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ABSTRACT

On Orbits of Operators on Hilbert Space. (August 2009)

Lidia Smith, B.S.; B.A., Al. I. Cuza University, Iasi, Romania;

M.S.; M.C.S., Texas A&M University

Chair of Advisory Committee: Dr. Carl M. Pearcy

In this dissertation we treat some problems about possible density of orbits for

non-hypercyclic operators and we enlarge the class of known non-orbit-transitive op-

erators. One of the questions related to hypercyclic operators that we answer is

whether the density (in the set of positive real numbers) of the norms of the elements

in the orbit for each nonzero vector in the Hilbert space is su�cient to imply that

at least one vector has orbit dense in the Hilbert space. We show that the density

of the norms is not a su�cient condition to imply hypercyclicity by constructing a

weighted bilateral shift that, on one hand, satis�es the orbit-density property (in the

sense de�ned above), but, on the other hand, fails to be hypercyclic. The second

major topic that we study refers to classes of operators that are not hypertransitive

(or orbit-transitive) and is related to the invariant subspace problem on Hilbert space.

It was shown by Jung, Ko and Pearcy in 2005 that every compact perturbation of

a normal operator is not hypertransitive. We extend this result, after introducing

the related notion of weak hypertransitivity, by giving a su�cient condition for an

operator to belong to the class of non-weakly-hypertransitive operators. Next, we

study certain 2-normal operators and their compact perturbations. In particular, we

consider operators with a slow growth rate for the essential norms of their powers.

Using a new idea, of accumulation of growth for each given power on a set of di�erent

orthonormal vectors, we establish that the studied operators are not hypertransitive.
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CHAPTER I

INTRODUCTION

1.1. Terminology and notation

In what follows, N denotes, as usual, the set of positive integers, N0 := N∪{0}, and D

is the open unit disc in C. LetH be a separable, in�nite dimensional, complex Hilbert

space, and write L(H) for the algebra of all bounded linear operators T : H → H.

For a sequence {Tn} ⊂ L(H) converging in the strong operator topology to some

T0 ∈ L(H) we shall write Tn
SOT→ T0, and similarly for the weak operator topology.

Moreover, we will use the slightly unusual (but useful) notation Tn
SOT→ +∞ to mean

|| Tnx|| → +∞ for all nonzero x in H, and we write, as is customary, σ(T ), σp(T )

and σe(T ) for the spectrum, point spectrum, and essential (Calkin) spectrum of an

operator T .

For any operator T in L(H) and any (nonzero) x in H, we denote by O(x, T )

the orbit of x under T , i.e., O(x, T ) is the set of vectors {T nx : n ∈ N0} in H.

An operator T in L(H) for which there exists a vector x with the property that the

orbit O(x, T ) is (norm) dense in H is called a hypercyclic operator, and such a vector

x is called hypercyclic for T . If the same property holds when the norm topology

is replaced by the weak topology T is called a weakly hypercyclic operator and the

vector x is called weakly hypercyclic for T . One of the interesting open questions

about operators in L(H) is the following orbit-transitive operator problem:

Does there exist an operator T in L(H) such that for every (nonzero)

x in H, the orbit O(x, T ) is norm (or weakly) dense in H ?

This dissertation follows the style of Proceedings of the American Mathematical
Society.
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When the norm topology is used we call such an operator T orbit-transitive (or

hypertransitive) and in the case of the weak topology we call T weakly hypertransitive.

A positive answer to the above question would solve the invariant subspace problem

for Hilbert space in the negative.

1.2. History of the problem

The topics of hypercyclic vectors and operators have received much attention in the

last twenty years. Rolewitz gave in 1969 the �rst example of an operator T in L(H)

for which there do exist vectors x with the property that the orbit O(x, T ) is dense

in H [25]. Important early work on hypercyclic vectors and operators was done by

Bernard Beauzamy , and much of his work is exposed in his book [4]. For instance,

Beauzamy showed in [3] that there are operators T in L(H) for which there is a dense

linear manifold MT in H with the property that every nonzero x ∈MT is hypercyclic

for T .

Beginning in the 1990's the theory of hypercyclic operators (on Hilbert space)

and the structure of the set of all hypercyclic vectors for a given operator T in L(H)

were studied extensively. See, for example, the excellent survey article [13] by Grosse-

Erdmann. To mention but a few of the most striking of these �new� theorems, we note

that S. Ansari showed in [1] that, for every T∈ L(H), each of the operators in the

set {T n, n ∈ N} has exactly the same set of hypercyclic vectors. Also, Leon-Saavera

and Muller proved in [17] that if T∈ L(H) and θ ∈ R then T and eiθT have exactly

the same set of hypercyclic vectors. Moreover, Bourdon [5] showed that if T is any

hypercyclic operator in L(H), then there is a dense linear manifold DT ⊂ H such

that every vector in DT\(0) is hypercyclic for T (thus generalizing the example of

Beauzamy mentioned above). Finally (to conclude this brief survey), Bourdon and
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Feldman established in [6] that that if T∈ L(H) and x ∈ H have the property that

{T nx}− contains some (nonempty) open ball, then x is hypercyclic for T, and deduced

as a corollary that if T∈ L(H) has the property that there is a �nite set of vectors

{x1,, . . . , xk} in H such that
k⋃
j=1

{T nxj : n ∈ N0} is dense in H (such a T is called

multi-hypercyclic), then T is a hypercyclic operator.

But, despite the existence of this mountain of work on hypercyclic vectors and

operators, it is fair to say that results showing that there are no orbit-transitive

operators in certain subclasses of L(H) have been scarce. (Of course, every new

(or old) invariant subspace theorem for a class of operators in L(H) immediately

gives a class of non-orbit-transitive operators, since obviously an operator T having

a nontrivial invariant subspace cannot be orbit-transitive. However, this doesn't help

much, since new invariant subspace theorems are themselves somewhat rare.)

In fact, one might say that the recent article [15], by Jung, Ko, and Pearcy,

initiated the theory of non-orbit-transitive operators. In [15], for example, it was

shown that if T ∈ L(H) and some T n is essentially hyponormal, then no operator

of the form STS−1 + K, where S is invertible and K is compact, is orbit-transitive.

As an immediate corollary one gets that no operator of the form SNS−1 +K, where

N is normal, is orbit-transitive. (Note that the invariant subspace problem for such

operators T is still open.)

Some other known results that are pertinent to our problem are the following.

Beauzamy [4, page 66] has shown that there exists a operator T on Hilbert space

such that ||T n|| is asymptotic to
√

log n but there exists no vector x in H for which

||T nx|| tends to in�nity. This was recently improved in [19] as follows. There exists

an operator T in L(H) such that ||T n|| is asymptotic to n1/2 but there exists no vector

x whose orbit tends to +∞. It is also shown in [19] that this is best possible (for

the class L(H)) by proving that every operator T in L(H) with growth rate of ‖T n‖
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asymptotic to n1/2+ε (for some ε positive) has a vector x whose orbit does tend to

+∞. Chan and Sanders [9] recently exhibited a sequence of vectors {xn} in H, with

strictly increasing norms, that is weakly dense in H.

1.3. N -normal operators

Recall that for any n ∈ N, an operator T ∈ L(H) is called an n-normal operator

if T is unitarily equivalent to an n × n operator matrix (Nij) acting on H(n) in the

usual fashion, where the set {Nij} consists of mutually commuting normal operators

in L(H). The theory of n-normal operators is quite well developed. In [14] it was

proved that every n-normal operator has a nontrivial hyperinvariant subspace (n.h.s.).

A �rst step in the direction of showing that if T ∈ L(H) is n-normal and K ∈

K(H), then T +K ∈(NHT) is the following, which depends on a (deep) result from [7]

as well as the upper triangular form theorem for n-normal operators from [20]. We call

a (commutative) collection {Nα}α∈A ⊂ L(H) of normal operators a simultaneously

diagonalizable family if there exists an orthonormal basis E forH such that the matrix

for each Nα, α ∈ A with respect to E is diagonal.

Theorem 1.3.1. For every n-normal operator T ∈ L(H) and compact operator K,

there exist an n-normal operator T̃ = ⊕k∈NTk, where each Tk is an n × n complex

matrix (regarded as an operator on C(n)) in upper triangular form and a compact

operator K̃ such that T +K is unitarily equivalent to T̃ + K̃. Consequently, to show

that T +K belongs to (NHT) it su�ces to show that T̃ + K̃ does.

Proof. One can write T = (Nij) ∈ L(H(n)), where the Nij are mutually commuting

normal operators and the matrix (Nij) is in upper triangular form (cf. [10, Theorem

2]). Moreover via a deep result from [7] one knows that for 1 ≤ i, j ≤ n, Nij = Dij +

Kij, where the Dij are (mutually commuting) simultaneously diagonalizable normal
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operators in L(H) and theKij are all compact. Thus the n×nmatrix (Kij) ∈ L(H(n))

is a compact operator and the n×nmatrix (Dij) is unitarily equivalent to a direct sum⊕
j∈N T̃j, where each T̃j (in L(C(n))) is an n× n complex matrix in upper triangular

form.

1.4. The �rst example of a hypercyclic operator

We present here Rolewitz's example of a hypercyclic operator on l2 in the slightly

modi�ed version of Beauzamy. The basic idea from this proof is used in the example

of a weakly hypercyclic vector constructed in [9] .

Example 1.4.1. Let T be a backward weighted shift on l2(Z), de�ned by

Tek = wkek−1, k ∈ Z.

If the weights wk satisfy

lim
n→∞

n∏
0

wk = +∞, and wk ≥ 1 for k > 0,

lim
n→∞

−n∏
0

wk = 0, and 0 < wk < 1 for k < 0,

then the operator T has a hypercyclic point.

Proof. Note that the inverse S of T is given by

Sek =
1

wk+1

ek+1.

It follows from the de�nition of the weights that

lim
n→∞

T nek = 0, for all k ∈ Z,
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lim
n→∞

Snek = 0, for all k ∈ Z.

Let {hn} be a dense sequence in l2(Z), each hn having �nite support. For n ≥ 0 let

kn be an integer such that, if k > kn we have for i = 1, . . . , n− 1,

||T knhi|| < 1/2n,

||Sknhi|| < 1/2n.

Let pn =
∑n

i=1 ki and z =
∑∞

k=1 S
pkhk. Then

T pnz = T pn−p1h1 + · · ·+ T pn−pihi + · · ·+ T pn−pn−1hn−1 + hn +
∞∑

m=n+1

Spm−pnhm.

But, for i = 1, . . . , n− 1:

||T pn−pihk|| = ||T kn+···+ki+1hi|| < 1/2n,

and

||
∞∑

m=n+1

Spm−pnhm|| ≤ ||
∞∑

m=n+1

Skm+···+kn+1hm|| < 1/2n.

Finally :

||T pnz − hn|| < n/2n,

and since the sequence {hn}n≥1 is norm-dense, so is {T pnz}n≥1.

1.5. Facts on weak topology

Lemma 1.5.1. Let {en}n∈N be an orthonormal basis forH. Consider the set {
√
nen}n∈N.

Then 0 ∈ {
√
nen}wn∈N.

Proof. Let {y1, . . . yk} be an arbitrary �nite set in H and let ε > 0. It su�ces to show
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that there exists n ∈ N such that
√
nen ∈ {x ∈ H : |〈x−0, yj〉| < ε, j = 1, 2, . . . , k}.

Suppose this is false. Then there exist ε > 0 and y1, . . . , yk such that for all

n ∈ N,
√
nen /∈ {x ∈ H : |〈x, yj〉| < ε, j = 1, 2, . . . , k}. That is, for each n, there

exists yjn , 1 ≤ jn ≤ k such that |〈
√
nen, yjn〉| ≥ ε. So |〈en, yjn〉| ≥

ε√
n
.

Thus ∑
n∈N

|〈en, yjn〉|2 ≥
∑
n∈N

ε2

n
= +∞.

But for all 1 ≤ j ≤ k, ||yj||2 =
∑

m∈N |〈em, yj〉|2 and thus

∑
1≤j≤k

∑
m∈N

|〈em, yj〉|2 < +∞.

This gives a contradiction.

Lemma 1.5.2. If {xn} ⊂ H has disjoint support, i.e., 〈xn, xm〉 = 0 when m 6= n,

and
∑ 1

||xn||2
=∞, then 0 ∈ {xn}wn∈N .

Proof. Let xn = ||xn||un for every n, where un is a unitary vector. Then the set {un}

is orthonormal and can be completed to a basis for H. The rest of the proof follows

as in the lemma above with un replacing en and ||xn|| replacing
√
n.

Lemma 1.5.3. Given S ⊂ H, if
∨
S 6= H, then S is not weakly dense.

Proof. We have

Swk ⊂
(∨
S
)wk

=
∨
S.

Lemma 1.5.4. Given {xn} ⊂ H, we have

{xn}wk = H ⇐⇒ ∀{θn}, {eiθnxn}wk = H.
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Proof. Assume {xn}wk = H. Let {y1, . . . , yk} be an arbitrary set in H. Let ε > 0,

and let x0 be an arbitrary element of H. A basic weak neighborhood of x0 is of the

form

Ux0 = {x ∈ H : |x− x0| < ε, j = 1, . . . , k}.

It is enough to show that there exists an element of {eiθnxn} contained in this neigh-

borhood.

For an arbitrary θ, there exists x′ ∈ {xn}, say x′ = xm, such that

|x′ − e−iθx0| < ε, j = 1, . . . , k,

so

|x′eiθ − x0| < ε, j = 1, . . . , k.

If we let θ = θm we have eiθmxm ∈ Ux0 .

Lemma 1.5.5. Let {ei}i∈Z be the standard orthonormal basis for l2(Z). There exists

a norm dense set {hn : n ≥ 1} in l2(Z) such that for each n ≥ 1

||hn||2 ≤ n, and 〈hn, ei〉 = 0 for |i| > n.

Proof. We start by constructing a norm-dense sequence of vectors for each �nite di-

mensional space Fn =
∨
{e−n, . . . , e−1, e0, . . . en}, n ∈ N and denote it by {rn+j,n}j∈N.

Arrange these in a lower triangular matrix such that each column k contains the
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elements of the sequence rk , with the �rst element on the row k, as follows

r1,0

r2,0 r2,1

r3,0 r3,1 r3,2

r4,0 r4,1 r4,2 r4,3
...

...
...

...
...

.

Thus, for j ∈ N, the elements of the jth column of this matrix form a dense

set in Fj. By writing the elements of this matrix in a single sequence {h′n} :

r3,0r1,0, r2,0, r2,1, r3,0, r3,1r3,2, . . . (i.e., row by row) we obtain that {h′n : n ≥ 1} is

dense in l2(Z) and 〈h′n, ei〉 = 0 for |i| > n.

Finally, de�ne

hn =


h′n if ||h′n|| ≤

√
n

e1 if ||h′n|| >
√
n

.

Then ||hn|| ≤
√
n and 〈hn, ei〉 = 0 for |i| > n. To show that {hn} is norm-dense in

l2(Z), notice that since {h′n : n ≥ 1} is dense in l2(Z), for z ∈ H and ε > 0 there

exists a subsequence {h′nj} converging to z and thus there exists N0 ∈ N such that

||h′nj − z|| < ε for all nj ≥ N0. Assume N0 is large enough such that ||z||+ ε ≤
√
N0,

then for nj ≥ N0 we have hnj = h′nj and thus ||hnj − z|| < ε for all nj ≥ N0. This

shows that {hnj} converges to z. Thus {hn} is norm-dense in l2(Z).

An alternate way to build {hn} is the following : inductively choose hk to be the

earliest h′n such that

h′n ∈
∨
{e−k, . . . , ek} and ||h′n|| ≤ k.

Then {hn} goes over all elements in {h′n} and has the desired properties.
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1.6. A weakly hypercyclic operator that is not norm hypercyclic

We include here the example of [9] together a proof that the operator given is weakly

hypercyclic without being norm hypercyclic. We follow the proof given in [9] with

the simpli�cations implied by considering the particular operator in the settings of

Hilbert space.

The following lemma is one of the ingredients used in proving the existence of a

weakly hypercyclic vector. The lemma is included here together with its proof as it

appears in [9].

Lemma 1.6.1. For every given real number λ > 1 there exists a bijective map ν :

N× N→ N such that

(i) for each r ≥ 1, the sequence {ν(r, s)}∞s=1 is strictly increasing

(ii) for each r ≥ 1, we have r ≤ ν(r, 1);

(iii) there exists a sequence {ar}∞r=1 of positive integers such that if {cr}∞r=1 is a

sequence of nonnegative real numbers such that c2r ≤ rλ2r for each r ≥ 1, then the

new sequence {dn}∞n=1 given by dn = dν(i,j) = ci satis�es the inequality

ν(r,s)∑
n=1

d2
n ≤ (ar + s) log(ar + s), for each r, s ≥ 1.

Proof. Let {mi}∞i=1 be a strictly increasing sequence of integers that satis�es

(1 + 2 + · · ·+ i)λ2i ≤ logmi. (1.1)

Let {αj}∞j=1 be the sequence of integers given by

(α1, α2 . . . ) = (G1, . . . , G1︸ ︷︷ ︸
m2 copies

, G2, . . . , G2︸ ︷︷ ︸
m3 copies

, G3, . . . , G3︸ ︷︷ ︸
m4 copies

, . . . ),

where Gi = (1, 2, . . . , i).
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Let ν : N× N → N be de�ned by ν(r, s) = n if αn = r and αj = r for exactly s

positive integers j ≤ n. Thus, ν(r, s) gives the position of the s-th appearance of r

in the above sequence.

It follows immediately that ν is a bijective map and for each r ≥ 1, the sequence

{ν(r, s)}∞s=1 is increasing in s. Also note that ν(1, 1) = 1 and

ν(r, 1) = m2 + 2m3 + · · ·+ (r − 1)mr + r. (1.2)

Thus (i) and (ii) are satis�ed.

To prove prove property (iii) note that {dn}∞n=1 is given by

(d1, d2 . . . ) = (F1, . . . , F1︸ ︷︷ ︸
m2 copies

, F2, . . . , F2︸ ︷︷ ︸
m3 copies

, F3, . . . , F3︸ ︷︷ ︸
m4 copies

, . . . ),

where Fi = (c1, c2, . . . , ci) and ν(r, s) gives the position of the s-th appearance of cr

in {dn}∞n=1.

Let a1 = m1 and ar = v(r, 1) (that is the index of �rst appearance of cr in

{dn}∞n=1) for r ≥ 2 and proceed by induction.

For r = 1 we have ν(r, 1) = ν(1, 1) = 1 and thus by (1.7)

ν(r,1)∑
n=1

d2
n = c21 ≤ λ2 ≤ logm1 ≤ (a1 + 1) log(a1 + 1).

For r ≥ 2 by (1.2) we have
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ν(r,1)∑
n=1

d2
n =m2c

2
1 + · · ·+mr(c

2
1 + · · ·+ c2r−1) + (c21 + · · ·+ c2r) (1.3)

≤(m2 +m3 + · · ·+mr + 1)(c21 + · · ·+ c2r)

≤(ν(r, 1) + 1)(1 + 2 + · · ·+ r)λ2r ≤ (ar + 1) logmr

≤(ar + 1) log(ar + 1).

The induction assumption is that for some s ≥ 1 the inequality
∑ν(r,s)

n=1 d2
n ≤

(ar + s) log(ar + s) holds for each r ≥ 1. We must show that the inequality holds for

s + 1. Note that cr makes its �rst appearance in the sequence {dn}∞n=1 as the last

member in the �rst Fr , thus we need to separate the induction step in two cases.

Case 1. s ≤ mr+1. In this case, the s-th appearance of cr lies in an Fr. Hence,

ν(r,s+1)∑
n=1

d2
n =

ν(r,s)∑
n=1

d2
n + (c21 + · · ·+ c2r) (1.4)

≤(ar + s) log(ar + s) + (1 + 2 + · · ·+ r)λ2r

≤(ar + s) log(ar + s) + logmr

≤(ar + s) log(ar + s) + log ar

≤(ar + s+ 1) log(ar + s+ 1).

Case 2. s > mr+1. In this case, the s-th appearance of cr lies in some Fj for
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some j ≥ r + 1. Hence, mr+1 + · · ·+mj < s ≤ m+1 + · · ·+mj +mj+1 and

ν(r,s+1)∑
n=1

d2
n =

ν(r,s)∑
n=1

d2
n + (c2r+1 + · · ·+ c2j + c21 + · · ·+ c2r) (1.5)

≤(ar + s) log(ar + s) + (1 + 2 + · · ·+ j)λ2j

≤(ar + s) log(ar + s) + logmj

≤(ar + s) log(ar + s) + log s

≤(ar + s+ 1) log(ar + s+ 1).

This concludes the proof of the lemma.

Next we present the example from [9] of a weakly hypercyclic operator that is

not hypercyclic.

Theorem 1.6.2. The backward weighted shift on l2(Z), de�ned by

Tei =


ei−1, if i ≤ 0,

2ei−1, if i ≥ 1.

is weakly hypercyclic and satis�es the inequality ||Tx|| ≥ ||x|| for all x ∈ l2(Z), hence,

T is not hypercyclic.

Proof. The idea of proof is the one from [9], but we tried to simplify the details of it,

since the proof given in [9] is for a more general setting.

Note that the inverse S of T is given by

Sei =


ei+1, if i ≤ −1,

2−1ei+1, if i ≥ 0.

We start with {hn : n ≥ 1} a dense sequence in l2(Z), as in the above lemma,

each hn having �nite support,
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||hn||2 ≤ n, and 〈hn, ei〉 = 0 for |i| > n.

We will construct a vector g such that, for given ε > 0, r ≥ 1 and t nonzero

vectors x1, . . . , xt in l2(Z), we will exhibit an Nr for which we have:

|〈TNrg − hr, xj〉| ≤ ε, for j = 1, . . . , t.

The vector g will be built based on the sequence {hn}, as a convergent series.

The series T nrg will have hr as one of its terms, the tail made of all the elements

after hr will converge to zero in norm as nr →∞ and if we denote by vn the partial

sum consisting of the elements up to hr we would like our construction to have the

property that

||vn||2 ≤ (c+ n) log(c+ n), for all n,

where c is a constant to be determined. Moreover, in the construction, the vn's

will have disjoint support. The series
∑∞

k=1 1/||vk||2 is divergent and using a similar

argument with the one in Lemma 1.5.2 we obtain that 0 ∈ {vn}wn∈N.

Rather than directly using {hn} in the construction of the weakly hypercyclic

vector g, we will use {fn = T nhn}, since it is convenient to have all nonzero Fourier

coe�cients with index smaller or equal to zero; fn has the property that

||fn||2 ≤ n · 22n, and 〈fn, ei〉 6= 0 only for i = −2n, . . . ,−1, 0. (1.6)

Also, instead of using each vector fn (or hn) just once in a series that would

de�ne g as in Rolewitz example, each fn will appear in�nitely many times in the

series that de�nes g.

Let λ = ||T ||. Note that ||T || = 2, so λ = 2.
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Let {mi}∞i=1 be a strictly increasing sequence of integers that satis�es

(1 + 2 + · · ·+ i)λ2i ≤ logmi. (1.7)

Let {gj}∞j=1 be the sequence given by

{g1, g2 . . . } ={F1, . . . , F1︸ ︷︷ ︸
m2 copies

, F2, . . . , F2︸ ︷︷ ︸
m3 copies

, F3, . . . , F3︸ ︷︷ ︸
m4 copies

, . . . }

={f1, . . . , f1︸ ︷︷ ︸
m2 copies

, f1, f2, . . . , f1, f2︸ ︷︷ ︸
m3 copies

, f1, f2, f3, . . . , f1, f2, f3︸ ︷︷ ︸
m4 copies

, . . . },

such that the group Fi = f1, . . . , fi appears mi+1 consecutive times. If we set n =

ν(i, j), where ν is the function from Lemma 1.6.1, it follows from that lemma that

ν(r,s)∑
n=1

||gn||2 ≤ (ar + s) log(ar + s), (1.8)

where a1 = m1 and ar = v(r, 1).

Now, going back to T : we have wi = 1 for all i ≤ 0, and wi = 2 for i ≥ 1. Note

that ||T || = 2 and for �xed n ≥ 1 and for every m ≥ 2n, we have

||Smei|| =
1

2m+i
, for i ≤ 0, (1.9)

and

||Tmei|| = 1, for i ≤ 0.

Let {kn}∞n=0 to be such that

k0 = 0, and kn = 4n for n ≥ 1. (1.10)

Then it satis�es
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kn ≥ max{4kn−1, 4n} for n ≥ 1. (1.11)

We have

||Skngn||2 = ||
0∑

i=−2n

ĝn(i)Sknei||2 ≤ n22n

(
1

2kn−2n

)2

=

( √
n

2kn−3n

)2

≤
(

1

2kn−12n

)2

,

using (1.9) , ||gn||2 ≤ n22n by (1.6) and

kn ≥ kn−1 + 4n+ log2

√
n, from (1.10).

Thus
∑∞

n=1 ||Skngn|| < ∞ and can de�ne g =
∑∞

n=1 S
kngn as a vector in l2(Z).

The claim is that g is a weakly hypercyclic vector for T .

De�ne the vectors

ϕm =
m∑
n=1

T km−rSkngn and ψm =
∞∑

n=m+1

T km−rSkngn.

We'll show that for every given r ≥ 1, ||ψν(r,s)|| → 0 as s→∞ and 0 ∈ {ϕν(r,s)}ws∈N.

||ψν(r,s)|| ≤
∞∑

n=ν(r,s)+1

||T ||kν(r,s)−r||Skngn|| ≤
∞∑

n=ν(r,s)+1

2kν(r,s)−r
1

2kn−12n
≤

≤
∞∑

n=ν(r,s)+1

1

2n
≤ 1

2ν(r,s)
→ 0 as s→∞.

Next we show that

||ϕν(r,s)||2 ≤ (ar + s) log(ar + s). (1.12)

First note that

〈Skngn, ei〉 6= 0 only if kn − 2n ≤ i ≤ kn,

and if n′ > n ≥ 1 then kn′ − 2n′ ≥ 4kn′−1 − 2n′ > kn′−1 ≥ kn, since 3 · 4n′−1 >
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2n′ for n′ ≥ 2. It follows that for �xed m = ν(r, s), for any integer i, there exists at

most one n such that 〈T km−rSkngn, ei〉 6= 0. Thus the terms that make up the sum

that de�nes ϕm have disjoint support (and thus, are orthogonal), so

||ϕm|| =
m∑
n=1

||T km−rSkngn||2.

But from r ≤ ν(r, s) = m we have km − r − kn ≥ 4km−1 − r − kn > (km−1 − r) +

(km−1 − kn) ≥ 0, so we can write

||T km−rSkngn||2 =||
0∑

i=−2n

ĝn(i)T km−r−knei||2 = ||gn||2

Next we show that for �xed r ≥ 1 the elements of the sequence {ϕν(r,s)}s∈N have

disjoint support. Observe �rst that

〈ϕν(r,s), ei〉 6= 0 only if − kν(r,s) + r + k1 − 2 ≤ i ≤ −kν(r,s) + r + kν(r,s)−1.

But if s′ > s ≥ 1 then

kν(r,s′) ≥ 4kν(r,s′)−1 > kν(r,s′)−1 + 2 + kν(r,s),

and thus

−kν(r,s′) + r + kν(r,s′)−1 < −kν(r,s) + r − 2 < −kν(r,s) + r + k1 − 2.

This implies that for every given integer i, there is at most one integer s with

〈ϕν(r,s), ei〉 6= 0, so the elements of the sequence have disjoint support. This together

with (1.12) gives by Lemma 1.2 that 0 ∈ {ϕν(r,s)}ws∈N.

Now we show that g is weakly hypercyclic for T . Since {hr}r≥1 is norm dense, it

su�ces to show that {hr : r ≥ 1 ⊂ Orb(T, g)w. Let r ≥ 1, ε > 0, and y1, . . . , yt be t
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nonzero vectors in l2(Z). Let γ = max{||yj|| : 1 ≤ j ≤ t}. There exists S such that

||ψν(r,s)|| ≤
ε

2γ
for all s ≥ S,

and there exists s0 > S such that

|〈ϕν(r,s0), yj〉| ≤
ε

2
for 1 ≤ j ≤ t.

If we let N = kν(r,s0) − r then

TNg = ϕν(r,s0) + hr + ψν(r,s).

Hence, for all j = 1, . . . , t we have

|〈TNg − hr, yj〉| ≤ 〈ϕν(r,s0), yj〉|+ ||ψν(r,s)|| · ||yj||

≤ ε

2
+

ε

2γ
γ = ε,

which completes the proof.

1.7. Overview of the results of this dissertation

My research, which might be regarded as a continuation of the investigation begun in

[15], is concerned with enlarging the class of non-orbit-transitive operators. For this

purpose, it is important to have more examples of operators in L(H) with �strange�

orbits. (There are several such examples in [15]).

The �rst problem we have set ourselves was to produce an operator T in L(H)

with σp(T ) ∪ σp(T ∗) = ∅, such that for every x 6= 0 in H,

lim inf
n∈N

‖T nx‖ = 0 , lim sup
n∈N

|| T nx|| =∞, (1.13)

(Beauzamy sketched a construction in this direction in [4, Section 4 of Chapter III],
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but without details and, in any case, any such T satisfying his requirements has

σp(T
∗) 6= ∅). This is done in Chapter II, where we construct an operator T in L(H)

such that for every nonzero vector x, the sequence {||T nx||}n∈N is dense in R+, but

despite this, T is not hypercyclic (i.e., no vector in H has a dense orbit).

In Chapter III we show that certain classes of operators consist entirely of non-

weakly-hypertransitive operators, thereby generalizing the results of [15]. In par-

ticular, we show that if T ∈ L(H) and two of the three numbers representing the

essential spectral radius, essential numerical radius, and essential norm of T , coin-

cide, then for every invertible S ∈ L(H) and every compact K in L(H), STS−1 +K

fails to be weakly hypertransitive. As a corollary we have that no operator of the

form SNS−1 + K, where S is invertible, N is normal, and K in compact, is weakly

hypertransitive. Along the way we show that K. Ball's complex-plank theorem [2] is

equivalent to a (slightly stronger) version of an old theorem of Beauzamy [4].

Recall that an operator T ∈ L(H⊕H) is 2-normal if T is unitarily equivalent to

a 2 × 2 matrix (Nij), where the Nij are mutually commuting normal operators, and

it is known [14] that 2-normal operators have nontrivial hyperinvariant subspaces.

In Chapter IV we show that no compact perturbation of certain 2-normal operators

(which in general satisfy ‖T‖e > re(T )) can be orbit-transitive. This answers a

question raised in [15]. Our main result herein is that if T belongs to a certain class

of 2-normal operators in L(H(2)) and there exist two constants δ, ρ > 0 satisfying

‖T k‖e > ρkδ for all k ∈ N, then for every compact operator K, the operator T +K is

not orbit-transitive. This seems to be the �rst result that yields non-orbit-transitive

operators in which such a modest growth rate on ‖T k‖e is su�cient to give an orbit

{T kx} tending to in�nity.
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CHAPTER II

A NONHYPERCYCLIC OPERATOR∗

In this chapter we construct an operator T on a (separable, complex) Hilbert space

such that for every nonzero vector x, the sequence {||T nx||}n∈N is dense in R+, but

despite this, T is not hypercyclic (i.e., no vector in H has a dense orbit). In addition,

this operator has the property that there are subsequences {rn} and {qn} of N such

that T rn → 0 and T qn → +∞ (properly de�ned) in the strong operator topology.

Finally, neither T nor T ∗ has point spectrum. This partially answers a question in

[15] and provides a counterexample to some reasonable conjectures.

2.1. Problem settings

In the last �fteen or so years, the interest in properties of orbits of an operator has

increased dramatically. (It should be said at once that much of the early work on

orbits of operators � on Hilbert spaces or otherwise � is due to Bernard Beauzamy; cf.

[4, Chapter III]). In particular, recall that an operator T in L(H) is called hypercyclic

if there is at least one vector x (and therefore a dense Gδ of such vectors) whose

orbit {T nx}n∈N0 is dense in H. There has been considerable progress in the direction

of showing that the class of hypercyclic operators is much larger than was originally

suspected. (See, for example, the excellent survey article [13]). The reader will recall

that the question whether there exists an operator in L(H) such that every nonzero

vector in H has dense orbit (such an operator is sometimes called hypertransitive) is

still open. For some recent progress in that direction see [15]. This leads naturally to

* Part of this chapter is reprinted with permission from A nonhypercyclic operator
with orbit-density properties by Lidia Smith, published in Acta Sci. Math. (Szeged)
74 (2008), 741�754. c©Copyright 2008 by Bolyai Institute.
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the question of �nding necessary and su�cient conditions that an operator T in L(H)

be hypercyclic. (A useful su�cient condition for hypercyclicity has been known for

some time; cf. [13, Theorem 4].) In this connection, observe that if T is hypercyclic,

then there exists a dense-Gδ set D of vectors x, such that {||T nx||}n∈N0 is dense in

R+, and for all y ∈ H\(0), {〈T nx, y〉} is dense in C. Therefore the following problem

would seem to be of interest:

(P) If T ∈ L(H) and there is a dense set D ⊂ H such that for x ∈ D, ||T nx||}n∈N0

is dense in R+, must T be hypercyclic?

It is the purpose of this note to answer some questions, raised by Carl Pearcy,

related to Problem P. In particular, the main result is the following theorem which

shows that (even with a stronger hypothesis) Problem P has a negative answer:

Theorem 2.1.1. There exists an operator T in L(H) with the following properties :

(a) for every x 6= 0 in H the sequence {||T nx||}n∈N0 is dense in R+;

(b) there exist subsequences {rn} and {qn} of N such that

T rn
SOT→ 0, T qn

SOT→ +∞;

(c) there exists no vector x in H such that the orbit {T nx}n∈N is dense in H (i.e.,

T is not hypercyclic); and

(d) σp(T ) ∪ σp(T
∗) = ∅.

Remark 2.1.2. Theorem 2.1.1 shows clearly that to make progress on the program

proposed in [15] (i.e., to show that no operator in L(H) is hypertransitive), one cannot

hope to succeed by consideration only of the collection {{||T nx||}: x ∈ H\(0)} of

sequences of norms. Thus the above theorem forecloses one approach to establishing

that no operator in L(H) is hypertransitive.

The proof of Theorem 2.1.1 is set forth in next 3 sections below.
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2.2. Some bilateral weighted shifts

We begin to develop the machinery needed to prove Theorem 1.1 by introducing some

notation that will remain �xed throughout the paper. In particular, we �rst choose

an orthonormal basis {en}n∈N for H. If w = {wj}j∈N is any bounded sequence of

(strictly) positive real numbers, we denote by Sw the (forward, unilateral, weighted)

shift in L(H) de�ned by

Swej = wjej+1, j ∈ N. (2.1)

Let {ẽn}n∈N be an orthonormal basis for H̃, where H̃ is another copy of H and

let w = {wj}j∈N and w̃ = {w̃j}j∈N be bounded sequences of (strictly) positive real

numbers. Let Sw̃ and Sw be the weighted unilateral forward shifts on H̃ and H

corresponding to the sequences w̃ and w, respectively, and let B(= Bw̃,w) be the

(injective) weighted bilateral shift on L(H̃ ⊕ H), de�ned matricially by

B =

 S∗w̃ 0

e1 ⊗ ẽ1 Sw

 , (2.2)

where, as usual e1 ⊗ ẽ1 : H̃ → H is the rank one operator satisfying (e1 ⊗ ẽ1)(x̃) =

〈x̃, ẽ1〉e1 for x̃ in H̃. That B is, indeed, a weighted bilateral shift is clear from the

equations

Bẽj = w̃j−1ẽj−1, Bẽ1 = e1, Bej = wjej+1, j ∈ N.

Moreover, it is easy to see that every injective bilateral weighted shift can be written

in the form (2.2) .

Clearly, with B as in (2.2),
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Bn =

 S∗nw̃ 0

Fn Snw

 , n ∈ N,

where Fn : H̃ → H is given by

Fn = (Fn(w̃, w)) =
n−1∑
k=0

w1 . . . wn−k−1en−k ⊗ w̃1 . . . w̃kẽk+1, n ∈ N,

and we have

Fnẽj =


0, j > n,

(w̃1 . . . w̃j−1)(w1 . . . wn−j)en−j+1, 1 ≤ j ≤ n.

(2.3)

For every x̃⊕ y ∈ H̃ ⊕H we have

Bn

 x̃

y

 =

 S∗nw̃ x̃

Fnx̃+ Snwy

 , n ∈ N,

and since ran(Fn) ⊂
∨
{e1, . . . , en} and the range of Snw is orthogonal to e1, . . . , en, we

obtain

||Bn(x̃⊕ y)||2 = ||S∗nw̃ x̃||2 + ||Fnx̃||2 + ||Snwy||2, n ∈ N, x̃⊕ y ∈ H̃ ⊕H. (2.4)

Lemma 2.2.1. Suppose the (bounded) weight sequences w = {wj}j∈N and w̃ =

{w̃j}j∈N of positive numbers are bounded below (by some ε > 0), and w has the

property that there exists a subsequence {qn} of N such that Sqnw
SOT→ +∞. Then

B := Bw̃,w satis�es Bqn SOT→ +∞.

Proof. Observe �rst that since w, w̃ are bounded below, B−1 ∈ L(H̃ ⊕ H). For

each nonzero vector x̃ ⊕ y ∈ H̃ ⊕ H, and every k0 ∈ N, we have ||Bqn(x̃ ⊕ y)|| =
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||B−k0BqnBk0(x̃ ⊕ y)|| ≥ ||B||−k0||Bqn(S∗k0w̃ x̃, Fk0x̃ + Sk0w y)|| ≥ ||B||−k0||Sqn(Fk0x̃ +

Sk0w y)|| by (2.4), and since obviously Fk0x̃ + Sk0w y is nonzero for k0 ∈ N su�ciently

large, the result is immediate.

The following elementary lemma, which needs no proof, will be useful below.

Lemma 2.2.2. Let {Tn} be a sequence in L(K̃,K) where K̃ and K are Hilbert spaces.

Suppose {fj}j∈N is an orthonormal basis for K̃, and there exist subsequences {Tsn}

and {Ttn} of {Tn} satisfying

(i) for all n ∈ N, and j, k ∈ N with j 6= k, 〈Tnfj, Tnfk〉 = 0,

(ii) for all j ∈ N, limn→∞ ||Tsnfj|| = 0,

(iii) there exists a positive constant M such that for all j, n ∈ N, ||Tsnfj|| < M ,

(iv) for all j ∈ N, limn→∞ ||Ttnfj|| = +∞.

Then Tsn
SOT→ 0 and Ttn

SOT→ +∞.

The next lemma, which is also elementary, shows that all operators T in L(K)

satisfying (b) of Theorem 2.1.1 have empty point spectrum.

Lemma 2.2.3. If T ∈ L(K) and there exist subsequences {pn} and {qn} of N with

T pn
SOT→ 0 and T qn

SOT→ +∞, then σp(T ) = ∅ and σp(T
∗) ⊂ D.

Proof. Suppose λ ∈ σp(T ) and x ∈ K\(0) is such that Tx = λx. Then T pnx = λpnx,

T qnx = λqnx, and from the hypothesis we get that λpn → 0, and λqn → +∞, which is

impossible. Moreover, we have T pn
WOT→ 0 and (T ∗)pn

WOT→ 0. Thus, if T ∗x = ξx with

x ∈ K\(0), we get 〈(T ∗)pnx, x〉 = ξpn||x||2 → 0, so ξ ∈ D.

Can the conclusions of Lemma 2.2.3 be strengthened to give also that σp(T
∗) =

∅? The answer is negative as Example 2.3.4 (below) shows. On the other hand, if

the hypotheses are strengthened somewhat, the answer is positive, as we now demon-

strate.
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Lemma 2.2.4. Let B = Bw̃,w be an injective bilateral weighted shift in L(H̃ ⊕ H)

with the properties

(i) there exist subsequences {pn} and {qn} of N with Bpn SOT→ 0 and Bqn SOT→

+∞, and

(ii) w̃ has the property that the sequence of products {w̃1 . . . w̃n}n∈N does not

converge to zero.

Then σp(B) = ∅ and σp(B
∗) = ∅.

Proof. By the previous lemma we have that σp(B) = ∅ and σp(B
∗) ⊂ D. Moreover,

since B∗ is injective with dense range, 0 /∈ σp(B
∗). If some 0 6= λ ∈ D were an

eigenvalue of B∗, a trivial computation shows that all of the Fourier coe�cients of

any corresponding eigenvector x̃ ⊕ y would be nonzero. If we write x̃ =
∑
j∈N

α̃j ẽj,

then, in particular, α̃1 is nonzero. We have (B∗)n(x̃⊕ y) = λn(x̃⊕ y) , n ∈ N, and

evaluating 〈(B∗)n(x̃⊕ y), ẽn+1〉 gives

α̃1(w̃1 . . . w̃n)ẽn+1 = α̃n+1λ
nẽn+1, n ∈ N.

It follows that w̃1 . . . w̃n = (α̃n+1/α̃1)λ
n → 0 as n → ∞, contradicting hypothesis

(ii).

2.3. Some particular weight sequences

In order to prove Theorem 2.1.1, we will use the notation and terminology of Section

2, and construct a particular operator T = Bw̃,w having the desired properties (a)-(d).

(Note that Lemma 2.2.4 shows that if Bw̃,w satis�es (b) of Theorem 2.1.1 and (ii) of

Lemma 2.2.4, then Bw̃,w also satis�es (d).) Thus we must construct particular weight

sequences w and w̃. To this end, we �rst construct the sequence w and we need some

purely arithmetical properties of sequences of products of positive real numbers.
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Let {pn}n∈N and {qn}n∈N be two strictly increasing subsequences of N de�ned

recursively by 
p1 = 1, pn+1 = 2n(pn + 1), n ∈ N,

qn = 2npn, n ∈ N,
(2.5)

(and hence pn < qn < pn+1), and let w = {wj}j∈N be de�ned by:
w1 = 1,

wj = 21/pn , pn < j ≤ qn,

wj = 1/2, qn < j ≤ pn+1.

(2.6)

Lemma 2.3.1. The sequence w just de�ned has the following properties :

(i) the product w1 . . . wj reaches a local minimum (as a function of j) when j = pn

and a local maximum when j = qn; moreover w1 . . . wpn =(1/2)n−1 and w1 . . . wqn =

2n for all n ∈ N;

(ii) for all l, n ∈ N, wl+1 . . . wl+pn ≤ 2;

(iii) for all k, l, n ∈ N satisfying k < n and pk < l ≤ pk+1, we have

wl+1 . . . wl+pn ≤ 4(1/2)n−k,

and consequently for each l, the product of pn consecutive weights with the �rst index

equal to l + 1 tends to zero as n tends to in�nity ;

(iv) for all k, n ∈ N, wk · · ·wqn+k−1 > 2n−2k .

Proof. (i) Note that wpn+1 · · ·wqn = 22n−1 and wqn+1 · · ·wpn+1 = (1/2)2n. Thus

wpn+1 · · ·wpn+1 = 1/2. It follows that for n > 1, w1 · · ·wpn = w2 · · ·wpn = (1/2)n−1

and w1 · · ·wqn = 2n. The product w1 · · ·wj is increasing for j increasing between

pn and qn, since weights larger than 1 are being inserted into the product, and is

decreasing for j between qn and pn+1, since the weights inserted are equal to 1/2.



27

(ii) For pn < j ≤ qn we have wj = 21/pn and for qn ≤ j, wj ≤ 21/pn . Thus for

l > pn we have wl+1 . . . wl+pn ≤ 21/pn . . . 21/pn = 2. For l ≤ pn, we have pn+ l ≤ 2pn <

qn, so

wl+1 . . . wl+pn =
(w1 . . . wpn)(wpn+1 . . . wl+pn)

w1 . . . wl
=

(1/2)n−1(21/pn)l

w1 . . . wl
≤ 2,

since w1 . . . wl is bounded below by (1/2)n−1, by (i). Thus (ii) is satis�ed.

(iii) Let k ∈ N, with k < n, be such that pk < l ≤ pk+1. Then we have

l ≤ pk+1 ≤ pn and pn + l ≤ 2pn < qn, and thus

wl+1 . . . wl+pn =
(wpk+1 . . . wpn)(wpn+1 . . . wl+pn)

wpk+1 . . . wl
≤ 4

(
1

2

)n−k
,

since wpk+1 . . . wpn = (1/2)n−k, wpn+1 . . . wl+pn = (21/pn)l ≤ 2, and wpk+1 . . . wl ≥

1/2. This last inequality follows since the product wpk+1 · · ·wl increases with l for

pk < l ≤ qk (since for these indices wl > 1), and decreases for qk < l ≤ pk+1 (since for

these indices wl = 1/2), reaching a a minimum value of wpk+1 · · ·wpk+1
= 1/2.

(iv) wk · · ·wqn+k−1 = (w1 · · ·wqn)(wqn+1 · · ·wqn+k−1)/(w1 · · ·wk−1) > 2n−2k, since

wqn+1 · · ·wqn+k−1 ≥ (1/2)k, and we have that the maximum value attained by the

product of all weights up to index k (< qk) is smaller than 2k.

Remark 2.3.2. The construction just given of the weight sequence w is a modi�cation

and an extension of a construction of Beauzamy of a certain unilateral weighted shift

(cf. [4, page 69]).

Proposition 2.3.3. With the subsequences {pn} and {qn} of N as de�ned in (2.5)

and the weight sequence w as de�ned in (2.6), the unilateral weighted shift Sw satis�es

Spnw
SOT→ 0 and Sqnw

SOT→ +∞.

Proof. By property (ii) of Lemma 2.3.1 we get ||Spnw ej|| ≤ 2 for all n and j, and by

(iii) of the same lemma we have ||Spnw ej|| → 0 as n → ∞. Thus the operator Sw
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(with sn = pn and M = 2) satis�es the properties (ii) and (iii) of Lemma 2.2.2. For

a �xed basis vector ek, we have that ||Sqnw ek|| > 2n−2k by (iv) of Lemma 2.3.1. Thus

the operator Sw with the sequence qk satis�es (iv) of Lemma 2.2.2 (with tn = qn) and

the conclusion follows from Lemma 2.2.2.

Lemma 2.2.3 gives rise to the question whether under its hypotheses the stronger

conclusion that σp(T
∗) = ∅ is true. The following example shows that this is not

the case.

Example 2.3.4. Let w be the sequence of weights given by (2.6) and let the sub-

sequences {pn} and {qn} of N be given by (2.5). By Proposition 2.3.3 we have that

Spnw
SOT→ 0 and Sqnw

SOT→ +∞. Now de�ne ŵ = {w̃j}j∈N by w̃j = 1/2, j ∈ N.

Then with B = Bŵ,w we have immediately Bqn SOT→ +∞, by Lemma 2.2.1. Since

||S∗ŵ|| = 1/2 < 1, we have that S∗pnŵ

SOT→ 0. Also, for j, n ∈ N we have by

(5), ||Fpn ẽj|| = (w̃1 . . . w̃j−1)(w1 . . . wpn−j) = (1/2)j−1(w1 . . . wpn−j) ≤ w1 . . . wpn−1 =

(1/2)n−2. Thus by Lemma 2.2.2, Fpn(ŵ, w)
SOT→ 0. It follows by (6) that we also have

Bpn SOT→ 0, so B satis�es the hypotheses of Lemma 2.2.3. But using a well known

result (cf. [26, Theorem 9, page 71]) we have that σp(B
∗) includes the annulus

{1
2
< |z| < 1}. �

Next we shall construct a sequence w̃ such that, with w de�ned by (2.6), the

operator T := Bw̃,w satis�es Theorem 2.1.1. We de�ne recursively a sequence {sn} in

terms of {pn}n∈N, the sequence de�ned by (2.5). Let

s1 = 1, sn+1 = sn · (psn+1 − 2sn) + 2sn, n ∈ N, (2.7)

and denote by {rn}n∈N the subsequence of {pn}n∈N de�ned by

rn = psn+1, n ∈ N. (2.8)
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We will show that

sn < 2sn < rn ≤ sn+1, n ∈ N, (2.9)

and thereafter de�ne the weight sequence w̃ = {w̃j}j∈N by
w̃1 = 1,

w̃j = 1/2, sn < j ≤ 2sn, n ∈ N,

w̃j = 21/(rn−2sn), 2sn < j ≤ sn+1, n ∈ N.

(2.10)

We notice that pn+1 ≥ 4n for all n ∈ N, since, from the de�nition of pn we have p1 = 1

and pn+1 ≥ 2npn, and thus pn+1 ≥ 2nn!. It follows that psn+1 ≥ 4sn, so rn ≥ 4sn, and

this gives 2sn < rn and also

rn − 2sn ≥ (1/2)rn, n ∈ N. (2.11)

Since r1 = s2 = 4, and sn > 2 for n ≥ 2, we have rn ≤ sn+1 for n ∈ N, so (2.9) is

established.

Lemma 2.3.5. The sequence w̃ de�ned by (2.10) has the properties :

(i) the product w̃1 . . . w̃m of the �rst m weights from w̃ attains a local maximum

equal to 1 (as a function of m) when m = sn, and a local minimum equal to (1/2)sn

when m = 2sn;

(ii) for j, n ∈ N, we have w̃j+1 . . . w̃j+rn ≤ 8 ;

(iii) for j, n ∈ N, with 1 ≤ j ≤ rn we have (w̃1 . . . w̃j−1)(w1 . . . wrn−j) ≤ 2;

moreover, if 1 ≤ j < sn − n then (w̃1 . . . w̃j−1)(w1 . . . wrn−j) ≤ (1/2)n−1; and

(iv) (S∗w̃)rn
SOT→ 0 and Frn(w̃, w)

SOT→ 0.

Proof. (i) For n �xed and sn < j ≤ 2sn, w̃j = 1/2, and thus w̃sn+1 . . . w̃2sn = (1/2)sn

and the product w̃1 . . . w̃j is decreasing. On the other hand, for 2sn < j ≤ sn+1,

w̃j =21/(rn−2sn), so w̃2sn+1 . . . w̃sn+1 = (2)sn since sn+1 − 2sn = sn · (rn − 2sn), and
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the product w̃1 . . . w̃j and is increasing for such j. Thus w̃sn+1 . . . w̃sn+1 = 1, and it

follows that

w̃1 . . . w̃sn = 1 , n ∈ N, (2.12)

and

w̃1 . . . w̃2sn = (1/2)sn , n ∈ N. (2.13)

We also note that, via (2.12), we have

w̃2sn+1 . . . w̃rn = 2, n ∈ N. (2.14)

Turning to (ii), from (2.13) and (2.14) we have that w̃1 . . . w̃rn = (1/2)sn−1, n ∈

N. For j ≥ rn, we get that w̃j is either 1/2 or smaller than w̃rn = 21/(rn−2sn), since

by (2.9) and (2.11), rn+1 − 2sn+1 ≥ (1/2)rn+1 > rn ≥ rn − 2sn. Thus w̃j ≤ w̃rn =

21/(rn−2sn) ≤ 22/rn , and it follows that

w̃j+1 . . . w̃j+rn ≤ 4, j ≥ rn.

For 1 ≤ j < rn we write w̃j+1 . . . w̃j+rn = (w̃1 . . . w̃rn)(w̃rn+1 . . . w̃j+rn)/(w̃1 . . . w̃j), and

we have the following estimates for the three products in parentheses: w̃1 . . . w̃rn =

(1/2)sn−1, as already noted. Next, w̃rn+1 . . . w̃j+rn ≤ 4, since the weights involved are

fewer than rn and smaller than 22/rn . Finally, w̃1 . . . w̃j ≥ (1/2)sn , since (1/2)sn is

the smallest value that can be attained by the product of the �rst j weights in w̃ for

j < rn. Thus

w̃j+1 . . . w̃j+rn ≤ 8, 1 ≤ j < rn.

and consequently (ii) is true.
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(iii) With the notation from (2.3) we show �rst that for 1 ≤ j ≤ rn we have

||Frn ẽj|| = (w̃1 . . . w̃j−1)(w1 . . . wrn−j) ≤ 2. By Lemma 2.3.1(i), for 1 ≤ j ≤ rn,

we get that w1 . . . wrn−j ≤ 2sn , with equality for j = rn − qsn = 2sn. It is eas-

ier to estimate ||Frn ẽj|| in the case 2sn < j ≤ rn: for such j we have ||Frn ẽj|| =

(w̃1 . . . w̃2sn)(w̃2sn+1 . . . w̃j−1)(w1 . . . wrn−j) ≤ (w̃2sn+1 . . . w̃j−1) < 2, by using (2.13)

and (2.14).

For the case 1 ≤ j ≤ 2sn we notice that ||Frn ẽ2sn|| = 2 and we can obtain ||Frn ẽj||

from ||Frn ẽ2sn|| by replacing those weights w̃j, . . . , w̃2sn−1, of w̃ that are either 1/2 or

larger than 1, with the weights wrn−2sn+1, . . . , wrn−j which are all equal to 1/2 (since

these weights have indices between qsn and psn+1). This gives ||Frn ẽj|| ≤ ||Frn ẽ2sn||.

Note that if we have 1 ≤ j < sn − n, then the above estimates hold; moreover,

we have at least n weights w̃j from w̃ that are larger than 1 (the ones with j between

sn − n and sn, since sn − n > 2sn−1) that are replaced with weights with value 1/2

from w, and thus ||Frn ẽj|| ≤ (1/2)n−1.

Finally to prove (iv), from (ii) we have ||(S∗w̃)rn ẽj|| ≤ 8 for all j, n ∈ N, and

since (S∗w̃) is a backward shift, we have limn ||(S∗w̃)rn ẽj|| = 0 for all j ∈ N. Thus

Lemma 2.2.2 gives (S∗w̃)rn
SOT→ 0. Using that limn→∞(sn−n) = +∞, the same lemma

gives Frn(w̃, w)
SOT→ 0, since from (iii) we have ||Frn ẽj|| ≤ 2 for all j, n ∈ N and

limn ||Frn ẽj|| = 0 for all j ∈ N.

2.4. Completion of the proof

For the sequences of weights w and w̃ de�ned by (2.6) and (2.10) and the subsequences

{qn} and {rn} of N de�ned by (2.5) and (2.8), respectively, we have from Proposition

2.3.3 that Srnw
SOT→ 0 and Sqnw

SOT→ +∞. By Lemma 2.2.1 it follows immediately

that the operator B(= Bw̃,w) satis�es Bqn SOT→ +∞. Lemma 2.3.5(iv) gives that
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(S∗w̃)rn
SOT→ 0 and Frn(w̃, w)

SOT→ 0; thus by (2.4) we have that Brn SOT→ 0. It

follows that B satis�es condition (b) of Theorem 2.1.1. Moreover (2.12) gives that

the hypothesis (ii) of Lemma 2.2.4 is satis�ed and therefore, as noted earlier, B has

the desired property (d) of Theorem 2.1.1.

The fact that B is not hypercyclic follows from [12]. Indeed, according to [12,

Theorem 3.2], one knows that a necessary and su�cient condition for B to be hyper-

cyclic is that there exists a strictly increasing sequence of positive integers {nk}k∈N

such that w1 . . . wnk → 0 and w̃1 . . . w̃nk → +∞. But the weight sequence w̃ has the

property that w̃1 . . . w̃n ≤ 1 for all n ∈ N (Lemma 2.3.5(i)), so the second condition

cannot be satis�ed, and thus B has the desired property (c) of Theorem 2.1.1. �

Finally, we establish below that B satis�es condition (a) of Theorem 2.1.1.

De�nition 2.4.1. A sequence {ρn}n∈S is ε-dense in an interval [0,M ] if every subin-

terval of [0,M ] of length ε contains at least one ρn.

Obviously if an in�nite sequence has the property that for all ε,M > 0, it is

ε-dense in the interval [0,M ], then the sequence is dense in R+.

The following elementary lemma needs no proof.

Lemma 2.4.2. Suppose that the sequence {ρj}∞j=0 ⊂ R+ has the properties that for

given ε,M > 0 there exists an index t ∈ N such that

(i) 0 < ρ0 < ε ;

(ii) for 0 ≤ j < t, ρj+1 − ρj < ε;

(iii) ρt ≥M ;

Then the �nite sequence {ρj}tj=0 is ε-dense in [0,M ], and thus the in�nite sequence

{ρj}∞j=0 is ε-dense in [0,M ].

The following proposition completes the proof of Theorem 2.1.1.
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Proposition 2.4.3. Let T := Bw̃,w with w and w̃ given by (2.6) and (2.10), and

let x̃ ⊕ y be a nonzero vector in H̃ ⊕ H. Let ε > 0 and M > 0 be arbitrary. Let

pn, qn, sn, rn be as de�ned by (2.5), (2.7) and (2.8) and set tn := qsn+1 − rn. For

n ∈ N, de�ne ρj(n) := ||T rn+jx̃ ⊕ y||, where 0 ≤ j ≤ tn. Then there exists n0 ∈ N

such that {ρj(n)}tnj=0 is ε−dense in [0,M ] for all n ≥ n0. Consequently, the sequence

{||T n(x̃⊕ y)||}n∈N0 is dense in [0,+∞).

Proof. We have ρ0(n) = ||T rn(x̃⊕ y)|| and ρtn(n) = ||T qsn+1(x̃⊕ y)||. From condition

(b) of the Theorem 2.1.1 (proved above) it follows that there exists n1 = n1(ε,M)

such that for n ≥ n1, 0 < ρ0(n) < ε and ρtn(n) ≥M .

We will show that there exists n2 = n2(ε) such that for n ≥ n2 j = 0, . . . , tn− 1,

ρ2
j+1(n)− ρ2

j(n) < ε2. We have that, for n ∈ N,

ρ2
j+1(n)− ρ2

j(n) = ||T rn+j+1(x̃⊕ y)||2 − ||T rn+j(x̃⊕ y)||2 =

||(S∗w̃)rn+j+1x̃||2−||(S∗w̃)rn+jx̃||2+ ||Frn+j+1x̃||2−||Frn+jx̃||2+ ||Srn+j+1
w y||2−||Srn+j

w y||2

Let x̃ =
∑∞

k=1 α̃kẽk and y =
∑∞

k=1 αkek . We show �rst that there exists n2,0 = n2,0(ε)

such that for n ≥ n2,0, j = 0, . . . , tn − 1, ||Srn+j+1
w y||2 − ||Srn+j

w y||2 < ε2/3. We have

||Spn+j+1
w y||2 − ||Spn+j

w y||2 =
∞∑
k=1

|αk|2
(
k+pn+j−1∏

i=k

w2
i

)
(w2

k+pn+j − 1).

From (2.6), since pn ≤ k + pn + j, we have that wk+pn+j ≤ 21/pn , and thus

w2
k+pn+j − 1 ≤ 22/pn − 20 ≤ 4 ln 2

pn
≤ 4 ln 2

2n−1(n− 1)!
, n, k, j ∈ N,

The second inequality follows by the Mean Value Theorem applied to the func-

tion f(x) = 2x on the interval [0,2/pn], and the last inequality follows from pn ≥

2n−1(n− 1)! which is immediate from (2.5). It follows also from (2.6) that the prod-
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uct
∏k+pn+j−1

i=k wi is bounded above by
∏qn

i=pn+1wi = 22n+1, since it contains pn + j

weights, with pn + j ≤ qn. Thus(
k+pn+j−1∏

i=k

w2
i

)
(w2

k+pn+j − 1) ≤ (22n+1)2 4 ln 2

2n−1(n− 1)!
, n, k ∈ N, 0 ≤ j < tn.

The right-hand side of this inequality tends to zero as n→ +∞, and since
∑∞

k=1 |αk|2

is bounded we can choose n2 large enough such that for n ≥ n2,0 ∀j = 0, . . . , tn − 1,

||Srn+j+1
w y||2 − ||Srn+j

w y||2 < ε2/3.

Next we evaluate the remaining terms.

||(S∗w̃)rn+j+1x̃||2 − ||(S∗w̃)rn+jx̃||2 + ||Frn+j+1x̃||2 − ||Frn+jx̃||2 =

=
∞∑

k=rn+j+2

|α̃k|2
 k−1∏
i=k−(rn+j)

w̃2
i

 (w̃2
k−1−(rn+j) − 1)+

+

rn+j∑
k=1

|α̃k|2
(
k−1∏
i=1

w̃2
i

)(
rn+j+1−k∏

i=1

w2
i

)
(w2

rn+j+2−k − 1).

Let m ∈ N be such that sm < k − 1 − (rn + j) ≤ sm+1. Then we have that∏k−1
i=1 w̃

2
i ≤ 1 and

∏k−1−(rn+j)
i=1 w̃2

i ≥ (1/2)sm , by Lemma 2.3.5(i), so
∏k−1

i=k−(rn+j) w̃
2
i ≤

2sm , and

w̃2
k−1−(rn+j) − 1 ≤ 22/(rm−2sn) − 1 ≤ 24/rm − 20 ≤ 8 ln 2

rm
≤ 8 ln 2

2sm−1(sm − 1)!
,

and thus  k−1∏
i=k−(rn+j)

w̃2
i

 (w̃2
k−1−(rn+j) − 1) ≤ 16 ln 2

(sm − 1)!
.

It follows that there exists a constant C > 0 such that

 k−1∏
i=k−(rn+j)

w̃2
i

 (w̃2
k−1−(rn+j) − 1) ≤ C, n ∈ N, 0 ≤ j < tn, k ≥ rn + j + 2.
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Since limn

∑∞
k=rn+j+2 |α̃k|2 = 0 we can choose n2,1 large enough such that

∞∑
k=rn+j+2

|α̃k|2
 k−1∏
i=k−(rn+j)

w̃2
i

 (w̃2
k−1−(rn+j) − 1) <

ε2

3
, n ≥ n2,1, 0 ≤ j < tn.

For the other sum we have that
∏k−1

i=1 w̃
2
i ≤ 1 and if m ∈ N is such that

pm < rn + j + 2− k ≤ pm+1, we have
(∏rn+j+1−k

i=1 w2
i

)
≤ 22m and

(w2
rn+j+2−k − 1) ≤ (22/pm − 1) ≤ 4 ln 2

pm
≤ 4 ln 2

2m−1(m− 1)!
.

Now we write

rn+j∑
k=1

|α̃k|2
(
rn+j+1−k∏

i=1

w2
i

)
(w2

rn+j+2−k − 1) =

=

rn/2−1∑
k=1

|α̃k|2
(
rn+j+1−k∏

i=1

w2
i

)
(w2

rn+j+2−k − 1)+

+

rn+j∑
k=rn/2

|α̃k|2
(
rn+j+1−k∏

i=1

w2
i

)
(w2

rn+j+2−k − 1)

If k < rn/2 we have that rn + j + 1 − k > rn/2 and thus m ≥ sn, so for n large

enough we can make
(∏rn+j+1−k

i=1 w2
i

)
(w2

rn+j+2−k − 1) arbitrarily small, thus the �rst

sum tends to zero with n. If k ≥ rn/2 then
∑rn+j

k=rn/2
|α̃k|2 can be made arbitrarily

small with n, and the factor
(∏rn+j+1−k

i=1 w2
i

)
(w2

rn+j+2−k − 1) is bounded. Thus we

can choose n2,2 such that

rn+j∑
k=1

|α̃k|2
(
k−1∏
i=1

w̃2
i

)(
rn+j+1−k∏

i=1

w2
i

)
(w2

rn+j+2−k − 1) ≤ ε2

3
n ≥ n2,2, 0 ≤ j < tn.

Let n2 be the largest of n2,0, n2,1 and n2,2. We have that for n ≥ n2, j =

0, . . . , tn − 1, ρ2
j+1(n)− ρ2

j(n) < ε2. From this since the terms involved are positive it

follows that for n ≥ n2, j = 0, . . . , tn − 1, ρj+1(n)− ρj(n) < ε.

Choose n0 to be the largest of n1 and n2; then for the given ε andM we found n0
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such that the hypotheses of Lemma 2.4.2 are satis�ed. This shows that the sequence

{ρj(n)}tnj=0 is ε-dense in [0,M ] for all n ≥ n0.

Since every operator that is similar to T has these properties, we see that, in

fact, L(H) contains many operators with these same properties.

We conclude this section with a result to be used in forthcoming work, containing

more information about the bilateral weighted shift B = Bw̃,w just constructed.

Proposition 2.4.4. For B = Bw̃,w we have σe(B) = σ(B) = {z : 1
2
≤ |z| ≤

1}, ||B|| = 4
√

2, ||B||e = 1 and ||B−1||e = ||B−1|| = 2, where || · ||e denotes the

essential(Calkin) norm.

Proof. Let r(A) and re(A) denote the spectral radius and essential spectral radius

of an operator A ∈ L(H). Since the norm of a weighed shift equals the modulus of

the largest weight, we have ||B|| = 4
√

2 and ||B−1|| = 2. Moreover, since (1/2)sn ≤

||Brn|| ≤ 8, for all n, and (sn/rn)→ 0, it follows that r(B) = 1. Also, since B−1 has

arbitrarily long sequences of consecutive weights equal to 2 we get ||(B−1)n|| = 2n.

Thus, r(B−1) = 2. According to [26, Theorem 5, page 67] we have that

σ(B) = {z : r(B−1)−1 ≤ |z| ≤ r(B)} = {z :
1

2
≤ |z| ≤ 1}.

Since one knows that for every A ∈ L(H), every non-isolated point of the boundary of

σ(A) is contained in σe(A), one also obtains easily, using the fact that neither B nor

B∗ has an eigenvalue, that σe(B) = σ(B). It follows that re(B) = 1 and re(B
−1) = 2.

Clearly, re(B) ≤ ||B||e ≤ ||B||. If we replace all the weights of B that are roots

of 2 by weights equal to 1, we obtain a compact perturbation of B that has norm 1,

and thus ||B||e = 1. Finally, we have that re(B
−1) = ||B−1||e = ||B−1|| = 2.
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2.5. Remarks and questions

Remark 2.5.1. An operator T ∈ L(H) is said to be supercyclic if there exists a

vector x ∈ H such that {λT nx : n ∈ N, λ ∈ C } is dense in H. The operator Bw̃,w

constructed in this chapter is not even supercyclic. Indeed, according to [12], if Bw̃,w

were supercyclic, there would exist a strictly increasing sequence of positive integers

{nk}k∈N such that

(w1 . . . wnk) / ( w̃1 . . . w̃nk)→ 0.

Some calculations based on the fact that

(w1 . . . wsn) / (w̃1 . . . w̃sn) = w1 . . . wsn → 1/2,

show that the supercyclicity condition is not satis�ed.

Remark 2.5.2. Note that the operator Bw̃,w constructed above has a dense set of

noncyclic vectors (i.e., vectors that lie in some proper invariant subspace of Bw̃,w).

Problem 2.5.3. Theorem 2.1.1 establishes the existence of an operator in L(H)

such that every (nonzero) orbit has certain property � namely, density in R+ of the

sequence of norms. Moreover, in [15] an example was given of an operator T in L(H)

with ||T ||e = 1 such that the orbit of every nonzero vector x satis�es {||T nx||} → +∞.

What other properties that are common to every (nonzero) orbit can an operator in

L(H) have? For example, does there exist an operator T ∈ L(H) such that for all

nonzero vectors x, y ∈ H, {〈T nx, y〉} is dense in C? (Of course, such a T would be

transitive.)



38

CHAPTER III

WEAK HYPERCYCLICITY ON HILBERT SPACE

3.1. De�nitions and known results

Recently, Chan and Sanders [9] discussed the concept of a weakly hypercyclic operator,

de�ned as a T in L(H) with the property that there exists a vector x in H such

that O(x, T ) is weakly dense in H. They obtained there several interesting results,

including the following: a) there exist weakly hypercyclic operators in L(H) that are

not hypercyclic, and b) there exists a sequence {xn} ⊂ H that is weakly dense in H

and satis�es ||xn+1|| > ||xn|| for all n ∈ N. An important fact in these considerations

was a result by Dilworth and Troitsky [11] to the e�ect that if {xn}n∈N is a sequence

in a complex Banach space X whose norms satisfy, for some c > 1,

||xn|| ≥ cn, n ∈ N, (3.1)

then 0 /∈ {xn}w (so, in particular, {xn} is not weakly dense in X ). This led the present

authors to ask whether in H, where more structure is present, a weaker growth rate

than that in (5.11) would ensure the weak non-density of a sequence in H. After we

obtained some partial results in this direction we found that this question was already

answered by the following complex-plank theorem of Keith Ball [2].

Theorem 3.1.1 (Ball). Let {xn}n∈N be a sequence of unit vectors in H and let {an}

be a sequence of positive numbers such that
∑
a2
n = 1. Then there exists a unit vector

y ∈ H such that |〈xn, y〉| ≥ an for each n ∈ N.

The following corollaries are due to Kadets [16] and Shkarin [27], respectively.
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Corollary 3.1.2 (Kadets). For a sequence {an}n∈N of positive numbers, the follow-

ing are equivalent:

a) there exists at least one sequence {xn}n∈N in H satisfying ‖xn‖ = an for all n

and having 0 as a weak cluster point;

b) the series
∑

n 1/a2
n diverges.

Corollary 3.1.3 (Shkarin). If x ∈ H and T ∈ L(H) are such that the orbit O(x, T )

satis�es ∑
n∈N

1/||T nx||2 < +∞, (3.2)

then x is not weakly hypercyclic for T . In fact, the orbit O(x, T ) is weakly closed.

We will also need the following nice result of Beauzamy [4, Ch. 3].

Theorem 3.1.4 (Beauzamy). Let {Tn}n∈N be an arbitrary sequence of operators

in L(H), let ε be any positive number, and let {an}n∈N be any sequence of positive

numbers in (l2). Then there exists a nonzero vector y ∈ H such that ‖y‖ ≤ (1 +

ε) (
∑
a2
n)

1/2
and for each n ∈ N, ||Tny|| ≥ (1− ε)an‖Tn‖e.

In [15], Jung, Ko, and Pearcy initiated the study of non-hypertransitive opera-

tors (sometimes called non-orbit-transitive [23]), with the stated goal of eventually

showing that L(H) contains no hypertransitive operator. (By de�nition, an operator

T ∈ L(H) is hypertransitive if every nonzero vector in H is hypercyclic for T .) They

showed, for example, that no operator of the form H +K, where H is essentially hy-

ponormal and K is compact, can be hypertransitive, but recall that it is still unknown

whether these operators have nontrivial invariant subspaces. (On the other hand, C.

Read showed in [24] that on the Banach space (l1) there do exist hypertransitive

operators.) This led the present authors to the following.

De�nition 3.1.5. An operator T in L(H) is called weakly hypertransitive (or weakly
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orbit-transitive) if every nonzero vector x in H is weakly hypercyclic for T .

Of course, it remains an open problem whether weakly hypertransitive or hyper-

transitive operators exist in L(H).

In this note we �rst establish, in Section 3.2, the perhaps surprising result that

Theorem 3.1.1 is equivalent to a slightly stronger version of Theorem 3.1.4 (namely,

Theorem 3.2.1). We then obtain (in Section 3.3) a theorem that complements Corol-

lary 3.1.2 above. Finally, we show that all of the results of [15] can be improved to

obtain that various classes of operators in L(H) are not weakly hypertransitive. This

is done in Section 3.5 below.

3.2. An equivalence

In this section, we show that Theorem 3.1.1 is equivalent to the following slightly

stronger version of Theorem 3.1.4.

Theorem 3.2.1. Let {Tn}n∈N be an arbitrary sequence of operators in L(H), let

ε > 0, and suppose {an}n∈N is an (l2)-sequence of nonnegative numbers such that∑
a2
n = 1. Then there exists a unit vector y ∈ H such that

‖Tny‖ > (1− ε)an‖Tn‖, n ∈ N.

Proof of Theorem 3.2.1 (using Theorem 3.1.1 ). We construct a sequence {wn} of

unit vectors as follows. There exists a unit vector wn ∈ H such that

‖Tnwn‖ = (1− εn)‖Tn‖, n ∈ N,

where 0 ≤ εn < ε/2. Applying Theorem 1.1 to the sequence xn = Tnwn/(1− εn)‖Tn‖

of unit vectors and the sequence {an}, we obtain that there exists a unit vector y ∈ H
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such that ∣∣∣∣〈 Tnwn
(1− εn)‖Tn‖

, y

〉∣∣∣∣ ≥ an, n ∈ N,

and thus

‖T ∗ny‖ ≥ |〈wn, T ∗ny〉| > (1− ε)‖Tn‖an, n ∈ N.

Since ‖T ∗n‖ = ‖Tn‖, upon interchanging Tn and T ∗n we get the desired result. �

Proof of Theorem 3.1.1 (using Theorem 3.2.1 ). Let a sequence εk ↘ 0 be given. We

de�ne a sequence of operators {Tn} as follows. For w ∈ H set Tn(w) = 〈w, xn〉xn.

Since ‖xn‖ = 1 for all n, ‖Tn‖ = 1 too. By Theorem 3.2.1, for each k ∈ N there exists

a unit vector yk in H such that

‖Tnyk‖ = |〈yk, xn〉| > (1− εk)an, k, n ∈ N. (3.3)

Now choose a subsequence {ykm} of {yk} converging weakly, say to (the nonzero

vector) y0, satisfying ‖y0‖ ≤ 1. It follows now from (3.3) that, with y := y0/‖y0‖, we

have |〈xn, y〉| ≥ an for each n ∈ N. �

3.3. On Kadets' result

The following result was motivated by a construction of Chan and Sanders [9], and

complements Corollary 3.1.2 above. The weak closure of a set S in H will be written

as S
w
.

Theorem 3.3.1. Let {xn}n∈N ⊂ H satisfy 0 ∈ {xn}
w
, and lim(ln ‖xn‖/ lnn) =

α > 0. Then there exists a sequence {wn}n∈N ⊂ H such that {wn}
w

= H and

lim(ln ||wn||/ lnn) = α also.

Proof. Let {en}n∈N be an orthonormal basis for H and let S ∈ L(H) be the forward

unilateral shift de�ned by Sen = en+1 for n ∈ N. Moreover, for k ∈ N let Pk be the
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orthogonal projection of H onto
∨
{e1, . . . , ek}. Let {xn} be as in the hypothesis and

let {zn}n∈N be a sequence that is strongly dense in H and has the additional property

that for each n ∈ N and all k = 1, . . . , n, Pnzk = zk and ‖zk‖ ≤ k. (One way to

accomplish this is to �rst choose, for each n, a �nite 1/(n+1) net in the ball of radius

n centered at origin in PnH, then note that the union over n is a dense set D in H,

and �nally order D by �rst counting those points in the ε-net with ε = 1/2, followed

by those in the ε-net with ε = 1/3, etc.). Next, for each pair (n, k) ∈ N × N with

n ≤ 1 + ln k, we de�ne

yn,k = zn + Snxk, (3.4)

and note that since 0 is a weak cluster point of {xk}, we get, by holding n �xed and

letting k run,

zn ∈ {yn,k : k ∈ N, n ≤ 1 + ln k}w ;

hence

{yn,k : k ∈ N, n ≤ 1 + ln k}w = H. (3.5)

Next we order the elements {yn,k : k ∈ N, n ≤ 1 + ln k} in a sequence {wj} by

associating to every j ∈ N a pair (nj, kj) of natural numbers such that

wj := ynj ,kj = znj + Snjxkj , (3.6)

where

n1 := 1, k1 := 1

nj+1 := nj + 1, kj+1 := kj, if nj + 1 ≤ 1 + ln kj,

nj+1 := 1, kj+1 := kj + 1, if nj + 1 > 1 + ln kj.

Observe that as j runs through N, wj runs through all yn,k, and thus from (3.5)

we deduce that {wj : j ∈ N}w = H. Also note that since znj is orthogonal to S
njxkj ,
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we obtain from (3.6) that, for a given j ∈ N,

||wj|| = (||znj ||2 + ||xkj ||2)1/2 ≥ (||znj ||+ ||xkj ||)/
√

2.

On the other hand, since ‖znj‖ ≤ nj and nj ≤ ln kj we have

‖wj‖ ≤ ‖znj‖+ ‖xkj‖ ≤ ln kj + ‖xkj‖.

Since lim(ln ‖xn‖/ lnn) = α > 0, we have that, for j large enough, ln kj ≤ ‖xkj‖,

so ‖wj‖ ≤ 2‖xkj‖. The nondecreasing sequence {kj}j will take a given value k exactly

(1 + [ln k]) times (where, as usual, [β] denotes the greatest integer in β), so we have

that

kj + [ln 2] + · · ·+ [ln(kj − 1)] < j ≤ kj + [ln 2] + · · ·+ [ln kj] , j ∈ N.

Thus

ln ||wj||
ln j

≥
ln(||znj ||+ ||xkj ||)− (1/2) ln 2

ln j
≥

ln ||xkj || − 1/2

ln(kj + kj ln kj)
,

and it follows that

lim
j→∞

ln ||wj||
ln j

≥ lim
j→∞

ln ||xkj ||
ln kj + ln(1 + ln kj)

= α.

For the other inequality we note that

ln ||wj||
ln j

≤
ln(||xkj ||) + ln 2

ln j
≤

ln ||xkj ||+ ln 2

ln kj
,

and thus

lim
j→∞

ln ||wj||
ln j

= α.
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3.4. Some useful tools

In this section we list the results needed as tools to show that the results from [15]

asserting that certain classes of operators consist entirely of non-orbit-transitive oper-

ators can be improved to say that these classes are also subsets of the smaller class of

non-weakly-orbit-transitive operators. The �rst proposition is elementary and needs

no proof.

Proposition 3.4.1. If T ∈ L(H) and there exist nonzero vectors x and y such that

{〈T nx, y〉}n is not dense in C, then x is not a weakly hypercyclic vector for T . Thus,

if one of the equalities

σ(T ) = σe(T ) = σle(T ) = σre(T )

fails to hold, then T or T ∗ has point spectrum and T has a nontrivial invariant

subspace, so T is not weakly orbit-transitive. Moreover, T is weakly orbit-transitive if

and only if (some or) every operator similar to T is weakly orbit-transitive.

The following result is a modest improvement of inequalities due to S. Brown, V.

Lomonosov, and A. Simonic, developed over time (cf. [8], [28], and [18]). We write

we(A) for the essential numerical radius of an operator A.

Theorem 3.4.2. Let A denote any unital, proper subalgebra of L(H) that is closed

in the weak operator topology. Then there exist nonzero vectors x, y in H such that

the linear functional on A de�ned by ϕx,y(A) = 〈Ax, y〉 is a positive functional on A

(i.e., ϕ(1H) = ‖ϕ‖) and satis�es

|〈Ax, y〉| ≤ we(A)〈x, y〉, A ∈ A.

As noted in [27], the following extension of Ansari's theorem from [1] to weakly
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hypercyclic operators also holds.

Theorem 3.4.3 (Ansari-Shkarin). For every T ∈ L(H) and every n ∈ N, the

operators T and T n have exactly the same set of weakly hypercyclic vectors.

3.5. Consequences

Our �rst improvement of the results of [15] is this.

Theorem 3.5.1. If T ∈ L(H) and T is weakly orbit-transitive, then re(T ) = r(T ) =

1.

Proof. By Proposition 3.4.1 we may suppose that σ(T ) = σe(T ). It is shown in

[11] that every weakly hypercyclic operator in L(H) satis�es σ(T ) ∩ T 6= ∅, and

thus it su�ces to show that re(T ) > 1 is impossible. But if re(T ) = c > 1, then

‖T n‖e ≥ re(T
n) > cn for n ∈ N, and by Theorem 3.1.4 there exists a vector y in

H such that ‖T ny‖ > cn/n for all n, and hence by Corollary 3.1.2, 0 /∈ O(y, T )w, a

contradiction.

This next result may be thought of as the principal result of this section.

Theorem 3.5.2. Suppose that T ∈ L(H) and that there exists n ∈ N such that two

of the numbers re(T
n), we(T

n), ‖T n‖e coincide. Then for every invertible S ∈ L(H)

and every compact K in L(H), STS−1 +K fails to be weakly orbit-transitive.

Proof. Using Proposition 3.4.1, Theorem 3.4.3 and the fact that re(T ), we(T ) and

‖T‖e remain the same if T is replaced by a compact perturbation of T , one eas-

ily sees (by changing notation if necessary) that it su�ces to show that if two of

re(T ), we(T ), ‖T‖e coincide, then T is not weakly orbit-transitive. But, as is well-

known, the coincidence of two of the above three numbers implies that there exists
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an operator similar to T such that all three coincide, cf. [30]. Thus we may suppose

that re(T ) = we(T ) = ‖T‖e = 1 (via Theorem 3.5.1). But then according to Theorem

3.4.2, there exist nonzero vectors x, y in H such that

|〈T nx, y〉| ≤ we(T
n)〈x, y〉 ≤ ‖T n‖e〈x, y〉 = 〈x, y〉, n ∈ N,

so obviously O(x, T ) is not weakly dense in H.

This result has some immediate corollaries.

Corollary 3.5.3. If T is essentially hyponormal or a Toeplitz operator, S is invertible

and K is compact, then STS−1 +K is not weakly orbit-transitive.

Proof. One knows that for such an operator T , ‖T‖e = re(T ).

Corollary 3.5.4. No operator of the form SNS−1 + K, where S is invertible, N is

normal, and K in compact, is weakly orbit-transitive.

We close with some problems that arise from the above considerations.

Problem 3.5.5. If T ∈ L(H) is invertible and weakly orbit-transitive, must T−1 also

be weakly orbit-transitive? (One knows that an operator can be weakly hypercyclic

without its inverse being weakly hypercyclic [9, Cor. 3.6].)

Problem 3.5.6. If T ∈ L(H) is weakly orbit-transitive, must σ(T ) ⊂ T?

Problem 3.5.7. If T ∈ L(H) and {〈T nx, y〉} is dense in C for every pair x, y of

nonzero vectors in H, must T be weakly orbit-transitive? (One knows form [29] that

there exist nonhypercyclic operators T in L(H) such that for every x 6= 0 in H,

{‖T nx‖} is dense in R+.)
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Problem 3.5.8. Recall that an operator T ∈ L(H⊕H) is 2-normal if T is unitarily

equivalent to a 2 × 2 matrix (Nij), where the Nij are mutually commuting normal

operators, and it is known [14] that 2-normal operators have nontrivial hyperinvariant

subspaces. Can a sum T + K, where T is 2-normal and K is compact, be weakly

orbit-transitive?

Problem 3.5.9. The following question, which logically falls between the Orbit-

transitive Operator Problem and the Invariant Subspace Problem, seems not to have

received any attention: Is it true that for every T in L(H) there exist nonzero vectors

x and y such that the sequence {〈T nx, y〉}n∈N is bounded?
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CHAPTER IV

MORE CLASSES OF NON-ORBIT-TRANSITIVE OPERATORS

In [15] the authors initiated a program whose (announced) goal is to eventually show

that no operator in L(H) is orbit transitive. In [15] it is shown, for example, that if

T ∈ L(H) and the essential (Calkin) norm of T is equal to its essential spectral radius,

then no compact perturbation of T is orbit-transitive, and in Chapter II this result

was extended to say that no element of this same class of operators is weakly orbit-

transitive. Here we show that no compact perturbation of certain 2-normal operators

(which in general satisfy ‖T‖e > re(T )) can be orbit-transitive. This answers a

question raised in [15]. Our main result herein is that if T belongs to a certain class

of 2-normal operators in L(H(2)) and there exist two constants δ, ρ > 0 satisfying

‖T k‖e > ρkδ for all k ∈ N, then for every compact operator K, the operator T +K is

not orbit-transitive. This seems to be the �rst result that yields non-orbit-transitive

operators in which such a modest growth rate on ‖T k‖e is su�cient to give an orbit

{T kx} tending to in�nity.

4.1. De�nitions

Let H be a separable, in�nite dimensional, complex Hilbert space, and denote the

algebra of all bounded linear operators on H by L(H). If T ∈ L(H) and x ∈ H,

the countable (�nite or in�nite) set {T nx}∞n=0 is called the orbit of x under T , and

is denoted by O(x, T ). If O(x, T ) is dense in H, then x is called a hypercyclic vector

for T , and T is said to be a hypercyclic operator. The question of which operators in

L(H) are hypercyclic and properties of the set of hypercyclic vectors of a hypercyclic

operator have been much studied during the past twenty years. An operator T in

L(H) is called transitive if T has no invariant subspace (closed linear manifold) other
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than {0} and H, and is called orbit-transitive (or hypertransitive as in [15]) if every

nonzero vector in H is hypercyclic for T . Presently one does not know whether there

exist transitive or orbit-transitive operators in L(H). (It is obvious that every orbit-

transitive operator is transitive, and Read [24] has constructed an operator on the Ba-

nach space (l1) that is orbit-transitive.) Denote the set of all nontransitive operators

in L(H) by (NT) and the set of all non-orbit-transitive operators in L(H) by (NOT).

The invariant subspace problem is the open question whether (NT)= L(H), and the

orbit-transitive operator problem is the question whether (NOT)= L(H). (The orbit-

transitive operator problem is sometimes referred to as the hypertransitive-operator

problem [15] or the nontrivial-invariant-closed-set problem. At present, neither of the

terms �hypertransitive� nor �orbit-transitive� has been in use long enough to be con-

sidered standard, but note that if an operator T in L(H) is called �supertransitive� if

every nonzero vector y in H is supercyclic for T , i.e., {ρT ny : n ∈ N, ρ > 0}− = H ,

then �hypertransitive� would seem to be a reasonable alternative to �orbit-transitive�.)

This chapter continues the study of classes of non-orbit-transitive operators, with

the purpose (as mentioned explicitly in [15]) of eventually showing that (NOT)=

L(H), and thus to give convincing evidence that operators on Hilbert space are very

di�erent creatures from operators on more general complex Banach spaces. More

exactly, in this article we make progress on the problem of showing that if T is

n-normal and K is compact, then T + K ∈(NOT). In particular, we produce the

only known subset of (NOT) invariant under compact perturbations, consisting of

operators which satisfy the very modest growth condition ‖T k‖e ≥ ρkδ for some

ρ, δ > 0 and all k ∈ N.

All the notation and terminology to follow is consistent with that of [15] and

[?], but for the readers convenience, we brie�y review the main points. The sets

of positive and nonnegative integers will be denoted by N and N0, and the complex
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plane by C. The ideal of compact operators in L(H) will be written as K(H), or more

simply as K, and the quotient (Calkin) map L(H)→ L(H)/K by π. For T in L(H)

we write σ(T ) and σp(T ) for the spectrum and point spectrum of T , respectively, and

σe(T ) := σ(π(T )), σlre(T ) := σlr(π(T )) (the intersection of the left and right spectra

of π(T )). We also write r(T ) and re(T ) for the spectral radii of T and π(T ), as well

as ‖T‖e := ‖π(T )‖.

Finally, for any positive integer n we write H(n) for the direct sum of n copies of

H.

4.2. Some new ideas

Our �rst new result is a supplement to the following theorem of Ansari.

Theorem 4.2.1 (Ansari [1]). For every T ∈ L(H) and for every n ∈ N, T and T n

have exactly the same set of hypercyclic operators.

Our supplement is as follows:

Proposition 4.2.2. Suppose T ∈ L(H), x ∈ H, and there exists n0 ∈ N such that

‖ (T n0)k x‖ k→ +∞. Then‖T kx‖ k→ +∞ too. Consequently,

{y ∈ H : ‖T ky‖ k→ +∞} = {y ∈ H : ∃n0 ∈ N with ‖ (T n0)k y‖ k→ +∞}.

Proof. Assume that ‖T kx‖ 6→ +∞. Then there exist M ≥ 0 and a subsequence

{kj} ⊂ N such that

‖T kjx‖ →M. (4.1)

If, for kj > n0, we write kj = n0qj − rj, where qj, rj ∈ N0, 0 ≤ rj < n0, we have

‖(T n0)qjx‖ = ‖T rj+kjx‖ ≤ ‖T‖rj · ‖T kjx‖. (4.2)
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But under the assumption (4.1), (4.2) contradicts the fact that ‖ (T n0)k x‖ k→ +∞.

The essence of the main new technique of this note is contained in the following

proposition.

Proposition 4.2.3. Let {Tn}n∈N be a sequence of operators in L(H) with the property

that there exists a sequence of in�nite dimensional subspaces {Mn}n∈N such that, for

every n ∈ N, the operator Tn is bounded below on the subspaces Mn, . . . ,M2n−1 by

some M(n) > 0. Moreover, let {αn}n∈N be any sequence in l2(N). Then for every

x0 ∈ H there exists y ∈ H such that

‖y − x0‖2 ≤
∞∑
i=1

|αi|2, ‖Tny‖2 ≥
2n−1∑
i=n

|αi|2M2(n), n ∈ N. (4.3)

Proof. From each subspace Mn we will choose by induction a unit vector fn such that

the sequence {fi}∞i=1 will satisfy a set of orthogonality conditions, and we will de�ne

y = x0 +
∞∑
i=1

αifi.

To simplify notation, let f0 := x0, α0 := 1, T0 := I, and

yn =
n∑
i=0

αifi, n ∈ N.

We will choose the vector fn ∈Mn, with ‖fn‖ = 1, such that

Tkfn ⊥ Tkfj, 0 ≤ j ≤ n− 1, 0 ≤ k ≤ n. (4.4)

After de�ning fj we will have, by hypothesis, for every n ∈ N,

‖Tnfj‖ ≥M(n), n ≤ j ≤ 2n− 1, (4.5)
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and for n ≤ i, j, i 6= j we will have Tnfi ⊥ Tnyn−1 and Tnfj ⊥ Tnfi, so

‖Tny‖2 =

∥∥∥∥∥Tn
(
yn−1 +

∞∑
i=n

αifi

)∥∥∥∥∥
2

= ‖Tnyn−1‖2 +

∥∥∥∥∥Tn
(
∞∑
i=n

αifi

)∥∥∥∥∥
2

= (4.6)

= ‖Tnyn−1‖2 +
∞∑
i=n

|αi|2‖Tnfi‖2.

Now we give more details on the recursive construction of the sequence {fn}. If

M is a subspace of H, we will write PM for the (orthogonal) projection of H onto M.

Choose f1 ∈ M1 such that ‖f1‖ = 1, f1 ⊥ f0 and T1f1 ⊥ T1f0. To accomplish

this, de�ne S1 =
∨
{f0, T

∗
1 T1f0} and choose f1 ∈M1 	 PM1(S1) .

In general, in order to have all the conditions in (4.4) satis�ed, after f0, . . . , fn−1

have been de�ned, set Sn =
∨

0≤j≤n−1, 0≤k≤n{T ∗kTkfj}, which is a �nite dimensional

vector space, and choose fn to be a unit vector in Mn 	 PMn(Sn). This de�nes the

sequence {fn}n∈N0 with the desired properties.

Using (4.5) and (4.6) we have

‖Tny‖2 ≥
∞∑
i=n

|αi|2‖Tnfi‖2 ≥
2n−1∑
i=n

|αi|2M2(n), n ∈ N.

Remark 4.2.4. Notice �rst that the hypothesis of Proposition 4.2.3 could be modi�ed

so as to be valid only for n su�ciently large without changing the conclusion. More-

over, the hypothesis is implied by the statement that, given the sequence of operators

{Tn}, there exist a sequence of in�nite dimensional subspaces {Mn}n and a sequence

of positive real numbers {N(n)}n, such that for every n su�ciently large, all operators

from the set T[(n+1)/2], . . . , Tn are bounded below by N(n) on Mn. This is based on

the fact that, if for every j ∈ N the operators T[(j+1)/2], . . . , Tj are bounded below on

the subspace Mj by a constant N(j), then for every n ∈ N the operator Tn is bounded
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below on the subspaces Mn, . . .M2n−1 by M(n), if we let M(n) to be the minimum

of the set {N(n), . . . , N(2n− 1)}. We have also that the condition

∀n, j ∈ N with n ≤ j ≤ 2n− 1 : ‖Tnfj‖ ≥M(n),

implies the following:

∀j, n ∈ N with (j + 1) /2 ≤ n ≤ j : ‖Tnfj‖ ≥ N(j),

with the notation N(j) for the minimum of the set {M([(j + 1)/2]), . . . ,M(j)}.

The following is one of our two main results.

Theorem 4.2.5. Let {Tn}n∈N ⊂ L(H) and {Kn} ⊂ K be such that there exist positive

numbers ρ, δ with the property that for every n ∈ N su�ciently large, there exists an

in�nite dimensional subspace Mn on which T[(n+1)/2], . . . , Tn are bounded below by ρnδ,

and de�ne

An = Tn +Kn, n ∈ N.

Then the set of vectors y ∈ H such that ‖Any‖ → +∞ is dense in H.

Proof. Fix ε such that 0 < ε < 1 and choose N0 su�ciently large that for n ≥

N0, there exists an in�nite dimensional subspace Mn on which T[(n+1)/2], . . . , Tn are

bounded below by ρnδ. Note that the compact operators, K[n/2], . . . , Kn, when re-

stricted to Mn, remain compact operators, and thus for j = [n/2], . . . , n, there exists

a �nite dimensional subspace Fj ⊂ Mn such that ‖Kj| (Mn 	 Fj)‖ < ερnδ. Thus

for j = [(n + 1)/2], . . . , n,
∥∥∥Kj

∣∣∣ (Mn 	
∨n
j=[(n+1)/2] Fj

)∥∥∥ < ερnδ. Thus by de�ning

Nn = Mn 	
(∨n

j=[(n+1)/2] Fj

)
, we see that each of the operators A[(n+1)/2], . . . , An is

bounded below on Nn by N(n) := (1− ε)ρnδ.

Next, note that the sequence of operators {An}, together with the sequence of

subspaces {Nn} and the sequence of lower bounds {N(n)}, satis�es the hypothesis of
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Proposition 4.2.3 (and Remark 4.2.4). Given an arbitrary vector x0 ∈ H, let y be as

in the conclusion of the Proposition 4.2.3. Then we have

‖y − x0‖2 ≤
∞∑
i=1

|αi|2, ||Any||2 ≥
2n−1∑
i=n

|αi|2N2(n), n ∈ N.

Take αn = ε/n(1+δ)/2. Then

‖Any||2 ≥ (1− ε)2ρ2

2n−1∑
i=n

(
ε2

i1+δ
· n2δ

)
≥ (1− ε)2 ρ2

21+δ
·

2n−1∑
i=n

ε2

n1−δ = (1− ε)2 ρ
2ε2

21+δ
· nδ,

and

‖y − x0‖2 ≤ ε2

∞∑
i=1

(
1

i1+δ

)
,

from which is immediate that ‖Any‖ → ∞ and that the set of vectors y with this

property is dense in H.

The obvious application to powers of a single operator is this:

Corollary 4.2.6. Assume T ∈ L(H) has the property that there exist positive num-

bers ρ, δ such that for every n ∈ N su�ciently large, there exists an in�nite dimen-

sional subspace Mn on which the powers T [(n+1)/2], . . . , T n are bounded below by ρnδ.

If K ∈ K and A := T + K, then there exists a dense set of vectors y in H such that

‖Any‖ → +∞.

Proof. There exists a sequence of compact operators {Kn} such that

An = T n +Kn.

Theorem 4.2.5 has a generalization that should be quite useful in enlarging the

class (NOT):
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Theorem 4.2.7. Suppose that {Bn} ∈ L(H(2)) has the property that

Bn =

 Tn ∗

0 ∗

 ,

where the asterisks denote arbitrary entries, and {Tn}n∈N ⊂ L(H) is such that there

exist positive numbers ρ, δ with the property that for every n ∈ N su�ciently large,

there exists an in�nite dimensional subspace Mn on which T[n/2], . . . , Tn are bounded

below by ρnδ. Let {Kn} ⊂ K
(
H(2)

)
and de�ne An = Bn+Kn. Then the set of vectors

y ∈ H satisfying ‖Any‖ → +∞ is dense in H⊕ (0).

Proof. Write

Kn =

 Kn1 Kn2

Kn3 Kn4

 ,

and

An =

 Tn +Kn1 ∗

Kn3 ∗

 .

Apply Theorem 4.2.5 to the sequence of operators {An1 := Tn+Kn1} to build a vector

y1 ∈ H such that ‖An1y1‖ → +∞. Then for the vector

y =

 y1

0

 ∈ H(2),

we have

Any =

 Tn +Kn1 ∗

Kn3 ∗


 y1

0

 =

 An1y1

Kn3y1

 ,

and hence ‖Any‖ → +∞.

We turn now to the application of the results of Section 4.2 to the class of n-

normal operators.
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4.3. N -normal operators

Recall that for any n ∈ N, an operator T ∈ L(H) is called an n-normal operator

if T is unitarily equivalent to an n × n operator matrix (Nij) acting on H(n) in the

usual fashion, where the set {Nij} consists of mutually commuting normal operators

in L(H). The theory of n-normal operators is quite well developed and in [14] it

was proved that every n-normal operator has a nontrivial hyperinvariant subspace

(n.h.s.).

We will show below that compact perturbations of certain classes of 2-normal

operators are subsets of (NOT) by virtue of having an orbit that tends to in�nity.

We begin with the following well-known fact from [10].

Proposition 4.3.1. Let T be any n-normal operator in L(H). Then T is unitar-

ily equivalent to an n-normal operator (Nij), acting on H(n) in the usual matricial

fashion, which satis�es

i) the Nij are mutually commuting normal operators in L(H),

ii) Nij = 0 whenever i > j, i.e., the matrix (Nij) is in upper triangular form.

Notation 4.3.2. We shall say that an n-normal operator is in standard form if it is

an n×n matrix (Nij) acting as usual on H(n) and satisfying i) and ii) of Proposition

4.3.1. (Of course, except in rare cases the standard form of an n-normal operator is

not unique.)

The next lemma is elementary.

Lemma 4.3.3. Let T = (Nij) ∈ L(H(2)) be a 2-normal operator in standard form, and

suppose that the polar decompositions N11 = V1P1 and N22 = V2P2 (with P1, P2 ≥ 0)

satisfy V1 = V2. Then there exists a unitary operator U ∈ L(H) such that Nii = UPi,

i = 1, 2, and U commutes with all the Nij. Moreover, for every K ∈ K, there exists
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a sequence {Jk}k∈N ⊂ K such that

‖(T +K)kx‖ = ‖(Sk + Jk)x‖, k ∈ N, x ∈ H, (4.7)

where S is the 2-normal operator in L(H(2)) in standard form given by the matrix

S =

 P1 U−1N12

0 P2

 . (4.8)

Proof. The �rst statement of the lemma is an easy consequence of the spectral the-

orem for normal operators. Next, write Diag(U) for the 2× 2 diagonal matrix with

each diagonal entry equal to U . Note that S and Diag(U) are mutually commuting

2-normal operators in standard form, and T = Diag(U)S. Furthermore, if we write

(T +K)k = T k +Kk where Kk ∈ K, we obtain

(T +K)k = T k +Kk = (Diag(U)S)k +Kk = Diag(Uk)(Sk + Jk), k ∈ N, (4.9)

where Jk := Diag(U−k)Kk ∈ K, and since for each k ∈ N, Diag(Uk) is a unitary

operator, (4.7) is immediate from (4.9).

We turn now to some preliminary lemmas.

Lemma 4.3.4. Let 1 ≥ a ≥ b ≥ 0 and let k be a given positive integer. Then, for

every m ∈ N ∩ [k/2, k], we have

am − bm ≥ 1

2
(ak − bk), (4.10)

and thus
m−1∑
i=0

am−1−ibi ≥ 1

2

(
k−1∑
i=0

ak−1−ibi

)
. (4.11)

Proof. The inequality (4.10) is equivalent to

bk − 2bm ≥ ak − 2am for
k

2
≤ m ≤ k.
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Consider the function f(x) = xk−2xm. Then f ′(x) = kxk−1−2mxm−1 = xm−1(kxk−m−

2m). But since 2m ≥ k we have f ′(x) ≤ xm−1(kxk−m − k) = xm−1k(xk−m − 1), and

for x ∈ [0, 1] we have f ′(x) ≤ 0. Thus f is decreasing on the interval [0, 1] and thus

the inequality (4.10) follows.

The equation (4.11) is immediate in the case a = b, and it follows from (4.10) by

dividing by (a− b) when a > b .

Lemma 4.3.5. Suppose

T =

 P1 N

0 P2


is a 2-normal operator in standard form, where Pi ≥ 0, and let K ∈ K and A = T+K.

Then

T k =

 P k
1 N

∑k−1
i=0

(
P k−1−i

1 P i
2

)
0 P k

2

 , k ∈ N, (4.12)

and Ak = T k + Kk, where Kk ∈ K. Moreover, if max{‖P1‖e, ‖P2‖e} > 1, then there

exists a vector x ∈ H(2) such that ‖Akx‖ → +∞.

Proof. Equation (4.12) results from an easy calculation, and since

re(A) = max{‖P1‖e, ‖P2‖e}, if this maximum is greater than 1, then the existence of

such a vector x is immediate from Corollary 1.6 of [15] .

This next result is our second main theorem.

Theorem 4.3.6. Suppose

T =

 N1 M

0 N2


is a 2-normal operator in standard form, with N1 = V P1 and N2 = V P2 (polar

decompositions), K ∈ K, and there exist ρ, δ > 0 such that

‖T k‖e > ρkδ, k ∈ N. (4.13)
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Then there exists x ∈ H(2) such that ‖(T +K)nx‖ → +∞, and consequently T +K ∈

(NOT).

Proof. By Lemmas 4.3.3 and 4.3.5, with

S =

 P1 N

0 P2

 (4.14)

a normal operator in standard form, it su�ces to show that if {Jk} is any sequence

of compact operators, then there exists x ∈ H(2) such that

‖(Sk + Jk)x‖ → +∞.

Moreover, we may suppose that {‖P1‖e, ‖P2‖e} ≤ 1, and that (via (4.9))

‖Sk‖e = ‖T k‖e ≥ ρkδ, k ∈ N. (4.15)

Applying (4.15), (4.14) and Lemma 4.3.5, we obtain immediately that∥∥∥∥∥N
k−1∑
i=0

P k−1−i
1 P i

2

∥∥∥∥∥
e

> ρkδ − 1 > ρ̂kδ, (4.16)

where ρ̂ > 0 is de�ned appropriately for k su�ciently large.

Since P1, P2 and N are mutually commuting normal operators, it follows from

[7] that there exist compact operators J1, J2, J3, an orthonormal basis E = {en}n∈N

for H, and sequences {αn}, {βn} and {γn} in (l∞), with 0 ≤ αn, βn ≤ 1, such that

P1 = Diag(αn) + J1, P2 = Diag(βn) + J2, N = Diag(γn) + J3,

and thus (see 4.16) the (1, 2) entry of Sk is

Diag

(
γn

k−1∑
i=0

(
αk−1−i
n βin

))
+ J

(k)
4 , k ∈ N,
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where J
(k)
4 is compact. Moreover, since∥∥∥∥∥N

k−1∑
i=0

P k−1−i
1 P i

2

∥∥∥∥∥
e

= re

(
Diag

(
γn

k−1∑
i=0

(
αk−1−i
n βin

)))

is the largest (in modulus) limit point of the sequence{
γn

k−1∑
i=0

αk−1−i
n βin

}
,

for each �xed k ∈ N there exists a subsequence{
|γnq |

k−1∑
i=0

αk−1−i
nq βinq

}
q

,

where {nq} depends on k, that converges to
∥∥∥N∑k−1

i=0 P
k−1−i
1 P i

2

∥∥∥
e
. Thus for nq

su�ciently large (say q ≥ q0), we have, with

Mk =
∨
{enq}q≥q0 ,

that N
∑k−1

i=0 P
k−1−i
1 P i

2 is bounded below on Mk by ρ̂k
δ (see (4.16)), and thus Sk has

the same lower bound on (0)⊕Mk.

By Lemma 4.3.4, for m = [(k + 1)/2], . . . , k − 1, we have

|γn|
m−1∑
i=0

αm−1−i
n βin ≥

1

2

(
|γn|

k−1∑
i=0

αk−1−i
n βin

)
,

and using this fact for the subsequence of indices {nq} we get that S[(k+1)/2], . . . , Sk

have 1
2
ρ̂kδ as a lower bound on (0)⊕Mk. Now the conclusion follows from Theorem

4.2.5 .

This result combined with Theorem 4.2.7 yields the following:

Corollary 4.3.7. If R is an operator that has an invariant subspace on which it is a

2-normal operator satisfying the hypothesis of Theorem 4.3.6, and A = R+K, where
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K is compact, then A has an orbit tending to in�nity.

Remark 4.3.8. It follows as in Theorem 4.2.5 that the set of vectors x as in the

conclusion of Theorem 4.3.6 is dense in H .

We continue by recalling the de�nition of the operator A from Example 4.5 of

[15]. (The question whether A belongs to (NOT) was left unresolved in [15].)

Example 4.3.9. Let H be a Hermitian 2-normal operator in L(H(2)) represented as

an operator matrix

H =

 H1 0

0 H2

 , (4.17)

where H1 and H2 are commuting Hermitian operators in L(H) satisfying σ(Hi) =

σe(Hi) = [1/2, 1], i = 1, 2, and on the space
⊕∞

n=2H(2) consider the 2-normal operator

T =
∞⊕
n=2

 (1− 1/n)1H (1/
√
n)1H

0 (1− 1/n)1H

 .

Then, as was noted in [15], for all k ∈ N, ‖T k‖e satis�es

k√
2k − 1

(
2k − 2

2k − 1

)k−1

≤ ||T k||e ≤ 1 +
k√

2k − 1

(
2k − 2

2k − 1

)k−1

. (4.18)

Let K be an arbitrary compact operator on
⊕∞

n=1H(2) and set

A = (H ⊕ T ) +K. (4.19)

(The presence here of the direct summand H is simply to prevent A from having

disconnected spectrum, and thus to have a nontrivial hyperinvariant subspace.) Then

σe(A) = σe(H ⊕ T ) = [1/2, 1], but A is not essentially power bounded. In fact, from

(4.18) we see that, asymptotically, ‖Ak‖e = ‖T k‖e ∼
√
k; and this growth is too slow

for [15, Th. 1.5 ] to be applicable. However, that the operator A in (4.19) belongs to



62

(NOT) is now immediate from Theorem 4.3.6.

A natural question to ask, in view of Theorem 4.3.6, is whether the hypothesis

(4.13) is really necessary in order to conclude that T has some orbit converging to

in�nity. Example 4.4.1 shows that (4.13) cannot be omitted in general, but this next

proposition shows that there are some classes of n-normal operators in which (4.13)

is not needed.

Proposition 4.3.10. Suppose K ∈ K(H(2)) and

T =

 N1 N3

0 N2

 ∈ L(H(2))

is a 2-normal operator in standard form such that max{re(N1), re(N2)} < 1. Then

T + K is essentially power bounded, and thus (by [15, Theorem 1.2]) belongs to

(NOT). Moreover, if, on the other hand, σe(N1) = σe(N2) = {1} and N3 is es-

sentially invertible (i.e., π(N3) is invertible), then either T + K is essentially power

bounded or ‖(T+K)k‖e ∼ k asymptotically, so again (by [15, Theorems 1.2 and 1.5]),

T +K ∈ (NOT).

Proof. Since re(T + K) = re(T ) = max{re(N1), re(N2)}, if re(T + K) < 1, then

one knows from the general theory of Banach algebras that ‖(T + K)k‖e
k→ 0, so

T + K is essentially power bounded. Now suppose that σe(N1) = σe(N2) = {1} and

π(N3) is invertible. Then one knows from [21] that there exist compact operators

Ki, i = 1, 2, 3, in L(H) such that N1 = 1H + K1, N2 = 1H + K2, and N3 = J + K3,

where J is invertible. Thus

T =

 1H J

0 1H

+K,

where K ∈ L(H(2)) is compact. An easy matricial calculation (see [15, Prop. 3.2])
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gives that ‖(T + K)k‖e = ‖T k‖e ∼ k, and that T + K has (a dense set of) orbits

tending to in�nity is now immediate from [15, Theorem 1.5] .

4.4. Oscillating behavior

Here we construct a 2-normal operator B = (Bij) ∈ L(H(2)) in standard form, with

B11 = B22 ≥ 0, but B is not essentially power bounded, and neither does it satisfy

the hypothesis of Theorem 4.3.6. The operator B will have the property that there

exists a subsequence of powers {kn} and ρ, δ > 0 such that ‖Bkn‖e > ρkδn for all kn,

but at the same time, there exists a subsequence of powers {jn} such that {‖Bjn‖}

is bounded.

Example 4.4.1. Let

B =
∞⊕
n=2

Tmn ,

where Tn is given by

Tn :=

 (1− 1/n)1H (1/
√
n)1H

0 (1− 1/n)1H

 , n ∈ N,

and {mn} is de�ned recursively as m2 = 2, mn+1 = m4
n, which gives mn = 2(4n−2).

The sequences of powers {kn} and {jn} are given by kn := mn and jn := m2
n .

Note that

T kn =

 (1− 1/n)k1H (k/
√
n)(1− 1/n)k1H

0 (1− 1/n)k1H

 ,

Consider the magnitude of the (1, 2) entry of T kn as a function of n, with k as param-
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eter, denoted as

g(n) =
k√
n

(
1− 1

n

)k−1

.

Note that the (1, 2) entry of T kn is the one that determines the growth of the essential

norm, since the diagonal entries T kn have norms bounded by 1. The �rst derivative of

g is

g′(n) =
1

n

k√
n

(
1− 1

n

)k−2(
−1

2

n− 1

n
+
k − 1

n

)
.

with the only zero at n = 2k − 1. By computing the second derivative we note that

n = 2k − 1 is a maximum point for g.

We are now ready to estimate the growth of the sequences {‖Bkn‖e} and {‖Bjn‖}.

As noted above the growth of T kmn is determined by the expression

k
√
mn

(
1− 1

mn

)k−1

.

For the �rst sequence, we have that ‖Bkn‖e = ‖Bmn‖e ≥ ‖Tmnmn ‖e and since the

sequence

{(
1− 1

mn

)mn}
n

is decreasing to 1/e we have

‖Tmnmn ‖e ≥
√
mn

(
1− 1

mn

)mn−1

>
√
mn ·

1

e

It follows that here we can take δ = 1/2 and ρ = 1/3 to get

‖Bkn‖e > ρkδn.

Next, to show that {‖Bjn‖} is a bounded sequence, it is su�cient to show that

there exists a constant M such that for all n and p we have

‖T jnmp‖ ≤M.

By the above remarks, for the �xed power k := jn = m2
n, (and thus for a �xed n),

we have that the entry of T kq that determines the growth of the ‖T kq ‖ has a maximum
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at q0 = 2k− 1(= 2m2
n− 1), increasing for q up to that value and decreasing after the

maximum is attained. Notice that the sequence {mr}r does not assume the value q0;

in particular mn < q0 < mn+1. Thus, to show ‖T jnmp‖ is bounded for all p and n, it

is su�cient to show that, for �xed n, we have that ‖T jnmn‖ and ‖T
jn
mn+1
‖ have upper

bounds independent of n.

The norm of the (1, 2) entry of T jnmn+1
is(

1− 1

m4
n

)m2
n−1

≤ 1,

and the norm of the (1, 2) entry of T jnmn is

m2
n√
mn

(
1− 1

mn

)m2
n−1

= 2 ·m3/2
n

(
1− 1

mn

)m2
n

≤ 2 ·m3/2
n

(
1

2

)mn
,

since the sequence

{(
1− 1

mn

)mn}
n

begins with 1/2 and is decreasing;

thus ‖T jnmn‖
n→ 0 .
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CHAPTER V

ADDITIONAL FACTS

We include here some facts related to the material in Chapter IV. First we present an

alternative proof that the operator A de�ned in equation (4.19) is not orbit-transitive.

The proof relies on induction to construct a vector y that is not hypercyclic for the

operator A. The second section shows that the operator T de�ned by equation (5.1)

is not weakly hypertransitive. We were not able to extend the proof to show that any

compact perturbation of T is not weakly hypertransitive. The third section includes

results related to the growth rate of the powers of a 2-normal operator, and the last

section contains a slight generalization of a proposition from Chapter IV that has as

corollary a well known theorem.

5.1. An alternative proof for the non-hypertransitivity of the operator A

Consider the 2-normal operator T as in [15, Example 4.5]; that is, on the space

⊕∞n=1H
(2)
n de�ne

T = ⊕∞n=2

 (1− 1/n)1H (1/
√
n)1H

0 (1− 1/n)1H

 . (5.1)

We want to show that, if K is an arbitrary compact operator and H is de�ned

as in [15, Example 4.5], than we can construct a vector y0 of the type (5.8) such that

the operator A = K + (H ⊕ T ) has the property that {||Any0||}n tends to in�nity.

Such a vector y0 would not be hypercyclic and it would follow that the operator A is

not hypertransitive.
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Let Tn denote the matrix

Tn =

 (1− 1/n)1H (1/
√
n)1H

0 (1− 1/n)1H



and let Sn :=

 (1− 1/n) (1/
√
n)

0 (1− 1/n)

 be the corresponding scalar matrix. We

have that

Skn =


(
n− 1

n

)k
k√
n

(
n− 1

n

)k−1

0

(
n− 1

n

)k
 .

Let v =

 0

1

 . Then

Sknv =


k√
n

(
n− 1

n

)k−1

(
n− 1

n

)k


If we take n = 2k − 1 we get that ||T k2k−1|| ≥ ||Sk2k−1v|| ≥
k√

2k − 1

(
2k − 2

2k − 1

)k−1

, so

the growth of ||T k|| is at least of order
√
k.

Choose αn = 1/n(1+δ)/2, with 0 < δ < 1 (in particular we can take δ = 1/2);

then {αn}∞n=1 ∈ l2. Let {en}∞n=1 be an orthonormal sequence in ⊕∞k=1H2
k such that

en =

 0

fn

 ,where fn ∈ ⊕∞k=1Hk has a nonzero component only for k = n, (5.2)
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De�ne y ∈ ⊕∞n=1H
(2)
n by

y =
∞∑
n=2

αnen, (5.3)

Then

T ky =
∞∑
n=2

αnT
k
nen =

∞∑
n=2

αnT
k
n

 0

fn

 =
∞∑
n=2

αn


k√
n

(
n− 1

n

)k−1

fn(
n− 1

n

)k
fn

 . (5.4)

We want to show that, if K is an arbitrary compact operator and H is de�ned

as in [15, Example 4.5], than we can construct a vector y0 of the type (5.8) such that

the operator A = K + (H ⊕ T ) has the property that {||Any0||}n tends to in�nity.

Such a vector y0 would not be hypercyclic and it would follow that the operator A is

not hypertransitive.

In order to show this, we show �rst that for an arbitrary orthonormal sequence

{fn} as above (fn is a unitary vector from ⊕∞k=1Hk with a nonzero component only

for k = n) we have that

{||T ny||}n →∞.

Let

ck(n) :=
k√
n

(
n− 1

n

)k−1

,

and consider the terms in (5.11) from n = k to n = 2k. We have

ck(k) :=
k√
k

(
k − 1

k

)k−1

, ck(2k) :=
k√
2k

(
2k − 1

2k

)k−1

,

Since

lim
k

(
k − 1

k

)k−1

= e−1 and lim
k

(
2k − 1

2k

)k−1

= e−1/2,

there exist a constant c1 > 0 and an index n1 ∈ N such that for all k ≥ n1 and for all
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n such that k ≤ n ≤ 2k we have

ck(n) ≥ c1 ·
√
k.

Thus for n = k, .., 2k we have ||T k(en)|| ≥ c1 ·
√
k and

||T ky|| ≥
2k∑
n=k

|αn|2||T knen||2 ≥ c1 ·
2k∑
n=k

(
1

n1+δ
· k
)
≥ c1 ·

1

21+δ
·

2k∑
n=k

1

kδ
= c2 · k1−δ.

Thus, for δ = 1/2 there exists a constant c2 > 0 such that for k ≥ n1,

||T ky|| ≥ c2 ·
√
k.

For each n ∈ N we choose an orthonormal sequence {e(n)
k }∞k=1 ∈ ⊕∞n=1H

(2)
n that it

lives on H(2)
n (all other components are zero) and de�ne

yj =

j∑
n=2

αne
(n)
kn
,

and y = limj→∞ yj. We will choose by induction the subsequence {e(n)
kn
}∞n=1 as in [15,

Example 4.5]. Let ε > 0.

It would be enough to get

||Any||2 ≥ (1− ε)2

2n∑
i=n

|αi|2||T ne(i)ki ||
2, for all n. (5.5)

That would work if we can get the following (our induction hypothesis) to be true:

||An
j∑
i=2

αie
(i)
ki
||2 ≥ (1− ε)2

j∑
i=n

|αi|2||T ne(i)ki ||
2, for n = 1, . . . , j. (5.6)

Since for {e(2)
k } the operator T produces vectors of equal norm, while the compact

K2 takes them to a sequence of vectors decreasing to zero we can choose e
(2)
k2

far enough
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in the sequence such that

||Aα2e
(2)
k2
|| ≥ (1− ε)α2||Te(2)

k2
||

|〈Tα2e
(2)
k2
, K2α2e

(2)
k2
〉| ≤ |α2|2ε.

Now suppose {e(i)ki }, for i = 2, . . . , j, have been chosen from {e(n)
k }∞k=1 such that

||An
j∑
i=2

αie
(i)
ki
||2 ≥ (1− ε)2

j∑
i=n

|αi|2||T ne(i)ki ||
2, for n = 1, . . . , j. (5.7)

Since the sequence {e(n)
k }∞k=1 converges weakly to zero, the same is true for every

sequence {Ame(n)
k }∞k=1 for �xed m,n ∈ N. Thus for the �xed vector

∑j
i=2 αie

(i)
ki

we

have 〈
Anαj+1e

(j+1)
k , An

(
j∑
i=2

αie
(i)
ki

)〉
→ 0, with k

It follows, using the inductive hypothesis (5.7), that we can pick e
(j+1)
kj+1

far enough

in the {e(j+1)
k } sequence such that

∥∥∥∥∥An
(
αj+1e

(j+1)
kj+1

+

j∑
i=2

αie
(i)
ki

)∥∥∥∥∥
2

≥ (1− ε)2

j+1∑
i=n

|αi|2||T ne(i)ki ||
2, for n = 1, . . . , j.

and

∥∥∥∥∥Aj+1

(
j+1∑
i=2

αie
(i)
ki

)∥∥∥∥∥
2

≥ (1− ε)2|αj+1|2||T j+1e
(j+1)
kj+1
||2.

5.2. Weak non-orbit-transitivity of T

We will show that we can construct two vectors y and ỹ, such that the operator T

de�ned by (5.1) has the property that {|〈T ny, ỹ〉|}n tends to in�nity. Then the vector
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y would not be weakly hypercyclic and it would follow that the operator T is not

weakly hypertransitive.

Let {en}∞n=1 and {ẽn}∞n=1 be two orthonormal sequences in ⊕∞k=1H2
k such that

en =

 0

fn

 , ẽn =

 fn

0

 .

De�ne

y =
∞∑
n=2

αnen =
∞∑
n=2

αn

 0

fn

 , (5.8)

and

ỹ =
∞∑
n=2

αn

 fn

0

 . (5.9)

Then

T ky =
∞∑
n=2

αnT
k
nen =

∞∑
n=2

αnT
k
n

 0

fn

 =
∞∑
n=2

αn


k√
n

(
n− 1

n

)k−1

fn(
n− 1

n

)k
fn

 .

and

〈T ky, ỹ〉 =
∞∑
n=2

α2
n

k√
n

(
n− 1

n

)k−1

.

We will show that

{〈T ny, ỹ〉}n →∞.

For n = k, .., 2k , there exists ρ > 0 such that

k√
n

(
n− 1

n

)k−1

≥ ρ ·
√
k

and thus
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〈T ny, ỹ〉 =
∞∑
n=1

α2
n

k√
n

(
n− 1

n

)k−1

≥
2k∑
n=k

α2
n · ρ ·

√
k ≥ ρ ·

2k∑
n=k

(
1

n1+δ
·
√
k

)

≥ ρ · 1

21+δ
·

2k∑
n=k

(
1

k1+δ
·
√
k

)
= ρ · 1

21+δ
· k
(

1

k1+δ
·
√
k

)
= ρ · 1

21+δ
· k1/2−δ.

So, for δ < 1/2 we have that

〈T ny, ỹ〉 n→ +∞,

and this �nishes the argument that the operator T is not weakly-orbit transitive.

5.3. Results related to the growth rate of a 2-normal operator

Let {Tn}n be a sequence of operators and {ej}j be a sequence of vectors such that,

for every j, when the operators in the set {T[(j+1)/2], . . . , Tj} are applied to ej give

vectors with a common lower boundM(j). It follows that when applying the operator

Tn to the vectors {en, . . . , e2n−1} we obtain vectors with norm bounded below by

min{M(n), . . . ,M(2n− 1)}.

Note that if we restrict the condition above to hold for just a ratio of the operators

in the set {T[(j+1)/2], . . . , Tj} when applied to the vector ej, this does not necessarily

imply that every operator Tn will have a similar bound as above on a subset of the

set of vectors {en, . . . , e2n−1}.

We are showing below that for a sequence of operators {Tn} that are represented

as 2 × 2 matrices and satisfy certain hypothesis, we can construct a sequence of

vectors {ej} such that, on each vector ej, we have that 1/3 of the operators in the

set {T[(j+1)/2], . . . , Tj} have a common lower bound of the same order as ‖Tjej‖. We

are interested in showing that the dual statement holds, that is, for every n, the �xed
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operator Tn when applied to 1/3 of the vectors in the set {en, . . . , e2n−1} produces

vectors that have a common lower bound of the same order as ‖Tnen‖. This would

enable us to extend the statement the Theorem 4.3.6 to all 2-normal operators that

satisfy the given growth condition, without the restriction that the diagonal entries

of the 2-normal operator are either equal or Hermitian.

We stat with two lemmas that are easy exercises in linear algebra.

Lemma 5.3.1. Suppose A ∈ C2,2, A =

 α γ

0 β

, and |α| ≤ 1, |β| ≤ 1, α 6= β.

Then for all k ∈ N,

‖Ak‖ ≤
(

1 +
‖A‖
|α− β|

)2

.

Proof. Use the similarity S =

 1 x

0 1

, with x = −γ/(α−β) to diagonalize A.

Lemma 5.3.2. Suppose A ∈ L(C2), A =

 α γ

0 β

, and |α|, |β| ≤ 1. Then for all

k ∈ N,

‖Ak (0, 1)t ‖2 ≥ ‖Ak‖2 − 1 > ‖Ak‖ − 1.

Proof. We write

Ak =

 αk µk

0 βk

 =

 αk γ(αk−1 + αk−2β + · · ·+ βk−1)

0 βk

 , k ∈ N.

Thus

‖Ak(0, 1)t‖2 = |µk|2 + |β|2k,
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and if y = (γ1, γ2)
t is any unit vector in C2, then

‖Aky‖2 = |γ1α
k + γ2µk|2 + |γ2|2|β|2k ≤ (|γ1|2 + |γ2|2)(|α|2k + |µk|2) + |γ2|2|β|2k ≤

≤ |µk|2 + |β|2k + 1 = ‖Ak(0, 1)t‖2 + 1,

from which the result follows.

Lemma 5.3.3. Let {e(1)
n , e

(2)
n }n∈N be an orthonormal basis for H, and let T ∈ L(H)

be a 2-normal operator of the form T = ⊕nTn, where each Tn ∈ L(C2) has associated

matrix, relative to the orthonormal basis {e(1)
n , e

(2)
n }, αn γn

0 βn

 .

Let

Λ := {L ∈ C2,2 = L(C(2)) : ∃ a subsequence {Tnk} of {Tn} satisfying ‖Tnk−L‖ → 0}.

Then

‖T‖e = max{‖L‖ : L ∈ Λ}. (5.10)

(It turns out that the set Λ coincides with the essential 2 × 2 matricial spectrum of

T , cf. [22], [21, Ch. 3].)

Proof. Since Λ is compact and L→ ‖L‖ is continuous, the maximum in (5.10) exists.

Let LM ∈ Λ satisfy ‖LM‖ = max{‖L‖ : L ∈ Λ} and have matrix

LM =

 αM γM

0 βM

 .
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We know that

‖T‖2e = ‖T ∗T‖e = re(T ∗ T ) = re

⊕
n

 |αn|2 ᾱnγn

αnγ̄n |βn|2 + |γn|2


 ,

and thus that ‖T‖e is the largest limit point of the union of sets of eigenvalues of

T ∗nTn, i.e., the largest limit point of the set {λ : ∃n ∈ N such that λ2 − (|αn|2 +

|βn|2 + |γn|2)λ + |αn|2|βn|2 = 0}. Moreover, since ‖LM‖2 = r(L∗MLM) = max{λ :

λ2−(|αM |2 + |βM |2 + |γM |2)λ+ |αM |2|βM |2 = 0} and αnk → αM , βnk → βM , γnk → γM

and the eigenvalues of a matrix are continuous functions of the matrix entries, the

result follows.

Lemma 5.3.4. Let 1 ≥ a > b ≥ 0 and let k be a given positive integer. Then for

every m ∈ N ∩ [k/2, k] we have

am − bm ≥ 1

2
(ak − bk). (5.11)

Proof. The inequality (5.11) is equivalent to

bk − 2bm ≥ ak − 2am for
k

2
≤ m ≤ k.

Consider the function f(x) = xk−2xm. Then f ′(x) = kxk−1−2mxm−1 = xm−1(kxk−m−

2m). But since 2m ≥ k we have f ′(x) ≤ xm−1(kxk−m − k) = xm−1k(xk−m − 1), and

for x ∈ [0, 1] we have f ′(x) ≤ 0. Thus f is decreasing on the interval [0, 1] and thus

the estimate (5.11) follows.

Lemma 5.3.5. Let α, β ∈ C with 1 ≥ |α| ≥ |β|. Given k ∈ N, for at least 1/3 of the

natural numbers m in the interval [k/2, k] we have

|αm − βm| ≥ 1

8
|αk − βk|. (5.12)

Proof. By writing |αk/2 − βk/2| = |αk − βk|/|αk/2 + βk/2| it is immediate that for
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m = k/2,

|αk/2 − βk/2| ≥ |αk − βk|/2. (5.13)

Let α = aeiθ1 and β = beiθ2 , where 1 ≥ a ≥ b ≥ 0. Then

|αm − βm| = |ameimθ1 − bmeimθ2| = |am − bmeim(θ2−θ1)|.

Denote θ2−θ1 by θ and let δk/2, δm and δk be the values of (k/2)θ, mθ and kθ modulo

2π. We have that δk/2, δm and δk are in the interval [0, 2π) and we ca assume that

θ ∈ [0, π] since the case θ ∈ [−π, 0] is symmetric to the positive case. Then we can

write

|αm − βm|2 = |am − bmeimθ|2 = (am − bm cos δm)2 + (bm sin δm)2 =

= a2m + b2m − 2ambm cos δm.

We show �rst that the estimate (5.12) holds for all m for which one of the following

is true:

δm ∈ [
π

3
, 5
π

3
] or 0 ≤ δk/2 ≤ δm ≤ δk ≤

π

2
.

To complete the proof we will show that for at least 1/3 of the natural numbers in

the interval [k/2, k] one of these 2 cases happens.

(1) If δm ∈ [π/3, 5π/3] then cos δm ≤ 1/2 and

|αm − βm|2 ≥ a2m + b2m − ambm ≥ 1

2

(
a2m + b2m

)
≥

≥ 1

4
(am + bm)2 ≥ 1

4
(ak + bk)2 ≥ 1

4
|αk − βk|2,

so (5.12) holds in this case.

(2) If δm satis�es 0 ≤ δk/2 ≤ δm ≤ δk ≤ π/2, �rst we compare |am − bmeikθ|
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with |ak − bkeikθ|, then we compare |am − bmeimθ| with |am − bmeikθ| to obtain the

estimates:

|am − bmeimθ| ≥ 1

4
|am − bmeikθ| ≥ 1

8
|ak − bkeikθ|.

First we show that, if δm = δk = δ, then a similar estimate as in the real case holds:

(am − bm cos δ)2 + (bm sin δ)2 ≥ 1

4

(
(ak − bk cos δ)2 + (bk sin δ)2

)
, (5.14)

which is equivalent to

(am − bm)2 + 2ambm(1− cos δ) ≥ 1

4

(
(ak − bk)2 + 2akbk(1− cos δ)

)
,

but from the real case we know that

(am − bm)2 ≥ 1

4
(ak − bk)2.

In order to prove

|am − bmeimθ| ≥ 1

4
|am − bmeikθ|,

we prove �rst a general estimate to be used in this case. From the fact

3

4
≥ (cos

δ

2
− 1

4
cos δ), for all δ,

which is equivalent to

0 ≤ (cos
δ

2
− 1)2,

we have, for a ≥ b ≥ 0 and for any δ, that(
b sin

δ

2

)2

+

(
a− b cos

δ

2

)2

≥ 1

16

(
(b sin δ)2 + (a− b cos δ)2

)
(5.15)

since (
b sin

δ

2

)2

≥
(

1

2
b sin δ

)2

and a− b cos
δ

2
≥ 1

4
(a− b cos δ).
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If 0 ≤ δk/2 ≤ δm ≤ δk ≤ π/2, since sinx is increasing on [0, π/2] and cosx is

decreasing on the same interval, we also have

(b sin δm)2 + (a− b cos δm)2 ≥
(
b sin

δk
2

)2

+

(
a− b cos

δk
2

)2

(5.16)

It follows from the equations (5.15), (5.16) by replacing a and b by am and bm respec-

tively,

(bm sin δm)2 + (am − bm cos δm)2 ≥ 1

16

(
(bm sin δk)

2 + (am − bm cos δk)
2
)
.

This �nishes the proof of case (2).

Next we show that for at least 1/3 of the natural numbers in the interval [k/2, k]

one of the above two cases happens. When drawn in the unit disc, the unit vectors

corresponding to the angles δm are equally spaced; the angle between two consecutive

vectors has measure θ.

If kθ ≤ π/2 then for all m ∈ [k/2, k], δm will satisfy 0 ≤ δk/2 ≤ δm ≤ δk ≤ π/2 ,

which is case (2).

If kθ ≥ 2π then kθ − (k/2)θ ≥ π, so at least 1/3 of the δm's, for m ∈ [k/2, k],

will be in the interval [π/3, 5π/3].

If π/2 < kθ ≤ 2π then at least 1/2 of the δm's satisfy δm ∈ [π/3, 5π/3].

Lemma 5.3.6. If

Tn =

 αn γn

0 βn

 ,

with 1 ≥ |αn| ≥ |βn| and for some �xed k ∈ N we have that ‖T kne
(2)
n ‖ > M then for

at least 1/3 of the natural numbers m in the interval [k/2, k] we have ‖Tmn e
(2)
n ‖ ≥

(1/8)M .

Proof. If αn 6= βn
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T kn =

 αkn γn(αkn − βkn)(αn − βn)−1

0 βkn

 ,

and if αn = βn then

T kn =

 αkn γnkα
k−1
n

0 αkn

 .

Thus

‖T kne(2)
n ‖2 = |γn(αkn − βkn)(αn − βn)−1|2 + |βkn|

or

‖T kne(2)
n ‖2 = |γnkαk−1

n |2 + |βkn|.

If αn = βn then, since 0 ≤ |αn| ≤ 1, the function f(x) = |αn|x is decreasing, so

|αn|m−1 ≥ |αn|k−1 , thus the desired estimate is immediate.

For the case αn 6= βn we use Lemma 5.3.4 and the fact that the function g(x) =

|βn|x is decreasing.

5.4. A generalization

The proof of Proposition 4.2.3 can be adapted to yield the following generalization of

the statement.

Proposition 5.4.1. Let {Tn}n∈N be a sequence of operators in L(H) such that there

exists a positive integer valued function k and a sequence of in�nite dimensional

subspaces {Mn}n∈N such that, for every n ∈ N, the operator Tn is bounded below on

the subspaces Mn, . . . ,Mn+k(n)−1 by a constant M(n) > 0. Next, let {αn} be any

sequence in l2(N). Then for every x0 ∈ H there exists y ∈ H such that

‖y − x0‖2 ≤
∞∑
i=1

|αi|2, ||Tny||2 ≥
n+k(n)−1∑

i=n

|αi|2M(n), n ∈ N.
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Let s be an integer valued function de�ned such that s(j) is given by the smallest

solution for n in terms of j to the inequality:

j ≤ n+ k(n)− 1.

For example, if k(n) = n then s(n) = [(n+ 1)/2].

Remark 5.4.2. Notice that the hypothesis is equivalent to the statement that given

the sequence of operators {Tn} there exist a sequence of in�nite dimensional subspace

{Mn}n and a sequence of positive real numbers {N(n)}n∈N, such that for every n ∈ N,

every operator Tj from the set Ts(n), . . . , Tn is bounded below by N(j) on Mn.

When taking k(n) = 1 in Proposition 5.4.1, we obtain the following result of

Beauzamy as a corollary:

Theorem (Beauzamy). Let {Tn}n∈N be an arbitrary sequence of operators in L(H),

let ε be any positive number, and let {αn}n∈N be any sequence of positive numbers in

(l2). Then for every x0 ∈ H there exists y ∈ H such that for each n ∈ N,

‖y − x0‖2 ≤
∞∑
i=1

|αi|2, ||Tny|| ≥ (1− ε)αn‖Tn‖e.

Proof. We need to show that for each n ∈ N there exists an in�nite dimensional

subspace Mn such that

Tn|Mn ≥ (1− ε)‖Tn‖e.

This follows easily from the fact ‖Tn‖e = ‖T ∗nTn‖
1/2
e = re(T

∗
nTn)1/2 and that re(T

∗
nTn)1/2 ∈

σle(T
∗
nTn) and thus there exists an in�nite orthonormal set {ek}k∈N such that

‖T ∗nTnek − re(T ∗nTn)ek‖ → 0.
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CHAPTER VI

SUMMARY

6.1. Review of the results

In the �rst chapter we gave some of the de�nitions related to hypercyclicity and

hypertransitivity and discussed two examples known in the literature as the �rst

hypercyclic operator and the �rst weakly hypercyclic operator that is not hypercyclic.

In Chapter II, we construct an operator T in L(H) with �strange� orbits. This

operator has the property that for every nonzero vector x, the sequence {||T nx||}n∈N

is dense in R+, but despite this, T is not hypercyclic (i.e., no vector in H has a

dense orbit). The example shows that to make progress on the program proposed in

[15] (i.e., to show that no operator in L(H) is hypertransitive), one cannot hope to

succeed by consideration only of the collection {{||T nx||}: x ∈ H\(0)} of sequences of

norms. The construction is based on an example of Beauzamy, but it is extended for

a weighted bilateral shift. T has the property that there are subsequences {rn} and

{qn} of N such that ‖T rnx‖ → 0 and ‖T qnx‖ → +∞ for all nonzero x, and neither T

nor T ∗ has point spectrum.

In Chapter III we show that certain classes of operators consist entirely of non-

weakly-hypertransitive operators. In particular, we show that if T ∈ L(H) and two

of the three numbers representing the essential spectral radius, essential numerical

radius, and essential norm of T , coincide, then for every invertible S ∈ L(H) and every

compact K in L(H), STS−1 +K fails to be weakly hypertransitive. As a corollary we

have that no compact perturbation of a normal operator is weakly hypertransitive.

Along the way we show that K. Ball's complex-plank theorem [2] is equivalent to a

(slightly stronger) version of an old theorem of Beauzamy [4].
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In Chapter IV we show that no compact perturbation of certain 2-normal opera-

tors (which in general satisfy ‖T‖e > re(T )) can be orbit-transitive. Our main result

herein is that if T belongs to a certain class of 2-normal operators in L(H(2)) and

there exist two constants δ, ρ > 0 satisfying ‖T k‖e > ρkδ for all k ∈ N, then for every

compact operator K, the operator T +K is not orbit-transitive. This seems to be the

�rst result that yields non-orbit-transitive operators in which such a modest growth

rate on ‖T k‖e is su�cient to give an orbit {T kx} tending to in�nity. One of the

su�cient conditions that gives T ∈ (NOT),which we used in our proof, is that there

exists a vector y such that ‖T ny‖ → ∞. One of the new ideas is to use accumulation

of growth on di�erent orthonormal vectors to compensate for a slow growth rate of

the essential norms of the powers of the studied operators.

If we denote by (T) the class of transitive operators in L(H), that is, opera-

tors with no nontrivial invariant subspace, and by (HT) the class of hypertransitive

operators, which is just the complement of (NOT) in L(H), we have that

(HT) ⊂ (T).

Thus �nding an operator in the class (HT) would give automatically an example of a

transitive operator and thus the invariant subspace problem would be solved in the

negative.

Our work is in the direction of showing that there are not hypertransitive oper-

ators in L(H). As future work, we hope to enlarge the class of non-hypertransitive

operators to encompass the whole L(H).
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6.2. Open problems

We include here a set of open problems related to the topics of hypercyclic and non-

orbit-transitive operators that seem to be of interest. Some of these are given in

previous chapters, but we include them here for completeness.

Problem 6.2.1. Theorem 2.1.1 establishes the existence of an operator in L(H)

such that every (nonzero) orbit has certain property � namely, density in R+ of the

sequence of norms. Moreover, in [15] an example was given of an operator T in L(H)

with ||T ||e = 1 such that the orbit of every nonzero vector x satis�es {||T nx||} → +∞.

What other properties that are common to every (nonzero) orbit can an operator in

L(H) have? For example, does there exist an operator T ∈ L(H) such that for all

nonzero vectors x, y ∈ H, {〈T nx, y〉} is dense in C? (Of course, such a T would be

transitive.)

Problem 6.2.2. If T ∈ L(H) is invertible and weakly orbit-transitive, must T−1 also

be weakly orbit-transitive? (One knows that an operator can be weakly hypercyclic

without its inverse being weakly hypercyclic [9, Cor. 3.6].)

Problem 6.2.3. Does every orbit-transitive operator T in L(H) satisfy σ(T )⊂ {z ∈

C : |z| = 1}? (One knows that an orbit-transitive operator must satisfy σ(T ) ⊂ {z ∈

C : |z| ≤ 1}.)

Problem 6.2.4. If T ∈ L(H) is weakly orbit-transitive, must σ(T ) ⊂ T?

Problem 6.2.5. If T ∈ L(H) and {〈T nx, y〉} is dense in C for every pair x, y of

nonzero vectors in H, must T be weakly orbit-transitive? (One knows form [29] that

there exist nonhypercyclic operators T in L(H) such that for every x 6= 0 in H,

{‖T nx‖} is dense in R+.)



84

Problem 6.2.6. Recall that an operator T ∈ L(H⊕H) is 2-normal if T is unitarily

equivalent to a 2 × 2 matrix (Nij), where the Nij are mutually commuting normal

operators, and it is known [14] that 2-normal operators have nontrivial hyperinvariant

subspaces. Can a sum T + K, where T is 2-normal and K is compact, be weakly

orbit-transitive?

Problem 6.2.7. The following question, which logically falls between the Orbit-

transitive Operator Problem and the Invariant Subspace Problem, seems not to have

received any attention: Is it true that for every T in L(H) there exist nonzero vectors

x and y such that the sequence {〈T nx, y〉}n∈N is bounded?

Problem 6.2.8. If the operator H is as in (4.17) and B is the operator from the

Example 4.4.1, how does one show that a compact perturbation of H ⊕B belongs to

(NOT)?

Problem 6.2.9. Does every compact perturbation of an arbitrary n-normal operator

belong to (NOT)?

Problem 6.2.10. The following question, which logically falls between the orbit-

transitive operator problem and the invariant subspace problem, seems not to have

received any attention: is it true that for every T in L(H) there exist nonzero vectors

x and y such that the sequence {〈T nx, y〉}n∈N is bounded?
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