟𝒑 =  𝑷𝟎 −  𝒂𝑷𝟏 + 𝒂𝟐𝑷𝟐 − 𝒂𝟑𝑷𝟑 + … 

Subtraction  



 

 

  

 

 

Figure 1.10.Summary of multiple attenuation using the Kirchhoff series derived in equation (1.25). The free-surface multiples are located at about 0.44 s to 1 s. We can 

see that all multiples contained in 𝑃0 are predicted by 𝑃1. However, when we take the difference between  𝑃0 and 𝑎𝑃1, we can remove only the first-order multiples. 

Similarly, by adding 𝑎2𝑃2, we can remove second-order multiples. Here, the multiples are completely removed after adding the forth term of Kirchhoff scattering series. 

2 

                                                                        

2
4

                                                              



25 

 

  

Problems of Using Kirchhoff Scattering Series 

 

From the description above, we know the Kirchhoff scattering series is effective to 

remove multiples and does not require any knowledge of subsurface geology. However, 

there are two important drawbacks which limit the application of Kirchhoff scattering 

series. They are (1) the requirement of acquiring near-offset (including zero-offset) data 

and (2) the requirement of acquiring very large 3D datasets that are beyond the capability 

of current seismic acquisition technology. The objective of this section is to shed more 

light on these drawbacks.  

 

Extrapolation of Missing Near Traces 

 

In conventional seismic surveys, the nearest offset between the seismic source and the 

first active receiver ranges from 100 m to 200 m. However, as we see in equation (1.27), 

the application of the Kirchhoff series requires a complete range of offsets, from zero 

offset to infinity. The far offsets generally are sufficient for practical implementation of 

the Kirchhoff series; the problem is the missing near offset. Figure 1.11 gives one 

example to illustrate the reason why we need to record near offsets up to zero offset when 

possible, or to interpolate the near offsets from raw data when near offsets are not 

recorded. For example, to construct a multiple with 250 m, we might need the primaries 

with 100-m and 150-m offsets. Therefore, in order to predict multiples at 250 m, we need 

to record 100-m and 150-m offset data which cannot be collected when we choose an 
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explosive source. One approach to this problem consists of cubic spline fitting of the 

amplitudes of missing near offsets on NMO-corrected CMP gathers (Verschuur et al., 

1992).However, this method does not work for complex geology.  

 

 

 

Figure 1.11. Illustration of the reason why we need to record near offsets up to zero offset data when possible. 
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Surface Integration vs. Line Integration  

 

As defined in equation (1.25), the 3D demultiple algorithm for predicting multiples 

(𝑃1, 𝑃2, ...) requires integrals along the x- and y-axes for a pair of source and receiver. In 

other words, in order to accurately predict multiples for a pair of source and receiver, we 

need data including all the positions in the surface. Figure 1.12 captures the requirement. 

Unfortunately, such a requirement is beyond current 3D acquisition, especially towed-

streamer experiment. The cables along the y-axis usually have 100 m or more space in 

real acquisition.  One of the major challenges with towed-streamer is to maintain constant 

streamer spacing. Currents, tides, and other forces can cause streamers to feather, or drift 

laterally, from the programmed position. In extreme cases, they become tangled. The idea 

of multiple sweep for a large distance is not economically valuable. These problems will 

change the travel time of predicted multiples and amplitudes of these multiples. The 

changes will make our subtraction approach significantly complicated. The method we 

will describe in Chapter II can potentially overcome these drawbacks.  
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Figure 1.12. Illustration of 2D prediction and 3D prediction. (a) Predicting a multiple between S and R with a 3D 

demultiple algorithm. In the prediction, all sources and receivers along the x- and y-axes are used. (b) Prediction of a 

multiple between S and R with a 2D demultiple algorithm. In this prediction, only sources and receivers along x-axis 

are used. 
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CHAPTER II 

DEMULTIPLE FOR RECEIVER GHOSTS OF PRIMARIES 

 

In the previous chapter, we derived the Kirchhoff scattering series [Equation (1.27)] 

using the representation theorem. The first term of the Kirchhoff scattering series is the 

actual data. The second term allows us to predict all events with reflections at the free 

surface (i.e., ghosts of primaries, free-surface multiples, and ghosts of free-surface 

multiples). But it can be used only to remove events with one free-surface reflection 

because events are scaled differently in the Kirchhoff scattering series, in accordance 

with the number of times they reflect at the free surface. The third term allows us to 

predict all events with two or more reflections at the free surface. But it aims to attenuate 

events with two reflections at the free surface, and so on. For example, by using the first 

three terms of the Kirchhoff scattering series, we can remove events with one and two 

reflections at the free surface (i.e., receiver ghosts of primaries, first-order free-surface 

multiples, receiver ghosts of first-order free-surface multiples, and second-order free-

surface multiples). 

In this chapter, we will present a new way of using the Kirchhoff scattering series for 

attenuating free-surface multiples which is different from the one we just described. The 

key characteristic of our approach is that we will try to reconstruct receiver ghosts of 

primaries instead of primaries themselves. The fact that our demultiple approach will 

output receiver ghosts of primaries instead of primaries themselves will not affect the 
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final imaging of the subsurface, because most demultiple algorithms today actually 

output a combination of primaries and ghosts of primaries.  

The basic idea of our method is that we will use the second term of the Kirchhoff 

scattering series only. In the first case, we will use it with data with direct-wave arrivals. 

This term allows us to construct receiver ghosts of primaries as well as all the other 

events with free-surface reflections. In the second case, we will use the second term of 

the Kirchhoff scattering series with data without direct-wave arrivals. This term no longer 

predicts receiver ghosts of primaries, but it predicts all the other free-surface reflections. 

In the first section of this chapter, we will provide the mathematics, scattering diagrams, 

and numerical examples of these two predictions. In the second and third sections, we 

will discuss how we can take the differences between these predictions to reconstruct the 

field containing receiver ghosts of primaries only. Notice that through this chapter, 

actually throughout the rest of this thesis, we will treat the effect of source ghosts as a 

part of the seismic source signature. 

 

Basic Formulation of the Demultiple for Receiver Ghosts of Primaries  

 

Let us briefly recall the mathematics of the Kirchhoff scattering series described in 

Chapter I. Let 𝑃0  represent the pressure towed-streamer data, including direct-wave 

arrivals, and 𝑣z  is the vertical component of the particle velocity of towed-streamer data 

without direct-wave arrivals. The Kirchhoff scattering series for removing free-surface 

multiples from pressure towed-streamer data can be written in compact form as follows: 
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𝒫𝑝 =  𝑃0 −  𝑎𝑃1 +  𝑎2𝑃2 − 𝑎3𝑃3 +  …                                                                         (2.1) 

The fields 𝑃1,  𝑃2, etc., are given by 

𝑃𝑛 = 𝑃𝑛−1 × 𝑣z ,       𝑛 ≥ 1 ,                                                                                            (2.2) 

where the symbol ×  denotes the multidimensional convolution operations,  𝒫𝑝  is the 

demultiple pressure data, and  is the inverse source signature.  

Here we provide another approach to attenuate free-surface multiples. To facilitate our 

discussion, we will illustrate each step of our algorithm with numerical examples. Figure 

2.1a shows a complex geology (Watts and Ikelle, 2006) that we have used to generate our 

data. The geology is the deepwater model with two salt bodies. The sources and receivers 

are located 5 m below the sea surface. We have generated 320 shot gathers spaced every 

12.5 m. Each shot gather has 320 receivers. The receivers are also spaced every 12.5 m. 

Shot points and receiver points share the same positions throughout our survey. We have 

recorded the pressure data and the vertical component of the particle velocity data 

simultaneously. Figure 2.1b illustrates one of 320 shot gathers of the raw towed-streamer 

pressure data 𝑃0. We have used the finite-difference modeling method to generate our 

data (see Appendix A for the derivation of finite-difference modeling and the conditions 

of its applicability). This method is by far the most accurate modeling tool for generating 

seismic data.  

 

 

 



 

 

  

    

 

Figure 2.1. Illustration of geology model we will use in this thesis and a shot gather generated from this geology by FDM. (a) A graphical illustration of geology model 

used in our example. Notice that the geology here is the deepwater model with two salt bodies. (b) Illustration of a shot gather generated from the geology as illustrated 

in Figure 2.5a by finite-difference modeling method. All the highlighted events are primaries of each interface. Note that direct wave is contained in this figure. 

                                                                        

3
2

                                                              

(a) (b) 
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Let us now return to the description of our approach. Our approach is based on the 

second term of the Kirchhoff scattering series 𝑃1. The basic idea is that 𝑃1 allows us to 

predict free-surface multiples and receiver ghosts of free-surface multiples as well as 

receiver ghosts of primaries if 𝑃0 contains direct-wave arrivals. However, if the direct-

wave arrivals are removed from  𝑃0 , the new 𝑃1 , which will be denoted  𝑃1
′ , does not 

predict receiver ghosts of primaries. Thus the differences between 𝑃1 and 𝑃1
′ ,  can be used 

to predict towed-streamer data containing receiver ghosts of primaries only. So our 

algorithm for recovering receiver ghosts of primaries can be described as follows: 

    1) Compute P1 as a multidimensional convolution of the pressure data with the vertical 

    component of the particle velocity as follows: 

    P1 =  P0 × vz ,                                                                                                        (2.3) 

         where the symbol × denotes multidimensional convolution operations. Notice that 

P0 used in this equation contains direct-wave arrivals.  

    2) Compute P1
′  as a multidimensional convolution of P0

(nd )
 with the vertical component 

         of the particle velocity, as follows: 

    P1
′ =  P0

(nd )
× vz ,                                                                                                    (2.4) 

where P0
(nd )

is the actual pressure data without direct-wave arrivals. Notice that in   

contrast to P1, P1
′  does not predict any receiver ghosts of primaries, as illustrated in 

Figure 2.2. In Figure 2.2a, the output of the first prediction includes receiver ghosts 

of primaries, free-surface multiples, and receiver ghosts of free-surface multiples. 

Figure 2.2b shows that we can predict free-surface multiples and their associated 
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receiver ghosts if the pressure field does not include direct-wave arrivals. However, 

the number of times receiver ghosts of free-surface multiples predicted in  𝑃1  is 

different from the one predicted in 𝑃1
′ . For example, a receiver ghost of a first-order 

free-surface multiple can be constructed in two ways: (1) as a multidimensional 

convolution of a direct wave with a first-order free-surface multiple and (2) as a 

multidimensional convolution of a primary with a receiver ghost of a primary. 

Figure 2.3 provides an illustration of these constructions. Notice that 𝑃1  predicts 

both of these events, while 𝑃1
′  predicts only one of them. A similar analysis for a 

receiver ghost of a second-order free-surface multiple shows that 𝑃1 will predict it 

three times, whereas 𝑃1
′  can predict only the receiver ghost of a second-order free-

surface multiple twice. Hence,  𝑃1 and 𝑃1
′  contain the same receiver ghosts of free-

surface multiples with different multiplicative factors. The need to compensate for 

these differences is the reason for developing special schemes for our demultiple 

technique. 

 

 

 

 



    

 

  

 

 

Figure 2.2. The comparison of  𝑃1 and 𝑃1
′  using scattering diagrams. (a) Illustration of the construction of  𝑃1 in which the pressure field 𝑃0includes direct-wave arrivals. 

Notice that we have constructed receiver ghosts of primaries, free-surface multiples and receiver ghosts of free-surface multiples. (b) Illustration of the construction 

of  𝑃1
′   with 𝑃0

(𝑛𝑑 )
. Notice that we have not constructed receiver ghosts of primaries in this case. Also notice that the number of receiver ghosts of free-surface multiples 

events predicted 𝑃1 and 𝑃1
′  is different. RGP denotes receiver ghosts of primaries, RGM denotes receiver ghosts of free-surface multiples, and M denotes free-surface 

multiples.                                                                         
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Figure 2.3. Illustration of construction of receiver ghosts of free-surface multiples. (a) The receiver ghosts of free-surface multiples can be constructed as a 

multidimensional convolution of a multiple with a direct wave, or as a multiple (primary) with a receiver ghosts of a multiple (a receiver ghost of primary). Notice the 

differences in the multiplicative factor between the receiver ghosts of free-surface multiples in  𝑃1  and 𝑃1
′ . (b) Here we illustrate that the scattering point in the 

construction of receiver ghosts of multiples in  P1  can be different with the same event constructed in P1
′ .     
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    3) We have developed two ways of reconstructing receiver ghosts of primaries from 

the predicted wavefields P1 and P1
′ . One way is to take the difference between  P1 

and P1
′  to obtain the field containing only receiver ghosts of primaries if the actual 

pressure data do contain only first-order free-surface multiples like the data 

recorded in ultra deepwater. If the data contain more than one order of free-surface 

multiples, the differences in the multiplicative factor between the receiver ghosts of 

free-surface multiples in the two predictions do not allow us to subtract all orders 

of free-surface multiples simultaneously. In this case, we have opted to use the 

other method. We will describe these two methods in the following two sections.  

Before we turn to a discussion of our subtraction schemes, let us illustrate 𝑃1 and 𝑃1
′  

for the data in Figure 2.4a. Notice that we have plotted these data without direct-wave 

arrivals. These two predictions,  𝑃1 and  𝑃1
′ , are shown in Figure 2.4b and 2.4c, 

respectively. All events contained in 𝑃0 also present in 𝑃1. Moreover, we can see that the 

kinematics of  𝑃0  are almost identical to those in  𝑃1 . Therefore, we can confirm that 

receiver ghosts of primaries in 𝑃1 arrive at almost the same time as primaries in 𝑃0, as we 

pointed out in Figure 1.3. Actually, 𝑃0 and 𝑃1are also very similar in AVO terms if one 

can compensate for the fact: (1) that the source signature in 𝑃1 is broader than the one 

in  𝑃0  and (2) that the geometrical spreading of  𝑃1  has been by convolution with the 

direct-wave arrivals.  
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Let us now compare 𝑃1 and 𝑃1
′ . We can see that 𝑃1

′  does not contain receiver ghosts of 

primaries. However, it contains the same multiple events as 𝑃1 . Hence, the difference 

between 𝑃1 and 𝑃1
′  can allow us to recover receiver ghosts of primaries. The difference in 

the apparent source signature between 𝑃1 and 𝑃1
′  is just due to the differences in plotting 

scales.  

Figure 2.5 also illustrates the differences between 𝑃0 , 𝑃1, and 𝑃1
′ . But this time we 

have used offset gathers, more precisely zero-offset gathers, to provide a more-

comprehensive description of our dataset. The conclusions that we have just made based 

on the shot gather in Figure 2.4 also hold for the offset gather.     

In summary, we have proposed to use the second term of the Kirchhoff scattering 

series with and without direct-wave arrivals to product two wavefields. One wavefield 

contains all free-surface reflections, including receiver ghosts of primaries, receiver 

ghosts of free-surface multiples, and free-surface multiples. The other wavefield does not 

contain receiver ghosts of primaries. Our challenge in the next two sections is to develop 

schemes which allow us to recover receiver ghosts of primaries.   
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Figure 2.4. Illustration of the two predictions of the shot gather. (a) Illustration of a shot gather of the synthetic data using the geology as illustrated in Figure 2.3a. (b) 

Illustration of a shot gather from the data generated from FDM. (b) Illustration of the field 𝑃1 after applying Equation (2.3). Note that the receiver ghosts of primaries and 

primaries in Figure 2.4a have almost the same arrivals. (c) Illustration of the field 𝑃1
′  after applying Equation (2.4). Notice that Figure 2.4b contains all the events in this 

figure. 
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Figure 2.5. Illustration of the two predictions of the zero offset gather. (a) Illustration of the zero-offset gather of the synthetic data using the geology as illustrated in 

Figure 2.3a. (b)  Illustration of the field 𝑃1 after applying Equation (2.3). Notice that it contains receiver ghosts of primaries, free-surface multiples and receiver ghosts 

of free-surface multiples. The broad source signature here is due to the fact that 𝑃1 involves the convolution between the two wavefields. (b) Illustration of the field 𝑃1
′  

after applying Equation (2.4). Notice that it does not contain the highlighted events in Figure 2.5b which are receiver ghosts of primaries. All the events contained in this 

figure are shown in Figure 2.5b which are free-surface multiples and their receiver ghosts. 
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Reconstruction of Receiver Ghosts of Primaries Using the Standard Subtraction 

Technique  

 

In the previous section, we have described the two predictions based on the second 

term of the Kirchhoff scattering series. With the two predictions, we have generated two 

wavefields, 𝑃1 and 𝑃1
′ . In order to reconstruct receiver ghosts of primaries to image the 

subsurface from the two wavefields, we will provide one possible way in this section.  

Let us start by taking the difference between 𝑃1 and 𝑃1
′ ; i.e., 

𝑃GP  𝔁𝒔, 𝔁𝒓, 𝑡 =  𝑃1 𝔁𝒔, 𝔁𝒓, 𝑡 −
3

2
 𝑃1

′  𝔁𝒔, 𝔁𝒓, 𝑡 .                                                           (2.5) 

The factor  
3

2
 here is due to the fact that  𝑃1  predicts each first-order free-surface 

multiple once and the receiver ghost of each first-order free-surface multiple twice, 

whereas 𝑃1
′  predicts the first-order free-surface multiple once but the receiver ghost of 

each first-order free-surface multiple only once. So equation (2.5) will essentially 

attenuate first-order free-surface multiples and receiver ghosts of first-order free-surface 

multiples. We applied equation (2.5) using the predictions in Figures 2.4 and 2.5. Figures 

2.6 and 2.7 show the results of this subtraction in the form of a shot gather as well as an 

offset gather. Notice that a significant amount of energy has been removed through this 

subtraction, in particular first-order free-surface multiples and their receiver ghosts. 

However, almost all second- and higher-order free-surface multiples still remain in these 

data. That is why we will propose another algorithm in the next section. 



 

 

  

 

 

Figure 2.6. Illustration of standard subtraction results of the shot gather. (a) Illustration of the shot gather of the field 𝑃1 after applying Equation (2.3). (b) Illustration of 

the shot gather of the field 𝑃1
′  after applying Equation (2.4). (c) Illustration of the subtraction result between two wavefields 𝑃1 and 𝑃1

′  by using equation (2.6). Notice 

that the energy of the highlighted event which is first-order free-surface multiples is decreased a lot. 
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Figure 2.7. Illustration of standard subtraction results of the zero offset gather. (a) Illustration of the zero-offset gather of the field 𝑃1 after applying Equation (2.3). (b) 

Illustration of the zero-offset gather of the field 𝑃1
′  after applying Equation (2.4). (c) Illustration of the subtraction result between two wavefields 𝑃1 and 𝑃1

′  by using 

equation (2.6). Notice that the energy of the highlighted event which is first-order free-surface multiples is decreased a lot. 
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Note that equation (2.5) assumes that the two possible ways of predicting receiver 

ghosts of first-order free-surface multiples described in Figure 2.3 yield the same results. 

Our synthetic example here clearly shows that is the case. However, due to various 

acquisition uncertainties, equation (2.5) may sometimes not be applicable. In these cases, 

we suggest using the following formula: 

𝑃GP  𝔁𝒔, 𝔁𝒓, 𝑡 =  𝑃1 𝔁𝒔, 𝔁𝒓, 𝑡 − 𝑎g(𝑡) 𝑃1
′  𝔁𝒔, 𝔁𝒓, 𝑡 ,                                                      (2.6) 

where  𝑎g  in this subtraction is designed to compensate for these uncertainties. The 

estimation of 𝑎g  is straightforward. By using derivations similar to those of Ikelle et al. 

(1997), we arrive at a stable, noniterative, and analytic solution (see Appendix B for more 

details), mainly because we have a linear relationship between the two unknowns in 

equation (2.6)—namely, the field 𝑃GP  and the scaling factor 𝑎g .  

Let us remark that the scaling function  ag  is different from the inverse source 

signature, as required in the Kirchhoff scattering series in equation (2.1). Here ag  acts as 

a deghotsing operator, whereas a  is a deconvolution operator. In fact, a is designed to 

compensate for the square of the source signature generated by the autoconvolution 

operation in the computation of  𝑃1, for instance, so that the amplitudes of events with 

one bounce at the free surface in 𝑃1 and 𝑃0 can be comparable. 
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Reconstruction of Receiver Ghosts of Primaries Using a Combinatory Search  

 

In the previous section, we described one possible way to recover the field of receiver 

ghosts of primaries. This method is based on the subtraction of two predicted 

wavefields 𝑃1 and 𝑃1
′ , with a scaling factor 𝑎g  to adjust the amplitude of the first-order 

free-surface multiples in the two wavefields. However, if the data contain more than first-

order free-surface multiples, the output of equation (2.5) includes receiver ghosts of 

primaries and second- and higher-order receiver ghosts of free-surface multiples, as 

illustrated in Figures 2.6 and 2.7.  

In this section, we will propose a new way of reconstructing receiver ghosts of 

primaries. The basic idea of this approach is to pose the problem of reconstructing 

receiver ghosts of primaries as that of solving a system of two equations with three 

unknowns. The two predicted wavefields,  𝑃1  and  𝑃1
′ , are used to construct the two 

equations. The three unknowns are (1) the receiver ghosts of primaries, (2) the free-

surface multiples and their associated receiver ghosts in the wavefield containing receiver 

ghosts of primaries, and (3) the free-surface multiples and receiver ghosts of multiples 

contained in the other wavefield. These two equations can be described as follows: 

𝑃1 =   𝑃RG +  M +  2MRG
(1)

+  3MRG
 2 

+  4MRG
 3 

+  …,                                                      (2.7) 

𝑃1
′ = M +  MRG

(1)
+  2MRG

(2)
+ 3MRG

 3 
+  …,                                                                       (2.8) 

where  𝑃RG  represents the receiver ghosts of primaries,  M  denotes the free-surface 

multiples, and MRG
(i)

 represents the receiver ghosts of the ith order free-surface multiples (  
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takes values  1, 2, 3, …  ). Notice the differences in the multiplicative factors between 

receiver ghosts of free-surface multiples predicted by 𝑃1 and those predicted by 𝑃1
′  in the 

two wavefields. Again, these differences are the reason why the subtraction scheme in 

equation (2.5) cannot be totally effective for all orders of multiples. Notice also that all 

the fields involved in equation (2.7) and (2.8) depend on source location 𝔁𝒔 , receiver 

location 𝔁𝒓 , and time 𝑡. We will often write these fields without these variables to keep 

the equation compact.  

We have turned equation (2.7) and (2.8) into a system of two equations and three 

unknowns by rewriting them as follows: 

𝑄1 =   𝑃RG + M′,                                                                                                            (2.9) 

𝑄2 =  𝑃1 −
3

2
 𝑃1

′  =  𝑃RG +  M′′,                                                                                    (2.10)  

where 

M′ = M +  2MRG
(1)

 +  3MRG
 2 

+  4MRG
 3 

+  …,                                                                 (2.11)    

M′′ = −
1

2
M +

1

2
MRG

(1)
−

1

2
MRG

 3 
+  ….                                                                            (2.12) 

Thus the two equations (2.9) and (2.10) can be written in the following form: 

 
 𝑄1 𝔁𝒔, 𝔁𝒓, 𝑡 

 𝑄2 𝔁𝒔, 𝔁𝒓, 𝑡 
 =  

1 1 0
1 0 1

  

 𝑃RG  𝔁𝒔, 𝔁𝒓, 𝑡 

M′ 𝔁𝒔, 𝔁𝒓, 𝑡 

M′′ 𝔁𝒔, 𝔁𝒓, 𝑡 

 .                                                            (2.13) 

Here, we have explicitly added the variables to emphasize that these systems of equations 

hold for every given datapoint  𝔁𝒔, 𝔁𝒓, 𝑡 . The system is underdetermined. So we propose 

to solve it by making additional assumptions. The assumption here is that for a given 
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datapoint, at least one of the three unknowns in equation (2.13) is zero. In other words, 

we solve the problem by solving the following set of three equations: 

 
 𝑄1 𝔁𝒔, 𝔁𝒓, 𝑡 

 𝑄2 𝔁𝒔, 𝔁𝒓, 𝑡 
 =  

1 1 0
1 0 1

  
 𝑃RG  𝔁𝒔, 𝔁𝒓, 𝑡 

M′ 𝔁𝒔, 𝔁𝒓, 𝑡 
0

 ,                                                            (2.14) 

 
 𝑄1 𝔁𝒔, 𝔁𝒓, 𝑡 

 𝑄2 𝔁𝒔, 𝔁𝒓, 𝑡 
 =  

1 1 0
1 0 1

  
 𝑃RG  𝔁𝒔, 𝔁𝒓, 𝑡 

0
M′′ 𝔁𝒔, 𝔁𝒓, 𝑡 

 ,                                                            (2.15) 

 
 𝑄1 𝔁𝒔, 𝔁𝒓, 𝑡 

 𝑄2 𝔁𝒔, 𝔁𝒓, 𝑡 
 =  

1 1 0
1 0 1

  

0
M′ 𝔁𝒔, 𝔁𝒓, 𝑡 

M′′ 𝔁𝒔, 𝔁𝒓, 𝑡 
 .                                                              (2.16) 

For each datapoint, we select one of these solutions based on the assumption that the 

solution which has the smallest ℓ1 norm is the correct one. More precisely, we are going 

to compute 𝐹1 = |𝑃RG | + |M′|, 𝐹2 = |𝑃RG | + |M′′|, and 𝐹3 = |M′| + |M′′|. We will select 

the solution which corresponds to min⁡( 𝐹1,  𝐹1,  𝐹3).  

The method we have just described for solving our underdetermined system is known 

as a combinatory search. Actually, the combinatory search is a minimization of the ℓ0 

norm. That is, we want to find the solution which has the maximum number of zero 

components. 

Before we turn to the numerical result, let us just add a more mathematical definition 

of the ℓ0 norm. Suppose that the left side of equation (2.13) is denoted as 𝐘, the vector 

term on the right side is denoted as 𝐗, and the matrix is denoted by 𝐀. The combinatory 

search corresponding to finding 𝐗 is as follows: 

min
𝐗

  𝐗 0   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝐘 =  𝐀𝐗,                                                                                (2.17)                            



48 

 

  

where 

 𝐗 0 =   𝑋𝑖 
0

𝑖

= #{𝐗i ≠ 0}. 

The quantity  𝐗 0 refers to the number of nonzero components of vector 𝐗. That is the 

definition of the ℓ0 norm. 

The solution of the  ℓ0  norm minimization is known as sparse because it usually 

contains several zeros. Therefore, we are able to solve this 2 × 3 system here because of 

the sparsity assumption. 

Let us recall that the ℓ0 norm is just a particular case of well-known ℓ𝑝  norms for the 

case where 𝑝 = 0. The ℓ𝑝  norms are defined as follows: 

 𝐗 𝑃 =   𝑋𝑖 
𝑝

𝑖

 ,                                                                                 

or 

 𝐗 𝑝
𝑝 = (  𝑋𝑖 

𝑝

𝑖

)1 𝑝 , 

where    .  𝑃  denotes the  ℓ𝑝  norm. When  𝑝 = 2 , it becomes the classical  ℓ2  norm. 

When 𝑝 = 0, it is the ℓ0  norm which measures the number of nonzero components in 

vector 𝐗 . 

Before we turn to a discussion of the results of the approach that we have just outlined, 

let us first analyze all the events in wavefield 𝑃1. We have noted that field 𝑃1 contains 

receiver ghosts of primaries, free-surface multiples, and receiver ghosts of free-surface 

multiples. Figure 2.8a illustrates our interpretation of wavefield  𝑃1 . The red lines 

represent the receiver ghosts of primaries, whereas the yellow lines represent the free-

   (2.18) 

   (2.20) 

    (2.19) 
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surface multiples and their receiver ghosts. 𝑀1 is the first free-surface multiple in this 

shot gather. Thus all the events before 𝑀1  are receiver ghosts of primaries. We have 

identified all the other multiples in this figure—for example, 𝑀2 and 𝑀3. After a detailed 

analysis of this shot gather, we observe that all the events located below 𝑀3 are multiples.  

Let us now turn to an analysis of the effectiveness of our demultiple process based on 

a combinatory search. We will compare the results of the combinatory search based on 

demultiple to those based on subtraction schemes in the previous section. Figure 2.8 

shows side by side the result of the subtraction-based demultiple and the result based on 

the combinatory search. We can see that both of these results preserve the receiver ghosts 

of primaries. Moreover, the two methods are effective in attenuating all multiple events 

located above 𝑀3. However, we can notice that the subtraction-based demultiple is not 

effective for removing events below 𝑀3  because these events are mostly second-order 

multiples. As we discussed in the previous section, the subtraction based-demultiple is 

effective only for one-order multiples. In this thesis, we use it to attenuate first-order 

multiples only. By contrast, we can see that the combinatory-search-based demultiple 

result shown in Figure 2.8c is effective even for removing events below 𝑀3. In other 

words, the combinatory-search-based demultiple method allows us to attenuate several-

order multiples simultaneously. All the observations above also hold for offset gather 

data, as illustrated in Figure 2.9.     

 



 

 

  

 

 

Figure 2.8. Illustration of combinatory search based demultiple results of the shot gather. (a) Illustration of the shot gather of the field 𝑃1 after applying Equation (2.3). 

(b) Illustration of the standard subtraction result after applying Equation (2.6). (c) Illustration of the solution of equation (2.14) to (2.16) by using combinatory search. 

Notice that the highlighted events in red color are receiver ghosts of primaries and the highlighted events in yellow color are free-surface multiples. 𝑀1, 𝑀2 and 𝑀3 

denotes the three free-surface multiples highlighted. 
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Figure 2.9. Illustration of combinatory search based demultiple results of the zero offset gather. (a) Illustration of the zero-offset gather of the field 𝑃1 after applying 

Equation (2.3). (b) Illustration of the standard subtraction result after applying Equation (2.6). (c) Illustration of the solution of equation (2.14) to (2.16) by using 

combinatory search. Notice that the highlighted events in red color are receiver ghosts of primaries and the highlighted events in yellow color are free-surface multiples. 
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CHAPTER III 

SUMMARY: ADVANTAGES OF RECONSTRUCTING      

RECEIVER GHOSTS OF PRIMARIES INSTEAD  

OF PRIMARIES THEMSELVES 

 

In Chapter II, we described our multiple-attenuation schemes for reconstructing 

receiver ghosts of primaries. By taking advantage of the sparsity of the seismic data, we 

can reconstruct the field of receiver ghosts of primaries from the two predictions 

[equations (2.3) and (2.4)], which are based on the second term of the Kirchhoff 

scattering series.  

In this chapter, we will focus on discussions of the advantages of our approach in 

Chapter II in contrast to the Kirchhoff multiple-attenuation scheme described in Chapter 

I. We will start by discussing the savings in computer storage and computation time of 

the new approach.  

In Chapter I, we discussed the two important drawbacks which limited the application 

of the Kirchhoff scattering series. One is the requirement of acquiring very large 3D 

datasets that are beyond the capability of current seismic-acquisition technology. The 

other is the requirement of acquiring near-offset (including zero-offset) data. Our new 

approach in Chapter II might overcome the first drawback, and we will discuss this 

possibility in the second section. 
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Savings Associated with the New Implementation of the Kirchhoff Series Multiple 

Attenuation Scheme  

 

Let us consider a typical seismic exploration case in which the data length is 6 

seconds, the water depth is 250 m, and the sea-bottom reflection is 0.3 at normal 

incidence. The demultiple process requires the removal of more than first-order free-

surface multiples in this case. Actually, our experience suggests that we will need to 

compute at least the first four orders of multiples to remove all free-surface multiples 

from the data. 

If we use the Kirchhoff scattering series in equations (2.1) and (2.2) to remove these 

multiples, we have to compute 𝑃1,  𝑃2 ,  𝑃3, and 𝑃4 . The computation of 𝑃2  requires the 

field  𝑃1 , the computation of  𝑃3  requires the field  𝑃2 , and so on. So the iteration in 

equation (2.2) does not allow us to compute all of them in parallel.   

If we use our demultiple scheme based on the second term of the Kirchhoff scattering 

series and combinatory search, we need only to compute 𝑃1  and 𝑃1
′ . The computation 

of 𝑃1 and 𝑃1
′  can be carried out in parallel. Thus we eliminate the computation of 𝑃2,  𝑃3, 

and 𝑃4 and their storage requirements.  

Based on the discussion above, the savings in data storage and computation time 

relative to the new implementation of the Kirchhoff scattering series multiple-attenuation 

scheme described in equation (2.3)-(2.4) can be significant if the demultiple process 

requires the removal of more than first-order free-surface multiples. The elimination of 

the computation of the higher-order terms of the new implementation of the Kirchhoff 
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scattering series multiple-attenuation scheme in this thesis produces at least a fourfold 

savings in data storage and computation time in this case. 

 

A Potential Way of Avoiding Surface Integrals   

 

Equations (2.3) and (2.4) give us the computation of 𝑃1 and 𝑃1
′  in compact form. To 

illuminate our point in this section, we rewrite these two equations in the following form: 

𝑃1 𝑥𝑟 , 𝑦𝑟 , 𝜔, 𝑥𝑠 , 𝑦𝑠 =    𝑑𝑥
+∞

−∞
 𝑑𝑦

+∞

−∞
𝑃0 𝑥𝑟 , 𝑦𝑟 , 𝜔, 𝑥, 𝑦 × 𝑣z 𝑥, 𝑦, 𝜔, 𝑥𝑠 , 𝑦𝑠 ,            (3.1) 

𝑃1
′  𝑥𝑟 , 𝑦𝑟 , 𝜔, 𝑥𝑠 , 𝑦𝑠 =   𝑑𝑥

+∞

−∞
 𝑑𝑦

+∞

−∞
 𝑃0

(𝑛𝑑 ) 𝑥𝑟 , 𝑦𝑟 , 𝜔, 𝑥, 𝑦 × 𝑣z 𝑥, 𝑦, 𝜔, 𝑥𝑠 , 𝑦𝑠 .       (3.2) 

Note that this equation requires a surface integral over x and y in infinite space. Thus 

we need to acquire a very large 3D dataset with well-distributed sources and receivers 

along the x and y directions to correctly perform these integrals. However, the current 

seismic-acquisition technology cannot obtain such datasets, as we have discussed in 

Chapter I. 

In our new implementation of the Kirchhoff scattering series multiple-attenuation 

scheme described in equations (2.3) and (2.4), because we are actually concerned here 

with the differences between  𝑃1  and  𝑃1
′ , we propose to compute  𝑃1  and  𝑃1

′  with line 

integrals as follows: 

𝑃 1 𝑥𝑟 , 𝑦𝑟 , 𝜔, 𝑥𝑠 , 𝑦𝑠 =    𝑑𝑥
+∞

−∞
𝑃0 𝑥𝑟 , 𝑦𝑟 , 𝜔, 𝑥, 𝑦𝑠 × 𝑣z 𝑥, 𝑦𝑠 , 𝜔, 𝑥𝑠 , 𝑦𝑠 ,                      (3.3) 

𝑃 1
′  𝑥𝑟 , 𝑦𝑟 , 𝜔, 𝑥𝑠 , 𝑦𝑠 =   𝑑𝑥

+∞

−∞
𝑃0

(𝑛𝑑 ) 𝑥𝑟 , 𝑦𝑟 , 𝜔, 𝑥, 𝑦𝑠 × 𝑣z 𝑥, 𝑦𝑠 , 𝜔, 𝑥𝑠 , 𝑦𝑠 .                  (3.4) 
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Most 3D errors in 𝑃 1  and  𝑃 1
′  are similar. Therefore, the subtraction of 𝑃 1  and  𝑃 1

′ is 

likely to be unaffected by 3D errors. Figure 2.3 actually illustrates one scenario in which 

the subtraction may turn out to be effective. The receiver ghosts of multiples can be 

constructed as a multidimensional convolution of a multiple with a direct wave, or as a 

multiple (primary) with a receiver ghost of a multiple (a receiver ghost of a primary). If 

the scattering points at the sea surface between these two constructions are different, then 

the subtraction may be ineffective.  

To overcome the potential residual that may be left after taking the difference 

between𝑃 1 and 𝑃 1
′ , we suggest performing a second combinatory search that involves the 

actual data 𝑃0. If we denote  d𝑃 1 as the result of our subtractions, then we can pose the 

problem of recovering the primaries as follows: 

𝑃0 =  𝒫𝑝 + M,                                                                                                                (3.5) 

𝑎 d𝑃 1 =  𝒫𝑝 + R,                                                                                                           (3.6) 

where M represents multiples in the data, R is the residual left after subtraction, and 𝑎 is 

the source signature. 
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APPENDIX A 

FINITE DIFFERENCE MODELING 

 

Finite difference modeling (FDM) is one of the most accurate numerical techniques 

for solving the differential equations which describe wave propagation in the earth, under 

a set of initial, final, and boundary conditions. In this research, we used FDM technique 

to generate the synthetic data. The two basic approaches to implementing FDM for the 

simulation of seismic surveys are the explicit approach and the implicit approach. We 

will focus on explicit approach which wave equations are expressed in the time domain 

and are solved recursively, time step by time step. We will follow Appendix C of Ikelle 

and Amundsen (2005) to describe explicit approach. 

 

Basic Equations for Elastodynamic Wave Motion in Elastic Media 

 

The governing equations for the wave propagation are as follows: 

1) The equations of momentum conservation are 

𝜌 𝒙 𝜕𝑡𝑣𝑥 𝒙, 𝑡 −  𝜕𝑥𝜏𝑥𝑥  𝒙, 𝑡 +  𝜕𝑧𝜏𝑥𝑧(𝒙, 𝑡) =  𝑓𝑥 𝒙, 𝑡 ,                                              (1) 

𝜌 𝒙 𝜕𝑡𝑣𝑧 𝒙, 𝑡 −  𝜕𝑥𝜏𝑥𝑧 𝒙, 𝑡 + 𝜕𝑧𝜏𝑧𝑧 (𝒙, 𝑡) =  𝑓𝑧 𝒙, 𝑡 ,                                               (2) 

where the components of the particle velocity are denoted as 𝒗 = (𝑣𝑥 , 𝑣𝑧) , 𝝉 =

 𝜏𝑥𝑥 , 𝜏𝑦𝑦 , 𝜏𝑥𝑧  are the stress components, and 𝒇 = (𝑓𝑥 , 𝑓𝑧) are the components of the body 

force. 



59 

 

  

                                                                    

5
1

                                                            

2) The stress-strain relationships for an isotropic elastic medium are as follows: 

𝜕𝑡𝜏𝑥𝑥  𝒙, 𝑡 =  𝜆 𝒙 + 2𝜇 𝒙  𝜕𝑥𝑣𝑥 𝒙, 𝑡 + 𝜆 𝒙 𝜕𝑧𝑣𝑧 𝒙, 𝑡 + 𝐼𝑥𝑥  𝒙, 𝑡 ,                          (3) 

𝜕𝑡𝜏𝑧𝑧  𝒙, 𝑡 =  𝜆 𝒙 + 2𝜇 𝒙  𝜕𝑧𝑣𝑧 𝒙, 𝑡 + 𝜆 𝒙 𝜕𝑥𝑣𝑥 𝒙, 𝑡 + 𝐼𝑧𝑧  𝒙, 𝑡 ,                           (4) 

𝜕𝑡𝜏𝑥𝑥  𝒙, 𝑡 = 𝜇 𝒙  𝜕𝑧𝑣𝑥 𝒙, 𝑡 + 𝜕𝑥𝑣𝑧 𝒙, 𝑡  + 𝐼𝑥𝑧  𝒙, 𝑡 .                                                 (5) 

In these equations, 𝑰 = (𝐼𝑥𝑥 , 𝐼𝑦𝑦 , 𝐼𝑥𝑧 )  are the components of the stress-rate source, so 

the wave motion satisfies a set of first-order coupled differential equations (1) through 

(5).   

To solve equations (1) through (5), it is essential to specify the appropriate boundary 

and initial conditions for the problem of modeling wave propagation through the 

subsurface. The initial conditions are that the stress and particle-velocity fields and their 

time derivatives are null before the seismic source is fired; that is: 

𝒗 =  𝜕𝑡𝒗 = 𝟎, 𝑡 ≤ 0,   

𝝉 =  𝜕𝑡𝝉 = 𝟎,    𝑡 ≤ 0.                                                                                                     (6) 

The boundary conditions for the problem of modeling seismic wave propagation are 

determined by the free-surface boundary: air-solid in the case of land seismic and air-

water in the case of marine seismic. Let us assume the free surface to be at a depth level 

of 𝑧 = 0. Then, the boundary conditions are: 

𝜏𝑧𝑧  𝑥, 𝑧 = 0, 𝑡 =  𝜏𝑥𝑧   𝑥, 𝑧 = 0, 𝑡 = 0,                                                                          (7) 

or, equivalently, 

 𝜆 𝒙 + 2𝜇 𝒙  𝜕𝑧𝑣𝑧 𝑥, 𝑧 = 0, 𝑡 + 𝜆 𝒙 𝜕𝑥𝑣𝑥 𝑥, 𝑧 = 0, 𝑡   

                                         =  𝜇 𝒙  𝜕𝑧𝑣𝑥 𝑥, 𝑧 = 0, 𝑡 + 𝜕𝑥𝑣𝑧 𝑥, 𝑧 = 0, 𝑡   = 0.              (8) 

We consider the rest of the medium to be unbounded. 
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Discretization in Both Time and Space 

 

The first step in finite difference modeling is to describe the geologic model and the 

quantities that characterize the wavefield, that is, the particle velocity and stresses, in this 

case. We discretize both the time and space domains as follows: 

𝑡 = 𝑛∆𝑡,                    𝑛 = 0,1,2, … , 𝑁, 

𝑥 = 𝑖∆𝑥,                     𝑖 = 0,1,2, … , 𝐼, 

𝑧 = 𝑘∆𝑥,                   𝑘 = 0,1,2, … , 𝐾.                                                                                 (9) 

This discritezation is called the reference grid.  

In standard finite-difference calculations, each quantity in the differential equations (1) 

through (5) can now be defined as a function of the indexes 𝑛, 𝑖, and 𝑘, in accordance 

with the following two examples: 

𝜆 𝑥, 𝑧 =  𝜆   𝑖 +
1

2
 Δ𝑥,  𝑘 +

1

2
 Δ𝑥 =  𝜆i+1 2,k+1 2   

𝜏𝑥𝑧  𝑥, 𝑧, 𝑡 =  𝜏𝑥𝑧 𝑖Δ𝑥, 𝑘Δ𝑥, 𝑛Δ𝑡 = [𝜏𝑥𝑧 ]𝑖,𝑘
𝑛 .                                                                 (10) 

In the staggered-grid technique, not all quantities in the differential equations (1) 

through (5) are gridded at the points of the reference grid. Some quantities are defined as 

being half a grid point off the reference grid, say, 𝑖 =   𝑖 ±
1

2
 Δ𝑥, instead of 𝑥 = 𝑖Δ𝑥. 

Figure 1 shows an example of staggered gridding of the quantities entering in the 

equations (1) through (5). Note that the shear stresses are defined at the points on the 

reference grid, whereas the normal stresses, the three components of the particle velocity, 

the mass density, and the Lamė parameters, are defined as the points half a grid off the 
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reference grid. Notice also that normal stresses, mass density, and the Lamė parameters, 

are located at the same points.   

 

 

 

Figure A.1. Illustration of the staggered grid for 2D elastic finite-difference modeling (Ikelle and Amundsen,2003). 
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Staggered Grid Implementation 

 

The discrete forms of equations (1) through (5) are given by Madariaga (1976) and 

Graves (1996) as 

[𝑣𝑥]𝑖,𝑘+1 2 
𝑛+1 2 = [𝑣𝑥 ]𝑖,𝑘+1 2 

𝑛−1 2  + [△ 𝑡𝑏𝑥(𝐷𝑥𝜏𝑥𝑥 + 𝐷𝑧𝜏𝑥𝑧 + 𝑓𝑥)]𝑖,𝑘+1 2 
𝑛 ,                                 (11) 

[𝑣𝑧]𝑖+1 2,𝑘 
𝑛+1 2 = [𝑣𝑧]𝑖+1 2,𝑘 

𝑛−1 2  +  [△ 𝑡𝑏𝑧(𝐷𝑥𝜏𝑥𝑧 + 𝐷𝑧𝜏𝑧𝑧 + 𝑓𝑧)]𝑖+1 2,𝑘 
𝑛 ,                                 (12) 

for particle velocity, and  

 𝜏𝑥𝑥  i+1 2,k+1 2  
𝑛+1 =  𝜏𝑥𝑥  i+1 2,k+1 2  

𝑛   

                              + △ 𝑡[(𝜆 + 2𝜇)𝐷𝑥𝑣𝑥 + 𝜆𝐷𝑧𝑣𝑧 + 𝐼𝑥𝑥 ]i+1 2,k+1 2  
𝑛+1 2 ,                            (13) 

 𝜏𝑧𝑧  i+1 2,k+1 2  
𝑛+1 =  𝜏𝑧𝑧  i+1 2,k+1 2  

𝑛   

                            +  △ 𝑡[(𝜆 + 2𝜇)𝐷𝑧𝑣𝑧 + 𝜆𝐷𝑥𝑣𝑥 + 𝐼𝑧𝑧 ]i+1 2,k+1 2  
𝑛+1 2 ,                           (14) 

[𝜏𝑥𝑧 ]𝑖,𝑘
𝑛+1 = [𝜏𝑥𝑧 ]𝑖,𝑘

𝑛  + △ 𝑡[𝜇𝑥𝑧 (𝐷𝑧𝑣𝑥 + 𝐷𝑥𝑣𝑧) + 𝐼𝑥𝑧 ]𝑖,𝑘
𝑛+1 2 ,                                            (15) 

for the stresses, with 

𝑏𝑥 =  
1

2
 𝑏𝑖,𝑘 + 𝑏𝑖−1,𝑘 ,                                                                                                       (16) 

𝑏𝑧 =  
1

2
 𝑏𝑖,𝑘 + 𝑏𝑖,𝑘−1 ,                                                                                                       (17) 

𝜇𝑥𝑧 = [
1

4
(

1

𝜇 𝑖,𝑘
+

1

𝜇 𝑖−1,𝑘
+

1

𝜇 𝑖,𝑘−1
+

1

𝜇 𝑖−1,𝑘−1
)]−1.                                                                    (18) 

In these equations, 𝑏𝑥  and 𝑏𝑧  are the effective-medium parameters for the reciprocal of 

density, and 𝜇𝑥𝑧  is the effective-medium parameter for the rigidity. The operators, 𝐷𝑥  and 

𝐷𝑧  denote the first-order spatial derivative for 𝑥 and 𝑧 , respectively. Note that the first-

order spatial-derivative operators are generally evaluated by either a second-order 
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difference or a fourth-order difference. For this research we use the fourth-order 

difference that is, 

𝐷𝑥𝑔𝑖,𝑘  ≈  
1

△𝑥
[

9

8
(𝑔i+1 2,k − 𝑔i−1 2,k ) −

1

24
(𝑔i+3 2,k − 𝑔i−3 2,k )] .                                 (19) 

The forth-order finite-difference approximation requires a minimum sampling of five 

grid points per wavelength (Levander, 1988). 

 

Stability Condition  

 

In the staggered-grid finite-difference equations (11) through (15), the five quantities 

 𝑣𝑥 , 𝑣𝑧 , 𝜏𝑥𝑥 , 𝜏𝑧𝑧 , 𝜏𝑥𝑧   characterizing the wave motion are computed recursively, time step 

by time step. However, this recursive computation (time step by time step) can be the 

source of numerical instability. In fact, errors introduced by the numerical solution can 

propagate and be magnified during time-stepping of the finite-difference scheme, thereby 

causing significant instabilities during the computation and artifacts in the resulting data. 

Such instability is very unlikely to occur if the ratio between the temporal and spatial 

sampling intervals is constrained as follows: 

∆𝑡 < 0.606
∆𝑥

𝑣𝑚𝑎𝑥
,                                                                                                             (20) 

where 𝑣𝑚𝑎𝑥  is the maximum wave speed in the 2D model under consideration (Levander, 

1988). Condition (20) is necessary, but it is not sufficient, because it is derived for 

homogeneous media; the derivation of stability for heterogeneous media generally is 

quite complicated.   
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Grid Dispersion  

 

Approximation of spatial derivatives creates the grid dispersion. The condition for 

avoiding grid dispersion is related to the number of grid points per wavelength. In this 

research, we use the fourth-order approximation in equation (20) which requires a 

minimum sampling of five grid points per wavelength (Levander, 1988). 

 

Boundary Condition  

 

The free-surface boundary condition given in equation (7) is that the normal stress,𝜏𝑧𝑧 , 

and the shear stress, 𝜏𝑥𝑧 , are null at 𝑧 = 0. The horizontal spatial derivative poses no 

problem for staggered-grid implementation in equations (11) through (15). However, for 

the vertical spatial derivative, we have to add the two grid points above 𝑧 = 0. If we 

assume antisymmetry for the stress components at 𝑧 = 0, then the fields at and above the 

free surface are given as 

[𝜏𝑥𝑧 ]𝑖,𝑘=0
𝑛+1 = 0, [𝜏𝑥𝑧 ]𝑖,𝑘=−1

𝑛+1 = −[𝜏𝑥𝑧 ]𝑖,𝑘=1
𝑛+1                                                                          (21) 
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and 

[𝜏𝑧𝑧 ]𝑖+1 2 ,𝑘=−1 2 
𝑛+1 = − [𝜏𝑧𝑧 ]𝑖+1 2, 𝑘=1 2 

𝑛+1  ,                                                                           (22) 

[𝜏𝑧𝑧 ]𝑖+1 2 ,𝑘=−3 2 
𝑛+1 = − [𝜏𝑧𝑧 ]𝑖+1 2, 𝑘=3 2 

𝑛+1   .                                                                          (23) 

Notice that the free-surface boundary conditions also can be addressed by literally 

adding an air-filled layer as the first layer of the geologic model. In the marine case, for 

instance, the water layer will be overlain by this air-filled layer. 

We will consider the rest of the medium to be unbounded; in other words, we treat the 

other boundaries as having an absorbing boundary. The stress and particle-velocity fields 

are multiplied by the factor 

𝐺 𝑖 = exp  −  
𝛼

𝑖𝑎𝑏𝑚𝑎𝑥
 𝑖𝑎𝑏𝑚𝑎𝑥 − 𝑖  

2

                 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑖𝑎𝑏𝑚𝑎𝑥,                      (24) 

where 𝑖𝑎𝑏𝑚𝑎𝑥 is the strip width in grid points and 𝛼 is a constant determined, by trial 

and error, for the optimal absorbing boundary conditions. 
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APPENDIX B 

ESTIMATION OF SCALING FUNCTION FOR THE 

REMOVAL OF FIRST-ORDER MULTIPLES 

 

Ikelle et al. (2003) showed that the Kirchhoff scattering series for removing events 

caused by free-surface reflections (i.e., free-surface multiples) from seismic data 

 𝑃0(k𝑠 , k𝑔 , 𝜔) can be written as: 

𝒫𝑝(𝑘𝑠 , 𝑘𝑔 , 𝜔)  =  𝑃0(𝑘𝑠 , 𝑘𝑔 , 𝜔) –  𝐴(𝜔)𝑃1(𝑘𝑠 , 𝑘𝑔 , 𝜔)  + 𝐴2(𝜔)𝑃2(𝑘𝑠 , 𝑘𝑔 , 𝜔)  −  …,    (1) 

where 𝒫𝑝(k𝑠 , k𝑔 , 𝜔) is the data without free-surface multiples and 𝐴(𝜔) is the inverse 

source signature. The field 𝑃1(k𝑠 , k𝑔 , 𝜔), 𝑃2(k𝑠 , k𝑔 , 𝜔), etc., are given by: 

𝑃𝑛 k𝑠 , k𝑔 , 𝜔 =    𝑑𝑘
+∞

−∞
𝑃𝑛−1 k𝑠 , k, 𝜔 × 𝑣z k, k𝑔 , 𝜔 .                                                  (2) 

Notice that we use the data in  (𝜔, 𝑘)  domain. The Fourier-transformed variables 

corresponding to x𝑠 , x𝑔 , and 𝑡 are, respectively, k𝑠 , k𝑔and 𝜔. 

For the application of the standard subtraction based on second term of Kirchhoff 

scattering series described in Chapter II, we need require the scaling factor 𝑎g 𝜔 , which 

is compensate for removing first-order multiples. Ikelle et al. (1997) gives a possible 

solution for this problem and we will follow those of this paper to solve our problem in 

this section.  

The removal of the first order multiples corresponds to the truncation of the scattering 

series in Equation (1) to its first two terms. Equation (1) becomes: 

𝒫 𝑝 k𝑠 , k𝑔 , 𝜔 =  𝑃0 k𝑠 , k𝑔 , 𝜔 –  𝐴 𝜔 𝑃1 k𝑠 , k𝑔 , 𝜔 ,                                                      (3) 
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where 𝒫 𝑝 k𝑠 , k𝑔 , 𝜔  is the data without first-order multiples. 

To take into account the truncation effects, we modify equation (3) to: 

𝒫 𝑝 k𝑠 , k𝑔 , 𝜔 =  𝑃0 k𝑠 , k𝑔 , 𝜔 –  𝐴 𝜔 𝑃1 k𝑠 , k𝑔 , 𝜔 + ϵT ,                                             (4) 

where  ϵT  describes the effects caused by truncation. We suppose that  ϵT  is mall and 

nonlinear related to the inverse source 𝐴 𝜔 . 

We now introduce the minimum-energy criterion in the context of inverse problem 

theory. We use the least square norm. The “best source” in the least-squares sense is 

defined as 𝐴 𝜔  that minimizes to: 

𝑆 𝐴 =   𝒫 𝑝 
2

+  A 2,                                                                                                   (5) 

where 

 𝒫 𝑝 
2

=  dk𝑔  dk𝑠  d𝜔𝒫 𝑝 k𝑠 , k𝑔 , 𝜔 × 𝑊D k𝑠 , k𝑔 , 𝜔 𝒫 𝑝∗ k𝑠 , k𝑔 , 𝜔 ,                 (6) 

and 

 A 2 = 𝜎2  𝑑𝜔 𝑑𝜔′ 𝐴 𝜔 𝑊𝐴
−1 𝜔, 𝜔′ A∗(𝜔′).                                                             (7) 

The asterisk denotes a complex conjugate. The weighting function  𝑊D k𝑠 , k𝑔 , 𝜔  

describes errors in the data, and  𝑊𝐴 𝜔, 𝜔′  describes the a priori information on the 

source. The term  A 2 is introduced to guarantee the stability of the solution. To simplify 

subsequent inversion formulas, we also have introduced the constant 𝜎2 in the definition 

of  A 2. 

If we neglect truncation errors in the forward problem (equation (4)), the minimization 

problem in equation (5) gives the analytical solution 

𝐴𝜔
(0)

=
− 𝑑𝜔 ′𝑊𝐴 𝜔,𝜔 ′ N(𝜔 ′)

𝜎2+ 𝑑𝜔 ′𝑊𝐴 𝜔,𝜔 ′ Q(𝜔 ′)
,                                                                                             (8) 
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where  

N 𝜔′ =  dk𝑔  dk𝑠 𝑃0 k𝑠 , k𝑔 , 𝜔 × 𝑊D k𝑠 , k𝑔 , 𝜔 𝑃1
∗ k𝑠 , k𝑔 , 𝜔 ,                               (9) 

and 

Q 𝜔′ =  dk𝑔  dk𝑠 𝑃1 k𝑠 , k𝑔 , 𝜔 × 𝑊D k𝑠 , k𝑔 , 𝜔 𝑃1
∗ k𝑠 , k𝑔 , 𝜔 .                             (10) 

To accommodate truncation errors, we set up an iterative scheme, where 𝐴𝜔
(0)

 is the 

starting solution. The initialization step consists of  

𝒫 𝑝(0) k𝑠 , k𝑔 , 𝜔 =  𝑃0 k𝑠 , k𝑔 , 𝜔 – 𝐴𝜔
(0)

𝑃1 k𝑠 , k𝑔 , 𝜔 ,                                                  (11) 

and  

𝑃0
(1) k𝑠 , k𝑔 , 𝜔 = 𝒫 𝑝(0) k𝑠 , k𝑔 , 𝜔 .                                                                              (12) 

In general, 𝐴𝜔
(0)

 permits a significant reduction of first-order multiple energy through 

𝒫 𝑝(0) k𝑠 , k𝑔 , 𝜔 . The iterations can be described as follows. For a given 

𝑃0
(n) k𝑠 , k𝑔 , 𝜔 , a data set containing the residual energy of first-order multiples, we first 

compute 𝑃1
(n) k𝑠 , k𝑔 , 𝜔  using equation (2). Second, we seek a correction 𝛿𝐴 𝑛 (𝜔) to 

𝐴 𝑛 (𝜔) by minimizing 

𝑆  𝛿𝐴(𝑛) =   𝒫 𝑝(n) 
2

+  A(n) 
2
.                                                                                 (13) 

The solution of this minimization, denoted here as  𝛿𝐴 𝑛 (𝜔)  , is similar to that 

described in equation (8). We only have to replace 𝑃0 k𝑠 , k𝑔 , 𝜔  with 𝑃0
(n) k𝑠 , k𝑔 , 𝜔  

and 𝑃1 k𝑠 , k𝑔 , 𝜔   with 𝑃1
(n) k𝑠 , k𝑔 , 𝜔 . We finish each iteration by updating the source 

as: 

𝐴 𝑛  𝜔 = 𝐴 𝑛−1  𝜔 + 𝛿𝐴 𝑛 (𝜔)                                                                                 (14) 
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and the data as 

𝒫 𝑝(n) k𝑠 , k𝑔 , 𝜔 = 𝑃0
(n) k𝑠 , k𝑔 , 𝜔 − 𝛿𝐴 𝑛 (𝜔) 𝑃1

(n) k𝑠 , k𝑔 , 𝜔 ,                               (15) 

and  

𝑃0
(n+1) k𝑠 , k𝑔 , 𝜔 = 𝒫 𝑝(n) k𝑠 , k𝑔 , 𝜔 .                                                                          (16) 

The iterations are stopped when two successive solutions 𝐴 𝑛  𝜔  and 𝐴 𝑛−1  𝜔  are 

close enough. 
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