SPECTROSCOPIC INVESTIGATIONS OF SELECTED CYCLIC AND BICYCLIC MOLECULES

A Dissertation
by
\section*{KATHLEEN RAE MCCANN}

Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

August 2009

Major Subject: Chemistry

SPECTROSCOPIC INVESTIGATIONS OF SELECTED CYCLIC AND BICYCLIC MOLECULES

A Dissertation
by
KATHLEEN RAE MCCANN

Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee,	Jaan Laane
Committee Members,	Karl Aufderheide John Fackler Rand Watson
Head of Department,	David Russell

August 2009

Major Subject: Chemistry

ABSTRACT
Spectroscopic Investigations of Selected Cyclic and Bicyclic Molecules (August 2009)
Kathleen Rae McCann, B.S., Morningside College
Chair of Advisory Committee: Dr. Jaan Laane

Several cyclic molecules along with two bicyclic molecules were investigated using infrared (IR), Raman, ultraviolet (UV) absorption, fluorescence excitation (FES), and single vibronic level fluorescence (SVLF) spectroscopies.

The laser-induced fluorescence spectra (both fluorescence excitation and single vibronic level fluorescence) of jet-cooled 1,3-benzodioxan (13BZN) along with its ultraviolet absorption spectra have been recorded and analyzed in order to determine the vibrational quantum levels in both the ground and $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ electronic excited states. A detailed energy map was established and utilized to better understand the structural and conformational differences between the ground and excited electronic states. Ab initio and DFT calculations were also carried out to complement the experimental work. The data allowed one-dimensional potential energy functions in terms of the ring-twisting coordinate to be calculated.

A complete study of all of the vibrations of 13BZN in both its S_{0} ground and $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ excited state was done utilizing several types of spectral data including infrared and Raman spectra. The vibrational frequencies of 13BZN were compared to those of the very similar 1,4-benzodioxan.

The Raman and infrared spectra of dipicolinic acid (DPA), a component of anthrax spores, and dinicotinic acid (DNic) and their salts (CaDPA, $\mathrm{Na}_{2} \mathrm{DPA}$, and CaDNic) have been recorded and the spectra have been assigned. Ab initio and DFT calculations were carried out to predict the structures and vibrational spectra and were compared to the experimental results. Theoretical calculations were also carried out for DPA dimers and DPA $+2 \mathrm{H}_{2} \mathrm{O}$ to better understand the intermolecular interactions.

3-Methylindole (3MI), which serves as a structural model for the tryptophan side chain in proteins, has been investigated using vapor phase Raman spectroscopy. The vapor phase spectrum of 3MI complements previously reported Raman studies of 3MI solutions and related tryptophan derivatives. The analysis of the Raman spectrum of 3MI vapor was also supported here with newly obtained vapor phase infrared data and $a b$ initio calculation to refine previous vibrational assignments. The present results provide an improved basis for assessing the dependence on the indoyl Raman signature on the local environment of the tryptophan side chain of proteins.

ACKNOWLEDGEMENTS

The first person I need to thank is my research advisor, Dr. Jaan Laane, for all of his support and guidance through the years. Also, Dr. Karl Aufderheide, Dr. John P. Fackler, and Dr. Rand Watson deserve thanks as members of my committee.

Several people have my appreciation for their assistance in obtaining data. The 3-methylindole work was carried out in part by Amanda Combs, a summer NSF REU student. In addition, Daniel Autrey assisted with some of the experiments and Professor George J. Thomas, Jr. (University of Missouri, Kansas City) contributed to the analysis of the data. The Raman microscope data would have not been obtained if not for HyeJin Chun's proficiency.

Dr. John Villareal has my gratitude for the synthesis of 1,3-benzodioxan and Dr. Jaebum Choo for calculations of its excited state.

TABLE OF CONTENTS

Page

ABSTRACT iii
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xi
CHAPTER
I INTRODUCTION 1
1,3-Benzodioxan 1
Dipicolinic Acid, Dinicotinic Acid, and Their Dianions 2
3-Methylindole 3
II EXPERIMENTAL 4
Infrared Spectra 4
Raman Spectra 4
Raman Microscope 6
Ultraviolet Absorption Spectra 6
Fluorescence Excitaiton and Single Vibronic Level Fluorescence Spectra 7
III SPECTROSCOPIC INVESTIGATIONS AND POTENTIAL ENERGY SURFACES OF THE GROUND AND EXCITED ELECTRONIC STATES OF 1,3-BENZODIOXAN 8
Introduction 8
Experimental Methods 9
Calculations 10
Assignment of Spectra 13
Vibrational Potential Energy Surface 29
Discussion 34
CHAPTER Page
IV VIBRATIONAL SPECTRA AND THEORETICAL CALCULATIONS OF 1,3-BENZODIOXAN IN ITS GROUND AND EXCITED ELECTRONIC STATES. 37
Introduction 37
Experimental 37
Calculations 38
Molecular Structure 38
Results and Discussion 40
Conclusions 46
V RAMAN AND INFRARED SPECTRA AND THEORETICAL CALCULATIONS OF DIPICOLINIC ACID, DINICOTINIC ACID, AND THEIR DIANIONS 47
Introduction 47
Experimental 49
Calculations 50
Structures 50
Vibrational Modes 54
Vibrational Spectra 57
Spectroscopic Effects of Molecular Interactions 73
Conclusions 79
VI RAMAN SIGNATURE OF THE NON-HYDROGEN-BONDED TRYPTOPHAN SIDE CHAIN IN PROTEINS: EXPERIMENTAL AND AB INITIO SPECTRA OF 3-METHYLINDOLE IN THE GAS PHASE 82
Introduction 82
Materials and Methods 86
Results 87
Discussion and Conclusions 95
VII CONCLUSIONS 98
REFERENCES 100
VITA 106

LIST OF FIGURES

FIGURE
1 Spectroscopic techniques 5
2 Calculated structures for 13BZN in its ground (left) and $S_{1}\left(\pi, \pi^{*}\right)$ excited (right) states. The twisting angles for the five-membered ring are calculated to 31° for S_{0} and 24° for S_{1} 11
3 Fluorescence excitation spectrum of jet-cooled 13BZN. 15
4 Ultraviolet absorption spectrum of 13 BZN in a 15 cm cell at $25^{\circ} \mathrm{C}$ compared to the FES and relative to the 0_{0}^{0} band. 18
5 SVLF spectra of 13BZN from several excitation bands. 21
6 Energy levels for the low-frequency vibrations of 13BZN in its ground and $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ excited states. 27
7 Potential energy functions for the ring-twisting of 13 BZN in its S_{0} and $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ states 33
8 Skeletal structures of 13BZN in its S_{0} and $S_{1}\left(\pi, \pi^{*}\right)$ electronic states. 39
9 Experimental and calculated infrared spectra of 13BZN 41
10 Experimental and calculated Raman spectra of 13BZN. 42
11 Calculated structures for DPA and the DPA ${ }^{-2}$ anion using B3LYP/ $6-311++G(d, p)$. Geometrical parameters from the crystal structures of anhydrous DPA and DPA monohydrate are shown in parentheses and brackets, respectively. 51
12 Calculated structures for DNic and the DNic^{-2} anion. Values in parentheses are from the crystal structure 52
13A Vector representation for the A_{1} and A_{2} vibrations of DPA based on $\mathrm{C}_{2 \mathrm{v}}$ symmetry 55

FIGURE

13B Vector representation for the B_{1} and B_{2} vibrations of DPA based on $\mathrm{C}_{2 \mathrm{v}}$ symmetry. 56
14 A Vector representation for the A_{1} and A_{2} vibrations of the DPA^{-2} anion based on $\mathrm{C}_{2 \mathrm{v}}$ symmetry 58
14B Vector representation for the B_{1} and B_{2} vibrations of the DPA^{-2} anion based on $\mathrm{C}_{2 \mathrm{v}}$ symmetry. 59
15 Raman spectrum of DPA powder compared to its computed spectrum. 60
16 Infrared spectrum of DPA in a KBr pellet compared to its computed spectrum. 61
17 Raman spectra of the calcium and sodium salts of DPA^{-2} compared to the computed spectrum of free DPA^{-2}. 62
18 Infrared spectra of the calcium and sodium salts of DPA^{-2} compared to the computed spectrum of free DPA^{-2}. 63
19 Raman spectrum of DNic powder compared to its computed spectrum. 64
20 Infrared spectrum of DNic in a KBr pellet compared to its computed spectrum 65
21 Raman spectrum of the calcium salt of DNic^{-2} compared to the computed spectrum of free DNic^{-2}. 66
22 Infrared spectrum of the calcium salt of DNic^{-2} compared to the computed spectrum of free DNic^{-2}. 67
23 Comparison of the DPA and DNic experimental Raman spectra 74
24 Comparison of the DPA and DNic experimental infrared spectra 75
25 Comparison of the DPA^{-2} and DNic^{-2} calcium salt Raman spectra 76
26 Comparison of the DPA^{-2} and DNic^{-2} calcium salt infrared spectra 77
27 Structures of 3-methylindole (left) and tryptophan (right). The numbering of ring and exocyclic atoms follows IUPAC-IUPAB nomenclature. 85

FIGURE

28 Raman spectra of 3-methylindole in the region 200-3600 cm^{-1}. (A) Neat
liquid (melt at $100{ }^{\circ} \mathrm{C}$). (B) Vapor at $300{ }^{\circ} \mathrm{C}$. (C) Calculated (ab initio)
using B3LYP/6-311++G**. ... 89
29 Calculated molecular structure of 3-methylindole using B3LYP/ \quad 6-311+.. 91
30 Raman spectra of 3-methylindole in the region $1300-1375 \mathrm{~cm}^{-1}$ showing the Fermi doublet (mode $W 7$). Experimental data (solid line) and curve fits of the deconvolved data for the neat liquid at $100^{\circ} \mathrm{C}$ and vapor at $300^{\circ} \mathrm{C}$ are shown in the top and bottom panels, respectively. Data are from Figures 28A and 28B

LIST OF TABLES

TABLE

1 Calculated barriers to planarity of 1,3-BZD from different basis sets. 12
2 Experimental and calculated vibrational frequencies and assignments for 1,3-benzodioxan in its S_{0} ground and S_{1} excited states. 14
3 Fluorescence excitation spectra $\left(\mathrm{cm}^{-1}\right)$ of 1,3-benzodioxan 16
4 Hot band combinations of 1,3-benzodioxan in the ultraviolet absorption spectra. 20
5 Single vibronic level fluorescence (SVLF) frequencies and assignments from various excitation bands of 1,3-benzodioxan 22
6 Low-frequency vibrations $\left(\mathrm{cm}^{-1}\right)$ of 1,3-benzodioxan 28
7 Observed and calculated ring-twisting energy levels $\left(\mathrm{cm}^{-1}\right)$ for 13BZN in its ground and $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ excited states. 32
8 Barriers to planarity ($\mathrm{kcal} / \mathrm{mole}$) and bending and twisting frequencies $\left(\mathrm{cm}^{-1}\right)$ of tetralin and its oxygen analogs 35
9 Experimental and calculated vibrational frequencies and assignments for 1,3-benzodioxan in its S_{0} ground and S_{1} excited states. 43
10 Calculated (scaled) and observed frequencies $\left(\mathrm{cm}^{-1}\right)$ for solid DPA and solid DNic. 69
11 Calculated (scaled) and observed frequencies $\left(\mathrm{cm}^{-1}\right)$ for solid CaDPA, solid $\mathrm{Na}_{2} \mathrm{DPA}$ and solid CaDNic. 71

TABLE

12 Reported infrared spectra $\left(\mathrm{cm}^{-1}\right)$ of pyridinedicarboxylic acids 78
13 Calculated frequencies $\left(\mathrm{cm}^{-1}\right)$ of DPA in different environments 80
14 Experimental and calculated vibrational frequencies of 3-methylindole... 88
15 Raman solution spectra frequencies of the $W 7$ band 94

CHAPTER I

INTRODUCTION

Molecular spectroscopy has been a powerful tool for nearly a century for a better understanding of molecular bonding and molecular structures. It has also been invaluable for identifying and detecting a large variety of molecules including those in organic, inorganic, and biochemical systems.

In this work three different investigations were undertaken using several different kinds of spectroscopy. First, 1,3-benzodioxan (13BZN) was investigated in both its ground and electronic excited states using infrared, Raman, ultraviolet absorption, and laser induced fluorescence (LIF) spectroscopies. The aim was to determine potential energy functions which would elucidate the structure and energetics of this molecule. Second, dipicolinic acid and its salts, which are present in anthrax spores, were studied using infrared and Raman spectra in order to better find ways of identifying their presence in biological spores. Third, 3-methylindole, which is a model compound for tryptophan, was investigated by Raman spectroscopy to better understand the spectra arising in larger chemical systems.

1-3-BENZODIOXAN

1,3-Benzodioxan (13BDX) will be studied to gain a greater understanding of the structure and bonding forces in the ground S_{0} state and the excited S_{1} state and

This dissertation follows the style of The Journal of Chemical Physics.
understanding the differences between the two states. Laser-induced fluorescence and ultraviolet absorption spectra along with infrared and Raman spectra will be recorded to aid in the study of the low-frequency vibrations and conformational energetics of 13BZN. These results for 13BZN will be compared to those of 1,4-benzodioxan (14BZD) which contains $-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - torsional interactions but lacks the [$\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}$] linkage present in 13BZN which is expected to show the anomeric effect. The experimental data on 13BDX will be complemented by $a b$ initio and DFT calculations. Additionally, the data acquired from the laser-induced fluorescence spectra and infrared and Raman spectra will be used along with ab initio and DFT calculations to present a comprehensive study of all of the S_{0} ground and S_{1} excited state vibrations of 13BZN.

DIPICOLINIC ACID, DINICOTINIC ACID, AND THEIR DIANIONS

Dipicolinic acid (DPA) and calcium dipicolinate (CaDPA) make up a significant portion of the anthrax spore. With the recent renewal of interest in bioterrorism and prevention many scientists are looking for quick, accurate methods to detect chemicals of interest. In the case of the anthrax spore, the end result would be a spectroscopic detector for anthrax contamination to replace current methods.

The study of dinicotinic acid (DNic) and its dianion will be undertaken to show how these very similar molecules are able to be distinguished spectroscopically from DPA and its dianion. In order to show this Raman and infrared spectra of DPA, DNic, and their dianions in the solid state will be collected and then compared to the
corresponding molecule as well as to calculated spectra. In addition, this data will be used to construct a comprehensive vibrational assignment of DPA, DNic and their dianions. Theoretical calculations of a DPA dimer and a DPA-water complex will also be undertaken to help understand the affect these environments can have on DPA and its vibrations.

3-METHYLINDOLE

3-Methylindole (3MI) will be studied as a model compound for tryptophan. Raman vapor spectra, approximating an environment free of intermolecular interactions, will be compared with Raman liquid spectra to determine which vibrational bands serve as indicators of a changing indolyl ring environment. Infrared and Raman spectra will be used to refine, if needed, previously reported vibrational assignments of 3MI. The Fermi doublet intensity ratio provides a way to quantify the environmental effect on the spectra of 3MI. Raman spectra of 3MI in various solvents will be collected to extend previous results as well as provide quantification for differing environments of the indolyl ring.

CHAPTER II

EXPERIMENTAL

The experimental spectroscopic techniques used in the following chapters are shown in Figure 1. Three of the techniques, infrared (IR), Raman, and single vibronic level fluorescence (SVLF) spectroscopy, are used for the determination of vibrational energy levels in the electronic ground state. Information on the vibronic energy levels of the electronic excited state is provided by ultravioled (UV) absorbtion and fluorescence excitation (FES) spectroscopy.

INFRARED SPECTRA

Infrared spectra were recorded on a Bomem DA8.02 or a BioRad FTS-60 or a Bruker Vertex 60 instrument. Vapor phase spectra at were recorded using a heatable 10 cm metal cell with KBr windows. Spectra of the solid samples as both Nujol mulls between KBr plates and as KBR pellets were recorded at $25^{\circ} \mathrm{C}$.

RAMAN SPECTRA

Raman spectra were collected on a Jobin Yvon U-1000 spectrometer (Instruments S. A., Edison, NJ). A Coherent Innova 20 argon ion laser (514.5 nm) or a Coherent Verdi V-10 Nd:YAG system (532 nm) was used for excitation. Vapor-phase spectra of approximately 1 atm of sample were obtained using a custom-designed

Figure 1. Spectroscopic techniques.
thermostatically controlled Raman cell ${ }^{1}$ into which solid sample was transferred; the Raman cell was subsequently frozen with liquid nitrogen and sealed after evacuation on a vacuum line. Liquid phase spectra were obtained in a glass tube. Solution spectra were recorded using cuvettes to contain the samples. Either a charge-coupled device or a photomultiplier tube was used for detection of the Raman scattered light. The Raman spectra were collected and processed using standard software packages (SpectraMax, LabSpec, and BomemGrams).

RAMAN MICROSCOPE

Raman spectra were also recorded with a JY Horiba LabRam HRFTIR microscope equipped with CCD detection with spectral resolution of $0.3 \mathrm{~cm}^{-1} /$ pixel at 680 nm . A helium-neon laser operating at 633 nm with 17 mw of power was the excitation source.

ULTRAVIOLET ABSORBTION SPECTRA

Ultraviolet absorption spectra were recorded on a Bomem DA8.02 Fouriertransform spectrometer using a deuterium lamp source, a quartz beamsplitter, and a silicon detector in the $30,000-40,000 \mathrm{~cm}^{-1}$ region. The vapor-phase sample was contained in a 20 cm glass cell with quartz windows. Ultraviolet absorption spectra were collected at ambient temperatures and the vapor pressure within the cell was about 0.2 Torr. Resolutions of 0.25 and $0.5 \mathrm{~cm}^{-1}$ were used and five to ten thousand scans were typically averaged.

FLUORESCENCE EXCITATION AND SINGLE VIBRONIC LEVEL

 FLUORESCENCE SPECTRAThe fluorescence excitation spectra (FES) and the single vibronic level fluorescence (SVLF) spectra were recorded under jet-cooled conditions using a Continuum Powerlite 9020 Nd:YAG laser which pumped a Continuum Sunlite OPO and FX-1 ultraviolet extension unit. FES spectra were obtained at $0.5 \mathrm{~cm}^{-1}$ resolution and SVLF spectra were taken with a spectral resolution of $1 \mathrm{~cm}^{-1}$.

CHAPTER III

SPECTROSCOPIC INVESTIGATIONS AND POTENTIAL ENERGY SURFACES OF THE GROUND AND EXCITED ELECTRONIC STATES OF 1,3-BENZODIOXAN

INTRODUCTION

For more than forty years the Laane research group has been investigating the potential energy surfaces for large-amplitude vibrations which govern the conformational properties of molecules. ${ }^{2-6}$ Initially, far-infrared and low-frequency Raman spectroscopy were used to determine the excited vibrational quantum states in electronic ground states, but later the focus turned to electronic excited states utilizing fluorescence spectroscopy of jet-cooled molecules along with ultraviolet absorption spectroscopy. In recent years the group has investigated a number of bicyclic molecules containing the benzene ring including tetralin ${ }^{7}$ (TET) and 1,4-benzodioxan ${ }^{8}$ (14BZD). In our present study we will report our results for 1,3-benzodioxan (13BZN). This molecule has

TET

14BZD

13BZN
been more difficult to analyze due to its reduced symmetry, but it is also more interesting in that it is expected to show the anomeric effect which is present in molecules which possess a $-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}-$ linkage. As has been demonstrated
previously, ${ }^{9-11}$ the anomeric effect results in a strong torsional force tending to twist or bend the molecular structure.

In the previous work a combination of spectroscopic data and DFT calculations on 14BZD showed the molecule to be twisted with barriers to planarity of 5000 ± 2000 cm^{-1} for the S_{0} ground state and $3600 \pm 2000 \mathrm{~cm}^{-1}$ for the $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ excited state. ${ }^{8}$ The bent conformations of intermediate energy correspond to saddle points allowing hindered pseudorotation about the two-dimensional surface. The large uncertainties were present since the spectroscopic data extend to less than $1000 \mathrm{~cm}^{-1}$ above the vibrational ground state. For TET the barriers to planarity were determined to be $6000 \pm$ $2000 \mathrm{~cm}^{-1}$ for the S_{0} state and $4000 \pm 2000 \mathrm{~cm}^{-1}$ for the S_{1} state. ${ }^{7}$ The bent conformation was calculated to be only $716 \mathrm{~cm}^{-1}$ higher in energy than the twisted conformation. The differences between the 14BZD and TET potential energy surfaces resulted primarily from two additional $-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - torsional interactions which were not present for 14BZD. In the present study of 13 BZN no $-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - torsional interactions are present, but the contribution from the anomeric effect is expected to be substantial.

EXPERIMENTAL METHODS

The sample of 1,3-benzodioxan was prepared at the University of Texas-Pan American according to the method of Chattaway and Irving. ${ }^{12}$ It has a boiling point of $211^{\circ}\left(60^{\circ}\right.$ at 5 Torr). Ultraviolet absorption spectra were recorded on a Bomem DA8.02 Fourier-transform spectrometer using a deuterium lamp source, a quartz beamsplitter, and a silicon detector in the $30,000-40,000 \mathrm{~cm}^{-1}$ region. The vapor-phase sample was
contained in a 20 cm glass cell with quartz windows. Ultraviolet absorption spectra were collected at ambient temperatures and the vapor pressure within the cell was about 0.2 Torr. Resolutions of 0.25 and $0.5 \mathrm{~cm}^{-1}$ were used and five to ten thousand scans were typically averaged. The fluorescence excitation spectra (FES) and the single vibronic level fluorescence (SVLF) spectra were recorded using a Continuum Powerlite 9020 Nd:YAG laser which pumped a Continuum Sunlite OPO and FX-1 ultraviolet extension unit. FES spectra were obtained at $0.5 \mathrm{~cm}^{-1}$ resolution and SVLF spectra were taken with a spectral resolution of $1 \mathrm{~cm}^{-1}$. Both spectra were recorded under jet-cooled conditions. More details are provided elsewhere ${ }^{2-8}$ Infrared spectra of the liquid film between KBr plates were recorded on a Bruker Vertex 60 and Raman spectra of the liquid in a glass tube were recorded using a JY U-1000 spectrometer and a Coherent Verdi-10 laser operating at 532 nm .

CALCULATIONS

Theoretical calculations were carried out using the GAUSSIAN 03 package. ${ }^{13}$
For the excited state, TURBOMOLE was used for calculations. The bond distances and bond angles were calculated for the ground state S_{0} structure using the B3LYP/6$311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set and for the $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ excited state using the CIS/6-311+G(d,p) basis set are shown in Figure 2. Table 1 lists the calculated barriers to planarity from different basis sets for 13BZN in its S_{0} and $S_{1}\left(\pi, \pi^{*}\right)$ states relative to the energy minima at the twisted conformations.

Figure 2. Calculated structures for 13BZN in its ground (left) and $S_{1}\left(\pi, \pi^{*}\right)$ excited (right) states. The twisting angles for the five-membered ring are calculated to be 33° for S_{0} and 24° for S_{1}.

Table 1. Calculated barriers to planarity of 1,3-BZN from different basis sets.

Basis Set	S_{0}		$\mathrm{S}_{1}{ }^{\text {a }}$	
	kcal/mole	kJ/mole	kcal/mole	kJ/mole
HF/6-31G(d)	9.63	40.3	8.92	37.3
HF/6-31+G(d)	9.83	41.1	9.12	38.2
HF/6-31+G(d,p)	9.81	41.0	9.08	38.0
HF/6-311+G(d,p)	10.05	42.0	9.29	38.9
MP2/cc-pVTZ	12.28	51.4	-	-

${ }^{\text {a) }}$ Computed using the CIS method.

The twisting angle τ and the bending angle θ used for the calculations for the potential energy surfaces (PESs) were defined previously ${ }^{8}$ for 14BZD. The vibrational frequencies for the S_{0} ground state were calculated by DFT methods using the B3LYP/6$311++G(d, p)$ basis set. A scaling factor ${ }^{14}$ of 0.984 was used for frequencies below 2000 cm^{-1} and 0.964 for those above $2800 \mathrm{~cm}^{-1}$. For the $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ excited state the CIS/6$311+G(d, p)$ basis set was utilized. The scaling factor of 0.94 for excited state frequencies below $2000 \mathrm{~cm}^{-1}$ was determined by adjusting it to best match the calculated frequencies to the observed experimental values. For frequencies above $2800 \mathrm{~cm}^{-1} \mathrm{a}$ scaling factor of 0.90 was used.

ASSIGNMENT OF SPECTRA

To aid with the discussion to follow, Table 2 provides a listing of the vibrations of 13BZN according to both C_{s} (planar) and C_{1} (twisted) symmetry. The A^{\prime} modes in C_{s} symmetry correspond to the in-plane vibrations while the A" are out-of-plane modes. The vibrational numbering for C_{1} will be utilized for the discussion to follow. The table also lists the vibrational frequencies for the S_{0} ground state, based on the infrared and Raman data given in Chapter IV, and for the S_{1} excited state based on the results here. Figure 3 shows the fluorescence excitation spectrum (FES) of jet-cooled 13BZN and Table 3 lists the observed bands up to $800 \mathrm{~cm}^{-1}$. Additional data can be found in Chapter IV. The observed ultraviolet absorption spectrum of 13BZN near the band origin is shown in Figure 4 where it is also compared to the FES in this region. The absorption

Table 2. Experimental and calculated vibrational frequencies and assignments for 1,3-benzodioxan in its S_{0} ground and S_{1} excited states.

	Cs	C_{1}	Description	Wavenumber (cm^{-1})			$\mathrm{C}_{\text {s }}$	C_{1}	Description	Wavenumber (cm^{-} ${ }^{1}$)	
				$\mathrm{S}_{0}{ }^{\text {a }}$	$\mathrm{S}_{1}{ }^{\text {b }}$					$\mathrm{S}_{0}{ }^{\text {a }}$	$S_{1}{ }^{\text {b }}$
A'	1	1	C-H sym. stretch	3081	[3047]	A'	26	35	Benzene stretch	756	722
	2	2	C-H stretch	[3072]	[3028]		27	37	Benzene ring bend	712	682
	3	3	C-H stretch	3060 R	[3020]		28	39	Benzene ring bend	588	525
	4	4	C-H stretch	3031 R	[3005]		29	41	Sat. ring bend	520	482
	5	7	CH_{2} sym. stretch (ip)	[2868]	[2855]		30	42	Sat. ring bend	464	442
	6	8	CH_{2} sym. stretch (op)	2862	[2765]		31	44	Sat. ring bend	369 R	345
	7	9	Benzene stretch	1614	[1665]						
	8	10	Benzene stretch	1587	[1608]	$A^{\prime \prime}$	32	5	CH_{2} antisym. stretch	3012	[2994]
	9	11	Benzene stretch	1503 F	[1559]		33	6	CH_{2} antisym. stretch	2957	[2892]
	10	12	CH_{2} deformation (ip)	1492	[1528]		34	19	CH_{2} twist	1275	[1329]
	11	13	CH_{2} deformation (op)	1479 R	[1507]		35	21	CH_{2} twist	1232	[1265]
	12	14	Benzene stretch	1460	[1481]		36	25	CH_{2} rock	1100	[1111]
	13	15	CH_{2} wag	1409	[1460]		37	29	CH_{2} rock	994	[1008]
	14	16	CH_{2} wag	1359	[1405]		38	30	C-H wag	[965]	[987]
	15	17	CH_{2} twist	1309	[1381]		39	31	C-H wag	949 R	[890]
	16	18	CH_{2} twist	1291	[1341]		40	34	C-H wag	851 F	[744]
	17	20	Sat. ring stretch	1238	[1277]		41	36	C-H wag	752	[635]
	18	22	C-H wag *	1210	[1234]		42	38	Benzene ring bend	698	[574]
	19	23	C-H wag	1157 R	[1186]		43	40	Benzene ring bend	536	374
	20	24	C-H wag	1150	[1160]		44	43	Benzene ring bend	435	255
	21	26	Sat. ring stretch	1079	[1071]		45	45	Sat. ring twist	356 R	339
	22	27	Sat. ring stretch	1035	[1051]		46	46	Sat. ring flap	284 R	194
	23	28	Ring stretch *	1011	[1023]		47	47	Sat. ring twist	178 R	102
	24	32	Sat. ring stretch	[934]	[865]		48	48	Sat. ring bend	108 F	96
	25	33	Benzene ring bend	853	[750]						

${ }^{\text {a }}$ Values from IR unless indicated. R=Raman values, $F=$ SVLF values, [] = calculated values using b3lyp/6-311++G(d,p); scaling factors are 0.985 for vibrations below $2800 \mathrm{~cm}^{-1}$ and 0.964 for vibrations above $2800 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{b}}$ Values from FES unless indicated. [] = calculated values using CIS/6-311++G(d,p); scaling factor are 0.940 for vibrations below $2800 \mathrm{~cm}^{-1}$ and 0.900 for vibrations above $2800 \mathrm{~cm}^{-1}$.

* Coupled vibrations.

Figure 3. Fluorescence excitation spectrum of jet-cooled 13BZN. Wavenumbers are relative to the band origin at $38,885.6 \mathrm{~cm}^{-1}$.

Table 3. Fluorescence excitation spectra $\left(\mathrm{cm}^{-1}\right)$ of 1,3-benzodioxan.

FES ${ }^{\text {a }}$		UV		Inferred ${ }^{\text {b }}$	Assignment	SVLF match ${ }^{\text {c }}$		Calc. ${ }^{\text {d }}$
0.0	(100)	0.0	vs	0.0	0_{0}^{0}			
96.3	(24)	96.0	mw		48_{0}^{1}	108.4	48_{1}^{0}	98
101.7	(64)	101.9	m		47_{0}^{1}	158.5	47_{1}^{0}	111
194.9	(7)	194.0	vw		46_{0}^{1}	274.4	46_{1}^{0}	192
199.1	(44)	199.5	m	198.0	$47{ }_{0}^{1} 48{ }_{0}^{1}$	316.8	47_{2}^{0}	
202.8	(2)			203.4	47_{0}^{2}			
255.0	(15)	255.7	vw		43_{0}^{1}	430.4	43_{1}^{0}	231
284.3	(1)							
		286.6	vw		48_{0}^{3}			
289.7	(2)	290.0	vw	291.2	$46_{0}^{1} 48{ }_{0}^{1}$			
294.1	(26)	294.6	w	296.6	$46{ }_{0}^{1} 47{ }_{0}^{1}$			
301.1	(9)	301.3	vw	299.1	$47{ }_{0}^{2} 48_{0}^{1}$			
305.6	(29)	305.9	vw	305.1	47_{0}^{3}			
339.0	(21)	338.9	w		45_{0}^{1}	351.2	45_{1}^{0}	192
345.0	(16)	345.4	vw		44_{0}^{1}	361.2	44_{1}^{0}	353
374.3	(22)	373.3	vw		40_{0}^{1}	535.1	40_{1}^{0}	375
387.6	(2)			389.8	46_{0}^{2}			
394.1	(12)	393.4	vw	392.9	$46{ }_{0}^{1} 47{ }_{0}^{1} 48{ }_{0}^{1}$			
397.9	(3)			397.7	$46_{0}^{1} 47_{0}^{2}$			
403.4	(1)							
407.8	(2)	407.8	vw	$\begin{gathered} 405.6 / 406 . \\ 8 \end{gathered}$	47_{0}^{4}			
441.9	(21)	441.7	vw		42_{0}^{1}	461.3	42_{1}^{0}	451
452.4	(4)	452.4	w	453.0	$43{ }_{0}^{1} 47{ }_{0}^{1} 48{ }_{0}^{1}$			
461.8	(3)							
471.3	(1)	471.6	vw	481.5	48_{0}^{5}			
482.1	(8)	481.9	w		41_{0}^{1}	519.4	41_{1}^{0}	502
493.6	(13)	492.5	w					
507.7	(1)	506.7	vw					
510.3	(1)	510.0	vw					
525.2	(39)	524.7	m		39_{0}^{1}	587.3	39_{0}^{1}	521
543.5	(11)	543.3	w					
594.5	(9)	594.2	vw					
596.5	(7)	596.5	vw					
621.1	(7)							
626.9	(14)							

Table 3. Continued.

FES ${ }^{\text {a }}$		UV		$\underline{\text { Inferred }}{ }^{\text {b }}$	Assignment	$\underline{\text { SVLF match }}{ }^{\text {c }}$		Calc. ${ }^{\text {d }}$
659.3	(3)	659.7	w					
663.7	(1)	663.3	vw					
676.3	(41)	676.1	mw		45_{0}^{2}			
681.8	(3)				$37{ }_{0}^{1}$	711.9	$37{ }_{1}^{0}$	672
691.9	(2)							
705.8	(1)	706.4	m					
719.3	(36)	719.3	mw					
722.1	(80)	721.3	m		35_{0}^{1}	752.8	35_{1}^{0}	697
726.0	(11)	726.2	vw					
728.7	(23)	728.4	vw					
781.1	(16)							

s- strong; m-medium; w-weak; v-very
${ }^{\text {a }}$ Relative to 0_{0}^{0} band at $38,885.6 \mathrm{~cm}^{-1}$; relative intensities are given in parentheses
${ }^{\mathrm{b}}$ Calculated from other transitions
${ }^{\text {c }}$ Correlation to strongest SVLF band from excitation of S_{1} state
${ }^{\mathrm{d}}$ Calculated at the CIS/6-311++G** level; a scaling factor of 0.94 was used.

Figure 4. Ultraviolet absorption spectrum of 13 BZN in a 15 cm cell at $25^{\circ} \mathrm{C}$ compared to the FES and relative to the 0_{0}^{0} band.
bands corresponding to the FES are also listed in Table 3. Additional hot band absorptions along with their assignments are shown in Table 4.

Figure 5 and Table 5 show and tabulate several of the single vibronic level fluorescence (SVLF) spectra of the molecule. The most intense bands are shown in bold type. Where appropriate the band positions are compared to the ultraviolet, infrared, and Raman spectral bands. The infrared and Raman spectra are available in Chapter IV. Figure 6 shows an energy diagram for the six lowest frequency vibrations of 13BZN. The bending $\left(v_{48}\right)$ and twisting (v_{47}) vibrations of the five-membered ring are of greatest interest as the conformational dynamics of the molecule are primarily governed by their potential energy surface. The other four vibrations shown are a ring-flapping (v_{46}), a benzene ring twisting (v_{45}), an in-plane ring-bending $\left(v_{44}\right)$, and an out-of-plane ring bending $\left(v_{43}\right)$. Table 6 lists the observed and calculated vibrational wavenumbers for the low-frequency vibrations. As can be seen, the agreement between experimental and theoretical frequencies is very good, especially for the S_{0} ground state. As shown in Figure 6, five excited states of v_{48} can be seen in S_{0} and four in S_{1}. Five excited states of v_{47} in S_{0} and four in S_{1} can be seen. In addition, several combination levels between v_{47} and v_{48} can be observed. Other combinations are also evident in the figure and interactions between v_{46} and v_{48} are prominent.

The most significant changes in the quantum state energies between the S_{0} and S_{1} electronic states occur with the v_{47} and v_{46} twisting vibrations and the v_{43} benzene ring bending vibration which drop significantly in energy in the $S_{1}\left(\pi, \pi^{*}\right)$ state as the $\pi \rightarrow \pi^{*}$

Table 4. Hot band combinations of 1,3-benzodioxan in the ultraviolet absorption spectra.

cm^{-1}	Assignment	Inferred ${ }^{\text {a }}$
-214.5 w	48_{2}^{0}	-216.8
-178.7 mw	$46_{1}^{0} 48_{0}^{1}$	-178.1
-127.6 mw	$48{ }_{3}^{2}$	-127.1
-118.2 m	48_{2}^{1}	-118.2
-112.6 w	$47_{0}^{1} 48_{2}^{0}$	-112.3
-79.1 s	46_{1}^{1}	-79.6
-62.1 0s	$47_{1}^{0} 48_{0}^{1}$	-61.3
-56.2 s	47_{1}^{1}	-55.4
-22.4 w	48_{2}^{2}	-22.6
-12.2 vs	481	-11.6
	$47_{0}^{2} 48_{2}^{0}$	-11.7
-6.4 w	$47_{0}^{1} 48_{1}^{0}$	-5.7
20.3 mw	$47_{1}^{0} 48_{1}^{3}$	21.4
35.1 m	$47_{1}^{0} 48_{0}^{2}$	34.3
36.8 m	$46_{0}^{1} 47_{1}^{0}$	36.7
45.7 m	47_{1}^{2}	45.2
65.0 w	$45_{0}^{1} 46_{1}^{0}$	65.3
71.6 mw	48_{2}^{3}	72.4
80.9 mw	$47_{0}^{1} 48_{2}^{2}$	79.8
83.4 w	48_{1}^{2}	84.0
86.8 mw	$46_{0}^{1} 48_{1}^{0}$	86.4
90.4 s	$47_{0}^{1} 48_{1}^{1}$	90.6
131.4 vw	$47_{1}^{0} 48_{0}^{3}$	129.3
136.2 vw	$47_{1}^{1} 48_{0}^{2}$	136.5
143.1 w	47_{1}^{3}	144.0
175.1 w	$48{ }_{1}^{3}$	179.0

s- strong; m-medium; w-weak; v-very
a) Inferred from other spectroscopic transitions (FES, SVLF, IR, Raman, UV)

Figure 5. SVLF spectra of 13BZN from several excitation bands.

Table 5. Single vibronic level fluorescence (SVLF) frequencies ${ }^{\mathrm{a}}$ and assignments from various excitation bands of 1,3benzodioxan.

FES ${ }^{\text {a }}$	0	96.3	101.7	199	525.2	627.2	676.6	722.1			
Assignment	0_{0}^{0}	48_{0}^{1}	47_{0}^{1}	46_{0}^{1}	39_{0}^{1}	$39_{0}^{1} 47{ }_{0}^{1}$	47_{0}^{2}	35_{0}^{1}	Ave.	UV	IR/Raman ${ }^{\text {b }}$
48_{1}^{0}	-108.4	-108.7	-107.4	-108.5	-108.4	-108.9	-108.4	-108.3	-108.4	-107.9	
47_{1}^{0}	-158.2	-158.5	-157.6	-158.1	-158.2	-158.1	-158.3	-158.2	-158.2	~-157.6	178
48_{2}^{0}	-215.0	-215.2	-213.8	-214.4		-214.8	-214.8	-215.0	-214.7	-214.5	
$47{ }_{1}^{0} 48_{1}^{0}$	-266.7		-266.4	-266.1	-266.9		-266.6	-266.8	-266.6		
46_{1}^{0}			-272.0	-272.3		-270.4	-273.2	-273.8	-272.3	-273.9	284
47_{2}^{0}	-317.0	-317.0	-316.1	-316.8		-316.8	-317.2	-318.4	-317.0	-315.9	
45_{1}^{0}	-350.9		-350.1	-351.2		-351.6	-351.2	-351.2	-351.0	-350.6	356
44_{1}^{0}	-360.0			-360.5			-361.1	-360.8	-360.6	-358.8	369
$47{ }_{1}^{0} 48_{2}^{0}$			-372.3	-373.2	-373.6	-373.2	-373.9	-373.6	-373.3		
$46_{1}^{0} 48_{1}^{0}$	-385.9		-385.4	-386.3				-386.6	-386.1		
$47_{2}^{0} 48_{1}^{0}$		-423.0	-426.3	-422.7	-422.4				-423.6		
43_{1}^{0}	-429.6		-426.3		-431.4	-430.3	-436.4	-430.3	-430.7	-429.7	435 IR
$45_{1}^{0} 48_{1}^{0}$		-456.6		-456.1			-457.4		-456.7		
42_{1}^{0}	-461.1		-459.7		-460.5	-460.4		-462.0	-460.7	-460.4	464 IR
$44_{1}^{0} 48_{1}^{0}$	-468.9	-468.0					-468.3	-468.1	-468.3		
47_{3}^{0}		-473.8	-473.9	-475.3		-475.7	-478.3		-475.4		
$46_{1}^{0} 48_{3}^{0}$	-495.3	-494.9	-494.2	-495.5	-496.0		-496.5	-496.0	-495.5		
$45_{1}^{0} 47_{1}^{0}$		-509.4	-507.8			-509.6	-509.0		-509.0		
41_{1}^{0}	-518.3	-519.1	-517.9	-522.0	-519.2	-519.9	-524.1	-519.2	-520.0	-518.0	520 IR

Table 5. Continued.

FES ${ }^{\text {a }}$	0	96.3	101.7	199	525.2	627.2	676.6	722.1			
Assignment	0_{0}^{0}	48_{0}^{1}	47_{0}^{1}	46_{0}^{1}	39_{0}^{1}	$39_{0}^{1} 47{ }_{0}^{1}$	47_{0}^{2}	35_{0}^{1}	Ave.	UV	IR/Raman ${ }^{\text {b }}$
40_{1}^{0}	-535.1	-536.0	-534.3	-535.2	-535.9	-534.9	-537.1	-536.1	-535.6	-533.7	536 IR
46_{2}^{0}	-547.4		-543.8		-547.9	-548.2	-548.2	-547.3	-547.1	-547.0	
$45_{1}^{0} 48_{2}^{0}$				-560.7	-560.3		-562.8	-559.7	-560.9		
$42_{1}^{0} 48_{1}^{0}$	572.0		-571.6	-569.7	-571.4			-574.1	-571.8		
39_{1}^{0}	-587.3		-585.4	-586.9	-586.9	-587.6	-587.0	-587.8	-587.0	-588.6	588 IR
$46{ }_{1}^{0} 48_{4}^{0}$					-602.5	-601.9			-602.2		
$45{ }_{1}^{0} 47{ }_{1}^{0} 48_{1}^{0}$			-622.5	-619.1	-615.0	-620.3		-616.0	-618.6		
$45_{1}^{0} 46_{1}^{0}$	-624.2		-622.5	-619.1		-620.3	-624.6	-622.4	-622.2		
$44_{1}^{0} 47_{1}^{0} 48_{1}^{0}$	-624.2		-622.5		-628.3				-625.0		
47_{4}^{0}				-632.0		-632.7			-632.4	-633.8	
$40_{1}^{0} 48_{1}^{0}$	-641.2		-639.4		-638.6	-642.5		-641.2	-640.6	-646.7	
$46_{2}^{0} 48_{1}^{0}$					-654.0	-657.3	-659.7		-657.0		
	-662.5		-660.2		-663.4		-659.7		-661.5	-662.8	
$45_{1}^{0} 47{ }_{2}^{0}$				-667.9				-665.8	-666.9		
$41_{1}^{0} 47_{1}^{0}$	-676.5		-675.1		-678.4	-678.9	-678.6	-677.8	-677.6		
38_{1}^{0}	-696.2		-693.7	-694.4	-695.9	-695.8		-697.9	-695.7		698 IR
45_{2}^{0}							-701.1		-701.1		
$46_{2}^{0} 47{ }_{1}^{0}$			-705.3		-704.6				-705.0		
37_{1}^{0}	-710.0				-712.9	-713.8	-712.9	-713.5	-712.6		712 IR
$45_{1}^{0} 46{ }_{1}^{0} 48{ }_{1}^{0}$			-731.7	-736.2	-733.6	-732.7	-731.5	-732.6	-733.1		

Table 5. Continued.

FES ${ }^{\text {a }}$	0	96.3	101.7	199	525.2	627.2	676.6	722.1			
Assignment	0_{0}^{0}	48_{0}^{1}	47_{0}^{1}	46_{0}^{1}	39_{0}^{1}	$39_{0}^{1} 47_{0}^{1}$	47_{0}^{2}	35_{0}^{1}	Ave.	UV	IR/Raman ${ }^{\text {b }}$
36_{1}^{0}			-749.4	-748.8		-745.5			-747.9		752 IR
35_{1}^{0}	-752.4			-748.8	-752.7			-754.1	-752.0	-752.5	756 IR
							-762.8		-762.8	-764.8	
$45_{1}^{0} 47_{2}^{0} 48{ }_{1}^{0}$			-777.1	-775.9		-775.7			-776.2		
$45_{1}^{0} 46{ }_{1}^{0} 47_{1}^{0}$			-777.1		-781.4			-779.0	-779.2		
47_{5}^{0}			-790.1	-791.2	-781.4	-792.3	-793.9	-791.3	-790.0		
$38{ }_{1}^{0} 48_{1}^{0}$			-800.1	-802.3	-802.3	-802.8		-803.4	-802.2		
							-809.8		-809.8		
			-814.5	-819.7	-821.6	-823.1	-821.2	-822.1	-820.4		
$41_{1}^{0} 47{ }_{2}^{0}$			-832.9	-835.1	-836.8	-836.6	-837.2	-838.0	-836.1		
34_{1}^{0}				-848.1	-850.8		-851.6		-850.2		853
33_{1}^{0}	-860.1		-860.2			-858.5			-859.6		
43_{2}^{0}	-863.1			-861.0	-861.2	-862.9	-863.3	-863.3	-858.0		
$42{ }_{1}^{0} 46{ }_{1}^{0} 47{ }_{1}^{0}$			-888.2	-885.7				-880.8	-884.9		
$36_{1}^{0} 47_{1}^{0}$				-904.8		-904.8			-904.8		
$35_{1}^{0} 47_{1}^{0}$	-911.0		-909.1		-907.5	-912.8			-911.4		
				-920.7					-920.7		
$32{ }_{1}^{0}$	-936.5			-935.4	-936.9	-938.5			-936.8		[934]
31_{1}^{0}	-947.2					-949.7		-952.3	-949.7		949
30_{1}^{0}	-964.1		-962.8	-961.8	-959.4	-966.4			-962.9		[965]

Table 5. Continued.

Table 5. Continued.

${ }^{\mathrm{a}}$ All frequencies are in units of relative wavenumbers $\left(\mathrm{cm}^{-1}\right)$
${ }^{\mathrm{b}}$ Values taken from Table II. Values are assumed to be Raman unless denoted by an IR when values are from the IR or by a [] when values are from calculations.
${ }^{\text {c }}$ Assigned twice.
Bolded values represent the more intense bands.
The $48{ }_{0}^{1}$ spectrum was not extended beyond $-540 \mathrm{~cm}^{-1}$.
Above $1300 \mathrm{~cm}^{-1}$ only SVLF bands corresponding to fundamentals are listed.

Figure 6. Energy levels for the low-frequency vibrations of 13 BZN in its ground and $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ excited states.

Table 6. Low-frequency vibrations $\left(\mathrm{cm}^{-1}\right)$ of 1,3-benzodioxan.

Vibration	Approx. Description	S_{0}		S_{1}	
		Observed	Calculated ${ }^{\text {a }}$	Observed	Calculated ${ }^{\text {b }}$
43 (F)	Bz ring-bending (o.p.)	430.4	436	255.0	241
44 (E)	Ring-bending (i.p.)	360.5	360	345.7	367
45(D)	Bz ring-twisting	350.6	347	339.2	353
46 (C)	Ring-flapping	273.9	275	194.3	200
47 (B)	Ring-twisting	157.6	158	102.2	116
48 (A)	Ring-bending (o.p.)	107.9	106	96.3	102

i.p. $=$ in-plane; o.p. $=$ out-of-plane
${ }^{\text {a }}$ B3LYP/6-311++G(d,p); scaling factor $=0.985$
${ }^{\mathrm{b}}$ CIS/6-311+G**; scaling factor $=0.980$
transition results in reduced π bonding in the excited state. Vibration v_{47} drops from 157.6 to $102.2 \mathrm{~cm}^{-1}$ and v_{46} drops from 273.9 to $194.3 \mathrm{~cm}^{-1}$. The v_{43} out-of-plane benzene bending vibration also has a large decrease in frequency, from 430.4 to 255.0 cm^{-1}.

VIBRATIONAL POTENTIAL ENERGY SURFACE

Ideally, it would be desirable to use the experimental data for v_{47} and v_{48} to calculate two-dimensional potential energy surfaces (PESs) in terms of these two vibrations. We have been able to do this in the past for a number of bicyclic molecules for both ground and excited states. ${ }^{2-6}$ However, for tetralin ${ }^{7}$ and 1,4 -benzodioxan ${ }^{8}$ the barriers to planarity were so high that only one-dimensional potential functions for the twisting motion could be calculated, and these had significant uncertainties for the calculated barriers ($\pm 2000 \mathrm{~cm}^{-1}$). The situation for 13BZN is similar so only a onedimensional calculation was carried out.

The vibrational Hamiltonian for the one-dimensional potential energy calculation
is

$$
\begin{equation*}
\mathcal{H}=-\frac{\hbar^{2}}{2} \frac{\partial}{\partial \tau} \mathrm{~g}_{44}(\tau) \frac{\partial}{\partial \tau}+V(\tau) \tag{1}
\end{equation*}
$$

where τ is the twisting coordinate and $g_{44}(\tau)$ is the reciprocal reduced mass expression as a function of coordinate. These have previously been defined along with the methodology for their calculation. ${ }^{15}$ The potential energy function for this type of double-minimum problem that has worked well in the past is of the form

$$
\begin{equation*}
\mathrm{V}(\tau)=\mathrm{a} \tau^{4}+\mathrm{b} \tau^{2} \tag{2}
\end{equation*}
$$

where a and b are potential energy parameters. As discussed in the previous study of 14BZD, the calculation of g_{44} by previous methods was not very successful since the one-dimensional model neglects the significant interaction between v_{48} and v_{47}. For 13BZN the reduced symmetry almost certainly increases this interaction. Hence, it was practical to calculate the potential energy function in reduced coordinates ${ }^{15}$ defining the dimensionless coordinate z by

$$
\begin{equation*}
\mathrm{z}=\left(\frac{2 \mathrm{~A}}{\mathrm{~g}_{44}}\right)^{\frac{1}{2}} \tau / \hbar . \tag{3}
\end{equation*}
$$

This transforms Eq. (2) into

$$
\begin{equation*}
\mathrm{V}=\mathrm{A}\left(\mathrm{z}^{4}+\mathrm{Bz}^{2}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{A}=\left(\hbar^{2} \mathrm{~g}_{44} / 2\right)^{2 / 3} \mathrm{a}^{1 / 3} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{B}=\left(\hbar^{2} \mathrm{~g}_{44} / 2\right)^{-1 / 3} \mathrm{a}^{-2 / 3} \mathrm{~b} \tag{6}
\end{equation*}
$$

Utilizing previously described ${ }^{2-6}$ computer programs, the A and B potential energy parameters can then be adjusted to fit the experimental data for the ring-twisting $\left(v_{47}\right)$. For the S_{0} ground state, the barrier to planarity is so high that the separations between the degenerate pairs of quantum states are expected to be nearly the same and appear to be nearly harmonic. In fact, as is evident in Figure 6 for the v_{47} in the S_{0} state, the twisting level separations slightly increase with quantum number. This is sometimes the
case for very high barriers depending on the shape of the potential energy curve near the bottom of the double minimum wells. When the levels get closer to the top of a barrier, the separations begin to decrease at an increasingly rapid pace. What this means is that the experimental data here is insufficient for calculating the barrier height. However, previous experience ${ }^{2-6}$ has shown that $a b$ initio calculations at a high level of theory do an excellent job of predicting barriers for electronic ground states. Typically the calculated barriers are slightly on the high side. For 13BZN we assume the barrier to be $4300 \mathrm{~cm}^{-1}$ ($12.3 \mathrm{kcal} / \mathrm{mole}$) based on the calculated values in Table 1. Using this value and the observed $0 \rightarrow 2$ frequency (coincident with $1 \rightarrow 3$) at $157.6 \mathrm{~cm}^{-1}$, the reduced potential energy function is calculated to be

$$
\begin{equation*}
\mathrm{V}\left(\mathrm{~cm}^{-1}\right)=8.34\left(\mathrm{z}^{4}-45.3 \mathrm{z}^{2}\right) \tag{7}
\end{equation*}
$$

The calculated wavenumbers for the ring-twisting quantum states from this function are compared to the observed values in Table 7. As is evident, the observed values show a spread in the separations as described above. For the S_{1} excited state the calculated potential energy function can be determined nicely from the four observed energy states since the barrier is much lower. This function is

$$
\begin{equation*}
\mathrm{V}\left(\mathrm{~cm}^{-1}\right)=6.66\left(\mathrm{z}^{4}-30.1 \mathrm{z}^{2}\right) \tag{8}
\end{equation*}
$$

and the barrier is calculated to be $1509 \mathrm{~cm}^{-1}$. The calculated energies for the twisting states in S_{1} are also shown in Table 7 and compared to the observed values. Figure 7 shows the calculated potential energy functions for the two electronic states. As is evident, the experimental data are only available for quantum states below $1000 \mathrm{~cm}^{-1}$.

Table 7. Observed and calculated ring-twisting energy levels $\left(\mathrm{cm}^{-1}\right)$ for 13BZN in its ground and $S_{1}\left(\pi, \pi^{*}\right)$ excited states.

\underline{v}	S_{0}		S_{1}	
	Observed	Calculated $^{\text {a }}$	Observed	Calculated ${ }^{\text {b }}$
1	158.4	158.4	102.2	102.0
2	315.9	314.1	202.8	202.6
3	474.7	469.4	301.6	301.7
4	633.8	623.6	397.9	399.2
5	794.6	776.5	------	495.0
${ }^{\mathrm{a}} \mathrm{V}\left(\mathrm{cm}^{-1}\right)=8.34\left(\mathrm{z}^{4}-45.3 \mathrm{z}^{2}\right)$; barrier $=4300 \mathrm{~cm}^{-1}$				

Figure 7. Potential energy functions for the ring-twisting of 13 BZN in its S_{0} and $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ states.

Nonetheless, it is clear that in the $S_{1}\left(\pi, \pi^{*}\right)$ state the barrier to planarity along the twisting coordinate is much lower than in the S_{0} ground state. The energy minima for the S_{0} state are labeled to be at $\pm 33^{\circ}$ which is the value calculated from the ab initio computation. For the $S_{1}\left(\pi, \pi^{*}\right)$ twisting vibration, the twisting minima are calculated to be at $\pm 24^{\circ}$ in the excited state.

DISCUSSION

The experimental results show 13BZN to have a twisted six-membered ring for both its S_{0} and $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ states. The ab initio calculation predicts the barrier to planarity for the ground state to be $4300 \mathrm{~cm}^{-1}$, and we consider this value to be quite reliable (\pm $\left.500 \mathrm{~cm}^{-1}\right)$. Analysis of the experimental ring-twisting quantum states for $S_{1}\left(\pi, \pi^{*}\right)$ allows a one-dimensional potential function with a barrier of $1509 \mathrm{~cm}^{-1}$ to be calculated. The uncertainty, based on the approximations intrinsic to a one-dimensional calculation, is estimated to be $\pm 200 \mathrm{~cm}^{-1}$.

Table 8 compares the barriers to planarity of 13BZN to those of 14BZD and TET. There are rather larger uncertainties in these numbers but the trends from S_{0} to S_{1} and between the three molecules should be reliable. The table also compares the vibrational frequencies for the six-membered ring bending and twisting. The barriers to planarity are determined by three factors: angle strain, $-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - torsional interactions, and the anomeric effect, if present. For all three molecules the angle strain will tend to twist or bend the molecules as the interior ring angles strive to become less than 120°. The torsional interactions will also tend to twist the six-membered ring attached to t

Table 8. Barriers to planarity ($\mathrm{kcal} / \mathrm{mole}$) and bending and twisting frequencies $\left(\mathrm{cm}^{-1}\right)$ of tetralin and its oxygen analogs.

Molecule	S_{0}			S_{1}		
	Barrier	$\nu_{\text {BEND }}$	$\nu_{\text {TWIST }}$	Barrier	$v_{\text {BEND }}$	$\nu_{\text {TWIST }}$
TET	17.1	94.3	141.7	11.4	85.1	94.5
14BZD	14.3	104.3	165.6	10.3	79.8	139.6
13BZN	12.3	107.9	157.6	4.3	96.3	102.2

benzene ring so as to move away from eclipsing CH_{2} groups. These two factors readily explain the S_{0} structures and high barriers for TET and 14BZD. TET has three $-\mathrm{CH}_{2}-$ CH_{2} - torsional interactions while 14BZD has one, so the latter molecule has a smaller barrier to planarity. The 13BZN molecule studied in the present work has a somewhat lower barrier to planarity, but given that it has no $-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - torsional interactions, it still is quite large. This can be explained by the anomeric effect due to the presence of the $-\mathrm{O}-\mathrm{CH}_{2}$ - O - linkage in the molecule which has been shown ${ }^{9-11}$ to result in bending of the molecular structure. For the $S_{1}\left(\pi, \pi^{*}\right)$ excited state all three of the molecules have lower barriers to planarity which are most likely due to the angle strain effects as the π $\rightarrow \pi^{*}$ transition of the benzene ring results in a less rigid conformation. This is reflected also by the large decrease of the ring-twisting frequency for all of these molecules. The large drop in the barrier for 13 BZN to about $1500 \mathrm{~cm}^{-1}$, however, is surprising. For 1,3-benzodioxole, ${ }^{9}$ which shows a strong anomeric effect in its five-membered ring, the barrier to planarity increased in its $S_{1}\left(\pi, \pi^{*}\right)$ state as the suppression of the anomeric effect was decreased. As is evident, this is not the case for 13BZN. It may be that the $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ state has reduced interaction between the benzene ring and the adjacent oxygen atom, thereby affecting the conformational dynamics of the attached ring.

CHAPTER IV

VIBRATIONAL SPECTRA AND THEORETICAL CALCULATIONS OF 1,3-BENZODIOXAN IN ITS GROUND AND EXCITED ELECTRONIC STATES

INTRODUCTION

The laser-induced fluorescence (LIF) spectra and theoretical calculations of 1,3-benzodioxan (13BZN) focusing on its low-frequency vibrations and conformational energetics have been described in Chapter III of this work. In this chapter a comprehensive study of all the vibrations of 13BZN in both its S_{0} ground and $S_{1}\left(\pi, \pi^{*}\right)$ excited states is presented. Data from infrared and Raman spectra, fluorescence excitation spectra (FES), and single vibronic level fluorescence (SVLF) or dispersed spectra will be utilized along with $a b$ initio and DFT calculations to assign the vibrations. Of particular interest will be the differences in the vibrational frequencies between the S_{0} and $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ states resulting from the $\pi \rightarrow \pi^{*}$ transition.

EXPERIMENTAL

Raman spectra of the liquid sample were recorded using a Jobin-Yvon U-1000 spectrometer equipped with a CCD. A Coherent Verdi V-10 Nd:YAG system (532 nm, 0.5 w) was used for excitation. Infrared spectra of the the liquid sample between KBr discs were recorded with a Bruker Vertex 70. The single vibronic level fluorescence (SVLF) spectra were recorded using a Continuum Powerlite 9020 Nd:YAG laser which pumped a Continuum Sunlite OPO and FX-1 ultraviolet extension unit. SVLF spectra
were taken with a spectral resolution of $1 \mathrm{~cm}^{-1}$ and were recorded under jet-cooled conditions. Dr. Martin Wagner assisted with the recording of the fluorescence spectra.

CALCULATIONS

Theoretical calculations for the ground state were carried out using the GAUSSIAN 03 package. ${ }^{13}$ For the excited state, TURBOMOLE calculations were carried out by Dr. Jaebum Choo of Hanyang University. The ground state S_{0} structure using the B3LYP/6-311+G(d,p) basis set and for the $S_{1}\left(\pi, \pi^{*}\right)$ excited state using the CIS/6-311+G(d,p) basis set were determined. The vibrational frequencies for the S_{0} ground state were calculated by DFT methods using the B3LYP/6-311++G(d,p) basis set. For the $S_{1}\left(\pi, \pi^{*}\right)$ excited state the CIS/6-311+G** basis set was utilized.

MOLECULAR STRUCTURE

The complete calculated molecular structures for the S_{0} and $S_{1}\left(\pi, \pi^{*}\right)$ states were presented in Chapter III of this work. The bond distances for the skeletal structures for the two electronic states are shown in Figure 8. Reference to this figure will help to understand some of the differences in the vibrational energy levels in the two electronic states. As can be seen the benzene bond distances increase from an average of $1.393 \AA$ to $1.411 \AA$ as expected from the $\pi \rightarrow \pi^{*}$ transition. In the saturated ring a C-O bond distance is significantly reduced from 1.402 to $1.376 \AA$ while the oxygen atom to benzene ring C-O bond decreases from 1.359 to $1.312 \AA$. The other three bonds change

Figure 8. Skeletal structures of 13 BZN in its S_{0} and $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ electronic states.
by no more than $0.011 \AA$. As noted in Chapter III the twisting angle of the fivemembered ring is reduced from 33° in the ground state structure to 24° in $S_{1}\left(\pi, \pi^{*}\right)$.

RESULTS AND DISCUSSION

Figure 9 compares the experimental infrared spectrum of 13BZN liquid to the calculated one and Figure 10 compares the experimental and calculated Raman spectra. The frequency agreement can be seen to be excellent. The calculated intensities are fairly good, but as is usually the case, the agreement is somewhat poorer. Table 9 summarizes all of the essential data including the experimental and calculated infrared and Raman spectra. The SVLF spectra, which also provide data for the S_{0} ground state, are also tabulated. The vibrations of 13 BZN are very similar to those of 1,4 benzodioxan (14BZD) ${ }^{16}$ so these frequencies are also listed for comparison. The table also lists the calculated vibrational frequencies for the $S_{1}\left(\pi, \pi^{*}\right)$ state and compares these to those determined from the FES spectra. ${ }^{16}$

Not surprisingly, the 13BZN and 14BZD frequencies are very similar for the electronic ground state. Even the lowest five frequencies which are very sensitive to even small differences in binding interactions are very similar for the two molecules. For 13BZN these are $360,351,274,158$, and $108 \mathrm{~cm}^{-1}$ while for 14BZD they are 377 , $317,297,166$, and $104 \mathrm{~cm}^{-1}$, respectively.

Table 9 also lists the calculated frequencies for the $S_{1}\left(\pi, \pi^{*}\right)$ state of 13BZN. From the FES spectra presented in Chapter III twelve frequencies were determined and these were used to calculate a scaling factor of 0.940 which provides reasonably good

Figure 9. Experimental and calculated infrared spectra of 13BZN.

Figure 10. Experimental and calculated Raman spectra of 13BZN.

Table 9. Experimental and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for 1,3-benzodioxan in its S_{0} ground and S_{1} excited states.

Table 9. Continued.

	$\mathrm{C}_{\text {s }}$	C_{1}	Description	Ground State (S_{0})						Excited State (S_{1})		
				IR	Raman	SVLF	Calcul C_{1}	C_{s}	$14 \mathrm{BZD}{ }^{\text {b }}$	Obs	Calc ${ }^{\text {c }}$	$14 \mathrm{BZD}{ }^{\text {b }}$
A^{\prime}	32	5	CH_{2} antisym. stretch	3012 w	3015 (16)		$3032(18,537)$	2941	2991 (A_{2})		2994	
	33	6	CH_{2} antisym. stretch	2957 w	2963 (14)		$2978(11,416)$	2921	2893 (B_{2})		2892	
	34	19	CH_{2} twist	1275 m	1275 (4)		1279 (14,16)	1263	1282 (A_{2})		1329	1413
	35	21	CH_{2} twist	1232 s	1231 (26)		1237 (52,36)	1232	1243 (B_{2})		1265	
	36	25	CH_{2} rock	1100 mw	1100 (4)		$1103(6,7)$	1101	1105 (A_{2})		1111	
	37	29	CH_{2} rock	994 s			993 (100,5)	1008	936 (B_{2})		1008	948
	38	30	C-H wag			-966	965 (0.1,0.1)	964	953 (A_{2})		987	
	39	31	C-H wag	979 ms	949 (2)	-949	947 (39,9)	931	924 (B_{2})		890	
	40	34	C-H wag	$853{ }^{\text {d }} \mathrm{m}$	$853{ }^{\text {d }}$ (2)	$-849{ }^{\text {d }}$	847 (7,2)	846	843 (A_{2})		744	888
	41	36	C-H wag	752 s	$751^{\text {d }}$ (100)	$-753^{\text {d }}$	$750(5,89)$	748	$747\left(\mathrm{~B}_{2}\right)$		635	706
	42	38	Benzene ring bend	698 m	699 (5)	-696	$699(11,6)$	704	717 (A_{2})		574	
	43	40	Benzene ring bend	536 w	537 (6)	-535	536 (1,4)	522	553 (A_{2})	374	375	363
	44	43	Benzene ring bend	435 mw	436 (1)	-430	$436(3,2)$	433	(463) (B_{2})	255	231	
	45	45	Sat. ring twist		356 (4)	-351	347 (6,7)	233	297 (B_{2})	339	338	306
	46	46	Sat. ring flap		284 (4)	-274	$275(3,4)$	155	317 (A_{2})	194	192	
	47	47	Sat. ring twist		178 (14)	-158	$158(1,8)$	-	$166\left(\mathrm{~A}_{2}\right)$	102	111	139
	48	48	Sat. ring bend			-108	$106(3,8)$	-	104 (B_{2})	96	98	80

${ }^{\text {a }}$ b3lyp/6-311++G(d,p). Scaling factors are 0.985 for vibrations below $2800 \mathrm{~cm}^{-1}$ and 0.964 for vibrations above $2800 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{b}}$ Values are taken from reference 16.
${ }^{c}$ CIS/6-311++G(d,p). Scaling factors are 0.940 for vibrations below $2800 \mathrm{~cm}^{-1}$ and 0.900 for vibrations above $2800 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{d}}$ Assigned twice.

* Coupled vibrations.
agreement with the experimental data. However, it appears that a scaling factor as low as 0.9 would be required to match the higher frequencies. As before the 13 BZN and 14BZD frequencies for the excited state are quite similar. For both molecules it should be noted that the frequency ordering changes in the excited state. This has been verified by examination of the SVLF spectra which provide strong evidence for the vibrational assignments. For example, excitation of the $255 \mathrm{~cm}^{-1} \mathrm{FES}$ band results in a strong SVLF band at $-430 \mathrm{~cm}^{-1}$ which corresponds to a benzene ring bending mode. At the same time the $345 \mathrm{~cm}^{-1}$ FES band results in a strong band at $-361 \mathrm{~cm}^{-1}$ (saturated ring bending), confirming that the benzene ring bending mode has dropped below this one in frequency.

For most of the vibrations in the $S_{1}\left(\pi, \pi^{*}\right)$ state there is a modest frequency drop in the excited state reflecting a small decrease in the magnitude of the force constants. However, as can be seen, there are four low-frequency vibrations for which the frequency decrease is substantial. These include the skeletal twisting from 536 to 374 cm^{-1} and the benzene ring bending from 435 to $255 \mathrm{~cm}^{-1}$. Both of these are the results of reduced π bonding within the benzene ring system. Similarly, the ring flapping drop from 274 to $194 \mathrm{~cm}^{-1}$ results from the reduced stiffness of the benzene ring. The fourth vibration which drops significantly is the twisting of the saturated ring from 158 to 102 cm^{-1}. As described in our LIF study of the low-frequency modes, this is due to the lower barrier to planarity in the S_{1} state. ${ }^{3}$

CONCLUSIONS

Analysis of the infrared, Raman, LIF, and SVLF spectra of 13BZN along with $a b$ initio and DFT calculations has allowed us to achieve a complete vibrational assignment for the S_{0} electronic ground state. We have also been able to provide experimental vibrational assignments for a dozen modes in the $S_{1}\left(\pi, \pi^{*}\right)$ state and to provide calculated values for the others. In the $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ state the largest frequency changes are the result of the decreased π bonding of the benzene ring in the excited state.

CHAPTER V

RAMAN AND INFRARED SPECTRA AND THEORETICAL CALCULATIONS OF DIPICOLINIC ACID, DINICOTINIC ACID, AND THEIR DIANIONS*

INTRODUCTION

The infrared and Raman spectra of crystalline dipicolinic acid (DPA), also named 2,6-pyridinedicarboxylic acid, and its calcium salt as a trihydrate (CaDPA) were originally reported by Carmona ${ }^{17}$ in 1980 . With the help of a d_{2} isotopomer and group frequency considerations a tentative vibrational assignment was proposed. In recent years there has been renewed interest in detecting the presence of DPA and its salts due to their presence in bacterial spores. DPA in biological systems was first discovered by Udo ${ }^{18}$ in 1936 and its presence in bacterial spores was reported by Powell ${ }^{19}$ in 1953. Anthrax spores contain both DPA and CaDPA and interest in detecting these spores has resulted in recent Raman investigations by Ghiamati et al. ${ }^{20}$ and Kolomenskii et al. ${ }^{21,22}$. Theoretical computations by Hameka et al. ${ }^{23}$ and Xie and co-workers ${ }^{24}$ have also been carried out for DPA and its anion.

Takusagawa and co-workers ${ }^{25}$ determined the crystal structure of dipicolinic acid monohydrate (DPA $\cdot \mathrm{H}_{2} \mathrm{O}$) in 1972 and found the pyridine ring in DPA to have $\mathrm{C}_{2 \mathrm{v}}$ symmetry. Hydrogen bonding of the water molecule to both the nitrogen atom and

[^0]the $\mathrm{C}=\mathrm{O}$ of the DPA was found as well as from the oxygen in water to the OH groups of the DPA. Thus, the intermolecular interactions were very strong. In 2002 Tellez et al. ${ }^{26}$ reported the crystal structure of anhydrous DPA. For this structure the molecule is planar, but loses its $\mathrm{C}_{2 \mathrm{v}}$ symmetry as the carboxylic acid groups are oriented in opposite directions. There is extensive hydrogen bonding between the carboxylic acid groups on neighboring DPA molecules.

The CaDPA crystal structure was reported in 1968 by Straks and Dickerson ${ }^{27}$. For this system the presence of the calcium cation causes the CO_{2} groups on the two sides of the pyridine ring to have somewhat different geometries, but on the whole, the dipicolinate ion was found to be essentially planar.

Dinicotinic acid (DNic), or 3,5-pyridinedicarboxylic acid, is very similar to DPA and only differs in where the two carboxylic acid groups are attached to the pyridine ring. This molecule is also of interest since it is desirable to distinguish it from DPA when the presence of anthrax spores is suspected. Takusagawa and co-workers ${ }^{28}$ reported the crystal structure of DNic in 1973. The molecule in the crystal was found to have a nearly planar structure intermediate between the neutral molecule and the zwitter ion where hydrogen bonding from the OH groups to the pyridine nitrogen atom is present. This results in some asymmetry of the individual molecules which have nearly $\mathrm{C}_{2 \mathrm{v}}$ symmetry. A recent neutron diffraction study by Cowan and co-workers ${ }^{29}$ is consistent with these results.

In the present study the investigation of DPA and DNic and their anions was undertaken with the goal of not only understanding their structures and spectra, but also
to aid in the detection of anthrax spores. These spores contain both DPA and CaDPA in a somewhat uncertain environment, and when detecting the spores an understanding of what spectral features can be expected to arise is needed.

Experimental results are reported on the Raman and infrared spectra of solid DPA and its calcium and sodium salts and compared with those of Carmona ${ }^{17}$. The analysis of the spectra were aided by high level DFT calculations on individual nonhydrated DPA and the DPA ${ }^{-2}$ anion. Since the actual spectra of DPA and DPA ${ }^{-2}$ include those of the hydrated forms in the solid state, intermolecular interactions between the carboxylate groups and water molecules are expected. Moreover, hydrogen bonding interactions between the individual DPA molecules (or between the DPA^{-2} molecules) are anticipated based on the crystal structures, and these will significantly affect the spectra of the DPA and DPA^{-2} solid samples. In order to investigate these effects and to understand why the experimental spectra of the solid agree more poorly than usual with the computed DPA spectra of the individual molecules, separate computations on DPA dimers as well as DPA $2 \mathrm{H}_{2} \mathrm{O}$ have been carried out. Additionally, experimental results and computations on dinicotinic acid (DNic) and its anion DNic^{-2} are reported. These results will help show how DPA and DPA^{-2} can be distinguished spectroscopically from the very similar DNic and its anion.

EXPERIMENTAL

DPA and DNic were purchased from Aldrich and used without further purification. The DPA^{-2} and DNic^{-2} anions were prepared from the acids by reaction
with stochiometric amounts of NaOH in solution. The calcium salts were prepared by further reaction of the anions with a stochiometric amount of powdered CaCl_{2}. Salt crystals formed as the solution was allowed to evaporate. The Raman spectra of solid samples were recorded using a Jobin-Yvon U-1000 spectrometer equipped with a CCD. A Coherent Innova 20 argon ion laser ($514.5 \mathrm{~nm}, 0.5 \mathrm{w}$) or a Coherent Verdi V-10 $\mathrm{Nd}:$ YAG system ($532 \mathrm{~nm}, 0.5 \mathrm{w}$) was used for excitation. Raman spectra were also recorded with a JY Horiba LabRam HRFTIR microscope equipped with CCD detection with spectral resolution of $0.3 \mathrm{~cm}^{-1} /$ pixel at 680 nm . A helium-neon laser operating at 633 nm with 17 mw of power was the excitation source. Infrared spectra of KBr pellets of the samples were recorded with a Bruker Vertex 70.

CALCULATIONS

DFT calculations using the B3LYP hybrid functional were carried out using the Gaussian 03 program ${ }^{13}$. All structural optimizations and frequency calculations were done using the $6-311++G(d, p)$ basis set. Calculations were run for dipicolinic acid (DPA) and its dianion $\left(\mathrm{DPA}^{-2}\right)$, dinicotinic acid (DNic) and its dianion $\left(\mathrm{DNic}^{-2}\right)$ as well as the DPA dimer and a DPA-water complex.

STRUCTURES

Figure 11 shows the calculated structures for the single DPA molecule and its DPA^{-2} anion using the B3LYP/6-311++G(d,p) basis set. The computed bond distances

Figure 11. Calculated structures for DPA and the DPA^{-2} anion using B3LYP/6-
$311++G(d, p)$. Geometrical parameters from the crystal structures of anhydrous DPA and DPA monohydrate are shown in parentheses and brackets, respectively.
and angles are shown in the figure along with the values from the crystal structures ${ }^{25}$ of the anhydrous DPA (in parentheses) and the DPA monohydrate [in brackets]. For DPA ${ }^{-2}$ the crystal structure values for the CaDPA trihydrate ${ }^{27}$ are shown in parentheses. In the crystals of the DPA $\cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CaDPA} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ the individual molecules are asymmetrical so that bond lengths and bond angles are slightly different on one side of the pyridine ring as compared to the other. In the figures the values shown are the averages for the two sides. It should also be noted that in the crystals, because of intermolecular interactions with water or other DPA molecules, the two carboxylic acid groups are rotated with respect to each other destroying the $\mathrm{C}_{2 \mathrm{v}}$ symmetry. For our calculation, $\mathrm{C}_{2 \mathrm{v}}$ symmetry was used. Despite these differences the calculated geometrical parameters agree very nicely with the crystal structures. The main differences occur for the carboxylic acid groups, as expected, since these are involved in hydrogen bonding interactions with water or neighboring molecules in the crystals.

The calculated structural parameters for DPA^{-2} are also shown in Figure 11. The calculation was carried out for a single ion and ignored the interactions with the Ca^{+2} cation and the water molecules in the calcium DPA trihydrate. Nonetheless, the agreement between the calculation and the crystal structure determination can be seen to be very good.

In similar fashion Figure 12 shows the calculated structures for DNic and DNic^{-2}. In this case DNic for both the calculation and the crystal structure has very nearly $\mathrm{C}_{2 \mathrm{v}}$ symmetry with the same orientation for the two carboxylic acid groups. The agreement between experimental ${ }^{28}$ and calculated values is again very good except at the carboxylic

Figure 12. Calculated structures for DNic and the DNic^{-2} anion. Values in parentheses are from the crystal structure.
acid groups which get involved in intermolecular hydrogen bonding. For example, COH and $\mathrm{C}=\mathrm{O}$ calculated bond distances of $1.360 \AA$ and $1.199 \AA$, respectively, can be compared to the crystal structure values of $1.294 \AA$ and $1.217 \AA$ reflecting these interactions. Figure 12 also shows the calculated structure of an individual DNic^{-2} anion, for which no crystal structure determination has been reported, although Starosta and coworkers ${ }^{30,31}$ have reported structures for DNic calcium complexes. The DNic^{-2} values are similar to those of DPA^{-2} as expected.

VIBRATIONAL MODES

For the purpose of vibrational assignments the DPA molecule can be assumed to have $\mathrm{C}_{2 \mathrm{v}}$ symmetry and lie in the xy plane. Its vibrational symmetry species then are

$$
16 A_{1}+6 A_{2}+8 B_{1}+17 B_{2}
$$

The A_{1} and B_{2} vibrations are the in-phase modes while A_{2} and B_{1} represent out-of-plane modes. All the vibrations are Raman active and all but the A_{2} are infrared active. The A_{1} modes are Raman polarized. The DNic molecule has exactly these same vibrational symmetry species.

Similarly, the vibrations of the DPA^{-2} and DNic^{-2} anions in $\mathrm{C}_{2 \mathrm{v}}$ symmetry have the symmetry species

$$
14 \mathrm{~A}_{1}+4 \mathrm{~A}_{2}+6 \mathrm{~B}_{1}+13 \mathrm{~B}_{1} .
$$

All of the vibrational frequencies and infrared and Raman intensities for DPA, DPA^{-2}, DNic, and DNic^{-2} were computed to assist in the analysis of the spectra. Figures 13A and 13B present vector pictures to represent all 45 vibrations of a single non-interacting

Figure 13A. Vector representation for the A_{1} and A_{2} vibrations of DPA based on $C_{2 v}$ symmetry.

Figure 13B. Vector representation for the B_{1} and B_{2} vibrations of DPA based on $C_{2 v}$ symmetry.

DPA molecule. Figures 14A and 14B present representations for the 39 vibrations of the DPA^{-2} anion. The figures also show the corresponding calculated frequency for each vibrational mode. The vibrational modes for DNic and DNic^{-2} are very similar.

VIBRATIONAL SPECTRA

Figures 15 to 22 show the experimental Raman and infrared spectra (KBr pellets) of DPA, DPA $^{-2}$, DNic, and DNic ${ }^{-2}$. The Raman spectra shown are those collected with the Raman microscope. Those recorded with the JY U-1000 have higher resolution but also show a fluorescence background, especially for DNic. In each case the observed spectrum is compared to the computed spectrum. The infrared spectra of both the KBr pellets (shown) and the nujol mulls of these molecules show a number of broad features resulting from the presence of the hydrated water in these samples. For molecular systems which have studied previously ${ }^{32-42}$ remarkably good agreement has typically been found between the observed and calculated spectra. Here, however, there are significant differences which can be attributed to the intermolecular hydrogen bonding. Some key features, such as the ring breathing of the pyridine ring which produces the most intense Raman band at $998 \mathrm{~cm}^{-1}$, are predicted quite accurately. However, others are significantly shifted in frequency due to hydrogen bonding between neighboring molecules or with water molecules in the hydrates. In particular, the vibrations associated with the carboxylic acid groups are affected the most by these intermolecular interactions. Our spectra do not differ significantly from those of Carmona ${ }^{17}$, which are of high quality, but we have the benefit of the DFT calculations in making the

Figure 14 A . Vector representation for the A_{1} and A_{2} vibrations of the DPA^{-2} anion based on $\mathrm{C}_{2 \mathrm{v}}$ symmetry.

Figure 14B. Vector representation for the B_{1} and B_{2} vibrations of the $D P A^{-2}$ anion based on $\mathrm{C}_{2 \mathrm{v}}$ symmetry.

Figure 15. Raman spectrum of DPA powder compared to its computed spectrum.

Figure 16. Infrared spectrum of DPA in a KBr pellet compared to its computed spectrum.

Figure 17. Raman spectra of the calcium and sodium salts of DPA^{-2} compared to the computed spectrum of free DPA^{-2}.

Figure 18. Infrared spectra of the calcium and sodium salts of DPA ${ }^{-2}$ compared to the computed spectrum of free DPA^{-2}.

Figure 19. Raman spectrum of DNic powder compared to its computed spectrum.

Figure 20. Infrared spectrum of DNic in a KBr pellet compared to its computed spectrum.

Figure 21. Raman spectrum of the calcium salt of DNic^{-2} compared to the computed spectrum of free DNic^{-2}.

Figure 22. Infrared spectrum of the calcium salt of DNic^{-2} compared to the computed spectrum of free DNic^{-2}.
vibrational assignments. Table 10 presents a comprehensive summary of our infrared and Raman assignments for DPA and these are compared to values reported by Carmona ${ }^{17}$ as well as our calculated frequencies for a single, non-interacting molecule. Table 10 also includes the assignments for DNic. Table 11 presents the observed and calculated frequencies for $\mathrm{CaDPA}, \mathrm{NaDPA}$, and CaDNic . For CaDPA the experimental values are compared to those of Carmona.

Several comments should be made about the vibrational assignments. As noted previously, in the crystal structures the individual molecules exist in different environments so that the vibrations of one $-\mathrm{CO}_{2} \mathrm{H}$ group, for example, will have somewhat different frequencies from another. This can give rise to doublets or broad bands in the spectra. In assigning the spectra, we have not attempted to list all the possible bands associated with such features, but have selected the principal bands that can be ascribed to the vibrations. These variations in the molecular environments will also lead to apparent infrared and Raman frequency differences. For example the v_{35} skeletal stretching band of CaDNic is assigned as $837 \mathrm{~cm}^{-1}$ (IR) and $851 \mathrm{~cm}^{-1}$ (Raman), apparently and these are assumed to arise from this motion for the molecule in different crystal environments. Apparently, in one crystal arrangement the lower frequency is enhanced in the infrared spectrum while in another the Raman is enhanced. It should also be pointed out that the assignment of low-frequency modes below $200 \mathrm{~cm}^{-1}$ is rather arbitrary since these will be highly coupled to the lattice modes of the molecules. The DFT calculations are those for individual non-interacting molecules and the predicted frequencies will be very different from the experimental ones. It should also be noted

Table 10.Calculated (scaled) and observed frequencies $\left(\mathrm{cm}^{-1}\right)$ for solid DPA and solid DNic.

		Description	DPA					DNic		
			$\mathrm{IR}^{\text {a }}$	Raman ${ }^{\text {b }}$	$\bar{v}_{\text {CALC }}$		Carmona ${ }^{\text {d }}$	$\mathrm{IR}^{\text {a }}$	Raman ${ }^{\text {b }}$	$\bar{v}_{\mathrm{CALC}}{ }^{\mathrm{c}}$
					$\mathrm{C}_{\mathrm{s}}{ }^{\text {c }}$	$\mathrm{C}_{2 \mathrm{v}}{ }^{\text {c }}$				
A_{1}	1	O-H stretch	3108 vw	3417 (31)	3665 (12,83)	3627	2800	3092 m	3090 (29)	3684 (6,60)
	2	C-H stretch (i.p.)		3104 (17)	3108 (0.1,145)	3100	3113			3072 (0.06,78)
	3	C-H stretch		3098 (10)	3062 (0.7,88)	3071	3070			3032 (0.6,35)
	4	$\mathrm{C}=\mathrm{O}$ stretch	1640 m	1645 (31)	1830 (100,8)	1759	1640	1725 s	1725 (43)	$1804(24,100)$
	5	Ring stretch	1565 m	1575 (39)	1587 (8,35)	1594	1580	1585sh	1611 (37)	1573 (6.2,30)
	6	Ring stretch(+Ring-C)	1457 vs	1454 (4)	1435 (0.6,3.7)	1435	1447	$\begin{aligned} & 1459 \\ & \mathrm{mw} \end{aligned}$	1469 (35)	1439 (0.4,2)
	7	O-H in-plane wag	1330 m	1324 (10)	$1334(9,20)$	1382	1423		1394 (33)	1315 (100,22)
	8	Ring + CH wag	1269 m	1271 (10)	$1201(49,37)$	1215	1262	1220 m		1204 (12,7)
	9	C-O stretch	1151	1153 (5)	$1102(2.2,5)$	1127	1304		1155 (8)	1175 (10,18)
			mw							
	10	Ring + C-O	1080 m	1083 (2)	1081 (6,6)	1082	1082			$1068(15,3)$
	11	Ring breathing	996 m	998 (100)	$994(1.6,47)$	999	998	$\sim 1040 \mathrm{br}$	1039 (100)	1023 (16,25)
	12	Skeletal (Ring-C)		760 (66)	$727(3.8,12)$	720	895		685	729 (5,7)
	13	Ring bending	648 m	647 (28)	633(9,4)	634	647	$\sim 630 \mathrm{br}$	$\sim 630 \mathrm{br}$	637 (0.3,1.0)
	14	Skeletal bend (O-C-O)		486 (3)	480 ($23,1.6$)	457	762	$\sim 535 \mathrm{br}$	532 br	452 (21,1.4)
	15	Skeletal bending (O-C-O)	358	397 (10)	325 (1.1,6)	351	298		307 (4)	330 (0.3,4.2)
	16	Skeletal bend (Ring-C)		202 (41)	126 (1.0,3.0)	131	495		124 (198)	123 (2,0.9)
A_{2}	17	C-H out-of-plane wag	889 vw		935 (0.1,1.4)	956	802			983 (0.3,0.2)
	18	Skeletal wag (o.p.)	784 w	801 (8)	789 (3.3,0.9)	797	630		(754)	764 (0.1,1.2)
	19	O-H wag (o.p.)			$608(21,1.4)$	602	937			565 (0.4,0.02)
	20	Ring deformation (o.p.)	419		427 (0.3,1.0)	445	396			359 (2.4,0.34)
	21	Skeletal bend	190	193 (21)	153 (0.7,2.8)	158	365			166 (0.8, 2.2)
	22	O-C-O torsion			35 (0.3,1.6)	38	---			37 (0.2,0.3)
B_{1}	23	C-H wag (o.p.)	996 m	998	1006 (0.1,0.3)	1014	987	943 mw		943 (0.3,1.3)
	24	Skeletal-C inversion	854 mw	854 (11)	854 (2.9,2.1)	856	855	$\sim 908 \mathrm{br}$	907 (9)	911 (1.2,0.4)
	25	C-H wag	752 m		755 (12,0.9)	754	751	753 m	754 sh	739 (2.7,1.1)
	26	Skeletal twist	701 m	699 (2)	711 (10,9)	716	692	696 m		690 (0.6,0.2)
	27	O-H wag (o.p.)	577 m		540 (8,2.3)	574	583		496 (4)	480 (4,1.4)
	28	Skeletal twist	386		394 (1.6,2.5)	424	421	439 w	439 (2)	413 (1.2,1.3)
	29	O-C-O wag (o.p.)			133 (0.3,1.6)	145				$136(1.7,0.6)$
	30	O-C-O torsion			$40(0.5,1.9)$	46	226			52 (1.9,1.3)

Table 10. Continued.

Table 11. Calculated (scaled) and observed frequencies $\left(\mathrm{cm}^{-1}\right)$ for solid CaDPA , solid $\mathrm{Na}_{2} \mathrm{DPA}$ and solid CaDNic .

Table 11. Continued.

		Description	CaDPA			DPA ${ }^{-2}$		Na_{2} DPA		CaDNic			
		$\mathrm{IR}^{\text {a }}$	Raman ${ }^{\text {b }}$	$\begin{aligned} & \text { Carm } \\ & \text { ona }^{\text {c }} \end{aligned}$	\bar{v}_{CALC}		$\mathrm{IR}^{\text {a }}$	Raman ${ }^{\text {b }}$	$\mathrm{IR}^{\text {a,e }}$	Raman ${ }^{\text {b,e }}$	$\bar{v}_{\text {CALC }}{ }^{\text {d }}$		
		$\mathrm{C}_{\mathrm{s}}{ }^{\text {d }}$			$\mathrm{C}_{2 \mathrm{v}}{ }^{\text {d }}$								
B_{2}	27		C-H stretch	3098 vw	3098 (149)	3078	3064 (41, 3382)	3078				(3083)	$3042(23,1604)$
	28	$\mathrm{C}=\mathrm{O}$ stretch	1613 m	1610 (110)	1609	1613 (1000,254)	1625	1615 vs		(1607 s)	1608 (192)	$1612(254,94)$	
	29	Ring stretch	1573 m	1574 (196)	1556	$1569(100,819)$	1568	1577 vs	1589 (272)	1549 s		1566 (5,531)	
	30	Ring stretch	1461 vs	1464 (91)	1466	1418 (19, 8)	1410	1453 m		1456 ms	(1463 (769))	$1394(15,7)$	
	31	Ring stretch	1377 vs	1371 (124)	1382	1320 (896,131)	1298				1245 (607)	1253 (26,40)	
	32	C-H wag (in-plane)	1279 s	1279 (12)	1277	1235(5,32)	1240	1271			1263 (41)	$1269(35,6)$	
								mw					
	33	C-H wag	1183 m	1182 (19)	1200	$1152(15,3)$	1141	1177 w				$1071(42,11)$	
	34	C-O stretch	1146 m	1144 (73)	1150	1133 (0.3,48)	1122	1150 w	1159 (201)		1307 (25)	1311 (14,0.8)	
	35	Skeletal stretch	864 w	860 (181)	822	$862(38,0.9)$	847			837 m	851 (281)	877 (36,6)	
	36	Skeletal bend (ring+ $\mathrm{C}=\mathrm{O})$	707 m	708 (12)	742	703 (117,10)	706	702 mw			680 (26) br	700 (1.4,0.7)	
	37	Ring-C $(\mathrm{O})_{2}$ wag(inplane)		395 (56)	696	$362(12,2)$	543			566 w	568 (134)	534 (12,0.3)	
	38	Skeletal bend		249 (14)	269	261 (7,0.6)	379		383 (121)			$381(9,12)$	
	39	O-C-O wag		230 (29)	424	$142(8,33)$	263				250 (68)	247 (0.3,7)	

[^1]that we consider the DNic and CaDNic assignments to be reasonable, but they are also tentative.

For the identification of anthrax spores it is important to be able to distinguish DPA and DPA^{-2} from DNic, DNic^{-2}, and other similar molecules. Figures 23 and 24 compare the calculated DPA Raman and infrared spectra to those of DNic while Figures 25 and 26 compare the calculated spectra of the two anions DPA^{-2} and DNic^{-2}. Figure 26 compares the recorded Raman spectrum of DPA to that of DNic in the 600 to 1800 cm^{-1} region, which is the most promising for the detection of anthrax spores. As can be seen, although the DPA and DNic spectra have a number of similarities, there are also sufficient spectroscopic differences to allow discrimination between the two molecules. The same is true for the DPA^{-2} and DNic^{-2} which can be distinguished from their spectra. It might be noted that Wasylina and co-workers ${ }^{43}$ in 1999 published a brief listing of infrared frequencies for DPA, DNic, and three other pyridinecarboxylic acids. This is shown in Table 12. Although the data appear only to have a $\pm 10 \mathrm{~cm}^{-1}$ accuracy and are only for infrared spectra, what they show is that all of these are spectroscopically sufficiently different to allow for selective identification.

SPECTROSCOPIC EFFECTS OF MOLECULAR INTERACTIONS

As discussed above, the intermolecular hydrogen bonding between DPA molecules or with water can significantly affect the spectra of the DPA. In order to better understand that, we have carried out DFT computations on a DPA dimer where hydrogen bonding occurs through the carboxylic acid groups. Such interactions are well

Figure 23. Comparison of the DPA and DNic experimental Raman spectra.

Figure 24. Comparison of the DPA and DNic experimental infrared spectra.

Figure 25. Comparison of the DPA^{-2} and DNic^{-2} calcium salt Raman spectra.

Figure 26. Comparison of the DPA^{-2} and DNic^{-2} calcium salt infrared spectra.

Table 12. Reported infrared spectra $\left(\mathrm{cm}^{-1}\right)$ of pyridinedicarboxylic acids.

DPA $(2,6)^{\text {a }}$	DNic (3,5) ${ }^{\text {a }}$	$2,3^{\text {a }}$	$2,4{ }^{\text {a }}$	$2,5^{\text {a }}$	$3,4^{\text {a }}$
1710s	1730s		1730s	1730-1790s	1720s
1690s	1690m				
	1630m	1610s		1610s	1640s
	1590m	1580m	1590m		1600s
1470m		1480s	1500m	1470m	
1460 m		1430 m			
1420 m		1420s	1390m	1420 m	
1340m					1340-1370br
1300m		1310s	1310s	1130-1260br	
1270s	1270m	1280m	1270s		
	1220s	1240m			1250s
	1160s	1170s	1180m		
	1150m	1140s			
	1060m	1000-1060br	1080m		1040m
920-950br	950m		1000m	980m	990 m
					940s
				810m	880m
760 m	760s		760s	770 s	760 m
705 s	690s	680m	700s	700s	725 m
650m		660 m	650m		660m
		620 m			
		600s			

${ }^{\text {a }}$ Abbreviations: s - strong , m - medium , br - broad.
known. We have also carried out calculations for DPA $+2 \mathrm{H}_{2} \mathrm{O}$ where each carboxylic acid group of the DPA is hydrogen bonded to a water molecule. The computations provide frequencies for all the vibrations, but we were particularly interested in the effects on the interacting carboxylic acid groups. Table 13 summarizes the frequency changes predicted by these interactions for several of the vibrational modes. As can be seen, both the calculations predict lowering of the $\mathrm{C}=\mathrm{O}$ stretching mode as expected, but the dimer model does a much better job of predicting the effect of the interaction. A single DPA molecule would have a $\mathrm{C}=\mathrm{O}$ stretching frequency at $1830 \mathrm{~cm}^{-1}$, but anhydrous DPA in the crystal has it at $1645 \mathrm{~cm}^{-1}$. Our DPA dimer model predicts it at $1668 \mathrm{~cm}^{-1}$. The other vibrational frequencies in Table 13 can be seen to be little affected by the intermolecular interactions, except for the O-H stretching.

CONCLUSIONS

High level DFT calculations have been carried out on DPA, DPA ${ }^{-2}$, DNic, and DNic^{-2} to determine the structures and vibrational spectra of the independent molecules. The results for DPA and DPA^{-2}, however, differ from the crystal structures reported in the literature and the vibrational spectra which were recorded in the present study. This difference is caused by extensive intermolecular interaction involving hydrogen bonding between neighboring molecules or with the water in hydrated crystals. These interactions greatly affect the C-O bond distances of the carboxylic acid groups and also considerably reduce the frequencies of the $\mathrm{C}=\mathrm{O}$ stretching vibrations. This effect could be simulated by calculations carried out on the DPA dimers and the DPA $\cdot 2 \mathrm{H}_{2} \mathrm{O}$

Table 13. Calculated frequencies $\left(\mathrm{cm}^{-1}\right)$ of DPA in different environments.

		DPA	DPA $\cdot 2 \mathrm{H}_{2} \mathrm{O}$	DPA_{2}	
	1	O-H stretch	3665	3274	3107
	2	C-H stretch (i.p.)	3108	3101	3101
3	C-H stretch	3062	3069	3071	
4	C=O stretch	1830	1718	1668	
	5	Ring stretch	1586	1594	1594
6	Ring stretch(+Ring-C)	1435	1459	1456	
7	O-H in-plane wag	1334	1420	1325	

complex. For the other vibrational frequencies there is less effect resulting from the intermolecular interactions.

Since DPA and DPA^{-2} are both present in anthrax spores, it is important to be able to distinguish these species from related molecules such as DNic and DNic ${ }^{-2}$. For this reason the latter two molecules were also extensively studied by Raman and infrared spectra. Although there are spectroscopic similarities, there are also sufficient spectral differences to permit DPA to be distinguished from DNic and other related molecules. The same is true for the anions.

CHAPTER VI

RAMAN SIGNATURE OF THE NON-HYDROGEN-BONDED TRYPTOPHAN SIDE CHAIN IN PROTEINS: EXPERIMENTAL AND AB INITIO SPECTRA OF 3-METHYLINDOLE IN THE GAS PHASE*

INTRODUCTION

The effectiveness of Raman spectroscopy as a protein structural probe relies upon accurate vibrational assignments for the many spectral bands contributed by both the main chain and diverse side chains of the protein. Also required are definitive correlations linking key parameters of the Raman bands, such as spectral frequency (wavenumber), relative intensity and polarization, to the local environments of the protein moieties to which the bands are assigned. Because the main-chain peptide moiety is the most prevalent chemical group in every protein, its Raman markers (socalled amide bands) are typically the most prominent in the spectra. Accordingly, the Raman amide bands have been investigated extensively and are the best understood in terms of quantitative relationships between their spectral attributes and the local environment or conformation of the protein main chain. Pre-eminent among Raman amide bands is the carbonyl-related amide I mode, which generally occurs within the $1640-1700 \mathrm{~cm}^{-1}$ interval of the Raman spectrum ${ }^{44-47}$.

[^2]Also prominent in Raman spectra of proteins are bands assigned to skeletal stretching modes of electron-rich groups, including vibrations associated with the aromatic rings of tyrosine (Tyr), tryptophan (Trp) and phenylalanine (Phe) side chains and vibrations of the sulfur-containing cysteine (Cys) side chain. Many structural correlations have been developed for Raman markers of these side chains and ongoing refinements continue to improve the usefulness of the Raman markers for diagnosis of side chain orientation, interaction or covalency ${ }^{48-54}$. Reviews and critical discussions have been given recently ${ }^{46,55-57}$.

A previous collaboration between the Laane and Thomas laboratories ${ }^{53}$ reported a combined infrared, Raman and ab initio analysis of the tyrosyl model compound p cresol in the vapor phase. The objectives of that study were to refine earlier vibrational assignments for the para-substituted phenolic ring of Tyr ${ }^{49,58}$ and more specifically to identify Raman markers diagnostic of the non-hydrogen-bonded state of the tyrosine phenoxyl group. The latter objective is particularly important for protein applications of Raman spectroscopy because of the well established sensitivity of Raman markers of the tyrosine side chain to the various donor and acceptor roles of the phenoxyl group ${ }^{49}$. The analysis by Arp et al. ${ }^{53}$ identified the key Raman markers of tyrosine that were diagnostic of the non-hydrogen-bonded state of the phenolic OH group and demonstrated further that the non-hydrogen-bonded state could account for the unique tyrosyl signatures observed in Raman spectra of capsid protein subunits of filamentous viruses ${ }^{59,60}$.

This chapter describes the results of a further collaboration with the Thomas laboratories. Here the tryptophan model compound 3-methylindole (3MI) in the vapor phase. 3MI serves as a convenient structural analog of the indolyl side chain of tryptophan (Figure 27). Raman spectra of 3MI and selected isotopic derivatives we investigated previously to reach reliable assignments for the indolyl moiety, as well as to identify the Raman spectral signature of the tryptophan residue in proteins, and to characterize the dependence of this signature on the local orientation and interactions of the indolyl ring ${ }^{50,54,61-64}$. The previous studies of the Harada and Takeuchi groups have provided a solid foundation upon which to develop more comprehensive vibrational assignments. Importantly, they facilitate probing the spectral consequences of eliminating (via the gas phase) both the indolyl $\mathrm{N} 1-\mathrm{H}$ donor group and the π-electron acceptor system from participation in significant intermolecular interaction, including hydrogen bonding. The biological significance of the non-hydrogen-bonded state of the tryptophan side chain derives from the frequent occurrence of this residue in the protein subunits of filamentous virus capsids, hydrophobic cores of globular proteins and hydrophobic transmembrane domains of membrane proteins ${ }^{65}$. It is also noteworthy that the π-electron system of the indolyl ring has been implicated as a robust hydrogen-bond acceptor in native proteins ${ }^{66}$.

The present results confirm and extend earlier vibrational assignments for the indolyl moiety and demonstrate a remarkable sensitivity of many vibrational bands of the tryptophanyl side chain to intermolecular interaction.

Figure 27. Structures of 3-methylindole (left) and tryptophan (right). The numbering of ring and exocyclic atoms follows IUPAC-IUPAB nomenclature ${ }^{72}$.

MATERIALS AND METHODS

3-Methylindole (98\%), m.p. 96°, b.p. 266°, was purchased from Aldrich Chemical (St. Louis, MO) and purified by trap to trap vacuum distillation. Raman spectra were collected on a Jobin Yvon U-1000 spectrometer (Instruments S. A., Edison, NJ) using excitation at 514.5 nm from an Innova 20 argon-ion laser (Coherent, Santa Clara, CA). The laser power at the sample cell was 2 W for vapor and 800 mW for liquid samples. Vapor phase spectra of approximately 1 atm of sample were obtained at $300 \pm 5{ }^{\circ} \mathrm{C}$ using a custom-designed thermostatically controlled Raman cell ${ }^{1}$ into which solid sample was transferred; the Raman cell was subsequently frozen with liquid nitrogen and sealed after evacuation on a vacuum line. Liquid phase spectra were obtained in a glass tube heated with nichrome wire to $100^{\circ} \mathrm{C}$. Solution spectra at 23 ± 3 ${ }^{\circ} \mathrm{C}$ in various solvents were recorded using quartz cuvettes to contain the samples. Either a charge-coupled device or a photomultiplier tube was used for detection of the Raman scattered light. The Raman spectra were collected and processed using standard software packages (SpectraMax and Bomem Grams).

Infrared spectra were recorded on either a Bomem DA8.02 or a BioRad FTS-60 instrument. Vapor phase spectra at $300 \pm 10^{\circ} \mathrm{C}$ were recorded using a heatable 10 cm metal cell with KBr windows. Spectra of solid samples (as Nujol mulls) between KBr plates were recorded at $25^{\circ} \mathrm{C}$.
$A b$ initio calculations were carried out using the GAUSSIAN 03^{13} package at the density functional (B3LYP) level of theory. Structural parameters and vibrational frequencies with infrared and Raman intensities were obtained with the $6-311++\mathrm{G}^{* *}$
basis set. Scaling factors of 0.955 for the $2800-3500 \mathrm{~cm}^{-1}$ region and 0.985 for the region below $1700 \mathrm{~cm}^{-1}$ were used for both our calculations and those of Bunte et al. ${ }^{67,68}$.

RESULTS

Experimental and Theoretical Vibrational Spectra of 3-Methylindole

Table 14 lists the full Raman (liquid and vapor) and infrared (solid and vapor) spectra of 3-methylindole (3MI) including both unscaled and scaled vibrational frequencies and their approximate vibrational descriptions calculated using the B3LYP/6-311++G** basis set. Figure 28 compares the experimental Raman spectra of the neat liquid (trace A) and vapor (trace B) with the calculated spectrum (trace C). As in a previous study of p-cresol ${ }^{53}$, the agreement between observed and calculated values is excellent. The data of Table 1 are also in satisfactory agreement with corresponding data reported by Bunte et al. ${ }^{67}$, although some refinements were necessary in the previous assignments and vibrational descriptions, particularly for low frequency modes. All of the vibrations have been classified in accordance with $\boldsymbol{C}_{\mathbf{S}}$ symmetry, so that inplane and out-of plane vibrations are of species \boldsymbol{A}^{\prime} and $\boldsymbol{A}^{\prime \prime}$, respectively. Because the hydrogen atom at the N^{1} indolyl ring site (corresponding to $\mathrm{N}^{\varepsilon 1}$ of tryptophan) does not lie precisely in the ring plane, the indole moiety lacks rigorous $\boldsymbol{C}_{\mathbf{S}}$ symmetry. However, this non-planarity has such a small effect that the spectral characteristics are for the most part those of a planar skeleton with $\boldsymbol{C}_{\mathbf{S}}$ symmetry. This is also evident in the work of Bunte et al. ${ }^{67}$, i.e. vibrations classified here as \boldsymbol{A} "are reported by Bunte et al. as depolarized (depolarization ratio $\rho=0.75$). The vibrations have also been renumbered using the usual convention of high frequencies listed first.

Table 14. Experimental and calculated vibrational frequencies of 3-methylindole.

[^3]

Figure 28. Raman spectra of 3-methylindole in the region 200-3600 cm^{-1}. (A) Neat liquid (melt at $100{ }^{\circ} \mathrm{C}$). (B) Vapor at 300 ${ }^{\circ} \mathrm{C}$. (C) Calculated (ab initio) using B3LYP/6-311++G**.

Ab Initio Molecular Structure of 3-Methylindole

The calculated structure of $3 \mathrm{MI}\left(6-311++\mathrm{G}^{* *}\right.$ basis set $)$ is shown in Figure 29. The molecular skeleton lies totally within one plane and only the imidazolyl and methyl hydrogens lie outside this plane. The structure shows the expected delocalization of π electrons of the imidazole and phenyl ring systems, which results in a compression of the $\mathrm{C}^{3}-\mathrm{C}^{9}$ bond of Figure 27. Other bond lengths and angles are also as expected.

Raman Bands Diagnostic of the Isolated (Non-interacting) 3-Methylindole Molecule

Evidence for the absence of $\mathrm{N}^{1}-\mathrm{H}$ hydrogen bonding by the 3 MI molecule in the vapor phase comes from the very high frequency $\left(3506 \mathrm{~cm}^{-1}\right)$ of the Raman band representing the NH stretching mode. The gas-phase 3 MI molecule is also presumed to lack other types of intermolecular interactions. Accordingly, the spectrum of trace B in Figure 3 is considered to represent that of an isolated, non-interacting indolyl moiety.

Comparison of the Raman frequencies and intensities for neat liquid and vapor states of 3MI (Table 14) reveals numerous bands that are strongly sensitive to indolyl intermolecular interactions. For example, ~ 20 bands exhibit wavenumber shifts of at least $5 \mathrm{~cm}^{-1}$. Of these, four bands are sufficiently intense to be of potential diagnostic value in protein Raman spectra. These are designated as the modes $W 2[1579(l)$ and $1585(v) \mathrm{cm}^{-1}$, for liquid and vapor, respectively)], $W 6\left[1418(l)\right.$ and $\left.1409(v) \mathrm{cm}^{-1}\right], W 7$ Fermi pair [1352/1345 (l) and 1349/1341 (v) cm ${ }^{-1}$] and $W 17$ [875 (l) and $\left.881(v) \mathrm{cm}^{-1}\right]$, in accordance with nomenclature employed previously for protein aromatic ring vibrations ${ }^{46,69}$. In addition, the Fermi doublet intensity ratio $\left(I_{1} / I_{2}\right.$, where I_{1} and I_{2} are,

Figure 29. Calculated molecular structure of 3-methylindole using B3LYP/6-311++G**.
respectively, the Raman intensities of the higher and lower wavenumber components of the doublet) is highly sensitive to the state of condensation the 3MI molecule, consistent with the previously reported sensitivity of I_{1} / I_{2} to solvent polarity. The observed ratios are $I_{1} / I_{2}=0.58$ for the liquid and $I_{1} / I_{2}=3.0$ for the vapor, after deconvolution of the overlapping members of the Fermi pair (Figure 30).

Effects of Indolyl Intermolecular Interactions on Key Raman Markers

The parameter I_{1} / I_{2} of the $W 7$ band was also measured for solutions of 3 MI in solvents of differing polarity and hydrogen-bonding capability. These measurements complement those of Harada and coworkers ${ }^{50,54,61-64}$, who reported effects of solvent polarity on I_{1} / I_{2} and developed several additional structural correlations applicable to spectral parameters of $W 2, W 6, W 7$ and $W 17$. The combined results of this work and previously published data on I_{1} / I_{2} of the $W 7$ band are summarized in Table 15. This table also lists the values of the dielectric constants ϵ_{r} for the different solvents. Solvents with higher ϵ_{r} values are expected to facilitate the intermolecular interactions

Harada and coworkers proposed that I_{1} / I_{2} is diagnostic of the hydrophobicity of the indolyl ring environment. Specifically, I_{1} / I_{2} increases with increasing hydrophobicity and has been referred to as a "hydrophobic interaction marker" ${ }^{54}$. This is evident from inspection of Table 15. In addition to $W 7$, the sensitivity of the frequencies of the NH stretching and W17 modes to indolyl NH hydrogen bonding have been noted ${ }^{63}$ and confirmed by the present experiments (Figure 28 and related data not shown). These marker bands are further discussed in the following section.

Figure 30. Raman spectra of 3-methylindole in the region $1300-1375 \mathrm{~cm}^{-1}$ showing the Fermi doublet (mode W7). Experimental data (solid line) and curve fits of the deconvolved data for the neat liquid at $100^{\circ} \mathrm{C}$ and vapor at $300^{\circ} \mathrm{C}$ are shown in the top and bottom panels, respectively. Data are from Figures 28A and 28B.

Table 15. Raman solution spectra frequencies of the $W 7$ band.

Phase	$\begin{aligned} & \text { Concentration } \\ & (\mathrm{mM}) \end{aligned}$	Raman Frequency $\left(\mathrm{cm}^{-1}\right)$		$\begin{aligned} & \text { Ratio }{ }^{\mathrm{a}} \\ & \left(\mathrm{I}_{1} / \mathrm{I}_{2}\right) \end{aligned}$	Dielectric Constant ${ }^{\text {b }}$	Reference
Vapor	---	1349	1341	3.0	---	c
Solvent						
Cyclohexane	100	1352	1343	1.55	2.02	c
n-Hexane	100-200	1352	1343	1.50	1.89	[62]
Carbon disulfide	100-200	1350	1341	1.18	2.24	[62]
Methanol-d	500	1353	1346	1.18	---	c
Methanol-d	100	1354	1346	1.06	---	c
Toluene	100-200	1341	1343	1.04	2.38	[62]
Carbon tetrachloride	100	1353	1344	0.99	2.24	
Benzene	100-200	1351	1343	0.96	2.28	[62]
Benzene	100	1353	1344	0.89	2.28	
Benzene	500	1353	1344	0.83	2.28	c
o-Dichlorobenzene	100-200	1351	1343	0.83	10.12	[62]
Tetrahydrofuran	100	1354	1346	0.71	7.52	c
Methanol	100	1353	1346	0.48	33.0	c
Methanol	300	1355	1346	0.45	33.0	c
Chloroform	100	1354	1345	0.43	4.81	c
Neat Liquid(melt)	---	1352	1345	0.58	---	c

a) $\left(I_{1} / I_{2}\right)$ is the intensity ratio of the higher frequency band to the lower frequency band.
b) CRC Handbook of Chemistry and Physics, $85^{\text {th }}$ Edition, p. 8-141.
c) Data from this work.

DISCUSSION AND CONCLUSIONS

Miura and coworkers demonstrated that the W17 mode of 3MI exhibits an apparent frequency dependence upon the strength of indolyl $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding ${ }^{63}$. This finding is based upon a close linear correspondence between W17 and the frequency of the indolyl NH stretching mode when the hydrogen bonding environment of 3 MI is varied. Raman and infrared spectral data collected from solutions of 3 MI in solvents of diverse O -acceptor capabilities and from crystals of indolyl model compounds of known X-ray structure provide the experimental support ${ }^{63}$. The proposed structural correlation has been exploited recently to characterize tryptophan hydrogen bonding interactions in native proteins ${ }^{50,70,71}$. A keystone of the structural correlation is the observation that in a non-hydrogen-bonding solvent, such as $\mathrm{CS}_{2}\left(\epsilon_{\mathrm{r}}=2.24\right)$ or cyclohexane $\left(\epsilon_{\mathrm{r}}=2.02\right)$, the NH stretching and W17 modes occur near 3476 (infrared) and 883 (Raman) cm^{-1}, respectively ${ }^{63}$. However, Raman frequencies of 3 MI in the prototypical non-hydrogen-bonded state - viz. the vapor- were not reported previously.

In the present work it was determined that the NH stretching and W17 modes of 3MI vapor occur at 3506 and $881 \mathrm{~cm}^{-1}$, respectively, which constitute a data point only slightly deviant from the previously proposed linear relationship of Miura et al. (Figure 2 of reference ${ }^{63}$). Accordingly, the results are consistent with the proposition that the wavenumber value of the W17 mode is a reliable indicator of indolyl $\mathrm{N}^{1}-\mathrm{H}$ hydrogen bond donation. Specifically, it can be concluded that the non-hydrogen-bonded $\mathrm{N}-\mathrm{H}$ group exhibits WI7 at $882 \pm 1 \mathrm{~cm}^{-1}$, while the very strongly hydrogen bonded $\mathrm{N}-\mathrm{H}$ group exhibits W17 at $871 \pm 1 \mathrm{~cm}^{-1}$. The former state is represented by the vapor (this
work) and both CS_{2} and cyclohexane solutions of $3 \mathrm{MI}^{63}$, while the latter is represented by the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bond in the crystal structure of N -acetyl-DL-tryptophan methylamide ${ }^{63}$.

With respect to the relative Raman intensity ratio $\left(I_{1} / I_{2}\right)$ of the components of the Fermi doublet ($W 7$), the situation appears to be more complex (Table 15). The underlying hypothesis is again that the 3MI molecule in the vapor is devoid of any intermolecular interactions. Accordingly, in the absence of intermolecular contacts with either hydrophobic or polar molecules, including potential hydrogen bonding partners for the exocyclic $\left(\mathrm{N}^{1}-\mathrm{H}\right)$ or aromatic (π-electron) groups of $3 \mathrm{MI}, I_{1} / I_{2}$ achieves its maximum value of 3.0. This value falls sharply with the introduction of any intermolecular environment represented by the solvents of Table 2. For non-polar and non-hydrogen-bonding solvent environments the range observed is $0.8<I_{1} / I_{2}<1.6$, which is twofold to threefold lower than the maximum observed for the vapor. In the case of polar and hydrogen bonding solvent environments, I_{1} / I_{2} is further diminished by another factor of two, i.e. $0.4<I_{1} / I_{2}<0.8$. Therefore, the I_{1} / I_{2} ratio is strongly sensitive to factors other than simply NH or π hydrogen bonding, namely to the intermolecular environment of the indolyl ring and the relative hydrophobicity/hydrophilicity of that environment.

The results of this work show that the strength of Fermi coupling of $W 7$ is relatively weak for the noninteracting indolyl ring (vapor phase). This results in a relatively large intensity imbalance ($I_{1} / I_{2} \sim 3.0$) between the two components of the Fermi doublet. Upon introducing interactions with hydrophobic molecular neighbors (apolar solvents), the Fermi coupling is strengthened and the doublet components
approach parity of intensity $\left(I_{1} / I_{2} \sim 1\right)$. Further, as the hydrophobicity of the local indolyl ring environment is diminished in favor of hydrophilicity (polar solvents), the strength of Fermi coupling again weakens and the parity of intensity of the doublet components is diminished $\left(I_{1} / I_{2} \sim 0.4\right)$.

Takeuchi and co-workers ${ }^{54}$ have attributed the Fermi coupling to resonance between the $W 7$ in-plane fundamental vibration (mainly $\mathrm{N}^{1}=\mathrm{C}^{8}$ bond stretching) and one or more combination bands due to out-of-plane vibrations. These authors speculate that small changes in the hydrophobic character of the solvent could affect the frequencies of the out-of-plane components and impact the strength of Fermi coupling. While this may explain the solution results, it does not explain the persistence of Fermi coupling in the vapor phase spectrum of 3 MI . The present results show that even in the absence of solvent interactions at the faces of the indolyl plane, Fermi coupling is sufficient to generate a recognizable doublet in the Raman spectrum.

The complexity of Fermi coupling in the $1330-1370 \mathrm{~cm}^{-1}$ region of the indole Raman signature is further complicated by recent data obtained on bacteriorhodopsin ${ }^{71,72}$. A tryptophan residue of this protein generates an apparent $W 7$ triplet ($1370 / 1357 / 1339 \mathrm{~cm}^{-1}$) in lieu of the doublet normally encountered in protein Raman and UVRR spectra. These results suggest the need for additional studies to elucidate the origins of $W 7$ Fermi coupling and factors affecting the intensities of the multiplet components.

CHAPTER VII

CONCLUSIONS

1,3-Benzodioxan has been investigated in both its ground, S_{0}, and excited, $S_{1}\left(\pi, \pi^{*}\right)$, electronic states. A detailed energy map of the vibrational levels involving the six lowest frequency vibrations was established and utilized to better understand the structural and conformational differences between the ground and excited electronic states. The energies of more than a dozen vibrational excited states involving the out-ofplane ring twisting (v_{47}) and the out-of-plane ring bending (v_{48}) modes were determined for both S_{0} and S_{1} electronic states. The data allowed for the calculation of onedimensional potential energy functions. These show the molecule to have a twisting angle of 33° and a barrier to planarity of $4300 \pm 500 \mathrm{~cm}^{-1}$ for the S_{0} ground state and an angle of 24° and a barrier of $1500 \pm 200 \mathrm{~cm}^{-1}$ for the $S_{1}\left(\pi, \pi^{*}\right)$ excited state..

In addition to the work completed on the low-frequency vibrations and conformation energetics, a complete vibrational assignment of 13BZN in its S_{0} ground state and the assignment for a dozen vibrational modes in the $S_{1}\left(\pi, \pi^{*}\right)$ excited state has been completed. The vibrations of the very similar 1,4-benzodioxan have been included with the vibrations of 13 BZN for comparison.

Ab initio and DFT calculations have allowed refinement of a previous vibrational assignment of DPA and CaDPA. Because of extensive intermolecular hydrogen bonding in the crystals of the molecules, the calculated structures and spectra for the individual molecules agree only moderately well with the experimental values. The
spectra do show that DPA and its calcium salt, which are present in anthrax spores, can be distinguished from the very similar DNic and CaDNic .

For the tryptophan side-chain structural model of 3-methylindole, the vapor phase molecule exhibits Raman bands at 3506, 1585, 1409, 1349/1341 (Fermi doublet) and $881 \mathrm{~cm}^{-1}$, which differ greatly from their counterparts in the Raman spectrum of 3MI liquid and thus serve as spectral markers of the indolyl ring environment. The Fermi doublet relative intensity ration $\left(\mathrm{I}_{1} / \mathrm{I}_{2}\right.$, where I_{1} and I_{2} are, respectively, the Raman intensities of the higher and lower wavenumber components of the doublet) is highly sensitive to the state of 3 MI condensation, consistent with the previously reported sensitivity of I_{1} / I_{2} to solvent polarity. The maximum value of the intensity ration $\left(I_{1} / I_{2}=\right.$ $3.0)$ is observed for 3 MI vapor, while the minimum value $\left(\mathrm{I}_{1} / \mathrm{I}_{2}=0.43\right)$ is observed for 3 MI in CHCl_{3} solution. Implication of the present results for Raman analysis of hydrogen bonding states, hydrophilic interaction and hydrophobic interaction of tryptophan residues in proteins have been considered.

REFERENCES

1. J. Laane, K. Haller, S. Sakuri, M. Morris, D. Autrey, Z. Arp, W. Chiang, A. Combs. J. Mol. Struct. 650, 57 (2003).
2. J. Laane in Frontiers of Molecular Spectroscopy, edited by J. Laane,, (Elsevier Publishing, Amsterdam, The Netherlands, 2008) pp. 63-132.
3. J. Laane, J. Phys. Chem. A, 104, 7715 (2000).
4. J. Laane, Intl. Rev. in Phys. Chem., 18, 301 (1999).
5. J. Laane in Structure and Dynamics of Electronic Excited States, edited by J. Laane, H. Takahashi, and A. Bandrauk, (Springer, Berlin, Germany, 1999) pp. 335.
6. J. Laane, Ann. Rev. Phys. Chem., 45, 179 (1994).
7. J. Yang, M. Wagner, and J. Laane, J. Phys. Chem. A, 111, 8429 (2007).
8. J. Yang, M. Wagner, and J. Laane, J. Phys. Chem. A, 110, 9805 (2006).
9. J. Laane, E. Bondoc, S. Sakurai, K. Morris, N. Meinander, and J. Choo, J. Amer. Chem. Soc., 122, 2628 (2000).
10. S. Lebowitz and J. Laane, J. Chem. Phys., 101, 2740 (1994).
11. E. Cortez, R. Verastegui, J. Villareal, and J. Laane, J. Amer. Chem. Soc., 115, 12132 (1993).
12. F. D. Chattaway and H. Irving, J. Chem. Soc., 2492 (1931).
13. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.

Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M.
Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.
Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. AlLaham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.
14. J. Yang and J. Laane, J. Mol. Struct., 798, 27 (2006).
15. J. Laane, Appl. Spectrosc., 24, 73 (1970).
16. J.Yang, Ph.D. Dissertation, Texas A\&M University, 2006.
17. P. Carmona, Spectrochim. Acta A 36705 (1980).
18. S. Udo, J. Agr. Chem. Soc. Japan 12380 (1936).
19. J.F. Powell, R.E. Strange, J. Biochem. 54205 (1953).
20. E. Ghiamati, R. Mancharan, W. H. Nelson, and J.F. Sperry, Appl. Spectros. 46 357 (1992).
21. A.A. Kolomenskii, S.N. Jerebtsov, T. Opatrny, H.A. Schuessler, M.O.Scully, J. Mod. Opt. 502369 (2003).
22. A.A. Kolomenskii, H.A. Schuessler, Spectrochim. Acta A 61647 (2005).
23. H.F. Hameka, J.O. Jensen, J.L Jensen, C.N. Merrow, C.P. Vlahacos, J. Mol. Struct. 365131 (1996).
24. J.R. Xie, V.H. Smith, Jr., R.E. Allen, Chem. Phys. 322254 (2006).
25. F. Takusagawa, K. Hirotsu, A. Shimada, Bull. Chem. Soc. Jpn., 462020 (1973).
26. V.C. Telléz, B.S. Gaytán, S. Bernès, E.G Vergara, Acta Crystallogr. C 58 o228 (2002).
27. G. Strahs, R.E. Dickerson, Acta Crystallogr. B 24571 (1968).
28. F. Takusagawa, K. Hirotsu, A. Shimada, Bull. Chem. Soc. Jpn., 462292 (1973).
29. J.A. Cowan, J.A.K. Howard, G.J. McIntyre, S. M Lo, I.D. Williams, Acta Crystallogr. B 61, 724 (2005).
30. W. Starosta, H. Ptasiewicz-Bąk, J. Leciejewicz, J. Coord. Chem., 551 (2002).
31. W. Starosta, H. Ptasiewicz-Bąk, J. Leciejewicz, J. Coord. Chem., 5633 (2002).
32. D. Autrey, J. Laane, J. Phys. Chem., 105, 6894 (2001).
33. D. Autrey, J. Choo, J. Laane, J. Phys. Chem., 105, 10230 (2001).
34. D. Autrey, Z. Arp, J. Choo, J. Laane, J. Chem. Phys., 1192557 (2003).
35. D. Autrey, J. Yang, J. Laane, J. Mol. Struct., 66123 (2003).
36. D. Autrey, K. Haller, J. Laane, C. Mlynek, H. Hopf, J. Phys. Chem., 108403 (2004).
37. J. Yang, K. McCann, J. Laane, J. Mol. Struct., 695-696 339 (2004).
38. C. Mlynek, H. Hopf, J. Yang, J. Laane, J. Mol. Struct., 742161 (2005).
39. A. Al-Saadi, J. Laane, J. Mol. Struct., 83046 (2007).
40. M. Z. M. Rishard, R. M. Irwin, J. Laane, J. Phys. Chem. A, 111825 (2007).
41. A.A. Al-Saadi and J. Laane, J. Phy. Chem. A, 1113302 (2007).
42. A.A. Al-Saadi and J. Laane, Organometallics, 273435 (2008).
43. L. Wasylina, E. Kucharska, Z. Weglinski, A. Puszko, Chem. Heterocycl. Compd., 35186 (1999).
44. M. Berjot, J. Marx, A.J.P. Alix, J. Raman Spectrosc. 18, 289 (1987)
45. J. Bandekar, Biochim. Biophys. Acta, 1120123 (1992).
46. J.C. Austin, T. Jordan, T.G. Spiro. Biomolecular Spectroscopy, Part A, edited by R.J.H. Clark, R.E. Hester (John Wiley and Sons, New York, 1993) pp 55-127
47. S.U. Sane, S.M. Cramer; T.M. Przybycien Anal.Biochem. 269, 255 (1999)
48. R.C. Lord, N.T. Yu. J.Mol.Biol., 50, 509 (1970).
49. M. N. Siamwiza, R. C Lord, M. C. Chen, T. Takamatsu,. I. Harada, H. Matsuura, T.Shimanouchi, Biochemistry 14, 4870 (1975).
50. T. Miura, H. Takeuchi, I. Harada, Biochemistry 30, 6074 (1991).
51. H. Li, G.J. Thomas,Jr., J.Am.Chem.Soc. 113, 456 (1991).
52. S.W. Raso, P.L. Clark, C. Haase-Pettingell, J. King, G.J. Thomas,Jr., J.Mol.Biol. 307, 899 (2001).
53. Z. Arp, D. Autrey, J.;Laane, S. A. Overman, G. J. Thomas, Jr., Biochemistry 40, 2522 (2001).
54. H. Takeuchi, Biopolymers 72, 305 (2003).
55. T. Miura, Subcell.Biochem. 24, 55 (2003).
56. G. J. Thomas, Jr., Biopolymers 67, 214(2002).
57. J. M. Benevides, S. A. Overman, G. J. Thomas Jr., Current Protocols in Protein Science, edited by J. E. Coligan, B. M. Dunn, H. L. Ploegh, D. W. Speicher, P. T. Wingfield, (2003) p 17.8.1-17.8.35.
58. H. Takeuchi, N. Watanabe, I. Harada, Spectrochim.Acta 44A, 749 (1988).
59. S. A. Overman, K. L. Aubrey, N. S. Vispo, G. Cesareni, G. J. Thomas, Jr. Biochemistry 33, 1037 (1994).
60. S. A. Overman, G. J. Thomas, Jr. Biochemistry 34, 5440 (1995).
61. I. Harada, T. Miura, H. Takeuchi, Spectrochim.Acta 42A, 307 (1986).
62. H. Takeuchi, H. Harada, Spectrochim.Acta 42A, 1069 (1986).
63. T. Miura, H. Takeuchi, I. Harada, Biochemistry 27, 88 (1988).
64. T. Miura, H. Takeuchi, I. Harada, J.Raman Spectrosc. 20, 667 (1989).
65. S. K. Burley, G. A. Petsko, Adv.Protein Chem. 39, 125 (1988).
66. J. P. Gallivan, D. A. Dougherty, Proc.Natl.Acad.Sci.USA 96, 9459 (1999).
67. S. Bunte, G. Jensen, K. McNesby, D. Goodin, C. Chabalowski, R. Nieminen, S. Suhai, K. Jalkanen, Chem. Phys., 26513 (2001).
68. G. Jensen, D. Goodin, S. Bunte, J. Phys. Chem. 100954 (1996).
69. T. G. Spiro, Biological Applications of Raman Spectroscopy. Volume 1: Raman Spectra and the Conformations of Biological Macromolecules, (Wiley Interscience, New York, 1987).
70. S. Hashimoto, K. Obata, H. Takeuchi, R. Needleman, J. K. Lanyi, Biochemistry, 3611583 (1997).
71. S. Hashimoto, K. Obata, H. Takeuchi, R. Needleman, J. K. Lanyi, Biochemistry, 416495 (2002).
72. J. L. Markley, A. Bax, Y. Arata, C. W. Hilbers, R. Kaptein, B. D.;Sykes, P. E. Wright, K. Wuthrich, J.Mol.Biol. 280933 (1998).

VITA

Kathleen Rae McCann received her Bachelor of Science degree in chemistry from Morningside College in Sioux City, Iowa in May of 2000. She entered the Chemistry Department at Texas A\&M University in September of 2001 to begin her graduate studies. In November of that same year, she joined the research group of Dr. Jaan Laane.

Ms. McCann can be reached at the Department of Chemistry, Texas A\&M University, College Station,TX 77843-3255.

[^0]: *Reprinted with permission from "Raman and infrared spectra and theoretical calculations of dipicolinic acid, dinicotinic acid, and their dianions" by Kathleen McCann and Jaan Laane, 2008. Journal of Molecular Structure, 890, 346-358, Copyright 2008 by Elsevier.

[^1]: ${ }^{\mathrm{a}}$ Abbreviations: s - strong , m - medium , w - weak , v - very, br - broad, sh - shoulder.
 ${ }^{\mathrm{b}}$ Values in parentheses are relative intensities.
 ${ }^{c}$ Values from ref. [18].
 ${ }^{\mathrm{d}}$ Scaled frequencies, values in parentheses are relative IR and Raman intensities, respectively.
 ${ }^{\mathrm{e}}$ Frequencies in parentheses have been used more than once.

[^2]: *Reprinted with permission from "Raman signature of the non-hydrogen-bonded tryptophan side chain in proteins: experimental and ab initio spectra of 3-methylindole in the gas phase" by Amanda Combs, Kathleen McCann, Daniel Autrey, Jaan Laane, Stacy A. Overman, and George J. Thomas, Jr., 2005. Journal of Molecular Structure, 735-736, 271-278, Copyright 2005 by Elsevier.

[^3]: a) Relative Raman and IR intensities, respectively

