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ABSTRACT 

 

Fixed Bed Counter Current Low Temperature Gasification of Dairy Biomass and Coal-

dairy Biomass Blends Using Air-Steam. (August 2009) 

Gerardo Gordillo Ariza, B.S.,Universidad Nacional de Colombia;  

M.S., Universidad de los Andes  

Chair of Advisory Committee: Dr. Kalyan Annamalai 

 

Concentrated animal feeding operations such as cattle feedlots and dairies 

produce a large amount of manure, cattle biomass (CB), which may lead to land, water, 

and air pollution if waste handling systems and storage and treatment structures are not 

properly managed.  However, the concentrated production of low quality CB at these 

feeding operations serves as a good feedstock for in situ gasification for syngas (CO and 

H2) production and subsequent use in power generation.  A small scale (10 kW) 

countercurrent fixed bed gasifier was rebuilt to perform gasification studies under quasi-

steady state conditions using dairy biomass (DB) as feedstock and various air-steam 

mixtures as oxidizing sources. A DB-ash (from DB) blend and a DB-Wyoming coal 

blend were also studied for comparison purposes. In addition, chlorinated char was also 

produced via pure pyrolysis of DB using N2 and N2-steam gas mixtures.  

The chlorinated char is useful for enhanced capture of Hg in ESP of coal fired 

boilers. Two main parameters were investigated in the gasification studies with air-steam 

mixtures. One was the equivalence ratio ER (the ratio of stochiometric air to actual air) 
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and the second was the steam to fuel ratio (S:F). Prior to the experimental studies, atom 

conservation with i) limited product species and ii) equilibrium modeling studies  with a 

large number of product species were performed on the gasification of DB to determine 

suitable range of operating conditions (ER and S:F ratio). Results on bed temperature 

profile, gas composition (CO, CO2, H2, CH4, C2H6, and N2), gross heating value (HHV), 

and energy conversion efficiency (ECE) are presented.  

Both modeling and experimental results show that gasification under increased 

ER and S:F ratios tend to produce rich mixtures in H2 and CO2 but poor in CO.  

Increased ER produces gases with higher HHV but decreases the ECE due to higher tar 

and char production. Gasification of DB under the operating conditions 1.59<ER<6.36 

and 0.35<S:F<0.8 yielded gas mixtures with  compositions as  given below: CO  (4.77 - 

11.73 %), H2 (13.48 - 25.45%), CO2 (11-25.2%), CH4 (0.43-1.73 %), and C2H6 (0.2-

0.69%). In general, the bed temperature profiles had peaks that ranged between 519 and 

1032 °C for DB gasification. 
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NOMENCLATURE 

 

Symbol  Definition and units  

a        Stoichiometric moles of oxygen  

AS   Surface area of gasifier (m2) 

AOF   Oxygen from air to total oxygen from air and steam ratio 

b   Stochiometric moles of CO2 

ci   Oxidizer concentration (kmol/m3) 

c   Stochiometric moles of H2O 

CB   Cattle biomass 

CAFOs   Concentrated feeding operations 

CV1   Control volume 1 

d   Stochiometric moles of SO2 

e   Actual air stochiometric coefficient 

D   Inner diameter of gasifier (m) 

DAF   Dry ash free 

DB   Dairy biomass 

DB-ash  Dairy biomass ash blend 

dP   Particle diameter 

EES   Engineering equation solver Code 

ECE   Energy conversion efficiency 

EIA   Energy Information Administration 



 viii

ER   Equivalence ratio 

ERM   Modified equivalence ratio 

CP,A   Air specific heat (kJ/kg.K) 

e   Actual air coefficient (mol) 

f   Actual moles steam supplied as reactant 

FB   Feedlot biomass 

FC   Fixed carbon 

g   Actual moles of CO2    

 h   Actual moles CO 

hk,p   Enthalpy of the products 

hk,R   Enthalpy of the reactants 

HHV   High heating value of gases 

HHVGases  High heating value of gases (kJ/m3) 

HHVi   High heating value of products (kJ/m3) 

HHVfuel  High heating value of DB (kJ/kmol) 

HRSG   Heat Recovery Steam Generation 

i   Actual moles of CH4 

IGCC   Integrated Gasification Combined Cycle 

J   Actual moles of H2S 

k   Actual moles of N2 

K1   Kinetics constant of pyrolysis reaction (kg/(m3 s)) 

K5   Kinetics constant of the reaction of CO with O2 
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K7   Kinetic constants of shift reaction 

KE   Equilibrium constant of shift reaction 

Kj Kinetic constants of heterogeneous reactions (m/s), j=2, 3, 4, 6, 

and 8 

Km   Diffusion constant (m/s) 

l   Actual moles of H2 (mol) 

LA-PC-Sepsol-DB Low ash partial compost separated solids dairy biomass 

LA-PC-FB  Low ash partial compost feedlot biomass   

mA   Mass of air (kg) 

MS   Mass spectrometer 

Nk,p   Moles of the products 

Nk,R   Moles of the reactants 

Nsteam   Moles of steam 

Q   Heat 

Re   Particle Reynolds number 

S:A   Steam to air ratio 

SATP   Standard ambient temperature (25°C) and pressure (100 kPa) 

SC   Particle Schmidt number 

S:F   Steam to fuel ratio (mole basis) 

SCFH   Standard feet cubic per hour 

STDEV  Standard deviation 

Tp   Adiabatic temperature 
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Tpeak   Peak Temperature 

Ts   Surface temperature of the particle 

TXL   Texas Lignite Coal 

Tx,t   Temperature along gasifier axis (K) 

T∞   Ambient temperature (K) 

U   Global heat transfer coefficient of the gasifier (kW/ m2. K) 

Wj   Rate of reaction (kmol/m3. s) 

W5   Reaction rate of CO+O2 reaction 

W7   Reaction rate of shift reaction 

Xi   Moles fraction of each fuel product 

Yi   Mass fraction of oxidizer 

∆HR   Enthalpy of reaction 

ηGas,E   Energy conversion efficiency 

ρ   Air density (kg/m3) 

λ   Latent heat of the water (kJ/kg) 

ε   Bed porosity or void fraction 

ρbiomass   Biomass density (kg/m3) 

 

Subscripts  Definition 

2-8   reaction number 

fuel   fuel 

FC   Fixed carbon 



 xi

gas   gas 

gas max  gas maximun 

h   H atoms 

i   species and char oxidizer (O2, CO2, H2O, and H2) 

j   Reaction number (2, 3, 4, 6, and 8) 

n   N atoms 

l   Liquid 

O   Oxygen atom 

O2,in   Oxygen moles entering 

s   S atoms 
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1. INTRODUCTION 

 

Current energy consumption is 492 quads (4.66 x 1011 GJ), but energy 

consumption is expected to grow to 694 quads by 2030. Combusting fossil fuel produces 

pollution (NOx, SOx) and greenhouse emissions (CO2). To reduce pollution and increase 

energy supplies, renewable energy sources must be developed. 
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Figure 1. Global projection of annual energy consumption by fuel type, adapted [1]1 
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If global energy consumption continues to grow in according to Figure 1, the 

energy consumption in 2030 will be about 41 % greater than current consumption. In 

addition, carbon dioxide emissions would increase about 41% [2] (Figure 2) increasing 

the concentration of CO2, because coal and natural gas are projected to be the largest 

increment in fuel consumption over the projected period. One of the principal causes of 

global temperature rise is attributed to the greenhouse effect, in which the continued 

increase in CO2 concentration in the troposphere traps solar radiation reflected from the 

earth. In addition to increased pollutants, continuous growth in the energy consumption 

contributes to increase energy prices. Figure 3 shows the oil price history from 1980 to 

2005 and the oil price projection from 2005 to 2030 estimated by [3] for reference and 

high-price cases. It is apparent from Figure 3 that the oil prices may increase about 85% 

in the next 22 years if it continues growing according to the high price case. Projections 

of energy consumption and price are based on the assumption that there is no global 

recession and economics will continue to grow. However, if there is a global recession, 

the projections must to be modified. From July 2008 to December 2008, oil prices have 

fallen by about 300% because of the global recession. The dramatic projections of 

emissions, energy consumption, and oil prices encourage generation of alternative 

energy to produce renewable fuels with zero emissions and to decrease the dependency 

on fossil fuels and its related consequences. If non- conventional fuel were to replace the 

fossil fuels, the negative impact on the environment and on oil prices could be mitigated. 
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Figure 2. Global projection on annual carbon dioxide emissions, adapted [2] 
 
 

Biomass fuels (e.g., energy crops, agricultural and forestry residues and 

municipal, industrial, and animal wastes) can serve as a renewable energy source using 

biological and thermal gasification and direct combustion processes. The inclusion of 

biomass as feedstock in thermal conversion processes does not increase the CO2 

concentration in the atmosphere because biomass is a carbon neutral fuel. 
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Figure 3. Global projection of oil prices, adapted  [3] 
 
 

Combustion engineers prefer high-grade biomasses (high heat value) because 

those with low heat value have poor combustion stability. Also, combustion engineers 

prefer biomasses with low ash content because those with high ash content can cause 

fouling and slagging problems in the boilers [4]. Direct combustion and partial oxidation 

of wood and biomass-derived charcoal with air have been amply studied over the last 

few decades [5][6]. Low NOx burners, co-firing and reburn processes to reduce NOx 

emission produced by combusting of coal in electric power plants [7][8][9]; gasification 
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of biomass with steam-air [10][11], steam [12] [13], pure oxygen, pure oxygen and 

steam [14]; and gasification of coal and wastes [15] blends are emerging technologies.  

Gasification of biomass with steam (e.g., steam-reforming), is used to produce H2 

enriched mixtures of CO2; however, this is an endothermic process that requires heat 

input and lowers gasification efficiency. In contrast, gasification of biomass with air-

steam produces a mixture of CO and H2 (rich mixtures in H2) and other hydrocarbons 

that, in theory, can be conducted adiabatically.  

The gaseous fuel produced from gasification of biomass  could be used for in situ 

power generation and further subjected to a secondary process to convert the CO to H2 

by the water-gas shift reaction, CO+H2O = CO2+H2 or submitted to catalysis or bio-

catalysis  for the production of liquid fuels and chemicals [16](Figure 4). 
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Figure 4. Possible uses of syngas produced via gasification of biomass with steam and air, adapted from 
[16] 
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Figure 5. Power generation cycle with hydrogen produced from biomass gasification with steam 
 
 

The hydrogen produced from the shift reaction (after separation from CO2) can 

be used in power plants for energy conversion with zero emission (Future Generation), 

because hydrogen combustion produces only steam. Figure 5 shows an integrated 

Gasification Combined Cycle (IGCC) with Heat Recovery Steam Generation or (HRSG) 

to produce power from oxygen gasification of biomass at high pressure.  

In the IGCC shown Figure 5, biomass is used as feedstock in the gasifier to 

produce CO2 and H2 at high pressure and temperature. The H2 separated from the CO2 at 
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high temperature is used in a Brayton cycle to produce primary power whereas the 

extant heat from the gas turbine is recuperated in the HRSG to produce low-pressure 

steam which is used for more power generation using Rankine cycle. Also the CO2 

separated from the H2 is used in a gas turbine to produce more power. The products from 

the control volumes (CV1) are heat (Q), power (W), water (H2O), and carbon dioxide 

(CO2). The CO2 produced does not increase the atmospheric CO2 levels because biomass 

captures CO2 and converts it via photosynthesis to organic compounds; in other words, 

biomass is a CO2-neutral fuel (Figure 6) which does not increase the C atoms in the 

atmosphere. 

 

 

Figure 6. Carbon cycle source, from [17] 
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The use of wastes as renewable feedstock in thermal conversion processes is 

important for the following reasons: 1) it uses the energy potential from waste to 

produce sustainable electrical power and to produce biofuels to mitigate the bioenergy 

demand, which may increased to several hundred exajouls in the future [18]; 2) it 

addresses the waste disposal problems in agricultural farms; 3)  it may reduces air 

pollution generated by fossil fuel combustion when the sustainable power from wastes 

replaces fossil energy. 

Large concentrated animal feeding operations (CAFOs) from dairy and feedlot 

farms in the United States produce a vast amount of animal wastes (or cattle manure 

called cattle biomass (CB)) [19]. CAFOs have expanded all over the country (including 

Texas). Since 1978, the average number of animal units and hence animal waste has 

increased by 56% (cattle) and 176% (poultry litter).  Beef cattle are fattened for 

slaughter in large industrial feeding operations known as feedlots. The feedlots have 

capacities greater than 20,000 cattle, with several lots as large as 50,000 to 85,000 heads 

[20]. It is estimated that at any given time, there are over 10,000,000 cattle in feedlots 

within the United States [21]. There are 70 feed yards in the Texas Panhandle area alone 

which include Oklahoma and New Mexico. Feedlots in the Texas and Oklahoma 

panhandle region [22] with capacities ranging from 5,000 to 75,000 heads feed a total of 

6-7 million heads (30% of US cattle on feed). The cattle feeding industry in the Texas 

Panhandle is growing at the rate of approximately 100,000 heads of feedlot per year. 

Each calf is typically fed over a period of 4–5 months. Each animal can excrete 27 kg 

(59.5 lb) of FB (including moisture) per day (approximately 5 to 6% of its body weight) 
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[23]. Therefore, the potential manure production for Texas and for the US is over 70 and 

365 million wet tons per year, respectively. Apart from the cattle industry, milk output 

has steadily risen for the past several years despite the decreasing number of smaller 

dairy operations in the country [24] and the increasing number of larger dairies with 

more concentrated production of dairy biomass (DB).   

The vast amount of wastes (CB) produced in CAFOs, classified into dairy 

biomass (DB) and feedlot biomass (FB), may cause land, water, and air pollution if 

waste handling systems and storage and treatment structures are not properly managed.  

However, the concentrated production of CB at these feeding operations serves as a 

good feedstock for thermal conversion processes, such as co-firing and reburn with coal 

and in situ gasification for syngas (CO and H2) production and subsequent use in power 

generation. Because of its high ash and moisture content, animal wastes (which include 

dairy manure or dairy biomass, DB, feedlot manure or feedlot biomass, FB, poultry 

manure or poultry biomass, PB, swine manure or swine biomass, SB etc.) are considered 

low grade fuel (low heating value) more suitable for gasification processes than for 

combustion processes. 

Although gasification of wood and charcoal with air as an oxidizing agent is a 

widely known technology of which extensive literature can be found, animal waste is a 

new fuel to be tested in gasification. In the past, cofiring experiments have been 

performed with CB as the cofiring fuel [7] [8]; However cofiring requires fine grinding 

of CB. Further, gasification experiments were performed on air gasification using batch 

processes (i. e., without ash removal) by Priyadarsan et al. [25][26].  
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1.1. Scope of the proposed work 

 

The present research deals with adiabatic fixed bed countercurrent gasification of 

DB using different combinations of air and steam as the oxidizing source and with a 

continuous ash disposal system to perform gasification studies near-to-steady state 

conditions. Countercurrent or updraft fixed bed gasifiers can be operated on a small 

scale (lower than 10 MW) using biomass with minimum pretreatment; thus, those 

gasifiers are ideal for sustainable power generation in CAFOs because they produce 

enough DB to drive small-scale gasifiers. If CAFOs wastes were included as renewable 

feedstock to replace power generation from coal, gas, and petroleum, the pollutants 

produced by both wastes disposal and emission from fossil fuels would decrease. Using 

air-steam as the oxidizing medium in gasification increases the H2 production because 

reactions of char and CO with steam are favored. However, it is essential to study the 

effect of operating conditions like equivalence ratio (ER) and steam-to-fuel ratio (S:F) 

on gas composition, temperature profile, gross heating value of species, and energy 

recovery in a small gasifier (10 kW) so that the results obtained can be useful in the 

operation of on-site small-scale gasification facilities.  
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2. LITERATURE REVIEW   

 

This section presents a background on biomass gasification and earlier studies on 

gasification of cattle biomass.  

 

2.1. Background on gasification 

 

In wet biomass gasification, the fuel material undergoes four basic processes: 

drying, pyrolysis, partial oxidation, and reforming. Figure 7 shows a schematic of a 

fixed- bed counter-flow gasifier.  
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Figure 7. Schematic of a fixed bed gasifier, adapted from [26] 
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Fuel is fed from the top of the gasifier while air or air-steam is supplied at the 

bottom. During drying, the moisture is removed at about 300 K. After drying the 

biomass heats up to about 600 K. Then, under pyrolysis, biomass releases volatile matter 

(VM) and char at about 600 K [27]. At a higher temperature (~1000 K), the tar contained 

in VM cracks to produce other compounds, such as hydrocarbons, carbon dioxide, 

carbon monoxide, hydrogen, and steam. Additionally, the char produced in pyrolysis 

react with oxygen and steam, or CO2 to produce partially oxidized compounds. 

Reforming is the reaction of char and steam to produce CO+H2 and the posterior reaction 

of CO with steam to produce CO2 and H2. 

Many types of reactors have been developed around the world; however, the 

most relevant are fixed-bed, fluidized-bed, and entrained-flow [28] [29]. The main 

difference of those reactors concern how the biomass and oxidizer are moved in the 

reactor. The form in which the biomass and the oxidizer move along the axis of the 

reactor affects the gases and fuel profile temperature. Figure 8 shows the principal 

reactor types and the profile temperature for gasification of coal with air.  In an updraft 

fixed-bed gasifier, the biomass moves down and the gases move up (Figure 7). In 

contrast, with downdraft gasifier, both the biomass and the gases move down; as a result, 

the temperature of gases leaving an updraft gasifier is lower than those leaving a 

downdraft gasifier. The temperature profile in both the fluidized-bed and entrained 

gasifier is almost constant and the gas temperature leaving the gasifier is higher than that 

of the gases leaving an updraft gasifier. 
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Figure 8. Types of gasifiers and their temperature profile, adapted from [28] 
 
 

Because fluidized-bed and entrained bed gasification require much higher air 

velocity compared to fixed-bed gasification, the fluidized-bed and entrained-bed 

gasifiers are suitable for large-scale applications. For small-scale applications (power<10 

MW) fixed-bed gasifiers are well suited. Updraft (countercurrent) fixed-bed reactors are 

the oldest and historically most common method used to generate heat and power, but in 

the last two decades, large–scale fixed-bed reactors have lost part of their industrial 

market [30]. Small-scale updraft fixed-bed gasifiers have high thermal efficiency and 

require minimal pretreatment of the supplied biomass, so they have maintained 

commercial interest, especially for in situ power generation [28]. 
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Table 1 summarizes the performance of the most common biomass gasifiers that 

use air. In a downdraft gasifier, gases are produced in the pyrolyis zone past the high-

temperature region where the tar and hydrocarbons crack to produce more H2 and less tar 

[29]; however, the high ogase temperature leaving the gasifier leads to low energy 

conversion efficiency because sensible losses are high. The updraft gasifier produces 

more CO and tar and the fluidized bed gasifier produces more CH4 and less hydrogen. 

 

Table 1.Typical specie production from the most common gasifiers, adapted from [16][29] 

Gasifier type H2 CO CO2 CH4 N2 HHV (MJ/m3) Tars (g/m3) Dusts
Air-blown updraft 11 24 9 3 53 5.5 ~50 Low
Air-blown downdraft 17 21 13 1 48 5.7 ~1 Medium
Fluidized bed 9 14 20 7 50 5.4 ~10 High

Gas qualityGaseous products

 

 

Figure 7 shows the four basic biomass gasification processes occurring in a 

countercurrent fixed-bed gasifier [26]. In the drying zone, the biomass slowly heats and 

releases H2O; then, the dry biomass descends to the pyrolysis zone where the solids 

pyrolyze to produce light gases, tar, and char. In the reduction zone some char produced 

in the pyrolysis zone reacts with CO2 and H2 produced in the combustion zone to 

produce more CO and CH4. Finally, in the oxidation zone, the oxygen and the steam 

content in the oxidizing source react with fixed carbon (char) that descends from the 

reduction zone to produce CO2, CO, H2, and heat. By convection and diffusion, the 

thermal energy produced there is carried by to the higher zones to supply energy 

required in pyrolysis and drying. 
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2.1.1.Reactions in gasifiers  

Biomass gasification is a complex process because the large number of reactions 

that occur, and the considerable number of biomass components. However, biomass 

gasification with air-steam can be globally modeled with reactions 1 to 8 [5] [10]. 

 

 Solid biomass + heat →VM + char         (1) 

 C+ O2→CO2, ∆HR=-32765 kJ/kg of C                    (2) 

     C+1/2 O2→CO, ∆HR=-9205 kJ/kg of C                     (3) 

     C+CO2→2CO, ∆HR=14360 kJ/kg of C              (4) 

    CO+1/2O2→CO2, ∆HR=-10105 kJ/kg of CO                   (5) 

       C+H2O→CO+H2, ∆HR=10390 kJ/kg of C        (6) 

        CO+H2O→CO2+H2, ∆HR=-1470 kJ/kg of CO                   (7) 

       C+2H2→CH4, ∆HR=-6230 kJ/kg of C                    (8) 

 

where enthalpy of reaction ∆HR < 0 indicates exothermic reaction and ∆HR > 0 indicates 

endothermic reaction. Heterogeneous Reactions (2), (3), and (6) occur in the combustion 

zone whereas the reaction of char with species produced in the combustion zone 

(Reactions 4 and 8) occurs in the reduction zone. The CO produced in the combustion 

zone and reduction zone reacts with H2O (Reaction 7) in the downstream zones. The net 

enthalpy of the global air-steam gasification process can be kept at zero (adiabatic 

gasification) by feeding the gasifier with the appropriate air/steam ratio. The rate of the 

above reactions depends principally on temperature, pressure, species concentration, and 
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particle size,  and it can be estimated using the Arrehenius law. The time scales for 

heterogeneous reactions are much longer compared to those of the homogeneous 

reactions. Assuming the single-particle model and accounting the simultaneous effects of 

diffusion and intrinsic chemical kinetics, the rate of reaction of the heterogeneous 

reactions of char with O2, H2O, CO2, and H2 can be estimated with Equation (9)  

[30][31]. 
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where 
o

W j is the reaction rate (kmol m-3 s-1) per unit char mole consumed, j is the 

reaction number (2, 3, 4, 6, and 8), i is the oxidizer (O2, CO2, H2O, and H2), dp the 

diameter of the particle (m), Ci the oxidizer concentration (kmol m-3), Kj the kinetics 

constant (m s-1), Km the diffusion constant (m s-1), � the bed porosity (fraction) or void 

fraction, Re the particle Reynolds number, and SC the particle Schmidt number.  
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The reaction rate of the homogenous equation of CO with O2 and H2O can be 

estimated with Equations (13) and (14) respectively [31]. 
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In Equation (14), K5 is the kinetic constant of the reaction of CO with O2 

whereas K7 and KE correspond to kinetics and equilibrium constants of the water shift 

reaction, respectively. Di Blasi et al. [31] present the following equation to estimate the 

pyrolysis reaction rate (kg m-3 s-1), where biomassϕ is the biomass density (kg m-3). 

 

 biomassKW ϕ11 =
o

     (15) 

 

The kinetic constants used to estimate the reaction rates of global Reactions (2-

10) which occur in gasification processes are summarized in Table 2. The kinetic 

constant of the pyrolysis reaction (K1) corresponds to wood. 

The primary products in combustion and gasification of char with O2 are CO and 

CO2. According to Walker et al. [32], the CO/CO2 reaction rate ratio increases with 

temperature. Annamalai et al. [33] states that the reaction rate of the C with O2 to 

produce CO2 is significant at lower temperatures (T < 800 K) and that the Reaction 3 is 

important under typical combustion conditions. 
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Table 2. Kinetics constants  
Kinetics Constant Value  Source 

K1 1.516 x 103 exp(-75549/Ts) (s-1) Di Blasi et al. [31] 

KE 0.0265 x exp(-3966/TG) (s m-3mol-1) Di Blasi et al. [31] 

K2 1.6x105 exp(-20000/Ts) (m s-1) Annamalai et al. [34]

K3 2.3 exp(-11100/Ts) (m s-1) Hobbs  et al. [30] 

K4 589 exp(-26800/Ts) (m s-1) Hobbs  et al. [30] 

K5 1.3 x 1011exp(-15105/Ts) (m s-1) Di Blasi et al. [31] 

K6 589 exp(-26800/Ts) (m s-1) Hobbs  et al. [30] 

K7 2.78 x exp(-1513/TG) (m3 mol s-1) Di Blasi et al. [31] 

K8 589x10-3 exp(-26800/Ts) (m s-1) Hobbs  et al. [30] 

 
 

However, under gasification conditions, the concentration of oxygen reduces 

immensely and the concentrations of CO2 and H2O become significant. Under these 

conditions, Reactions 4 and 6 are significant, especially at high temperatures. Following 

[33], the reaction rate (kg/kmol.m2) can be estimated with Equation 16 for temperatures 

ranging between 730 and 1170 K. 
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where Ts is the char particle surface temperature, which can be estimated with Equation 

17 for a char particle burning under diffusion controlled conditions and without 

including radiactive losses [33].  
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where Ts is the surface temperature of the particle (K), cp the specific heat of the oxidizer 

(kJ/kg.K), 
∞2OY  mass fraction of the oxidizer, 3,2Oν =1.33, and hc reaction enthalpy (kJ/ kg 

of C burned to produce CO) of Reaction (3). According to [34] and [35], the oxidation of 

char with oxygen under gasification conditions (low concentrations of O2) with particle 

size greater than 1/4” is diffusion controlled. 

  

2.2. Previous studies on gasification of cattle biomass 

 

In this section some relevant previous studies on gasification of cattle biomass 

are presented (CB).  

As early as 1948, a modeling study was developed by Parents et al. [36] to 

estimate the equilibrium enthalpy changes and equilibrium species (CO, H2, H2O, CO2, 

and CH4) of char-steam-oxygen reactions as a function of the temperature and pressure. 

The information is also available in Klass [5]. 

 

 C(s) + aO2 + bH2O→cH2O + dCO + eCO2 + fH2 + gCH4 (19) 
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The oxygen-to-steam ratio required to maintain the enthalpy change for the 

assumed products species (Equation 19) at zero is represented in Table 3 for various 

pressures and equilibrium temperatures. The results show that at constant pressure, 

increased temperatures require increased oxygen/steam ratios to maintain a net enthalpy 

change of zero in the reaction, because more H2O reacts with C to produce H2 and CO. 

On the other hand, at constant temperature, increased pressures require decreased 

oxygen/steam ratios, because more CO2 is produced at high pressure. 

 

Table 3 Oxygen-to-steam ratio required for the adiabatic equilibrium reaction C-oxygen-steam, adapted 
from [5] 

Oxygen‐to‐steam ratio (SATP m3/kg) at indicated pressure
Temperature (K) 0.1013 MPa 1.0133 MPa 2.0265 MPa 3.0398 MPa  4.0530 MPa

900 3.10 1.10 1.00 0.80 0.70
1000 6.80 2.60 2.00 1.60 1.40
1100 10.90 5.40 4.00 3.20 2.90
1200 11.70 8.80 6.70 6.00 5.30
1300 11.10 9.70 8.70 8.10
1400 12.80 11.90 11.20 10.60 10.30
1500 13.00 12.10 11.90 11.70 11.40  

 
 

In 1980, Raman et al. [37] studied the effect of the temperature on yield, gas 

composition, and energy recovery. The study was performed on fluidized gasification of 

feedlot biomass (FB) using, as oxidizer, a mixture of gases (H2O, O2, and CO2) produced 

by combusting propane with air. A small-scale fluidized gasifier, designed initially for 

coal gasification, was used for the investigation and operated under the following 

conditions: reactor temperature ranging from 900 to 994 K and flow rate of FB varying 

from 10 to 20 kg/h. To maintain the desired temperature and reduced oxygen 

concentration in the reactor, propane was burned in the plenum under starved air 



 

 

21

conditions, i.e., propane was burned with oxygen deficit to avoid O2 in the products. 

They concluded that increasing the gasifier temperature improves the yield and energy 

recovery.  

 

Table 4. Results on yield and gas composition reported for an experimental bed reactor temperature at 980 
K, adapted from [37] 

 Dry off 
Gasa 

Dry burned  
Gasb 

Dry produced 
Gasc 

H2, (%) 14.03 4.25 38.69 
N2, (%) 56.48 78.89 0.0 
CH4, (%) 4.31 0.20 14.67 
CO, (%) 11.07 5.10 26.12 
CO2, (%) 11.42 11.57 11.06 
C2H4, (%) 1.75  1.76 
C2H6, (%) 0.44  6.16 
C3H6, (%) 0.50  1.54 
Volumetric rate, Nm3/h 17.38 12.44 4.94 

a Gases measured at the top of the gasifier (leaving the gasifier) 
b Gases produced by combustion of propane with air (measured at the plenum) 
c Gases estimated as dry off gas - dry burned gas 
 
 

Table 4 shows the gas composition produced by the combustion of propane (dry 

burned gas), the gas composition leaving the gasifier (dry off gas), and the gas produced 

by gasification (dry produced gas). The gas produced by FB (calculated as the difference 

between dry off gas and dry burned gas) shows a high concentration of CO and H2, 

because the composition is estimated without the presence of N2. However; the dry off 

gas (gases leaving the gasifier) shows a lower amount of CO and H2. 

Figure 9 shows the effect of the reactor temperature on the percentage of energy 

recovery (energy in gases/energy in fuel). Increasing reactor temperature from ~900 to 

~980 K increases the percentage of energy recovery from 20 to 60%. 
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Figure 9. Energy recovery as a function of reactor temperature, from [37] 
 
 

In 1987, gasification of Texas lignite coal was studied by L. R. Russell et al. [38]  

in a pilot-scale fluidized bed reactor at 810 kPa using, as an oxidizer, a mixture of pure 

oxygen and steam, preheated to 800 K.  The experiments were performed at gasifier 

temperatures ranging between 1030 and 1200ºC and at molar steam-coal ratio ranging 

between 1 and 2.5. The reported results showed that the operating temperature had the 

maximum effect on gas composition. A typical gas mixture 5 cm above the bed of the 

gasifier, where the temperature was 1118 K and molar steam/coal ratio was at 2.27, was 

found to be 45% H2, 13.8% CO, 33% CO2, 5.3% CH4 and 1.8% N2. The H2/CO ratios in 

the products ranged between 1.5 and 4.5 under the operating conditions. 
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A modeling study to estimate the feasibility of producing energy from non-

adiabatic gasification of DB, using a system previously developed for gasification of 

coal (Figure 10), was developed by Young et al. [39] in 2003.  

 

 

 
 

Figure 10. Gasification system used to study the feasibility of production of energy from dairy biomass, 
from [39] 
 
 

They estimated the performance of the coal gasification facility represented in 

Figure 6 when it is operated with DB under the following operating conditions: air 

preheated at 1500 K, pressure at 100 kPa, and variable air/fuel ratio with the purpose of 

changing reaction temperature. 

The results of performance calculations indicated energy conversion efficiency 

ranging from 65 to 85%, depending on the operating conditions. The gas composition, 

which was estimated with an equilibrium model at a reaction temperature of 1676 K, 

was reported to be 26.9% CO, 6.1% CO2, 17.1% H2, and 49.9% N2. The estimated 

heating value of this gas mixture was 5090 kJ/kg.   
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In 2005, Priyadarsan et al. [25]  conducted gasification experiments at ambient 

pressures using two flows of pure air (1.27 standard m3 h-1 and 1.7 standard m3 h-1) for 

partial oxidation in a small scale (10 kW, or 30000 Btu/h) fixed-bed gasifier but without 

an ash disposal system. As such, steady state could not be maintained during the 

experiments. The fuels tested included FB, Wyoming sub-bituminous coal (WYC), and 

WYC-FB blends of two different particle sizes.  They concluded that particle size did 

not affect the species composition and the bed profile temperature. They collected the 

gas samples and used an HP 6890 gas chromatograph to measure the concentrations of 

CO, CO2, CH4, and H2. The gas composition measured at the top of the gasifier during 

the investigation was almost constant at (7-10% of H2), (27-30% of CO), (1-3% of CH4), 

and (2-6% of CO2). Additionally, this study showed that the bed temperature profile 

peaked where the combustion (char oxidation) occurs.  
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Figure 11. Temperature profile for FB (0.25” – 0.5”) at air flow rate of 45 SCFH (experiment run for 2.75 
hours), from [42] 
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As mentioned earlier, the peak started moving toward the bed surface because 

ash was not removed; it accumulated at the bottom creating a dead zone at the bottom of 

the bed, using a simple model they predicted the movement of peak temperature location 

with time, Figure 11. 

Figure 12 shows the results of temperature and species profile obtained for FB 

gasification with an air flow of 45 SCFH at t = 15 min. For this particular case, the peak 

temperature occurred at ~2.25 in above of the grate; beyond which it started to decrease 

to 700 K. The CO measured through the bed shows some small changes near the grate 

but achieved steady state at ~ 27%; On the other hand, the production of other gases (H2, 

CO2, and CH4) increases with distance above the grate surface. 

 
 

 
Figure 12. Gas specie and temperature profile measured along of the bed for FB gasification at flow rate of 
45 SCFH and particulate size (0.157”- 0.25”), from [42] 
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From the results shown in Table 5 compared to adiabatic gasification of FB with 

air, it is apparent that non-adiabatic gasification of FB with gases produced from 

combusting propane (at 980 K) in a fluidized bed produces more H2 (14.03%) and 

hydrocarbons (CH4, C2H4, C2H6, and C3H6) and less CO. Raman et al. [37] used as 

oxidizing source gases with 4.25% H2 content whereas Priyadarsan et al. [25] used pure 

air. If the H2 (4.25%) in the oxidizer were discounted from the gases produced by Raman 

et al. [37], the hydrogen content in gases produced by the fluidized and fixed beds would 

be the same (Table 5). The HHV of gas produced by fluidized-bed gasification is  higher 

than the HHV of gas produced by fixed bed gasification because of the high energy 

density of the hydrocarbons (HHV of HC=38000 kJ/m3) compared to the energy density 

of CO and H2 (~11,000 kJ/m3). 

 

Table 5. Gas composition and HHV of gases reported by Pattabhi, R, 1980 [37] and Priyadarsan, 2000 
[25] for gasification of FB in a fluidized bed reactor at 980 K and an adiabatic fixed reactor respectively 

 Fluidized -bed gasification with gas 

produced from methane combustion 

at 980 K [37] 

Adiabatic fixed-bed 

gasification with air [25] 

H2, % 14.03 8.50 

N2, % 56.48 57.5 

CH4, % 4.31 1.5 

CO, % 11.07 28.5 

CO2, % 11.42 4 

C2H4,% 1.75  

C2,H6,% 0.44  

C3H6, % 0.50  

HHV  5763 kJ/Nm3 4825 kJ/Nm3 
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Table 6. Summary of review on gasification 
Subject Fuel Operating Conditions Products HHV ECE 
Fluidized Bed 
[38] 

TXL Coal 
 

P = 810 kPa 
Treactor = 1118 °C 
Oxidizer  = steam+O2, 
TOxidizer = 800 K 
S:F = 2.27 

H2=45.7% 
CO=13.8% 
CO2=33% 
CH4=5.3% 
N2=1.8% 

10494
kJ/kg 

 

Fluidized bed 
[40] 

Subbituminous 
Powder River  
Coal  
 

P = 3.03 MPa 
Oxidizer  = Steam +Air,  
Coal = 31.8 kg/h 
Air = 27.5 kg/h 
Steam = 7.2 kg/h 

H2=19% 
CO=12% 
CO2=12% 
 

3533 
kJ/kg 

 

Counter- 
Flow 
Fixed gasifier 
[41] 

Rice husk 
 

Feedstock = 10 kg/h 
SR = 0.12 
Treactor =  600 °C measured 
at bed center 

H2 =7 .4% 
CO = 25% 
CO2 = 16.9% 
CH4 = 2.5% 
N2 = 56% 

4005 
kJ/kg 

 

Counter Flow 
Fixed gasifier 
[6] 

Nutshells Oxidizer= Air 
Air/fuel=1.159 

H2 = 6-7.3% 
CO = 28.4-30% 
CO2 = 6.7-7% 
CH4 = 1.7-1.9% 
N2 = 56% 

5.3 to 
5.6 

MJ/kg 

 

Counter Flow 
Fixed gasifier 
[6] 
 

Olive Husk  
 

Oxidizer= Air 
Air/fuel=1.38 

H2 = 6.4-8% 
CO = 26.2-
28.5% 
CO2 = 7.5-6.2% 
CH4 = 1.4-1.6% 
N2 = 56% 

4.8 
to 
8.5 

MJ/kg 

 

Fluidized bed 
[37] 

Feedlot 
Biomass 
 

Oxidizer= Gases from 
combustion of propane 
T=900-994 °C 
Fuel=10-20 kg/h 

H2 = 14.3% 
CO = 11.7% 
CO2 = 11.42% 
CH4 = 4.31% 
C2H4 = 1.75 
N2 = 56.48% 

5763 
kJ/kg 

20 to 
60% 

Counter Flow 
Fixed gasifier 
[25] 
 

Feedlot 
Biomass 
 

Oxidizer=air 
Air Flow=1.7-1.7 STAP 
m3/h 
 

H2 = 7-10% 
CO = 27-30% 
CO2 = 2-6% 
CH4 = 1-3% 

4825 
kJ/kg 

 

Fluidized bed 
modeling [39] 

Dairy Biomass 
 

Oxidizer = Air at 1227 °C 
P = 100kPa 
Tgasifier = 1400 °C 

H2 = 17.1% 
CO = 26.9% 
CO2 = 6.1% 
N2 = 49.9% 

5090 
kJ/kg 

65 to 
85% 

 
 

From the literature review, it is apparent that there no published studies use air and 

steam in fixed-bed gasifiers with DB as fuel and operate under steady state conditions.  

Moreover, in fluidized-bed gasification, the oxygen concentration is nearly uniformly 
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throughout the bed, which oxidizes some H2 produced by steam reforming reactions; 

therefore, H2 production is typically less. Because the present study uses a fixed-bed 

reactor with a temperature peak within the bed and oxygen is available only near the 

bottom of bed, H2 production should be enhanced with air-steam mixtures. A summary 

of review on gasification is presented in Table 6. 
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3. OBJECTIVE AND TASKS 

 

 The overall objective of the current research is to conduct an in situ gasification 

of dairy biomass (DB) using a fixed bed gasifier. To achieve the overall objective, the 

following tasks must be performed. 

1. Modify the gasifier facility (10 kW or 30,000 Btu/h ). 

2. Build a steam generator to feed steam into the gasifier plenum. 

a. Construct an ash disposal system to run experiments under steady-state 

conditions. 

b. Acquire a mass spectrometer (MS) and the gas mixtures necessary to 

calibrate the MS. 

c. Perform calibration and analysis set-up on the MS. 

d.  Mount a temperature data acquisition system.  

e. Develop a sampling system to prepare the gas samples to be analyzed by 

a mass spectrometer (MS). 

f. Install a heater system to heat the gasifier.  

g. Set up a control panel to control the gasifier operating conditions.  

h. Assemble the gasification facility. 

3. Characterize the feedstocks. 

4. Perform global modeling studies on gasification to determine operating conditions. 

5. Conduct experiments on gasification with air, air-steam, and obtain data on bed 

temperature profile and gas composition under various operating conditions and 

verify that the system operate near adiabatic conditions.  
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6. Produce chlorinated char via pure pyrolysis of DB using N2 and N2-steam gas 

mixtures. 
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4. EXPERIMENTAL SET UP AND PROCEDURE 

 

This section presents a description of the experimental facility and the procedure 

developed for each task. 

 

4.1. Modifications 

 

 A 10-kW gasifier located in the Mechanical Engineering Biomass Laboratory at 

Texas A&M University previously constructed by [42] was modified; they did not have 

ash disposal system and there was no gas conditioning system (Figure 13).  

 

 

Figure 13. 10-kW fixed bed gasifier, from [42] 
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The gasifier represented in Figure 13 is a 10-kW batch-type, countercurrent, 

fixed-bed reactor. It was constructed of castable alumina refractory tube with an inner 

and outer diameter of 13.9 cm (6 in) and 24.5 cm (10 in) respectively. The refractory 

tube is surrounded by 4.45 cm (1.75 in) of insulating blanket to minimize heat losses. 

The blanket is enclosed within a steel outer tube with an inner diameter of 34.3 cm (13.5 

in). The total height of the gasifier is 72 cm and is divided into four sections of 24 cm, 

19 cm, 14 cm, and 15 cm. The sections are joined using ring type flanges of 1.27 x 35.6 

x 50 cm. The following modifications were performed: 

a) A steam generator was built to generate the vapor required for the gasifier. The 

generator supplies vapor at ~393 K and at ~1 bar. The steam generator was provided 

with a release valve and a water level visor to prevent overpressure and to control the 

water level. The steam generator was calibrated to determine the rate of evaporation as a 

function of power supplied to the heater elements. 

b) A conical gyratory cast iron grate with 0.25-in-diameter holes was 

constructed. The number of holes was selected to provide 30% free area to drain the ash 

and to allow the oxidizer flow. To evacuate continuously ash from the gasification 

chamber to the plenum, the grate was constantly vibrated by a pneumatic vibrator of 

variable frequency. The ash evacuation rate from the chamber was controlled by 

changing the vibration frequency of the vibrator. The gasifier plenum was modified to 

assemble the conical vibratory grate. The refractory of the plenum was constructed and 

the plenum base was drilled to assemble the shaft that supports the conical grate. The 
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shaft was fixed to the base of the plenum by a mechanical seal to avoid pressure looses. 

A pneumatic mechanical vibrator was coupled to the shaft to vibrate the grate. 

 c) A mass spectrometer was acquired to continuously measure the concentrations 

of CO2, CO, CH4, C2H6, H2 and N2 in real time. Also, gas mixtures required to calibrate 

the MS for each gas analyzed were acquired. The list of calibration mixtures is presented 

in Appendix F. 

d) Eight temperature ports were placed along of the gasifier axis in order to 

measure the temperatures with Type K thermocouples. 

 e) A temperature recorder was acquired to monitor temperatures continuously. 

The data were stored in a flash card for later analysis. 

f) Several sampling ports were provided along of the reactor.  

g) A sampling system was constructed to prepare the samples before they were 

analyzed by the MS in real time and continuously because the MS cannot allow particles 

or tar to enter the system.  

h) Although most of the experiments were performed adiabatically, the 

experiment facility also has a heater system, which consists of two super-heater elements 

regulated by a power controller to maintain a desired temperature in the gasifier if non-

adiabatic gasification is required or to supply heat for pyrolysis of fuel when char 

production is desired in absence of oxidant. A new combustion chamber was constructed 

to install the heater elements. 

i) A control panel was built to control the flows of air and steam into the gasifier, 

the flows of heat to the heater elements of the reactor and the steam generator, and the 
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gas sample flow through the sampling unit. Additionally, the devise for monitoring and 

recording the temperature also was mounted to the control panel.   

Pictures of the modification performed in the gasifier are presented in the 

Appendix A.  

 

4.2. Gasification facility 

 

Figure 14 shows a schematic of the 10-kW gasification facility with all 

modifications. The facility consist of i) a steam generator to produce the steam for the 

gasifier, ii)  an ash evacuation system so that experiments can be run continuously with 

periodic ash disposal, iii) a sampling system to condition the gas samples for real time 

and continuous analysis of gases, iv) a data acquisition system to monitor the evolution 

of the temperature profiles within the gasifier bed, and v) a control panel to control the 

flows of steam and air, and heat to the heater elements placed in the steam generator and 

the gasifier. Periodically fuel is fed at the top of the facility, while the mixture of air and 

steam is supplied at the bottom (plenum).The air and steam (water) flow rate are 

controlled by using rotameters. i) Steam Generator: The steam generator has a 

cylindrical 10-cm-internal-diameter vessel heated by a variable-power (0.1-1.2 kW) 

tape-type heating element rolled around the vessel. The rate of steam generated (0.1-1.5 

kg h-1) can be controlled by changing the power supplied to the heating element. The 

steam generator was calibrated to measure the rate of vapor produced as a function of the 

power input. ii) Ash Evacuation System: The facility has an ash evacuation system 
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compose of a conical grate which was continuously vibrated by a pneumatic vibrator of 

variable frequency. The ash evacuation rate from the chamber can be controlled by 

changing the vibration frequency. The grate can also be rotated manually to remove the 

residual ash from the chamber after each experiment. iii) Sampling System: The facility 

has provisions to withdraw samples from different ports placed along of the gasifier. The 

sampling system is composed of two condensers each of which was cooled with ice-cold 

water to condense water and tar and three filters to capture the particulate material. After 

the samples are conditioned, they are continuously analyzed in real time by the MS. The 

composition of the gases is stored in a computer for posterior analysis. iv) Data 

Acquisition System: The temperature of the bed is measured every 60 seconds using 

Type-k thermocouples placed at eight locations along the gasifier axis. The temperature 

data is recorded into a flash card. v) Control Panel: The air, steam, and samples flow 

rates are regulated from a panel control. Also, the power supplied to the heater elements 

is controlled from the control panel. The temperature recorder is assembled in the 

control panel to monitor temperatures. 

The adiabaticity of the reactor was checked by determining the overall heat 

transfer coefficient (U) and then estimating the heat loss; the U was measured by letting 

the reactor to cool down after the experiment and storing the change of temperature.  

Appendix A presents figures of the modifications performed on the gasifier at 

Texas A&M University along with pictures of the reformed gasified facility. 
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Figure 14. Gasification facility 
 
 

4.3. Experimentation 

 

Experiments on fixed-bed gasification of DB were performed to study the effect 

of the ER and S:F ratio on gas composition and bed-temperature profile. The gasification 

experiments were performed for the following cases: 

a) Base case 

 Bed height at 17 cm (~6.75 in) 

 Fuel: Low-Ash separed solids dairy biomass (LA-PC-sepsol-DB). 

 Particulate size, dp = ~6.25 cm (o.25 in) for DB and ~3 mm (~0.125 in) for coal 

 Fuel flow rate 1 kg h-1 (2.2 lbm h-1)  

 Air flow ~1.13 normal m3h-1 (40 SCFH) at 298 K (536 R) 
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 Steam flow rate at 0.3 kg/h (~0.66 lbm h-1) 

 Equivalence ratio (ER) at 3.18 

 Steam-to-fuel ratio (S:F) at 0.68 

b) Parametric cases 

 Fuel: LA-PC-Sepsol-DB, Coal-LA-PC-Sepsol-DB blend (90% LA-PC-Spsol-

DB, 10% Coal), and Ash - LA-PC-Sepsol-DB blend (90% LA-PC-Sepsol-DB, 

10% ash) 

 Air flow between 0.57 and 2.26 normal m3 h-1 (20 and 80 SCFH) at 298 K (536.4 

R) 

 Steam flow rate between 0.18 and 0.5 kg h-1(0.4 and 1.1 lbm h-1) at 373 K (671.4 

°R) 

 Equivalence ratio (ER) between 1.59 and 6.36 

 Steam-to-fuel ratio (S:F) between 0.35 and 0.8  

Experiments with i) DB-coal blends (90% DB-10% coal) ii) DB-ash blends (90% 

DB-10% ash) were used to determine catalytic effect if there was a on gasification.  

 

4.3.1.Experimental procedure  

 

     A typical experiment started with preheating the gasifier with a propane torch 

placed under the grate to heat the grate and combustion chamber. When the temperature 

at a location 2 cm above the grate reached 1073 K (1931.4 °R) (~after 2 h) the torch was 

turned off and biomass was added to the gasifier; addition continued until the bed height 
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attained 17 cm (~6.75 in). Subsequently, the fuel port was closed and the flows of steam 

and air were adjusted to the desired experimental conditions. As the biomass was 

pyrolyzed and the char was burned, the bed height decreased and ash accumulated; thus, 

biomass was added every 10 min and in batches as required. The bed temperatures were 

also measured.  In the earlier batch experiments by Priyadarsan et al. [25] , there was no 

ash disposal system; therefore, the temperature peak shifted towards the bed surface 

because ash accumulated at the gasifier bottom. In the experiments discussed here, the 

ash was removed periodically using a vibrator at the bottom of the grate to maintain the 

peak temperature at the same location. When the temperatures achieved pseudo-steady 

state (~1 h) the gas sampling unit was turned on and the gas analysis was performed 

continuously by the mass spectrometer (MS) for ~20 min. The samples were taken from 

the gasifier top and passed through the sampling system to condense tar and steam, and 

to filter out the particles in the gases to protect the MS from possible damage. The 

temperatures were measured at 60-s intervals and at eight locations along the gasifier 

axis. The collected tar was characterized using ultimate and proximate analysis. Samples 

of ash were collected to determine if char was present. The experimental data were 

analyzed and the resulting temperature profiles, peak temperatures, gas composition, 

HHV, and energy conversion efficiency are presented as a function of ER and S: F ratio. 

Additionally, the experimental data were compared with the data estimated from 

modeling.  

 The MS was calibrated every 72 h under a program that considers the effects of 

linearity, sensibility and overlapping of all the possible gas peaks analyzed. After 
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calibration, mixtures of well-known composition were analyzed using the MS to verify 

the calibration  accuracy Additionally, a program for analyzing CO2, CO, CH4, C2H6, H2 

and N2 was performed on the MS to control the peaks measured.  The peaks were 

determined by the molecular weight of each gas and the ion charge. The ions can have a 

charge of 1e, 2e, and occasionally 3e depending if they have one, two, or three electrons 

removed during the ionization process. The peaks are defined as: M/charge, e.g., for N2, 

28/1, 28/2, 28/3, etc. 

 

4.3.2.Pyrolysis procedure 

 

The same gasification facility used for gasification experiments was used to 

perform the pyrolysis experiments. DB was subjected to a pyrolysis process to volatilize 

a fraction of the VM content and to produce chlorinated carbon. Two types of char were 

produced using i) 0.142 SATP m3/h (5 SCFH) of pure N2 and ii) a mixture made of 

0.142 SATP m3/h of N2 and 1.53 m3/h of steam as carrier gases. 

 A typical experiment started by preheating the empty gasifier with a propane 

torch placed under the grate to heat the grate and the combustion chamber. When the 

temperature at a location 2 cm above the grate reached ~1073 K (~after 2 h) the torch 

was turned off and biomass was added to the gasifier; subsequently, the fuel port was 

closed and the flow of carrier gas was adjusted to the desired experimental conditions. 

Then, the gasifier pressure was set at 5 mm of vacuum and the gasifier was cooled down. 

When the maximum temperature in the gasifier achieved ~423 K, the flow of carried gas 
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was turned off and the gasifier was closed completely to cool to ambient temperature. 

The temperatures were measured using Type-K thermocouple at 60-s intervals and at 

eight locations along the gasifier axis during the heating and cooling period. Gas 

samples were not analyzed. When the gasifier temperature reached approximately 

ambient temperature, char samples were collected and weighed to determine the amount 

of mass pyrolyzed. They were analyzed using ultimate and proximate analysis. The 

experimental data were analyzed and the resulting temperature profiles are presented in 

the results section.  

 

4.3.3.Calibration of the steam generator 

 

 The steam generator was calibrated to insure the flow of steam supplied to the 

gasifier. The calibration curves are presented in this section.  

 Figure 15 shows the rate of water evaporated by the steam generator vs the 

percentage of power supplied to the heater element surrounding the steam generator 

pipe. Although the calibration curve assures a reliable flow of steam leaving the steam 

generator, a glass pipe visor was installed to monitor the level of water in the steam 

generator. During the experiments the water level was maintained constant to insure that 

the rate of steam leaving the steam generator corresponded to the rate of water entering. 

The rate of water entering to the steam generator was controlled by a liquid flow 

controller while the power supplied to the heater element was controlled using a power 
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controller.  The steady-state operation of the steam generator was verified before each 

experiment with the purpose of insuring a constant flow of steam entered the gasifier. 
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Figure 15. Rate of vapor produced by the steam generator as a function of the power supplied  
 
 

4.3.4.Verification of adiabaticity of the gasifier 

 

 The global heat transfer coefficient of the gasifier was estimated using the 

lumped capacitance method  [43]. Taking as control volume the air and the refractory 

tube in the gasifier, neglecting the temperature gradients within the control volume, and 

assuming the refractory tube temperature as the air temperature the maximum global 

heat transfer coefficient of the gasifier can be estimated by solving Equation 20. The 
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heat stored in the insulation layer and the external steel pipe was neglected because the 

insulation thermal-capacitance is negligible and the steel tube temperature is very low 

compared to that of the refractory tube. 

 

 )( ),(
),(

∞−= TTUA
dt

dT
mC tXS

tX
p  (20) 

 

where Tx,t denotes air temperature along of the gasifier axis, T∞ ambient temperature, 

m*CP thermal capacitance of the refractory-tube,  U global heat transfer coefficient from 

the refractory tube to the ambient, and As external refractory tube surface area. The air 

thermal capacitance per meter of gasifier (0.023 kJ/(m.K)) was neglected because it is 

very low compared to that of the refractory (~57 kJ/(m.K)).  Separating variables and 

considering CP constant, the differential Equation 20 can be integrated to yield the 

ordinary linear Equation 21. 

 

 t
CdD

UDTTTT
p

XtX ϕ)(
4)(Ln)(Ln 22)0,(),( −

−−=− ∞∞  (21) 

 

In Equation 21 D and d are the refractory tube external and internal diameter, 

respectively and ρ the refractory density. U can be determined using experimental data 

to find the slope (4UD/((D2-d2)CP ρ)) of Equation 21.  

The cooling temperatures measured at various locations along the gasifier axis 

are plotted in Figure 16. The slope of the linear curves does not change much with 
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gasifier height, which indicates that the global heat transfer coefficient is almost constant 

along of the gasifier axis. The slope of the plots yield (4UD/((D2-d2)CP ρ)) = 0.0001 or 

U=0.007 kW/ m2 K. The curves of cooling temperatures do not match exactly with the 

lineal regressions because the global heat transfer coefficient depends on temperature. 
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Figure 16. Dynamic log temperature measured at different locations in the gasifier 
 
 

Figure 17 shows that the global transfer coefficient of the gasifier is directly 

proportional to temperature. In other words, increased temperatures lead to higher global 

heat transfer coefficients. Although the global coefficient was derived for temperatures 
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ranging from 350 to 500 °C, the information can be used to estimate the global heat 

transference coefficient at other temperatures. The results indicate that the global heat 

transfer coefficient of the gasifier is low (U=0.0001*T-0.0653 (kW/m2.K)). The U 

estimated is higher than the real because it was derived using the maximum thermal 

capacitance (refractory tube) and temperature (air temperature). If real refractory tube 

temperature (lower than the air) were considered in the calculations the U value would 

be closer to real value.   
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Figure 17. Global heat transfer coefficient as function of the gasifier temperature 
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5. MODELING 

 

In this section, model is presented to study the effect of adiabatic temperature 

(Tp), ERM, AOF, ER, and S:F on gas composition produced by gasifier when fired with 

DB, FB, WYC, and TXL. Two types of models are presented: 1) atom conservation with 

specified products gases and 2) Equilibrium model. 

 

5.1. Atom conservation 

 

 To determine the operating conditions of the gasfier, the following analysis is 

conduced. 

 

5.1.1.Maximum ER with air and air-steam 

 

 The maximum ER at which all the fixed carbon (FC) content in a fuel reacts with 

O2 to produce CO or with air and steam to produce CO, H2, and N2 can be calculated 

using data from proximate analysis of the fuel. 

 

 CHhOoNnSs→b’VM+c’C(s), (pyrolysis) (22) 

 

 C(s) +1/2O2→CO (partial oxidation of char) (23) 
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 HVFuel,DAF = HVVM*(1-FCDAF) + FCDAF*HVFC (24) 

 

where HVFC = HVCO*28/12. Using (24) one can solve for HVVM. 
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The maximum allowable ER for oxidizing all the FCDAF to CO is given as: 
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If heat is released in partial oxidation of C to CO and is used to strip H2 from 

H2O, then more H2 can be produced. However, additional oxygen is also available from 

H2O. Then: 
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Letting ΔHR = 0 for Reaction 28, it can be shown that a’ = [1-( h f CO / h f H2O(l))]/2 

= 0.307 moles of O2 for each atom mole of carbon (or 0.818 kg of oxygen per kg C); 

with a’=0.307mol of O2/mol of C atom and a”=a’*C’ mol of O2/mol of DAF fuel. The 

AOF is given as 2a’=2*0.307 and S:F=(1-2a”)=(1-2*0.307c’). 
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 The product mass per kg of carbon can be computed as 2.397 + 0.818*{(1-

YO2in)/YO2in}. Then, the maximum heat value for each kg of dry, ash-free (DAF) biomass 

supplied at an adiabatic gasifier must be the same energy leaving the products which 

now consists of combustible gases and nitrogen. 
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 (31) 

 

where the denominator represents the sum of the fuel mass and N2 + O2 gas mixture 

supplied such that all the oxygen is used in partial oxidation of C. 
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5.1.2.Any ER and S:F ratio 

 

Complete combustion (theoretical or stochiometric combustion) of any fuel 

containing C, H, N, O, and S, with air, means that all the combustible components in the 

fuel are burned completely with oxygen to yield energy. Here, the heating value of the 

fuel is completely converted into sensible energy of products leaving the combustor. 

 

 222 SOOHCOO SNOCH 2 dcbas noh ++→=+  (32) 

 

On the other hand, the gasifer requires partial oxidation of the fuel so that 

combustible gaseous mixture is produced. In addition to air steam is also used to 

promote the steam-reforming reaction in order to produces H2-rich gas mixtures. The 

overall reaction of any biomass with air and steam is represented in equation 33. 

However, besides the species indicated as products, other reactions might occur in the 

gasification processes, which can produce other species in trace amount. 

 

H2

N2H2SCH4COCOH2O)N276.3O( SNOCH 22

l

kjihgfes noh

+

++++→+++
     (33) 

 

where the six product species are CH4, CO, CO2, H2, H2S, and N2, e corresponds to the 

moles supplied by air and f refers to the moles supplied by external steam and inherent 

moisture in the biomass.  
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Equivalence ratio (ER), which is the ratio of the actual fuel-air ratio to the 

theoretical fuel-air ratio, defines the rich and lean regions of the reaction. In processes 

where the oxidizer used in gasification is a mixture of air and steam, the equivalence 

ratio (ER) definition can be modified as stochiometric oxygen to actual oxygen supplied 

by both air and steam. Equations (34) and (35) define the equivalence ratio in two forms:  

 

Conventional equivalence ratio (ER) 

 

 
e
a

==
molesairactual

molesairricstochiometER     (34) 

 

Modified Equivalence Ratio (ERM) 
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The oxygen split between the air-steam mixtures in the gasification processes 

depends on the ratio between the oxygen supplied by the air to the total oxygen supplied 

by both air and steam, this mole ratio is called the Air Oxygen Fraction mole ratio 

(AOF). 

 

 ⎟
⎠
⎞

⎜
⎝
⎛=

+
==

a
e

fe
e

MER
2

2
steamandairthrougOxygen

airthroughOxygenAOF  (36) 



 

 

50

Note that AOF ratio does not represent the mole value of air to steam. The 

definition provided by Equation (36) yields a finite range of AOF from 0 (gasification 

only with steam, e = 0) to 1 (gasification of DAF biomass only with air, f = 0). Using 

Equation (34) and (36) in Equation (35). 

 

 AOF*ERAOFERM =⎟
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 f==
biomassDAFofkmol

steamofmolsF:S  (38) 

 

Under adiabatic gasification, the energy conservation can be represented by 

Equation (39). 

 

 ∑ ∑=
k k

Rk,Rk,Rpk,pk,p (ThN)(ThN )  (39) 

 

where Nk, p and h k,p are the moles and enthalpies of the products at temperature TP and 

Nk,R and h k,R the moles and enthalpies of the reactants at temperature TR. Equation 39 

states that the total energy in the reactants equals the total energy in the products. 

Nevertheless, in gasification processes where the principal objective is to produce fuel 

gases, the recovered energy in the fuel gases per each fuel unit is lower than that 

supplied with the reactants. In other words, the energy conversion efficiency in 
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gasification processes is always lower than 100%. The gross heating value of the gases 

produced in gasification processes (HHV) can be estimated from: a) basic biomass 

analysis [44] and b) gas composition. 

 

5.2. Equilibrium modeling 

 

 Equilibrium modeling has also been used to estimate the adiabatic dry gas 

composition for about 150 species in the product gas.  The NASA equilibrium code PC 

version was used to solve for species including char and adiabatic temperature.  

 

5.3. Modeling procedure 

 

As discussed earlier, gasification of biomass with air and steam under ideal 

conditions yields a mixture of gases primarily composed of CO2, CO, CH4, H2, and N2 

(Equation 33). Other compounds are produced in trace amounts. The molar composition 

of the above products under ideal kinetic gasification conditions can be predicted using 

a) mass and energy conservation equations and atom balance and b) chemical 

equilibrium with a larger number of species including char.  

The effect of modified equivalence ratio ERM and AOF on gasification of feedlot 

biomass (FB), dairy biomass (DB), Wyoming coal (WYC), Texas lignite coal (TXL) 

were estimated for comparison purposes. Composition of products such as CO, CO2, 
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CH4, N2, and H2, were predicted with atom balance whereas NASA equilibrium code PC 

version was used to predict composition of almost 150 species including char. 

a) Atom balance model: A system of eight equations and eight unknowns can be 

solved using five equations formed from five atom balance of the components present in 

the biomass (C, H, O, N, and S) and three more equations: (35), (36), and (39) or 

Equations (34), (38), and (39). This system can be solved to obtain the moles of CO2, 

CH4, H2, CO, N2, and H2S as a function of the adiabatic temperature, TP in Equation 

(39), ER, and S:F or TP, ERM, and AOF. Annamalai et al. [45] have used this method for 

three reactants (fuel, O2, and steam) and four products (CO2, H2, N2, and SO2).  

Once solved for the product’s species, the HHV of the gases and the energy 

conversion efficiency (energy recovery) of the gasifier were calculated with Equations 

(32) and (33). 

b) Equilibrium model: As discussed earlier, the NASA equilibrium code PC 

version was used to solve for species including char and adiabatic temperature. The 

presence of H2O(g) in the products was not considerated in the modeling studies 

conducted to study  the effect ERM and AOF to compare the  results to that obtained by 

atom model in which H2O was not considered in the products. The NASA program was 

run for adiabatic conditions. The input data included the enthalpy of the reactants, 

reactant moles (DAF fuel, air, and total steam from both external and moisture), 

reactants temperature (298 K for air and 373 K for steam), and pressure. The output data 

were equilibrium gas composition of 150 species including solid carbon. 
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Atom and equilibrium modeling were developed under the operating conditions 

shown in Table 7. The DB is represented by the empirical formula (CHhNnOoSs) derived 

from ultimate and proximate analysis. 

 

Table 7. Conditions used in modeling studies 
Parameter Value 

Pressure (kPa) 100 

Equivalence ratio (ER) 1.5-7.0 

Modified equivalence ratio (ERM) 2-8 

Steam to fuel ratio (S:F) 0.35-0.80 

Oxygen from air to total oxygen (AOF) 0.2-0.8 

Steam temperature (K) 373 

Inlet air and fuel temperature (K) 298 

Temperature of productsa (K) 873-1473 

a only for atom mode 
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6. MODELING RESULTS  

 

In this section results of modeling studies are presented. Tables on gas 

composition as a function of the AOF, ERM, and TP are presented in Appendix C for 

WYC, TXL, DB, and FB. this appendix also presents tables of DB as a function of  ER 

and S:F ratio. Prior to the experimental gasification with air-steam of dairy biomass 

(DB), adiabatic atom balance and equilibrium model were performed to predict the 

effect of operating conditions, such as equivalence ratio (ER) and (S: F) on gas 

composition, HHV of the gases, and energy conversion efficiency for DB gasification. 

The effect of modified equivalence ratio ERM and AOF on gasification of feedlot 

biomass (FB), dairy biomass (DB), Wyoming coal (WYC), Texas lignite coal (TXL) 

were estimated for comparison purposes. Composition of products such as CO, CO2, 

CH4, N2, and H2, were predicted with atom balance whereas NASA equilibrium code PC 

version was used to predict composition of almost 150 species including char. 

 

6.1. Atom conservation 

 

This section presents the effects of the adiabatic temperature (Tp), ER, ERM, 

AOF, and S:F ratio estimated by atom conservation. 
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6.1.1.  Effect of the reactor temperature 

 

  Figure 18 shows the effect of the adiabatic gasifier temperature on the production 

of CO, CO2, H2 and CH4 for gasification of DB, FB, TL, and WC. The ERM was set to 2 

and AOF to 0.25. Increasing gasifier temperature (TP) in Equation (26) and maintaining 

constant both ER and AOF implies more thermal energy in the product gases leaving the 

peak temperature zone; thus, there must be more oxidation of combustibles to CO2 to 

produce the sensible heat required and hence less oxygen available to produce CO.  
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Figure 18. Effect of adiabatic gasifier temperature on CO, CH4, H2, and CO2 production for FB, DB, TXL, 
and WYC with ERM and AOF at 2 and 0.25, respectively, estimated with atom balance 
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From Figure 18, it is apparent that higher adiabatic temperatures of gases leaving 

the reactor, inrease the CO2 concentration and lower the CO concentration, which is 

required by energy conservation.  

Additionally, the results show that for the same operating temperatures, coals 

produce less CO2 and more CO compared to FB and DB because the FC is higher for 

coal compared to FB and DB and hence more heat is available for oxidation of FC to 

produce CO. Because coal does not require a long amount of oxidation of FC to CO2. On 

the other hand, higher temperatures favor the production of CH4 but have a negative 

effect on the production of H2, as shown in Figure 18.  

As discussed before, increasing the reactor temperature requires more oxidation 

of C to CO2, and hence more O atoms leave via CO2 and thus there is less CO. As a 

result, lesser C atoms leave via CO2 and CO (i.e., for fixed oxygen input) and hence the 

remaining carbon must leave with hydrogen in the form of CH4. In other words, less 

oxidation of C to CO2 implies more C leaves via CO and thus less C leaving via CH4. 

For example, decreasing 0.1 moles of CO2 in the products implies increasing 0.2 moles 

of CO for the same oxygen atom consumption and decreasing 0.1 C atoms available to 

produce CH4;  hence, more H atoms are available for conversion to H2. DB and FB have 

higher H contents, but FB has more oxygen (30% more) content and a lesser HHV (3% 

less) and thus requires less external air for partial oxidation.  
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6.1.2. Effect of ERM 

 

Figure 19 shows the effect of the ERM on species production for AOF of 0.25 and 

adiabatic temperature of 800 K.  
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Figure 19. Effect of the ERM on CO, CO2, CH4 and H2 production for FB, DB, TXL, and WYC with AOF 
at 0.25 and temperature at 800 K, estimated with atom balance 
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Increasing ERM at constant temperature and at constant AOF implies increasing 

ER or decreasing oxygen (less air) supplied to the gasifier; hence, the oxidation of char 

occur in a t O2-H2O deficient environment, which produces CO-rich mixtures. Also, 

because less C leaves with CO and CO2 under increased ERM, more C must leave with 

CH4 and hence more H atoms must leave with CH4 and fewer H atoms are available for 

conversion to H2. To produce H2 at 800 K. 

Figure 19 shows that the ERM must be kept below ~ 4 for DB and WYC, 3.5 for 

TXL, and 8.5 for FB during the experiments with AOF at 0.25.  

 

6.1.3. Effect of AOF 

 

Figure 20 shows the results from the atom balance model on production of CO, 

CH4, and H2 as a function of AOF at fixed ER of 2 and reactor temperature of 800 K. 

The decreasing of AOF at fixed ERM implies increased ER (ERM = ER*AOF) and hence 

less oxygen supplied with air. As before, this increases CH4 and H2 and lowes contents 

of CO and CO2.  The curves of Figure 20 suggest that at constant ERM and constant 

temperature, H2 can be produced within 0 < AOF< 1.  In other words, it is possible to 

produce H2 by gasification of biomass with air, steam or steam-air mixtures. 

In general, the atom model shows that the effect of changes in ERM and 

temperature on H2 is more significant than changes in AOF. The productions of CO and 

CH4 are possible only under certain restricted conditions. For instance, to produce CO 

with DB at ERM = 2 and TReactor = 800 K, AOF must be maintained higher than 0.3, 
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whereas the production of CH4 with FB is possible only for AOF lower than 0.35. 

Alternatively, the atom model shows that production of CH4 and CO is very sensitive to 

changes of all parameters (ER, AOF, and TP).  
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Figure 20. Effect of the AOF on CO, CH4, CO2 and H2 production for FB, DB, TXL, and WYC with ERM 
at 2 and temperature at 800 K, estimated with atom balance 
 
 

Additionally, the curves in Figures 18, 19, and 20 illustrate that under the same 

gasifier conditions (TP, ERM, and AOF), FB is better than other biomasses to produce 
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H2, but it is not as good as the coals and DB to produce CH4. This is because there is 

more hydrogen content in FB compared with TXL, WYC, and DB. 

 

6.1.4. Effect of the ER and S:F ratio 

  

In this section, results are presented for the effect of ER and S:F on gas 

composition estimated with atom modeling at 1000 K. The effect of ER and S:F ratio on 

CH4 production is shown in Figure 21.  
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Figure 21. Effect of the S:F ratio on adiabatic concentration of CH4 for various ERs, estimated with atom 
balance model at 1000 K 
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It can be seen that at constant ER, increased S:F ratios  produces mixtures lower 

in CH4, but at constant S:F, increased ER produces mixtures rich in CH4. It is evident 

that at higher ER changes on S:F affect the CH4 concentration more than at lower ERs. 

For instance, at ER=6.36, increasing S:F from 0.35 to 0.8 decreases the CH4 

concentration by ~5% whereas at ER=3.18, the same increase on S:F decreases the 

concentration of CH4 by only ~1%. 

Figures 21 and 22 show that S:F ratio affects the CO and CH4 concentrations 

similarly; however, the CO concentration decrease steeply with increase in S:F 

compared to the concentration of CH4. Conversely, the effect of ER on CO and CH4 

concentrations is different. At constant S:F, the increase in ER tends to produce mixtures 

poor in CO but rich in CH4. 
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Figure 22. Effect of S:F ratio on adiabatic CO concentration for various ERs, estimated with atom balance 
model at 1000 K 
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 At constant ER, increasing the S:F increases steam supplied with the oxidizing 

source; thus, as discussed before, the reaction occur in an H2O-rich ambient which 

favors the steam reforming reaction (Equation 6) and shift reaction (equation 7) 

producing  mixtures rich in H2 and CO2 but poor in CO (Figures 22, 23, and 24).   
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Figure 23. Effect of S:F ratio on adiabatic CO2 concentration for various ERs, estimated with atom balance 
model at 1000 K 
 
 

 It is apparent from Figures 20 to 24 that the effects of AOF and S:F are different 

on concentrations of CO, CO2, and H2 but similar on concentration of CH4. At constant 

ERM, increasing AOF implies decreasing ER, increased oxygen through air, increased 

steam concentration and air moles supplied in the oxidizer respectively whereas at 
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constant ER increased S:F ratios increase the steam moles supplied but maintain 

constant the air moles in the oxidizer. In other words, higher S:F ratios and lower AOFs 

indicate a oxidizing source rich in H2O which favors the char steam and shift reactions to 

produce more H2 and CO2 and less CO.   
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Figure 24. Effect of S:F ratio on adiabatic H2 concentration for various ERs, estimated with atom balance 
model at 1000 K 
 

6.2. Equilibrium modeling 

 

The atom-computed equilibrium equation allows only limited number of species 

(CO, CO2, CH4, H2, N2, and H2S). With CEA NASA equilibrium program more species 

can be estimated. The effect of ER, ERM, AOF, and S:F ratio on gas composition, HHV, 
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and energy recovery estimated by the CEA NASA equilibrium program are presented in 

this section. As discussed before, the ERM and AOF were studied for gasification of 

TXL, WYC, DB, and FB using the NASA equilibrium code PC version to solve for ~ 

150 species (including char) without the presence of H2O(g) and adiabatic temperature. 

The parameters ER and S:F were investigated for gasification of DB only and with the 

presence of H2O(g) in the products and adiabatic temperature. As discussed earlier, the 

input data included the moles of DAF fuel, air, and total steam (external and moisture) 

and the enthalpy of the reactants mixture. Appendix D presents tables on gas 

composition HHV and energy recovery. 

 

6.2.1. Effect of ERM and AOF 

 

The equilibrium model provides information on adiabatic temperature, gas 

composition, HHV of gases, and energy conversion efficiency as functions of the ERM 

and AOF. Although, the study was performed for about 150 species, only significant 

species are reported here. For constant ERM and constant AOF, the atom conservation 

model gives a range of the probable adiabatic temperatures of the products (Equation 

26), while the equilibrium model provides information on the unique possible final 

adiabatic equilibrium temperature of the products for any specified group of species. The 

estimated adiabatic equilibrium temperatures for gasification of DB, FB, and TXL are 

illustrated at several AOFs and two ERM (2 and 8) in Figure 25. For AOF > 0.25, the 

three biomasses show a monatomic reduction of equilibrium temperature with increased 
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ERM. This is due to lower CO2 production caused by deficient oxygen in the adiabatic 

gasifier. On the other hand, increasing AOF (i.e., reducing the steam supplied) at 

constant ERM raises the equilibrium temperature because of the reduction in the 

endothermic reaction of steam with carbon. From Figure 25, it is evident that at lower 

ERM, the temperature is more sensitive to changes in AOF than at higher ERM. Also, at 

AOF > 0.4, the temperature is more affected by variations of ERM (e.g. for gasification 

of DB with ERM = 2 and ERM = 8, increasing the AOF from 0.2 to 0.8, increases the 

temperature by 111% and 23% respectively). 
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Figure 25. Effect of the AOF and ERM on adiabatic equilibrium temperature for DB, FB, and TXL 
 

As discussed before, decreasing AOF at constant ERM decreases the air-to-steam 

ratio supplied to the gasifier and there are more H atoms available, which favor 
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Reactions (6), (7), and (8). As a consequence, the production of CH4 and H2 is increased, 

but the CO production is diminished (Figure 26). However, at ERM = 2, the 

concentration of CO is not affected by AOFs > 0.6. 
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Figure 26. Effect of the AOF on production of H2, CO, and CH4 for FB, DB, and TL with ERM at 2, 
estimated with equilibrium model 
 
 

 

Increasing ERM at constant AOF implies decreasing the oxygen supplied with the 

air. Thus, there is less oxygen to produce CO from the reaction of carbon and oxygen 

that is exothermic resulting in lower temperatures (Figure 25) not high enough for H2 to 
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be stripped from H2O in the steam reforming reaction. Figure 27 shows the effect of 

ERM on concentrations of CO and H2 for DB and FB at various AOFs. 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.2 0.4 0.6 0.8

AOF

M
ol

e 
Fr

ac
tio

n

CO, DB

H2, DB

H2, FB

CO, FB

 
Figure 27. Effect of the ER and AOF on production of H2 and CO for DB and FB, estimated with 
equilibrium model 
 
 

FB biomass has more oxygen and hydrogen in the fuel compared to DB; the 

availability of O in the fuel results in more CO production which promotes the shift 

reaction of CO with steam to produce H2 and CO2. Additionally, more H in the fuel 

raises the production of H2. Figure 27 shows that the production of H2 with DB and FB is 
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possible at 0.2 < AOF < 0.8 and 2 < ERM < 6, whereas the production of CO with DB is 

only possible for ERM > ~0.20. Due to the higher hydrogen content in FB, the production 

of CO is even possible at lower ERM as compared to that of DB.  

Both atom and equilibrium models show that FB is more prone to produc H2 rich 

mixtures than DB because of its higher H content. 

Extrapolation of the H2 curves in Figure 27 suggests that the maximum 

equilibrium concentration of H2 (~48%) can be obtained for FB with ERM at 2 and AOF 

at 0. However, at those operating conditions, the adiabatic temperature is very low (~600 

K), where reaction rates are extremely low.  
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Figure 28. Effect of the AOF and ERM on HHV for DB, FB and TXL 
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Figure 28 shows the HHV of the products estimated by equilibrium for TXL, 

DB, and FB at many AOFs and ERM = 2 and 8. As stated before, at constant ERM, 

decreased AOF produces mixtures richer in CH4 and H2, which have higher HHVs. 

Although the HHV with steam and air gasification provides a measure of energy density, 

it does not provide a measure of actual degree of energy conversion (energy recovery) in 

gasification processes. 
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Figure 29. Effect of the AOF and ERM on energy recovery for DB, FB and TXL 
 
 

Increasing AOF decreases energy recovery (Figure 29), but at higher ERM, the 

decrease is not much. At constant AOF, higher ERM implies lesser mass flow of air to 
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react with char and the process is almost pure pyrolysis (char production), which 

produces less mass of gases per kg of fuel resulting in lower energy recovery. Generally, 

methane-and hydrogen-rich mixtures have greater HHV and provide better energy 

conversion efficiency, because the methane has higher energy density (36,250 kJ/m3) 

compared to CO (11,543 kJ/m3). Higher temperatures increase the sensible heat of the 

gases, but produce gases with lower energy density and lower energy recovery. 

 

6.2.2. Effect of ER and S:F ratio 

 

The effect of ER and S:F on equilibrium gas composition, HHV, and ECE was 

estimated only for gasification of the base fuel (DB). Tables of results are included in 

Appendix D. 

 Figures on gas composition, adiabatic temperature, HHV, and ECE are 

presented in this section as a function of ER and S:F ratios. Figure 30 shows the effect of 

S:F ratio on equilibrium gas composition for gasification of DB at ER=3.18.  

Increasing S:F ratio  implies more steam available in the gasifier for the 

heterogeneous reaction C+H2O →CO+H2 and the homogeneous reaction 

CO+H2O→CO2+H2. Thus, gasification of DB under increased S:F ratios produces 

equilibrium mixtures rich in H2 and CO2 but poor in CO. Additionally, there are more H 

atoms in the gasifier to react with the C atoms to improve CH4 production. 
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Figure 30. Effect of the S:F ratio on gas composition  estimated with equilibrium model for DB at 
ER=3.18 
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Figure 31. Effect of the S:F ratio on gas composition  estimated with equilibrium model for DB at various 
ERs 
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Figure 31 shows the effect of the S:F ratio on H2 and CO content in the products 

for diverse ERs. At constant S:F, higher ERs imply less oxygen entering the gasifier for 

the reaction C+1/2 O2→CO; hence, there are more C atoms available to react with the 

steam to produce CO and H2. The remaining steam reacts with CO to produce more H2 

and CO2. More C atoms consumed by the shift reaction means less C atoms leaving as 

CO.  
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Figure 32. Effect of the ER ratio on CO composition estimated with equilibrium model for DB at various 
S:F ratios 
 
 

However, the CO and H2 curves show a peak with the ER which is better 

illustrated in Figures 32 and 33. The CO mole fraction increases with increased ER until 
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ER=3.18 beyond which starts to decrease.  The lowest value of CO is reached at ER = 

6.36 and S:F = 0.80 (Figure 32). The concentration of H2 also shows an inflection point 

at ER=3.18. At ER<3.18, increased ER increases the concentration of H2 very strongly 

but at ER>3.18, the effect of the ER on the fraction of H2 is rather weak (Figure 33). 

The results suggest that the steam to-air ratio entering the gasifier affects the 

H2/CO ratio leaving the gasifier. At constant S:F, increasing the ER (decreased oxygen 

supplied through air) increases steam-to-air ratios. It is evident from the results, that 

higher steam to air ratios increases the H2/CO ratio. 
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Figure 33. Effect of the ER ratio on H2 composition estimated with equilibrium model for DB at various 
S:F ratios 
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 Figure 34 shows the effect of ER on CO2 for different S:F ratios. At ER > 2.12, 

increasing both ER and S:F produces CO2 rich mixtures, whereas at ER < 2.12, the CO2 

decreases with increased ER and S:F ratios. As discussed before, it is because of the 

higher steam concentration in the bed, which favors the reaction of CO with steam (shift 

reaction) to produce more H2 and CO2. As shown in Figure 35, more available H atoms 

in the gasifier lead to CH4-rich concentrations. However, the results show that at ER < 

3.18, the effect of the S:F ratio on CH4 concentration is negligible. The production of 

CH4 is only possible at ER > 2.12, but within 0.35 < S:F < 0.80. In general, equilibrium 

modeling shows that the effect of the ER on CO is different than that of CO2. Increasing 

CO implies decreasing CO2. 
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Figure 34. Effect of the ER ratio on CO2 composition estimated with equilibrium model for DB at various 
S:F ratios 
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 Even though increased ER and S:F improve the CO2 concentration, the adiabatic 

temperature decreases with the rise of both ER and S:F (Figure 36). This suggests that 

most of the CO2 produced is from the reaction of CO with steam (slightly exothermic) 

instead of the char-oxygen reaction, which is strongly exothermic. However, the effect 

of S:F on adiabatic temperature is rather weak.  
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Figure 35. Effect of the ER ratio on CH4 composition estimated with equilibrium model for DB at various 
S:F ratios 
 
 

In general, at ER < 2.12 (increased oxygen through air), the concentrations of CO 

and H2 increase and the concentration of CO2 and adiabatic temperature decrease with 

increased ER (Figures 32 through 36) indicating that the heterogeneous C-H2O reaction 
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(which is endothermic, ∆HR=10,390 kJ kg-1 of C) is more important than the 

homogeneous CO-H2O reaction, which is a slightly exothermic (∆HR=-1470 kJ kg-1 of 

CO). At 2.12 <ER <3.18 (less O2 supply), the shift reaction begins to be important 

because the H2O concentration is much higher. Hence, CO production stars to decrease 

whereas the production of H2 increases. The CO with H2O reaction is slightly 

exothermic. 
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Figure 36. Effect of S:F ratio on adiabatic temperature estimated with equilibrium model for DB at various 
ER  
 
 

On the other hand, at ER > 3.18 the shift reaction seems to be more important 

than the char reaction with steam; hence, the CO2 and H2 concentrations increase 
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whereas the concentration of CO decreases. At ER <  3.18, the adiabatic temperature 

increases strongly with decreased ER because of the endothermic effect of the C-steam 

reaction.  

At ER > 3.18, increase in ER increases the concentration of CO2 more steeply 

compared to H2 (Figures 33 and 34), which indicates that a fraction of the H atoms input 

is used to produce CH4 (Figure 35). 
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Figure 37. HHV of the species vs S:F estimated with equilibrium model for DB at various ERs 
 
 

 Figure 37 illustrates the energy density (HHV) of the products estimated by CEA 

NASA equilibrium program for DB gasification for several ERs and as a function of the 

S:F ratio. Gasification at high ER produces CH4-and H2-rich mixtures, which have a 
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high HHV because of the high HHV of CH4 and H2. At ER < 3.18, the effect of S:F ratio 

on HHV is not important because at ER < 3.18, the effect of S:F on the CH4 

concentration is insignificant. On the other hand, at ER > 3.18 increased S:F ratios lead 

to CH4-rich mixtures that, as stated before, have a high gross heating value.  
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Figure 38. Energy recovery estimated by equilibrium model for DB as function of the ER at different S:F 
ratios 
 
 

The energy conversion efficiency ECE defined as the ratio of HHV in the gases 

to the HHV input in the fuel gives information on the gasifier performance. The ECE 

estimated by the equilibrium model is illustrated in Figure 38 as function of ER for 

various S:F ratios. 
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 The curves of energy recovery show a peak at ER = 3.18. At ER < 3.18, 

increasing ER (decreasing O2 supply through air) increases the energy recovery until 

0.87 beyond which it starts to decrease. Even though, at ER > 3.18, the HHV of the 

gases increases with higher ER (Figure 37), the energy recovery decreases indicating 

that gasification under ER > 3.18 produces char. As discussed before, high ER can lead 

to the lack of enough oxygen to burn completely all char. Then, the process tends to be 

pure pyrolysis, which produces mixtures with higher concentrations of fuel gases, but 

lower energy recovery because of char production. The char yields obtained by 

equilibrium model are presented in Appendix D.  
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7. EXPERIMENTAL RESULTS ON GASIFICATION 

 

This section presents results on experiments performed on gasification of DB, 

DB-coal blend, and DB-ash blend using mixtures of steam and air as oxidants. Some 

experiments were performed with DB using air only to compare the results with [25] on 

fixed bed gasification of FB without ash disposal. 

 

7.1. Fuel and ash characterization 

 

Prior to presenting modeling and experimental results, the properties of fuels and 

ash used in the present study are presented. All fuels were supplied by the Texas A&M 

Agricultural Research & Extension Center, Amarillo, Texas. The DB samples were 

taken from dairy biomass separated solids prior to composting and were provided as 

coarse grain with ~1/4” particle size. DB is termed as DB-Sepsolids-PC-2006. 

 

7.1.1. Fuel characterization  

 The properties of the selected fuels were characterized by ultimate and proximate 

analyses of pure DB, pure FB, pure WYC, and pure TXL, including heating values 

(HHV).The properties of DB-WYC blends were determined using the mass of the DB 

and WYC in the blend. 
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Table 8 Ultimate and proximate analysis on an as-received basis 
Fuel Name Texas Lignite (TXL) Wyoming coal (WYC) Dairy Biomass (DB) Feedlot biomass (FB)
Dry loss (%) 38.34 22.81 25.26 22.32
Ash (%) 11.46 5.45 14.95 16.42
VM (%) 24.79 34.5 46.84 50.08
FC (%) 25.41 37.25 12.95 11.18
VMDAF (%) 49.00 48.00 78.00 82.00
FCDAF (%) 51.00 52.00 22.00 18.00
C (%) 37.18 54.07 35.27 32.7
H (%) 2.12 3.44 3.1 3.34
N (%) 0.68 0.81 1.9 1.89
O (%) 9.61 13.08 19.1 22.81
S (%) 0.61 0.39 0.42 0.52
HHV (kJ/kg) 14290 21385 12844 12788
DAF HHV(kJ/kg) 28466 29809 21482 20875
Dry HHV (kJ/kg) 23175 27704 17185 16462
Emprical Formulae CH 0.68 N0.0157O0.19S0.006 CH 0.76 N0.013O0.18S0.003 CH1.06 N0.047O0.405S0.0045 CH1.23 N0.05O0.523S0.006

ERMAX FC          CO 3.16 3.2 5.8 6.14
Stoch. air:fuel ratio, mol basis 5.147 5.249 5.077 5.008
ER FC          CO +H2+N2 5.15 5.21 10.01 9.45
AOF FC         CO +H2+N2 0.614 0.614 0.614 0.614
HHH FC       CO (kJ/kg gas) 6113 6307 8706 9393
HHV FC       CO +H2 (kJ/kg gas) 9320 9594 11459 12020  
 
 

 Using ultimate and proximate analysis and atom conservation, the empirical 

formulas were calculated  [33] (Table 8). Coal has more fixed carbon than DB and FB, 

but less volatile matter (VM). The ash content of DB and FB is higher than those of 

coals. The Following were calculated: i) maximum ER at which all the FC content in the 

fuel react with O2 to produce CO, ii) the ER and AOF at with all FC react with air and 

steam to produce CO, H2, and N2, and iii) the HHV of gasification producing VM and 

CO (Equation 29) and VM, CO and H2 (maximum HHV, Equation 31). The results are 

shown in Table 8. 

 Figure 39 presents comparative proximate analysis of TXL, WYC, FB, and DB 

on an as-received basis. 
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Figure 39. Comparative proximate analysis of the fuels 
 
 

 For the studied fuels Figure 39 shows that the fixed carbon (on as received basis) 

content in coal is the highest and the ash content the lowest. On the other hand, the 

volatile matter (VM) content in coals is lower compared to that of DB and FB; therefore, 

cattle biomass (DB and FB) releases more gaseous pyrolysis products per unit mass of 

DAF fuel than coal. TXL coal has the highest moisture content (~38%) whereas WYC 

(22.8%) is the fuel with lowest moisture content. Both FB and DB have higher ash 

contents; thus, the ash disposal must handle high rate. 
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Figure 40. Comparative ultimate analysis of the fuels 
 
 

 Figure 40 shows the ultimate analysis of the fuels. Note that the H and O indicate 

organically bound hydrogen and oxygen (i.e., they have been separated from the 

hydrogen and oxygen contained in the form of moisture in the fuel). WYC has higher 

organic carbon content (~54%) compared to other fuels. The H and S content in the fuels 

is comparable whereas the O content in cattle biomass (DB and FB) is higher than coals. 

Although the H weigh fraction reported on an as-received basis for all the feedstocks is 

comparable, on a DAF basis, the H atoms content in DB and FB is higher compared to 

those of coals. As shown in the empirical formula reported in Table 7, the H atoms 

content in DB and FB are 56% and 81%, respectively, higher than the H atom content in 
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TXL. FB is the feed-stock that has the maximum H content on a DAF basis, whereas 

TXL has the lowest H content. FB has 16% more H than DB. 
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Figure. 41. Comparative HHV of the fuels 
 
 

 Figure. 41 presents the HHV of the fuels. Coals, which have high FC, low ash, 

and low oxygen content compared to cattle biomass have the higher gross heating value. 

Increased C/O ratio in fuels tend to increase the HHV because of the high heating value 

of C. On the other hand, fuels with high ash content tend to have low HHV. Fuels with 

low HHV, considered as “low-Btu” fuels, are more appropriate for gasification than for 

direct combustion where the combustion temperatures would be too low. 
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90% DB:10%WYC fuel characterization 

 Table 9 presents the characteristics of DB:WYC blend fuel. As discussed before 

the properties were determined using the mass of DB anWYC. 

 

Table 9. Characterization of 90% DB: 10% WYC 
Fuel Name 90% DB: 10% WYC
Dry loss (%) 25.015
Ash (%) 14
VM (%) 45.606
FC (%) 15.38
VMDAF (%) 0.75
FCDAF(%) 0.25
C (%) 37.15
H (%) 3.13
N (%) 1.791
O (%) 18.498
S (%) 0.417
HHV (kJ/kg) 13698.1
DAF HHV(kJ/kg) 22315
Dry HHV (kJ/kg) 18237
Emprical formula CH1.03N0.043O0.39S0.001

ERMAX FC          CO 5.14
Stochiometric air:fuel ratio, mol basis 5.06
ER FC          CO +H2+N2 8.37
AOF FC         CO +H2+N2 0.61
HHH FC       CO (kJ/kg gas) 8192.00
HHV FC       CO +H2 (kJ/kg gas) 11730.00  

 
 

7.1.2. Ash characterization 

 

 Table 10 shows the ash analysis used in the experiments. The significant 

components are silicon and calcium (42.73%); other compounds such as aluminum and 
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magnesium oxides are present in a lower amount (~12.15%).Aluminum and magnesium 

oxides have been used as catalysts in previous gasification studies of biomass  [15], [44].  

 

Table 10. Ash from DB analysis 
Compound DB ash
Silicon, SiO2 35.13
Aluminum, Al2O3 6.02
Titanium, TiO2 0.21
Iron, Fe2O3 2.67
Calcium, CaO 17.60
Magnesium, MgO 6.12
Sodium, Na2O 1.96
Potassium, K2O 6.85
Phosphorus, P2O5 7.21
Sulfur, SO3 2.55
Chlorine, Cl 0.32
Carbon dioxide, CO2 2.15
Total ash analysis 88.79  

 
 
 

7.2. Operating conditions 

 

 

Table 11 and Table 12 summarize the experimental conditions. The flows of 

water and steam were varied to set the ER and S:F at the desired operating conditions. 

The maximum ER at which all the FC content in the fuel react with O2 to produce CO, 

the ER and AOF at with all FC react with air and steam to produce CO, H2, and N2, and 

the HHV of gasification producing VM and CO (Equation 29) and VM, CO and H2 

(maximum HHV, Equation 31) were presented earlier in Table 8 for all fuels.  
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Table 11. Experimental conditions for parametric fuels (DB-ash and DB WYC) 
Air flow (SATP 
m3/h) (SFCH) 

Steam flow (kg h-1) ER S:F 

0.57 (20) 0.19 
0.43 

6.36 0.35 
0.80 

0.85 (30) 0.19 
0.43 

4.24 0.35 
0.80 

1.13 (40) 0.19 
0.43 

3.18 0.35 
0.80 

1.70 (60) 0.19 
0.43 

2.12 0.35 
0.80 

2.3 (80) 0.19 
0.43 

1.59 0.35 
0.80 

 
 

Table 12. Experimental conditions for DB (base fuel) 
Air flow (SATP 
m3/h) (SFCH) 

Steam flow (kg h-1) ER S:F 

 

0.56 (20) 

0.19 
0.30 
0.36 
0.43 

 

6.26 

0.35 
0.56 
0.68 
0.80 

 

0.85 (30) 

0.19 
0.30 
0.36 
0.43 

 

4.24 

0.35 
0.56 
0.68 
0.80 

 
 

1.13 (40) 

0.00 
0.19 
0.30 
0.36 
0.43 

 
 

3.18 

0 
0.35 
0.56 
0.68a 
0.80 

 
 

1.70 (60) 

0.00 
0.19 
0.30 
0.36 
0.43 

 
 

2.12 

0.00 
0.35 
0.56 
0.68 
0.80 

 

2.30 (80) 

0.19 
0.30 
0.36 
0.43 

 

1.59 

0.35 
0.56 
0.68 
0.80 

a base case 
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To match previous studies by [25] in gasification of FB but without ash disposal, 

two flows of air (40 and 60 SFCH) were studied in air-gasification of DB. The flows of 

steam and air were chosen to set the scale of the flowmeters, and the ranges of the ER 

and S:F were based on the results obtained in modeling studies.  

 

7.2.1. Base case 

 

 Fuel     DB 

 Air Flow rate     1.13 m3/h 

 Steam Flow rate   0.36 m3/h 

 ER     3.18 

 S:F     0.68 

 

ER > 6.36 was not studied because the peak temperatures within the bed were 

lower than that required for burning char (Figure 36). When the temperature in the 

combustion zone is lower than the char ignition temperature, heat is not released and 

gasification is not self sustainable. 

 Temperatures were measured using thermocouples Type K and stored in a flash 

card for posterior analysis. The flows rates of air were controlled using flow controllers. 

The flow rate of steam was controlled by controlling of the flow of water and power 

input to the steam generator, and by maintaining the level of water constant during the 

experiments. The evaporation rate in the steam generator was adjusted to the rate of 
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water entering to the steam generator by controlling the power input in the heater 

element. As shown before, the steam generator was previous calibrated to decrease the 

uncertainty in the results. 

 

7.3. Uncertainty analysis 

 

 As discussed before, the gases were analyzed in a real time and continuously 

using a MS. The MS was calibrated every 72 hours for overlapping, linearity, and 

sensitivity. The calibration was checked out by measuring known compositions of 

mixtures. Appendix F presents details on the MS calibration. To estimate the uncertainty 

in the gas composition, standard deviation was determined for the data. The uncertainty 

for each gas is calculated as the ratio between the standard deviation and the average 

value measure. Additionally, the uncertainty of the temperatures is estimated as the ratio 

between the uncertainty of the device (±1.5 °C) and the measured value. 

 Table 13 presents the maximum, minimum, and average of the uncertainty 

estimated for gasification of DB, DB-ash, and DB-WYC.  

 

Table 13 Gases data uncertainty (%) for gasification of DB, DB-ash, and DB-WYC 
Gases

Max Min Average Max Min Average Max Min Average
CO2 11.94 4.18 8.06 16.55 4.63 10.59 13.80 3.54 8.67
CO 31.54 10.54 21.04 26.27 12.64 19.46 17.89 12.63 15.26
N2 6.48 3.10 4.79 7.16 4.15 5.66 5.64 4.32 4.98
H2 21.65 15.98 18.81 23.52 17.30 20.41 29.87 12.06 20.96
CH4 31.43 9.66 20.55 35.02 9.26 22.14 42.83 3.73 23.28
C2H6 23.89 6.95 15.42 32.60 7.38 19.99 32.47 4.52 18.50

DB-WYC uncertainty (%)DB   uncertainty (%) DB-ash  uncertainty (%)
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Although the standard deviations of the CH4, C2H6, and CO are low, the 

uncertainties of those gases are high because of the low average values measured. The 

data on gas composition of samples taken at the top of the gasifier showed a cyclic 

dynamic behavior in the vicinity of an average value. In general, the value fluctuated 

within ~15% of the average value. 

As shown in Table 14, the uncertainty in the temperatures data is lower than that 

of the gas data. Higher uncertainties in temperature occur at the gases stream because of 

the value of the temperature decrease with increased distances above of the grate. The 

total uncertainty was estimated to be ~0.55% which is practically negligible. 

 The repeatability of the gas data lies between about ± 10 % of the values 

presented in this dissertation for gasification of pure DB, and +8 and -11% for 

gasification of DB-ash. 

 

Table 14 Temperature data uncertainty (%) for gasification of DB, DB-ash, and DB-WYC 
Temperatures along
Gasifier axis Max Min Average Max Min Average Max Min Average
2 cm above of grate 0.31 0.20 0.26 1.38 0.24 0.81 0.27 0.21 0.24
4 cm above of the grate 0.28 0.15 0.22 0.27 0.16 0.21 0.23 0.15 0.19
7 cm above of the grate 0.36 0.15 0.25 0.26 0.15 0.20 0.27 0.15 0.21
10 cm above of the grate 0.40 0.18 0.29 0.34 0.17 0.25 0.35 0.19 0.27
13 cm above of the grate 0.54 0.21 0.38 0.39 0.18 0.28 0.46 0.23 0.35
20 cm above of the grate 1.52 0.38 0.95 1.50 0.19 0.84 1.53 0.41 0.97
24 cm above of the grate 1.32 0.46 0.89 1.66 0.41 1.04 1.50 0.43 0.97
28 cm above of the grate 1.66 0.47 1.07 1.70 0.63 1.16 1.13 0.44 0.79

DB   uncertainty (%) DB-ash  uncertainty (%) DB-WYC uncertainty (%)

 

 

7.4. Temperature  

 

This section presents experimental results on temperature profile.  Figure 42  

shows the evolution of axial temperatures during a typical experiment after the peak 
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temperature achieved nearly steady state (approximately 2 h). The time taken to preheat 

the bed with propane gas until the peak temperature of the bed achieved almost steady 

state was about 2 h. Once the steady-state condition was achieved, to establish Tpeak at 

some location, the gas analysis and temperature data were stored started for 20 minutes 

(Figure 42). 
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Figure 42. Dynamic temperature profile for a typical gas analysis at ER=3.18 and SF=0.8 
 
 

Temperature was measured at eight locations along the gasifier. When plotted 

data, the points were connected to show trends; however, the connecting line may not 

accurately show the correct temperature profile, because there may be a peak between 

two consecutive points that could be different from that shown in the Figure 42.  Under 

such conditions, a note shall be made about the actual temperature profile. 
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Figure 42 shows that the peak temperature was about the same distance (~4 cm) 

above the grate, indicating quasi-steady behavior of the bed. Also, the temperature 

profile curves show that temperature reached a near steady-state (SS) condition; 

therefore, it was appropriate to assume steady-state conditions during the last 10 min of 

each experiment. Although the trend of the temperature curves is the same, a complete 

steady-state temperature condition was difficult to achieve because of the batch feeding 

conditions.  

 As discussed before, heterogeneous oxidation occurs near the bottom of the bed 

where mostly char reacts with oxygen to produce heat required to drive the gasification 

process. Under gasification conditions, char oxidation is essentially diffusion controlled; 

therefore, char oxidation rate depends upon O2 availability in the free stream. Thus, if the 

free-stream gas is severely depleted in O2, the char oxidation rate with O2 is reduced and 

the endothermic reactions of char with steam and CO2 could become significant. 

Therefore, the temperature in the combustion zone (maximum temperature) depends on 

of the concentration of O2, H2O, and CO2 in the combustion zone. Above the combustion 

zone are reduction, pyrolysis, and dry zones where the temperature decreases because 

most of the reactions occurring there are endothermic. Below the peak temperature, the 

bed is dominated by the presence of ash and hence the temperature starts to decrease. At 

the same time, if the rate of decrease in oxygen mass with distance is very high, the 

oxidation zone in the gasifier is rather thin. Then there is an overlap in the exothermic 

oxidation and endothermic gasification zones. 

 



 

 

93

7.4.1. Base case  

 

 For the base case in which ER = 3.18 and SF = 0.68, Figure 43 shows the 

average temperature profile obtained during the last 10 min of the gas analysis.  
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Figure 43. Temperature profile along the gasifier axis for base case ER = 3.18 and SF = 0.68 
 
 

During the experiment, the bed height was kept at ~17 cm by feeding cold DB 

and discharging ash through the grate. From the temperature profile, the different 

regions in the bed can be qualitatively identified.  As described earlier, the peak 

temperature occurs in the combustion zone whereas the other regions of the bed are 
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characterized by a rapid temperature fall from drying and devolatilization of the 

biomass.  In the drying and devolatilization zones, the biomass loses mass that carries 

sensible heat away from the biomass particles, which reduces the temperature. Down-

stream of the top bed surface, the temperature tends to be constant or to increase a little 

because of the released heat by the shift reaction of CO with H2O. The temperature in 

the ash region below the combustion region (2 cm above the grate) is usually lower that 

the peak temperature.  This is caused by ash accumulation at the base of the bed; in other 

words, the concentration of char at the bottom of the bed decreases which reduces the 

temperature. 

 AS DB gradually moves down, the particles heat up, and release water vapor first  

and then pyrolyzes at higher temperatures. The TGA curve of DB shown in  [27] 

indicates that pyrolysis starts occurring at 570 - 600 K. The average temperature (510 

°C) shown in Figure 43 is the integrated average temperature of the bed. Because O2 and 

H2O are available at the bottom of bed, most of the oxidation occurs near the bottom of 

the bed resulting in temperatures of about 761 °C (peak temperature), which correspond 

to particle temperature of char producing CO and H2 by reacting of char with steam and 

oxygen (Reaction 3 and 6). As discussed in Section 2.1, for negligible steam carbon 

reaction and considering only Reaction 3, the particle temperature under negligible 

reduction losses can be derived using Equation 17. For instance, for S:F = 0.38 (cp of air 

= 1.15 kJ/(kg.K), cp of the steam = 2.3 kJ/(kg.K), cp of mixture = 1.4 kJ/ (kg.K), YO2 = 

0.182, and hc,I = 9204 kJ kg-1). The Tp is estimated as 1275 K, which corresponds to a 

higher value than the measured value (1034 K or 761 °C) at the bottom bed (Figure 43). 
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The lower experimental temperature (1034 K) compared to that evaluated with Equation 

17 (1275 K), indicates that char may react with both O2 and steam at the bottom of the 

bed to produce CO and H2. When the steam carbon reaction is included in the model and 

if diffusion control in heterogeneous reactions is assumed, the estimated Tp is much 

lower than that of the experimental data. Under similar operating conditions (ER = 3.68 

and S:F = 0.68) the temperature computed from the current equilibrium model is about 

900 K (Figure 36), which is higher than the average measured value (783 K or 510 °C).  

 If the pyrolysis temperature starts occurring at 570-600 K [27] and the char 

ignition temperature is ~870 K, then from Figure 43, it is apparent that the combustion 

and pyrolysis regions occurs between ~3 and ~7cm and between ~7 and ~13 cm, 

respectively. The dry region moves from ~13 to ~18 cm. The small change in 

temperature (after 18 cm indicates) indicates that the gas stream region start to occur at 

18 cm above the grate.   

 The slight temperature increase observed above of the bed surface, in the free- 

bound region, indicates that the homogenous exothermic reactions of combustible gases 

with the steam liberated by the biomass possibly produce CO2, H2, and heat.  

 

7.4.2. Temperature profiles with air and steam for base fuel 

 

 Figures 44 to 47 show experimental results on temperature profiles as a function 

of the ER and for different SF ratios.  
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Figure 44. Temperature profile along the gasifier axis for SF=0.35 and various ERs 
 
 

 The general trend of the temperature profiles for 0.35 < S:F < 0.8  and 1.59 < ER 

< 6.36 show that the peak temperature in the combustion zone decreases with increased 

ER and  the peak temperature is located somewhere between ~4 and ~5 cm above the 

grate.  This results from continuous ash disposal from the combustion chamber to the 

gasifier plenum. In the earlier co-gasification studies developed by [25], the peak 

temperature shifts continuously toward the free surface because of ash accumulation in 

the bed bottom that had no ash-disposal system.  
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Figure 45. Temperature profile along the gasifier axis for SF = 0.56 and various ERs 
 
 

 Increased ERs means less oxygen supply; hence, the reaction of char and oxygen 

0ccurs in a poor O2 and rich H2O environment that promotes the endothermic reaction of 

char with steam. Additionally, the reaction of C atoms and O2 that is diffusion controlled 

produces more CO than CO2 because of the low oxygen concentration [33] in the 

combustion region. 

 



 

 

98

950

547

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25

Te
m

pe
ra

tu
re

 (°
C

)

Distance above of grate (cm)

ER=1.59

ER=3.18

ER=4.24

ER=6.36

ER=2.12

 

Figure 46. Temperature profile along the gasifier axis for SF = 0.68 and various ERs 
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Figure 47. Temperature profile along the gasifier axis for SF = 0.80 and various ERs 
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The temperatures 2 cm above of the grate are lower than in the peak zone, 

indicating that much of the material available in the bottom of the bed is ash. It is also 

apparent that below the peak zone at 2 cm above the grate, the temperature is not 

monotonically decreasing with increasing ER.  

 The temperature in the reduction, pyrolysis, dry, and gases zones tends to 

decrease with increased ER (Figures 43 and 47). However, at some locations, the 

temperature increases with increased ER because the biomass is fed to the gasifier in 

batch form and it is very difficult to achieve steady state, particularly near the top 

surface. When biomass is added to the gasifier, the bed materials placed above the 

combustion zone move downward and the gas stream is destabilized producing 

temperature changes. Furthermore, the biomass added in each experiment is not 

distributed uniformly in the gasifier causing a different temperature profile. 

 

7.4.3.Temperature profile with air for base fuel (DB) 

 
 Figure 48 shows results on temperature profile of DB gasification using pure air 

as oxidizer for ER = 2.12 and ER = 3.18. 
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Figure 48. Temperature profile along the gasifier axis for gasification with air only at ER = 2.12 and  ER = 
3.18 
 
 

Performing similar calculations as mentioned in a previous section, the particle 

temperature for gasification with air producing CO is estimated to be about 1754 K at 

ER = 2.12 (estimated with Equation 17), whereas the experimental peak temperature is 

about 1373 K (1100 °C) (Figure 48). The higher theoretical value results principally 

because of i) lower Cp, ii) CO2 production due to increased O2 concentration in the 

bottom of the bed, iii) neglect of the radiative losses, and iv) the finite kinetics controlled 

chemicals reaction. 

 The air flow rate is an important variable influencing the temperature profile in 

the bed.  Increasing the air flow rate increases the availability of more O2 to the fuel and 
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hence, CO can oxidize to CO2, which results in an increase of the peak temperature in 

the bed. 

 From Figures 44 through 48, the peak temperature, which coincides with the 

char oxidation zone of the bed, is higher for gasification with air (~1100 °C) than that for 

gasification with air-steam mixtures (1030 °C). The reason is that in gasification with 

air, there is no steam at the bed bottom to cause endothermic reaction of C with H2O; 

however, the CO produced by heterogeneous oxidation in the bed bottom may still react 

with the moisture of the fuel downstream to produce CO2 and H2. The H2 production 

with air only has been verified in the past by  [25] when gasifying wet feedlot biomass 

(FB) with pure air as the oxygen source.  

 

7.4.4. Peak temperature with air and steam for base fuel (DB) 

 

Figure 49 shows the effect of change in S:F and ER on peak temperature 

(combustion zone). Figure 49 shows that the effect of the ER on peak temperature is 

strong compared to S:F. At S:F = 0.8, increasing ER from 1.59 to 6.36 decreases the 

peak temperature by about 311 °C  whereas at ER = 1.59, increasing the S:F ratio from 

0.35 to 0.80 decreased the peak temperature by about 185 °C. Also, at lower ER, the 

effect of the S:F ratio is higher. For instance, at ER = 1.59 the peak temperature 

difference between the curves of S:F = 0.35 and 0.80 is ~185 °C whereas at ER= 6.36 

the difference between the same curves is only 91 °C. Figure 49  shows that at constant 

S:F, the peak temperature decreases almost linearly with increase in ER. Increased S:F 



 

 

102

ratio causes the peak temperature to decrease, which can occur because of i) decreased 

amount of air, ii) change in cp of the mixture, iii) change in regime of combustion-

kinetics vs diffusion control, and iv) steam-char reaction. 
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Figure 49. Peak temperature as a function of the ER and several S:F ratios. S:F = 0 indicates gasification 
only with air 
 
 

As discussed before, the peak temperature for gasification with air only is higher 

than that for gasification with air-steam; it could be caused by decreasing cp of the 

mixture, increasing diffusion rate, and negligible char-steam reaction. At ER = 2.12, the 

peak temperature for gasification with air only is about 147 °C (15.45%) higher as 

compared to that of gasification with air-steam at S:F = 0.35 while at ER = 3.18,  the 
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difference in peak temperature between gasification with air and gasification with air-

steam is ~ 132 °C (15.24%).   

The percentage increase in peak temperature between gasification with air-steam 

at S:F = 0.35 and gasification with air only is almost constant; thus, it is appropriate to 

assume 15.35% as increase in temperature to estimate the peak temperature for 

gasification using air. Under that assumption, the peak temperature for gasification with 

air at ER = 1.59 and at ER = 6.36would be ~1190 °C and 704°C, respectively. 

 

7.4.5. Fuel: ash blend (90% DB-10% ash) with air and steam 

 

 In this section, the results for temperature profiles obtained for co-gasification of 

DB-ash blend (90% DB-10% ash) are presented. The results presented in Figure 50 and 

Figure 51 show that the temperature curves for gasification of DB-ash blend are almost 

the same as those for gasification of DB presented earlier. The peak temperature lies 

between 4 and 7 cm above of the grate and increases with decreased S:F ratio (e.g., at 

S:F = 0.35 the peak temperature is about 1030 °C whereas at S:F = 0.8. it is about 860 

°C). 
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Figure 50. Temperature profile along the gasifier axis for gasification of DB-ash blend at S:F = 0.35 
 
 

 Although the temperature in the combustion region (peak temperature) depends 

mostly on the oxygen (ER) and steam concentration (S:F), the peak temperature for 

gasification of the DB-ash blend is a little higher (~15 °C) than the peak temperature of 

gasification DB under the same operating conditions (ER=1.59 and S:F=0.35); this can 

due to decreased porosity of the bed (void fraction). Adding ash to the DB decreases the 

bed porosity because the particle size of the ash is less than the particle size of the DB 

(~1/4”). From Equations 9 and 11, it can be seen that decreased porosity increase the 

burn rate per unit volume of the bed, causing a higher heat generation in the oxidation 

zone, which lead to a higher temperature.  Lower bed porosities lead to higher oxidizer 
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velocity around of the char particles increasing the diffusion coefficient (equation 12), 

which also improve the char burn rate. As porosity decreases, the bulk density of char in 

the combustion region increases, increasing the bed heat capacity, which may require 

more sensible heat energy to heat it to a higher temperature. Nevertheless, from the 

above figures, it is apparent that the effect caused by a higher heat capacity in the 

oxidation zone is compensated by the temperature rise effect due to more heat 

generation.  
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Figure 51. Temperature profile along the gasifier axis for gasification of DB-ash blend at S:F=0.80 
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Increased porosity leads to a higher convective heat transfer in the bed;  thus, in 

case of larger bed porosity, the temperature may not only be lower because of the lower 

burn rate, but also may be lower because of the higher rate of heat loss from the 

oxidation zone. 

The earlier figures show that adding ash does not affect much the temperature in 

the free-board region because the temperature measured in the gas stream region (100-

250 °C) was almost the same for gasification of DB and DB-ash.  

 

7.4.6. DB: WYC blend (90% WYC-10% ash) with air and steam 

 

 This section presents the temperature profile for co-gasification of DB and WYC. 

The temperature profile presented in Figures 52 and 53 for DB-WYC blend is almost the 

same as those of DB and DB-ash blend. The peak temperature, measured in the 

combustion region, lies about 5 cm above of the grate (Figure 52) and it is a slightly 

higher (1054 °C) compared to those of DB (1016 °C) and DB-ash blend (1030 °C), 

which were tested at ER =1 .59 and S:F = 0.35.  

The small difference between the combustion temperatures indicates that the char 

in DB and WYC may have a similar composition. If the char of DB and WYC have the 

same composition, the increase in the peak temperature for gasification of DB-WYC 

may be attributed to decreased bed porosity because the particle size of WYC is lower 

than the particle size of ash and DB. As discussed above, decreased bed porosity 

increases combustion temperatures because of increased diffusion. 
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Figure 52. Temperature profile along the gasifier axis for gasification of DB-WYC blend at S:F = 0.35 
 
 

The higher gas temperatures measured above of the bed for DB-WYC blend 

indicates that more heat is released per unit mass of fuel (higher HHV of fuel) and less 

sensible energy is absorbed in the pyrolysis and dry regions. In other words, because of 

lower moisture (22.81%) and VM (34.5%) content in WYC compared to those of DB 

(25.26% and 46.84%), gasification of DB-WYC blend produces less volatiles and steam. 

Therefore, the heat required in the devolatilization and drying regions is less and more 

sensible energy leaves the gasifier with the gases.   
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Figure 53. Temperature profile along the gasifier axis for gasification of DB-WYC blend at S:F = 0.80 
 
 

Co-gasification of DB with WYC does affect the temperature very much in the 

regions closer to the grate because this temperature correspond to the ash temperature, 

which is more affected by the heat diffusion from the combustion region and by the 

convection of heat from the combustion zone. 

 

7.4.7. Comparison of peak temperature of base fuel (DB), (90% DB-10% ash) and (90% 

DB-10% WYC) 

 

 Figure 54 presents the peak temperatures in the combustion region for 

gasification of DB, DB-ash and DB-WYC as function of ER and S:F ratio.  
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Figure 54. Comparison of peak temperature of gasification of DB and co-gasification of DB-ash and  
DB-WYC 
 
 

At S:F = 0.35, the difference in peak temperatures between gasification of DB 

and co-gasification of DB-ash and DB-WYC is not much. The highest peak temperature 

was achieved for DB-WYC whereas DB had the lowest peak temperature. The peak 

temperature of DB-ash lies between the peak temperature of DB and DB-WYC. As 

discussed before, the dissimilarity in peak temperature may be caused by a variation 

between the bed porosity during DB gasification and co-gasification of DB-ash and DB-

WYC blends. Also, higher char content for DB-WYC blend increases the amount of 

energy released in the bed, which increases the peak temperature. At S:F = 0.80 and 2.12 
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< ER < 6.36, the peak temperature of DB-WYC is higher than DB-ash and DB; 

however, at ER = 1.59 and ER = 6.36, the difference between the peak temperature for 

all cases is very small.  

 

7.5. Gas composition  

 

This section presents the gas composition results for gasification of base fuel and 

parametric fuels. The operational conditions were presented earlier in Table 11 and 

Table 12. The results obtained on gas composition are discussed in this section: i) base 

case, ii) base fuel, and iii) parametric fuels.  

A mass spectrometer (ProLab Thermo ONIX) was used to analyze the gas 

composition. Appendix F discusses the principle of operation and the procedure used.  

The gas samples were taken from the top of the gasifier and were passed through 

a sampling system to condense tar and water and to capture the particulate material to 

protect the mass spectrometer. Gases analyzed include nitrogen (N2), carbon oxides 

(CO2 and CO), hydrogen (H2), hydrocarbons (CH4 and C2H6), and oxygen (O2). A 

typical gas analysis performed by the mass spectrometer is shown as a function of the 

time in Figure 55 for a typical experiment at ER = 4.24 and S:F = 0.35.  As discussed 

before, gas analysis started as soon as the temperature in the combustion zone achieved 

almost steady state (Tpeak at same location during the experiment) and gas composition 

was monitored continuously for 20 min in to decrease the uncertainty in the results. 

Figure 55 shows that the data on gas composition have a cyclic dynamic behavior in the 
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vicinity of an average value. However, at first glimpse, it appears that the average is 

almost constant during the experimental period. Figure 55 shows the mole fraction of N2, 

H2, CO2, CO, CH4, and C2H6 (on a dry basis) along with the average mole fraction and 

the standard deviation (STDEV) of the data. The gas analysis did not indicate presence 

of O2 in the products obtained in the set of experiments; thus, O2 is not discussed in this 

dissertation.  The data on H2 presents the major standard deviation(3.2) about of the 

average value of 18.62% whereas the data on CH4, CO2, and C2H6 show the lower 

standard deviation and the data on CO shows a standard deviation of 1.53. See section 

for the uncertainty in the analysis of gases. 
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Figure 55. Typical gas analysis for a typical experiment at ER = 4.24 and S:F = 0.35 performed by mass 
spectrometer  
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Although temperature profiles along the gasifier axis show that the temperature 

reaches almost a steady state condition within 10 minutes after the start of gas analysis 

(Figure 42), the data on gas composition (Figure 55) show that the average gas 

composition is almost constant during the experiment period (20 min). The results on 

gas composition discussed in this dissertation (unless other-wise specified) correspond to 

the average value tested during the last 10 min of each experiment.    

 

7.5.1. Gas composition for base case fuel DB with air and steam 

 

 Figure 56 shows a bar graphic of the average dry gas composition obtained 

during the last 10 min for the base-case fuel at ER = 3.18 and S:F = 0.68. 
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Figure 56. Gas composition for base case at ER=3.18 and S:F=0.68 
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The gas analysis shows the presence of both combustible and non-combustible 

gases. The primary products in the gases are non-combustibles, such as N2 and CO2 with 

a total of 68.39% whereas other combustibles species (H2, CO, CH4, and C2H6) achieve 

31.61%. The dominant fuel component is H2 (19.88 ±4%, which is almost 70% of the 

combustibles), which suggests that the steam supplied favors the steam reforming and 

shift reactions. In the earlier study developed by Priyadarsan et al., [25], steam was not 

supplied to the gasifier and the molar composition of H2 was only of 7-10% with CO 

about 25%. Also, the current molar concentrations of CO (10.77±1.5%) and CO2 

(17.2±0.98%) indicates that the CO produced from char-O2 reaction reacts with H2O 

supplied in the oxidizer to produce H2 and CO2. Other hydrocarbons such as CH4 and 

C2H6 show much lower concentrations in the products but they have high HHV. It may 

result because the lower temperatures generated by the endothermic reaction of char and 

steam in the combustion and reduction regions which are not enough for the 

heterogeneous reaction of char and H2 to produce CH4. In other words, the production of 

CH4 and C2H6 is mainly due to pyrolysis of volatile matter and not to the heterogeneous 

reaction in the reduction region.  In Figure 56, it may also be observed that the data on 

diatomic gases (H2 and N2) has the highest standard deviation whereas the hydrocarbons 

presented the lowest standard deviation.   
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7.5.2. Variation of gas composition base fuel (DB) with ER and S:F 

 

 This section describes the variation of gas composition of the products obtained 

for gasification of the base fuel (DB). Figures 57 through 60 show mole fraction on a dry 

basis of the H2, CO2, CO, CH4, and C2H6 as a function of the ER and for different S:F 

ratios.  
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Figure 57. Gas composition for gasification of DB as a function of ER at S:F=0.35 
 
 

At constant S:F, increasing the ER decreases the O2 supplied with the air at the 

bottom, which decreases the peak temperature in the combustion zone; thus, as the 
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temperature is lowered, the thermodynamics favor the reaction C+O2→CO2. CO2 

increase at lower combustion temperatures. It is recalled that the CO/CO2 ratio is 

function of temperature (Equation 16). When CO2 is liberated, the heat delivered per unit 

mass of oxygen is 12,300 kJ/kg of O2 whereas for CO, the heat delivered is 6910 kJ/kg 

of O2 only. As CO decreases, CO2 increases the heat input because the oxidation will 

increase, which tends to increase temperature. More CO2 production implies 

consumption of more O2 via CO2 than via CO, and hence less CO is formed.  
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Figure 58. Gas composition for gasification of DB as a function of ER at S:F=0.56 
 
 

Additionally, at constant S:F, increased ER implies decreased air supplied and 

hence increased steam: air ratio (S:A) and the char combustion occurs in a H2O rich 
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mixture which favors the heterogeneous reaction of char with H2O to produce CO and 

H2. The rate of H2 and CO produced by the heterogeneous reaction of the char with H2O 

becomes important when the reaction occurs at low O2. On the other hand, the 

concentrations of CH4 and C2H6 were lower (1 < CH4 <  2 and 0.5 < C2H6 < 1) 

compared with those of other gases and were almost not affected by ER. However, for 

S:F = 0.56 and S:F = 0.68  the production of CH4 shows a slight peak at  ER =  3.18 and 

ER = 4.24 respectively (Figures 58 and 59). At other S:F ratios, the mole fraction of CH4 

and C2H6 tend to increase with increased ER.  
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Figure 59. Gas composition for gasification of DB as a function of ER at S:F=0.68 
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From Figures 57 to 60, it may be observed that at constant S:F ratio, ER < 3.18  

don affect much the production of CO. However, at ER > 3.18, the CO mole fraction 

decreases considerably with increased ER.  

The H2 trend curves show an increase in mole fraction with increased ER. At 

3.18 < ER < 4.24, the H2 production seems to increase faster with increased ER than at 

ER < 3.18. The tendency of the curves of H2 and CO suggests that, at ER ranging from 

3.18 and 4.2, the reaction CO+H2O→H2+CO2 is strongly favored by increased ER.  At 

ER ranging from 1.59 to 3.18, the production of CO2 seems to be more affected by 

changes in ER.  
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Figure 60. Gas composition for gasification of DB as a function of ER and S:F = 0.80 
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Figure 61shows the effect of the ER on the concentrations of H2 at various S:F 

ratios. At constant ER, higher S:F ratios signify more steam available to react with char 

to produce CO and H2 (steam char reaction) in the bottom of the bed (combustion zone). 

The CO produced by the steam reforming reaction posterior reacts with the surplus 

steam in the upper zones (reduction zone) to produce more H2 and CO2 (shift reaction. 
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Figure 61. H2 composition for gasification of DB as a function of ER at several S:F 
 
 

It is evident from Figure 61 that at lower S:F ratios, ER affects the H2production 

more than at higher S:F ratios. For instance, at S:F = 0.35 increasing the ER from 1.59 to 

6.56 increases the H2 mole fraction by about 53 % whereas at S:F=0.80, changing the ER 
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from 1.59 to 6.36 increases the H2 by only 22%. Also, the effect of the S:F ratio on H2 

production is more significant at lower ER than at higher ER. At ER = 1.59, changing 

the S:F from 0.35 to 0.80 increases the production of H2 by 57.5%, but at ER = 6.36, 

increasing the S:F from 0.35 to 0.68 increases the H2 mole fraction by only 24%. 
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Figure 62. CO composition for gasification of DB as a function of ER at several S:F 
 
 

From Figure 62, it appears that at constant S:F ratio, the effect of the ER on CO 

production at ER < 3.18 is practically insignificant, but at ER > 3.18, the increased ER 

strongly decreases the CO mole fraction. A comparison between the effect of ER and 
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S:F ratio shows that at ER > 3.18, the effect of ER is higher than that of the S:F; 

however, at ER < 3.18, S:F seems to affect CO production more than ER.  

Also, the results show that at constant ER, changing S:F ratio affects H2 

production more than CO production. For instance, at ER = 1.59 changing the S: F from 

0.35 to 0.8 increases H2 production by ~57 % but decreases CO production of by only 

20.7 %. 
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Figure 63. CO2 composition for gasification of DB vs ER at several S:F 
 
 

 Figure 63 presents the CO2 molar fraction is presented in as a function of the ER 

for several S:F ratios. As discussed earlier, at constant S:F ratio, increased ER signifies 

less oxygen entering with the air supplied to the gasifier; thus, the char reacts with the 
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oxidizer in an environment rich in H2O, which favors the reaction C+H2O→CO+H2. 

However, the remaining steam from the combustion region reacts in the downstream 

region with CO to produce CO2 and H2. Less C atoms leaving the gasifier as CO imply 

more C atoms leaving as CO2. ER affects the CO2production more than S:F. 

 

7.5.3. Gas composition for DB in air 

 

 A set of experiments were performed on DB gasification using only air as 

oxidizing agent. This section presents the results of gas composition on a dry basis.  
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Figure 64. Gas composition for gasification of DB with air at ER = 2.12 
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Figures 64 and 65 report the gas composition obtained in gasification of DB with 

air only at ER = 2.12 and 3.18. Using air in fixed-bed gasification only the exothermic 

reactions C+1/2 O2→CO and C+O2→CO2 occur in the combustion zone. Thus, H2 is 

produced only by the homogeneous reaction CO+H2O→H2+CO2 (shift reaction) in the 

drying and stream-gas regions where there is available steam produced by the 

evaporation of the moisture contained in the biomass. Because the temperature in the 

evaporation region is low, H2O must diffuse upstream to the high-temperature region for 

the CO+H2O reaction. Thus, H2 production is not significant compared to the air and 

steam cases discussed earlier. 

Less oxygen in the combustion zone caused by increased ER promotes the 

reaction of char with steam to produce CO. As showed in Figures 64 and 65, at ER  = 

2.12, the CO contained in the gases leaving the gasifier is about 15.40% whereas, at ER 

= 3.18, the CO production increased to about 23%.  

More C atom consumed in the reaction of char to produce CO implies less C 

atoms available to produce CO2. Also, CO2 and H2 decrease with increased ER. 

However, the effect of ER on the CO2 production is as more significant compared with 

that on H2 production. Increasing ER from 2.12 to 3.18 decreases the CO2 contained in 

the gases by ~5% whereas the same increment in the ER (2.12 to 3.18) decrease the H2 

only by ~3%.  

Comparing the results obtained for gasification with air to that obtained for 

gasification with air-steam suggests that the heterogeneous reaction of char with steam is 

very important if mixtures rich in H2 must be produced. For gasification with air, at ER 
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=3 .18, the H2molar fraction is ~7.2% whereas for gasification with air-steam under the 

same ER and S:F=0.68, the H2molar fraction is ~20%. From this simple observation, one 

can estimate that the wet gas oxidation coupled with heterogeneous reactions produces 

an additional 13% of H2. 

The production of other hydrocarbons, such as CH4 and C2H4, does not seem to 

be affected by ER.  Decreasing H2 and CO2 means more C atoms and H atom are 

available for producing hydrocarbons; this may be the reason for slight increase in 

production of CH4 and C2H6 with increase in the ER (Figures 64 and 65). 
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Figure 65. Gas composition for gasification of DB with air at ER=3.18 
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7.5.4.Gas composition for 90% DB: 10% ash blends in steam and air 

 

A set of experiments of co-gasification of pure DB with ash from DB were 

performed to determine if ash has a catalytic effect on gas composition. Pure DB (1 kg) 

and DB ash (0.11 kg) were blended to maintain the same power supplied to the gasifier. 

The ash in DB is 14.95%; with the addition of ash, the total ash % in the blend is about 

23%. The analysis of the ash used in the experiments was presented earlier.  
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Figure 66. Gas composition for gasification of DB-ash blend with air-steam at S:F=3.15 
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The gasification experiments with DB:ash blends were made under the same 

operating conditions as for gasification of DB. Two S:F ratios were used and the results 

on gas composition are presented in this section as a function of the ER. At the end of 

the section, the CO and H2 results obtained for gasification of DB-ash blends are 

compared with gasification of pure DB. 

As expected, of gas composition for gasification of DB and gasification of DB-

ash blends show the same tendency; thus, it can be stated that the effect of ER is the 

same for gasification of DB as for co-gasification of DB-ash.  
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Figure 67. Gas composition for gasification of DB-ash blend with air-steam at S:F=0.8 
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Figures 66 and 67 show the effect of ER on gas composition at S:F = 0.35 and 

S:F = 0.80, respectively. Figures 68 and 69 compare CO produced by pure DB and 90:10 

DB:ash blends. 
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Figure 68. CO and Tpeak for gasification of DB and DB-ash blend with air-steam at S:F=0.35 
 
 

It is apparent from Figures 68 and 69 that the presence of ash produces some 

effect on the CO production. In other words, the addition of ash increases the rate of the 

reactions C+1/2O2→CO and C+H2O→CO+H2. However, it appears, that the increase in 

the reaction rate of char with oxygen is higher than that of the reaction of char with 

steam, because in general almost for all the range of the operating condition (S:F and 

ER) studied,  the peak temperature tested in the combustion region is higher for 
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gasification of DB-ash than that of gasification of pure DB. The temperature for 

gasification of DB-ash is only a little lower for S:F = 0.8 and ER < 3.18 (Figure 54). 

Both heterogeneous reactions of char with O2 and char with H2O produce CO 

and occur in the combustion region, but the reactions C+1/2O2→CO is exothermic 

whereas the reaction C+H2O→CO+H2 is endothermic. Thus, under the same operating 

conditions, a change in the peak temperature indicates a change in the reaction rate of 

any of those reactions. In other words, increasing the reaction rate of char with O2, while 

the rate of reaction of char with steam is maintained constant, increases the peak 

temperature. On the contrary, at constant char-O2 reaction rate, increasing the rate of 

reaction of char with steam decreases the peak temperature. 

Figure 68 shows the effect of gasifying pure DB and DB-ash blend on the moles 

of CO are shown in for S:F=0.35 and various ER. The results show that the effect of ash 

on the moles of CO is more important at ER > 3.18 than that at ER < 3.18. This along 

with the fact that the difference between the peak temperature of DB-ash and pure DB is 

almost constant for 2.59 <ER <6.36 (Figure 54) suggests that at ER < .18 part of the CO 

produced in the heterogeneous reaction of char with steam and char with O2 is consumed 

by the shift reaction (CO+H2O→CO2+H2). In others words, at constant S:F = 0.35 and 

ER < 3.18, the presence of ash effects the reaction rate of the shift reaction.  

 As shown in Figure 69, at S:F = 0.80, the catalytic effect of ash on the moles of  

CO production is almost constant for all ER investigated. Only at 2.12 < ER < 3.18, this 

effect appears to be more important.  
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The insignificant difference between the peak temperature of gasification of DB-

ash and pure DB, at S:F = 0.80 and ER < 3.18, suggests that under this range of 

operating conditions, the presence of ash increases the reaction rate of char with O2 and 

char with H2O almost in the same proportion. On the other hand, the greatest difference 

of peak temperature tested at ER > 3.18 and S:F= 0.80 indicates that ash seems to 

increase the reaction rate of the char with O2.   
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Figure 69. CO composition for gasification of DB and DB-ash blend with air-steam at S:F=0.8 
 
 

Comparing the results presented in Figures 68 and 69, the catalytic effect of ash 

on CO production depends on the S:F ratio. At S:F = 0.35, the effect of the presence of 
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ash on CO is more important at ER > 3.18 than that at ER < 3.18 but at S:F = 0.80, that 

effect seems to be more important at ER < 3.18 than at ER > 3.18. 

Figures 70 and 71 show the effect on H2 production. The H2 content increases 

with the addition of ash for all the experiments performed at ER < 3.18. However, at ER 

> 3.18, the effect of the presence of ash on H2 content is insignificant.  The increase in 

the production of H2 at ER = 3.18 caused by the presence of ash is achieved at ER = 1.59 

and S:F = 0.35. 
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Figure 70. H2 and Tpeak for gasification of DB and DB-ash blend with air-steam at S:F=0.35 
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In general, the experiment performed with added ash, the highest increase in CO 

content is around 50%, obtained for S:F = 0.35 and ER = 6.36, whereas the highest 

increase in H2 (~30%) was achieved at ER = 1.5 and S:F = 0.35. 

           The results obtained agree well with earlier results obtained by [15] for 

gasification of coal with agricultural biomasses, even when different biomass and 

different catalysts were used. In that study, the maximum increase in H2 (28%) was 

obtained with the presence of Ni-Mg catalyst whereas the maximum increase in CO 

(70%) was obtained by using dolomite catalyst. 
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Figure 71. H2 composition for gasification of DB and DB-ash blend with air-steam at S:F=0.80 
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7.5.5. Gas composition for 90% DB and 10% WYC in air and steam 

 

 This section presents the results on gas composition of co-gasification of DB 

with coal. A set of experiments using a blend of 90% DB and 10% WYC were 

performed under the same operating conditions used in gasification of DB-ash blends. 
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Figure 72. Gas composition of co-gasification of DB with coal at S:F=0.35 and various ERs 
 
 

 The trends are very similar for DB and DB:WYC (Figures 72 and 73). Increased 

ER increases H2, CO2, CH4, and C2H6, but decreases the moles of CO. Even though the 

gasification curves of DB and DB-WYC are similar, the effects of the ER on the moles 
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of H2 and CO are different. For instance, for gasification of DB at ER = 0.35, increasing 

the ER from 1.59 to 6.36 decreases the CO moles by 45% and  increases the H2  moles 

by 52.75% whereas for gasification of DB with WYC blend, the same change in the ER 

(1.59-6.36) increases H2 by 21.1%  and decreases CO by 18.43%.  
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Figure 73. Gas composition of co-gasification of DB with coal at S:F=0.80 and various ERs 
 
 

 Figures 72 and 73 show that at constant ER, increased S:F tends to increase the 

moles of  H2, CO2, CH4, and C2H6, but decrease the moles of CO. The slight increase in 

CH4 and C2H6 because of increased S:F ratios suggests that most hydrocarbons are 

produced by volatilizing VM  in the pyrolysis region. 
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Figure 74. CO composition for gasification of DB and DB-WYC blend with air-steam at S:F=0.35 
 
 

Figures 74 and 75 compare CO production from pure DB and DB-WYC blend 

for S:F = 0.35 and S:F = 0.80 and 1.59 < ER < 6.36. In general, the presence of WYC 

shows an increase in CO. One expect more CO for pure DB than for DB:WYC blend 

because DB has more oxygen. However, coal has more fixed carbon than DB, resulting 

in more CO.  The peak temperature in the combustion region of the bed is higher for 

gasification of DB-WYC (because of more fixed carbon in coal) than that of gasification 

of DB. Therefore, it is likely that the high CO content in the products obtained by 

gasification of DB-WYC is because of increased reaction of C+1/2 O2→CO. This 

reaction is exothermic, which signifies more heat released. The most increase in CO 
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(~64.5%) is achieved for ER = 6.36 and S:F = 0.35 whereas the lowest rise in CO 

(~11.1%) was at ER = 3.18 and S:F = 0.35.  
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Figure 75.CO composition for gasification of DB and DB-WYC blend with air-steam at S:F=0.80 
 
 

Figures 76 and 77 compare the effect of blend WYC with pure DB on H2 

production. At ER < 3.18, the presence of WYC produces more H2 while at ER>3.18, 

this effect seems to be insignificant. Because the increase in CO caused by the presence 

of WYC is lower at ER < 3.18 than that at ER > 3.18 (Figures 74 and 75), it can be 

interpreted that at ER < 3.18, adding WYC increases the shift reaction, which consumes 

some CO produced in the combustion zone by the reactions of char with O2 and char 

with H2O to produce more H2 and CO2. In other words, at ER < 3.18, WYC seems to 

promote the shift reaction. 
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Figure 76. H2 composition for gasification of DB and DB-WYC blend with air-steam at S:F=0.35 
 
 

 It is apparent, from the results that for this set of experiments, the adding WYC 

affects the reactions C+1/2O2→CO and C+H2O→CO+H2. However, the effect of 

oxydation seems to be more important than char reforming, because as showed before, 

the presence of WYC increase the peak temperature (Tpeak) in the combustion region. 

The H2 curves (Figures 76 and 77) appear to indicate that the effect of WYC on the shift 

reaction is important at ER <3 .18 whereas at ER >3 .18, this effect is insignificant.  
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Figure 77.  H2 composition for gasification of DB and DB-WYC blend with air-steam at S:F=0.80 
 
 

 Figures 78 and 79 compare the effect of gasifying pure DB, DB-ash, and 

DB:WYC blends on CO. In general, the results show that gasification of blends produce 

more CO than pure DB. Because the Tpeak is higher with blends, oxidation and reforming 

of char are favored. More CO is produced by gasifying the blends compared to 

gasification of DB indicating that both WYC and ash serve as catalysts to increase the 

reaction rate of char with steam and oxygen. 
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Figure 78. CO and Tpeak from gasification of pure DB, DB-ash, and DB-WYC blends at S:F=0.35 
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Figure 79. CO composition from gasification of pure DB, DB-ash, and DB-WYC blends at S:F=0.80 
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 Comparing Figures 78 and 79, it is appears that the effect of WYC on CO is 

slightly higher than that caused by the ash. This could result because of the higher FC 

content in WYC, which increases the peak temperature compared to the DB:Ash blend.  

Figures 80 and 81 present the H2 leaving the gasifier for gasification of pure DB, 

and DB-ash and DB-WYC blends as a function of the ER and for S:F = 0.35 and S:F = 

0.80. In general, the results show that at ER > 3.18 the effect of adding ash and WYC on 

H2 is insignificant. However, at ER < 3.18, the presence of ash and WYC increase H2, 

which indicate  that both the ash and WYC have some catalytic effect of the shift 

reaction at low ER or high temperature.  
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Figure 80. H2 % and Tpeak from gasification of pure DB, DB-ash, and DB-WYC blends at S:F=0.35 
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 The difference between the H2moles produced by gasification of DB-WYC and 

those produced by gasification of pure DB and DB-ash is insignificant, which appears to 

indicate the most difference in gas composition (CO) because of the higher FC content 

in WYC compared to DB-ash. 
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Figure 81. H2 composition from gasification of pure DB, DB-ash, and DB-WYC blends at S:F=0.80 
 

7.6. Gross heating value of gas mixtures (HHV) and energy conversion efficiency 

(ECE) 

 
From biomass analysis: Since the heat value of volatile matter (HVVM) is 

approximately equal to {HVFuel-HVC* FC}/{1-FC}; where HVfuel is the heat value of 
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the fuel, HVC is the heat value of the char carbon, and FC is the amount of fixed carbon 

in the fuel; then following  [33] the heating value of the gas mixture (HVgas) consisting of 

VM released by pyrolysis (Equation 22) and CO produced by char oxidation for non-

adiabatic air blown gasification (Equation 23) can be estimated with Equation 26. Note 

that there is heat lost (non-adiabatic) to the surroundings during exothermic partial 

oxidation of C to CO. 

The energy density or gross heating value of the products leaving the gasifier can 

be calculated as follows: 

 

 ∑=
i

iiGases HHVXHHH *  (40) 

 

where Xi and HHVi are mole fraction and gross heating value (kJ/SATP m3) on a dry 

basis of the fuel gases leaving the gasifier, i = CO, CH4, H2, etc. HHVGases is the energy 

density (kJ/ SATP m3) of the fuel gases on a dry basis. Results for all three parametric 

fuels will be presented.  

 

7.6.1. Pure DB 

 

HHV of DB 

 Table 15 presents results on HHV of gasification of DB as a function of ER and 

various S:F ratios. The results indicate that increasing S:F increases the gross heating 
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value of the gases; this is caused principally by increased production of hydrocarbons 

and H2 from increased S:F. At constant S:F, increasing ER tends to increase HHV until a 

critical ER beyond which HHV decreases. From Table 15, it is evident that the effect of 

S:F on HHV of gases is more significant than that of ER. 

 For the set of operating condition studied, the HHV of the gases ranged between 

3268 and 4285 kJ/ SATP m3, which is  9 and 12.6% of the energy density of the CH4. 

The data on HHV indicate that gasification of DB under the operating conditions studied 

produces low “Btu” gases; however, gases without N2 (N2 free) have higher HHV. 

Appendix G presents the HHV of gases free of N2 produced by DB gasification. 

 

Table 15. Energy density of gases on a dry basis (kJ/ SATPm3) for DB as a function of ER and various S:F 
ratios 

S:F  (mole ratio) ER
1.56 2.12 3.18 4.24 6.36

0.35 3280 3473 3787 3648 3666
0.56 3268 3835 4402 4245 4032
0.68 3762 3955 3993 4217 4079
0.80 3934 4116 4291 4378 4585  

 

Energy conversion efficiency of DB 

Although the energy density or HHV of the products gives information on the 

amount of energy per unit of gas produced in the gasifier, it does not provide 

information on the fraction of energy recuperated as fuel gases per each fuel unit 

supplied to the gasifier. The fraction of energy recuperated in the gasifier can be 

calculated with Equation 41. 
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 Gases
,

Fuel Fuel steam

HHV
N * HHV N *18( 4.18(373 298))Gas Eη

λ
=

+ + −
 (41) 

 

where, NFuel and Nsteam correspond to the moles of fuel and steam supplied respectively 

to the gasifier by each normal m3 of dry product gases and  λ is the latent heat of steam. 

HHVFuel is the gross heat value (kJ/ kmol of DAF fuel) of the fuel and ηGas,E is the 

energy conversion efficiency (ECE). 

 Because it was impossible to measure the mass of tar produced during the 

experiments, the volumetric flow of gases, required to calculate the energy recovery, was 

estimated by mass balance using tar and gas compositions. Ultimate and proximate 

analyses were performed on tar to determine its composition. Table 16 presents the 

ultimate and proximate analysis of the heavy tar on a dry basis. Using the composition 

also the empirical formulae was derived. 

 

Table 16. Heavy tar analysis 
Dry loss (%) 0
Ash (%) 1.07
C (%) 52.38
H (%) 8.79
N (%) 3.92
O (%) 33.6
S (%) 0.24
Dry basis HHV (kJ/kg) 21556
DAF HHV(kJ/kg) 21789
Emprical Formula CH2.01N0.064O0.48S0.0017  

 



 

 

143

Table 17 shows ECE for various ER and S:F. The ECE was calculated using the 

yield of gases, energy density of the gases, and Equation 33. Appendix E presents a 

program developed in EES code to calculate the yields of gases, char, and tar. The 

program required input data such as, fuel composition, gas composition, ER, and S:F.  

 

Table 17. Energy Conversion Efficiency (ECE) for DB as a function of the ER and various S:F ratios 
S:F  (mole ratio) ER

1.56 2.12 3.18 4.24 6.36
0.35 0.65 0.56 0.45 0.33 0.24
0.56 0.60 0.59 0.53 0.41 0.27
0.68 0.69 0.60 0.47 0.41 0.29
0.80 0.69 0.64 0.53 0.44 0.35  

 

As shown in Table 17, increased S:F ratio increases ECE. Even though the 

energy density of the gases increases with increased ER, ECE decreases with increased 

ER. When ER is large, gasification tends to be almost pure pyrolysis that produces lesser 

amounts of combustible gases with higher tar content and more combustible loss through 

char in ash because almost all fixed carbon is lost through ash.  

 For the range of the operating conditions studied, ECE ranged from 0.24 to 0.69; 

the remaining fraction corresponds to the energy returned in char, tar, and sensible heat 

of gases leaving the gasifier.  ECE discussed in this dissertation is a little higher than that 

presented by [37] for non-adiabatic fluidized bed gasification of FB (0.20-0.60). This 

agrees with the fact that in fixed bed gasification, gases leave the gasifier at lower 

temperatures as compared to fluidized-bed gasification. Lower sensible heat of gases 

leaving the gasifier implies higher gasifier efficiency; thus, more energy is recovered in 
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the gases. However, the experimental EEC estimated is lower than that estimated by 

equilibrium model (~0.48-0.87).  

 Figure 82 shows ECE estimated by equilibrium model and obtained by 

experimentation. The trend of the curves obtained by modeling shows a peak at about 

ER=3.18 beyond which the ECE decrease. On the other hand, the trend of the 

experimental data do not shows peaks and the ECE decreases with increased ER.  

 As discussed before, the ECE decrease with increased ER because there is not 

enough oxygen to burn completely all char. Then, the process tends to be pure pyrolysis, 

which produces mixtures with higher concentrations of fuel gases, but lower ECE 

because of char production. The char production estimated by equilibrium model starts 

only at ER>3.18 (Appendix D) because equilibrium model supposes infinite time for the 

reactions. However, experimental results, where the time is finite, showed that char 

increases with ER and it is produced almost at all experimental conditions (Figure 88). 

Therefore, the experimental ECE curves shows a regular decrease with ER whereas the 

ECE from modeling show a peak at ER=3.18 where the char production starts (Figure 

82). 
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Figure 82. ECE estimated by equilibrium model and obtained experimentally 
 
 

7.6.2. DB-ash blends 

 

HHV of DB-ash blends 

 Table 18 shows that the effect of both ER and S:F ratio on the HHV of the gases 

for gasification of DB-ash blend is practically the same as pure DB. Also, increased ER 

tends to increase HHV of gases until a critical value beyond which HHV starts to 

decrease. The maximum and minimum HHVs were 4544 and 3815 kJ/SATP m3, 

respectively, which corresponds to 10.5 and 13.5% of HHV of CH4 calculated on a mole 

basis. It is apparent from Table 15 and Table 18 that gasification of DB-ash produces 

gases with slightly more HHV than gasification of pure DB.  

 



 

 

146

Table 18. Energy density of gases on a dry basis (kJ/ SATPm3) for DB-ash as a function of ER and various 
S:F ratios 

S:F ER
1.56 2.12 3.18 4.24 6.36

0.35 3815 3972 3960 4039 3968
0.80 4423 4544 4882 4633 4740  

 

Energy conversion efficiency of DB-ash blend 

 Table 19 presents ECE for gasification of DB-ash blend for different ER and S:F. 

Increased ER decreases ECE whereas increased S:F increases ECE. For the set of 

operating condition discussed in this dissertation, the ECE of gasification of DB-ash 

blends estimated by atom balance was between 0.26 and 0.80. This range is a slightly 

higher than the range estimated by pure DB, but lower than that estimated by 

equilibrium modeling. 

 

Table 19. Energy Conversion Efficiency (ECE) for DB-ash blends as a function of the ER and various S:F 
ratios 

S:F ER
1.56 2.12 3.18 4.24 6.36

0.35 0.78 0.66 0.48 0.39 0.26
0.80 0.80 0.71 0.62 0.48 0.38  

 

7.6.3. DB-WYC blends 

 

HHV of DB-WYC blends 

It is apparent from Table 20 that the HHV of the gases produced by gasification 

of DB-WYC is higher than that of DB; however, the the results seems to indicate that 



 

 

147

increased S:F produces gases with higher HHV. The HHV increases with increased ER 

until a critical value beyond which it starts to decrease. 

 

Table 20. Energy density of gases on a dry basis (kJ/ SATPm3) for DB-WYC as a function of ER and 
various S:F ratios 

S:F ER
1.56 2.12 3.18 4.24 6.36

0.35 3649 4023 4115 4007 3972
0.80 4377 4573 4793 4679 4738  

 

The HHV for the selected operating conditions varied from 3649 to 4793 kJ/ 

SATP m3. The highest HHV (4679 kJ/SATP m3) was measured for a ER =3 .18 and S:F 

= 0.80 whereas the lowest HHV was measured at ER = 1.56 and S:F = 0.35. 

 

Energy conversion efficiency of DB-WYC blends 

 Table 21 presents ECE estimated by atom balance for gasification of DB-WYC 

for various ER and S:F. As discussed before, high ER decreases ECE because of more 

char and tar production. On the other hand, increased S:F increases ECE because more 

hydrocarbons and hydrogen are produced with higher S:F. 

 

Table 21. Energy Conversion Efficiency (ECE) for DB-WYC blends as a function of the ER and various 
S:F ratios 

S:F ER
1.56 2.12 3.18 4.24 6.36

0.35 0.70 0.64 0.48 0.37 0.26
0.80 0.77 0.70 0.58 0.46 0.35  
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 Figure 83 compares the HHV of all fuels studied for S:F = 0.35 and S:F = 0.80 

and various ER.  
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Figure 83. HHV of the gases produced by gasification of DB, DB-ash blend, DB-WYC blend as a function 
of ER and various S:F ratios 
 
 

From the results, it is evident that the presence of ash, and blend with WYC 

increases HHV of gases. As discussed before, the blends of DB with ash and WYC 

produce gases with higher CO and H2 content, which increases the HHV. As shown in 

Figure 83, the difference in the HHV of gases produced by gasification of DB-ash and 

DB-WYC is negligible.  A maximum difference of 591 kJ/ SATP m3 was observed  

between the HHV of gases using DB-WYC and gases from pure DB on HHV was at ER 
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= 3.18 and S:F = 0.80 whereas the minimum difference (153 kJ/ SATP m3) was 

observed at ER = 6.36 and S:F = 0.80. 

Figure 84 shows that the presence of both WYC and ash improves ECE. The 

maximum ECE was achieved for gasification of DB-ash blend at S:F = 0.80 where the 

minimum for pure DB was at S:F = 0.35.  
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Figure 84. Energy conversion efficiency (ECE) of the gases produced by gasification of DB, DB-ash 
blend, DB-WYC blend as a function of ER and various S:F ratios 
 
 

Even though the difference between the HHV of DB-ash and DB-WYC is 

insignificant, the ECE reached for gasification of DB-ash is a little higher than that of 

DD-WYC gasification. This is because DB-WYC gasification produces gases with high 
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tar content than gasification of DB-ash.  Following section presents results on char and 

tar production. The maximum difference in ECE (20%) was achieved between DB-ash 

and pure DB gasification at ER = 1.59 and S:F = 0.35. 

 In general for all fuels studied, the results show that the effect of S:F ratio on 

HHV of the gases is more important than ER. However, the effect of S:F on the ECE is 

weaker compared to that of the ER. For instance, for pure DB gasification at ER = 0.35, 

increasing the ER from 1.56 to 6.36 decreases ECE by about 171% whereas at ER = 

6.36, increasing S:F from 0.35 to 0.80 increases the ECE by about 44.6%. 

 

7.7. Yield of gases, char, and tar 

 

This section presents yield on gases, char, and tar. Because it is impossible to 

measure the tar and the steam produced, the yields was estimated using reverse atom 

balance. The program presented in Appendix E required as input data the dry gas, ER, 

and S:F. 

 

7.7.1. Yield of gases  

 

 Figures 85, 86, and 87 present the yield of gases for gasification of pure DB on a 

dry tar free basis as function of the ER and various S:F ratios. At constant S:F, increased 

ER implies less air entering the gasifier per each kg of DB gasified; thus, the gas yield 
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decrease with increased ER. On the other hand, at constant ER, increase in S:F tends to 

produce more mass of gases per each kg of DB gasified. 

 For the set of experiments performed using DB, the gas yield was1.54 to 5.30 dry 

tar-free kg of gases per each kg of DAF DB gasified. The missing mass to complete the 

total mass entering to the gasifier in the reactants (fuel, air, and steam) corresponds to 

the mass of the steam in the gases, char in the ash, and tar in the gases. The 

stochiometric A:F ratio of DB is 5.077 kmol of air per kmol of DB, thus, burning 1 kg of 

DB at stochiometric conditions requires about 7 kg of air because the molar mass of DB 

is 20.35 kg /kmol. However, gasification which required ER > 1 the mass of air required 

per each mass unit of fuel gasified is lower than that required for complete combustion, 

and hence, the gas mass produced per kg of fuel gasified is less than that produced in 

complete combustion.  

The difference between the yield of gases produced by gasification of pure DB 

(Figure 85), DB-ash (Figure 86), and DB-WYC (Figure 87) under the same ER and S:F 

ratio is negligible, because the total mass of gases leaving the gasifier depends upon 

principally on the mass of the reactants entering to the gasifier. In other words, the total 

yield of gases is affected by the fuel type, ER, S:F, and unburned solid (char). Because 

the yield of gases discussed in this dissertation is presented on a dry, tar-free basis, the 

most difference between the yield produced by each fuel correspond to the tar, char, and 

steam, which are different for each fuel gasified. 
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Figure 85. Mass of gases produced per kg of DAF DB on a dry tar free basis for gasification of pure DB 
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Figure 86. Mass of gases produced per kg of fuel on a dry tar free basis for gasification of DB-ash 
 

If the masses of char, tar, and steam produced in each process are added to the 

yield of gases (dry and tar-free) the resulting total mass corresponds to the total mass 

entering to the gasifier in the reactants including fuel. 
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Figure 87. Mass of gases produced per kg of DAF fuel on a dry tar free basis for gasification of DB-WYC 
 
 

7.7.2. Yield of tar and char 

 

 This section presents the char and tar produced in gasification of pure DB, DB-

ash, and DB-WYC and estimated by atom balance (mass balance) as a function of ER 

S:F. 
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Figure 88. Mass of char produced per kg of DAF DB 
 
 

 The mass of char produced by gasification of pure DB, DB-ash, DB-WYC 

blends are presented in Figures 88, 89, and 90 as a function of ER and various S:F.  The 

trend of all the figures is the same for all fuels studied. At constant S:F, increasing ER 

increase char production, Because of the less oxygen entering the gasifier for each kg of 

fuel gasified. Also, the results show, that at constant ER, increased S:F ratios produce 

lower char indicating that the more H2O in the reactant react with char. For all cases, at 

ER = 1.59, the char produced was almost zero. 
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Figure 89. Mass of char produced per kg of DAF DB-ash 
 
 

 From the results, it is evident that under the same operating conditions, 

gasification of DB-ash blends produces the least amount of char whereas the largest 

amount of char is produced by gasifying pure DB. The char produced by gasification of 

DB-WYC lies between pure DB and DB-ash. 

 The highest yield of char (~0.18 kg per kg of DAF DB gasified) was reached for 

gasification of DB at ER = 6.36 and S: = 0.35. This indicates that under those operating 

conditions, only about 18% of the FC content in a kg of DAF DB is gasified; the 

remaining 82% correspond to char yield. This indicates that gasification of DB at ER = 

6.36 and S:F=0.35  tend to be close to pyrolysis in which the gases produced are 
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principally due to devolatilization of the VM content in the DB. As discussed before, 

under those operating conditions, the ECE is very low (24%); hence, more of the energy 

entering the gasifier is removed as char and tar. However, at ER = 6.36, increasing S:F 

from 0.35 to 0.80 increases the char gasified by about 27.5%, which suggests that 

increasing S:F ratio increases the reaction rate of char with steam to produce CO and H2 

by about 27.5%. 
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Figure 90. Mass of char produced per kg of DAF DB-WYC 
 
 

As discussed before, tar was estimated by atom balance using the gas 

composition measured in the MS and the tar composition. Figures 91, 92, and 93 present 
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the yields of tar (kg of tar/ kg of SATP m3 of gas) in the product gases leaving the 

gasifier as a function of the ER and S:F for pure DB, DB-ash, and DB-WYC, 

respectively. 

 

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

0.1800

0.2000

0.2200

0.2400

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

kg
 o

f t
ar

/d
ry

 S
AT

P 
m

3
of

 g
as

ER

S:F=0.35
S:F=0.56
S:F=0.68
S:F=0.80

 

Figure 91. Tar concentration in the gases leaving the gasifier for gasification of pure DB 
 
 

 For all fuels tested, increased ER produce gases with more tar whereas increasing 

S:F reduces tar production. This could result because increasing ER tends to decrease the 

temperature profile in the gasifier, which leads to less tar molecules breaking to produce 

lighter gases. Increasing steam or oxygen in the gasifier accelerates the destruction of 

primary products and inhibits the formation of aromatics, which are the principal 
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components of tar [46]. In addition, to enhanced H2 production with steam, it also has 

been reported that reduces refractory tar, enhances phenol formation, reduces the 

formation of other oxygenates, breaks few of the aromatics tar, and produces tar easier to 

reform catalytically [47]. 
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Figure 92. Tar concentration in the gases leaving the gasifier for gasification of DB-ash 
 
 

 Figure 91 shows that the differences in the amount of tar formation for pure DB 

at S:F = 0.56 and S:F = 0.68 is practically negligible.  
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Figure 93. Tar concentration in the gases leaving the gasifier for gasification of DB-WYC 
 
 

 For all the experiments performed with pure DB, the average of tar was 

estimated to be of about 80 g/ SATP m3 of gas. The average of tar concentration is 

higher than that presented by [16] and [47] for average fixed-bed gasification of biomass 

with air (50 g/SATP m3 of gas). Pinto et al. [15] has reported concentration of tar ranging 

between 20 and 40 g/SATP m3 for fluidized co-gasification of coal with wastes biomass 

using a mixture of steam-oxygen as oxidizer. Milne et al. [47] has reported an average of 

tar concentration of ~10 g/SATP m3 for air-blown fluidized bed gasification of biomass. 

Zhang et al. [46] reported tar concentration of 10.4 g/SATP m3 in an air-blown fluidized 

bed gasifier using seed corn wastes as feedstock. 
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Figure 94. Mass of char non-burned by kg of DAF fuel for gasification of pure DB, DB-ash, and DB-
WYC at S:F=0.35, A:F=0.80 and various ERs 
 
 

 At S:F = 0.35,  DB is the fuel that produces the most char while at S:F = 0.80, 

DB-WYC produces more char than the other fuel (Figure 94). In general, for all 

experiments, the fuel that produces the least char is DB-ash blend, because ash increases 

the bed temperature profile without increasing the amount the FC content in the fuel. 

Increased peak temperatures lead to increase the heterogeneous reaction rate of char with 

oxygen and steam, which decreases the amount the char removed in the ash.  

 The more char obtained at S:F = 0.80 by DB-WYC compared to other fuels could 

result from more FC content of coal. As discussed before, the addition of WYC leads to 

higher bed temperatures, but also increases the char concentration in the bed. Char 
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burned by effect of higher bed temperature is less than that of char added in the WYC; 

then, more char would be removed in the ash. The results presented for S:F = 0.35 in 

Figure 94 suggests that the char gasified by the effect of the increased temperatures 

generated by the presence of WYC  is higher than that added in the WYC. On the other 

hand, at S:F = 0.8, it seems that char gasified is lesser than the char added in the WYC. 
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Figure 95. Concentration of tar for gasification of pure DB, DB-ash, and DB-WYC at S:F=0.35, A:F=0.80 
and various ERs 
 
 

Figure 95 presents the concentration of tar in the gases produced by gasification 

of all fuel studied, at S:F = 0.35 and S:F = 0.80, as a function of ER.  In general, the 

results show that under the same operating conditions, gasification of pure DB produces 
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gases with the highest tar content whereas gasification of DB-ash produces gases with 

the smallest amount of tar. The tar curves obtained by gasifying DB-WYC lie between 

the curves of pure DB and DB-ash.  

 As stated before, an average of 80 g of tar/SATP m3 was achieved for all the 

experiments performed with pure DB whereas for gasification of DB-WYC, the average 

was 77 g of tar/SATP m3. The average for DB-ash blend was of 68 g of tar /SATP m3. In 

general, the presence of ash in DB decreases the tar concentration in the gases leaving 

the gasifier by about 15% whereas the addition of WYC decreases the tar concentration 

only by about 4%. For all experiments, the tar concentration ranged between 2 and 220 

g/SATP m3.  

 The current results cannot be compared with results from previous studies 

because, as discussed before, there are no previous studies published on experimental 

gasification of DB. Also,the previous studies on cattle biomass, tar production has been 

not reported. According to Milne et al. [47] air-blown fixed-bed counter-flow gasifiers 

produce about 400% more tar than an air-blown fluidized bed gasifiers.  

If the results obtained by Pinto et al. [15] in a steam-oxygen fluidized bed 

gasifier were extrapolated to a fixed gasifier, the maximum concentration of tar would 

be of about 200 g/SATP m3, which agrees well with the maximum tar concentration (220 

g/SATP m3) achieved in the current experiments. 
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7.8. Pyrolysis 

 

 In this section results are present for pure pyrolysis of DB. Pure DB biomass was 

subjected to a pyrolysis process to produce chlorinate char to be used in the absorption 

of mercury produced in coal plants.  

 

7.8.1. Results on profile temperature 

 

 This section presents the temperature profile along the gasifier, the temperature 

of the carrier gas, and the temperature of the gases leaving the gasifier as a function of 

the time during the heating and cooling period of the experiment.  

 Figure 96 presents the bed temperature profile of the gasifier during an 

experiment using N2 as carrier gas. In general, the temperatures measured along the 

gasifier axis keeps increasing above the initial value until it reaches a peak where the 

propane torch is turned off (Region I). Then biomass is added (Region II). After DB is 

added, the bed temperatures stars to increase again (Region III) until a second peak is 

achieved beyond which the temperature starts to decrease again until achieving the final 

temperature (Region IV). As shown in Figure 96, the temperatures at the thermocouples 

closer to the grate achieve the second temperature peak (Tpeak) faster than that placed 

farther of the grate. 

 The peak of the gases (gases leaving the gasifier) also indicates the moment in 

which the propane torch is turned off. In contrast to the bed temperatures (or particle 
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temperature) which presents two peaks, the temperatures of the carrier gas and gases 

leaving the gasifier shows only one peak. 

 The results show a heating time of about 2 ¼ hours and the cooling time of about 

8 hours. The initial temperature along the gasifier axis (at zero time) ranged between 

~650 and 450 °C, because this profile of temperature corresponds to the temperature of 

the gases produced by the combustion of the propane. After ~2 ¼ hours of heating, the 

bed temperatures achieved the heating peak temperature (~ 800 °C -620 °C), whereas the 

temperatures (peak temperature) of the gases leaving the gasifier and the carrier gas were 

~240 and 160 °C, respectively.  

 The bed temperature 2 cm above the grate achieved the second peak (500 °C) 

almost immediately after DB was added. On the other hand, the bed temperatures 

between 4 and 20 cm above the grate achieved the second peak temperature (~400°C) ~2 

hours after the biomass was added.  The fact that the bed temperature between 4 and 20 

cm above the grate takes a longer time (~2 hours) to reach the second peak seems to 

indicate that the global pyrolysis reaction of DB may be slightly exothermic or some 

gases volatilized during pyrolysis such as CO and H2O react to produce secondary 

compounds resulting in CO2 and H2, which is exothermic. The temperatures show a 

gradient along the gasifier axis.  
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Figure 96. Temperature profile, temperature of the carrier gas, and temperature of gases leaving the 
gasifier for pyrolysis of DB using N2 as carrier gas. Region I = heating  period with propane torch, Region 
II = biomass addition, Region III = heat up period with radial heat from the walls, Region IV = cooling 
 
 

During the heating period and before the second temperature peak is achieved, 

the temperatures measured closer to the grate were higher than those measured farther 

the grate. However, after the second peak, the temperatures closer to the grate ere lower 

as compared to those farther to the grate, which also suggest that some gases produced in 

the lower zones (closer to the grate) react in the upper zones and release heat. 
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Figure 97. Temperature profile, temperature of the carrier gas, and temperature of gases leaving the 
gasifier for pyrolysis of DB using N2 and steam as carrier gas 
 
 

 According to [27], DB pyrolyzes at temperatures ranging between 500 and 600 

K; thus, the higher peak temperature (670 K) measured between 2 and 20 cm above of 

the bed (Figure 96) also appears to validate the fact that there may be exothermic 

reactions. After ~ 8 hours of cooling, the temperatures measured in the bed ranged 

between 100 and 170 °C. At this time, the carrier gas was turned off and the gasifier was 

closed completely to be cooled to ambient temperature. 

Figure 97 presents the temperatures measured along the gasifier, the carrier gas, 

and the gases produced by pyrolysis of DB using N2 and steam as carrier gas as a 

function of the time. Although, the temperatures are lower compared to those of 



 

 

167

pyrolysis using only N2 as carrier gas, the trend is the same. It is apparent that although 

the heating time was a little longer (2 ½ hours), the peak temperatures are slightly lower 

as compared to those of N2 pyrolysis.  
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Figure 98. Temperature profile of cooling, temperature of the carrier gas, and temperature of gases leaving 
the gasifier for pyrolysis of char produced in pyrolysis using N2 as carrier gas 
 
 

At about 8 ¼ hours, the temperatures show a sudden decrease because at that 

time, the grate was rotated to cool down quickly the gasifier. Although, the peak 

temperature with N2 and steam are slightly lower, the reduction in weight was the same 

as with N2 only. 
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 To produce chlorinate char with a lower content of VM, some of the char  

produced by pyrolysis of DB with N2 as carrier gas was used in  a second pyrolysis 

process with N2 as carrier gas. The char pyrolysis temperatures are presented in Figure 

98. The bed cooling trends are the same as that of pure DB pyrolysis. The temperatures 

above 13 cm correspond to gas temperature, which decreases continuously and there is 

no peak. In contrast, the bed temperatures which corresponds to the temperature of the 

particles of char, present a peak, which suggests the presence of homogeneous 

exothermic reactions. Because the weight of char was reduced by ~16%, the lower of the 

peak temperatures (~200 °C), measured at 13 cm above of the grate, also indicates that 

char pyrolysis starts a lower temperatures than 500 K.  

 

7.8.2. Results on activated carbon 

 

 Table 22 presents the results of ultimate and proximate analysis of pure DB and 

the char produced by pyrolysis of pure DB using pure N2 and N2-H2O blend as carrier 

gases. The analyses of DB and chlorinated char show that DB has more volatile matter 

(VM) and moisture contents than those of chlorinated char (31.85% and 6.07%, 

respectively). The content of other components-such as fixed carbon (FC), ash, and 

carbon-are higher in the activated carbons. The moisture contents in the chlorinated char 

obtained by pyrolysis with N2 and pyrolysis with N2-steam are 76 and 79%, respectively 

lower than those of DB.  The VM content was reduced by 32% by N2 pyrolysis whereas 

by 24.5% for N2-H2O. Pyrolysis with N2 increased the FC content by 130.6% and the 
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ash content by 115.5% whereas pyrolysis with N2-steam increased the FC and ash by 

121 and 104% respectively. The carbon atom content increased with pyrolysis, but the 

changes in the content of other components, such as O, N, S, H, and Cl were negligible. 

 Because of the higher FC content in the chlorinated chars as compared to the FC 

content in DB, the HHVs (on a DAF basis) of the activated carbons with N2 and N2-

steam are about 20.4 and 17.4% higher than that of pure DB respectively. 

 

Table 22. Analysis of DB and activated carbon obtained by pyrolysis of DB using N2 and N2+steam as gas 
carrier on an as received basis  
Components DB Chlorinated char using Chlorinated char using

N2 as carrier gas N2 + H2O as carrier gas
Dry loss (%) 25.26 6.07 5.41
Ash (%) 14.95 32.22 30.6
VM (%) 46.84 31.85 35.33
FC (%) 12.95 29.86 28.66
C (%) 35.27 43.26 43.52
H (%) 3.1 2.89 3.16
N (%) 1.9 2.62 2.62
O (%) 19.1 18.53 19.63
S (%) 0.42 0.48 0.47
Cl (%) 0.1345 0.14 0.12
As receibed HHV (kJ/kg) 12844 15963 16128
Dry basis  HHV (kJ/kg) 17185 16995 17050
DAF HHV (kJ/kg) 21474 25868 25204  

 

 Table 23 presents a mass balance (on a 100-kg basis) of all components in DB 

and in the chlorinated chars. As shown in Table 23 , for each 100 kilograms of DB that 

was pyrolyzed with N2, about 47 kg of chlorinate char (CC) were produced. In other 

words, the yield of CC obtained by pyrolysis of DB with N2 was 0.47 kg/kg of pure DB 

pyrolyzed. The yield of CC produced by pyrolysis of DB with N2 and steam was of 0.49 

kg/kg of DB pyrolyzed. 
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 In general, with the exception of ash, the mass of all components content in DB 

were reduced during pyrolysis. The mass of ash obtained after pyrolysis is practically the 

same as that in DB because ash is inert. The 68% of VM mass contained in DB was 

volatilized during pyrolysis using N2 whereas only 63% of VM was pyrolyzed using N2-

steam.  

 

Table 23. Mass balance of the components, on a 100 basis 
Components DB

mass (kg) Mass (kg) % %
Moisture 25.26 2.85 11.29 2.65 10.49
Ash 14.95 15.14 101.29 14.99 100.29
VM 46.84 14.97 31.96 17.31 36.96
FC 12.95 14.03 108.37 14.04 108.44
C 35.27 20.33 57.65 21.32 60.46
H 3.10 1.36 43.82 1.55 49.95
N 1.90 1.23 64.81 1.28 67.57
O 19.10 8.71 45.60 9.62 50.36
S 0.42 0.23 53.71 0.23 54.83
Cl 0.13 0.07 48.92 0.06 43.72
Total mass (kg) 100.00 47.00 47.00 49.00 49.00

After pyrolysis with N2+H2OAfter pyrolysis with N2

 

 

 The mass balance shows that during pyrolysis, a fraction of H2O, C, H, and O 

was volatilized, which suggests that some of the fuel gases produced during the 

volatilization could react with the steam and the oxygen to produce secondary products 

and release heat in a process known as auto-gasification.  

As shown in Table 23, more chlorine is volatilized (less Cl in char) by pyrolysis 

of DB with N2 than by pyrolysis with N2-steam. The results show that about 51% and 

56% of the Cl content in DB were volatilized during pyrolysis with N2 and N2-H2O, 

respectively, whereas 68% and 64% of the VM in DB were volatilized by pyrolysis with 

N2 and N2-H2O, which indicates that the rates of volatilization of chlorine during 
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pyrolysis are lower than those of VM.  VM% to Cl% pyrolyzed ratios were1.34 and 1.12 

during pyrolysis with N2 and N2-staam respectively.  
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8. SUMMARY, CONCLUSIONS, AND FUTURE WORK 

  

This section presents the summary and conclusions of this study on gasification 

of DB, DB-ash, and DB-WYC and the future work. 

 

8.1. Gasification facility 

 

A small-scale (10-kW) gasification facility was rebuilt with the following modifications:  

a) An ash disposal system so that experiments could be run continuously with 

periodic ash disposal 

b) A steam generator to produce the steam for the gasifier 

c) A MS and the gas mixtures necessary to calibrate the MS were acquired 

d) A sampling system to prepare the gas samples before they were analyzed 

continuously and in real time by a mass spectrometer 

e)  A data acquisition system to measure the temperature in different places of the 

gasification facility 

f) A control panel to control the flow of steam, air, and heat to the heater elements 

of the steam generator and combustion chamber of the gasifier. 
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8.2. Modeling studies 

 

 Global modeling studies (atom balance and equilibrium) on gasification were 

performed to determine the operating conditions (ER and S:F). The effect of modified 

equivalence ratio ERM and AOF on gasification of feedlot biomass (FB), dairy biomass 

(DB), Wyoming coal (WYC), and Texas Lignite coal (TXL) were also estimated by 

modeling: 

a) Modeling results showed that biomass gasification under increased ERM 

(decreased oxygen supplied through the oxidizer) yield poor hydrogen and CO2 

mixtures and rich CO and CH4 mixtures whereas mixtures rich with steam 

(decreased AOF) produce rich hydrogen and CH4 mixtures but poor CO and CO2 

mixtures. 

b) From the modeling results, it is apparent that for the same ERM and AOF, FB and 

DB produce more H2 than WYC and TXL, but the coals are better if more 

production of CO is desired. 

c) Decreased AOFs produce mixtures richer in CH4 and H2, which have higher 

HHV. On the other hand, increased ERM tends to produce mixtures with a higher 

HHV. Generally, mixtures rich in methane and hydrogen have greater HHV and 

provide better energy conversion efficiency because methane has higher energy 

density (36,250 kJ m-3) as compared to CO (11,543 kJ/ m3). 

d) The increase in AOF decreases ECE, but at higher ERM the decrease is not much. 

At constant AOF, higher ERM implies lesser oxygen supplied in the oxidizers and 
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the process is nearly pyrolysis (production of char), which produces less mass of 

gases per kg of fuel resulting in lower energy recovery.  

e) At constant ER, increasing the S:F implies increased steam supplied with the 

oxidizing source; thus, the reactions occur in a steam-rich ambient which favors 

the steam reforming reaction (Equation 6) and the shift reaction (Equation 7) 

producing  mixtures rich in H2, CO2, and CH4 but poor in CO.  

f) The increase in ER at constant S:F implies decreased oxygen entering through 

the air and, hence, the reactions occurs in an enviroment poor in O2 but rich in 

H2O, which favors the reactions of char and CO with steam to produce more CO2 

and H2. More C atoms leaving the gasifier as CO2 means less C atoms leaving as 

CO. The curves of CO and H2 show a peak that is best illustrated in Figures 32 

and 33. At ER < 3.18, increasing ER improves the CO concentration but at ER 

>3.18, the CO concentration decrease as ER increase. Modeling results shows 

that the increase in ER produces mixtures rich in CH4. 

g) Gasification at high ER produces CH4-and H2-rich mixtures that have high HHV 

because of the higher HHV of CH4 and H2. At ER < 3.18, the gross heating value 

of the gases is not affected by changes in S:F. This result because at ER < 3.18, 

the changes in the S:F do not affect the CH4concentration. 

h) Increasing ER at constant S:F tends to increase the ECE until a critical value 

beyond which it starts to decrease. At ER < 3.18, increased ER increases the ECE 

until 0.87, where it starts to decrease (Figure 38). Gasification under ER > 3.18 

tends to produce char because of the lack of oxygen for the reaction of char. 
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8.3. Experimental studies 

 

 Experiments on gasification with air-steam were performed and data on bed 

temperature profile and gas composition under various operating conditions were 

obtained. Additionally, chlorinated char was produced through the pyrolysis of DB using 

N2 and N2-steam blends: 

a) The adiabaticity of the reactor was checked by determining the overall heat 

transfer coefficient (U) and then estimating the heat loss; the U was measured by 

allowing the reactor to cool down after the experiment and storing the changes of 

temperature. The results showed that the global heat transfer coefficient is very 

low (U=6.37016x10-6 kW/ m2.K) and is almost constant along the gasifier axis. 

b) The bed temperature profile measured along the gasifier axis showed a peak in 

the combustion region where the char reacts with the oxidizer. The peak 

temperature lies somewhere between 3 and 5 cm above the grate and depends 

upon the concentration of O2, H2O, and CO2 in the combustion zone. Above the 

combustion zone in the reduction, pyrolysis, and dry zones, the temperature 

decreased because most of the reactions occurring there are endothermic. 

c) Increased ER and S:F ratios decrease the peak temperature. Operating at ER > 

6.36 can lower peak temperatures below that required for char combustion. Thus, 

under those operating conditions, the process becomes near pyrolysis which 

requires heat input. In general, for the set operating conditions, the peak  
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temperature for gasification of DB ranged between 519 and 1015°C. Gasification of 

DB-ash and DB-WYC blends showed the maximum peak temperatures (1032 and 

1054 °C respectively). 

d) From the results, it is apparent that H2-rich mixtures could be produced by 

adiabatic gasification of DB using mixtures of air-steam as an oxidizing source. 

Increased ER and S:F tends to produce H2-and CO2-rich mixtures, but mixtures 

poor in CO.  In general, the effect of the ER and S:F on the production of CH4 

and C2H6 is negligible. For gasification of DB under the set of operating 

conditions, the CO ranged from ~4.77 to ~11.73%, H2 from 13.48 to 25.45%, 

CO2 from 11 to 25.2%, CH4 from 0.43 to 1.73 %, and C2H6 from 0.2 to 0.69%. 

e) The addition of ash and WYC seems to affect the production of CO and H2. The 

highest increase in CO (caused by the addition of ash) at S:F = 0.35 and ER = 

6.36 was around 50%, whereas the highest increase in H2 (~30%) was achieved 

at ER = 1.5 and S:F = 0.35. At ER > 3.18, the effect of adding ash and WYC on 

the production of H2 was insignificant. Gasification of DB-ash blends produced 

mixtures with CO ranging between 6.7 and 13% and H2 ranging between 17.5 

and 25.3% whereas gasification of DB-WYC blends produced mixtures with CO 

from 6.5 to 13.6% and H2 raging from 16 to 26.3%. 

f) The effect of the S:F ratio on the HHV of gases is more important than that of the 

ER. Although increased ER produces gases with higher gross heating value, the 

energy recovery decreases with increased ER because of higher tar and char 

production.    
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g) At constant S:F, increasing ER increases char production whereas at constant ER, 

increased S:F produces lower char. At ER = 1.59, the char produced was almost 

zero. The highest yield of char (~0.18 kg per kg of DAF DB gasified) was 

reached for gasification of DB at ER = 6.36 and S:F = 0.35. This indicates that 

under those operating conditions, only about 18% of the FC content in a kg of 

DAF DB is gasified; the remaining 82% corresponds to char. Thus, gasification 

of DB at ER = 6.36 and S:F = 0.35  tends to be near pyrolysis. 

h) For all the cases, increased ER tends to produce gases with high concentrations 

of tar whereas increased S:F reduces the production of tar. For pure DB, the tar 

average was estimated to be about 80 g/SATP m3 of gas. The tar average 

concentration is higher than that presented by [16] and [47] for fixed bed 

gasification of biomass with air (50 g/SATP m3 of gas). However, if the results 

obtained by Pinto et al. [15] (40 g/ SATP m3 of gas) in a steam-oxygen fluidized 

-bed gasifier were extrapolated to a fixed gasifier, the maximum concentration of 

tar would be about 200 g/SATP m3 because a fixed bed gasifier produces about 

400% more tar that a fluidized-bed gasifier [47]. This agrees well with the 

maximum tar concentration (220 g/SATP m3) achieved in the current study. 

i) About 51% and 56% of the Cl content in DB was volatilized during pyrolysis 

with N2 and N2-H2O respectively whereas 68 % and 64% of the VM in DB were 

volatilized by pyrolysis with N2 and N2-H2O. This indicates that the rates of 

volatilization of chlorine during pyrolysis are lower than those of VM.  VM% to 
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Cl% pyrolyzed ratios were1.34 and 1.12 during pyrolysis with N2 and N2-staam 

respectively.  

 

8.4. Future work 

 

 The following are suggested for future work: 

a) Perform experiments on gasification of pure FB and pure coal using air-steam 

mixtures as oxidizer in order to compare the results to the results obtained in this 

study. 

b) Do experiments on gasification of DB using pure oxygen and steam as oxidizer 

to compare the results to the results obtained in this study. 

c) Perform experiments on pyrolysis using pureN2 and N2-steam mixtures as carrier 

gases to study ash and gas quality 

d) Studies on pyrolysis of biomass supplemented with chlorine in order to increase 

the Cl content in char since char is a porous medium which diffuses Cl.  
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APPENDIX A 

MODIFICATIONS PERFORMED IN THE GASIFICATION FACILITY 

 

 
Figure A-1. Combustion chamber built in castable alumina with inner and outer diameter of 6 in and 10 

in respectively 
 
 
 

 
Figure A-2. Combustion chamber and outer steel tube with a inner diameter of 13.5 in 
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Figure A-3. Combustion chamber with two super heater elements and cash iron conical grate 

 
 
 

 
Figure A-4 cast iron conical grate with 144 of o.25 in drilled holes 
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Figure A-5 pneumatic vibrator of variable frequency coupled to the grate and placed under the plenum 

 
 

 
Figure A-6 Steam generator 
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Figure A-7 Control panel 
 
 
 

 
Figure A-8 Oxidizing resource feeding view 

 

Glass pipe visor 
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Figure A-9 Gasification facility 
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Figure A-10 Sampling system 
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APPENDIX B 

EES CODE TO ESTIMATE GAS COMPOSITION BY ATOM BALANCE 

 

The Engineering Equation Solvers (EES) code which was performed to estimate 

the gas composition by atom balance is presented in this appendix. Running the program 

requires entering the properties of the fuel and the parameters investigated (ER, ERM, 

AOF, and S:F, etc.) 

 

 

"EES PROGRAM TO ESTIMATE GAS COMOPSITION, HHV, AND ENERGY 

RECOVERY BY ATOM BALANCE MODEL" 

 

 

HHVmanure=21481*M_manure  "Enter DAF HHV of fuel" 

HHVco=10100*28/24.5 

hhvh2=141800*2/24.5 

HHVCh4=55530*16/24.5 

ER=1.45    "ER= ERM=Stochiometric oxygen/total oxygen" 

Temperature_k=1000   “Temperature_K=Tp=adiabatic temperature" 

"ratioair_steam=0.54"   "Ratioair_steam=AOF=Oxygen from air/total 

oxygen" 
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T_1=Temperature_K   "Adiabatic temperature=Tp" 

Moisture=25.26 

ash=14.95 

"NER=2.7"      "NER=ER=equivalence ratio 

(stochiometric air/actual air)" 

"SAR=1.24"      "Steam/air ratio" 

Nair_act=0.64      "Nair_actual=Moles of air actual" 

"N_steam=0.43"     "N_steam= S:F (moles of 

steam/mole of DAF fuel)" 

_____________________________________________________________________ 

"STOCHIOMETRIC CALCULATIONS" 

" C H0.68 O0.19N 0.016  S0.006 +a (O2+3.76N2)======bCO2+c H2O+d N2+e SO2" 

ac=1       "Enter this data" 

aH=1.06      "Enter this data" 

aO=0.406      "Enter this data" 

aN=0.046      "Enter this data" 

aS=0.0045      "Enter this data" 

 

b=aC 

c=aH/2 

aO+2*a=2*b+c+2*e 

e=aS 
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d=3.76*a+aN/2 

Nair_stch=4.76*a 

Oxigen_stch=2*a 

M_manure=12*aC+aH*1+aO*16+aN*14+aS*32 

 

" Manure formation enthalpy calculations" 

hf_manure=b*Enthalpy(CO2,T=298)+c*Enthalpy(H2O,T=298)+d*Enthalpy(N2,T=298)

+e*Enthalpy(SO2,T=298)+HHVmanure 

_______________________________________________________________________ 

"ACTUAL ATOM BALANCE CALCULATIONS" 

 

"C H1.29 O0.53  N 0.05  S0.001 +Nair 

(O2+3.76N2)+Nsteam*H2O======Nco2*CO2+Nco*CO+eNch4*CH4+Nh2*H2+Nh2

s*H2S+Nn2*N2" 

aC=Nco+Nco2+Nch4     "C : balance equation " 

aH+2*N_steam=2*Nh2+4*Nch4+2*Nh2s   "H: balance equation " 

aO+2*Nair+N_steam=Nco+2*Nco2   "O: balance equation " 

3.76*2*Nair+aN=2*Nn2    "N: balance equation" 

aS=Nh2s      "S: balance equation" 

Oxigen_act=2*Nair+N_steam      

ER=Oxigen_stch/Oxigen_act 

2*Nair/(2*Nair+N_steam)=ratioair_steam 
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Nair_act=4.76*Nair 

NER=Nair_stch/Nair_act 

SAR=N_steam/Nair_act 

 

“Energy equation” 

hf_manure+N_steam*Enthalpy(H2O,T=373)+0.79*Nair_act*enthalpy(N2,T=298)+0.21

*Nair_act*enthalpy(O2,T=298)=Nch4*enthalpy(ch4,T=T_1)+Nco*Enthalpy(CO,T=T_1

)+Nco2*Enthalpy(CO2,T=T_1)+NH2*enthalpy(H2,T=T_1)+Nn2*enthalpy(N2,T=T_1)

+Nh2s*Enthalpy(HydrogenSulfide,T=760,P=100) 

 

"Mole fracción calculations" 

Nmoles=Nco+Nch4+Nco2+Nh2+Nn2+Nh2s 

yco=Nco/Nmoles 

YCO2=Nco2/Nmoles 

Yh2=Nh2/Nmoles 

Ych4=Nch4/Nmoles 

yN2=Nn2/Nmoles 

“HHV and energy recovery calculations” 

HHVgases=HHVco*yco+HHVh2*Yh2+HHVCh4*ych4  "HHV= gross heating 

value of gases (kj/m3)" 

Efficiency=(Nco*HHVco+NCH4*HHVCH4+Nh2*HHVH2)*24.5/(HHVmanure+N_ste

am*2260*18) 
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N_mixture=1+Nair_act+N_steam 

hf_mixture=1*hf_manure/N_mixture+0.79*Nair_act*enthalpy(N2,T=298)/N_mixture+0

.21*Nair_act*enthalpy(O2,T=298)/N_mixture+N_steam*Enthalpy(H2O,T=373)/N_mixt

ure 

M_mixture=M_manure/N_mixture+28.84*Nair_act/N_mixture+N_steam*18/N_mixture 

hf_R=hf_mixture/(M_mixture*8.3142)    "h_R=enthalpy 

required to run NASA program" 
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APPENDIX C 

TABLES OF GAS COMPOSITION ESTIMATED BY ATOM BALANCE 

In this appendix are presented tables on results of gas composition of DB, FB, 

TXL, and WYC as function of AOF and ERM. Additionally, tables of gas composition as 

function of ER and A:F are presented for DB gasification. 

 

Table C.1. Gas composition as function of TP, AOF, and ERM estimated using atom balance model for 
gasification of DB 

Mole fraction
Temperature (TP), K ERM ASTR Ych4 Yco yco2 YH2 YN2

600 2 0.25 0.09936 0.0233 0.2978 0.3587 0.22084
700 2 0.25 0.1174 -0.00617 0.3219 0.3394 0.22747
800 2 0.25 0.1372 -0.03836 0.3482 0.3183 0.23466
900 2 0.25 0.1589 -0.07369 0.3771 0.2951 0.24259
1000 2 0.25 0.1828 -0.1126 0.4089 0.2695 0.2514
1100 2 0.25 0.2092 -0.1558 0.4441 0.2412 0.2613
1200 2 0.25 0.2387 -0.2037 0.4833 0.2097 0.272
1300 2 0.25 0.2716 -0.2573 0.5271 0.1745 0.2841
1400 2 0.25 0.3085 -0.3176 0.5763 0.1349 0.2979
1500 2 0.25 0.3503 -0.3857 0.6319 0.09023 0.31327
800 1 0.25 -0.00313 -0.1227 0.3652 0.515 0.24563
800 2 0.25 0.1372 -0.03836 0.3482 0.3183 0.23466
800 3 0.25 0.2602 0.03556 0.3333 0.1458 0.22514
800 4 0.25 0.3688 0.1009 0.3202 -0.00647 0.21657
800 5 0.25 0.4654 0.159 0.3085 -0.142 0.2091
800 6 0.25 0.552 0.211 0.2981 -0.2634 0.2023
800 7 0.25 0.63 0.2579 0.2886 -0.3727 0.1962
800 8 0.25 0.7006 0.3003 0.2801 -0.4717 0.1907
800 9 0.25 0.7648 0.3389 0.2723 -0.5618 0.1858
800 10 0.25 0.8235 0.3742 0.2652 -0.6441 0.1812
800 2 0 0.3502 -0.3572 0.657 0.3347 0.0153
800 2 0.1 0.2454 -0.2003 0.505 0.3266 0.1233
800 2 0.2 0.1684 -0.08514 0.3935 0.3207 0.20254
800 2 0.3 0.1096 0.00291 0.3082 0.3161 0.26319
800 2 0.4 0.06318 0.07244 0.2409 0.3125 0.31098
800 2 0.5 0.02557 0.1287 0.1864 0.3096 0.34973
800 2 0.6 -0.0055 0.1752 0.1413 0.3072 0.3818
800 2 0.7 -0.0316 0.2143 0.1035 0.3052 0.4086
800 2 0.8 -0.05384 0.2476 0.07125 0.3035 0.43149
800 2 0.9 -0.07301 0.2763 0.04345 0.302 0.45126
800 2 1 -0.08971 0.3013 0.01924 0.3007 0.46847  
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Table C.2. Gas composition as function of TP, AOF, and ERM estimated using atom balance model for 
gasification of FB 

Mole fraction
Temperature (TP), K ERM ASTR Ych4 Yco yco2 YH2 YN2

600 2 0.25 0.03336 0.08199 0.2451 0.4513 0.18825
700 2 0.25 0.04829 0.05628 0.266 0.436 0.19343
800 2 0.25 0.06438 0.02858 0.2885 0.4194 0.19914
900 2 0.25 0.08182 -0.00142 0.3128 0.4015 0.2053
1000 2 0.25 0.1008 -0.0341 0.3394 0.382 0.2119
1100 2 0.25 0.1216 -0.06983 0.3684 0.3606 0.21923
1200 2 0.25 0.1444 -0.1091 0.4002 0.3371 0.2274
1300 2 0.25 0.1695 -0.1524 0.4354 0.3113 0.2362
1400 2 0.25 0.1974 -0.2004 0.4744 0.2826 0.246
1500 2 0.25 0.2285 -0.2539 0.5178 0.2506 0.257
800 1 0.25 -0.03264 -0.07661 0.3292 0.5559 0.22415
800 2 0.25 0.06438 0.02858 0.2885 0.4194 0.19914
800 3 0.25 0.1386 0.1091 0.2573 0.315 0.18
800 4 0.25 0.1973 0.1727 0.2327 0.2325 0.1648
800 5 0.25 0.2448 0.2242 0.2127 0.1657 0.1526
800 6 0.25 0.284 0.2667 0.1963 0.1105 0.1425
800 7 0.25 0.317 0.3025 0.1824 0.06413 0.13397
800 8 0.25 0.3451 0.333 0.1706 0.02461 0.12669
800 9 0.25 0.3694 0.3593 0.1604 -0.00948 0.12038
800 10 0.25 0.3905 0.3821 0.1516 -0.03917 0.11497
800 2 0 0.139 -0.09102 0.4053 0.4453 0.10142
800 2 0.1 0.08648 -0.00684 0.3231 0.4271 0.17016
800 2 0.2 0.0445 0.06045 0.2574 0.4125 0.22515
800 2 0.3 0.01018 0.1155 0.2036 0.4006 0.27012
800 2 0.4 -0.01841 0.1613 0.1589 0.3907 0.30751
800 2 0.5 -0.04259 0.2001 0.121 0.3823 0.33919
800 2 0.6 -0.0633 0.2333 0.0886 0.3751 0.3663
800 2 0.7 -0.08125 0.262 0.06051 0.3689 0.38984
800 2 0.8 -0.09695 0.2872 0.03593 0.3635 0.41032
800 2 0.9 -0.1108 0.3094 0.01425 0.3587 0.42845
800 2 1
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Table C.3. Gas composition as function of TP, AOF, and ERM estimated using atom balance model for 
gasification of TXL 

Mole fraction
Temperature (TP), K ERM ASTR Ych4 Yco yco2 YH2 YN2

600 2 0.25 0.0853 0.1501 0.2045 0.333 0.2271
700 2 0.25 0.102 0.1258 0.2247 0.3139 0.2336
800 2 0.25 0.1202 0.09944 0.2465 0.2932 0.24066
900 2 0.25 0.14 0.07066 0.2704 0.2707 0.24824
1000 2 0.25 0.1617 0.03912 0.2965 0.2459 0.25678
1100 2 0.25 0.1856 0.0044 0.3253 0.2187 0.266
1200 2 0.25 0.2121 -0.03396 0.3571 0.1886 0.27616
1300 2 0.25 0.2414 -0.07656 0.3924 0.1551 0.28766
1400 2 0.25 0.2741 -0.1241 0.4318 0.1178 0.3004
1500 2 0.25 0.3108 -0.1773 0.476 0.07603 0.31447
800 1 0.25 -0.01613 -0.05333 0.3126 0.5078 0.24906
800 2 0.25 0.1202 0.09944 0.2465 0.2932 0.24066
800 3 0.25 0.2457 0.24 0.1857 0.09579 0.23281
800 4 0.25 0.3615 0.3699 0.1295 -0.08654 0.22564
800 5 0.25 0.4689 0.4901 0.07749 -0.2554 0.21891
800 6 0.25 0.5686 0.6018 0.02916 -0.4123 0.21274
800 7 0.25 0.6614 0.7059 -0.01585 -0.5584 0.20695
800 8 0.25 0.7481 0.803 -0.05787 -0.6948 0.20157
800 9 0.25 0.8292 0.8938 -0.09719 -0.8224 0.19659
800 10 0.25 0.9052 0.9791 -0.1341 -0.9421 0.1919
800 2 0 0.3409 -0.1759 0.5289 0.3002 0.0059
800 2 0.1 0.2304 -0.03802 0.3876 0.2972 0.12282
800 2 0.2 0.1511 0.06096 0.2861 0.295 0.20684
800 2 0.3 0.09142 0.1355 0.2098 0.2934 0.26988
800 2 0.4 0.04485 0.1936 0.1502 0.2922 0.31915
800 2 0.5 0.00751 0.2402 0.1024 0.2911 0.35879
800 2 0.6 -0.02309 0.2784 0.06323 0.2903 0.39116
800 2 0.7 -0.04864 0.3103 0.03055 0.2896 0.41819
800 2 0.8 -0.07028 0.3373 0.00286 0.289 0.44112
800 2 0.9 -0.08885 0.3605 -0.0209 0.2885 0.46075
800 2 1 -0.105 0.3806 -0.04151 0.2881 0.47781  
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Table C.4. Gas composition as function of TP, AOF, and ERM estimated using atom balance model for 
gasification of WYC 

Mole fraction
Temperature (TP), K ERM ASTR Ych4 Yco yco2 YH2 YN2

600 2 0.25 0.07282 0.1553 0.1916 0.3599 0.22038
700 2 0.25 0.08894 0.1316 0.2111 0.3419 0.22646
800 2 0.25 0.1064 0.1059 0.2321 0.3224 0.2332
900 2 0.25 0.1254 0.07788 0.255 0.3012 0.24052
1000 2 0.25 0.1461 0.04729 0.2801 0.278 0.24851
1100 2 0.25 0.1689 0.01372 0.3076 0.2525 0.25728
1200 2 0.25 0.194 -0.0233 0.3379 0.2245 0.2669
1300 2 0.25 0.2218 -0.06429 0.3715 0.1934 0.27759
1400 2 0.25 0.2527 -0.1099 0.4088 0.1589 0.2895
1500 2 0.25 0.2873 -0.1609 0.4505 0.1202 0.3029
800 1 0.25 -0.02147 -0.04772 0.3041 0.5201 0.24499
800 2 0.25 0.1064 0.1059 0.2321 0.3224 0.2332
800 3 0.25 0.2211 0.2437 0.1676 0.1449 0.2227
800 4 0.25 0.3247 0.3681 0.1093 -0.01519 0.21309
800 5 0.25 0.4186 0.4809 0.05646 -0.1604 0.20444
800 6 0.25 0.5042 0.5837 0.00831 -0.2928 0.19659
800 7 0.25 0.5825 0.6778 -0.03574 -0.4139 0.18934
800 8 0.25 0.6544 0.7642 -0.07621 -0.5251 0.18271
800 9 0.25 0.7206 0.8438 -0.1135 -0.6275 0.1766
800 10 0.25 0.7819 0.9174 -0.148 -0.7223 0.171
800 2 0 0.2109 -0.02717 0.3666 0.332 0.11767
800 2 0.1 0.1364 0.0676 0.2708 0.3251 0.2001
800 2 0.2 0.07995 0.1395 0.1981 0.3199 0.26255
800 2 0.3 0.03562 0.1959 0.1411 0.3159 0.31148
800 2 0.4 -9.5E-05 0.2414 0.09511 0.3126 0.35099
800 2 0.5 -0.02948 0.2788 0.0573 0.3099 0.38348
800 2 0.6 -0.05409 0.3102 0.02563 0.3076 0.41066
800 2 0.7 -0.07499 0.3368 -0.00127 0.3057 0.43376
800 2 0.8 -0.09297 0.3597 -0.02441 0.304 0.45368
800 2 0.9 -0.1086 0.3796 -0.04452 0.3026 0.47092
800 2 1  
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Table C.5. Gas composition as function of  S:F, and ER estimated using atom balance model for 
gasification of DB 

Mole fraction
Temperature (TP), K ER S:F Ych4 Yco yco2 YH2 YN2

1000 1.59 0.35 -0.0999 0.1822 0.0986 0.3581 0.4602
1000 1.59 0.45 -0.0986 0.1605 0.1151 0.3717 0.4505
1000 1.59 0.56 -0.0975 0.1417 0.1295 0.3836 0.4420
1000 1.59 0.68 -0.0963 0.1199 0.1461 0.3972 0.4322
1000 1.59 0.8 -0.0951 0.0991 0.1620 0.4103 0.4228
1000 2.12 0.35 -0.0593 0.1738 0.1178 0.3219 0.4447
1000 2.12 0.45 -0.0588 0.1464 0.1383 0.3403 0.4327
1000 2.12 0.56 -0.0583 0.1228 0.1561 0.3561 0.4223
1000 2.12 0.68 -0.0578 0.0959 0.1764 0.3741 0.4105
1000 2.12 0.8 -0.0573 0.0704 0.1955 0.3911 0.3993
1000 3.18 0.35 0.0137 0.1588 0.1522 0.2570 0.4169
1000 3.18 0.45 0.0116 0.1215 0.1794 0.2847 0.4013
1000 3.18 0.56 0.0099 0.0899 0.2024 0.3083 0.3881
1000 3.18 0.68 0.0080 0.0547 0.2281 0.3345 0.3734
1000 3.18 0.8 0.0063 0.0220 0.2519 0.3588 0.3597
1000 4.24 0.35 0.0773 0.1457 0.1823 0.2003 0.3926
1000 4.24 0.45 0.0718 0.1002 0.2145 0.2373 0.3745
1000 4.24 0.56 0.0673 0.0623 0.2413 0.2680 0.3594
1000 4.24 0.68 0.0624 0.0207 0.2708 0.3018 0.3428
1000 4.24 0.8 0.0578 -0.0173 0.2976 0.3326 0.3276
1000 6.36 0.35 0.1829 0.1240 0.2322 0.1062 0.3523
1000 6.36 0.45 0.1694 0.0657 0.2714 0.1603 0.3310
1000 6.36 0.56 0.1584 0.0185 0.3031 0.2042 0.3137
1000 6.36 0.68 0.1467 -0.0321 0.3371 0.2511 0.2952
1000 6.36 0.8 0.1363 -0.0770 0.3673 0.2928 0.2788  
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APPENDIX D 

TABLES OF GAS COMPOSITION ESTIMATED BY ATOM BALANCE 

 

Results on equilibrium modeling are presented in this appendix. Tables on 

adiabatic temperature, gas composition, HHV of species, and energy recovery are 

presented as function of ERM, and AOF for TXL, FB, and DB and as function of AR and 

S:F for DB. Although in the calculations were included ~150 species only the more 

significant are presented here. Others are in trace amount. The ERM and AOF were 

studied without the presence of water in the products; therefore the gas composition as 

function of AOF and ERM is presented only in a dry basis. 

 

Table D.1. Adiabatic temperature, gas composition (mole fraction), HHV of gases, and energy recovery 
calculated with equilibrium model for TXL at ERM=2 

ERM 2 2 2 2
ASTR 0.2 0.4 0.6 0.8
adiabatic Temperature(K) 799.18 888.2 1007.55 1416.24
*Ar 0.00234 0.00367 0.00483 0.00604
CH4 0.136 0.03538 0.00172 0
*CO 0.05248 0.14723 0.23941 0.22787
COS 0 0.00001 0.00001 0.00001
*CO2 0.28309 0.16905 0.09321 0.08552
*H2 0.31304 0.30609 0.25509 0.17464
H2S 0.00029 0.00022 0.00019 0.00018
NH3 0.00024 0.00013 0.00005 0
*N2 0.19868 0.30891 0.40549 0.50574
C(gr) 0.01384 0.02931 0 0
HHHV (kJ kg-1) 10057.59 7455.263 6209.937 4593.7
HHHV (kJ normal m-3) 9190.231 6553.954 5802.274 4668.003
HHVgas (HHVch4)-1 (%) 18.08847 13.40289 11.1655 8.261412
Energy Recovery 0.830099 0.733342 0.735276 0.636985  
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Table D.2. Adiabatic temperature, gas composition (mole fraction), HHV of gases, and energy recovery 
calculated with equilibrium model for TXL at ERM=4 

ERM 4 4 4 4
ASTR 0.2 0.4 0.6 0.8
adiabatic Temperature(K) 823.82 890.83 953.35 1031.35
*Ar 0.00144 0.00248 0.0034 0.00427
CH4 0.09403 0.0343 0.01141 0.00301
*CO 0.05529 0.11846 0.19694 0.27244
COS 0.00001 0.00001 0.00002
*CO2 0.19208 0.12916 0.07404 0.0263
*H2 0.27475 0.27282 0.2392 0.19305
H2S 0.00036 0.0003 0.00027 0.00025
NH3 0.00016 0.00011 0.00006 0.00003
*N2 0.12482 0.21041 0.28691 0.35933
C(gr) 0.25706 0.23196 0.18776 0.14131
HHHV (kJ kg-1) 11385.88 8824.494 7623.621 6934.868
HHHV (kJ normal m-3) 7253.899 5794.503 5478.036 5506.437
HHVgas (HHVch4)-1 (%) 20.47472 15.86423 13.70745 12.4731
Energy Recovery 0.593067 0.548976 0.5678 0.608196  

 

 

Table D.3. Adiabatic temperature, gas composition (mole fraction), HHV of gases, and energy recovery 
calculated with equilibrium model for TXL at ERM=6 

ERM 6 6 6 6
ASTR 0.2 0.4 0.6 0.8
adiabatic Temperature(K) 838.77 893.28 945.37 1005.57
*Ar 0.00104 0.00187 0.00261 0.0033
CH4 0.07637 0.0338 0.01392 0.005
*CO 0.05682 0.10448 0.16157 0.21928
COS 0.00001 0.00001 0.00001
*CO2 0.15172 0.10877 0.06902 0.03278
*H2 0.25638 0.25632 0.23463 0.20257
H2S 0.00039 0.00034 0.00031 0.00029
NH3 0.00013 0.0001 0.00007 0.00004
*N2 0.09205 0.16014 0.22149 0.27947
C(gr) 0.36511 0.33417 0.29637 0.25725
HHHV (kJ kg-1) 12454.54 9969.323 8593.602 7759.945
HHHV (kJ normal m-3) 6416.797 5422.478 5107.46 5076.056
HHVgas (HHVch4)-1 (%) 22.39488 17.92221 15.45021 13.95466
Energy Recovery 0.498236 0.470377 0.476774 0.499789  
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Table D.4. Adiabatic temperature, gas composition (mole fraction), HHV of gases, and energy recovery 
calculated with equilibrium model for TXL at ERM=8 

ERM 8 8 8 8
ASTR 0.2 0.4 0.6 0.8
adiabatic Temperature(K) 848.96 894.93 939.59 989.34
*Ar 0.00082 0.0015 0.00212 0.0027
CH4 0.06667 0.0336 0.016 0.00692
*CO 0.05772 0.09574 0.14022 0.18639
COS 0.00001 0.00001 0.00001
*CO2 0.12888 0.09653 0.06571 0.0367
*H2 0.24548 0.246 0.23106 0.20754
H2S 0.0004 0.00037 0.00034 0.00032
NH3 0.00011 0.00009 0.00007 0.00004
*N2 0.0735 0.12981 0.18093 0.22935
C(gr) 0.42642 0.39637 0.36355 0.33002
HHHV (kJ kg-1) 13323.73 10918.44 9451.218 8508.124
HHHV (kJ normal m-3) 5948.243 5193.925 4894.792 4824.023
HHVgas (HHVch4)-1 (%) 23.95676 19.62838 16.99129 15.29838
Energy Recovery 0.448043 0.427384 0.428662 0.442665  

 

 

Table D.5. Adiabatic temperature, gas composition (mole fraction), HHV of gases, and energy recovery 
calculated with equilibrium model for DB at ERM=2 

ERM 2 2 2 2
ASTR 0.2 0.4 0.6 0.8
adiabatic Temperature(K) 587 824 916 1239
*Ar 0.00213 0.00361 0.00458 0.00564
CH4 0.12571 0.06794 0.01056 0
*CO 0.00004 0.06432 0.14837 0.15687
COS 0 0.00002 0.00004 0.00004
*CO2 0.32152 0.24694 0.16182 0.13974
*H2 0.34291 0.30571 0.2841 0.21907
H2S 0.00201 0.00169 0.00141 0.00129
NH3 0.0046 0.00022 0.0001 0.00001
*N2 0.18557 0.30955 0.38903 0.47734
C(gr) 0 0 0 0
HHHV (kJ kg-1) 947718.6 715912.1 574079.1 435404.8
HHHV (kJ normal m-3) 8560.283 6773.246 5410.462 4366.859
HHVgas (HHVch4)-1 (%) 17.04077 12.87088 10.31864 7.826793
Energy Recovery 0.865795 0.796192 0.741318 0.651603  
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Table D.6. Adiabatic temperature, gas composition  (mole fraction), HHV of gases, and energy recovery 
calculated with equilibrium model for DB at ERM=4 

ERM 4 4 4 4
ASTR 0.2 0.4 0.6 0.8
adiabatic Temperature(K) 713 791 855 909
*Ar 0.00149 0.00254 0.00328 0.004
CH4 0.2342 0.10614 0.04374 0.01718
*CO 0.0108 0.0381 0.08782 0.15309
COS 0.00001 0.00002 0.00004 0.00006
*CO2 0.3104 0.23127 0.17167 0.12062
*H2 0.17732 0.23817 0.25163 0.23111
H2S 0.00304 0.00238 0.00203 0.00183
NH3 0.00025 0.00022 0.00014 0.00008
*N2 0.13939 0.22356 0.28363 0.34283
C(gr) 0.1231 0.15762 0.15603 0.1292
HHHV (kJ kg-1) 1188698 875402.2 703083 620262.8
HHHV (kJ normal m-3) 10686.66 7067.817 5535.912 5086.725
HHVgas (HHVch4)-1 (%) 21.39132 15.74437 12.64029 11.1516
Energy Recovery 0.818548 0.680901 0.616504 0.620487  

 

 

Table D.7. Adiabatic temperature, gas composition (mole fraction), HHV of gases, and energy recovery 
calculated with equilibrium model for DB at ERM=6 

ERM 6 6 6 6
ASTR 0.2 0.4 0.6 0.8
adiabatic Temperature(K) 694 768 824 871
*Ar 0.00118 0.00195 0.00256 0.00312
CH4 0.23282 0.12556 0.06436 0.03161
*CO 0.00644 0.02424 0.0542 0.09554
COS 0.00001 0.00002 0.00003 0.00004
*CO2 0.27991 0.22209 0.17785 0.13963
*H2 0.13634 0.20314 0.23059 0.23044
H2S 0.00334 0.00275 0.00239 0.00217
NH3 0.00022 0.00021 0.00016 0.00011
*N2 0.11529 0.17669 0.22582 0.27164
C(gr) 0.22445 0.24334 0.24203 0.22568
HHHV (kJ kg-1) 1252603 986309.2 801945.2 690581.5
HHHV (kJ normal m-3) 10108.14 7203.348 5650.106 4937.897
HHVgas (HHVch4)-1 (%) 22.54375 17.74234 14.41983 12.41512
Energy Recovery 0.727272 0.623472 0.557943 0.53364  
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Table D.8. Adiabatic temperature, gas composition (mole fraction), HHV of gases, and energy recovery 
calculated with equilibrium model for DB at ERM=8 

ERM 8 8 8 8
ASTR 0.2 0.4 0.6 0.8
adiabatic Temperature(K) 688 753 803 845
*Ar 0.00093 0.00159 0.00212 0.00259
CH4 0.22747 0.1393 0.0819 0.04641
*CO 0.00518 0.01737 0.03746 0.06557
COS 0.00001 0.00002 0.00002 0.00004
*CO2 0.25958 0.21603 0.18087 0.15022
*H2 0.12073 0.17922 0.21125 0.2221
H2S 0.0035 0.00299 0.00265 0.00241
NH3 0.0002 0.00021 0.00018 0.00014
*N2 0.09513 0.14774 0.19012 0.22833
C(gr) 0.28728 0.29553 0.29344 0.28219
HHHV (kJ kg-1) 1311754 1072101 890071.4 764153.1
HHHV (kJ normal m-3) 9717.442 7343.216 5867.287 5031.35
HHVgas (HHVch4)-1 (%) 23.60917 19.28808 16.00699 13.73882
Energy Recovery 0.675777 0.594422 0.534256 0.500048  

 

 

Table D.9. Adiabatic temperature, gas composition (mole fraction), HHV of gases, and energy recovery 
calculated with equilibrium model for FB at ERM=2 

ERM 2 2 2 2
ASTR 0.2 0.4 0.6 0.8
adiabatic Temperature(K) 796 905 1213 1558
*Ar 0.00186 0.00314 0.00432 0.00545
CH4 0.07063 0.01364 0 0
*CO 0.02644 0.11471 0.13054 0.1239
COS 0.00001 0.00003 0.00003 0.00003
*CO2 0.3003 0.20769 0.17795 0.16797
*H2 0.43343 0.38848 0.31714 0.23898
H2S 0.00238 0.00199 0.00182 0.00157
NH3 0.00036 0.00015 0.00002 0
*N2 0.16459 0.27018 0.36817 0.46194
C(gr) 0 0 0 0
HHHV (kJ kg-1) 9406.739 7396.09 5644.059 4219.927
HHHV (kJ normal m-3) 7923.784 6351.523 5207.213 4218.596
HHVgas (HHVch4)-1 (%) 16.90546 13.28956 10.14172 7.583911
Energy Recovery 0.830072 0.774561 0.693865 0.600971  
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Table D.10. Adiabatic temperature, gas composition (mole fraction), HHV of gases, and energy recovery 
calculated with equilibrium model for FB at ERM=4 

ERM 4 4 4 4
ASTR 0.2 0.4 0.6 0.8
adiabatic Temperature(K) 811 864 910 954
*Ar 0.00131 0.00224 0.00304 0.0038
CH4 0.1274 0.05935 0.02701 0.01183
*CO 0.05838 0.10959 0.17268 0.23958
COS 0.00003 0.00005 0.00007 0.0001
*CO2 0.26446 0.19661 0.14145 0.09293
*H2 0.31753 0.32116 0.29915 0.26336
H2S 0.0033 0.0028 0.00251 0.00232
NH3 0.00019 0.00015 0.0001 0.00007
*N2 0.12282 0.19853 0.26456 0.3271
C(gr) 0.10459 0.10953 0.08943 0.05892
HHHV (kJ kg-1) 11341.84 9256.626 8070.203 7372.867
HHHV (kJ normal m-3) 8998.854 7164.561 6463.218 6267.36
HHVgas (HHVch4)-1 (%) 20.39711 16.64204 14.5087 13.25731
Energy Recovery 0.773661 0.715495 0.712296 0.740327  

 

 

Table D.11. Adiabatic temperature, gas composition (mole fraction), HHV of gases, and energy recovery 
calculated with equilibrium model for FB at ERM=6 

ERM 6 6 6 6
ASTR 0.2 0.4 0.6 0.8
adiabatic Temperature(K) 820 861 897 932
*Ar 0.00094 0.00167 0.00231 0.00291
CH4 0.11304 0.06325 0.03484 0.01876
*CO 0.06006 0.09755 0.14206 0.19114
COS 0.00004 0.00005 0.00007 0.00009
*CO2 0.23326 0.186 0.14551 0.1086
*H2 0.30548 0.31004 0.29845 0.27704
H2S 0.00354 0.00314 0.00288 0.00269
NH3 0.00016 0.00014 0.00011 0.00008
*N2 0.09304 0.15271 0.20521 0.25419
C(gr) 0.19044 0.18545 0.16857 0.1445
HHHV (kJ kg-1) 12036.36 10206.07 9003.771 8227.859
HHHV (kJ normal m-3) 8356.896 7037.264 6385.551 6119.144
HHVgas (HHVch4)-1 (%) 21.64516 18.34938 16.18665 14.79282
Energy Recovery 0.689274 0.650023 0.64006 0.65217  
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Table D.12. Adiabatic temperature, gas composition (mole fraction), HHV of gases, and energy recovery 
calculated with equilibrium model for FB at ERM=8 

ERM 8 8 8 8
ASTR 0.2 0.4 0.6 0.8
adiabatic Temperature(K) 827 859 889 918
*Ar 0.00073 0.00134 0.00187 0.00237
CH4 0.10438 0.06587 0.04071 0.02482
*CO 0.06232 0.09056 0.1249 0.1626
COS 0.00004 0.00005 0.00006 0.00008
*CO2 0.21555 0.1797 0.14761 0.11801
*H2 0.30075 0.30306 0.29665 0.28261
H2S 0.00367 0.00335 0.00311 0.00293
NH3 0.00014 0.00013 0.00011 0.00009
*N2 0.07615 0.12546 0.16912 0.20986
C(gr) 0.23627 0.23049 0.21585 0.19664
HHHV (kJ kg-1) 12533.38 10896.44 9738.096 8921.691
HHHV (kJ normal m-3) 8013.747 6970.148 6379.34 6074.458
HHVgas (HHVch4)-1 (%) 22.53817 19.5909 17.50681 16.0394
Energy Recovery 0.646715 0.614436 0.602975 0.606321  

 

 

Here are presented tables of gas composition, HHV, and energy recovery for DB 

as a function of S:F and ER. 

 

Table D.13. Adiabatic temperature, gas composition (mole fraction, wet basis), HHVcalculated with 
equilibrium model for DB at ER=1.59 

S:F 0.35 0.45 0.56 0.68 0.8
ER 1.59 1.59 1.59 1.59 1.59
Adiabatic Temperature, K 1714.82 1683.75 1656.46 1626.18 1596.92
Yar 0.00675 0.00659 0.00645 0.00629 0.00613
YCH4 0 0 0 0 0
YCO 0.12527 0.11774 0.11136 0.10428 0.0977
YCO2 0.10084 0.10289 0.10451 0.10615 0.10754
YH2 0.05232 0.05555 0.05819 0.061 0.06351
YH2O 0.14643 0.16263 0.17685 0.19334 0.20918
YNH3 0 0 0 0 0
YN2 0.56835 0.55457 0.54262 0.52893 0.51592
C(gr) 0 0 0 0 0  
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Table D.14. Adiabatic temperature, gas composition (mole fraction, wet basis) calculated with equilibrium 
model for DB at ER=2.12 

S:F 0.35 0.45 0.56 0.68 0.8
ER 2.12 2.12 2.12 2.12 2.12
Adiabatic Temperature, K 1367 1343.87 1324.27 1301.16 1279.89
Yar 0.00591 0.00574 0.0056 0.00544 0.00528
YCH4 0 0 0 0 0
YCO 0.17803 0.16481 0.15383 0.14171 0.13072
YCO2 0.08559 0.09138 0.09597 0.10082 0.10496
YH2 0.11715 0.12206 0.12588 0.12986 0.13318
YH2O 0.11465 0.13137 0.14619 0.16338 0.18003
YNH3 0 0 0 0 0
YN2 0.49867 0.48463 0.47253 0.45879 0.44583
C(gr) 0 0 0 0 0  

 

 

Table D.15. Adiabatic temperature, gas composition (mole fraction, wet basis) calculated with equilibrium 
model for DB at ER=3.18 

S:F 0.35 0.45 0.56 0.68 0.8
ER 3.18 3.18 3.18 3.18 3.18
Adiabatic Temperature, K 937.03 925.01 919.9 913.68 907.25
Yar 0.00481 0.00466 0.00452 0.00436 0.00421
YCH4 0.00892 0.01073 0.01022 0.00978 0.00949
YCO 0.20841 0.18902 0.16983 0.14963 0.13201
YCO2 0.09867 0.11236 0.1225 0.13251 0.14057
YH2 0.21233 0.22196 0.22927 0.23577 0.24021
YH2O 0.05279 0.06531 0.0798 0.0976 0.11565
YNH3 0.00006 0.00007 0.00007 0.00008 0.00008
YN2 0.40821 0.3959 0.38378 0.37028 0.35778
C(gr) 0.0058 0 0 0 0  
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Table D.16. Adiabatic temperature, gas composition (Mole fraction, wet basis) calculated with equilibrium 
model for DB at ER=4.24 

S:F 0.35 0.45 0.56 0.68 0.8
ER 4.24 4.24 4.24 4.24 4.24
Adiabatic Temperature, K 908.37 894.59 883.25 870.89 859.45
Yar 0.00405 0.00392 0.00382 0.00371 0.00361
YCH4 0.01422 0.0179 0.02146 0.02595 0.03067
YCO 0.15241 0.13602 0.1228 0.10892 0.09671
YCO2 0.11417 0.12741 0.13814 0.14957 0.15972
YH2 0.21564 0.22251 0.22706 0.23084 0.23295
YH2O 0.07346 0.08812 0.1015 0.11749 0.13344
YNH3 0.00007 0.00008 0.00009 0.0001 0.00011
YN2 0.34566 0.33519 0.32646 0.31684 0.30805
C(gr) 0.08032 0.06886 0.05867 0.04658 0.03475  

 

 

Table D.17. Adiabatic temperature, gas composition (mole fraction, wet basis) calculated with equilibrium 
model for DB at ER=6.36 

S:F 0.35 0.45 0.56 0.68 0.8
ER 6.36 6.36 6.36 6.36 6.36
Adiabatic Temperature, K 868.07 853.61 841.53 828.19 815.87
Yar 0.0031 0.003 0.00292 0.00284 0.00276
YCH4 0.0251 0.03088 0.03637 0.04316 0.0501
YCO 0.09019 0.0779 0.06829 0.0585 0.05027
YCO2 0.1275 0.13932 0.14879 0.15882 0.16763
YH2 0.20745 0.20991 0.21049 0.20962 0.20737
YH2O 0.10696 0.12577 0.14276 0.16289 0.18267
YNH3 0.00009 0.0001 0.00011 0.00012 0.00013
YN2 0.26782 0.2595 0.25262 0.2451 0.23824
C(gr) 0.17179 0.15362 0.13763 0.11897 0.10084  
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Table D.18. Adiabatic temperature, gas composition (mole fraction, dry basis without C), HHV of gases, 
and energy recovery calculated with equilibrium model for DB at ER=1.59 

S:F 0.35 0.45 0.56 0.68 0.8
ER 1.59 1.59 1.59 1.59 1.59
Yar 0.007908 0.00787 0.007836 0.007798 0.007751
YCH4 0 0 0 0 0
YCO 0.14676 0.140607 0.135285 0.129274 0.123543
YCO2 0.118139 0.122873 0.126963 0.131592 0.135985
YH2 0.061296 0.066339 0.070692 0.07562 0.080309
YNH3 0 0 0 0 0
YN2 0.66585 0.662276 0.659199 0.655704 0.652386
HHHV (kJ kg-1) 2077.172 2070.552 2064.704 2058.203 2051.94
HHHV (kJ normal m-3) 2409.247 2397.065 2386.429 2374.547 2363.099
HHVgas (HHVch4)-1 (%) 3.74063 3.728708 3.718178 3.706471 3.695191
Energy Recovery 0.491207 0.48574 0.480858 0.475136 0.469558  

 

 

Table D.19. Adiabatic temperature, gas composition (mole fraction, dry basis without C), HHV of gases, 
and energy recovery calculated with equilibrium model for DB at ER=2.12 

S:F 0.35 0.45 0.56 0.68 0.8
ER 2.12 2.12 2.12 2.12 2.12
Yar 0.006675 0.006608 0.006559 0.006502 0.006439
YCH4 0 0 0 0 0
YCO 0.201084 0.189736 0.180169 0.169384 0.15942
YCO2 0.096674 0.1052 0.112402 0.120509 0.128005
YH2 0.132321 0.14052 0.147433 0.15522 0.162421
YNH3 0 0 0 0 0
YN2 0.563246 0.557925 0.553437 0.548385 0.543715
HHHV (kJ kg-1) 3611.523 3588.862 3569.546 3547.631 3527.385
HHHV (kJ normal m-3) 3865.032 3829.706 3799.941 3766.304 3735.314
HHVgas (HHVch4)-1 (%) 6.503733 6.462924 6.428139 6.388675 6.352216
Energy Recovery 0.701058 0.693281 0.686321 0.678161 0.670185  
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Table D.20. Adiabatic temperature, gas composition (mole fraction, dry basis without C), HHV of gases, 
and energy recovery calculated with equilibrium model for DB at ER=3.18 

S:F 0.35 0.45 0.56 0.68 0.8
ER 3.18 3.18 3.18 3.18 3.18
Yar 0.005109 0.004986 0.004912 0.004832 0.004761
YCH4 0.009475 0.01148 0.011106 0.010838 0.010731
YCO 0.221381 0.202227 0.184558 0.165813 0.149273
YCO2 0.104811 0.120211 0.133123 0.146842 0.158953
YH2 0.225545 0.237469 0.249152 0.26127 0.271623
YNH3 6.37E-05 7.49E-05 7.61E-05 8.87E-05 9.05E-05
YN2 0.433616 0.423563 0.417062 0.410328 0.404568
HHHV (kJ kg-1) 5694.429 5705.812 5643.774 5577.262 5517.353
HHHV (kJ normal m-3) 5530.659 5521.403 5440.217 5355.502 5281.514
HHVgas (HHVch4)-1 (%) 10.25469 10.27519 10.16347 10.04369 9.935805
Energy Recovery 0.873844 0.882837 0.874345 0.864152 0.853921  

 

 

Table D.21. Adiabatic temperature, gas composition (mole fraction, dry basis without C), HHV of gases, 
and energy recovery calculated with equilibrium model for DB at ER=4.24 

S:F 0.35 0.45 0.56 0.68 0.8
ER 4.24 4.24 4.24 4.24 4.24
Yar 0.004786 0.00465 0.004549 0.004438 0.00434
YCH4 0.016804 0.021233 0.025553 0.031043 0.036871
YCO 0.180107 0.161348 0.14622 0.130298 0.116265
YCO2 0.134918 0.151135 0.164486 0.178926 0.192015
YH2 0.254827 0.263944 0.270364 0.276148 0.280052
YNH3 8.27E-05 9.49E-05 0.000107 0.00012 0.000132
YN2 0.408475 0.397606 0.388722 0.379027 0.370337
HHHV (kJ kg-1) 5921.034 5981.766 6043.022 6126.189 6215.756
HHHV (kJ normal m-3) 5661.684 5712.143 5769.075 5851.872 5946.792
HHVgas (HHVch4)-1 (%) 10.66277 10.77213 10.88245 11.03222 11.19351
Energy Recovery 0.716542 0.734183 0.750647 0.771374 0.792584  
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Table D.22. Adiabatic temperature, gas composition (mole fraction, dry basis without C), HHV of gases, 
and energy recovery calculated with equilibrium model for DB at ER=6.36 

S:F 0.35 0.45 0.56 0.68 0.8
ER 6.36 6.36 6.36 6.36 6.36
Yar 0.004298 0.004163 0.004058 0.003955 0.003852
YCH4 0.034801 0.042853 0.050541 0.0601 0.069924
YCO 0.125047 0.108103 0.094899 0.08146 0.070161
YCO2 0.176776 0.193336 0.206765 0.221155 0.23396
YH2 0.287626 0.291295 0.292506 0.291893 0.289425
YNH3 0.000125 0.000139 0.000153 0.000167 0.000181
YN2 0.371328 0.360112 0.351051 0.341298 0.33251
HHHV (kJ kg-1) 6450.34 6578.252 6701.728 6857.938 7020.431
HHHV (kJ normal m-3) 6061.444 6200.666 6341.199 6525.56 6722.615
HHVgas (HHVch4)-1 (%) 11.61595 11.8463 12.06866 12.34997 12.64259
Energy Recovery 0.569531 0.593863 0.616573 0.644654 0.673445  
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APPENDIX E 

EES CODE TO ESTIMATE TAR AND GAS YIELD 

 

The Engineering Equation Solvers (EES) code performed to estimate the tar 

composition by atom balance is presented in this appendix. Running the program require 

entering fuel composition, gas moles, char moles, fuel rate (kg/h), and flows of steam 

(cm3/min) and air (SFCH). The atom balance is presented in the following reaction 

 
 
 gasesdryOHtardryCharOHairNOCH 220 +++→++nh  
 
 
Input data 
______________________________________________________________________ 
 
Fuel composition (input data) 
ash   =  14.95

   
Moisture   =  25

     
MassMolecular   =  20.34

   
aC   =  1

   
Ah   =  1.06

   
aO   =  0.406

   
an   =  0.046

 
 
Flows of reactants (input data) 
 
Manurerate   =  1

   
Waterflow   =  7.12
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airflow   =  40
 

   
Gas mole on a dry basis (input data)  
 
Ychar   =  0

   

YCO2   =  
16.75
100

   

yco   =  
11.26
100

   

YN2   =  
44.99
100

   

YH2   =  
25.28
100

   

YCH4   =  
1.035
100

   

YC2H6   =  
0.4047

100
  

 
Tar Composition  
yo2   =  0

   
CT   =  1

   
HT   =  2.01

   
NT   =  0.064

   
OT   =  0.48

 
 
___________________________________________________________________________ 
 
Stochiometric Calculations 
   
b   =  aC

   
aO  + 2  · a   =  2  · b  + c

   

d   =  3.76  · a  + 
an
2
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Ah   =  2  · c
   

Oxigenstch   =  2  · a
   

Nairstch   =  4.76  · a
   

AFstochiometric   =  
Nairstch

1
   

Mmanure   =  12  · aC  + Ah  · 1  + aO  · 16  + an  · 14
   

 

DAFManurerate   =  Manurerate  · 1  – 
ash
100

 – 
Moisture

100
   

DAFManureMoles   =  
DAFManurerate
MassMolecular

   

ExperimentalAirfuelratio   =  
airflow  · 

1.2
35.31  · 28.84

DAFManureMoles
   

ExperimentalSteamfuelratio   =  
Waterflow  · 1000  · 

60
1000000  · 18

DAFManureMoles
   

ER   =  
AFstochiometric

ExperimentalAirfuelratio
   

TotalSFratio   =  
Waterflow  · 1000  · 

60
1000000  · 18

 + Manurerate  · 
Moisture
18  · 100

DAFManureMoles
   

SFratio   =  ExperimentalSteamfuelratio
  

 
  
 
 
Actual calculations   
 
ManureMoles   =  yco  + YCH4  + YCO2  + 2  · YC2H6  + Ychar  + Ytar

   
an  · ManureMoles  + 3.76  · 2  · aircoefficient   =  2  · YN2  + NT · Ytar

   
Ah  · ManureMoles  + 2  · Nsteam   =  2  · YH2  + 4  · YCH4  + 2  · YH2O  + 6  · YC2H6  + HT · Ytar
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aO  · ManureMoles  + 2  · aircoefficient  + Nsteam   =  yco  + 2  · YCO2  + 2  · yo2  + YH2O  + OT  · Ytar
   

Actair   =  4.76  · aircoefficient
   

AirFuelRatio   =  
Actair

ManureMoles
   

ER   =  
Nairstch

AirFuelRatio
   

TotalSFratio   =  
Nsteam

ManureMoles
   

masamanure   =  ManureMoles  · MassMolecular
   

watermanure   =  masamanure  · 
0.25

0.6  · 18  · 1   [moles]
   

externalwater   =  Nsteam  – watermanure
   

steamfuelratio   =  
externalwater
ManureMoles
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APPENDIX F 

CALIBRATION AND ANALYSIS OF MASS SPECTROMETER 

 

 The procedure used for operating, calibrating, and analyzing of the mass 

spectrometer are presented in this appendix. The basic operating instructions of the MS 

can be seem in the operation manual, which is available in the coal and biomass 

laboratory. The operation manual is also available in the Gas Works software. Before 

any attempt is made to operate the system, it is important to read the basic operating 

conditions to avoid damages in the filament. The filament of the MS can be connected 

only after that the pressure of the system has fallen into the safe operating region of 

below 2x10-5 mbar. This pressure is achieved approximately 10 min after the MS is 

powered. For the MS to function correctly, the probability of collisions between ions and 

molecules must be low, hence, the necessity for operation at low pressure (vacuum < 10-

6 Torr). Ionization is a process in which exited electrons emitted by a hot filament collide 

with the atoms and molecules of gas samples to remove electrons from their outer orbits 

leaving the atoms and molecules of the samples with a positive charge. As discussed 

before, the ions can have a charge of 1e, 2e, or 3e depending on whether they have one, 

two, or three electrons removed during the ionization process. The ion is said to be 

singly charged, doubly charged, or triply charged. The MS operates by measuring the 

molecular mass-to-charge ratio of the atoms and molecules of the gas samples entering 

the MS. Thus, it is evident that the mass spectrum of a gas is not just its molecular mass, 
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but is in practice identified by a family of peaks, called cracking pattern. As with a 

mixture of gases, the spectrum can be very complex because of the superposed cracking 

pattern; calibration using gas mixtures with non-overlapping masses is required to 

analyze the samples. Using the information gained during the calibration, an analysis of 

one matrix of known component gases but unknown concentrations can be performed. 

The calibration frequency of the MS depends on the amount of gases present in the 

samples to be analyzed. Increased amount of gases in the samples requires more frequent 

calibrations. The calibration of the MS must be performed in the same conditions used in 

the analysis.  The mixture samples used in the calibrations must be taken almost at 

atmospheric pressure to ensure a sample flow of 12 mL/min which is required by the MS 

for a successfull calibration and analysis. If the downstream pressure where the samples 

are taken by the capillary is far from atmospheric pressure, the flow of samples into the 

MS could increase or decrease and the calibration and analysis are not reliable. To avoid 

possible condensate into the MS (tar and steam), calibration and analysis must be 

performed with the heater elements of the MS turned on to heat the samples in the 

capillary (capillary tube which takes the samples from the downstream to the MS) at 180 

°C and into the MS jacket at 80 °C. It is necessary to have mixtures with known gas 

compositions to perform the calibration.  For each gas analyzed, it is necessary to 

purchase a cylinder with a known composition closer to that of the gas to be analyzed. 

For example, to analyze CO in a gasifier, a mixture of 30% CO and 70% gas balance 

(argon) must be acquired. However, because in gasification the concentration of the 
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gases varies with the operating conditions, it is important to have a mixture with all 

gases to obtain linearities for each of the gases to be analyzed.  

 Table F1 shows the mixtures used to calibrate the MS and calibration 

configuration set-up. Where F = Fragmentation, S = Sensitivity and L = Linearity. 

Mixture 1 contains all the gases which are later analyzed and is used to obtain the 

linearities. Mixtures 2 to 8 are used to measure the sensitivities (system response to a 

determined gas) and fragmentation patterns (overlapping) of the gases analyzed (CO, H2, 

C2H6, CH4, CO2, NO2, N2, and O2). Mixture 9 is used to measure the background in the 

vacuum. The mass 4 peak, which is the only peak in He, is not used during the analysis; 

thus, this gas can be used to quantify the system background. 

 

Table F1. calibration mixtures and calibration configuration set up  
Calibration Mixtures

Gas 1 2 3 4 5 6 7 8 9
CO 15% L 30% FS
H2 15% L 20% S

C2H6 5% L 1% FS
CH4 5% L 1% FS
CO2 15% L 0.04% 20% FS
NO2 5% L 5% FS
N2 40% L 78.08% FS
O2 20.95% FS
He 100%
Ar Balance 0.93% Balance Balance Balance Balance Balance  

 

  The characteristic masses (peaks) measured in the gasification analysis are 

represented in Table AF2. As discussed before, the peaks are determined by the 

molecular weight of each gas and the ion charge. The peaks are defined as: M/charge, 

e.g., for N2, 28/1, 28/2, 28/3 etc. A gas can present many peaks if there is a peak that 

does not overlap with the peaks of other gases; this peak can be analyzed alone to 
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decrease the number of peaks measured. All the overlapping peaks present in the gas 

matrix must be selected to be analyzed. 

 

Table F2 analysis configuration set up  
Analyzed Gases

H2 CO N2 CH4 C2H6 O2 CO2 NO2

Characterisc
Peaks 2 12 14 15 27 32 44 46

2 100 0.4 3
12 100 100 4 2 2.5
14 8 100 23 13 26
15 100 18
27 100
32 100
44 100
6 100  

 

 As discussed before, the MS was calibrated every 72 hours under the 

configuration set-up presented in Table F1. The analysis was performed according to the 

analysis set-up presented in Table F2. The samples were suctioned by the MS from a 

downstream of samples which were previously taken at the top of the gasifier at the rate 

of 0.14 SATP m3 h-1 and conditioned by the sampling unit to remove tar and particulate 

material (Figure 14).  The pressure in the sample line where the capillary of the MS took 

the samples was maintained constant almost at atmospheric conditions to ensure a flow 

of 12 mL/min into the MS. After the calibration, mixtures of well-known composition 

were analyzed using the MS in order to verify the accuracy of the calibration.     

 The MS is shown in Figure F3. As discussed before, during the calibration and 

analysis, the capillary was heated at 180 °C to ensure no condensation into the MS 

during the analysis. Additionally to the capillary heater, the MS has another internal 

heater which allows the heating of samples within the internal jacket of the MS at 80 °C. 
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Although the gas samples analyzed were conditioned to remove the tar, water, and 

particulate material before they were suctioned by the capillary, the calibrations and 

analyses of gases were performed with the two heaters turned on (capillary and jacket) to 

remove the possibility of particulate material disrupting measurements. As the samples 

analyzed were heated in the capillary and jacket, the samples of calibration mixtures 

were also heated to ensure that the calibration and analyses were performed at the same 

conditions. If the temperature of the calibration mixtures is different to the temperature 

of the gas samples to be analyzed, the analysis in the MS would be no reliable. As the 

temperature or pressure is changed, the distance traveled by the molecules between 

collisions (mean-free-path) also changes, and hence the information obtained in the 

calibration is not useful in the analysis. 

 

 

 

 

 

 

 

 

 
 
 
 

Figure F-1 Mass Spectrometer 

Capillary  

Mass spectrometer 
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APPENDIX G 

 

ANALYSIS ON HHV OF N2-FREE GASES USING BOIE EQUATION 

 

This appendix presents results on HHV, determined using the Boie equation, of gas 

mixtures (N2-free) obtained for gasification of DB and compares the results with HHV 

values given by the gas mixtures. Considering a mixture of gases composed of CO, CO2, 

CHm, and H2 and knowing its composition an empirical formula (CHhOo) can be derived. 

Table G1 shows the composition with N2 content and N2-free of a gas mixture obtained 

from DB gasification at ER = 3.18 and S:F = 0.68. Using the gas composition the 

empirical formulas were also derived. The results show that the HHV of the N2-free 

mixture is higher than that of the mixture with N2 content. 

 
 
Table G1. N2 and N2-free composition (mol basis) of a mixture obtained for DB gasification at ER = 3.18 

and S:F = 0.68 
Especies (%) With N2 N2-free

CO2 17.22 35.25
CO 10.77 22.04
N2 51.15 0.00
H2 19.88 40.70

CH4 0.67 1.38
C2H6 0.29 0.60

Empirical formula CH1.51O1.54N3.5 CH1.51O1.54

HHV (kJ/kg of gas) 3836 8748  
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For N2-free gas mixtures obtained from DB gasification, table G2 compares HHV 

determined using the Boie Equation to the HHV given by the gas mixtures as a function 

of ER and S:F. The results show that the HHV determined using the Boie Equation is 

very close to the HHV of the mixtures.  The error between the value given by the gas 

mixtures and the HHV determined using the Boie equation lies between 0.03% and 

6.50%. In general, the error teds to decrease with increased ER.  

 
 
Table G2. HHV (kJ/kg of gas) of gases (free of N2) determined using Boie Equation and gas composition 
for DB gasification 

S:F Gas Boie Error Gas Boie Error Gas Boie Error Gas Boie Error Gas Boie Error
CompositionEquation % Composition Equation % Composition Equation % Composition Equation % Composition Equation %

0.35 9422 8964 4.85 9683 9147 5.53 9236 8846 4.22 8876 8662 2.42 8250 8252 0.03
0.56 9266 8765 5.41 10266 9747 5.06 9858 9564 2.99 9102 8992 1.21 8489 8528 0.47
0.68 10919 10209 6.50 10446 9921 5.02 8748 8511 2.70 8991 8845 1.62 8138 8200 0.76
0.8 10930 10280 5.94 10183 9701 4.73 8899 8720 2.00 8702 8659 0.49 8371 8533 1.93

4.24 6.36
ER

1.56 2.12 3.18

 
 
 

 Although for N2-free gas mixtures the HHV value determined using the Boie 

Equation is very close to the HHV value given by the gas mixtures, for mixtures with N2 

content, the HHV determined using the Boie equation is very different from that given 

by the gas mixture. For example, the HHV shown in table G1 for the mixture with N2 

content is 3836 kJ/kg whereas the HHV for the same mixture determined using the Boie 

Equation is 7261 kJ/kg, which leads to an error of ~47.2%. From results, it is apparent 

that for N2-free mixtures, the Boie equation gives HHV values very close to the values 

given by the gas mixtures but gives values very far for gas mixtures with N2 content. 
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