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ABSTRACT 

 

Post-fire Tree Establishment Patterns at the Subalpine Forest-Alpine Tundra Ecotone:  A 

Case Study in Mount Rainier National Park. (August 2009) 

Kirk M. Stueve, B.A., Minnesota State University Moorhead; 

M.A., University of Southern California 

Chair of Advisory Committee:   Dr. Andrew C. Millington 

 

 Climatic changes have induced striking altitudinal and latitudinal vegetation 

shifts throughout history. These shifts will almost certainly recur in the future; 

threatening other flora and fauna, and influencing climate feedback loops. Changes in 

the spatial distribution of vegetation are most conspicuous at physiognomically distinct 

ecotones, particularly between the subalpine forest and alpine tundra. Traditionally, 

ecological research has linked abiotic variables with the position of this ecotone (e.g., 

cold temperatures inhibit tree survival at high elevations). Thus, the prevailing 

assumption states that this ecotone is in equilibrium or quasi-equilibrium with the 

surrounding physical environment and that any dynamic shifts express direct linkages 

with the physical environment.  

 This dissertation employs a landscape ecology approach to examine the abiotic 

and biotic ecological mechanisms most important in controlling tree establishment at this 

ecotone. The study site is on the western slopes of Mount Rainier, which was severely 

burned by a slash fire in 1930. Therefore, a crucial underlying assumption is that the 
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ecological mechanisms controlling tree establishment are similar at disturbed and 

undisturbed sites. I exploited the use of 1970 CORONA satellite imagery and 2003 

aerial photography to map 33 years of changes in arboreal vegetation. I created detailed 

maps of abiotic variables from a LIDAR-based DEM and biotic variables from classified 

remotely sensed data. I linked tree establishment patterns with abiotic and biotic 

variables in a GIS, and analyzed the correlations with standard logistic regression and 

logistic regression in the hierarchical partitioning framework at multiple spatial 

resolutions. 

 A biotic factor (proximity to previously existing trees) was found to exert a 

strong influence on tree establishment patterns; equaling and in most cases exceeding the 

significance of the abiotic factors. The abiotic setting was more important at restricted 

spatial extents near the extreme upper limits of the ecotone and when analyzing coarse 

resolution data, but even in these cases proximity to existing trees remained significant. 

The strong overall influence of proximity to existing trees on patterns of tree 

establishment is unequivocal. If the underlying assumption of this dissertation is true, it 

challenges the long-held ecological assumption that vegetation in mountainous terrain is 

in equilibrium with and most strongly influenced by the surrounding physical 

environment.  
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CHAPTER I 

INTRODUCTION 

 

Vegetation is dynamic and constantly changing, responding to its surrounding 

abiotic and biotic environment at multiple temporal and spatial scales. Indeed, striking 

altitudinal and latitudinal shifts in vegetation have been found to occur throughout the 

past during periods of climatic warming and cooling. The beginning stages of these 

shifts are most obvious at ecotones, particularly in mountainous landscapes where the 

distinct altitudinal zonation of vegetation creates sharp boundaries between subalpine 

forest and alpine tundra (von Humboldt 1807; Troll 1973b). Within the last 10,000 

years, this ecotone has been anywhere from 5-400 m higher throughout much of the 

northern hemisphere (Lloyd &Graumlich 1997; Pisaric et al. 2003; Kullman &Kjällgren 

2006) and it will probably shift again in the future. These shifts may exert pressure on 

existing flora and fauna, potentially serve as an indicator of climate change, and 

influence climate feedback loops (Körner 1998; Renssen et al. 2005).  

My aim is to use remote sensing and GIS techniques, within a landscape ecology 

framework, to explain spatial patterns of arboreal vegetation at the subalpine forest-

alpine tundra ecotone in Mount Rainier National Park. I also consider spatial scale, 

statistical techniques, and hierarchical ecological processes in explaining these patterns. 

In doing so, I address research questions pertinent to both treeline ecology and landscape  

____________ 
This dissertation follows the style of Journal of Vegetation Science. 
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ecology. The majority of past studies have been conducted at fine spatial scales with 

exhaustive fieldwork, or at broad spatial scales with restricted data sets (e.g., 30-m 

USGS DEM and aerial photography). Here, I utilize the broader perspective of a 

geographer to bridge the divide between the fine- and broad-scale studies in order to 

improve explanations of tree establishment at this ecotone.  

 

1.1 Ecotones 

 

Frederick Clements first developed the ecotone concept in 1897 and Burton 

Livingston refers to it several years later in 1903. Shortly thereafter, Clements (1905) 

described the ecotone to be a stress line or tension zone connecting points of change 

between disparate ecological communities. By 1933, Aldo Leopold had identified 

unique species-response curves at ecotones and proclaimed this phenomenon to be the 

edge effect. Eugene Odum (1959) described ecotones as tension belts between two or 

more diverse communities where the number and density of species is often greater than 

the surrounding area. Ecological transition zones continued to garner attention from 

prominent ecologists throughout the remainder of the twentieth century (Harris 1988) 

and persist as a topic of paramount ecological importance to the present day (Beckage et 

al. 2008).  

The primary impetus for much of the past research concerning ecotones relied on 

the supposition that useful ecological insights might be gained from studying pattern and 

process at the periphery of adjacent ecological communities (Walker et al. 2003). That is 
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to say, distinct physiognomic differences between plant communities at ecotones 

facilitate the ability of biogeographers and ecologists to observe and analyze ecological 

interactions. The aforementioned rationale is the primary catalyst for the research 

addressed in this dissertation. 

 

1.1.1 Terminology and dominant paradigms  

 

Ecological definitions are inevitably controversial topics subject to influences 

from prevailing conceptual models for specific periods of time and ecotones are no 

exception. With his organismic view of vegetation, Clements (1905) clearly interpreted 

ecotones to be rather simple and abrupt boundaries demarcating different communities 

of large-scale vegetative units. Boundaries between different biomes often exhibit higher 

species composition (compared to the neighboring biomes) because they contain species 

from both neighboring plant communities (Odum 1971); providing a classic example of 

Clements’ perspective. It should be noted that he also recognized the potential of the 

underlying influence of physical gradients and may, or may not, have appreciated the 

existence of ecotones across multiple scales (Yarrow & Marin 2007). Conversely, other 

ecologists philosophically aligned with Henry Gleason’s (1926) individualistic concept 

of vegetation rejected Clement’s conceptualization of ecotones. Many of these scholars 

championed more of an appreciation for the varied distribution of species along 

environmental gradients, which seemed especially pronounced at ecotones (e.g., 
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Whittaker 1956). Some even boldly proclaimed transitional areas exhibiting rapid and 

large-scale shifts in community types to be ecoclines (Yarrow & Marin 2007).  

Mountainous regions with varying slope angles, slope aspects, and particularly 

elevations often produced these so-called ecoclines (Jenik 1992). In the mid-twentieth 

century, Carl Troll (1939) successfully highlighted the ecological and scientific 

importance of this altitudinal zonation and he originally suggested that the 

environmental lapse rate (e.g., temperature decrease with increasing elevation) is largely 

responsible for generating different belts of vegetation in mountains. Later, Troll (1973a; 

1973b) was drawn to the transitional area between the subalpine forest and alpine tundra; 

where he carried on a Gleasonian appreciation for the influences other environmental 

factors (e.g., topographic variability and snowpack) have in dictating patterns at 

ecoclines.  

A broader perspective of ecotones began to emerge in the 1980's and 1990's 

when landscape ecology coalesced into a solid body of theory and applications (Forman 

1995). Landscape ecology offered more of an appreciation of spatial scale and produced 

the key conceptual model of the patch-corridor-matrix (Forman 1995). This conceptual 

framework is largely considerate of both the Clementsian and Gleasonian interpretations 

of ecotones, depending upon the spatial scale of analysis. For example, an ecotone may 

appear very abrupt when considering a mapped spatial extent of several million hectares 

(e.g., similar to the view of Clements), but patterns of fine-scale patches influenced by 

steep environmental gradients begin to surface at smaller spatial extents of several 

thousand hectares or less (e.g., similar to the view of Gleason). 
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This dissertation employs the use of a landscape ecology perspective. At a broad 

spatial scale, I use Clements’ theory to conceptualize and define the spatial extent of the 

study site in somewhat simplistic terms (e.g., for broadly identifying the boundary 

separating two distinct ecological communities). Conversely, Gleason’s individualistic 

theory is the underlying foundation behind much of the analysis, which considers both 

fine and coarse spatial resolutions across a large spatial extent. Here, the focus remains 

on how spatially heterogeneous abiotic and biotic local site conditions influence the 

physiognomic structure of the ecotone.   

 

1.1.2 Scientific importance 

 

Historically, ecotones have been largely viewed from the two opposing 

perspectives:  (1) a recurring problem or hindrance in defining the outer limits of 

particular ecological communities and in conducting objective research (e.g., plots must 

be carefully selected to avoid the likelihood of fluctuating species composition near 

ecotones); (2) unique ecological units worthy of being studied independently from 

traditional communities (Yarrow & Marin 2007). Since Clements first described the 

ecotone concept (1897), many ecologists have followed the former perspective (e.g., 

Watt & Jones 1948; Gedalof, & Smith 2001; Cripps & Eddington 2005), though some 

scholars have focused their research efforts on the latter (e.g., Lauer & Klaus 1975; 

Churkina & Svirezhev 1995; Hattenschwiler & Smith 1999; Oksanen & Minchin 2002) 

(Kark & van Rensburg 2006). In some extreme instances, several ecologists that 
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published their work in the preeminent journal Ecology (e.g., Driscoll 1964; Allan et al. 

1973) recommended intentionally avoiding ecotones altogether when conducting 

research in order to eliminate potential confusion when interpreting and extrapolating the 

results (Yarrow & Marin 2007). Consequently, ecotones (as opposed to relatively 

homogenous plant communities) have received considerably less attention from 

ecologists over the last 100 years than would have otherwise been possible. 

Nevertheless, ecotones began to receive increased attention from both 

geographers and ecologists by the end of the twentieth century and beginning of the 

twenty first century (e.g., Kulllman 1997; Malanson 1997; MacDonald et al. 1998; 

Cairns 2001; Smith et al. 2003; Cairns 2004; Brodersen et al. 2006; Dutoit et al. 2007); 

especially in terms of climate change (Walther 2003), ideal places to explain how one 

functional group supplants another (Stueve et al. 2009), biodiversity hotspots that 

warrant careful consideration (Yarrow & Marin 2007), and suitable locations to 

otherwise test ecological theory (e.g., explain biodiversity, species coexistence, etc) 

(Wilson & Agnew 1992). At present, it has been suggested that additional research is 

required to satisfactorily explain how ecotones change over space and time, particularly 

at the subalpine forest-alpine tundra boundary (Holtmeier & Broll 2005).  

 

1.1.3 Subalpine forest-alpine tundra ecotone 

 

The subalpine forest-alpine tundra ecotone (treeline) is a unique transitional area 

separating closed-canopy forests and open alpine tundra in mountainous regions 
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(Hansen-Bristow et al. 1988). In general, this boundary occupies widely variable 

altitudes in all of the continents, except Antarctica (Figure 1-1), and exhibits an inverse 

relationship with latitude (Körner 1998) (Figure 1-2). In terms of the latter, there are 

noteworthy exceptions of tropical areas in the northern hemisphere and areas with humid 

temperate climates near oceans. In the tropics, abundant precipitation and cloud cover 

apparently causes the boundary to be slightly depressed compared to neighboring 

subtropical locations (Körner 1998). In humid temperate climates, heavy precipitation 

(particularly snow) probably depressed this boundary below what would be expected 

with latitudinal trends (Malanson et al. 2007). Local treeline elevations also have a 

tendency to deviate from these broad global trends (Holtmeier & Broll 2005).  

Treeline has received considerable attention from scholars across the globe since 

the early twentieth century; posited to be primarily controlled by temperature and exist 

in equilibrium or quasi-equilibrium with the surrounding physical environment (e.g., 

Zotov 1938; Daubenmire 1954; Brown 1994b) (Table 1-1). The traditional hypothesis 

suggests cold temperatures and shortened growing seasons at high elevations hinder the 

survival of arboreal vegetation and favor the development of meadows (e.g., equilibrium 

with elevation) (Körner 1998). More recently, the treeline has been widely studied in 

terms of being a potential monitoring zone for the effects of climate change on 

vegetation (e.g., Noble 1993; Kupfer & Cairns 1996; Camarero & Gutierrez 2004; 

Walther 2003). However, some scholars remain cautious and suggest that the overriding 
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Figure 1-2:  A graph modeled after figure 1 in Körner’s 1998 paper. The solid line 
depicts treeline elevations at various latitudes. 

 

influence of local site conditions and variable responses of different species to 

temperature fluctuations may produce complex nonlinear relationships between treeline 

elevations and climate change (Holtmeier & Broll 2005; Malanson et al. 2007). 

Assumptions of equilibrium with the surrounding physical environment still prevail, 

albeit with the addition of other topographic variables such as slope aspect and slope 

angle (e.g., Brown 1994b). If the treeline is to be used for monitoring climate change, 

additional research is necessary to explain the influence of local site conditions and 

synthesize a better climatic context (Holtmeier & Broll 2005). 

Because the physiognomic characteristics of the treeline are widely variable at 

regional and local scales, defining the uppermost and lowermost borders of this 

boundary or an exact ‘line’ has been difficult and has often resulted in conflicting 
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descriptions (Holtmeier 2003). A leading authority in this area (Holtmeier 2003) has 

classified the various descriptions of this boundary into four broad types:  (1) an abrupt 

closed forest limit directly adjacent to alpine tundra; (2) a transitional zone spanning 

closed forest, patchy forest, and alpine tundra; (3) a transitional zone spanning closed 

forest, krummholz (a German term for short, crooked trees), and alpine tundra; and (4) a 

gradual transition across closed forest, stunted and/or crooked trees of the same species 

(also known as krummholz), and alpine tundra. Orographic (e.g., steep rock walls, talus 

cones, avalanche chutes, and slope debris), anthropogenic (e.g., timber, harvesting, 

grazing, etc), and other disturbance related influences may also produce uniquely shaped 

treeline boundaries that are depressed below their potential elevation limits and don’t fit 

well into Holtmeier’s classifications (Vale 1987; Butler et al. 2007).  

To complicate matters further, a multitude of conflicting nomenclature such as 

the alpine treeline ecotone, timberline, treeline, forest line, tree limit, upper tree limit, 

and subalpine parkland have been used to describe the many different types of subalpine 

forest-alpine tundra boundaries that exist across the globe (Kullman 1993; Körner 1998; 

Germino et al. 2002). No consistent definition exists.  Thus, in order to avoid more 

confusion, explicit definitions are necessary when making contributions to the peer-

reviewed literature (Körner 1998). 

For the purposes of this dissertation, the subalpine forest-alpine tundra transition 

zone is referred to as treeline and/or the subalpine parkland, and liberally defined as the 

area encompassed by two limiting boundaries. The lower boundary is the uppermost  
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Country Location ~Treeline 
Altitude (m) Year Author(s) 

     

Australia Snowy Mountains 2040 1976 Slatyer 
Australia Snowy Mountains 1780-1840 1993 Egerton & Wilson 
Australia Snowy Mountains 1830 1993 Wilson 

     
Austria Blaseneck Mountain 1800 1999 Gindl 

Austria Northern Calcareous 
Alps 1750-1900 2003a 

Dullinger, 
Dirnböck, & 

Grabherr 
Austria Mount Patscherkofel 2180 2004 Oberhuber 

     

Canada Rocky Mountains 
(Mount Forbes) 2100 1899 Wilcox 

Canada Canadian Rockies 
(Mount Kitchi) 1798 1915 Jobe 

Canada Upper Firth River  762 1965 Drew & Shanks 

Canada Stoyoma Mountain 1950 2000 
Pellatt, Smith, 

Mathewes, 
Walker, & Palmer 

Canada Canadian Rockies NA 2000 Luckmann & 
Kavanagh 

     

Chile Puyehue National 
Park 1150-1350* 1977 

Veblen, Ashton, 
Sschlegel, & 

Veblen 

Chile Puyehue National 
Park NA 1979 Veblen 

Chile Balseiro Mountain 690 2002 Cuevas 
     

China 
Mount Khawa Karpo 

& Baima Snow 
Mountain 

4300 2007 Baker & Moseley 

China Balang Mountain 3650-3750 2006 Shi, Körner, & 
Hoch 

 

Table 1-1:  Published research conducted at the boundary between the subalpine 
forest and alpine tundra along with approximate corresponding altitudes. Use the 
listed altitudes with caution because of numerous conflicting treeline definitions used 
by ecologists. The list is not comprehensive but, rather, captures a snapshot of the 
breadth and history of treeline studies or observations. * indicates sites that were 
clearly influenced by disturbance and NA indicates that no treeline elevation was 
reported. 
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Table 1-1, continued. 
 

Country Location ~Treeline 
Altitude (m) Year Author(s) 

     

France North French Alps 2200-2300 1996 Carcaillet & 
Thinon 

     
Germany Black Forest 1200 2006 Lang 

     
India Central Himalayans  3300 1994 Garkoti & Singh 

     
Japan Japanese Alps 2450 2004 Gansert 

     
Mexico Pico de Orizaba 3990 1975 Lauer & Klaus 

     

New Zealand Multiple Sites Across 
New Zealand 600-1480 1992 Wardle & 

Coleman 
     

Norway Central Scandes  1000 1997 Hofgaard 
     

Pakistan  Himalayas NA* 1995 Schickhoff 
     

Russia Polar Ural Mountains 350 2005 Mazepa 
     

South Africa Döhne & Campagna 
Farms 830 1995 O’Conner 

     

Spain Tenerife of the 
Canary Islands 2100 1978 Höllermann 

Spain Spanish Pyrenees 2300 2004 Camarero & 
Gutiérrez 

     
Sweden Swedish Scandes 830 1987 Kullman 

     

United States Rocky Mountains in 
Colorado 3350 1872 Greene 

United States Northern Rocky 
Mountains Colorado 2590-3292* 1938 Griggs 

United States Sierra Nevada 
Mountains  3048-3353 1965 Clausen 

United States Brooks Range 760 1986 Cooper 

United States San Juan Mountains 3600 1991 Carrara, Trimble, 
& Rubin 

United States Medicine Bow 
Mountains 3300 2002 Hiemstra, Liston, 

& Reiners 
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altitudinal limit of closed canopy subalpine forests and the upper boundary is the 

uppermost altitudinal limit of arboreal vegetation (including krummholz). The horizontal 

linear distance spanning across the boundary may be only several meters or several 

hundred meters, depending upon the type of boundary being studied (i.e., Holtmeier’s 

different classifications). The term subalpine parkland is invoked in some sections 

because many plant ecologists and biogeographers from the Pacific Northwest use and 

prefer that term. 

 

1.1.4 Disturbance in the subalpine forest 

 

Upper portions of the subalpine forest that comprise the lower part of treeline 

experience a multitude of disturbance events at various frequencies (Cullen et al. 2001). 

Of particular interest, are severe disturbances of a large magnitude and low frequency 

that denude the landscape of arboreal vegetation and effectively depress treeline to lower 

elevations, often necessitating the passing of decades or centuries for treeline to recover 

to its original altitudinal position (Peet 1981; Shankman & Daly 1988). These 

disturbances can drastically change the physiognomic appearance of a landscape and 

confound descriptions and definitions of treeline (Stueve et al. 2009). Indeed, they may 

also rival or exceed the importance of climate in dictating the altitudinal position of 

treelines (Peet 1981). 

Stand-destroying fires are the most common large magnitude and low frequency 

disturbance capable of changing the altitudinal position of treeline at a large spatial 
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extent, and depressing treeline altitudes several hundreds of meters or more (Peet 1981; 

Hemstrom & Franklin 1982). The upper reaches of the subalpine forest provide adequate 

fuel to generate a strong fire sometimes capable of spreading throughout treeline 

(Hemstrom & Frankling 1982). A significant large-scale event like this often removes 

viable seed sources from the highest elevations and makes post-fire reestablishment of 

trees a painfully slow and arduous process. This is because in order to have successful 

tree establishment in the denuded areas at higher elevations, viable seed must be 

simultaneously propelled distally beyond mature trees and upslope from mature trees 

surviving at lower elevations (Shankman 1984).  

Some of these fires are caused naturally by lightning strikes, but anthropogenic 

fires (e.g., slash fire) are quite common as well (Peet 1981; Stueve et al. 2009). Stand-

destroying treeline fires have been documented across the globe in places like the Rocky 

Mountains (Peet 1981) and Cascade Range (Stueve et al. 2009) of North America, the 

Spanish Central Pyrenees (Camarero et al. 2000) and Swiss Alps of Europe (Tinner et al. 

1996), and the Andes of South America (Young & León 2007). Lack of fuel buildup at 

high elevations often limits the recurrence interval of these fires to 100 years or more, 

but once fuels reach a sufficient level the intensity of the fire can be quite severe and 

drastically modify the landscape for decades or centuries (Shankman 1984). 

The relatively high prevalence of fires in the upper subalpine forest and treeline 

area has resulted in some scholars arguing that many treelines may never reach their true 

climatic limit (Peet 1981; Agee & Smith 1984). This rationale is based on the premise of 

slow treeline recovery times (e.g., challenges of dispersing seed upslope and shortened 
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growing seasons at high elevations) and the likelihood that another fire disturbance will 

occur before treeline recovers to its original altitudinal position. Thus, many treelines 

may be in a perpetual state of recovery, constantly vying to reach their climatic limit 

before being subjected to another disturbance event, or experiencing an episode of 

climatic cooling that stymies reproduction. Many cases of treeline inertia or stability, 

which appear to be limited climatically, may actually result from orographic effects that 

prevent successful establishment at higher elevations. Climate remains important in the 

sense that favorable climatic conditions allow post-disturbance tree recovery to continue 

at a rapid rate. 

Additional disturbances may influence treeline positions at more localized spatial 

extents, interacting with fire to produce peculiar patterns of arboreal vegetation in 

treeline landscapes. Insect infestations, avalanches, herbivory, landslides, rockslides, and 

lahars can suppress establishment and/or denude localized treeline areas of existing trees 

(Hemstrom & Franklin 1982; Brown 1994b; Walsh et al. 1994; Cairns & Moen 2004). 

However, in most cases, these events contribute to local treeline variability and fire tends 

to exert the most widespread influence on treeline positions (Hemstrom & Franklin 

1982).  

 

1.2 Study site 

 

The Pacific Northwest encompasses all of Washington, Oregon, Idaho, and a 

large part of British Columbia. It also includes nearby areas in Montana, Alaska, 
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California, and the Yukon Territory (Figure 1-3). The Coast Mountains, Cascade Range, 

Olympic Mountains, Columbia Mountains, and Rocky Mountains are all prominent 

physiographic features in the region. Some of the highest peaks surpass 4,000 m a.s.l. in 

elevation. Substantial altitudinal zonation associated with the mountains, and orographic 

influences on incoming moisture from the Pacific Ocean have generated distinct 

ecosystems. Dense old growth forest persists at low elevations (below ~1500 m a.s.l.) 

before grading to a patchy mosaic of tree clumps and alpine tundra at high elevations 

(above ~ 2200 m a.s.l.). The subalpine parkland (i.e., treeline) zone (~1500-2200 m 

a.s.l.) is unusually broad as well, often spanning across an elevation gradient of several 

hundred meters or more (Franklin & Dyrness 1988). The region also experiences 

abnormally heavy snowfall and holds the world record for the most snowfall in a year 

(2895.6 cm at Mount Baker) (Redmond 2000). Heavy yearly snowfall often is thought to 

play a critical role in suppressing the treeline on the windward sides of mountains in the 

area (Henderson 1974). A number of studies of the treeline in this region have been 

conducted over the last several decades (e.g., Henderson 1974; Agee & Smith 1984; 

Franklin & Dyrness 1988; Rochefort & Pedersen 1996; Stueve et al. 2009). Mount 

Rainier National Park is the focus of this dissertation. 

 Mount Rainier (4392 m) is a well-known and active volcano that dominates the 

landscape in Mount Rainier National Park. The park is positioned approximately 100 km 

southeast of Seattle, WA on the western slope of the Cascade Range (Figure 1-4). It 

comprises 95,356 ha of land ranging between old-growth forests at low elevations 

(~500-1500 m a.s.l.), treeline communities at high elevations (~1500-2200 m a.s.l.),  
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Figure 1-3:  Regional perspective of the study area (Source:  ESRI provided access to 
the map base layers). 
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alpine tundra immediately above, and the barren alpine landscape at the uppermost 

elevations (Rochefort & Peterson 1996). The alpine zone contains the largest area of 

glaciers in the continental United States, which nourish nine major rivers throughout the 

park with seasonal runoff. The aerial extent of the study area is defined by the northeast 

Mount Wow DOQQ on the western slope of Mount Rainier (Figure 1-4), which 

encompasses several hundred hectares of treeline. At this site, a 1930 fire severely 

burned extensive areas of high-elevation subalpine forest ranging approximately from 

1500 to 1800 m a.s.l. in the vicinity of the North Puyallup River; effectively depressing 

treeline (Hemstrom & Franklin 1982). The burn arched up over a large ridge emanating 

from Mount Rainier and remnants of burned boles are still evident (Figures 1-5 & 1-6). 

Exploratory observations of 1970 satellite images and 2003 aerial photography indicated 

a substantial upward shift of treeline after the fire that would be suitable for addressing 

research questions with a combined landscape ecology, remote sensing, and GIS 

approach. Remnants of burned boles observed in the field and quantified on the 2003 

aerial photography helped identify approximate historical treeline boundaries (Figure 1-

5). Field observations in the fall of 2006 indicated there were no other potentially 

confounding disturbances that occurred in the study area. 

The burned area includes numerous spurs that dissect broad south- and west-

facing slopes containing complex microtopography, which can influence establishment 

patterns (Brown 1994a; Brown 1994b; Rochefort & Peterson 1996). Abies lasiocarpa is 

the most prevalent arboreal species. This species is a common invader after fires in 

treeline ecotones, with a preference for mildly xeric sites that are topographically 
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sheltered (Shearer 1984; Miller & Halpern 1998). Wind- driven seed dispersal may carry 

seeds up to 80 meters beyond sexually mature trees (≥20 years old) (Noble & Ronco 

1978). Pinus albicaulis, Tsuga mertensiana, and Chamaecyparis nootkatensis are also 

present, but much less abundant.  

 

 
Figure 1-4:  The park and study area as depicted by a modified September 2000 Landsat 
ETM+ satellite image from the University of Maryland Global Landcover Facility and a 
shaded 10 m USGS DEM. Digital image processing and manipulation of the data clearly 
highlights a series of distinct ecological zones. These zones span from the old montane 
forests at low elevations, subalpine meadows at middle elevations, and alpine tundra, 
snow, and ice at high elevations. This offers a classic example of altitudinal zonation of 
vegetation in mountainous locations. 
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1.2.1 Geology and topography 

 

Mount Rainier is a nearly symmetrical stratovolcano with two craters at its 

summit. Deep valleys and many steep ridges consisting of Pleistocene and Holocene 

andesite scoured by glaciers dominate the landscape near the volcano (Figure 1-7).  

Topographic relief between the valleys and adjacent ridges often approaches 1000 m in 

these areas. Along with remnants of glacial drift (Crandell 1969); this has created  

 

 

Figure 1-6:  A portion of the ridge burned in 1930 that was photographed during 
fieldwork in September of 2006. The treeline and additional descriptive terms are 
identified in the image. Also, note the burned boles persisting on the ridge and 
throughout the subalpine forest in the foreground. These are the remnants of trees from 
the 1930 fire. 
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complex topographic features with widely variable microclimates that often influence 

patterns of treelines (Rochefort & Peterson 1996). Tertiary formations (e.g., Miocene 

and Oligoscene) are more frequent farther out from the volcano (Figure 1-7). They 

include several major geologic formations such as the Fifes Peak (andesite), 

Ohanapecosh (sandstone and breccias), and Steven's Ridge Formations (ash-flow tuffs)  

 

 
 

 
Figure 1-7:  Major geologic formations in Mount Rainier National Park (Source:  
Washington State Department of Resources geology data). Fine-scale formations that 
would be difficult or impossible to detect on the map were intentionally excluded from 
the display. Most of the formations originate from sporadic periods of intense volcanic 
activity. 
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(Crandell 1969). A further prominent geologic stratum is the coarse-grained 

Granodiorite (approximately 12 million years old), which outcrops in the northwest, 

southeast, and northeast portions of the park (Fiske et al. 1963). 

 

1.2.2 Climate  

 

Climate in the region can best be characterized as humid temperate, with the 

majority of seasonal precipitation falling as snow or rain during cool winters (Bailey 

1995) (Figure 1-8). Summers are often comparatively dry with warm temperatures 

(Hemstrom & Franklin 1982). Prevailing southwesterly winds create a pronounced 

orographic effect, resulting in heavy annual snowfall of 1000-2000 cm per year on the 

western slope of Mount Rainier (Hemstrom & Franklin 1982; Bailey 1995). The 

precipitation differential caused by the orographic effect is significant and influences the 

distribution of plant communities, but it is not as severe as the climatic changes between 

the west and east slope of the Cascade Range (Hemstrom & Franklin 1982).  

Data from the Longmire weather station (elevation 842 m; Figure 1-4) (1978-

2006) indicate average monthly temperature ranged from -0.3 °C in December to 16.0 

°C in August, average annual precipitation (rain and melted snow) was 201.4 cm, and 

average annual snowfall was 344.2 cm. Snowpack may persist well into August on the 

western slopes, shortening the growing season to less than 100 days (Greene & Klopsch 

1985) and contributing to relatively depressed treeline elevations (~1500 m a.s.l.) 
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compared to the eastern slopes (~2200 m a.s.l.) and other western USA treelines (~ 2200 

m a.s.l. or higher) (Taylor 1922; Butler et al. 1994; Rochefort et al. 1994). 

 

1.2.3 Soils 

 

 The parent materials of most soils in the park is the solid particulate matter 

ejected during volcanic eruptions from Mount Rainier or other surrounding volcanoes 

(e.g., tephra) and loose accumulations of materials at the base of hills from avalanche 

debris, talus piles, gravitational forces, and frost action (e.g., talus) (Hobson 1976). Little 

published data and no maps are available concerning specific soil types at fine scales. 

According to Thornburgh (1967), the most common soils in the southwestern vicinity of 

the park (near the study area) are brownish-colored podzols that are deep, well-drained, 

and coarsely textured. Some of these soils gradually grade into lithosols on the steeper 

slopes (Hemstrom 1979). 

 

1.2.4 Flora 

 

To date, over 890 species of vascular plants and 260 species of non-vascular 

plants have been documented in the park (National Park Service 2008). At least 149 

exotic plant species also occupy riparian and travel corridors mostly below 1500 m a.s.l.. 

However, the focus here will be on the arboreal and herbaceous vegetation, particularly 

in the treeline ecotone.  
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Figure 1-8:  Climograph based on climate data (1978-2006) from the Longmire weather 
station (842 m a.s.l.) in the southwestern portion of the park. 
 

The park contains precious remnants of old-growth coniferous forests (200-1000 

years old) at low elevations (~500-1500 m a.s.l.) that used to occupy much of the Pacific 

Northwest (Kondratieff & Lechleitner 2002). These forests are mostly comprised of 

Tsuga heterophylfa and Abies arnabilis with the former being the dominant climax 

species up to about 900 m a.s.l. before slowly ceding to the latter (Hemstrom & Franklin 

1982). Conifers that include Abies lasiocarpa (Figure 1-9), Chamaecyparis nootkatensis 

(Figure 1-10), and Tsuga mertensiana dominate the treeline (~1500 m a.s.l.) on the 

mesic western slopes of Mount Rainier. Abies lasiocarpa persists in extreme 

environments in the upper portions of the treeline either as upright or krummholz forms 

(Figure 1-11). Picea engelmannii and Pinus albicaulis (Figure 1-12) are most prevalent 

in the treeline (~2200 m a.s.l.) on the xeric eastern slopes (Rochefort & Peterson 1996). 
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Additional commonly found trees include Abies procera, Pseudotsuga menziesii, P. 

monticola, and Thuja plicata. Almost continuous pulses of increased tree establishment 

in the treeline have been documented in the western half of the park during periods of 

warm, dry summers (Franklin et al. 1971). Conversely, cool and wet summers have 

stimulated more discrete periods of tree establishment in these areas throughout the 

eastern half of the park (Rochefort & Peterson 1996). 

 Meadows in the treeline and alpine tundra are dominated by five major 

vegetation types including heath-shrub (e.g., Cassiope mertensiana  and Phyllodoce 

empetriformis), lush herbaceous vegetation (e.g., Valeriana sitchensis and Veratrum 

viride), low herbaceous vegetation (e.g., Antennaria lanata and Potentilla flabellifolia), 

wet sedgeland (e.g., Aster alpigenus and Carex nigricans), and dry grassland (e.g., 

Festuca viridula and Lupinus latifolius) (Henderson 1974; Rochefort & Peterson 1996). 

Dry grassland vegetation is more common in the rain shadow on the eastern slopes of 

Mount Rainier and on exposed south-facing slopes than on the western slopes of Mount 

Rainier and sheltered north-facing slopes. 

 

1.2.5 Subalpine parkland 

 

The subalpine parkland is a distinctive feature of the Pacific Northwest and 

rarely found in other parts of the globe (Rochefort & Peterson 1996) (e.g., it does not fit 

well into any of Holtmeier’s four treeline classifications). It is a remarkably wide 

treeline separating the subalpine forest and alpine tundra (Franknlin & Dyrness 1988).  
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Figure 1-9:  Abies lasiocarpa (subalpine fir) photographed at the study site during 
fieldwork in September of 2006. Subalpine fir is the most abundant tree species at the 
study site. 
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Figure 1-10:  Chamaecyparis nootkatensis (Alaska yellow cedar) photographed at the 
study site during fieldwork in September of 2006 (foreground). Abundance of Alaska 
yellow cedar is quite low at the study site.   
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Figure 1-11:  A patch of Abies lasiocarpa (subalpine fir) in its krummholz form 
photographed during fieldwork in September of 2006.  
 
 

 
 
Figure 1-12:  A small cluster of Pinus albicaulis (whitebark pine) photographed at the 
study site during fieldwork in September of 2006. Whitebark pine is more pervasive on 
the eastern slope of Mount Rainier and not common at the study site. 
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The subalpine parkland is characterized by a mosaic of tree clusters interspersed with 

patches of dense herbaceous vegetation and often extends over an elevational gradient 

of300-400 m. Closed canopy forests comprise the lower boundary of this zone. Scattered 

upright arboreal vegetation or krummholz commonly demarcate the upper boundary. 

The patchy structure of the subalpine parkland is thought to be primarily maintained by 

the depth and duration of snowpack (Henderson 1974; Franklin & Dyrness 1988). The 

meadows of the subalpine parkland exhibit a particularly colorful display when they are 

in bloom and remain as a key attraction for park visitors. Treeline is used in lieu of 

subalpine parkland throughout this dissertation (except of special sections in Chapter II 

devoted to the subalpine parkland), but most plant ecologists and biogeographers from 

the Pacific Northwest prefer the use of subalpine parkland. 

 

1.2.6 Disturbance 

 

Fire is the predominant agent of disturbance in the park, having affected over 

90% of the existing tree stands, including those at treeline (Hemstrom & Franklin 1982). 

Consequentially, this has created a patchy mosaic of forest with dissimilar stand ages, 

different successional stages, and a relatively rich species composition. The oldest stands 

in the park tend to occur at topographically sheltered locations below the treeline, on 

alluvial terraces, or in valley bottoms. Some of the youngest and most frequently 

replaced stands occur within or adjacent to the treeline (Hemstrom & Franklin 1982). 

Similar to other U.S. national parks, decades of fire suppression in the twentieth century 
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have impeded the ~100-year recurrence interval for major fires and contributed to lush 

understory growth (Hemstrom & Franklin 1982). However, this practice has not been as 

detrimental to forest structure and species composition, as might be anticipated, because 

copious amounts of rain and snow contributed to dense understory growth well before 

the implementation of fire suppression strategies (Hemstrom & Franklin 1982). 

Nevertheless, fire is thought to play an important supplemental role in helping to 

maintain the herbaceous vegetation in the meadows of the treeline (in the case of severe 

fires) and also to facilitate tree establishment in these areas (in the case of light to 

moderate fires) (Rochefort & Peterson 1996). Continued fire suppression (especially the 

stand-damaging fires) and favorable climatic conditions may contribute to increased tree 

establishment rates in the treeline and accelerate the loss of subalpine meadows 

(Rochefort & Peterson 1996). 

Other important disturbances include snow avalanches and lahars. Snow 

avalanches frequently occur in the park (every year), but they only influence about 7% 

of existing tree stands (Hemstrom & Franklin 1982). Lahars have influenced about 3% 

of existing tree stands and have provided some great examples of primary succession, 

but occur even less frequently than major fires (Hemstrom & Franklin 1982). Blow 

downs from windstorms and disease outbreaks from insects are also important 

considerations, but no large stands have been discovered and attributed to either of these 

disturbances (Hemstrom & Franklin 1982).  
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1.3 Research objectives 

 

The research presented in this dissertation involves the use of remote sensing, 

geographic information science, spatial analysis, and multivariate statistical techniques 

in a landscape ecology framework to address treeline ecology and landscape ecology 

research questions at a site disturbed by fire in Mount Rainier National Park. Specific 

objectives are listed in the following three categories: 

 

(1) Map vegetation and local site conditions. 

(A) Utilize data from airborne and satellite remote sensing platforms to map 

areas of tree establishment. 

(B) Use a LIDAR-derived DEM and maps of tree establishment to model 

environmental proxy data for temperature, soil moisture, erosion, snow cover, 

wind exposure, soil type, exposure, and positive ecological inertia. 

 

(2) Assess and explain spatial patterns of tree establishment. 

 (A) Use landscape metrics to assess spatial patterns of tree establishment at 

various spatial extents throughout the treeline. 

(B) Use multivariate statistics to determine what abiotic and biotic variables 

have exerted the most control on spatial patterns of tree establishment. 
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(3)  Compare traditional logistic regression with hierarchical partitioning.  

(A) Use both standard logistic regression and logistic regression within the 

hierarchical partitioning framework to determine if there are changes in the 

importance of local site conditions controlling tree establishment. 

 

(4)  Test for the presence of hierarchical patch dynamics. 

(A) Exploit the high spatial resolution of the spatial data and resample to 

different spatial resolutions before subjecting data to multivariate statistics at 

each respective resolution to determine if importance of local site conditions 

changes. 

 

1.4 Dissertation structure 

 

Chapter II expands beyond the literature discussed in Chapter I and provides an 

overview of additional complementary literature. Section 2.1 reviews the ecology of the 

subalpine parkland and the importance of fire as a disturbance agent in the Pacific 

Northwest. Section 2.2 discusses the application of remote sensing in studying 

vegetation and important considerations for mountainous regions. Section 2.3 provides 

an overview of vegetation dynamics and landscape ecology. 

Chapter III provides a substantive discussion of the methods used in this 

research. This includes the methods directly used in the manuscript-based chapters and 
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supplemental details that could not be included in the methods of the manuscript-based 

chapters because of journal limitations on manuscript length.  

Chapters IV-VI comprises the nucleus of this dissertation and they are structured 

as three separate manuscripts. Each chapter follows the standard topical manuscript 

sequence of introduction, methods, results, discussions, and conclusions. Chapter IV 

compares explanations of tree establishment patterns based on both standard logistic 

regression and logistic regression conducted within the hierarchical partitioning 

framework. Chapter V explains the spatial patterns of tree establishment at the treeline 

and places the resulting insight within the latest literature regarding change at subalpine 

forest-alpine tundra ecotones. Chapter VI assesses the potential influence various abiotic 

and biotic hierarchies may have on multivariate statistical analyses by modifying the 

spatial resolution of the variables utilized in explaining the spatial patterns of tree 

establishment.  

Chapter VII reemphasizes the conclusions from chapters IV-VI in the initial 

section. This chapter goes on to address necessary assumptions and potential influences 

of external factors in addition to offering some suggestions for improvements.   
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CHAPTER II 

ECOLOGY, REMOTE SENSING, AND VEGETATION DYNAMICS 

 

Chapter II enhances and expands beyond the literature presented in Chapter I. 

Section 2.1 explains the ecology of the subalpine parkland and the importance of fire as 

a disturbance agent in the Pacific Northwest. Particular attention is given to various 

explanations of the spatial mosaic of arboreal and herbaceous vegetation of the subalpine 

parkland. Section 2.2 provides a brief overview of remote sensing and vegetation before 

addressing the utility of remote sensing in studying arboreal vegetation of mountains. 

Section 2.3 expands upon the introduction and discusses landscape ecology as an 

approach for studying vegetation dynamics. 

 

2.1 Subalpine parkland ecology 

 

The unique subalpine parkland landscape of the Pacific Northwest (Figure 2-1) 

has piqued the curiosity of tourists for over 100 years, particularly the wildflowers that 

occupy the open meadows (Rochefort & Peterson 1996). Consequently, park managers 

and ecologists have also devoted significant amounts of time, money, and energy to 

studying the subalpine parkland in an attempt to understand its peculiar spatial mosaic of 

vegetation (Agee & Smith 1984; Miller & Halpern 1998). Mount Rainier National Park 

has been the focus of much of this research (Rochefort & Peterson 1996). 

 



 

 

36

 

 
 
Figure 2-1:  Photographs of subalpine parkland in the Paradise area of Mount Rainier 
National Park as observed in 1929 (top) and 1992 (bottom) (Source:  courtesy of 
Rochefort & Peterson, 1996). Note how the subalpine parkland is characterized by a 
patchy mosaic of herbaceous and arboreal vegetation with increased tree establishment 
in the 1992 picture.  
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The subalpine parkland is an unusually wide and conspicuous treeline ecotone 

between the subalpine forest and alpine tundra that often spans an elevation gradient of 

several hundred meters or more (Franklin & Dyrness 1988). Closed canopy forests 

predominate throughout the lower border of this ecotone (~1500-1800 m a.s.l.), before 

slowly ceding to patchy forest and eventually sparsely distributed individuals or clumps 

of arboreal vegetation near the upper border (~1800-2200 m a.s.l.). Most of the attention 

from ecologists has remained focused on explaining the spatial patterns of tree patches 

or individual trees, in the hopes of predicting how the subalpine parkland may respond to 

climate changes (Rochefort & Peterson 1996). It is clear that this is a worthwhile 

endeavor, especially considering that the subalpine parkland is extremely dynamic and 

constantly changing over various temporal and spatial scales (Miller & Halpern 1998). 

Explaining how the subalpine parkland changes (i.e., how it experiences infilling and 

how it moves upslope) is of paramount importance to ecologists and park managers 

(Rochefort & Peterson 1996). The presentation of the ecology of the subalpine parkland 

is primarily from the aforementioned perspective.   

 

2.1.1 Origin and broad controls on spatial patterns 

 

Uneven glacial recession at the end of the Pleistocene and relatively infrequent 

fires (light to moderate in intensity) were the most likely contributors to the creation of 

the subalpine parkland (Hendersen 1974). Persistent remnants of receding glaciers most 

likely inhibited tree establishment and favored the eventual generation of meadows in 
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what were typically moist and cool environments. Mesic soils exhibit a tendency to 

remain unusually cold throughout the growing season at high elevations and inhibit tree 

establishment (Holtmeier 2003). A lack of light to moderate fires (e.g., those that do not 

destroy substantial quantities of trees) probably facilitated meadow creation as well 

because undisturbed meadows tend to be more resistant to encroaching tree 

establishment. Whereas severe fires often disturb the meadow in addition to denuding 

the adjacent areas of sexually viable trees, effectively lowering the altitudinal position of 

the subalpine parkland in many instances (Hemstrom & Franklin 1982). Although 

extensive areas of burned meadows may be more favorable for establishment under 

these circumstances, reliable sources of viable seed are often lacking. In the absence of 

disturbances and in the presence of a climatic stasis, the broad patterns and altitudinal 

positions of the subalpine parkland spatial mosaic observed today are thought to be 

primarily maintained by imposed limitations on tree establishment and growth from (1) 

high summer temperatures (in xeric locations); and (2) season-shortening snowpack 

(mesic locations) (Sanscrainte et al. 2003).   

 

2.1.2 Influences of climate, weather, and broad geographic position 

 

At a regional scale, fluctuating weather and/or climatic conditions appear to play 

a role in facilitating tree establishment in the subalpine parkland; resulting in substantial 

meadow infilling and upslope advancement of trees (Rochefort & Peterson 1996). Mesic 

locations (e.g., western slope of Mount Rainier) display a propensity for establishment 
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during abnormally warm and dry summers or in the midst of general climatic warming 

(Franklin et al 1971; Kearney 1982; Rochefort & Peterson 1996). These conditions 

typically prolong the growing season (e.g., snow melts more quickly) and the generally 

mesic environment usually provides ample moisture to sustain pulses of establishment 

(Rochefort & Peterson 1996). Field reports throughout the twentieth century provide 

evidence of pulses of increased tree establishment on the comparatively mesic western 

slope of Mount Rainier during warm, dry summers (Rochefort & Peterson 1996). 

Conversely, xeric locations (e.g., eastern slope of Mount Rainier) tend to experience 

increased establishment rates during cool/wet summers or slightly cooler/wetter climatic 

conditions (Rochefort & Peterson 1996). Moisture is often limiting in these areas along 

with extreme soil temperatures (Baig 1972). Thus, warm and/or dry conditions rarely 

facilitate establishment and cool/wet conditions are usually necessary to sustain any 

establishment pulses. Field reports of increased establishment rates on the eastern slope 

of Mount Rainier are common during cool/wet summers (Rochefort & Peterson 1996).  

 

2.1.3 Influences of local site conditions 

 

Vegetation type, topographic relief, microsite variability, proximity to existing 

tree clumps, and source of ecotone perturbation appear to influence patterns of tree 

establishment when favorable climatic or weather conditions persist and facilitate pulses 

of establishment (Agee & Smith 1984; Rochefort & Peterson 1996). For instance, heath-

shrub communities in subalpine parkland meadows on the western slope of Mount 
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Rainier promote increased rates of establishment (when compared to other vegetative 

communities in the meadows) by prolonging the growing season and moderating 

temperature or moisture extremes with their elevated ground surfaces (Rochefort & 

Peterson 1996). A similar trend occurs on the eastern slope of Mount Rainier, although it 

is much less pronounced (Rochefort & Peterson 1996). Reduced establishment success 

rates often occur in other meadow communities, such as dry grasses.  

In terms of topography, convex and shaded locations at comparatively low 

elevations are more likely to experience establishment (Agee & Smith 1984; Rochefort 

& Peterson 1996). Convex surfaces accumulate less snow, tend to exhibit longer 

growing seasons, and are immune to oversaturation from too much water. Shaded 

locations also offer protection from extreme temperature variation, which also appears to 

favor seedling survival. Additionally, less extreme climatic conditions lengthens the 

growing season at low elevations, which favors establishment. Less is known about 

slope angle, but it appears that moderate slope angles favor establishment because here 

meadow communities are less likely to competitively exclude trees (as is common at 

gentle slope angles) and soils are further developed (compared to steep slope angles). 

A suit of microsite conditions also appears to influence establishment patterns 

(Little et al. 1994; Rochefort & Peterson 1996). Stumps or downed boles provide 

protection from temperature extremes and often exhibit clumps of newly established 

trees around them. Patches of particularly well-drained soils also promote establishment. 

Lengthier growing seasons typify well-drained soils and they are much less likely to 
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remain cool and wet during key stages of seedling development. Ameliorated conditions 

offered by other debris, such as individual boulders, also seem to favor establishment. 

Close proximity to existing trees has been widely reported to favor the 

establishment of more trees in the subalpine parkland (Agee & Smith 1984; Rochefort & 

Peterson 1996). It is thought that a combination of abundant quantities of nearby seed 

and positive feedback factors from existing trees may enhance establishment in these 

locations. Nearly ubiquitous coverage of seed dispersal greatly increases the odds of a 

tree becoming successfully established. Existing trees also offer protection from 

temperature extremes and ameliorate the local site conditions, thus bolstering the 

probability of seedling survival even more (Stueve et al. 2009). However, most of the 

evidence for positive feedback factors is largely circumstantial and the result of drawing 

conclusions based on observed associations in space. Additional research is necessary to 

directly test this assertion. 

The type of ecotone perturbation has also been found to be an important factor in 

influencing tree establishment patterns in the subalpine parkland (Rochefort & Peterson 

1996). Locations disturbed by severe fires tend to experience establishment adjacent to 

sexually mature trees that survived the fire; with trees only gradually invading open 

meadows (Agee & Smith 1984; Little et al. 1994). Conversely, increased establishment 

rates tend to be facilitated by light to moderate fires because this tends to create suitable 

germination sites in what was formerly lush herbaceous cover. Establishment triggered 

by climate change is also generally more widespread in the meadows and mostly 

controlled by topographic variability or vegetation type (Douglas 1972; Kearney 1982). 
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There certainly is a rich and descriptive literature regarding subalpine parkland ecology. 

However, most studies have previously been conducted at restricted spatial scales and 

only considered a few of the multiple abiotic and biotic variables that may influence 

spatial patterns of arboreal vegetation. A cumulative synthesis that considers multiple 

variables and disparate scales is lacking. Formulating and executing such an approach is 

a necessary precursor to incrementally advancing our understanding of how the 

subalpine parkland changes over space and time and, ultimately, synthesizing a better 

conceptual model.  

 

2.2 Remote sensing and vegetation mapping 

 

The vast majority of research approaches employed for studying tree 

establishment and other ecological processes have consisted of field-based techniques 

utilizing dendroecology and classic plant classification procedures in plots or belt 

transects (e.g., Agee & Smith 1984; Rochefort & Peterson 1996; Daniels & Veblen 

2003). However, remote sensing approaches (i.e., using devices to record data or 

information about phenomena without being in contact with them) are nevertheless 

becoming more popular and are being touted as an invaluable complement to previous 

and ongoing field-based research (Gillespie et al. 2009; Kennedy et al. 2009).  

Useful applications of remote sensing in biogeography and ecology were overtly 

recognized and explored in the scientific literature several decades ago. Some of these 

uses included assessing vegetation vigor (e.g., Tucker 1979), quantifying biomass (e.g., 
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Tucker 1985), and terrestrial mapping of physiognomically distinct vegetative 

communities (e.g., Driscoll et al. 1978; Komárková & Webber 1978). Remote sensing 

platforms exploiting the visible and near-infrared portions of the electromagnetic 

spectrum were touted as being particularly useful for geographers in studying patterns 

and processes on the landscape (Cooke & Harris 1970). Prominent scholars continue to 

posit that remote sensing techniques may be especially useful for facilitating 

explanations of classic ecological and biogeographic questions regarding hierarchical 

patch dynamics and spatial dependencies (Millington et al. 2002). Although, other 

scholars also emphasize that remote sensing science is clearly not a panacea, and that its 

utility primarily hinges upon the types of research questions being asked (e.g., Jensen 

2005). Spectral reflectance, spatial resolution, and classification techniques are 

particularly crucial considerations when attempting to answer specific ecological or 

biogeographic research questions in alpine environments; especially when mapping data 

of physiognomically distinct ecological communities from historical panchromatic 

imagery and contemporary aerial photography (Driscoll et al. 1978). 

 

2.2.1 Spectral approaches 

 

The electromagnetic spectrum encompasses different types of radiation at 

particular wavelengths (Figure 2-2). The majority of remote sensing studies conducted at 

treeline utilize the visible (e.g., Klasner & Fagre 2002; Resler et al. 2004) and/or infrared 

(e.g., Brown 1994b; Hoersch et al. 2002) portions of the electromagnetic spectrum and 
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have been undertaken within the last 10-20 years. This distinctive trend corresponds with 

the exponential growth of remote sensing- and GIS-based studies over similar temporal 

periods. The types of data being utilized can mostly be attributed to the fact that the 

majority of suitable archived data (e.g., several decades old, or more, to document 

incremental ecological change in remote locations) comprise panchromatic, color, or 

infrared images. Archived hyperspectral data and other remotely sensed images remains 

of limited use for exploring change at treeline, but definitely appears promising for 

future studies. 

 Fortunately, treelines are physiognomically distinct boundaries with adequate 

spectral variability between arboreal vegetation, herbaceous meadows, and soil in the 

visible and infrared portions of the electromagnetic spectrum (Figure 2-3). Note how 

subalpine fir and meadow exhibit distinctive spectral spikes with sharp declines, whereas 

soil has a more steady and gradual curve. In healthy plants, the molecular structure of 

chlorophyll pigments in the palisade parenchyma cells absorbs most visible light (for 

photosynthetic purposes), but reflects a comparatively higher amount of electromagnetic 

energy between 500-600 nm. This phenomenon produces the green color in healthy 

leaves and a small spike in the spectral curve near 550 nm (Tucker 1979). Conversely, 

the molecular structure of the spongy mesophyll reflects most near-infrared 

electromagnetic energy. This is an evolutionary advantage that prevents sensitive 

proteins from being denatured and produces the pronounced spike in the spectral curve 

near 700 nm (Tucker 1979). Water tends to absorb radiation in the middle-infrared 

portion of the electromagnetic spectrum, but absorption is comparatively low near 1700 
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nm and contributes to a spike in reflectance (Jensen 2005). However, this spectral 

signature is usually blurred when vegetation is stressed and internal water levels are 

depressed. Finally, the physical structure and design of the foliage in vegetation can also 

alter spectral reflectance curves (Tucker 1985). This phenomenon explains the gap in 

spectral reflectance between alpine meadow and subalpine fir.  

 

 
 
 

Figure 2-2:  Wavelengths of the electromagnetic spectrum (Source:  information used to 
create this graph was acquired from Jensen, 2005). 
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Figure 2-3:  Spectral reflectance curves of Abies lasiocarpa (subalpine fir, the most 
common tree species at the study site), bare soil, and herbaceous meadow (Source:  
information used to create the graph was acquired from Raymond et al., 1998 and 
Zagajewski & Sobczak, 2003). 
 

2.2.2 Considerations of spatial resolution 

 

Most remote sensing studies performed at treeline have utilized aerial or satellite 

remotely sensed data with fine spatial resolutions between 0.5 m and 2.0 m (e.g., Klasner 
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& Fagre 2002; Resler et al. 2004; van Oosterom et al. 2006). Others (e.g., Brown 1994b; 

Butler et al. 2003) have taken advantage of the increased spectral resolution provided by 

satellite remote sensing systems that capture data with relatively coarse spatial 

resolutions (e.g., Landsat TM/ETM+ at 30 m).  

Spatial resolution provides a measure of the smallest distance separating two 

objects on the landscape that can be resolved by the respective remote sensing systems 

(Cooke & Harris 1970). To detect specific objects of interest, the spatial resolution 

should generally be at least less than one-half the size of the object of interest (Jensen 

2005). For example, aerial photography and declassified reconnaissance images with 

relatively high spatial resolutions (e.g., 0.5-2.0 m) are capable of discerning some of the 

more mature trees in treeline environments (Figure 2-4), although only clustered patches 

of saplings may be detectable. This is a useful approach for detailed studies of pattern 

and process where spatially explicit maps of the landscape are necessary. Alternatively, 

coarser spatial resolutions associated with Landsat TM/ETM+ data (e.g., 30 m for the 

multispectral bands) and other remote sensing platforms with broad coverage are only 

able to discern patches of mature trees. Inevitably, areas of adjacent meadows may be 

incorporated with some of these coarse resolutions (Figure 2-4), depending upon the 

statistics involved with the classification scheme. This approach is advantageous when 

mapping large areas, but it is usually performed at the expense of fine-scale accuracy.  

Considering that spatial dependencies are exceptionally strong in treeline 

environments, the selection of an appropriate remote sensing system with a spatial 

resolution that is best suited for answering stated research questions is especially 
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important (Walsh et al. 1994). Landsat TM/ETM+ or SPOT images may suffice in some 

instances, but it might be necessary to exploit the high spatial resolutions of aerial 

photography or satellite images (e.g., 0.5-2.0 m) in other cases. 

 

 
 
Figure 2-4:  White spruce forest and tundra denoted by a series of different spatial 
resolutions near the East Toklat River in Denali National Park and Preserve, Alaska. 
Note how it is possible to distinguish between individual trees and stream braids in the 
1-m image. Alternatively, the boundary between forest and tundra progressively blur in 
the spatially degraded images and stream braids are nearly completely obscured (Source:  
the National Park Service kindly provided a 1 m pan-sharpened 2005 IKONOS image 
that was resampled to increasingly coarser images to create this figure). 
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2.2.3 Classification approaches 

 

Determining how to extract features with useful and reliable information from 

remotely sensed data is a crucial and sometimes daunting consideration when conducting 

research in treeline environments. Traditionally, hard and fuzzy classifications were the 

two preferred choices, but object-oriented classifications are becoming increasingly 

popular (Laliberte et al. 2004). Brown (1994b) successfully employed an unsupervised 

hard classification in Glacier National Park and others have espoused this approach (e.g., 

Walsh et al. 1994; Klasner & Fagre 2002) or opted for a supervised hard classification 

(e.g., Resler et al. 2004; Stueve et al. 2009). Conversely, Hill et al. (2006) tested a fuzzy 

classification at treeline in Hohe Tauem Mountains National Park in Austria and found 

that it performed well. Geddes et al. (2005) also demonstrated that object-oriented 

classifications can be useful in another study at Glacier National Park. Each approach is 

replete with its own strengths and it would be imprudent to proclaim one superior to the 

other (Jensen 2005). 

Hard classifications are derived from the spectral characteristics of individual 

pixels, which are selectively assigned to the most appropriate class based on 

unsupervised or supervised classification criteria (Laliberte et al. 2004). These 

procedures typically result in a map with discrete classification categories (e.g., forest, 

bare rock, meadow, and water) (Figure 2-5). Hard classifications driven by Boolean 

logic are practical for quantifying discrete vegetation types, generating sharp boundaries 

between features, and conceptualizing treeline environments. However, critics assert that 
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these classifications provide an inadequate representation of transitional areas that often 

pervade treelines (Hill et al. 2006). 

Soft or fuzzy classifications rely on the partitioning of feature space via 

individual pixels that have graded values (e.g., between 0 and 1) for a specified number 

of classes based on supervised or unsupervised classification techniques of spectral 

reflectance values (Benz et al. 2003). This approach tends to soften the sharp edges of 

hard classifications and blur the boundaries between vegetation types (Figure 2-6). 

Advocates contend that fuzzy classifications are best able to represent treelines and that  

 

 
 
Figure 2-5:  Conceptual example of a hard classification with a binary mapping scheme 
of trees (green) versus meadows (light brown). 
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Figure 2-6:  Conceptual example of a fuzzy classification with a graded mapping 
scheme for the same area as Figure 2-5. Trees (green) and meadows (light brown) 
continue to be identified, but note how the edges are ‘softened’ where there is a 
tree/meadow mixture. 
 
 
one might be able to glean additional ecological insight from the more thorough 

representation of these transitional areas (Hill et al. 2006). However, a transitional 

‘fuzzy’ area may also complicate attempts to make ecological interpretations at treeline 

due to decreased classification accuracy in the transitional areas. 

 Object-oriented classifications forgo the individual per-pixel classification and 

employ multiresolution image segmentation techniques that breaks the scene down into 

homogeneous patches or ‘objects’ (Laliberte et al. 2004). The statistical characteristics 

of the respective objects are then used to classify the objects via standard techniques 

(e.g., fuzzy classification). Object-oriented techniques are commonly applied to 
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multispectral remotely sensed images with high spatial resolutions (e.g., IKONOS or 

QuickBird) (Geddes et al. 2005). These techniques offer an advantage when trying to 

discern landscape features that have similar spectral properties, but different patch 

shapes. 

 

2.3 Vegetation dynamics and landscape ecology  

 

Vegetation dynamics is concerned with the spatial distribution and temporal 

dynamism of flora in relation to each other and their surrounding environment. Some 

have speculated that the earliest humans must have had an understanding of vegetation 

dynamics and their physical surroundings on the landscape in order to adequately 

support their nomadic lifestyles (Lomolino 2001). Indeed, it seems survival would have 

been hindered without at least a basic understanding of these topics. However, formal 

documentation of such knowledge did not occur until much later.  

Carl Ludwig Willdenow was a well-known German botanist from the eighteenth 

and nineteenth centuries and one of the first scientists to formally recognize and 

appreciate vegetation dynamics (Willdenow 1805). He was particularly aware of, and 

intrigued by, latitudinal and altitudinal variations in species diversity (Lomolino 2001). 

He suggested that temperature, the length of the growing season, soil development or 

lack thereof, moisture stress, and drought stress all might contribute to explaining some 

of these spatial variations. The German naturalist and geographic explorer Alexander 

von Humboldt (mentored by Ludwig) carried on and expanded upon some of Ludwig’s 
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work (e.g., von Humboldt 1807). He was also trained as a botanist, but noticed and 

became intrigued with topics such as altitudinal zonation of vegetation and latitudinal 

variability of species richness (von Humboldt 1807; Hawkins 2001). He didn’t employ 

the use of contemporary terms such as ‘diversity’ and ‘species richness’, but he clearly 

appreciated them and recognized spatially explicit changes of flora corresponding with 

various environmental variables throughout the landscape (Hawkins 2001). His 

observations and insights were important contributors to the disciplinary development of 

ecology, biogeography, and ultimately landscape ecology; all of which continue 

investigations of vegetation dynamics at the present time (Turner 1989; Hierro et al. 

2005). 

The British naturalist, explorer, geographer, and biologist Alfred Russell Wallace 

was another nineteenth century academic who was intrigued by the peculiar spatial 

distribution of plants across the landscape (Wiens & Donoghue 2004). He demonstrated 

an appreciation for vegetation dynamics when trying to explain the geographic 

distributions of various fauna and the importance of their respective habitats (Wallace 

1876). He was also well-acquainted with Charles Darwin and a stout advocate of natural 

selection. Today he is known by many to be the co-discoverer of natural selection and 

the father of biogeography (Peck 2003). 

During the late nineteenth and early twentieth centuries, future ecological icons 

Frederick Clements (1897, 1916) and Henry Gleason (1926) were developing 

groundbreaking theories concerning vegetation dynamics while conducting scientifically 

rigorous field research. Clements’ field research in Nebraska and the western United 
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States helped to mold and shape his theory of succession, which stated vegetative 

communities were primarily controlled my macroclimatic factors and would slowly 

change or mature to a climax state after a disturbance. Clements’ emphasis on temporal 

vegetative change and largely organismic view of vegetation dominated ecological 

thought in the early to middle twentieth century (Turner 1989). Conversely, Gleason 

challenged Clements’ theory and emphasized the importance of individualistic 

relationships between different species in concert with both abiotic and biotic spatial 

heterogeneity (Turner 1989). Gleason was largely ignored until the 1950’s, when the 

work of Robert Whittaker and others (e.g., Watt 1947; Curtis 1959) finally helped to 

ease the grip of the firmly entrenched Clementsian paradigm with a Gleasonian one 

(Westman & Peet 1981). Some of Watt’s work also started to raise questions concerning 

spatial scales and variability across the landscape; effectively setting the stage for future 

disciplinary advancement in studying vegetation dynamics.  

By the late 1960’s, Robert MacArthur and Edward Wilson had developed the 

theory of island biogeography (1967). In this context, an island could be any area of 

habitat on the landscape surrounded by an area of unsuitable land for a particular 

species. The theory proposes that immigration and extinction are the two most important 

factors influencing the number of species existing on an undisturbed island. Proximity to 

colonizers is most likely to affect the former and island size the latter. Although modern 

island biogeography was mainly developed from experiments with a few mobile animal 

groups, it stimulated research concerning vegetation dynamics (e.g., van der Maarel 
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1988) and helped to facilitate spatially heterogeneous conceptualizations of landscapes 

(Lomolino 2001).  

In the early 1980’s, landscape ecology evolved as a new ecological paradigm that 

considered landscapes to be ecological units comprised of the spatially heterogeneous 

patch-corridor-matrix (Forman & Gordon 1981; Forman 1995). The term landscape 

ecology was used well before the 1980's by the German geographer Carl Troll (1939). 

However, it took over 40 years for Watt’s (1947) seminal linkages of space, time, and 

scale across the landscape (Turner 1989) and novel landscape conceptualizations from 

the theory of island biogeography (Lomolino 2001) to percolate throughout the scientific 

community and coalesce into a new paradigm. Landscape ecology appeared to show 

promise in providing a unique and useful approach in studying vegetation dynamics 

(Turner 1989). 

In essence, landscape ecology is concerned with broad spatial scales and the 

effects of spatial patterns and processes in ecological systems (Turner 1989). Spatial 

heterogeneity (i.e., spatial variability in the patch-corridor-matrix) is the central 

underlying tenet of landscape ecology (Turner 1989; Forman 1995).   Patches are 

distinct ecological communities surrounded by a matrix with dissimilar communities and 

corridors are path lines often interspersed throughout or on the perimeter of the matrix 

(Forman & Gordon 1981) (Figure 2-7). There are three important considerations when 

investigating the spatial heterogeneity of a landscape. These include structure (e.g., 

spatial distribution of species or functional group in relation to the components of the 

patch-corridor-matrix), function (e.g., flow of energy or organisms between the 
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components of the patch-corridor-matrix), and change (e.g., structure and function 

varying over time) (Turner 1989). 

 

 

 

 

 

 
 

 
Figure 2-7:  An example of the patch-corridor-matrix along a braided stream supplied 
with water from glacial melt. The picture was taken facing west across the East Fork 
Toklat River about 8.5 km north (following the river bottom) of the eastern park road in 
Denali National Park and Preserve. 
 
 

Raster-based data in a GIS environment are commonly used to map structure 

and/or function and investigate change in landscape ecology (Peng et al. 2007). A 

multitude of landscape metrics (e.g., patch size, patch density, number of edges, edge 

length, etc) can be calculated from these types of gridded data that help describe the 

current structure and function of a landscape in addition to gauging how structure and 

function change over time (Magle et al. 2008). The software packages Fragstats and 

Patch Analyst are commonly used to calculate these metrics (McGarigal et al. 2002). 

Challenges concerning temporal and spatial scales (i.e., both the size/area of a 

study site and level of detail for the associated data) became particularly evident with the 

landscape ecology approach because structure, function, and change are scale dependent 

(Turner 1989). Landscape ecology has the ability to investigate problems at multiple 

Tundra Patch 

White Spruce Forest Matrix 

River Bottom Corridor  

White Spruce Forest Matrix 



 

 

57

 

scales (Wiens 1992), but the selected scale of a particular study may drastically alter the 

conclusions of any study (Turner 1989). These challenges helped to foster the 

development of new conceptual models for explaining the nested hierarchies of 

structure, function, and change over multiple scales (Wu & Loucks 1995; Gillson 2004).  

Over the last two centuries or so, geographers, botanists, and ecologists have 

fostered close academic ties and seemed to have developed an appreciation for the 

inherent strengths of their respective disciplinary perspectives in studying vegetation 

dynamics. Ample substantiation can be found when considering the founding charter 

members of the AAG and ESA. One of the most prominent ecologists of all time 

(Frederick Clements) was an instrumental charter member of the AAG in 1904 and, 

conversely, a famous geographer (Ellsworth Huntington) played a pivotal role in 

founding the ESA in 1915 (Cowell & Parker 2003). Additional substantiation can be 

found when considering that another respected ecologist (Henry Cowles) published the 

first paper in the Annals (1911), which clearly shared conceptual linkages with a famous 

geographer’s (William Davis) theory of landscape development (Cowell & Parker 2004).  

Certainly, disciplinary overlap between geography, botany, and ecology is not a 

new phenomenon and myriad geographers have made substantive contributions to the 

ecological literature over the years. Indeed, geographers have historically offered a 

broader perspective for studying vegetative patterns and processes while thriving at 

explaining the intertwined linkages between the abiotic and biotic environment; 

particularly across large spatial extents (Cowell & Parker 2004). Similar work is evident 

today (e.g., Millward & Kraft 2004) and I intend to continue the spirit of this approach. 
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CHAPTER III 

METHODS 

 

Providing broad and easily comprehensible methodological background 

information in a manuscript is often challenging, if not impossible, because of the strict 

journal limitations on page lengths. Conciseness prevails over providing sufficient 

details in modern academic writing (Graff 2000). Chapter III offers methodological 

explanations and information that enhances and clarifies some of the methods outlined in 

the manuscript-based chapters (IV-VI). Section 3.1 discusses aerial photography, 

Section 3.2 elaborates on the CORONA data and the reconnaissance satellite program 

that acquired it, Section 3.3 discusses classification schemes and treeline identification, 

Section 3.4 addresses the DEM and derivations of local site conditions, Section 3.5 

addresses geometric corrections for digital imagery, Section 3.6 explores radiometric 

corrections for remotely sensed images, Section 3.7 discusses the sampling strategy and 

statistical techniques, and Section 3.8 addresses the calculation of spatial autocorrelation. 

 

3.1 Aerial photography 

 

Contemporary and historical aerial photographs provide invaluable data sources 

for assessing treeline changes when properly georegistered as a temporal composite of 

data in a GIS. This section presents supplemental information regarding the aerial 
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photographs that includes and expands beyond information provided in all three of the 

manuscript-based chapters; including displays of the raw photographs. 

 

3.1.1 Historical photography 

 

Historical aerial photographs can be instrumental in documenting change over 

extended periods of time, but their coverage is often sporadic, associated metadata are 

regularly not available, and they commonly are not projected in real-world coordinate 

systems (Klasner & Fargre 2002). To complicate matters, a plethora of federal agencies 

such as the USGS, NPS, and USFS in addition to private entities, have collected aerial 

photographs over the years without a systematic archiving scheme. An exhaustive search 

was performed for aerial photographs for the study site, but only two potentially suitable 

selections were found (i.e., those that obviously did not have too much snow or cloud 

cover, exhibited a fine enough spatial resolution, and were of sufficient quality). The 

first was a 1:66000 aerial photograph from September, 1955 (Figure 3-1) and the second 

was a 1:24000 aerial photograph from August, 1969 (Figure 3-2). Additional metadata 

(beyond the scale, month, and year) were not available for either photograph. After more 

scrutiny, it was determined that the 1955 photograph was not suitable for quantitative 

analysis because of patchy cloud cover and dubious image quality near the study site. 

Thus, the 1955 photography was only used as a qualitative indicator of change.   
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It is also often problematic to georeference historical aerial photographs because little is 

known about them in terms of camera specifications, flight altitude, aircraft pitch, 

aircraft roll, and aircraft type. Because of these uncertainties, unacceptable geometric 

errors may persist (e.g., RMSE of +/- 12 m) even after instituting georeferencing 

procedures (Butler et al. 2003). Interestingly, imagery from satellite platforms lacking 

similar information tend to be more conducive to being georeferenced because orbital 

paths are much more stable (Jensen 2005). Thus, the 1969 photograph was only used to 

verify whether any trees existed in the patches of snow on the 1970 CORONA 

photograph. 

 

3.1.2 Contemporary USGS DOQ 

 

Finding suitable base maps throughout the United States used to be problematic 

and posed significant challenges to academic researchers and government agencies alike 

(Davis & Wang 2003). The USGS addressed this issue aggressively in the 1990's with 

the implementation of a program for generating digital orthophotos. Now, these products 

are widely disseminated and regularly used as base maps for myriad academic and 

government mapping/research endeavors; even in remote mountainous areas with 

treelines (Resler et al. 2004).  

 According to the USGS (2008), a DOQ is a digital rendition of aerial 

photography created by a computer in which geometric errors caused by terrain relief 

and camera tilt have been carefully removed. The original spectral characteristics of the 
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photograph are always maintained through this process. Photographs typically have a 

spatial resolution of 1 m (sometimes 2 m) and may be panchromatic, black and white, or 

color-infrared. Full quads are 7.5 minutes longitude by 7.5 minutes latitude, referenced 

to a NAD27 or NAD83 datum, and cast to a UTM projection. In terms of horizontal 

accuracy, at least 90% of the test points must be reliable within +/- 40 ft at a scale of 

1:24000. DEMs used in the process are also required to have a vertical accuracy of at 

least +/- 7 m. DOQQs are orthorectified quarter quads (3.75 minutes longitude by 3.75 

minutes latitude) that are subjected to equally or more stringent criteria. Remote sensors 

commonly use DOQs or DOQQs as tie points (e.g., points with known x/y coordinates) 

when georeferencing images (Davis & Wang 2003). A 2003 DOQQ was used as a base 

map for tie points and to map areas of tree establishment in this study (Figure 3-3). 

 

3.2 CORONA reconnaissance satellite images 

 

President Clinton (1995) signed an executive order that declassified and released 

photographic data from the first successful reconnaissance satellite program in the 

history of the United States. The CORONA program, as it was known, was formally 

endorsed by President Eisenhower in 1958 (McDonald 1995). The program persevered 

through eight failures during its seminal stages before finally achieving success on the 

ninth attempt, which was highlighted by a C-119 making a dramatic mid-air recovery 

(August 18, 1960) of a capsule embedded with invaluable film for the intelligence 

community (McDonald 1995). Much of the program targeted the U.S.S.R in an attempt 
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Figure 3-1:  A 1955 aerial photograph (~11 km x 19 km displayed above) was used as a 
qualitative indicator of treeline. The red arrow identifies the ridge that was burned by the 
1930 fire. Note how patches of clouds (red X) and shadows (yellow O) conceal portions 
of treeline that could potentially experience change in future images (Source:  USGS). 
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Figure 3-2:  A 1969 aerial photograph (~3.5 km x 2.9 km displayed above) was used to 
verify whether areas blanketed by snow in the CORONA image were occupied by trees. 
The red arrow identifies the ridge that was burned by the 1930 fire (Source:  USGS). 
 

to unveil the Iron Curtain of a very reclusive communist society (McDonald 1995), but 

large areas of western North America and China were also covered (Andersen 2005). 

Archived CORONA data covering remote mountainous or otherwise secluded areas 

often provides some of the earliest baseline aerial or satellite photography for ecological  

and biogeographic studies (Andersen 2005). Much of this data remains largely 

unexploited and it could prove to be indispensable in future ecological or biogeographic 

research (including treelines). 
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Figure 3-3:  A 2003 natural color DOQQ (~4.2 km x 6.1 km displayed above) was used 
to map trees and collect tie points. The red arrow identifies the ridge that was burned by 
the 1930 fire (Source:  USGS). 
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Several steadily improved panchromatic camera systems were developed 

throughout the CORONA program, each referred to by their KEYHOLE (KH) 

designator (Andersen 2005). Early KH satellites were only able to discern objects that 

were 15-30 m wide (McDonald 1995). However, some of the highest quality KH 

satellites were much more advanced. The KH-4B camera system featured an impressive 

spatial resolution of ~1.9 m at nadir and was the best CORONA satellite (Andersen 

2005). Data from the KH-4B system was utilized in this dissertation to assess the 

distribution of trees in 1970 (I will refer to these trees as '1970 trees' in the remainder of 

the dissertation). 

The KH-4B system contained a dual f/3.5 panoramic camera with a 24-inch focal 

length and 70 mm film width (McDonald 1995). The camera was specially situated in 

the satellite so that the forward camera was aft looking and vice versa, thus providing 

stereo imagery for reliable DEM generation (McDonald 1995; Soun et al. 2004). The 

KH-4B satellite made orbital passes near 129-150 km and contained supplemental 

cameras for determinations of pitch, roll, and yaw during operational cycles (McDonald 

1995). Relative geometric stability within KH-4B images is strong and generally 

conducive for use in a GIS if orthorectification procedures are performed (Soun et al. 

2004). Specialized orthorectification procedures are necessary if the entire panoramic 

image (~19.5 x 266.5 km in this case) is to be used; otherwise standard procedures will 

suffice (Soun et al. 2004). As an additional boon to image quality, polyester-based film 

was also used in the KH-4B system (as opposed to acetate); greatly diminishing the 

chances of film either crumbling or jamming during operation (McDonald 1995).  
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A processed 1970 KH-4B CORONA image was used to map 1970 trees (Figure 

3-4). It was selected in favor of the 1969 aerial photograph because of increased 

platform stability and greater likelihood of acceptable georeferencing procedures. 

 

3.3 Classification procedures, treeline identification, and change detection  

 

Hard classifications are common in treeline studies (e.g., tree, rock, tundra, and 

water) (Cairns 2001). Hard classification procedures were performed on data that were 

processed as discussed in 3.5 and 3.6. I used supervised classifications tailored for high 

spatial resolution panchromatic imagery to delineate trees in 1970 and 2003 (Bai et al. 

2005). The green band of the DOQQ was separated for the classification analysis 

because the signal closely corresponds to the KH-4B panchromatic band. 

The green band of the DOQQ was resampled with the nearest neighbor method to match 

the ~1.9 m spatial resolution of the KH-4B imagery (Jensen 2005). Next, I selected 10 

000 training points for each classification category representing trees, shadows (from 

trees), and treeless areas. I implemented a minimum distance supervised classification 

with a fitted modal filter to assign shadows to either trees or treeless areas, resulting in a 

binary classification of trees versus treeless areas (Figure 3-5). Visual estimates from the 

field and downed boles identified on the 2003 DOQQ indicate treeline used to be much 

higher (Figure 1-5). 
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Figure 3-4:  Partial strip (panchromatic) of scanned film from the KH-4B CORONA 
satellite that was used to map trees (~18 km x 13 km displayed above). The tip of the red 
arrow identifies the ridge burned by the 1930 fire (Source:  USGS). 
 
 

Upper elevations (~1500 m and above) in the KH-4B imagery displayed areas of 

residual snowpack near some tree patches. I used 1969 aerial photography that was 

lacking snowpack to verify whether any trees were obscured by snow and the 

classification was adjusted accordingly.  

The 'forest line' was used to determine the lower boundary of treeline and as an 

easily identifiable reference point for assessing treeline changes in terms of distance and  



 

 

68

 

 

 
 
Figure 3-5:  The binary classification scheme highlighting a substantial upslope shift in 
tree establishment at the study site. 
 
 
elevation (Jobbagy & Jackson 2000) (Figure 1-6). I visually identified and digitized the 

approximate position of forest line on the 1955 imagery (Figure 3-5). Forest line in the 

classified 1970 satellite imagery and 2003 aerial photography was identified by using a 

GIS to detect the highest altitudinal limits of pixels classified as trees that were 

contiguously connected to closed forest. I quantified maximum and minimum forest line 

changes in a GIS by assessing upslope measurements from each pixel in the 1970 forest 

line that were perpendicular to slope contours. Treeline was defined as all pixels 30 m 

below the 1970 forest line and continuing to the highest elevations attained by pixels 
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classified as trees in the 2003 aerial photography for inclusion in the landscape metrics 

and statistical analyses. Lastly, change detection was performed to identify areas of 

establishment at treeline between 1970 and 2003. 

 

3.4 Digital elevation data 

 

Digital representations of topographic features are regularly utilized when 

studying treeline ecosystems to quantify a plethora of environmental variables such as 

elevation, slope aspect, slope angle, and related wetness or snow indices (Brown 1994b). 

These variables are markedly important in treeline environments because they appear to 

exert a significant amount of influence on both pattern and process in arboreal vegetation 

(Cairns 2001). In the past, 10- or 30-m USGS DEMs were commonly used for these 

purposes (e.g., Brown 1994b). However, viable alternatives, such as DEMs produced 

from LIDAR are being more commonly used. 

 

3.4.1 LIDAR 

 

 LIDAR employs the use of an airborne laser rangefinder that successively scans 

an area of interest and records elevation values for the eventual production of high-

spatial-resolution DEMs (Jensen 2005). The Puget Sound LIDAR Consortium (2008) 

specializes in public-domain data for western Washington and supplied access to a 

LIDAR-generated DEM (1.8 m) for the study site. They provided access to bare earth 
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surface data that was acquired by a joint venture between NASA and the USGS. 

Terrapoint (2003) was contracted by these two agencies to collect the data. In general, 

the quality of the data is vastly superior to the best USGS DEMs. Vertical accuracy is 

often within +/- 1 ft, but may be worse in areas with heavy timber (e.g., the dense old-

growth montane forest). The data is also suitable for 1:12000 scale mapping 

specifications. 

 

 3.4.2 Preprocessing procedures 

 

The acquired 1.8-m LIDAR-based DEM was already partially processed and a 

'bare-earth' model was made available on the Puget Sound LIDAR Consortium website. 

Vegetation peaks (e.g., tree tops) were removed (e.g., Keqi et al. 2003; Rottensteiner et 

al. 2005), geometric corrections were applied, and the data were properly projected in 

space. As a precautionary measure to confirm the reliability of the LIDAR-based DEM, 

elevation values derived from it were visually compared with a corresponding 10-m 

USGS DEM in a GIS environment and generally found to be consistent. However, it was 

noted that it provided more detailed topographic information that often varied between 

cells in the USGS DEM. For example, 10-m cells with specified elevation values often 

had several corresponding LIDAR-based values that were +/- 0.5 m of the original 10-m 

elevation value. I applied a series of 5x5 smoothing filters to remove systematic 

speckling that was apparent in the data and eliminate any rogue tree tops that may have 

survived the tree removal algorithms (Figure 3-6). 



 

 

71

 

3.4.3 Deriving local site conditions 

 

Data for a suite of variables thought to influence establishment patterns were 

obtained from the LIDAR-based DEM, ancillary climate data, and mapped areas of trees 

(see section 3.3) (Franklin et al. 1971; Henderson 1974; Agee & Smith 1984; Shankman 

  

 
 
Figure 3-6:  Slope aspect derived from the LIDAR-based surface DEM using 8 
surrounding pixels. Image A was based off the raw data and image B was treated with a 
smoothing filter. 
 
 
1984; Rochefort & Peterson 1996). Elevation values were extracted directly from the 

DEM (Figure 3-7). I calculated slope aspect and slope angle with a 3x3 window while 

considering all eight surrounding pixels (Burrough & McDonnell 1998) (Figure 3-7). I 

calculated snow index values from curvature (Zevenbergen & Thorne 1987; Moore et al. 

1991), southwesterly prevailing winds, elevation, slope aspect, and slope angle (Frank 

1988; Burke et al. 1989; Brown 1994b) (Figure 3-8). Topographic concavities and 

leeward slope aspects at high elevations were weighted with the highest snow potential 
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(i.e., more likely to have deep season-shortening snowpack from wind-driven snow 

deposits). I calculated wetness index values from the upslope catchment area and 

drainage patterns quantified in the DEM (Beven & Kirkby 1979; Brown 1994b) (Figure 

3-8). Enclosed depressions with large upslope moisture catchment areas were weighted 

with the highest wetness potential (i.e., likely to have moist and cool soils). I determined 

the sediment erosion index values by considering calculations of slope angle and flow 

accumulation from the DEM (Moore et al. 1993) (Figure 3-8). Steep convex landscape 

features and open concavities with large upslope moisture catchment areas (e.g., ravines 

and stream beds) were weighted with the highest erosion potential (i.e., surfaces likely to 

be regularly disturbed by erosion forces). Proximity to and direction from trees 1970 

trees was calculated with standard Euclidean distance measures using the 1970 trees as 

source areas (Figure 3-9). 

 

3.5 Geometric processing 

 

When digital information or maps are utilized in a GIS environment, it is 

absolutely crucial to consider the geometric accuracy of the data (Jensen 2005). Ideally, 

all digital data would be properly manipulated and formatted so that it aligns or ‘stacks’ 

properly over data from a similar location in a standard map projection (Figure 3-10). 

Under such circumstances, x/y coordinates collected from one digital data set should 

correspond with similar points on another overlaying data set. Unfortunately, some of 

the most valuable digital data sets for treeline studies (e.g., historical aerial photography  
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Figure 3-7:  Standard variables extracted or derived from the LIDAR-based DEM. In 
this figure, these include elevation, slope aspect, and slope angle. The red and black 
squares respectively highlight the area containing the study site. All eight surrounding 
pixels were considered when determining what slope aspect and slope angle values to 
assign to respective pixels. 
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Figure 3-8:  Non-standard variables derived from the LIDAR-based DEM and the 
prevailing wind direction. In this figure, these are wetness, snow/wind, and erosion. The 
red and black squares respectively highlight the area containing the study site. Values 
have been scaled to between 2 and -2. Positive values indicate the likelihood of wetter, 
snowier (less wind), and more erosive conditions respectively. Negative values indicate 
the likelihood of drier, windier (less snow), and less erosive conditions respectively. 
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Figure 3-9:  Raster-based example denoting ‘proximity to 1970 trees’ (bottom) and 
‘direction from 1970 trees’ (top). The 1970 trees are denoted by dark green pixels. 



 

 

76

 

 
 
Figure 3-10:  A spatial composite of digital data from Mount Rainier and the 
surrounding landscape properly georeferenced and stacked in a GIS environment 
(Source:  USGS and Global Land Cover Facility).  
 

or CORONA satellite imagery) have not been properly cast in real-world coordinates. 

Geometric corrections must be instituted in these cases for proper use in a GIS. These 

challenges have inhibited and in some cases prevented biogeographers and ecologists 

from exploiting the use of historical remotely sensed data in their research. However, 

processing software that is increasingly user friendly is allowing some historical data to 

be accessed and properly processed (Jensen 2005). 

 

3.5.1 Standard georeferencing  

 

Standard geometric correction involves aligning points of known real-world 

coordinates (e.g., tie points or GCPs) with uncorrected digital data and implementing 
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mathematical equations (usually 1st order polynomial) to calculate real world coordinates 

for the uncorrected data (Jensen 2005):   

1st order polynomial:  x’ = Ax + By + C 

y’ = Dx + Ey + F 

where x is the column count in an unprojected image, y is the row count in an 

unprojected image, x’ is the horizontal value in an projected image, y’ is vertical value in 

an projected image, A is the width of a raster cell, B is a column term for rotation, C is 

the x’ value of the center of the cell in the upper right corner, D is a row term for 

rotation, E is the negative height of a raster cell, and F is the y’ value of the center of the 

cell in the upper right corner. Sometimes a 2nd order polynomial or high transformation 

is necessary in rugged terrain. It is recommend to select at least 18 widely distributed 

GCPs from easily identifiable points (e.g., road intersections, trails, etc) and to 

concentrate several of the points throughout the perimeter of the image (Jensen 2005). 

Perfect image alignment never occurs and the RMSE is used to quantify any residual 

image distortion:   

RMSerror =  22 )'()'( yyxx   

where x and y are the original row and column coordinates of the tie point and x’ and y’ 

are the calculated coordinates. Widely accepted scientific criterion for adequate 

geometric correction procedures typically require RMSE values at or below 0.5 (e.g., 

Stueve et al. 2007). Unfortunately, standard geometric corrections do not properly 

correct or mitigate geometric displacement caused by topographic variability, remote 

sensing platform variability (e.g., pitch, roll, and yaw), and camera/sensor specifications. 
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Such errors (especially those related to topography) are typically quite severe in 

mountainous terrain and require more advanced treatment in order to maintain 

confidence in the geometric accuracy of the data (e.g., Butler et al. 2003).  

 

3.5.2 Orthorectification  

 

Orthorectification is a more complex procedure that mitigates geometric 

displacement stemming from topography, remote sensing platform variability, and 

camera/sensor specifications. Modeling the influence of topography is especially crucial 

in mountainous terrain and necessitates the use of a corresponding high-quality DEM 

(e.g., Stueve et al. 2009). Similar to the standard method, tie points are carefully selected 

throughout the image from easily identifiable points of known real-world coordinates. 

However, the DEM is also used in concert with the tie points and estimated altitudinal or 

orbital position of the remote sensing platform to mathematically model geometric 

displacement caused by topographic variability (Jensen 2005).   

CORONA KH-4B photography from mission 1110 on June 2 of 1970 was 

subjected to orthorectification procedures. A parametric model was used with the nearest 

neighbor resampling in concert with direct linear transformation and bundle adjustment 

to build the exterior orientation (Fiore 2001; Toutin 2002). The 1-m 2003 USGS DOQQ 

served as the base aerial photography for the collection of 42 ground control points that 

were evenly distributed throughout the photography with an RMSE of 0.495 (Davis & 

Wang 2003). The LIDAR-based 1.8-m DEM (Terrapoint 2003) and KH-4B satellite 
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specifications from declassified documents (McDonald 1995) were used to model the 

terrain and satellite position during orthorectification. The resultant orthorectified image 

aligned quite well with the 2003 aerial photograph (Figure 3-11) 

 

3.6 Radiometric processing 

 

Inconsistent or misleading data from radiometric variability may surface from a 

variety of sources in remotely sensed images from the visible to near-infrared portions of 

the electromagnetic spectrum. Sensor failures leading to striping, line drop-outs, or some 

other phenomena can occur sporadically, but the influences of atmospheric scattering 

and variable illumination geometry on electromagnetic reflectance tend to have more  

serious consequences in terms of data analysis and interpretation (Jensen 2005). 

Atmospheric correction algorithms (e.g., dark subtraction and empirical line calibration) 

and normalizations of sensor illumination (e.g., at-satellite reflectance) are usually only 

required when biophysical assessments of vegetation over time are being made (e.g., 

vegetation vigor as determined, for example, by NDVI) (Stueve et al. 2007). However, 

shadows from topographic variability (topographic effect) can be problematic in 

mountainous terrain. Here, it may be necessary to use training areas at disparate 

topographic positions, band ratioing techniques, and topographic correction models to 
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Figure 3-11:  Orthorectified 1970 CORONA photograph (left) visible as a transformed 
color composite and the orthorectified 2003 DOQQ on the right. The currently displayed 
spatial extent was chosen so that several landscape features common between both 
photographs (upper and lower elevations) can be visually identified and compared 
(highlighted by arrows). Visual confirmation indicates the alignment between the 
photographs is excellent (Source:  USGS). 
 
 
mitigate the effect of shadows (Blesius & Weirich 2005). The Minnaert correction is a 

common approach that utilizes a corresponding DEM and estimated sun/sensor 

geometries in mitigating the topographic effect (Itten & Meyer 1993; Blesius & Weirich 

2005). The Minnaert correction was performed on the photographs, but there was little 

difference between the before/after images. As is evident in figure 3-11, the broad south-

facing slopes of the ridge were illuminated quite well; which probably made this 

correction unnecessary. 
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3.7 Sampling strategy and statistical techniques 

 

Sampling strategies, correlated independent variables, and the type of 

multivariate statistical technique employed can all influence the results of a statistical 

analysis; and possibly make the results questionable, depending upon the care and 

reasoning used in the analysis (Whittingham et al. 2006). Important statistical steps and 

the rationale are highlighted below. 

 

3.7.1 Stratified random sampling 

 

I generated 1000 points in a stratified random sampling scheme that began just 

below the '1970 forest line' and extended up to the uppermost limits of trees in the 2003 

aerial photograph (Figure 3-12). The purposes of selecting 1000 randomly sample points 

in a stratified scheme were to mitigate the effects of spatial autocorrelation and to 

maintain enough points to ensure statistical rigor with the logistic regressions. 

Commonly, as few as 80 points are used in logistic regressions with a high amount of 

confidence when using eight independent variables (Hosmer & Lemeshow 2000). 

However, I selected 1000 points because of the wide ranges observed in the data of the 

local site conditions (e.g., to ensure that at least 10 points were available at the extremes 

of the dataset).  
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3.7.2 Pearson’s correlation and multicollinearity 

 

Pearson’s correlation test is a classic measure of linear correlation between 

variables that is widely used in biogeography (e.g., Berendse et al. 2001): 

r = 
  
  YX

n

i ii

SSn
YYXX

1
1



   

where X and Y are independent variables with corresponding means  YX ,  and 

 

 
 

Figure 3-12:  A snapshot of 334 sample points at treeline with the 2003 aerial 
photograph in the background. 
 

standard deviations (SX, SY). This test is commonly applied before performing logistic 

regression to determine if there is multicollinearity among the independent variables that 
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may compromise results. It is inappropriate to use traditional stepwise logistic regression 

if specific Pearson’s correlation thresholds are exceeded. Hosmer and Lemeshow (2000) 

recommend that no two independent variables exceed the 0.7 threshold, but others (e.g., 

Hessl & Baker 1997) consider 0.5 to be overly correlated. Independent variables were 

subjected to Pearson’s correlation test to examine the data for multicollinearity. Several 

variables were strongly correlated when extracting a stratified random sample of 250 

points (Table 3-1). 

 

3.7.3 Traditional logistic regression (forward and backward) 

 

 I used SPSS v.12.0.1 for Windows (2004) to perform traditional binomial 

stepwise logistic regression and test the null hypothesis that tree establishment patterns 

were not related to local site conditions. I selected this approach because it is widely 

used, the dependent variable is dichotomous, and it has less stringent assumptions in 

terms of normally distributed variables, homoscedasticity, and linearity between the 

dependent and independent variables (Hosmer & Lemeshow 2000). Both backward 

(variables removed one at a time) and forward (variables added one at a time) logistic 

regression were used to analyze the data and determine what independent variables were 

most important in controlling tree establishment patterns. I chose to implement both 

because they have been known to provide contradictory rankings and having consistent 

results between both approaches lends more credence to the rankings (Kupfer et al. 

2008). The following equation describes the basic logistic regression approach: 
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Y = ln [p / (1-p)] = ß0 + (ß1X2) + (ß2X2) + (ß3X3)…(ßnXn) 

where ln is the natural logarithm, p is the probability of obtaining a positive response, ß0, 

ß1,  ß2, …ßn are parameters estimated from observed data, and X1, X2, X3,…, Xn are 

independent variables. The potential inclusion of variables at each step was determined 

using the stepwise likelihood ratio method with a level of P = 0.05 for entry and P = 

0.10 for removal. 

Scatterplots were assessed to determine whether independent variables were 

related linearly to the logit of the dependent variable. The square root, quadratic, and 

logarithmic transformations were used to diminish the effects of nonlinearity and also to 

lower skewness and kurtosis values near 0.5. The Wald statistic was used to rank the 

importance of independent variables (Agresti 1996). This statistic tests the significance 

of the model coefficient and is calculated by dividing the model coefficient by the 

corresponding standard error and squaring the result. The Wald statistic is superior to the 

beta coefficient in identifying important independent variables because it is not as 

susceptible to extreme values in the independent or dependent data (Cumming 2000). 

The most important independent variables correspond with larger Wald values. 

 

3.7.4 Logistic regression in the hierarchical partitioning framework 

 

Chevan and Sutherland (1991) discussed a logistic regression method based on 

the mathematical hierarchical theorem. Later, Mac Nally (1996, 2000, 2002) promoted 
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Table 3-1:  Resulting Pearson correlation coefficients (top line of each pair) and 
significance values (bottom line of each pair) between the independent variables used in 
the regression analyses. According to some scholars, correlations beyond 0.7 are strong 
and capable of introducing errors into traditional regressions. Others argue that those 
beyond 0.5 are too strong. 

 

the potential contributions of such an approach in ecological research and introduced it 

in the statistical package R. Hierarchical partitioning calculates incremental 

improvements of traditional regression models by incorporating a given variable and 

averaging its effects throughout all possible combinations with other variables (Mac 

 Elevation 
Proximity 
to 1970 
Trees 

Direction 
from 1970 

Trees 

Slope 
Aspect 

Slope 
Angle 

Snow 
Potential 

Erosion   
Potential 

Wetness 
Potential 

Elevation 
1 ------ ------ ------ ------ ------ ------ ------ 

0.000 ------ ------ ------ ------ ------ ------ ------ 

Proximity 
to 1970 
Trees 

0.696 1 ------ ------ ------ ------ ------ ------ 

0.000 0.000 ------ ------ ------ ------ ------ ------ 

Direction 
from 1970 

Trees 

0.207 0.261 1 ------ ------ ------ ------ ------ 

0.000 0.000 0.000 ------ ------ ------ ------ ------ 

Slope 
Aspect 

0.224 0.280 0.358 1 ------ ------ ------ ------ 

0.000 0.000 0.000 0.000 ------ ------ ------ ------ 

Slope 
Angle 

-0.408 -0.468 0.019 0.122 1 ------ ------ ------ 

0.000 0.000 0.275 0.000 0.000 ------ ------ ------ 

Snow 
Potential 

-0.216 -0.196 0.129 0.017 0.194 1 ------ ------ 

0.000 0.000 0.000 0.295 0.000 0.000 ------ ------ 

Erosion 
Potential 

-0.139 -0.098 0.344 0.248 0.318 0.424 1 ------ 

0.000 0.001 0.000 0.000 0.000 0.000 0.000 ------ 

Wetness 
Potential 

0.107 0.219 0.287 0.173 -0.204 0.289 0.666 1 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Nally 1996). For example, consider the effects of some independent variable (A) on all 

first-order, second-order, third-order, and higher-order models (as discussed by Mac 

Nally 1996). If A has a significant independent influence, model fits for any of the first- 

and higher-order models will be better when A is included. In hierarchical partitioning, 

all variables in regression models are thoroughly and consistently assessed in this 

manner. Such an approach has been posited to mitigate the effects of multicollinearity 

and provide a more reliable ranking of independent variables (Mac Nally 1996). 

I executed this approach on the transformed data (i.e., from the traditional 

logistic regression section) using R 2.4.1 (2006) to test the null hypothesis that tree 

establishment patterns were not related to local site conditions. The randomization 

method was also employed to calculate Z-values and gauge whether or not each of the 

respective independent variables were statistically significant (Mac Nally 2002).  

 

3.8 Modeling spatial autocorrelation 

 

Failure to account for spatial autocorrelation can confound statistical analyses of 

ecological phenomena and may result in the erroneous identification of important 

independent variables and their relative rankings (Griffith & Peres-Neto 2006). To 

address spatial autocorrelation, I used R 2.4.1 (2006) to implement a modification of the 

principal coordinates of neighbour matrices approach based on eigenvectors and distance 

(Dray et al. 2006). I selected the Delaunay triangulation to generate the spatial weights 

matrix based off data-driven Akaike information criterion rankings. The weighted matrix 
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is an indicator of the spatial relationship between the sample points. Boris Delaunay 

(1934) invented the triangulation, which tries to form a circumcircle of a triangle from 

three points that do not contain intersecting vertices beyond the points used to create it 

(Figure 3-13). Results consisted of positive (i.e., similar neighbors clustered in space) 

and negative (i.e., dissimilar neighbors) eigenvalues in continuous data formats that 

corresponded well with the traditional Moran’s I measure of spatial autocorrelation. I 

included the data as an additional independent variable in the regression analyses 

(Griffith & Peres-Neto 2006).  

 
 
Figure 3-13:  An example of the Delaunay triangulation calculated from a random 
sample of 500 points at the study site. 
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3.9 Ground verification and accuracy assessments 

 

Field verification of changes identified from remotely sensed data is necessary to 

bolster the degree of confidence in the resulting classifications and analyses (e.g., Stueve 

et al. 2007). A crucial consideration for verifying the images are the number of ground 

truth points obtained from the field that should be incorporated in the assessment. 

Fitzpatrick-Lins’ binomial probability theory was utilized for this study (c.f. Jensen, 

2005). It suggests approximately 80 ground verification points should be acquired from 

the study site. I marked 60 ground verification points with a WAAS corrected global 

positioning system and 23 additional points with an uncorrected global positioning 

system (due to obstructions from large trees). Visual confirmation of relatively stable 

points of rock and ‘old’ trees were identified in the field (26 patches of rock and 23 

patches of ‘old’ trees). Additionally, 15 tree ring cores and 19 cross sections were 

collected from widely distributed areas identified as experiencing tree establishment on 

photography. I subjected the tree ring simples to standard processing before counting the 

tree rings and determining tree ages (Fritts & Swetnam 1989). 

I used the verification points to assess the accuracy of three different 

classifications including minimum distance, maximum likelihood, and isodata (Table 3-

2). The first two are supervised classifications and the latter is an unsupervised 

classification. Minimum distance provided superior results and thus I used this approach 

in all classification procedures (discussed in 3.3). 
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Table 3-2:  Classification accuracies for three different approaches. 
 
 

1970 CORONA Supervised Minimum Distance Classification

Total Omissions Commissions Map Accuracy 
Trees Treeless

Trees 34 2 36 5.6% 19.4% 79.1%
Treeless 7 40 47 14.9% 4.3% 81.6%

Total 41 42 83

Overall Classification Accuracy = 89.2%

2003 DOQQ Supervised Minimum Distance Classification

Total Omissions Commissions Map Accuracy 
Trees Treeless

Trees 57 3 60 5.0% 6.7% 89.1%
Treeless 4 19 23 17.4% 13.0% 73.1%

Total 61 22 83

Overall Classification Accuracy = 91.6%

1970 CORONA Supervised Maximum Likelihood Classification

Total Omissions Commissions Map Accuracy 
Trees Treeless

Trees 23 13 36 36.1% 27.8% 50.0%
Treeless 10 37 47 21.3% 27.7% 61.7%

Total 33 50 83

Overall Classification Accuracy = 72.3%

2003 DOQQ Supervised Maximum Likelihood Classification

Total Omissions Commissions Map Accuracy 
Trees Treeless

Trees 45 15 60 25.0% 16.7% 64.3%
Treeless 10 13 23 43.5% 65.2% 34.2%

Total 55 28 83

Overall Classification Accuracy = 69.9%

1970 CORONA Unsupervised Isodata Classification

Total Omissions Commissions Map Accuracy 
Trees Treeless

Trees 24 12 36 33.3% 25.0% 53.3%
Treeless 9 38 47 19.1% 25.5% 64.4%

Total 33 50 83

Overall Classification Accuracy = 74.7%

2003 DOQQ Unsupervised Isodata Classification

Total Omissions Commissions Map Accuracy 
Trees Treeless

Trees 46 14 60 23.3% 20.0% 63.9%
Treeless 12 11 23 52.2% 60.9% 29.7%

Total 58 25 83

Overall Classification Accuracy = 68.7%
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All three approaches produced somewhat reasonable results, which most likely 

can be attributed to the relatively small spatial extent of the study area and high spectral 

contrast between the subalpine forest and alpine tundra (Bai et al. 2005). Maximum 

likelihood and isodata often produce better results, but these approaches also assume that 

the spectral response of each class is Gaussian (Jensen 2005). In this case, the spectral 

responses of the classes exhibited some skewness (3-8) and kurtosis (6-9), which 

probably explains why the nonparametric minimum distance approach was superior. 
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CHAPTER IV 

ASSESSING POST-FIRE TREE ESTABLISHMENT AT ALPINE TREELINE:  A 

HIERARCHICAL PARTITIONING APPROACH 

 

4.1 Introduction 

 

Alpine treeline (treeline) is the transition zone or ecotone between closed forest 

and open alpine tundra. It represents the uppermost altitudinal limit attained by trees in 

mountainous regions (Resler 2006). The structural and compositional characteristics of 

treeline vary widely across the globe (Holtmeier 2003). The transition may be abrupt 

(e.g., 10 m or less) or gradual (e.g., 100 m or more) and may or may not include 

krummholz (Holtmeier 2003). When krummholz is present, it may persist as a 

climatically-stunted, asymmetrical form of upright arboreal species found below treeline 

or as an entirely different genetically-determined species of tree (e.g., Pinus mugo 

prostrate and Alnus viridis) (Holtmeier 1981). In some cases, treeline may span several 

hundred meters of a patchy mosaic of arboreal (both upright and krummholz forms) and 

herbaceous vegetation, such as the subalpine parkland common throughout the Pacific 

Northwest (Stueve et al. 2009). 

Treeline is one of the most conspicuous landscapes in the world and has been 

observed and/or studied for over 200 years in the literature (e.g., von Humboldt 1807; 

Greene 1872; Wilcox 1899; Jobe 1915; Griggs 1938; Daubenmire 1954; Tranquillini 

1979; Warlde 1985; Kullman 1987; Brown 1994b; Butler et al. 1994; Malanson 1997; 
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Holtmeier 2003; Cairns & Moen 2004; Camarero & Gutiérrez 2004; Resler et al. 2005, 

Stueve et al. 2009). Many of the earliest references to treeline (early 20th century and 

before) mostly noted its presence during mapping activities or geographical exploration. 

Other studies dating from the 19th to mid-20th centuries were more scientific and aimed 

to explain the presence of treeline at specific elevations (c.f. Körner 1998). Temperature 

was posited to control treeline elevations in many of these studies (e.g., treeline seemed 

to correspond to mean air temperature of about 10°C in the warmest month) (c.f. Körner 

1998). Accordingly, several scholars later hypothesized that treeline may serve as a 

useful indicator of climate change (e.g., Kullman 1995; Grace et al. 2002). Others 

remained skeptical, asserting that multiple abiotic and biotic factors interact at various 

scales to influence treeline elevations in nonlinear ways that are challenging to predict 

(Holtmeier & Broll 2005; Resler 2006; Malanson et al. 2007). Holtmeier and Broll 

(2005) argued that in order to provide a climatic context and better understand treeline 

dynamics, the complex interactions between abiotic and biotic processes at treeline must 

be explained. 

To address this challenge, biogeographers and ecologists have regularly applied 

various statistical approaches that examine the relationships between treeline and 

multiple abiotic and/or biotic factors. Traditional stepwise logistic regression has often 

been used outright with minimal alteration of the data (e.g., Driese et al. 1997; Dirnböck 

et al. 2003; Bader & Ruijten 2008). Logistic regression is popular because nominal (e.g., 

trees versus no trees) or ordinal (e.g., trees, meadows, bare rock) classifications of 

vegetation are regularly employed in treeline environments and examined in relation to 
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continuous geophysical data derived from digital elevation models (Brown 1994b). 

Factor analysis (e.g., Brown 1994b) and/or principal components analysis have 

occasionally been used in concert with logistic regression to group independent variables 

into correlated sets that are independent of each other (e.g., Brown 1994b; Hessl & 

Baker 1997). Stepwise multiple regression is also used (e.g., Walsh et al. 1994), but 

much less frequently than logistic regression because it requires the treeline 

classification to comprise continuous data. The top 50 hits of a Google Scholar search 

using the terms 'alpine treeline' and 'regression' indicate logistic regression is preferred 

by an 8 to 2 margin over both multiple regression and principal components and/or 

factor analysis. Other more complex modeling approaches have also been used (e.g., 

Cairns 2001) to a lesser extent, but we focus on logistic regression in this paper. 

In some instances, biogeographers and ecologists may seek to develop the single 

best explanatory logistic regression model while at other times they try to determine the 

relative importance of independent variables (e.g., elevation, slope angle and aspect, 

disturbances, microsite characteristics, and proximity to previously existing trees) in 

influencing the spatial distribution of trees. However, explanatory independent variables 

tend to be highly correlated in many treeline studies (Brown 1994b; Stueve et al. 2009) 

and have the potential to produce spurious results deriving from multicollinearity 

(Chevan & Sutherland 1991; Mac Nally 1996).  

For example, independent variables that are found to be statistically significant 

may not influence the spatial distribution of a species/functional group or may merely 

exert a minor statistically insignificant influence, but be erroneously ranked or included 
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in the ‘best’ model because they are correlated with one or more causal variables (Mac 

Nally 1996; Stueve et al. 2009). Factor analysis and principal components analysis 

mitigate the effects of multicollinearity and are useful in developing logistic models 

(Brown 1994b). However, teasing out the differences between the independent variables 

and indentifying the most important predictors using either approach can be problematic 

(Bader & Ruijten 2008). In this vein, traditional stepwise logistic regression approaches 

have been used independently to rank the importance of predictor variables, but the 

order of the rankings is susceptible to the influences of multicollinearity and this may 

produce spurious results (Brown 1994b; Mac Nally 1996; Stueve et al. 2009). 

Susceptibility to multicollinearity is especially relevant at treeline because both 

abiotic and biotic independent variables tend to be highly correlated. Under these 

conditions, Pearson correlation coefficients often approach or exceed the set threshold 

(i.e., 0.7) used when considering the reliability of inferences gained from traditional 

logistic regression techniques (Brown 1994b; Stueve et al. 2009). This problem is 

particularly evident when considering influences on spatial patterns of tree establishment 

from parameters such as the distance to existing trees and ground elevation. In many 

cases, tree establishment occurs near existing trees at relatively low elevations. Variables 

built around these influences (i.e., proximity to previously existing trees, and elevation) 

are often strongly correlated and exert similar directional influences on tree 

establishment. This makes it difficult to determine if it is the low elevation and/or the 

proximity to a previously existing tree that has the greater influence on tree 

establishment. If we can unambiguously explain relationships like this our understanding 
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of tree establishment will be improved, and biogeographers and ecologists will be in a 

better position to test the validity of the traditional assumption that treelines are in 

equilibrium with their physical environment:  a crucial assumption when developing and 

applying static predictive models (Brown 1994b; Miller & Franklin 2002).  

Identifying important predictors of tree establishment at treeline is of paramount 

importance in enhancing our understanding of treeline dynamics, and to achieve this a 

better understanding of the regression approaches that are used is required. 

Consequently, the aim of this research is to demonstrate the utility of logistic regression 

within a hierarchical partitioning framework as a useful tool for ranking the importance 

of independent variables and improving interpretations of tree establishment at treeline 

(i.e., versus traditional regression). To do this, we used traditional stepwise logistic 

regression and logistic regression within a hierarchical partitioning framework to 

produce sets of statistical rankings of spatially-referenced abiotic and biotic independent 

variables correlated with mapped locations of trees that established after a fire in a 

treeline area in Mount Rainier National Park.  

 

4.2 Methods 

 

4.2.1 Study site 

 

Mount Rainier National Park is located about 100 km southeast of Seattle, WA 

on the western slope of the Cascade Range. Established on March 2, 1899, it is the fifth 
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oldest national park in the U.S.A. and has been written about extensively (e.g., 

Hemstrom & Franklin 1982; Rochefort & Peterson 1996; Stueve et al. 2009). Within the 

park, treeline approximately varies from 1500 -2200 m a.s.l. This study is located at a 

treeline site which was burnt by a wildfire in 1930 on the western slope of Mount 

Rainier, where altitude ranges from approximately 800-2000 m a.s.l. The trees we have 

mapped in the study became established after the fire and occur between the 1930 forest 

line (i.e., highest elevation of closed canopy subalpine forest) and the upper tree limit of 

2003 (i.e., highest elevation attained by trees, including krummholz). Downed boles 

observed in the field and on the 2003 aerial photography helped confirm these 

boundaries. Further information about the site is available in Stueve et al. (2009). 

 

4.2.2 Data acquisition and processing 

 

Panchromatic KH-4B CORONA photography (~1.9 m spatial resolution) from 

Mission 1110 in 1970 and a 2003 USGS DOQQ (1.0 m spatial resolution) were used to 

derive the variables used in this analysis. The processing of these data is described in 

Stueve et al. (2009). A binary classification of pixels with and without trees was 

generated for each image. Pixels that were treeless between 1970 and 2003, and pixels in 

which trees had established themselves after 1970 and still persisted in 2003 were 

identified. We digitally clipped these pixels from those that contained trees in 1970 and 

2003, and those that contained trees in 1970 but became treeless in 2003 (< 0.5% of all 

pixels). The clipped pixels served as the dependent variable in the regression analyses.  
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Independent variables thought to be important in controlling treeline were 

derived from a LIDAR-based DEM at a spatial resolution of 1.8 m (Terrapoint 2003), 

ancillary climate data, pixels identified as having trees in 1970 relative to those pixels in 

which trees became established after 1970, and a spatially-weighted matrix representing 

spatial autocorrelation (Stueve et al. 2009). The DEM is a bare-ground model (tree tops 

removed) that was processed before elevation values were extracted along with 

derivations of slope aspect and angle that considered all eight surrounding pixels in a 

3x3 window. Potential depth of winter snowpack was derived from southwesterly 

prevailing winds and topographic variability modeled with the DEM (e.g., windward and 

convex slopes are weighted with lower potential snowpack compared to leeward and 

concave slopes). The descriptor ’potential’ is used for this, and other parameters, 

because it is not a direct measure of snow depth. Rather, it represents the relative 

differences in snow depth across the landscape given the amount of snow that would 

have fallen in a year. The ranges of values for all ‘potential’ indices were scaled to 

between -2.5 and 2.5 with negative values representing lower potential and positive 

values higher potential. Topographic variability modeled with the DEM was also used to 

derive the wetness potential (e.g., convex slopes with a limited upslope catchment area 

are weighted with a lower wetness potential compared to concave depressions with large 

upslope catchment areas) and erosion potential (e.g., ravines and streams with large 

upslope catchment areas are the most prone to erosion). Euclidean distance was used to 

measure proximity to 1970 trees. The centroids of pixels that were classified as ‘trees’ in 

1970 served as the starting point for distance calculations. Only those pixels that were 



 

 

98

 

treeless in 1970 and adjacent to pixels classified as ‘trees’ served as starting points 

(Figure 4-1).  

Direction from 1970 trees was derived from the same pixels as proximity to 

existing trees (i.e., pixels classified as ‘treeless’ in 1970 were identified as being on the 

N, NE, E, SE, S, SW, W, or NW side of trees that existed in 1970) (Figure 4-1). Spatial 

autocorrelation was modeled as the final independent variable using the Delaunay 

triangulation, which was selected via data-driven Akaike information criterion rankings 

(Dray et al. 2006). Before performing the regressions, we used a stratified random 

sampling scheme to extract 1000 points from the data in order to collect a representative 

sample from the wide range of independent variables to ensure statistical rigor. 

Spatial preferences for post-1970 tree establishment have been reported by Stueve et al. 

(2009):  these are close proximity (< 50 m) to 1970 trees, at elevations between 1250-

1350 m, on moderate (40-60°) slopes, in sheltered (W, NW, N, NE, and E) aspects, in 

relatively xeric conditions, on protected sides of 1970 trees (NW, N, NE), and at sites 

with intermediate snowpack.  

 

4.2.3 Statistical Analyses  

 

We applied four different statistical tests to the data. The Pearson correlation test 

was used to examine the independent variables for multicollinearity. Backward and 

forward stepwise logistic regression (two traditional approaches) and logistic regression 
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Figure 4-1:  Raster delineations representing ‘proximity to 1970 trees’ (bottom) and 
‘direction from 1970 trees’ (top). 1970 trees are denoted by dark green. 
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within the hierarchical partitioning framework (the alternative approach) were used to 

rank the importance of the independent variables. 

 

4.2.4 Pearson’s test 

 

Pearson’s correlation test is a classic measure of linear correlation between 

variables that is widely used in biogeography (e.g., Berendse et al. 2001): 

r = 
  
  YX

n

i ii

SSn
YYXX

1
1



   

where X and Y are independent variables with corresponding means  YX ,  and standard 

deviations (SX, SY). This test is commonly applied before performing logistic regression 

to determine if there is multicollinearity among the independent variables that may 

compromise results. It is inappropriate to use traditional stepwise logistic regression if 

specific Pearson’s correlation thresholds are exceeded. Hosmer and Lemeshow (2000) 

recommend that no two independent variables exceed the 0.7 threshold, but others (e.g., 

Hessl & Baker 1997) consider 0.5 to be overly correlated.  

 

4.2.5 Traditional binomial logistic regression 

 

We used SPSS v.12.0.1 for Windows (2004) to perform traditional binomial 

stepwise logistic regression and test the null hypothesis that tree establishment patterns 

were not related to local site conditions. We selected this approach because it is widely 
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used, the dependent variable is dichotomous, and it has less stringent assumptions in 

terms of normally distributed variables, homoscedasticity, and linearity between the 

dependent and independent variables (Hosmer & Lemeshow 2000). Both backward 

(variables removed one at a time) and forward (variables added one at a time) logistic 

regression were used to analyze the data and determine what independent variables were 

most important in controlling tree establishment patterns. We chose to implement both 

because they have been known to provide contradictory rankings and having consistent 

results between both approaches lends more credence to the rankings (Kupfer et al. 

2008). The following equation describes the basic logistic regression approach: 

Y = ln [p / (1-p)] = ß0 + (ß1X2) + (ß2X2) + (ß3X3)…(ßnXn) 

where ln is the natural logarithm, p is the probability of obtaining a positive response, ß0, 

ß1,  ß2, …ßn are parameters estimated from observed data, and X1, X2, X3,…, Xn are 

independent variables. The potential inclusion of variables at each step was determined 

using the stepwise likelihood ratio method with a level of P = 0.05 for entry and P = 

0.10 for removal. 

 Scatterplots were assessed to determine whether independent variables were 

linearly related to the logit of the dependent variable. The square root, quadratic, and 

logarithmic transformations were used to diminish the effects of nonlinearity and also to 

lower skewness and kurtosis values near 0.5. We used the Wald statistic to rank the 

importance of independent variables and calculated confidence interval thresholds to 

determine whether rankings were statistically different (Agresti 1996). The Wald 

statistic tests the significance of the model coefficient and is calculated by dividing the 
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model coefficient by the corresponding standard error and squaring the result. The Wald 

statistic is superior to the beta coefficient in identifying important independent variables 

because it is not as susceptible to extreme values in the independent or dependent data 

(Cumming 2000). The most important independent variables correspond with larger 

Wald values. 

 

4.2.6 Binomial logistic regression within the hierarchical partitioning framework 

 

Chevan and Sutherland (1991) discussed a logistic regression method based on 

the mathematical hierarchical theorem. Later, Mac Nally (1996, 2000, 2002) promoted 

the potential contributions of such an approach in ecological research and introduced it 

in the statistical package R. Hierarchical partitioning calculates incremental 

improvements of traditional regression models by incorporating a given variable and 

averaging its effects throughout all possible combinations with other variables (Mac 

Nally 1996). For example, consider the effects of some independent variable (A) on all 

first-order, second-order, third-order, and higher-order models (as discussed by Mac 

Nally 1996). If A has a significant independent influence, model fits for any of the first- 

and higher-order models will be better when A is included. In hierarchical partitioning, 

all possible combinations of variables in regression models are thoroughly and 

consistently assessed in this manner. Such an approach has been posited to mitigate the 

effects of multicollinearity and provide a more reliable ranking of independent variables 

(Mac Nally 1996). 
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We executed this approach on the transformed data (i.e., from the traditional 

logistic regression section) using R 2.4.1 (2006) to test the null hypothesis that tree 

establishment patterns were not related to local site conditions. The randomization 

method was also employed to calculate Z-values, define upper and lower thresholds of 

confidence, and gauge whether or not each of the respective independent variables were 

statistically significant (Mac Nally 2002).   

 

4.3 Results 

 

The Pearson’s correlation test indicated that none of the independent variables 

exceeded the 0.7 threshold recommended by Hosmer and Lemeshow (2000) (Table 4-1). 

Two pairs of variables closely approached this threshold (proximity to 1970 trees and 

elevation, and wetness and erosion potentials) (Table 4-1). Consequently, these two pairs 

exceeded the more cautious interpretation of correlation coefficients where 0.5 is the 

threshold, signifying that multicollinearity may be problematic with traditional logistic 

regression. Slope angle was also moderately high (near 0.5) when considered as a pair 

with elevation and proximity to 1970 trees (Table 4-1). As a precaution, we performed 

two series of regressions. One included all independent variables; the second excluded 

all independent variables with correlation coefficients near and beyond the threshold of 

0.5 (i.e., excluding proximity to 1970 trees, elevation, and wetness potential).   

In terms of the logistic regressions, we were able to reject the general null 
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Table 4-1:  Pearson correlation coefficients (top line of each pair) and corresponding 
significance values (bottom line of each pair) between the independent variables used in 
the regression analyses. For some ecologists, a threshold beyond 0.7 is indicative of 
overly correlated variables. Others contend that those beyond 0.5 are strongly correlated, 
and my introduce errors with the implementation of traditional regressions. 

 

 
 
hypothesis in all cases and accept the alternative hypothesis that local site conditions 

were related to tree establishment patterns (i.e., they were not random). However, there 

were some discrepancies in the results. 

 

 

 Elevation 
Proximity 
to 1970 
Trees 

Direction 
from 1970 

Trees 

Slope 
Aspect 

Slope 
Angle 

Snow 
Potential 

Erosion   
Potential 

Wetness 
Potential 

Elevation 
1 ------ ------ ------ ------ ------ ------ ------ 

0.000 ------ ------ ------ ------ ------ ------ ------ 

Proximity 
to 1970 
Trees 

0.696 1 ------ ------ ------ ------ ------ ------ 

0.000 0.000 ------ ------ ------ ------ ------ ------ 

Direction 
from 1970 

Trees 

0.207 0.261 1 ------ ------ ------ ------ ------ 

0.000 0.000 0.000 ------ ------ ------ ------ ------ 

Slope 
Aspect 

0.224 0.280 0.358 1 ------ ------ ------ ------ 

0.000 0.000 0.000 0.000 ------ ------ ------ ------ 

Slope 
Angle 

-0.408 -0.468 0.019 0.122 1 ------ ------ ------ 

0.000 0.000 0.275 0.000 0.000 ------ ------ ------ 

Snow 
Potential 

-0.216 -0.196 0.129 0.017 0.194 1 ------ ------ 

0.000 0.000 0.000 0.295 0.000 0.000 ------ ------ 

Erosion 
Potential 

-0.139 -0.098 0.344 0.248 0.318 0.424 1 ------ 

0.000 0.001 0.000 0.000 0.000 0.000 0.000 ------ 

Wetness 
Potential 

0.107 0.219 0.287 0.173 -0.204 0.289 0.666 1 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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4.3.1 Regressions including all independent variables 

 

The Wald Statistic indicated that slope angle (~60) was clearly the most 

important independent variable when using either backward or forward logistic 

regression (Figure 4-2). Proximity to 1970 trees, erosion and wetness potentials, 

elevation, and slope aspect were also important contributors. Direction from 1970 trees 

and snow potential were not significant at < 0.01, and they were excluded from the 

relative rankings.   

Conversely, logistic regression within the hierarchical partitioning framework 

yielded results that were quite different than those from traditional regression. With this 

approach, we found the most important independently ranked predictor of tree 

establishment patterns was proximity to existing trees (~15%) (Figure 4-2). Elevation 

ranked a close second. Slope angle, slope aspect, wetness potential, direction from 1970 

trees, and snow potential were also significant independent variables. We excluded 

erosion potential from the relative rankings because it was not significant at < 0.01.  

 

4.3.2 Regressions excluding correlated (at > 0.5 threshold) independent variables 

 

 When excluding pairs of variables with coefficients near or > 0.5, the ranked 

order of importance for both backward and forward logistic regression was slope angle, 

slope aspect, and direction from 1970 trees (Table 4-2). The first three ranked variables 

from the alternative hierarchical regression approach were consistent with the traditional 
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regression approaches. The only difference with this regression approach was the 

inclusion of snow potential as an additional statistically significant variable (Table 4-2). 

Snow potential barely exceeded the < 0.01 threshold of statistical significance when 

applying the hierarchical regression approach, but was just below the threshold with the 

traditional regression approaches. Associated Wald statistics and the percent 

independent contributions were relatively low (i.e., < 27.5 and < 3.3 respectively) when 

compared to those that included all variables. The ranked order of variables in both the 

traditional and hierarchical regression approaches also corresponded with the relative 

rankings in the hierarchical regression approach that considered all of the independent 

variables (in descending order of importance these are slope angle, slope aspect, 

direction from 1970 trees, and snow potential are highlighted as important predictors) 

(Table 4-2 and Figure 4-2). 

 

4.4 Discussion 

 

A standard measure of confidence in the results of the application of a particular 

regression technique is how well it corresponds to other regression approaches applied to 

the same data set (e.g., Kupfer et al. 2008). If the order of importance of the variables, 

and the relative changes between the variables (e.g., linear versus exponential decrease 

in importance), differs between techniques; a researcher’s confidence in ranking the 

importance of independent variables is low, and questions arise about the interpretations 

of the data in the context of the research.  
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Figure 4-2:  Rankings of independent variables from backward stepwise (top), forward 
stepwise (middle), and hierarchical partitioning (bottom) logistic regressions. All 
variables were included in the regression analyses, but variables that were not significant 
at < 0.01 were excluded from the rankings. Upper and lower confidence intervals 
overlapped for erosion potential and wetness potential (top); wetness potential, direction 
from 1970 trees, and snow potential (bottom); slope angle and slope aspect (bottom); 
thus indicating no statistical difference between these respective rankings. 
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Table 4-2:  Ranked order of importance for all three regression approaches when 
considering only independent variables with Pearson correlation coefficients < 0.5. 
Variables not significant at < 0.01 were excluded from the rankings. 1 represents the 
Wald statistic and 2 the independent percent variance explained. Upper and lower 
confidence intervals overlapped for direction from 1970 trees and snow potential 
(Hierarchical), indicating no statistical difference for these rankings. 
 
 

Type of Logistic 

Regression 

Ranks of Independent 

Variables with Pearson 

Coefficients < 0.5 

Wald Statistic1 and % 

Variance Explained2 

Backward 

(1st) Slope Angle 

(2nd) Slope Aspect 

(3rd) Direction from 1970 Trees 

27.51 

18.91 

11.71 

Forward 

(1st) Slope Angle 

(2nd) Slope Aspect 

(3rd) Direction from 1970 Trees 

27.71 

16.81 

14.61 

Hierarchical 

Partitioning 

(1st) Slope Angle 

(2nd) Slope Aspect 

(3rd) Direction from 1970 Trees 

(4th) Snow Potential 

3.32 

2.22 

0.82 

0.62 

 
 

Our analyses indicated that even moderately high correlations (e.g., near and > 

0.5) between independent variables introduced uncertainty in relative rankings when 

employing logistic regression to all variables. Discrepancies in the ranked order of 

independent variables between the traditional and hierarchical regression approaches is 

the first indicator that multicollinearity between the independent variables may be 

introducing uncertainty in the analyses. However, it is difficult to conclude which 

regression approach is producing the ‘correct’ result by simply comparing the rankings.  
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When examining the results presented above more closely, the approximately 

linear decrease from the most importantly ranked independent variable to the least 

important introduces some skepticism about the traditional regression approaches 

(Figure 4-2). This trend indicates that one or more of the most important independent 

variables may be distributing their explanatory influence with other variables that they 

are correlated with in the sequence, thereby increasing the significance of the lower 

ranked variables (e.g., Lagos et al. 2008). Conversely, the ranked order of independent 

variables evident with the hierarchical regression approach exhibited an exponential 

decrease in importance. This suggests that the explanatory influences of overly 

correlated variables are not being allocated amongst other variables and that proximity to 

1970 trees and elevation are clearly the two most important independent variables.  

Additional doubt is cast on the traditional regression approaches when only 

poorly correlated independent variables (i.e., with Pearson correlation coefficients < 0.5) 

are used in the regression analyses; providing further evidence that multicollinearity is 

introducing spurious results with this approach. Consistency between the rankings of all 

three regression approaches (Table 4-2) provides a high level of confidence in the order 

of these rankings (Table 4-2). However, some crucial differences are evident when 

comparing these results to the regression analyses that included all independent 

variables.  

Despite the inclusion of three highly correlated independent variables (i.e., 

proximity to 1970 trees, elevation, and wetness potential) in the hierarchical regression 

approach that considered all independent variables, the relative importance of the 
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variables matched the ranked order of the three different regression approaches that 

included the poorly correlated variables. For the poorly correlated variables, slope angle, 

slope aspect, and direction from 1970 trees were statistically significant. The relative 

importance of these independent variables remained the same in the hierarchical 

regression approach that included all independent variables. Conversely, only slope 

angle and aspect were statistically significant when we applied the traditional regression 

approaches to all independent variables. More importantly, values for the Wald statistic 

are comparatively low and values for the percent independent contributions are similar 

when comparing the results of poorly correlated variables with all variables (Table 4-2). 

For example, the Wald statistic for slope angle is near 27 (poorly correlated variables) 

but it increases to nearly 60 when using all variables. Alternatively, the percent 

independent contribution for slope angle with the hierarchical regression approach is just 

above 3 (poorly correlated variables), which is only slightly higher than the result when 

using all variables. This trend strongly suggests that the ranked importance of slope 

angle and other independent variables are being influenced by multicollinearity between 

the independent variables.  

One additional piece of evidence reduced our confidence in the results of the 

traditional regression analyses that used all independent variables. Elevation is widely 

assumed to exert a significant influence on treeline dynamics at both disturbed and 

relatively undisturbed treelines (e.g., Shankman 1984; Körner 1998; Stueve et al. 2009). 

However, it was only marginally significant when traditional regression approaches were 
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used. This again suggests that multicollinearity between the independent variables may 

be introducing uncertainty in the rankings. 

We remain skeptical about the results provided by the traditional logistic 

regression analyses when all of the independent variables were used. An expanding body 

of literature continues to caution against using the traditional regression approach for 

many reasons (James & McCulloch 1990; Whittingham et al. 2006), but particularly 

when even moderate degrees of multicollinearity exist amongst the independent 

variables (Mac Nally 2000). This is the case with this dataset. Some biogeographers and 

ecologists even question the validity of previously published research that employs such 

techniques (e.g., Whittingham et al. 2006). Unlike traditional logistic regression, 

hierarchical partitioning allows all combinations of independent variables to be 

considered and reduces the level of uncertainty in their relative rankings. This approach 

may lend more credence to future treeline studies and enhance the theoretical 

development of treeline ecology. 

 

4.5 Conclusions 

 

Biogeographers and ecologists examining treeline dynamics typically utilize the 

relative rankings of statistical analyses to develop the structure and corresponding 

theoretical discussions in their research papers. The most important predictors are 

regularly used to lend support to hypotheses and, ultimately, develop theory. However, 

statistical approaches are constantly changing, prone to misuse, and susceptible to the 



 

 

112

 

introduction of questionable levels of uncertainty (James & McCulloch 1990; Stephens 

et al. 2007). Our comparative analysis unequivocally demonstrates the potential for 

uncertainty and decreased confidence in the rankings provided by traditional regressions.  

Selecting the correct regression approach for biogeographic and ecological 

research is crucial because the resulting analysis has the potential to sway research 

discussions and, ultimately, the theoretical advances emanating from research. If this had 

been a relatively undisturbed treeline, the results from the hierarchical regression 

approach may have stimulated a discussion challenging assumptions of equilibrium in 

treeline environments because of the dominant influence of the proximity to existing 

trees on establishment patterns of new trees. Conversely, the traditional regression 

approaches would have reinforced commonly held assumptions. Multicollinearity 

between independent variables is and will continue to be a serious concern in treeline 

studies. We assert that logistic regression within the hierarchical partitioning framework 

should at the very least complement, if not supplant, traditional logistic regression in 

future tree establishment studies in similar environments. If traditional logistical 

regression is used, biogeographers and ecologists must ensure that only weakly 

correlated independent variables are included if their results are to be meaningful.   
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CHAPTER V 

POST-FIRE TREE ESTABLISHMENT PATTERNS AT THE ALPINE 

TREELINE ECOTONE:  MOUNT RAINIER NATIONAL PARK, 

WASHINGTON, USA* 

 

5.1 Introduction 

 

 The alpine treeline ecotone (treeline) exhibits one of the most striking transitional 

physiognomic landscapes, which has garnered attention from vegetation scientists 

interested in assessing the floristic impacts of climate change (Walther 2003). Treelines 

often display remarkable variability in structure and composition between different 

regions, thus contributing to a wide range of definitions (Holtmeier 2003). Simply stated, 

the treeline demarcates the boundary between closed forests at low elevations and the 

alpine tundra at high elevations. In the Pacific Northwest, this boundary is characterized 

by a broad ecotone extending from closed canopy forest through subalpine parklands, to 

the scrub line or upper limit of trees (Franklin & Dyrness 1988). The subalpine parkland  

 
____________ 
* Reprinted with permission from “Post-fire tree establishment patterns at the alpine 

treeline ecotone:  Mount Rainier National Park, Washington, USA” by Kirk M. Stueve, 

Dawna L. Cerney, Regina M. Rochefort, and Laurie L. Kurth, 2009. Journal of 

Vegetation Science, vol. 20, pp. 107-120, Copyright 2009 by International Association 

for Vegetation Science, John Wiley & Sons, Inc. (Appendix A). 
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is comprised of a mosaic of tree clusters and herbaceous vegetation, often extending 

over an elevation gradient of 300-400 m. The upper limit of this zone is variable and 

may be composed of krummholz (German for short crooked trees) or upright arboreal 

vegetation.  

 The traditional paradigm contends that temperature controls altitudinal limits of 

treelines and that observed upslope advance is the most likely response to climatic 

warming (cf. Daniels & Veblen 2003). However, others caution that disturbances 

(Daniels & Veblen 2003; Cairns & Moen 2004) and variability of tree responses to local 

site conditions (Miller & Halpern 1998; Holtmeier & Broll 2005) may confound 

interpretations, making any direct connections to climate tenuous. Reports of relatively 

stable treelines over the last 50 years warrant these concerns (e.g., Cuevas 2002; Klasner 

& Fagre 2002). The paucity of known relationships between disturbance events, climate, 

local site conditions, and altitudinal limits of treelines necessitates additional research to 

place observed treeline positions in a climatic context (Daniels & Veblen 2003; 

Holtmeier & Broll 2005).  

 Many treeline studies are intentionally executed at relatively undisturbed sites in 

an attempt to correlate results with climatic fluctuations and thus avoid what is perceived 

to be confounding influences from disturbances (e.g., Cuevas 2002). We assert that 

disturbed treelines are equally useful to study, given that upslope advance of treelines is 

often impeded by local site conditions, despite favorable climatic influences, and that 

some treelines are relicts of past climates (Holtmeier 2003; Lingua et al. 2008). Local 

site conditions that structure establishment patterns (i.e., spatial arrangement of newly 
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established trees) at disturbed treelines may resemble those at relatively undisturbed 

sites. Thus, studying both can contribute to a better understanding of factors controlling 

treeline.  

Fire is an important disturbance agent capable of destroying existing trees and 

depressing the altitudinal limits of treelines (Wilson & Agnew 1992; Noble 1993). Many 

studies have utilized field plots and dendroecology at local scales to assess treeline 

recovery after a fire event. Bollinger (1973), for instance, analyzed tree rings from the 

Colorado Front Range and concluded that fire suppresses treelines to new climatically 

controlled positions where recently established herbaceous cover inhibits treeline 

recovery. In the same study area, Peet (1981) argued that fire and climate cause treelines 

to exist in dynamic equilibrium, whereby treelines recover slowly after a fire event, with 

the highest rates of establishment occurring uniformly near existing trees. He predicted 

future fires would prevent treelines from reaching altitudinal limits controlled by 

climate. Shankman (1984) demonstrated that the Colorado Front Range treelines slowly 

established upslope after a fire disturbance, with the greatest recovery rates occurring at 

low elevations and in close proximity to existing trees. He posited that treelines could 

recover to their original altitudinal limits gradually and in a uniform manner, provided 

that there are no additional disturbances.  

 Additional studies have illustrated the importance of local site conditions. Agee 

& Smith (1984) determined that close proximity to patches of surviving trees and lack of 

deep snow cover were directly related to the highest rates of establishment after fire in 

the Olympic Mountains, Washington. In the Colorado Front Range, Shankman & Daly 
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(1988) determined that topographically sheltered sites exhibited high rates of 

establishment after fire and predicted that the treeline would return to its pre-disturbed 

altitudinal position in a patchy manner. They also noted that a few topographically 

exposed sites having xerophytic tree species experienced increased rates of 

establishment. Noble (1993) developed raster-based models depicting interactions 

between fire disturbance, climate, and subsequent establishment at the treeline. He 

proposed that up-slope treeline advance after fire would be episodic and exhibit 

heterogeneous establishment patterns.  

 Clarifying the importance of local site conditions in structuring establishment 

patterns at the treeline requires the use of a complex landscape ecological approach 

(Holtmeier 2003). We used satellite imagery, aerial photography, digital terrain data, and 

ancillary climate data in a GIS environment to explain landscape-scale patterns of 

establishment at a treeline disturbed by a 1930 fire in Mount Rainier National Park. We 

suspect that establishment and upslope advance of the forest line will be evident because 

climate has been generally favorable (i.e., warm and dry summers) throughout the 20th 

century, particularly on the western slopes of Mount Rainier (Rochefort & Peterson 

1996; Miller & Halpern 1998). Landscape heterogeneity will probably decrease near the 

forest line because of increased seed availability and less stressful environmental 

conditions. Whereas, we expect heterogeneity will increase beyond the forest line 

because of distance-and elevation-induced seed dispersal decay combined with a 

tendency for opportunistic establishment in an increasingly unfavorable environment. 

We also expect favorable locales to exist throughout the abiotic setting (e.g., slope 
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aspect, slope angle, moisture potential, snow potential, and erosion potential), and these 

will be important in structuring establishment patterns with increasing upslope distance 

from the forest line.  

 

5.2 Methods 

 

5.2.1 Study area 

 

Mount Rainier (4392 m) is a well-known volcano and the sister mountain to 

Mount Fuji in Japan. The volcano is nearly symmetrical and is located in the Cascade 

Range in Washington State, USA (Figure 5-1). Deep valleys and many steep ridges 

consisting of andesite scoured by Pleistocene and early Holocene glaciers dominate the 

landscape. Along with glacial drift (Crandell 1969), this has created complex 

topographic features with widely varying microclimates that often influence patterns of 

treelines (Rochefort & Peterson 1996). Climate in the region can be characterized as 

humid temperate, with the majority of seasonal precipitation falling as snow or rain 

during cool winters (Bailey 1995). Prevailing southwesterly winds create a pronounced 

orographic effect, resulting in heavy annual snowfall of 1000-2000 cm year 
-1 

on the 

western slopes of Mount Rainier (Hemstrom & Franklin 1982; Bailey 1995). Data from 

the Longmire weather station (elevation 842 m; Figure 5-1) (1978-2006) indicate aver-

age monthly temperature ranged from -0.31C in December to 16.01C in August, average 

annual precipitation (rain and melted snow) was 201.4 cm, and average annual snowfall 
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was 344.2 cm. 

 

 

Figure 5-1:  The study area as denoted by modified September 2000 Landsat ETM+ 
imagery and a shaded 10-m DEM. 
 

 Snowpack may persist well into August on the western slopes, thus shortening 

the growing season and contributing to relatively depressed treeline elevations (~1500 

m) compared to the eastern slopes (~2200 m) and other western USA treelines (Taylor 

1922). The patchy structure of the subalpine parkland is thought to be primarily 

maintained by the depth and duration of snowpack (Henderson 1974; Franklin & 

Dyrness 1988). Treeline conifers include Abies lasiocarpa, Chamaecyparis nootkatensis, 

and Tsuga mertensiana that predominate on the mesic western slopes of Mount Rainier. 
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Pinus albicaulis and Picea engelmannii are most common on the xeric eastern slopes 

(Rochefort & Peterson 1996). Pulses of increased establishment have been documented 

throughout the western half of the park during periods of warm dry summers (Franklin et 

al. 1971; Rochefort & Peterson 1996). 

 Fire is the predominant disturbance agent in the park, having affected over 90% 

of existing tree stands, including some treelines (Hemstrom & Franklin 1982). A 1930 

fire severely burned extensive areas of high-elevation forest and subalpine parkland 

(1500-1800 m) near the North Puyallup River, effectively lowering the existing treeline 

(Hemstrom & Franklin 1982). The aerial extent of the study area is defined by the 

northeast Mount Wow DOQQ, which was broadly impacted by the 1930 fire. The 

delineated area contains approximately 150 ha of burned treeline and captures part of the 

steep southwest-northeast elevation gradient from the North Puyallup River ( 800 m) to 

over-arching ridges ( 2000 m). The relatively xeric south and west slopes of the steepest 

ridges were severely burned to the krummholz (Hemstrom & Franklin 1982). Field 

surveillance in 2006 did not reveal any notable signs of other disturbances, such as ava-

lanches, insect infestations, or disease. 

 The burned area includes numerous spurs that dissect broad south-and west-

facing slopes containing complex microtopography, which can influence tree 

establishment patterns. Abies lasiocarpa is the most prevalent species near the forest line 

and at the upper limits of the krummholz. This species is a common invader after 

subalpine parkland fires, with a preference for mildly xeric sites that are topographically 

protected (Shearer 1984; Miller & Halpern 1998). Wind-driven seed dispersal may carry 
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seeds up to 80 m beyond sexually mature trees (2 20 years old) (Noble & Ronco 1978). 

Pinus albicaulis, Tsuga mertensiana, and Chamaecyparis nootkatensis are also present, 

but are much less abundant.  

 

5.2.2 Image preprocessing 

 

 The United States Geological Survey provided KH-4B satellite imagery from the 

CORONA mission 1110 for June 2, 1970. The imagery was from the aft camera and 

scanned at 7 mm, with a spatial resolution of 1.9 m (McDonald 1995). We orthorectified 

this imagery using a parametric model and nearest neighbor resampling (Jensen 2005), 

in concert with direct linear transformation and bundle adjustment to build the exterior 

orientation (Fiore 2001). A 1.0-m United States Geological Survey color DOQQ from 

21.07.2003 was used as the base aerial photography to collect ground control points 

(Davis & Wang 2003). We selected 42 control points that were evenly distributed 

throughout the 1970 imagery, with a root mean-square error of 0.495 (Jensen 2005). We 

used a LIDAR-based 1.8-m DEM (Terrapoint 2003) and KH-4B satellite specifications 

from declassified documents (McDonald 1995) to model the terrain and satellite position 

during orthorectification. Pre-processing procedures were employed to remove 

systematic errors from the DEM (Keqi et al. 2003; Rottensteiner et al. 2005) and the 

Minnaert correction was used to mitigate radiometric variability from the imagery, 

which is common in mountainous areas (Itten & Meyer 1993).  

 We implemented similar methods to georeference aerial photography from 1955, 
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but we could not model the position of the airplane because of insufficient metadata. 

Also, clouds obscured some key areas of establishment in the photography and some 

locales also appeared to be pixilated. Thus, the photography was not deemed suitable for 

detailed mapping procedures or inclusion in the landscape metrics and statistical 

analyses. However, the photography did allow a qualitative assessment of tree locations 

before 1970. 

 

5.2.3 Imagery classification, treeline identification, and change detection 

 

 We used supervised classifications tailored for high-spatial resolution 

panchromatic imagery to delineate trees in 1970 and 2003 (Bai et al. 2005). The green 

band of the DOQQ was separated for the classification analysis because the signal 

closely corresponds to the KH-4B panchromatic band. The green band of the DOQQ 

was resampled with the nearest neighbor method to match the 1.9-m spatial resolution of 

the KH-4B imagery (Jensen 2005). Next, we selected 10 000 training points for each 

classification category representing trees, shadows (from trees), and treeless areas. We 

implemented a minimum distance supervised classification with a fitted modal filter to 

assign shadows to either trees or treeless areas, resulting in a binary classification of 

trees versus treeless areas.  

Upper elevations (1500 m and above) in the KH-4B imagery displayed areas of 

residual snow-pack near some tree patches. We used 1969 aerial photography that lacked 

snowpack to verify whether any trees were obscured by snow, and the classification was 
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adjusted accordingly.  

The forest line was used to determine the lower boundary of the treeline and as 

an easily identifiable reference point for assessing treeline changes in terms of distance 

and elevation (Jobbagy & Jackson 2000). We visually identified and digitized the ap-

proximate position of the forest line in the 1955 imagery. Forest line in the classified 

1970 satellite imagery and 2003 aerial photography was identified by using a GIS to 

detect the highest altitudinal limits of pixels classified as trees that were contiguously 

connected to closed forest. We quantified maximum and minimum forest line changes in 

a GIS by assessing upslope measurements from each pixel in the 1970 forest line that 

were perpendicular to slope contours. Treeline was defined as all pixels 30 m below the 

1970 forest line and continuing to the highest elevations attained by pixels classified as 

trees in the 2003 aerial photography for inclusion in the landscape metrics and statistical 

analyses. Last, change detection was performed to identify areas of establishment at the 

treeline between 1970 and 2003.  

 

5.2.4 Landscape metrics 

 

 The spatial complexity and variability of patch mosaics, otherwise known as 

landscape heterogeneity, often signify the presence of multiple underlying ecological 

processes (Li & Reynolds 1994). Studying the spatial arrangement of patches in relation 

to other abiotic and biotic variables can provide valuable insight to potentially causative 

ecological mechanisms involved in structuring patch mosaics (Li & Reynolds 1994). To 
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characterize the influence of establishment on landscape heterogeneity, we used a robust 

landscape metric (new contagion index) and establishment rates in six different zones 

throughout the treeline (Li & Reynolds 1993). Elevated establishment rates combined 

with a more fragmented or heterogeneous landscape (i.e., low contagion value) in a 

particular zone indicate unique combinations of specific local site conditions that may be 

producing an environment more favorable for establishment.  

The first zone created (A) began 30 m down-slope from the 1970 forest line and 

proceeded 100 m upslope, closely following the curvature of the forest line. The 

remainder (B, C, D, E, and F) was comprised of five separate 100-m zones proceeding 

sequentially beyond zone A across the subalpine parkland and towards the alpine tundra. 

We selected 100-m zones because establishment rates beyond the 1970 forest line were 

sigmoidal, and each zone spanned a particular section of the sigmoidal curve. A new 

contagion index was calculated for each zone in the 1970 satellite imagery and 2003 

aerial photography. Contagion values from 1970 were subtracted from values in 2003. 

Negative and positive results indicate increased and decreased landscape heterogeneity, 

respectively. We also determined establishment rates in each zone by dividing the 

number of pixels classified as trees in 2003 by the number of pixels classified as treeless 

in the 1970, then multiplying by 100.  

 

5.2.5 Ground verification and accuracy assessment  

 

 We marked 60 ground verification points with a WAAS corrected global 
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positioning system and used them to confirm mapped areas of establishment in the 1970 

satellite imagery and 2003 aerial photography. Due to poor satellite reception, we 

marked 23 additional points with an uncorrected global positioning system in patches of 

old-growth trees. In the field, we visually identified 49 relatively stable points (i.e., 26 

barren patches of rocks that did not exhibit recent signs of disturbance or vegetative 

growth nearby, and 23 patches of large old-growth trees). To verify the ages of young 

trees mapped on the imagery (i.e., 33 years or less), 15 tree ring cores and 19 cross 

sections were collected from widely distributed areas (Jensen 2005) within or in close 

proximity to mapped patches of establishment. We subjected the tree samples to 

standard processing before counting tree rings and determining tree ages (Fritts & 

Swetnam 1989). The resulting classification accuracy was 89.2% for the 1970 points and 

91.6% for the 2003 points. 

 

5.2.6 Local site conditions 

 

Data for a suite of variables thought to influence establishment patterns were 

obtained from the processed DEM and ancillary climate data. Elevation values were 

extracted directly from the DEM. We calculated slope aspect and slope angle with a3x3 

window while considering all eight surrounding pixels (Burrough & McDonnell 1998). 

We calculated snow index values from curvature (Zevenbergen & Thorne 1987; Moore 

et al. 1991), southwesterly prevailing winds, elevation, slope aspect, and slope angle 

(Frank 1988; Burke et al. 1989; Brown 1994b). Topographic concavities and leeward 
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slope aspects at high elevations were weighted with the highest snow potential (i.e., 

likely to have deep season-shortening snowpack). We calculated wetness index values 

from the upslope catchment area and drainage patterns quantified in the DEM (Beven & 

Kirkby 1979; Brown 1994b). Enclosed depressions with large upslope moisture 

catchment areas were weighted with the highest wetness potential (i.e., likely to have 

moist and cool soils). We determined sediment erosive index values by considering 

calculations of slope angle and flow accumulation from the DEM (Moore et al. 1993). 

Steep convex landscape features and open concavities with large upslope moisture 

catchment areas (e.g., ravines and stream beds) were weighted with the highest erosion 

potential (i.e., surfaces likely to be regularly disturbed by erosive forces). Proximity to 

and direction from trees existing in 1970 was calculated with standard Euclidean 

distance measures using the 1970 trees as source areas.  

 

5.2.7 Statistical analyses 

 

We devised a statistical approach to test the general null hypothesis that 

establishment patterns were not related to local site conditions. We selected binomial 

logistic regression for the statistical analyses because the data consisted of a nominal 

dependent variable with two classes and independent variables with continuous data. To 

assess the potential of inflated R
2 

values associated with multicollinearity, we conducted 

Pearson correlation tests between the independent variables of 1000 randomly sampled 

points (Mac Nally 2000). No pairs were found to be greater than the 0.7 threshold 
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recommended by Hosmer & Lemeshow (2000). However, we found that elevation had 

values above 0.6 when considered with proximity to 1970 trees and slope angle. To 

mitigate the effects of multicollinearity, we used R 2.4.1 (Anon. 2006) to conduct 

binomial logistic regression within the hierarchical partitioning framework (Chevan & 

Sutherland 1991; Mac Nally 1996) and determined the relative amount of variance each 

independent variable contributed to establishment patterns (Mac Nally 2002). All 

circular independent variables (i.e., slope aspect and direction from 1970 trees) were 

sine-transformed to a linear format ranging from -1 (south) to 1 (north) (Zar 1999). The 

dependent variable was assigned 0 (treeless) and 1 (trees). Independent variables 

exhibited significant skewness (1.3–1.9) and kurtosis (1.1–1.7). We excluded outliers 

and modified the data via logarithmic and square root transformations to reduce 

skewness and kurtosis values below 0.5. We used a modified randomization approach 

with R 2.4.1 (2006) to obtain Z-values and determine whether the contribution of each 

independent variable was statistically significant (Mac Nally 2002). Overall, the variance 

explained by each independent variable with this regression technique can be 

substantially lower than results acquired from traditional approaches (e.g., stepwise 

regression) because joint contributions from correlated independent variables and 

inflated R
2 

values are mitigated (Mac Nally 2000).  

Failure to account for spatial autocorrelation can confound statistical analyses of 

ecological phenomena and may result in the erroneous identification of important 

independent variables and their relative rankings (Griffith & Peres-Neto 2006). To 

address spatial autocorrelation, we used R 2.4.1 (2006) to implement a modification of 
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the principal coordinates of neighbour matrices approach based on eigenvectors and 

distance (Dray et al. 2006). We selected the Delaunay triangulation to generate the 

spatial weights matrix based on data-driven Akaike information criterion rankings. 

Results consisted of positive (i.e., similar neighbors clustered in space) and negative 

(i.e., dissimilar neighbors) eigenvalues in continuous data formats that corresponded 

well with the traditional Moran’s I measure of spatial autocorrelation. We included these 

data as an additional independent variable in the regression analyses (Griffith & Peres-

Neto 2006).  

We repeated the method for each zone (A-F) discussed with the landscape 

metrics to gauge whether the abiotic setting becomes more important in structuring 

establishment patterns with increased upslope distance from the forest line. Two hundred 

and fifty points were randomly sampled from each zone and subjected to additional tests. 

After a preliminary analysis, we combined the two zones closest to the forest line (A and 

B) and the two zones furthest away from the forest line (E and F) because they gave 

similar results. 

 

5.3 Results 

 

5.3.1 Forest line changes, landscape heterogeneity, and establishment rates  

 

The 1970 forest line was clearly higher than the approximated elevation of the 

1955 forest line, but quantifying establishment rates between these dates was not 
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Figure 5-2:  Landscape patterns of tree establishment at the study site based off 
digitized 1955 aerial photography and classification analysis of 1970 CORONA satellite 
imagery and 2003 aerial photography. Dark gray denotes the approximate location of the 
forest line and contiguously connected trees in 1955. Medium gray represents trees 
present in 1970. Light gray represents trees that were newly established after 1970 and 
prior to 2003. The 1970 forest line follows the northern fringe of continuously connected 
forest depicted by the medium gray pixels. The 2003 forest line follows the northern 
fringe of continuously connected forest depicted by the light gray pixels. * indicates an 
approximation based on observations in a GIS.  
  

possible due to the qualitative methods involved in assessing the 1955 imagery (Figure 

5-2). The average elevation of the forest line in the 1970 imagery was approximately 

1343 m, with a minimum of 1280 m and a maximum of 1475 m (Figure 5-2). The forest 

line had ascended upslope by 2003 to an average elevation of approximately 1453 m, 

with a minimum of 1400 m and a maximum of 1527 m. The smallest altitudinal forest 

line change between 1970 and 2003 was 0.0 m and the largest was 152 m. The smallest 
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distance of forest line change was also 0.0 m and the largest was 264 m. We observed 

the majority of establishment near the lowest forest line elevation of 1280 m in the 1970 

imagery and the least near the uppermost forest line elevation of 1475 m in the 1970 

imagery, with the notable exception of a bare patch between 1300 and 1400 m.  

 We conducted the following analyses in six zones placed throughout the 

previously defined treeline area. Contagion difference values were 39% for zone A 

(Figure 5-3); these decreased in zones B (-36%), C (-45%), and D (-63%) before re-

bounding slightly in zones E (-62%) and F (-42%) (Figure 5-3). The highest 

establishment rates occurred in zone A (88%) and steadily decreased in zones B (69%), 

C (49%), D (42%), E (27%). and F (12%) (Figure 5-4).  

 
 

 
 

Figure 5-3:  Contagion differences measuring landscape heterogeneity changes between 
1970 and 2003 for six consecutive 100-m zones. Zone A begins 30 m below the 1970 
forest line and zone F is at the altitudinal limit of 2003 trees. Each zone follows the 
curvature of the forest line.  
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Figure 5-4:  Percentage of bare 1970 pixels filled by trees prior to 2003 for six 
consecutive 100-m zones. Zone A begins 30 m below the 1970 forest line and zone F is 
at the altitudinal limit of 2003 trees. Each zone follows the curvature of the forest line.  

 
5.3.2 Local site conditions influencing patterns of establishment 

  

 We rejected the general null hypothesis and accepted the alternative hypothesis 

that local site conditions were related to establishment patterns. At a broad spatial scale 

(i.e., entire study area), we discovered that proximity to 1970 trees (14.1%) and 

elevation (11.6%) were the two most important local site conditions influencing 

landscape patterns of establishment (Figure 5-5). Locales within 50 m of 1970 trees 

experienced the highest rates of establishment ( 75%), before tapering off at a distance of 

300 m (~10%) (Figure 5-6 a). Locales between 1250 and 1350 m experienced the 

highest rates of establishment (~80%), before gradually decreasing near 1650 m (~0%) 

(Figure 5-6 b). The elevation response also showed a definitive sigmoidal wave pattern.  
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Figure 5-5:  Percentage of post-1970 tree establishment variance explained by local site 
conditions within a defined treeline area from 30 m below the 1970 forest line to the 
altitudinal limit of 2003 trees. Results are based on binomial logistic regressions 
employed in the hierarchical partitioning framework when considering the entire study 
area. ** indicates the independent variable is significant at the 99% confidence level, and 
* indicates significance at 95%. 
 

 Slope angle (1.9%) and slope aspect (1.4%) were also influential in structuring 

landscape patterns of tree establishment (Figure 5-5). Moderately steep slope angles 

between 40 degrees and 60 degrees experienced the highest rates of establishment 

(~75%). Establishment was less likely on slope angles <40 degrees and >60 degrees 

(~60%) (Figure 5-6 c). In terms of slope aspect, west-, northwest-, north-, northeast-, and 

east-facing slopes displayed elevated rates of establishment (~80%). Relatively exposed 

south-facing slope aspects experienced lower establishment rates (~40%) (Figure 5-6 d). 

 Direction from 1970 trees (0.6%), wetness index (0.6%), snow index 0.4%), and 

erosion index (0.3%) were also statistically significant variables that influenced tree 

establishment patterns (Figure 5-5). Leeward and relatively shaded northwest-, north-, 

and northeast-facing tree patch edges showed the highest rates of establishment. 
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Decreased rates of establishment occurred on south-facing tree patch edges. Xeric to 

slightly mesic locales experienced the highest rates of establishment. However, 

extremely wet locales experienced lower establishment rates. Locales with moderate 

snow potential displayed elevated rates of establishment, before tapering off near 

exposed windblown areas and in protected sites with high snow potential. Locales prone 

to erosion displayed slightly decreased establishment rates compared to protected 

locales. Individually, none of these local site conditions explained >2% of the potential 

variance at a broad spatial scale. However, they became more important, along with 

slope aspect and slope angle, when examined at restricted spatial scales. 

 When considering the local site conditions in each of the six zones, we observed 

elevated establishment rates at locales similar to those reported in the three preceding 

paragraphs. However, there were palpable differences in the statistically ranked order of 

local site conditions. The two zones nearest the 1970 forest line (A and B) became 

nearly fully occupied by new trees and thus exhibited suppressed signals. However, we 

observed results in zone C nearly matching those of the entire study area, except for a 

peak in the importance of slope aspect (Figures 5-5 and 5-7). Several abiotic factors 

emerged as very important predictors of establishment with increased upslope distance 

from the previous zone. Slope aspect (13.1%) was the most important variable in zone 

D. Slope angle (5.7%) and other abiotic variables also became more important; however, 

proximity to 1970 trees (11.3%) and elevation (5.8%) remained important predictors in 

zone D. In zones E and F, the cumulative explanatory power of the local site conditions 
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decreased slightly, with slope aspect (8.5%) and proximity (6.5%) to 1970 trees being 

the most important. 

 

 

Figure 5-6:  Relationships between the four most significant local site conditions and 
post-1970 tree establishment patterns based on a defined treeline area from 30 m below 
the 1970 forest line to the altitudinal limit of trees in the 2003 imagery. Values were 
calculated from 10,000 points used in a stratified sampling scheme in order to reduce 
spatial autocorrelation. Fractions of pixels experiencing tree establishment were 
calculated at 50-pixel intervals for each independent variable (i.e., number of pixels 
classified as trees in the 2003 imagery divided by 50), converted to a percentage, plotted, 
and connected in a smoothed line graph.  

 
5.4 Discussion 

 

5.4.1 Broad establishment trends 

 

 Favorable climatic conditions (i.e., warm and dry summers) probably triggered 
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widespread establishment between 1955 and 2003. Initially, the abiotic setting appeared 

to play only a minor role in structuring establishment patterns. The majority of 

establishment occurred near existing trees and at low elevations, regardless of 

topographic variability; accounting for decreased landscape heterogeneity in zone A and 

upslope advancement of the forest line. Previous researchers have documented similar 

establishment patterns after fire disturbance (e.g., Peet 1981; Agee & Smith 1984; 

Shankman 1984).   

 We attribute high establishment rates at these locales mostly to increased seed 

availability from nearby and upslope trees, but also partly to less stressful environmental 

conditions at low elevations (Agee & Smith 1984; Shankman & Daly 1988; Holtmeier 

2003). It is difficult, however, to ignore the possibility that positive feedback 

mechanisms may be enhancing establishment rates at this site. Contemporary research 

conducted on positive feedback at the alpine tundra ecotone (e.g., Alftine & Malanson 

2004; Bekker 2005; Resler 2006) suggests that it may play a critical role in structuring 

observed establishment patterns. Mature trees ameliorate the microclimate by increasing 

soil moisture-holding capacity, moderating soil temperatures, improving nutrient 

conditions, lengthening the growing season, and protecting seedlings from wind (Little 

et al. 1994; Weisberg & Baker 1995); thus initiating landscape-scale positive feedback 

changes into nearby exposed areas (Resler et al. 2005; Cerney 2006; Resler 2006). These 

assertions are consistent with the literature, which suggests establishment is highest 

adjacent to clusters of existing trees, before declining with distance in treeline 

environments (e.g., Peet 1981; Shankman 1984).  



 

 

135

 

 

Figure 5-7:  Percentage of post-1970 tree establishment variance explained by local site 
conditions in six zones within a defined treeline area from 30 m below the 1970 forest 
line to the altitudinal limit of 2003 trees. Distances upslope from the 1970 forest line 
include 0-200 m (zones A and B), 200-300 m (zone C), 300-400 m (zone D), and 400-
600 m (zones E and F). Results are based on binomial logistic regressions employed in 
the hierarchical partitioning framework. ** indicates the independent variable is 
significant at the 99% confidence level, and * indicates significance at 95%. 
 

5.4.2 Changing roles of abiotic and biotic factors 

 

 Landscape heterogeneity was probably enhanced by reduced tree establishment 

rates with increases in upslope distance from the forest line (zones B-F). Heterogeneous 

establishment patterns throughout these zones suggest establishment became more 

opportunistic and that different local site conditions may be more important at restricted 

spatial scales. Indeed, the abiotic setting appeared to produce favorable establishment 

sites (e.g., protected slope aspects, moderate slope angles, moderate snow potential, 
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moderate to low wetness potential, and low erosive potential) at high elevations beyond 

the forest line (zones C-F) that rivaled or became more important than proximity to 

existing trees and elevation (Figure 5-7). These heterogeneous establishment patterns 

match predictions of patchy and variable establishment after fire disturbance, as dictated 

by a combination of slope aspect, slope angle, soil moisture, and snowpack (Shankman 

& Daly 1988; Noble 1993).  

 Potential establishment at high elevations beyond the forest line may be limited 

by seed dispersal decay, reduced seed viability, and approaching the physiological 

threshold for trees (Baig & Tranquillini 1976; Tranquillini 1979). Wind Wizard (Butler 

et al. 2006) suggests that the topography in the study area has a strong effect on winds, 

forcing the prevailing southwesterly winds, as well as westerly and northerly winds, 

mostly upslope, which likely carry high quantities of wind-dispersed seed (e.g., Abies 

lasiocarpa) to distant meadows. The upper threshold of seed dispersal decay is probably 

most limiting to establishment at the highest elevations. However, the abiotic setting 

appears to be crucial for facilitating establishment within the upslope seed dispersal zone 

at exposed locales in the harsh environment at high elevations. The sigmoid pattern of 

establishment we observed with elevation supports this assertion because it indicates 

competition between patches of different vegetative functional groups and associated 

influences from ecological site factors are more pronounced at high elevations, thereby 

reducing establishment rates (Cairns & Waldron 2003).  

 High rates of establishment on west-, northwest-, north-, northeast-, and east-

facing slope aspects can probably be attributed to the existence of narrow diurnal to 
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nocturnal temperature ranges, which produce fewer tree seedling fatalities when 

compared to relatively exposed south-facing slope aspects that are often subjected to 

high and low temperature extremes (Germino et al. 2002). Increased rates of 

establishment evident on moderate slope angles may be higher because soil is more 

developed than at steep slope angles and is less susceptible to geomorphic disturbances 

(Holtmeier 2003). Decreased establishment rates observed on shallow slope angles 

probably occur because existing herbaceous cover is more likely to competitively 

exclude invading trees (Wardle 1985; Holtmeier 2003). Animal use may also influence 

vegetation patch dynamics on shallow slope angles (Vale 1987; Veblen et al. 2000). 

These findings are consistent with the topographic preferences of Abies lasiocarpa. 

 

5.5 Conclusions  

   

 This disturbed treeline in this site seems to have entered a phase of rapid 

establishment, triggered primarily by favorable climatic conditions. If the climate 

remains favorable, we expect increased seed availability to continue driving widespread 

establishment near the forest line and near the sexually mature trees. Positive feedback 

may also be a significant contributor, but our analysis offers mostly circumstantial 

evidence for this assertion. Reduced rates of opportunistic establishment will likely per-

sist in favorable locales throughout the abiotic setting with increased upslope distance 

from the forest line. These eco-incursions will probably facilitate the ability of trees to 

become established and reproduce in the distant tundra; thereby accelerating tree 
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invasions into exposed locales. The concerted effect of these processes will probably 

cause the treeline to ascend upslope. However, the width of the ecotone may become 

narrower in the future due to enhanced establishment rates near the forest line. Severely 

burned areas with few or no surviving trees near the former upper tree limit, on the other 

hand, may require several additional decades to recover.  

 It is clear that several abiotic and biotic processes are operating at different 

spatial scales in this study area. Vegetation scientists have long recognized that plot-

scale studies may be susceptible to spatially aggregated processes, but our results 

indicate this phenomenon may be particularly pronounced at the treeline. Remote 

sensing, GIS, and spatial statistics should serve a more important role in determining 

suitable locations of field plots or transects. For example, vegetation scientists could use 

these tools to identify sites inhibiting establishment in the abiotic setting (e.g., exposed 

slope aspects with low snow potential) and corresponding plots could be set up to 

determine if microsite conditions are facilitating limited quantities of establishment in 

such areas.  

 Finally, we recognize that parts of the observed establishment patterns remain 

unexplained. Other variables, such as geologic substrate, edaphic properties, and 

independent responses of species, could modify the establishment patterns. Remnants of 

burned boles may also contribute to unique patterns of establishment (Little et al. 1994). 

These variables were either not available at a spatial grain fine enough for inclusion in 

this study or were indistinguishable on the photography. Future research may include (1) 

the use of specialized remote sensing platforms to quantify the electrical conductivity of 
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soils and provide additional detailed edaphic information at the landscape scale, (2) plot-

scale studies investigating the influences of microsites (e.g., burned boles) and species-

specific responses on establishment patterns, and (3) plot-scale studies directly testing 

the potential influence from positive feedback. Important questions remain as to how the 

rankings of local site conditions tested here differ at other treelines. We suspect that the 

rankings are susceptible to change, particularly under different climate regimes and at 

other types of treeline.  
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CHAPTER VI 

EVIDENCE OF HIERARCHICAL PATCH DYNAMICS AT AN ALPINE 

TREELINE DISTURBED BY FIRE? 

 

6.1 Introduction 

 

From the perspective of hierarchy theory, ecosystems are comprised of many 

asymmetrically interacting systems and subsystems that are interlinked together (Müller 

1992). It is crucial to consider the context of the research question(s) being posed when 

defining ecological hierarchies and how they are to be studied (Schneider 2001). The 

scale of observation usually plays a critical role in this process along with environmental 

limitation and biotic potential (c.f. Schneider 2001). The environmental limits of 

ecosystem processes are defined as the highest hierarchical levels whereas the lowest 

levels are representative of the biotic potential (c.f. Müller 1997). This hierarchical 

concept in ecology is old; dating back to 1908 in one case, where it was questioned 

whether local catches from the Irish Sea could accurately determine the density of 

organisms in the entire sea (Schneider 2001). Tacit recognition of hierarchy theory 

persisted throughout the early to middle 20th century (Schneider 2001), but there was 

little explicit consideration concerning the influence of patch mosaics and spatial 

heterogeneity until Watt wrote his seminal paper in the Journal of Ecology (1947). 

Watt’s paper was the first directly appreciating the significance of interactions between 

patch structure and hierarchies of processes in plant communities. He noted in several 
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case studies how assorted processes (abiotic and biotic) may amalgamate with existing 

patch structures at dissimilar levels or hierarchies in plant communities to influence and 

dictate plant distribution patterns. He further contended that space and time limited the 

establishment of species in conjunction with the existing network of patch mosaics. The 

evidence used to sustain his assertions was limited (at least, in geographic terms) to plant 

communities in the Breckland Grasslands and Chiltern Hills (in England), and 

Cairngorm Mountains (in Scotland), but he contended that the conceptual framework of 

his ideas could be applied beyond these two countries. 

 After the groundbreaking work of Watt, the frequency of the use of terms such 

as hierarchy theory and spatial scale remained low until an exponential growth between 

the late 1960's and 1990's (Schneider 2001). During the1970's and later, graphical 

expressions of space-time diagrams exploded, hierarchical concepts were embraced, and 

landscape ecology rapidly evolved as a new paradigm that incorporated hierarchy 

theory, spatial heterogeneity, the patch-corridor-matrix, and scale (Forman & Gordon 

1981; Forman 1995; Schneider 2001). Ultimately, the hierarchical patch dynamics 

paradigm (HPDP) was proposed in 1995 (Wu and Loucks). It provided a more explicit 

conceptual framework that clarified and expanded upon some of Watt’s pioneering 

work; effectively linking complex systems theory, hierarchy theory, and patch dynamics 

with the principles of landscape ecology (Gillson 2004).  

Before we explain HPDP in more detail, it is necessary to address some 

terminological discrepancies between two phrases sometimes used interchangeably with 

spatial scale. Spatial resolution and spatial extent often convey different or even 
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conflicting meanings in the literature, thus warranting explicit definitions (Dungan et al. 

2002). In this paper, we define spatial resolution as the level of detail or spatial 

resolution of a dataset (e.g., 30 m digital elevation model) (Turner et al. 1989), and 

spatial extent as the functional geographic area of respective abiotic or biotic phenomena 

(e.g., biotic influences from positive feedback mechanisms are most relevant at dozens 

or hundreds of hectares and climatic influences at tens of thousands of hectares) 

(Dungan et al. 2002). We recognize that spatial extent can also refer to the selected 

geographic area or boundaries of a study site and that ecological insight may be 

influenced by changing this extent as well, but we are not concerned with that in this 

paper. 

In HPDP, similar to hierarchy theory, it is asserted that ecosystems are inherently 

complicated juxtapositions of nonlinear systems and sub-systems interacting across a 

dynamic environment within the confines of spatial and temporal heterogeneity (Gillson 

2004). Ecological feedbacks and threshold responses predominate in these systems and 

sub-systems, enhancing the complexity. Ecological changes induced by varying 

heterogeneous processes occurring over periods of time are recognized at the 

meteorological, ecological, and geological temporal scales; which has been widely 

studied and accepted by ecologists (e.g., Davis et al. 2005; Taylor 2005; Brook and 

Bowman 2006). However, the primary emphasis in HPDP is placed on patchy mosaics 

of abiotic and biotic ecological hierarchies interacting to influence vegetation patterns on 

a landscape at various spatial extents (Wu and Loucks 1995). In essence, HPDP argues 

that unique combinations of abiotic and biotic ecological processes may be more 
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influential in producing observed vegetative patterns of a particular geographic area at 

local, regional, or global scales; and that the combination of these effects generate 

patterns of vegetation on a landscape (Figure 6-1).  

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 
Figure 6-1:  HPDP conceptual diagram depicting how various processes might interact 
at different spatial extents to influence plant distribution patterns. Ecologists have been 
cognizant of these potential influences for several decades (e.g., Watt 1947), but 
identifying and explaining what happens between the boundaries of ecological processes 
operating at different spatial extents and the corresponding influence of spatial resolution 
is a persistent challenge. 
 

 HPDP also recognizes that the selected spatial resolution of data utilized for 

conducting a particular study (such as tree establishment at treeline) may only best 
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capture or represent a portion of the relevant ecological processes operating at a given 

spatial extent (Wiens 1989; Dungan et al. 2002) (Figure 6-2). For example, ecologists 

usually derive slope aspect from a digital elevation model (DEM) and utilize it as a 

surrogate for solar radiation, which exhibits a strong influence on spatial patterns of 

high-altitude tree establishment in mountainous regions (Holtmeier 2003). They 

typically map tree locations from the field and/or aerial photography, extract 

corresponding slope aspect values from a DEM, conduct multivariate statistical tests, 

and discuss the significance of the observed relationships (e.g., Stueve et al. 2009). 

However, the spatial resolution of the DEM used to calculate slope aspect and other 

variables may change how the analysis fits into the hierarchy of ecological processes 

controlling tree establishment (Figure 6-2). Fine-resolution DEM data (e.g., 2 m or less) 

captures microtopographic variability on generally exposed (e.g., south-facing) and 

sheltered (e.g., north-facing) slopes in the northern hemisphere (i.e.,  patches of slope 

aspect can be identified). Under this scenario, localized patches of north-facing slopes 

may occur on broad south-facing slopes and vice versa (Figure 6-3). Conversely, coarse-

resolution DEM data tends to generalize microtopographic variability and portray the 

effects of solar radiation from a broader perspective (Figure 6-3). Depending upon the 

study area and influences from other processes, it is conceivable that the significance of 

slope aspect could be more or less important in controlling tree establishment patterns at 

either fine or coarse spatial resolutions.  

Many ecological studies are performed using data with a specified spatial 

resolution so it is difficult to address and discuss (e.g., comparative analyses) empirical 
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examples of the aforementioned concepts (e.g., Davis & Goetz 1990; Brown 1994b; 

Heyerdahl et al. 2001; Brook & Bowman 2006; Kumar et al. 2006; Bader et al. 2008). 

However, HPDP provides the necessary conceptual framework and rationale to 

understand how the selected spatial resolution of the data may be sensitive to ecological 

processes operating at different spatial extents. Unknown relationships between the 

spatial resolution of data used in a study and the spatial extent of ecological processes 

influencing spatial patterns in plant communities have the potential to change statistical 

inferences and corresponding theoretical implications in ecological research, which 

could also sway corresponding management strategies and policy development (Wu and 

Loucks 1995). HPDP can conceptually explain these relationships, but there is a dearth 

of supportive empirical reserarch (Gillson 2004). In trying to convey his perception of 

plant communities, Watt (1947) harkened back to a popular phrase from T. S. Eliot:  "we 

must know all of it in order to know any of it". To follow Watt’s perception, it must be 

necessary therefore to investigate these unknown relationships between spatial resolution 

and extent in plant communities. 

Most ecological research pertaining to HPDP involves conceptual explanations 

and potential applications in ecology, and only a limited quantity has empirically tested 

for the presence of HPDP and/or used HPDP to explain ecological patterns and 

processes (Gillson 2004). Two recent studies used HPDP to investigate tree abundance 

and patterns in African savannas. In Kenya, Gillson (2004) used palaeoecological 

techniques of fossil pollen and stable carbon isotopes to show that different ecological 
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processes influence the spatial distribution of trees at micro, local, and landscape scales; 

thus providing empirical evidence of HPDP. She suggests that competing theories  

 

 
 
Figure 6-2:  A conceptual representation of processes that control tree establishment at 
alpine treeline throughout various spatial extents and the consequences of using data 
with a select spatial resolution to examine the data with multivariate statistics. 
Independent contribution refers to the inferred statistical importance of an independent 
variable in influencing vegetation patterns. 
 

explaining savanna vegetation are not necessarily mutually exclusive (i.e., disturbance 

control versus plant-plant interactions); rather that they are equally important and may 

be interacting together in a structured hierarchy over space and time. In Namibia, 

Wiegand et al. (2005, 2006) used field surveys of bush, grass, and soil patterns along a 

steep rainfall gradient to demonstrate that tree distribution patterns are largely dictated 

by highly variable rainfall patterns and inter-tree competition interacting across the 

spatial mosaic of the landscape; thus concurring with the HPDP conceptual model. They  
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asserted that either rainfall or inter-tree competition may appear most important at a 

particular study site, but both are probably equally important and structured 

hierarchically across the landscape. Scaling dependencies related to spatial resolution 

and extent have been reported in previous treeline studies (e.g., Walsh et al. 1994; 

Lawrence & Ripple 2000; Bruun et al. 2003; Walsh et al. 2003; Stueve et al. 2009), but 

these studies do not provide a comparative analysis of empirical evidence within the 

context of HPDP. 

 Treeline represents the ecotone between montane forests at lower elevations and 

alpine tundra at higher elevations (Holtmeier & Broll 2005). The transition may be 

abrupt (e.g., 10 m or less) or gradual (e.g., 100 m or more) and may or may not include 

krummholz form trees (i.e., stunted and short trees with twisted branches) (Figure 6-4) 

(Holtmeier 2003). Treeline environments provide an ideal scenario to test for the 

presence of hierarchical patch dynamics because abiotic and biotic variables (i.e., local 

site conditions) in topographically-complex mountainous environments usually interact 

to control tree establishment patterns at a broad range of spatial scales (Holtmeier & 

Broll 2005; Stueve et al. 2009). Furthermore, the boundaries separating the influences of 

local site conditions may change abruptly in treeline environments; sometimes varying 

over several meters or less (Holtmeier 2003). Explaining tree establishment patterns at 

treeline within the context of HPDP may also clarify whether abiotic or biotic influences 

are most important in influencing establishment patterns, or that both are structured 

hierarchically and equally important. A wealth of seemingly contradictory research has 

been performed over the last two decades concerning abiotic and biotic controls on tree 
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establishment patterns. Some emphasizes the importance of the abiotic setting 

(especially elevation) (e.g., Brown 1994a; Brown 1994b; Walsh et al. 1994; Cairns 

2001) and others the biotic setting (especially positive feedbacks associated with 

proximity to existing trees) (Malanson 1997; Smith et al. 2003; Alftine & Malanson 

2004; Bekker 2005). Increased seed dispersal near sexually mature trees and the 

ameliorating effects of existing trees on the surrounding environment are thought to 

increase the importance of the biotic over the abiotic setting (Smith et al. 2003; Bekker 

2005). Explaining tree establishment patterns at treeline within the context of HPDP may 

help reconcile these apparent discrepancies and provide better context for future 

research. 

 In this vein, we used aerial and satellite remote sensing, GIScience, and 

multivariate statistics to determine whether HPDP is present at treeline, and whether it 

can enhance explanations of post-fire tree establishment patterns at treeline. We asked 

what abiotic and biotic local site conditions were most important in dictating tree 

establishment patterns at various spatial resolutions (between 2 to 50 m at 2 m intervals) 

at a treeline disturbed by fire in Mount Rainier National Park. We reasoned that any 

variability in importance might suggest influences from hierarchical patch dynamics 

(e.g., abiotic and biotic controls operating at different spatial extents). We suspect the 

biotic surrogate (proximity to existing trees) will be most important at fine spatial 

resolutions and elevation at coarse spatial resolutions. We expect this because the fine 

spatial resolutions will likely be fully capable of capturing the environmental variability 
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Figure 6-4:  Abies lasiocarpa (krummholz form) at treeline on the western slope of 
Mount Rainier, WA, USA. 
 
 

associated with large and small patches of existing trees, thus highlighting steep 

gradients associated with establishment patterns and proximity to existing trees. 

However, this effect will probably be generalized and almost inconsequential at coarse 

spatial resolutions; ceding to the broad control of elevation changes. It is difficult to 

offer a hypothesis for the remaining variables beyond predicting that their importance 

will likely change between fine and coarse spatial resolutions. 

 

 

 



 

 

151

 

6.2 Methods 

 

6.2.1 Study site 

 

Mount Rainier National Park is located on the western slope of the Cascade 

Range approximately 100 km southeast of Seattle, WA. The park was established on 

March 2, 1899 and is the fifth oldest national park in the U.S.A. Many ecologists have 

studied vegetation dynamics in the park over the last 110 years (e.g., Taylor 1922; 

Franklin et al. 1971; Hemstrom and Franklin 1982; Rochefort and Peterson 1996; Stueve 

et al. 2009). Treeline is generally between 1500 -2200 m a.s.l. Heavy annual snowfall 

from a pronounced orographic effect tends to depress treeline on the windward (western) 

side of Mount Rainier compared to the east. This study was conducted at a 150 ha 

treeline site disturbed by fire (in 1930) on the western slope of Mount Rainier. The 

altitude at the site ranges between approximately 1400-1800 m a.s.l. A substantial 

upslope pulse of tree establishment has been observed at the site after 1970. Additional 

information concerning the site is available from Stueve et al. (2009). 

 

6.2.2 Data acquisition and processing 

 

We used a 1970 CORONA (~1.9 m) satellite image and 2003 USGS DOQQ (1.0 

m) to map 33 years of treeline change. Stueve et al. (2009) describe the processing of 

these data. Trees were mapped in each image by employing a binary classification of 
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pixels with and without trees. Pixels that remained treeless between 1970 and 2003 were 

identified in addition to pixels in which trees had established themselves after 1970 and 

still persisted in 2003 (i.e., pixels that contained trees in 1970 and 2003 were excluded). 

These pixels served as the dependent variable in logistic regression analyses.  

A LIDAR-based DEM (~1.8 m), ancillary climate data (i.e., direction of 

prevailing wind), and pixels identified as having trees in 1970 relative to those pixels in 

which trees became established after 1970 were used to derive the independent variables 

(Stueve et al. 2009). We used a processed bare-ground model DEM (tree tops removed) 

to extract elevation values and derivations of slope aspect and slope angle for each pixel 

using contextual data from the eight surrounding pixels in each case. We derived snow 

potential (i.e., depth of winter snowpack) from southwesterly prevailing winds and 

topographic variability modeled using the DEM (e.g., leeward and concave slopes are 

more likely to contain persistent snowpack versus windward and convex slopes) (Frank 

1988; Burke et al. 1989; Brown 1994b). We also used the DEM to model topographic 

variability and derive the wetness potential (e.g., concave depressions with large upslope 

catchment areas are more likely to be wet versus convex slopes with a limited upslope 

catchment areas) (Beven & Kirkby 1979; Brown 1994b) and erosion potential (e.g., 

enclosed topographic concavities with limited upslope catchment areas are less 

susceptible to erosion than ravines and streams with large upslope catchment areas) 

(Moore et al. 1993). We used Euclidean distance to measure proximity to 1970 trees 

(hereafter, proximity to trees) with pixels classified as trees in 1970 serving as the 

starting points. We derived direction from 1970 trees (hereafter, direction from trees) 
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from the same pixels as proximity to existing trees (e.g., identified pixels as being on the 

N, NE, E, SE, S, SW, W, or NW side of trees that existed in 1970).  

Stueve et al. (2009) reported spatial preferences for post-1970 tree establishment 

at the site:   those are close proximity to 1970 trees (< 50 m), at elevations between 

1250-1350 m a.s.l., on moderate (40-60°) slopes, at sheltered (W-, NW-, N-, NE-, and E-

facing) sites, in relatively xeric conditions, on protected sides of 1970 trees (NW, N, 

NE), and at sites with intermediate snowpack.  

 

6.2.3 Scaling spatial resolution and sampling procedures 

 

Simulations of progressively broader influences from local site conditions that 

represent the potential presence of hierarchical patch dynamics were achieved using 

digital image resampling. We used bilinear interpolation to resample all the local site 

conditions to between 2 and 50 m at 2 m intervals (Jensen 2005). With this procedure, 

the weighted values of the four nearest input cells are used to calculate the value of the 

output cell. We ceased resampling at 50 m because continuing the process would have 

necessitated a decrease in the number of our sample points to a point where it 

compromised statistical rigor. In addition, we used the nearest neighbor method to 

resample mapped areas of tree establishment to 2 m (i.e., to match the 2 m starting point 

of the independent variables) (Jensen 2005). The original cell values of the input image 

are maintained with this method and the output cell values are dictated by the nearest 

neighbor of the input cells.    



 

 

154

 

The 2 m binary image of mapped tree establishment was continually used as the 

dependent variable in an effort to represent fine-resolution data commonly collected 

from the field or aerial photography in ecological studies. Successively coarser local site 

conditions served as independent variables (i.e., 2 to 50 m at 2 m intervals) to encompass 

the range of widely available digital elevation models (e.g., 10 m USGS, 30 m USGS, 

and 50 m GSI (Japan)) commonly used in ecological studies and also to represent 

ecological processes operating at disparate spatial extents. It was important to maintain 

the dependent variable at a spatial resolution of 2 m because matching it with the spatial 

resolution of the successively changing independent variables would have resulted in 

large pixels being classified as trees when, in fact, the area encompassed by them might 

include significant amounts of tundra or rock.  

Two hundred randomly generated points were created from the 2 m dependent 

variable with logical restrictions that prevented more than one point from occupying 

similar cells in the independent variables. Each point was sampled at 2 m intervals. At 

each interval, we extracted data from both the independent and dependent variables for 

specific x and y coordinates that corresponded to the 200 sample points, and applied 

logistic regressions to all points. We extracted 200 points in order to ensure statistical 

rigor and avoid having sample points placed in the same cells when increasing the 

spatial resolution to 50 m. 
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6.2.4 Statistical analyses  

 

Techniques utilized by Stueve et al. (2009) were used to rank the individual 

importance of each of the independent variables for every 2 m increment and test the 

null hypothesis that tree establishment patterns are not controlled by local site conditions 

(i.e., they are random). The data exhibited some signs of multicollinearity (i.e., some 

pairs of independent variables approaching correlation coefficients of 0.7), which made 

us concerned that traditional regression techniques would not provide reliable rankings 

(Mac Nally 1996). Hosmer and Lemeshow (2000) advise against using traditional 

logistic regression with correlation coefficient values approaching 0.7 and others 

recommend a threshold of 0.5 (Hessl & Baker 1997). Thus, we used R 2.4.1 (2006) to 

conduct logistic regressions within the hierarchical partitioning framework (i.e., all.regs 

and hier.part functions) (Chevan and Sutherland 1991; Mac Nally 1996). This approach 

mitigates the effects of multicollinearity and considers all possible combinations of 

influences from the independent variables (Mac Nally 1996). The cumulative 

explanatory power derived from this approach tends to be substantially lower than those 

using cumulative R2 associated with traditional regression approaches because joint 

contributions are excluded (Mac Nally 1996). Dependent variables for all regression 

sequences were recoded to 0 and 1. We removed all outliers and used mathematical 

functions (i.e., logarithmic and square root) to reduce skewness and kurtosis. The 

randomization approach was used to obtain Z-values and assess the significance of each 

independent variable (Mac Nally 2002). We also calculated the range of confidence 
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intervals for all independent variables to determine if their rankings were statistically 

different (i.e., no overlap between ranges). 

To prevent the potentially erroneous rankings of independent variables (Griffith 

et al. 2006), we modeled spatial autocorrelation for the study site with a modification of 

the principal coordinates of neighbour matrices approach (Dray et al. 2006). A spatially-

weighted landscape matrix was generated using a Delaunay triangulation, which was 

selected as the most suitable approach in data-driven Akaike information criterion 

rankings. The resulting matrix provided continuous data that respectively quantified 

positive and negative spatial autocorrelation and was incorporated as an additional 

independent variable in the regression analyses (Griffith et al. 2006). 

 

6.3 Results 

 

6.3.1 General trends 

 

For all spatial resolutions, we were able to reject the null hypothesis and accept 

the alternative hypothesis that tree establishment patterns are controlled by local site 

conditions (i.e., not random) (Figure 6-5). The relationship between the statistically 

important local site conditions is clearly tiered. Proximity to trees and elevation rival 

each other and explain the highest proportion of the variance across all spatial 

resolutions (Figure 6-5). There is a large gap before the second most important cluster 

including slope angle, slope aspect, and direction from trees is evident (Figure 6-5).  
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Proximity to trees, elevation, slope angle, and slope aspect were consistently the 

most influential local site conditions, but they exhibited a slight decrease in cumulative 

importance with increasingly coarse spatial resolutions (Figure 6-5). Their independent 

contributions explained nearly 28% of the variation in tree establishment patterns at 2 m 

before tapering to slightly above 21% at 50 m. We originally excluded direction from 

trees from Figure 6-5 because it was marginally important at fine spatial resolutions. 

However, it displayed a sharp increase in importance at coarse spatial resolutions 

approaching 50 m (nearly six times greater than the value at 2 m) and thus we included 

it. The remaining local site conditions (i.e., wetness potential, snow potential, and 

erosion potential) all maintained similar, but less pronounced, cumulative importance 

across the range of spatial resolutions that hovered around 0.5%. These variables 

exhibited minimal changes with marginal statistical significance (i.e., 95% confidence 

level) and thus, are not addressed further. 

 

6.3.2 Individual trends 

 

 Between spatial resolutions of 2-30 m, the ranked importance of local site 

conditions in descending order was proximity to trees, elevation, slope angle, slope 

aspect, and direction from trees. All were significant at the 99% confidence level except 

for direction from trees. The degree of separation between these variables remained 

relatively constant until about 16 m. Subsequently, proximity to trees and elevation in 

addition to slope angle, slope aspect, and direction from trees slowly conflated toward 30 
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m. Near 30 m, the variance explained by proximity to trees began to plummet and 

elevation started to ascend. 

 Likewise, the variance explained by slope angle declined sharply while slope 

aspect and direction from trees steadily increased near 30 m. After 40 m, the variance 

explained by elevation fully supplanted proximity to trees. The importance of slope 

aspect and direction from trees also surpassed slope angle. At this juncture, all variables 

remained significant at the 99% confidence level except for slope angle. By 50 m, the 

ranked importance in descending order was elevation, proximity to trees, direction from 

trees, slope aspect, and slope angle. The first four variables remained significant at the 

99% confidence level, but slope angle was only marginally significant (95% confidence 

level).        

 

6.4 Discussion 

 

 HPDP theorizes that multiple abiotic and biotic processes interact in a structured 

hierarchy at disparate spatial extents to influence vegetation dynamics and observed 

patterns of vegetation in the patch-corridor-matrix (Wu and Loucks 1995; Gillson 2004). 

Some of these processes may operate locally at confined spatial extents (e.g., 

interspecific plant interactions at ecotones) or regionally/globally at broad spatial extents 

(e.g., weather and climate). Because these processes are scale-dependent, changes in the 

spatial resolution used to analyze vegetation communities may increase or decrease the 

importance of a variable in controlling vegetation patterns. Sometimes these changes in 
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Figure 6-5:   Ranked order of the five most important local site conditions as inferred 
from logistic regression in the hierarchical partitioning framework. The local site 
conditions were resampled and tested at 2 m intervals, commencing at 2 m and 
terminating at 50 m. Red = proximity to 1970 trees, blue = elevation, green = slope 
angle, orange = slope aspect, and black = direction from 1970 trees. Note that direction 
from trees was included because its importance increased substantially when 
approaching a spatial resolution of 50 m. The rankings of proximity to 1970 trees and 
elevation are insignificant at ~32-37 m. The rankings of the other three variables are 
insignificant at ~31-41 m. The rankings of direction from 1970 trees and slope aspect 
remain insignificant up to 50 m.       
            
      

relative importance are incremental and may not influence the results, but in other cases 

change is rapid and thresholds are crossed. Conceptually, these assertions are understood 

well. Thus, it also seems logical to conclude within the context of HPDP, that using 

varying spatial resolutions of data to represent abiotic and biotic local site conditions 
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may introduce some uncertainty due to ecological processes operating at different spatial 

extents (e.g., interspecific interactions between plants are more important than climate 

and weather at fine resolutions). Remarks concerning scaling dependencies in the peer-

reviewed literature provide some evidence of the aforementioned concept, but these 

papers lack the theoretical underpinnings of HPDP (e.g., Dullinger et al. 2003b; Huete et 

al. 2005).  

Four characteristics of the results presented here appear to provide empirical 

evidence for the presence of hierarchical patch dynamics. First, as might be expected 

with the presence of hierarchical patch dynamics, proximity to trees supersedes the 

importance of all local site conditions at finer spatial resolutions. Proximity to trees is an 

excellent biotic surrogate for positive interspecific plant interactions (e.g., ability of trees 

to modify their surroundings) and seed dispersal (e.g., higher seed density near existing 

trees) when pulses of increased tree establishment have been documented (Bekker 2005; 

Dickie et al. 2005; Stueve et al. 2009). This strong positive ecological inertia of trees is 

highlighted quite well at finer spatial resolutions. For example, in this case, detailed 

distances between small patches of trees can be more readily denoted and the cumulative 

effect of this data may obscure the potential importance of other variables (Figure 6-6). 

Nevertheless, several abiotic variables remain statistically significant.  

Secondly, an interesting transition in the ranked importance of local site 

conditions appears at moderately coarse spatial resolutions (i.e., ~35 m). This indicates 

that important ecological thresholds or boundaries exist where the influence of abiotic 

and biotic processes operating at different spatial extents changes quickly. This further 
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supports HPDP and concepts of structured hierarchies of abiotic and biotic processes 

operating with sharp, well-defined boundaries.  

Thirdly, elevation emerges as the most significant independent variable at coarser 

spatial resolutions beyond the aforementioned threshold. Elevation is a classic abiotic 

surrogate for temperature change and widely found to be important in controlling tree 

establishment at both disturbed and relatively undisturbed treelines (e.g., Tranquillini 

1979; Körner 1998; Stueve et al. 2009). Temperature changes associated with elevation  

 

 
 
Figure 6-6:  Snapshots of direction from 1970 trees (top) and distance from 1970 trees 
(bottom) at 2, 25, and 50 m over a small portion of the study site. Green areas denote 
trees present in 1970 as detected by the CORONA satellite photography. 
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are likely less pronounced at finer spatial resolutions (i.e., less likely to have variability 

between pixels) whereas proximity to existing trees or some other biotic factor may be 

more important. However, at coarser spatial resolutions, the broader influence of 

temperature change will likely be more pronounced and exceed the importance of 

localized biotic factors. Positive feedback effects rarely extend more than a couple dozen 

meters beyond existing trees, and the ground coverage of seed dispersal rapidly declines 

with distance from existing trees (Coop and Givnish 2007; Stueve et al. 2009). The 

comparatively coarser pixels likely generalize the effects of positive biotic interactions 

and seed dispersal detected at finer resolutions, further accentuating thermal differences 

corresponding with altitudinal variability. This continues to build support for HPDP. 

Finally, the independent variables of direction from trees, slope angle, and slope 

aspect exhibit discrepancies in importance between fine and coarse spatial resolutions. 

This is similar to the situation with proximity to trees and elevation, lending additional 

credence to HPDP. At finer spatial resolutions, direction from trees is denoted for 

individual trees, clusters of small tree patches, and large patches of trees (Figure 6-6). 

The ameliorating effects of protected edges (i.e., northerly side of trees or tree patches) 

probably facilitates establishment in these areas. However, at coarser spatial resolutions, 

this effect is probably accentuated because some areas previously classified as exposed 

(i.e., southerly side of trees) on the fine-scale maps are generalized to a protected 

classification (e.g., a series of tree patches on the north side of a large patch of trees) on 

the broad scale maps (Figure 6-6). In terms of slope angle, fine-scale variability is 

probably more important in dictating soil development (especially steep slopes) and 
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illuminating competitive influences from herbaceous cover (especially gentle slopes) 

(Figure 6-7). Conversely, exposure on south-facing slopes matters less at finer scales and 

is more important at coarser scales that denote generally south- versus north-facing 

ridges (e.g., microtopographic south-facing slopes on a broad north-facing ridge have 

less influence on tree establishment) (Figure 6-7).     

Hierarchical patch dynamics appears to be influencing tree establishment patterns 

at this disturbed treeline and introducing variability in corresponding multivariate  

 

 
 
Figure 6-7:  Snapshots of slope angle (top) and slope aspect (bottom) at 2, 25, and 50 m 
over a small portion of the study site. Green areas denote trees present in 1970 as 
detected by the CORONA satellite photography. 
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statistical analyses. Independent assessments of the same study site could have produced 

conflicting results with merely a subtle change in the spatial resolution used for the 

independent variables. For instance, positive feedback associated with proximity to trees 

(biotic variables) is most important from 2-32 m, conversely, shortened growing seasons 

and temperature changes associated with elevation (abiotic variable) is most important 

from 37-50 m. This is a crucial issue, especially when considering the importance of 

using inferences from multivariate statistics in formulating ecological theory and in 

making critical management or policy decisions. Thus, it appears that both the biotic 

(positive feedbacks) and abiotic (elevation) setting are equally important in controlling 

tree establishment at treeline. Discrepancies in their importance probably exist because 

these variables are hierarchically structured in alpine landscapes. 

 

6.5 Conclusions 

 

Research conducted at a particular spatial resolution is not necessarily erroneous 

and there probably is not an optimum or ‘best’ spatial resolution. Rather, we argue that a 

range of spatial resolutions should be explored within the context of the question(s) 

being addressed. It would be a worthwhile pursuit to examine how the relationships 

between ecological patterns and processes in the patch-corridor-matrix vary with the 

spatial resolution of analysis in a multitude of ecosystems. Critical thresholds may be 

identified where the importance of independent variables in controlling some ecological 

process and/or patterns changes (e.g., ~35 m in this study). Understanding the 
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relationships between various ecological patterns and processes operating at different 

spatial extents, and the spatial resolution of analysis, is of paramount importance to 

advancing ecological thought. Furthermore, the additional insights will complement 

previous research, provide a broader perspective on more contemporary research, and 

enhance our understanding ecosystem structure and function. Therefore, we argue that 

ecologists should explicitly address and empirically test for hierarchical patch dynamics 

in future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

166

 

CHAPTER VII 

INTERPRETATIONS AND CONCLUSIONS 

 

Biogeographers and ecologists seldom conduct their research in a controlled 

setting, particularly during applications of landscape-scale research. Additionally, a 

digital GIS environment usually represents the 'reality' of the respective study site and 

sparse temporal coverage of remote sensing platforms in rugged terrain may limit the 

ability to thoroughly represent the landscape. Thus, this usually necessitates accepting 

certain assumptions and maintaining an awareness of the potentially confounding 

influences of external factors when interpreting the results. Chapter VII offers a synopsis 

of the research presented in this dissertation while also considering any assumptions and 

influences of external factors (Section 7.1), before finishing with some concluding 

thoughts (Section 7.2). 

 

7.1 Summary 

 

The primary objectives of this dissertation (c.f. Section 1.3) were to map treeline 

vegetation and local site conditions, assess and explain structural changes of arboreal 

treeline vegetation, compare different statistical approaches when assessing the 

structural changes of arboreal treeline vegetation, and test for the presence of 

hierarchical patch dynamics. In this section, I revisit these objectives, and discuss two 

assumptions and three limitations relevant to the achievement of the objectives. 
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7.1.1 Mapping procedures   

 

Sometimes, it can be challenging to classify and georeference aerial photographs 

with a high spatial resolution in mountainous terrain, but that was not the case here. 

Orthorectification enabled the proper alignment of mapped vegetation data in a projected 

space with an RMSE below 0.5 pixels. Previous published studies that used temporal 

composites of remotely sensed data in a similar fashion (e.g., examining treeline or 

subalpine forest in mountainous terrain) failed to do this (e.g., Carmel & Kadmon 1999; 

Cushman & Wallin 2000; Hoersch et al. 2002; Klasner & Fagre 2002; Butler et al. 

2003). Thus, this dissertation represents a marked improvement in the data inputs over 

these studies. It also demonstrates that historical photography from mountainous terrain 

may be properly and confidently analyzed in a GIS environment to address 

biogeographic research questions. Additionally, the fitted modal filter and exposed 

south-facing slope of the large ridge at the study site allowed for a high degree of 

accuracy in the binary classifications of the photographs (i.e., near 90%). It was also 

advantageous having a LIDAR-based DEM with a fine spatial resolution to match up 

with the fine-scale aerial photographs. Ultimately, I remain very confident in the ability 

of the accurately mapped fine-scale data to allow the statistical, structural, and 

hierarchical questions be adequately addressed in Chapters IV, V, and VI. 
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7.1.2 Statistical comparisons   

 

Problems associated with multicollinearity between independent variables are 

sometimes challenging for biogeographers and ecologists to address (Mac Nally 2002). 

This is an especially noteworthy concern in treeline environments because independent 

variables tend to be highly correlated (Brown 1994b; Stueve et al. 2009). In 

demonstrating the potentially confounding influence of correlated independent variables, 

it was very useful to apply a nonstandard hierarchical logistic regression application to 

the data and compare it with the traditional approaches in Chapter IV. This allowed me 

to compare and contrast the different approaches, and sufficiently convey the 

ramifications of selecting the proper or improper statistical approach; so much so, that 

one might question the continued use of the traditional approaches in treeline 

environments. This comparative insight enhanced interpretations of structural treeline 

changes in Chapter V and hierarchical patch dynamics in Chapter VI. Specifically, the 

dominant influence of proximity to trees would have been discounted without examining 

the alternative approach and comparing it with the traditional approach.  

 

7.1.3 Controls on spatial patterns of tree establishment   

 

The abiotic setting has received a considerable amount of attention from 

biogeographers and ecologists attempting to explain tree establishment controls at 

treeline over the last two decades (e.g., Brown 1994b; Walsh et al. 1994; Cairns 2001; 
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Bian & Walsh 2005). In Chapter V, sharp changes in landscape heterogeneity identified 

by the contagion index indicated that tree establishment patterns were being controlled 

by various local site conditions. I was able to apply a hierarchical logistic regression 

approach to mitigate the effects of multicollinearity and identify a biotic factor 

(proximity to existing trees) as the most important control on tree establishment when 

considering the entire study area. This biotic factor remained important at restricted 

spatial extents near the forest line and only relinquished importance to the abiotic setting 

with increased distance upslope from the forest line. This intriguing finding will likely 

stimulate additional studies at undisturbed treelines to see if similar patterns prevail. It 

suggests that the assumption of treeline vegetation being in equilibrium or quasi-

equilibrium with the surrounding abiotic environment is not reasonable.    

 

7.1.4 Hierarchical patch dynamics   

 

Biogeographers and ecologists have long been aware of the influences of spatial 

scale and hierarchies of ecological processes when conducting research (e.g., Watt 

1947). Some of these issues have also surfaced in treeline research; loosely referred to as 

scaling dependencies (e.g., Walsh et al. 1994). In Chapter VI, I was able to exploit the 

fine spatial resolution of the LIDAR-based data, 2003 aerial photography, and 1970 

CORONA photography to document continuous changes in the importance of tree 

establishment controls from fine grains (2 m) to coarse grains (50 m). Proximity to 

existing trees was most important at fine grains and elevation was most important at 
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coarse grains. The importance of additional abiotic variables such as slope aspect, slope 

angle, and direction from 1970 trees also changed between fine and coarse grains. This 

appears to provide at least circumstantial evidence for the presence of hierarchical patch 

dynamics. At the least, it identifies potential pitfalls for biogeographers and ecologists 

when conducting research at treeline.   

 

7.1.5 Assumptions   

 

I placed parts of this dissertation in the context of the treeline ecotone literature. 

However, in an effort to link their results with climate, many treeline studies 

intentionally avoid sites that are disturbed to avoid what is perceived to be potentially 

confounding influences from the disturbance (e.g., Cuevas 2002). I argue that disturbed 

treelines are equally useful to study because the upslope advancement of undisturbed 

treelines may remain impeded by similar interactions between local site conditions, 

despite the presence of increasingly favorable climatic conditions. Thus, the first crucial 

assumption of this dissertation is the following:  the underlying mechanisms controlling 

tree establishment patterns at disturbed treelines are similar to those controlling 

relatively undisturbed treelines. Recent research conducted at an undisturbed treeline site 

in Denali National Park and Preserve indicates that this assumption may be reasonable 

(Stueve & Isaacs 2009). 

A second assumption is that nominally classified raster-based cells are an 

adequate representation of reality. Some cells classified as trees contained tundra and 
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vice versa. In 1970, 5.6% of the ground verification points were classified as treeless 

when, in fact, tree saplings were present. Similarly in 2003, 5.0% of the ground 

verification points were improperly classified in this manner. In each case, the small tree 

saplings were probably too small to be detected by the imagery. Alternatively, 14.9% of 

the ground verification points from 1970 and 17.4% from 2003 were erroneously 

classified as trees when they should have been treeless. Complications from tree 

shadows probably contributed to these errors. These errors provide less confidence in the 

order of closely ranked variables, but probably have little influence on the other 

rankings. 

 

7.1.6 Limitations  

 

One limitation is the number of images from representative decades incorporated 

in the temporal sequence of images documenting treeline changes at the study site. The 

analysis could have been more robust and far-reaching with the incorporation of at least 

one additional photograph from the 1930's, 1940's, or 1980's in order to establish a more 

thorough temporal sequence of data. However, the remote location of the study site 

limited the number of available photographs, and cloud cover and/or degraded 

photographs prevented the use of some data that could have expanded the temporal 

coverage. 

A second potential limitation is the relatively small spatial extent of the study site 

(~150 ha). Expanding the analysis to include other disturbed and undisturbed treeline 



 

 

172

 

sites would have provided useful comparative data (e.g., windward versus leeward sides 

of Mount Rainier). However, the availability of the LIDAR-based data was restricted 

and adequate aerial photography was lacking. Most importantly, financial limitations 

and time constraints did not make the inclusion of additional sites feasible. 

A third limitation is the nominal classifications of the treeline environment. 

Nominal classifications necessitate the use of logistic regression, which is less robust 

than multivariate normal regressions that use continuous data for both the independent 

and dependent variables. However, nominal classifications generally suffice and are 

regularly used for black and white aerial photographs (Jensen 2005). Fuzzy 

classifications that produce continuous data are not suited well to black and white 

photographs and it is impossible to do band ratios to produce continuous data with black 

and white photographs because they only contain one band. 

 

7.2 Conclusions   

 

The influence of proximity to existing trees was clearly a dominant force in 

controlling tree establishment patterns at this disturbed treeline. Importantly, it exceeded 

the influence of elevation and other abiotic variables at this study site. Even at restricted 

spatial extents and when changing spatial grain, proximity to existing trees persisted as 

an important factor that equaled or exceeded the importance of the abiotic setting. Only 

when considering independent variables with a spatial grain > 35 m or spatial extents 

several hundred meters upslope beyond the forest line did parameters describing the 
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abiotic system begin to exceed the importance of proximity to existing trees. The 

dominance of proximity to existing trees at this site is in stark contrast to the importance 

of abiotic tree establishment controls in other treeline studies. This finding raises the 

question as to whether this site is unusual ecologically, or whether the statistical analyses 

undertaken provided new insights. If the latter, it may be useful to reexamine patterns of 

tree establishment at previously studied treeline sites to determine if they correspond 

with the results presented here. A similar analysis of structural treeline changes in a 

completely different landscape (ecologically and physiographically) over 1500 miles 

north of Mount Rainier also reported proximity to existing trees as the most important 

controller of tree establishment (Stueve & Isaacs 2009); thus indicating that the findings 

presented here may be salient beyond this south-facing ridge on the western slope of 

Mount Rainier.  

The four following factors are probably responsible for biogeographers and 

ecologists and biogeographers identifying and reinforcing the importance of the abiotic 

setting in controlling tree establishment at treeline:   

 

(1) A biotic factor was not considered and the use of traditional logistic regression 

enhanced the importance of the abiotic setting, which made abiotic influences appear 

overly strong.  

 

(2) Plot-level studies established in the field were influenced by the spatial extent of 

processes operating in the treeline ecotone (i.e., they were established in the uppermost 
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portions of treeline where the abiotic setting may be slightly more important than the 

biotic setting).  

 

(3) A biotic factor was included, but applications of traditional logistic regression and 

overly correlated independent variables minimized the importance of the biotic factor. 

 

(4) Landscape-scale studies conducted at select spatial grains were positioned at places 

in the hierarchical level of ecological processes controlling treeline that are not as 

sensitive to the influences of biotic factors (e.g., the importance of proximity to existing 

trees might appear less important when using > 35 m pixels to assess a few decades of 

change).   

 

The research presented in this dissertation ultimately suggests that the 

assumption of treeline vegetation being in equilibrium with the surrounding physical 

environment may not be reasonable. Although important, this point is probably 

inconsequential to those biogeographers and ecologists that accept non-equilibrium 

paradigms. However, it is crucial to others (i.e., predictive modelers) when equilibrium 

assumptions are often critical to the applicability of the models. Indeed, it appears that 

tree colonization in mountainous regions may largely resemble observed patterns on flat, 

forested landscapes where distance to viable seed sources is usually the most important 

factor controlling patterns of establishment. However, this insight would have been lost 

without performing an alternative logistic regression approach or considering 
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hierarchical patch dynamics, and reaffirmed the importance of the abiotic setting. As it 

is, positive ecological inertia associated with close proximity to existing trees appears to 

exceed the importance of steep environmental gradients in the abiotic setting. That is, 

increased availability of seed and the ability of established trees to ameliorate their 

surroundings probably play pivotal roles in elevating the importance of proximity to 

existing trees. Indeed, it appears that Tobler’s (1970) first law of geography is alive and 

well at Mount Rainier:  "Everything is related to everything else, but near things are 

more related than distant things." 
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APPENDIX A 

 

Manuscript Published in Journal of Vegetation Science 

 

* Reprinted with permission from “Post-fire tree establishment patterns at the alpine 

treeline ecotone:  Mount Rainier National Park, Washington, USA” by Kirk M. Stueve, 

Dawna L. Cerney, Regina M. Rochefort, and Laurie L. Kurth, 2009. Journal of 

Vegetation Science, vol. 20, pp. 107-120, Copyright 2009 by International Association 

for Vegetation Science, John Wiley & Sons, Inc. 
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