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ABSTRACT

Radiation Induced Nanocrystal Formation in

Metallic Glasses. (August 2009)

Jesse Carter, B.S., Texas A&M University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Lin Shao

The irradiation of metallic glasses to induce nanocrystallization was studied in

two metallic glass compositions, Cu50Zr45Ti5 and Zr55Cu30Al10Ni5. Atomic mobility

was described using a model based on localized excess free volume due to displace-

ment cascades created by energetic particle irradiation. Due to the difference in

cascade size among different masses of projectiles, a mass-dependent study was per-

formed. Metallic glass ribbon samples produced by melt-spinning were bombarded

with electron, He, Ar, and Cu particles. Electron irradiation and characterization

was performed ”in-situ” by means of transmission electron microscopy. The different

metallic glasses showed dissimilar levels of radiation stability under electron irradi-

ation by Cu50Zr45Ti5 forming crystals 1-10 nm in diameter embedded in the amor-

phous matrix after about 30 minutes of irradiation, while Zr55Cu30Al10Ni5 showed no

such crystallization. Increasing projectile mass caused an increase in the maximum

nanocrystal diameter up to approximately 100 nm in Cu irradiated Zr55Cu30Al10Ni5.

Studies of diffraction patterns of irradiated specimens showed nucleation of Cu10Zr7

phases in both specimens, as well as evidence of CuZr2 in Cu50Zr45Ti5 and both CuZr2

and NiZr2 in Zr55Cu30Al10Ni5. Crystal sizes in irradiated Zr55Cu30Al10Ni5 specimens

showed bimodal distribution with many large (50-100 nm) crystals and many small

(1-5 nm) crystals. The small crystals in irradiated Zr55Cu30Al10Ni5 were determined

to be NiZr2 phase because of the low abundance of Ni. After exposure to 2 keV
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Ar ions, areas of composition roughly Cu10Zr7 were found by energy-dispersive X-ray

spectroscopy but no crystallization was found. Further crystallization was achieved in

decomposed specimens after electron irradiation. This shows that atomic segregation

is a necessary step before nucleation in metallic glasses.
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CHAPTER I

INTRODUCTION

Metallic glasses have been of great interest in the past several decades due to their

unique properties. What makes this material so unique is that it is an amorphous

metallic alloy; there is no long-range atomic order. Since this is in contrast to con-

ventional metallic alloys, metallic glasses have the ability to reach new heights in

mechanical performance. For example, they exhibit strength superior to conventional

polycrystalline alloys of similar composition and are also very corrosion resistant.

Due to such unique performance, many applications of metallic glasses have been

developed in both bulk (thick) and thin film specimens.

A wealth of knowledge has already been compiled regarding the mechanical per-

formance and behavior of metallic glasses [1, 2, 3, 4, 5, 6]. A graphical representation

metallic glass superiority regarding tensile strength can be seen in Fig. 1, taken from

[1]. Metallic glasses based on the Cu-Zr-Ti and Cu-Hf-Ti systems have shown tensile

strength on the order of 2000 MPa [7], and an Fe-B based metallic glass recently

demonstrated compressive fracture strength of 4200 MPa [8]. In comparison, steel al-

loys exhibit yield strengths which do not typically exceed 1000 MPa [9]. The Vicker’s

hardness of metallic glasses exhibit a similar trend to Fig. 1 [1]. In general, metallic

glasses have the potential to exhibit higher strength than any crystalline alloy. In

the realm of corrosion resistance, there have been reports of metallic glasses with

extremely high corrosion resistance such as Fe-Cr-P-C [10] and Cu-Zr-Ti [11]. Metal-

lic glasses also have superior magnetic properties. As an example, it has been shown

that amorphous metals can improve electrical transformer technology. When metallic

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1. Tensile strength of bulk metallic glasses and other conventional alloys plotted

against Young’s modulus.

Reprinted from Acta Materialia, Vol 48, Akihisa Inoue, Stabilization of metallic supercooled
liquid and bulk amorphous alloys, Pages 279-306, 2000, with permission from Elsevier.
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glass ribbon is used as transformer core material rather than conventional nickel-iron

material, transformer performance is improved while decreasing the amount of ma-

terial necessary [12]. With such excellent bulk properties, bulk metallic glasses are

immediately attractive for many applications.

Metallic glasses also show high hardness which has lead to applicability in small

and thin film coatings of materials and devices. For instance, metallic glass, more

specifically Vitreloy, was used by Surgical Specialties to produce scalpel blades. The

blades were sharper and lasted longer than steel blades and were easily produced

from a single mold. Also, metallic glass films are hard and very scratch resistant,

so naturally thin film coatings have been used as protective coatings on electronic

devices, such as cell phones [13].

A famous example of practicality with bulk metallic glasses is the use as face

material in golf clubs. The material used was one of the first commercially produced

metallic glasses. This proprietary alloy was trademarked as “Vitreloy” and the atomic

composition was Zr41.2Ti13.8Cu12.5Ni10Be22.5, commonly referred to as Vitreloy 1 or

“Vit1”. The alloy was developed by a team from the California Institute of Technol-

ogy in the early 1990’s [14] who started a company called Liquidmetal Technologies.

Owing to the unconventional amorphous nature of the club head face, the material

was twice as hard and four times as elastic as Ti drivers which allowed 99% of the

impact energy to be transferred to the ball [13]. However, studies on the club showed

some fractured and crystallized regions in the club leading to lower strength in the

crystallized region and the long term reliability was called in to question [15]. It is the

subject of this dissertation to investigate a novel way to remedy the brittle fracture

of metallic glasses. The approach will be discussed later.

The unique properties of metallic glasses come from the unique microstructure of

the material, or lack thereof. In order to understand the difference between metallic
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glasses and conventional metallic alloys, some properties of the latter will be dis-

cussed. Historically, great efforts have been made to create metallic alloys with su-

perior strength. Almost invariably, large-scale engineering materials will be made

of numerous tiny grains and lots of work has gone into designing alloy production

processes to create polycrystalline alloys with specific grain sizes, among other char-

acteristics. This idea can be dated back to as early as 1951 in what is commonly

referred to as the empirical “Hall-Petch” relationship where the yield stress (and

other mechanical properties) is inversely proportional to the square root of the av-

erage grain diameter [16, 17]. Experimental data demonstrating this relationship is

shown in Fig. 2 for low-carbon steel [18]. When the yield strengths of materials are

plotted against the square root of the average grain size, they very closely approx-

imate a straight line. The Hall-Petch relationship is derived from the concept that

grain boundaries act as barriers to dislocation movement. As the material contains

more barriers for dislocation movement, it becomes effectively strengthened. While

the Hall-Petch proportionality does not hold as the grain size goes to zero, it does have

applicability to grain size domains of practical measure, such as micron to millimeter

sized grains.

The addition of grain boundaries to a material, a process commonly called grain

boundary strengthening [9], is not without drawbacks. In effect, the very process

that gives polycrystalline alloys their enhanced strength brings about more failure

mechanisms. The grain boundaries themselves have high interfacial energy. Such high

energy leads to formation centers for diffusion, corrosion, and cracking. The diffusion

of elements towards and away from grain boundaries is an important mechanism in a

highly undesirable phenomenon in nuclear reactor steels called “Irradiation Assisted

Stress Corrosion Cracking (IASCC)” [19, 20, 21].

In a related effort, General Electric has claim to the world’s largest single crystal
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Fig. 2. Yield strength of low-carbon steel versus the inverse square root of average

grain diameter at different temperatures.

Source: [18].
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turbine engine blade. These 18 inch, 30 pound single crystals were developed to elim-

inate grain boundaries altogether. Before the development of single crystal turbine

blades, the corrosion, cracking, and other phenomena occurring at grain boundaries

led to shorter blade lifetimes and required lower operating temperatures which de-

creased the turbine’s overall efficiency. From the elimination of grain boundaries, the

single crystal turbine blades now exhibit longer thermal and fatigue life, are more

corrosion resistant, and can operate at higher temperatures [22]. Metallic glasses also

are devoid of grain boundaries, but they do so in a much different way. Instead of be-

ing completely ordered, the microstructure of metallic glass is completely disordered,

so there are no domains of crystal structure at all. This at least in theory will give

the metallic glass the ability to perform exhibit desirable characteristics like those

seen in the single crystal engine blades.

Much like the grains in polycrystalline materials, the random atomic arrange-

ment in metallic glasses gives it its strength but also is the cause for its downfall.

The deformation mechanism in metallic glass is much different than in crystalline

materials. Basically, when a metallic glass deforms due to a stress, the deformation

is highly inhomogeneous and localized to small zones. This is in direct contrast to

deformation in polycrystalline metals. When a polycrystalline material plastically

deforms, the strain is spread throughout the volume and the whole material becomes

stronger - a process known as work hardening or strain hardening [9]. When a metal-

lic glass is loaded, the deformation continues in the same zone and the material is

effectively weakened in that area.

Generally, the resulting strain in a metallic glass takes the form of shear band,

a region of highly localized plastic deformation, which can spread throughout the

entire material. It is due to this type of strain that metallic glasses usually fracture

quickly in a brittle fashion. In a tensile test where a material is stressed until failure,
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metallic glasses tend to fracture after elongation of only a few percent, sometimes

two percent or less. Metallic glasses behave similarly in bending tests. For example,

Figs. 3 (from [23]) and 4 show shear banding in metallic glass specimens under loading

conditions. In each case, multiple shear bands are seen forming deep into the material

and appear to be the only strain that exists in the specimen. The strain exists in

a small portion of the specimen and the remaining portion appears undamaged. In

contrast, polycrystalline materials can often withstand large deformation, ten percent

in some cases, before fracture. Once again the reason for the differences goes back to

the atomic microstructure. Once the shear bands form in the amorphous alloy, there

is quite simply nothing to stop them.

The lack of ductility in metallic glasses is perhaps the largest barrier to

widespread use in technology and engineering. The high strength and hardness of

metallic glasses makes it appear very viable, but those properties come at a cost.

The solution to the ductility problem comes in the form of nanostructured or com-

posite amorphous metallic alloys. The idea is simply to put some structure into the

alloy so that when shear bands do form, they are either stopped or forced to be too

small to cause catastrophic failure. Careful consideration must be taken to design

an alloy such that when ductility is enhanced, the benefits of having an amorphous

metal are not lost.

There have been several advances in improving ductility in metallic glasses. For

example, a group at California Institute of Technology showed increased ductility ex-

ceeding 10% [24]. The glass was a Zr-Ti-Nb-Cu-Be alloy and processed to introduce

a large volume fraction (about 50%) of a body-centered cubic solid solution dendritic

phase mixed in the amorphous glass matrix. The ratio of Be was varied to produce

three different compositions. Engineering stress-strain tensile tests were performed

on the three composites as well as “Vit1” for comparison, and are shown in Fig. 5.
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Fig. 3. Scanning electron micrographs demonstrating shear banding in (a)

Zr57Nb5Al10Cu15.4Ni12.6 subject to bending and (b) Zr52.2Cu17.9Ni14.6Al10Ti5

subject to compression.

Reprinted from Acta Materialia, Vol 55, Christopher A. Schuh, Todd C. Hufnagel and
Upadrasta Ramamurty, Mechanical behavior of amorphous alloys, Pages 4067-4109, 2007,
with permission from Elsevier.
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Fig. 4. Scanning electron micrograph of shear banding in metallic glass specimen sub-

ject to bending.

Source: Hufnagel Research Group, Johns Hopkins University.
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The Vitreloy 1 metallic glass showed high strength but low elongation before failure,

as expected. The fractured specimen is shown in Fig. 6. However, the bulk glass com-

posites (DH1, DH2, DH3) showed increasing ductility with slightly decreased tensile

strength as the dendrite concentration increased. In the end, a bulk metallic glass

composite capable of 12% elongation ending in ductile fracture (necking, not brittle

fracture) while maintaining a yield strength greater than 1000 MPa was created. An

investigation into the deformation behavior of the glass was made by Scanning Elec-

tron Microscopy and is shown in Fig. 7. Two observations can be made regarding

the shear banding in the vicinity of the dendrites: 1) Many small shear bands were

formed instead of one large band, and 2) the shear bands were arrested at the in-

terface between the glass and the embedded dendrites [24]. These two observations

mean that the shear bands are spread more homogenously throughout the sample.

This observation is one example of the need to modify the microstructure of metallic

glasses in order to give the material a reasonable amount of ductility while maintain-

ing high strength. While this attempt to achieve ductile metallic glasses is considered

successful, it must be noted that the process to achieve the dendritic phase involves

a complex procedure involving processing the liquid alloy below its melting tempera-

ture as a semi-solid, two-phase mixture allowing the dendrites to grow to a size that

matches with the deformation scale size of the glass, followed by rapid quenching.

Much work has been done on creating nanostructured metallic glass composites,

ie, glass with crystals of nanometer size formed inside [1, 25, 26]. For example, in

the work done by Q.S. Zhang et al. [26], rods of Cu50Zr45Ti5 with diameters of 1.5

mm and 2.5 mm were formed and examined. The rods were formed by copper mold

casting, a traditional metallic glass production method, but were not found to be

completely amorphous (the thickness, to be discussed later, was too large). Instead,

the 1.5 mm rod was found to be 96% amorphous by volume with crystals between 2
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Fig. 5. Engineering stress-strain curves of bulk monolithic metallic glass designated

Vitreloy 1 and three bulk glass composites (DH1, DH2, DH3) listed in order

of increasing dendrite volume fraction.

Reprinted by permission from Macmillan Publishers Ltd: Nature, Douglas C. Hofmann, Jin-
Yoo Suh, Aaron Wiest, Gang Duan, Mary-Laura Lind, Marios D. Demetrious and William
L. Johnson, Designing metallic glass matrix composites with high toughness and tensile
ductility, Vol 451, pp 1085-1089, copyright 2008.
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Fig. 6. Scanning electron micrograph of Vitreloy 1 metallic glass specimen after tension

test.

Reprinted by permission from Macmillan Publishers Ltd: Nature, Douglas C. Hofmann,
Jin-Yoo Suh, Aaron Wiest, Gang Duan, Mary-Laura Lind, Marios D. Demetrious, and
William L. Johnson, Designing metallic glass matrix composites with high toughness and
tensile ductility, Vol 451, pp 1085-1089, copyright 2008.
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Fig. 7. High-magnification Scanning electron micrograph of metallic glass composite

DH3 after tension test.

Reprinted by permission from Macmillan Publishers Ltd: Nature, Douglas C. Hofmann,
Jin-Yoo Suh, Aaron Wiest, Gang Duan, Mary-Laura Lind, Marios D. Demetrious, and
William L. Johnson, Designing metallic glass matrix composites with high toughness and
tensile ductility, Vol 451, pp 1085-1089, copyright 2008.
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and 10 nm in diameter (called nanocrystals) homogenously dispersed throughout the

volume. A transmission electron micrograph of the as-quenched specimen is shown in

Fig. 8. The micrograph does not appear homogeneous but instead a nanocrystalline

phase is spread throughout the material with grain diameters of 2 to 10 nm. Based

on data from Differential Scanning Calorimetry (not shown), the volume fraction of

the glassy phase is calculated to be about 96%, and the remaining 4% is crystalline.

Upon analyzing data from X-ray diffraction of the as-quenched rod (not shown), the

crystalline phase in the glassy matrix was determined to be CuZr, a direct nucleation

from the atoms in the melt. The same information can be implied from the diffraction

pattern shown as the inset in Fig. 8. The diffraction pattern shows wide, halo-like

rings indicative of the amorphous phase with small dots characteristic of a crystalline

phase. The 1.5 mm and 2.5 mm rods were subjected to an engineering stress-strain

test and the results are seen in Fig. 9. The 1.5 mm rod yield strength was found to be

1680 MPa and the elongation upon fracture was 10.6%. The 1.5 mm rod with small

volume of nanocrystals showed excellent strength with enhanced ductility. The 2.5

mm rod, estimated to be about half glassy and half nanocrystalline, showed very high

elongation with lower yield strength but higher fracture strength. Clearly, engineering

the microstructure of metallic glass can lead to specific materials behavior. The results

show the importance of a dispersion of nanocrystals throughout a glassy amorphous

structure.

High strength and reasonable ductility can both be achieved if a metallic glass

contains particles of nanometer size. The nanocrystals interact with shear bands

formed during deformation leading to more homogeneous strain in the material.

Through this, a metallic glass can behave more like a polycrystalline material in

terms of ductility while exhibiting higher strength than the polycrystal. However,

it is important to note that the crystalline fraction of the composite must not be-
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Fig. 8. Transmission electron micrograph of 1.5 mm diameter Cu50Zr45Ti5 rod.

Nanocrystals show as dark contrasts. Selected area electron diffraction pat-

tern shown as inset.

Reprinted from Journal of Alloys and Compounds, Vol 431, Q.S. Zhang, W. Zhang, G.Q.
Xie, K.S. Nakayama, H. Kimura and A. Inoue, Formation of bulk metallic glass in situ
composites in Cu50Zr45Ti5 alloy, Pages 236-240, Copyright 2007, with permission from
Elsevier.
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Fig. 9. Engineering stress-strain curves of 1.5 mm and 2.5 mm Cu50Zr45Ti5 rods.

Reprinted from Journal of Alloys and Compounds, Vol 431, Q.S. Zhang, W. Zhang, G.Q.
Xie, K.S. Nakayama, H. Kimura and A. Inoue, Formation of bulk metallic glass in situ
composites in Cu50Zr45Ti5 alloy, Pages 236-240, Copyright 2007, with permission from
Elsevier.
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come too great or the system will become largely polycrystalline and the benefits of

the amorphous phase will be lost. An example of this was seen in the work of Fan,

Takeuchi, and Inoue [27]. In this work, bulk Zr-based metallic glass specimens were

annealed to create nanostructure containing precipitated crystalline phases. Mechan-

ical properties were measured with increasing volume fraction of nanocrystals. As

seen in Fig. 10, the fracture strength (σf ) and Young’s modulus (E) increases with

nanocrystal volume fraction (Vf ) up to a point, about 30 - 40%, where a transition

occurs, and the curve turns downward. A transition from ductile to brittle fracture

mode accompanies the declining material properties. It is apparent that the mechan-

ics of fracture changes once the volume fraction of nanocrystals rises past a certain

point. That demonstrates that the nanocrystalization must be controlled, at least in

some alloys, so that the benefits of the bulk amorphous nature are not lost.

Other methods exist for forming nanocrystals in metallic glasses, including

nanoindentation [28], deformation [29], and bending [30]. The above methods of

nanocrystal growth in metallic glasses vary in their effectiveness and one method

does not apply to all metallic glasses. It would be desirable to develop a method that

can form nanocrystals in any metallic glass. Irradiation of metallic glasses can add

energy on an atom by atom basis instead of throughout the whole sample like heat

treatments or deformation. Using irradiation, a specimen can achieve some small

fraction of nanocrystallization while still remaining mostly amorphous. This finally

brings us to the main effort of this dissertation. The goal is to use ion irradiation to

form a small fraction of nanocrystals in metallic glass. Ion irradiation in materials

is known to bring about phase changes [31] and there have been reports of inducing

nanocrystallization in metallic glasses using electron irradiation [32, 33]. Therefore

we can expect to see nanocrystal growth as a result of ion irradiation which will aid

in future studies to create high strength metallic glasses with enhanced ductility.
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Fig. 10. Fracture strength (σf ), Young’s modulus (E), and elongation (ε) for Zr-based

metallic glass alloys with increasing volume fraction of precipitated nanocrys-

talline phase.

Source: [27].
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The benefits of ion irradiation over other materials modification techniques is

that ion irradiation can manipulate materials on the atomic scale. When ions pen-

etrate a material, the ions interact with individual atoms of the material depositing

energy in very small volumes, so an ion can begin the nanocrystal formation process

at the desired site. The field of ion irradiation of materials is well developed and

the technology exists to use different ions and ion energies such that the energy de-

position rate, or stopping power, can be predicted and controlled. Furthermore, the

macroscopic size of the irradiation zone can be controlled using ion beam “sweeping”

techniques so ion beam modification can occur in both large samples and small sam-

ples. For all these reasons, ion irradiation is a very powerful technique which, since

it deals with atomic interactions, does not have limitations like other modification

techniques and has the potential to work on any metallic glass.

This dissertation will further explore nanocrystal formation in metallic glasses

by using a larger range of ion species and energies than ever before. The physics of

ion-solid interactions will be discussed which will aid in the understanding of crystal

nucleation and growth in an amorphous alloy, but first a discussion of the physics

that make room temperature amorphous alloys possible is in order to examine how

metallic glasses can be modified. The experiments and discussion in this dissertation

link the physics of particle irradiation to nanocrystal formation which will benefit

future research in the field.
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CHAPTER II

STRUCTURE OF METALLIC GLASS

In order to understand the unique properties of metallic glass, an examination of the

amorphous atomic structure is needed. This discussion will include topics regarding

the production of metallic glass - an exercise in holding the atoms in place, and the

diffusion of metallic glass - allowing the atoms to be mobile. Both mechanisms are

important if an amorphous yet partially crystallized alloy is to be produced.

The atomic structure of metallic glass is amorphous - atoms are randomly ar-

ranged throughout the material so no long-range order exists, though studies have

shown that short-range or nearest neighbor ordering exists [1, 34, 35]. Special con-

siderations must be made to produce a room-temperature amorphous alloy. The

atoms themselves do not wish to be random; they prefer to be organized by forming

a crystalline structure. A glassy system is said to be metastable and the diffusion

mechanisms that govern atomic movement need to be addressed in order to maintain

the metastable state or to promote nanocrystallization.

The free energy of the system is minimized when the atoms have periodic struc-

ture. As a law of nature, the energy of the system will seek the lowest state, so at

temperatures below a metal’s or alloy’s melting point, the material becomes solid

and the atoms try to arrange themselves into some sort of structure. In the case

of a metallic alloy, the formation of a glassy alloy is in competition with the for-

mation of a crystalline alloy, commonly called an intermetallic. More specifically,

competition exists between the driving force for crystallization (nature) and the low

diffusivity that is built in to the system [36]. There are several crystal structures

that an alloy may form depending on the temperature and the availability of the

constituents. Several intermetallic phases exist for the Cu-Zr binary system [37], for
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example, and are shown in Fig. 11. For a relatively simple system consisting of

only two elements, several intermetallic compounds can exist, each with their own

crystal structure (face-centered cubic, body-centered, etc), and the system gets much

more complicated when the number of constituents is increased. Hence, most metal-

lic glasses contain three or more elements. It is clear that there is a driving force to

form ordered compounds in alloys which must be suppressed if the material is to be

unordered at room temperature.

The arrangement of atoms in metallic glass is not unlike the arrangement in a

liquid. In a liquid, the atoms have enough thermal energy to remain unbound. Hence

metallic glasses are produced from a liquid mixture. The procedure to form metallic

glass is similar to the formation of any metallic alloy. First, the desired proportions of

elements are melted together to form a liquid solution. The melt is then cooled below

the melting point to form a solid. To form a glass, it is critical at this point to cool the

melt so that the atoms remain in the liquid state. In reality, when a melt is cooled,

a finite amount of time is required to form ordered structures; the atoms need to go

from random to ordered. If the energy of the system is removed before atoms have

time to rearrange themselves, then they will be frozen in the amorphous state. Hence,

metallic glass production always involves a rapid quenching mechanism to lower the

temperature from the melting point to below the glass transition temperature in a

sufficiently short amount of time. Rapid quenching effectively “freezes” the atoms in

their random state and they remain so at room temperature with proper constituent

selection.

The atomic makeup of metallic glasses can be chosen not only to achieve superior

strength or hardness, but also to ensure that the cooling rate required is attainable and

that the glass will remain stable. For instance, the first room temperature amorphous

alloy was discovered by Klement et al. in 1960 [38]. The material was a Si-Au alloy
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Fig. 11. Binary phase diagram of Cu-Zr system.

With kind permission from Springer Science+Business Media: Journal of Phase Equilibria
and Diffusion, Cu-Zr (Copper-Zirconium), volume 29, 2008, page 204, H. Okamoto, figure
1.
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and was shown to be amorphous based on X-ray diffraction. The alloy was not stable,

however, and further examination as soon as 24 hours later showed complex crystal

structures. This primitive, yet important study shows that elements must be chosen

such that the diffusivity of atoms in the glass is very low. This leads to what is

commonly referred to as Inoue’s three empirical rules for stable metallic glasses [1].

The rules govern the selection of components for a metallic glass. The rules say that

the constituent elements need to be 1) of more than three kinds, 2) have large atomic

size mismatch greater than 12%, and 3) negative heats of mixing. Following these

rules will lead to increased dense random packing and ultimately a more stable glass.

The Si-Au alloy discussed above does not satisfy these rules and hence is unstable.

For this reason, many metallic glasses contain usually four or five (or more) elements.

The critical cooling rate in a given metallic glass will vary depending on the

composition and somewhat on the quenching technique. First, a discussion of the

thermodynamics of the cooling process is given followed by apparatus used for rapid

quenching. Studies involving Vitreloy 1, first processed in the early 1990’s [14], will

be examined as an example of atomic motion in metallic glasses because a great

deal of data exists on the alloy and its low critical cooling rate allows for more

thorough examination. As stated above, if the quenching process is not fast enough,

crystallization of the liquid melt will occur instead of maintaining the liquid-like

structure. By controlling the temperature of a liquid, it is possible to generate time-

temperature-transformation (TTT) diagrams. Fig. 12 shows the TTT diagram for

the metallic glass alloy Vitreloy 1 represented by data collected through two different

cooling methods: electrostatic levitation [39] and processing in high-purity graphite

crucibles [40] (the diagram in Fig. 12 is one of the first of its kind since early metallic

glasses were too unstable). The symbols represent the time to onset of crystallization

(defined as crystal volume fraction of 10−4) at a given temperature. The plot shows a
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Fig. 12. Time-temperature-transition plot for crystallization of

Zr41.2Ti13.8Cu12.5Ni10Be22.5. Times are measured by electrostatic levita-

tion (filled △) and processing in high-purity carbon crucibles (●). Fits to

data are proportional to reciprocal of viscosity (solid line) and viscosity ×
exp(−1/T ) (dotted line).

With kind permission from Springer Science+Business Media: JOM Journal of the Minerals,
Metals and Materials Society, The thermophysical properties of bulk metallic glass-forming
liquids, volume 29, 2000, pages 39-42, R. Busch, figure 1.
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typical “C” or nose shape for metallic glasses. Also, the glass transition temperature

is shown for given quench times. If a glass is to be fabricated, a time dependent

temperature line, starting from the upper left, must be steep enough to reach the

glassy region without going through the crystallization region. From this plot, the

critical cooling rate was calculated to be about 1 K/s [40], which is several orders

of magnitude lower than early metallic glasses [1, 41] including the first Au-Si alloy

discussed above. The low critical cooling rate is owed to a very high viscosity for a

metallic system.

The nose shape crystallization curve in Fig. 12 graphically shows there are

competing factors in the crystallization process of metallic glass such as diffusion

and the driving force for crystallization. The diffusion coefficient, which governs

atomic mobility, is a function of several factors, including viscosity and tempera-

ture. In the TTT diagram, the crystallization time is predicted by calculating the

diffusion coefficient by an inverse viscosity relationship (solid line) and Arrhenius-

like viscosity × exp(−Q/kT ) relationship (dashed line). It seems the inverse viscosity

fitting holds at high temperatures, while the Arrhenius-like fit holds at lower tem-

peratures. A plot of the measured viscosity in Vitreloy 1 is shown in Fig 13. Note

the increased viscosity as temperature decreases, indicating a resistance to movement

at lower temperatures. Viscosity taken near the melting point, 1026 K, is 2.5 Pa-s

and is much higher, two or three orders of magnitude higher, than other metals at

their respective melting points, shown for comparison [40]. The fit through the data

is based on the free volume model of glasses and will be discussed later.

Diffusion in metallic glasses is promoted by the preference of the atoms to be

crystalline and not amorphous. To be more specific, the driving force can be ap-

proximated by the difference in Gibbs free energy between the supercooled liquid

and crystalline states, ∆G. The temperature dependence of ∆G in several metallic
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Fig. 13. Experimental viscosity measurements of Vitreloy 1 using beam bending (◻)

and concentric cylinder viscometry (◯). Melt temperature of Vitreloy 1 is

1026 K. Several other melt viscosities are listed for comparison (△), which

are, from right to left, Tl, Cd, Pb, Zn, Te, Sb, Mg, Ag, Ac, Au, Cu, Mn, Be,

Ni, Co, Fe, Sc, Pd, V, Ti, Pt, Zr, Cr, Rh, B, Ru, Ir, Mo, Os, Re, and W.

Dashed line represents extrapolation of Ni viscosity data. Solid line represents

numerical fit to Vitreloy 1 viscosity data based on free-volume model. Inset

is the free volume of Vitreloy 1.

Reprinted figure with permission from A. Masuhr, T. A. Waniuk, R. Busch, and W. L.
Johnson, Physical Review Letters, volume 82, pages 2290-2293, 1999. Copyright 1999 by
the American Physical Society.
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glass systems is represented in Fig. 14 along with their respective critical cooling

rates [36]. The temperature is normalized to the melting temperature of each system.

Data was calculated by integrating the specific heat difference between supercooled

liquid and crystalline phases taking latent fusion heat into account. The driving force

∆G increases as the temperature decreases, showing the difficulty in maintaining a

room temperature amorphous alloy. Some systems have lower energies than others,

but all share similar shapes. Notice in Fig. 14 that the critical cooling rate does not

decrease with ∆G, though there is some dependence on the critical cooling rate with

∆G. Now we have seen the two competing factors at work in the metastability of

metallic glasses. The driving force to crystallize, ∆G, increases as the temperature

lowers, but viscosity, the resistance to movement, also increases as temperature low-

ers. If nanocrystallization is desired in a metallic glass, the resistance to movement

must be locally decreased, or similarly, diffusion must be enhanced.

Using logical reasoning, the diffusional mechanisms in metallic glass make sense

using Inoue’s three empirical rules as a guide. Regarding the size mismatch rule, it

is expected that diffusion would be hampered by atoms of different sizes. Smaller

atoms can fill the vacancy-like empty regions between the larger atoms. This leads to

a more densely packed structure which makes atomic movement much more difficult.

Conversely, if the structure is less densely packed, atomic movement should be easier.

Hence, the relative ease of diffusion in metallic glasses, or any randomly packed

structure, should be governed by the availability of “free volume” present in the

as-quenched structure.

This is the reasoning behind the free volume model proposed by Cohen and

Turnbull [42] which explains atomic mobility in amorphous structures. The model

was later adapted for metallic glasses by Spaepen [43]. Other models have been

proposed, such as the “diffusion creep” model [44] but it seems to be inadequate to
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Fig. 14. Difference in Gibbs free energy between subcooled liquid and crystallized

states (∆G) for multiple metallic glass systems. Temperature range normal-

ized to system melting temperature. Critical cooling rates given in parenthe-

sis.

With kind permission from Springer Science+Business Media: JOM Journal of the Minerals,
Metals and Materials Society, The thermophysical properties of bulk metallic glass-forming
liquids, volume 29, 2000, pages 39-42, R. Busch, figure 2.
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explain the data to which it applies [45]. The free volume model is consistent and

based on physical interpretations of an amorphous structure.

In the free volume model proposed by Cohen and Turnbull [42], atomic diffusion

and flow are based on atomistic jumping from one site to another. If an atom is to

jump, it is reasonable to assume there must be a hole large enough to accommodate

it. More specifically, there has to be enough free volume in the structure to allow

the hard-sphere volume of a diffusing atom to move. Diffusion coefficients can be

based on the probability of finding free volume near an atom that is large enough to

contain it. An atom will be bound inside a “cage” defined by neighboring atoms. The

free volume of an atom, v, is defined as the volume of the cage around an atom less

the atom inside it. There exists a probability p of finding a free volume in a volume

between v and v + dv and is calculated to be

p(ν) = ( γ
vf

) exp(−γv
vf

) , (2.1)

where γ is a numerical factor between 0.5 and 1 to correct for overlaps in free volume,

and vf is the average free volume per molecule. The definition of average free volume

in a molecule, vf , is

vf = Vf/N, (2.2)

where Vf is the total free volume and N is the number of atoms at some point in a

material. Therefore, vf is actually a function of position, r⃗, in the material, but the

r⃗ notation will be dropped for brevity.

Atomic movement is based on finding a hole large enough to move, so there is

a minimum critical volume, v∗, that must exist for diffusion. Therefore the total

probability P of finding a hole large enough for movement is

P (v∗) = ∫
∞

v∗
p(v)dv = exp(−γv

∗

vf

) . (2.3)
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Spaepen [43] proposed that if an atom is at rest with some local free energy

minima, then it needs an activation energy ∆Gm to overcome the barrier and go a

distance λ. If the diffusion is a random walk process in three dimensions, the diffusion

coefficient is

D = 1

6
Γλ2, (2.4)

where Γ is the jump frequency and λ is the jump distance. The jump frequency

can be considered the product of two things: 1) the probability that an atom is on

a potential jump site, which is deduced from the free volume available and 2) the

number of jumps an atom at a jump site makes per second, similar to the atomic

vibration frequency ν or Debye frequency. The diffusion coefficient in metallic glass

is calculated to be

D = 1

6
exp(−γv

∗

vf

) exp(−∆Gm

kT
)νλ2. (2.5)

The key thing in Eq. 2.5 is the exp(−v∗/vf ) dependency on the diffusion coefficient.

Basically, if the free volume, vf , is increased, there will be an exponential enhancement

in diffusivity. For this study, particle irradiation will be used to increase free volume

through energetic ion-target collisions.

If diffusivity is increased, atomic mobility can occur. In the presence of ion beam

irradiation, additional atomic segregation can occur due to preferential energy transfer

to target nuclei. Given sufficient atomic mobility at low temperatures, metallic glass

should begin to crystallize because the driving force to crystallization still exists as

the free energy of the amorphous state is higher than the crystalline state. If free

volume enhancements occur in small areas, as is the case with particle irradiation,

small pockets of crystallization can occur. It is this reasoning that is the motivation

for using ion irradiation for creating nanocrystals in metallic glass.

If a metallic glass specimen is to be cooled rapidly, the quench rate must be
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experienced throughout the entire bulk of the sample. Therefore the maximum quench

rate for a given material will be based on the thermal conductivity of the melt, heat

transfer between the melt and the cooling apparatus, and also the geometry of the

sample. If the metallic glass system of interest has a high critical cooling rate, special

care must be taken to achieve that cooling rate throughout the entire specimen. It is

for this reason that early metallic glasses were very thin. The first Si-Au amorphous

specimen was cast as a thin film [38]. This allows the heat to be dissipated quickly

through the thin dimension of the sample and the critical cooling rate is maintained

throughout. With the advance of multicomponent metallic glass systems, the critical

cooling rate has decreased by orders of magnitude allowing thicker specimens to be

created. See Fig. 15 for an illustration of the decreased critical cooling rate and the

increased specimen thickness [1]. As critical cooling rates, Rc, of materials decrease,

the material can be cast with thickness, tmax, of over a millimeter. Now a class of

“bulk” metallic glasses is set apart from “conventional” metallic glasses; the bulk

glasses have thickness of at least a millimeter. Before the bulk glasses were produced,

metallic glasses were often made into thin ribbons.

One technique used to make thin metallic glass ribbon, and the method used

to produce ribbons for this dissertation, is called melt-spinning and is characterized

by a large spinning wheel on which hot metallic liquid is cooled. This process was

patented by Robert Pond in 1961, a Johns Hopkins professor, and is sometimes called

the Pond Melt Spinning Process [46]. A schematic is shown in Fig. 16, taken from

[47]. High-purity ingots of desired metals are usually melted in an inert atmosphere

and then ejected by high pressure onto a continuously spinning chill block. The block

is rapidly rotating, chilled, and highly thermally conductive. Ribbons produced by

this technique and small and thin, typically a few millimeters wide and 20 microns

thick [33], but can be very long, so the throughput is still high. The quench rate of
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Fig. 15. Critical cooling rates and maximum specimen thickness for many metallic

glasses plotted against reduced glass transition temperature.

Reprinted from Acta Materialia, Vol 48, Akihisa Inoue, Stabilization of metallic supercooled
liquid and bulk amorphous alloys, Pages 279-306, 2000, with permission from Elsevier.
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Fig. 16. Schematic representation of melt-spinning metallic glass production tech-

nique.

Reprinted from Physical Metallurgy, Fourth Edition, R. W. Cahn and A. L. Greer, Chapter
19 - Metastable States of Alloys, page 108, 1996, with permission from Elsevier.
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this technique has been measured using multiple metals was determined to be 106

K/s on average [46].

Experimentation in this dissertation will focus primarily on two different metallic

glass systems: “MG1” - Cu50Zr45Ti5 and “MG2” - Zr55Cu30Al10Ni5 (atomic percent-

ages). Both metallic glasses were formed by melt spinning and in their unchanged,

“as-spun” form are small ribbons about 1.5 mm across and about 20 microns thick.

The radiation tolerance of the two materials will shown to be different, most likely

owing to the fact that MG2 has a more complex structure with more elements and

greater thermal stability. Also, the addition of minor elements in MG2 can lead to dif-

ferent nanocrystal sizes and densities in irradiated specimens. The physics of ion-solid

interactions will be discussed in the next chapter and will show how the energy bar-

rier to crystallization can be overcome in small volumes, resulting in nanocrystallized

metallic glasses.
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CHAPTER III

ION-SOLID INTERACTIONS

This chapter will discuss the physics of ion-solid interactions in order to explain how

ion beam irradiation of metallic glasses enhances the free volume as discussed in the

previous chapter. This is necessary because different ion irradiation conditions will

result in different atomic displacement scenarios. The physics of ion-solid interactions

must be known in order to estimate atomic displacements and predict free volume

changes in the material.

The field of ion irradiation is very robust and many applications have been devel-

oped that involve the process. When ions are imbedded in a material, it is commonly

called ion implantation. This can be used for a variety of applications that require

small modification to the material, whether it be changes to the microstructure or

composition. Semiconductor fabrication, for example, requires a small amount of

dopant, commonly group III or V elements, to be implanted in Si to change the

electrical properties. This can be done by ion implantation. Another field using ion

irradiation is materials analysis. Passing high energy particles through a material can

give some insight as to the composition and structure of a material. Transmission

Electron Microscopy relies on this in order to “see” inside a thin membrane. Another

application using ion beam analysis is Rutherford Backscattering Spectrometry. High

energy, light ions are incident on a target and the backscatters are counted and an-

alyzed, indicating the material’s composition, damage, impurities, etc. The main

application here though will be ion beam modification of materials. It is this method

that is used to create nanocrystals in metallic glasses.

In typical ion irradiation applications, ions are accelerated through an electric

potential to a certain kinetic energy and aimed at a target for a strict amount of
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time. A typical ion irradiation device consists of an ion source, acceleration column,

mass separator magnet, and a target chamber. Commonly, electrostatic or magnetic

“lenses” are used to focus the beam to a desired size and beam sweepers are used to

automatically move the beam over a large area. A schematic of such an irradiation

system can be seen in Fig. 17 from [48]. When the beam reaches the target chamber,

it is comprised of roughly parallel streams of ions of the same species and same

speed. Beam intensity is usually measured in units of amperes per square centimeter

(A/cm2). Typical beam intensities range from 10−6 − 10−4 A/cm2. Not shown in

the figure is a system of pumps that maintain a near-vacuum inside the system to

minimize collisions before reaching a target.

Instead of selecting the speed of the ions as they traverse the irradiation system, it

is typically easier and more beneficial to select the kinetic energy, commonly referred

to as just energy, of the ions. The ion charge state and accelerating column potential

are selected to achieve desired ion energy. The typical unit of ion energy is the

electron-volt (eV), defined as the kinetic energy achieved when a particle with the

charge of one electron is accelerated through a potential of one volt. The SI unit of

charge is the coulomb (C) and the charge of an electron is 1.602 × 10−19 C. The SI

unit of energy is not the electron-volt but the Joule (J) and in the same manner can

be described as a coulomb-volt. Therefore a conversion exists between the two units

of energy: 1 eV = 1.602 × 10−19 J. The velocity, v, of the ion can be determined from

the kinetic energy, E, simply by E = 1
2mv

2, where m is the mass of the ion. Ion energy

is commonly much greater than an eV so the kilo-electron-volt (1 keV = 103 eV) and

mega-electron-volt (1 MeV = 106 eV) are often used. For example, a particle can be

accelerated to 1 MeV by passing an ion with the change of one electron through a

potential of 1 megavolt. Notice the mass is not used in the previous calculation, so

multiple ion species can be accelerated to the same energy with the same setup.
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Fig. 17. Schematic of typical ion irradiation system components.

Reprinted from Ion-Solid Interactions by M. Nastasi, J. W. Mayer, and J. K. Hirvonen. ©
Cambridge University Press, 1996. Reprinted with permission.
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The quantity of ions implanted into a sample is typically called dose or fluence

and is normalized per unit area. The term ‘fluence’ will primarily used in this paper

in order to avoid confusion with the term ‘dose’ commonly used in nuclear engineering

to describe the energy deposited per unit mass. Fluence is defined as the number of

ions per square centimeter implanted in the sample and is commonly measured as

the time-integrated beam intensity or time-integrated flux. The flux is a derivative

of beam intensity using the conversion from amperes to ions per second: 1 A = 1

C/s = (1.602 × 10−19 × n)−1 ion/s, where n is the charge state of the ion. As an

example, if the beam intensity is 10−6 A/cm2, and the ion is doubly charged, the

flux is roughly 3.1 × 1012 ion/cm2 − s and a 1 minute irradiation would result in a

specimen fluence of about 1.9 × 1014 ion/cm2. Typical implantation values can range

form 1014 − 1017 ion/cm2.

When an energetic ion enters a target material of many atoms, it starts slowing

down through collisions with target atoms - a process known as stopping. Stop-

ping can be characterized by two interactions: interactions with target electrons and

interactions with target nuclei, respectively called electronic stopping and nuclear

stopping. The contribution from each stopping process is a function of collision pa-

rameters such as the mass of projectile and target atom, atomic number (or charge) of

projectile and target atom, and ion velocity. Nuclear stopping is dominant at low pro-

jectile speeds and electronic stopping dominates at high velocities. This relationship

is depicted in Fig. 18. The actual values for the respective stopping powers depend

on the parameters of the collision and have been extensively studied and tabulated

[49]. The nuclear stopping process is the dominant process for atomic displacement

in a material and each individual stopping process will be discussed later.

In a single ion’s track through a material, target atoms create obstacles and

several collisions take place. The distances between collisions as well as the energy
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Fig. 18. Relative contributions of electronic and nuclear stopping powers plotted

against ion velocity. Above a threshold velocity v ≈ v0Z
2/3
1 , where v0 is Bohr’s

velocity and Z1 is the atomic number of the projectile, the projectile is stripped

of electrons. Below the threshold velocity, the projectile retains part or all of

its electrons.
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lost in a collision are random processes. Therefore, when crystallography is not an

issue, the ion travels in a tortuous path and the ion track length is not always the same.

Instead, the perpendicular distance from the target surface is measured and used as

the definition for the projected range, Rp, of the ion. The distribution of Rp after

several ion tracks is known as the range distribution and, for moderate ion energies,

has a Gaussian shape. Therefore another term, called range straggling, dRp, is often

used to characterize the spread in the range distribution. The range and straggling

depend on the many parameters in the stopping process, as described above. The

projected range of ions in a material can range from angstroms for low energy ions,

and millimeters for high energy, light ions. As an example of varying parameters in

ion irradiation, Fig. 19 shows the difference in range distribution profiles when an

incident ion mass, M1 is (a) less than target atoms (M1 <M2) and (b) greater than

target atoms (M1 >M2) [48]. The ranges, straggling, and overall shapes of the curves

are different for the two cases. The physics of stopping has been studied well enough

that the range and straggling of ions in matter can be very well predicted for most

ions and target materials. The range of ions in solids will be very important later

because the range of ions gives an approximation of the depth of atomic displacements

and nanocrystal formation.

It is customary to divide energy loss along an ion’s track into two components:

electronic stopping and nuclear stopping. Electronic stopping deals with interactions

between the electrons of ion and target material and is typically considered to be

inelastic. Nuclear stopping involves energy transfer from a projectile to a target atom

as a whole and is considered to be elastic. Nuclear stopping usually involves discrete,

sizeable energy losses through large deflection angles while electronic stopping is a

more continuous process involving many small energy losses per interaction with neg-

ligible deflection. Electronic and nuclear stopping are conveniently divided between
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Fig. 19. Histograms representing the mean projected range, Rp, of an ion in a material,

and the range straggling, dRp, about the mean for two different scenarios, (a)

projectile mass less than target atom mass (M1 <M2) and (b) projectile mass

greater than target atom mass M1 >M2).

Reprinted from Ion-Solid Interactions by M. Nastasi, J. W. Mayer, and J. K. Hirvonen. ©
Cambridge University Press, 1996. Reprinted with permission.
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inelastic and elastic collisions, respectively, and while this is not exact, it provides a

good approximation.

Ion stopping is a function of many parameters, including ion velocity, ion mass,

ion charge, and target material. Ions are said to slow down through many collisions

resulting in a net energy loss per length traveled. The energy loss per unit length is

typically called stopping power and is denoted as

dE

dx
= dE

dx
∣
n

+ dE

dx
∣
e

, (3.1)

where the stopping power, dE/dx, has been broken up into its nuclear and electronic

components, respectively. Note that dE/dx is a negative quantity, since energy is lost

by the ion, and the negative sign is commonly omitted. A typical unit for stopping

power is electron-volts per angstrom (eV/A). While stopping powers are known to

vary when an ion track is parallel to a target’s crystal planes, this difference will

not be considered because the target material being dealt with here is amorphous

and does not contain crystal planes. The physical processes of stopping need to be

discussed because the ion-beam modification of a material is dictated by the energy

transfer process between target atoms and the projectile.

At high ion velocities, electronic stopping becomes dominant, as demonstrated

in Fig. 18. In this mode, an ion loses energy through inelastic collisions with elec-

trons primarily through target electron excitation and ionization. At sufficiently high

velocities, the ion becomes completely stripped of its electrons and can be viewed as a

single moving point charge moving at speeds greater than the mean orbital velocities

of the target atoms. Therefore the velocity at which an ion becomes stripped of its

electrons is proportional to the Bohr velocity, the velocity of an innermost electron

of a hydrogen atom, which is about 2.2 × 106 m/s, or approximately 1% the speed

of light. For light ions (H, He), Bohr suggested the effective ion charge fraction is
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equal to v/v0Z2/3, where v and Z are the velocity and atomic number, respectively,

of the projectile. If the effective ion charge reaches approximately 1, then the ion is

fully stripped, and if 0, the ion carries all its atoms and is neutralized. Therefore,

v0Z2/3 is the approximate velocity at which an ion is stripped of its electrons and

used as a guide to separate different electronic stopping regimes. For heavy ions,

the effective ion charge has been experimentally determined to follow the expression

1−exp (−0.92v/ (v0Z2/3)). For light ions, He for example, the ion can become stripped

at reasonable energies, approximately 250 keV, but for heavy ions, much more en-

ergy is needed. For instance, a Cu ion needs upwards of 2 GeV of kinetic energy to

become fully stripped (more specifically, an effective ion charge fraction greater than

(Z − 1)/Z, where less than 1 electron remains). The stopping power is calculated as

the energy transferred to an electron as the projectile passes. The interactions are

regarded as purely coulombic. The maximum energy transfer in this case would be

if the projectile collides with the electron head-on, but the minimum energy transfer

depends on the energy levels of the orbital electrons in the target material. It is clear

from the mechanism described above that the high-speed electronic stopping process,

while very effective at high energies, is not responsible for target atom displacement.

As an ion slows, it starts to pick up electrons and becomes partially neutralized.

At the velocity v < v0Z2/3, the ion is traveling slower than most electrons of the target

material, but not all. The loss mechanism for electronic stopping in this regime is not

well-defined as is the high-velocity case, and multiple models have been proposed. One

model, proposed by Firsov [50] states that if the projectile picks up an electron, then

momentum is transferred to the electron in order to accelerate it to velocity v, thereby

adding to the stopping process by taking energy away from the projectile. In fact,

when the projectile comes close enough to a target atom, a short-term quasi-molecule

is formed and electrons are shared. This idea is depicted in Fig. 20, showing the
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projectile moving in the x direction with velocity v and separated in the y direction

by a distance b, the impact parameter. The two zones of the quasi-molecule are called

the P-zone (for the projectile) and T-zone (for the target material) and are separated

by the Firsov plane. The energy transfer process in Firsov model involves determining

the energy needed to pick up the electrons from target atoms by moving through the

Firsov plane. This process again only involves the electrons of the target material

and does not contribute to target atomic displacement.

The nuclear stopping process is the last stopping process to discuss. At low ion

velocities, collisions between projectile ions and target atoms involve the deflection

of the atom as a whole, not the individual electrons as described by the electronic

stopping process. The collisions are considered to be elastic and a discrete energy

loss process takes place in the form of a two-body problem; the distance between

collisions is great and the projectile deflection angle is often very large. In this form

of a binary collision, depicted in Fig. 21, the target atom is practically at rest and

the fast-moving projectile can impart enough energy to eject the target atom as a

whole from its location. In reality, at such low energies, the energy transferred is a

result of the coulumbic force between two nuclei as they come into near proximity of

each other, so a more accurate depiction of collision trajectories is presented in Fig.

22. The particles are spaced by the impact parameter, b, and the only force that

exists between the two is from the coulumbic potential acting along r, the separation

distance between the two masses. Solving for the final parameters after the collision

usually involves a transformation to the center-of-mass coordinate system. However,

the maximum energy transfer from projectile to target atom, Emax, can be easily

calculated by assuming a head-on collision with b = 0 and θ = 180○:

Emax =
4m1m2

(m2
1 +m2

2)
E, (3.2)
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Fig. 20. Quasi-molecule proposed by Firsov when projectile ion and target atom come

in close proximity.

Reprinted from Ion-Solid Interactions by M. Nastasi, J. W. Mayer, and J. K. Hirvonen. ©
Cambridge University Press, 1996. Reprinted with permission.
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Fig. 21. Schematic of two-body elastic scattering problem as used to describe the nu-

clear stopping process. Subscripts 1 and 2 represent projectile and target

atom, respectively. Before collision, projectile has energy E and velocity v,

and imparts some energy and momentum to the target atom through an elastic

collision, which scatters the particles at different angles θ and φ, respectively.

Reprinted from Ion-Solid Interactions by M. Nastasi, J. W. Mayer, and J. K. Hirvonen. ©
Cambridge University Press, 1996. Reprinted with permission.
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Fig. 22. Collision trajectories for elastic ion-target interaction with impact parameter

b and spacing r.

Reprinted from Ion-Solid Interactions by M. Nastasi, J. W. Mayer, and J. K. Hirvonen. ©
Cambridge University Press, 1996. Reprinted with permission.
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where E is the energy of the projectile and m1 and m2 are the masses of the projectile

and target atoms, respectively. It is clear that the nuclear stopping process is the

primary mechanism causing atomic displacements.

A minimum amount of energy must be imparted to the target atom to displace

it from its resting location because the target atom is bound to the atoms around it

and sits in a potential well. The depth of the potential well is called the displacement

energy. The arrangement of atoms in a solid represents some local minima of free

energy and any deviation from such an arrangement will require an addition of energy.

Therefore if an atom is to be displaced from its site, it will require an addition of some

threshold energy to become mobile. If the energy transferred to the target atom in a

collision is less than the displacement energy, the target atom will undergo vibrations

without leaving its site and quickly dissipate the energy through neighboring atoms. If

the transferred energy is larger than the displacement energy, then the atom is free to

leave the site. An atom that leaves its site is called a primary knock-on atom (PKA)

and may go on to displace other atoms from their respective sites. Such subsequent

displacements are called a damage cascade and may involve a few to hundreds of

atoms. The displacement energy in a material is largely a function of direction. This

is especially true in a metallic glass where the interatomic spacings are different in

practically every direction since the atoms are arranged randomly. The displacement

energy will also vary from one type of metallic glass to the next because the atomic

spacings will be different due to different atomic size ratios and varying degrees of

packing.

A simple theory was proposed by Kinchin and Pease [51] which estimates the

average number of displaced atoms as a function of a PKA with energy T . The

original model neglected crystal structure for simplicity and assumed the arrangement

of atoms in the solid was random. This assumption was made to use a single value
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for the displacement energy, Ed, which is averaged over the range of possible values

in the solid. In this model, an atom is displaced if it receives energy T > Ed. The

target atom then becomes mobile and is considered a PKA and is free to create more

displacements. The atom cannot become mobile if T < Ed. If the PKA has energy

Ed < T < 2Ed, the atom can only cause one more displacement since it has insufficient

energy to create two displacements. There exists some cutoff T = Ec because at

high T , electronic stopping is dominant, and no significant atomic collisions occur

until T is lowered to Ec. For the energy range 2Ed < T < Ec, it can be shown

that the average recoil energy produced by PKA with energy T , is T /2. Since Ed

is the minimum energy needed to produce a displacement, the average number of

displacements created by PKA with energy T is (T /2)/Ed, or T /(2Ed). The Kinchin

and Pease model can be summed up as:

average number of displacements =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, T < Ed

1, Ed < T < 2Ed

T

2Ed

, 2Ed < T < Ec

Ec

2Ed

, T ≥ Ec

(3.3)

The damage cascade created from primary and secondary knock-ons can create

a significant amount of displaced atoms. In some cases, the cascade is considered a

spike - a highly dense cascade in a limited volume in which the atoms are temporarily

in motion. Brinkman [52] suggested that if the average distance between collisions is

on the order of the average atomic spacing in a material, then a PKA can develop

a highly damaged region by displacing nearly every atom along its path, like the

cascade depicted in Fig. 23. This would create a region of vacancies or free volume

surrounded by the target material and displaced atoms. This damaged region was
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Fig. 23. Displacement cascade caused by primary knock-on atom in which the average

distance between displacements is on the order of the atomic spacing.

Reprinted with permission from J. A. Brinkman, Production of atomic displacements by
high-energy particles, Vol. 24, Issue 4, pages 246-267, 1956. Copyright 1956, American
Association of Physics Teachers.
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referred to as a displacement spike since of the density of displacements is in a limited

volume.

Another characteristic of the displacement cascade is the thermal spike. As atoms

come to rest and no longer retain enough energy to cause further displacements, they

dissipate their energy through vibrations and share such energy with neighboring

atoms. The vibrational energy of the atoms gives an impression of localized heating

and which is the reasoning behind the term thermal spike. The cascade temperature

can reach several thousand degrees Kelvin for reasonable implantation conditions.

The quench rate for such localized heating is very fast - on the order of picoseconds

[48].

We now have a picture of how irradiation of metallic glasses leads to diffusivity

enhancement and eventually crystallization. Particle irradiation can cause regions of

displaced atoms, leaving behind regions of free volume. An enhancement in free vol-

ume leads to a diffusivity increase in metallic glasses that can give rise to atomic mo-

bility near the displacement cascade leading to eventual crystallization. The amount

of free volume enhancement will depend on the damage cascade size, therefore the

nanocrystal sizes produced by particle irradiation should depend on the energy and

mass of projectiles. Hence the mass-dependent study performed for this dissertation.

Normally this creation of displacements and resulting vacancies is considered “dam-

age” in a crystalline material. The free volume and atomic mixing of a displacement

cascade, as shown in Fig. 23 for a crystalline structure, can be very important for

the diffusion of atoms and local composition fluctuation.
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CHAPTER IV

ELECTRON IRRADIATED MG1 AND MG2*

Ribbon samples of Zr55Cu30Al10Ni5 and Cu50Zr45Ti5 metallic glasses, with a thickness

of 20 µm and a width of 1.5 mm, were prepared by rapid solidification of metallic

liquid on a rotating copper roller. Transmission electron microscopy (TEM) and

high-resolution TEM were performed using a JEOL 2010 microscope equipped with a

Gatan SC1000 ORIUS CCD camera, operated at 200 kV. The TEM specimens were

prepared by electropolishing at 243 K using a twin jet thinning electropolisher with

a solution of 25% nitric acid and 75% methanol. Differential scanning calorimetry

(DSC) measurements were performed under a purified argon atmosphere in a TA

Instruments DSC-Q1000 calorimeter with a finned air-cooling system.

Fig. 24 compares DSC curves for as-spun Zr55Cu30Al10Ni5 and Cu50Zr45Ti5

metallic glasses. DSC was performed at a heating rate of 0.33 K/s. Glass tran-

sition temperatures were estimated to be 687 K for Cu50Zr45Ti5 and 697 K for

Zr55Cu30Al10Ni5. These temperatures correspond to the transition from glassy to su-

percooled liquid. At higher temperatures, the crystallization process starts involving

nucleation and growth of crystalline phases. Fig. 24 shows that the onset temper-

atures of the first-step crystallization are different for each MG. The crystallization

temperature is around 722 K for Cu50Zr45Ti5 and is 762 K for Zr55Cu30Al10Ni5. Thus,

these two metallic glasses have different widths of the supercooled liquid region, which

is a gauge to evaluate the thermal stability against crystallization [1]. A wider super-

cooled liquid region for the metallic glass Zr55Cu30Al10Ni5 indicates greater thermal

*Reprinted with permission from “Electron irradiation-induced structural trans-
formation in metallic glasses” by E. G. Fu, J. Carter, M. Martin, G. Xie, X. Zhang,
Y. Q. Wang, R. Littleton, and L. Shao, 2009. Scripta Materialia, vol. 61, pp. 40-43.
Copyright 2009 by Elsevier. doi:10.1016/j.scriptamat.2009.03.001
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Fig. 24. DSC traces of the as-spun metallic glasses before electron irradiation: (a)

Zr55Cu30Al10Ni5; (b) Cu50Zr45Ti5.
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stability against crystallization compared to metallic glass Cu50Zr45Ti5.

Figs. 25 and 26 compare TEM micrographs for metallic glass Zr55Cu30Al10Ni5

and Cu50Zr45Ti5, respectively, subjected to 200 keV electron irradiation to different

fluences. Insets are the selected area diffraction (SAD) patterns for the corresponding

TEM images. Fig. 25(a-c) corresponds to Zr55Cu30Al10Ni5 after electron irradiation

to t = 0, 15 and 30 min, respectively. The value t refers to the elapsed time after TEM

characterization/electron irradiation started. Each image was taken within a few sec-

onds. The specimen was continuously irradiated between each imaging. The electron

beam was about 150 nm in diameter and the current density was around 11 A/cm2.

Therefore, the specimens shown in Fig. 25(a-c) were irradiated to an electron fluence

of 0, 4.4×1026 and 8.7×1026 electrons/m2, respectively. In Zr55Cu30Al10Ni5 specimens

irradiated at all three fluences, no crystalline phases were detected. SAD patterns in

Fig. 25(a-c) show large diffuse halo rings. This suggests that Zr55Cu30Al10Ni5 retains

its glassy structure during electron irradiation.

Fig. 26(a-c) shows microstructural changes of Cu50Zr45Ti5 under electron ir-

radiation of fluences of 0, 4.4 × 1026 and 8.7 × 1026 electrons/m2, respectively. In

Fig. 26(a), both the TEM image and the SAD pattern suggest the sample is in a

glassy phase. After electron irradiation to a fluence of 4.4 × 1026 electrons/m2, the

SAD pattern in Fig. 26(b) begins to show white diffraction dots, indicating the nu-

cleation of nanocrystals. However, at this stage the size of the nanocrystals is very

small, below the detection limit of TEM. After electron irradiation to a fluence of

8.7 × 1026 electrons/m2, the SAD pattern in Fig. 26(c) clearly shows sharp diffrac-

tion spots and discontinuous diffraction rings. Nanocrystal formation is immediately

apparent in the corresponding high-resolution TEM image. The typical size of the

formed nanocrystals is around 10 nm.

Fig. 27(a) shows the fast Fourier transform (FFT) pattern from the selected
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Fig. 25. TEM micrographs of Zr55Cu30Al10Ni5 under 200 keV electron irradiation for

(a) 0 min, (b) 15 min, and (c) 30 min.
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Fig. 26. TEM micrographs of Cu50Zr45Ti5 under 200 keV electron irradiation for (a)

0 min, (b) 15 min, and (c) 30 min.
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Fig. 27. (a) FFT pattern of electron irradiated Cu50Zr45Ti5 in the area marked in Fig.

26(c); (b) inverse FFT of a defect-free region; (c) inverse FFT of a region

forming dislocations.
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area (marked by the box in Fig. 26(c)). Indexing of the FFT pattern indicates the

phase of nanocrystals to be predominantly Cu10Zr7; other minor phases are difficult

to identify unambiguously from FFT. Fig. 27(b) is an inverse FFT of a selected area

in which a perfect nanocrystal is formed. In many other regions, defects such as

dislocations are found to form in nanocrystals, as shown in a representative example

in Fig. 27(c). Dislocations were counted using inverse FFT at different orientations

(not shown here), which provided a dislocation density of 5 × 1017 m−2.

The maximum recoil energy received by a target atom under a head-on collision

can be calculated by [48]:

Emax =
4meME

(me +M)2
, (4.1)

where E is the electron energy, me is the electron mass and M is the target atom’s

mass. The lightest target atom will gain the highest knock-on energy. The maximum

transferred energies are 9.1 eV for Ti and 16.2 eV for Al. Both energies are less than

the displacement energies of their crystalline elemental materials (Ed ≈ 20 eV for Ti

and Ed ≈ 17 eV for Al) [48]. However, Bellini et al. [53] has pointed out that the local

displacement energy in glass is inversely correlated with the amount of free volume

(FV), making it lower than that in the corresponding crystalline compound. Once

atoms are displaced, vacancy-like defects are created, leading to the introduction of

additional excessive FV and open space for atomic migration. Molecular dynamics

simulation revealed that removing atoms from the structure result in a transient high-

mobility region around the defects and a low mobility region, enabling the excessive

FV to spread out over the whole sample over a longer time [54]. The diffusivity

extracted from the simulation can be described by [54]:

D =D0exp (Vf/V0) , (4.2)
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where V0 is some activation volume, and Vf is the excess free volume introduced by

removing atoms.

Based on the FV approaches originally introduced by Cohen and Turnbull [42]

and later by Spaepen [43], it is expected that enhanced atomic mobility will lead to in-

creased short-range order and subsequent nucleation. Therefore, irradiation-induced

crystallization can occur at low temperature. However, due to the preferred displace-

ments of light atoms by knock-on collisions, the irradiation enhanced displacement

flux might be species dependent and the crystallization sequence could be different

than thermal annealing.

It can be concluded that the electron-beam heating is negligible in this study.

The temperature rise during electron irradiation can be estimated by [55]:

∆T = I

πke
(dE
dx
) ln

R

r0
, (4.3)

where k is the thermal conductivity (k = 9 W/mK for Cu50Zr45Ti5 and 5 W/mK for

Zr55Cu30Al10Ni5), R (= 1.5 mm) is the TEM specimen radius, r0 (= 150 nm) is the

electron-beam radius, I (= 12 nA) is the beam current and dE/dx is the stopping

power of electrons, which can be calculated by [56]:

dE

dx
(keV/cm) = −7.85 × 104 Zρ

AE
ln(1.166E

J
) , (4.4)

J(keV) = (9.76Z + 58.5Z−0.19) × 10−3, (4.5)

where Z is the averaged atomic number, ρ is the density (ρ = 7.23 g/cm3 for

Cu50Zr45Ti5 and 6.83 g/cm3 for Zr55Cu30Al10Ni5), A is the atomic weight (g/mol) and

E is beam energy. The calculated stopping powers are 1.01 eV/nm for Cu50Zr45Ti5

and 1.08 eV/nm for Zr55Cu30Al10Ni5. Substituting the values into Eqns. 4.4 - 4.5

gives a temperature rise of 4.6 K for Cu50Zr45Ti5 and 7.6 K for Zr55Cu30Al10Ni5. The
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electron-beam heating during irradiation is therefore negligible.

Formation of stable crystalline phases requires correlated atomic movements and

rearrangements. Thus, crystallization is difficult if the nucleating phase has a com-

plicated structure. Previous studies have shown that annealing of Cu50Zr45Ti5 re-

sults in formation of the crystalline Cu10Zr7 phase. On the other hand, products

of crystallized Zr55Cu30Al10Ni5 are very complicated. XRD analysis of annealed

Zr55Cu30Al10Ni5 has identified tetragonal Zr2Ni and (Al1.7Ni0.3)Zr intermetallic com-

pounds, as well as several other unidentified phases [53]. Formation of multiple

phases is believed to be the reason for the high stability of Zr55Cu30Al10Ni5 glass.

Electron irradiation under the current conditions seems to be insufficient in overcom-

ing the activation energy barrier to form multiple crystalline phases in amorphous

Zr55Cu30Al10Ni5 glass.

After crystallization, continued irradiation will create defects in the newly formed

nanocrystal, which results in an increase in free energy (∼5 eV for a Frenkel pair in

face-centered cubic metal) [48]. Defects can also form in the as-grown nanocrystals

without irradiation. If the free energy reaches a critical value, amorphization is pos-

sible [48]. The critical point defect concentration for this is estimated to be around

1% (atomic percentage) in metals [48], which is achievable under high fluence elec-

tron irradiation. However, the high free energy can be relieved through the formation

of dislocations [20], which greatly lowers the maximum defect concentration in the

system.

The stability of Cu50Zr45Ti5 under electron irradiation has been previously stud-

ied by Xie et al. [33]. The crystalline phase was found to be monoclinic CuZr,

rather than Cu10Zr7 phases identified in this study. In both studies, a number of

weak unidentified phases are present, and coexistence of several phases is suggested.

Formation of dominant phases might be sensitive to electron flux. In this study, the
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electron flux is 6.9 × 1023 electrons/m2 − s, which is around one order of magnitude

larger than the flux used in previous studies (8 × 1022 electrons/m2 − s).

Previous studies have suggested that the activation energy for nucleation is larger

than the activation energy for crystal growth in amorphous alloys [57, 58]. This

has been used to explain the difference in shear-band-formation-induced nanocrys-

tallization [58]. This study suggests that the activation energy for crystallization in

Zr55Cu30Al10Ni5 is higher than that in Cu50Zr45Ti5. However, once nucleation sites

are introduced, these two glasses could have very different growth behaviors. In a

separate study, we have observed nanocrystal formation in both metallic glasses after

high-energy Cu ion irradiation. Interestingly, once nucleation is initialized, crystal

growth in Zr55Cu30Al10Ni5 is faster than that in Cu50Zr45Ti5, which suggests that the

activation energy for crystal growth in Zr55Cu30Al10Ni5 is comparable to, if not less

than, that in Cu50Zr45Ti5.

This study shows that a material’s intrinsic property, i.e. width of the super-

cooled liquid region, affects its crystallization under electron irradiation. Thus it

seems meaningful to carry out a comparison study in crystallization of amorphous

alloys having different supercooled liquid widths under other conditions, including

bending and deformation. A difference in their crystallization behavior might be

observed.

From the viewpoint of application, electron irradiation can be used to modify

bulk glass since high-energy electrons can penetrate through a large thickness. The

technique has certain advantages over other techniques, such as shear-band-formation-

induced nanocrystallization, since the latter phenomenon occurs after structural fail-

ure.

In summary, we have shown that Zr55Cu30Al10Ni5 has greater stability against

crystallization than Cu50Zr45Ti5 under electron irradiation. Irradiation with 200 keV
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electrons to a fluence of 8.7 × 1026 electrons/m2 results in the formation of Cu10Zr7

nanocrystals in Cu50Zr45Ti5 metallic glass, but no crystallization is detected in

Zr55Cu30Al10Ni5 metallic glass. Electron-beam heating is negligible. Furthermore,

high-density dislocations are observed in crystalline Cu10Zr7 phases. This suggests

that point defects in the system are highly mobile. Nucleation of dislocations is be-

lieved to be the mechanism to avoid the reamorphization of the formed crystalline

phase.
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CHAPTER V

HELIUM IRRADIATED MG1*

Our study began with preparing a Cu50Zr45Ti5 alloy by melting mixtures of pure Cu,

Zr and Ti in an argon atmosphere [33]. Ribbon-shaped samples, 1.5 mm in width

and about 20 µm thick, were obtained by rapid solidification of the melt on a single

copper roller at a peripheral velocity of 42 m/s in an argon atmosphere. The sample

was cut into pieces and irradiated at room temperature with 140 keV He ions to a

fluence of 1.7 × 1017 ions/cm2. Implantation of He atoms was motivated by the need

to form high strength porous materials with enhanced mechanical properties and re-

duced density. We selected 140 keV as the implantation energy primarily due to

feasibility of the accelerator instruments. The homemade accelerator was optimized

for this energy. Beam heating was measured to be less than 50 ○C. Nanoindenta-

tion tests were performed on both specimens (as-spun and irradiated) in order to

obtain the distribution of hardness as a function of depth. Due to the thickness and

curvature of the specimens, it was necessary to mount the specimens onto a micro-

scope slide using superglue to ensure proper measurements. Due to the limitation of

the maximum penetration depth in the nanoindentation tests, microindentation tests

were also performed using a Fischerscope HM2000 with a Vicker’s indenter. Irradia-

tion induced hardness changes were extracted by comparing data before and after ion

irradiation. Depth dependent hardness changes were discussed and compared with

stopping powers of He ions, obtained by using the Stopping and Range of Ions in

*Reprinted with permission from “Effects of ion irradiation in metallic glasses”
by J. Carter, E. G. Fu, G. Bassiri, B. M. Dvorak, N. D. Theodore, G. Xie, D. A.
Lucca, M. Martin, M. Hollander, X. Zhang, and L. Shao, 2009. Nuclear Instruments
and Methods in Physics Research B, vol. 267, pp. 1518-1521. Copyright 2009 by
Elsevier. doi:10.1016/j.nimb.2009.01.081
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Matter (SRIM) code [49]. High resolution transmission electron microscopy (TEM)

was performed to characterize the samples.

The values for hardness as a function of contact depth for both as-spun and

irradiated specimens are shown in Fig. 28. A set of five loads were initially utilized

in order to determine the distribution of hardness. In order to obtain the greatest

possible depth profile, an additional load was added (10,000 µN). Each data point in

Fig. 28 represents the average hardness value for five indentation measurements at

each load and the error bars represent the maximum and minimum values obtained.

As shown in Fig. 28, there are no significant hardness changes from the surface up

to 250 nm.

Fig. 29 shows the hardness in both the as-spun and irradiated metallic glass

samples obtained by using microindentation. At a depth of around 600 nm, the

hardness increases from 9 GPa (as-spun) to 12 GPa in the irradiated samples. The

hardness change becomes much smaller at depths beyond 1000 nm. Different from

the nanoindentation tests, which give more reliable data in the near surface region,

hardness data obtained by microindentation is not reliable for depths shallower than

∼200 nm. Hardness changes observed at a depth of approximately 600 nm, as shown

in Fig. 29, indicate a significant mechanical property change in the ion irradiated

metallic glasses.

Fig. 30 shows the hardness changes extracted from the data in Fig. 29. Hardness

enhancement in the irradiated sample reaches a peak at a depth of around 600 nm.

The trend of the curve from 300 to 600 nm suggests that hardness enhancement is

negligible for shallow depths (< 300 nm). This observation is consistent with the data

obtained by nanoindentation.

It is well known that the contribution to ion stopping in solids originates from two

different mechanisms - nuclear and electronic stopping [48]. In nuclear stopping, ions
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Fig. 28. Plot of indentation hardness of unirradiated and irradiated Cu50Zr45Ti5 metal-

lic glass samples versus contact depth obtained from nanoindentation.
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Fig. 29. Plot of indentation hardness of unirradiated and irradiated Cu50Zr45Ti5 metal-

lic glass samples versus indentation depth obtained from microindentation.
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Fig. 30. Hardness change between unirradiated and irradiated metallic glass. The data

is calculated based on Fig. 29.
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lose energy by ion-target nuclear collisions; in electronic stopping, ions lose energy

by collision with target electrons. The relative importance of these two stopping

mechanisms depends on the velocity and charge state of the ions. Fig. 31 compares

electronic and nuclear stopping powers of He ions in the sample. SRIM does not

directly provide stopping powers as a function of depth. We first used SRIM to

calculate stopping powers as a function of energy. Then the energy was converted

into the corresponding depth for 140 keV He ions. As shown in Fig. 31, electronic

stopping decreases with increasing depth, while nuclear stopping peaks at a depth of

∼600 nm, which corresponds to the projected range of 140 keV He ions in this metallic

glass. Our study suggests that the hardness enhancement is due to either the nuclear

stopping process or implanted He atoms, and the electronic stopping process is not

playing a dominant role in the mechanical property changes.

Fig. 32 shows a dark-field TEM image of the unirradiated metallic glass. No

nanocrystalline particles are observed. The selected area diffraction (SAD) pattern

further confirms its amorphous phase. In comparison, Fig. 33 shows a bright-field

TEM of the irradiated sample. The bright spots (as indicated by arrows) correspond

to helium bubbles and/or voids formed in the sample. It is difficult to distinguish

one from the other since both types of defects are open volume defects. Such defects

are frequently observed in gas-atom-irradiated alloys [20]. The half width of 140 keV

He implant distribution is around 100 nm. If all implanted He atoms are retained at

the end of their ranges, the He concentration near the peak region is estimated to be

around 6 × 1021atoms/cm3. Circles in Fig. 33 refer to typical nanocrystalline particles.

The crystallites have irregular shapes and sizes ranging from a few nanometers up to

100 nm. Nanocrystal formation is further confirmed by the SAD pattern (the inset

in Fig. 33) and dark-field TEM (not shown here).

Limited studies have shown that the dispersion of nanocrystals in an amorphous
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Fig. 31. A comparison of nuclear stopping and electronic stopping as a function of

penetration depth in Cu50Zr45Ti5 metallic glass for 140 keV He ions. The

data is calculated using SRIM code.
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Fig. 32. Dark-field TEM image of the unirradiated metallic glass. The inset represents

the corresponding selected area diffraction pattern.
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Fig. 33. Bright-field TEM image of irradiated metallic glass. The inset represents the

corresponding selected area diffraction pattern.
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matrix can lead to dispersion strengthening of the materials [59, 60]. Therefore, it is

expected that the yield strength will increase as a function of the volume fraction of

nanocrystals [61]. We hypothesize that nanocrystal formation is related to damage

cascade formation. Development of the damage cascade is a very complicated process.

Basically, after the initial damage cascade and associated thermal spike formation,

the core of the cascade forms a “liquid-like” hot zone. The zone is virtually cooled

to an ambient temperature after a “quenching” process. During quenching, energy is

dissipated via lattice vibrations [48]. Damage cascade formation may involve phase

separation and asymmetric diffusion between different elements. Significant energy

deposition associated with the formation of a melting zone is equivalent to localized

high temperature heating. This local heating can cause chemical decomposition and

periodic composition fluctuations which give rise to nanocrystal formation. However,

it is worthy to point out that the cooling rate after thermal spike is certainly faster

than cooling rate of the initial quench. Even if the material has localized melting,

it does not necessarily lead to nanocrystal formation. It is possible that nanocrystal

formation is due to enhanced mobility of atoms under irradiation. The mechanisms

are not clear at this stage.

Gas atom implantation, such as the He implantation used in this study, could be

used for development of porous high strength alloy coatings. A conclusive explanation

of the mechanisms responsible for hardness changes is difficult in the case of gas

atom implantation since such hardness changes can be influenced by both nanocrystal

formation and bubble formation. In order to know their relative contributions, self

ion irradiation into metallic glass is necessary.

We have studied ion irradiation induced hardness changes in a Cu50Zr45Ti5 metal-

lic glass alloy. After 140 keV He ion irradiation to a fluence of 1.7 × 1017ions/cm2,

a maximum in hardness enhancement occurs at a depth close to the maximum nu-
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clear stopping and projected range of the implants. TEM studies have identified

nanocrystals formed in the irradiated metallic glasses.
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CHAPTER VI

HELIUM IRRADIATED MG2

This study began by preparing metallic glass ribbon samples with composition

Zr55Cu30Al10Ni5 (atomic percentages). Samples were prepared by rapid solidifica-

tion of molten Zr, Cu, Al, and Ni in an argon atmosphere. Rapid solidification was

achieved by applying the mixture to a single copper roller moving at a peripheral

velocity of 42 m/s [33]. The result was long ribbons about 1.5 mm wide and 20

µm in thickness. The ribbons were then exposed to 140 keV He ions to a fluence of

4 × 1017 ions/cm2 at room temperature. Average beam current was about 1 µA/cm2.

Selection of 140 keV was primarily due to feasibility with accelerator equipment since

the homemade accelerator was optimized for this energy. He ions were used with

the intention of creating a low-density, porous material. Beam heating of sample was

measure to be less than 50 ○C. Samples were prepared for Transmission Electron Spec-

troscopy (TEM) by mechanical thinning and then ion milling in a Fischione Model

1010 Ion Mill. Samples were thinned down to thickness of about a micron and then

ion milled until thin enough for proper TEM characterization. Ion milling was done

with 2 keV Ar ions and liquid nitrogen cooling below -100 ○C. Low energy ions at

low temperatures maintained the sample microstructure throughout the milling pro-

cess while the sample was continuously rotated to achieve uniform thinning. TEM

characterization was performed by using a JEOL 2010 microscope equipped with a

Gatan SC1000 ORIUS CCD camera. Specimens were observed with low electron flux

because previous studies have shown that long exposure to TEM analyzing beam can

induce nanocrystallization [62].

A bright-field (BF) TEM micrograph of an unirradiated specimen is shown in

Fig. 34. The unirradiated specimen contains no composition contrast or ordered
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Fig. 34. Bright-field TEM micrograph of unirradiated metallic glass specimen

Zr55Cu30Al10Ni5 prepared by ion milling at low temperature. Selected area

diffraction pattern of the specimen is shown as an inset.
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structure; only a random pattern showing the random nature of the microstructure.

The selected area diffraction pattern (SAD) is shown as an inset to Fig. 34. The SAD

shows only a halo-like ring with no bright spots. The SAD verifies the amorphous

nature of the microstructure. Checking the structure of the unirradiated specimens

allows for verification of the amorphous state prior to irradiation and shows that

proper ion milling conditions have been achieved. Differential Scanning Calorimetry

(DSC) was performed on the unirradiated specimen (not shown) revealing typical

annealing behavior of a glassy metal with a glass transition temperature of 697 K

and first-step crystallization at 762 K [62].

Bright-field and dark-field (DF) TEM micrographs of He irradiated specimens are

shown in Figs. 35(a) and 35(b), respectively. Fig. 35(a) reveals drastic microstructure

modification due to ion irradiation. Bright-field images reveal nanocrystals, precip-

itations, and bubbles. Nanocrystal formation is verified by SAD as seen as inset in

Fig. 35(a). Nanocrystals can also be seen in DF image shown in Fig. 35(b) as bright

spots. Comparing BF and DF images reveals that the large grey contrasts seen in

the BF are not seen in the DF. We conclude they are precipitations brought about

by ion irradiation but not crystalline since they do not show on DF image. The

DF image shows nanocrystal size ranging from 1 nm to 20 nm. Closer inspection

of DF micrograph reveals numerous small crystals, 1-2 nm in diameter, throughout

the material, and also many nanocrystals with diameters greater than 10 nm. Con-

firmation of bubbles in BF image is demonstrated by Figs. 36(a) and 36(b), which

are under-focused and over-focused BF micrographs, respectively. In under-focused

images, bubbles will show as dark spots and in over-focused images, bubbles will show

as white spots with fringes, which is exactly what we see here.

The calculated lattice spacings (d-spacings) extracted from SAD are shown in

Table I along with d-spacings and planar indicies for Cu10Zr7, CuZr2, and NiZr2
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Fig. 35. TEM micrographs of 140 keV He irradiated Zr55Cu30Al10Ni5 as seen in (a)

bright field, with diffraction pattern as inset, and (b) dark field.
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(

(
Fig. 36. Bright-field TEM micrographs of 140 keV He irradiated Zr55Cu30Al10Ni5 spec-

imens. Images are shown as (a) under-focused and (b) over-focused to show

bubbles.
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intermetallics [63, 64, 65]. The calculated d-spacing of 3.1735 Å can be exclusively

assigned to the (004) lattice plane in Cu10Zr7, along with 2.6213 Å, 1.9233 Å, and

others. This verifies that the Cu10Zr7 phase exists in the irradiated glass. Likewise

the values 2.782 Å and 2.269 Å can be assigned to the (004) plane in CuZr2, among

others, verifying the CuZr2 phase in the irradiated specimen. However, one cannot

rule out the NiZr2 phase since it lattice spacings are so similar to values seen in

both Cu10Zr7 and CuZr2. This shows that Zr55Cu30Al10Ni5 metallic glass contains a

mixture of Cu10Zr7 and CuZr2 phases after irradiation with the possibility of a NiZr2

phase.

Annealing studies on Zr55Cu30Al10Ni5 have shown that Cu10Zr7 and CuZr2

crystal structures can nucleate in the glass [66], and that NiZr2 can form in

Zr52Ti5Cu18Ni15Al10 metallic glass [67], a composition similar to the one in this study.

It is also worth noting that the CuZr2 phase was seen in electron irradiation exper-

iment in a similar Zr-Cu based metallic glasses [68]. These studies point to the

co-existence of both CuZr2 and NiZr2 in the irradiated glass. Noting the similar elec-

tronegativity of Ni and Cu (1.8 and 1.9) and similar atomic radius (0.125 nm and

0.128 nm) as well as the similar stochiometry of both CuZr2 and NiZr2, it may be fea-

sible for mutual solubility of CuZr2 and NiZr2. Futhermore, a single phase structure

given by (Nix,Cu1−x)Zr2 may have formed. This type of substitutional structure can

be seen in other alloy systems such as Fe-Cr-Ni-Zr [69, 70].

As discussed earlier, the nanocrystal sizes seen in DF images show a bimodal

distribution. One mode exists in the range of 1-2 nanometers, while the other group

has a range of 10-20 nanometers. Chemical analysis of the crystals was not performed

in this experiment but it is unlikely that the large diameter mode contains any Ni since

the glass contains only 5% Ni (Zr55Cu30Al10Ni5). The large crystals likely contain

Cu10Zr7 and the small crystals are probably NiZr2 or the substiutional (Nix,Cu1−x)Zr2
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Table I. Calculated d-spacings extracted from SAD in Fig. 35(a) of He irradiated

Zr55Cu30Al10Ni5. Shown for comparison are standard d-spacings for Cu10Zr7,

CuZr2, and NiZr2 phases and their respective planar indices. Values are in

angstroms.

Experimental Cu10Zr7 standard CuZr2 standard NiZr2 standard

data d-spacing/orientation d-spacing/orientation d-spacing/orientation

3.170 3.1735/(004)

2.887 2.8803/(311) 2.812/(331)

2.783 2.782/(004)

2.699 2.6213/(204)

2.249 2.269/(110)

2.221 2.2333/(411)

1.937 1.9233/(315)

1.664 1.6491/(440)

1.608 1.5976/(422) 1.607/(200) 1.594/(731)

1.382 1.3987/(346) 1.393/(204)

1.374 1.3779/(119)

1.287 1.2873/(517) 1.233/(933)

1.185 1.191/(118) 1.187/(951)

1.131 1.158/(109)
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structure.

The addition of nanocrystals or composite materials into metallic glasses has been

shown to increase ductility while maintaining good strength [1, 24, 26, 71]. Given the

distribution of nanocrystal sizes found in these irradiated glasses, ie, the bimodal size

distribution, it may be possible to control the nanocrystal sizes in other irradiated

specimens. With addition of minor elements, it may be possible to control nanocrystal

size. With more elements, crystallization of major elements due to irradiation may

be lessened since there would be fewer atoms available in the vicinity of the crystal to

bond with. On the other hand, crystallization of minor elements would be hampered

from the beginning since there would be fewer atoms with which to bond. This would

be useful because the nanocrystal volume fraction needs to be controlled if the benefits

of having nanocrystals dispersed in an amorphous matrix are to be maintained [1].

Perhaps the control of nanocrystal growth could lead to a more radiation tolerant

material since the nanocrystal size would be limited by component selection.

In summary, we investigated microstructural change of Zr55Cu30Al10Ni5 in pres-

ence of 140 keV He ions to a fluence of 4 × 1017 ions/cm2. TEM characterization of

irradiated specimens revealed nanocrystals and segregations. The lattice spacings of

the crystalline structures were analyzed by use of the diffraction pattern and stan-

dard spacing data. The Cu10Zr7 and CuZr2 phases were identified and mixed with

the amorphous phase. Possibly a NiZr2 phase was also formed but it was unable to be

distinctly indentified because its lattice spacings are so similar to Cu10Zr7 and NiZr2.

Because of the similarities between CuZr2 and NiZr2, we suggested the possibility of

forming a substitutional (Nix,Cu1−x)Zr2 phase in the irradiated material. Sizes of

the nanocrystals represented a bimodal distribution with a large majority of crys-

tals with 1-2 nm diameters and another majority of crystals with 10-20 nm diame-

ters. It was suggested that the small diameter crystals are either the NiZr2 phase
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or (Nix,Cu1−x)Zr2 phase because the relative abundance of Ni is so small (5%) in

Zr55Cu30Al10Ni5. The large crystals are probably Cu10Zr7 or CuZr2 due to large

relative abundance of both elements.
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CHAPTER VII

COPPER IRRADIATED MG1*

Our studies began with preparing Cu50Zr45Ti5 metallic glass ribbon samples by rapid

solidification. Samples were measured to be 20 µm in thickness and 1.5 mm in

width. As-spun samples were irradiated with 1 MeV Cu ions to a total fluence of

1 × 1016 ions/cm2 at room temperature using a NEC 1.7 MeV tandem accelerator.

The beam current was controlled to be ∼100 nA/cm2 and the beam heating on the

irradiated samples was measured to be less than 50 ○C. The projected range of 1 MeV

Cu in the glass is around 460 nm [49]. Samples were characterized using Bruker-AXS

D8 VARIO high-resolution X-ray diffractometer. Transmission electron microscopy

(TEM) and high-resolution TEM were performed by using a JEOL 2010 microscope

equipped with Gatan SC1000 ORIUS CCD camera, operated at 200 kV. TEM spec-

imens were prepared on a Fischione 1010 ion mill using 2 keV Ar ions while the

sample was cooled by a liquid nitrogen cooling system. The specimens were slowly

rotated during thinning to avoid inhomogeneous etching. Our recent studies have

shown that the above specimen preparation procedure can avoid ion-milling-induced

microstructural changes [62].

Fig. 37 shows X-ray diffraction (XRD) spectra of the as-spun and irradiated

ribbon Cu50Zr45Ti5 glasses. For the as-spun sample (gray color) a broad peak is

presented, which is typical for the glassy state. For the irradiated sample (dark color),

the XRD spectrum shows sharp peaks and suggests the presence of crystalline phases.

Several diffraction peaks corresponding to crystallographic planes from Cu10Zr7 and

*Reprinted with permission from “Effects of Cu ion irradiation in Cu50Zr45Ti5
metallic glass” by J. Carter, E. G. Fu, M. Martin, G. Xie, X. Zhang, Y. Q. Wang, D.
Wijesundera, X. M. Wang, W. K. Chu, and L. Shao, 2009. Scripta Materialia, vol.
61, pp. 265-268. Copyright 2009 by Elsevier. doi:10.1016/j.scriptamat.2009.03.060
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Fig. 37. XRD patterns of as-spun and Cu ion irradiated Cu50Zr45Ti5 metallic glass.

Diffraction peaks from crystalline Cu10Zr7 (#) and CuZr2 (*) phases are

marked.
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CuZr2 phases are marked in Fig. 37. However, TEM characterization is needed for

more conclusive determination of crystalline phases since both spectra in Fig. 37 are

noisy due to relatively low detection limits of XRD.

Fig. 38(a) shows a typical bright-field TEM micrograph from the Cu-irradiated

sample. Precipitation and dark particles are presented. The corresponding SAD

pattern shows white diffraction dots and sharp rings, indicating long-range order and

the nucleation of nanocrystals. For comparison, Fig. 38(b) shows a typical dark-

field TEM micrograph obtained from the same sample. It reveals the presence of

nanocrystalline particles. Systematic comparison between a series of bright-field and

dark-field micrographs suggests that the dark particles observed in bright-field TEM

micrographs are indeed nanocrystals.

Fig. 39 plots the size distribution of nanocrystals. Nanocrystal diameters range

mostly from 2 to 14 nm, with a typical size of 6 nm, though crystal diameters of

∼100 nm are seen in some portions of the irradiated specimens (see figure on page

132). The inset in Fig. 39 is a high-resolution TEM micrograph of the Cu-irradiated

sample. Crystalline structures inside nanoparticles are clearly visible. As we will

discuss below, these nanocrystals are either Cu10Zr7 (primary) or CuZr2 phases.

Fig. 40 shows the enlarged SAD pattern obtained from the Cu-irradiated sample.

The interplanar distances calculated from the SAD pattern were compared with those

from database [63, 64] and are summarized in Table II. The system was calibrated

using single crystal Si (100). The extracted d-spacing values suggest the formation

of Cu10Zr7 (primary) and CuZr2 (minor) phases. Crystallographic planes from these

two phases are labeled in the SAD pattern. The body-centered cubic CuZr phase

with d-spacings of 2.307, 1.883, 1.631, 1.459, 1.332 and 1.153 Å, and others, could

not be identified [72]. Our particular interest in CuZr phase is due to the reason that

this phase is expected to form at a temperature comparable to thermal spikes [72].



86

Fig. 38. (a) Bright-field TEM micrograph and the corresponding SAD pattern inset

of Cu-ion-irradiated Cu50Zr45Ti5 glass specimen, and (b) dark-field TEM mi-

crograph of the same sample.
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Fig. 39. Size distribution of nanocrystals in Cu ion irradiated Cu50Zr45Ti5 estimated

from TEM micrographs. The inset is a high-resolution TEM micrograph.
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Fig. 40. The SAD pattern of Cu ion irradiated Cu50Zr45Ti5 glass. The Miller indicies

correspond to crystalline Cu10Zr7 (#) and CuZr2 (*) phases.
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Table II. Calculated d-spacings extracted from SAD in Fig. 40 of Cu irradiated

Cu50Zr45Ti5. Shown for comparison are standard d-spacings for Cu10Zr7 and

CuZr2 phases and their respective planar indices. Values are in angstroms.

Experimental Cu10Zr7 standard CuZr2 standard

data d-spacing/orientation d-spacing/orientation

3.178 3.1735/(004)

2.889 2.8803/(311)

2.755 2.782/(004)

2.642 2.6213/(204)

2.463 2.429/(103)

2.416 2.4201/(313)

2.252 2.2873/(224) 2.269/(110)

1.933 1.9233/(315)

1.759 1.7461/(117) 1.761/(114)

1.603 1.5976/(422) 1.607/(200)

1.433 1.4377/(662) 1.429/(211)

1.372 1.3779/(119)

1.260 1.2623/(248)

1.116 1.117/(010)

1.035 1.030/(303)



90

Structures of Cu10Zr7, CuZr2, and CuZr crystals are very different. Cu10Zr7 has a

complex unit cell containing 68 atoms over nine inequivalent sites [73]. CuZr2 has an

MoSi2-type structure with a tetragonal cell containing six atoms [37]. As the simplest

structure, CuZr has a CsCl-type structure, but it is metastable at low temperature.

Stable CuZr phase forms only at a temperature > 985 K [72]. In one previous study,

an initially amorphous ZrxCu1−x alloy was continuously heated from low temperature

to high temperature. Cu10Zr7 and CuZr2 phases are observed but no CuZr phase can

be identified [74]. In another study, if a liquid melt of Zr-Cu-Al was cooled from high

temperature to low temperature, CuZr phase was observed in the region with a high

cooling rate, while in the region with a low cooling rate Cu10Zr7 and CuZr2 phases

were identified [75]. Therefore, a metastable CuZr phase will form if cooling is fast.

Otherwise, it will decompose into more stable Cu10Zr7 and CuZr2 phases.

The damage cascades caused by ion irradiation will typically last for a period of

10−13 s. After that, a localized melting zone due to thermal spike formation is left. The

highly localized heating typically lasts for a period of 10−12 s. Considering the critical

cooling rates to form MG for Cu-Zr alloys in the range of 4.3 × 102 − 3.6 × 104 K/s

and, for Cu-Zr-Ti alloys, 6 × 103 − 1.4 × 104 K/s [76], the quenching rate of a thermal

spike is much faster than the critical cooling rate. This fact leads to the following two

possibilities: (i) if damage cascades do not cause decomposition, MG in the cascade

core region will keep its original composition and ultra fast quenching of a thermal

spike will not lead to nanocrystal formation; (ii) if CuZr phase actually forms in

the thermal spike region, the ultrafast quenching of the thermal spike should keep

metastable CuZr phase (or at least part of it) at ambient temperature, according to

Ref. [74]. Based on the above discussion and the fact that no CuZr phase is observed

after Cu irradiation, we hypothesized that CuZr phase does not form in the damage

cascade region.
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Early studies by Meldrum et al. [77] have shed light into the complexity of

irradiation-induced crystallization. These authors reported evidence of a transient

liquid-like phase caused by displacement cascades in solids. Under high-temperature

irradiation, new crystalline phases were formed in zircon. Such phases were not

observed under low-temperature irradiation. The difference was explained as due to

different quenching rates: a high quenching rate occurs at low ambient temperature

and does not allow sufficient time for nucleation of a new phase [77]. A similar

mechanism might apply in the present study, even though the materials are different.

The present study suggests that the quenching rate of thermal spike is so high

that it becomes difficult to achieve short-range order in the damage cascade region.

In order to form a nucleation site, the magnitude of the necessary diffusion coefficient

within the displacement cascade region can be estimated by D = x2/t. If x ≈ 1 nm

and t ≈ 1 ps, then D = 1 × 10−6 m2/s. It is unlikely that the atomic diffusivity of

Cu50Zr45Ti5 at thermal spike temperatures can be that high, considering groups of

atoms need to jump collectively [78]. Recently, self-diffusion in a binary Cu33Zr67

glass has been modeled by molecular dynamics simulation [79]. It shows that, at a

melting temperature of 2000 K, Cu diffusivity is 4 × 10−9 m2/s, which is a few orders

of magnitude lower than the above-estimated diffusivity to form the necessary solute

segregation. Although Cu33Zr67 is different from the Cu50Zr45Ti5 studied here, both

materials have similar packing density and nearest atomic distance, and their self-

diffusion coefficients should be comparable.

Recently, the mechanism of shear-band-formation-induced nanocrystallization

has been investigated [58]. The phenomenon is different from what happens in ion

irradiation. The amount of energy deposited by shear band formation is much larger,

the energy dissipation takes longer and the region being heated is wider [58]. Thus,

nanocrystals can be formed in the vicinity of the shear bands. As discussed in the
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preceding paragraphs, fast quenching of the thermal spike in ion irradiated samples

makes correlated atomic movements difficult. Rather than directly causing phase

transformation, quenching spreads excessive free volume over a large region. This

enhances atomic mobility and leads to increased short-range order and subsequent

nucleation at longer times.

For applications, ion irradiation can be used as a method to improve materi-

als’ mechanical properties. Since irradiation temperature, implanted ion species, ion

energy, ion flux, and fluence can be well controlled, the technique can achieve ad-

justable nanocrystallization and increase both hardness and ductility of MGs with

high repeatability. In addition, ion implantation of impurities into MG can increase

thermodynamic stabilities. One previous study has shown that implantation of Co

into ZrCuNiAl alloy can lower its glass transition temperature and enlarge the super-

cooled liquid range [80]. Introducing impurities is expected to also increase nucleation

sites. Since the activation energy for nucleation is usually larger than the activation

energy for crystal growth in metallic glasses [57], a technique combining ion implanta-

tion to introduce nucleation sites and annealing to induce nanocrystal growth might

achieve optimized nanocrystallization at low temperatures. However, ion implanta-

tion is a surface modification technique. The structural changes are limited by ions’

penetration depth. Thus, the technique is useful to improve surface properties but

has its limitation to improve MG’s machinability.

In summary, 1 MeV Cu ion irradiation of Cu50Zr45Ti5 metallic glass was found

to induce nanocrystalline Cu10Zr7 and CuZr2 phases. However, the CuZr phase, a

decomposition product expected with high-temperature annealing, is not observed

after ion irradiation. The study suggests that nanocrystal formation is due to en-

hanced atomic mobility caused by the introduction of excessive free volume brought

on by ion irradiation. It seems unlikely that the decomposition is due to a localized
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structural transformation in the damage cascade and thermal spike region.



94

CHAPTER VIII

COPPER IRRADIATED MG2*

The Zr55Cu30Al10Ni5 metallic glass ribbon samples used in this study were prepared

by rapid solidification and are approximately 20 µm thick and 1.5 mm wide. The 1

MeV Cu ion irradiation was performed to a fluence of 1×1016 ions/cm2 using a NEC 1.7

MeV tandem accelerator. The beam flux was 6.3 × 1010 ions/cm2 − s and the sample’s

temperature rise during ion irradiation is measured to be less than 50○C. No annealing

was performed after irradiation. The samples were characterized before and after

irradiation by X-ray diffraction (XRD), transmission electron microscopy (TEM),

and high resolution transmission electron microscopy (HRTEM). XRD analysis used a

Bruker-AXS D8 VARIO high resolution X-ray diffractometer. The TEM and HRTEM

were performed using a 200 kV JEOL 2010 microscope equipped with Gatan SC1000

ORIUS CCD camera. TEM specimen preparation was done on a Fischione 1010 ion

mill using 2 keV Ar ions and sample cooling with a liquid nitrogen cooling system.

The specimens were slowly rotated during thinning to avoid inhomogeneous etching.

Furthermore, each TEM image was taken with minimal electron irradiation. Our

recent studies have shown that the above specimen preparation procedure is necessary

to avoid ion milling and electron irradiation induced microstructural changes [62].

Fig. 41 shows a bright-field TEM micrograph and corresponding selected area

diffraction (SAD) pattern from the as-spun Zr55Cu30Al10Ni5 ribbon. No trace of

crystalline phases and precipitations are found. The SAD pattern has wide halo rings

*Reprinted with permission from “Ion irradiation induced nanocrystal formation
in amorphous Zr55Cu30Al10Ni5 alloy” by J. Carter, E. G. Fu, M. Martin, G. Xie, X.
Zhang, Y. Q. Wang, D. Wijesundera, X. M. Wang, W. K. Chu, S. M. McDeavitt, and
L. Shao, 2009. Nuclear Instruments and Methods in Physics Research B. Copyright
2009 by Elsevier. doi:10.1016/j.nimb.2009.05.068
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Fig. 41. Bright-field TEM micrograph of as-spun Zr55Cu30Al10Ni5 glass and the corre-

sponding SAD pattern.
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without spots, which is a typical characteristic of amorphous material. Differential

scanning calorimetry measurements (not shown here) on the as-spun sample also

reveal a typical annealing behavior of MG with glass transition at 697 K and first-

step crystallization at 762 K.

Fig. 42 shows XRD spectra of the as-spun and irradiated ribbon Zr55Cu30Al10Ni5

glasses. The as-spun sample shows a broad peak and confirms its glassy state. After

ion irradiation, this broad peak becomes narrower and the peak shifts and splits as it

becomes more defined, which suggests the development of a more ordered structures.

The XRD spectrum from the irradiated sample clearly shows sharp diffraction peaks

superimposed on the broad amorphous peak. This suggests the existence of crystalline

phases. As marked in Fig. 42, the sharpest peaks can be assigned to Cu10Zr7 and

NiZr2 phases. Further determination of crystalline phases by using TEM will be

discussed later.

Figs. 43(a) and 43(b) show bright-field and dark-field TEM images, respectively,

from the sample after 1 MeV Cu ion irradiation (fluence = 1 × 1016 ions/cm2). The

prominent features observed in these images represent a dispersion of small crystalline

particles, which is a dramatic contrast to the featureless amorphous alloy shown in

Fig. 41. In Fig. 43(a), small particles with a typical size of 5-10 nm and large particles

with a typical size of 50-100 nm are observed. In the corresponding dark-field TEM

image in Fig. 43(b), both small and large particles show crystallinity.

Fig. 44 is a high resolution TEM image from the irradiated sample, revealing

the nanocrystal formations in the glassy matrix in greater detail. It is important

to note that no preferential crystalline orientations are observed. The inset shows

an inverse fast Fourier transform (FFT) of the image from the region marked by

dashed lines. The ordered crystalline structure is clearly visible. Fig. 45 shows

an enlarged selected area diffraction (SAD) pattern for the TEM image obtained
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Fig. 42. XRD patterns of as-spun and Cu ion irradiated Zr55Cu30Al10Ni5 glass. Diffrac-

tion peaks from crystalline Cu10Zr7 (#) and NiZr2 (*) phases are marked.
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Fig. 43. (a) Bright-field TEM micrograph and (b) dark-field TEM micrograph of the

Cu-ion irradiated Zr55Cu30Al10Ni5 glass.
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Fig. 44. High resolution TEM micrograph of Cu-ion-irradiated Zr55Cu30Al10Ni5 glass.
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from the irradiated sample. Multiple interplanar distances were calculated based on

diffraction points observed in this SAD pattern and these spacings were compared

with a diffraction database [63, 64, 65]. The calculation considered instrument errors

(∼6 %) by using a pure single crystal Si (100) sample for calibration.

Table III summarizes the calculated lattice spacings (d-values) compared with

corresponding d-values and planar indices that would be present if Cu10Zr7, NiZr2 or

CuZr2 had formed. The calculated d-spacing of 2.636 Å can be exclusively assigned

to the (204) plane from Cu10Zr7. Thus, the observed crystalline phases in Figs. 43

and 44 should include Cu10Zr7. This observation is strengthened by the calculated

d-values at 2.890 Å and 1.280 Å which correspond more closely with the Cu10Zr7

phase than the NiZr2 or CuZr2, respectively. The calculated d-values between 1.411

Å and 1.759 Å correspond closely with database d-values for all three compounds:

Cu10Zr7, NiZr2 and CuZr2 with no clear distinction in favor of one phase over the

other. The calculated d-values between 0.948 Å and 1.205 Å as well as 2.489 Å

may be related to lattice planes from NiZr2 and CuZr2 with no clear distinction in

favor of one phase over the other. Therefore, we can declare with certainty that

the Cu10Zr7 intermetallic has formed within the irradiated metallic glass samples.

Further, the additional d-spacings that could only arise from the presence of NiZr2

or CuZr2 indicate that the observed crystals are a mixture of Cu10Zr7 with NiZr2 or

CuZr2 or both phases. These phases agree with those seen in previous chapters (see

Tables I and II).

Stability studies on electron irradiated Zr-based MG have shown that CuZr2

is a common stable decomposition product in Zr-Cu metallic glasses [68]. Further,

studies on behavior of thermally annealed Zr52Ti5Cu18Ni15Al10 MG have observed

the formation of NiZr2 phase [67]. The observations noted above of crystalline planes

from either NiZr2 or CuZr2 phases are consistent with these early studies. In fact,
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Fig. 45. The SAD pattern of Cu-ion-irradiated Zr55Cu30Al10Ni5 glass. The indexing

indicates the co-existence of Cu10Zr7 (#) and NiZr2 (*) phases.
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Table III. Calculated d-spacings extracted from SAD in Fig. 45 of Cu irradi-

ated Zr55Cu30Al10Ni5. Shown for comparison are standard d-spacings for

Cu10Zr7, CuZr2, and NiZr2 phases and their respective planar indices. Val-

ues are in angstroms.

Experimental Cu10Zr7 standard CuZr2 standard NiZr2 standard

data d-spacing/orientation d-spacing/orientation d-spacing/orientation

2.890 2.880/(311) 2.812/(331)

2.636 2.621/(204)

2.489 2.503/(422) 2.429/(103)

2.326 2.366/(115) 2.360/(333)

1.759 1.746/(117) 1.767/(444) 1.761/(114)

1.496 1.499/(028) 1.498/(733) 1.441/(116)

1.411 1.416/(417) 1.420/(555) 1.429/(211)

1.280 1.287/(517) 1.219/(206)

1.205 1.203/(1020) 1.191/(118)

1.179 1.187/(951) 1.158/(109)

1.039 1.021/(1200) 1.030/(303)

0.948 0.995/(1222) 0.941/(219)
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the similarity between Ni and Cu in electronegativity (1.8 and 1.9) and atomic radius

(0.125 nm and 0.128 nm) coupled with the similar stoichiometry of NiZr2 and CuZr2

and tetragonal structures may imply the mutual solubility of NiZr2 and CuZr2. This

would imply that a single phase structure with a structure similar to (Nix,Cu1−x)Zr2

may have formed. This type of substitutional intermetallic structure is commonly

observed in Fe-Cr-Ni-Zr alloy systems, where Zr(Fex,Cry,Niz)2 and (Fex,Cry,Niz)Zr2

(x + y + z = 1) intermetallics have been characterized [69, 70].

It is interesting to note that the monoclinic CuZr phase was not observed here,

even though it has the simplest CsCl-type structure. This is because CuZr is ther-

modynamically unstable at room temperature [37]. Stable CuZr phases do form at

a high temperature (> 985 K) [72] and if the cooling rate is high enough, they may

avoid decomposition and exist at low temperatures. Otherwise, they are known to

decompose into Cu10Zr7 and CuZr2 phases [75]. The Cu10Zr7 has a complex unit cell

containing 68 atoms [73]. Although its formation requires highly correlated atomic

movements, the required kinetics for nucleation are apparently favorable since this

phase was frequently observed in thermal annealing of Cu-Zr system [74].

All of these observations, taken together, point to the formation of two

crystalline intermetallic phases within the irradiated metallic glass structure:

Cu10Zr7 and (Nix,Cu1−x)Zr2. As shown in Fig. 43, the nanocrystals in the

Zr55Cu30Al10Ni5 MG irradiated in this study have a distinctive bi-modal size dis-

tributions. One group has a nominal size range of 5 to 10 nm whereas the second has

a range from 50 to 100 nm. While the chemical composition of the two different crys-

tallite groups was not determined for this paper, it is unlikely that the large crystals

contain a significant quantity of Ni, since it is a minority element in Zr55Cu30Al10Ni5.

Following this logic, it is possible to hypothesize that the larger crystal may be the

Cu10Zr7 phase and the smaller crystals may be the (Nix,Cu1−x)Zr2 phase, but a more
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detailed characterization is required to make this a definitive conclusion.

Even so, the most important point for the moment is that our study shows

clear evidence that ion irradiation does indeed induce nanocrystal formations in

Zr55Cu30Al10Ni5 glass. Metallic glasses are metastable at room temperature and crys-

tallization occurs when energy is provided. Our results clearly demonstrate that ion

irradiation can influence the crystallization process, which is governed by nucleation

and crystal growth mechanism that are enhanced by increasing atomic mobilities.

During ion irradiation, displacement creation by energetic particles creates vacancy

defects, which increases the free volume within the system, thus enhancing atomic

mobility. In addition, the amount of energy loss by the particle will change into local

heating, which also contributes to increased atomic mobility. Thus, ion irradiation

will enhance chemical decomposition and periodic composition fluctuations and lead

to nucleation site formation.

Our finding is in contrast to that by Nagata et al. [81], who reported that

ion irradiation of the same alloy at room temperature did not cause any noticeable

changes. In their studies, the Cu ion energy was 350 keV and the ion fluence was

4 × 1016 ions/cm2. In our study, the Cu ion energy was 1 MeV and the ion fluence was

1 × 1016 ions/cm2. According to the Stopping and Range of Ions in Matter calculation

[49], the total displacements per ion for 350 keV Cu is 6.4 × 103 and for 1 MeV Cu,

1.4 × 104. Multiplied by ion fluencies, the total displacements for the previous and

present studies are 2.6 × 1020 displacements/cm2 and 1.4 × 1020 displacements/cm2,

respectively. Thus, the displacement creation is comparable in both studies. It is

not clear to us why these two studies lead to opposite conclusions. However, it is

important to point out that in the Nagata study, only X-ray diffraction was used to

characterize the irradiated samples. Considering XRD’s relatively high detection lim-

its, determination of nanocrystalline phases could be difficult without further analysis
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using the TEM and SAD techniques employed in this study.

Introducing nanocrystals in MGs can enhance their ductility, but both crystal

size and density must be optimized [1]. Although low temperature annealing can form

bulk nanocrystalline alloys, this technique is difficult in bulk MGs due to the large

exothermic heat of crystallization generated inside the alloy [82]. In other words,

using annealing to induce partial crystallization in bulk MGs is impossible because

it lacks any sort of control. Ion irradiation can be used as a surface modification

technique with high repeatability. Although the modification is limited by the ion’s

penetration depth, high energy light ion irradiation or electron irradiation can be

used to penetrate deeply.

In summary, we investigated structural changes of Zr55Cu30Al10Ni5 metallic glass

upon irradiation with 1 MeV Cu ions to a fluence of 1.0×1016 ions/cm2. Post irra-

diation characterization using TEM reveals nanocrystal formation and SAD analysis

suggests that the nanocrystalline phases are a mixture of Cu10Zr7, NiZr2 and CuZr2

phases with the possible formation of a substitutional intermetallic (Nix,Cu1−x)Zr2

phase. In addition, the observed nanocrystals have a distinctive bimodal size distri-

butions. Small nanocrystals with typical sizes ranging from 5 to 10 nm and large

nanocrystals with typical sizes ranging from 50 to 100 nm are observed. These find-

ings are different from a previous study which reported no structural changes upon

ion irradiation of the same alloy.
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CHAPTER IX

ARGON IRRADIATED MG1

Ribbon samples of Cu50Zr45Ti5 metallic glass were prepared by rapid solidification

of metallic liquid on a copper roller. Samples have a thickness of 20 µm and a

width of 1.5 mm. The microstructure of Cu50Zr45Ti5 was characterized by Bruker-

AXS D8 VARIO high resolution X-ray diffractometer (XRD). Transmission electron

microscopy (TEM) and high resolution TEM (HRTEM) were performed on a JEOL

2010 microscope equipped with Gatan SC1000 ORIUS CCD camera, operated at

200 kV. Elemental analysis was carried out by an Oxford Instruments ATW type

energy dispersive X-ray (EDX) detector with INCA Energy TEM platform. TEM

specimens were prepared by two methods. One method used electropolishing at 243

K in a twin jet thinning electropolisher with a solution of 25% nitric acid and 75%

methanol. Another method used Ar ion milling with and without liquid nitrogen

cooling. Acceleration voltages of 2 kV, 3 kV, and 4 kV were used during Ar ion

milling in a Fischione 1010 tabletop system. The specimens were slowly rotated by

a DC motor during thinning to avoid inhomogeneous etching. Differential scanning

calorimetry (DSC) measurements were performed under a purified argon atmosphere

in a TA Instruments DSC-Q1000 calorimeter with finned air cooling system.

Fig. 46 shows an X-ray diffraction (XRD) spectrum of the as-spun ribbon

Cu50Zr45Ti5 glass. Only a broad peak is presented. The absence of sharp peaks

suggests that there is no long range order in the as-spun material. Fig. 47 shows

a DSC curve for the as-spun Cu50Zr45Ti5 sample. DSC was performed at a heating

rate of 0.33 K/s. The transition from glass to supercooled liquid occurs at a tem-

perature of 630 K. The crystallization occurs at a temperature of 720 K. The curve

demonstrates typical annealing behavior of metallic glasses [33].
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Fig. 46. XRD pattern of as-spun Cu50Zr45Ti5 metallic glass.
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Fig. 47. DSC trace of as-spun Cu50Zr45Ti5 metallic glass.
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Fig. 48 shows the TEM micrograph of the sample prepared by electropolishing.

No nanocrystals are observed. The inserted micrograph is the selected area diffraction

(SAD) pattern for the corresponding TEM image. The micrograph pattern is maze-

like and the SAD shows only halo rings. No white spots in the SAD corresponding to

crystalline phases are presented. These observations, together with XRD and DSC,

verify the glassy state of the as-spun sample. Note that the TEM specimen in Fig. 48

is prepared by using electropolishing, which eliminates the ion bombardment involved

in ion milling.

Next, TEM results from specimens prepared by Ar ion milling at different ener-

gies are discussed. Fig. 49 shows TEM micrographs of Cu50Zr45Ti5 glass prepared

using 4 keV Ar ion milling without cooling. The bright-field image depicted in Fig.

49(a) and the dark-field image depicted in Fig. 49(b) show evidence of crystallization

in the sample. Equiaxed grains and nanoparticles with an approximate diameter of

10 nm are observed. The SAD pattern inserted in Fig. 49(a) clearly shows sharp

diffraction spots and discontinuous Debye rings. Lattice parameters extrapolated

from inter-planar distances are compared with a powder diffraction file database [63].

The analysis suggests the formation of the Cu10Zr7 phase. Fig. 49(c) shows a high

resolution TEM image of a selected area. Crystals with defects and small amorphous

zones are observed.

Fig. 50 shows a HRTEM micrograph of the specimens prepared using 3 keV Ar

ion milling without cooling. The SAD pattern inserted shows white diffraction dots

and suggests partial crystallization. The HRTEM image shows nanocrystals dispersed

in an amorphous matrix. Different from the case of 4 keV ion milling, the 3 keV ion

milling leads to smaller crystals, typically less than 5 nm. Furthermore, HRTEM

image reveals zones of dark contrast with an average size of less than 1 nm.

Fig. 51 shows a TEM micrograph from the sample prepared by 2 keV Ar ion
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Fig. 48. Bright-field TEM of Cu50Zr45Ti5 specimen prepared by electrochemical pol-

ishing and SAD inset.
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Fig. 49. (a) Bright-field TEM micrograph and SAD inset of Cu50Zr45Ti5 glass specimen

prepared using 4 keV Ar ion milling without cooling, (b) dark-field TEM

micrograph, and (c) bright-field HRTEM micrograph of the same specimen.



112

Fig. 50. Bright-field HRTEM micrograph of the specimen prepared using 3 keV Ar ion

milling without cooling.
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milling without cooling. SAD pattern does not show noticeable white spots. Both

TEM and SAD do not suggest nanocrystal formation. Perhaps nanocrystals are too

small to be detected. Furthermore, dark zones are found to form in the specimen,

typically around 5 nm in size.

The dark contrast observed in both Figs. 50 and 51 could be caused either by

inhomogeneous thinning or by composition contrast. To further clarify this, Energy-

dispersive X-ray spectroscopy (EDX) is used to analyze the composition at different

locations. EDX is not sensitive to specimen thickness. The X-ray intensity is primarily

determined by atomic mass. Fig. 52 shows an EDX spectrum collected from the dark

region of the sample shown in Fig. 51. Characteristic X-rays emitted from each

element are identified. The mole fraction of each element is calculated by using the

Cliff-Lorimer method based on the integration of X-ray line intensity of each element.

The result shows that the dark region in Fig. 51 is Cu10Zr7 in composition, but not

crystalline.

During ion milling, Ar ions were bombarded at a glancing angle of ∼ 5○. At an

energy of 2-4 keV, the projected range of Ar ions in Cu50Zr45Ti5 is less than 3 nm [49].

This limits the heavily damaged region to the very near surface region of the specimen.

Surface ion bombardment can lead to composition fluctuation up to and beyond the

depth of the bombarded region. Fluctuations can be a product of two simultaneous

mechanisms. The first mechanism is enhanced atomic migration due to beam heating.

Temperature of the specimens can not be measured in the present study, but reports in

literature suggest that specimens under similar ion milling conditions (Ar ion milling

at energy of 2-4 keV without cooling) can be heated up to 200 ○C [83]. Although this

temperature is much lower than the glass transition temperature, previous studies

have shown that composition fluctuations can occur upon low-temperature annealing

[84]. The second mechanism is enhanced atomic migration as a result of ballistic
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Fig. 51. Bright-field TEM micrograph of the specimen prepared using 2 keV Ar ion

milling without cooling.
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Fig. 52. EDX spectrum of dark region shown in Fig. 51.
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collisions and energy dissipation of collision cascades.

Two important observations in the present study are the formation of the Cu10Zr7

phase without appreciable crystallization from low energy ion milling (as shown in

Fig. 51) and the formation of nanocrystals in the Cu10Zr7 phase from high energy

ion milling (as shown in Fig. 49(a)). The formation of the same phase suggests that

chemical decomposition might be a necessary intermediate stage for crystallization.

Before crystallization, a decompositional state might form to lower the system’s Gibbs

free energy, followed by the nucleation of the phase. Furthermore, formation of a

crystalline phase suggests that the phase is more thermodynamically stable than the

glassy state. The same phase has been observed after isothermal annealing of the

same metallic glass [33].

To further shed light onto the crystallization mechanism, we have exposed the

specimen (from 2 keV Ar ion milling without cooling) to the TEM analyzing beam

for an extended period of time to induce crystallization (estimated ion fluence is

larger than 1 × 1027 electrons/m2). Under high fluence electron irradiation, darker

spots appeared as seen in the bright-field TEM micrograph in Fig. 53. Fig. 54 shows

the corresponding dark-field TEM image of the same sample. The white spots in

dark-field image suggest the spots are nanocrystals. Under electron irradiation, a few

nanocrystals form in the bright regions, but a majority of the nanocrystals form in the

dark region. This suggests the bright region is relatively stable against crystallization.

Reducing Ar ion energy will reduce the energy deposited on the specimen. This

will reduce the specimen temperature and consequently, composition fluctuation and

crystallization. Unfortunately, due to space charge effects, it is difficult to further

lower Ar ion energy while maintaining reasonable ion fluxes. If beam heating plays

an important role, a cold milling will alleviate the issues. Fig. 55 shows the TEM

micrograph obtained with 2 keV Ar ion milling plus liquid nitrogen cooling. The
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Fig. 53. Bright-field TEM micrograph of the specimen shown in Fig. 51 after exposure

to high fluence electron beam. Arrows in the figure indicate nanocrystals.
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Fig. 54. Dark-field TEM micrograph of the specimen shown in Fig. 51 after exposure

to high fluence electron beam. Arrows in the figure indicate nanocrystals.
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Fig. 55. Bright-field TEM micrograph of the specimen prepared using 2 keV Ar ion

milling with liquid nitrogen cooling.
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cooling reduced the specimen temperature to around −100○C. Both the TEM image

and the inserted SAD pattern did not reveal nanocrystal formation. This proves that

the conditions for ion milling must be carefully selected to ensure proper specimen

preparation. The microstructure must remain undisturbed through the preparation

process for proper sample characterization.

In summary, We have studied the Ar-ion-milling induced microstructural changes

in Cu50Zr45Ti5 metallic glass during TEM specimen preparation. High energy ion

milling (3 and 4 keV Ar) without cooling can induce specimen crystallization. With

lower energy ion milling (2 keV Ar) without cooling, there is no noticeable crystalliza-

tion, but a nanoscale inhomogeneous decomposition with Cu10Zr7 phase formation is

observed and nucleation can be brought about through further irradiation. There are

no observable structural changes from specimen preparation using low energy cold

milling (2 keV Ar) using liquid nitrogen cooling. Furthermore, upon high fluence

electron irradiation in situ by TEM, a Cu-rich Cu10Zr7 phase is formed.
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CHAPTER X

DISCUSSION

It has been shown quite clearly that it is possible to initiate crystallization of metal-

lic glass through the use of ion irradiation. This chapter will discuss the overall

mechanism for nanocrystal formation in metallic glasses based on the evidence of

ion irradiation experiments from previous chapters. Such experiments using different

particle irradiation techniques give light to the amorphous-to-crystalline transition as

a function of many parameters, such as projectile mass, projectile energy, and glass

composition, to name a few. Further discussion of crystallization kinetics will be

made using phase diagrams to help explain the phases formed upon irradiation.

In previous chapters, we discussed the driving force for crystallization in metallic

glasses, i.e., metallic alloys prefer to be crystalline, but through proper selection of

components, the driving force is not enough for long-range ordering. If crystallization

is to occur, atoms need to segregate to form a nucleation site and subsequent growth

must be aided by decreased viscosity in the system to allow diffusion. An important

thing to establish is the physical mechanism allowing for crystallization in a metallic

glass under irradiation that differs from other mechanisms, such as annealing [85] or

controlled cooling [26].

Since crystallization of metallic glasses can occur under high temperatures, care

needs to be taken to not allow the specimen temperature to reach temperatures that

invoke crystallization. Under most cases, this is simple - the sample temperature can

be monitored my means of a thermocouple attached to the sample stage. This is

what has been done during the experiments discussed in this paper with exception

of the electron microscope study. For medium and heavy ion irradiation, increase in

sample temperature during irradiation was kept below 50 ○C. The temperature in the
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electron irradiation case was not measured but can be calculated using the energy

deposited in the specimen as discussed in a previous chapter. The temperature rise in

a sample due to beam heating was determined by Jencic et al. [55] as shown in Eqn.

4.3. The stopping power of an electron was estimated with Eqns. 4.4 and 4.5. The

average temperature rise was calculated to be 3.2 K in Cu50Zr45Ti5 (MG1) and 5.5 K

in Zr55Cu30Al10Ni5 (MG2), which are almost negligible considering the crystallization

temperatures in these metallic glasses are above 700 K. It is clear that beam heating

is not the reason for crystallization in these experiments.

Another possible reason for crystallization is through direct nucleation from dam-

age cascades. Pockets of heavily displaced atoms are created by energetic particle

irradiation, more so by heavy ions but the effect is still present in light particle irradi-

ation. In a damage cascade, lattice vibration energy near the collision site can be on

the order of several thousand degrees and local energy deposition can be many times

greater than that needed to melt the material. Atoms in a damage cascade can easily

receive more than 1 eV/atom. If the atomic motion is regarded as thermal energy by

kBT , where kB is Boltzman’s constant and T is the temperature, mean temperatures

in a displacement cascade can exceed thousands of degrees [48]. For this reason, a

large damage cascade is referred to as a “thermal spike”.

In a thermal spike, many atoms in a displacement cascade have high energy and

become mobile, as if in a liquid [51]. If the thermal spike phenomena directly lead to

crystallization, then the mobile atoms in the “melting-zone” would rearrange them-

selves into the preferred ordered structure as the energy of the system is dissipated

or “quenched” back to room temperature. This process is similar to the original

quenching of the atoms when the original metallic glass was formed. If the cooling

rate is slow enough, ordered structures will form as the temperature drops below the

melting temperature. The thermal spike cannot be the direct crystallization event
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because the time scale of such an event is too small. The cascade duration is about

10−13 seconds and the quench rate of a thermal spike is on the order of 10−12 seconds

[48]. An approximation of the quench time in a thermal spike is given by

tq ≈
r2

4DT

(10.1)

where r is the radius of the thermal spike and DT is the thermal diffusivity of the

material [86]. The thermal diffusivity in MG2 for instance, is about 2 × 10−6 m2 − s.

If the displacement cascade is 10 nanometers in diameter, then the quench time is

about 3 picoseconds. If the cascade diameter is increased to 100 nanometers, a rather

large cascade, the quench time is still less than a nanosecond. Metallic glass will be

very difficult to crystallize from thermal spiking because it was built to withstand

crystallization.

If crystallization is to occur by this direct method, then atomic segregation must

occur during the very short cascade duration time and crystallization must happen

in the short quenching period. This is much faster than the estimated critical cooling

rate for Cu-Zr and Cu-Zr-Ti metallic glasses of 102 − 104 K/s [76]. Other metallic

glasses need similar cooling rates [1]. For crystallization to occur the quench rate

must be slower than the critical cooling rate. That is, due to the high viscosity of

the glass, which was desired during fabrication, the atoms need a finite and lengthy

amount of time to reorganize themselves into a structure. The melting temperature

of MG2 is about 1100 K. Using the above quenching rates, a 0.1 - 10 second quench is

needed to form a glass, but the thermal spike quench time calculated above is much

faster than this. Cooling rates in the damage cascade region would need to be lower

than the critical cooling rate to begin an amorphous-to-crystalline transition, so the

thermal spike phenomena is not enough to explain crystal formation in metallic glass.

Analysis of experimental data along with investigation of interaction physics
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shows that the thermal spike phenomena discussed in a previous chapter is insufficient

for direct crystallization. Instead, it is a combination of several displacement cascades

combined with enhanced diffusion, as described by the excess free volume model, that

is necessary for crystallization.

In a previous chapter, the free volume dependence on diffusivity was discussed.

The diffusion coefficient is dependent on the average free volume. Also, it was men-

tioned that the driving force to crystallize is already built in to the glass, only the

diffusivity must be enhanced to begin crystallization. Localized increases in free vol-

ume come about through displacing atoms from their sites by particle irradiation.

Energetic particles or knock-on atoms can collide with glass atoms and push them

to a new location, leaving free space in its place - basically a hole, described earlier

as excess free volume. In a damage cascade, large numbers of atoms are displaced

from their sites. With large enough holes, the atoms become highly mobile and can

begin to rearrange themselves. That physical phenomenon is usually measured as an

increase in diffusivity.

The question arises of the quantity of crystallization that is expected during

irradiation of metallic glass. It comes down to the damage tomography of an energetic

ion. For the same amount of damage, usually measured in displacements per atom

(dpa), a heavy ion can create large pockets of displaced atoms which can lead to large

diffusivity enhancements at the heart of a damage cascade, as opposed to a light ion

which creates a few displacements along its trajectory. This is the reasoning for the

mass-dependent study on irradiation of metallic glasses.

If displacements are to be created in order to invoke a diffusivity enhancement,

the particle mass and energy must be chosen such that the energy imparted to target

atoms is enough to overcome the energy barrier for displacement. The amount of

energy a knock-on atom receives is governed by conservation of mass and momentum,
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Table IV. Maximum energy transfered to target of elements in metallic glass sam-

ples Cu50Zr45Ti5 and Zr55Cu30Al10Ni5 listed with displacement energies for

atomic Al, Ti, Ni, Cu, and Zr.

Target Electron 140 keV He 1 MeV Cu Ed

Emax (eV) Emax (eV) Emax (eV) (eV)

Al 16.3 63 × 103 836 × 103 16

Ti 9.15 40 × 103 980 × 103 19

Ni 7.47 33 × 103 998 × 103 23

Cu 6.9 31 × 103 1000 × 103 19

Zr 4.8 23 × 103 968 × 103 21

but the maximum energy received is calculated using Eqn. 3.2 repeated here:

Emax =
4m1m2

(m2
1 +m2

2)
E,

If the minimum displacement energy of a material is Ed, then the condition Emax > Ed

must be met if displacements are to occur. The quantity Emax is simple to compute for

a given projectile and target ion, but Ed is more complicated. Usually Ed is computed

or experimentally determined for a single element. The displacement energy would

be a function of PKA displacement angle due to lattice effects, but a minimum and

average value can be extracted. The Ed values of several elemental materials [48, 87]

are shown with Emax calculated for three different experiments presented in this paper.

The calculations are shown in Table IV. The displacement energy for the metallic

glasses in these experiments will be slightly different since the glass is a mixture of

the elements, but a similar value is expected.

It is clear from the table that the He and Cu ion irradiation experiments in this

dissertation are capable of producing displacements in the metallic glasses in ques-
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tion. It is not clear, however, for the electron irradiated case since the displacement

energy is greater than the maximum energy imparted to target atoms. However, we

do show evidence of electron-irradiation-induced crystallization in MG1, and we have

shown that beam heating and thermal spiking is not the cause for crystallization,

so displacement-induced diffusivity enhancement must be the reason for crystalliza-

tion. There are, however, several reasons that many displacements can be created

in through electron irradiation. It has been proposed that the displacement energy

in glasses is less than their crystalline counterparts [53]. This could be a product

of density fluctuations in the glass since its packing is random, leading to lessened

bonding of atoms in their sites. It has been suggested also [55] that crystallization

by subthreshold electrons can be induced by exciting the electrons of the glass lead-

ing to lessened bonding to neighbors and decreased displacement energy. Finally, in

early radiation experiments by Kinchin and Pease [51], electrons were treated as rel-

ativistic. We know from relativistic physics that the expression involving the kinetic

energy, E, of a particle is E +m0c2 = γmoc2 . In the TEM experiments, electrons

were accelerated to 200 keV and the rest mass of an electron is 511 keV, so we can

treat the electron as having γ ≈ 1.4 times the mass, which will increase the maximum

energy transferred by as much as 40% for heavy elements.

Though there are many reasons that electrons can induce crystallization in MG1,

it is apparent that MG2 is more stable under electron irradiation. The lightest atom,

Al, which has the highest Emax, is not present in MG1, but is present in MG2.

Nevertheless, we have shown MG2 did not crystallize under electron irradiation. A

possible reason for this is intrinsic stability of MG2 over MG1 shown in the larger

subcooled liquid region in MG2. The thermal stability of metallic glass is gauged by

the width of the subcooled liquid region, ∆Tx, the temperature difference between the

glass transition and crystallization temperatures. MG2 shows a ∆Tx almost twice as
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large as MG1, indicating a much greater stability against crystallization than MG1.

It is unclear if the resistance to electron irradiation is due to an increased minimum

displacement energy or increased viscosity. It is possible that the electron beam is cre-

ating displacements, but the resulting diffusivity increase is not enough to crystallize

the glass which has shown superior resistance to crystallization. In other experiments

with Zr55Cu30Al10Ni5, complicated phases such as Cu10Zr7, CuZr2, and NiZr2 were

found in XRD measurements after annealing [88]. These phases were found in heavy

ion irradiation. If these complex structures are simultaneously trying to nucleate, a

high level of mobility is needed in the glass, but the electron irradiation cannot pro-

vide enough energy to do so. Even if the exact reason for radiation tolerance is not

known, the electron irradiation study results in an interesting finding regarding the

radiation resistance of metallic glasses. Next we will examine the radiation response

of metallic glasses to heavier ions.

Using software that can simulate the interactions of ions with matter, such as

SRIM (The Stopping and Range of Ions in Matter) [49], the damage, or the displace-

ment density, can be estimated. SRIM uses the Monte Carlo method to simulate ion

stopping by using tabulated stopping powers using the ZBL potential (an acronym

based on the first letters of its authors, Ziegler, Biersack, and Littmark). It is in-

structive to see the physical size of damage cascades in both light and heavy ion

irradiation. SRIM simulations of several light and heavy ion tracks are shown in Fig.

56. The simulations in Fig. 56(a) represents 140 keV He in MG2, and Fig. 56(b)

represents 1 MeV Cu in MG2. The simulations in Fig. 56 illustrate many things.

The ranges of 140 keV He and 1 MeV Cu in MG2 are similar, but the Cu ion creates

many more displacements per ion track. SRIM estimates that nearly 10 times as

many displacements are caused per ion track by Cu than by He. Not only that, but

the sizes of displacement cascades are very different. The He ion creates many small
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(a)

(b)

Fig. 56. Simulations from SRIM depicting several ion tracks (red) and subsequent

damage cascades (green) in Zr55Cu30Al10Ni5 by (a) 140 keV He and (b) 1

MeV Cu ion irradiation.
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cascades along its path with large distance in between. The Cu ion creates few but

very dense cascades along its path. In the center of such a dense cascade, many ions

are estimated to be displaced, causing an increase in the localized free volume and

increased atomic diffusivity. With fewer atoms displaced in a small cascade from a

light ion, the free volume increase will be less and the diffusivity enhancement will be

less. Therefore, larger crystals are expected in heavy ion irradiation since the local

diffusivity enhancement is potentially greater.

Another aspect of ion irradiation is the preferred displacements of elements. The

ions slow down when penetrating through matter by collisions with target atoms,

but some target atoms present a greater probability of collision than others. This

concept is known as cross-section. Therefore the stopping power of ions is a function

of both cross section and the amount of energy that can be transferred in collisions.

Since metallic glass consists of many elements, the ion may impart more energy to

some atoms than others, resulting in irradiation induced segregation of elements in

the glass. The stopping powers of Cu in elements found in metallic glass are shown in

Fig. 57 using stopping power data from [49]. A Cu ion appears to be able to transfer

more energy to Zr than Cu, though conservation of mass and momentum dictates

that the PKA energy is maximized in Cu because m1 = m2. However, this effect is

present throughout the sample so the overall effect is less important than the effect

of irradiation enhanced diffusivity.

There is much to be learned from the dark-field (DF) micrographs of ion irra-

diated metallic glass. DF images are a part of the diffracted electron beam in an

electron microscope. Therefore the bright spots that show up are exposure due to

diffracted electrons. The electrons are diffracted by the planes in the crystal struc-

tures of the specimen, nanocrystals in our case. The opposite is true so diffracted ions

appear as dark contrasts in bright-field TEM. Many electron micrographs are shown
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Fig. 57. Stopping power of Cu in metallic glass elements. The normalized (density

independent) stopping powers are plotted against Cu ion energy. The five

elements are shown with their masses in amu.



131

in Fig. 58. From Figs. 58(a) and 58(b), the electron in MG1 and He irradiated MG2

cases, Figs. 58(a) and 58(c), respectively, the nanocrystal sizes range from about 1

nm and reach a maximum at about 10 nm. The Cu ion irradiated specimens are

shown in Figs. 58(b) (MG1) and 58(d) (MG2). The range of nanocrystal sizes in

those cases is much greater, with some nanocrystals exceeding 100 nm in diameter.

The total number of atoms involved in a crystal is proportional to d3, where d is the

diameter of the crystal. Hence the number of atoms involved in a crystal of 100 nm

diameter is three orders of magnitude higher than in a 10 nm crystal. While the

fluences and dpa are not equal in the He and Cu experiments (He irradiation resulted

in about 15 dpa while Cu irradiation about 30 dpa), they are far less than 3 orders

of magnitude different. This is another indication that heavy ions are able to create

larger nanocrystals in metallic glass since the damage cascades are larger.

Both irradiated MG2 specimens show a bimodal nanocrystal size distribution.

That is, there exists many nanocrystals that are around 100 nm in size, but also a large

population of nanocrystals that are a few nanometers in size. This shows up in both

irradiated MG2 specimens but neither irradiated MG1 specimen. TEM diffraction

pattern (DP) analysis shows lattice spacings indicative of Cu10Zr7 and CuZr2 phases

in both MG1 and MG2, but additionally in MG2 there appears to exist a NiZr2 phase.

The NiZr2 phase obviously does not show up in the irradiated MG1 case because no

Ni is present in MG1. The small nanocrystals in the irradiated MG2 specimens are

likely to be the NiZr2 phase because of the small concentration of Ni (5%) in MG2

(Zr55Cu30Al10Ni5).

Also, the issue of nanocrystal composition in metallic glasses must be discussed.

The data shows that, in almost every case, a CuxZry phase nucleates after irradiation.

Primarily, Cu10Zr7 phase was found in electron irradiated, He irradiated, Ar irradi-

ated, and Cu irradiated metallic glass. This makes sense since both metallic glasses



132

(a)                    (b)

(c)                    (d)

Fig. 58. Electron micrographs of (a) electron irradiated MG1 (bright field), (b) Cu

irradiated MG1 (dark field), (c) He irradiated MG2 and (dark field), (d) Cu

irradiated MG2 (dark field). Micrographs compare nanocrystal sizes among

different irradiated specimens.
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used in these experiments, Cu50Zr45Ti5 and Zr55Cu30Al10Ni5 are rich in both Cu and

Zr. On the Cu-Zr phase diagram [89], shown in Fig. 59, Cu10Zr7 is stable over a large

range of Zr concentrations. In Zr55Cu30Al10Ni5 the atomic ratio of Zr to the total

amount of Cu and Zr is (0.45 / (0.50 + 0.45)) = ∼47% Zr, and for Zr55Cu30Al10Ni5

the ratio is (0.55 / (0.30 + 0.55)) = ∼65% Zr. Both atomic ratios calculated above lie

in the range of allowed compositions for Cu10Zr7 and CuZr2, so it is reasonable to be-

lieve that both phases could be found in the tested metallic glass compositions. There

is also evidence for the formation of a NiZr2 phase in He irradiated and Cu irradiated

Zr55Cu30Al10Ni5. There is much more Zr than Ni in this system and looking at the

Ni-Zr binary phase diagram [90] in Fig. 60, the NiZr2 phase is seen on the Zr-rich side

of the diagram. The NiZr2 phase on the phase diagram exists in a range that covers

the Zr/(Ni+Zr) ratio of (0.55 / (0.55 + 0.60)) = ∼92% Zr. In all cases, the nucle-

ated phases were the same as those found in isothermal annealing of Cu50Zr45Ti5 [91]

and Zr55Cu30Al10Ni5 [88]. However, as discussed later, phase prediction of irradiated

glasses cannot solely be based on phase diagrams.

It is worthwhile to note the similarities between CuZr2 and NiZr2. Both exist

in the same stoichiometric ratios. The elements Cu and Ni are next to each other

on the periodic table, and correspondingly have similar electronegativities (1.8 and

1.9) and have similar atomic ratios (0.125 nm and 0.128 nm). Both CuZr2 and NiZr2

phases are tetragonal structures. This may imply similar solubility of CuZr2 and

NiZr2 phases. There may be a single phase that exists in a (Nix,Cu1−x)Zr2 form.

This form has been known to exist in Fe-Cr-Ni-Zr alloy systems [69, 70]. This applies

to the bimodal nanocrystal size distribution seen in MG2. The small nanocrystal

mode may be either Ni containing phase, NiZr2 or (Nix,Cu1−x)Zr2. It is then likely

that the larger crystals are Cu10Zr7 since it is such a large cell and Cu and Zr are

the majority elements in the material. Introducing minor elements to a metallic glass
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Fig. 59. Simplified copper-zirconium binary phase diagram.

Source: [89].
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Fig. 60. Simplified nickel-zirconium binary phase diagram.

Source: [90].
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may be a way to limit the nanocrystal size and increase radiation tolerance.

One might ask why no other Cu- or Zr- phases appear after irradiation. One

explanation is that some binary alloys formed by atoms in these glasses form isomor-

phous systems, i.e., there is unlimited solid solubility in both the liquid and solid

phase. In an isomorphous system, no crystalline phases will nucleate because the

two phases can exist in any proportion. Examples of isomorphous systems that exist

based on atoms from the metallic glasses of this experiment are Cu-Ni [92] and Ti-Zr

[93]. It is also possible that other phases may form in the glass under irradiation,

but they are unstable in the presence of radiation. Some structures are not stable

under irradiation and will decompose and form other phases as the free energy of the

system increases [94]. An example of this would be the formation of the CuZr phase

in electron irradiated Cu50Zr45Ti5 [33] and bulk Zr-Cu-Al composites [75], but it is

not found after annealing [91]. In the case of Xie et al. [33], the CuZr phase was

found from TEM DP analysis during in-situ electron irradiation, but that phase was

not found during our analysis. However, our analysis was done at an electron flux

of about 6.9 × 1023 electrons/m2 − s, which is around one order of magnitude higher

than the flux (8 × 1022 electrons/m2 − s) in the above mentioned study. In Y.F. Sun

et al. [75], the CuZr was found in a bulk sample where the cooling rate was fast,

but the phase was absent in the region where the cooling rate is slow. According to

the Cu-Zr phase diagram, CuZr is a high temperature phase and not stable below

718 ○C. Therefore, at room temperature, the CuZr phase is not expected to form. If

CuZr forms under quenching conditions in the work by Sun et al., it then may be

quenched in as the material is cooled to room temperature. The CuZr phase may also

form under low flux irradiation. According to the kinetics of phase transformation,

the CuZr phase would be very likely to form during ion irradiation since it structure

is monoclinic, the simplest of all binary structures [31] and little reorganization is
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necessary. At high fluxes, the CuZr phase may not be stable relative to other phases

due to increased system free energy and will decompose into more stable Cu10Zr7 or

CuZr2 phases as demonstrated by the experiments performed in this study. It should

be noted that the phase diagrams cannot completely predict the formation of crystals

in metallic glasses due to particle irradiation. Irradiation induced nanocrystal forma-

tion is a non-equilibrium process while phase diagrams assume a thermal equilibrium

throughout a material. Ion irradiation takes place on the nanometer scale and on

picosecond time increments, while phase diagrams typically assume a bulk material

heated throughout. Ion irradiation of metallic glasses represents a very complicated

and unique system with thermodynamics and kinetics not examined before. The dis-

cussion here should help aid in understanding of radiation response of metallic glasses

in an effort to help develop methods to control nanocrystal growth.
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CHAPTER XI

CONCLUSION

It is been shown that ion irradiation of metallic glasses indeed causes nanocrystal-

lization. The addition of free volume due to displaced atoms increases the diffusiv-

ity locally causing small pockets of mobile atoms leading to elemental segregation

and eventually crystallization. Additionally, this dissertation demonstrated that the

nanocrystal size can be controlled by both the irradiation conditions and the relative

abundance of elements in the glass composition. Light particles can create small crys-

tals and heavy particles can create large crystals. It seems likely to assume that the

volume fraction of crystalline material in an amorphous matrix could be continually

increased with further irradiation, leading to any volume fraction required. On the

other hand, the addition of minor elements can also decrease overall crystallization

because of the decreased density of available atoms with which to bond. In other

words, if a crystal phase has nucleated, increasing the number of elements different

that those in a given a phase will decrease the local density of elements that are a

part of the given nucleated phase. If the phase is made of primarily major elements

in the composition, the size will be limited due to increased minority elements. If the

nucleated phase is made primarily of minority elements, then the crystal size will be

limited because there will be so few atoms to bond with from the beginning. This

could possibly lead to more radiation-tolerant metallic glasses since the crystallization

would be suppressed.

The addition of nanocrystals to metallic glass can lead to improved properties of

an already attractive material. With high strength and high ductility, there could be

endless applications of amorphous metallic alloys with dispersed nanocrystals. The

current study, however, is limited to the near-surface region of materials because
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the mass and energies used here do not penetrate more than a micrometer into a

specimen. This leads to a small overall volume fraction of crystallization. Perhaps a

small overall volume fraction is all that is required for the particular application.

With an increase in energy, particles are able to penetrate deeper into a mate-

rial, so a larger layer of nanocrystals could be made as particles, particularly light

particles such as electrons and He ions, are accelerated to higher energies. Of course

care must be taken not to induce any nuclear reactions which can happen as nuclei

interact at high energies. If the density of the glass can be reduced, possibly by the

implantation of gaseous ions or an advanced quenching technique, particles would be

able to penetrate deeper into a material leading to an increased volume fraction of

crystals.

This dissertation has been a very interesting look into the thermodynamics and

kinetics of an amorphous material. Classical radiation materials science deals with

ordered structures, either polycrystalline or monocrystalline, while here we have dealt

with the opposite structure - a completely disordered structure. The common idea of

“interstitials,” “vacancies,” and “defects” do not apply, but the terms can be loosely

translated when speaking of excess volume in the amorphous material. Many prob-

lems often arose when dealing with a material that is metastable from the beginning.

The material has to be dealt with very carefully to ensure that the changes made to it

come from the intended source and not by some other mechanism - atoms themselves

do not care where the energy came from, they will use it regardless.

This is by no means the end of radiation experiments on metallic glasses. More

work is needed to study crystallization behavior and eventually materials properties

of metallic glasses with dispersed nanocrystals. The author plans on doing dose-

dependent studies as well as cross-sectional TEM studies on irradiated metallic glasses

to further understand and predict nanocrystallization. Also, other glasses outside the
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Cu-Zr system need to be studied to understand a more general picture of nanocrystal-

lization in metallic glasses. Still, the data presented in this dissertation represents a

new body of knowledge that will help the rest of the scientific community understand

the crystallization behavior of metallic glasses.
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