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ABSTRACT 

 

The Effects of Parceling on Testing Group Differences  

in Second-Order CFA Models:  

A Comparison between Multi-Group CFA and MIMIC Models. (August 2009) 

Yuanyuan Zou, B.A., Nanjing University; M.S., Baylor University 
 

Co-Chairs of Advisory Committee: Dr. Oi-man Kwok 
                                                           Dr. Victor Willson 

 
 
 

Using multi-group confirmatory factor analysis (MCFA) and multiple-indicator-

multiple-cause (MIMIC) to investigate group difference in the context of the second-

order factor model with either the unparceled or parceled data had never been thoroughly 

examined. The present study investigated (1) the difference of MCFA and MIMIC in 

terms of Type I error rate and power when testing the mean difference of the higher-

order latent factor (Δκ) in a second-order confirmatory factor analysis (CFA) model; and 

(2) the impact of data parceling on the test of Δκ between groups by using the two 

approaches. The methods were introduced, including the design of the models, the 

design of Monte Carlo simulation, the calculation of empirical Type I Error and 

empirical power, the two parceling strategies, and the adjustment of the random error 

variance.  

The results suggested that MCFA should be favored when the compared groups 

were when the different group sizes were paired with the different generalized variances, 

and MIMIC should be favored when the groups were balanced (i.e., have equal group 
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sizes) in social science and education disciplines. This study also provided the evidence 

that parceling could improve the power for both MCFA and MIMIC when the facotr 

loadings were low without bringing bias into the solution when the first-order factors 

were collapsed. However, parceling strategies might not be necessary when the factor 

loadings were high. The results also indicated that the two approaches were equally 

favored when domain representative parceling strategy was applied. 
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CHAPTER I 

INTRODUCTION 

 

Structural equation modeling (SEM), the foundation of confirmatory factor 

analysis (CFA), is one of the major analytic tools in the social sciences. One of the 

advantages of using SEM is that it can separate measurement errors from estimates of 

the parameters in the model (e.g., Bollen, 1989; James, Mulaik, & Brett, 1982; Kline, 

2005). This is realized by separately modeling latent constructs and latent error variables 

so that the estimates of the model parameters can be made based on the “error-free” 

latent constructs, instead of observed measures that are potentially contaminated by 

systematic and random errors.  

Two types of CFA models are most widely used in empirical and analytical 

studies, i.e.,  the first-order factor model and the hierarchical factor model. In the first-

order factor model, each latent factor is measured by the indicators, and the latent factors 

are assumed to be correlated with each other. An example of a first-order factor model of 

behavioral and emotional problems among adolescents (Windle & Mason, 2004, p. 54) 

is shown in Figure 1.1. In this model, each of the latent factors is measured by two or 

more indicators and the correlation between each pair of the latent factors is freely 

estimated. Note that a single-factor CFA model needs at least three indicators to be  

 
 
 
 
 
____________ 
This dissertation follows the style of Structural Equation Modeling. 
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uniquely identified. Therefore the construct “academic orientation” is not identified as 

an individual model, but the whole model in Figure 1.1 is over-identified because the 

total degrees of freedom is greater than the total number of parameters that need to be 

estimated. 

The second type of CFA model is termed the hierarchical CFA model, or second-

order CFA model, in which the lower-order latent factors that are measured by the 

indicators have one or more common direct causes. Because a common cause is 

measured by the lower-order latent factors, it is also called a second-order factor, and the 

lower-order factors are called the first-order factors. Figure 1.2 shows an example of a 

second-order CFA model (Meuleners, Lee, Binns, & Lower, 2003, p. 287). In this model, 

each of the five first-order factors, namely, “Psychological”, “Environment”, “Social”, 

“Opportunities for growth”, and “Health” is measured by at least three items. Meanwhile, 

the five first-order factors are caused by a common factor “Quality of life”, which is the 

second-order factor in the model.          

First-order and second-order CFA models, as well as the other CFA models, are 

both developed based on factor analysis with the goal of explaining the common 

variance among a  large number of correlated variables by a small number of factors 

(Tinsley & Tinsley, 1987). Therefore, the two types of models are closely related and 

share many characteristics. Firstly, the observed variables are linear functions of the 

latent variables with the variable-factor regression coefficients or loading as weights. 

Secondly, all the latent factors in these two types of models should be interpreted in 

relation to the observed variables. This characteristic also holds for the second-order  
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Fig. 1.2  An Empirical Example of the Second-Order CFA Model 
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factor in the second-order CFA model although it is derived from the first-order factors 

(Gorsuch, 1983). Moreover, the two models both usually assume that the residual 

variables are not correlated with each other or with the common latent factors. However, 

second-order CFA models are more easily understood than the first-order factor models 

with fewer second-order factors accounting for the common variances among the 

observed variables. In addition, the data may be interpreted by using the two types of 

CFA models from different perspectives. Thompson (1990) described this difference as: 

The first-order analysis is a close-up view that focuses on the 

details of the valleys and the peaks in mountains. The second-order 

analysis is like looking at the mountains at a greater distance, and 

yields a potentially different perspective on the mountains as 

constituents of a range. Both perspectives may be useful in 

facilitating understanding of data. (p. 579).        

 Regardless of the fact that the first-order and second-order CFA models are very 

commonly used in multivariate analysis in different social sciences, the second-order 

CFA model has been less employed than the first-order factor model, particularly in two 

areas. The first one involves group comparison. There are two major approaches for 

testing group difference in CFA models, multi-group CFA (MCFA) and multiple-

indicator-multiple-cause (MIMIC). The advantage of using MCFA is that it can examine 

potential group differences in different parts of the factor model through the test of 

measurement invariance (Widaman & Reise, 1997). However, compared with the 

MIMIC model, the MCFA model requires a relatively larger sample size because more 
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parameters may need to be estimated. The MIMIC model, on the other hand, requires a 

smaller number of observations but imposes more constraints (i.e., assuming a strict 

invariance condition) when testing group difference on the target construct. The two 

approaches are both widely used in psychology and education area to investigate the 

group difference across different population. Some examples among recent studies 

include the following: Byrne and Stewart’s (2006) comparison of  the responses to a 

depression inventory for Hong Kong and American nonclinical adolescents in a second-

order factor model using MCFA; Anderson et al.’s (2005) MIMIC approach in a first-

order factor model to investigate if some drinking behaviors are differentiated between 

genders and schools; Agrawal and Lynskey’s (2007) use of the two approaches to 

investigate the gender difference about cannabis abuse and dependency in a first-order 

factor model.  

Hancock, Lawrence, and Nevitt (2000) compared MCFA and MIMIC in the 

context of first-order factor models. They found that there was very little difference 

between the two approaches across groups in terms of power or Type I error under 

balanced design condition. On the other hand, MCFA was preferred as the disparity of 

sample sizes increased. However, the difference between the two approaches in the 

context of second-order factor models had not yet been well examined. 

The second area in which the second-order CFA model has been less employed is 

related to data parceling. Parceling (i.e., combining items to form parcels/composites) is 

a very common technique in educational and psychological studies, and the method of 

creating parcels for SEM analysis has received increasing attention in recent years. 
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Parcel is a simple sum (or mean) of several items that are used to assess the same 

construct (Kishton & Widaman, 1994), which is also referred to as a testlet (Wainer & 

Kiely, 1987) or a miniscale (Prats, 1990). Compared with models based on item-level 

data, models based on parceled data have the advantages that (1) they are more 

parsimonious (i.e., have fewer parameters for estimation because one parcel is a single 

indicator that requires only one loading estimate) and therefore require a smaller sample 

size (Bagozzi & Edwards, 1998, Little, Cunningham, & Shahar, 2002); (2) they 

generally display better model fit than the solutions based on item-level data (i.e., 

disaggregated data), especially when either the assumption of normality or the continuity 

of item-level data is violated (Bandalos, 2002, Little et al., 2002, Bagozzi & Edwards, 

1998); and (3) they have fewer chances for residuals to be correlated because the 

corresponding reliability is increased and the unique variances are smaller by parceling 

the items (Little et al., 2002).  A major advantage of using parcelling for second-order 

CFA models is that it can reduce the complexity of the model and requires smaller 

sample size when conducting multiple group comparison. 

The effects of parceling on model fit and parameter estimate have been 

thoroughly investigated in the context of single group first-order CFA models (e.g., 

Kishton & Widaman, 1994; Nasser & Takahashi, 2003; Nasser & Wisenbaker, 2006; 

Sass & Smith, 2006), particularly those with some variables loaded on a secondary 

factor (e.g., Hall, Snell, & Singer-Foust, 1999; Bandalos, 2002; Bandalos, 2008). 

However, very few studies have been conducted that examine the effects of parceling on 

group comparison in either first-order or second-order CFA model. Given the fact that 
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second-order CFA models have gained popularity and that parceling strategy has been 

receiving increasing attention in education and other social science disciplines, 

examining the effects of parceling in the second-order CFA model on group comparison 

may provide important guidance on its use.  

This article is organized as followed. In Chapter II, the theoretical framework 

and previous research including second-order CFA models, MCFA and MIMIC, and 

parceling were reviewed to set up a necessary backgroup for the current investigation. 

The current investigation based on these techniques, which included two studies (i.e., 

Study 1 and 2) were introduced in Chapter III. Chapter IV contained the method, results, 

and discussion of Study 1, and Chapter V contained the method, results and discussion 

of Study 2. Finally the conclusion was made in Chapter VI.  

 

 

 

 

 

 

 

 

 

 

 



9 
 

CHAPTER II 

LITERATURE REVIEW 

 

In this chapter, the theoretical framework and previous research on second-order 

factor models, the two model comparison approaches (i.e., Multi-group CFA and 

MIMIC), and parceling strategies were reviewed separately.  

 

SECOND-ORDER CFA MODEL 

Second-order CFA models is applicable when (1) the first-order factors are 

highly correlated, and (2) there is a hypothetical second-order factor that can account for 

the associations among the first-order factors (Chen, Sousa, & West, 2005). Compared 

with the first-order CFA model, the second-order CFA model has advantages that it is 

more parsimonious when there are four or more first-order factors1, and it can be used 

for investigating reliability and validity by separating specific and unique variance 

estimates (Rindskopf & Rose 1988). The most famous example of second-order factor 

models would be the theory of general intelligence factor (abbreviated g), which was 

proposed by Spearman (1927). In his study of schoolchildren’s academic achievement, 

he claimed that there was a dominant intelligence factor (i.e., g) that could account for 

the correlations between the seemingly unrelated school subjects. Spearman’s g factor 

model can be reformulated by a first-order factor model with g as the latent factor and all 

the school subjects are loaded on this g factor directly. Spearman’s g theory was 

                                                 
1 Assuming the residuals are all uncorrelated with each other and with the factors, the first-order factor 
model with three first-order factors is as parsimonious as the corresponding second-order factor model. 
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criticized in that it ignored the potential group/specific factors corresponding to various 

abilities, e.g., perceptual organization, memory, and verbal ability. The development of 

cognitive tests and analytical techniques improved the conception of g and led to a 

second-order factor model with g as the second-order factor and the specific 

intelligence-related abilities (each of which is assessed by multiple items) as the first-

order factors, which has been widely although not universally accepted. 

In a second-order factor model, each first-order factor is represented as a linear 

function of the second-order factor and the residual, and each observed variable is 

represented as a linear function of the corresponding first order factor plus the 

measurement error. Suppose there is a second-order factor model with one second-order 

factor and four first-order factors, and each of the first-order factors is associated with 

three observed variables (Figure 2.1). Then, the twelve observed variables y for 

individuals can be expressed as: 

 

y = μ  + ηΛ  + ε                                                      (1)                            

 

where both y and μ  are a 12 × 1 vector with y contains the 12 observed scores and μ  

contains the intercept values for the 12 observed variables, Λ is a 12 × 4 matrix 

containing the loadings of the observed variables on the first order factors, η  is a 4 × 1 

vector containing the theoretical scores for the individual on the first-order factor, and ε  

is a  12 × 1 vector of unique variables/errors of the observed variables. The 4 × 1 vector  



11 
 

 

Fig. 2.1 A Conceptual Second-Order Factor Model 

Note. ξ is the second-order factor, γ i is the loading of the first-order factor on the second-order factor, η i is 
the first-order factor, ς i is the residual of the first-order factor, λ ij is the loading of the observed variable on 
the first-order factor, Y ij is the observed variables, and eij is the random error of the observed variable (i = 
1 - 4, j = 1-3). 
 

of the first-order factors η  that are loaded on the second-order factor can also be 

expressed as:     

                                                    η  = ν + ξΓ  + ζ                                                     (2) 

 

where ν  is a 4 × 1 vector of intercept values for the first order factors, Γ is a 4 × 1 

vector containing the loadings of the first-order factors on the second-order factor, ξ  

represents the score of the second-order factor, and ζ  represents the 4 × 1 vector of the 

residuals in the first-order factors. The intercepts μ and ν are usually constrained as zero 

for simplicity and identification purpose. The corresponding variance-covariance 
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matrices for the four first-order factors (i.e., η  in Equation 2) and the 12 observed 

variables (y in Equation 1) are: 

 

                    Σ ( = =Σ Ψ+ΓΦΓ ')η                                                (3) 

 

and  

 

εΘ+ΛΨ+ΓΦΓΛ=Σ=Σ ')'()(y .                                      (4) 

 

εΘIn both equations, Φ ,  and Ψ  represent the variance-covariance matrix of the 

second-order factor, residuals of the first-order factor and errors of the observed 

variables, respectively.  

Rindskopf & Rose (1988) provided a theoretical framework for using a second-

order factor model to investigate reliability and validity of the observed variables. The 

variance-covariance matrix of the observed variables (Equation 4) can be rewritten as: 

 

εΘ+ΛΨΛ+ΛΓΦΓΛ=Σ '''                                              (5) 

 

which displays explicitly that the variance of each observed variables consists of three 

parts. The first part ''ΛΓΦΓΛ  is the common variance of the 12 observed variables. The 

second part is the specific variance or systematic error variance from the 'ΛΨΛ
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unknown factors that are specified as the residuals of the first-order factors in the model, 

typically assumed to be independent of each other, although potentially forming 

additional factors if the model is misspecified. And the third part εΘ , as stated before, is 

the variance from the random error. Note that for the model depicted as above, is a 

diagonal matrix under the assumption that measurement errors are mutually uncorrelated.   

εΘ

 In the classic test theory, reliability can be mathematically defined as the ratio of 

the true score variance to the total variance, in which the true score variance is the sum 

of the common variance and specific variance. That is, the reliability of the ith observed 

variable can be estimated as the ith element of (Rindskopf & Rose, 1988, p. 64, Equation 

5): 

 

                                (6) (/)'''( Σ)Λ ΦΓ Γ Λ +ΛΨΛ DiagDiag

 

Rindskopf and Rose (1988) also defined “measure validity” as the ratio of the 

common variance to the total variance and “method validity” as the ratio of variance of 

the first-order factors due to the second-order factor to the total variance of the first-

order factor. The two validities can be expressed as (Rindskopf & Rose, 1988, p. 64, 

Equation 6): 

 

           Measure validity:                        (7) Diag )(/)''( ΣΛΓΦΓΛ Diag

 

and (Rindskopf & Rose, 1988, p. 65, Equation 7) 
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  Method validity:                     (8) )'(/)'( Ψ+ΓΦΓΓΦΓ DiagDiag

 

respectively. They further explained that measure validity answered the question “how 

well the observed variables measure the second-order factors” (p. 68) and method 

validity answered the question “how well the first-order factors measure the second-

order factors” (p. 66).   

However, using second-order factor models to estimate the reliability and 

validity as demonstrated by Rindskopft has some deficiencies. Firstly, there are many  

validities, e.g., content validity,  concurrent validity,  and predictive validity, 

discriminant validity, or convergent validity. The two validities specified by Rinskopft 

and his colleague (i.e., measure validity and method validity)  belong to construct 

validity. The validity calculated by using Equation 7 actually provides the proportion of 

the variation/variance in the empirical observed variables that is due to the underlying 

second-order factor. However, whether the empirically identified construct is consistent 

with the theoretical construct is not determined by such computations. Secondly, the 

specific variance that is separated out by the second-order factor model is actually the 

common variance for the observed variables that have the same first-order factor. Each 

observed variable under the same first-order factor, however, may have its own specific 

variance that is not shared with the others. This variance is mixed with the true random 

error and cannot be identified by the second-order factor model. Therefore, the reliability 

calculated by using Equation 6 might be smaller than the total true score reliability. 
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MULTI-GROUP CFA 

Multi-group confirmatory factor analysis (MCFA) is the most commonly used 

technique for testing measurement invariance (MI) and particularly, factor invariance 

between different populations. It can be used for comparing not only the covariance 

structures but also mean structures across the groups (Meredith, 1993; Widaman & Reise, 

1997). Because the theoretical frameworks for applying MCFA in first- and second-

order factor models are analogous to each other, the theory of testing invariance using 

MCFA on first-order factor models will be introduced first, which is the basis of the 

theory of second-order factor models.  

 

First-order CFA Models 

 Widaman and Reise (1997) provided a theoretical framework for applying 

MCFA to test MI in first-order factor models. This theoretical framework, however, is 

still applicable in the second-order factor model context. They distinguished four types 

of different MIs with  increasingly strict constraints imposed: 1) configural invariance, 

(i.e., identical patterns of fixed and free factor loadings across groups), 2) weak 

invariance (i.e., configural invariance plus the equality of  factor loadings across groups), 

3) strong invariance (i.e., weak invariance plus the  equality of intercepts across groups), 

and 4) strict invariance (strong invariance plus equality of residual variances across 

groups).  

Widaman and Reise (1997), as well as Mererdith (1993), argued that the 

covariance model in Equations 3 and 4 was only applicable when testing weak 
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invariance. If a higher-order level of MI needs to be tested, the model for a first-order 

CFA model should be modified as (Widaman & Reise, 1997, p. 288, Equation 8): 

                            

εααττ Θ+Λ′Ψ+′Λ+′= )(M .                                         (9) 

 

In this model, M is a p × p moment matrix (p = the number of observed variables), τ is 

the intercept, α is the mean of each latent factor, Ψ is an m × m matrix of covariance 

among latent factor scores (m = the number of latent factors), and εΘ is a p × p matrix 

of covariance among the measurement residuals. Note that the moment matrix M is 

similar to but not exactly a variance-covariance matrix. Each element in M also contains 

the information about the means of the two variables. 

 In the moment matrix specified in Equation 9 (or the corresponding variance-

covariance matrix), if the Λ matrix holds for each group, weak MI is achieved, which 

indicates that the correlation between the latent variables and the observed variables in 

one group is  the same as the corresponding  correlations in the other groups. If the 

intercept matrices ττ’ equalities hold in addition to equality of the Λ matrices across the 

groups, then the groups exhibit strong MI. Under this condition, because the scores from 

the different groups have the same weights (factor loadings) and origin (intercepts), the 

group mean difference (Δκ)on the latent variables can  be tested. If  constraints are 

invoked on θ in addition to Λ and ττ’, the groups have strict MI. When strict MI holds, ε  
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the variances of the latent factors as well as the means, are comparable across the groups. 

Nevertheless, strict MI is rarely achieved in educational and psychological research.  

 

Second-order CFA Models 

For testing MI in second-order CFA models, additional constraints are required, 

including the constraints on the loadings and intercepts of all the second-order factors, 

and the specific variances (as defined earlier) of the first-order factors. One approach  for 

comparing groups on the second-order CFA models with increasingly strict constraints is: 

(1) configural invariance; (2) constraining loadings of all the first-order factors; (3) 

constraining loadings of all the second-order factors; (4) constraining latent intercepts of 

the observed variables; (5) latent intercepts of the first-order factors, (6) residual 

variances of the first-order factors (i.e., specific variances), and (7) measurement error 

variances of the observed variables.  

Because the models of these seven hierarchical constraint steps are nested from 1 

to 7, chi-square difference test  can be conducted to test each level of MI. A  non-

significant chi-square difference test indicates that the constraints of a specific tested 

step are not statistically different between groups and more restricted constraint step can 

further be examined.  On the other hand, a significant chi-square difference test indicates 

that at least one or more constraints are not equal between groups and no further test step 

should be performed. Theoretically, a strong MI (with both loadings and latent intercepts 

of the observed variables to be the same between groups) is the prerequisite for 

obtaining a valid test on the mean difference of the latent factor(s) between groups in 
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first-order CFA. Similarly, this is also the required condition for testing valid group 

difference in second-order factors: the loadings of the second-order factors and the 

intercepts of the first-order factors should also be invariant across the groups in addition 

to the strong MI in the first-order part. Note that invariant specific variances or 

measurement error variances are not necessary when comparing the means of the 

second-order factors, although these (residual) variances, combined with other factors 

such as group size, might impact the Type I error rate and the empirical power.  

 

MULTIPLE-INDICATOR-MULTIPLE-CAUSE (MIMIC) 

A Multiple-Indicator-Multiple-Cause (MIMIC) model is defined as a 

measurement model with both cause indicators and effect indicators (Kline, 2005). 

Instead of fitting a model to different groups separately like MCFA, MIMIC combines 

them and incorporates the membership variables as the cause indicators into the model. 

For example, suppose there is a simple first-order factor model with one latent variable 

and three observed variables, and the goal is to compare the factor mean of this model 

between two groups. The grouping/membership variable, X, is coded as 0 and 1, and 

used as the exogenous variable/cause indicator. The overall model can be presented as: 

 

                                                  ζγνη ++= X                                                         (10) 

 

where η  is the first-order factor, ν is the latent intercept (or the mean of the group with 

X coded as 0), γ is the residual of the latent factor and is actually the mean difference ζ
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of the latent factor between the two groups, which can be examined by the Wald z test. 

The difference of the model structure by using MCFA and MIMIC is presented in Figure 

2.2. For  second-order factor models, the dichotomous variable representing group 

membership can be included as the cause indicator on the second-order factor and the 

group mean difference can be examined by the Wald Z test of the corresponding path 

coefficient (i.e., the path from the membership variable to the second-order factor).  The 

model is the same as Equation 10 except that all the elements in the model are related to 

the second-order factor.                                                                                                             

As described previously, MIMIC model requires a very strong assumption of the 

homogeneity of the Σ matrices (i.e., usually assuming a strict MI applies to all groups), 

which is apparently more rigorous than the assumption of MCFA. This assumption is 

even stronger when applying MIMIC in a second-order CFA model than a first-order 

factor because strict MI needs to be fulfilled in both levels of the second-order CFA 

model. Indeed, among the recent papers that have been reviewed, group comparison in 

the context of second-order CFA models has been conducted more frequently by using 

MCFA than MIMIC. Another deficiency of the MIMIC approach is that MIMIC has less 

flexibility in being able to investigate the sources of heterogeneity between two models 

than MCFA. That is, MIMIC cannot test if the groups have different model structures 

and factor loadings2. However, because the MIMIC approach results in only one model 

by combining data from two groups, fewer parameters are estimated and a relatively  
                                                 
2 MIMIC can test strong MI (i.e., equal intercepts across groups) by adding the path from the grouping 
variable to the observed variables (see Figure 2.2). The path coefficient is the difference in the intercepts 
between groups, which can be examined by the Wald z test.  
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MCFA: chi-square difference test could be conducted to test each level of MI (i.e., configural, weak, 
strong, and strict MI) by imposing the hierarchical constraints. When comparing the factor means, strong 
MI should hold. Then the mean of the factor in one group (i.e., Group A in the figure) is constrained as 
zero and the mean of the factor in other group (i.e., Group B in the figure) is freely estimated.     
 
 

 

MIMIC: Data from the two groups are combined to fit one model and a dichotomous variable representing 
the group information is added. The path coefficientγ is the mean group difference between the two 
groups, which can be examined by the Wald z test. Strong MI can also be tested by MIMIC model. The 
path coefficient ν' is the difference in the intercepts between the two groups, which can also be examined 
by the Wald z test. 
 

Fig. 2.2 Comparing the Model Structures of MCFA and MIMIC 
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smaller sample size (compared with the MCFA approach) is required for the purpose of 

estimability and convergence.  

 

PARCELING 

In this section the theoretical framework for improving model fit by using 

parceling, the methods of parceling presented by different researchers, residual 

adjustment for parcels, and the cons of parceling were reviewed. 

 

Theoretical Framework for Improving Model Fit 

Bandalos and Finney (2001) reported that among the reasons researchers cited 

for using/creating item parceling, increased reliability was cited as the most frequently 

(29%). Little et al. (2002) provided the theoretical framework for using parcels in SEM 

to increase the reliability of the indicators. They stated that any given indicator of a 

construct could be represented as:      

 

iiii eSTX ++=                                                     (11)                                        

 

where X  is the observed score of the indicator, Ti i represents the target construct true 

score, S  represents a specific component true score  unrelated to the construct, and ei i 

represents the random error that is unreliable. Therefore, the variance of an observed 

variable can be divided into three components, common variance, specific variance, and 

unreliable variance, corresponding to the variance of T , S , and e , respectively. If the i i i
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observed score X is standardized (i.e., the variance equals to 1) and T , S , and ei i i are 

independent from each other, the relationship of the common variance, the specific 

variance, and the unreliable variance can be expressed as (Crocker & Algina 1986, p. 

295): 

 

                                                                                                      (12a)      1222 =++ iii eST

                          

In this equation, , , and  have values between 0 and 1. Therefore they can 

be thought of as proportions, and also can be called communality, specificity, and 

unreliability of the variable, respectively. Among the three components,  and  are 

reliable and the sum of them is called reliability

2
iT 2

iS 2
ie

2
i

2
i

iT

2
iT

2
iT

2
iS

3 of the variable. When items are 

parceled, Si and ei (consequently  and ) could be reduced, or even canceled out 

theoretically if there are infinite indicators, because S

2
ie

iS+

S

T

 and ei i are assumed to be 

uncorrelated. Given that the sum of the three components is 1, the reduction in both  

and  increases the communality . Due to the larger increment in in  than the 

decrement  in , the reliability (i.e., ) will eventually be increased. Note that 

Little, Lindenberger, and Nesselroade (1999) proposed a different relationship of the 

three components and it was also applied in Little et al. (2002)’s study. They argued that 

2
iS

2
ie

2
iS 22

                                                 
3 Reliability, Communality, specificity, and unreliability are all proportions. They are calculated as the 
ratio of reliable variance, common variance, specific variance, and random error variance to the total 
variance, respectively. 
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the reliability of an item was the square root of the sum of its squared communality and  

squared specificity, and the sum of the reliability and unreliability is equal to 1:  

 

1)()( 22222 =++ iii eST   .    (12b)  

 

Although the two equations (12a & 12b) express the different relationship of the 

three components and different mathematical definition of reliability, they consistently 

display that decreasing  and  can result in increasing the indicators’ reliability in 

the model.  

2
iS 2

ie

 Previous studies (e.g., Kishton & Widaman, 1994; Little, et al., 2002; Gribbons 

& Hocevar, 1998; Nasser and Takahashi 2003) have shown that parceling could enhance 

the model fit by improving the reliability of the indicators. This finding can be supported 

by examining the sample covariance matrix. For example, in a second-order CFA model, 

the sample covariance matrix is shown in Equation 4 as εΘ+ΛΨ+ΓΦΓΛ=Σ ')'( . As the 

diagonal elements in the matrixΨ  and εΘ decrease by parceling, the sample covariance 

matrix will approach closer to the population covariance matrix ')'( ΛΓΦΓΛ=Σ  than 

the sample covariance matrix before parceling does, and then the model fit will be 

enhanced.  

MacCallum, Widaman, Zhang, and Hong (1999) provided a general theoretic 

framework demonstrating the sources that can potentially threaten model fit. Suppose 
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there is a first-order factor model with common and unique factors in it. The population 

covariance matrix can be expressed as: 

 

'''' ΘΘΣ+ΛΘΣ+ΘΛΣ+ΛΛΣ=Σ uuuccuccp                                 (13) 

 

in which Σp represents the population covariance, Λ is the matrix for the common factor 

loadings, Θ is the matrix for the unique factor loadings, ccΣ  is a covariance matrix of the 

common factors, is a covariance matrix of the common factors and unique factors, 

is a transpose of , and 

cuΣ

ucΣ cuΣ uuΣ is a covariance matrix of the unique factors. Common 

factors and unique factors, unique factors with each other are usually assumed to be 

uncorrelated in a population. Therefore the model can be simplified as (p. 87, Equation 

10): 

                                              

                                 Σ = ΛΦΛ’ + Θ                                                          (14) p u

 

if all the factors are defined as being standardized. In this equation Φ is the covariance 

matrix for the common factors, and Θu represents the matrix for the unique factors, 

which is a diagonal matrix and has diagonal entries representing the variance in each 

variable that is not accounted for by the common factors. However, this model may not 

hold in empirical samples. MacCallum and his colleagues showed that two sources of 

sampling error may appear and negatively influence the model fit when the model is 
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built based on the sample covariance matrix. They are the covariances between unique 

factors and the covarainces between the common and unique factors. Therefore, 'ΘΛΣcu  

and  cannot be eliminated from Equation 13, and 'ΛΘΣuc uuΣ is not an identity matrix.  

The sample factor analysis model would then be expressed as (p. 88, Equation 13):       

 

Θ′Θ+Λ′Θ+Θ′Λ+Λ′Λ=Σ uuuccuccs SSSS                                                          (15) 

 

where Scc, ,  and  and  are the matricescuS ucS uuS ccΣ cuΣ ucΣ, , , and  suggested by 

the sample data, respectively. Θ and Λ are defined as in Equation 13. These non-zero 

elements in the matrices of S

uuΣ

, S , and Scu uc uu, which are due to the random sampling 

fluctuations, will result in lack of fit in a model to the empirical sample data. Bandalos 

and Finney (2001) proposed that parceling could enhance model fit through three aspects. 

Firstly, as Little et al. (2002) stated, parceling could reduce specific variance by 

eliminating the unique component in scores. Consequently the size of the matrices Scu, 

S , and Suc uu will be reduced and the model fit will be less penalized for these unmodeled 

associations in the population matrix. Secondly, as parceling reduces the magnitude of 

the specific variances, the unique factor loadings will also be decreased. Note that the 

unique factor loadings in Θ serve as weights for the matrices S , S , and Scu uc uu. As the 

weights decrease, the three matrices will have less contribution to the solution for sΣ . 

Lastly, some parceling strategy in a specific condition could improve model fit in 

another way. By applying a distributed parceling strategy, the items that share the unique 
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factor (e.g., a method factor) are distributed in each parcel. When these parcels are 

treated as the indicators of the same common factor, the originally correlated unique 

variances (i.e., off-diagonal elements in the residual matrix) will turn into the common 

variances and become part of the variances on the diagonal of Scc instead of the off-

diagonal elements in the Suu matrix. As a result, the model can display better fit to the 

sample.  

However, the second way that parceling increases model fit proposed by 

Bandalos and Finney (2001) is problematic. When parceling decreases the unique 

variance, the common variance will increases simultaneously. These two mutual changes 

will result in a decrease of unique factor loadings and an increase of common factor 

loadings. Just as unique factor loadings serve as weights for the matrices Scu, Suc, and 

Suu, the common factor loadings in Λ also serve as weights for the matrices Scu and Suc. 

Therefore, the combined effect of Θ and Λ resulting from parceling on the two matrices 

Scu and Suc will need further investigation.   

Parceling could also improve model fit and provide a more reliable solution by 

mitigating the problems of nonnormality and noncontinuity. Multivariate normality is 

one of the major assumptions for using the maximum likelihood (ML) estimator to 

estimate the coefficients in CFA models. Although there are alternative estimators (e.g., 

asymptotically distribution-free ADF) when the assumptions of ML are violated, they 

usually require large sample sizes. For example, West, Finch, and Curran (1995) 

recommended the sample size of 1000-5000 for using ADF estimator. When sample 

sizes are small, these estimators become problematic. However, if the items that have 
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skewness and kurtosis in opposite directions are parceled, the skew and kurtosis could be 

cancelled out and the parceled data may display a more normal distribution, for which 

the ML is appropriate. This effect has been validated by using empirical data (e.g., 

Nasser & Takahashi, 2003; Thompson & Melancon, 1996) and simulated data (e.g., 

Bandalos, 2002; Bandalos, 2008; Hau & Marsh, 2004). Similarly, parceling improves 

continuity because “scale intervals increase in number and effectively become both 

smaller and more equal with regard to the distances between points as more items are 

aggregated” (Little et al. 2002, p. 157). Therefore the models based on parceled 

categorical data evidence better fit than the ones based on unparceled categorical data 

(e.g., Bandalos, 2008). 

 Contrary to the studies listed above, Marsh, Hau, Balla, and Grayson (1998) 

reached a different conclusion about parceling and model fit. They argued that although 

the fit indices for the model based on parcels were higher and the model were more 

likely to yield a proper solution than  one based on the same number of individual items 

(e.g., two parcels vs. two items, six parcels vs. six items), the model based on all the 

individual items (i.e., twelve items in their study) was modestly better than the those 

based on parcels. Little et al. (2002) countered that their simulation “was not a fair test” 

(p. 161). The data in Marsh et al.’s (1998) study was extreme, e.g., all the factor loadings 

above  0.6. Under such a condition the difference between the models based on items 

and parcels may be negligible. Bandalos and Finney (2001) also stated the improvement 

in model fit “is most marked for items with low communalities” (p. 284).   

 



28 
 

Methods of Parceling 

Kishton and Widaman (1994) distinguished two alternative parceling methods. 

One is called unidimentional, or internal consistency parceling, which parcels the items 

that share  the same facet . The other one is domain representative parceling, which 

creates parcels by combining items from different facets (Figure 2.3). They compared 

the two parceling strategies in terms of model fit and coefficient estimates in CFA 

models and concluded that both methods resulted in appropriate model fit, but domain 

representative parceling provided better coefficient estimates.    

The two methods are similar to the two commonly used parceling methods 

defined by Hall et al. (1999), namely, isolated and distributed parceling (Figure 2.4). 

However, isolated and distributed parceling strategies are usually referred to when the 

items from the same construct are also loaded on a secondary factor in addition to the 

primary factor. When conducting isolated parceling, the items with secondary loadings 

as well as primary loadings are combined into the same parcel, whereas in the isolated 

parceling strategy, the items with secondary loadings as well as primary loadings are put 

into parcels with items that are not loaded on the same secondary factor.  Hence, the 

influence of the secondary factor is distributed.  

Bagozzi and Edwards (1998) proposed three parceling (or aggregating as in their 

study) methods based on the depth of aggregation. In order to define the three parceling 

methods, they presented an example involving a CFA model with 16 items and 4 

components of a scale, each of which is measured by 4 items. The three parceling 

methods, in an increasing order according to the depth of aggregation with total 
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Model using unparceled data 

 

 

Model using unidimensional parcels 

 

 

Model using Domain representative parcels 

 

Fig. 2.3 Unidimentional Parceling versus Domain Representative Parceling  

Note. The errors are are not shown for simplicity.  

y1 y4 y7 
Parcel 1 

Domain 

y2y5 y8 
Parcel 2 

y3 y6 y9 
Parcel 3 

y1 y2 y3 
Parcel 1 

Domain 

y4 y5 y6 
Parcel 2 

y7 y8 y9 
Parcel 3 

y1 

Dimension 1 

y2 y3 y4 y5 

Dimension 2

y6 

Domain 

Dimension 3 

y7 y8 y9 



30 
 

Primary 
Factor 

 
 

 

 

Fig. 2.4 Isolated Parceling (Up) versus Distributed Parceling (Down)  

Note. The errors are not shown for simplicity. 

 

disaggregation (i.e., items) as the lowest one, are partial disaggregation, partial 
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aggregation, and total aggregation as shown in Figure 2.5 (Bagozzi & Edwards, 

50). In partial disaggregation, parcels are formed within each component and then used 

as the indicators of the same component; in partial aggregation, all the items in each 

component are aggregated to form one parcel and then the parcels serve as indicators 

the higher-order factors, each of which is defined by two or more components; in the 

total aggregation, a more general factor replaces these higher-order factors if they are 
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highly correlated with each other. Among the three parceling methods, a second-order 

factor model is actually involved when conducting partial aggregation and total 

aggregation, with the components corresponding to the first-order factors and the

order factors or the general factor corresponding to the second-order factors. However, 

neither the partial aggregation model nor the total aggregation model is a true second-

order factor model because the first-order factors (i.e. components) are collapsed by 

aggregating the items that measure these first-order factors.  

Bagozzi and his colleague also compared and contrast

 higher-

 the four different depth 

aggreg

8) are not 

indepen

g 

g 

ations and concluded that the models are more parsimonious and simpler as the 

depth of aggregation increases; on the other hand, more information involved in the 

individual items could be eliminated as the depth of aggregation increases.  

The three parceling methods proposed by Bagozzi and Edwards (199

dent from the other parceling methods depicted previously. Unidimentional 

parceling, domain representative parceling, isolated parceling, or distributed parcelin

can be conducted with a different level of parceling. Therefore, unidimentional parcelin

or any of the others could be partial diaggregation, partial aggregation, or total 

aggregation.   
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A. Total disaggregation model (no parcels are created) 

 

B. Partial disaggregation model 
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Residual Adjustment for Parcels 

The parcels that collapse the first-order factors (e.g., partial aggregation and total 

aggregation as defined above) are no longer error-free indicators of the second-order 

factor. They potentially consist of random error variance besides common variance. In 

addition, the parcels created by using unidimensional parceling strategy might also 

contain specific variance, which is originally reflected as the residual variance of the 

first-order factor. Therefore, the solution of the CFA model based on the parceled data, 

which is not error-free, might be contaminated. One way to accommodate the random 

error in this condition is to adjust the variance of the random error as (Sass & Smith, 

2006, p. 575, Equation 2): 

 

)( 22 ασσ ×− cc                                                  (16) 

in which represents the total variance of the parcel and α represents the Cronbach’s α 

(Cronbach, 1951) calculated from the items that are parceled (for more details about 

measure error adjustment see Bedeian, Day, & Kelloway, 1997). However, it is 

impossible to identify the specific variance that is represented as the part of the residual 

variance in a multidimensional parcel (e.g., parcels created by using unidimensional 

strategy in a second-order CFA model) with the current techniques.   

2
cσ

Other ways are available to calculate the reliability such as Spearman-Brown 

prediction formula and Angoff-Feldt coefficient (Angoff, 1953; Feldt, 1975; Feldt & 

Brennan, 1989). Feldt and Charter (2003) compared the three diffferent ways of 
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calculating the reliability and concluded that the Spearman-Brown formula might be 

valid to estimate the reliability of total scores if the parts contributed equally to the total 

score and the error variances are constant (i.e., the parts are classically parallel). The 

equation for the Spearman-Brown formula is (Cohen, Cohen, Teresi, Marchi, & Velez, 

1990, p. 189, Equation 1): 

 

ij

ij

rk
rk

)1(1 −+
                                         =    XcXcr                                             (17) 

 

in which k is the number of the parts, and r is the mean correlation. If the parts 

contributed equally to the total score but the error variances varied across the parts, 

Cronbach’s α is appropriate; else if the two parts didn’t contribute equally to the total 

score and the error variances varied across the parts (i.e., the parts are congeneric), the 

Angoff-Feldt coefficient should be calculated.  

 

The Cons of Parceling 

The advantages of parceling to enhancing reliability, normality, continuity and 

finally model fit are controversial. The area that is of greatest concern  involves the 

dimensionality of the construct in which the items are parceled. When items that have 

multidimensionality are parceled (e.g., distributed parceling), the appropriate model fit 

could be obtained even if the latent secondary-factors are not specified (see Hall et al. 

1999; Bandalos 1997; Bandalos 2002). Bandalos (2002) explained that when distributing 
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the items that are loaded on a secondary factor as well as the common factor to each 

parcel (i.e., distributed parceling), the variance from the secondary factor is shared by all 

the parcels instead of being unique to any of them. Then the influence of the secondary 

factor will be absorbed by the common factor, resulting in spurious good model fit and 

biased coefficient estimates.  Thus, the model misspecification (i.e., unmodeled 

secondary factor), which may be detected by using unparceled data, is masked by the 

good fit indices. Therefore, Bandalos (Bandalos & Finney, 2001; Bandalos 2002) and 

others stated that parceling strategy could be considered only if unidimentionality is 

clearly established or the secondary factors that might be masked by applying parceling 

are neglectable.  

In addition, Bandalos and Finney (2001) argued that (1) when using parceling to 

mitigate the problem of nonnormality resulted from coarsely measured categorical data, 

the factor structure among the items might be distorted and the parameter estimates 

might be biased, although parceling does improve the normality of the original items; (2) 

the low reliability of the scales could be masked by using higher-reliability parcels rather 

than the original items. Corresponding to the two deficiencies of parceling respectively, 

Bandalos and the colleague (2001) further suggested that (1) research should include as 

many scale points as possible before resorting to parceling the coarsely categorical data; 

and (2) parceling should never be used when the purpose of the study is to develop  a 

scaled instrument because the low communalities (or reliabilities) could serve effectively 

as an indicator of problems with the items.  
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Little et al. (2002)  commented that the other deficiency of parceling is that 

although parceling has advantages in statistical aspects, it ruins the meaning of the 

unstandardized parameter estimates based on the unparceled data. Therefore, researchers 

should use a parceling strategy with great  caution based on  applied grounds, 

particularly in the behavioral and social sciences, in which many scales have established 

norms based on their means and standard deviations.  
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CHAPTER III 

INVESTIGATIONS IN PARCELING IN SECOND-ORDER CFA MODELS 

  

The present investigation consisted of two parts, (i.e., Study 1 and 2). Study 1 

was motivated by the goal of examining the difference of Type I error rates as well as 

power produced by MCFA and MIMIC in a second-order CFA model. The other factors 

that were considered included group sizes, magnitude of the factor loadings (i.e., 

communality), magnitude of the error variance of the observed variables as well as the 

specific variance of the first-order factors, and the magnitude of the second-order factor 

mean difference between groups given the fact that these factors might influence the 

Type I error rate and power for detecting group differences.  

Study 2 expanded Study 1 with the goal of investigating how data parceling 

affected the results achieved in Study 1. Two parceling methods (i.e., unidimentional 

parceling and domain representative parceling) were evaluated with  respect to all the 

factors that were considered to potentially influence the Type I error rate and power in 

Study 1. In addition the models based on domain representative parcels were compared 

with and without measurement error adjustment. The reason that the model with domain 

representative parcels intead of unidimentional parcels was selected to make the error 

variance adjusted was that the residual variance of the domain representative parcel was 

not mixed with the specific vairance, which could not be identified, whereas that of the 

unidimensional parcel was. The results of the two studies would hopefully provide 

practical recommendations to researchers in the relative areas.  
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CHAPTER IV 

STUDY 1: TYPE I ERROR RATE AND POWER UNDER MCFA AND MIMIC 

SECOND-ORDER CFA MODELS 

 

 As presented before, the goal of Study 1 was to examine the difference of Type I 

error rates as well as power produced by MCFA and MIMIC in a second-order CFA 

model. Unparceled data were used in this study. The methods that were used in Study 1 

were introduced first, followed by the results and discussion.  

 

METHODS 

Model design and data simulation were introduced in the methods section. 

Methods section also included the calculation of Type I error rate and power, and how 

convergence problem was dealt with, which were also applicable for Study 2. 

 

Design of Monte Carlo Simulation 

In Study 1 a model with single second-order factor, four first-order factors, and 

three observed variables for each first-order factor was created for each of the two 

groups (Figure 2.1). Mplus 5.1 (Muthen & Muthen, 2007) was used to conduct the 

Monte Carlo study. The mean of the second-order factor in the first group (Group A) 

was set as 0 whereas the mean value in Group B was set as 0, .2, .3, .4, and .5 to 

represent the increasing discrepancy of the factor means between the two groups (i.e., 

Δκ). Also, .2 and .5 represent small and medium effect size respectively (Cohen, 1988). 
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Indeed, the magnitude of effect size in social sciences generally falls between .20 (small) 

and .50 (medium). For simplicity, the following steps were performed: The latent 

intercepts for all observed variables and the first-order factors were set to be 0 in both 

groups. All the factor loadings including those of the second-order factor and the first-

order factors were set to be either .40 (low) or .80 (high) over all conditions, which were 

as same as the lowest and highest loading respectively in Hancock et al.’s (2000) study. 

Finally the variance of the second-order factor was set to be 1.0 in both groups. Thus, the 

equation for the variance of the observed variables: 

 

)()()()()( 22
ijiijiijij eVVVyV +×+×= ζλξγλ                                 (18) 

 

in which  is the variance of the observed variable, )( ijyV )(ξV is the variance of the 

second-order factor, )(ζV  is the specific variance,  is the variance of the random 

error, γ

( ijeV )

 is the loading of the first-order factor on the second-order factor, and λi ij is the 

loading of the observed variable on the first-order factor (i = 1 to 4, j = 1 to 3), can be 

reduced to: 

 

)()(16.03.)( ijiij eVVyV +×+= ζ                                           (19) 

 

and  

 



40 
 

)()(64.41.)( ijiij eVVyV +×+= ζ                                           (20) 

 

for factor loadings .40 and .80, respectively.  

The different combinations of group size and residual variance resulted in 12 

different simulation scenarios as presented in Tables 4.1 and 4.2 for factor loading .8 

and .4, respectively. The total sample size was set at 800 with the ratio of 1:1, 1:3, and 

3:1, with corresponding group sizes of 400:400, 200:600, and 600:200. This sample size 

yielded a ratio of sample size to parameter approximately 11 for the MCFA model, and 

27 for the MIMIC model, which were both much higher than the ratio 5:1 recommended 

by Bentler and Chou (1987).  

Tables 4.1 and 4.2 also show the specific variances and the random error 

variances as well as the generalized variance for each group and the condition for each 

scenario. In Scenario 1-3 the residual variances of the observed variables in Group A 

were set three times as large as those in Group B, whereas the other parameters were 

constant across the two groups except the variances of the observed variables. Note that 

the residual variances of the first order factor (i.e., .36 or .84) were kept constant 

between groups and calculated with the assumption of the unity variance (i.e., 1.0) of the 

first-order factors. For Scenarios 4-6, only the specific variances were varied between 

groups and the random error variances were constrained as same as the specific 

variances in Scenario 1-3. In Scenario 7- 12, the residual variances of the observed 

variables and the first-order factors were both varied between groups. The difference is 

that the two types of residual variances were constant within the group in Scenario 7-9,  
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Table 4.1 Twelve Simulation Scenarios (Factor Loading = .8 for Both the Second Order-
Order Factor and the First-Order Factors) 

 

Scenario Group size 
Residual variances 

of the first order 
factors4 (Ψ)

Residual 
variances of the 

observed 

Generalized  
variance Condition 

1 
400 [.36, .36, .36, .36] [.10, .10, …, .10] 2.86E-8 

Balanced 
400 [.36, .36, .36, .36] [.30, .30, …, .30] 3.76E-4 

2 
200 [.36, .36, .36, .36] [.10, .10, …, .10] 2.86E-8 

Positive 
600 [.36, .36, .36, .36] [.30, .30, …, .30] 3.76E-4 

3 
600 [.36, .36, .36, .36] [.10, .10, …, .10] 2.86E-8 

Negative 
200 [.36, .36, .36, .36] [.30, .30, …, .30] 3.76E-4 

4 
400 [.10, .10, .10, .10] [..36, .36, …, .36] 2.60E-4 

Balanced 
400 [.30, .30, .30, .30] [..36, .36, …, .36] 1.36E-3 

5 
200 [.10, .10, .10, .10] [..36, .36, …, .36] 2.60E-4 

Positive 
600 [.30, .30, .30, .30] [..36, .36, …, .36] 1.36E-3 

6 
600 [.10, .10, .10, .10] [..36, .36, …, .36] 2.60E-4 

Negative 
200 [.30, .30, .30, .30] [..36, .36, …, .36] 1.36E-3 

7 
400 [.10, .10, .10, .10] [.10, .10, …, .10] 1.30E-9 

Balanced 
400 [.30, .30, .30, .30] [.30, .30, …, .30] 2.56E-4 

8 
200 [.10, .10, .10, .10] [.10, .10, …, .10] 1.30E-9 

Positive 
600 [.30, .30, .30, .30] [.30, .30, …, .30] 2.56E-4 

9 
600 [.10, .10, .10, .10] [.10, .10, …, .10] 1.30E-9 

Negative 
200 [.30, .30, .30, .30] [.30, .30, …, .30] 2.56E-4 

10 
400 [.30, .30, .30, .30] [.10, .10, …, .10] 1.73E-08 

Balanced 
400 [.10, .10, .10, .10] [.30, .30, …, .30] 4.23E-05 

11 
200 [.30, .30, .30, .30] [.10, .10, …, .10] 1.73E-08 

Positive 
600 [.10, .10, .10, .10] [.30, .30, …, .30] 4.23E-05 

12 
600 [.30, .30, .30, .30] [.10, .10, …, .10] 1.73E-08 

Negative 
200 [.10, .10, .10, .10] [.30, .30, …, .30] 4.23E-05 

 

                                                 
4 All these numbers are the diagonal elements of the corresponding residual variance-covariance matrix.  
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Table 4.2 Twelve Simulation Scenarios (Factor Loading = .4 for Both the Second Order-
Order Factor and the First-Order Factors) 

 

Scenario Group size 
Residual variances 

of the first order 
factors5 (Ψ) 

Residual variances 
of the observed 
variables4 (Θ) 

Generalized  
variance Condition 

1 
400 [.84, .84, .84, .84] [.10, .10, …, .10] 1.03E-09 

Balanced 
400 [.84, .84, .84, .84] [.30, .30, …, .30] 2.30E-05 

2 
200 [.84, .84, .84, .84] [.10, .10, …, .10] 1.03E-09 

Positive 
600 [.84, .84, .84, .84] [.30, .30, …, .30] 2.30E-05 

3 
600 [.84, .84, .84, .84] [.10, .10, …, .10] 1.03E-09 

Negative 
200 [.84, .84, .84, .84] [.30, .30, …, .30] 2.30E-05 

4 
400 [.10, .10, .10, .10] [.84, .84, .84, .84] 0.21 

Balanced 
400 [.30, .30, .30, .30] [.84, .84, .84, .84] 0.31 

5 
200 [.10, .10, .10, .10] [.84, .84, .84, .84] 0.21 

Positive 
600 [.30, .30, .30, .30] [.84, .84, .84, .84] 0.31 

6 
600 [.10, .10, .10, .10] [.84, .84, .84, .84] 0.21 

Negative 
200 [.30, .30, .30, .30] [.84, .84, .84, .84] 0.31 

7 
400 [.10, .10, .10, .10] [.10, .10, …, .10] 1.49E-11 

Balanced 
400 [.30, .30, .30, .30] [.30, .30, …, .30] 4.34E-06 

8 
200 [.10, .10, .10, .10] [.10, .10, …, .10] 1.49E-11 

Positive 
600 [.30, .30, .30, .30] [.30, .30, …, .30] 4.34E-06 

9 
600 [.10, .10, .10, .10] [.10, .10, …, .10] 1.49E-11 

Negative 
200 [.30, .30, .30, .30] [.30, .30, …, .30] 4.34E-06 

10 
400 [.30, .30, .30, .30] [.10, .10, …, .10] 8.08E-11 

Balanced 
400 [.10, .10, .10, .10] [.30, .30, …, .30] 1.83E-06 

11 
200 [.30, .30, .30, .30] [.10, .10, …, .10] 8.08E-11 

Positive 
600 [.10, .10, .10, .10] [.30, .30, …, .30] 1.83E-06 

12 
600 [.30, .30, .30, .30] [.10, .10, …, .10] 8.08E-11 

Negative 
200 [.10, .10, .10, .10] [.30, .30, …, .30] 1.83E-06 

                                                 
5 All these numbers are the diagonal elements of the corresponding residual variance-covariance matrix.  
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while they were varied within the group in Scenario 10-12. Given Equation 4, the 

variance-covariance matrix for each group in the 12 scenarios was obtained and then the 

generalized variance (i.e., the determinant of variance-covariance matrix) was calculated 

(Tables 4.1 and 4.2). 

Two points were suggested by the generalized variances of the two groups in the 

12 scenarios. Firstly, the two groups in each scenario showed extraordinary disparity in 

generalized variance. According to Kaplan’s (1995) definition, Scenario 2, 5, 8 and 11 

were in the positive condition (i.e., smaller samples have smaller generalized variances), 

and Scenario 3, 6, 9, and 12 were in the negative condition (i.e., smaller samples have 

larger generalized variances). Secondly, the relative discrepancy of the generalized 

variances between the two groups reached the minimum in Scenarios 4-6, in which the 

residual variances of the observed variables were identical across the two groups, and 

reached the maximum in Scenario 7-9, in which the random error variances and the 

specific variances were constant within the group. It indicates that the residual variance 

of the observed variables and the first-order factors had the primary and secondary 

influence respectively on the relative discrepancy of the generalized variance between 

the two groups.      

Five hundred replications were generated for each scenario. Finally a total of 

60,000 replications (i.e., 2 × 12 × 5 × 500) was used for the data analysis in Study 1.   
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Empirical Type I Error and Empirical Power 

As stated previously, theoretically, the meaningful comparison of the means of 

the second-order factors can only be made when the two models have configural 

invariance, identical loadings of all the first- and second-order factors, and identical 

latent intercepts of the observed variables and the first-order factors (i.e., strong MI). 

Given the truth that only the residual variances were varied systematically with sample 

sizes across the 12 scenarios, these assumptions were completely fulfilled in the study. 

The empirical Type I error rate was calculated under the condition that the mean values 

of the second-order factors were identical between the groups. When conducting MCFA, 

the mean of the second-order factor in Group A was set as 0, whereas the mean in Group 

B was freely estimated. Within each scenario the number of the times in which the freely 

estimated factor mean was statistically significant (p < .05) was tallied. When 

conducting MIMIC analysis, firstly the data for the two groups were concatenated to 

form a single data file. Secondly, a dummy coded grouping variable representing the 

group membership (i.e., A and B) was added in the data file. The number of times when 

the path coefficient from the grouping variable to the second-order latent factor was 

statistically significant (p < .05) was counted.  The percentage of significant findings 

was the empirical Type I error rate given that the mean values of the second-order 

factors were identical between the two groups. 

Power analysis was conducted in the same way as Type I error rate was 

calculated but under the condition that the mean of the second-order factors was 

different from the other (i.e., .2, .3, .4, or .5 in this study). The empirical power was the 
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percentage of significant findings (p < .05). Finally the general linear model with power 

or Type I error rate as the dependent variable and the factors that were considered to 

influence power or Type I error rate as the independent variables was run to examine the 

statistic significance of the factors. Given the fact that the numbers of the calculated 

Type I error rates and power are small (e.g., only 48 Type I error rates resulted from 

Study 1), the general linear model may not have high enough power to detect the 

significant factors that influence Type I error rate or power. Therefore, the general linear 

model was considered as a secondary way to analyze the data in this study.   

 

Convergence Problem 

MCFA or MIMIC analysis may yield a non-convergent result in either Study 1 or 

2 (or both). In this event, the original dataset that was created in Study 1 as well as the 

datasets with the parcels which were calculated based on the dataset in Study 1 by using 

the two parceling strategies was deleted, a new dataset was generated and the parcels as 

well as their variances of the measurement error were recalculated until 500 convergent 

results were achieved in both Study 1 and 2 for the scenario.       

 

RESULTS 

Results are presented in the sequence of convergence rate, empirical Type I error 

rate (including the high factor loadings and the low factor loadings), empirical power 

with the high factor loadings, and empirical power with the low factor loadings. The 
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results under the condition of the high factor loadings and the low factor loadings were 

compared.   

 

Convergence Rate 

Both of the MCFA and MIMIC models did not have a convergence problem 

when the factor loadings were high (i.e., 0.8). However, when the factor loadings were 

low (i.e., 0.4), convergence problem appeared in some scenarios. The first two columns 

in Table 4.3 showed the average convergence rates (i.e., the proportion of the convergent 

results among the 500 replications) across the five different values of Δκ (i.e., 0, .2, .3, .4, 

and .5) within each scenario for each of MCFA and MIMIC approaches under the 

condition of the low factor loadings. These values indicate that MIMIC models generally 

have a higher convergence rate than MCFA models. This result is consistent with the 

widely accepted advantage of MIMIC models that MIMIC models require smaller 

sample size than MCFA models for the purpose of the convergence. Therefore, MIMIC 

models have higher convergence rates than MCFA models given equal sample size. The 

other information the first two columns in Table 4.3 provided is that Scenarios 4, 5, and 

6 had lower convergence rates than the other scenarios, particularly for the MCFA 

approach. For example, the convergence rate in Scenario 5 by using MCFA approach 

was as low as .207, which means that among the 500 replications for each Δκ, only 20.7% 

of them (i.e., 103 replications) on average were convergent.  

New datasets were created to make 500 convergent solutions for each scenario in 

which the convergent rate is lower than 100%. The values of empirical Type I error rate  
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Table 4.3 Average Convergence Rate across the Five Mean-Differences When Factor 
Loadings Were Low 
 

DR parceling with 
EA  Unparceled  UD parceling  DR parceling  

Scenario MCFA  MIMIC  MCFA  MIMIC  MCFA  MIMIC  MCFA  MIMIC

1 0.986  1.000  0.991  1.000  1.000  1.000  1.000  1.000 

2 0.970  1.000  0.968  1.000  1.000  1.000  1.000  1.000 

3 0.870  1.000  0.944  1.000  1.000  1.000  1.000  1.000 

4 0.324  0.934  0.881  0.992  0.962  1.000  0.998  1.000 

5 0.207  0.942  0.762  0.992  0.869  1.000  0.718  1.000 

6 0.221  0.919  0.834  0.992  0.953  1.000  0.706  1.000 

7 0.998  1.000  1.000  1.000  1.000  1.000  1.000  1.000 

8 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000 

9 0.954  1.000  0.990  1.000  1.000  1.000  1.000  1.000 

10 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000 

11 0.943  1.000  1.000  1.000  1.000  1.000  1.000  1.000 

12 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000 

 
Note: UD = Unidimensional; DR = Domain representative; EA = Error adjustment. 

 
 

and power resulted from the originally convergent models and the 500 convergent 

models for each of MCFA and MIMIC approaches were compared and it was found that 

two results were fairly close even if the convergence rate was very low. 

 

Empirical Type I Error Rate  

The empirical Type I error rates of MCFA and MIMIC for the 12 scenarios in 

each of the two sets of the factor loadings were shown in Table 4.4. The results of the  
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Table 4.4 Empirical Type I Error Rates of MCFA and MIMIC (Unparceled Data) 
 

  Factor loading = 0.8  Factor loading = 0.4 

Scenario Condition MCFA MIMIC Diff.  MCFA MIMIC Diff. 

1  = 0.048 0.048 0.000  0.052 0.036 0.016 

2 + 0.038 0.040 -0.002  0.064 0.020 0.044  

3 - 0.060 0.042 0.018  0.049 0.038 0.011 

4 = 0.032 0.056 -0.024  0.046 0.018 0.028  

5 + 0.054 0.040 0.014  0.053 0.009 0.044  

6 - 0.048 0.058 -0.010  0.029 0.007 0.022  

7 = 0.054 0.056 -0.002  0.044 0.032 0.012 

8 + 0.040 0.044 -0.004  0.046 0.016 0.030  

9 - 0.058 0.062 -0.004  0.043 0.094 -0.051  

10 = 0.052 0.050 0.002  0.058 0.046 0.012 

11 + 0.064 0.064 0.000  0.052 0.046 0.006 

12 - 0.068 0.050 0.018  0.051 0.076 -0.025  

 
Note: A equal (=) sign indicates a balanced condition in which two groups have identical sample sizes; a 
plus (+) sign indicates a positive pairing of sample with with generalized variance; a negative (-) sign 
indicates a negative pairing. Diff. = difference of MIMIC from MCFA. Any error rate falling beyound 
Bradley’s (1978) liberal criterion of [.5α, 1.5 α] (i.e., [.025, .075]) is underlined. 
 
 

general linear model including the estimated effect of each factor as well as the standard 

error, the t-value and the p-value were presented in Table 4.5. It was shown in Table 4.5 

that none of the factors were statistically significant for Type I error rate. That is, the 
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difference between MCFA and MIMIC in terms of Type I error rate was not statistically 

significant, holding the other factors constant; the differences between positive and 

balanced condition, negative and balanced condition were not statistically significant, 

holding the other factors constant; and the factor loadings did not impact Type I error 

rate significantly. However, as stated before, the general linear model for Type I error 

rate was based on 48 calculated Type I error rates (i.e., 2 approaches × 12 scenarios 

(including 3 conditions) × 2 factor loadings). Therefore the sample size might not be 

large enough to conduct statistic analysis for detecting the factors that impact Type I 

error rate.  

 

Table 4.5 Parameter Estimates of the General Linear Model with Type I Error Rate as 
the Dependent Variable 
 

 Parameter Effect Std. 
Error t p†††

 

Ty
pe

 I 
er

ro
r r

at
e 

Intercept .027 .008 3.387 .002 

Approach = MCFA .006 .004 1.443 .156 

Approach = MIMIC†
  

Condition = negative .007 .005 1.197 .238 

Condition = Positive -.002 .005 -.433 .667 

Condition = balanced ††
  

Loadings .021 .011 1.871 .068 
 
Note: †MIMIC is the reference of the two approaches. ††Balanced condition is the reference of the three 
conditions. †††All the p-values are two-tailed.   
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More interesting is to examine the plots of Type I error rate in Figure 4.1. In 

general, when the factor loadings were high, Type I error rates of the two approaches 

were very close, and showed no obvious pattern as the conditions change (Figure 4.1). 

The discrepancies of the Type I error rate between the two approaches ranged from .000 

to .024. None of the Type I error rates fell outside Bradley’s (1978) liberal criterion of 

[.5α, 1.5 α] for empirical Type I error from simulation studies (i.e., [.025, .075] if we 

take α as .05). This indicates that both of the methods, MCFA and MIMIC, control Type 

I error at an acceptable level when the factor loadings are as high as .8, regardless of the 

condition the two groups are in. When the factor loadings decreased to .4, MCFA 

showed higher Type I error rates than MIMIC except in Scenario 9 and 12. However, 

MCFA appeared to maintain Type I error control within Bradley’s literal criterion in all 

of the 12 scenarios, whereas 7 out of 12 Type I error rates of MIMIC (i.e., .020 in 

Scenario 2, .018 in Scenario 4, .009 in Scenario 5, .007 in Scenario 6, .016 in Scenario 

8, .094 in Scenario 9, and .076 in Scenario 12) were out of Bradley’s literal criterion. 

These out-of-criterion Type I error rates indicate that MIMIC tends to be conservative in 

the positive condition, and liberal in the negative condition (except in Scenario 6), but 

maintain Type I error rate well in the balanced condition (except in Scenario 4). This 

behavior is opposite to that in Hancock et al.’s (2000) study, in which MIMIC tended to 

be conservative in the negative condition and liberal in the positive condition. However, 

it is consistent with the typically observed for T2 (e.g., Hakstian, Roed, & Lind, 1979; 

Holloway, & Dunn, 1967).     
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Fig. 4.1 Plots of Empirical Type I Error Rates of MCFA and MIMIC Approaches with 
the Unparceled Data 
 
Note. Upper: factor loading = .8; Down: factor loading = .4. 



52 
 

Empirical Power with the High Factor Loadings 

The empirical power in the 12 scenarios for the high factor loadings were 

presented in the upper part of Table 4.6 and were also plotted as shown in Figure 4.2. In 

this figure, the power of the two approaches at different values of Δκ was plotted 

together (left) and separately (right). As expected, the statistical power increased as Δκ 

increased from small to median effect size. The results of the general linear model for 

power presented in Table 4.7 also showed that Δκ was a significant factor for power (p 

< .001) even with the small sample size (i.e., 2 approaches × 12 scenarios (including 3 

conditions) × 2 factor loadings × 4 values of Δκ = 192). Meanwhile the discrepancy 

between MCFA and MIMIC decreased as Δκ increased. The power of both MCFA and 

MIMIC reached maximum 1.000 when Δκ was .5 (i.e., median effect size). When Δκ 

was less than median effect size, the two approaches displayed different patterns across 

the 12 scenarios. Firstly, in the balanced condition (i.e., Scenario 1, 4, 7, and 10), the 

power of MCFA was always larger than that of MIMIC regardless of the magnitude of 

the residual variance in each level. This advantage of MCFA disappeared when Δκ 

increased to .4. In this situation, the power of both of the two methods reached 1.000. 

Secondly, in the positive condition, MCFA showed higher power than MIMIC except in 

Scenario 11, in which MIMIC showed higher power with superiority of .002 at Δκ = .4 

to .032 at Δκ = .2. The two methods exchanged their superiority in terms of power (i.e., 

MIMIC displayed higher power than MCFA) when it came to the negative condition 

except the one in Scenario 12. In Scenario 12, MCFA was superior to MIMIC by .006 at 

Δκ = .4 to .312 at Δκ = .2. Note 



 
 

Table 4.6 Empirical Power of MCFA and MIMIC (Unparceled Data) 
 

 
   ∆κ = .2  ∆κ = .3  ∆κ = .4  ∆κ = .5  

  Scenario Condition MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff.  
 1 = 0.828 0.744 0.084 0.990 0.978 0.012 1.000 1.000 0.000 1.000 1.000 0.000
 

2 + 0.920 0.624 0.296 1.000 0.906 0.094 1.000 0.996 0.004 1.000 1.000 0.000  
 3 - 0.556 0.626 -0.070 0.886 0.922 -0.036 0.974 0.992 -0.018 1.000 1.000 0.000
 

4 = 0.804 0.750 0.054 0.990 0.978 0.012 1.000 1.000 0.000 1.000 1.000 0.000  
 

Fa
ct

or
 lo

ad
in

g 
= 

0.
8 

5 + 0.906 0.626 0.280 1.000 0.918 0.082 1.000 0.998 0.002 1.000 1.000 0.000
 
 6 - 0.552 0.640 -0.088 0.886 0.932 -0.046 0.980 0.992 -0.012 1.000 1.000 0.000
 7 = 0.838 0.754 0.084 0.994 0.982 0.012 1.000 1.000 0.000 1.000 1.000 0.000  
 8 + 0.930 0.638 0.292 1.000 0.922 0.078 1.000 0.998 0.002 1.000 1.000 0.000
 

9 - 0.584 0.654 -0.070 0.908 0.932 -0.024 0.988 0.994 -0.006 1.000 1.000 0.000  
 10 = 0.868 0.770 0.098 1.000 0.986 0.014 1.000 1.000 0.000 1.000 1.000 0.000
 

11 + 0.620 0.652 -0.032 0.920 0.938 -0.018 0.992 0.994 -0.002 1.000 1.000 0.000  
 12 - 0.954 0.642 0.312 1.000 0.932 0.068 1.000 0.994 0.006 1.000 1.000 0.000
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Table 4.6 (Continued) 
 

 
   ∆κ= .2  ∆κ= .3  ∆κ= .4  ∆κ= .5  
 Scenario Condition MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff. 

 
1 = 0.214 0.322 -0.108 0.433 0.620 -0.187 0.633 0.852 -0.219 0.832 0.966 -0.134 

 2 + 0.316 0.228 0.088 0.511 0.476 0.035 0.763 0.702 0.061 0.896 0.902 -0.006 

 3 - 0.144 0.266 -0.122 0.253 0.520 -0.267 0.363 0.780 -0.417 0.544 0.920 -0.376 

4 = 0.105 0.078 0.027 0.218 0.184 0.034 0.269 0.391 -0.122 0.489 0.547 -0.058  

Fa
ct

or
 lo

ad
in

g 
= 

0.
4 

5 + 0.158 0.059 0.099 0.333 0.131 0.202 0.500 0.254 0.246 0.520 0.433 0.087 
 

6 - 0.117 0.068 0.049 0.140 0.139 0.001 0.205 0.245 -0.040 0.238 0.441 -0.203 

 7 = 0.267 0.496 -0.229 0.555 0.830 -0.275 0.770 0.976 -0.206 0.938 0.998 -0.060 

8 + 0.386 0.358 0.028 0.644 0.674 -0.030 0.860 0.902 -0.042 0.980 0.998 -0.018  
9 - 0.152 0.438 -0.286 0.309 0.788 -0.479 0.437 0.934 -0.497 0.689 0.990 -0.301 

 
10 = 0.408 0.490 -0.082 0.726 0.826 -0.100 0.922 0.974 -0.052 0.986 0.998 -0.012 

 
11 + 0.258 0.330 -0.072 0.486 0.688 -0.202 0.758 0.920 -0.162 0.884 0.994 -0.110 

 12 - 0.514 0.432 0.082 0.830 0.732 0.098 0.981 0.932 0.049 0.996 0.984 0.012 

 
Note. A equal (=) sign indicates a balanced condition in which two groups have identical sample sizes; a plus (+) sign indicates a positive 
pairing of sample with with generalized variance; a negative (-) sign indicates a negative pairing. Diff. = Difference of MIMIC from 
MCFA. 
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Fig. 4.2 Plots of Empirical Power of MCFA and MIMIC Approaches with the Unparceled Data When the Factor Loadings 
Were High 
 
Note: The plots for both of the two approaches fall on the straight line at 1.000 when ∆κ is .5 (not shown on this figure). The three small figures on the 
right are the decomposed figures of the one on the left based on the values of Δκ.
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Table 4.7 Parameter Estimates of the General Linear Model with Power as the 
Dependent Variable 
 

 Parameter Effect Std. 
Error t p†††

 

Po
w

er
 

Intercept -.222 .060 -3.686 .000 

Approach = MCFA -.038 .025 -1.492 .137 

Approach = MIMIC†
  

Condition = negative -.071 .031 -2.287 .023 

Condition = Positive -.030 .031 -.967 .335 

Condition = balanced ††
  

Loadings .880 .063 13.981 .000 

Δκ 1.313 .113 11.667 .000 
 
Note: †MIMIC is the reference of the two approaches. ††Balanced condition is the reference of the three 
conditions. †††All the p-values are two-tailed. 
 

 
that the superiority of the two approaches in the specific scenarios decreased when Δκ 

increased and completely vanished when the mean difference was .5. Thirdly, MIMIC 

was more powerful in the balanced condition than in the other conditions. Power 

decreased moving from the balanced condition to the positive condition and then 

increased slightly moving from the positive condition to the negative condition except 

from Scenario 11 to 12. In fact MIMIC’s power in the positive condition and negative 

was very close. On the other hand, MCFA displayed higher power in the positive 

condition than in the others except in Scenario 11, and then experienced a dramatic drop 

moving from the positive condition to the negative condition except in Scenario 11 and 

12. In fact, the patterns of power for both of the two approaches in the positive condition 
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in Scenario 11 and the negative condition in Scenario 12 would be consistent with those 

displayed in the other positive and negative conditions if Scenario 11 and 12 were 

switched.   

 

Empirical Power with the Low Factor Loadings 

The results of power analysis with low factor loadings were presented in the 

lower part of Table 4.6 and the plots were shown in Figure 4.3. Same as Figure 4.2, the 

empirical power of the two approaches with various values of Δκ was plotted together 

and individually for better view in Figure 4.3.  

Again, power of both of the two approaches was greater for larger values of Δκ. 

For example, when Δκ was 0.2, the highest power for MCFA was .514 (in Scenario 12) 

and .496 for MIMIC (in Scenario 7). When Δκ increased to 0.5, the highest power for 

MCFA was .996 (in Scenario 12) and .998 for MIMIC (in Scenario 7, 8, and 10). Also, 

as expected, empirical power obtained under the condition of the low factor loadings 

was lower than that in the high-factor-loading setting by using either of the two 

approaches in any scenario. This trend was supported by the general linear model (see 

Table 4.7), in which the factor loadings had strong effect on power (p < .001). However, 

the decreasing discrepancy between the two approaches as Δκ increased, which was 

shown with the high factor loadings, was not observed when the factor loadings were as 

low as .4.  

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.3 Plots of Empirical Power of MCFA and MIMIC Approaches with the Unparceled Data When the Factor Loadings 
Were Low  
 
Note: The four small figures are the decomposed figures of the left top one based on the values of Δκ.
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The empirical power under the condition of the low factor loadings also showed 

some patterns across the 12 scenarios. Firstly, the plots for both of the approaches 

displayed a “U” shape across the 12 scenarios regardless of the values of Δκ. Scenarios 4, 

5, and 6 were on the bottom of the “U”, which indicated that the power in the three 

scenarios was lower than the others. Note that the two approaches, especially MCFA, 

had the lower convergence rate in the three scenarios than the others. Secondly, similarly 

as the results when factor loadings were high, MCFA generally had higher power than 

MIMIC in the positive condition except in Scenario 11, and MIMIC generally had 

higher power than MCFA in the negative condition except in Scenario 12 at all of the 

four values of Δκ. However, contrary to the pattern when the factor loadings were high, 

MIMIC generally displayed higher power than MCFA in the balanced condition except 

in Scenario 4 at Δκ = .2, in which MCFA’s superiority was a mere .027. Thirdly, MIMIC 

was generally more powerful in the balanced condition than in the other conditions and 

MCFA was generally more powerful in the positive condition than in the other 

conditions except in Scenario 11. These two trends were as same as the ones observed 

when the factor loadings were high.  

In fact, by comparing the plots under the conditions of the high factor loadings 

and low factor loadings, it was easy to find out that either of the two approaches 

experienced very similar power changes across the 12 scenarios between the two factor-

loading settings. Under the condition of the low factor loadings, the plot of MCFA 

across the 12 scenarios seems “pushed” down toward the plot of MIMIC compared with 

their relative position in the plot under the condition of the high-factor loadings. As a 
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result, the high superiority of MCFA in the positive condition under the condition of 

high factor loadings was generally decreased, the slight superiority of MIMIC in the 

negative condition was generally increased, and the original superiority of MCFA in the 

balanced condition turned into inferiority. 

 

DISCUSSION 

The results from Study 1 indicate that both of the two approaches control Type I 

error acceptably in all scenarios under the condition of high fact loadings. It means that 

the factors considered in the study, including the ratio of group sizes and the ratio of the 

residual variances of the two groups, have no significant impact on Type I error rate 

investigated by either of the two approaches if all the factor loadings are as high as .8. In 

this case, either of them could be conducted in terms of Type I error rate. However, that 

is not the situation when it comes to the case of low factor loadings. MCFA still 

maintains appropriate Type I error rates. But MIMIC is more likely to have a liberal 

Type I error in the negative condition (except in Scenario 6) and conservative Type I 

error in the positive condition. This behavior can be explained by the plot of the overall 

model displayed by Equation 10 with grouping variable X on the horizontal axis and the 

scores of the second-order factor on the vertical axis. Although the second-order factors 

in both groups are set to have unity variance for the population, it may not be true for the 

samples. The group that has larger generalized variance tends to produce larger variance 

of the second-order factor than the group that has smaller generalized variance. In the 

positive condition, the sample size ratio is positively paired with generalized variance 
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(i.e., the larger sample has larger generalized variance and the smaller sample has 

smaller generalized variance). Therefore, the large group has the values of the second-

order factor distributed more widely around the mean than the small group does. 

Because of the large sample size, the mean value of the second-order factor is unlikely to 

deviate from the true value (e.g., 0 in this study) too much. On the other hand, the mean 

value in the smaller group could not be biased too much from the true value either even 

if there is one or more outliers because the variance of the second-order factor in the 

small group is low. This will yield a relatively small slope of the regression line in the 

plot and hence a deflated Type I error rate. Conversely, if the second-order factor with 

larger variance has smaller sample size, it is verly likely to have the outliers which are 

on the leverage position to change the slope of the regression line from 0 and hence an 

inflated Type I error rate is resulted. When the two groups are in the balanced condition, 

the two groups will truly reflect the two infinite populations, thereby controlling the 

Type I error rate appropriately. 

However, all the Type I error rates of MIMIC are lower than the bottom limit of 

Bradley’s liberal criterion in Scenarios 4-6, which are in the balanced, positive, and 

negative condition, respectively. This might be related to the low convergence rate in the 

three scenarios (Table 4.3). Interestingly, although the convergence rates of MCFA are 

much lower than that of MIMIC, MCFA is not influenced by the low convergence rate 

in terms of Type I error rate.  

Another question is, why does MIMIC control Type I error rate appropriately 

under the condition of the high factor loadings? The possible reason is that under the 
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condition of the high factor loadings in this study, the relative difference of the 

generalized variances (and hence the variances of the second-order factors for the 

sample) between the two groups is not large enough to influence the Type I error rate 

when the group sizes are unbalanced.    

Study 1 also offers the evidence that MIMIC approach and MCFA approach both 

have an advantage over each other under some specific situations in terms of power. 

Under the condition of the high factor loadings, both MCFA and MIMIC approaches 

reach maximum power 1.0 when the factor mean difference is larger than .4. That means 

either approach works perfectly in terms of power in any of the balanced condition, 

negative condition or positive condition if the group difference on the latent mean 

reaches medium effect size. A more interesting finding is the comparison between the 

two approaches when effect size lies between small and medium magnitude. An obvious 

pattern of MCFA and MIMIC is displayed in terms of power from Scenario 1 to 10. 

Generally MCFA is more powerful than MIMIC in the balanced and the positive 

condition while MIMIC is favored in the negative condition. However, the two 

approaches have an opposite pattern in the positive condition specified in Scenario 11 

and the negative condition specified in Scenario 12. That is, MCFA displays higher 

power than MIMIC in the negative condition in Scenario 12, and MIMIC displays higher 

power than MCFA in the positive condition in Scenario 11. By comparing the specific 

variances in the two scenarios with the others, it indicates that the specific variances vary 

across the two groups in a way opposite to that of the random error variances. Note that 

random error variances are crucial for the generalized variance, which then determines 
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the condition combined with the relative group size. It implies that instead of the 

condition which is defined by the combination of sample size and generalized variance, 

the specific variances combined with the sample size may have a more significant 

impact on the two approaches in terms of power when the specific variances are 

negatively paired with the generalized variances across the two groups. When the large 

sample size is associated with the small specific variances, whether it is in the positive or 

the negative condition, MIMIC is favored. When the larger sample size is associated 

with the large specific variances whether it is in the positive or the negative condition, 

MCFA is favored. However, by comparing the power of the two approaches in the 

balanced condition specified in Scenario 10 in which the specific variances are 

negatively paired with the random error variances across the two groups and the 

balanced condition specified in the other scenarios (i.e., Scenario 1, 4, and 7), it is shown 

that the specific variances have little influence on the relative power magnitudes of the 

two approaches in the balanced design. In addition, in Scenario 2 and 3 where the 

specific variances are invariant across the two groups, the relative power of the two 

approaches is still scarcely impacted by the specific variances. It indicates that the 

specific variances influence the superiority of one of the two approaches in terms of 

power only if the magnitudes of specific variances are negatively paired with the specific 

variances across two groups with disparate group sizes.  

Some of the trends the two approaches display under the condition of the high 

factor loadings still hold when the factor loadings decrease to .4. For example, MCFA is 

still favored in the positive condition except in Scenario 11 and MIMIC is still favored 
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under the negative condition except in Scenario 12. However, MCFA loses the 

superiority in the balanced condition it has under the condition of the high factor 

loadings. In fact, power of both of the two approaches decreases a lot from the condition 

of high factor loadings to the low factor loadings, but power of MCFA decreases more 

than that of MIMIC in any of the 12 scenarios. This change is displayed in Figure 4.2 as 

that MCFA seems being “pushed” downward to those of MIMIC. As a result, MIMIC 

exhibites the superiority in the balanced condition and increases its superiority in the 

negative condition. However, MIMIC’s superiority in the negative condition under the 

condition of the low factor loadings sacrifices Type I error control whereas MCFA’s 

superiority in the positive condition under the same condition doesn’t.   

Thus, it is hard to give a simple answer to the question “which approach should 

be used in the second-order CFA model, MCFA or MIMIC?” The answer depends on 

the condition, the magnitude of the factor loadings, and the magnitude of the specific 

variances. When the factor loadings are as high as .8, MCFA should be favored in the 

balanced and the positive condition and MIMIC should be favored in the negative 

condition.  However, if the specific variances are negatively paired with the generalized 

variances across the two groups that have disparate group sizes, MCFA should be 

favored in the negative condition, while MIMIC should be favored in the positive 

condition. When the factor loadings are as low as .4 (which is more observed in the 

empirical studies in educational and social sciences), MIMIC is superior in the balanced 

condition, and MCFA is favored in both the positive and the negative condition given 

the fact that it controls Type I error rate better than MIMIC does.  
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I did not investigate in this study the value of factor loading between .4 and .8 

that MIMIC starts to lose control of Type I error rate. Therefore, it is possible that 

MIMIC’s superiority in the negative condition sacrifices Type I error control at any 

factor loadings lower than .8. In fact MIMIC’s superiority in the negative condition as 

well as the positive condition when the specific variances were negatively paired with 

the generalized variances when the factor loadings were as high as .8 never exceeded .09. 

Therefore, it would be safe to use MCFA instead of MIMIC in the negative condition at 

any factor loadings less than .8.  

The extremely low Type I error rates for MIMIC in Scenarios 4-6 as well as the 

“U” shape in the power plots displayed by both of the two approaches with Scenarios 4-

6 at the bottom of the “U” when the factor loadings are low indicate that low 

convergence rate, which might be caused by the high random error variances in this 

study, could negatively impact Type I error rate for MIMIC and power for both of 

MCFA and MIMIC. However, MCFA is robust to the low convergence rate with respect 

to Type I error rate.   
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CHAPTER V 

STUDY 2: EFFECTS OF PARCELING ON GROUP COMPARISON  

BY USING MCFA AND MIMIC 

 

Study 2 introduced in this chapter was the extension of Study 1 in Chapter IV. 

Instead of the item-level data, unidimensional parcels and domain representative parcels 

were used in this study to investigate the difference between MCFA and MIMIC in 

terms of Type I error rate and power to detect group difference. Same as Chapter IV, this 

chapter included the sections methods, results, and discussion.   

 

METHODS 

No new data were generated in Study 2 since Study 1 data could be applied. This 

section introduces in detail how the data were parceled by using unidimensional 

parceling and domain representative parceling and how residual variances were adjusted 

for the domain representative parcels. The way that Type I error rate and power were 

calculated and how the convergence problem was dealt with were introduced in Chapter 

IV.   

 

Parceling  

SAS 9.1.3 was used to generate parcels for the data simulated in Study 1 by using 

a unidimensional parceling strategy and a domain representative parceling strategy 

respectively. In Figure 2.3, the observed variables were averaged within each first-order 
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construct (i.e., , , and , , , and , and so on) when conducting 

unidimensional parceling; whereas the observed variables from each first-order construct 

were averaged to create a parcel (i.e., , , , and , , , , and , and 

so on) when conducting domain representative parceling. Because the model used to 

generate the data in Study 1 (Figure 2.1) had four first-order factors, each of which had 

three observed variables, four parcels were consequently obtained as the indicators for 

the second-order factor by using unidimensional parceling and three parcels as the 

indicators for the second-order factor by using domain representative parceling. Both of 

the two parceling strategies collapsed the first-order factors and the new models based 

on parcels were actually first-order factor models with the original second-order factor 

as the first-order factor.   

13Y 23Y

31Y

11Y 12Y 21Y 22Y

11Y 32Y21Y 41Y 12Y 22Y 42Y

 

Error Adjustment 

The models based on domain representative parcels were run with and without 

error variance adjustment in Study 2. With error variance adjustment, the error variance 

was calculated by using Equation 16 for each of the three domain representative parcels 

in the model. Because all the factor loadings and the residual variances were constant 

among the observed variables that were parceled, they were classically parallel and the 

Spearman-Brown formula (Equation 17) was used to calculate the reliability in Equation 

16. Note that the reliability coefficient calculated by using this equation might be 

negative. In this case, it was adjusted to 0 as suggested by Wiersma and Jurs (1990). 

Then the residual variances of the parcels were constrained to their calculated error 
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variances for the 60,000 datasets when the models were run. These steps were 

accomplished by using SAS 9.1.3 and Mplus 5.1 (Muthen & Muthen, 2007).  

 

RESULTS  

As in Chapter IV, results were reported in the sequence of convergence rate, 

empirical Type I error rate (including the high factor loadings and the low factor 

loadings), empirical power with the high factor loadings, and empirical power with the 

low factor loadings. Instead of comparing MCFA and MIMIC in terms of Type I error 

rate and power, this section emphasized on comparing the results between Study 1 and 2. 

In addition, the results of domain representative parceling with error adjustment were 

presented, and then the results were compared with those of domain representative 

parceling without error adjustment.    

 

Convergence Rate 

As expected, the models using the parceled data did not have a convergence 

problem when the factor loadings were high. Under the condition of low factor loadings, 

the convergence problem appeared, especially in Scenarios 4–6 (Table 4.3). Some trends 

can be observed in Table 4.3. Firstly, the models using the parcels, including 

unidimensional parcels and domain representative parcels with or without error 

adjustment, generally showed fewer convergence problems than the models using the 

unparceled data in the 12 scenarios. Secondly, models using domain representative 

parcels generally had fewer convergence problems than the models using the 
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unidimensional parcels. Thirdly, as with the models using unparceled data, MIMIC 

models using parcels never had lower convergence rates than MCFA models. These 

findings are consistent with the rule of parsimony in SEM that a simpler model with 

fewer estimated parameters has fewer convergence problems, with other things being 

equal.  

 

Empirical Type I Error Rate 

Empirical Type I error rates of MCFA and MIMIC with high and low factor 

loadings by using unidimensional and domain representative parceling strategies were 

shown in Table 5.1 and Figures 5.1 and 5.2. The results of the general linear model were 

shown in Table 5.2.  

In general, the differences between the two approaches were very small 

regardless of the factor loadings and parceling strategies (p = .546) and most of the 

differences were lower than .01, especially in the balanced condition. As with the 

models using unparceled data, none of the models using unidimensional parcels or 

domain representative parcels had empirical Type I error rates outside Bradley’s (1978) 

liberal criterion when the factor loadings were high.  

However, neither of the two approaches, particularly MIMIC, maintained Type I 

error rates perfectly across the 12 scenarios by using the two parceling strategies when 

the factor loadings were as low as .4. For example, by using unidimensional parcels, 

MIMIC had five Type I error rates (i.e., .018 in Scenario 2, .023 in Scenario 5, .022 in 

Scenario 6, .018 in Scenario 8, and .098 in Scenario 9) out of Bradley’s (1978) liberal  
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Table 5.1 Empirical Type I Error Rates of MCFA and MIMIC (Parceled Data) 
 

   UD parceling  DR parceling 

 Scenario Condition MCFA MIMIC Diff.  MCFA MIMIC Diff. 

1 = 0.058 0.056 0.002 0.056 0.058 -0.002 

2 + 0.044 0.040 0.004 0.048 0.040 0.008 

3 - 0.048 0.044 0.004 0.046 0.044 0.002 

4 = 0.060 0.058 0.002 0.056 0.054 0.002 

Fa
ct

or
 lo

ad
in

g 
= 

0.
8 

5 + 0.048 0.042 0.006 0.046 0.040 0.006 

6 - 0.048 0.056 -0.008 0.046 0.058 -0.012 

7 = 0.048 0.054 -0.006 0.054 0.054 0.000 

8 + 0.054 0.044 0.010 0.050 0.044 0.006 

9 - 0.056 0.060 -0.004 0.052 0.062 -0.010 

10 = 0.044 0.048 -0.004 0.050 0.046 0.004 

11 + 0.064 0.062 0.002 0.058 0.062 -0.004 

12 - 0.056 0.052 0.004 0.052 0.052 0.000 

 
Note: UD = Unidimensional; DR = Domain representative; EA = Error adjustment; Diff = 
Difference of MIMIC from MCFA. Any error rate falling beyound Bradley’s (1978) liberal 
criterion of [.5α, 1.5 α] (i.e., [.025, .075]) is underlined. 
 

       
1 = 0.029 0.034 -0.005 0.036 0.042 -0.006 

2 + 0.044 0.018 0.026 0.050 0.046 0.004  

3 - 0.023 0.036 -0.013 0.046 0.064 -0.018  

4 = 0.028 0.036 -0.008 0.030 0.056 -0.026 

Fa
ct

or
 lo

ad
in

g 
= 

0.
4 

5 + 0.026 0.023 0.003 0.030 0.025 0.005  

6 - 0.032 0.022 0.010 0.015 0.034 -0.019   

7 = 0.030 0.034 -0.004 0.036 0.034 0.002 

8 + 0.042 0.018 0.024 0.042 0.020 0.022   

9 - 0.033 0.098 -0.065 0.054 0.088 -0.034   

10 = 0.052 0.054 -0.002 0.054 0.050 0.004 

11 + 0.056 0.052 0.004 0.060 0.058 0.002 

12 - 0.064 0.070 -0.006 0.064 0.074 -0.010 
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Table 5.2 Parameter Estimates of the General Linear Model with Type I Error Rate as 
the Dependent Variable  
 

 

 

 

 

 

 

 

 

 

 
Note: †Without parceling is the reference of the three methods.  ††MIMIC is the reference of the two 
approaches. †††Balanced condition is the reference of the three conditions. ††††All the p-values are two-
tailed. DR = Domain representative parceling; UD = Unidimensional parceling.   
 

 

criterion under the condition of low factor loadings, and MCFA had one (i.e., .023 in 

Scenario 3). By using domain representative parcels, MCFA had one Type I error rate 

(i.e., .015 in Scenario 6) and MIMIC had two Type I error rates (i.e., .020 in Scenario 8 

and .088 in Scenario 9) out of the criterion. In another words, MCFA still controlled 

Type I error better than MIMIC did, and MIMIC still showed the tendency of being 

conservative in the positive condition and liberal in the negative condition when the 

parceled data were used. However, MIMIC displayed fewer out-of-criterion Type I error 

rates by using the parceled data than the unparceled original items.   

Parameter Std. p††††Effect t Error  

Intercept .031 .005 6.512 .000

Parceling = DR .002 .003 .635 .527

Parceling = UD -.002 .004 -.664 .508

Parceling = no†
 

Approach = MCFA .002 .003 .605 .546

Approach = MIMIC††
 

Condition = negative .005 .003 1.645 .103

Condition = Positive -.001 .003 -.458 .648

Condition = balanced †††
 

Loadings .020 .006 3.274 .001
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Fig. 5.1 Plots of Empirical Type I Error Rates of MCFA and MIMIC Approaches with 
the Unidimensional Parcels 
 
Note. Upper: factor loading = .8; Down: factor loading = .4.  
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Fig. 5.2 Plots of Empirical Type I Error Rates of MCFA and MIMIC Approaches with 
the Domain Representative Parcels 
 
Note. Upper: factor loading = .8; Down: factor loading = .4.  
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The Type I error rates for unparceled and parceled data were plotted for the 

purpose of comparison (Figures 5.3 and 5.4). It is indicated that the Type I error rates 

obtained by using unparceled and parceled data were very close when the factor loadings 

were high. However, when the factor loadings were low, MCFA generally showed a 

lower Type I error rate by using the parceled data, especially the unidimensional parcels, 

while MIMIC generally showed a higher Type I error rate by using the parceled data, 

especially domain representative parcels, although these differences were not 

statistically supported when evaluated in a general linear model (see Table 5.2).  

 

Empirical Power with the High Factor Loadings  

The empirical power by using the unidimensional parceling strategy and the 

domain representative parceling strategy under the condition of the high factor loadings 

(i.e., 0.8) were presented in the upper part of Tables 5.3 and 5.4, respectively. The results 

of the general linear model were shown in Table 5.5. And the results were also plotted as 

shown in Figures 5.5 and 5.6. Again, the empirical power increased as Δκ increased 

regardless of the parceling strategies (p < .001). Both of MCFA and MIMIC reached 

maximum power 1.000 when Δκ was .5. The discrepancy between the two approaches 

decreased as Δκ increased from .2 to .5. This trend was not obvious on Figures 5.5 and 

5.6 because the discrepancy between the two approaches at any level of Δκ was very 

minor (most of the discrepancies are below .01), particularly in the balanced condition.  

When Δκ was lower than median effect size, both MCFA and MIMIC displayed 

similar trends between the two parceling strategies. Firstly, the two approaches achieved 
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Fig. 5.3 Plots of Type I Error Rates by Using Unparceled Data and Parceled Data under 
the Condition of the High Factor Loadings 
 
Note: Upper: MCFA; Down: MIMIC; UD = Unidimensional; DR = Domain representative.  
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Fig. 5.4 Plots of Type I Error Rates by Using Unparceled Data and Parceled Data under 
the Condition of the Low Factor Loadings 
 
Note: Upper: MCFA; Down: MIMIC; UD = Unidimensional; DR = Domain representative. 



 
 

Table 5.3 Power of MCFA and MIMIC (Unidimensional Parcels) 
 
    ∆κ= .2  ∆κ= .3  ∆κ= .4  ∆κ= .5 
 

 Scenario Condition MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff.  
 1 = 0.740 0.746 -0.006 0.976 0.978 -0.002 0.998 0.998 0.000 1.000 1.000 0.000  
 2 + 0.648 0.626 0.022 0.916 0.908 0.008 0.994 0.996 -0.002 1.000 1.000 0.000
 

3 - 0.626 0.626 0.000 0.916 0.918 -0.002 0.992 0.992 0.000 1.000 1.000 0.000  
 4 = 0.752 0.756 -0.004 0.980 0.978 0.002 1.000 1.000 0.000 1.000 1.000 0.000
 

Fa
ct

or
 lo

ad
in

g 
= 

0.
8 

5 + 0.648 0.628 0.020 0.926 0.918 0.008 1.000 0.998 0.002 1.000 1.000 0.000  
 6 - 0.622 0.644 -0.022 0.930 0.934 -0.004 0.992 0.992 0.000 1.000 1.000 0.000
 

7 = 0.766 0.754 0.012 0.980 0.982 -0.002 1.000 1.000 0.000 1.000 1.000 0.000  
 8 + 0.670 0.642 0.028 0.932 0.920 0.012 0.998 0.998 0.000 1.000 1.000 0.000
 
 9 - 0.630 0.652 -0.022 0.924 0.932 -0.008 0.992 0.994 -0.002 1.000 1.000 0.000
 

10 = 0.774 0.770 0.004 0.984 0.986 -0.002 1.000 1.000 0.000 1.000 1.000 0.000  
 11 + 0.638 0.654 -0.016 0.930 0.938 -0.008 0.992 0.994 -0.002 1.000 1.000 0.000
 

12 - 0.650 0.634 0.016 0.938 0.934 0.004 0.994 0.994 0.000 1.000 1.000 0.000  
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Table 5.3 (Continued) 
 
    ∆κ= .2  ∆κ= .3  ∆κ= .4  ∆κ= .5 
 
  Scenario Condition MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff. 
 
 1 = 0.236 0.332 -0.096 0.490 0.630 -0.140 0.715 0.858 -0.143 0.896 0.972 -0.076
 

2 + 0.226 0.232 -0.006 0.497 0.474 0.023 0.674 0.710 -0.036 0.878 0.906 -0.028  
 

3 - 0.124 0.278 -0.154 0.273 0.522 -0.249 0.468 0.774 -0.306 0.654 0.920 -0.266  
 

4 = 0.129 0.166 -0.037 0.282 0.417 -0.135 0.514 0.704 -0.190 0.721 0.876 -0.155  
 

Fa
ct

or
 lo

ad
in

g 
= 

0.
4 

5 + 0.132 0.142 -0.010 0.274 0.334 -0.060 0.448 0.540 -0.092 0.574 0.687 -0.113  
 6 - 0.103 0.178 -0.075 0.204 0.355 -0.151 0.388 0.602 -0.214 0.539 0.812 -0.273  
 7 = 0.442 0.504 -0.062 0.798 0.846 -0.048 0.964 0.976 -0.012 0.992 0.998 -0.006
 
 8 + 0.440 0.370 0.070 0.752 0.692 0.060 0.940 0.908 0.032 0.996 0.998 -0.002
 
 9 - 0.240 0.450 -0.210 0.538 0.800 -0.262 0.752 0.934 -0.182 0.922 0.990 -0.068
 
 10 = 0.502 0.504 -0.002 0.828 0.840 -0.012 0.972 0.980 -0.008 1.000 1.000 0.000
 

11 + 0.374 0.360 0.014 0.728 0.724 0.004 0.924 0.930 -0.006 0.992 0.996 -0.004  
 

12 - 0.388 0.440 -0.052 0.718 0.740 -0.022 0.922 0.928 -0.006 0.980 0.984 -0.004  
 

Note. A equal (=) sign indicates a balanced condition in which two groups have identical sample sizes; a plus (+) sign indicates a positive 
pairing of sample with with generalized variance; a negative (-) sign indicates a negative pairing. Diff. = Difference of MIMIC from 
MCFA. 
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Table 5.4 Power of MCFA and MIMIC (Domain Representative Parcels) 
 
    ∆κ= .2  ∆κ= .3  ∆κ= .4  ∆κ= .5 
 

 Scenario Condition MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff.  
 1 = 0.744 0.748 -0.004 0.976 0.976 0.000 1.000 1.000 0.000 1.000 1.000 0.000  
 2 + 0.624 0.630 -0.006 0.910 0.910 0.000 0.996 0.996 0.000 1.000 1.000 0.000
 

3 - 0.630 0.632 -0.002 0.926 0.922 0.004 0.992 0.992 0.000 1.000 1.000 0.000  
 4 = 0.750 0.756 -0.006 0.978 0.978 0.000 1.000 1.000 0.000 1.000 1.000 0.000
 

Fa
ct

or
 lo

ad
in

g 
= 

0.
8 

5 + 0.650 0.632 0.018 0.926 0.916 0.010 0.998 0.998 0.000 1.000 1.000 0.000  
 6 - 0.630 0.640 -0.010 0.928 0.940 -0.012 0.996 0.994 0.002 1.000 1.000 0.000
 

7 = 0.764 0.760 0.004 0.982 0.982 0.000 1.000 1.000 0.000 1.000 1.000 0.000  
 8 + 0.654 0.644 0.010 0.934 0.920 0.014 0.998 0.998 0.000 1.000 1.000 0.000
 
 9 - 0.640 0.662 -0.022 0.932 0.936 -0.004 0.992 0.994 -0.002 1.000 1.000 0.000
 

10 = 0.770 0.770 0.000 0.980 0.986 -0.006 1.000 1.000 0.000 1.000 1.000 0.000  
 11 + 0.650 0.660 -0.010 0.932 0.936 -0.004 0.992 0.994 -0.002 1.000 1.000 0.000
 

12 - 0.656 0.638 0.018 0.934 0.932 0.002 0.994 0.994 0.000 1.000 1.000 0.000  
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Table 5.4 (Continued) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note. A equal (=) sign indicates a balanced condition in which two groups have identical sample sizes; a plus (+) sign indicates a positive 
pairing of sample with with generalized variance; a negative (-) sign indicates a negative pairing. Diff. = Difference of MIMIC from 
MCFA. 
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0.000

0.000

0.006

0.002

0.002

0.000

-0.006

-0.039

-0.022

-0.020

-0.116

-0.008

Diff. 

∆κ= .5 

1.000

0.984

0.938

0.998

0.996

0.998

0.988

0.920

0.770

0.934

0.842

0.992

MIMIC

1.000

0.984

0.944

1.000

0.998

0.998

0.982

0.881

0.748

0.914

0.726

0.984

   ∆κ= .2  ∆κ= .3  ∆κ= .4  

 Scenario Condition MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA

0.006

0.040

0.032

-0.014

0.000

0.022

-0.052

-0.130

-0.066

-0.008

-0.074

-0.029

0.774 

0.528 

0.870 

Fa
ct

or
 lo

ad
in

g 
= 

0.
4 

1 = 0.374 0.382 -0.008 0.684 0.690 -0.006 0.900 0.908

2 + 0.352 0.302 0.050 0.600 0.574 0.026 0.796 0.756

3 - 0.272 0.314 -0.042 0.520 0.590 -0.070 0.826

4 = 0.200 0.234 -0.034 0.463 0.514 -0.051 0.718 0.792

5 + 0.162 0.194 -0.032 0.354 0.377 -0.023 0.592 0.621

6 - 0.141 0.198 -0.057 0.316 0.426 -0.110 0.658

7 = 0.520 0.530 -0.010 0.854 0.858 -0.004 0.980 0.980

8 + 0.488 0.390 0.098 0.790 0.712 0.078 0.958 0.926

9 - 0.334 0.442 -0.108 0.682 0.790 -0.108 0.936

10 = 0.528 0.522 0.006 0.844 0.846 -0.002 0.984 0.978

11 + 0.404 0.362 0.042 0.774 0.730 0.044 0.954 0.932

0.922 0.936-0.0200.7440.724-0.03612 - 0.422 0.458
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Table 5.5 Parameter Estimates of the General Linear Model with Power as the 
Dependent Variable 
 

 

 

 

 

 

 

 

 

 

 

 

Note: †Without parceling is the reference of the three methods.  ††MIMIC is the reference of the two 
approaches. †††Balanced condition is the reference of the three conditions. ††††Unparceled×loadings is the 
reference. †††††All the p-values are two-tailed. DR = Domain representative parceling; UD = 
Unidimensional parceling.  
 
 
 
higher power in the balanced condition than the negative or positive condition by using 

either of the two parceling strategies (p < .001 and p = .001, respectively). These trends 

were similar to the trend that MIMIC showed by using the unparceled data but 

inconsistent with the trend that MCFA displayed by using the unparceled data. Secondly, 

power for MCFA generally had superiority over MIMIC in the positive condition except 

in Scenario 11, and MIMIC generally had superiority over MCFA in the negative 

condition except in Scenario 12. This trend was as same as the trend the two approaches 

 Parameter Std. p†††††Effect t Error  

Intercept -.110 .029 -3.789 .000 
Parceling = DR .057 .015 3.665 .000 
Parceling = UD .043 .015 2.847 .005 

Po
w

er
 

Parceling = no†   

Approach = MCFA -.040 .012 -3.213 .001 
Approach = MIMIC††   

Condition = negative -.070 .015 -4.616 .000 
Condition = Positive -.052 .015 -3.419 .001 
Condition = balanced †††   

Loadings .701 .031 22.669 .000 
Δκ 1.263 .049 25.970 .000 
DR×loadings  -.354 .076 -4.648 .000  
UD×loadings  -.181 .074 -2.449 .015  
Unparceled×loadings

††††
     



 
 

 
 
 
 
 
 

∆κ = .2 
 
 
 
 

∆κ = .3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.5 Plots of Empirical Power of MCFA and MIMIC Approaches with the Unidimensional Parcels When the Factor 
Loadings Were High 
 
Note: The plots for both of the two approaches fall on the straight line at 1.000 when ∆κ is .5 (not shown on this figure). The three small figures on the 
right are the decomposed figures of the one on the left based on the values of Δκ. 

∆κ= .2
∆κ= .3
∆κ= .4

MCFA
MIMIC

∆κ = .4
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Fig. 5.6 Plots of Empirical Power of MCFA and MIMIC Approaches with the Domain Representative Parcels When the Factor 
Loadings Were High 
 
Note: The plots for both of the two approaches fall on the straight line at 1.000 when ∆κ is .5 (not shown on this figure). The three small figures on the 
right are the decomposed figures of the one on the left based on the values of Δκ 
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displayed for unparceled data under the condition of the high factor loadings, except that 

the superiority of either of the two approaches displayed over the other one by using the 

unparceled data was higher than that by using the unidimensional or domain 

representative parcels.   

  The empirical power achieved by using unparceled data, unidimensional parcels, 

and domain representative parcels under the condition of high factor loadings was 

plotted at Δκ = .2 for MCFA and MIMIC respectively (Figure 5.7). Small effect size for 

Δκ was chosen when making this comparison because either MCFA or MIMIC models 

using the two parceling strategies and using unparceled data showed the largest 

discrepancy in terms of power at Δκ = .2, and this discrepancy decreased as Δκ 

increased. Figure 5.7 shows that parceling strategies parceling strategies improved 

power for MCFA in the negative condition except in Scenario 12. However, this 

improvement was very limited compared with the decrease of power in the balanced or 

positive condition by applying the parceling strategies. On the other hand, parceling 

strategies, especially domain representative parceling, did improve the empirical power 

for MIMIC in most of the scenarios, although this improvement never exceeded .010. 

For example, in Scenario 1, the power of MIMIC by using unparceled data was .744. It 

increased to .746 by using unidimensional parceling and .748 by using domain 

representative parceling.  

 

 



85 
 

 

 

0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850
0.900
0.950
1.000

1 2 3 4 5 6 7 8 9 10 11 12

Po
w

er

Scenario

Unparceled IC DR

 
Fig. 5.7 Plots of Empirical Power by Using Unparceled Data and Parceled Data When 
∆Κ = .2 under the Condition of High Factor Loadings  

0.600

0.620

0.640

0.660

0.680

0.700

0.720

0.740

0.760

0.780

1 2 3 4 5 6 7 8 9 10 11 12

Po
w

er

Scenario

Unparceled IC DR

 
Note: Upper: MCFA; Down: MIMIC; UD = Unidimensional; DR = Domain representative.  
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Empirical Power with the Low Factor Loadings 

The results of power analysis with low factor loadings by applying 

unidimensional parceling strategy and domain representative parceling are presented in 

the lower part of Tables 5.3 and 5.4, and plotted in Figures 5.8 and 5.9 respectively. As 

expected, the values of power with the low factor loadings were lower than those with 

high factor loadings at each level of Δκ (p < .001), and power increased as Δκ increased 

from a small effect size to median effect size, regardless of the parceling strategies (p 

< .001). Compared with the differences of MCFA and MIMIC under the condition of 

high factor loadings, the differences between the two approaches under the condition of 

low factor loadings were generally larger. However, the decreasing discrepancy between 

the two approaches as Δκ increased, which was displayed under the condition of high 

factor loadings, was not observed when the factor loadings were low.  

Some trends can be observed in Figures 5.8 and 5.9. Firstly, as with the plots of 

power by for the unparceled data under the condition of low factor loadings, the plots for 

both of the two approaches by using either unidimensional parcels or domain 

representative parcels displayed a “U” shape across the 12 scenarios regardless of the 

values of Δκ. Scenarios 4, 5, and 6 were still at the bottom of the “U”. However, the “U” 

shape was not as deep as the one obtained by using the unparceled data. Secondly, 

MIMIC showed superiority in the negative condition at each level of Δκ by using either 

of the parceling strategies. MIMIC also shows superiority in the balanced condition in 

most of the scenarios at each level of Δκ by using either of the parceling strategies. 

Actually, in the few scenarios in the balanced condition when MIMIC was not favored,



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.8 Plots of Empirical Power of MCFA and MIMIC Approaches with the Unidimensional Parcels When the Factor 
Loadings Were Low 
 
Note: The four small figures are the decomposed figures of the left top one based on the mean differences. 
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Fig. 5.9 Plots of Empirical Power of MCFA and MIMIC Approaches with the Domain Representative Parcels When the Factor 
Loadings Were Low  
 
Note: The four small figures are the decomposed figures of the left top one based on the mean differences. 
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the two approaches had either identical power (e.g., in Scenario 10 when Δκ was .5 and 

the parceling strategy was unidimensional) or MCFA’s superiority was very minor, 

which never exceeded .010 (e.g., in Scenario 10, when Δκ was .2 and the parceling 

strategy was domain representative). Thirdly, MCFA generally had higher power than 

MIMIC in the positive condition at each level of Δκ except in Scenario 5. Note that 

Scenario 5 had the lowest convergence rate among the 12 scenarios by using either of 

the parceling strategies.  

Again, the comparison of the empirical power achieved by using unparceled data, 

unidimensional parcels, and domain representative parcels under the condition of the 

low factor loadings was made at Δκ = .2 for MCFA and MIMIC separately (Figure 5.10). 

Figure 5.10 shows that for either of the two approaches, the models with parceling 

strategies applied, especially domain representative strategy, generally had higher power 

than the models with unparceled data. For MCFA, the greatest superiority by using 

unidimensional parceling strategy and domain representative parceling was .175 

and .253, respectively (Scenario 7) and the lowest superiority was .011 (Scenario 4) 

and .024 (Scenario 5), respectively. MIMIC models also benefited from using either of 

the parceling strategies in terms of power. The greatest superiority in power by using 

unidimensional parceling and domain representative parceling for MIMIC was .084 

(Scenario 6) and .137 (Scenario 4), respectively, and the lowest superiority was .004 

(Scenario 2) and .004 (Scenario 9), respectively. Compared with the improvement the 

parceling strategies make under the condition of high factor loadings, the parceling 
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Fig. 5.10 Plots of Empirical Power by Using Unparceled Data and Parceled Data When 
∆Κ = .2 under the Condition of Low Factor Loadings 
 
Note: Upper: MCFA; Down: MIMIC; UD = Unidimensional; DR = Domain representative. 

 

strategies obviously did better in improving power of MCFA and MIMIC models when 

the factor loadings were low.  

The different behaviors parceling strategies displayed under the condition of high 

factor loadings and low factor loadings were also statistically supported by the general 

linear model. It is shown in Table 5.5 that the interactions of parceling strategies and the 

factor loadings were statistically significant. The general linear model was also run for 
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the high factor loadings and the low factor separately. The results (Table 5.6) indicate 

that parceling did not significantly improve power under the condition of the high factor 

loadings, whereas power was significantly improved by parceling under the condition of 

the low factor loadings. The coefficients of domain representative parceling and 

unidimensional parceling under the condition of the low factor loadings were .127 

and .092, respectively, which indicated that when holding other factors constant, the 

power obtained by using domain representative parceling and unidimensional parceling 

was on average .127 and .092 higher than that obtained by using unparceled data 

respectively, with both p-values less than .001.            

 

Error Adjustment 

The empirical power of MCFA and MIMIC models were also examined by using 

domain representative parceling strategy with the error adjustment. As introduced before, 

when the first-order factor was collapsed by aggregating the items, the second-order 

factor was derived from the parcels instead of the error-free first-order factors. As a 

result, the empirical power and the empirical Type I error rate when examining the mean 

value of the second-order factor across different groups might be negatively influenced. 

By doing the error adjustment, the residual variance of the parcel was constraint as the 

calculated measurement error variance so that each parcel can be treated as an error-free 

indicator.  
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Table 5.6 Parameter Estimates of the General Linear Model under the Condition of the 
High Factor Loadings and the Low Factor Loadings with Power as the Dependent 
Variable 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: †Without parceling is the reference of the three methods.  ††MIMIC is the reference of the two 
approaches. †††Balanced condition is the reference of the three conditions. ††††Unparceled×loadings is the 
reference. †††††All the p-values are two-tailed. DR = Domain representative parceling; UD = 
Unidimensional parceling.  

 

 Parameter Std. p†††††Effect t Error  

Intercept .641 .016 38.993 .000 

Parceling = DR -.014 .011 -1.240 .216 

H
ig

h 
fa

ct
or

 lo
ad

in
gs

 

Parceling = UD -.006 .011 -.507 .613 

Parceling = no†   

Approach = MCFA .004 .009 .472 .638 

Approach = MIMIC††   

Condition = negative -.050 .011 -4.527 .000 

Condition = Positive -.040 .011 -3.622 .000 

Condition = balanced †††   

 Δκ .876 .036 24.606 .000 
      

Intercept .084 .038 2.200 .029 

Parceling = DR .127 .026 4.867 .000 

Parceling = UD .092 .026 3.584 .000 

Lo
w

 fa
ct

or
 lo

ad
in

gs
 

Parceling = no†   

Approach = MCFA -.084 .021 -4.001 .000 

Approach = MIMIC††   

Condition = negative -.090 .026 -3.496 .001 

Condition = Positive -.063 .026 -2.472 .014 

Condition = balanced †††   

Δκ 1.649 .082 20.041 .000 
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The results of the empirical Type I error rate and the empirical power with the 

error adjustment were presented in Tables 5.7 and 5.8 respectively. Because the goal of 

adjusting the residual variance in this study was to examine whether parceling induced 

bias in terms of Type I error rate and power when the first-order factors were collapsed, 

the empirical Type I error rate and power achieved by using domain representative 

parceling with error adjustment vs. without error adjustment were plotted shown in 

Figures 5.11 and 5.12, respectively. For the same reason stated before, power with and 

without error adjustment was only compared when Δκ was .2. It is shown in Figure 5.11 

that Type I error rates achieved from the two methods were very close when the factor 

loadings were high, particularly for MIMIC, and the difference for either of the two 

approaches never exceeded .005. When the factor loadings were low, the difference was 

still generally lower than .005 except those in Scenarios 4, 5, and 6 for both of the two 

approaches. For example, the differences between with and without error adjustment for 

MCFA in Scenarios 4, 5, and 6 were .028, .030, and .017, and for MIMIC 

were .014, .013, and .006, respectively, and for both of the two approaches, the Type I 

error rates achieved without error adjustment in the three scenarios were more 

conservative. Again, note that the two approaches, especially MCFA, had severe 

convergence problem in the three scenarios when the factor loadings were low.  

The comparison of the empirical power at small effect size (i.e., Δκ = .2) between 

domain representative parceling without error adjustment and with error adjustment 

showed very similar patterns as those of the Type I error rate. That is, when the factor 

loadings were high, adjusting the residual variance did not yield much difference of 
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Table 5.7 Type I Error Rates of MCFA and MIMIC (Domain Representative Parcels 
with Error Adjustment) 
 

  Factor loading = 0.8  Factor loading = 0.4 

Scenario Condition MCFA MIMIC Diff.  MCFA MIMIC Diff. 

0.054 0.058 -0.004 0.034 0.038 -0.0041  = 

 
Note: A equal (=) sign indicates a balanced condition in which two groups have identical sample sizes; a 
plus (+) sign indicates a positive pairing of sample with with generalized variance; a negative (-) sign 
indicates a negative pairing. Diff. = difference of MIMIC from MCFA. Any error rate falling beyound 
Bradley’s (1978) liberal criterion of [.5α, 1.5 α] (i.e., [.025, .075]) is underlined.

2 + 0.046 0.038 0.008 0.034 0.046 -0.012

3 - 0.046 0.040 0.006 0.044 0.060 -0.016

4 = 0.054 0.056 -0.002 0.058 0.070 -0.012

5 + 0.044 0.040 0.004 0.060 0.038 0.022

6 - 0.050 0.056 -0.006 0.032 0.040 -0.008

7 = 0.050 0.052 -0.002 0.040 0.036 0.004

8 + 0.050 0.044 0.006 0.040 0.020 0.020

9 - 0.052 0.062 -0.010 0.052 0.092 -0.040 

10 = 0.048 0.046 0.002 0.054 0.052 0.002

11 + 0.054 0.058 -0.004 0.066 0.056 0.010

12 - 0.054 0.054 0.000 0.066 0.074 -0.008



 
 

Table 5.8 Power of MCFA and MIMIC (Domain Representative Parcels with Error Adjustment) 
 
    ∆κ= .2  ∆κ= .3  ∆κ= .4  ∆κ= .5 
 
  Scenario Condition MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff. 

1 = 0.742 0.746 -0.004 0.978 0.978 0.000 1.000 1.000 0.000 1.000 1.000 0.000  
2 + 0.634 0.630 0.004 0.910 0.910 0.000 0.996 0.996 0.000 1.000 1.000 0.000

 
3 - 0.624 0.628 -0.004 0.924 0.922 0.002 0.992 0.992 0.000 1.000 1.000 0.000

 4 = 0.746 0.752 -0.006 0.978 0.978 0.000 1.000 1.000 0.000 1.000 1.000 0.000
 

Fa
ct

or
 lo

ad
in

g 
= 

0.
8 

 5 + 0.650 0.628 0.022 0.924 0.916 0.008 0.998 0.998 0.000 1.000 1.000 0.000
 6 - 0.620 0.636 -0.016 0.928 0.936 -0.008 0.994 0.994 0.000 1.000 1.000 0.000  
 7 = 0.758 0.760 -0.002 0.982 0.982 0.000 1.000 1.000 0.000 1.000 1.000 0.000
 

8 + 0.666 0.642 0.024 0.936 0.920 0.016 0.998 0.998 0.000 1.000 1.000 0.000  
 9 - 0.626 0.662 -0.036 0.930 0.930 0.000 0.994 0.994 0.000 1.000 1.000 0.000
 

10 = 0.766 0.766 0.000 0.982 0.986 -0.004 1.000 1.000 0.000 1.000 1.000 0.000  
 11 + 0.650 0.654 -0.004 0.932 0.936 -0.004 0.992 0.994 -0.002 1.000 1.000 0.000
 

12 - 0.660 0.632 0.028 0.936 0.934 0.002 0.994 0.994 0.000 1.000 1.000 0.000  
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Table 5.8 (Continued) 
 
    ∆κ= .2  ∆κ= .3  ∆κ= .4  ∆κ= .5 
 
  Scenario Condition MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff.  MCFA MIMIC Diff. 
 
 1 = 0.378 0.384 -0.006 0.688 0.690 -0.002 0.906 0.906 0.000 0.984 0.988 -0.004
 

2 + 0.344 0.300 0.044 0.600 0.572 0.028 0.792 0.758 0.034 0.948 0.940 0.008  
 

3 - 0.266 0.314 -0.048 0.522 0.570 -0.048 0.790 0.820 -0.030 0.922 0.932 -0.010  
 

4 = 0.246 0.252 -0.006 0.484 0.528 -0.044 0.740 0.772 -0.032 0.910 0.920 -0.010  
 

Fa
ct

or
 lo

ad
in

g 
= 

0.
4 

5 + 0.104 0.200 -0.096 0.118 0.420 -0.302 0.200 0.648 -0.448 0.348 0.796 -0.448  
 6 - 0.176 0.206 -0.030 0.374 0.382 -0.008 0.610 0.640 -0.030 0.840 0.850 -0.010  
 7 = 0.514 0.532 -0.018 0.850 0.862 -0.012 0.980 0.980 0.000 0.998 0.998 0.000
 
 8 + 0.498 0.396 0.102 0.774 0.710 0.064 0.954 0.928 0.026 1.000 0.998 0.002
 
 9 - 0.358 0.440 -0.082 0.718 0.788 -0.070 0.890 0.944 -0.054 0.984 0.992 -0.008
 
 10 = 0.528 0.526 0.002 0.842 0.840 0.002 0.978 0.978 0.000 1.000 1.000 0.000
 

11 + 0.402 0.368 0.034 0.774 0.734 0.040 0.952 0.940 0.012 1.000 0.996 0.004  
 

12 - 0.424 0.454 -0.030 0.738 0.740 -0.002 0.924 0.932 -0.008 0.984 0.986 -0.002  
 

Note. A equal (=) sign indicates a balanced condition in which two groups have identical sample sizes; a plus (+) sign indicates a positive 
pairing of sample with with generalized variance; a negative (-) sign indicates a negative pairing. Diff. = Difference of MIMIC from 
MCFA. 
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Fig. 5.11 Plots of Type I Error Rates by Using Domain Representative Parceling Strategy with and without Error Adjustment  
 
Note. Up left: MCFA with high factor loadings; Up right: MIMIC with high factor loadings; Down left: MCFA with low factor loadings; Down right: 
MIMIC with low factor loadings 97 
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Fig. 5.12 Plots of Power by Using Domain Representative Parceling Strategy with and without Error Adjustment When ∆Κ 
= .2  
 
Note. Up left: MCFA with high factor loadings; Up right: MIMIC with high factor loadings; Down left: MCFA with low factor loadings; Down right: 
MIMIC with low factor loadings
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power for either of the two approaches (e.g., most of the differences are around .005); 

when the factor loadings were low, the differences still remained lower than .01, except 

those of MCFA in the scenarios 4, 5, and 6. In these three scenarios, the differences 

between with and without error adjustment for MCFA were .046, .058, and .035, 

respectively, which were much higher than the differences in the other scenarios. The 

differences for MIMIC in the three scenarios were .018, .006, and .008, respectively, 

which were slightly higher than the differences in the other scenarios. The results of 

general linear model analysis (Table 5.9) also indicate that neither Type I error rate (p 

= .553) nor power (p = .853) was significantly different between using domain 

representative parceling without error adjustment and with error adjustment.         

 
 
DISCUSSION 
 

The results in study 2 show that MCFA and MIMIC both control Type I error 

rate well  and the type I error rates are generally very close between the two approaches 

under the condition of high factor loadings by using the parceling strategies. These two 

approaches also show very similar values of power across the 12 scenarios when the 

factor loadings are high. It indicates that both of the two approaches with parceled data 

are equally favored when the factor loadings are high. When the factor loadings are low, 

MCFA with parceled data controls Type I error rate more appropriately than MIMIC 

given the MIMIC’s tendency of being more conservative in the positive condition and 

liberal in the negative condition. And MCFA tends to have superiority in terms of power 

in the positive condition, and MIMIC tends to be more powerful than MCFA in the  
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Table 5.9 Parameter Estimates of the General Linear Model (Domain Representative 
Parcels) 
 

 Parameter Effect Std. 
Error t p††††

 

Ty
pe

 I 
er

ro
r 

Intercept .044 .005 9.235 .000 

Parceling = DR without EA -.002 .003 -.596 .553 

Parceling = DR with EA†
  

Approach = MCFA -.002 .003 -.976 .332 

Approach = MIMIC††
  

Condition = negative .005 .003 1.611 .111 

Condition = Positive -.004 .003 -1.145 .255 

Condition = balanced †††
  

Loadings .006 .006 1.026 .308 

   

Po
w

er
 

Intercept -.054 .031 -1.748 .081 

Parceling = DR without EA .002 .013 .185 .853 

Parceling = DR with EA†
  

Approach = MCFA -.012 .013 -.904 .367 

Approach = MIMIC††
  

Condition = negative -.064 .016 -4.075 .000 

Condition = Positive -.072 .016 -4.592 .000 

Condition = balanced †††
  

Loadings .530 .032 16.646 .000 

Δκ 1.466 .057 25.738 .000 
 
Note: †Domain representative parceling with error adjustment is the reference. †† MIMIC is the reference 
of the two approaches. †††Balanced condition is the reference of the three conditions. ††††All the p-values 
are two-tailed.  DR = Domain representative parceling; EA = error adjustment.  
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balanced and negative condition (although the superiorities of the two approaches are 

very minor when using domain representative parceling). These two patterns are same as 

those observed in Study 1 when the original items were used under the condition of the 

low factor loadings.  

More interesting is the comparison of the results between Study 2 and Study 1. It 

indicates that parceling does have effects on group comparison by using MCFA and 

MIMIC under the Condition of either the high factor loadings or the low factor loadings. 

Firstly, when the factor loadings are high, parceling decreases the power of MCFA in the 

balanced and positive condition but increases the power of MCFA in the negative 

condition, although the improvement never exceeds .1. However, parceling does not 

influence MIMIC in terms of power too much (Figure 5.7). Therefore, parceling 

strategies might not be necessary for the purpose of group comparison under the 

Condition of the high factor loadings.  

Secondly, parceling, especially domain representative parceling, improves 

MIMIC’s ability in controlling Type I error rate when the factor loadings are low. This 

improvement might be caused by the decreasing relative discrepancy of the generalized 

variances between the two groups after the parceling strategies were used. Indeed, 

domain parceling strategy results in smaller relative discrepancy than unidimensional 

parceling does in this study. As the relative discrepancy of the generalized variances 

decreases, the coefficient of the regression line (i.e., γ) tends to reflect the true difference 

of the means between the two groups. Parceling also improves MIMIC’s ability of 

controlling Type I error rate in Scenarios 4-6 by improving the convergence rates in the 
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three scenarios. Indeed, the three scenarios have higher convergence rates by using 

unidimensional parcels (two out of three under-criterion Type I error rates) than using 

the original data (three out of three under-criterion Type I error rates), and even higher 

convergence rates by using domain representative parcels (zero out of three under-

criterion Type I error rates) than using unidimensional parcels.  

Thirdly, parceling generally decreases MCFA’s Type I error rate but increases 

MIMIC’s Type I error rate under the condition of the low factor loadings (Figure 5.4). 

As a result, the two approaches have more consistent Type I error rates. On the other 

hand, parceling, especially domain representative parceling, increases the power of both 

of the two approaches over all the conditions under the circumstance of the low factor 

loadings (Figure 5.10).  

It leads to the conclusion that parceling could positively impact the group 

comparison under the condition of the low factor loadings by improving power, 

mitigating the convergence problem, and controlling Type I error rate within reasonable 

range for MIMIC. Domain representative parceling obviously does better in all the three 

aspects than unidimensional parceling. Therefore MCFA models with domain 

representative parcels are preferred to MCFA and MIMIC models with unidimensional 

parcels and original items. On the other hand if the few out-of-criterion Type I error 

rates for MIMIC when domain representative parceling is applied could be ignored, 

MIMIC would be a good choice too over all the conditions. Given the fact that the two 

approaches show very minor differences across the 12 scenarios under the condition of 
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the low factor loadings when domain representative parceling is used, the two 

approaches are equally favored in this case.  

Study 2 also offer the evidence that collapsing the first-order factors by using 

domain parceling strategies does not bring much bias to the results when the 

convergence rate is high. However, the discrepancies of either Type I error rate or power 

between with error adjustment and without adjustment for both of the two approaches 

are large in Scenarios 4-6 which have severe convergence problem under the condition 

of the low factor loadings. It means that neither the Type I error rate nor the power is 

reliable when the convergence rate is low. 
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CHAPTER VI 

CONCLUSIONS 

 

In educational and psychological studies, factor loadings as high as .8 are not 

typically observed. Also the differences in the mean values of the latent factors across 

different groups usually have small effect sizes. This study shows that MCFA should be 

favored when the groups are not in the balanced condition (i.e., different group sizes are 

paired with the different generalized variances) if researchers in social sciences and 

other related disciplines investigate the mean differences of the second-order factor. On 

the other hand, when the groups are in the balanced condition, MIMIC outperforms 

MCFA with respect to both Type I error rate and power.     

 Convergence problems uncovered here could be caused by the large random 

error variances in second-order CFA models. Both MCFA and MIMIC display 

extremely low power when the convergence rate is low. In this case reevaluation of the 

study design or/and the method of data collection should have higher priority than 

selecting the approach for analyzing the data.   

 This study also offers evidence that parceling has some advantages over using 

the original unparceled data. Firstly, parceling can improve MIMIC’s ability of 

controlling Type I error rate and significantly improve power under the condition of the 

low factor loadings, especially domain representative parceling. When applying domain 

representative parceling under the condition of the low factor loadings, the two 
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approaches, i.e., MCFA and MIMIC, have very minor differences with respect to Type I 

error rate and power, and hence are equally favored across all the conditions.  

 Secondly, parceling can increase the convergence rate. As a result, the problems 

of out-of-criterion Type I error rate for MIMIC and the extremely low power for the two 

approaches resulted from the low convergence rate could be mitigated. However, in 

future studies researchers should attempt to determine possible reasons for the low 

convergence rate (e.g., high random error variance and low reliability in this study) and 

then solve these problems before they resort to parceling. Lastly, parceling does not 

induce bias to Type I error rate and power of the second-order CFA models when 

collapsing the first-order factors.   

The limitations of the study begin with the condition that the factor loadings in 

both levels were restricted to a specific fixed value, which may not adequately represent 

the range of realistic models. In addition, the domain representative parceling strategy 

resulted in a more parsimonious first-order CFA model than the unidimensional 

parceling did in this study. Therefore the parsimony of the models with domain 

representative parcels might be the cause of the higher power and better control of Type 

I error rate. These factors will be considered in further research comparing the two 

methods in the context of second-order CFA models. 
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APPENDIX A 

 SAS CODE FOR UNIDIMENSIONAL PARCELING 

 
%macro files; 
%do i= 1 %to 12; 
%do j = 1 %to 500; 
%let n =&j; 
%let m=&i; 
%let file1 = G:\second_order_factor\monte carlo\unparceled\loading=.4\mean 
difference=.5\s; 
%let file2 = G:\second_order_factor\monte carlo\IC-parcel\loading=.4\mean 

difference=.5\s; 
%let file3 = \s; 
%let file4 = .dat; 
%let file_in = &file1&m&file3&n&file4; 
%let file_out =&file2&m&file3&n&file4; 
data temp3; 
infile "&file_in"; 
input x1  1-12 x2 13-25 x3 26-38 x4 39-51 x5 52-64 x6 65-77 x7 78-90 x8 91-103 x9 
104-116  x10 117-129 x11 130-142 x12 143-155 group $ 158; 
c1=(x1+x2+x3)/3; 
c2=(x4+x5+x6)/3; 
c3=(x7+x8+x9)/3; 
c4=(x10+x11+x12)/3; 
drop x1-x12; 
run; 
data parcel; 
set temp3; 
FILE "&file_out"; 
put @1 c1 12.6 
    @13 c2 12.6 
    @25 c3 12.6 
    @37 c4 12.6 
    @51 group 12.0; 
run ; 
%end; 
%end; 
%Mend; 
 
%files; 
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APPENDIX B 

SAS CODE FOR DOMAIN REPRESENTATIVE PARCELING 

 
%macro files; 
%do i= 1 %to 12; 
%do j = 1 %to 500; 
%let n =&j; 
%let m=&i; 
%let file1 = G:\second_order_factor\monte carlo\unparceled\loading=.4\mean 

difference=0\s; 
%let file2 = G:\second_order_factor\monte carlo\DR-parcel\loading=.4\mean 

difference=.5\s; 
%let file3 = \s; 
%let file4 = .dat; 
%let file_in = &file1&m&file3&n&file4; 
%let file_out =&file2&m&file3&n&file4; 
data temp3; 
infile "&file_in"; 
input x1  1-12 x2 13-25 x3 26-38 x4 39-51 x5 52-64 x6 65-77 x7 78-90 x8 91-103 x9 

104-116 
      x10 117-129 x11 130-142 x12 143-155 group $ 158; 
c1=(x1+x4+x7+x10)/4; 
c2=(x2+x5+x8+x11)/4; 
c3=(x3+x6+x9+x12)/4; 
drop x1-x12; 
run; 
data parcel; 
set temp3; 
FILE "&file_out"; 
put @1 c1 12.6 
    @13 c2 12.6 
    @25 c3 12.6 
    @51 group 12.0; 
run ; 
%end; 
%end; 
%Mend; 
 
%files; 
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APPENDIX C 

SAS CODE FOR RUNNING MCFA MODELS WITH DOMAIN REPRESENTATIVE 

PARCELS WITH ERROR ADJUSTMENT 

 

%macro mplus; 

 
X mkdir "G:\DR addjustment\MCFA"; 
%do i= 1 %to 12; 
%do j = 1 %to 500; 
%let m=&i; 
%let n =&j; 
%let file1=G:\second_order_factor\monte carlo\unparceled\loading=.8\mean 
difference=.5\s; 
%let file2 = \s; 
%let file3 = .dat; 
/*Import unparceled data*/ 
data temp; 
infile "&file1&m&file2&m&n&file3"; 
input x1  1-12 x2 13-25 x3 26-38 x4 39-51 x5 52-64 x6 65-77 x7 78-90 x8 91-103 x9 
104-116 x10 117-129 x11 130-142 x12 143-155 group $ 158;; 
run; 
data group1; 
set temp;  
if group=1; 
c11=(x1+x4+x7+x10)/4; 
c12=(x2+x5+x8+x11)/4; 
c13=(x3+x6+x9+x12)/4; 
run; 
 
data group2; 
set temp; 
if group=2; 
c21=(x1+x4+x7+x10)/4; 
c22=(x2+x5+x8+x11)/4; 
c23=(x3+x6+x9+x12)/4; 
run; 
 
proc iml; 
RESET NOLOG; 
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/*---------------------Calcualte error variance of composite 1 in group 1-----------------------
---*/ 
USE group1;   
READ all var {x1 x4 x7 x10} INTO X_cons11;  
read all var{c11} into X_comp11; /*cons means construct, comp means composite*/ 
*PRINT "The Data Matrix is" X_cons1; 
*print "the composite score matrix is" X_comp1; 
 
 /*Below is to calculate the reliability of the composite score 1*/ 
/*# of rows is 400, # of columns for the construct is 4, fo the composite is 1*/ 
 XBAR_cons11 = X_cons11(|+,|)`/400; 
*PRINT, "XBAR_cons1 = " XBAR_cons1; 
SUMSQ_cons11=X_cons11`*X_cons11-(XBAR_cons11*XBAR_cons11`)#400; 
S_cons11=SUMSQ_cons11/(400-1); 
*PRINT , "The Variance-Covariance Matrix is " S_cons1; 
gdiag_cons11=diag(s_cons11);*diagnoal matrix with variance on the diagnoal; 
gg_cons11=sqrt(inv(gdiag_cons11));*Now 1/Sqrt(Var(X_i)) on the diagonal; 
corr11=gg_cons11*s_cons11*gg_cons11; 
*print "THE CORRELATION MATRIX IS" corr11; 
corr11_1_3=corr11[1,3]; 
corr11_2_3=corr11[2,3]; 
corr11_1_2=corr11[1,2]; 
corr11_1_4=corr11[1,4]; 
corr11_2_4=corr11[2,4]; 
corr11_3_4=corr11[3,4]; 
corr11_ave=(corr11_1_3+corr11_2_3+corr11_1_2+corr11_1_4+corr11_2_4+corr11_3_
4)/6; 
comp11_relia=4*corr11_ave/(1+3*corr11_ave); 
*print corr11_ave; 
print comp11_relia; 
 
/*Below is to calculate the variance of the composite score 1 in group 1*/ 
 XBAR_comp11 = X_comp11(|+,|)`/400; 
*PRINT, "XBAR_comp11 = " XBAR_comp11; 
SUMSQ_comp11=X_comp11`*X_comp11-(XBAR_comp11*XBAR_comp11`)#400; 
S_comp11=SUMSQ_comp11/(400-1); 
*PRINT , "The Variance-Covariance Matrix is " S_comp11; 
variance_comp11=s_comp11[1,1]; 
print variance_comp11; 
 
/*Below is to calculate the measurement error variance of composite 1 in group 1*/ 
error_comp11=variance_comp11*(1-comp11_relia); 
print, "error variance of component 1 is"  error_comp11; 
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/*----------------------Calcualte error variance of composite 1 in group 2----------------------
---*/ 
USE group2;   
READ all var {x1 x4 x7 x10} INTO X_cons21;  
read all var{c21} into X_comp21; /*cons means construct, comp means composite*/ 
*PRINT "The Data Matrix is" X_cons1; 
*print "the composite score matrix is" X_comp1; 
 
 /*Below is to calculate the reliability of the composite score 1*/ 
/*# of rows is 400, # of columns for the construct is 4, fo the composite is 1*/ 
 XBAR_cons21 = X_cons21(|+,|)`/400; 
*PRINT, "XBAR_cons21 = " XBAR_cons21; 
SUMSQ_cons21=X_cons21`*X_cons21-(XBAR_cons21*XBAR_cons21`)#400; 
S_cons21=SUMSQ_cons21/(400-1); 
*PRINT , "The Variance-Covariance Matrix is " S_cons21; 
gdiag_cons21=diag(s_cons21);*diagnoal matrix with variance on the diagnoal; 
gg_cons21=sqrt(inv(gdiag_cons21));*Now 1/Sqrt(Var(X_i)) on the diagonal; 
corr21=gg_cons21*s_cons21*gg_cons21; 
*print "THE CORRELATION MATRIX IS" corr21; 
corr21_1_3=corr21[1,3]; 
corr21_2_3=corr21[2,3]; 
corr21_1_2=corr21[1,2]; 
corr21_1_4=corr21[1,4]; 
corr21_2_4=corr21[2,4]; 
corr21_3_4=corr21[3,4]; 
corr21_ave=(corr21_1_3+corr21_2_3+corr21_1_2+corr21_1_4+corr21_2_4+corr21_3_
4)/6; 
comp21_relia=4*corr21_ave/(1+3*corr21_ave); 
*print corr21_ave; 
print comp21_relia; 
 
/*Below is to calculate the variance of the composite score 1 in group 2*/ 
 XBAR_comp21 = X_comp21(|+,|)`/400; 
*PRINT, "XBAR_comp21 = " XBAR_comp21; 
SUMSQ_comp21=X_comp21`*X_comp21-(XBAR_comp21*XBAR_comp21`)#400; 
S_comp21=SUMSQ_comp21/(400-1); 
*PRINT , "The Variance-Covariance Matrix is " S_comp21; 
variance_comp21=s_comp21[1,1]; 
print variance_comp21; 
 
/*Below is to calculate the measurement error variance of composite 1 in group 2*/ 
error_comp21=variance_comp21*(1-comp21_relia); 
print, "error variance of component 1 is"  error_comp21; 
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/*--------------------Calcualte error variance of composite 2 in group 1------------------------
---*/ 
 
USE group1;   
READ all var {x2 x5 x8 x11} INTO X_cons12;  
read all var{c12} into X_comp12; /*cons means construct, comp means composite*/ 
* PRINT "The Data Matrix is" X_cons12; 
* print "the composite score matrix is" X_comp12; 
 
 /*Below is to calculate the reliability of the composite score 2*/ 
/*# of rows is 400, # of columns for the construct is 4, fo the composite is 2*/ 
 XBAR_cons12 = X_cons12(|+,|)`/400; 
*PRINT, "XBAR_cons12 = " XBAR_cons12; 
SUMSQ_cons12=X_cons12`*X_cons12-(XBAR_cons12*XBAR_cons12`)#400; 
S_cons12=SUMSQ_cons12/(400-1); 
*PRINT , "The Variance-Covariance Matrix is " S_cons12; 
gdiag_cons12=diag(s_cons12);*diagnoal matrix with variance on the diagnoal; 
gg_cons12=sqrt(inv(gdiag_cons12));*Now 1/Sqrt(Var(X_i)) on the diagonal; 
corr12=gg_cons12*s_cons12*gg_cons12; 
*print "THE CORRELATION MATRIX IS" corr12; 
corr12_1_3=corr12[1,3]; 
corr12_2_3=corr12[2,3]; 
corr12_1_2=corr12[1,2]; 
corr12_1_4=corr12[1,4]; 
corr12_2_4=corr12[2,4]; 
corr12_3_4=corr12[3,4]; 
corr12_ave=(corr12_1_3+corr12_2_3+corr12_1_2+corr12_1_4+corr12_2_4+corr12_3_
4)/6; 
comp12_relia=4*corr12_ave/(1+3*corr12_ave); 
*print corr12_ave; 
print comp12_relia; 
 
/*Below is to calculate the variance of the composite score*/ 
 XBAR_comp12 = X_comp12(|+,|)`/400; 
*PRINT, "XBAR_comp12 = " XBAR_comp12; 
SUMSQ_comp12=X_comp12`*X_comp12-(XBAR_comp12*XBAR_comp12`)#400; 
S_comp12=SUMSQ_comp12/(400-1); 
*PRINT , "The Variance-Covariance Matrix is " S_comp12; 
variance_comp12=s_comp12[1,1]; 
print variance_comp12; 
 
/*Below is to calculate the measurement error variance*/ 
error_comp12=variance_comp12*(1-comp12_relia); 
print, "error variance of component 2 is"  error_comp12; 
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/*-------------------------Calcualte error variance of composite 2 in group 2-------------------
---*/ 
 
USE group2;   
READ all var {x2 x5 x8 x11} INTO X_cons22;  
read all var{c22} into X_comp22; /*cons means construct, comp means composite*/ 
* PRINT "The Data Matrix is" X_cons22; 
* print "the composite score matrix is" X_comp22; 
 
 /*Below is to calculate the reliability of the composite score 2*/ 
/*# of rows is 400, # of columns for the construct is 4, fo the composite is 2*/ 
 XBAR_cons22 = X_cons22(|+,|)`/400; 
*PRINT, "XBAR_cons22 = " XBAR_cons22; 
SUMSQ_cons22=X_cons22`*X_cons22-(XBAR_cons22*XBAR_cons22`)#400; 
S_cons22=SUMSQ_cons22/(400-1); 
*PRINT , "The Variance-Covariance Matrix is " S_cons22; 
gdiag_cons22=diag(s_cons22);*diagnoal matrix with variance on the diagnoal; 
gg_cons22=sqrt(inv(gdiag_cons22));*Now 1/Sqrt(Var(X_i)) on the diagonal; 
corr22=gg_cons22*s_cons22*gg_cons22; 
*print "THE CORRELATION MATRIX IS" corr22; 
corr22_1_3=corr22[1,3]; 
corr22_2_3=corr22[2,3]; 
corr22_1_2=corr22[1,2]; 
corr22_1_4=corr22[1,4]; 
corr22_2_4=corr22[2,4]; 
corr22_3_4=corr22[3,4]; 
corr22_ave=(corr22_1_3+corr22_2_3+corr22_1_2+corr22_1_4+corr22_2_4+corr22_3_
4)/6; 
comp22_relia=4*corr22_ave/(1+3*corr22_ave); 
*print corr22_ave; 
print comp22_relia; 
 
/*Below is to calculate the variance of the composite score*/ 
 XBAR_comp22 = X_comp22(|+,|)`/400; 
*PRINT, "XBAR_comp22 = " XBAR_comp22; 
SUMSQ_comp22=X_comp22`*X_comp22-(XBAR_comp22*XBAR_comp22`)#400; 
S_comp22=SUMSQ_comp22/(400-1); 
*PRINT , "The Variance-Covariance Matrix is " S_comp22; 
variance_comp22=s_comp22[1,1]; 
print variance_comp22; 
 
/*Below is to calculate the measurement error variance*/ 
error_comp22=variance_comp22*(1-comp22_relia); 
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print, "error variance of component 2 is"  error_comp22; 
 
 
/*--------------------------Calcualte error variance of composite 3 in group 1------------------
---*/ 
USE group1;   
READ all var {x3 x6 x9 x12} INTO X_cons13;  
read all var{c13} into X_comp13; /*cons means construct, comp means composite*/ 
*PRINT "The Data Matrix is" X_cons13; 
*print "the composite score matrix is" X_comp13; 
 
 /*Below is to calculate the reliability of the composite score 3*/ 
/*# of rows is 400, # of columns for the construct is 4, for the composite is 3*/ 
 XBAR_cons13 = X_cons13(|+,|)`/400; 
*PRINT, "XBAR_cons13 = " XBAR_cons13; 
SUMSQ_cons13=X_cons13`*X_cons13-(XBAR_cons13*XBAR_cons13`)#400; 
S_cons13=SUMSQ_cons13/(400-1); 
*PRINT , "The Variance-Covariance Matrix is " S_cons13; 
gdiag_cons13=diag(s_cons13);*diagnoal matrix with variance on the diagnoal; 
gg_cons13=sqrt(inv(gdiag_cons13));*Now 1/Sqrt(Var(X_i)) on the diagonal; 
corr13=gg_cons13*s_cons13*gg_cons13; 
*print "THE CORRELATION MATRIX IS" corr13; 
corr13_1_3=corr13[1,3]; 
corr13_2_3=corr13[2,3]; 
corr13_1_2=corr13[1,2]; 
corr13_1_4=corr13[1,4]; 
corr13_2_4=corr13[2,4]; 
corr13_3_4=corr13[3,4]; 
corr13_ave=(corr13_1_3+corr13_2_3+corr13_1_2+corr13_1_4+corr13_2_4+corr13_3_
4)/6; 
comp13_relia=4*corr13_ave/(1+3*corr13_ave); 
*print corr13_ave; 
print comp13_relia; 
 
/*Below is to calculate the variance of the composite score*/ 
 XBAR_comp13 = X_comp13(|+,|)`/400; 
*PRINT, "XBAR_comp13 = " XBAR_comp13; 
SUMSQ_comp13=X_comp13`*X_comp13-(XBAR_comp13*XBAR_comp13`)#400; 
S_comp13=SUMSQ_comp13/(400-1); 
*PRINT , "The Variance-Covariance Matrix is " S_comp13; 
variance_comp13=s_comp13[1,1]; 
print variance_comp13; 
 
/*Below is to calculate the measurement error variance*/ 



121 
 

error_comp13=variance_comp13*(1-comp13_relia); 
print, "error variance of component 3 is"  error_comp13; 
 
/*--------------------Calcualte error variance of composite 3 in group 2------------------------
---*/ 
USE group2;   
READ all var {x3 x6 x9 x12} INTO X_cons23;  
read all var{c23} into X_comp23; /*cons means construct, comp means composite*/ 
*PRINT "The Data Matrix is" X_cons23; 
*print "the composite score matrix is" X_comp23; 
 
 /*Below is to calculate the reliability of the composite score 3*/ 
/*# of rows is 400, # of columns for the construct is 4, for the composite is 3*/ 
 XBAR_cons23 = X_cons23(|+,|)`/400; 
*PRINT, "XBAR_cons23 = " XBAR_cons23; 
SUMSQ_cons23=X_cons23`*X_cons23-(XBAR_cons23*XBAR_cons23`)#400; 
S_cons23=SUMSQ_cons23/(400-1); 
*PRINT , "The Variance-Covariance Matrix is " S_cons23; 
gdiag_cons23=diag(s_cons23);*diagnoal matrix with variance on the diagnoal; 
gg_cons23=sqrt(inv(gdiag_cons23));*Now 1/Sqrt(Var(X_i)) on the diagonal; 
corr23=gg_cons23*s_cons23*gg_cons23; 
*print "THE CORRELATION MATRIX IS" corr23; 
corr23_1_3=corr23[1,3]; 
corr23_2_3=corr23[2,3]; 
corr23_1_2=corr23[1,2]; 
corr23_1_4=corr23[1,4]; 
corr23_2_4=corr23[2,4]; 
corr23_3_4=corr23[3,4]; 
corr23_ave=(corr23_1_3+corr23_2_3+corr23_1_2+corr23_1_4+corr23_2_4+corr23_3_
4)/6; 
comp23_relia=4*corr23_ave/(1+3*corr23_ave); 
*print corr23_ave; 
print comp23_relia; 
 
/*Below is to calculate the variance of the composite score*/ 
 XBAR_comp23 = X_comp23(|+,|)`/400; 
*PRINT, "XBAR_comp23 = " XBAR_comp23; 
SUMSQ_comp23=X_comp23`*X_comp23-(XBAR_comp23*XBAR_comp23`)#400; 
S_comp23=SUMSQ_comp23/(400-1); 
*PRINT , "The Variance-Covariance Matrix is " S_comp23; 
variance_comp23=s_comp23[1,1]; 
print variance_comp23; 
 
/*Below is to calculate the measurement error variance*/ 
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error_comp23=variance_comp23*(1-comp23_relia); 
print, "error variance of component 3 is"  error_comp23; 
 
run; 
 
 
/*--------------------------GENERATE MPLUS SYNTAX FILES------------------------------
---*/ 
 
file "G:\DR addjustment\MCFA\S&m&n..inp"; 
put ("title: scenario ")@;put ("&m ")@;put ("sample ")@; put ("&n ")@;put ("MCFA 
model");put; 
put ("data: file=G:\DR\loading=.8\mean difference=.5\s")@; put("&m")@; 
put("\s")@;put("&m")@; put ("&n")@;put (".dat;"); put;  
put ("variable: ")@; put("names=x1-x3 ")@; put ("g;"); 
put ("usevariables=x1-x3;"); put; 
put ("grouping is g (1=g1 2=g2);");put; 
put ("analysis: type=mgroup meanstructure;"); put; 
put ("model:"); 
put ("f ")@; put ("by ")@; put("x2@1 x1 x3;"); put; 
put ("[f];"); put; 
put ("model g1:"); put; 
put ("f by x2@1 x1 x3;"); put; 
put ("x1@")@; put (error_comp11)@; put (";");put; 
put ("x2@")@; put (error_comp12)@; put (";");put; 
put ("x3@")@; put (error_comp13)@; put (";");put; 
put ("model g2:"); put; 
put ("f by x2@1 x1 x3;"); put; 
put ("x1@")@; put (error_comp21)@; put (";");put; 
put ("x2@")@; put (error_comp22)@; put (";");put; 
put ("x3@")@; put (error_comp23)@; put (";");put; 
 
 
closefile "G:\DR addjustment\MCFA\S&m&n..inp"; 
 
/*-----------------------------Call mplus to run the model------------------------------------------
--*/ 
 
X call "C:\Program Files\Mplus\mplus.exe" "G:\DR addjustment\MCFA\S&m&n..inp" 
"G:\DR addjustment\MCFA\S&m&n..out"; 
 
/*-------------------- STRIP p VALUES FROM MPLUS PRINTOUT ------------------------
--*/ 
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data one; 
infile "G:\DR addjustment\MCFA\S&m&n..out" truncover scanover flowover; 
input @'Means' var1 $ var2 - var4 p; 
keep p; 
scenario = &m; 
sample = &n; 
 
/* WRITE POWER VALUES TO A TEXT FILE */ 
file "G:\DR addjustment\MCFA\p-value.dat" mod; 
if p<999.000; 
put @1 (scenario) (5.0) @29 (sample) (5.0) @20 (p) (5.3); 
 
%end; 
%end; 
%mend; 
%mplus; 
 
run; 
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APPENDIX D 

SAS CODE FOR RUNNING MIMIC MODELS WITH DOMAIN REPRESENTATIVE 

PARCELS WITH ERROR ADJUSTMENT 

 

%macro mplus; 

X mkdir "G:\DR addjustment\mimic"; 
 
%do i= 1 %to 12; 
%do j = 1 %to 500; 
%let m=&i; 
%let n =&j; 
%let file1=G:\second_order_factor\monte carlo\unparceled\loading=.8\mean 
difference=.5\s; 
%let file2 = \s; 
%let file3 = .dat; 
 
/*Import unparceled data*/ 
data temp; 
infile "&file1&m&file2&m&n&file3"; 
input x1  1-12 x2 13-25 x3 26-38 x4 39-51 x5 52-64 x6 65-77 x7 78-90 x8 91-103 x9 
104-116 x10 117-129 x11 130-142 x12 143-155 group $ 158; 
c1=(x1+x4+x7+x10)/4; 
c2=(x2+x5+x8+x11)/4; 
c3=(x3+x6+x9+x12)/4; 
run; 
 
proc iml; 
RESET NOLOG; 
/*-------------------------------Calcualte error variance of composite 1--------------------------
---*/ 
USE temp;   
READ all var {x1 x4 x7 x10} INTO X_cons1;  
read all var{c1} into X_comp1; /*cons means construct, comp means composite*/ 
*PRINT "The Data Matrix is" X_cons1; 
*print "the composite score matrix is" X_comp1; 
 
 /*Below is to calculate the reliability of the composite score 1*/ 
/*# of rows is 800, # of columns for the construct is 4, fo the composite is 1*/ 
 XBAR_cons1 = X_cons1(|+,|)`/800; 
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*PRINT, "XBAR_cons1 = " XBAR_cons1; 
SUMSQ_cons1=X_cons1`*X_cons1-(XBAR_cons1*XBAR_cons1`)#800; 
S_cons1=SUMSQ_cons1/(800-1); 
*PRINT , "The Variance-Covariance Matrix is " S_cons1; 
gdiag_cons1=diag(s_cons1);*diagnoal matrix with variance on the diagnoal; 
gg_cons1=sqrt(inv(gdiag_cons1));*Now 1/Sqrt(Var(X_i)) on the diagonal; 
corr1=gg_cons1*s_cons1*gg_cons1; 
*print "THE CORRELATION MATRIX IS" corr1; 
corr1_1_3=corr1[1,3]; 
corr1_2_3=corr1[2,3]; 
corr1_1_2=corr1[1,2]; 
corr1_1_4=corr1[1,4]; 
corr1_2_4=corr1[2,4]; 
corr1_3_4=corr1[3,4]; 
corr1_ave=(corr1_1_3+corr1_2_3+corr1_1_2+corr1_1_4+corr1_2_4+corr1_3_4)/6; 
comp1_relia=4*corr1_ave/(1+3*corr1_ave); 
if comp1_relia < 0 then comp1_relia = 0; 
*print corr1_ave; 
print, "the reliability of composite 1 for scenario &m and sample &n is" comp1_relia; 
 
/*Below is to calculate the variance of the composite score*/ 
 XBAR_comp1 = X_comp1(|+,|)`/800; 
*PRINT, "XBAR_comp1 = " XBAR_comp1; 
SUMSQ_comp1=X_comp1`*X_comp1-(XBAR_comp1*XBAR_comp1`)#800; 
S_comp1=SUMSQ_comp1/(800-1); 
*PRINT , "The Variance-Covariance Matrix is " S_comp1; 
variance_comp1=s_comp1[1,1]; 
print variance_comp1; 
 
/*Below is to calculate the measurement error variance*/ 
error_comp1=variance_comp1*(1-comp1_relia); 
print, "error variance of component 1 is"  error_comp1; 
 
/*-------------------------------Calcualte error variance of composite 2--------------------------
---*/ 
 
USE temp;   
READ all var {x2 x5 x8 x11} INTO X_cons2;  
read all var{c2} into X_comp2; /*cons means construct, comp means composite*/ 
* PRINT "The Data Matrix is" X_cons2; 
* print "the composite score matrix is" X_comp2; 
 
 /*Below is to calculate the reliability of the composite score 2*/ 
/*# of rows is 800, # of columns for the construct is 4, fo the composite is 2*/ 
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 XBAR_cons2 = X_cons2(|+,|)`/800; 
*PRINT, "XBAR_cons2 = " XBAR_cons2; 
SUMSQ_cons2=X_cons2`*X_cons2-(XBAR_cons2*XBAR_cons2`)#800; 
S_cons2=SUMSQ_cons2/(800-1); 
*PRINT , "The Variance-Covariance Matrix is " S_cons2; 
gdiag_cons2=diag(s_cons2);*diagnoal matrix with variance on the diagnoal; 
gg_cons2=sqrt(inv(gdiag_cons2));*Now 1/Sqrt(Var(X_i)) on the diagonal; 
corr2=gg_cons2*s_cons2*gg_cons2; 
*print "THE CORRELATION MATRIX IS" corr2; 
corr2_1_3=corr2[1,3]; 
corr2_2_3=corr2[2,3]; 
corr2_1_2=corr2[1,2]; 
corr2_1_4=corr2[1,4]; 
corr2_2_4=corr2[2,4]; 
corr2_3_4=corr2[3,4]; 
corr2_ave=(corr2_1_3+corr2_2_3+corr2_1_2+corr2_1_4+corr2_2_4+corr2_3_4)/6; 
comp2_relia=4*corr2_ave/(1+3*corr2_ave); 
if comp2_relia < 0 then comp2_relia = 0; 
*print corr2_ave; 
print, "the reliability of composite 2 for scenario &m and sample &n is" comp2_relia; 
 
/*Below is to calculate the variance of the composite score*/ 
 XBAR_comp2 = X_comp2(|+,|)`/800; 
*PRINT, "XBAR_comp2 = " XBAR_comp2; 
SUMSQ_comp2=X_comp2`*X_comp2-(XBAR_comp2*XBAR_comp2`)#800; 
S_comp2=SUMSQ_comp2/(800-1); 
*PRINT , "The Variance-Covariance Matrix is " S_comp2; 
variance_comp2=s_comp2[1,1]; 
print variance_comp2; 
 
/*Below is to calculate the measurement error variance*/ 
error_comp2=variance_comp2*(1-comp2_relia); 
print, "error variance of component 2 is"  error_comp2; 
 
/*-------------------------------Calcualte error variance of composite 3--------------------------
---*/ 
USE temp;   
READ all var {x3 x6 x9 x12} INTO X_cons3;  
read all var{c3} into X_comp3; /*cons means construct, comp means composite*/ 
*PRINT "The Data Matrix is" X_cons3; 
*print "the composite score matrix is" X_comp3; 
 
 /*Below is to calculate the reliability of the composite score 3*/ 
/*# of rows is 800, # of columns for the construct is 4, for the composite is 3*/ 
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 XBAR_cons3 = X_cons3(|+,|)`/800; 
*PRINT, "XBAR_cons3 = " XBAR_cons3; 
SUMSQ_cons3=X_cons3`*X_cons3-(XBAR_cons3*XBAR_cons3`)#800; 
S_cons3=SUMSQ_cons3/(800-1); 
*PRINT , "The Variance-Covariance Matrix is " S_cons3; 
gdiag_cons3=diag(s_cons3);*diagnoal matrix with variance on the diagnoal; 
gg_cons3=sqrt(inv(gdiag_cons3));*Now 1/Sqrt(Var(X_i)) on the diagonal; 
corr3=gg_cons3*s_cons3*gg_cons3; 
*print "THE CORRELATION MATRIX IS" corr3; 
corr3_1_3=corr3[1,3]; 
corr3_2_3=corr3[2,3]; 
corr3_1_2=corr3[1,2]; 
corr3_1_4=corr3[1,4]; 
corr3_2_4=corr3[2,4]; 
corr3_3_4=corr3[3,4]; 
corr3_ave=(corr3_1_3+corr3_2_3+corr3_1_2+corr3_1_4+corr3_2_4+corr3_3_4)/6; 
comp3_relia=4*corr3_ave/(1+3*corr3_ave); 
if comp3_relia < 0 then comp3_relia = 0; 
*print corr3_ave; 
print, "the reliability of composite 3 for scenario &m and sample &n is" comp3_relia; 
 
/*Below is to calculate the variance of the composite score*/ 
 XBAR_comp3 = X_comp3(|+,|)`/800; 
*PRINT, "XBAR_comp3 = " XBAR_comp3; 
SUMSQ_comp3=X_comp3`*X_comp3-(XBAR_comp3*XBAR_comp3`)#800; 
S_comp3=SUMSQ_comp3/(800-1); 
*PRINT , "The Variance-Covariance Matrix is " S_comp3; 
variance_comp3=s_comp3[1,1]; 
print variance_comp3; 
 
/*Below is to calculate the measurement error variance*/ 
error_comp3=variance_comp3*(1-comp3_relia); 
print, "error variance of component 3 is"  error_comp3; 
run; 
 
/*-------------------------------GENERATE MPLUS SYNTAX FILES-------------------------
---*/ 
 
file "G:\DR addjustment\mimic\S&m&n..inp"; 
put ("title: scenario ")@;put ("&m ")@;put ("sample ")@; put ("&n ")@;put ("mimic 
model");put; 
put ("data: file=G:\DR\loading=.8\mean difference=.5\s")@; put("&m")@; 
put("\s")@;put("&m")@; put ("&n")@;put (".dat;"); put;  
put ("variable:")@; put("names=x1-x3 ")@; put ("g;"); 
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put ("usevariables=x1-x3 ")@; put ("g;");put; 
put ("model:"); 
put ("f ")@; put ("by ")@; put("x1-x3;"); 
put ("x1@")@; put (error_comp1)@; put (";");put; 
put ("x2@")@; put (error_comp2)@; put (";");put; 
put ("x3@")@; put (error_comp3)@;put (";");put; 
put ("f ")@; put ("on ")@; put("g;"); 
closefile "G:\DR addjustment\mimic\S&m&n..inp"; 
 
/*-------------------------------------Call mplus to run the model----------------------------------
---*/ 
 
X call "C:\Program Files\Mplus\mplus.exe" "G:\DR addjustment\mimic\S&m&n..inp" 
"G:\DR addjustment\mimic\S&m&n..out"; 
 
/*----------------------- STRIP p VALUES FROM MPLUS PRINTOUT ---------------------
----*/ 
data one; 
infile "G:\DR addjustment\mimic\S&m&n..out" truncover scanover flowover; 
input @'F        ON' var1 $ var2 - var4 p;      
keep p; 
scenario = &m; 
sample = &n; 
 
/* WRITE POWER VALUES TO A TEXT FILE */ 
file "G:\DR addjustment\mimic\p-value.dat" mod; 
put @1 (scenario) (5.0) @9 (sample) (5.0) @20 (p) (5.3); 
 
%end; 
%end; 
 
%mend; 
%mplus; 
run; 
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	In this chapter, the theoretical framework and previous research on second-order factor models, the two model comparison approaches (i.e., Multi-group CFA and MIMIC), and parceling strategies were reviewed separately. 
	SECOND-ORDER CFA MODEL
	MULTI-GROUP CFA
	First-order CFA Models
	 Widaman and Reise (1997) provided a theoretical framework for applying MCFA to test MI in first-order factor models. This theoretical framework, however, is still applicable in the second-order factor model context. They distinguished four types of different MIs with  increasingly strict constraints imposed: 1) configural invariance, (i.e., identical patterns of fixed and free factor loadings across groups), 2) weak invariance (i.e., configural invariance plus the equality of  factor loadings across groups), 3) strong invariance (i.e., weak invariance plus the  equality of intercepts across groups), and 4) strict invariance (strong invariance plus equality of residual variances across groups). 
	Widaman and Reise (1997), as well as Mererdith (1993), argued that the covariance model in Equations 3 and 4 was only applicable when testing weak invariance. If a higher-order level of MI needs to be tested, the model for a first-order CFA model should be modified as (Widaman & Reise, 1997, p. 288, Equation 8):
	smaller sample size (compared with the MCFA approach) is required for the purpose of estimability and convergence. 
	PARCELING
	Residual Adjustment for Parcels
	The parcels that collapse the first-order factors (e.g., partial aggregation and total aggregation as defined above) are no longer error-free indicators of the second-order factor. They potentially consist of random error variance besides common variance. In addition, the parcels created by using unidimensional parceling strategy might also contain specific variance, which is originally reflected as the residual variance of the first-order factor. Therefore, the solution of the CFA model based on the parceled data, which is not error-free, might be contaminated. One way to accommodate the random error in this condition is to adjust the variance of the random error as (Sass & Smith, 2006, p. 575, Equation 2):
	in which represents the total variance of the parcel and ( represents the Cronbach’s ( (Cronbach, 1951) calculated from the items that are parceled (for more details about measure error adjustment see Bedeian, Day, & Kelloway, 1997). However, it is impossible to identify the specific variance that is represented as the part of the residual variance in a multidimensional parcel (e.g., parcels created by using unidimensional strategy in a second-order CFA model) with the current techniques.  
	 As presented before, the goal of Study 1 was to examine the difference of Type I error rates as well as power produced by MCFA and MIMIC in a second-order CFA model. Unparceled data were used in this study. The methods that were used in Study 1 were introduced first, followed by the results and discussion. 
	METHODS
	Model design and data simulation were introduced in the methods section. Methods section also included the calculation of Type I error rate and power, and how convergence problem was dealt with, which were also applicable for Study 2.
	Design of Monte Carlo Simulation
	In Study 1 a model with single second-order factor, four first-order factors, and three observed variables for each first-order factor was created for each of the two groups (Figure 2.1). Mplus 5.1 (Muthen & Muthen, 2007) was used to conduct the Monte Carlo study. The mean of the second-order factor in the first group (Group A) was set as 0 whereas the mean value in Group B was set as 0, .2, .3, .4, and .5 to represent the increasing discrepancy of the factor means between the two groups (i.e., Δκ). Also, .2 and .5 represent small and medium effect size respectively (Cohen, 1988). Indeed, the magnitude of effect size in social sciences generally falls between .20 (small) and .50 (medium). For simplicity, the following steps were performed: The latent intercepts for all observed variables and the first-order factors were set to be 0 in both groups. All the factor loadings including those of the second-order factor and the first-order factors were set to be either .40 (low) or .80 (high) over all conditions, which were as same as the lowest and highest loading respectively in Hancock et al.’s (2000) study. Finally the variance of the second-order factor was set to be 1.0 in both groups. Thus, the equation for the variance of the observed variables:
	Empirical Type I Error and Empirical Power
	As stated previously, theoretically, the meaningful comparison of the means of the second-order factors can only be made when the two models have configural invariance, identical loadings of all the first- and second-order factors, and identical latent intercepts of the observed variables and the first-order factors (i.e., strong MI). Given the truth that only the residual variances were varied systematically with sample sizes across the 12 scenarios, these assumptions were completely fulfilled in the study. The empirical Type I error rate was calculated under the condition that the mean values of the second-order factors were identical between the groups. When conducting MCFA, the mean of the second-order factor in Group A was set as 0, whereas the mean in Group B was freely estimated. Within each scenario the number of the times in which the freely estimated factor mean was statistically significant (p < .05) was tallied. When conducting MIMIC analysis, firstly the data for the two groups were concatenated to form a single data file. Secondly, a dummy coded grouping variable representing the group membership (i.e., A and B) was added in the data file. The number of times when the path coefficient from the grouping variable to the second-order latent factor was statistically significant (p < .05) was counted.  The percentage of significant findings was the empirical Type I error rate given that the mean values of the second-order factors were identical between the two groups.

	Note: A equal (=) sign indicates a balanced condition in which two groups have identical sample sizes; a plus (+) sign indicates a positive pairing of sample with with generalized variance; a negative (-) sign indicates a negative pairing. Diff. = difference of MIMIC from MCFA. Any error rate falling beyound Bradley’s (1978) liberal criterion of [.5α, 1.5 α] (i.e., [.025, .075]) is underlined.
	Empirical Power with the High Factor Loadings
	The empirical power in the 12 scenarios for the high factor loadings were presented in the upper part of Table 4.6 and were also plotted as shown in Figure 4.2. In this figure, the power of the two approaches at different values of Δκ was plotted together (left) and separately (right). As expected, the statistical power increased as Δκ increased from small to median effect size. The results of the general linear model for power presented in Table 4.7 also showed that Δκ was a significant factor for power (p < .001) even with the small sample size (i.e., 2 approaches × 12 scenarios (including 3 conditions) × 2 factor loadings × 4 values of Δκ = 192). Meanwhile the discrepancy between MCFA and MIMIC decreased as Δκ increased. The power of both MCFA and MIMIC reached maximum 1.000 when Δκ was .5 (i.e., median effect size). When Δκ was less than median effect size, the two approaches displayed different patterns across the 12 scenarios. Firstly, in the balanced condition (i.e., Scenario 1, 4, 7, and 10), the power of MCFA was always larger than that of MIMIC regardless of the magnitude of the residual variance in each level. This advantage of MCFA disappeared when Δκ increased to .4. In this situation, the power of both of the two methods reached 1.000. Secondly, in the positive condition, MCFA showed higher power than MIMIC except in Scenario 11, in which MIMIC showed higher power with superiority of .002 at Δκ = .4 to .032 at Δκ = .2. The two methods exchanged their superiority in terms of power (i.e., MIMIC displayed higher power than MCFA) when it came to the negative condition except the one in Scenario 12. In Scenario 12, MCFA was superior to MIMIC by .006 at Δκ = .4 to .312 at Δκ = .2. Note 
	Note: †MIMIC is the reference of the two approaches. ††Balanced condition is the reference of the three conditions. †††All the p-values are two-tailed.
	that the superiority of the two approaches in the specific scenarios decreased when Δκ increased and completely vanished when the mean difference was .5. Thirdly, MIMIC was more powerful in the balanced condition than in the other conditions. Power decreased moving from the balanced condition to the positive condition and then increased slightly moving from the positive condition to the negative condition except from Scenario 11 to 12. In fact MIMIC’s power in the positive condition and negative was very close. On the other hand, MCFA displayed higher power in the positive condition than in the others except in Scenario 11, and then experienced a dramatic drop moving from the positive condition to the negative condition except in Scenario 11 and 12. In fact, the patterns of power for both of the two approaches in the positive condition in Scenario 11 and the negative condition in Scenario 12 would be consistent with those displayed in the other positive and negative conditions if Scenario 11 and 12 were switched.  
	Note: A equal (=) sign indicates a balanced condition in which two groups have identical sample sizes; a plus (+) sign indicates a positive pairing of sample with with generalized variance; a negative (-) sign indicates a negative pairing. Diff. = difference of MIMIC from MCFA. Any error rate falling beyound Bradley’s (1978) liberal criterion of [.5α, 1.5 α] (i.e., [.025, .075]) is underlined.

