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ABSTRACT

Commutators on Banach Spaces. (August 2009)

Detelin Todorov Dosev, M. S., Sofia University St. Kliment Ohridski

Chair of Advisory Committee: Dr. William B. Johnson

A natural problem that arises in the study of derivations on a Banach algebra is to

classify the commutators in the algebra. The problem as stated is too broad and we

will only consider the algebra of operators acting on a given Banach space X. In

particular, we will focus our attention to the spaces `1 and `∞.

The main results are that the commutators on `1 are the operators not of the form

λI +K with λ 6= 0 and K compact and the operators on `∞ which are commutators

are those not of the form λI + S with λ 6= 0 and S strictly singular. We generalize

Apostol’s technique (1972, Rev. Roum. Math. Appl. 17, 1513 - 1534) to obtain these

results and use this generalization to obtain partial results about the commutators

on spaces X which can be represented as X '

(
∞⊕
i=0

X

)
p

for some 1 ≤ p ≤ ∞ or

p = 0. In particular, it is shown that every non - E operator on L1 is a commutator.

A characterization of the commutators on `p1 ⊕ `p2 ⊕ · · · ⊕ `pn is also given.
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CHAPTER I

INTRODUCTION

The commutator of two elements A and B in a Banach algebra, or more generally, in

any algebra, is given by

[A,B] = AB −BA.

To classify the commutators of operators acting on an infinite dimensional Banach

space, it is natural first to understand the structure of commutators of operators act-

ing on a finite dimensional space. In the latter case, every operator can be represented

as a matrix with respect to a basis in the space and it is not hard to see (the proof

of which we will present in Chapter II) that the operators on a finite dimensional

Banach space which are commutators are the ones which have trace equal to zero.

Commutators also appear in the study of derivations on a Banach algebra where it is

essential to classify the commutators in the algebra. Wintner([31]) first proved that

the identity in a unital Banach algebra is not a commutator. Here we sketch the

Wienladt’s proof of this result.

Assume that AB − BA = I in some Banach algebra C. Multiplying the last

equation on the left by A and then on the right again by A and adding up the two

resulting equations we obtain A2B − BA2 = 2A. Now it is not hard to see how we

can proceed by induction in order to obtain

AnB −BAn = nAn−1

for all n ∈ N. From this equation it follows that n‖An−1‖ ≤ ‖An−1‖(‖AB‖+ ‖BA‖)

and An 6= 0 for all n. Hence ‖AB‖ + ‖BA‖ ≥ n for every n ∈ N which is a

The journal model is Journal of Functional Analysis.
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contradiction. With no additional effort one can also show that no element of the

form λI+K, where K belongs to a norm closed ideal I(C) of the Banach algebra C and

λ 6= 0, is a commutator. Indeed, just observe that the quotient algebra C/I(C) also

satisfies the conditions of Wintner’s theorem. In particular, the above observation

applies to the Banach algebra L(X ) of all bounded linear operators on the Banach

space X . In our study of commutators, by ideal we will always mean a closed, proper,

non-zero ideal.

Eighteen years after Winter’s result, Brown and Pearcy ([5]) made a break-

through in the study of commutators by proving that the only operators on `2 that

are not commutators are the ones of the form λI + K, where K is compact and

λ 6= 0. Their result suggests what the classification of the commutators on the other

classical sequence spaces might be, and, in 1972, Apostol ([3]) proved that every non-

commutator on the space `p for 1 < p <∞ is of the form λI+K, where K is compact

and λ 6= 0. One year later he proved that the same classification holds in the case

of X = c0 ([4]). Apostol proved some partial results on `1, but only 30 year later we

was able to show that the same classification is valid in the case X = `1 ([6]). This

result will be presented in Chapter IV.

Note that if X = `p (1 ≤ p <∞) or X = c0, the ideal of compact operators K(X )

is the largest proper ideal in L(X ) ([9]; see also [30, Theorem 6.2]). The classification

of the commutators on `p for 1 ≤ p < ∞ and partial results on other spaces suggest

the following

Conjecture. Let X be a Banach space such that X '
(∑

X
)

p
, 1 ≤ p ≤ ∞ or p = 0

(we say that such a space admits Pe lczyński decomposition). Assume that L(X ) has

a largest ideal, M. Then every non-commutator on X has the form λI + K, where

K ∈M and λ 6= 0.
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In [3] Apostol obtained a partial result regarding the commutators on `∞. He

proved that if T ∈ L(`∞) and there exists a sequence of projections (Pn)∞n=1 on `∞

such that Pn(`∞) ' `∞ (we say that two Banach spaces X and Y are isomorphic, and

denote it by X ' Y , if there exists an onto, bounded and invertible linear operator

T : X → Y) for n = 1, 2, . . . and ‖PnT‖ → 0 as n → ∞, then T is a commutator.

This condition is clearly satisfied if T is a compact operator, but, as we show in

Chapter V, it is also satisfied if T is strictly singular. An operator T from X to Y is

called strictly singular if whenever the restriction of T to a subspace X of X has a

continuous inverse, X is finite dimensional. In Chapter V we will obtain a complete

classification of the commutators on `∞, that will show that the conjecture is valid in

this case as well.

In order to give a positive answer to the conjecture one has to prove

• Every operator T ∈M is a commutator;

• If T ∈ L(X ) is not of the form λI + K, where K ∈ M and λ 6= 0, then T is a

commutator.

The proofs we provide for these two steps in the cases X = `1 and X = `∞ are

quite different but use a common idea which we develop in Chapter III. Namely,

we use the idea of decompositions of Banach spaces to develop a technique that will

allow us to reduce the question of whether an operator T on a Banach space X is

a commutator to a question that is related to the structure of the Banach space X

itself.

In Chapter VI we provide applications of our technique to a class of Banach

spaces and provide particular examples.

In the last chapter we give a brief summary of our results and raise some open
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problems we are currently working on.
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CHAPTER II

PRELIMINARY RESULTS

In this chapter we state some of the well known facts that we will use in the sequel

and we also give a proof or sketch of a proof of some of the results. A Banach space

X is a complete normed vector space. We are mainly interested in Banach spaces

built over a complex vector space. A linear functional on a Banach space X is a

linear map from X to C. By a subspace we always mean a linear subspace. The

dual of X is denoted by X ∗ and it is defined to be the set of all continuous linear

functionals on X , endowed with the norm ‖f‖∗ = sup‖x‖=1 |f(x)|. It is not hard to

see that (X ∗, ‖ · ‖∗) is also a Banach space. By L(X ) we denote the space of all linear

operators T : X → X and it is a well known fact that L(X ) is a Banach space with

respect to the norm defined by ‖T‖ = sup‖x‖=1 ‖Tx‖. The set of finite rank operators

on X , i.e the operators T for which dimT (X ) <∞, is denoted by F(X ).

A. Commutators on finite dimensional Banach spaces

An n-dimensional Banach space X can be viewed as Cn with some norm, so a linear

operator A can be viewed as a n × n matrix (ai,j)
n
i,j=1 with complex entries. We

denote by Mn the set of all such n × n matrices. The trace of a matrix A ∈ Mn is

defined by

tr(A) =
n∑

i=1

aii

and recall that tr(AB) = tr(BA) for any two A,B ∈Mn. The last fact is easy to see

by just observing that

tr(AB) =
n∑

i=1

(
n∑

j=1

aijbji) =
n∑

j=1

(
n∑

i=1

ajibij) = tr(BA). (2.1)
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From (2.1) it is clear that if a matrix C ∈ Mn is a commutator, say C = AB −

BA for some A,B ∈ Mn, then tr(C) = 0, so in the finite dimensional setting, the

interesting question is whether all matrices with trace 0 are commutators. This

question was answered by Shoda ([27]), who showed that this is in fact the case. The

proof presented here (cf. [14]) gives more information about the structure of the n×n

matrices.

Theorem II.1. Let Z ∈Mn be such that tr(Z) = 0. Then Z is a commutator.

Proof. We will divide the proof into three steps.

Step I.

First we show that if Z ∈ Mn is a commutator, then Z ′ ∈ Mn+1, defined by Z ′ =(
0 r
c Z

)
for some row r and some column c, is also a commutator. To show this let

Z = AB−BA and assume in addition that A is invertible (this can always be achieved

by replacing A with A+ αI for some α). Define

A′ =

 0 0

0 A

 , B′ =

 0 −rA−1

A−1c B

 .

Now a simple computation shows that A′B′ −B′A′ = Z ′.

Step II.

Now we show that if a matrix Z is not a scalar multiple of the identity, then there

exists an invertible matrix S such that the element in the (1, 1) position of the matrix

S−1ZS is equal to 0. To do this first assume that there exists a row r and a column

c such that rZc = 0 and rc = 1. If this is the case, then choose S to be a matrix

[c, c2, c3, . . . , cn] such that the columns {ci}n
i=2 span the hyperplane orthogonal to r.

This will ensure that the first row of the matrix S−1 is actually equal to r. Then a

simple computation shows that the element in (1, 1) position of the matrix S−1ZS is

equal to rZc and hence we are done.
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Now assume that no such row r and column c exist. This is possible only if rZ = λr

for some λ (depending of r), because otherwise we can choose c to be orthogonal to

rZ and then multiply c by a constant to ensure rc = 1. Since r was an arbitrary row,

this implies that rZ = λ(r)r for every row r such that rZ 6= 0. The last conclusion

automatically implies that S−1ZS is a diagonal matrix for every choice of S. Now we

observe that λ(r) does not depend on r. Indeed, from rZ = λ(r)r for every row r, we

obtain that r1Z−r2Z = λ(r1)r1−λ(r2)r2 for every two rows in any invertible matrix

which is only possible when λ(r1) = λ(r2) (otherwise r1 and r2 have to be linearly

dependent, which is impossible). But this is a contradiction to the statement that Z

is not a multiple of the identity, hence the claim in the beginning is proved.

Step III.

Finally, we are ready to finish the proof via induction on the size of the matrix. If

Z ∈M1 then tr(Z) = 0 ⇔ Z ≡ 0 and there is nothing to prove. For n ≥ 2, tr(Z) = 0

implies that Z is not a non-zero multiple of the identity and hence we can apply the

argument in Step II . There exists an invertible matrix S such that S−1ZS =
(

0 r
c Z′

)
,

where Z ′ ∈ Mn−1 and clearly, tr(Z ′) = tr(Z) = 0. According to the induction step

Z ′ is a commutator and now using Step I we conclude that Z is a commutator.

B. Subspaces of Banach spaces

When studying Banach spaces, it is often important to find a subspace of a given

Banach space that has certain properties. A subspace Y of a Banach space X is

called a complemented subspace if there exists an idempotent operator P : X → X

such that P (X ) = Y and P 2 = P (such operators we call projections). In finite

dimensional settings, all subspaces of a given finite dimensional Banach spaces X are

complemented, but this is not always true if X is infinite dimensional. In some cases
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we have that a subspace Y of X is automatically complemented, an example of which

we state below.

Lemma II.2. [22, Lemma 1] Assume that X = c0 or X = `p, 1 ≤ p < ∞. Let (zn)

be a sequence in X such that there exists an increasing sequence of indices 0 = p0 <

p1 < . . . such that the expansion of zm in the unit vector basis of X is of the form

zm =

pm∑
i=pm−1+1

tmi ei (m = 1, 2, . . .)

(such a sequence is called a block basis sequence). Then the subspace [zn] (the closed

linear span of the vectors (zn)) is isometrically isomorphic to X and is complemented

in X by a norm one projection.

The following theorem is well known and it will be used several times throughout

this dissertation.

Theorem II.3. Let X is a Banach space such that X = c0 or X = `p, 1 ≤ p ≤ ∞ or

X = Lp, 1 ≤ p ≤ ∞. If Y is an infinite dimensional subspace of X such that Y ' X ,

then Y contains a subspace Z such Z ' X and Z is complemented in X.

Proof. For X = `p, 1 ≤ p ≤ ∞, this result is due to Pe lczyński ([22]), except for the

case X = `∞, which is due to Lindenstrauss ([18]). If X = c0 the theorem is due to

Sobczyk ([28]). Note also that in the cases X = c0, `∞, `2 we can take Z = Y ([22,

Theorem 3]). Also, if X = `p, 1 ≤ p < ∞, then Y could be any infinite dimensional

subspace of X and the conclusion of the theorem remains valid. If X = L1 the result

is due to Enflo and Starbird ([8]). In this case, for any ε > 0 we can take Z to be

(1+ε) isomorphic to X . Finally, if X = Lp, 1 < p 6= 2 <∞, the theorem was proved

by Johnson et al. ([13, Theorem 9.1]).
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C. Ideals in Banach spaces

1. Ideals in c0, `p, and Lp

In this section we define the notion of ideal in L(X ) for an infinite dimensional Banach

space X and show some basic facts about the ideals in spaces of operators. Ideals will

appear quite often in our study, and as will become apparent in the later chapters,

they will play an important role in the study of the commutators on Banach spaces.

Definition II.4. An operator ideal I(X) in L(X ) is a subset of L(X ) such that

1. I(X) ⊂ L(X )

2. If T ∈ F(X ) then T ∈ I(X)

3. If T1, T2 ∈ I(X) then T1 + T2 ∈ I(X)

4. If R,S ∈ L(X ) are arbitrary operators and T ∈ I(X) then RTS ∈ I(X)

The ideal I(X) is called closed if it is closed in the usual operator norm. I(X) is

called proper if I(X) 6= L(X ).

It is an easy observation that F(X ) is the smallest operator ideal, but it is not

closed if X is infinite dimensional. A less trivial (but also quite easy) fact is that

the ideal of the compact operators K(X ) (operators that map the closed unit ball of

X into a set that is relatively compact in the norm topology) is the smallest closed

operator ideal if X has the approximation property (a Banach spaces where every

compact operator is a limit, in the operator norm, of finite rank operators).

Proposition II.5. [[7, Lemma 3] , [9]]Let X be an infinite dimensional Banach space

having the approximation property. Then K(X ) is the smallest closed operator ideal

in L(X ). If X = c0 or X = `p, 1 ≤ p <∞, then K(X) is the largest proper operator

ideal in L(X ).
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Proof. This proposition is well known and here we present only a sketch of the proof.

The set of all compact operators is clearly an ideal, so we only have to check that

it is closed. This is done by a showing that TBX is a totally bounded set for every

T which is a limit of compact operators. The fact that K(X ) is the smallest ideal

follows from the definition of the approximation property.

To see that K(X ) is the largest proper ideal if X = c0 or X = `p, 1 ≤ p < ∞,

one can show that if an operator is not compact then the identity factors through

it and hence no non-compact operator can belong to a proper ideal. In order to see

this factorization result one can show that T is not a compact operator if and only if

it is an isomorphism on some complemented subspace of X which is also isomorphic

to X (this equivalence we will use in the future as well). Now it is easy to finish the

proof.

The complete ideal structure in Lp, 1 ≤ p <∞, is not known, but we know what

the largest ideals in these spaces are. In [8] Enflo and Starbird introduced the ideal

of non-E operators on L1 and proved that T ∈ L(L1) is an E-operator if and only

if it is an isomorphism on a subspace of L1 which is isomorphic to L1. The original

definition we will omit since we do not need it. Using the properties of the subspaces

of L1 which are isomorphic to L1 one can show that the ideal of non-E operators

is the largest ideal in L(L1). In [13] the ideal of non - A operators was introduced.

It was also shown there that a non-A operator is an operator on Lp which does not

preserve an isomorphic copy of Lp. As in the case of L1, one can show that non-A

operators are the largest ideal in L(Lp), 1 < p < ∞. One can immediately observe

that the ideals of the non-E and non-A operators have a quite similar definition which

can be generalized, but we will leave this till Chapter VI.

We will also be interested in the ideals in L(`∞). The complete classification of
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those ideals is not known, but fortunately we know that there is a largest ideal in

L(`∞). Denote by S(X ) the ideal of strictly singular operators (operators that are

not isomorphisms on any infinite dimensional subspace of X ). It is a known fact, the

proof of which we present below, that S(`∞) is the largest ideal in L(`∞).

Lemma II.6. The ideal of strictly singular operators is the largest ideal in L(`∞).

Proof. Assume that T is not a strictly singular operator. Our goal is to prove that any

ideal that contains T must coincide with L(`∞). Note first that on `∞ the ideals of

the weakly compact and the strictly singular operators coincide ([30, Theorem 1.2]).

Then we use the fact that any non-weakly compact operator on `∞ is an isomorphism

on some subspace Y of `∞ isomorphic to `∞ ([24, Corollary 1.4]). The subspaces Y

and TY will be automatically complemented in `∞ because `∞ is an injective space.

This yields that I`∞ factors through T and hence any ideal containing T coincides

with L(`∞).

As we saw in the proof of the preceding lemma, an operator T is strictly singular

if and only if it is an isomorphism on a subspace isomorphic to `∞. This property we

have already observed when considering the largest ideals in `p and Lp, 1 ≤ p < ∞,

and the following corollary summarizes these observations on the spaces considered

so far.

Corollary II.7. If X is a Banach space such that X ' c0 or X ' `p, 1 ≤ p ≤ ∞ or

X ' Lp, 1 ≤ p ≤ ∞, then X has a largest ideal M. Moreover, T /∈ M if and only if

T is an isomorphism on a complemented subspace of X which is also isomorphic to

X .
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2. Ideals in other Banach spaces

There are Banach spaces X for which there is no largest ideal in L(X ), but of course

there are maximal ideals in L(X ). In the space `p ⊕ `q, 1 ≤ p < q < ∞, there are

exactly two maximal ideals ([23]), namely, the closure of the ideal of the operators

that factor through `p, which we denote by αp, and the closure of the ideal of the

operators that factor through `q, which we denote by αq. Instead of considering a

sum of just two different `p spaces, we consider a finite sum of arbitrary length of

different `p spaces. As we show in the lemma below, the structure of the maximal

ideals in this sum is similar to the structure of the maximal ideals in the case of just

two summands.

Lemma II.8. Let p1, p2, . . . , pn are n distinct numbers and denote X = `p1 ⊕ `p2 ⊕

· · · ⊕ `pn. Then there are exactly n maximal ideals in L(X ), namely, the closure of

the operators that factor through ⊕i6=j`pi
for j = 1, 2, . . . , n.

Proof. Denote Xj = ⊕i6=j`pi
. It is not hard to see that the set

Mj = {T ∈ L(X ) : T factors through Xj}

is an ideal. It is clearly closed under multiplication by an arbitrary operator from left

and right and we have to show that the sum of two operators in Mj belongs to Mj.

Let T1, T2 ∈Mj and let Ai, Bi, i = 1, 2, be such that the following diagram commutes

X
Ai -Xj

X

Bi

?
T

i -
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for i = 1, 2. We immediately obtain that the following diagram commutes

X
A1 ⊕ A2 -Xj ⊕Xj

X

B1 ⊕B2

?

T
1 + T

2 -

where the operators A1⊕A2 and B1⊕B2 are defined by (A1⊕A2)(x) = (A1(x), A2(x)),

(B1⊕B2)(x, y) = B1(x)+B2(y). Now using the fact that Xj⊕Xj ' Xj, j = 1, 2, . . . , n,

we conclude that T1 + T2 ∈ Mj which shows that Mj is closed under addition. One

can also show that an equivalent definition of the ideal Mj is:

Mj = {T ∈ L(X ) : PjTPj ∈ K(`pj
)}, (2.2)

where Pi is the natural projection from X onto `pi
. This can be shown with an

argument similar to the argument where we proved that Mj is closed under addition.

First observe that the operator T −
∑n

i=1 PjTPi factors through Xj simply because its

range lies into Xj. Then we have to observe that if i 6= j then PjTPi always factors

through Xj (in a obvious way PjTPi = (PjT ) ◦ Pi), thus T − PjTPj ∈ Mj. If we

assume that T ∈Mj, then we have that PjTPj ∈Mj which is only possible if PjTPj

is a compact operator, because for p 6= q the spaces `p and `q are totally incomparable

(do not have isomorphic infinite dimensional subspaces).

The ideal Mj is maximal, because if we assume that there exists a proper ideal

M , such that Mj ( M , then there exists S ∈ M such that PjSPj is not a compact

operator. This implies that I`pj
- the identity on `pj

factors through PjSPj hence

there exists operators A′, B′ ∈ L(`pj
), such that A′PjSPjB

′ = I`pj
. Let Jj be the

natural injection from `pj
into X and consider operators A,B ∈ L(X ) defined by

A := JjA
′Pj + I − Pj and B := JjB

′Pj + I − Pj, and, also let T = I − Pj + PjSPj.

We have that T ∈ M because I − Pj ∈ Ij and PjSPj ∈ M . Now from the equality
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IX = ATB, which follows from the definition of A and B, we have that I ∈M which

is a contradicts the fact that M is a proper ideal.

Assume now that M is a maximal ideal not in {Mj}n
j=1. Then M\Mj 6= ∅ for

j = 1, 2 . . . , n. This implies that for every j = 1, 2, . . . , n there exists an operator

Sj ∈ M such that PjSjPj is not a compact operator as an operator acting on `pj
.

As before, for every j = 1, 2, . . . , n we find operators A′j, B
′
j ∈ L(`pj

), such that

A′jPjSPjB
′
j = I`pj

. Finally, define an operator T ∈ L(X ) by

T =
n∑

j=1

JjA
′
jPjSjPjB

′
jPj.

Since Sj ∈M for every j = 1, 2, . . . , n we have that T ∈M . On the other side

T =
n∑

j=1

JjA
′
jPjSjPjB

′
jPj =

n∑
j=1

JjI`pj
Pj =

n∑
j=1

Pj = IX

which is a contradiction with the assumption that M is a proper ideal.

Let us also mention that there are more Banach spaces for which the maximal

ideals in the Banach algebra of the operators on that space are known. For example

X0 = (
∑
`n2 )c0 and X1 = (

∑
`n2 )`1 are such spaces. In [16] it was shown that L(X0)

has exactly two non-trivial ideals - the compact operators and the closure of the set of

operators factoring through c0. Because X1 = (X0)
∗, one can expect that we have a

similar classification of the norm closed ideals in L(X1). Indeed, in [17] it was shown

that L(X1) also has exactly two non-trivial ideals - the compact operators and the

closure of the set of operators factoring through `1. Note also that X0 '
(∑

X0

)
0

and X1 '
(∑

X1

)
1
, which (as it will become apparent later) is important in our

study.
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CHAPTER III

COMMUTATORS ON
(∑

Y
)

p

A. Notation and basic results

For a Banach space X denote by the L(X ), K(X ), C(X ) and SX the space of all

bounded linear operators, the ideal of the compact operators, the set of all finite co-

dimensional subspaces of X and the unit sphere of X . A map from a Banach space X

to a Banach space Y is said to be strictly singular if whenever the restriction of T to

a subspace M of X has a continuous inverse, M is finite dimensional. In the case of

X ≡ Y , the set of strictly singular operators forms an ideal which we will denote by

S(X ). Recall that for X = `p, 1 ≤ p < ∞, S(X ) = K(X) ([9]) and on `∞ the ideals

of strictly singular and weakly compact operators coincide ([1, Theorem 5.5.1]). A

Banach space X is called prime if each infinite-dimensional complemented subspace

of X is isomorphic to X . For any two subspaces (possibly not closed) X and Y of a

Banach space Z let

d(X ,Y) = inf{‖x− y‖ : x ∈ SX , y ∈ Y}.

A well known consequence of the open mapping theorem is that for any two closed

subspaces X and Y of Z, if X ∩Y = {0} then X +Y is a closed subspace of Z if and

only if d(X ,Y) > 0. Note also that d(X ,Y) = 0 if and only if d(Y ,X ) = 0. First we

prove a proposition that will later allow us to consider translations of an operator T

by a multiple of the identity instead of the operator T itself.

Proposition III.1. Let X be a Banach space and T ∈ L(X ) be such that there exists

a subspace Y ⊂ X for which T is an isomorphism on Y and d(Y, TY ) > 0. Then for

every λ ∈ C, (T − λI)|Y is an isomorphism and d(Y, (T − λI)Y ) > 0.
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Proof. First, note that the two hypotheses on Y (that T is an isomorphism on Y and

d(Y, TY ) > 0) are together equivalent to the existence of a constant c > 0 such that

for all y ∈ SY , d(Ty, Y ) > c. To see this, let us first assume that the hypotheses of

the theorem are satisfied. Then there exists a constant C such that ‖Ty‖ ≥ C for

every y ∈ SY . For an arbitrary y ∈ SY , let zy = Ty
‖Ty‖ and then we clearly have

d(Ty, Y ) = ‖Ty‖d(zy, Y ) ≥ Cd(TY, Y ) =: c > 0.

To show the other direction note that for y ∈ SY , 0 < c < d(Ty, Y ) = ‖Ty‖d(zy, Y ) ≤

‖T‖d(zy, Y ). Taking the infimum over all zy ∈ SY in the last inequality, we obtain

that d(Y, TY ) > 0. On the other hand, for all y ∈ SY we have

0 < c < d(Ty, Y ) ≤ ‖Ty − c

2
y‖ ≤ ‖Ty‖+

c

2
,

hence ‖Ty‖ ≥ c
2
, which in turn implies that T is an isomorphism on Y .

Now it is easy to finish the proof. The condition d(Ty, Y ) > c for all y ∈ SY is

clearly satisfied if we substitute T with T − λI since for a fixed y ∈ SY ,

d((T − λI)y, Y ) = inf
z∈Y

‖(T − λI)y − z‖ = inf
z∈Y

‖Ty − z‖ = d(Ty, Y ),

hence (T − λI)|Y is an isomorphism and d(Y, (T − λI)Y ) > 0.

Note the following two simple facts:

• If T : X → X is a commutator on X and S : X → Y is an onto isomorphism,

then STS−1 is a commutator on Y .

• Let T : X → X be such that there exists X1 ⊂ X for which T|X1 is an iso-

morphism and d(X1, TX1) > 0. If S : X → Y is an onto isomorphism, then

there exists Y1 ⊂ Y , Y1 ' X1, such that STS−1
|Y1 is an isomorphism and

d(Y1, STS
−1Y1) > 0 (in fact Y1 = SX1). Note also that if X1 is complemented
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in X , then Y1 is complemented in Y .

Using the two facts above, sometimes we will replace an operator T by an operator

T1 which is similar to T and possibly acts on another Banach space.

If {Yi}∞i=0 is a sequence of arbitrary Banach spaces, by
(∑∞

i=0 Yi

)
p

we denote the

space of all sequences {yi}∞i=0 where yi ∈ Yi, i = 0, 1, . . ., such that (‖yi‖Yi
) ∈ `p with

the norm ‖(yi)‖ = ‖‖yi‖Yi
‖p (if Yi ≡ Y for every i = 0, 1, . . . we will use the notation(∑

Y
)

p
). We will only consider the case where all the spaces Yi, i = 0, 1 . . ., are

uniformly isomorphic to a Banach space Y , that is, there exists a constant λ > 0 and

sequence of isomorphisms {Ti : Yi → Y }∞i=0 such that ‖T−1‖ = 1 and ‖T‖ ≤ λ. In

this case we define an isomorphism U :
(∑∞

i=0 Yi

)
p
→
(∑

Y
)

p
via (Ti) by

U(y0, y1, . . .) = (T0(y0), T1(y1), . . .), (3.1)

and it is easy to see that ‖U‖ ≤ λ and ‖U−1‖ = 1. Sometimes we will identify the

space
(∑∞

i=0 Yi

)
p

with (
∑
Y )p via the isomorphism U when there is no ambiguity

how the properties of an operator T on
(∑∞

i=0 Yi

)
p

translate to the properties of the

operator UTU−1 on
(∑

Y
)

p
.

For y = (yi) ∈ (
∑
Y )p , yi ∈ Y , define the following two operators :

R(y) = (0, y0, y1, . . .) , L(y) = (y1, y2, . . .).

The operators L and R are, respectively, the left and the right shift on the space

(
∑
Y )p. Denote by Pi, i = 0, 1, . . ., the natural, norm one projection from

(∑
Y
)

p

onto the i-th component of
(∑

Y
)

p
, which we denote by Y i. Our first proposition

shows some basic properties of the left and the right shift as well as the fact that all

the powers of L and R are uniformly bounded, which will play an important role in

the sequel.
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Proposition III.2. Consider the Banach space
(∑

Y
)

p
. We have the following

identities

‖Ln‖ = 1 , ‖Rn‖ = 1 for every n = 1, 2, . . . (3.2)

LR = I , RL = I − P0 , RPi = Pi+1R , PiL = LPi+1 for i ≥ 0. (3.3)

lim
n→∞

‖Ln(x)‖ = 0 for all 1 ≤ p <∞ and p = 0. (3.4)

Proof. The relations in (3.2) and (3.3) follow immediately from the definitions of the

left and right shift. The relation in (3.4) follows from the definition of the norm on(∑
Y
)

p
in the cases 1 ≤ p <∞ and p = 0.

Note that we can define a left and right shift on
(∑∞

i=0 Yi

)
p

by L̃ = U−1LU and

R̃ = U−1RU , and, using the above proposition, we immediately have ‖R̃n‖ ≤ λ

and ‖L̃n‖ ≤ λ. If there is no ambiguity, will denote the left and the right shift on(∑∞
i=0 Yi

)
p

simply by L and R.

Following the ideas in [3], for 1 ≤ p <∞ and p = 0 define the set

A = {T ∈
(∑

Y
)

p
:
∞∑

n=0

RnTLn is strongly convergent}, (3.5)

and for T ∈ A define

TA =
∞∑

n=0

RnTLn.

Note that an operator T is a commutator if and only if T is in the range of DS for some

S, where DS is the inner derivation determined by S, defined by DS(T ) = ST − TS.

Our next lemma shows that each operator T ∈ A is a commutator and also gives an

explicit expression for T as the commutator of two operators.

Lemma III.3. ([6, Lemma 3]) Let T ∈ A for some decomposition D = {Xi} of X .

Then we have

T = DL(RTA) = −DR(TAL), (3.6)
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hence T is a commutator.

Proof. We will show one of the equalities via direct computation. The proof of the

other is similar.

DL(RTA) = LRTA −RTAL = TA −R(
∞∑

n=0

RnTLn)L

= TA −
∞∑

n=1

RnTLn = T.

In the computation above we used the convention L0 = R0 = I.

B. Main result

The ideas in this section are similar to the ideas in [6], but here we present them

from a different point of view, in a more general setting and we also include the case

p = ∞. The following lemma is a generalization of [3, Lemma 2.8] in the case p = ∞

and [6, Corollary 7] in the case 1 ≤ p < ∞ and p = 0. The proof presented here

follows the ideas of the proofs in [3] and [6].

Lemma III.4. Let T ∈ L
((∑

Y
)

p

)
. Then the operators P0T and TP0 are commu-

tators.

Proof. The proof shows that P0T is in the range of DL and TP0 is in the range of

DR. We will consider two cases depending on p.

Case I : p = ∞

In this case we first observe that the series

S0 =
∞∑

n=0

RnP0TL
n

is pointwise convergent coordinatewise. Indeed, let x ∈
(∑

Y
)
∞ and define yn =
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RnP0TL
nx for n = 0, 1, . . .. Note that from the definition we immediately have

yn ∈ Y n so the sum
∑∞

n=0 yn converges in the product topology on
(∑

Y
)
∞ to a

point in
(∑

Y
)
∞ since ‖yn‖ ≤ ‖Rn‖‖P0‖‖T‖‖Ln‖‖x‖ ≤ ‖T‖‖x‖.

Secondly, we observe that S0 and L commute. Because L and R are continuous

operators on
(∑

Y
)
∞ with the product topology and LR = I, we have

S0Lx =
∞∑

n=0

RnP0TL
n+1x = L

(
∞∑

n=1

RnP0TL
nx

)
= L

(
∞∑

n=0

RnP0TL
nx

)
− LP0Tx

= LS0x− 0

(3.7)

since LP0 = 0. That is, DLS0 = 0, as desired.

On the other hand, again using LP0 = 0,

(I −RL)S0x =
∞∑

n=0

(I −RL)RnP0TL
nx = (I −RL)P0Tx+

∞∑
n=1

(I −RL)RnP0TL
nx︸ ︷︷ ︸

0

= (I −RL)P0Tx = P0Tx.

(3.8)

Therefore

DL(RS0) = (DLR)S0 +R(DLS0) = (I −RL)S0 + 0 = P0S0 = P0T. (3.9)

The proof of the statement that TP0 is a commutator involves a similar modification

of the proof of [3, Lemma 2.8]. Again, consider the series

S =
∞∑

n=0

RnP0TP0L
n.

This is pointwise convergent coordinatewise and SL = LS (from the above reasoning
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applied to the operator TP0), and

DR(−SL) = −DR(LS) = −RLS + LSR = −(I − P0)S + LSR

= −S + P0S + SLR = −S + P0S + S − P0S = P0TP0.

Now it is easy to see that

DR(LTP0 − SL) = RLTP0 − LTP0R︸ ︷︷ ︸
0

+P0TP0 = (I − P0)TP0 + P0TP0 = TP0.

Case II : 1 ≤ p <∞ or p = 0

In this case the proof is similar to the proof of [6, Lemma 6 and Corollary 7] and we

include it for completeness. Let us consider the case p ≥ 1 first. For any y ∈
(∑

Y
)

p

we have

‖
m+r∑
n=m

RnPiTPjL
ny‖p = ‖

m+r∑
n=m

RnPiTPjL
nPj+ny‖p ≤ ‖PiTPj‖p

m+r∑
n=m

‖Pj+ny‖p

≤ ‖PiTPj‖p

∞∑
n=m

‖Pj+ny‖p.

Since
∞∑

n=m

‖Pj+ny‖p → 0 as m→∞ we have that
∞∑

n=0

RnPiTPjL
n is strongly conver-

gent and PiTPj ∈ A.

For p = 0 a similar calculation shows

‖
m+r∑
n=m

RnPiTPjL
ny‖ = ‖

m+r∑
n=m

RnPiTPjL
nPj+ny‖ = max

m≤n≤m+r
‖RnPiTPjL

nPj+ny‖

≤ ‖PiTPj‖ max
m≤n≤m+r

‖Pj+ny‖

and since max
m≤n≤m+r

‖Pj+ny‖ → 0 as m → ∞ we apply the same argument as in the

case p ≥ 1 to obtain PiTPj ∈ A.

Using PiTPj ∈ A for i = j = 0 and (3.6) we have P0TP0 = DL(R(P0TP0)A) =
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−DR((P0TP0)AL). Again, as in [6, Corollary 7], via direct computation we obtain

TP0 = DR(LTP0 − (P0TP0)AL) (3.10)

P0T = DL(−P0TR +R(P0TP0)A). (3.11)

Now we switch our attention to Banach spaces which in addition satisfy X '
(∑

X
)

p

for some 1 ≤ p ≤ ∞ or p = 0. Note that the Banach space
(∑

Y
)

p
satisfies this

condition regardless of the space Y , hence we will be able to use the results we proved

so far in this chapter.

Definition III.5. Let X be a Banach space such that X '
(∑

X
)

p
, 1 ≤ p ≤ ∞

or p = 0. We say that D = {Xi}∞i=0 is a decomposition of X if it forms an `p or c0

decomposition of X into subspaces which are uniformly isomorphic to X ; that is, if

the following three conditions are satisfied:

1. There are uniformly bounded projections Pi on X with PiX = Xi and PiPj = 0

for i 6= j

2. There exists a collection of isomorphisms ψi : Xi → X , i ∈ N, such that

‖ψ−1
i ‖ = 1 and λ = sup

i∈N
‖ψi‖ <∞

3. The formula Sx = (ψiPix) defines a surjective isomorphism from X onto(∑
X
)

p

Remark III.6. We should point out that immediately from the definition of decom-

position we have

• For every x ∈ X ,
∑∞

n=m ‖Pnx‖p → 0 as m → ∞. This is easy to see just
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noticing that if ‖x‖ = 1 then

∞∑
n=0

‖Pnx‖p ≤
∞∑

n=0

‖ψnPnx‖p = ‖Sx‖p ≤ ‖S‖p <∞

• If P̃n =
n∑

i=0

Pi then there exists a constant C depending only on the decomposi-

tion D such that ‖P̃n‖ ≤ C for all n = 0, 1, . . .. To see this, note that for every

x ∈ X , ‖x‖ = 1 we have

‖P̃n(x)‖p ≤ ‖S−1‖p‖SP̃n(x)‖p = ‖S−1‖p

n∑
i=0

‖ψiPix‖p

≤ ‖S−1‖p

∞∑
i=0

‖ψiPix‖p = ‖S−1‖p‖S(x)‖p ≤ (‖S−1‖‖S‖)p

If D = {Xi}∞i=0 is a decomposition of X we have X '
(∑

X
)

p
' (
∑∞

i=0Xi)p
,

where the second isomorphic relation is via the isomorphism U defined in (3.1). Using

this simple observation we will often identify X with (
∑∞

i=0Xi)p. Our next theorem

is similar to [6, Theorem 16] and [3, Theorem 4.6], but we state it and prove it in a

more general setting and also include the case p = ∞.

Theorem III.7. Let X be a Banach space such that X '
(∑

X
)

p
, 1 ≤ p ≤ ∞ or

p = 0. Let T ∈ L(X ) be such that there exists a subspace X ⊂ X such that X ' X ,

T|X is an isomorphism, X + T (X) is complemented in X and d(X,T (X)) > 0. Then

there exists a decomposition D of X such that T is similar to a matrix operator of

the form  ∗ L

∗ ∗


on X ⊕ X , where L is the left shift associated with D.

Proof. Clearly X = X ⊕ T (X) ⊕ Z where Z is complemented in X . Note that

without loss of generality we can assume that Z is isomorphic to X . Indeed, if this
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is not the case, let X = X1 ⊕ X2, X ' X1 ' X2 and X1, X2 complemented in X

(hence also complemented in X ). Then d(X1, T (X1)) > 0 and X = X1 ⊕ T (X1)⊕Z1

where Z1 is a complemented subspace of X , which contains the subspace X2 ⊂ X ,

such that X2 is isomorphic to X and complemented in Z. Applying the Pe lczýnski

decomposition technique ([22, Proposition 4]), we conclude that Z1 is isomorphic

to X. This observation plays an important role and will allow us to construct the

decompositions we need during the rest of the proof.

Denote by I − P the projection onto T (X). Consider two decompositions D1 =

{Xi}∞i=0, D2 = {Yi}∞i=0 of X such that T (X) = Y0 = X1⊕X2⊕ . . ., X0 = Y1⊕Y2⊕ . . .

and Y1 = X. Define a map S

Sϕ = LD1ϕ⊕ LD2ϕ, ϕ ∈ X

from X to X ⊕ X . The map S is invertible (S−1(a, b) = RD1a + RD2b). Just using

the definition of S and the formula for S−1 it is easy to see that

STS−1(a, b) = ST (RD1a+RD2b) = S(TRD1a+ TRD2b)

= (LD1TRD1a+ LD1TRD2b)⊕ (LD2TRD1a+ LD2TRD2b),

hence

STS−1 =

 ∗ LD1TRD2

∗ ∗

 .

Let

A = PY0TRD2 = (I − P )TRD2 (3.12)

and note that A|PY0
X ≡ A|(I−P )X : (I − P )X → (I − P )X is onto and invertible since

RD2 is an isomorphism on PY0X and RD2(PY0X ) = Y1 = X. Here we used the fact
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that PY0T is an isomorphism on X (PX = X). Denote by T0 the inverse of A|PY0
X

(note that T0 is an automorphism on (I − P )X ) and consider

G = I + T0(I − P )− T0A.

We will show that G−1 = A+ P . In fact, from the definitions of A and T0 it is clear

that

AT0(I − P ) = T0A(I − P ) = I − P , PT0 = PA = 0 , (I − P )A = A (3.13)

and since A maps onto (I − P )X and AT0|(I−P )X = I|(I−P )X we also have

A− AT0A = 0. (3.14)

Now using (3.13) and (3.14) it is easy to see that

(A+ P )G = (A+ P )(I + T0(I − P )− T0A)

= A+ AT0(I − P )− AT0A+ P = I − P + P = I

G(A+ P ) = (I + T0(I − P )− T0A)(A+ P )

= A+ P + T0(I − P )A+ T0(I − P )P − T0AA− T0AP

= A+ P + T0A− T0AA− T0AP

= P + (I − T0A)A+ T0A(I − P )

= P + (I − T0A)(I − P )A+ (I − P )

= I + ((I − P )− T0A(I − P ))A

= I + (I − P − (I − P ))A = I.
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Using a similarity we obtain I 0

0 G−1


 ∗ LD1TRD2

∗ ∗


 I 0

0 G

 =

 ∗ LD1TRD2G

∗ ∗

 .

It is clear that we will be done if we show that LD1 = LD1TRD2G. In order to do

this consider the equation (A + P )G = I ⇔ AG + PG = I. Multiplying both sides

of the last equation on the left by LD1 gives us LD1AG + LD1PG = LD1 . Using

LD1P ≡ LD1PX0 = 0 we obtain LD1AG = LD1 . Finally, substituting A from (3.12) in

the last equation yields

LD1 = LD1AG = LD1PY0TRD2G = LD1(I − PX0)TRD2G = LD1TRD2G

which finishes the proof.

The following theorem was proved in [3] for X = `p, 1 < p <∞, but inessential

modifications give the result in these general settings.

Theorem III.8. Let X be a Banach space such that X '
(∑

X
)

p
. Let D be a

decomposition of X and let L be the left shift associated with it. Then the matrix

operator  T1 L

T2 T3


acting on X ⊕ X is a commutator.

Proof. Let D = {Xi}∞i=0 be the given decomposition. Consider a decomposition

D1 = {Yi} such that Y0 =
∞⊕
i=1

Xi and X0 =
∞⊕
i=1

Yi. Now there exists an operator

G such that DLDG = RD1LD1(T1 + T3). This can be done using Lemma III.4, since
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RD1LD1 = I − PY0 = PX0 . By making the similarity

T̃ :=

 I 0

G I


 T1 L

T2 T3


 I 0

−G I

 =

 T1 − LG L

∗ T3 +GL


we have T1 + T3 − LG + GL = T1 + T3 − DLG = T1 + T3 − RD1LD1(T1 + T3) =

PY0(T1 + T3). Using Corollary III.4 again we deduce that T1 + T3 − LG + GL is a

commutator. Thus by replacing T by T̃ we can assume that T1 +T3 is a commutator,

say T1 + T3 = AB − BA and ‖A‖ < 1

2
(this can be done by scaling). Denote by MT

left multiplication by the operator T . Then ‖MRDA‖ < 1 where R is the right shift

associated with D. The operator T0 = (MI −MRDA)−1MR(T3B − T2) is well defined

and it is easy to see that A 0

T3 A− L


 B I

T0 0

−

 B I

T0 0


 A 0

T3 A− L

 =

 T1 L

T2 T3

 .

This finishes the proof.

Finally, we are in position to state the main theorem for this chapter. The proof

follows immediately from Theorem III.7 and Theorem III.8 and is omitted.

Theorem III.9. Let X be a Banach space such that X '
(∑

X
)

p
, 1 ≤ p ≤ ∞ or

p = 0. Let T ∈ L(X ) be such that there exists a subspace X ⊂ X such that X ' X ,

T|X is an isomorphism, X + T (X) is complemented in X and d(X,T (X)) > 0. Then

T is a commutator.
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CHAPTER IV

COMMUTATORS ON `p AND Lp (1 ≤ p <∞)∗

In this chapter we focus our attention to the classical Banach spaces `p and Lp (1 ≤

p <∞). The commutators on `p, 1 < p <∞, have already been classified by Apostol

in [3], but the method we use gives this classification as well so we include these cases

in the statement of the results for completeness.

A. Notation and basic results

We begin this chapter with a lemma which gives us a description of the set A intro-

duced in (3.5).

Lemma IV.1. [6, Lemma 4] For a decomposition D = {Xi}∞i=0 of X we have the

following relations

A = DR(L(X )RL) = DL(RLL(X )).

Proof. We will show the first of the relations. The proof of the second relation, as

one may expect, is similar.

If T ∈ A, then TAL = TALRL = (TAL)RL ∈ L(X )RL. Then using T = −DR(TAL)

from (3.6) we have T ∈ DR(L(X )RL). To prove the other direction, assume that

T ∈ L(X )RL and let T = SRL for some operator S (hence TR = SR). Then

∗Part of the results presented in this chapter is reprinted with permission from
“Commutators on `1” by Detelin Dosev, Journal of Functional Analysis 256 (2009)
3490–3509, Copyright 2009 by Elsevier.
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m∑
n=0

Rn(DRT )Ln =
m∑

n=0

Rn(RT − TR)Ln =
m∑

n=0

Rn+1TLn −
m∑

n=0

RnTRLn

=
m∑

n=0

Rn+1SRLLn −
m∑

n=0

RnSRLRLn

=
m∑

n=0

Rn+1SRLn+1 −
m∑

n=0

RnSRLn

= Rm+1SRLm+1 − SR = Rm+1TLm − TR.

Since lim
m→∞

‖Lm(x)‖ = 0 for any x ∈ X from (3.4) and ‖Rm‖ ≤ 1 for every m > 0,

we have lim
m→∞

m∑
n=0

Rn(DRT )Ln = −TR. From the last equation we conclude that

DRT ∈ A and (DRT )D = −TR. Moreover, from TR = SR we have (DRT )D = −SR

and multiplying both sides by L we obtain (DRT )DL = −T .

We proved in Lemma III.3 that for a given decomposition D all operators T ∈ A

are commutators, but in general the condition in (3.5) is hard to check for a given

operator T . We want to have a condition on T which is easy to check and which

ensures the containment T ∈ A. To be more precise, given an operator T , we want

to have a condition on T which will allow us to build a decomposition D for which

T ∈ A. Our next lemma gives us such a condition (as will become clear later) and is

our main tool for constructing decompositions in the sequel.

Lemma IV.2. [6, Lemma 5] Let T ∈ L(X ) and D = {Xi}∞i=0 be a decomposition of

X . Fix ε > 0 and denote P̃n =
n∑

i=0

Pi, where Pi is the projection onto Xi. Let us also

assume that

lim
n→∞

‖(I − P̃n)T‖ = lim
n→∞

‖T (I − P̃n)‖ = 0. (4.1)
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Then there exists an increasing sequence of integers {mj}∞i=0 such that

∞∑
j=0

‖(I − P̃mj
)T‖+

∞∑
j=0

‖T (I − P̃mj
)‖+

∞∑
i,j=0

‖(I − P̃mi
)T (I − P̃mj

)‖ < ε.

Proof. Note first that ‖I − P̃i‖ ≤ ‖I‖ + ‖P̃i‖ ≤ ‖P̃i‖ + 1 = C1 for every i ∈ N. This

estimate follows directly from the remark after Definition III.5. Let {nj}∞j=0 be an

increasing sequence of integers such that

∞∑
j=0

‖T (I − P̃nj
)‖ < ε

3C1

,
∞∑

j=0

‖(I − P̃nj
)T‖ < ε

3C1

.

Now we can use the inequality

∞∑
j=0

‖(I − P̃i)T (I − P̃nj
)‖ ≤

m∑
j=0

‖(I − P̃i)T (I − P̃nj
)‖+ C1

∞∑
j=m+1

‖T (I − P̃nj
)‖

to deduce that

lim
i→∞

∞∑
j=0

‖(I − P̃i)T (I − P̃nj
)‖ = 0.

Using the last equation we can find an increasing sequence of integers

{mj}∞j=0, mj ≥ nj such that

∞∑
i=0

∞∑
j=0

‖(I − P̃mi
)T (I − P̃nj

)‖ < ε

3C1

.

Now it is easy to deduce that the sequence {mj}∞j=0 satisfies the condition of the

lemma. In fact

‖T (I − P̃mj
)‖ = ‖T (I − P̃nj

)(I − P̃mj
)‖ ≤ C1‖T (I − P̃nj

)‖

‖(I − P̃mj
)T‖ = ‖(I − P̃mj

)(I − P̃nj
)T‖ ≤ C1‖(I − P̃nj

)T‖

‖(I − P̃mi
)T (I − P̃mj

)‖ = ‖(I − P̃mi
)T (I − P̃nj

)(I − P̃mj
)‖

≤ C1‖(I − P̃mi
)T (I − P̃nj

)‖.
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This finishes the proof.

Lemma IV.3. [6, Lemma 6] Let D = {Xi}∞i=0 be a decomposition of X . Then for

any T ∈ L(X ) we have

PiTPj ∈ A , ‖(PiTPj)D‖ ≤ C‖PiTPj‖

where C depends on D only.

Proof. The proof of the lemma is basically included in the proof of Lemma III.4,

Case II, and is omitted.

The following theorem shows the importance of the decompositions in determin-

ing whether an operator is a commutator.

Theorem IV.4. [6, Theorem 8] Under the hypotheses of Lemma IV.2, there is a

decomposition D of X for which

T ∈ A, ‖TD‖ ≤ C‖T‖+ ε

where C depends on D only. In particular, using Lemma III.3 we conclude that T is

a commutator.

Proof. Using the sequence {mj} from Lemma IV.2, define a decomposition {X̃i},

where X̃0 =

m0⊕
k=0

Xk, and X̃i =

mi⊕
k=mi−1+1

Xk for i > 0. Note that the new decomposition

also satisfies the conditions in Definition III.5 for being a decomposition. Condition

(1) follows from the remark after the definition and (3) is clearly satisfied since we

are taking only finite direct sums. Hence we will only check condition (2). Let

X C' (
⊕∞

i=0X )p and let Xi
λ' X for i = 0, 1, . . . (for two Banach spaces X and Y we

say that X
λ' Y if there exist an onto isomorphism T : X → Y such that ‖T‖‖T−1‖ ≤

λ). Then for 1 ≤ r < s we have
⊕s

k=r Xk
λ' (
⊕s

k=r X )p

C'
(⊕s

k=r (
⊕∞

i=0X )p

)
p
≡
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(
⊕∞

i=0X )p

C' X , so all the terms of the decomposition after the first one are C2λ

isomorphic to X . The first term in the new decomposition is also isomorphic to X

thus we showed (2) for the new decomposition. For simplicity of notation, denote

the new decomposition by {Xi}∞i=0 and the projections onto Xi by Pi. In the new

notation the conclusion from Lemma IV.2 can be written as

∞∑
j=0

‖(I − P̃j)T‖+
∞∑

j=0

‖T (I − P̃j)‖+
∞∑

i,j=0

‖(I − P̃i)T (I − P̃j)‖ < ε.

Now using Pi(I − P̃i−1) = (I − P̃i−1)Pi = Pi we have

∞∑
i,j=0

‖PiTPj‖ ≤ ‖P0TP0‖+ C1

∞∑
i=1

‖PiT‖+ C1

∞∑
j=1

‖TPj‖+
∞∑

i,j=1

‖PiTPj‖

≤ ‖P0TP0‖+ C1

∞∑
i=1

‖Pi(I − P̃i−1)T‖

+ C1

∞∑
j=1

‖T (I − P̃j−1)Pj‖

+
∞∑

i,j=1

‖Pi(I − P̃i−1)T (I − P̃j−1)Pj‖

≤ ‖P0TP0‖+ C2
1

∞∑
i=1

‖(I − P̃i−1)T‖+ C2
1

∞∑
j=1

‖T (I − P̃j−1)‖

+ C2
1

∞∑
i,j=1

‖(I − P̃i−1)T (I − P̃j−1)‖

≤ ‖P0TP0‖+ C2
1ε.

Since the series
∞∑
i=0

Pi is strongly convergent to I, we have T =
∞∑

i,j=0

PiTPj in

the norm topology of L(X ). Using Lemma IV.3 and the estimate from above, the

operator

S =
∞∑

i,j=0

(PiTPj)D
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is well defined and using Lemma III.3 for each term in the sum of the definition of

S we have that T = DR(−SL) ∈ A. Now DR(TAL − SL) = 0 and by the proof of

Lemma IV.1 we have

0 = −(DR(TAL− SL))DL = (TA − S)L.

From the equation above we conclude that TA = S and ‖TA‖ ≤ C‖T‖+ ε.

B. Compactness and commutators

In order to prove the conjecture about the structure of the commutators on a given

space we have to show that all the elements in the largest proper ideal are commu-

tators. We prove a lemma that takes care of this in the case X = `1 and also shows

that the ideal of compact operators consists of commutators only, provided the space

X has some additional structure. Before that we show a lemma about the operators

T on X which do not preserve a copy of X in the cases of X = `1 and X = L1, which

will be used later and it is interesting on its own.

Lemma IV.5. [6, Lemma 9] Let X = L1 or X = `1 and suppose that T ∈ L(X ) does

not preserve a copy of X . Then, for every δ > 0 and for every X̃ ⊂ X , X̃ ≡ X , there

exists Y ⊂ X̃, such that Y is (1 + δ) isomorphic to X , (1 + δ) complemented in X ,

and ‖T|Y ‖ < δ.

Proof. Consider the case X = L1 first. By assumption T does not preserve a copy

of L1 which implies that T is not an E-operator (actually this can be taken as an

equivalent definition for an operator not to be an E-operator [8, Theorem 4.1]) and

hence it is not sign-preserving either ([25, Theorem 1.5]). Now [25, Lemma 3.1] gives

us a subspace Z ⊂ X̃ such that Z ' X̃ and ‖T|Z‖ < δ. Using Theorem II.3 we find

Y ⊂ Z, which is (1 + δ) isomorphic to X̃ ≡ L1, (1 + δ) complemented in X̃ and Y
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clearly satisfies ‖T|Y ‖ < δ. If Q is the norm one projection onto X̃, and R : X̃ → Y

is a projection of norm less than 1 + δ, then P := RQ is a projection from L1 onto Y

and ‖P‖ < 1 + δ.

For the case X = `1 we use the fact that if X̃ is isometric to `1, then X̃ =

span{ψi : i = 0, 1, . . .} for some vectors {ψi}∞i=1 of norm one, such that

ψj =
∑
i∈σj

λiei, with σj ∩ σk = ∅ for j 6= k

where {ei}∞i=1 is the standard unit vector basis of `1. This follows trivially from the

observation that Uei and Uej must have disjoint supports if U : X̃ → `1 is an into

isometry (cf. [21, Proposition 2.f.14]). Note also that since every infinite dimensional

subspace of `1 contains an isomorphic copy of `1 (see proof of Theorem II.3), then the

operator T is automatically strictly singular and hence compact ([9]). Then, {Tψi}∞i=0

is relatively compact in `1 and hence there exist y ∈ `1 and a subsequence {ψij} such

that Tψij → y. Without loss of generality we may assume that Tψi → y. Finally,

define ϕi =
ψ2i − ψ2i+1

2
for i = 0, 1, . . .. Clearly {ϕi}∞i=0 is a normalized block basis of

X̃ such that ‖Tϕi‖1 → 0. Assume without loss of generality that ‖Tϕi‖1 < ε (this can

be easily achieved by passing to a subsequence). Then for Y = span{ϕi : i = 0, 1, . . .}

we have ‖T|Y ‖ < ε. Note also that Y ⊂ X̃ is 1-complemented in X̃ as it is the closed

linear span of a normalized block basis and clearly is isometric to X̃ ([22, Lemma 1]).

Finally, let R : X̃ → Y be the norm one projection onto Y and Q : `1 → X̃ be the

norm one projection onto X̃. Then clearly P := RQ is a norm one projection onto

Y .

Lemma IV.6. [6, Lemma 10] Let X be a Banach space for which X '

(
∞⊕
i=0

X

)
p

for

some 1 ≤ p <∞ or p = 0. In the case p = 1 we will assume that X = L1 or X = `1.

Let T ∈ L(X ) be a compact operator and ε > 0. Then there exists a decomposition D
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of X such that T ∈ A and ‖TA‖ ≤ C‖T‖ + ε for some constant C depending on D

only. Consequently, T is a commutator and T = −DR(TAL).

Proof. The result is known in the case of X = Lp and X = `p for 1 < p <∞ (cf. [26]

and [3]), and for X = c0 and X = C(K) ([4]). The proof presented here in these cases

follows Apostol’s ideas from [3] and our generalized context gives a shorter proof in

the case of Lp for 1 < p < ∞. Partial results were known in the case X = `1 ([3,

Theorem 2.6]).

Case I. p > 1 or p = 0. In this case we proceed as in Theorem 2.4 in [3], but

instead of considering a particular type of decomposition as in [3], we consider an

arbitrary decomposition D of X and denote P̃n =
n∑

i=0

Pi. Now we have

lim
n→∞

‖(I − P̃n)T‖ = lim
n→∞

‖T (I − P̃n)‖ = 0.

Choose ϕi, ψi ∈ X such that

‖(I − P̃n)Tϕn‖ > ‖(I − P̃n)T‖ − 1

n+ 1
, ‖ϕn‖ = 1

‖T (I − P̃n)ψn‖ > ‖T (I − P̃n)‖ − 1

n+ 1
, ‖ψn‖ = 1, (I − P̃n)ψn = ψn.

Since the set {Tϕi}∞i=0 is relatively compact in X and the sequence {(I − P̃i)}∞i=0

converges strongly to 0 we have lim
n→∞

‖(I−P̃n)T‖ = 0. On the other hand, the sequence

{ψi}∞i=0 is weakly convergent to 0. Using the fact that T is compact, it follows that

the sequence {Tψi}∞i=0 converges to 0 in norm and hence lim
n→∞

‖T (I − P̃n)‖ = 0. Now

Theorem IV.4 gives the result.

Case II. p = 1. Fix ε > 0 and let D = {Xi}∞i=0 be the fixed decomposition of

X defined by Xi = L1[
1

2i+1
,

1

2i
) in the case of X = L1 and by Xi = PNi

`1 (where

N = ∪∞i=0Ni such that cardNi = card N for all i ∈ N and Nj ∩ Nj = ∅ for i 6= j) in

the case of X = `1. Using Lemma IV.5 for each Xi with δ =
ε

2i
will give us 1 + ε
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complemented subspaces {Yi} of X which are isomorphic to X and ‖T|Yi
‖ < ε

2i
. Set

Y0 = (I−
∞∑
i=1

Pi)X . Note that D = {Yi} is a decomposition for X since all the spaces

are complemented and isomorphic to X . This is clear for Yi for i = 1, 2, . . . and it

also holds for Y0, since X0 ⊂ Y0 is complemented in X , isomorphic to X , and using

[8, Corollary 5.3] in the case X = L1, and [22, Proposition 4] in the case X = `1, it

follows that Y0 is isomorphic to X as well. Now, if P̃n =
n∑

i=0

Pi, then we clearly have

lim
n→∞

‖T (I − P̃n)‖ = 0. Since T is a compact operator, we have lim
n→∞

‖(I − P̃n)T‖ = 0

as well (the argument provided in Case I above works in this case as well), so using

Theorem IV.4 we conclude that T is a commutator.

Remark IV.7. Using the previous lemma we immediately conclude that [26, Theorem

4.3] holds for p = 1. Namely, a multiplication operators Mφ on L1 is a commutator

if and only if the spectrum of Mφ contains more than one limit point or contains zero

as the unique limit point.

Corollary IV.8. [6, Corollary 12]Let X be a Banach space for which X '

(
∞⊕
i=0

X

)
p

for some 1 ≤ p < ∞ or p = 0. In the case p = 1 we will assume that X = L1

or X = `1. Let T ∈ L(X ) and suppose that P is a projection on X such that

PX ' X ' (I − P )X and that either TP or PT is a compact operator. Then T is a

commutator.

Proof. First we treat the case when TP is compact operator. Let D = {Xi}∞i=0 be a

decomposition for which TP ∈ A and ‖(TP )D‖X ≤ C‖TP‖X +
ε

2
for a fixed ε > 0 (by

Lemma IV.6). We also want D to be such that (I−P )X = X0 hence we may assume

(I − P ) = P0, where P0 is the projection onto X0. This can obviously be done for

1 < p <∞ (since the decomposition used in the proof was arbitrary). In the case of L1

we consider the operator T̃ = GTG−1 where G : PX ⊕ (I − P )X → (I − P0)X ⊕X0
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is an isomorphism such that GPX = (I − P0)X , G(I − P )X = X0. In this case

T̃GPG−1 is compact and clearly we can choose the decomposition as in Lemma IV.6

and apply the same argument. Now without loss of generality we can assume that

T̃ = T . In the case of `1 we can make a similarity as in the previous case and reduce

to the case where TPM is a compact operator for some infinite set M ⊂ N. Define

S = LT (I − P )− (P0T (I − P )P0)DL− (TP )DL.

Use equation (3.6) applied to TP and P0T (I − P )P0 (recall that P0T (I − P )P0 ∈ A

by Lemma IV.3 ) to get

−DR((TP )DL) = TP (4.2)

−DR((P0T (I − P )P0)DL) = P0T (I − P )P0 = P0T (I − P ). (4.3)

Now

DR(LT (I − P )) = RLT (I − P )− LT (I − P )R = (I − P0)T (I − P ) (4.4)

since (I − P )R = 0. Combining (4.2), (4.3) and (4.4) we conclude that DRS = T . If

PT is compact we consider S = −(I − P )TR+R(P0(I − P )TP0)D +R(PT )D and a

similar calculation shows that T = DL(S).

C. General operators on `p and Lp

We already saw in the previous section that the compact operators on `1 are com-

mutators and in order to prove the conjecture in the case of X = `1 we have to

show that all operators not of the form λI +K, where K is compact and λ 6= 0, are

commutators. To do that we are going to show that if T is not of the form λI + K,
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then there exist complemented subspaces X and Y of X which are isomorphic to X ,

such that d(X,Y ) > 0 and T|X : X → Y is an onto isomorphism. As we already saw

(Theorem III.9), this property of T is enough to show that T is a commutator on any

space X for which X '

(
∞⊕
i=0

X

)
p

.

Definition IV.9. The left essential spectrum of T ∈ L(X ) is the set ([2] Def 1.1)

σl.e.(T ) = {λ ∈ C : inf
x∈SY

‖(λ− T )x‖ = 0 for all Y ⊂ X s.t. codim(Y ) <∞}.

Apostol [2, Theorem 1.4] proved that for any T ∈ L(X ), σl.e.(T ) is a closed

non-void set.

The following lemma is a characterization of the operators not of the form λI+K

on the classical Banach sequence spaces. The proof presented here follows Apostol’s

ideas [3, Lemma 4.1], but it is presented in a more general way.

Lemma IV.10. Let X be a Banach space isomorphic to `p for 1 ≤ p <∞ or c0 and

let T ∈ L(X ). Then the following are equivalent

(1) T − λI is not a compact operator for any λ ∈ C.

(2) There exists an infinite dimensional complemented subspace Y ⊂ X such that

Y ' X , T|Y is an isomorphism and d(Y, T (Y )) > 0.

(3) There exists an infinite dimensional complemented subspace Y ⊂ X such that

Y ' X , T|Y is an isomorphism, d(Y, T (Y )) > 0, and Y +TY is closed complemented

subspace of X (and hence isomorphic to X ).

Proof. ((2) =⇒ (1))

Assume that T = λI + K for some λ ∈ C and some K ∈ K(X ). Clearly λ 6= 0

since T|Y is an isomorphism. Now there exists a sequence {xi}∞i=1 ⊂ SY such that
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‖Kxn‖ → 0 as n→∞. Let yn = T
(xn

λ

)
and note that

‖xn − yn‖ =
∥∥∥xn − (λI +K)

(xn

λ

)∥∥∥ =
∥∥∥xn − xn −K

(xn

λ

)∥∥∥ =
‖Kxn‖
λ

→ 0

as n → ∞ which contradicts the assumption d(Y, T (Y )) > 0. Thus T − λI is not a

compact operator for any λ ∈ C.

((1) =⇒ (2))

The proof in this directions follows the ideas of the proof of Lemma 4.1 from [3]. Let

λ ∈ σl.e.(T ). Then T1 = T −λI is not a compact operator and 0 ∈ σl.e(T1). Using just

the definition of the left essential spectrum, we find a normalized block basis sequence

{xi}∞i=1 of the standard unit vector basis of X such that ‖T1xn‖ <
1

2n
for n = 1, 2, . . ..

Thus if we denote Z = span{xi : i = 1, 2, . . .} we have Z ' X and T1|Z is a compact

operator. Let I −P be a bounded projection from X onto Z ([22, Lemma 1]) so that

T1(I − P ) is compact. Now consider the operator T2 = (I − P )T1P . We have two

possibilities:

Case I. Assume that T2 = (I − P )T1P is not a compact operator. Then there

exists an infinite dimensional subspace Y1 ⊂ PX on which T2 is an isomorphism and

hence, using [22, Lemma 2] if necessary, we find a complemented subspace Y ⊂ PX ,

such that T2 is an isomorphism on Y . By the construction of the operator T2 we

immediately have d(Y, (I − P )T1P (Y )) > 0 and hence d(Y, T1(Y )) > 0. Note that

since X is prime and Y is complemented in X , Y ' X is automatic. Now we are in

position to use Proposition III.1 to conclude that d(Y, T (Y )) > 0.

Case II. Now we can assume that the operator (I − P )T1P is compact. Since

T1(I − P ) is compact and using

T1 = T1(I − P ) + (I − P )T1P + PT1P
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we conclude that the operator PT1P is not compact. Using X ≡ PX ⊕ (I −P )X , we

identify PX ⊕ (I − P )X with X ⊕ X via an isomorphism U , such that U maps PX

onto the first copy of X in the sum X ⊕ X . Without loss of generality we assume

that T1 =
(

T11 T12
T21 T22

)
is acting on X ⊕ X . Denote by P =

(
I 0
0 0

)
the projection from

X ⊕X onto the first copy of X . In the new settings, we have that T11 is not compact

and T21, T22 and T12 are compact operators. Define the operator S on X ⊕ X in the

following way:

√
2S =

 I I

I −I

 .

Clearly S2 = I hence S = S−1. Now consider the operator 2(I − P )S−1T1SP . A

simple calculation shows that

2(I − P )S−1T1SP =

 0 0

T11 + T12 − T21 − T22 0


hence (I − P )S−1T1SP is not compact. Now we can continue as in the previous case

to conclude that there exists a complemented subspace Y ⊂ X in the first copy of

X ⊕ X for which d(Y, S−1T1S(Y )) > 0 and hence d(SY, T1(SY )) > 0. Again using

Proposition III.1, we conclude that d(SY, T (SY )) > 0.

((3) =⇒ (2))

This implication is obvious and follows immediately.

((2) =⇒ 3))

The only thing we have to prove is that we can choose Y in such a way that Y + TY

is a complemented subspace of X . Note that Y + TY is a priori isomorphic to X

because d(Y, T (Y )) > 0. To do this, we are going to use the so called “gliding hump”

argument. The idea is to build a sequence {zi}∞i=0 such that z2i ∈ Y and z2i+1 = Tz2i

for i = 0, 1, . . ., which is almost a block basis of the unit vector basis in X . Let
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{ei}∞i=1 is the unit vector basis for X . Choose a subspace Y as in (2) and without

loss of generality we can assume that Y = span{e2k : k = 1, 2, . . .}. This can be easily

achieved by considering a operator T1 which is similar to T . Note that here we use

the fact that Y is a complemented subspace of X . With PM we denote the projection

onto the coordinates of a vector with indices in M .

Fix an ε > 0 and let z0 = e2. Define n0 = 1 and let z1 = Tz0. There exists n1 such

that max(‖P(n1,∞)z0‖, ‖P(n1,∞)z1‖ < ε and denote C0 = [1, n1]. Now consider Y1 =

TY ∩P(n1,∞)X . Since P(n1,∞)X is finite co-dimensional, we have that Y1 is a non-empty

subspace of X which is finite co-dimensional in TY . Similarly, T−1
|Y (Y1) ∩ P(n1,∞)X is

finite co-dimensional subspace of Y and let z2 ∈ T−1
|Y (Y1)∩P(n1,∞)X be a finite linear

combination of vectors in {e2k}k>n1 . This can always be done due to the fact that

T−1
|Y (Y1) ∩ P(n1,∞)X is finite co-dimensional subspace of Y . Denote z3 = Tz2, and, as

before, let n2 be such that supp(z2) ⊂ [n1 + 1, n2], max(‖P(n2,∞)z2‖, ‖P(n2,∞)z3‖ < ε
2

and denote C1 = [n1 + 1, n2].

Continuing this process, we obtain a sequence of vectors {zi}∞i=0 and a sequence of

numbers {ni}∞i=1 such that

• z2i ∈ SY and z2i+1 = Tz2i ∈ TY for i = 0, 1, . . .

• There exist a sequence of disjoint sets Ci = [ni + 1, ni+1], such that

max(‖PCc
i
z2i‖, ‖PCc

i
z2i+1‖ < ε

2i for i = 0, 1, . . .

Denote Z = span{z2k : k = 0, 1, . . .} and note that supp(z2i) ⊂ Ci and the support

of z2i+1 is “almost” in Ci for i = 0, 1, . . .. If we denote Wi = span{z2i, PCi
z2i+1} and

Zi = span{z2i, z2i+1}, i = 0, 1, . . ., then each Wi is the range of a projection from X

of a norm at most
√

2 ([12]). Since the Wi’s have disjoint supports, we automatically

have that W0 + W1 + · · · is complemented in X by a projection of norm at most
√

2. From this fact and the way we constructed the sequence {Zi}∞i=0, we deduce
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that Z0 + Z1 + · · · is also complemented in X . Finally, from the assumption that

Y + TY is a closed subspace of X (which is equivalent to d(Y, T (y)) > 0) we have

that Z0 + Z1 + · · · = span{zk : k = 0, 1, . . .} = Z + T (Z) and hence Z + T (Z) is

complemented in X . Note that Z and T (Z) are also complemented subspaces of X

as a subspaces spanned by a sequences which are “close” to a block basis sequences.

This finishes the proof of the last implication and the theorem.

Remark IV.11. We should note that the third condition in the preceding lemma

is what was used for proving the complete classification of the commutators on `p,

1 < p < ∞, and c0 in [3] and [4] and what we will use in the case of `1. The

last mentioned condition will also play an important role in the proof of the complete

classification of the commutators on `∞, but we should point out that once we have

an infinite dimensional subspace Y ⊂ `∞ such that Y ' `∞, T|Y is an isomorphism

and d(Y, T (Y )) > 0, then Y and Y +T (Y ) will be automatically complemented in `∞.

Finally, we are in position to apply Theorem III.9 in order to obtain a complete

classification of the commutators on `1.

Theorem IV.12. Let X = `1. An operator T ∈ L(X ) is a commutator if and only

if T − λI is not compact for any λ 6= 0.

Proof. We have two cases depending on λ:

Case I. If T is compact operator (λ = 0), the statement of the theorem follows from

Lemma IV.6.

Case II. If T − λI is not compact for any λ ∈ C, then we apply Lemma IV.10 first

which allows us to apply Theorem III.9 in order to conclude that T is a commutator.
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CHAPTER V

COMMUTATORS ON `∞

In order to show that the conjecture we stated in Chapter I holds for the space `∞

we first have to show that all strictly singular operators (which as we saw in Lemma

II.6 is the largest ideal in L(`∞)) are commutators. Then, as in the case of `1, we

have to show that if an operator T is such that T − λI /∈ S(`∞) for any λ ∈ C then

T is a commutator.

A. Strictly singular operators

In the case of the spaces `p, 1 ≤ p < ∞ we proved that if T is a compact operator

on `p then we can find a subspace Y isomorphic to `p, such that ‖T|Y ‖ is arbitrary

small. Intuitively, this should be true for the compact operators on `∞ as well, but

we need a similar statement to be true for the strictly singular operators on `∞ in

order to use some of the results we have previously proved. In fact, we show that if

T ∈ S(`∞) then there exists a Y ⊂ `∞, Y ' `∞, such that T|Y = 0 which will allow

us to conclude that T is a commutator.

Theorem V.1. Let T ∈ L(`∞) be a strictly singular operator. Then T is a commu-

tator.

Proof. Since T is a strictly singular operator, T is weakly compact ([24, Corollary

1.4] ). Thus it follows that T`∞ is separable (since any weakly compact subset of the

dual to any separable space is metrizable) and let Y = T`∞. The space `∞/Y must

be non-reflexive since assuming otherwise gives us that Y has a subspace isomorphic

to `∞ ([20, Theorem 4]). Now consider the quotient map Q : `∞ → `∞/Y . Q is

not weakly compact and hence (using again [24, Corollary 1.4 ]) there exists X '
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`∞, X ⊂ `∞ such that Q|X is an isomorphism. Let P ′ be a projection onto QX and

set P = (Q|X)−1P ′Q. P is a projection in `∞, PY = {0} and by the construction,

P`∞ is isomorphic to `∞. Thus it follows that PT = 0 and we obtain that T is similar

to an operator T ′ for which there exists an infinite M ⊂ N such that PMT
′ = 0. Now

we are in position to apply Lemma III.4. In order to do so, choose a sequence of

disjoint infinite sets {Mi}∞i=0 such that M = ∪∞i=0Mi and let Y0 = (I −PM\M0)`∞ and

Yi = PMi
`∞ for i = 1, 2, . . .. Clearly `∞ =

(
⊕∞

i=0 Yi

)
∞ and Yi is isometric to `∞ for

all i = 0, 1, . . . (in the construction above we had to ensure that Y0 is isometric to `∞,

because it may happen that N\M is a finite set). Now it is clear how to finish. If Pi is

the natural projection onto Yi for i = 1, 2, . . ., then T ′ ≡ P0T
′ because from PMT

′ = 0

it follows that T ≡ (I−PM)T ′ = (I− (PM\M0 +PM0))T
′ = (I−PM\M0)T

′−PM0T
′ =

(I − PM\M0)T
′ = P0T

′. Finally, Lemma III.4 gives us that T ′ (and hence T ) is a

commutator.

B. General operators

In this section we follow the ideas in Chapter IV in order to obtain a complete

classification of the commutators on `∞. In order to do this, we want to show that if

T −λI /∈ S(`∞) for every λ ∈ C then we can find a subspace Y which is isomorphic to

`∞ and satisfies d(Y, TY ) > 0. This task we accomplish by first showing that a similar

statement is true when considering the operator T restricted to the subspaces of `∞

which are isomorphic to c0, and then we extend the result using known techniques of

Rosenthal ([24]).

Lemma V.2. Let T ∈ L(`∞) and denote by I the identity operator on `∞. Then the

following are equivalent

(a) For each subspace X ⊂ `∞, X ' c0, there exists a constant λX and a compact
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operator KX : X → `∞ depending on X such that T|X = λXI|X +KX .

(b) There exists a constant λ such that T = λI + S, where S ∈ S(`∞) .

Proof. Clearly (b) implies (a), since every strictly singular operator from c0 to any

Banach space is compact ([1, Theorem 2.4.10]). For proving the other direction we

first show that for every two subspaces X, Y such that X ' Y ' c0 we have λX = λY .

We have several cases.

Case I. X ∩ Y = {0}, d(X, Y ) > 0.

Let {xi}∞i=1 and {yi}∞i=1 be bases for X and Y , respectively, which are equivalent

to the usual unit vector basis of c0. Consider the sequence {zi}∞i=1 such that z2i =

xi , z2i−1 = yi for i = 1, 2, . . .. If we denote Z = span{zi : i = 1, 2, . . .}, then clearly

Z ' c0, and, using the assumption of the lemma, we have that T|Z = λZI|Z + KZ .

Now using X ⊂ Z we have that λXI|X +KX = (λZI|Z +KZ)|X , hence

(λX − λZ)I|X = (KZ)|X −KX .

The last equation is only possible if λX = λZ since the identity is never a compact

operator on a infinite dimensional subspace. Similarly λY = λZ and hence λX = λY .

Case II. X ∩ Y = {0}, d(X, Y ) = 0.

Again let {xi}∞i=1 and {yi}∞i=1 be bases of X and Y , respectively, which are equivalent

to the usual unit vector basis of c0 and assume also that λX 6= λY . There exists

a normalized block basis {ui}∞i=1 of {xi}∞i=1 and a normalized block basis {vi}∞i=1 of

{yi}∞i=1 such that ‖ui − vi‖ <
1

i
. Then ‖ui − vi‖ → 0 ⇒ ‖Tui − Tvi‖ → 0 ⇒

‖λXui +KXui − λY vi −KY vi‖ → 0. Since ui → 0 weakly (as a bounded block basis

of the standard unit vector basis of c0) we have ‖KXui‖ → 0 and using ‖ui− vi‖ → 0

we conclude that

‖(λX − λY )vi −KY vi‖ → 0.
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Then there exists N ∈ N such that ‖KY vi‖ > |λX−λY |
2

‖vi‖ for i > N , which is

impossible because KY is a compact operator. Thus, in this case we also have λX =

λY .

Case III. X ∩ Y = Z 6= {0}, dim(Z) = ∞.

In this case we have (λXI|X +KX)|Z = (λY I|Y +KY )|Z . Since Z is infinite dimensional,

we can argue as in the first case to conclude that λX = λY .

Case IV. X ∩ Y = Z 6= {0}, dim(Z) <∞.

Let X = Z
⊕

X1 and Y = Z
⊕

Y1. Then X1 ∩ Y1 = {0}, X1 ' Y1 ' c0 and we can

reduce to one of the previous cases.

Let us denote S = T − λI where λ = λX for arbitrary X ⊂ `∞, X ' c0. If S is

not a strictly singular operator, then there is a subspace Z ⊂ `∞, Z ' `∞ such that

S|Z is an isomorphism ([24, Corollary 1.4]), hence we can find Z1 ⊂ Z ⊂ `∞, Z1 ' c0,

such that S|Z1 is an isomorphism. This contradicts the assumption that S|Z1 is a

compact operator.

The following corollary is an immediate consequence of Lemma V.2.

Corollary V.3. Suppose T ∈ L(`∞) is such that T − λI /∈ S(`∞) for any λ ∈ C.

Then there exist a subspace X ⊂ `∞, X ' c0 such that (T − λI)|X is not a compact

operator for any λ ∈ C.

Theorem V.4. Let T ∈ L(`∞) be such that T − λI /∈ S(`∞) for any λ. Then there

exists a subspace X ⊂ `∞ such that X ' c0, T|X is an isomorphism and d(X,T (X)) >

0.

Proof. By Corollary V.3 we have a subspace X ⊂ `∞, X ' c0 such that (T − λI)|X

is not a compact operator for any λ. Let Z = X ⊕ T (X) and let P be a projection

from Z onto X (such exists since Z is separable and X ' c0). We have two cases:
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Case I. The operator T1 = (I−P )TP is not compact. Since T1 is a non-compact

operator from X ' c0 into a Banach space we have that T1 is an isomorphism on

some subspace Y ⊂ X, Y ' c0 ([1, Theorem 2.4.10]). Clearly, from the form of the

operator T1 we have d(Y, T1(Y )) = d(Y, (I−P )TP (Y )) > 0 and hence d(Y, T (Y ) > 0.

Case II. If (I − P )TP is compact and λ ∈ C, then (I − P )TP + PTP −

λI|Z = TP − λI|Z is not compact and hence PTP − λI|Z is not compact. Now

for T2 := PTP : X → X we apply Lemma IV.10 to conclude that there exists a

subspace Y ⊆ X, Y ' c0 such that d(Y, PT (Y )) = d(Y, PTP (Y )) > 0 and hence

d(Y, T (Y )) > 0.

The following theorem is an analog of Lemma IV.10 for the space `∞.

Theorem V.5. Let T ∈ L(`∞) be such that T − λI /∈ S(`∞) for any λ ∈ C. Then

there exists a subspace X ⊂ `∞ such that X ' `∞, T|X is an isomorphism and

d(X,T (X)) > 0.

Proof. From Theorem V.4 we have a subspace Y ⊂ `∞, Y ' c0 such that T|Y is an

isomorphism and d(Y, T (Y )) > 0. Let Nk = {3i + k : i = 0, 1, . . .} for k = 1, 2, 3.

There exists an isomorphism S : Y ⊕TY → c0(N1)⊕ c0(N2) such that S(Y ) = c0(N1)

and S(TY ) = c0(N2). Note that the space Y ⊕ TY is indeed a closed subspace

of `∞ due to the fact that d(Y, T (Y )) > 0. Now we use [20, Theorem 3] to ex-

tend S to an automorphism S on `∞. Let T1 = STS−1 and consider the operator

(PN2T1)|`∞(N1) : `∞(N1) → `∞(N2), where PN2 is the natural projection onto `∞(N2).

Since T1(c0(N1)) = c0(N2), by [24, Proposition 1.2] there exists an infinite set M ⊂ N1

such that (PN2T1)|`∞(M) is an isomorphism. This immediately yields

d(`∞(M), PN2T1(`∞(M))) > 0
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and hence

d(`∞(M), T1(`∞(M))) > 0. (5.1)

Finally, recall that T1 = STS−1, thus

d(`∞(M), STS−1(`∞(M))) > 0

and hence d(S−1(`∞(M)), TS−1(`∞(M))) > 0.

Finally, we can prove our main result.

Theorem V.6. An operator T ∈ L(`∞) is a commutator if and only if T − λI /∈

S(`∞) for any λ 6= 0.

Proof. Note first that if T is a commutator, from the remarks we made in the intro-

duction it follows that T − λI cannot be strictly singular for any λ 6= 0. For proving

the other direction we have to consider two cases:

Case I. If T ∈ S(`∞) (λ = 0), the statement of the theorem follows from

Theorem V.1.

Case II. If T − λI /∈ S(`∞) for any λ ∈ C, then we apply Theorem V.5 to get

X ⊂ `∞ such that X ' `∞, T|X an isomorphism and d(X,TX) > 0. The subspace

X + TX is isomorphic to `∞ and thus is complemented in `∞. Theorem III.9 now

yields that T is a commutator.
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CHAPTER VI

COMMUTATORS ON OTHER BANACH SPACES

In this chapter we apply some of the techniques we have developed in the previous

chapters in order to get a better insight or in some cases a complete characterization

of the commutators on other classical Banach spaces.

A. Commutators on `p1 ⊕ `p2 ⊕ · · · ⊕ `pn

Lemma VI.1. [6, Lemma 19] Let X and Y be Banach spaces and T =

 A B

C D


an operator from X⊕Y into X⊕Y . If A and D are commutators on the corresponding

spaces then T is a commutator on X ⊕ Y .

Proof. Let A = [A1, A2] and D = [D1, D2]. Assume without loss of generality that

max(‖A2‖, ‖D2‖) <
1

4
. We need to find operators E1 and E2 such that

T =

 A1 E1

E2 D1


 A2 + I 0

0 D2

−

 A2 + I 0

0 D2


 A1 E1

E2 D1

 ,

or equivalently, we have to solve the equations

B = E1D2 − (A2 + I)E1 (6.1)

C = E2(A2 + I)−D2E2 (6.2)

for E1 and E2. Let G : L(X, Y ) → L(X, Y ) be defined by G(S) = −SA2 + D2S.

It is clear that ‖G‖ < 1 by our choice of A2 and D2, hence I − G is invertible.

Now it is enough to observe that (6.2) is equivalent to C = (I − G)(E2) which

gives us E2 = (I − G)−1C. Analogously, we define F : L(Y,X) → L(Y,X) by

F (S) = −A2S + SD2 and then (6.1) becomes equivalent to −B = (I − F )(E1).
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Applying the same argument as before, we get that I − F is invertible and hence

E1 = (I − F )−1(−B).

Theorem VI.2. [6, Theorem 20] Let X = `p ⊕ `q where 1 ≤ q < p < ∞ and T ∈

L(X ). Let P`p and P`q be the natural projections from X onto `p and `q respectively.

Then T is a commutator if and only if P`pTP`p and P`qTP`q are commutators as

operators acting on `p and `q, respectively.

Proof. Throughout the proof we will work with the matrix representation of T as an

operator acting on X . Let T =

 A B

C D

 where A : `p → `p, D : `q → `q, B : `q →

`p, C : `p → `q. The well known fact that the operator C is compact ([21, Proposition

2.c.3]) plays an important role in the proof. If T is a commutator, then T = [T1, T2]

for some T1, T2 ∈ L(X ). Write Ti =

 Ai Bi

Ci Di

 for i = 1, 2. A simple computation

shows that

T =

 [A1, A2] +B1C2 −B2C1 A1B2 +B1D2 − A2B1 −B2D1

C1A2 +D1C2 − C2A1 −D2C1 [D1, D2] + C1B2 − C2B1

 .

From the classification of the commutators on `p for 1 ≤ p < ∞ and the fact that

the Ci’s are compact we immediately deduce that the diagonal entries in the last

representation of T are commutators. For the other direction we apply Lemma VI.1

which concludes the proof.

The classification given in the theorem can be immediately generalized to a space

which is finite sum of `p spaces, namely, we have the following

Corollary VI.3. [6, Corollary 21] Let X = `p1 ⊕ `p2 ⊕ · · · ⊕ `pn where 1 ≤ pn <

pn−1 < . . . < p1 <∞ and T ∈ L(X ). Let P`pi
be the natural projections from X onto
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`pi
for i = 1, 2, . . . , n. Then T is a commutator if and only if for each 1 ≤ i ≤ n,

P`pi
TP`pi

is a commutator as an operator acting on `pi
.

Proof. We proceed by induction on n and clearly Theorem VI.2 gives us the result

for n = 2. If the statement is true for some n, then to show it for n + 1, denote

Y = `p2 ⊕ `p3 ⊕ · · · ⊕ `pn . Now X = `p1 ⊕ Y and using the same argument as in

Theorem VI.2 we see that if T is a commutator, then both P`p1
TP`p1

and PY TPY

are commutators on `p1 and Y respectively. Here we use the induction step to show

that compact perturbation of a commutator on Y is still a commutator. The other

direction is exactly as in Theorem VI.2. It is worthwhile noticing that for this direction

we do not need any assumption on the spaces in the sum.

Using the description of the maximal ideals in L(`p1 ⊕ `p2 ⊕ · · · ⊕ `pn) we now

give an alternate classification of the commutators on `p1 ⊕ `p2 ⊕ · · · ⊕ `pn , which we

will use later.

Theorem VI.4. Let X = `p1 ⊕ `p2 ⊕ · · · ⊕ `pn where 1 ≤ pn < pn−1 < . . . < p1 <∞.

An operator T ∈ L(X ) is a commutator if and only if T − λI is not in any of the n

maximal ideals in L(X ) for any λ 6= 0.

Proof. The proof of the theorem is immediate from Corollary VI.3 and the alternate

description of the maximal ideals in L(X ) we gave in Lemma II.8. Note that we also

use the classification of the commutators on `p, 1 ≤ p <∞, we obtained in Theorem

IV.12.

It is not hard to see that the Theorem VI.4 remains valid if we substitute one of

the spaces `pi
with c0. The proof does not change at all because the classification of

the commutators on c0 and `p is the same and all operators from c0 to `p are compact

([21, Proposition 2.c.3]), which was essential in the proof.
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B. Commutators and property P

In this section we try to generalize some of the concepts we have encountered during

our work. First consider the set

MX = {T ∈ L(X ) : IX does not factor through T}.

This set comes naturally from our investigation of the commutators on `p for

1 ≤ p ≤ ∞. We know (Theorem IV.12, [3, Theorem 4.8], [4, Theorem 2.6]) that the

non-commutators on `p, 1 ≤ p < ∞ and c0 have the form λI + K where K ∈ MX

and λ 6= 0, where MX = K(`p) is actually the largest ideal in L(`p) ([9]), and, in

this dissertation we showed (Theorem V.6) that the non-commutators on `∞ have the

form λI + S where S ∈ MX and λ 6= 0, where MX = S(`∞). Thus, it is natural to

ask the question for which Banach spaces X is the set MX the largest ideal in L(X )?

Let us also mention that in addition to the already mentioned spaces, if X = Lp(0, 1),

1 ≤ p < ∞, then MX is again the largest proper ideal in L(X ) (cf. [8] for the case

p = 1 and [13, Proposition 9.11] for p > 1).

First note that the set MX is closed under left and right multiplication with

operators from L(X ), so the question whether MX is an ideal is equivalent to the

question whether MX is closed under addition. Note also that if MX is an ideal then

it is automatically the largest ideal in L(X ) and hence closed, so the question we will

consider is under what conditions we have

MX +MX ⊆MX . (6.3)

The following proposition gives a sufficient condition for (6.3) to hold.

Proposition VI.5. Let X be a Banach space such that for every T ∈ L(X ) we have

T /∈MX or I − T /∈MX . Then MX is the largest (hence closed) ideal in L(X ).
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Proof. Let S, T ∈ MX and assume that S + T /∈ MX . By our assumption, there

exist two operators U : X → X and V : X → X which make the following diagram

commute:

X
S + T

-X

X

U

6

I
-X

V

?

Denote W = (S + T )U(X ) and let P : X → W be a projection onto W (we can

take P = (S + T )UV ). Clearly V P (S + T )U = I. Now S, T ∈ MX implies

V PSU, V PST ∈MX which is a contradiction since V PSU + V PTU = I.

The conditions of the previous proposition are clearly satisfied for all the spaces

`p and Lp, 1 ≤ p ≤ ∞, but we already saw in the introduction that MX is in fact

the largest ideal in these spaces. Let us just mention that the conditions of the

proposition above are satisfied for X = C([0, 1]) ([19, Proposition 2.1]) hence MX is

the largest ideal in L(C([0, 1])) as well.

We should point out that there are Banach spaces for which MX is not an ideal

in L(X ). We already saw (Lemma II.8) that `p1⊕`p2⊕· · ·⊕`pn has exactly n maximal

ideals and for this particular space we provided a necessary and sufficient condition

for an operator to be a commutator (Theorem VI.2). Namely, we showed that an

operator T is a commutator if and only of P`pTP`p and P`qTP`q are commutators as

operators acting on `p and `q respectively, where P`p and P`q are the natural projec-

tions from `p ⊕ `q onto `p and `q, respectively. The alternative classification of the

commutators on `p1 ⊕ `p2 ⊕· · ·⊕ `pn we gave in Theorem VI.4 can be generalized, but

first we need a definition and a Lemma that follows easily from [6, Corollary 21].

Property P. We say that a Banach space X has property P if T ∈ L(X ) is not a

commutator if and only if T = λI + S, where λ 6= 0 and S belongs to some proper
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ideal of L(X ).

All Banach spaces we have considered so far have property P and our goal now is

to show that property P is closed under taking finite sums under certain conditions

imposed on the spaces in the sum.

Lemma VI.6. Let {Xi}n
i=1 be a finite sequence of Banach spaces that have property

P. Assume also that all operators A : Xi → Xi that factor through Xj are in the

intersection of all maximal ideals in L(Xi) for each i, j = 1, 2, . . . , n, i 6= j. Let

X = X1 ⊕ X2 ⊕ · · · ⊕ Xn and let Pi be the natural projections from X onto Xi for

i = 1, 2, . . . , n. Then T ∈ L(X ) is a commutator if and only if for each 1 ≤ i ≤ n,

PiTPi is a commutator as an operator acting on Xi.

Proof. The proof is by induction and it mimics the proof of Corollary VI.3. First

consider the case n = 2. Let T =

 A B

C D

 where A : X1 → X1, D : X2 →

X2, B : X2 → X1, C : X1 → X2. If T is a commutator, then T = [T1, T2] for some

T1, T2 ∈ L(X ). Write Ti =

 Ai Bi

Ci Di

 for i = 1, 2. A simple computation shows

that

T =

 [A1, A2] +B1C2 −B2C1 A1B2 +B1D2 − A2B1 −B2D1

C1A2 +D1C2 − C2A1 −D2C1 [D1, D2] + C1B2 − C2B1

 .

From the assumption thatX1 andX2 have property P and the fact that theB1C2, B2C1

lie in the intersection of all maximal ideals in L(X1), and C1B2, C2B1 lie in the in-

tersection of all maximal ideals in L(X2), we immediately deduce that the diagonal

entries in the last representation of T are commutators. In the preceding argument

we used the fact that a perturbation of a commutator on a Banach space X having
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property P by an operator that lies in the intersection of all maximal ideals in L(X)

is still a commutator. To show this fact assume that A ∈ L(X) is a commutator,

B ∈ L(X) lies in the intersection of all maximal ideals in L(X) and A+B = λI + S

where S is an element of some ideal M in L(X). Now using the simple observa-

tion that every ideal is contained in some maximal ideal, we conclude that S − B is

contained in a maximal ideal, say M̃ containing M hence A − λI ∈ M̃ , which is a

contradiction with the assumption that X has property P.

For the other direction we apply Lemma VI.1 which concludes the proof in the

case n = 2. The general case follows from the same considerations as in the case

n = 2 in a obvious way.

Our last corollary shows that property P is preserved under taking finite sums

of Banach spaces having property P and some additional assumptions as in Lemma

VI.6.

Corollary VI.7. Let {Xi}n
i=1 be a finite sequence of Banach spaces that have property

P. Assume also that all operators A : Xi → Xi that factor through Xj are in the

intersection of all maximal ideals in L(Xi) for each i, j = 1, 2, . . . , n, i 6= j. Then

X = X1 ⊕X2 ⊕ · · · ⊕Xn has property P.

Proof. Assume that T ∈ L(X ) is not a commutator. Using Lemma VI.6, this can

happen if and only if PiTPi is not commutator on Xi for some i ∈ {1, 2, . . . , n} and

without loss of generality assume that i = 1. Since P1TP1 is not a commutator and

X1 has property P then P1TP1 = λIX1 + S where S belongs to some maximal ideal

J of L(X1). Consider

M = {T ∈ L(X ) : P1TP1 ∈ J}. (6.4)

Clearly, if T ∈ M and A ∈ L(X ), then AT, TA ∈ M because of the assumption
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on the operators from X1 to X1 that factor through Xj. It is also obvious that M is

closed under addition, hence M is an ideal. Now it is easy to see that T − λI ∈ M

which shows that all non-commutators have the form λI + S, where λ 6= 0 and S

belongs to some proper ideal of L(X ).

The other direction follows from our comment in the beginning of the introduc-

tion that no operator of the form λI +S can be a commutator for any λ 6= 0 and any

operator S which lies in a proper ideal of L(X ).
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CHAPTER VII

SUMMARY

In our final chapter we give a brief summary of the result we proved in the dissertation.

A. Commutators on Banach spaces

1. Commutators on
(∑

Y
)

p

First we considered Banach spaces X of the form
(∑

Y
)

p
for an arbitrary Banach

space Y and 1 ≤ p ≤ ∞. For those type of spaces we were able to show that the

following theorem holds.

Theorem. Let T ∈ L
((∑

Y
)

p

)
. Then the operators P0T and TP0 are commutators,

where P0 is the natural projection onto the first copy of Y in the sum
(∑

Y
)

p
.

If we impose the additional condition that X '
(∑

X
)

p
, then the above theorem says

that on those type of spaces, the operators with large kernels or large complements

of the range are commutators. We also proved a theorem which played a significant

role in our further results.

Theorem. Let X be a Banach space such that X '
(∑

X
)

p
, 1 ≤ p ≤ ∞ or p = 0.

Let T ∈ L(X ) be such that there exists a subspace X ⊂ X such that X ' X , T|X is

an isomorphism, X + T (X) is complemented in X and d(X,T (X)) > 0. Then T is a

commutator.
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2. Commutators on `p, 1 ≤ p <∞, and c0

The classification of the commutators on `p for 1 < p <∞ and c0 was already known

and our contribution is the case `1. Since our methods give the classification for all

`p, 1 ≤ p <∞, and c0 we state the theorem in its full generality.

Theorem. Let X = `p, 1 ≤ p < ∞ or X = c0. An operator T ∈ L(X ) is a

commutator if and only if T − λI is not compact for any λ 6= 0.

3. Commutators on `∞

Despite the fact that the space `∞ satisfies the condition `∞ '
(∑

`∞
)
∞, we can

not apply exactly the same methods we used for classifying the commutators on `1,

though the general idea is the same. The lack of an unconditional basis for `∞ and

the fact that the largest ideal in L(`∞) is the ideal of strictly singular operators (not

the compact operators which is the case in L(`1)) were some of the obstacles we had

to overcome. We were able to obtain a complete classification of the commutators on

`∞, which is what we conjectured in the introduction of the dissertation.

Theorem. An operator T ∈ L(`∞) is a commutator if and only if T − λI /∈ S(`∞)

for any λ 6= 0.

4. Commutators on other spaces

Using the techniques developed in Chapter III and the classification of the commu-

tators on `p, 1 ≤ p ≤ ∞ and c0 given in Chapter IV we obtained a classification of

the commutators on `p1 ⊕ `p2 ⊕ · · · ⊕ `pn .
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Theorem. Let X = `p1 ⊕ `p2 ⊕ · · · ⊕ `pn where 1 ≤ pn < pn−1 < . . . < p1 < ∞.

An operator T ∈ L(X ) is a commutator if and only if T − λI is not in any of the n

maximal ideals in L(X ) for any λ 6= 0.

We say that a Banach space X has property P if T ∈ L(X ) is not a commutator if

and only if T = λI + S, where λ 6= 0 and S belongs to some proper ideal of L(X ).

The theorem above can be generalized using the notion of Property P.

Corollary. Let {Xi}n
i=1 be a finite sequence of Banach spaces that have property

P. Assume also that all operators A : Xi → Xi that factor through Xj are in the

intersection of all maximal ideals in L(Xi) for each i, j = 1, 2, . . . , n, i 6= j. Then

X = X1 ⊕X2 ⊕ · · · ⊕Xn has property P.

B. Open problems

We end this dissertation with some comments and questions that arise from our work.

1. Commutators on Lp, 1 ≤ p <∞

Let X = Lp for some p, 1 ≤ p < ∞. We know that X has largest ideal (the ideal of

non-E operators if X = L1 and the ideal of non-A operators if X = Lp, 1 < p <∞)

and the space X satisfies the condition X '
(∑

X
)

p
. Thus, we can try to apply

the techniques developed in Chapter III in order to obtain a complete classification

of the commutators on X . We already saw (in the proof of Lemma IV.5) that non-E

operators are commutators, but we have to deal with non-A operators, as well as a

general operator in L(X ).

Question VII.1. Does every non-commutator on Lp, 1 ≤ p < ∞, have the form
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λI +K, where λ 6= 0 and K belongs to the largest ideal in L(Lp)?

If the answer to this question is positive, the spaces Lp, 1 ≤ p <∞, will be one more

example of class of spaces for which conjecture we stated in Chapter I is valid.

2. Distance between finite dimensional Banach spaces

In 1948 F. John showed in [11] that the Banach-Mazur distance between any n-

dimensional Banach space and `n2 does not exceed
√
n. One can consider a similar

question, but instead of considering `n2 we consider `n∞ (or by duality `n1 ). The best

upper bound is due to Giannopoulos ([10]) who proved that d(X, `n∞) ≤ Cn5/6 and

in [29] Szarek also proved that max{d(X, `n∞) : dimX = n} ≥ cn1/2 log n. Since the

exponent 5/6 does not seem natural, we can ask the following

Question VII.2. Find the essential upper bound of the expression d(X, `n∞), where

X is an n-dimensional Banach space.

3. Best constant in Grotendieck’s inequality

The famous Grothendieck inequality

max
Si,Tj∈SB(H)

∣∣∣∣∣
∞∑

i,j=1

ai,j(Si, Tj)

∣∣∣∣∣ ≤ C max
si,tj∈[−1,1]

∣∣∣∣∣
∞∑

i,j=1

ai,jsitj

∣∣∣∣∣
has a tremendous impact in many areas of mathematics. There are very tight

bounds for the constant C in this inequality due to Krivine ([15]) who showed that

1.67696 . . . ≤ C ≤ 1.7822139781, but so far the best constant C is unknown. If we fix

a number n > 2, it is also not known what is the best constant Cn in the Grothendick

inequality if we impose the restriction 1 ≤ i, j ≤ n. Clearly C1 = 1 and it is not hard

to prove that C2 =
√

2.
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Question VII.3. What is the best constant C in the Grothendieck inequality? What

about the best constant Cn in the same inequality?

An answer to the second question will also answer the first one because C =

lim
n→∞

Cn.
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