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ABSTRACT

Essays on Interest Rate Analysis with GovPX Data. (August 2009)

Bong Ju Song, B.A., Seoul National University;

M.A., Seoul National University; M.S., The University of Texas at Austin

Chair of Advisory Committee: Dr. Joon Y. Park

U.S. Treasury Securities are crucially important in many areas of finance. However,

zero-coupon yields are not observable in the market. Even though published zero-

coupon yields exist, they are sometimes not available for certain research topics or

for high frequency. Recently, high frequency data analysis has become popular, and

the GovPX database is a good source of tick data for U.S. Treasury securities from

which we can construct zero-coupon yield curves. Therefore, we try to fit zero-

coupon yield curves from low frequency and high frequency data from GovPX by

three different methods: the Nelson-Siegel method, the Svensson method, and the

cubic spline method.

Then, we try to retest the expectations hypothesis (EH) with new zero-coupon

yields that are made from GovPX data by three methods using the Campbell and

Shiller regression, the Fama and Bliss regression, and the Cochrane and Piazzesi

regression. Regardless of the method used (the Nelson-Siegel method, the Svensson

method, or the cubic spline method), the expectations hypothesis cannot be rejected

in the period from June 1991 to December 2006 for most maturities in many cases.

We suggest the possible explanation for the test result of the EH. Based on the

overreaction hypothesis, the degree of the overreaction of spread falls over time. Thus,

our result supports that the evidence of rejection of the EH has weaken over time.

Also, we introduce a new estimation method for the stochastic volatility model
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of the short-term interest rates. Then, we compare our method with the existing

method. The results suggest that our new method works well for the stochastic

volatility model of short-term interest rates.
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CHAPTER I

INTRODUCTION

The U.S. Treasury bond markets are crucially important in many areas of finance.

The yield curves from these markets are instruments that give us information on asset

pricing. Even though there are many issues of significance in interest rate analysis,

we, in this research, specifically focus on the following three topics.

First, we study the modeling of a zero-coupon yield curve. Since zero-coupon

yields are not observable in the market, it is necessary to construct zero-coupon yield

curves through statistical methods. Even though many economists generally use the

suggested zero-coupon yields such as CRSP, they are sometimes not available for

certain research topics or for high frequency. Although there is a tendency for many

economists to use their own zero-coupon yields, there are few papers that deal in detail

with the modeling of zero-coupon yield curves. Recently, high-frequency data analysis

has become popular, and many papers use the GovPX database, composed of tick

data, in order to analyze term structure models. The GovPX database includes real-

time quotes and trade data from most interdealer Treasury security brokers. Thus,

the GovPX database is a good source of tick data from which we can construct zero-

coupon yield curves. Therefore, considering parsimoniousness and popularity, we will

plot the zero-coupon yield curve covering low and high frequencies from the GovPX

database by the different methods. We will apply these new zero-coupon yield curves

to the expectations hypothesis and a new estimation method of stochastic volatility

for interest rates.

This dissertation follows the style of Econometrica.
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Second, we hope to retest the expectations hypothesis (EH) with our previously

constructed zero-coupon yield curves. The EH is one of the main issues in interest

rate analysis. Fama and Bliss (1987), Campbell and Shiller (1991), and Cochrane and

Piazzesi (2005) make important contributions to EH tests using different approaches.

We contribute to the literature by retesting the EH with new zero-coupon yield curves

which is constructed from GovPX data using the Fama-Bliss regression, the Campbell-

Shiller regression, and the Cochrane-Piazzesi regression. Then, we discuss possible

explanations in order to interpret our results.

Third, short-term interest rates are one of the most fundamental assets in the

financial market. Many papers are developed in continuous time and assume that

short-term interest rates follow a diffusion process. Ball and Torous (1999) introduce

a stochastic volatility model of short-term interest rates that assumes the volatility

itself is stochastic. There are different types of estimation methods of stochastic

volatility models. Here we focus on a two stage estimation method. We introduce

a new estimation method for a stochastic volatility model that uses the Martingale

method and density-based filtering, and we compare our method with the existing

method.



3

CHAPTER II

MODELING THE YIELD CURVE WITH GOVPX DATA

A. Introduction

The U.S. Treasury bond markets are crucially important in many areas of finance.

The yield curves from these markets are instruments that give us information on

asset pricing. However, zero-coupon yields are not observable in the market for a

wide range of maturities. Therefore, we need to construct zero-coupon yield curves

through statistical methods. Many methodologies are developed to derive the zero-

coupon yield curve from observed data. However, many economists have little interest

in the methodologies, and they generally use the suggested zero-coupon yields such

as CRSP data. However, zero-coupon yield curves are sometimes not available for

some research topics. It is necessary for economists to create their own zero-coupon

yield data for their own research. Even though many methodologies are well known,

it is not easy to get zero-coupon interest rates with all different maturities because

of many technical issues. Also, for some models we cannot use a general data set.

Therefore, there is a tendency for many economists to use their own zero-coupon

yields.

There exist many methodologies to fit the yield curve. When we choose the

method to construct the yield curve, we should consider both goodness of fit and

smoothness of the curve since each method can supply different shapes of yield curve.

There is a trade-off between these two factors. There exist two mainstream approaches

of fitting the yield curve: a parsimonious representation and a spline representation.

Nelson and Siegel (1987) suggest a parsimonious representation model that uses a

parametric representation to capture many of the typical shapes of yield curves. The
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Nelson-Siegel method has been extended by Svensson (1994) which incorporates ad-

ditional flexibility. McCulloch (1971) introduces a spline method which uses a cubic

spline. Also, many spline methods are suggested such as Waggoner (1997) and An-

derson and Sleath (2001). Despite the existence of more flexible methods, the Bank

of International Settlements (BIS) argues that one third of all central banks make

use of the Nelson-Siegel method or Svensson method to generating zero-coupon yield

curves. The spline method is especially used in cases involving the US. The Nelson-

Siegel model is also popular among practitioners, and Diebold and Li (2006) argue

that the Nelson-Siegel method can work well for term structure forecasts. Consid-

ering parsimoniousness and popularity, we focus on the Nelson-Siegel method, the

Svensson method, and the cubic spline method.

Recently, high-frequency data analysis has become popular, and many papers,

currently use the GovPX database, composed of tick data, in order to deal with term

structure models. Therefore, if we use the GovPX database, we can fit zero-coupon

yield curves for our research objectives. In this paper, we need to generate many types

of zero-coupon yield curves since we hope to analyze many types of term structure

models. Therefore, in this chapter, we study the method to fit the yield curve with

the GovPX data set, and we are going to use these zero-coupon yield curves for the

next chapters’ topics.

We want to fit yield curves from GovPX data. Since GovPX data are tick

data from the U.S. Treasury securities market, it is necessary to know the bond

instrument, the structure the U.S. Treasury securities market, and the properties

of the GovPX data set. Therefore, we will, at first, summarize the U.S. Treasury

securities market, the GovPX database, and the zero-coupon yield curve methods.

Then, we will construct our zero-coupon yield curves from the GovPX data with

different frequencies.
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The outline of this chapter is as follows. In section B, we study U.S. Treasury

securities market. In section C, we study a description of the GovPX data set. Since

the GovPX data set is a tick data set and is not organized well, it is indispensable to

analyze the raw data set before we generate zero-coupon yield curve. Then, we have

to study the zero-coupon yield curve with the GovPX data set. Section D explains

how to do data cleaning and processing. In section E, we discuss the zero-coupon

yield curve methods. In section F, we show our results, and we analyze them. Section

G concludes this chapter.

B. U.S. Treasury Securities Market

Since U.S. Treasury Securities are issued by U.S. Department of Treasury, they are

considered to be risk-free assets. Therefore, we can use them for pricing many other

financial instruments. There are different types of Treasury securities. They are

categorized as either discount or coupon securities with respect to the existence of

coupon. Discount securities pay only face value at maturity without any interest,

but coupon securities pay interest every six months as well as face value at maturity.

Also, Treasury securities are categorized by maturities as Treasury bills, notes, bonds,

and inflation-indexed securities. Table 2-1 explains the types of Treasury securities

in detail.

Cash-management bills are issued irregularly if Treasury cash balances become

too low. Their maturity is not regular and often less than 21 days. Treasury infla-

tion indexed securities are bonds whose principal and coupon payment are adjusted

for inflation using the consumer price index in order to maintain the purchasing

power of their original investment. Therefore, cash-management bills and Treasury

inflation-indexed securities should be treated differently from the other typical Trea-
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Table 2-1.: Marketable U.S. Treasury Securities

Issue Type Security Type Issues

Treasury bills discount Cash-management, Three-month, Six-month

Treasury notes coupon Two-year, Five-year, Ten-year

Treasury bonds coupon Thirty-year

Treasury Inflation- coupon Ten-year, Thirty-year

Indexed Securities

sury securities.

1. The Primary Market

The U.S. Treasury sells Treasury securities in the primary market by single-price

auctions. The Treasury announces auction information that includes the amount

and type of security, auction rules, and procedures several days in advance. Bids

are typically submitted in multiples of $1,000 on auction day. Although the primary

market is open to anyone, the primary dealers cover a large portion of trading volume.

The primary dealer system was organized by the Federal Reserve Bank of New

York. As of September 2008, there was 19 primary dealers. The primary dealers are

mainly firms that interact with the Federal Reserve Bank of New York for open market

operations. The Treasury has a regular schedule to issue the Treasury securities as

shown in Table 2-2 which is reported as of August 1999.

2. The Secondary Market

In the primary market, the Department of the Treasury issues Treasury securities

through single price auctions. In the secondary market, trading takes place not
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Table 2-2.: U.S. Treasury Auction Schedule

Issue Type Issue Frequency

Three-month bill weekly

Six-month bill weekly

One-year bill every 4 weeks

Two-year note monthly

Five-year note quarterly

Ten-year note quarterly

Thirty-year bond semi-annually

in over-the-counter markets. Primary dealers trade with customers such as banks,

insurance companies, and non-primary dealers. Also, primary dealers trade with

each other directly, or interdealer brokers execute trades between primary dealers

and receive a fee.

Table 2-3 summarizes the volume and portion of daily trading of U.S. Treasury

securities between April and August of 1994 according to trading agents based on

Fleming (1997).

Table 2-3.: Daily Trading Volume of U.S. Treasury Securities

Trading Agents Volume Portion

Primary Dealer-Primary Dealer

Interdealer Broker $58.5 billion 42.6%

No intermediary $ 4.9 billion 4.0%

Primary Dealer-Customer $67.0 billion 53.4%
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C. GovPX Data Set

GovPX is a consortium of several primary dealers and interdealer brokers, and it is

organized in 1991. Since GovPX supplies the trading data of U.S. Treasury securities,

it facilitates public access to the trading information of U.S. Treasury securities.

GovPX data covers two-thirds of the interdealer broker market, and they contain

security type, trading time, bid price, ask price, bid size, and ask size.

In Appendix A, Table A-26 explains the bulk of the information that is provided

from GovPX data. Since GovPX does not include Cantor Fitzgerald Inc. which is

prominent at the long-term maturity market, we should be careful of analyzing the

long-term maturity securities from GovPX data

D. Data Cleaning and Processing

Since GovPX data is raw data, we have must clean and process it. Also, we must

consider some issues which are important in the construct of yield curves. Thus, here

we explain some important points for data cleaning and processing.

1. Time to Maturity

As we see above, there are many types of Treasury securities by maturity, and there

exist significant differences among the volume of trading by maturity. Table 2-4 shows

trading volume of the Treasury securities for on-the-run securities by maturity based

on Fleming (1997) which gets the volume information from GovPX, Inc. between

April and August of 1994.

Based on Table 4 the two-year note, the five-year note, and ten-year note are

the most popular securities which cover three-fourths of the volume. The thirty-year

Treasury bill was not issued from February 18, 2002 to February 8, 2006, and the
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Table 2-4.: Trading Volume of U.S. Treasury Securities by Maturity

The Treasury Security Type Portion

Three-month bill 7.4 %

Six-month bill 6.4 %

One-year bill 10.1 %

Cash-management bill 1.0 %

Two-year note 21.3 %

Three-year note 7.7 %

Five-year note 26.0 %

Ten-year note 21.3 %

Thirty-year bond 2.7 %

twenty-year bill was discontinued from January 1, 1887 to September 30 1993. Also,

since GovPX does not include Cantor Fitzgerald Inc. which is prominent in the long-

maturity segment of the market, it is advisable to exclude long-maturity Treasury

securities for fitting yield curves with GovPX data. Therefore, we only consider

maturities up to ten-year.

2. Security Type Issue

As we noted, cash-management bills and Treasury inflation-indexed securities are

special. Therefore, we only use 3-month bills, 6-month bills, 1-year bills, 2-year

notes, 5-year notes, and 10-year notes.



10

3. Trading Activity Issue

Trading activity is one of the key factors in determining the price of the security.

There are three categories: when-issued securities, on-the-run securities, and off-the-

run securities. A when-issued security is a security that has been notified for auction

by the U.S. Department of Treasury but has not been issued yet. Even though when-

issued securities have not been issued, they are allowed to be sold by a dealer to a

customer in advance of the auctions in order to facilitate price discovery for auction

and to reduce uncertainty about auction. An on-the-run security is a security that

has most contemporarily been issued at a given maturity. An off-the-run security is a

security that been issued before an on-the-run security at a given maturity. According

to Fabozzi (2004), in 1998, on-the-run securities covered 71% of trading activity, off-

the-run securities explain 23% of trading activity, and when-issued securities account

for 6% of trading activity.

If a security is recently issued and more active, its price is higher than the secu-

rities that issued before. Therefore we should consider liquidity effects to construct

a zero-coupon yield curve. Andersen and Benzoni (2006) rely on on-the-run securi-

ties, Gurkaynak, Sack, and Wright (2006) only use off-the-run securities, and Daily

CRSP US Government Bonds files includes when-issued securities as well as on-the-

run securities. We consider on-the-run securities and when -issued securities in our

construction of zero-coupon yield curves.

4. Trading Time

Our period of data begins on Jan 1, 1991 and ends on Dec. 31 2006. Since the

U.S. Treasury market is over-the-count, it is active for 24 hours, but it is most active

during business days in the early morning through the late afternoon. Hence, we use



11

the intra-day transaction record from 8:00 AM ET to 5:00 PM ET. This time window

is appropriate because it includes the regular macroeconomic and monetary policy

announcements, and the majority of the trading is done during these hours.

5. Cleaning Pricing

The GovPX dataset includes price information for all types of securities. However,

zero-coupon bonds have only yield information. Thus, we have to compute bond

prices from zero-coupon yields. Traditionally, given the zero-coupon yield, the price

can be calculated as

(2.1) Price = Face V alue− (Face V alue× Y ield× Days T ime Maturity

360
)

E. Zero-coupon Yield Curve Methods

There are various methods to construct zero-coupon yield curves from Treasury secu-

rities that include discount or coupon securities. The methods can be categorized into

the function-based approaches and the spline-based approaches. The function-based

approaches use a single function over the entire maturity domain. The spline-based

approaches use a piecewise polynomial where the individual segments are joined at

the knot point.

Many central banks choose the Nelson-Siegel method or the Svensson method,

the United States and the United Kingdom apply variants of the smoothed spline

method. Table 2-5 summarizes the yield curve methods by central banks based on

the Bank of International Settlements. We briefly discuss about the most popular

methods below.
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Table 2-5.: The Yield Curve Methods by Central Banks

Central Bank Method Relevant maturity

Belgium Svensson or Nelson-Siegel Couple days to 16 years

Canada Exponetial Spline 3 month 30 years

France Nelson-Siegel Upto 10 years

Germany Svensson 1 to 10 years

Italy Nelson-Siegel Upto 30 years

Japan Smoothed Spline 1 to 10 years

Spain Svensson Upto 10 years

United Kingdom Smoothed Spline Upto 30 years

United States Smoothed Spline 1 to 10 years

1. The Nelson-Siegel Method

Nelson and Siegel (1987) suggest a model which is flexible enough to catch the shapes

generally associated with yield curves as follows:

(2.2) yt(τ) = β1t + β2t(
1− e−λtτ

λtτ
) + β3t(

1− e−λtτ

λtτ
− e−λtτ ) + ut

where yt(τ) is the zero-coupon yield.

There are some reasons why the Nelson-Siegal model is very popular. First, it

is a parsimonious model which uses only four parameters, but it captures the typical

yield curve shapes such as monotonic, humped and S -type shapes. Second, it has

the desirable property that an instantaneous short rate value can be easily computed

as follows:
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(2.3) yt(0) = β1t + β2t; yt(∞) = β1t

Finally, the three parameters can be interpreted as as short, medium, and long. The

parameter β1t can be interpreted as a long-term factor since it is already confirmed

that yt(∞) = β1t. The parameter β2t can be considered to be a short-term factor

since ((1− e−λtτ )/λtτ begins at 1 but decreases rapidly to 0. The parameter β3t can

be considered to be a medium-term factor since ((1− e−λtτ )/λtτ)− e−λtτ begins at 0,

and increases, and decreases to zero again.

Also, based on Diebold and Li (2006), β1t, β2t, and β3t can be considered three

latent factors. Since the three factors may be viewed as the yield curve level, the

yield curve slope, and the yield curve curvature, and because long-term, short-term,

and medium-term can also be considered yo be level, slope, and curvature, we can

argue that β1t is connected to the yield curve level, β2t is connected to the yield curve

slope, and β3t is also connected to the yield curve curvature.

2. The Svensson Method

Svensson (1994) extends the Nelson-Siegel model as follows:

(2.4)

yt(τ) = β1t + β2t(
1− e−λ1tτ

λ1tτ
) + β3t(

1− e−λ1tτ

λ1tτ
− e−λ1tτ ) + β4t(

1− e−λ2tτ

λ2tτ
− e−λ2tτ ) + ut

The Svensson model adds a fourth component which mostly has an effect on medium-

term maturities to improve the flexibility of the fitting curve. Therefore, the fitting

curve is more flexible at the cost of two more parameters, β4t,λ2t.
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3. Cubic Spline Method

Spline methods use a piecewise polynomial rather than a single functional form over

the entire maturity. Specifically, the cubic spline method uses cubic spline that is

a piecewise cubic polynomial, twice differentiable everywhere. Since the individual

segments are connected at the knot points, the number of knot points is critical in

determining the goodness-of-fit and the smoothness. If we use the cubic spline method

without smoothing technic, the interest curve tends to oscillate too much.

There are some methods to reduce the oscillation and increase the smoothness

of a cubic spline. McCulloch (1971) uses a regression spline and Waggoner (1997)

use smoothed splines. Also, Waggoner (1997) applies the variable roughness penalty

(VRP) model for smoothness that allows more curvature for the short maturity. We

briefly explain the smoothed spline method. At first, we need to choose node points,

τ0 < τ1 < ... < τk for the cubic spline method and the smoothed cubic spline method.

Let Pi be the observed price of i-th Treasury security. If we apply the cubic spline

method, we minimize the objective function

(2.5)
N∑
i=1

(Pi − P̂i
∗
(ψ))2

where ψ is the cubic spline. If we apply the smoothed cubic spline, we impose a

penalty in the objective function in order to achieve the oscillations. Then the new

objective function is as follows:

(2.6)
N∑
i=1

(Pi − P̂i
∗
(ψ))2 + λ(t)

∫ τk

0

[ψ′′(t)]2dt
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where λ(t) is called a penalty function, which determines the tradeoff between fit

and smoothness. As λ(t) increases, smoothness will increase. We use smoothed

cubic spline that Anderson and Sleath (2001) introduces. In Appendix A, Figure A-1

and Figure A-2 show zero-coupon yield curves that are generated by three different

methods, Nelson-Siegel method, the Svensson method, and the cubic spline method

using only active securities. The day representing each year is the last day of July,

and the relevant maturity interval is from three-month to ten-year.

F. Results

As we noted before, we use only active securities whose maturities are less than ten-

year. In Appendix A, Figure A-1 and Figure A-2 are the zero-coupon yield curves

for the last day of June every year. They show that if we use active securities up

to ten-year maturity zero-coupon yield curves by three methods (the Nelson-Siegel

method, the Svensson method, and the cubic spline method) are not different. From

Figure A-3 to Figure A-17 in Appendix A, we shows the zero coupon yield curve by

methods and by frequencies.

The results from the Nelson-Sielgel method and the Svensson method are similar.

However, as the frequency become higher and higher, the number of observation data

will decrease and the fitted yield curve will not be stable. Specifically, as frequency

increases, the zero-coupon yield curve by the cubic spline methods tend to oscillate.

Since the cubic spline method is too sensitive to observed data, we use only the

Nelson-Siegel method and the Svensson method for higher frequencies higher than

hourly. Also, if we compare our yield curves with CRSP yield curves, we can see

that they are similar. Figure A-18 through Figure A-22 in Appendix B support this

argument.
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G. Conclusion

U.S. treasury bond markets are crucially important in many areas of finance. Zero-

coupon yields are, however, not observable in the market for a wide range of maturi-

ties. Therefore, we need either to use the suggested zero-coupon yields such as CRSP

or to derive the zero-coupon yield curve from observed U.S. Treasury securities data.

We, in this paper, deal with many types of term structure models such as the expecta-

tions hypothesis and stochastic volatility models with different frequencies. Therefore,

it is necessary to fit the yield curve. Recently, the necessity of high-frequency data

has increased.

In the next chapters, we will study many types of term structure models through

the generated yield curves with low-frequency and high-frequency from GovPX data,

which is a huge data set of tick data. Even though there are many methods used

to fit yield curves, we use three parsimonious and popular models: the Nelson-Siegel

method and the Svensson method, and the cubic spline method. Since we have zero-

coupon yield curves at different frequency by different methods, we will be able to

use these yield curves for our analysis in next chapters.
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CHAPTER III

REVISITING THE EXPECTATION HYPOTHESIS OF INTEREST RATES

WITH GOVPX DATA

A. Introduction

The expectations hypothesis (EH) is one of main topics of significance in term struc-

ture of interest rates. It is reasonable to assume that interest rates at different matu-

rities move together since they are related to each other. The expectation hypothesis

is a tool to explains this relationship. The expectations hypothesis implies that long-

term bond yields are the average of future expected short-term bond yields. Many

papers try to test the EH in financial economics and investigate whether the EH holds

in different settings.

Among these papers, Fama and Bliss (1987), Campbell and Shiller (1991), and

Cochrane and Piazzesi (2005) are the most distinguished. Fama and Bliss (1987)

test whether or not the current forward rate can explain the expected return. Also,

Campbell and Shiller (1991) test whether or not the expected change in the long-

term bond yield can be predicted by the yield spread. The EH corresponds to the

proposition that excess return can not be predicted. Cochrane and Piazzesi (2005) test

whether one-year excess returns can be explained by five different maturity forward

rates. Many papers, including the above mentioned tests, present evidence against the

EH. There are many papers which try to explain the rejection of the EH. Campbell and

Shiller (1991) suggest the two possible justifications against the EH, a time-varying

risk premium and the overreaction hypothesis.

The EH is tested by using zero-coupon yields. Since zero-coupon yield curves

should be extracted from coupon bonds as well as discount bonds, the construction
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of a zero coupon yield curve is an important factor to test the EH. In the previous

chapter, we generate yield curves in different ways. Campbell and Shiller (1991)

employ the zero coupon bond yield of McCulloch (1990) which uses the cubic spline

method and covers the period December 1946 to Feburary 1987. Fama and Bliss

(1987) employ CRSP data from January 1964 to December 1985. Cochrane and

Piazzesi (2005) use CRSP data from 1964 to 2003.

There are some ways to produce yield curve bonds such as the Nelson-Siegel

method, the Svennson method, and the cubic spline method. There are many papers

which compare the methods of yield curve fitting. The figure of zero-coupon yield

curves depends on the method used. However, few papers test the EH according to

different zero-coupon yields curves which are constructed by several methods.

Also, there is an argument that the Treasury market has been changed after

September 11, 2001. Mankiw and Miron (1986) examine the expectation theory

with different periods in order to check if the rejection of the expectation hypothesis

depends on the period. Bulkely, Harris, and Nawosah (2008) note that statistical

evidence for the rejection of the EH has been weakened in the 1992-2004 period

relative to the period of Campbell and Shiller (1991). Therefore, it is interesting to

investigate with the zero-coupon yields from GovPX data whether or not the evidence

against the EH has changed over time.

We contribute the literature by retesting the EH over time with different zero-

coupon yields which are constructed from GovPx data. Thus it is valuable to revisit

the EH by yield curve methods with the data which covers current period. In this

chapter, we will test the EH with the yield curves based on the Nelson-Siegel method,

the Svennson method, and the cubic spline method. Also, we try to suggest a possible

explanation of the result that the evidence against the EH has been declined over time

by using the overreaction hypothesis.
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B. The Models of the Expectation Hypothesis

In the previous chapter, we explained how to generate yield curve from GovPx data.

Here, we will introduce how to test the expectation hypothesis. There are many

methods to test the EH. However, since we are interested in testing the EH with

different types of zero coupon bond yield based on different methods, we hope to

focus on straightforward test methods.

Campbell and Shiller (1991) test whether or not the expected change in the

long-term bond yield can be predicted by the yield spread between the long-term and

the short-term bond yield. We employ the notation based on Cochrane and Piazzesi

(2005). Let us consider the price of an n- period bond as P
(n)
t . Then, we define the

log yield of maturity n- period zero coupon bond at time t. Then, the log yield of

zero coupon bond, y
(n)
t , is given as

(3.1) y
(n)
t = − 1

n
logP

(n)
t

Then, in order to test the EH, Campbell and Shiller (1991) run the following regres-

sion;

(3.2) y
(n−1)
t+1 − y(n)

t = α + β
1

n− 1
(y

(n)
t − y

(1)
t ) + εt.

If the EH holds then β should be equal to unity.

Fama and Bliss (1987) test the predictability of the forward rates on the expected

excess return. We can define the log forward rate at time t for zero coupon bonds

from time t+ n− 1 to t+ n as
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(3.3) f
(n)
t ≡ logP

(n−1)
t − logP

(n)
t ,

and the log holding period return by price is defined as

(3.4) r
(n)
t+1 ≡ logP

(n−1)
t+1 − logP

(n)
t .

Also, the excess log return is described as

(3.5) rx
(n)
t+1 ≡ r

(n)
t+1 − y

(1)
t .

Then, the EH can be tested with the Fama and Bliss regression:

(3.6) rx
(n)
t+1 = α + β(f

(n)
t − y

(1)
t ) + ε

(n)
t+1.

If the EH holds, then β should be equal to zero.

Based on the statement that if the EH holds excess returns should not be pre-

dicted, Cochrane and Piazzesi (2005) test whether one-year excess return can be

explained by five different maturity forward rates. Cochrane and Piazzesi (2005) test

the predictability using the regression as

(3.7) rx
(n)
t+1 = β

(n)
0 + β

(n)
1 y

(1)
t + β

(n)
2 f

(2)
t + β

(n)
3 f

(3)
t + β

(n)
4 f

(4)
t + β

(n)
5 f

(5)
t + ε

(n)
t+1.

Cochrane and Piazzesi (2005) also develop the following regression:
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(3.8) rx
(n)
t+1 = bn(γ0 + γ1y

(1)
t + γ2f

(2)
t + γ3f

(3)
t + γ4f

(4)
t + γ5f

(5)
t ) + ε

(n)
t+1.

This regression is suggested in order to characterize expected excess returns through

one factor. They also suggest a two step estimation method to estimate the above

regression.First, we regress the average excess return on forward rates,

(3.9)
1

4

5∑
n=2

rx
(n)
t+1 = γ0 + γ1y

(1)
t + γ2f

(2)
t + γ3f

(3)
t + γ4f

(4)
t + γ5f

(5)
t ) + εt+1

(3.10) rxt+1 = γT1 ft + εt+1.

Secondly, we run the four regressions to estimate bn

(3.11) rx
(n)
t+1 = bn(γTft) + ε

(n)
t+1, n = 2, 3, 4, 5.

C. Data

We use the zero coupon yield curves that are derived from GovPx data with maturities

from 1 to 5 years. As we mention, we use three different types of yield curves: the

Nelson-Siegel Method, the Svensson method, and the cubic spline method.

At first, we hope to compare the results between the period from June 1964

to December 1979 and the period from June 1991 to December 2006 in order to

know whether or not the empirical evidence against the expectations hypothesis has

changed over time using CRSP data. In Appendix B, B-27 describes the summary

statistics of two time series data sets in two distinct periods.
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Then, we want to compare the results among three different methods in same

period from June 1991 to December 2006 in order to know whether or not the em-

pirical evidence of the expectations hypothesis changes according to the methods by

which we derive the different zero-coupon yield curves. In Appendix B, Table B-28

and Table B-29shows the summary statistics of three time series data sets by different

methods.

In Appendix B, Figure B-18 through Figure B-22 shows the four time series

data sets, CRSP Data, the data from the Nelson-Siegel method, the data from the

Svensson method, and the data from the cubic spline method in the period from June

1991 to December 2006. These figures support that the four time series data sets are

very similar regardless of the yield curve method.

D. Test Results

We, here, analyze the results of the expectation hypothesis by different regression

types, by different periods, and by different methods that we use for zero-coupon

yield.

1. The Campbell Shiller Regression

First, we test the EH by the Campbell Shiller regression as

(3.12) y
(n−1)
t+1 − y(n)

t = α + β
1

n− 1
(y

(n)
t − y

(1)
t ) + εt

Under the EH, it should hold that β = 1. That is, the expected change in the long rate

should be equal to the yield spread proportionally. Table 3-6 shows the results of the

Campbell and Shiller regression among different periods. In case of the original period
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Table 3-6.: Campbell Shiller Regression 1

y
(n−1)
t+1 − y(n)

t = α + β 1
n−1

(y
(n)
t − y

(1)
t ) + εt

Campbell Shiller CRSP 1 CRSP 2

Period Jan1952-Feb1987 Jun1964-Dec1979 Jun1991-Dec2006

α β α β α β

2 year -1.0340 0.0039 -0.4823 -0.0032 -0.1390

(0.6200) (0.0037) (0.6335) (0.0067) (1.2948)

3 year -1.3960 0.0037 -0.7650 -0.0015 -0.6159

(0.8830) (0.0029) (0.6732) (0.0060) (1.3920)

4 year -1.7360 0.0039 -1.0258 -0.0008 -0.8655

(1.0270) (0.0023) (0.7521) (0.0050) (1.3554)

5 year -2.0220 0.0039 -1.1088 -0.0005 -0.8904

(1.2050) (0.0021) (0.7816) (0.0042) (1.3181)

of Campbell and Shiller (1991) and CRSP 1 (Jun 1964-Dec 1979), β is significantly

less than unity, its sign is negative, and the value of estimation falls monotonically

with maturity. However, in the case of CRSP 2 (Jun 1991-Dec 2006), we cannot

statistically reject the evidence of the EH based on the result. This result support

that the evidence against the EH has changed over time.

Table 3-7 shows the result of the Campbell and Shiller regression with the data

sets by different methods in the period from June 1991 to December 2006. As we

show above, the results do not depend on the methods, and we cannot reject the EH

statistically even though the value of β is negative.
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Table 3-7.: Campbell Shiller Regression 2

y
(n−1)
t+1 − y(n)

t = α + β 1
n−1

(y
(n)
t − y

(1)
t ) + εt

CRSP Nelson-Siegel Svensson Cubic Spline

Period Jun1991-Dec2006 Jun1991-Dec2006 Jun1991-Dec2006 Jun1991-Dec2006

α β α β α β α β

2 year -0.0032 -0.1390 -0.0036 -0.0372 -0.0022 -0.4219 -0.0017 -0.5124

(0.0067) (1.2948) (0.0070) (1.4118) (0.0070) (1.3331) (0.0064) (1.3292)

3 year -0.0015 -0.6159 -0.0020 -0.4560 -0.0010 -0.7396 -0.0017 -0.7204

(0.0060) (1.3920) (0.0062) (1.4707) (0.0061) (1.4150) (0.0060) (1.3407)

4 year -0.0008 -0.8655 -0.0013 -0.6494 -0.0007 -0.8634 -0.0011 -0.6369

(0.0050) (1.3554) (0.0053) (1.4494) (0.0052) (1.4130) (0.0049) (1.3501)

5 year -0.0005 -0.8904 -0.0011 -0.7406 -0.0006 -0.9006 -0.0009 -0.6545

(0.0042) (1.3181) (0.0046) (1.4125) (0.0044) (1.3760) (0.0044) (1.4449)

2. The Fama and Bliss Regression

We test the EH by Fama and Bliss regression as

(3.13) rx
(n)
t+1 = α + β(f

(n)
t − y

(1)
t ) + ε

(n)
t+1.

If the EH holds then β should be equal to zero. Table 3-8 summarizes the results of the

regression. In case of the original period of Fama and Bliss (1987) and CRSP 1 (Jun

1964-Dec 1979), since β is significantly greater than zero with respect to statistics,

the EH is strongly rejected. However, in the period of CRSP 2 (Jun 1991-Dec 2006),

we cannot strongly reject the evidence of the EH based on the result in the sense of

statistics. This result also support that the evidence against the EH has changed over

time.

Table 3-9 shows the results of the Fama and Bliss regression in the period from



25

Table 3-8.: Fama-Bliss Regression 1

r
(n)
t+1 − y

(1)
t = α + β(f

(n)
t − y

(1)
t ) + εt+1

Fama-Bliss CRSP 1 CRSP 2

Period Jan1964-Dec1984 Jun1964-Dec1979 Jun1991-Dec2006

α β α β α β

2 year -0.2100 0.9100 -0.3882 0.7411 0.3168 0.5695

(0.4100) (0.2800) (0.3730) (0.3168) (0.6721) (0.6474)

3 year -0.5100 1.1300 -0.8287 1.0437 0.3280 0.8369

(0.6800) (0.3700) (0.5958) (0.3837) (1.1529) (0.7227)

4 year -0.9100 1.4200 -1.2351 1.2743 0.5227 0.8638

(0.9200) (0.4500) (0.6766) (0.4944) (1.4509) (0.7442)

5 year -1.0600 0.9300 -1.4060 0.9261 0.8370 0.8198

(1.3100) (0.5300) (0.9377) (0.5098) (1.5124) (0.7516)
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Table 3-9.: Fama-Bliss Regression 2

r
(n)
t+1 − y

(1)
t = α + β(f

(n)
t − y

(1)
t ) + εt+1

CRSP Nelson-Siegel Svensson Cubic Spline

Period Jun1991-Dec2006 Jun1991-Dec2006 Jun1991-Dec2006 Jun1991-Dec2006

α β α β α β α β

2 year 0.3168 0.5695 0.3235 0.7630 0.2163 0.7109 0.1696 0.7562

(0.6721) (0.6474) (0.6874) (0.3898) (0.6962) (0.6666) (0.6412) (0.6646)

3 year 0.3280 0.8369 0.2698 0.8981 0.3464 0.8150 0.5210 0.7167

(1.1529) (0.7227) (1.0050) (1.2065) (1.1764) (0.7502) (1.1062) (0.6083)

4 year 0.5227 0.8638 0.6952 0.7483 0.5981 0.8086 0.5728 0.8385

(1.4509) (0.7442) (1.4943) (0.7872) (1.4749) (0.7808) (1.4179) (0.8193)

5 year 0.8370 0.8198 0.9296 0.7695 0.8686 0.7990 0.7047 0.8959

(1.5124) (0.7516) (1.7012) (0.8060) (1.6614) (0.7824) (1.6794) (0.9470)

June 1991 to December 2006. The results of our yield data by the three methods

are not different from CRSP, and we cannot strongly reject the EH based on the

statistical estimation results.

3. The Cochrane and Piazzesi Regression

Cochrane and Piazzesi (2005) test the predictability of five forward rates in many

ways. They test the predictability using the regression as

(3.14) rx
(n)
t+1 = β

(n)
0 + β

(n)
1 y

(1)
t + β

(n)
2 f

(2)
t + β

(n)
3 f

(3)
t + β

(n)
4 f

(4)
t + β

(n)
5 f

(5)
t + ε

(n)
t+1.

Figure B-23 through Figure B-32 support the argument that the tent-shaped

coefficients of Cochrane and Piazzesi (2005) depend on the period of as well as the

method of generating zero coupon yield.
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Also, they try to characterize expected excess returns through one factor as they

suggest.

(3.15) rx
(n)
t+1 = bn(γ0 + γ1y

(1)
t + γ2f

(2)
t + γ3f

(3)
t + γ4f

(4)
t + γ5f

(5)
t ) + ε

(n)
t+1

Therefore, we follow a two step approach. First, we estimate the γ as follows:

(3.16)
1

4

5∑
n=2

rx
(n)
t+1 = γ0 + γ1y

(1)
t + γ2f

(2)
t + γ3f

(3)
t + γ4f

(4)
t + γ5f

(5)
t ) + εt+1

Second,we run the four regressions to estimate bn

(3.17) rx
(n)
t+1 = bn(γTft) + ε

(n)
t+1, n = 2, 3, 4, 5.

Table 3-10 shows the results of the first step regression. As we see, in case of the

original period of Cochrane and Piazzesi (2005) and CRSP 1 (Jun 1964-Dec 1979),

some parameters are statistically strongly significant, and others are not significantly.

In the period of CRSP 2 (Jun 1991-Dec 2006), some parameter results are statistically

significant, and others are not significant. The evidence against the EH in the period

of CRSP 1 (Jun 1964-Dec 1979) is stronger than in the period of CRSP 2 (Jun

1991-Dec 2006).

Table 3-11 summarizes the results of the first step regression in the period from

June 1991 to December 2006. The results of our yield data by the three methods

are not different from CRSP some parameter results are statistically significant, and

others are not significant.

Table 3-12 shows the results of the second step regression. As we see, all coeffi-

cients are strongly significant regardless of the periods.
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Table 3-10.: Cochrane-Piazessi Regression 1-1

rxt+1 = γTft + εt+1

Cochrane-Piazessi CRSP 1 CRSP 2

Period Jan 1964-Dec 2003 Jun1964-Dec1979 Jun1991-Dec2006

γ0 -3.2438 -5.2413 -6.4299

(1.4546) (2.2978) (2.5584)

γ1 -2.1353 -1.3840 -1.0571

(0.3610) (0.4264) (1.2579)

γ2 0.8083 0.7182 -1.9163

(0.7351) (1.0927) (1.3832)

γ3 3.0006 2.5316 6.1347

(0.5016) (0.7147) (2.1339)

γ4 0.8013 0.1905 -1.3530

(0.4531) (0.7809) (1.4573)

γ5 -2.0757 -1.3780 -0.6264

(0.3358) (0.6838) (1.7116)
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Table 3-11.: Cochrane-Piazessi Regression 1-2

rxt+1 = γTft + εt+1

CRSP Nelson-Siegel Svensson Cubic Spline

Period Jun1991-Dec2006 Jun1991-Dec2006 Jun1991-Dec2006 Jun1991-Dec2006

γ0 -6.4299 -4.7881 -4.8956 -11.0540

(2.5584) (2.3745) (3.4582) (1.5316)

γ1 -1.0571 1.7858 -0.2326 1.7950

(1.2579) (1.5589) (1.8167) (1.6475)

γ2 -1.9163 -1.7214 -3.5076 -3.1826

(1.3832) (3.3533) (5.6844) (1.7418)

γ3 6.1347 -6.2653 6.7790 6.4112

(2.1339) (2.9502) (13.6710) (4.9417)

γ4 -1.3530 20.4080 -0.9048 -9.9142

(1.4573) (10.4630) (19.1350) (10.8940)

γ5 -0.6264 -13.2400 -1.1503 7.1190

(1.7116) (6.9898) (9.6473) (5.9084)
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Table 3-12.: Cochrane-Piazessi Regression 2-1

rx
(n)
t+1 = bn(γTft) + ε

(n)
t+1

Cochrane-Piazessi CRSP 1 CRSP 2

Period Jan 1964-Dec 2003 Jun1964-Dec1979 Jun1991-Dec2006

bn bn bn

2 year 0.4652 0.4880 0.4492

(0.0317) (0.0502) (0.0274)

3 year 0.8664 0.8459 0.8670

(0.0217) (0.0271) (0.0284)

4 year 1.2353 1.1993 1.2283

(0.0146) (0.0317) (0.0138)

5 year 1.4331 1.4668 1.4555

(0.0403) (0.0587) (0.0435)
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Table 3-13.: Cochrane-Piazessi Regression 2-2

rx
(n)
t+1 = bn(γTft) + ε

(n)
t+1

CRSP Nelson-Siegel Svensson Cubic Spline

Period Jun1991-Dec2006 Jun1991-Dec2006 Jun1991-Dec2006 Jun1991-Dec2006

bn bn bn bn

2 year 0.4492 0.6568 0.4493 0.4568

(0.0274) (0.0294) (0.0343) (0.0360)

3 year 0.8670 0.6761 0.8560 0.9356

(0.0284) (0.0308) (0.0257) (0.0352)

4 year 1.2283 1.1934 1.2006 1.1867

(0.0138) (0.0105) (0.0107) (0.0126)

5 year 1.4555 1.4737 1.4942 1.4208

(0.0435) (0.0311) (0.0507) (0.0373)

Table 3-13 shows the results of the second step regression. As we see, all co-

efficients are strongly significant regardless of methods. Also, we try to draw the

regression coefficients of 1 year excess returns on forward rates at time t. The figures

are well known as the tent-shaped regression coefficient. In the period from June

1964 to December 1979, the shape of coefficient value from CRSP data is not differ-

ent from that of Cochrane and Piazzesi (2005). However, in the period from June

1964 to December 1979, the shapes of the coefficient value are different from the tent

shape from our data regardless of the methods.

E. The Possible Explanation against the Evidence of the EH

We have shown that although the EH can be rejected significantly in the period June

1964 to December 1979, the EH can not be rejected significantly in the period June

1991 to December 2006. We, here, try to explain the situation the result that the
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statistical rejection of the EH has weakened over time. There are many papers to try

to account for the rejection of the EH.

One issue to consider is a time-varying risk premium. When we test the EH, we

assume that the risk premium is constant. However, if there exists time-varying risk

premium, tests of the EH are biased downward from the theoretical value. Numerous

researchers have studied this possibility. However, the results depends on the model

specification for the risk premium, and Duffee (2002) argue that the time-varying risk

premium may not be able to account for the scale of the rejection.

The other issue to consider is the overreaction hypothesis which is suggested by

Campbell and Shiller (1991). According to the overreaction hypothesis, long rates

overreact to the expectation of changes in future short rates. Thornton (2006) shows

the following example. Let us assume that some event happens and it makes the

future short-term rate increase. According to the EH, the long-term rate would

change. However, the long-term rate overreacts. Then, the long-term rate falls over

time. Hardouvelis (1994) argue that the overreaction hypothesis is the more likely

explanation. We adopt the overreaction hypotheses in order to analyze our results

which are summarized above.

1. The Measure of Overreaction

Campbell and Shiller (1991) introduce how to measure the overreaction of spread.

We adopt their measure of overreaction of spread. The reader is referred to Campbell

and Shiller (1991) for the detail. We can define the actual spread between the long

rate, the n-period rate, and the short rate, the m-period rate, as

(3.18) S
(n,m)
t = y

(n)
t − y

(m)
t .
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Based on the EH, since long-term bond yields are the average of future expected

short-term bond yields, we can specify the theoretical spread as

(3.19) S
(n,m)∗

t ≡ y
(n)∗

t − y(m)
t =

h−1∑
i=1

(1− i

h
)∆my

(m)
t+im.

If we assume that the model is

(3.20) S
(n,m)
t = κEtS

(n,m)∗

t + c,

then the coefficient κ can be considered to be the degree of overreaction of spread. κ

is greater than one under the assumption of the overreaction of spread. Also, if we

run the regression of S
(n,m)∗

t on S
(n,m)
t , then the coefficient will be 1/κ. Therefore, we

can check whether or not κ may change over time using the regression of S
(n,m)∗

t on

S
(n,m)
t .

We, here, run the above regression for two periods, June 1964 to December 1979

and June 1991 to December 2006. Table 3-14 summarizes the regression results.

We use the Chow test in order to check whether or not the coefficients for two

periods are equal. Table 3-15 shows the results of Chow test. Based on the results

of Table 10, we can reject at the 5% significance level the null hypothesis that the

coefficients for two periods are equal. Also, since the coefficient can be interpreted as

1/κ we can compute the value of κ

Table 3-16 shows the results of the degree of overreaction. If the long-term

periods are less than 3 years, the degrees of overreaction κ for every cases is greater

one. Also, for almost every cases, κ is decreases over time if we compare the results

for two periods. These results support that the statistical evidence against the EH

has weakened. If κ is greater than one, it means that the long-term rate overreacts
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Table 3-14.: Slope Coefficient on Regression of S
(n,m)∗

t on S
(n,m)
t

m

n 1Month 3 Month 6Month 1Year

Period1 Period2 Period1 Period2 Period1 Period2 Period1 Period2

3Month 0.4001 0.5061

(0.0601) (0.0665)

6Month 0.4856 0.7524 0.3064 0.7825

(0.1622) (0.0627) (0.1904) (0.1617)

1 Year 0.5140 0.8310 0.3469 0.9529 0.0659 0.6206

(0.2148) (0.1269) (0.2654) (0.3178) (0.1702) (0.4556)

2 Year 0.5729 0.7851 0.6147 0.8324 0.6374 0.6969 0.2871 0.4305

(0.3068) (0.2507) (0.3618) (0.4813) (0.3450) (0.6117) (0.3229) (0.6474)

3 Year 0.7836 0.8305 0.9449 0.8843 1.0376 0.9543 0.8340 0.8783

(0.2810) (0.2906) (0.2988) (0.4747) (0.2786) (0.5579) (0.3106) (0.6058)

4 Year 0.8392 0.9698 1.0215 1.0352 1.1225 1.0632 1.0368 1.1272

(0.2729) (0.2573) (0.2505) (0.3760) (0.2064) (0.4284) (0.2088) (0.4614)

5 Year 0.9207 1.0291 1.0623 1.1071 1.1303 1.1388 1.0499 1.1767

(0.2133) (0.2056) (0.1629) (0.2872) (0.1234) (0.3164) (0.1655) (0.3433)
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Table 3-15.: The Results of Chow Test

m

n 1Month 3 Month 6Month 1Year

F(2,370) F(2,370) F(2,370) F(2,380)

3Month 0.7967

6Month 4.8052 5.3841

1 Year 3.886 6.9302 5.9098

2 Year 6.5934 8.7323 11.3101 7.5044

3 Year 15.3280 19.9924 28.3984 21.6497

4 Year 45.5869 55.9331 66.7247 56.6839

5 Year 101.5286 126.5526 155.1366 126.1031

and this overreaction can be interpreted as one of a pricing anomaly.

F. Conclusion

In this chapter, we retest the EH with many different regressions (the Campbell

and Shiller regression, the Fama and Bliss regression, and the Cochrane and Piazessi

regression) from different periods (June 1964 to December 1979 and June 1991 to

December 2006), and by different data sets (the Nelson-Siegel method, the Svensson

method, and the cubic spline method). As we see above, the results of the EH are

different from before.

We argue that the evidence against the EH has weakened over time. Based on

our results, in many cases, the EH can be statistically rejected in the period from June

1964 to December 1979, but the EH cannot be rejected in the period from June 1991
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Table 3-16.: The Degree of Overreaction

m

n 1Month 3 Month 6Month 1Year

κ κ κ κ

Period1 Period2 Period1 Period2 Period1 Period2 Period1 Period2

3Month 2.4993 1.9761

6Month 2.0593 1.3291 3.2633 1.2779

1 Year 1.9456 1.2034 2.8829 1.0495 15.1713 1.6114

2 Year 1.7455 1.2737 1.6269 1.2014 1.5690 1.4349 3.4832 2.3229

3 Year 1.2762 1.2041 1.0583 1.1309 0.9638 1.0479 1.1990 1.1385

4 Year 1.1917 1.0311 0.9790 0.9660 0.8909 0.9405 0.9645 0.8872

5 Year 1.0862 0.9717 0.9413 0.9033 0.8847 0.8781 0.9524 0.8499
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to December 2006. Although we try to test the EH using data sets by result of the

Nelson-Siegel method, the Svensson method and the cubic spline method, the results

are not different. Therefore, the yield curve fitting method does not affect the result

of the test of the EH. Also, we can support the statement that the statistical evidence

against the EH has weakened over time when we use the overreaction hypothesis in

order to analyze our results.



38

CHAPTER IV

A NEW ESTIMATION METHOD FOR THE STOCHASTIC VOLATILITY

MODEL OF SHORT-TERM INTEREST RATES

A. Introduction

Short-term interest rates are one of the most fundamental assets in the financial

market. If we consider the one-factor affine term structure model, all interest rates can

be characterized by an instantaneous interest rate which will be replaced with short-

term interest rate. Therefore, the short-term interest rates are crucially important in

financial market analysis. Many papers are developed in continuous time and assume

that short-term interest rates follow a diffusion process:

(4.1) drt = µtdt+ σtdWt

where µt is the drift term which represents instantaneous mean and σt is the diffusion

term which represents instantaneous variance.

Chan, Karoly, Longstaff, and Sanders (1992) (CKLS) suggest the following spe-

cific model:

(4.2) drt = (α + βrt−1)dt+ ψrγt−1dWt

where rt is the short-term interest rate, and Wt is a standard Brownian motion. In this

model, the drift function is characterized by a linear drift, and the diffusion function

is characterized as the volatility of interest rate, which depends on the interest rate

level. Many papers extend this CKLS model for the short-term interest rate. Cox,
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Ingersoll, and Ross (1985) (CIR) specify a square root model, γ = 1/2.

However, some papers argue that this CKLS model is inappropriate. For ex-

ample, Ait-Sahalia (1996) provides strong evidence of a nonlinear drift function with

deterministic volatility case.

Also, Ball and Torous (1999) assert that the volatility itself is stochastic. Ball

and Torous (1999), Smith (2002), and Sun (2005) incorporate stochastic volatility

into short-term interest rate models. It is valuable to review the existing volatility

model of short-term interest rates before we introduce new estimation method for

stochastic volatility of short-term interest rates.

Many papers use a discrete time approximation to analyze the volatility model

of short-term interest rates. First of all, we can consider the Euler discrete time

approximation with ∆ = 1 for the CKLS model as

(4.3) rt − rt−1 = (α + βrt−1) + εt

(4.4) E(εt|Ft−1) =0, E(ε2
t |Ft−1) ≡ σ2

t = ψ2r2γ
t−1.

As we mentioned before, the volatility of the interest rate depends on the interest

rate level in the CKLS model. Brenner, Harjes, and Kroner (1996) introduce the

LEVELS-GARCH model as an extension of the CKLS given by

(4.5) E(ε2
t |Ft−1)≡ψ2

t r
2γ
t
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(4.6) ψ2
t = a0 + a1ε

2
t−1 + bψ2

t−1.

In the above model, the volatility of the interest rate relies on previous volatility as

well as the rate level. Ball and Torous (1999) incorporate stochastic interest rate

volatility into the CKLS;

(4.7) rt − rt−1 = (α + βrt−1) + σtr
γ
t−1εt

(4.8) lnσ2
t = ω + φ lnσ2

t−1 + ηt.

Ball and Torous (1999) assume that the volatility depends on the interest rate

level, and that it is stochastic. This model is parsimonious and successfully flexible for

the short-term interest rate model. In this paper, we focus on a two stage estimation

method for this kind of stochastic volatility model. Andersen and Lund (1997) also

extend the CKLS model like Ball and Torous (1999). Many papers use two stage

estimation methods including Ball and Torous (1999), Smith (2002) and Sun (2005).

Especially, if stochastic volatility is more specified as in the regime switch model and

the logistic function volatility, the two stage estimation method is uniquely developed

method for interest rate model.

Many papers based on two stage estimation method use ordinary least square

(OLS) to estimate the parameters of drift function in interest process. At first we

can apply OLS because OLS is consistent. If we apply OLS and we define realized

residual, et, as et = (rt − rt−1) − α − βrt−1, then we can consider the estimation

method of state space models. After taking the log of the squared residual, we can

obtain
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(4.9) ln e2
t = lnσ2

t + 2γ log rt−1 + ln ε2t

since et = σtr
γ
t−1εt. If we introduce new notation as y = ln e2

t , y is observable given

the observed interest rate and parameter values. Also, x = lnσ2
t can be interpreted

as a state variable. Then, we can express the equations in the state-space form as

(4.10) yt = xt + 2γ log rt−1 + ln ε2t

(4.11) xt = ω + φxt−1 + ηt

.

Since ln ε2t is log-chi-squared random variable, we cannot use the Kalman fil-

ter method. There are different methods to attack this problem. Ball and Torous

(1999) use a non-Gaussian estimation method. Smith (2002) and Sun (2005) use

quasi-maximum likelihood (QML) which is suggested by Harvey, Ruiz, and Shephard

(1994). Let us examine the quasi-maximum likelihood in detail. After taking the log

of the squared residual like Ball and Torous (1999), we can obtain

(4.12) ln e2
t = lnσ2

t + 2γ log rt−1 + ln ε2t .

We need to modify the system equation in order to apply the quasi-maximum likeli-

hood. The mean of ln ε2t is E( ln ε2t ) = −1.2704 and the variance of ln ε2t is V ar( ln ε2t ) =

π2

2
.

The quasi-maximum likelihood (QML) uses the likelihood function of a normal

random variable as if ln ε2t is a normal random variable with the mean, E( ln ε2t ) =
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−1.2704, and the variance,V ar( ln ε2t ) = π2

2
. Then, the system equations are as follows:

(4.13) yt = xt + 2γ log rt−1 − 1.2704 + ξt

(4.14) xt = ω + φxt−1 + ηt.

Smith (2002) suggests a Markov-switching model of short-term interest rates as

(4.15) rt − rt−1 = (α + βrt−1) + σir
γ
t−1εt

(4.16) yt = ωi + 2γ log rt−1 + ln ε2t

where y = ln e2
t is observable given interest rate and parameter values as previously

and ωi = lnσi. Also Smith (2002) introduces a Markov-switching stochastic volatility

model:

(4.17) yt = xt + 2γ log rt−1 + ln ε2t

(4.18) xt = ωi + φxt−1 + ηt

Kalimipalli and Susmel (2004) makes use of the Monte Carlo Markov Chain

(MCMC). However, there are some issues in previous methods which have been de-

veloped. At first, many stochastic volatility models used ordinary least squares to

estimate the drift term of interest rate. Since the stochastic process of interest rates

is close to a unit root which is a non-stationary process, the least square has the

upward-biased problem for the speed of mean reversion. As a result, many papers

report the speed of excessive mean reversion. Also, many papers use QML which



43

has the advantages of computation work and adaptability to many cases. However,

as Jacquier, Polson, and Rossi (1994) mention, the performance of QML depends

on the parameter value. Therefore, we should be careful when using QML. If we

use Bayesian analysis of stochastic volatility, the estimation will be computationally

burdensome.

Park (2008) introduces a Martingale method to estimate the drift term without

any specific assumption about diffusion term. If we use Martingale method, the

upward bias problem will be mitigated. Therefore, we can adopt the Martingale

method to estimate the drift term for the stochastic volatility model. Also, Tanizaki

(1996) introduces nonlinear filters which include density-based filtering for the state

space model. However, there is no paper which uses the density-based filtering for the

short-term interest stochastic volatility model. Therefore, it is valuable to adopt the

density-based filtering and study the empirical application for the stochastic volatility

model of short-term interest rates.

Therefore, we introduce a new estimation method for the stochastic volatility

model which uses Martingale estimation and the density-based filtering, we compare

our new method with the existing method, and we apply our method to estimate the

stochastic volatility model of short-term interest rates with the three-month interest

rates which are constructed from GovPX data.

B. Model

We, in this chapter, assume a stochastic volatility model which Ball and Torous (1999)

use.

drt = (α + βrt)dt+ σtr
γ
t dW1,t(4.19)

d log σ2
t = κ2(µ2 − log σ2

t )dt+ ξdW2,t.(4.20)
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As many papers use Euler approximation, we apply it as

rt+∆ − rt = (α + βrt)∆ + σtr
γ
t

√
∆ε1,t(4.21)

log σ2
t+∆ − log σ2

t = κ2(µ2 − log σ2
t )∆ + ξ

√
∆ε2,t(4.22)

where ε1,t and ε2,t are independent. We adopt a two stage estimation method as

Ball and Torous (1999), Smith (2005), and Sun(2005). We use Martingale estimation

to estimate parameters for the drift term of the interes rate instead of ordinary least

squares and apply density-based filtering to estimate stochastic volatility.

1. Martingale Method

Park (2008) introduces the Martingale method for the statistical inference in a con-

ditional mean model given in continuous time. We can use the Martingale method

to estimate the parameters of the drift term of the short-term interest rate without a

specific assumption of functional form for the diffusion term. The idea of the Martin-

gale Method is clear. The Dambis-Dubins-Schwartz Theorem (DDS Theorem) shows

that any Martingale will be a time changed Brownian Motion with the time change

derived by using of quadratic variation process. After the time-changed martingale,

the increments follow standard normal distribution by DDS Theorem. The Martin-

gale estimator (MGE) will minimize the distributional distance between the empirical

distribution from the real data and the standard normal distribution. The Martingale

method shows that the upward bias problem for mean reversion speed is much less

than that of OLS with realistic parameter values.

We briefly summarize the Martingale method for our model. See Park (2008)

for more detail. For our analysis, we define Ut(θ) = (rt − r0)−
∫ t

0
(α+ βrs)ds. Then,

dUt(θ) is considered to be an error after we handle the conditional mean process. We
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also define time change using the quadratic variation as

(4.23) Tt = inf
s>0
{〈U〉S > t}

where (〈U〉t) is the quadratic variation of (Ut). The quadratic variation is defined by

(4.24) 〈U〉t = p lim
πn→0

n∑
i=1

(Uti − Uti)2

where 0 ≡ t0 < ... < tn ≡ t and πn = max1≤i≤n |ti − ti−1| By the DDS Theorem, the

increments follow standard normal distribution after the time change,

(4.25) Zi(θ) = ∆−1/2(rTi
− rTi−1

−
∫ Ti

Ti−1

(α + βrt)dt)

where Zi is i.i.d and (Ti) is defined using the quadratic variation as before. Finally,

the Martingale estimator (MGE) will minimize the Cramer-von-Mises (CvM) distance

between the empirical distribution and the standard normal distribution as

(4.26) θ̂ = arg min
θ∈Θ

∫ ∞

−∞
[ΦN(r, θ)− ΦN(r, θ)]2ϕ(r)dr.

If we use the Martingale method for our model, we can estimate the parameters,α

and β. We can obtain the residual after the Martingale method as

yt = σtr
γ
t

√
∆ε1,t(4.27)

log σ2
t+∆ − log σ2

t = κ2(µ2 − log σ2
t )∆ + ξ

√
∆ε2,t.(4.28)
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This model is a state space model of nonlinear filter. Ball and Torous (1999),

Smith (2002), and Sun (2005) take squared the log-linearization of the observation

equation. Lee (2008) shows that the above stochastic volatility model can be trans-

formed as the exponential form of the volatility function. We follow the transforma-

tion which Lee (2008) suggests in order to check whether or not the volatility factor

is unit-root or near-unit root.Let us define a transformed latent factor xt as

(4.29) xt = [
log σ2

t

ξ
√

∆
− µ2

ξ
√

∆
].

Then, our state space model is transformed as

yt =

√
exp(µ2) exp(ξ

√
∆xt)r

γ
t ∆ε1,t(4.30)

xt+1 = (1− κ2∆)xt + ε2,t.(4.31)

Then, for estimation, we can write the observation equation and the transition equa-

tion as

yt =
√
ν exp(λxt)r

γ
t ∆ε1,t(4.32)

xt+1 = αxt + ε2,t.(4.33)

where ν = exp(µ2), λ = ξ
√

∆, and α = (1 − κ2∆). From the transformed state

space model, we will estimate the parameters, ν, λ, γ, and α. Then, we can get

estimate values for original state space model’s parameters, µ2, ξ, κ2, and γ. This is

a nonlinear state space model. Therefore, we cannot apply the Kalman filter. There

are several methods for a nonlinear state space model. The density-based nonlinear
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filtering is straightforward. Generally speaking, the conditional density cannot be

obtained. Tanizaki (1996) suggests some methods to solve the computational burden.

Among many methods, we apply the numerical integration because it is intuitive and

straightforward.

We briefly summarize the density-based filtering for our model. See Lee (2008)

for more detail. Since ε1,t and ε2,tare independent, our algorithm for the density-based

filter is much simpler. For the prediction step, we utilize the relationship

p(xt|Ft−1) =

∫
p(xt|xt−1, yt−1)p(xt−1|Ft−1)dxt−1

'
∫ c+xt−1|t−2

−c+xt−1|t−2

p(xt|xt−1, yt−1)p(xt−1|Ft−1)dxt−1

=

∫ c

−c
p(xt|z + xt−1|t−2, yt−1)p(z + z + xt−1|t−2|Ft−1)dz

=
h√
2π

m∑
j=1

exp(−
[zj + xt−1|t−2 − (α(zj + xt−1|t−2)]2

2

p(z + z + xt−1|t−2|Ft−1)

where xt−1 = z + xt−1|t−2andz = [−c,−c + h, ..., c − h]. Therefore, in the numerical

integration, [−c, c] is the interval and h is the length of a partition. Let us analyze

the updating step. Since p(yt|xt) is given as a normal density function,we can express

the likelihood function as
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p(yt|Ft−1) =

∫
p(yt|xt)p(xt|Ft−1, θ)dxt

'
∫ c+xt−1|t−2

−c+xt−1|t−2

p(yt|xt)p(xt|Ft−1, θ)dxt

=

∫ c

−c
p(yt|z + xt|t−1)p(z + xt|t−1|Ft−1)dz

= h

m∑
j=1

1√
2π exp(µ2) exp(ξ

√
∆xt|t−1)r2γ

t−1∆

exp(− y2
t

2π exp(µ2) exp(ξ
√

∆xt|t−1)r2γ
t−1∆

)p(zj + xt|t−1|Ft−1).

We can write the updating step by using the prediction step and the loglikelihood

function as

p(yt|Ft−1) =

∫
p(yt|xt)p(xt|Ft−1)dxt

' 1√
2π exp(µ2) exp(ξ

√
∆xt|t−1)r2γ

t−1∆

exp(− y2
t

2π exp(µ2) exp(ξ
√

∆xt|t−1)r2γ
t−1∆

)
p(zj + xt|t−1|Ft−1)

p(yt|Ft−1)

With the prediction step and the updating step, we can set the log likelihood

function to be

(4.34) θ̂ = agrmax
θ∈Θ0

n∑
t=1

log p(yt|Ft−1, θ)

As Lee (2008) emphasizes, choosing c and h is the most important issue. Larger

c and smaller h will give us better result. However, it takes a long time to compute

the the numerical integration. In our case, after we plot the density of the smoothed

latent factors to check the value of the latent factors again and again, we choose c
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and h.

C. Simulation Study

We perform the Monte-Carlo simulation study. Our model is given as Ball and Torous

(1999) and Andersen and Lund (1997) given by

drt = (α + βrt)dt+ σtr
γ
t dW1,t(4.35)

d log σ2
t = κ2(µ2 − log σ2

t )dt+ ξdW2,t.(4.36)

We generate the simulation data by the Euler approximation as many stochastic

volatility models:

rt+∆ − rt = (α + βrt)∆ + σtr
γ
t

√
∆ε1,t(4.37)

log σ2
t+∆ − log σ2

t = κ2(µ2 − log σ2
t )∆ + ξ

√
∆ε2,t.(4.38)

At first we generate the data with 5 minute frequency. Then, we select the gen-

erated data with weekly frequency, ∆ = 1/52 for fifty years because many papers use

weekly frequency data to do simulations and estimations. The value of the parameters

are followed from Andersen and Lund (1997) as

(4.39) α = 0.96 β = −0.16 µ2 = −0.28 κ2 = 1.04 γ = 0.54 ξ = 1.27

We run each iteration 1000 times iteration with different random variables. We use

Matlab, and employ the fminsearch optimization procedure. We also set the initial

value as the true parameter value for numerical optimization. First, we estimate the
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parameters using ordinary least square (OLS) for the drift function in short-term

interest rate and Kalman filter (KF) to estimate the rest of parameters. Second, we

estimate the parameters for the drift function using Martingale estimator (MGE) and

density-based filtering (DBF).

For the Martingale estimator (MGE), the number of sample after time change

(TCN) is important. We follow Park (2008) and choose TCN=50. For density-based

filtering, the values of c and h are critical for the simulation study. We choose c=20

and h=0.5 based on the density of smoothed latent factor. Then, we compare the

performances between these two methods.

Tables 4-17 through Table 4-20 shows the summary of statistics of results for

the OLS-Kalman filter, the MGE-Kalman filter, the OLS-DBF, and the MGE-DBF.

Based on Table 1 and Table 2, we argue that OLS is biased for parameters α and β

and MGE is better than OLS to estimate α and β. However, MGE does not affect

the estimation performance of stochastic volatility part. Based on Table 4-17 through

Table 4-20, density-based filtering (DBF) works well for the stochastic volatility model

of short-term interest rates. Especially, DBF is better than Kalman filter for κ2 and

ξ.

Also, we show the results of the simulation graphically in Appendix C. Figures

C-33 through C-36 make it easy to compare the methods. These results summarized

by tables and figures support that our new estimation method of stochastic volatility

model works well for a short-term interest rate model.
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Table 4-17.: Simulation Result of OLS & Kalman Filter

Alpha Beta Mu2 Kapp2 Gamma Xi

True 0.9600 -0.1600 -0.2800 1.0400 0.5400 1.2700

Mean 1.6834 -0.2986 -0.1769 1.2069 0.5018 1.2770

Bias 0.7234 -0.1386 0.1031 0.1669 -0.0382 0.0070

Rbias 75.3540 -86.6037 36.8162 16.0444 -7.0752 0.5519

Std 0.8370 0.1478 0.3693 0.4170 0.0931 0.2093

Rmse 1.1063 0.2026 0.3834 0.4492 0.1007 0.2094

Table 4-18.: Simulation Result of MGE & Kalman Filter

Alpha Beta Mu2 Kapp2 Gamma Xi

True 0.9600 -0.1600 -0.2800 1.0400 0.5400 1.2700

Mean 0.9867 -0.1687 -0.1766 1.2111 0.5016 1.2773

Bias 0.0267 -0.0086 0.1034 0.1711 -0.0384 0.0073

Rbias 2.7778 -5.4276 36.9304 16.4498 -7.1086 0.5742

Std 1.0553 0.1552 0.3581 0.4241 0.0900 0.2133

Rmse 1.0556 0.1555 0.3728 0.4573 0.0978 0.2134
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Table 4-19.: Simulation Result of OLS & DBF

Alpha Beta Mu2 Kapp2 Gamma Xi

True 0.9600 -0.1600 -0.2800 1.0400 0.5400 1.2700

Mean 1.6834 -0.2986 -0.1211 1.1660 0.4924 1.2619

Bias 0.7234 -0.1386 0.1588 0.1260 -0.0477 -0.0080

Rbias 75.3540 -86.6037 56.7355 12.1195 -8.8241 -0.6347

Std 0.8370 0.1478 0.3547 0.3258 0.1627 0.1401

Rmse 1.1063 0.2026 0.4669 0.3886 0.1696 0.1403

Table 4-20.: Simulation Result of MGE & DBF

True 0.9600 -0.1600 -0.2800 1.0400 0.5400 1.2700

Mean 0.9867 -0.1687 -0.0882 1.1726 0.4816 1.2667

Bias 0.0267 -0.0086 0.1918 0.1326 -0.0583 -0.0033

Rbias 2.7778 -5.4276 68.5010 12.7531 -10.8071 -0.2627

Std 1.0553 0.1552 0.3483 0.3303 0.1396 0.1468

Rmse 1.0556 0.1555 0.3976 0.3559 0.1513 0.1469
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Table 4-21.: Summary Statistics for Weekly Three Month Treasury Bill

Interest Rate Level First Order Difference

Mean 3.8939 Mean -0.0008

Std. dev 1.5734 Std. dev 0.1017

Minimum 0.7632 Minimum -0.9270

Maximum 6.3517 Maximum 0.5894

Skewness -0.5614 Skewness -1.7285

Kurtosis 2.0538 Kurtosis 19.2082

D. Empirical Application

1. Data Description

For the empirical study, we use the three-month zero-coupon yields that are obtained

in chapter 1 for weekly frequency. We use the period from the June 1991 to December

2006. Also, we use the hourly frequency three-month zero-coupon yield to obtain the

realized volatility for weekly frequency yields.

Table 4-21 and Table 4-22 report the summary statistics of the level of the three-

month interest rates and their first-order difference for weekly frequency and hourly

frequency. Figure C-37 and Figure C-38 in Appendix C show the two time series data

sets.

2. Result of Estimation

We estimate the parameters in the model in the way which we use for simulation

study. First, we use ordinary least square (OLS) and Martingale estimator (MGE)to

estimate the parameters of drift. Second, we use Kalman filter (KF) and density-
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Table 4-22.: Summary Statistics for Hourly Frequency Treasury Bill

Interest Rate Level First Order Difference

Mean 3.9091 Mean -0.00002

Std. dev 1.5690 Std. dev 0.0332

Minimum 0.7134 Minimum -0.6121

Maximum 6.4139 Maximum 0.5729

Skewness -0.5716 Skewness -0.1079

Kurtosis 2.0741 Kurtosis 29.3067

based filering (DBF) to estimate the rest of parameters.

Tables 4-23 through Table 4-25 shows the result of estimation. Based on Mean

absolute error(MAE)As we see below in the table and in the picture, the performance

of MGE and DBF dominates the other results. MGE and DBF is the best to estimate

parameters of both drift and stochastic volatility since MGE corrects the upward bias

of OLS and density-based filtering corrects the approximation error of Kalman filter.

E. Conclusion

We have introduced a new estimation method for the stochastic volatility model

which uses a Martingale method and the density-based filtering. The Martingale

method improves the upward bias of OLS for the parameters in the drift function

of interest rates. However, the Martingale method does not affect the estimation

of stochastic volatility part with relevant parameter values which is based on real

interest rates data. Density based filtering works well to estimate the stochastic

volatility model of short-term interests. Specially, if we use density based filtering,

we obtain better estimation result for the parameters which include mean reversion
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Table 4-23.: Estimation Results for Weekly 3 Month Bill

Parameter OLS & KF MGE & KF OLS & DBF MGE & DBF

α 0.4804 1.8861 0.4804 1.8861

(0.3709) (0.0263) (0.3709) (0.0263)

β -0.1346 -0.4260 -0.1346 -0.4260

(0.0980) (0.0039) (0.0980) (0.0039)

µ2 -2.4883 -2.0470 -2.5020 -2.1568

(0.9056) (0.2544) (0.2809) (0.2660)

κ2 16.9199 29.3966 13.4468 13.2803

(116.5924) (7.1330) (3.3568) (3.7056)

γ 0.4132 0.2525 0.4264 0.3218

(0.4162) (0.0940) (0.1040) (0.0992)

ξ 5.7768 7.9519 5.3069 4.8936

(20.5096) (1.1517) (0.7502) (0.7636)

Table 4-24.: Model Evaluation by Regression

Parameter OLS & KF MGE & KF OLS & DBF MGE & DBF

a 0.0187 0.0172 0.0322 0.0307

(0.0043) (0.0045) (0.0030) (0.0031)

b 4.3599 4.5294 1.5722 1.7903

(0.6358) (0.6654) (0.2483) (0.2709)

R2 0.0546 0.0539 0.0469 0.0509



56

Table 4-25.: Model Evaluation by MAE

OLS & KF MGE & KF OLS & DBF MGE & DBF

MAE 0.03782 0.03779 0.03749 0.0373

speed of log-volatility,µ2, and diffusion term of log volatility,ξ. Therefore, if we use

the Martingale method and density-based filtering for the stochastic volatility model

of short-term interest rates, we can obtain better performance.
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CHAPTER V

CONCLUSION

U.S. Treasury Securities are crucially important in many areas of finance. However,

zero-coupon yields are not observable in the market. Even though published zero-

coupon yields exist, they are sometimes not available for certain research topics or

for high frequency. Recently, high frequency data analysis has become popular, and

the GovPX database is a good source of tick data for U.S. Treasury securities from

which we can construct zero-coupon yield curves. Therefore, we try to fit zero-

coupon yield curves from low frequency and high frequency data from GovPX by

three different methods: the Nelson-Siegel method, the Svensson method, and the

cubic spline method.

Then, we try to retest the expectations hypothesis (EH) with new zero-coupon

yields that are made from GovPX data by three methods using the Campbell and

Shiller regression, the Fama and Bliss regression, and the Cochrane and Piazzesi

regression. Regardless of the method used (the Nelson-Siegel method, the Svensson

method, or the cubic spline method), the expectations hypothesis cannot be rejected

in the period from June 1991 to December 2006 for most maturities in many cases.

Also, we introduce a new estimation method for the stochastic volatility model of

short-term interest rates. We apply a Martingale method and density based filtering

to estimate a stochastic volatility model of short-term interest rates, and we compare

our method with the existing method. The result supports that our new method

works well for the stochastic volatility model of short-term interest rates.
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APPENDIX A

ZERO-COUPON YIELD CURVES

Table A-26.: Description of GovPX’s Variables

Variable Type Description Categories

CUSIP Char CUSIP

DATE Num Date

ACTIVE Char Active Code A(Active),N(Non-Active)

W(When-issued)

ALIAS Char Bond Type 3-month, 6-month, 1-year, etc

COUPON Num Coupon 0(discount), 1(coupon)

MATDATE Num Maturity Date

TIME Num Time

BIDPRC Num Bid Price

BIDYLD Num Bid Yield

BIDSIZE Num Bid Size

ASKPRC Num Ask Price

ASKYLD Num Ask Yield

ASKSIZE Num Ask Size

LTPRC Num Last Trade Price

LTYLD Num Last Trade Yield

LTSIZE Num Last Trade Size

INDBID Num Indicative Bid Price

INDASK Num Indicative Ask Price
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Fig. A-1.: The Comparison of Three Methods (period:1991-1998)



64

Fig. A-2.: The Comparison of Three Methods (period:1999-2006)
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Fig. A-3.: The Nelson-Siegel Yield Curves with Monthly Frequency

Fig. A-4.: The Svensson Yield Curves with Monthly Frequency



66

Fig. A-5.: The Cubic Spline Yield Curves with Monthly Frequency

Fig. A-6.: The Nelson-Siegel Yield Curves with Weekly Frequency
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Fig. A-7.: The Svensson Yield Curves with Weekly Frequency

Fig. A-8.: The Cubic Spline Yield Curves with Weekly Frequency
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Fig. A-9.: The Nelson-Siegel Yield Curves with Daily Frequency

Fig. A-10.: The Svensson Yield Curves with Daily Frequency
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Fig. A-11.: The Cubic Spline Yield Curves with Daily Frequency

Fig. A-12.: The Nelson-Siegel Yield Curves with Hourly Frequency
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Fig. A-13.: The Svensson Yield Curves with Hourly Frequency

Fig. A-14.: The Nelson-Siegel Yield Curves with 30 Minutes Frequency
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Fig. A-15.: The Svensson Yield Curves with 30 Minutes Frequency

Fig. A-16.: The Nelson-Siegel Yield Curves with 10 Minutes Frequency
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Fig. A-17.: The Svensson Yield Curves with 10 Minutes Frequency
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APPENDIX B

REVISITING THE EH OF INTEREST RATES WITH GOVPX DATA

Table B-27.: Summary Statistics of CRSP Data

CRSP (Jun1964-Dec1979) CRSP(Jun1991-Dec2006)

Maturity Mean Std Min Max Mean Std Min Max

1 year 4.0279 1.7150 1.0424 6.4837 4.4325 1.4437 1.7499 6.5927

2 year 4.2732 1.5639 1.3013 6.5932 4.5875 1.3240 2.1072 6.6044

3 year 4.4904 1.4063 1.6235 6.5622 4.7058 1.2347 2.3973 6.5864

4 year 4.6594 1.2760 2.0009 6.6343 4.8104 1.1591 2.6503 6.5955

5 year 4.7724 1.1610 2.3532 6.6636 4.9062 1.0939 2.8782 6.6039

Table B-28.: Summary Statistics of Our Yield Data

Nelson-Siegel(Jun1991-Dec2006) Svensson (June1991-Dec2006)

Maturity Mean Std Min Max Mean Std Min Max

1 year 4.0279 1.7150 1.0424 6.4837 4.4325 1.4437 1.7499 6.5927

2 year 4.2732 1.5639 1.3013 6.5932 4.5875 1.3240 2.1072 6.6044

3 year 4.4904 1.4063 1.6235 6.5622 4.7058 1.2347 2.3973 6.5864

4 year 4.6594 1.2760 2.0009 6.6343 4.8104 1.1591 2.6503 6.5955

5 year 4.7724 1.1610 2.3532 6.6636 4.9062 1.0939 2.8782 6.6039
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Table B-29.: Summary Statistics of Our Yield Data

Cubic Spline(Jun1991-Dec2006)

Maturity Mean Std Min Max

1 year 4.0279 1.7150 1.0424 6.4837

2 year 4.2732 1.5639 1.3013 6.5932

3 year 4.4904 1.4063 1.6235 6.5622

4 year 4.6594 1.2760 2.0009 6.6343

5 year 4.7724 1.1610 2.3532 6.6636

Fig. B-18.: One Year Zero-Coupon Yields for 06/1991 - 12/2006
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Fig. B-19.: Two Year Zero-Coupon Yields for 06/1991 - 12/2006

Fig. B-20.: Three Year Zero-Coupon Yields for 06/1991 - 12/2006
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Fig. B-21.: Four Year Zero-Coupon Yields for 06/1991 - 12/2006

Fig. B-22.: Five Year Zero-Coupon Yields for 06/1991 - 12/2006
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Fig. B-23.: Coefficients of Unrestricted Model of Cochrane and Piazzesi from CRSP

(Jun1964-Dec1979)

Fig. B-24.: Coefficients of Restricted Model of Cochrane and Piazzesi from CRSP

(Jun1964-Dec1979)
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Fig. B-25.: Coefficients of Unrestricted Model of Cochrane and Piazzesi from CRSP

(Jun1991-Dec2006)

Fig. B-26.: Coefficients of Restricted Model of Cochrane and Piazzesi from CRSP

(Jun1991-Dec2006)
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Fig. B-27.: Coefficients of Unrestricted Model of Cochrane and Piazzesi from Our

Data by Nelson-Siegel Method (Jun1991-Dec2006)

Fig. B-28.: Coefficients of Restricted Model of Cochrane and Piazzesi from Our Data

by Nelson-Siegel Method (Jun1991-Dec2006)



80

Fig. B-29.: Coefficients of Unrestricted Model of Cochrane and Piazzesi from Our

Data by Svensson Method (Jun1991-Dec2006)

Fig. B-30.: Coefficients of Restricted Model of Cochrane and Piazzesi from Our Data

by Svensson Method (Jun1991-Dec2006)
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Fig. B-31.: Coefficients of Unrestricted Model of Cochrane and Piazzesi from Our

Data by the Cubic Spline Method (Jun1991-Dec2006)

Fig. B-32.: Coefficients of Restricted Model of Cochrane and Piazzesi from Our Data

by the Cubic Spline Method (Jun1991-Dec2006)
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APPENDIX C

ESTIMATION OF STOCHASTIC VOLATILITY MODEL OF INTEREST RATES

Fig. C-33.: The Comparison between OLS-KF and MGE-KF
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Fig. C-34.: The Comparison between MGE-KF and MGE-DBF
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Fig. C-35.: The Comparison between OLS-KF and OLS-DBF
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Fig. C-36.: The Comparison between OLS-KF and MGE-DBF
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Fig. C-37.: Three Month Interest Rates with Weekly Frequency

Fig. C-38.: Three Month Interest Rates with Hourly Frequency
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