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far as the convergence to zero of the sliding variable is concerned, pre-
venting the enforcement of the desired second order sliding mode. In
this technical note, a modified sub-optimal SOSM control algorithm is
proposed. The modification is oriented to avoid the delay in the con-
troller switching caused by actuator saturation. The proposed controller
proves to guarantee the convergence of the sliding variable and of its
first time derivative to zero in a finite time, in spite of the presence of
uncertain terms affecting the system model and of the saturating actu-
ators.
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A Parametrized Controller Reduction Technique via a New
Frequency Weighted Model Reduction Formulation

Pantazis Houlis and Victor Sreeram

Abstract—In this technical note, the solution to the controller reduction
problem via a double-sided frequency weighted model reduction technique
is considered. A new method for finding low-order controllers based on new
frequency weights derived using closed-loop system approximation crite-
rion is proposed. The formulas of frequency weights are obtained in terms
of the plant, the original controller and a matrix of free parameters. By
varying the free parameters in the resulting two-sided frequency weighted
model reduction problem, frequency weighted error can be significantly re-
duced to yield more accurate low-order controllers.

Index Terms—Controller reduction, frequency weights, model reduction.

I. INTRODUCTION

Controller reduction problems are usually solved via frequency
weighted model reduction problem [1]-[6]. The frequency weighted
model reduction problem can be classified into single-sided or
double-sided frequency weighted problems. The single-sided fre-
quency weighted model reduction problem is based on stability
margin considerations. The reduced-order controller should satisfy the
same conditions as are listed in the above references. The double-sided
problem is based on closed-loop system approximation and attempts
to minimize an index of the form

e=|

Vi(K — K )V
where Vi =(I+GEK)'G and Vo= +GK)™'

and G, I, and K, are the plant, the original controller and the reduced
controller respectively.

There are a few methods for the solution of the frequency weighted
model reduction problem [4], [S]. However, approximation errors ob-
tained using these techniques are large. In general, the techniques are
not as good as the techniques available for the unweighted case [7].

In this technical note, new techniques for obtaining lower approxi-
mation error using standard techniques by manipulating the frequency
weights are proposed [4], [5], [8]-[12]. The techniques are based on de-
riving a new set of weights for double-sided frequency weighted model
reduction. Out of the two new weights derived, one of the weights can
be made to be a function of free parameters. By varying those free
parameters in the resulting double-sided frequency weighted model
reduction problem, the frequency weighted error can be significantly
reduced, subsequently obtaining more accurate low-order controllers.
Note that this technical note contains an improved and generalized ver-
sion of the method presented in [13], [14].

Preliminary results on the Double Controller Techniques that were
presented in [13], were only applicable to SISO (Single Input Single
Output) systems. The method presented here is a generalization which
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Fig. 1. Closed-loop system with plant G and controller X .

is applicable to MIMO (Multiple Input Multiple Output) systems. Fur-
thermore, in this technical note we introduce an additional algorithm
together with an efficient searching method.

II. PRELIMINARIES

Consider the closed-loop system shown in Fig. 1, with the plant G
and the controller K. The transfer function of the closed-loop system
is given by

W =GK(I+GK) " )

In the closed-loop system configuration shown in Fig. 1, if the original
controller K is replaced by a reduced-order controller, K., then the
closed-loop system transfer function is given by

W, =GK,(I+GK,)™". ©))

Remark 1: In the controller reduction problem, the objective is to
find a reduced-order controller, i’ such that the closed-loop systems
are approximately equal. Because of the order simplification, it is not
possible to have (in general) W, = W. Therefore, a more realistic
approach is to minimize the index ||W — W, ||, so that the closed-loop
systems W and W,. can become approximately equal, i.e., W, = W.

Assuming that the second order terms are negligible in k' — I(,., we
write the following [1]:

W W, =(I+GK) 'G[K - K,]J(I +GK)™". (3)

Therefore, the controller reduction problem can be reduced to a
double-sided frequency weighted model reduction problem, which
aims to minimize an index of the form

e=|Vi(K — K.)Va||_, where Vi = (I 4+ GK)™'G

and Va=({T+GK)™". 4

oo ?

Since the method proposed in the technical note is applicable to both
continuous and discrete systems, the notation used throughout the tech-
nical note for transfer functions (plants, controllers, and any combina-
tion of them) will represent both continuous and discrete cases. For ex-
ample, a plant G will represent both G((s) (continuous case) and G(z)
(discrete case), unless stated otherwise.

III. MAIN RESULTS

Consider the closed-loop block diagram shown in Fig. 1. This system
has a plant G and controller K and a closed-loop transfer function, .
We will first show that this system can be expressed in another closed-
loop configuration (see Fig. 2). The new configuration uses the original
plant G and two controllers K'C' and K (I — (') instead of one, where
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C-l

Fig.2. Plant G is itself a closed-loop system with plant GG and controller K —
K =K(I-0).

C' = [ei;] is a non-singular constant matrix. Note that both closed-
loop configurations in Figs. 1 and have the same input and output and
hence the same closed-loop system transfer function. Recall that for
deriving frequency weights in standard techniques [1], [4], [8]-[12],
we use the closed-loop system configuration shown in Fig. 1. In this
technical note, for deriving the new set of frequency weights we use
the closed-loop configuration in Fig. 2.

Definition 1: The configuration in Fig. 2 will be called the Double
Controller Form of the closed-loop system W . Moreover, the use of
the Double Controller Form to manipulate the frequency weights by
changing the matrix C' of free parameters, will be called the Double
Controller Technique.

The advantage of using the Double Controller Form is that one of the
weights will be a function of the matrix C. By varying the parameters
of the matrix, we can significantly reduce the approximation error when
using any frequency weighted model reduction technique.

A. Relationships Between Closed-Loop Configurations

In this subsection we derive the relationships between the closed-
loop configurations shown in the block diagrams, Figs. 1, 2. In partic-
ular we will derive the relationships between the new plant &' and the
new controller & in terms of the old plant G, the old controller K and
a matrix C' of free parameters.

LetW = GK(I+GEK)™", W = GK(I+GK)™" be closed-loop
systems with plants and controllers G, I and G, K respectively. Let us
also define H(C') = I + GK (I — C). By assuming that (I + GK )™
exists, it can be shown that (I + G (I — C))™* also exists for given
C, except for a finite number of values for s (continuous case) or z
(discrete case). The proof (which is a simple extended version of the
proof in [13], but for matrices) is omitted due to space restrictions. We
will disregard those finite number of values, as we have infinite choices
forsor z. For C = I wehave H(I) = I. Wealsodefine H = T+ GK
and # = I + GK.

Lemma 1: Assume we have the closed-loop systems W =
GKH™'and W = GKH™" as defined above. If C' is a non-singular
real matrix such that X’ = K'C and G = H~'(C)G, then we have

W =WwC. (&)

Proof: First we have

1

H'=(I+GK)'=(I+H (C)GKC)"
= (H(C)+GKC)™" H(C)
=(I4+GK(I-C)+GKC) " H(C)
=(I+GK)'H(C)=H 'H(C). 6)
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Note that for any closed-loop system W, the commutative property
GKH™' = H 71_GK holds [2]. Then we use this property and the
definitions of G, K and H~' to obtain W

W=GKH '=H 'GK =H '"H(C)H "(C)GKC
=H'GKC=GKH™'C=WC @)

]
Therefore, for C' nonsingular, we could replace the closed-loop
system W in Fig. 1 by the closed-loop system W C' ~!in Fig. 2.
Remark 2: By using the definitions of G' and K we have

1

G=({I+GK-K)) G. (8)

And as shown by the dashed lines in Fig. 2, G can itself be regarded
as a closed-loop feedback system with plant G' and controller K — K =
K(I-0C).

The real gain here is the revelation of a new matrix C' of free param-
eters. By looking at the figures, it is clear that Fig. 2 is a generalization
of Fig. 1, and by setting C' = I both block diagrams will become
identical. The input and output always remain the same regardless of
C, which means that we may manipulate the parameter C' without af-
fecting the system, but we may improve the non-linear procedure for
calculating a reduced-order controller. In our technique, instead of di-
rectly calculating the reduced system from the original system, we use
three steps:

1) We multiply the system W by the constant matrix C' (linear pro-

cedure).

2) We reduce the system by using the standard controller reduction
technique (non-linear procedure). For large C, there is more room
for improvement between W' and W,.C, than between W and
Wi

3) Finally, after finding W/C', we multiply it by C~" (linear proce-
dure).

We will show that the constant matrix C' plays a major role in de-
creasing the approximation error in controller reduction.

B. Derivation of New Weights

The main aim of controller reduction is to obtain a low-order con-
troller by approximating the closed-loop behavior of the system. In
this subsection, we derive the new set of frequency weights using the
closed-loop configuration shown in Fig. 2. This is achieved by approx-
imating the difference between the closed-loop systems W and TW,.,
where W, = W.,.C', and W,., W, are the closed-loop systems with
the lower order controllers i, (C), K, respectively. The reduced con-
troller K, (C) is obtained from a system W with plant G = (I +
GK(I = C))"'G and controller K = K C. Therefore it is depen-
dent on C'. Since the procedure for obtaining a reduced controller is
non-linear, for C'; # C> we should also have K,.(C) # K,(Cs).

Let us now consider the closed-loop system W = W' with the
assumptions used in Lemma 1.

We can express the difference WC' — W,.C by the difference W —
W,. More specifically

(W -W)C =W —W,. )
From (3) we have

W-W,=H "G(K — K,)H™ " and
W-W,=H'G(K-K.(C))H .

1089
Therefore, (9) may be rewritten as

H'G(K-K,)H 'C=H0""'G(K-EK.(C))H~". (10

Now define K (C) = K, (C‘)Oil. For C = 1, it is clear that
H(I)=1I,G = Gand K = K, which implies K, = K, (I). We also
define I(C) = HCH'H(C)C™.

Theorem 1: Using the assumptions in Lemma 1, we have

H'G(K-K.(I)H '=H 'G(K-K,.(C)H 'I(C).
(11)

Proof: To prove the above Theorem, we must bring the RHS of
(10) into a more explicit form.
Recall that K = KC and K,(C) = K,(C)C™". By using (6) it
can be shown that

H'G(K-K.(C))H™'=H 'G(K-K,(C))CH™"H(C).
(12)

Then we have

H'G(K — K.(C)CH™"H(C)
=H 'GK-K.(C)H™' (HCH™'H(C))
=H 'GK-K.(C)H ' (HCH™'H(C)C™")C
=H 'G(K-K.(C)H'I(C)C.

Thus, by substituting the last part of the above Equation into (10),
and then canceling out the constant matrix C', we obtain the required
result. ]

Remark 3: The new weights follow immediately from the RHS of

an

Vi=H 'G=(T+GK) 'Gand Va(C)= H™'I(C). (13)

For C' = I, we have V2(C') = V5 and we get the standard weights
defined in (4).

Remark 4: Comparing the two set of weights in (4) and (13), ob-
serve that the output weights, V; are exactly the same while the input
weights are different. The new input weight V2 (C'), is now a function
of a matrix C of free parameters, whereas the input weight V5 in the
standard techniques is a fixed transfer function [1], [4]. The proposed
method is based on varying this free parameter to achieve lower ap-
proximation errors and hence better low-order controllers.

Lemma 2: If in Theorem 1 we have C = c¢I, where ¢ is a real
number, then C' commutes with GK , thatis CGK = GKC, and (11)
will be simplified into the form

H'G(K-K.(I)H '=H 'G(K - K, (C))H 'H(C).
(14

Proof: Since C' = cI, it commutes with all the matrix terms G K,
H,H™', H(C)and H™'(C). Therefore, regarding I(C'), the term C'
will be canceled out by the term C'~*, and consequently, H will be
canceled out by H ~'. Therefore, I(C') will be simplified to H(C). ®
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Remark 5: According to the above Lemma, if C' commutes with
G K, the new weights will now be

Vi=H'G=(I+GK)™'G
Vo (C)=H'H(C)=(T+GK) ' [T+ GK(I - C)].

15)
(16)

In this technical note, we consider the simplest of all commutative
matrices, that is C' = ¢I. The case of non-commutative matrices C
is under investigation (i.e., using I(C') instead of H(C'), which re-
stricts C' to only one parameter). Specifically, we seek to generalize
they theory along the following lines:

1) Let C' = diag[c1, ¢z, . . . , cn], which requires more complex cal-
culations, but would provide improved error reduction. The en-
tries, ¢;, can be viewed as weighting parameters in the optimiza-
tion of the error.

2) Let C' be a full matrix.

3) For a known plant &G and controller K, perform a search over the
general form matrices C' that commute with GK .

By defining C' = ¢I where c¢ is a constant, the matrix clearly com-
mutes with GK, and we can safely use the weights defined in (15)
and (16), that is, we may use H (C') instead of I(C'). The matrix I(C')
(which is a part of the right weight V2 (C') as shown in (13)) is too com-
plex to use in this technical note as it will involve any matrix C', and a
much more expanded error analysis.

Furthermore, we will have H(C') = I + GK (1 — ¢). Since C' now
depends on the scalar parameter ¢, in the rest of this technical note
the notations H (¢), K, (c) and I,-(c) will be used instead of H(C),
K, (C)and K.(C).

C. Error Analysis

Given G, K and c, it is standard procedure to derive a lower
order controller K, = K,(c) by minimizing |H 'G(K -
K. )H 'H(c¢)||e using any of the standard double-sided frequency

weighted model reduction techniques [3], [4]. Let us define E(c1,c2)
and e(cy,c2) as

E(ci,e2) =H 'G(K — K (1)) H "H(es)
e(cr,e2) = ||E(er, e

a7
18)

oo ”

In other words, the term e(c1,c2) symbolizes the approximation
error that uses K, (c1) as the reduced controller, and H ~1G and
H™'H(cs) as left and right weights. Note that, the controller I, (¢ )
is defined as being found by minimizing the error e(c1,c1), not
e(e1,¢2). Moreover, we have H(1) = I, and e(1,1) corresponds
to the approximation error obtained using standard weights (4) in
double-sided frequency weighted model reduction techniques [3], [4].

Remark 6: The controller K, (¢1) depends on ¢1 and H (¢1 ), but the
way K,.(c1) isinfluenced by H (¢1) (in making the approximation error
smaller) is more complex, and it mostly depends on the mechanism of
the frequency weighted balanced truncation method that is used at the
time (for example Enns’s [4] or Wang et al.’s [5] method).

Lemma 3:

E(c,c)=E(1,1).
E(c,1) =E(1L,1)H "(¢).

19)
(20)

Proof: Equation (19) is directly derived from (14) by using the
definitions of E(c,c) and E(1,1).

Regarding (20), we use the formula in (17) and the definitions of

E(c,1), E(c,c) to get E(c,1)H(c) = E(c,c). Then, by using (19)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 5, MAY 2009

we obtain E(c,1)H(c) = E(1,1), which finally gives E(c,1) =
E(L,1)H ' (c). n
We will also have

E(c,1)H(c) =E(1,1)

E(c,1)[(1=c)l+cH Y] =E(1,1)H . (1)

Lemma 4: Let h(c) = ||H(c)||s and h(c) = ||H (c)||so. Then
we have

e(c,c) =e(1,1). 22)

e(L, 1) (e) <e(e,1) < e(1,1)h(c). (23)

Proof: Equation (22) is a direct consequence of (19).
Regarding Inequality (23), we will first prove the left part of the
above expression and then the right part. From (20) we have

1B, Dl = [[EQLDH ()
I1ECe, Dl < IBLDI [H (o) -
e(e,1) <e(1,1)h(c)
Similarly, we have

e(e,1) > e(1, 1)~ " (c)

D. The Behavior of H(c)

It is clear from the above that the term H (¢) and its two forms of
infinity norm h(c) and h~'(c) are of great importance, and so it is
essential to understand their properties.

Remark 7: Recall (21). We can see very clearly that by increasing
the value of the parameter ¢, the term [I(1 — ¢) 4+ cH '] will become
large. And since the RHS of this Equation is a constant with respect to
¢, the size of the term E (¢, 1) will decrease, and the derived controller
K, (c) will give a smaller approximation error.

By looking at (21), the approximation error e(c, 1) becomes smaller
as c¢ increases. Because of the difference between the high order and
low-order transfer functions, the approximation error e(c, 1) can never
become zero, but we will still achieve a significant error reduction as
large values of ¢ will force the approximation error to converge to a
better minimum. And as ¢ goes to plus or minus infinity, this minimum
becomes a constant value, which may not be the optimal for all ¢, but it
is always less than the original error when ¢ = 1. By using some rough
assumptions, we may approximate a value for ¢, that will give us an
approximation error which will be almost equal to the constant number
that e(¢, 1) is converging when ¢ tends to +oc. This means, that if we
choose greater values for ¢, there will be no significant difference.

Let us choose some number , such that we wante(c, 1) = ~e(1, 1),
where 0 < v < 1. From (21) we have

|E(c,1) [(1=o)I+cH ]| =|BLLE |

IEc. DIl Q=T+ cH™Y| > |B(LHET . (24

If we choose a large ¢, then it can be assumed without loss of gen-
erality that [[(1 — ¢) + cH Y| = [I(=¢)+cH Y| = [c(H' - I)].

Authorized licensed use limited to: Texas A M University. Downloaded on May 28, 2009 at 11:56 from IEEE Xplore. Restrictions apply.
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Then (24) becomes

1B Dl |le2 " =D > [|[BL.DE |
lel1E(e. DI (B~ =D > |[BEQ. DA

lel > [EQ.DE (1B Dl (2" = Dl ] (25)
By assuming that the original transfer function W = GKH*

has no poles on the jw-axis, we can easily show that the terms I —
GKH- " H™',H™' — I, and E(l,l)H_1 have no poles on the
jw-axis. Thus, we may safely use their corresponding infinity norms
to calculate ¢. And if we substitute e(c, 1) by ve(1, 1) we finally have

lel > [|[EQL.DHETY| | [ye(t ) [|(H —

I)||OO]’ (26)

For v = 1/3, we may choose a big enough ¢ that gives the required
approximation error. As we have stated, in practice, we may not expect
to derive an approximation error e(c, 1) as small as v times (in this case
1/3) of the original error e(1, 1), but we will derive a big improvement
of this error, equal to the value of e(c,1) for ¢ converging to co.

A satisfactory assumption would always require a number v which is
“small enough”.

E. Double Controller Technique

The proposed double controller technique solves the frequency
weighted model reduction problem e(cq,c2) [|[Vi(K
K, (c1))VoH (c2)||oc to find a new improved controller K, (c1),
by replacing the old weights with new ones (Vi and V> are the
standard weights (4)). To solve the frequency weighted model re-
duction problem, we can use any of the standard techniques, e.g.
Enns’ technique [4] and Wang ef al.’s technique [5]. Since the weight

1091

K, (cy) for different ¢;. Note that, ¢c; = 1 corresponds to the lower
order controller K-(1) obtained by using the standard weights (4). A

logical approximation for e(c, 1) which lies between e(1, D™ (e)
and e(1,1)h(c), would be
—1/ . 7
e(e1) m é(e,1) = e(1, 1)% @7

that is, by taking the mean of the lower and upper bounds of e(c, 1),
which is very easy to calculate. This sum is able to reveal important
changes of the behavior of e(c, 1). The local minimum points of the
smooth curve represented by é(c, 1) are candidate values for which ¢
gives optimal controllers. Note that, this method depends on the quality
of the approximation given in (27). Thus, we may not get the best con-
troller (found after an inefficient exhaustive search), but we will get a
controller whose approximation error is close to the optimum and has
better approximation error to the one using the original method with
the standard weights.
Summarizing, there are two ways to improve the approximation
error.
1) Calculate é(c,1), and use the values cumin that correspond to its
local minimum points to construct an optimal controller.
2) Construct an optimal controller by using a large value ¢ (as shown
in (26)).
Based on the approximation error used, we propose an algorithm
(of one parameter) for finding the optimum controller K- (¢) by using
weights Vi, V2 H (c).

E. The Algorithm
1) Given plant G and controller K, define the weights Vi = (I +
GK) 'Gand Va(c) = I+ GK) ' (I+ GK(1 - ¢)).
2) Calculate é(c,1) and find the values cmin that correspond to its
local minimum points. Alternatively, a large value ¢ may be used

V2H (c1) is a function of ¢1, we get different low-order controllers instead.
0 4 5 =3 =2 -3 -4
2 4 -7 =2 0 3 2 0
-6 9 =5 0 2 -1 -5 =7
de=t g 4 7 21 23 o0 BT 4 e
2 5 8§ -9 1 -4 -3 9
-5 8 0 2 -6 1 =2
—1 2 —4 0 -3 1 =2
CG_( 3 5 -1 1 1> Do = <0 4>
—2.8043 14.7367  4.6658 8.1596 0.0848 2.5290
4.6609 3.2756  —3.5754 —2.8941  0.2393 8.2920
A = —15.3127 23.5592 —7.1229  2.7599 5.9775  —2.0285
—22.0691 16.4758 12.5523 —16.3602 4.4300 —3.3168
30.6789 —3.9026 -—1.3868 26.2357 —8.8267 10.4860
—5.7429  0.0577 10.8216 —11.2275 1.5074 —10.7244
Cp = <—() 2480 —0.1713 —0.0880 0.1534 0.5016 —().()73()>
2.8810 —0.3658 1.3007 0.3945 1.2244 2.5690
—0.1581 —=0.0793
—0.9237 —-0.5718
By — 0.7984 0.6627 D= < 0.0554 0.1334)
0.1145 0.1496 |’ —0.3195 0.0333
—0.6743 —0.2376
0.0196  —0.7598
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TABLE I
APPROXIMATION ERROR COMPARISON USING ENNS METHOD FOR FIRST UP TO FIFTH ORDER CONTROLLERS (MIMO EXAMPLE)

1.3

Enns Wang
order || e(1,1) || elemin 1) | 00, ) || com | cleop) || et 1) [ elemin ) [0, 1) | com | eleop)
1 3.6608 2.7510 3.6909 -0.6122 | 2.7510 || 4.6013 3.1764 3.8629 -1.0204 | 3.1764
2 3.1186 2.2697 2.2993 1.0204 | 2.2697 || 2.5725 2.3780 2.7582 -0.6122 | 2.3780
3 5.3129 2.8736 1.5485 1.0204 1.5485 1.9823 1.0293 7.1506 -0.2041 | 1.0293
4 0.9745 0.7643 1.3900 2.2449 | 0.7643 1.0475 0.8282 1.0028 0.2041 0.8282
5 0.2271 0.0846 0.3172 0.2041 0.0846 0.3209 0.2431 0.3477 -0.2041 | 0.2431
16— T — T T T T 7
\ e i {
1.5 e § 0.35
[ 1
error 1.4 E ‘{ error
e(c) . won) 03}
.
]
i

0.9
0.8r
0.7
0.6} i

10 8 6 4 -2 0 2 4 6 8 10
parameter ¢

-

Fig. 3. Error functions e(c, 1) and é(c, 1) for the MIMO example when ap-
plying controller reduction of order 4.

3) Solve the frequency weighted model reduction problem ||V (K —
K, (c))Va(c)|| for those ¢ to compute K, (c) by using standard
techniques (Enns [4] and Wang et al. [5]).

IV. MIMO EXAMPLE

We now consider an example from the ., and H> Optimization
Toolbox in SLICOT [15], defined with a plant G and a designed
controller K (of sixth order, four inputs, and four outputs), whose
state space matrices (Aa, Bg,Ca,Da, and Ak, Brx,Crk, Dk,
respectively, are given in the equation, shown at the bottom of the
previous page.

Figs. 3 and 4 reveal that in the fourth order and fifth order reduced
controllers cases (for Enns’ Method), é(c¢,1)’s local minimums di-
rectly point out the possible ¢’s which give optimal results. Sometimes
though, it is e(oo, 1) which gives a better approximation error. This
usually happens in the cases where the order reduction is done by an
odd number, which could result in replacing a pair of complex poles by
areal one, and yield results which are not as accurate as the ones when
the order reduction is done by an even number [16]. However, there
are also cases where e(0, 1) becomes too large. In general, we notice
again a very big improvement of error reduction by using the double
controller technique.

All the results for controllers with a reduced order from 1 to 5, can
be seen in Table I. We may comment that in most cases, cop is directly
found by the ¢min’s for each different order.

0.25

0.2

0.15

0.1

0.05- 1

;10 8 -6 4 -2 0 2 4 6 8 10
parameter ¢

Fig. 4. Error functions e(c, 1) and é(c, 1) for the MIMO example when ap-
plying controller reduction of order 5.

V. CONCLUSION

Formulas for new set of weights required for solving controller re-
duction problem via double-sided frequency weighted model reduction
techniques are derived. It is shown that one of the frequency weights
in a double-sided frequency weighted model reduction problem can be
expressed as a function of a free matrix parameter C'. It is shown that by
varying this matrix parameter, the approximation error in double-sided
frequency weighted model reduction problem can be greatly reduced,
yielding more accurate controllers.

Remark 8: Note that, it is the standard double-sided frequency
weighted model reduction techniques that dictate the stability status of
the reduced-order controller, and not the double controller technique.
The introduction of the matrix parameter c is only an intermediate step
to temporarily modify the high order controller, but it plays no role
in deciding the stability of the reduced-order controller. Moreover,
it should be reminded to the reader that for any matrix parameter C,
the system input and output are always equal to the ones for C' = I.
Therefore, the technique does not interfere with the stability of the
system. Finally, for future purposes, the use of a constant matrix C'
with more than one parameters (instead of one) has clearly the poten-
tial to give even better approximation errors, as well as constructing a
much more accurate graph for é(c, 1).
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To Zero or to Hold Control Inputs With Lossy Links?

Luca Schenato

Abstract—This technical note studies the linear quadratic (LQ) perfor-
mance of networked control systems where control packets are subject to
loss. In particular we explore the two simplest compensation strategies com-
monly found in the literature: the zero-input strategy, in which the input to
the plant is set to zero if a packet is dropped, and the hold-input strategy, in
which the previous control input is used if packet is lost. We derive expres-
sions for computing the optimal static gain for both strategies and we com-
pare their performance on some numerical examples. Interestingly, none of
the two can be claimed superior to the other, even for simple scalar systems,
since there are scenarios where one strategy performs better then the other
and scenarios where the converse occurs.

Index Terms—LQ control, networked systems, packet loss, stability.

I. INTRODUCTION

Today’s technological advances in wireless communications and in
the fabrication of inexpensive embedded electronic devices, are cre-
ating a new paradigm where a large number of systems are intercon-
nected, thus providing an unprecedented opportunity for totally new
distributed control applications, commonly referred as networked con-
trol systems [1]. One of the most common problems in networked con-
trol systems, especially in wireless sensor networks, is packet drop,
i.e. packets can be lost due to communication noise, interference, or
congestion. If the controller is not co-located with the sensors and the
actuators and it is placed in a remote location, then both sensor mea-
surement packets and control packets can be lost.

A large number of works in the literature have analyzed estima-
tion and filter design under lossy communication between the sen-
sors and the controller [2]-[9]. However, there are also several works
that studied the close loop performance when control packets can be
dropped [4], [10]-[15]. In general, in most of the literature two different
strategies are considered for dealing with packet drops. In the first one,
which we refer as zero-input, the actuator input to the plant is set to
zero when the control packet from the controller to the actuator is lost
[12]-[15], while in the second, which we refer as hold-input, the latest
control input stored in the actuator buffer is used when a packet is lost
[4], [10], [11]. These are not the only strategies that can be adopted. In
fact, if smart actuators are available, i.e. if actuators are provided with
computational resources, then the whole controller [14] or a compen-
sation filter [16] can be placed on the actuator. Another strategy is to
use a model predictive controller which sends not only the current input
but also a finite window of future control inputs into a single packet so
that if a packet is lost the actuator can pop up from its buffer the cor-
responding predicted input from the latest received packet [17], [18].
Nonetheless, even this strategy requires more computational resources
and communication bandwidth than the zero-input or hold-input strate-
gies.
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