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ABSTRACT 

 
 
 

Role and Importance of NS1 Protein of Avian Influenza Virus to Grow in the Presence 

of Interferon and Evaluation of the NS1 Mutant Viruses as Potential DIVA Vaccines. 

(August 2009) 

Vinayak R. Brahmakshatriya, B.V.Sc. Maharashtra University, India; 

M.S., University of Delaware 

Co-Chairs of Committee: Dr. Sanjay Reddy 
  Dr. Blanca Lupiani 

 
 
 
 

A proper vaccination program can play a critical role in prevention and control of 

avian influenza (AI) in commercial poultry. Low pathogenic avian influenza viruses 

(LPAIV) of H5 and H7 AI subtypes cause serious economic losses to the poultry 

industry and have the potential to mutate to highly pathogenic AI (HPAI) strains. Due to 

trade implications, differentiation of infected from vaccinated animals (DIVA) is an 

important issue in the control of AI. Therefore, the development and characterization of 

vaccine candidates with DIVA properties is critical in improving vaccination programs. 

Keeping these aspects in mind, we investigated the role of an NS1 mutant virus as a 

potential live attenuated DIVA vaccine.  The NS1 protein of influenza virus plays a 

major role in blocking the host’s antiviral response.  Using an eight-plasmid reverse 

genetics system, we recovered the low pathogenic parental (H5N3) and NS1 mutant 

(H5N3/NS1/144) viruses. H5N3/NS1/144 expresses only the first 144 amino acids of the 
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NS1 protein compared to the 230 of the parental H5N3.  The growth properties of H5N3 

and H5N3/NS1/144 were compared in cell culture and in different age embryonated 

chicken eggs.  Our results confirmed that NS1 is involved in down regulation of 

interferon as shown by IFN-ß mRNA expression analysis and by the inability of 

H5N3/NS1-144 to efficiently grow in older age, interferon competent, chicken embryos.  

However with regards to safety the virus reverted to virulence within five back passages 

in chickens and was therefore not a safe vaccine candidate. However the killed form of 

H5N3/NS1-144 was a safer alternative and it also induced antibody titers and protection 

not significantly different from the parental H5N3 as vaccine. To further understand the 

reversion of H5N3/NS1/144 to virulence, we carried out 3 independent serial passages of 

H5N3/NS1/144 in increasing age of embryonated chicken eggs and examined the NS1 

gene for presence of mutations.  RT-PCR and sequence analysis of the NS gene in all 

three lineages showed the presence of a 54 amino acid deletion resulting in the 

generation of a 87 amino acids long NS1 ORF with a point mutation (L80V) at the site of 

deletion. In addition, the NS1 ORF in lineages L2 and L3 presented two additional point 

mutations in the RNA binding domain (Q40R and T73M).  To determine if these 

mutations played a role in increased virulence, recombinant viruses expressing these 

mutant NS1 proteins in the background of parental virus were generated by reverse 

genetics and their replication properties and pathogenicity was examined in vitro, in ovo 

and in vivo systems.  

Our results showed that the 87 amino acid long NS1 protein clearly increased 

virus replication and virulence specifically in interferon competent systems.  In addition, 
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the two point mutations in the RNA binding domain of NS1 ORF expressing 87 a protein 

slightly increased the virus virulence. 

Overall this study reinforces the role of NS1 in influenza virus pathogenicity and 

supports the use of killed inactivated NS1 mutant virus vaccines as potential DIVA 

vaccines. 
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CHAPTER I 

 
INTRODUCTION AND REVIEW OF LITERATURE 

 

1.1 Classification of Influenza Viruses 

 Influenza viruses are members of the family Orthomyxoviridae and are important 

to both, veterinary as well as human health. The orthomyxoviridae family of viruses is 

divided into five different genera, including influenza virus A, B, C, Isavirus and 

Thogotovirus (Krug, 2001). Type A Influenza viruses can infect and cause disease in 

avian and mammalian species. Types B and C are limited to human infections, however 

in rare cases type C viruses have been isolated from other species (Shaw et al., 2008). 

Isaviruses infect fish species and include infectious salmon anemia virus (Kibenge et al., 

2004). Thogotovirus are tick borne viruses that can infect humans as well as animals 

(Kuno et al., 2001). 

 

1.2 Ecology and Pathobiology of Avian Influenza Viruses 

Avian influenza (AI) is a major respiratory disease of poultry caused by type A 

influenza viruses. AIV genome consists of eight linear negative-sense single stranded 

RNA segments, which code for eleven proteins, nine of which are structural and two are 

non-structural. The hemagglutinin (HA) and neuraminidase (NA) proteins are classified 

into 16 (HA) and 9 (NA) subtypes based on antigenic differences.  

_________________ 
This dissertation follows the style of Journal of General Virology. 
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Influenza virus genome being segmented, in situations of co-infection of a single 

cell with two influenza viruses belonging to different subtypes, viral gene segments can 

reassort. This can result in 144 possible HA and NA combinations. Wild aquatic birds 

(water fowl and sea gulls) are the natural host for AIVs and are considered reservoir for 

all possible subtypes of avian influenza viruses in nature (Halvorson et al., 1983).  In 

wild birds, AIVs usually replicate in the intestinal tract without causing disease, and 

spread by fecal contamination in water habitat. Often, AIVs infect non-natural hosts 

such as land-based poultry (chickens, turkeys and quail), pigs and humans without 

producing any clinical signs of infection.  However, occasionally, these AIVs can evolve 

to increased virulence causing significant morbidity and mortality.   

AIVs that infect poultry are further classified based on their pathogenicity as 

highly pathogenic (HP) and low pathogenic (LP) avian influenza. HPAIV include 

viruses, which may cause mortality as high as 100%. Until now, only viruses from the 

H5 and H7 subtypes have been classified as HPAIV although not all H5 and H7 viruses 

cause HPAI. The rest of the viruses cause LPAI (Thiermann, 2007) which can be 

manifested by mild respiratory disease, reduction in egg production and can be 

exacerbated by other pathogens and environmental conditions causing a much more 

serious disease. It is important to note that all LPAIV of the H5 and H7 subtypes are 

considered notifiable  (LPNAI) since they can mutate to HPAIV (Garcia et al., 1996; 

Hall, 2004; Rohm et al., 1995; Suarez et al., 2004).  

It is well documented that AI pathogenesis is a polygenic trait (Ito et al., 2001; 

Rott et al., 1979; Stephenson et al., 2004). In this regard, it has been shown that the 
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cleavability of the HA protein plays an important role since it restricts tissue tropism. 

HA is synthesized as a precursor (HA0), which must be cleaved, post-translationally, by 

host proteases to create functional HA protein and produce infectious virus particles. 

While HA0 of HPAIVs are cleaved by ubiquitous furine-like proteases(Rott et al., 1995), 

HA0 of LPAIVs are cleaved by trypsin-like proteases present only in the respiratory and 

enteric tracts (Klenk & Rott, 1988). As a consequence, infection with HPAIV cause 

systemic infections that result in numerous vital organs being affected while LPAIV 

cause localized respiratory or intestinal infections. 

 

1.3 Morphology and Composition  

Morphologically influenza viruses vary from spherical to filamentous shapes 

with a diameter of 80-120 nm and up to several microns in length. Influenza viruses are 

composed of viral structural proteins and a lipid membrane from host origin (Krug, 

2001). Type A influenza virus genome consists of eight negative single-stranded RNA 

segments, which code for 11 proteins. The three largest segments encode for the three 

viral polymerase subunits, PB1, PB2, and PA, and an alternate reading frame in PB1 

encodes the non-structural pro-apoptotic protein PB1-F2. Two medium sized segments 

code for the structural glycoproteins; hemagglutinin (HA) and neuraminidase (NA), 

which form projections on the surface of the virus particle and are important antigenic 

determinants. The viral nucleoprotein together with the viral RNA and the polymerase 

complex forms 8 ribonuceloproteins (RNP). RNP has a helical structure and consists of 

the viral RNA wrapped around the nucleocapsid protein (NP), encoded by the medium 
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sized viral gene segment. NP makes the viral RNA accessible to the replication 

machinery. The two smallest segments encode two proteins each. The NS segment 

encodes the non-structural protein 1 (NS1) and nuclear export protein (NEP). The M 

segment encodes for the matrix protein (M1), which covers the inside of the viral 

envelope, and the membrane bound ion channel-like protein (M2). The lack of 

proofreading mechanisms of the viral RNA polymerase complex makes the viral genome 

highly variable, with viable mutations occurring in the HA and NA genes resulting in 

several different subtypes.  

 

1.4 Replication of Avian Influenza Viruses 

           Hemagglutinins present on the surface of AIV binds to sialic acid sugars on target 

cells. Virus then enters the cells via receptor-mediated endocytosis and, upon 

acidification of the endocytic vesicle the viral membrane fuses with membrane of the 

vesicle releasing the viral nucleocapsid into the cytoplasm (Krug, 2001). The viral 

nucleocapsid is then transported to the nucleus where the negative stranded viral RNA is 

transcribed by the viral polymerase complex into mRNA, using capped 5’ ends of host 

pre mRNAs as primers to initiate synthesis (Plotch et al., 1981). These viral mRNAs are 

then transported to cytoplasm where they are translated into viral proteins.  A small 

number of NS and M viral segments mRNAs are spliced in the nucleus prior to being 

transported to the cytoplasm. mRNAs specifying for viral membrane proteins (HA, NA, 

M2) are translated in the rough endoplasmic reticulum where they enter the secretory 

pathway in which they undergo glycosylation (Krug, 2001). Protein of the polymerase 
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complex (PA, PB1, PB2) and NP are imported into the nucleus where they catalyze 

synthesis of full-length positive strand RNA (cRNA) followed by negative sense virion 

RNA. M1 and NS1 viral proteins are also transported into the nucleus, where M1 shuts 

down viral mRNA synthesis and in conjunction with NS2 aids in the export of RNPs to 

the cytoplasm (Krug, 2001). HA, NA and M2 proteins are transported to the cell surface 

and become incorporated in the plasma membrane while M1 migrates to the inner part of 

the cell membrane making contact with the cytoplasmic tails of HA and NA and the 

RNPs, linking the inner core components and the membrane proteins. Assembly of the 

virion is then completed at this location by budding from the plasma membrane.  

 

1.5 Immune Protection in Avian Influenza Virus Infection 

 The goal of AI vaccination is to induce an immune response that not only protects 

against disease but also prevents infection and shedding. The “gold standard” for 

assessing protective immunity is the use of LPAI or HPAI virus challenge models 

(Swayne & Kapczynski, 2008b). The criteria for protection for HPAIV challenge is in 

terms of morbidity and mortality (Brugh et al., 1979; Stone, 1987; 1988; Wood et al., 

1985). On the other hand, experimental LPAIV challenges typically do not produce 

clinical signs or death and as a result, such criteria cannot be used in assessing vaccine 

protection against LPAIV. Instead, quantitative virus reduction in respiratory/digestive 

tract is the main criteria to evaluate protection (Capua et al., 2004; Swayne, 2003; 

Swayne et al., 1997).  
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1.5.1 Innate Immune Response and Avian Influenza 

Innate immunity is non-specific, depends on factors that exist prior to microbe 

invasion and is capable of a rapid response to pathogens. The innate immune system 

detects pathogens through pattern recognition receptors (PRRs) (Koyama et al., 2007) 

which recognize molecular markers of microbes known as pathogen associated 

molecular patterns (PAMPs). To detect and immidiately induce an innate immune 

response, different host species use a variety of sensors which follow in two main 

classes:   

a. Toll like receptors (TLRs): TLRs are transmembrane proteins containing 

luminal leucine-rich repeats (LRRs) that sense pathogen-associated molecular patterns 

(Kawai & Akira, 2007). TLRs, involved in the detection of viral nucleic acids are 

located on the cell surface (TLR3) or in endosomal compartments (TLR3, TLR7, TLR8, 

and TLR9) (Iwasaki & Medzhitov, 2004).  TLRs involved in detection of influenza 

viruses are TLR3 and TLR7/8.  

b. Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs): RLR family 

member, RIG-I, is a cytoplasmic protein that detects single stranded viral RNA products; 

therefore, it can detect influenza viruses within the cytosol (Kato et al., 2006).  

Influenza virus infection induces TLR and RIG-I pathways leading to the 

activation of inflammatory cytokine production, mainly interferon (IFN) α/β 

(McCartney & Colonna, 2009). 
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 Interferon produced upon stimulation of the innate immune response, binds to 

homologous receptor complex IFNAR and induces transcription of more than 100 IFN-

stimulated genes (ISGs), whose combined action leads to the generation of an "antiviral 

state" in non-infected cells (Bluyssen et al., 1996; Haque & Williams, 1994; Stark et al., 

1998). The antiviral molecules stimulated by IFN are: protein kinase stimulated by 

dsRNA (PKR), 2'-5' oligoadenylate synthetases (OAS) and myxovirus resistance gene 

(Mx) (Biron et al., 2001). While Mx sequesters viral ribonucleoproteins to specific sub-

cellular compartments, PKR phosphorylates downstream substrates upon recognition of 

dsRNA, including the elongation initiation factor eIF2-α, resulting in the inhibition of 

protein translation. The OAS proteins are also activated by dsRNA, leading to the 

generation of 2'-5' oligoadenylates, which activate ribonuclease L (Rnase L) that 

degrades cellular and viral RNA. Both PKR and the OAS/RNaseL systems have 

profound inhibitory effects on basal cellular processes that eliminate virus-infected cells 

by suicide (Samuel, 2001). IFN can also induce antiviral effect through other multiple 

pathways (Zhou et al., 1999) suggesting that hosts have evolved redundant pathways to 

resist virus infection by using multiple mechanisms to counteract viral resistance to one 

particular pathway; also different factors of the IFN system mediate inhibition of 

specific virus families (Garcia-Sastre & Biron, 2006). 

1.5.2 Adaptive Immune Response and Avian Influenza 

Cytokines secreted during the induction of innate immune response stimulate and 

influence the nature of the adaptive immune response. A CD4+ T-helper type 1 response 

profile includes gamma interferon, IL-2, 15, 18 and is associated with a strong CD8+ T- 
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cell-specific response (Swayne & Kapczynski, 2008b). Previous studies have shown that 

CD8+ CTL directed against viral HA and NP epitopes conserved among influenza A 

viruses contribute to protection (Altstein et al., 2006; Anderson et al., 1992).  CD4+ T 

helper type-2 response profile includes IL-4, 5,10 and stimulate antibody production 

(Swayne & Kapczynski, 2008b). In poultry, during natural infection, the humoral 

immune response includes systemic as well as mucosal antibody production. The 

humoral immune response plays a principal role in protection against AIV (Chambers et 

al., 1988). Antibodies against HA block viral attachment to host cells, preventing 

infection. As a result, the immune protection offered, is strongest against the specific or 

closely related strains, depending on antigenic relatedness.  On the other hand, 

antibodies to NA provide only partial protection against HPAIV challenge (Sylte et al., 

2007). Similarly, internal proteins have been shown to provide insufficient protection, 

although they induce a good antibody response (Brown et al., 1992; Webster et al., 

1991). The strong antibody response to NP has, however important diagnostic 

applications as it allows the monitoring of flocks by screening for antibodies to this 

highly immunogenic protein. Secretory antibodies probably play an important role in the 

recovery of infected birds and by provides protection from further infections, 

particularly in the case of LPAI, which is primarily a mucosal infection. Mucosal 

infection by viruses like AIV also results in the induction of cell-mediated immunity, as 

manifested by CD4+ T helper-type 1 cells, as well as CD8+ cytotoxic T-lymphocytes. 

These responses result in synthesis of secretory immunoglobulin A (S-IgA) antibodies, 

which provide an important first line of defense against invasion of deeper tissues by 
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these pathogens (van Ginkel et al., 2000)(ref). Resistance of S-IgA to proteolysis in 

external secretions and greater ability to prevent attachment of influenza virus as 

compared to IgY and monomeric IgA (Taylor & Dimmock, 1985) emphasizes the role 

and importance of mucosal immunity in controlling avian influenza.  

 

1.6 The Influenza A Virus NS1 (NS1A) Protein 

The NS gene of influenza A virus encodes two different proteins, NS1 and 

nuclear export protein (NEP) (Esposito et al., 2006). NS1 of influenza A viruses 

contains around 230/237 amino acid residues depending on strain of the virus. NEP is a 

product of the spliced NS mRNA and shares the first 10 amino acids with NS1. NS1 is 

the most abundant nonstructural protein of influenza A virus expressed in infected cells. 

The NS1 protein of influenza viruses has been shown to block the cellular interferon 

pathway, which plays a crucial role in the innate antiviral defense mechanism of 

eukaryotic cells. (Bergmann et al., 2000; Garcia-Sastre et al., 1998; Hale et al., 2008b; 

Kochs et al., 2007). The amino-terminal domain of the NS1 protein of influenza A virus 

has a double stranded (ds) RNA binding domain, which inhibits the synthesis of IFN α/β 

by preventing the activation of double-stranded RNA mediated activation of protein 

kinase R (Bergmann et al., 2000). The carboxy-terminal domain of NS1 contributes to 

its IFN-antagonistic properties, possibly by enhancing NS1 stability (Wang et al., 2002) 

and by binding cellular proteins involved in mRNA synthesis. There has been increasing 

interest in using NS1 mutant viruses as a “modified live vaccine” since it is attenuated in 

growth in immunocompetent host and could also induce rapid release of several 
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inflammatory cytokines. However, replication of influenza virus lacking the entire NS1 

coding region, is severely inhibited resulting in weak induction of protection. Therefore, 

influenza viruses expressing truncated NS1 proteins could have reduced virulence 

causing attenuation of the virus without compromising immune protection against a 

challenge. 

1.6.1 Structure and Function of NS1 

NS1 protein was first identified more than 35 years ago. However only in the last 

decade, the function of NS1 during influenza A virus infection has begun to be 

understood. NS1 protein is multi-functional with a major function being in post-

transcriptional regulation of cellular gene expression (Hale et al., 2008a). 

 

 

 

 
 
 
Fig.1. Schematic representation of the functional domains of the NS1 protein of type A 
influenza virus. The location of binding domains of known cellular proteins are 
indicated. 
 

 

1.6.1.1 Structure and Function of the N-terminus 

The RNA-binding domain (RBD) of NS1 is located at its N-terminal end. An N-

terminal structural domain, which comprises the first 73 amino acids of the intact protein 
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NS1 (1-73), possesses all of the dsRNA binding activities of the full-length protein 

(Bornholdt & Prasad, 2008) as shown in Fig 1.  

The NS1 RBD is almost totally α-helical and forms a symmetrical homodimer 

with a unique six-helical chain fold. Each polypeptide chain of the RBD consists of three 

α-helices (Bornholdt & Prasad, 2008): α -helix 1: Asn4-Asp24; α -helix 2: Pro31-Leu50 

and α -helix 3: Ile54- Lys70 X-ray crystal structure of NS1 RBD has shown that it forms 

a symmetric homodimer in solution. Interestingly, the RBD of NS1 does not share any 

sequence homology with any known RNA binding protein (Liu et al., 1997). NS1 with a 

unique six-helical chain fold. Each polypeptide chain of the RBD consists of three α-

helices (Bornholdt & Prasad, 2008): α -helix 1: Asn4-Asp24; α -helix 2: Pro31-Leu50 

and α -helix 3: Ile54- Lys70 X-ray crystal structure of NS1 RBD has shown that it forms 

a symmetric homodimer in solution. Interestingly, the RBD of NS1 does not share any 

sequence homology with any known RNA binding protein (Liu et al., 1997). NS1 

possesses a positive electrostatic charge due to a high content in basic amino acid 

residues (Chien et al., 1997), which play an important role in binding sites to both 

double-stranded and single-stranded nucleic acids.  

1.6.1.2 Structure and Function of C Terminus 

The C-terminus of the NS1A protein mainly contains binding domains to three 

cellular proteins: eIF4GI, 30 kDa subunit of CPSF (CPSF30) and PAB II. 

Like the RBD, the effector domain also forms dimers (Bornholdt & Prasad, 2006). Each 

monomer consists of seven β strands and three α-helices. NS1 binds two CPSF subunits 
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per dimmer which result in the efficient shut down of cellular mRNA maturation and 

export.  

The NS1 effector domain inhibits host mRNA maturation by interfering with 

mRNA polyadenylation (Nemeroff et al., 1998), mRNA nuclear export (Fortes et al., 

1994) and pre-mRNA splicing (Fortes et al., 1994; Lu et al., 1994; Qiu et al., 1995). The 

effector domain of NS1 also enhances viral replication by interacting with the eukaryotic 

translation initiation factor 4GI (eIF4GI), resulting in a preferential translation of viral 

mRNAs over host mRNAs (Burgui et al., 2003) and modulates viral RNA transcription 

and replication (Shimizu et al., 1994). NS1 has also been shown to interact with the 

retinoic acid-inducible gene I product (RIG-I) inhibiting downstream activation of IRF-3 

and therefore preventing transcriptional induction of IFN-β (Mibayashi et al., 2007). 

Recently, the residue at position 92 of H5N1 virus was shown to be crucial for virulence 

of the virus (Seo et al., 2002). Most viruses present a Asp at position 92, and its mutation 

to Glu is linked to increased virulence and cytokine resistance in certain H5N1 strains 

(Seo et al., 2002). Asp interacts with Ser195 and Thr197 of NS1 protein, which is 

phosphorylated by the nucleocapsid protein and destabilizes NS1, leading to the 

induction of apoptosis. The mutation Asp92Glu lowers the efficiency of NS1 

phosphorylation, resulting in a virulent phenotype by prolonging the viral life cycle 

(Bornholdt & Prasad, 2006). 

  Recently, residues 80–84 in H5N1 strains have been implicated in cytokine 

resistance but not virulence (Long et al., 2008). These residues are part of a flexible 

linker between the RBD and the effector domain, and thus their deletion may greatly 
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alter the orientation or stability of the RBD, or both. This deletion could compact NS1 

and confer more stability to the RBD, possibly by increasing dsRNA-binding affinity (Li 

et al., 2004). 

Despite the importance of the above-mentioned functions of NS1, it has been 

shown that NS1 is not absolutely required for virus replication.  Influenza viruses 

lacking NS1 or containing truncated forms of the gene are able to replicate well in hosts 

which are defective in IFN production (Vero cells, STAT-/- mice and 7-day-old 

embryonated eggs) (Egorov et al., 1998; Garcia-Sastre et al., 1998; Quinlivan et al., 

2005), while their replication in IFN competent hosts is significantly reduced (MDCK 

cells, normal mice, 10-day-old embryonated chicken eggs and pigs) (Egorov et al., 1998; 

Garcia-Sastre et al., 1998; Quinlivan et al., 2005; Solorzano et al., 2005).  

Although the work cited above provides convincing evidence that NS1 is a major 

IFN antagonist, the mechanisms by which this process takes place continue to emerge. 

Further to this point, most experiments directed to identify the role of NS1 in 

counteracting the host IFN response have been conducted with human attenuated or 

avian viruses infecting humans in vitro, in mammalian animal models (Garcia-Sastre et 

al., 1998; Talon et al., 2000), and only more recently, with swine (Solorzano et al., 

2005) and chicken viruses (Cauthen et al., 2007) in their natural host. In addition, 

because the functional properties of wild type and mutant viral proteins could be very 

different in their natural host, it is important to undertake a molecular and pathogenesis 

integrated approach to study the mechanisms of NS1 induced pathogenesis in chickens. 
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1.7 Prophylaxis for Avian Influenza Virus Infection 

Avian influenza prevention strategies in commercial poultry are designed to 

achieve the following three goals (Swayne & Kapczynski, 2008a): (a) Prevention of 

infection; (b) Management and preventing the spread of an ongoing outbreak, to 

minimize economic losses; and (c) Eradication. 

         Strategies employed to achieve the above objectives include (Swayne & Kapczynski, 

2008a): 

1. Biosecurity measures: Quarantine and movement restrictions at regional, national 

and international levels, to prevent the spread of AI. 

2. Surveillance and diagnostic programs: Aimed at early detection of potential 

pathogenic AIVs and to be informed on circulating AIV strains in nature. 

3. Elimination of infected chickens: Policy of stamping out of infected chickens or 

controlled marketing of recovered or vaccinated chickens. 

4. Decrease host susceptibility and increased resistance to AI: Through vaccinations 

and improvement in host genetics.  

Criteria for vaccine licensing by the Animal and Plant Health Inspection Service 

(APHIS) of the USDA (Myers et al., 2003): 

a. Purity: The vaccine contents should exclusively contain the desired 

compounds and should be consistent in production.  

b. Safety : Vaccine should not cause any harmful effects on the host or 

environment. 



 15 

c. Efficacy: Quantified standards of protection including decreased 

mortality, decreased virus shedding against homologous and heterologous 

challenge.  

d. Potency: Maximum protection in least possible dosages. 

 

1.8 Current and Experimental Poultry AI Vaccines  

The currently licensed vaccines used in the United States are inactivated whole 

AIV vaccines and a recombinant fowlpox virus (rFP-AIV-H5) vaccine, which expresses 

the HA from A/turkey/Ireland/83/H5N8 (Swayne, 2006). A variety of HA subtype 

vaccines have been licensed under autogenous, conditional and full licensure categories 

as inactivated AI vaccines. In the US, field application of any H5 and H7 vaccines 

requires the approval of the state and federal government, but other subtypes require 

only state government approval. The licensing procedures in other countries of AI 

vaccines depends on the specific requirements of national veterinary biologics authority 

of that particular country in areas of safety, purity, potency and label approval for 

species, age and route of administration (Swayne & Kapczynski, 2008b). Globally, the 

majority of licensed vaccines are inactivated whole AI virus vaccines, principally of H5, 

H7, and H9 subtypes. In the current H5N1 HPAI epidemic, LPAIV seed strains from 

previous outbreaks have been used with the exception of A/chicken/Legok-

Indonesia/03/H5N1, which is the only HPAIV used as a killed vaccine seed 

strain(Swayne & Kapczynski, 2008b). In recent years reverse genetic derived infectious 

clone seed strains have been developed using 6 internal genes from PR8 influenza A 
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vaccine strain and HA and NA from various HPAIV strains. In Asia, fowl pox-vectored 

and Newcastle disease virus- vectored vaccines incorporating HA gene, where HA gene 

was altered from HPAIV to an LPAIV.(Ge et al., 2007).  

1.8.1 Inactivated AI Virus Vaccines 

Preparation of Inactivated vaccines for avian influenza for chickens require three 

important steps: 

a. Propagation of avian influenza virus in embryonated chicken eggs 

b. Chemical inactivation of the virus using formalin, beta-propiolactone or binary 

ethyleneimine. 

c. Preparation of oil-emulsion of the inactivated virus 

Preparation and administration cost for killed vaccine on a commercial scale are 

much higher than that for live vaccines. However, killed vaccines are much safer than 

live attenuated vaccines, especially in case of influenza, since AIVs have the potential to 

mutate and recombine raising the risk of the vaccine virus to regain virulence. To reduce 

costs, poultry AI vaccines are not purfied and therefore structural (HA, NA, NP, M1, 

M2) and non-structural (NS1) proteins are present in the vaccine preparation (Suarez, 

2005). Inactivated vaccines induce a strong antibody response but a weaker cell 

mediated immune response (Subbarao et al., 2006). In recent years, in addition to the oil 

phase, different adjuvants have been added to inactivated vaccine formulations to 

increase immunogenicity (Fatunmbi et al., 1992; Stephenson et al., 2005). Such 

adjuvants include innate immune response stimulators such as toll like receptor ligands, 
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microbial components, or cytokines that independently induce a cell mediated immune 

response (Vogel, 2000). 

1.8.2 AI Protein Subunit Vaccines 

Studies have been conducted, where chickens are vaccinated with only one 

particular recombinant protein instead of including the entire virus. In case of AI since 

HA is the major neutralizing antigen, HA proteins from different strains of AI have been 

expressed in different systems such as animal or plant cells, bacteria, viruses and yeast 

(Chambers et al., 1988; Crawford et al., 1999; Davis et al., 1983; De et al., 1988; 

Saelens et al., 1999; Schultz-Cherry et al., 2000). The HA protein is then purified, 

quantified, oil emulsified, and parenterally injected. These vaccines are very safe, 

because no live AI virus is involved, however vaccine production costs may be too high 

to replace the traditional efficacious inactivated AI vaccines. Baculovirus vectors have 

also been used to express the HA of both H5 and H7 subtypes in culture supernatants of 

insect cells, which when used to immunize poultry have provided protection from H5 

and H7 HPAI challenge (Crawford et al., 1999). 

1.8.3 Vectored Vaccines Expressing AI Genes 

Several viral vectors such as infectious laryngotracheitis virus, vaccinia virus, 

human adenovirus 5, Venezuelan equine encephalitis virus, and retrovirus have been 

studied for expression of AIV proteins (Brown et al., 1992; Chambers et al., 1988; De et 

al., 1988; Gao et al., 2006; Hunt et al., 1988; Luschow et al., 2001; Toro et al., 2007; 

Veits et al., 2006). However, the most well known example in poultry is the recombinant 

fowl pox (rFP) vector containing the HA gene from either H5 or H7 subtype AIV (Beard 
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et al., 1992; Boyle et al., 2000; Bublot et al., 2007; Bublot et al., 2006; Jia et al., 2003; 

Qiao et al., 2003; Swayne et al., 2000; Webster et al., 1991). rFP vaccines expressing 

H5 HA have been commercialized and used extensively in Mexico, El Salvador and 

Guatemala with over 2 billion doses used from 1997 to 2006, and a rFP expressing both 

H5 and N1 genes has been used in China (Swayne, 2008; Swayne et al., 1997; Villarreal, 

2006). Though these vaccines need to be administered parenterally, they can be applied 

early on in the hatchery (1 day of age), compared to 1-2 weeks of age in case of a killed 

vaccine, thus saving the labor of handling chickens. 

1.8.4 DNA Vaccines 

Plasmid DNA-based vaccines expressing the AI HA gene, under control of a 

eukaryotic promoter, have been shown to elicit protective immunity in chickens 

following H5 and H7 HPAI challenge (Fynan et al., 1993; Jiang et al., 2007; Kodihalli et 

al., 1997; Le Gall-Recule et al., 2007; Robinson et al., 1993; Suarez & Schultz-Cherry, 

2000b). In poultry, DNA vaccines can be administered by intramuscular, subcutaneous 

and in ovo routes of inoculation. DNA vaccination results in protein expression eliciting 

both cytotoxic and humoral mediated immunity and closely mimics live virus vaccines. 

However, current limitations for DNA vaccines include the high cost for manufacturing 

and the requirement of multiple vaccinations to achieve protective immunity. 

1.8.5 Live Virus AI Vaccines 

Live LPAI virus vaccines can provide protection against HPAI virus challenge 

and may be mass applied to commercial poultry. Since live virus vaccines induce 

humoral, cellular, and mucosal immunity, they provide superior protection compared to 
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inactivated vaccines (Beard & Easterday, 1973). However, the potential for live viruses 

to mutate and reassortant, especially for H5 and H7 subtypes, which have been shown to 

mutate from LPAI to HPAI viruses, precludes their use to control AI by the poultry 

industry. In recent years there has been increased interest in using truncated NS1 mutant 

viruses as a live attenuated vaccine since the NS1 gene impacts virulence and evasion of 

the host immune response, making them ideal candidates for live AI virus vaccines 

(Quinlivan et al., 2005; Solorzano et al., 2005). 

 

1.9 Evaluation of Vaccine Efficacy  

1.9.1 Direct Evaluation 

The assessment of poultry AI vaccines for their ability to protect against LPAIV and 

HPAIV is best accomplished using a challenge model using a current circulating virus 

strain as a challenge virus. The following measures of protection can be used: 

a. Prevention of clinical signs and death (Stone, 1987). 

b.  Prevention of egg production drops (Brugh et al., 1979; Stone, 1987). 

c. Quantitative reduction in challenge virus shed from respiratory and 

gastrointestinal tracts (Swayne et al., 1997). This can be achieved by virus 

isolation in embryonating chicken eggs or tissue culture systems. Alternatively, 

quantitative realtime PCR has been used in recent years (Wang et al., 2008) to 

quantitate virus shedding. 

d. Prevention of contact transmission is a desirable goal. Contact transmission 

studies have been carried out by introducing uninfected chickens as contact-
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control chickens into cages with infected chickens one day after infection (Wang 

et al., 2008). However the assessment is difficult due to multiple variables such 

as bird density, sanitation and ventilation standards, which have to be taken into 

consideration during transmission in field situation.  

e. Additional Attributes: Besides reducing virus shed and preventing clinical signs 

other important attributes include: (1) protection against high dose challenge (2) 

early and long periods of protection spanning 6-12 months (Swayne et al., 1997).  

(3) Minimum number of vaccinations to achieve protection. (4) Protection in 

multiple species of birds 

1.9.2 Indirect Evaluation 

Direct evaluation of vaccine is important for initial demonstration of vaccine 

efficacy. However once the efficacy of the vaccine is established, parameters such as 

serological response can be used to monitor vaccine efficacy of the vaccine in field 

condition (Swayne, 2008). Serological assays such as neutralization or hemagglutination 

inhibition titers are good and reliable tests for monitoring vaccine efficacy (Swayne, 

2008). Decreased immune response could be caused due to vaccine failure or due to 

changes in circulating viruses.  

 

1.10 Drawbacks of Current Avian Influenza Vaccines 

A major disadvantage of vaccination against avian influenza, using traditional 

vaccines is the need to vaccinate against different HA and NA subtypes since the 

heterosubtypic imunne response is not protective (Suarez & Schultz-Cherry, 2000a) and 
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the circulating  virus subtypes keep changing. Therefore, the current influenza research 

focus has been to develop a vaccine that will be protective for all influenza type A 

viruses. There are several highly conserved influenza proteins such as NP, M1 and M2 

which are potential candidates for providing broad cross protection against 

heterosubtypic influenza viruses (Suarez & Schultz-Cherry, 2000a). However, vaccines 

eliciting primarily neutralizing antibody response are effective, the antibodies against NP 

and M1 internal proteins are not useful, since antibody to these proteins are not 

neutralizing and therefore not protective. The M2 protein, an influenza surface protein, 

provides a broad but limited protection in mice, and it has not yet been tested in poultry 

(Frace et al., 1999; Zebedee & Lamb, 1988). Induction of cell-mediated immune 

response has been considered to play an important role in protection against virus 

infections (Suarez & Schultz-Cherry, 2000a). Some research has been conducted to 

stimulate a cell-mediated immune response to the NP, since it is a well-conserved 

influenza A viral protein. The use of DNA vaccines containing the NP gene has shown 

limited protection against a heterotypic challenge in mice and ferrets (Bot et al., 1996; 

Donnelly et al., 1997; Ulmer et al., 1994; Ulmer et al., 1993). Moreover, fowlpox and 

retrovirus vectored vaccines expressing the NP gene were unable to generate a protective 

response in poultry. This is surprising since the use of live virus should have stimulated 

a cellular immune response (Brown et al., 1992; Webster et al., 1991). Another issue 

with cell mediated immunity is that a detectable response is not seen, until 4 days after 

challenge (Kodihalli et al., 1994). This delayed cell mediated immune response, appears 
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unlikely to protect from HPAI that can cause death as early as 1 day after experimental 

challenge (Suarez et al., 1998).  

In summary the current vaccines, inducing antibody response to neutralizing 

epitopes of avian influenza confer an effective protection against homologous but not 

heterologous challenge. On the other hand, induction of cell-mediated immune response 

to conserved structural epitopes is believed to confer protection against different 

subtypes. However with current understanding such vaccines have been able to 

demonstrate only limited protection.against avian influenza challenge.  

 

1.11 Potential of NS1 Mutant Virus as DIVA Vaccine 

Due to trade implications, vaccination of chickens is not routinely practiced 

because of the inability to serologically differentiate infected from vaccinated animals 

(DIVA). Earlier studies have shown that it is possible to differentiate vaccinated from 

infected chickens based on NS1 protein  (Zhao et al., 2005). Using runcated NS1 mutant 

viruses as vaccines the vaccinated chickens can be differentiated from infected chickens 

based on lack of antibodies against complete NS1 protein. The absence of antibodies 

against NS1 could be used to differentiate between vaccinated and infected chickens 

(Lee et al., 2004; Suarez, 2005).  However, commercial poultry vaccine manufacturing 

incorporates some non-structural proteins (Suarez, 2005) as these vaccines are not 

purified, which can in turn interfere in serosurvielence of AIV. In such circumstances an 

NS1 mutant virus could be used as a vaccine seed stock, which would enable 

differentiation between vaccinated and infected chickens. Because the NS1 gene impacts 
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virulence and evasion of the host immune response, this virus exhibited decreased 

replication and attenuation of infectivity, desirable traits for a live AI virus vaccine, thus 

providing an example for attenuated live virus vaccines. 

Recently, an AI virus with natural truncation in NS1 ORF was passaged for 

several rounds in 14-day-old ECE causing further truncations in the NS1 gene. This 

virus was shown to be attenuated in chickens and was shown to induce protection 

against a subsequent virulent challenge (Steel et al., 2009; Wang et al., 2008). On 

similar lines in a different study besides truncations in NS1 ORF point mutation was 

introduced in PB2, changing K at position 627 to E. This change was shown to cause 

further attenuation. These viruses were shown to be attenuated and protective, however 

their safety in terms of reversion to virulence was not tested in chickens. 

 

 

 
 
 

 
 

 
 



 24 

CHAPTER II 
 

 
CHARACTERIZATION AND EVALUATION OF AVIAN INFLUENZA NS1 

MUTANT VIRUS AS A POTENTIAL LIVE AND KILLED DIVA 

(DIFFERENTIATING BETWEEN INFECTED AND VACCINATED ANIMALS) 

VACCINE FOR CHICKENS 

 

2.1 Introduction 

Avian influenza is a major respiratory disease of poultry caused by type A 

influenza viruses.  Type A influenza viruses are members of the Orthomyxoviridae 

family and their genome consists of 8 RNA segments of negative polarity. The 8 

segments code for a total of 11 proteins: 3 polymerase components (PA, PB1 and PB2), 

3 membrane proteins (hemagglutinin or HA, neuraminidase or NA and ion channel 

protein or M2), a matrix protein (M1), a nucleocapsid protein (NP), a nuclear export 

protein (NEP) and two non-structural proteins (NS1 and PB1-F2). 

Type A influenza viruses are also classified into subtypes based on the antigenic 

reactivity of the HA (16 subtypes) and NA (9 subtypes) proteins present on the viral 

envelope (Fouchier et al., 2005; Webster et al., 1992). Wild aquatic birds (water fowl 

and sea gulls) are the natural reservoirs for all subtypes of type A influenza viruses 

(Fouchier et al., 2005; Webster et al., 1992). On occasions, these viruses can infect non-

natural hosts such as land-based poultry (chickens, turkeys and quail) without producing 

any clinical signs of infection.  However, sporadically, these influenza viruses can 

evolve to increased virulence causing extensive economic losses (Alexander, 2000; 
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2007; Garcia et al., 1996; Rohm et al., 1995). Avian influenza viruses (AIV) are also 

classified as highly pathogenic (HP) or low pathogenic (LP) based on their virulence.  

HPAIV produce systemic infections and mortality may be as high as 100%.  On the 

other hand, LPAIV cause a mild, primarily respiratory disease in poultry, which may be 

exacerbated by other infections or environmental conditions. HPAI originates from 

LPAI viruses, which are present in many wild bird species throughout the world. Thus 

all countries are potentially at risk of being infected with HPAI, this phenomenon has 

been well demonstrated in recent years with the global spread of H5N1 (Swayne & 

Kapczynski, 2008a).    

Pathogenesis of AIV is a polygenic trait and HA, PB1, PB2, PA, N and NS1 have 

been implicated in host range and pathogenicity of influenza viruses (Asplin, 

1970Cheung, 2002 #5356; Easterday et al., 1968; Hatta et al., 2001; Hinshaw et al., 

1986; Li et al., 2005; Lipkind et al., 1981; Perkins & Swayne, 2002; 2003; Seo et al., 

2002; Shinya et al., 2004) The non-structural protein, NS1 is considered a virulence 

factor due to its ability to block the cellular interferon pathway (Garcia-Sastre, 2001; 

Wang et al., 2000). The amino-terminal end of NS1 has a double stranded (ds) RNA 

binding domain, which inhibits the synthesis of IFN α/β by preventing the activation of 

double-stranded RNA mediated activation of protein kinase R (Wang et al., 2000). The 

carboxy-terminal end of NS1 contributes to its IFN-antagonistic properties, possibly by 

enhancing NS1 stability (Nemeroff et al., 1995; Wang et al., 2002) and by binding 

cellular proteins involved in mRNA synthesis. There has been increased interest in the 

use of NS1 mutant influenza viruses as “modified live vaccines” because of their 
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attenuated growth in immunocompetent hosts and also their induction of several 

inflammatory cytokines such as IL1β and IL6 (Ferko et al., 2004).  Besides inhibiting 

the innate immune response, NS1 can also affect the adaptive immune response by 

inhibiting dendritic cell maturation and their capacity to induce T cell responses 

(Fernandez-Sesma et al., 2006). However, replication of influenza virus lacking the 

entire NS1 coding region, is inhibited to a great extent resulting in weak induction of 

immune response. Therefore, attenuated truncated NS1 mutant viruses are potential 

candidates for live attenuated vaccines.  

Due to trade implications, vaccination of chickens is not routinely practiced 

because of the inability to serologically differentiate infected from vaccinated animals 

(DIVA) (Suarez, 2005). Different approaches have been sought, for developing AIV 

vaccines with DIVA properties.  It has also been shown that it is possible to differentiate 

vaccinated from infected chickens based on antibodies to NS1 protein using killed 

vaccine (Zhao et al., 2005). NS1 being a non-structural protein, is absent when purified 

virions are used as a killed vaccine. However, poultry vaccine manufacturing on a 

commercial scale includes non-structural proteins (Suarez, 2005) and in such a situation 

an NS1 mutant AIV in which the more immunogenic domain (carboxy end) (Birch-

Machin et al., 1997) has been deleted could be used as a seed virus for making vaccines 

and DIVA strategy could be feasible option. A similar DIVA approach was 

demonstrated for swine influenza viruses, where the vaccinated animals could be 

serologically differentiated based on the presence or absence of antibodies to NS1 while 

still inducing protection against challenge (Richt et al., 2006).  
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A DIVA approach would have a great impact for the poultry industry where AIV 

vaccines are used. In this study we assessed the biological properties and potential use 

and safety of an NS1 mutant virus with DIVA potential as live attenuated as well as 

killed vaccine.  

 

2.2 Materials and Methods 

2.2.1 Cells and Viruses 

DF1, a chicken embryo fibroblast cell line, was cultured in Leibovitz and 

McCoy’s growth medium containing 5% fetal bovine serum (FBS). Chicken embryo 

fibroblasts (CEF), aged chicken embryo cells (A-CEC) and 293-T human embryonic 

kidney cells were maintained in growth medium containing Dulbecco’s modified 

Eagle’s medium (DMEM) and 5% fetal bovine serum (FBS). Recombinant parental 

(H5N3) and NS1 mutant (H5N3/NS1/144) viruses were generated from A/Ck/TX/02 

(H5N3) virus by the eight plasmid reverse genetics technique (8). H5N3/NS1/144 

expresses the first 144 amino acids of the NS1 protein compared to the full length (230 

amino acids) of the parental H5N3 virus. Viral stocks for H5N3 and H5N3/NS1/144 

viruses were generated in 10 and 7 day-old embryonated chicken eggs, respectively. 

Viruses were titrated and the embryo infectious dose 50 (EID50) was determined by the 

Reed and Muench method (Reed & Muench, 1938).  

2.2.2 Cloning of A/Chicken/TX/02 H5N3 Genes for Reverse Genetics 

To clone full-length genes of A/Ck/TX/02 (H5N3), viral RNA was isolated from 

200 µl allantoic fluid with the RNeasy-Kit (Qiagen, Valencia, CA), according to the 
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manufacturer’s instructions.  First strand cDNA of all eight vRNA segments was 

synthesized using Uni12 primer (Hoffmann et al., 2001) and OmniProII RT (Promega, 

Madison, WI) reverse transcriptase as per manufacturer’s instructions.  Individual viral 

segments were PCR amplified using PFU-Ultra polymerase (Stratagene, La Jolla, CA) 

and segment specific primers as previously described (Hoffmann et al., 2001).  PCR 

products were cloned into pCRBlunt (Invitrogen, Carlsbad, CA) and sequenced. A 

plasmid (pDualPol) containing a RNA polymerase I promoter and terminator sequence 

flanked by a RNA polymerase II promoter and polyadenylation signal was generated as 

previously described (Chin et al., 2002). Once transferred to the pDualPol vector, the 

correct orientation of the viral cDNAs was confirmed by sequencing. H5N3/NS1/144 

was generated by inserting an oligonucleotide containing an AscI restriction site and stop 

codons in all three open reading frames (TAGCTAGGCGCGCCTAGCTA) at the PshAI 

restriction site (nt 430) of the NS segment cDNA (Figure 1). This insertion resulted in 

the disruption of the carboxy terminal half (145-230 amino acids) of the NS1 protein 

maintaining intact the coding region of NEP.  

2.2.3 Recovery of Viruses Using Reverse Genetics 

Infectious H5N3 and mutant H5N3/NS1/144 viruses were generated as 

previously described (Hoffmann et al., 2000) with some modifications. Briefly, 293-T 

cells and CEF were co-cultured at 1:1 ratio in a six well plate. After 24 hours, the cell 

culture media was replaced with 2 ml of OptiMEM supplemented with 2% FBS. Cells 

were transfected with 333 ng of each of the 8 plasmids mixed with 9 µl of Trans IT 

(Mirrus, Madison, WI) transfection reagent. Twenty four hours post transfection, the 
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media was changed to OptiMEM supplemented with 0.15% FBS and 1% BSA followed 

24 hours later with OptiMEM supplemented with 0.15% FBS 1% BSA and 0.0005 

µg/ml of TPCK trypsin. Seventy-two hours post transfection, 100 µl supernatant of 

H5N3 and H5N3/NS1/144 transfected cells was used to inoculate 10 and 7-day old 

specific pathogen free (SPF) embryonated chicken eggs, respectively. Viral stocks for 

samples positive for virus, as determined by HA, were further generated in SPF 

embryonated chicken eggs and titers determined as EID50/ml. 

2.2.4 Viral Growth Kinetics  

Comparison of H5N3 and H5N3/NS1/144 viral growth kinetics was carried out 

in interferon competent A-CEC and in embryonated chicken eggs at different age in 

development. A-CECs were generated by aging freshly prepared CEF for 10 days as 

previously described (Sekellick & Marcus, 1986). A-CEC plated in 60 mm dishes were 

infected with either H5N3 or H5N3/NS1/144  at a multiplicity of infection (MOI) of 

0.001 in DMEM media supplemented with 0.0005 µg/ml of TPCK trypsin, and cell 

culture supernatants were collected every 24 hours for five days. Virus titrations were 

carried out in DF1 cells and expressed as plaque forming units (PFU/ml). To study 

growth kinetics in embryonated chicken eggs, 100, 10, and 1 PFUs were inoculated into 

6 and 13 day old embryonated chicken eggs, via the chorioallantoic sac route. Embryos 

were observed daily for mortality, up to 5 days post-inoculation, and allantoic fluid from 

dead embryos was assessed for HA activity. 
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2.2.5 Plaque Assay  

Confluent monolayers of DF-1 cells in 6 wells were infected with 10-fold serial 

dilutions of infected A-CEC supernantants. After adsorbing the virus at 37°C for 1 h, the 

infected cells were overlaid with 1% agarose in VP-SFM supplemented with 0.0005 

µg/ml of TPCK trypsin and were incubated at 37°C for 48 hours. Plates were then fixed 

overnight with 10% buffered formalin, stained with 1% crystal violet, plaques counted 

and virus titer expressed as PFU/ml. 

2.2.6 Quantification of IFN-ß mRNA by Real-Time RT-PCR 

The relative levels of IFN-ß m-RNA produced by chicken cells in response to 

H5N3 and H5N3/NS1/144 virus infection was evaluated. Briefly, A-CEC were infected 

with H5N3 and H5N3/NS1/144  viruses at an MOI of 0.001 and 24 hours post infection, 

cells were trypsinized and total RNA isolated using the Ambion 4PCR RNA extraction 

kit (Ambion, Austin, TX) as per manufacturer’s instructions.  cDNA was synthesized 

from purified mRNA with poly(dT) primer (Ambion, Austin, TX) and Superscript II 

reverse transcriptase (Ambion, Austin, TX) and measured by real-time PCR analysis 

using primers specific for chicken IFN-ß (Forward 5’ 

AGCTCTCACCACCACCTTCTCCT 3’ and Reverse 5’ 

TGGCTGCTTGCTTCTTGTCCTT 3’) in an iCycler (BioRad Laboratories, Hercules, 

CA) for 40 cycles. Expression of chicken ß-actin mRNA was used to normalize cellular 

RNA levels between samples (Primers: Forward 5’ 

TATTGTGATGGACTCTGGTGATG 3’ and Reverse 5’ TCGGCTGTGGTGGTGAAG 

3’) using standard procedures (Quinlivan et al., 2005). 
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2.2.7 Experimental Design for Challenge Study Using Live H5N3/NS1/144 Vaccine 

Two groups of 15 six-week-old Hyline chickens were inoculated by the intra-

tracheal and intranasal routes with 0.2 ml of 106 EID50/ml of H5N3 or H5N3/NS1/144 at 

6-weeks of age. The immunized chickens were then challenged 4-weeks post 

immunization with 0.2 ml of 106 EID50/ml H5N3 virus via the intra-choanal and 

intranasal route. Four days post immunization and post challenge five chickens from 

each group were euthanized and tracheal swabs collected for virus re-isolation and 

estimation of virus load. Virus re-isolation was performed in 8-day-old chicken embryos. 

Virus replication was determined by real-time RT-PCR for influenza matrix gene using 

AgPath-ID™ AIV- M kit (Ambion, Austin, TX) as per manufacturers instructions. 

Trachea and lung samples were collected for histopathological studies. All chickens 

were bled at 1,2 3, and 4 weeks post-immunization and sera was tested for presence of 

antibodies against NP using a commercial ELISA kit (Synbiotics Inc., San Diego, CA), 

HA using hemagglutinin inhibition test  and NS1 using Western blot analysis. 

2.2.8 Assessing Stability and Safety of H5N3/NS1/144 Vaccine as a Live Attenuated 

Vaccine 

The stability and safety of the live H5N3/NS1/144 virus as a live vaccine was 

assessed by five back passages in 6-8 week old chickens. Three different lineages with 

one chicken per back passage were used to determine the reproducibility of the results. 

Briefly, three 6-week old chickens were inoculated intra-tracheally with 106.0 EID50 and 

four days post inoculation tracheal swabs were collected in 2 ml DMEM and chickens 

euthanized and examined for lesions. One hundred µl of tracheal swab sample was used 
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to infect one chicken and this process was repeated five times. Two hundred µl of 

tracheal swabs fluid was used to extract viral RNA using the RNA Mag Max kit 

(Ambion Inc, Austin, TX) as per manufacturer’s instructions. Viral cDNA was prepared 

using Uni-12 primer (reference) and MLV-RT (Ambion, Austin, TX) and full length NS 

viral gene was PCR amplified using PFU-Ultra polymerase (Stratagene, La Jolla CA) 

and segment specific primers as previously described (Hoffmann et al., 2002).  PCR 

products were separated on a 1% agarose gel in TAE, gel purified using PurelLinkTM 

Quick Gel Extraction Kit (Invitrogen, Carlsbad CA), cloned into pCRBluntTM vector 

(Invitrogen, Carlsbad CA) and sequenced. 

2.2.9 Preparation of Killed Vaccine 

Seed stocks of H5N3 and H5N3/NS1/144 viruses were propagated in thirty 10- 

and 7-day-old embryonated chicken eggs, respectively. Allantoic fluid was collected 

from embryos that died between 48-120 hours post inoculation, and tested for HA 

activity and bacterial contamination. Based on HA titers, allantoic fluids from embryos 

infected with a particular virus were pooled together and virus stock was inactivated by 

adding beta-propiolactone (BPL) at a ratio of 1:2000 (vol/vol) and allowing the fluid to 

remain at room temperature for 4 h followed by 24 h at 4°C. Inactivated virus was then 

concentrated by ultracentrifugation through a 30% sucrose cushion at 4°C for 1 h at 

27,000 xg. Viral pellets were then resuspended and sonicated in appropriate volumes of 

STE buffer (10 mM Tris-HCl, pH 8.0, 0.1 M NaCl, 1 mM EDTA). Inactivation of the 

virus stocks was confirmed by the absence of detectable infectious virus upon passage of 

the treated and concentrated allantoic fluid in 7 day-old embryonated chicken eggs. HA 
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titers of the vaccine stocks were standardized to 128 HA units. Inactivated viruses were 

then emulsified in mineral oil as described by Stone et.al, (Stone, 1987; Stone et al., 

1983) prior to vaccination. 

2.2.10 Experimental Design for Challenge Study Using Killed H5N3/NS1/144 Vaccine   

Groups of 10 chickens were vaccinated, at three weeks of age, subcutaneously in 

the nape of the neck with 0.5 ml (128 HA units) of either H5N3 or H5N3/NS1/144 killed 

viruses. Vaccinated chickens were boosted with second dose two weeks later by the 

same method and route. Two weeks later (seven weeks of age), chickens were 

challenged with 0.2 ml of 106 EID50/ml parental H5N3 virus via the 

intrachoanal/intranasal route and observed for clinical signs of disease up to 7 days post 

challenge. Four days post challenge all chickens were euthanized and tracheal swabs 

collected for virus re-isolation in 8-day-old embryonated chicken eggs. In addition, virus 

replication at four days post challenge was determined by real-time RT-PCR for 

influenza matrix gene using AgPath-ID™ AIV- M kit (Ambion, Austin, TX) as per 

manufacturers instructions.  Chickens were bled at 1, 2, 3 and 4 weeks post vaccination 

and sera tested for presence of antibodies against NP using a commercial ELISA kit 

(Synbiotics Inc.) and HA using hemagglutinin inhibition test . 

2.2.11 SDS-PAGE and Western Blot Analysis  

The immune response to NP and NS1 proteins in chickens vaccinated with H5N3 

and H5N3/NS1/144 viruses was examined by Western blot analysis. Briefly, baculovirus 

expressed and purified NP and NS1 proteins (10.5 ng of /lane) (Watson et al., 2008) 

were separated in 12% SDS-PAGE gels and transferred to an Immobilon-P membrane 
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(Millipore, Billerica, MA).  Serum samples were diluted 1:35 in 5% non-fat dry milk in 

PBS and incubated on the membrane at room temperature for 1 h.  Membranes were 

washed 3 times/5 min each with PBST (PBS. 0.05% Tween 20) and then incubated with 

1:1,000 dilution of rabbit anti-chicken HRP labeled secondary antibody (Bethyl 

Laboratories, Montgomery, TX).  Membranes were incubated 1 h at room temperature 

and washed three times before adding TMB membrane substrate (KPL, Gaithersburg, 

MD). 

 

2.3. Results 

2.3.1 Viral Growth in Embryonated Chicken Eggs  

To assess viral growth in interferon incompetent and competent systems, ten, 6- 

and 13-day-old eggs respectively, were inoculated with 1, 10 and 100 PFU of H5N3 or 

H5N3/NS1/144 viruses. Viral growth was measured in terms of embryo mortality and 

was confirmed by HA activity in the allantoic fluid of dead embryos. Interestingly, in 6-

day-old embryonated chicken eggs, H5N3/NS1/144 grew better than parental H5N3 

virus. However, in 13-day-old embryonated chicken eggs, H5N3/NS1/144 virus 

replication was significantly impaired when compared to H5N3 as shown in Fig. 2.  
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Fig. 2. Characterization of viral growth in embryonated chicken eggs (ECE). (a) The 
allantoic cavities of 6-day-old (A)and 13-day-old (B) embryonated eggs were infected 
with 100, 10 and 1 plaque forming units (PFUs) of the recombinant viruses. The infected 
ECE were examined for mortality upto 5 days post inoculation and represented as 
percent dead.  
 

 

 

2.3.2 H5N3/NS1/144 Replication is Impaired in A-CEC 

In order to investigate the multi-step growth properties of H5N3/NS1/144 and 

H5N3 viruses in interferon competent A-CEC, confluent monolayers of A-CEC were 

infected at a low MOI (MOI = 0.001) in media supplemented with trypsin (0.0005 

µg/ml). Supernatants from infected cells were collected at different time points post-

infection (24, 48, 72 and 96 h) and virus titers determined by plaque assay on DF1 cells. 

Like in interferon competent 13-day-old ECE, replication of H5N3/NS1/144 virus in A-

CEC was significantly reduced compared to H5N3 as shown in Fig. 3.  

 

A B 
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Fig. 3. Characterization of viral growth in aged chicken embryo cells (A-CEC). A 
comparison of viral growth was done for the recombinant viruses in A-CEC cells. A-
CEC cells were infected with each of the viruses at an MOI of 0.001. Viral titers in 
infected cell culture supernatants were determined at the indicated times post-inoculation 
by plaque assay on DF1 cells. 
 
 

 

2.3.3 Interferon Induction by H5N3/NS1/144  

The NS1 protein of influenza virus has previously been shown to act as an 

interferon-α/ß antagonist (Cauthen et al., 2007; Egorov et al., 1998; Garcia-Sastre et al., 

1998). To determine whether the induction of antiviral state in A-CEC infected with 

H5N3/NS1/144 and H5N3 correlates with the level of IFN-ß induction, relative levels of 

IFN-ß mRNA in the infected cells was quantitated by real-time RT-PCR at 24 hours post 

infection. As shown in Fig. 4, H5N3/NS1/144 appears to induce significantly higher 
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levels of interferon than parental H5N3 virus. These results reflect the inability of 

H5N3/NS1/144 to induce anti-interferon activity in interferon competent systems. 

 

 
Fig. 4. Quantification of IFN-ß mRNA synthesis by A-CEC infected with H5N3, 
H5N3/NS1/144, at MOI of infection 0.001. Twenty-four hours post infection, cells were 
collected, RNA extracted and IFN-β mRNA expression determined by real-time RT-
PCR. The results represent relative IFN-β mRNA levels normalized with levels of β-
actin mRNA.  
 

 

2.3.4 Efficacy of H5N3/NS1/144 Virus as a Live Attenuated Vaccine 

Attenuation of H5N3/NS1/144 was based on lesions and virus isolation from 

immunized chickens.  On the other hand, efficacy of H5N3/NS1/144 virus as a live 

vaccine was evaluated based on protection against homologous, H5N3 challenge. 

Chickens immunized with H5N3 but not with H5N3/NS1/144 virus showed gross 

lesions 4 days post inoculation. Lesions observed with H5N3 were tracheal plugs and 
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inflammation of the trachea. Histologically, severe lymphocytic and mononuclear 

infiltration was observed in chickens immunized with H5N3 but not with 

H5N3/NS1/144. Virus replication was demonstrated by virus re-isolation from tracheal 

swabs of chickens immunized with both H5N3 and H5N3/NS1/144  viruses  as shown in 

(Table 1). In addition, virus quantification, in terms of Ct values from real-time RT-PCR 

of viral RNA isolated from swab samples, indicated that H5N3/NS1/144 was 

significantly attenuated in its replication.  

 

 
Table 1. Lesions and virus shedding in chickens vaccinated with live virus vaccines and 
challenged with 105 EID50 of H5N3 virus. Tracheal swabs were collected for virus re-
isolation and lung and tracheal sections were collected for histopathology 4 days post 
immunization and 4 days post challenge.  
 
 
Vaccine Group 4 dpi* 4 dpc** 

 Gross 
Lesions 

Virus 
Re-

isolation 

Viral RNA 
Levels*** 

Gross 
Lesions 

Virus 
Re-

isolation 

Viral RNA 
Levels*** 

H5N3/NS1/144 0/5 4/5 35.2 (±5.0) 0/5 3/5 35.6 (±3.2) 

H5N3 5/5 5/5 25.4 (±0.5) 0/5 0/5 > 40 

Challenge 
Control    5/5 5/5 23.7 (±0.9) 

Negative 
Control 0/5 0/5 > 40 0/5 0/5 > 40 

*dpi = days post immunization 
**dpc = days post challenge 
*** RNA levels represented by Ct values. Numbers in parentheses represent standard 
deviation of mean 
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Fig. 5. H&E staining of lung sections of, rH5N3 and rH5N3/NS1/144 immunized (upper 
panel) and immunized and challenged (lower panel) chickens. Lungs of rH5N3 
immunized chickens show severe lymphocytic and mononuclear infiltration with 
heterophilic inflammation 4 days PI. Similar lymphocytic and mononuclear infiltration is 
observed in lungs of rH5N3/NS1-144 immunized chickens 4 days PI but to a much 
lesser degree while the heterophilic infiltration appears to be absent. On the other hand, 
only slight lymphocytic infiltration was observed in chickens immunized with rH5N3 
and H5N3/NS1-144 and challenged with H5N3. 

 

 

Protection conferred by H5N3/NS1/144 and H5N3 viruses at four weeks post 

immunization, was compared and measured based on the amount of virus shedding and 

protection from gross and histo-pathological lesions at 4 days post challenge with H5N3 

virus. No gross lesions were observed in the H5N3 and H5N3/NS1/144 immunized 

chickens when challenged with H5N3 virus; however, minor histo-pathological lesions 

were observed only in the lungs of H5N3/NS1/144 vaccinated chickens as seen in Fig. 5. 
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We were unable to re-isolate any challenge virus from chickens previously immunized 

with H5N3. However, 3 out of 5 chickens that received the H5N3/NS1/144 live vaccine 

were positive for virus re-isolation when tested in embryonated chicken eggs.  These 

results were confirmed by real time RT-PCR of viral RNA isolated from tracheal swabs 

collected at 4 days post inoculation in H5N3 and H5N3/NS1/144 vaccinated chickens. 

Additionally, to assess protection, serum samples were collected every week for 4 weeks 

post vaccination to monitor antibody response. Significantly stronger immune response 

was observed in chickens vaccinated with H5N3 compared to H5N3/NS1/144 at one 

week post-vaccination based on HI and NP antibody titers. However, at 2, 3, and 4 

weeks, post-vaccination the antibody response induced by H5N3/NS1/144 was not 

significantly different from H5N3 as shown in Fig 6. 
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Fig. 6. Antibody levels (NP and HA) in live-vaccinated chickens. Serum samples were 
collected weekly after vaccination. Serological response was estimated based on log10 of 
average value of the HI titers and antibody titers against NP protein. 
 

 

2.3.5 Safety of H5N3/NS1/144 Virus as a Live Attenuated Vaccine 

To ensure the safety of H5N3/NS1/144 as a live attenuated vaccine, the virus was 

back passaged for 5 rounds in three independent lineages of 6-8 week old chickens. 

Interestingly, after two rounds of passage, lesions similar to those induced by H5N3 

virus were noticed in the trachea and lungs of infected chickens. After five rounds of 
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passage, the stability of the NS gene was determined by RT-PCR amplification of 

genome segment 8 RNA extracted from tracheal swabs.  It was interesting to see that 

various truncated forms of genome segment 8, were isolated from each of the 3 chickens 

tested. Upon sequencing it was evident that in lineages 1 and 2, a region containing three 

amino acids before and one amino acid after the stop codon were deleted (amino acid 

142-145), resulting in an NS1 ORF protein with an internal deletion of only four amino 

acids compared to the parental H5N3 NS1 ORF. In lineage 3, a mixed population of 

different size gene segment 8 was detected Fig. 7; in one of the NS genes sequenced 

(L3a) only the stop codon was deleted, resulting in an ORF encoding the entire 230 

amino acids NS1 protein. However, in another sequenced gene (L3b), 57 amino acids, 

from position 80-136, were deleted resulting in a truncated NS1 protein expressing only 

87 amino acids. Since viruses from all three lineages showed increased pathogenicity, 

which correlated with the loss of the stop codon and/or the generation of deletions, we 

conclude that the H5N3/NS1/144 virus is unstable and reverted to virulence in chickens.  
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Fig.7. NS1 ORF after back passage of H5N3/NS1/144 in 6-8 week old chickens. A. 
Agarose gel electrophoresis of RT-PCR products of the NS gene segment of 
H5N3/NS1/144 after 5 rounds of back passage in chickens. PCR products for parental 
H5N3, NS1 mutant H5N3/NS1/144 and passage viruses from three different lineages 
(L1, L2 and L3) are shown. B. Schematic representation of the deletion (light colored 
regions) and point mutations in each of the three passage lineages (L1, L2 and L3) of 
H5N3/NS1/144 in chickens.  
 

A 

B 
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2.3.6 Efficacy of H5N3/NS1/144 as a Killed Vaccine 

Killed vaccines were prepared from H5N3 and H5N3/NS1/144 virus stocks as 

described in Material and Methods and the level of protection was compared based on 

HI antibody titers and re-isolation of challenge virus from vaccinated chickens. Four 

days post challenge tracheal swab samples were taken from all chickens for virus re-

isolation and viral RNA detection. Virus was re-isolated from tracheal swabs from 2/10 

chickens immunized with H5N3/NS1/144 vaccinated while no virus was re-isolated 

from H5N3 vaccinated chickens as shown in table 2.  

 

 

Table 2. Virus re-isolation and viral RNA detection in tracheal swabs of chickens 
vaccinated with killed H5N3 and H5N3/NS1/144 viruses and challenged with H5N3 1 
week post boost.  
 

Vaccine Group 4 dpc* 
 Gross 

Lesions 
Virus 
Re-

isolation 

Viral RNA 
Levels** 

H5N3/NS1/144 0/10 2/10 32.3 (±3.75) 
H5N3 0/10 0/10 33.3 (±3.45) 

Challenge Control 6/10 10/10 22.6 (±3.66) 
Negative Control 0/10 0/10 > 40 

* dpc = days post challenge 
** expressed as Ct values as determined by Real-time RT-PCR using the AgPath-ID™ 
AIV-M Ambion kit 
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However, when viral RNA levels were compared by real time RT-PCR, no 

significant difference between the two vaccinated groups was noticed. Antibody titers, 

determined by HI and NP specific ELISA (Synbiotics Inc, San Diego, CA), were not 

detected at 1 week post vaccination with either vaccine, but were detected at 2 weeks 

post vaccination and steadily increased after booster vaccination with no significant 

differences observed between H5N3/NS1/144 and H5N3 vaccinated groups as shown in 

Fig. 8. 
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Fig 8. Antibody levels (NP and HA) in killed-vaccinated chickens. Chickens were 
vaccinated at 2 weeks of age and 2 weeks post vaccination chicken were boosted. Serum 
samples were collected weekly after vaccination. Serological response was estimated 
based on log10 of average value of the HI titers and antibody titers against NP protein. 
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2.3.7 Differentiation between Vaccinated and Infected Chickens 

Presence of antibodies to NS1 protein in chickens vaccinated with live H5N3 and 

H5N3/NS1/144 was determined by Western blot analysis.  As shown in Fig.9, chickens 

vaccinated with live H5N3 virus produced antibodies against NS1 protein while 

antibodies were absent or detected at very low levels, in chickens vaccinated with live 

H5N3/NS1/144. By comparison, antibody levels to NP were detected to similar levels in 

chickens vaccinated with live H5N3 and H5N3/NS1/144 viruses.  

 

 
 
Fig. 9. Antibody response to rH5N3 and rH5N3/NS1-144 viruses.  Western blot analysis 
of purified rNP, rNS1 and rM1 proteins using sera obtained from chickens inoculated 
with H5N3 (1, 2, 3 and 4) or rH5N3/NS1-144 (5, 6, 7 and 8) at 1, 3 and 4 weeks post 
vaccination.  10.5 ng of purified protein was loaded per lane.  Chicken sera samples 
were diluted at 1:35. 
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2.4 Discussion 

The increasing number of AI outbreaks worldwide highlights the difficulties 

encountered in controlling this disease. As a result, vaccination, which has rarely been 

used in the past, has become a recommended tool to support eradication efforts and to 

limit increasing economic losses due to AI.  However, due to trade implications and the 

common use of serology in AI surveillance programs in commercial poultry, traditional 

vaccine strategies are not feasible and vaccines with DIVA properties have been 

recommended by international health organizations. Vaccines with DIVA properties 

have successfully been used to control AIV outbreaks (Capua et al., 2002; Cattoli et al., 

2003; Lee et al., 2004). To date the DIVA system that has been effectively used is based 

on heterologous vaccination, where the vaccine is made with a virus possessing the same 

hemagglutinin as the field virus and a neuraminidase of a different subtype. Although 

both HA and NA contain neutralizing epitopes, antibodies against HA are more 

important in protection (Suarez, 2005). As a result, vaccinating with a homologous HA 

subtype but a NA different to that of a circulating AI strain provides protection and at 

the same time makes it possible to differentiate between vaccinated and infected 

chickens.  This strategy has been proven to be very effective in AIV outbreaks in 

chickens (Capua et al., 2002), however it limits the number of potential effective vaccine 

candidates that can be selected since inclusion of the NA of the circulating viruses have 

shown to be more protective compared to a heterologous NA vaccine. A DIVA system 

based on the NS1 protein has been proposed for AI (Tumpey et al., 2005). Targeting the 

NS1 protein enables the generation of attenuated vaccine viruses since NS1 is a 
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virulence factor due to its anti-interferon activity. This makes NS1 mutant viruses ideal 

candidates for a live attenuated vaccines with DIVA properties. In this study we 

evaluated the pathogenesis, protection and safety of such a LPAIV live vaccine 

candidate, which expresses a truncated NS1 protein (144 amino acids). 

To generate the NS1 mutant virus, we established a reverse genetics system for 

the LPAIV A/Ck/Texas/2002 H5N3 virus. The NS mutant gene segment was generated 

by insertion of an oligonucleotide, with stop codons in all 3 open reading frames, at 

amino acid position 144 of the NS1 gene. The recovered NS1 mutant virus, 

H5N3/NS1/144, was attenuated compared to parental H5N3 virus in terms of growth and 

pathogenicity in interferon competent system in vitro, in ovo and in vivo. It was expected 

that that older age embryos would provide more of a challenge for H5N3/NS1/144 

replication because the IFN-α/β system in older eggs is more mature (Sekellick et al., 

1990; Sekellick & Marcus, 1985). Consistent with previous studies, it was found that 

H5N3/NS1/144 virus was severely attenuated in comparison to the parental virus in 13-

day-old embryonated chicken eggs (Fig. 1). In contrast, embryo mortality caused by 

H5N3/NS1/144 was, higher in 6-day-old embryonated chicken eggs compared to 

parental H5N3 virus (Fig. 1). Attenuation was also observed, in terms of significantly 

lower titers, for H5N3/NS1/144 in A-CEC when compared to parental H5N3. The lower 

virus titers in A-CEC correlated with increased type I interferon induction as shown by 

significantly increased mRNA expression of IFN-β (Fig. 3). These results are in accord 

with the observations of studies carried out in mice, swine, equine and chickens in which 

the IFN-β inducing capacity of influenza viruses expressing truncated NS1 was elevated 
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and corresponded with decrease ability of the virus to replicate in interferon competent 

systems (Cauthen et al., 2007; Egorov et al., 1998; Quinlivan et al., 2005; Solorzano et 

al., 2005). H5N3/NS1/144, was also attenuated in chickens based on decreased virus re-

isolation and pathogenicity while still induced an antibody response to NP similar to 

parental H5N3 virus. HI titers were only slightly lower for H5N3/NS1/144 at 1, 3 and 4 

weeks post-vaccination when compared to parental H5N3 virus (Fig. 4). However, both 

groups of chickens were protected against lesions caused by homologous parental H5N3 

challenge. In addition, there was a significant reduction of challenge virus in the tracheal 

swabs of H5N3 and H5N3/NS1/144 vaccinated and challenge groups compared to the 

non-vaccinated challenge control group. This demonstrates, the ability of 

H5N3/NS1/144 to induce a good immune response, conferring protection against a 

homologous challenge. However, significantly lower levels of challenge virus were 

detected in chickens pre-immunized with H5N3 virus compared to H5N3/NS1/144. This 

difference in protection could be due to attenuation of H5N3/NS1/144, which results in 

reduced replication in target organs inducing a weaker overall (cell and antibody 

mediated) immune response compared to parental H5N3 virus.  

Immune sera of chickens inoculated with H5N3/NS1/144 displayed a high level 

antibody response against NP and HA proteins but below detectable levels of antibodies 

to NS1 (Fig. 8) making it possible to differentiate H5N3/NS1/144 vaccinated from 

H5N3 infected chickens.  

We also evaluated the safety and stability of H5N3/NS1/144 virus as a live 

vaccine by carrying out 5 back passages in 6-8 week old chickens, in triplicate. After 5 
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back passages in chickens, H5N3/NS1/144 underwent immune selection and the virus 

reverted to virulence causing lung lesions similar to those produced by parental H5N3 

virus. The NS gene segment of H5N3/NS1/144 was not stable and the engineered stop 

codon was deleted in all three, lineages, resulting in an almost full-length NS1 proteins. 

These results emphasize the importance of NS1 protein in pathogenesis of influenza 

viruses in interferon competent systems. Interestingly, passage lineage 3 also contained a 

truncated population of NS1 expressing only 87 amino acids.  It will be interesting to 

study the replication properties and pathogenesis of a recombinant H5N3 virus 

expressing only 87 amino acids of NS1.  Previous reports on the role of truncated NS1 

mutants in equine and swine influenza viruses (Quinlivan et al., 2005; Solorzano et al., 

2005) indicate that shorter forms of NS1 result in more stable proteins, ensuing in a 

more functional NS1 protein. In these studies, influenza viruses expressing shorter NS1 

proteins were attenuated compared to parental virus; however, these viruses were more 

virulent when compared to other NS1 mutant viruses expressing longer proteins. 

Interestingly, when a naturally truncated NS1 mutant LPAIV was serially passaged in 

older age embryonated chicken eggs, further truncations in the NS1 gene segment 

resulted in further attenuation (Wang et al., 2008). The differences observed in 

pathogenicity for viruses from the above mention study and the current study could be 

strain specific. The presence of an AIV population with a truncated NS1 ORF expressing 

87 amino acids, after serially passage in chickens suggests that AIVs with shorter NS1 

could have a selective advantage to help regain its virulence. However, the reversion of 

H5N3/NS1/144 to virulence in chickens cannot be fully attributed to the presence of an 
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87 amino acid protein since a population of viruses expressing a near full length NS1 

protein (with 4 amino acid deletion at position142-145) was also present. Further studies 

are needed to address the significance of different size NS1 mutant viruses in virulence 

in chickens. 

Though H5N3/NS1/144, used in this study was not stable and reverted to 

virulence during back passage in chickens, in a separate study (unpublished results) 

H5N3/NS1/144 infected chickens did not transmit the virus to uninfected cage-mates 

when compared to parental H5N3 infected chickens. The lack of natural transmission of 

H5N3/NS1/144 could restrict its circulation in chickens, precluding the possibility of 

reversion to virulence. It is possible that by deleting the carboxy-end of NS1 instead of 

inserting a stop codon we could avoid the reversion of virus to virulence. However, this 

is unlikely, since shorter NS1 proteins seem to be more stable and more functional, as 

demonstrated in other studies (Quinlivan et al., 2005; Solorzano et al., 2005). 

Consequently, more comprehensive studies are needed to characterize mutant viruses 

with shorter NS1 proteins. Alternatively, to ensure no reversion to virulence, a killed 

vaccine made out of mutant viruses with shorter NS1 protein as seed virus, as shown in 

this study, would be a much safer and feasible option.  

The efficacy of parental H5N3 and H5N3/NS1/144 inactivated vaccines was 

tested against a homologous, H5N3 virus challenge. Virus shed was significantly 

reduced in chickens vaccinated with either killed vaccines and no significant difference 

in terms of antibody titers was observed between the two vaccinated groups (Table 2).  
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In summary, AIV vaccines with a truncated NS1 protein could be used to 

differentiate between vaccinated and infected chickens making DIVA strategy a feasible 

option. The NS1 mutant AIV generated in this study was highly effective as killed 

vaccine. However, its use as live virus raises safety concern, because back passage in 

chickens, resulted in reversion back to virulent phenotype. The future development of 

live NS1 mutants can only be feasible by identifying mutants that are unable to revert 

back and by developing mutant viruses unable to regain the wild type gene segment 

through re-assortment.  
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CHAPTER III 

 
CHARACTERIZATION OF NS1 MUTANT AVIAN INFLUENZA VIRUSES TO 

GROW IN INTERFERON COMPETENT SYSTEMS 

 

3.1 Introduction 

Influenza A viruses are members of the Orthomyxoviridae family and their 

genome consists of eight single-stranded, negative sense RNA segments which encode 

11 different proteins (PB2, PB1, PB1-F2, PA, HA, NP, NA, M1, M2, NS1, and NS2) 

(Chen et al., 2001). Influenza A viruses are classified into subtypes based on their 

envelope proteins, hemagglutinin (HA) and neuraminidase (NA). Currently, 16 HA and 

9 NA subtypes have been identified. Wild birds serve as reservoirs to all subtypes of 

influenza A viruses and transmission of these viruses to domestic poultry and their 

adaptation to the new host is well established (Swayne, 2007). Some of the avian 

influenza virus (AIV) subtypes, such as H5 and H7, which spread into domestic 

chickens, have shown to turn into highly pathogenic viruses (Swayne, 2007). Better 

understanding of AIV virulence factors is likely to help, generate safe and efficacious 

vaccines and design better intervention strategies. Besides HA, NA and proteins of the 

polymerase complex, the non-structural protein NS1 is also an important virulence factor 

(Ito et al., 2001; Stephenson et al., 2004). NS1 inhibits and resist innate antiviral 

immune response through several different mechanisms and at different stages of 

induction. These mechanisms have been elucidated using both artificial and natural 
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truncations as well as point mutations in the NS1 gene segment as reviewed by Hale 

et.al. (Hale et al., 2008b).  

NS1 protein consist of two domains an RNA binding domain and an effector 

domain. The RNA binding domain of the NS1 protein has been shown to play a crucial 

role in inhibiting host interferon response through its ability to bind to the replicative 

forms of viral RNA. Arginine at position 38 and lysine at position 41 within the RNA 

binding domain are thought to directly interact with RNA, mediating binding. The main 

function of the carboxy-terminal 157 amino acids of the NS1 protein, which contain the 

effector domain (amino acids 134 to 161) (Nemeroff et al., 1995), is to stabilize and/or 

facilitate NS1 dimerization (Wang et al., 2002) and has binding sites for several cellular 

proteins such as cleavage and polyadenylation specificity factor (CPSF), and poly (A)-

binding protein II (PABII). The carboxy-terminal region of NS1 also contains a PDZ-

binding motif (Chen et al., 1999; Nemeroff et al., 1998; Obenauer et al., 2006), which 

directly or indirectly affects interferon induction. The presence of amino acid Glutamine 

(Q) at position 92 of NS1 in the H5N1/97 influenza viruses has been implicated in its 

ability to modulate the cytokine response and has been associated with the high 

virulence of these viruses in pigs. Recently, it was shown that the amino acid at position 

149 of NS1 in highly pathogenic avian influenza (HPAI)-H5N1 affected the ability of 

the virus to antagonize the induction of IFN α/β (Li et al., 2006). The valine to alanine 

mutation at position 149 caused increased expression of NS1 protein, which is believed 

to increase its ability to inhibit interferon, thereby making the virus more virulent in 
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chickens. This increase in virulence was demonstrated in terms of increased lethality in 

embryonated chicken eggs (ECE) and chickens. 

Phylogenetically, NS1 proteins of influenza viruses are divided into alleles A and 

B (Ludwig et al., 1991). Allele B includes exclusively NS1 proteins from avian viruses 

while allele A includes influenza viruses isolated from mammalian species.  As little as 

62% identity has been observed between alleles A and B (Hale et al., 2008b). Most of 

the functional studies of NS1 have been limited to laboratory strains and highly 

pathogenic H5N1 strain of AIV, both of which belong to allele A. Recent studies have 

also shown that NS1 of allele B presents anti-interferon activity in chickens (Cauthen et 

al., 2007). However, studies addressing the role of NS1 in the host-pathogen interaction 

between AIVs with allele B NS1 viruses and chickens are lacking.  

We have recently shown, that a recombinant H5N3 LPAIV expressing first 144 

amino acids of NS1 (H5N3/NS1/144) is attenuated with regards to growth and virulence 

when compared to parental virus (Brahmakshatriya VR, 2009). However, when 

H5N3/NS1/144 was propagated under innate immune pressure in older age ECE, further 

truncation of the NS1 gene segment occurred resulting in the expression of a NS1 

protein with only 87 amino acids. Upon sequencing, we detected two additional point 

mutations in the RNA binding domain (position, 40 and 73) of two of the lineage 

passages. Since the RNA binding domain is critical in the anti-interferon activity of NS1, 

we sought to determine the significance of the truncation and point mutations on the 

virulence of the virus. Using reverse genetics, two NS1 mutant viruses (H5N3/NS1/87 

and H5N3/NS1/87P) were generated and their biological characteristics determined in 
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ovo, in vitro and in vivo systems. Our studies show that the H5N3/NS1/87 and 

H5N3/NS1/87P viruses, showed increased virulence compared to H5N3/NS1/144 and 

this gain in virulence correlated with increased ability of the virus to inhibit interferon. 

 

3.2 Materials and Methods 

3.2.1 Cells and Viruses 

DF1, a chicken embryo fibroblast cell line, was cultured in Leibovitz and 

McCoy’s growth medium containing 5% fetal bovine serum (FBS). Chicken embryo 

fibroblasts (CEF), aged chicken embryo cells (A-CEC) and 293-T human embryonic 

kidney cells were propagated in growth medium containing Dulbecco’s modified 

Eagle’s medium (DMEM) and 5% FBS. Mardin-Darby Canine Kidney (MDCK) cells 

were propagated and maintained in Virus Production-Serum Free Media (VP-SFM) 

(Gibco, New York, USA). Recombinant parental (H5N3) and NS1 mutant viruses 

(H5N3/NS1/144, H5N3/NS1/87and H5N3/NS1/87P) (see description of viruses Sections 

3.2.2 and 3.2.3) were generated by the eight plasmid reverse genetics technique 

(Hoffmann et al., 2000).  

3.2.2 Cloning of A/Chicken/TX/02 H5N3 Genes for Reverse Genetics 

To clone full-length genes of A/Ck/TX/02/H5N3, viral RNA was isolated from 

200 µl allantoic fluid using the RNeasy-Kit (Qiagen, Valencia, CA), according to the 

manufacturer’s instructions. First strand cDNA of all eight vRNA segments was 

synthesized using Uni12 primer (Hoffmann et al., 2001) and OmniProII RT (Promega, 

Madison, WI) reverse transcriptase as per manufacturer’s instructions. Individual viral 
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segments were PCR amplified using PFU-Ultra polymerase (Stratagene, La Jolla, CA) 

and segment specific primers as previously described (Hoffmann et al., 2001).  PCR 

products were cloned into pCRBlunt (Invitrogen, Carlsbad, CA) and sequenced. A 

plasmid (pDualPol) containing a RNA polymerase I promoter and terminator sequence 

flanked by a RNA polymerase II promoter and polyadenylation signal was generated as 

previously described (Hoffmann et al., 2000; Reddy, 2006). Once transferred to the 

pDualPol vector, the correct orientation of the viral cDNAs was confirmed by PCR. 

H5N3/NS1/144, an NS1 mutant virus, which expresses the first 144 amino acids of the 

NS1 protein (Figure 1), maintaining intact coding region of NEP, has already been 

described in earlier chapter.  

3.2.3 Serial Passage of H5N3/NS1/144 in Older-Age-ECE 

Allantoic fluid of H5N3/NS1/144 virus was serially passaged in increasing age 

embryonated chicken eggs (ECE) as shown in Fig.10. Virus propagation in the chorio-

allantoic cavity of ECE was done as previously described  (Swayne, 1998). Three 

independent lineages (L1, L2 and L3) were carried for 15 passages and allantoic fluid 

was collected 72-96 hours post-inoculation for every passage.  
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Fig.10. Schematic for serial passage of H5N3/NS1/144 in older age ECE. 

 

 

The allantoic fluid collected was tested for HA activity and positive samples 

were diluted 10-3 or 10-4, before the next round of propagation in ECE. After the first 

passage, the diluted virus was passaged into 3-4 ECE however, allantoic fluid from only 

one embryo was passaged, and allantoic fluid from the other infected embryos of the 

same lineage were kept as a backup. At no point during the serial passage were the 

viruses from two different eggs or lineages pooled. After 15 rounds of serial passages in 

older age ECE, each lineage was subjected to three rounds of plaque purification and 

plaque-purified viruses were propagated in 13-day-old ECE. 

3.2.4 Viral RNA Extraction and NS1 Gene Specific Cloning and Sequencing 

Viral RNA was isolated from plaque-purified viruses propagated in 13-d-old- 

ECE using the RNA Mag Max kit (Ambion Inc, Austin, TX) as per manufacturer’s 

instructions. Viral cDNA was prepared using Uni-12 primer (Hoffmann et al., 2001) and 

MLV-RT (Ambion, Austin, TX) and full length NS viral gene was PCR amplified using 
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PFU-Ultra polymerase (Stratagene, La Jolla CA) and segment specific primers as 

previously described (Hoffmann et al., 2001).  PCR products were separated on a 1.5% 

agarose gel in TAE, gel purified using PurelLinkTM Quick Gel Extraction Kit 

(Invitrogen, Carlsbad CA), cloned into pCRBluntTM vector (Invitrogen, Carlsbad CA) 

and sequenced. 

3.2.5 Recovery of Viruses Using Reverse Genetics 

Infectious parental (H5N3) and NS1 mutant viruses (H5N3/NS1/144, 

H5N3/NS1/87 and H5N3/NS1/87P) were generated as described by Hoffman et.al. 

(Hoffmann et al., 2000). Briefly, 293-T cells and chicken embryo fibroblasts were co-

cultured (1:1 ratio) in a six well plate. After 24 hours, the cell culture media was 

replaced with 2 ml of OptiMEM supplemented with 2% FBS. Cells were transfected 

with 333 ng of each plasmid mixed with 9 µl of Trans IT (Mirrus, Madison, WI) 

transfection reagent. Twenty-four hours post transfection, the cell culture media was 

changed to OptiMEM supplemented with 0.15% FBS and 1% BSA followed 24 hours 

later with OptiMEM supplemented with 0.15% FBS 1% BSA and 0.0005 µg/ml of 

TPCK trypsin. Seventy-two hours post transfection, 100 µl supernatant of H5N3, 

H5N3/NS1/87 and H5N3/NS1/87P transfected cells were inoculated into 10- day-old 

specific pathogen free (SPF) ECE while H5N3/NS1/144 was propagated in 7-day-old 

ECE. Viral stocks for recombinant viruses, were further generated in 10 or 7-day-old 

SPF ECE and virus titers were determined by plaque assay in DF1 cells and expressed as 

plaque forming units per ml (PFU/ml). 
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3.2.6 Viral Growth Kinetics  

Comparison of the growth kinetics of H5N3, H5N3/NS1/87 and H5N3/NS1/87P 

viruses was carried out in DF1 and A-CEC. A-CECs were generated by aging primary 

chicken cells, obtained from 10-day old embryos, for 10 days as described earlier 

(Sekellick & Marcus, 1985). A-CEC plated, in 60 mm dishes were infected with either 

H5N3, H5N3/NS1/144, H5N3/NS1/87 or H5N3/NS1/87P at a multiplicity of infection 

(MOI) of 0.001 in DMEM media supplemented with 0.0005 µg/ml of TPCK trypsin. 

Cell culture supernatants were collected every 24 hours for five days in case of A-CEC 

and for 3 days in case of DF1 cells. Virus titers in the collected supernatants was 

determined by plaque assay in DF1 cells and determined as PFU/ml. 

3.2.7 Plaque Assay  

Confluent monolayers of DF-1 or MDCK cells in 6 well plates were infected 

with 10-fold serial dilution of infected A-CEC supernatants or viral stocks generated in 

ECE. After adsorbing the virus at 37°C for 1 h, the inoculum was removed and the 

infected cells were overlaid with 1% agarose in VP-SFM supplemented with 0.0005 

µg/ml of TPCK trypsin and incubated at 37°C for 48 hours. Plates fixed over night with 

10% buffered formalin, stained with 1% crystal violet, plaques counted and virus titer 

determined as PFU/ml. 

3.2.8 Mean Death Time (MDT) and Embryo Death Percent (EDP) in Different Ages of 

ECE  

The pathogenicity of H5N3, H5N3/NS1/87 and H5N3/NS1/87P viruses was 

examined by determining mean death time (MDT) and embryo death percent (EDP) in 7, 
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10 and 13-day-old ECE. To determine MDT and EDP, groups of twenty, 7- and 10-days-

old ECE and twenty-five 13-day-old ECE, were inoculated via the chorioallantoic sac 

route with 102 PFUs of each virus or sham inoculated with phosphate-buffered saline 

(PBS). Embryos were then candled at 8-hour intervals for 6 days, embryo mortality 

recorded and presence of virus in dead embryos was confirmed by HA. Based on the 

number of ECE dead and time of death post inoculation, MDT was calculated as 

follows: the total sum of the product of, number of dead embryos at each time point and 

the time point in hours divided by the total number of dead embryos in that group 

(Perdue et al., 1990). 

3.2.9 Quantification of IFN-ß mRNA by Real-Time RT-PCR 

The relative levels of IFN-ß m-RNA produced by chicken cells in response to 

replication of H5N3, H5N3/NS1/144, H5N3/NS1/87 and H5N3/NS1/87P viruses were 

evaluated. Briefly, A-CECs were infected with H5N3, H5N3/NS1/144, H5N3/NS1/87 or 

H5N3/NS1/87P at an MOI of 0.01, 0.001 and 0.0001. Six hours post infection, cells 

were trypsinized and total RNA was isolated using the Ambion 4PCR RNA extraction 

kit (Ambion, Austin, TX) as per manufacturer’s instructions.  cDNA was synthesized 

from mRNA with poly(dT) primer (Ambion, Austin, TX) and Superscript II reverse 

transcriptase (Ambion, Austin, TX) and levels of IFN-ß mRNA expression determined 

by real-time PCR analysis using primers specific for chicken IFN-ß (Forward 5’ 

AGCTCTCACCAC CACCTTCTCCT 3’ and Reverse 5’ TGGCTGCTTGCTTCTTG 

TCCTT 3’) in an iCycler (BioRad Laboratories, Hercules, CA) for 40 cycles. Expression 

of chicken ß-actin mRNA was used to normalize cellular RNA levels between samples 
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(Primers: Forward 5’ TATTGTGATGGACTCTGGTGATG 3’ and Reverse 5’ 

TCGGCTGTGGTGGTGAAG 3’), using a standard procedure (Jaini et al., 2006). 

Relative quantitation of mRNA expression was calculated as fold increase in inoculated 

versus mock-inoculated control A-CEC. 

3.2.10 In Vivo Characterization of NS1 Mutant Viruses 

The virulence of the NS1 mutant viruses was further examined by comparing 

virus growth of H5N3, H5N3/NS1/144, H5N3/NS1/87 and H5N3/NS1/87P viruses in 1-

day-old chickens. Five groups of twenty, 1-day-old commercial layer-type Hyline 

chickens were inoculated by the intranasal/intrachoanal route with 0.1 ml containing 104 

PFU of parental or NS1 mutant viruses. Five contact control chickens were introduced 

into the same cage one day post-infection. The chickens were observed daily for clinical 

signs of disease and four days post-inoculation all inoculated chickens were euthanized 

and observed for gross lesions. Lung samples were collected in tubes containing 1 ml 

tryptose phosphate broth to determine viral titers in terms of PFU/ml in DF1 cells and 

EID50/ml in ECE. To assess the ability of the viruses to transmit, contact chickens were 

bled two weeks after exposure to virus-inoculated chickens and were checked for sero-

conversion using a commercially available NP ELISA kit for avian influenza 

(Synbiotics, San Diego, CA).  
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3.3 Results 

3.3.1 Immune Pressure Result in Genotypic Differences in NS1 

After serial passage of H5N3/NS1/144 in older age ECE, the virus was adapted 

to grow in 13-day-old ECE. This serial passage caused selection of NS gene segments 

with a truncation between amino acid position 79 and 137 resulting in and ORF of only 

87 amino acids in all three lineages (L1, L2 and L3). This deletion also caused a point 

mutation, changing leucine at position 137 of the parental H5N3/NS1/144 to valine at 

amino acid position 80 in the new, 87 amino acid long ORF. This virus is referred as 

H5N3/NS1/87, throughout this study. (Fig. 2). Interestingly, viruses in L2 and L3 had 

two additional point mutations in the RNA binding domain at position 40 where 

glutamine was replaced by arginine (Q40R) and at position 73 where a threonine was 

replaced by a methionine (T70M) (Fig. 11), and is referred throughout this study as 

H5N3/NS1/87P. 
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Fig.11. A. Truncated forms of NS1 ORF after serial passage of H5N3/NS1/144 in older 
age ECE. A. Agarose gel electrophoresis of RT-PCR products of the NS gene segment 
of H5N3/NS1/144 after 15 serial passages in older age ECE. PCR products for parental 
H5N3, NS1 mutant H5N3/NS1/144 and passage viruses from three different lineages 
(L1, L2 and L3) are shown. B. Schematic representation of the deletion and point 
mutations in each of the three passage lineages (L1, L2 and L3) of H5N3/NS1/144 in 
older age ECE. The NS gene of lineages 1 and 2 were incorporated into the wild-type 
H5N3 background using reverse genetics generating viruses H5N3/NS1/87and 
H5N3/NS1/87P, respectively.  



 65 

 
To study the significance of the deletion and point mutations in virus replication 

and pathogenesis, these mutations were incorporated by reverse genetics into a parental 

virus background and phenotypic differences in vitro, in ovo and in vivo were examined. 

3.3.2 Viral Growth in ECE 

The growth properties of parental and NS1 mutant viruses was next assessed in 

7, 10 and 13-day-old ECE. Viability of embryos inoculated with H5N3, H5N3/NS1/144, 

H5N3/NS1/87 and H5N3/NS1/87P viruses was monitored every 8 hours to study the 

mortality pattern. Mortality pattern was based on percent dead embryos and MDT for 

each virus. As expected, all viruses tested caused 100% mortality and showed a very 

similar MDT (38-48 h) in 7- and 10-day-old ECE (Fig.12). On the other hand, when 

embryos were inoculated at 13-days of age, MDT ranged from 79-144 h, with the lowest 

MDT for H5N3 virus followed by H5N3/NS1/87P, H5N3/NS1/87and H5N3/NS1/144. It 

should be noted that not all the 13-day-old ECE died, and the MDT was calculated based 

on the number of dead embryos. Similar trend in mortality pattern was observed in three 

independent experiments. 
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Fig.12. Comparisons of mean death time (MDT) and embryo death percent (EDP) in 7, 
10 and 13-day old ECE. The bars indicate MDT and the lines indicate EDP. MDT was 
determined as described in materials and methods using 100 PFU/embryo. 
 
 
3.3.3 Growth Characteristics in Cell Culture 

Plaque phenotype has been shown to be an indicator of fitness and a correlate of 

virulence. Clear differences were noted in plaque size in all three lineages of 

H5N3/NS1/144 in older age ECE as shown in Fig. 13. While L1 formed smaller and 

indistinct plaques on MDCK, L2 and L3 formed plaques bigger than parental H5N3 and 

H5N3/NS1/144 viruses. In addition, H5N3/NS1/87 and H5N3/NS1/87P derived by 

reverse genetics presented plaque morphologies similar to passage lineage virus L1 and 
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L2 from which their respective NS gene segment was derived. This demonstrates that 

the plaque morphology on MDCK cells was determined by the truncation and point 

mutations in the NS1 gene segment.  

 

 

 
Fig.13. Plaque phenotypes of passage and reverse genetic generated viruses on MDCK 
cell monolayers 72 hours post infection. 
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Next, the growth properties of H5N3, H5N3/NS1/144, H5N3/NS1/87 and 

H5N3/NS1/87P viruses were assessed in A-CEC, as aging of chicken embryo cells has 

been shown to make chicken cells more interferon competent compared to non-aged 

cells (Sekellick & Marcus, 1985).  

To determine multi-step growth properties of the parental and NS1 mutant 

viruses, cells were inoculated at a low multiplicity of infection (0.001 PFU/cell) and 

supernatants from infected cells were collected at different time-points and titrated by 

plaque assay on DF1 cells. The growth kinetics of the NS1 mutant viruses in A-CEC 

was clearly different from parental H5N3 virus. As expected, H5N3/NS1/144 was the 

most compromised in growth, followed by H5N3/NS1/87 and H5N3/NS1/87P. At earlier 

time points (24-72 h), H5N3 grew to significantly higher titer compared to the NS1 

mutants. Titers for H5N3/NS1/144 reached a peak at 24h post-inoculation and then fell 

precipitously. Interestingly, an increase in viral titers was noticed for H5N3/NS1/87 and 

H5N3/NS1/87P at 96 hours post-inoculation and no significant differences were 

observed between H5N3, H5N3/NS1/87 and H5N3/NS1/87P at 120 h post inoculation 

(Fig.14. A). In contrast, all four viruses showed similar growth kinetics in infected DF1 

cells (Fig. 14. B). 
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Fig.14. Growth kinetics of recovered parental and NS1 mutant viruses in (A) DF1 and 
(B) A-CEC. Cells were infected at an MOI of 0.001 with the indicated viruses. Viral 
titers in infected cell culture supernatants were determined at the indicated times post-
inoculation by plaque assay on DF1 cells.  
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3.3.4 Interferon Induction by NS1 Mutant Viruses 

To examine whether the differences in the replication and virulence of parental 

H5N3 and NS1 mutant viruses were directly correlated with their respective abilities to 

inhibit the IFN-α/ß system, the production of IFN-ß in cells infected with these viruses 

was assessed. The relative levels of IFN-ß mRNA in A-CEC infected with 0.0001, 0.001 

and 0.01 MOI was quantified by real-time RT-PCR at 6 hours post infection. As shown 

in Fig. 15, H5N3/NS1/144 induced markedly higher levels of interferon mRNA than 

parental H5N3, H5N3/NS1/87P and H5N3/NS1/87 viruses. Within the NS1 mutant 

viruses expressing 87 amino acids the differences in levels of interferon induction were 

small, but were significantly higher for H5N3/NS1/87 compared to H5N3/NS1/87 at the 

two highest MOIs tested in this study. These results reflect the ability of H5N3/NS1/87P 

and H5N3/NS1/87 viruses to regain considerable virulence over the H5N3/NS1/144 

through their increased ability to inhibit interferon induction.  
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Fig. 15. Quantification of IFN-ß mRNA synthesis by A-CEC infected with H5N3, 
H5N3/NS1/144, H5N3/NS1/87P and H5N3/NS1/87 at increasing MOI of infection (A: 
0.0001 MOI, B: 0.001 MOI, C: 0.01 MOI). Six-hours post infection, cells were 
collected, RNA extracted and IFN-β mRNA expression determined by real-time RT-
PCR. The results represent relative IFN-β mRNA levels normalized with levels of β-
actin mRNA. Levels of IFN-β induction increase with increasing MOI.  
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3.3.5 Replication and Virulence of NS1 Mutant Viruses in Chickens  

Groups of twenty-two 1-day-old chickens were inoculated via the 

intranasal/intra-choanal route with 104 PFU of H5N3, H5N3/NS1/144, H5N3/NS1/87P 

and H5N3/NS1/87 viruses or mock-infected with allantoic fluid without virus. One day 

after inoculation, five uninfected contact chickens were included in each of the infected 

groups of chickens to determine the ability of the viruses to transmit. Mild clinical signs, 

such as depression, dyspnea and gasping were noted in chickens infected with parental 

H5N3 virus and in few chickens infected with H5N3/NS1/87P but no mortality was 

recorded in any of the treatment groups. Four days post-inoculation, all chickens in each 

group, except the contact chickens, were euthanized and necropsy was performed. Gross 

lesions in the respiratory tract (trachea and lung) were recorded, and lungs were 

collected to determine virus titers. Typical lesions observed included, plum-colored 

consolidated areas on individual lobes of the lungs and in some chickens, mucoid 

tracheal plugs were also present. H5N3/NS1/87P and H5N3 infected groups had equal 

number of chickens (10/22) showing gross lesions, followed by H5N3/NS1/87 (7/22) 

and H5N3/NS1/144 (2/22). We were able to isolate virus from significantly greater 

numbers of chickens infected with H5N3 (17/22), followed by H5N3/NS1/87P (16/22) 

and H5N3/NS1/87 (14/22) compared to H5N3/NS1/144 (8/21). The average titers in 

lungs from chickens infected with H5N3 were 103.7 ELD50/g of tissue followed by 

H5N3/NS1/87P, H5N3/NS1/87 and H5N3/NS1/144 with 102.8 ELD50/g 101.7 ELD50/g 

101.3 ELD50/g, respectively (Table 3). Serconversion of contact chickens was observed 
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for one of the contact chickens infected with H5N3 virus, while none of the contact 

chickens in other groups seroconverted. 

 

 
Table 3. Gross lesions and virus isolation with mean titers from homogenized lung 
tissues four days post infection. 
 

* Virus was isolated 4 days post challenge from homogenized lung tissues 
** Number of chickens positive / number tested with average titers expressed as Log10 
ELD50 / g of homogenized lung tissue 
 

 

3.4 Discussion 

In recent years, economic losses associated with AI infections have resulted in 

the use of large-scale vaccination in certain countries. The objective of current vaccines 

is to increase resistance in chickens against field challenge virus, reduce mortality rates 

and more importantly, limit AIV shed into the environment (Iqbal, 2009). Reduced virus 

shedding not only results in decreased transmission of AIV among chickens, but also 

minimizes the risk of evolution of new AIV strains, which can infect humans (Iqbal, 

2009).  

 In recent years, there has been increased interest in using NS1 mutant viruses, in 

different animal species, as a potential live attenuated vaccines due to the anti-interferon 

Groups Gross 

Lesions 

Virus 

Isolation * 

H5N3 10/22 17/22 (3.7)** 

H5N3/NS1/144 2/22 8/21 (1.3) 

H5N3/NS1-87/80V 7/22 14/22 (1.7) 

H5N3/NS1-87/40R/73M/80V 10/22 16/22 (2.8) 
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function of NS1 and the ability of such vaccines to differentiate between vaccinated and 

infected animals (DIVA) (Quinlivan et al., 2005; Solorzano et al., 2005; Steel et al., 

2009; Wang et al., 2008). Efficacy of NS1 mutant viruses as live vaccine candidates 

studies should not only be evaluated based on attenuation and protection offered by the 

vaccine, but also by the stability of the mutation and its reversion to wild-type 

phenotype. This is very important especially for commercial poultry, where chicken are 

under a variety of production stresses, and NS1 mutant viruses, though attenuated, can 

still replicate and reach moderate titers (Quinlivan et al., 2005; Solorzano et al., 2005), 

giving the NS1 mutant vaccine virus the opportunity to mutate and regain virulence. In a 

recent study, we observed such a phenomenon with H5N3/NS1/144, a carboxy-terminal 

truncated NS1 mutant virus. Within five back-passages in chickens,the virus underwent 

mutations that resulted in deletion of the inserted stop codon and was able to express 

both the amino and carboxy ends of NS1 protein. The current study and other reports, 

underscore the importance of NS1 in viral pathogenicity (Cauthen et al., 2007; 

Quinlivan et al., 2005) and prove that NS1 mutant viruses are able to revert to virulence 

under severe immune pressure when propagated in interferon competent host systems.  

To further understand the strategies used by LPAI NS1 mutant viruses to 

compensate the anti-interferon function of NS1 in its host, we serially passaged 

H5N3/NS1/144 in increasing age ECE. Older age ECEs are considered to be more 

interferon competent (Morahan & Grossberg, 1970; Sekellick et al., 1990; Sekellick & 

Marcus, 1985) and are also considered a good system to assess pathogenicity of AIVs 

affecting chickens (Perdue et al., 1990). H5N3/NS1/144 was earlier characterized and 
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shown to be severely attenuated in vitro, in ovo and in vivo compared to the parental 

H5N3 virus. After fifteen serial passages of H5N3/NS1/144 in older age ECE, the NS1 

gene in all three lineages was further truncated (87 amino acids) with a point mutation 

occurring at the point of truncation (L80V). Viruses from two of three lineages also had 

point mutations at positions 40 (Q40R) and 73 (T73M), of the RNA binding domain.  

 These naturally selected mutant viruses showed differences in plaque phenotype 

when plated on MDCK cells. Large plaque size has been associated with better virus 

replication and virulence (Pappas et al., 2008).  Interestingly, the same truncation was 

also present as a part of mixed population after five rounds of back passage of 

H5N3/NS1/144 in 6-8 week old chickens. The significance of the further deletion in the 

144 amino acid long NS1 ORF is not known. However, it has been previously shown 

that shorter NS1 mutant proteins (<90 amino acids) are more stable, and are expressed at 

higher levels than longer mutant proteins (~140 amino acids) (Quinlivan et al., 2005; 

Solorzano et al., 2005). Recently, Lee et al., showed that serial passage in 14-day-old 

ECE of a virus with a natural truncation in NS1 also resulted in further truncations 

(Wang et al., 2008). However, in that report, the authors detected various sizes of the 

NS1 ORF while in this study, we consistently detected a deletion of 58 amino acids 

between amino acids 79 and 137. Although the cause of the differences observed is not 

known, they could be attributed to the different strains of LPAIV used in the two studies.  

 To study the role and importance of the naturally selected truncated forms of NS1 

along with the mutations in the RNA binding region, we used reverse genetics to 

construct two new NS1 mutant viruses: H5N3/NS1/87 and H5N3/NS1/87P which 
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differed from each other and parental virus only in the NS gene segment. Both, H5N3 

and H5N3/NS1/144 viruses showed stark contrast in their ability to replicate in A-CEC 

as expected and observed earlier. A-CECs were chosen as they have been reported to 

have higher interferon production potential compared to fresh chicken embryo cells 

(Sekellick et al., 1990). Replication of H5N3/NS1/87 and H5N3/NS1/87P in A-CECs 

was intermediate when compared to parental H5N3 and H5N3/NS1/144 viruses. 

Interestingly, at later time points (96 h post-inoculation) H5N3/NS1/87 and 

H5N3/NS1/87P showed a slight increase in titers, compared to a slight drop in viral titers 

for the parental H5N3 virus. To our knowledge, this change in growth kinetics pattern at 

later time points has never been reported. It is possible that the NS1 protein of 

H5N3/NS1/87 and H5N3/NS1/87P follow a different IFN inhibition pathway from the 

parent virus. A recent study demonstrated that in for some strains increased virus 

replication can out competed the antiviral response of the infected host (Grimm et al., 

2007). Therefore, further studies are required to understand the role of NS1 in the 

growth kinetics differences observed. On the other hand, growth kinetics in DF1 cells, 

which do not express interferon upon virus infection (Karpala et al., 2008), were the 

same for all four viruses examined, suggesting that the differences observed in A-CEC 

were due to differences in interferon induction. In addition, this observation also rules 

out the possibility of NS1 mutations affecting the replication ability of the virus.  

 Our study showed that levels of IFN-β induction increased with increasing MOI of 

infection.  In addition, the attenuation of virus replication in A-CEC correlated with 

levels of interferon mRNA induced by virus replication. These data suggest that shorter 
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forms of NS1 regained functionality allowing for better replication of virus in interferon 

competent systems as observed with swine and equine influenza viruses (Quinlivan et 

al., 2005; Solorzano et al., 2005). These data also explain, the natural selection of 

shorter forms of NS1 after serial passage of H5N3/NS1/144 under innate immune 

pressure. Of the two shorter NS1 mutants generated in this study, H5N3/NS1/87P, which 

contains two point mutations in the RNA binding domain, showed a very small but 

significantly lower level of IFN-β induction compared to H5N3/NS1/87, at the higher 

MOIs used in this study.  Although these differences could be attributed to the point 

mutations in the RNA binding domain, further biochemical studies are warranted to 

elucidate their role in the anti-IFN activity of H5N3/NS1/87P.  

 We also found that the pathogenicity of the NS1 mutant viruses was different in 

terms of their ability to cause embryo mortality in increasing age ECE. In 13-day-old 

ECE a sharp decrease in embryo mortality was observed for H5N3/NS1/144 compared 

to just a slight drop in embryo mortality for the other viruses tested. The MDT, which is 

considered a good measure of pathogenicity (Perdue et al., 1990), indicated that 

H5N3/NS1/87P was more pathogenic than H5N3/NS1/87 and slightly less pathogenic 

than parental H5N3 virus. A similar trend in pathogenicity of the NS1 mutant viruses 

was observed in terms of their replication and ability to cause lesions in chicken lungs 

(Table 1). Collectively, these data suggest that NS1 is a crucial virulence factor and 

under selective pressure larger truncations in the NS1 ORF are generated resulting in 

increased virulence compared to H5N3/NS1/144 virus. In addition, the point mutations 

detected in the RNA binding domain seem to have some added advantage in vivo; 
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however, additional functional studies are need to understand the role of these point 

mutations in virus replication.  

 In summary, in this study we have shown that the truncations detected in the NS1 

protein of passaged viruses play an important role in the virus reversion to virulence. In 

addition, these studies support that the use of NS1 mutant viruses as live vaccines should 

be taken with a word of caution, and vaccine candidates should undergo several back-

passages in chickens or older age ECE to ensure the stability of the NS1 gene, before 

they can be introduced as a live attenuated vaccines in the field. 
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CHAPTER IV 

 
SUMMARY 

 

NS1 is one of the avian influenza virus (AIV) proteins associated with virulence 

due to its anti-interferon activity (Garcia-Sastre et al., 1998; Krug et al., 2003). 

Interferon plays a crucial role in the innate antiviral defense mechanism of eukaryotic 

cells. There has been increased interest in using NS1 mutant viruses as “modified live 

vaccines” since deletions in NS1 result in attenuation in growth in immunocompetent 

hosts. Besides inhibiting the innate immune response, NS1 can also inhibit the adaptive 

immune response by inhibiting dendritic cell maturation and their capacity to induce T 

cell responses (Fernandez-Sesma et al., 2006). NS1 protein of influenza A viruses 

utilizes several different mechanisms for its anti-interferon activity and these 

mechanisms differ from one strain to another (Hayman et al., 2007; Hayman et al., 

2006). Most on the studies on the mechanisms of NS-1 anti-interferon activity have 

focused on human strains. However, the role and importance of NS1 in anti-interferon 

activity of LPAIV in chickens needs more investigation.  The rationale behind the 

present work is that by gaining knowledge into the role of NS1 in AIV pathogenesis in 

chickens, it will be possible to evaluate the use of NS1 mutant viruses as potential DIVA 

vaccines for poultry.  

The first part of this study focused on the development a NS1 mutant virus, 

which is attenuated in its growth in interferon competent systems, and the evaluation of 

its use as a live attenuated vaccine for chickens. The second part of this project 
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concentrated on the in vitro, in ovo and in vivo characterization of growth properties and 

pathogenesis of different NS1 mutant viruses to better understand the importance of NS1 

in virus-host interaction.  

The AIV under study is a low pathogenic H5N3 virus. Our laboratory has 

developed an eight-plasmid reverse genetics system to generate recombinant AIVs. 

Initially, the NS gene segment was manipulated to generate a NS1 mutant virus 

expressing only the first 144 amino acids. The H5N3/NS1/144 virus was significantly 

attenuated in growth in interferon competent systems in vitro, in-ovo and in-vivo.  In 

addition, attenuation of H5N3/NS1/144 correlated with lack of inhibition of interferon 

induction by the mutant virus, which was in accordance with published reports 

(Quinlivan et al., 2005; Solorzano et al., 2005). Once its attenuation was confirmed, 

H5N3/NS1/144 was evaluated as a live vaccine in chickens. H5N3/NS1/144 induced a 

good immune response, as measured by HI, and also protected chickens from lesions 

after challenge with parental H5N3. However, safety studies indicated that 

H5N3/NS1/144 could revert to virulence. Within 5 rounds of back passage of the virus 

in chickens, the inserted stop codon at position 144 of the NS1 ORF was deleted and the 

virus was able to express an almost complete NS1 protein.  As a consequence, the back-

passage viruses produced lesions, in the respiratory tract, similar to parental H5N3.  

However, based on the absence of antibodies against the carboxy end of NS1 it was 

possible to clearly differentiate H5N3/NS1-144 from parental H5N3 inoculated 

chickens. In an attempt to make a safer vaccine, we evaluated H5N3/NS1/144 as killed 

virus vaccine and compared its efficacy with that of parental H5N3 virus against a 
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homologous H5N3 challenge. As expected, both vaccine preparations induced similar 

antibody titers and reduced virus shedding considerably. H5N3/NS1/144 certainly 

showed potential to be used as a killed vaccine for its DIVA properties. 

As indicated earlier back passage of H5N3/NS1/144 in chickens caused the 

deletion of the stop codon we introduced in the NS1 gene of H5N3/NS1/144. 

Interestingly, one of the three back-passage lineages of H5N3/NS1/144 also had a virus 

population with an internal truncation in the NS1 coding region reducing the NS1 ORF 

to only 87 amino acids.  This further truncation was of interest because in swine and 

equine influenza viruses it was shown that shorter mutant NS1 proteins were more stable 

and were more functional than longer ones. To study the relevance and importance of the 

NS1 truncation observed during serial passage in chickens, we carried out serial 

passages of H5N3/NS1/144 in increasing age embroyonated chicken eggs (ECE). Older 

age ECE were chosen for two reasons: a) They are believed to be more interferon 

competent; b) The ability of AIV to grow in older-age ECE is an indicator of 

pathogenicity of the virus. After 15 rounds of serial passages in increasing age ECE the 

NS1 ORF was truncated. Interestingly, the truncation observed was similar to that 

observed in one of the chicken back-passage lineages. This suggests that there is some 

relevance for natural selection of shorter NS1 ORF.  In addition, two of the embryo 

passage lineage had two mutations at amino residues 40 (Q40R) and 73 (T73M) of the 

RNA binding domain. To understand the importance of the large truncation in NS1 ORF 

and the role of the two point mutations in the RNA binding domain, we incorporated 

these particular NS gene segments into the parental H5N3 background and recovered the 
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viruses. In vitro, in ovo and in vivo studies indicate that H5N3/NS1/87 and 

H5N3/NS1/87P  were more virulent and replicated better than H5N3/NS1/144; however, 

they were still partially attenuated compared to parental H5N3. Interestingly, 

H5N3/NS1/87P was more virulent than H5N3/NS1/87 in ovo and in vivo; however, in 

vitro replication studies in aged chicken embryo cells (A-CEC) did not show any 

significant difference between the two viruses. Further studies are required to identify 

the role of the RNA binding domain mutation in pathogenesis.  

Based on our results future lines of research should include the use of adjuvants 

such as TLR receptor ligands along with killed NS1 mutant vaccines, as this would 

mimic a live virus infection and boost an early immune response, which was absent in 

the oil adjuvanted vaccine used in this study.  It would also be interesting to compare the 

effect of the NS1 mutant viruses on host gene regulation especially with regards to the 

host immune response, this could provide information on the mechanism used by the 

NS1 mutant viruses with shorter NS1 proteins to counteract interferon pathway and 

increase virus replication compared to NS1 mutant with longer NS1 proteins. Also it 

would be of interest to study the effect of the point mutations at positions 40 and 73 in 

parental H5N3 virus and study its growth properties. 

 In summary: (1) H5N3/NS1/144, is not a safe live vaccine candidate; however, it 

can be safely used as a killed DIVA vaccine; (2) Any potential NS1 mutant live virus 

vaccine should undergo several serial passages in either older age ECE and/or in 

chickens to ensure its stability and safety; (3) Shorter NS1 proteins help the virus regain 

its virulence considerably; (4) Mutations at position 40 and 73 confer added advantage to 
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the virus expressing an 87 amino acids long NS1 protein in terms of virulence and 

replication in older age ECE and chickens.   

          Further studies on the role of NS1 protein domains and specific amino acids in anti-

interferon activity may lead to the development of improved live attenuated vaccines or 

other novel control strategies. 

 
 
 



 84 

REFERENCES 

 
 
 
Alexander, D. J. (2000). A review of avian influenza in different bird species. Vet 

Microbiol 74, 3-13. 

Alexander, D. J. (2007). An overview of the epidemiology of avian influenza. Vaccine 

25, 5637-5644. 

Altstein, A. D., Gitelman, A. K., Smirnov, Y. A., Piskareva, L. M., Zakharova, L. 

G., Pashvykina, G. V., Shmarov, M. M., Zhirnov, O. P., Varich, N. P., 

Ilyinskii, P. O. & Shneider, A. M. (2006). Immunization with influenza A NP-

expressing vaccinia virus recombinant protects mice against experimental 

infection with human and avian influenza viruses. Arch Virol 151, 921-931. 

Anderson, R. W., Bennink, J. R., Yewdell, J. W., Maloy, W. L. & Coligan, J. E. 

(1992). Influenza basic polymerase 2 peptides are recognized by influenza 

nucleoprotein-specific cytotoxic T lymphocytes. Mol Immunol 29, 1089-1096. 

Asplin, F. D. (1970). Examination of sera from wildfowl for antibodies against the 

viruses of duck plague, duck hepatitis and duck influenza. Vet Rec 87, 182-183. 

Beard, C. W. & Easterday, B. C. (1973). A-Turkey-Oregon-71, an avirulent influenza 

isolate with the hemagglutinin of fowl plague virus. Avian Dis 17, 173-181. 

Beard, C. W., Schnitzlein, W. M. & Tripathy, D. N. (1992). Effect of route of 

administration on the efficacy of a recombinant fowlpox virus against H5N2 

avian influenza. Avian Dis 36, 1052-1055. 



 85 

Bergmann, M., Garcia-Sastre, A., Carnero, E., Pehamberger, H., Wolff, K., Palese, 

P. & Muster, T. (2000). Influenza virus NS1 protein counteracts PKR-mediated 

inhibition of replication. J Virol 74, 6203-6206. 

Birch-Machin, I., Rowan, A., Pick, J., Mumford, J. & Binns, M. (1997). Expression 

of the nonstructural protein NS1 of equine influenza A virus: detection of anti-

NS1 antibody in post infection equine sera. J Virol Methods 65, 255-263. 

Bluyssen, A. R., Durbin, J. E. & Levy, D. E. (1996). ISGF3[gamma] p48, a specificity 

switch for interferon activated transcription factors. Cytokine Growth Factor Rev 

7, 11-17. 

Bornholdt, Z. A. & Prasad, B. V. (2006). X-ray structure of influenza virus NS1 

effector domain. Nat Struct Mol Biol 13, 559-560. 

Bornholdt, Z. A. & Prasad, B. V. (2008). X-ray structure of NS1 from a highly 

pathogenic H5N1 influenza virus. Nature. 

Bot, A., Bot, S., Garcia-Sastre, A. & Bona, C. (1996). DNA immunization of newborn 

mice with a plasmid-expressing nucleoprotein of influenza virus. Viral Immunol 

9, 207-210. 

Boyle, D. B., Selleck, P. & Heine, H. G. (2000). Vaccinating chickens against avian 

influenza with fowlpox recombinants expressing the H7 haemagglutinin. Aust 

Vet J 78, 44-48. 

Brown, D. W., Kawaoka, Y., Webster, R. G. & Robinson, H. L. (1992). Assessment 

of retrovirus-expressed nucleoprotein as a vaccine against lethal influenza virus 

infections of chickens. Avian Dis 36, 515-520. 



 86 

Brugh, M., Beard, C. W. & Stone, H. D. (1979). Immunization of chickens and 

turkeys against avian influenza with monovalent and polyvalent oil emulsion 

vaccines. Am J Vet Res 40, 165-169. 

Bublot, M., Pritchard, N., Cruz, J. S., Mickle, T. R., Selleck, P. & Swayne, D. E. 

(2007). Efficacy of a fowlpox-vectored avian influenza H5 vaccine against Asian 

H5N1 highly pathogenic avian influenza virus challenge. Avian Dis 51, 498-500. 

Bublot, M., Pritchard, N., Swayne, D. E., Selleck, P., Karaca, K., Suarez, D. L., 

Audonnet, J. C. & Mickle, T. R. (2006). Development and use of fowlpox 

vectored vaccines for avian influenza. Ann N Y Acad Sci 1081, 193-201. 

Burgui, I., Aragon, T., Ortin, J. & Nieto, A. (2003). PABP1 and eIF4GI associate with 

influenza virus NS1 protein in viral mRNA translation initiation complexes. J 

Gen Virol 84, 3263-3274. 

Biron, C A.,  & Sen,  G. C. (2001). Interferons and other cytokines In Fields Virology, 

Fourth edn, pp. 321-352. Edited by D. M. Knipe & P. M. Howley. Phladelphia: 

Lippincott, Williams, and Wilkins. 

Capua, I., Cattoli, G., Marangon, S., Bortolotti, L. & Ortali, G. (2002). Strategies for 

the control of avian influenza in Italy. Vet Rec 150, 223. 

Capua, I., Marangon, S. & Bonfanti, L. (2004). Eradication of low pathogenicity 

avian influenza of the H7N3 subtype from Italy. Vet Rec 154, 639-640. 

Cattoli, G., Terregino, C., Brasola, V., Rodriguez, J. F. & Capua, I. (2003). 

Development and preliminary validation of an ad hoc N1-N3 discriminatory test 

for the control of avian influenza in Italy. Avian Dis 47, 1060-1062. 



 87 

Cauthen, A. N., Swayne, D. E., Sekellick, M. J., Marcus, P. I. & Suarez, D. L. 

(2007). Amelioration of influenza virus pathogenesis in chickens attributed to the 

enhanced interferon-inducing capacity of a virus with a truncated NS1 gene. J 

Virol 81, 1838-1847. 

Chambers, T. M., Kawaoka, Y. & Webster, R. G. (1988). Protection of chickens from 

lethal influenza infection by vaccinia-expressed hemagglutinin. Virology 167, 

414-421. 

Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., Basta, S., 

O'Neill, R., Schickli, J., Palese, P., Henklein, P., Bennink, J. R. & Yewdell, J. 

W. (2001). A novel influenza A virus mitochondrial protein that induces cell 

death. Nat Med 7, 1306-1312. 

Chen, Z., Li, Y. & Krug, R. M. (1999). Influenza A virus NS1 protein targets poly(A)-

binding protein II of the cellular 3'-end processing machinery. Embo J 18, 2273-

2283. 

Chien, C. Y., Tejero, R. & Huang, Y. (1997). A novel RNA-binding motif in influenza 

A virus non-structural protein 1. Nat Struct Biol 4, 891-895. 

Chin, P. S., Hoffmann, E., Webby, R., Webster, R. G., Guan, Y., Peiris, M. & 

Shortridge, K. F. (2002). Molecular evolution of H6 influenza viruses from 

poultry in Southeastern China: prevalence of H6N1 influenza viruses possessing 

seven A/Hong Kong/156/97 (H5N1)-like genes in poultry. J Virol 76, 507-516. 

Crawford, J., Wilkinson, B., Vosnesensky, A., Smith, G., Garcia, M., Stone, H. & 

Perdue, M. L. (1999). Baculovirus-derived hemagglutinin vaccines protect 



 88 

against lethal influenza infections by avian H5 and H7 subtypes. Vaccine 17, 

2265-2274. 

Davis, A. R., Bos, T., Ueda, M., Nayak, D. P., Dowbenko, D. & Compans, R. W. 

(1983). Immune response to human influenza virus hemagglutinin expressed in 

Escherichia coli. Gene 21, 273-284. 

De, B. K., Shaw, M. W., Rota, P. A., Harmon, M. W., Esposito, J. J., Rott, R., Cox, 

N. J. & Kendal, A. P. (1988). Protection against virulent H5 avian influenza 

virus infection in chickens by an inactivated vaccine produced with recombinant 

vaccinia virus. Vaccine 6, 257-261. 

Donnelly, J. J., Friedman, A., Ulmer, J. B. & Liu, M. A. (1997). Further protection 

against antigenic drift of influenza virus in a ferret model by DNA vaccination. 

Vaccine 15, 865-868. 

Easterday, B. C., Trainer, D. O., Tumova, B. & Pereira, H. G. (1968). Evidence of 

infection with influenza viruses in migratory waterfowl. Nature 219, 523-524. 

Egorov, A., Brandt, S., Sereinig, S., Romanova, J., Ferko, B., Katinger, D., 

Grassauer, A., Alexandrova, G., Katinger, H. & Muster, T. (1998). 

Transfectant influenza A viruses with long deletions in the NS1 protein grow 

efficiently in Vero cells. J Virol 72, 6437-6441. 

Esposito, S., Marchisio, P., Droghetti, R., Lambertini, L., Faelli, N., Bosis, S., Tosi, 

S., Begliatti, E. & Principi, N. (2006). Influenza vaccination coverage among 

children with high-risk medical conditions. Vaccine 24, 5251-5255. 



 89 

Fatunmbi, O. O., Newman, J. A., Sivanandan, V. & Halvorson, D. A. (1992). 

Enhancement of antibody response of turkeys to trivalent avian influenza vaccine 

by positively charged liposomal avridine adjuvant. Vaccine 10, 623-626. 

Ferko, B., Stasakova, J., Romanova, J., Kittel, C., Sereinig, S., Katinger, H. & 

Egorov, A. (2004). Immunogenicity and protection efficacy of replication-

deficient influenza A viruses with altered NS1 genes. J Virol 78, 13037-13045. 

Fernandez-Sesma, A., Marukian, S., Ebersole, B. J., Kaminski, D., Park, M. S., 

Yuen, T., Sealfon, S. C., Garcia-Sastre, A. & Moran, T. M. (2006). Influenza 

virus evades innate and adaptive immunity via the NS1 protein. J Virol 80, 6295-

6304. 

Fortes, P., Beloso, A. & Ortin, J. (1994). Influenza virus NS1 protein inhibits pre-

mRNA splicing and blocks mRNA nucleocytoplasmic transport. Embo J 13, 704-

712. 

Fouchier, R. A., Munster, V., Wallensten, A., Bestebroer, T. M., Herfst, S., Smith, 

D., Rimmelzwaan, G. F., Olsen, B. & Osterhaus, A. D. (2005). 

Characterization of a novel influenza A virus hemagglutinin subtype (H16) 

obtained from black-headed gulls. J Virol 79, 2814-2822. 

Frace, A. M., Klimov, A. I., Rowe, T., Black, R. A. & Katz, J. M. (1999). Modified 

M2 proteins produce heterotypic immunity against influenza A virus. Vaccine 

17, 2237-2244. 



 90 

Fynan, E. F., Robinson, H. L. & Webster, R. G. (1993). Use of DNA encoding 

influenza hemagglutinin as an avian influenza vaccine. DNA Cell Biol 12, 785-

789. 

Gao, W., Soloff, A. C., Lu, X., Montecalvo, A., Nguyen, D. C., Matsuoka, Y., 

Robbins, P. D., Swayne, D. E., Donis, R. O., Katz, J. M., Barratt-Boyes, S. 

M. & Gambotto, A. (2006). Protection of mice and poultry from lethal H5N1 

avian influenza virus through adenovirus-based immunization. J Virol 80, 1959-

1964. 

Garcia, M., Crawford, J. M., Latimer, J. W., Rivera-Cruz, E. & Perdue, M. L. 

(1996). Heterogeneity in the haemagglutinin gene and emergence of the highly 

pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. 

J Gen Virol 77 ( Pt 7), 1493-1504. 

Garcia-Sastre, A., Egorov, A., Matassov, D., Brandt, S., Levy, D. E., Durbin, J. E., 

Palese, P. & Muster, T. (1998). Influenza A virus lacking the NS1 gene 

replicates in interferon-deficient systems. Virology 252, 324-330. 

Garcia-Sastre, A. (2001). Inhibition of interferon-mediated antiviral responses by 

influenza A viruses and other negative-strand RNA viruses. Virology 279, 375-

384. 

Garcia-Sastre, A. & Biron, C. A. (2006). Type 1 Interferons and the Virus-Host 

Relationship: A Lesson in Detente. Science 312, 879-882. 

Ge, J., Deng, G., Wen, Z., Tian, G., Wang, Y., Shi, J., Wang, X., Li, Y., Hu, S., 

Jiang, Y., Yang, C., Yu, K., Bu, Z. & Chen, H. (2007). Newcastle disease 



 91 

virus-based live attenuated vaccine completely protects chickens and mice from 

lethal challenge of homologous and heterologous H5N1 avian influenza viruses. 

J Virol 81, 150-158. 

Grimm, D., Staeheli, P., Hufbauer, M., Koerner, I., Martinez-Sobrido, L., 

Solorzano, A., Garcia-Sastre, A., Haller, O. & Kochs, G. (2007). Replication 

fitness determines high virulence of influenza A virus in mice carrying functional 

Mx1 resistance gene. Proc Natl Acad Sci U S A 104, 6806-6811. 

Hale, B. G., Batty, I. H., Downes, C. P. & Randall, R. E. (2008a). Binding of 

influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests a novel 

mechanism for phosphoinositide 3-kinase activation. J Biol Chem 283, 1372-

1380. 

Hale, B. G., Randall, R. E., Ortin, J. & Jackson, D. (2008b). The multifunctional NS1 

protein of influenza A viruses. J Gen Virol 89, 2359-2376. 

Hall, C. (2004). Impact of avian influenza on U.S. poultry trade relations-2002: H5 or 

H7 low pathogenic avian influenza. Ann N Y Acad Sci 1026, 47-53. 

Halvorson, D., Karunakaran, D., Senne, D., Kelleher, C., Bailey, C., Abraham, A., 

Hinshaw, V. & Newman, J. (1983). Epizootiology of avian influenza--

simultaneous monitoring of sentinel ducks and turkeys in Minnesota. Avian Dis 

27, 77-85. 

Haque, S. J. & Williams, B. R. (1994). Identification and characterization of an 

interferon (IFN)-stimulated response element-IFN-stimulated gene factor 3-

independent signaling pathway for IFN-[alpha]. J Biol Chem 269, 19523-19529. 



 92 

Hatta, M., Gao, P., Halfmann, P. & Kawaoka, Y. (2001). Molecular basis for high 

virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840-1842. 

Hayman, A., Comely, S., Lackenby, A., Hartgroves, L. C., Goodbourn, S., 

McCauley, J. W. & Barclay, W. S. (2007). NS1 proteins of avian influenza A 

viruses can act as antagonists of the human alpha/beta interferon response. J 

Virol 81, 2318-2327. 

Hayman, A., Comely, S., Lackenby, A., Murphy, S., McCauley, J., Goodbourn, S. 

& Barclay, W. (2006). Variation in the ability of human influenza A viruses to 

induce and inhibit the IFN-beta pathway. Virology 347, 52-64. 

Hinshaw, V. S., Nettles, V. F., Schorr, L. F., Wood, J. M. & Webster, R. G. (1986). 

Influenza virus surveillance in waterfowl in Pennsylvania after the H5N2 avian 

outbreak. Avian Dis 30, 207-212. 

Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. (2000). A 

DNA transfection system for generation of influenza A virus from eight 

plasmids. Proc Natl Acad Sci U S A 97, 6108-6113. 

Hoffmann, E., Stech, J., Guan, Y., Webster, R. G. & Perez, D. R. (2001). Universal 

primer set for the full-length amplification of all influenza A viruses. Arch Virol 

146, 2275-2289. 

Hoffmann, E., Mahmood, K., Yang, C. F., Webster, R. G., Greenberg, H. B. & 

Kemble, G. (2002). Rescue of influenza B virus from eight plasmids. Proc Natl 

Acad Sci U S A 99, 11411-11416. 



 93 

Hunt, L. A., Brown, D. W., Robinson, H. L., Naeve, C. W. & Webster, R. G. (1988). 

Retrovirus-expressed hemagglutinin protects against lethal influenza virus 

infections. J Virol 62, 3014-3019. 

Iqbal, M. (2009). Controlling avian influenza infections: The challenge of the backyard 

poultry. Journal of Molecular and Genetic Medicine 3, 119-120. 

Ito, T., Goto, H., Yamamoto, E., Tanaka, H., Takeuchi, M., Kuwayama, M., 

Kawaoka, Y. & Otsuki, K. (2001). Generation of a highly pathogenic avian 

influenza A virus from an avirulent field isolate by passaging in chickens. J Virol 

75, 4439-4443. 

Iwasaki, A. & Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune 

responses. Nat Immunol 5, 987-995. 

Jaini, R., Hannaman, D., Johnson, J. M., Bernard, R. M., Altuntas, C. Z., Delasalas, 

M. M., Kesaraju, P., Luxembourg, A., Evans, C. F. & Tuohy, V. K. (2006). 

Gene-based intramuscular interferon-beta therapy for experimental autoimmune 

encephalomyelitis. Mol Ther 14, 416-422. 

Jia, L., Peng, D., Zhang, Y., Liu, H. & Liu, X. (2003). Construction, genetic stability 

and protective efficacy of recombinant fowlpox virus expressing hemagglutinin 

gene of H5N1 subtype avian influenza virus. Wei Sheng Wu Xue Bao 43, 722-

727. 

Jiang, Y., Yu, K., Zhang, H., Zhang, P., Li, C., Tian, G., Li, Y., Wang, X., Ge, J., 

Bu, Z. & Chen, H. (2007). Enhanced protective efficacy of H5 subtype avian 



 94 

influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid 

vector. Antiviral Res 75, 234-241. 

Karpala, A. J., Lowenthal, J. W. & Bean, A. G. (2008). Activation of the TLR3 

pathway regulates IFNbeta production in chickens. Dev Comp Immunol 32, 435-

444. 

Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., 

Uematsu, S., Jung, A., Kawai, T., Ishii, K. J., Yamaguchi, O., Otsu, K., 

Tsujimura, T., Koh, C. S., Reis e Sousa, C., Matsuura, Y., Fujita, T. & 

Akira, S. (2006). Differential roles of MDA5 and RIG-I helicases in the 

recognition of RNA viruses. Nature 441, 101-105. 

Kawai, T. & Akira, S. (2007). TLR signaling. Semin Immunol 19, 24-32. 

Kibenge, F. S., Munir, K., Kibenge, M. J., Joseph, T. & Moneke, E. (2004). 

Infectious salmon anemia virus: causative agent, pathogenesis and immunity. 

Anim Health Res Rev 5, 65-78. 

Klenk, H. D. & Rott, R. (1988). The molecular biology of influenza virus 

pathogenicity. Adv Virus Res 34, 247-281. 

Kochs, G., Koerner, I., Thiel, L., Kothlow, S., Kaspers, B., Ruggli, N., Summerfield, 

A., Pavlovic, J., Stech, J. & Staeheli, P. (2007). Properties of H7N7 influenza A 

virus strain SC35M lacking interferon antagonist NS1 in mice and chickens. J 

Gen Virol 88, 1403-1409. 



 95 

Kodihalli, S., Sivanandan, V., Nagaraja, K. V., Shaw, D. & Halvorson, D. A. (1994). 

A type-specific avian influenza virus subunit vaccine for turkeys: induction of 

protective immunity to challenge infection. Vaccine 12, 1467-1472. 

Kodihalli, S., Haynes, J. R., Robinson, H. L. & Webster, R. G. (1997). Cross-

protection among lethal H5N2 influenza viruses induced by DNA vaccine to the 

hemagglutinin. J Virol 71, 3391-3396. 

Koyama, S., Ishii, K. J., Kumar, H., Tanimoto, T., Coban, C., Uematsu, S., Kawai, 

T. & Akira, S. (2007). Differential role of TLR- and RLR-signaling in the 

immune responses to influenza A virus infection and vaccination. J Immunol 

179, 4711-4720. 

Krug, R. A. L. a. R. M. (2001). Orthomyxoviridae: the viruses and their replication. In 

Fields Virology, 4th edn, pp. 1487-1532. Edited by a. H. D.M. Knipe, P. M. 

Philadelphia: Lippincott Williams & Wilkins. 

Krug, R. M., Yuan, W., Noah, D. L. & Latham, A. G. (2003). Intracellular warfare 

between human influenza viruses and human cells: the roles of the viral NS1 

protein. Virology 309, 181-189. 

Kuno, G., Chang, G. J., Tsuchiya, K. R. & Miller, B. R. (2001). Phylogeny of 

Thogoto virus. Virus Genes 23, 211-214. 

Lee, C. W., Senne, D. A. & Suarez, D. L. (2004). Generation of reassortant influenza 

vaccines by reverse genetics that allows utilization of a DIVA (Differentiating 

Infected from Vaccinated Animals) strategy for the control of avian influenza. 

Vaccine 22, 3175-3181. 



 96 

 

Le Gall-Recule, G., Cherbonnel, M., Pelotte, N., Blanchard, P., Morin, Y. & Jestin, 

V. (2007). Importance of a prime-boost DNA/protein vaccination to protect 

chickens against low-pathogenic H7 avian influenza infection. Avian Dis 51, 

490-494. 

Li, W. X., Li, H., Lu, R., Li, F., Dus, M., Atkinson, P., Brydon, E. W., Johnson, K. 

L., Garcia-Sastre, A., Ball, L. A., Palese, P. & Ding, S. W. (2004). Interferon 

antagonist proteins of influenza and vaccinia viruses are suppressors of RNA 

silencing. Proc Natl Acad Sci U S A 101, 1350-1355. 

Li, Z., Chen, H., Jiao, P., Deng, G., Tian, G., Li, Y., Hoffmann, E., Webster, R. G., 

Matsuoka, Y. & Yu, K. (2005). Molecular basis of replication of duck H5N1 

influenza viruses in a mammalian mouse model. J Virol 79, 12058-12064. 

Li, Z., Jiang, Y., Jiao, P., Wang, A., Zhao, F., Tian, G., Wang, X., Yu, K., Bu, Z. & 

Chen, H. (2006). The NS1 gene contributes to the virulence of H5N1 avian 

influenza viruses. J Virol 80, 11115-11123. 

Lipkind, M., Shoham, D. & Shihmanter, E. (1981). Isolation of influenza viruses from 

rock partridges in Israel. Vet Rec 109, 540. 

Liu, J., Lynch, P. A., Chien, C. Y., Montelione, G. T., Krug, R. M. & Berman, H. 

M. (1997). Crystal structure of the unique RNA-binding domain of the influenza 

virus NS1 protein. Nat Struct Biol 4, 896-899. 



 97 

Long, J. X., Peng, D. X., Liu, Y. L., Wu, Y. T. & Liu, X. F. (2008). Virulence of 

H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral 

nonstructural gene. Virus Genes. 

Lu, Y., Qian, X. Y. & Krug, R. M. (1994). The influenza virus NS1 protein: a novel 

inhibitor of pre-mRNA splicing. Genes Dev 8, 1817-1828. 

Ludwig, S., Schultz, U., Mandler, J., Fitch, W. M. & Scholtissek, C. (1991). 

Phylogenetic relationship of the nonstructural (NS) genes of influenza A viruses. 

Virology 183, 566-577. 

Luschow, D., Werner, O., Mettenleiter, T. C. & Fuchs, W. (2001). Protection of 

chickens from lethal avian influenza A virus infection by live-virus vaccination 

with infectious laryngotracheitis virus recombinants expressing the 

hemagglutinin (H5) gene. Vaccine 19, 4249-4259. 

McCartney, S. A. & Colonna, M. (2009). Viral sensors: diversity in pathogen 

recognition. Immunol Rev 227, 87-94. 

Mibayashi, M., Martinez-Sobrido, L., Loo, Y. M., Cardenas, W. B., Gale, M., Jr. & 

Garcia-Sastre, A. (2007). Inhibition of retinoic acid-inducible gene I-mediated 

induction of beta interferon by the NS1 protein of influenza A virus. J Virol 81, 

514-524. 

Morahan, P. S. & Grossberg, S. E. (1970). Age-related cellular resistance of the 

chicken embryo to viral infections. I. Interferon and natural resistance to 

myxoviruses and vesicular stomatitis virus. J Infect Dis 121, 615-623. 



 98 

Myers, T. J., Rhorer, M. D. & Clifford, J. (2003). USDA options for regulatory 

changes to enhance the prevention and control of avian influenza. Avian Dis 47, 

982-987. 

Nemeroff, M. E., Qian, X. Y. & Krug, R. M. (1995). The influenza virus NS1 protein 

forms multimers in vitro and in vivo. Virology 212, 422-428. 

Nemeroff, M. E., Barabino, S. M., Li, Y., Keller, W. & Krug, R. M. (1998). 

Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF 

and inhibits 3'end formation of cellular pre-mRNAs. Mol Cell 1, 991-1000. 

Obenauer, J. C., Denson, J., Mehta, P. K., Su, X., Mukatira, S., Finkelstein, D. B., 

Xu, X., Wang, J., Ma, J., Fan, Y., Rakestraw, K. M., Webster, R. G., 

Hoffmann, E., Krauss, S., Zheng, J., Zhang, Z. & Naeve, C. W. (2006). 

Large-scale sequence analysis of avian influenza isolates. Science 311, 1576-

1580. 

Office International des Epizooties (2008). In Terrestrial animal health code, Paris 

Available at:http://www.oieint/eng/normes/MCode/A_summryhtm. Accessed on 

12/15/2008.  

Pappas, C., Aguilar, P. V., Basler, C. F., Solorzano, A., Zeng, H., Perrone, L. A., 

Palese, P., Garcia-Sastre, A., Katz, J. M. & Tumpey, T. M. (2008). Single 

gene reassortants identify a critical role for PB1, HA, and NA in the high 

virulence of the 1918 pandemic influenza virus. Proc Natl Acad Sci U S A 105, 

3064-3069. 



 99 

Perdue, M. L., Wainright, P. O. & Brugh, M. (1990). Effects of chicken embryo age 

on time to death following infection by avian influenza viruses: implications for 

distinguishing highly pathogenic isolates. Virus Res 16, 137-152. 

Perkins, L. E. & Swayne, D. E. (2002). Susceptibility of laughing gulls (Larus atricilla) 

to H5N1 and H5N3 highly pathogenic avian influenza viruses. Avian Dis 46, 

877-885. 

Perkins, L. E. & Swayne, D. E. (2003). Varied pathogenicity of a Hong Kong-origin 

H5N1 avian influenza virus in four passerine species and budgerigars. Vet Pathol 

40, 14-24. 

Plotch, S. J., Bouloy, M., Ulmanen, I. & Krug, R. M. (1981). A unique 

cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped 

RNAs to generate the primers that initiate viral RNA transcription. Cell 23, 847-

858. 

Qiao, C. L., Yu, K. Z., Jiang, Y. P., Jia, Y. Q., Tian, G. B., Liu, M., Deng, G. H., 

Wang, X. R., Meng, Q. W. & Tang, X. Y. (2003). Protection of chickens 

against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant 

fowlpox virus co-expressing H5 haemagglutinin and N1 neuraminidase genes. 

Avian Pathol 32, 25-32. 

Qiu, Y., Nemeroff, M. & Krug, R. M. (1995). The influenza virus NS1 protein binds to 

a specific region in human U6 snRNA and inhibits U6-U2 and U6-U4 snRNA 

interactions during splicing. Rna 1, 304-316. 



 100 

Quinlivan, M., Zamarin, D., Garcia-Sastre, A., Cullinane, A., Chambers, T. & 

Palese, P. (2005). Attenuation of equine influenza viruses through truncations of 

the NS1 protein. J Virol 79, 8431-8439. 

Reddy, S., V. Brahmakshatriya, and B. Lupiani. (2006). Pathogenesis of Avian 

influenza virus with mutation in the NS1 gene. In AVMA/AAAP Annual Meeting. 

Honolulu, Hawaii. 

Reed, L. J. & Muench, H. (1938). A Simple Method of Estimating Fifty Percent 

Endpoints Am J Epidemiol 27, 493-497. 

Richt, J. A., Lekcharoensuk, P., Lager, K. M., Vincent, A. L., Loiacono, C. M., 

Janke, B. H., Wu, W. H., Yoon, K. J., Webby, R. J., Solorzano, A. & Garcia-

Sastre, A. (2006). Vaccination of pigs against swine influenza viruses by using 

an NS1-truncated modified live-virus vaccine. J Virol 80, 11009-11018. 

Robinson, H. L., Hunt, L. A. & Webster, R. G. (1993). Protection against a lethal 

influenza virus challenge by immunization with a haemagglutinin-expressing 

plasmid DNA. Vaccine 11, 957-960. 

Rohm, C., Horimoto, T., Kawaoka, Y., Suss, J. & Webster, R. G. (1995). Do 

hemagglutinin genes of highly pathogenic avian influenza viruses constitute 

unique phylogenetic lineages? Virology 209, 664-670. 

Rott, R., Orlich, M. & Scholtissek, C. (1979). Correlation of pathogenicity and gene 

constellation of influenza A viruses. III. Non-pathogenic recombinants derived 

from highly pathogenic parent strains. J Gen Virol 44, 471-477. 



 101 

Rott, R., Klenk, H. D., Nagai, Y. & Tashiro, M. (1995). Influenza viruses, cell 

enzymes, and pathogenicity. Am J Respir Crit Care Med 152, S16-19. 

Saelens, X., Vanlandschoot, P., Martinet, W., Maras, M., Neirynck, S., Contreras, 

R., Fiers, W. & Jou, W. M. (1999). Protection of mice against a lethal influenza 

virus challenge after immunization with yeast-derived secreted influenza virus 

hemagglutinin. Eur J Biochem 260, 166-175. 

Samuel, C. E. (2001). Antiviral Actions of Interferons. Clin Microbiol Rev 14, 778-809. 

Schultz-Cherry, S., Dybing, J. K., Davis, N. L., Williamson, C., Suarez, D. L., 

Johnston, R. & Perdue, M. L. (2000). Influenza virus (A/HK/156/97) 

hemagglutinin expressed by an alphavirus replicon system protects chickens 

against lethal infection with Hong Kong-origin H5N1 viruses. Virology 278, 55-

59. 

Sekellick, M. J. & Marcus, P. I. (1985). Interferon induction by viruses. XIV. 

Development of interferon inducibility and its inhibition in chick embryo cells 

"aged" in vitro. J Interferon Res 5, 651-667. 

Sekellick, M. J. & Marcus, P. I. (1986). Induction of high titer chicken interferon. 

Methods Enzymol 119, 115-125. 

Sekellick, M. J., Biggers, W. J. & Marcus, P. I. (1990). Development of the interferon 

system. I. In chicken cells development in ovo continues on time in vitro. In 

Vitro Cell Dev Biol 26, 997-1003. 

Seo, S. H., Hoffmann, E. & Webster, R. G. (2002). Lethal H5N1 influenza viruses 

escape host anti-viral cytokine responses. Nat Med 8, 950-954. 



 102 

Shaw, M. L., Stone, K. L., Colangelo, C. M., Gulcicek, E. E. & Palese, P. (2008). 

Cellular proteins in influenza virus particles. PLoS Pathog 4, e1000085. 

Shimizu, K., Handa, H., Nakada, S. & Nagata, K. (1994). Regulation of influenza 

virus RNA polymerase activity by cellular and viral factors. Nucleic Acids Res 

22, 5047-5053. 

Shinya, K., Hamm, S., Hatta, M., Ito, H., Ito, T. & Kawaoka, Y. (2004). PB2 amino 

acid at position 627 affects replicative efficiency, but not cell tropism, of Hong 

Kong H5N1 influenza A viruses in mice. Virology 320, 258-266. 

Solorzano, A., Webby, R. J., Lager, K. M., Janke, B. H., Garcia-Sastre, A. & Richt, 

J. A. (2005). Mutations in the NS1 protein of swine influenza virus impair anti-

interferon activity and confer attenuation in pigs. J Virol 79, 7535-7543. 

Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. 

(1998). How cells respond to interferons. Annu Rev Biochem 67, 227-264. 

Steel, J., Lowen, A. C., Pena, L., Angel, M., Solorzano, A., Albrecht, R., Perez, D. 

R., Garcia-Sastre, A. & Palese, P. (2009). Live attenuated influenza viruses 

containing NS1 truncations as vaccine candidates against H5N1 highly 

pathogenic avian influenza. J Virol 83, 1742-1753. 

Stephenson, I., Nicholson, K. G., Wood, J. M., Zambon, M. C. & Katz, J. M. (2004). 

Confronting the avian influenza threat: vaccine development for a potential 

pandemic. Lancet Infect Dis 4, 499-509. 

Stephenson, I., Bugarini, R., Nicholson, K. G., Podda, A., Wood, J. M., Zambon, M. 

C. & Katz, J. M. (2005). Cross-reactivity to highly pathogenic avian influenza 



 103 

H5N1 viruses after vaccination with nonadjuvanted and MF59-adjuvanted 

influenza A/Duck/Singapore/97 (H5N3) vaccine: a potential priming strategy. J 

Infect Dis 191, 1210-1215. 

Stone, H. D. (1987). Efficacy of avian influenza oil-emulsion vaccines in chickens of 

various ages. Avian Dis 31, 483-490. 

Stone, H. D. (1988). Optimization of hydrophile-lipophile balance for improved efficacy 

of Newcastle disease and avian influenza oil-emulsion vaccines. Avian Dis 32, 

68-73. 

Stone, H. D., Brugh, M. & Beard, C. W. (1983). Influence of formulation on the 

efficacy of experimental oil-emulsion Newcastle disease vaccines. Avian Dis 27, 

688-697. 

Suarez, D. L. (2005). Overview of avian influenza DIVA test strategies. Biologicals 33, 

221-226. 

Suarez, D. L., Perdue, M. L., Cox, N., Rowe, T., Bender, C., Huang, J. & Swayne, 

D. E. (1998). Comparisons of highly virulent H5N1 influenza A viruses isolated 

from humans and chickens from Hong Kong. J Virol 72, 6678-6688. 

Suarez, D. L. & Schultz-Cherry, S. (2000a). Immunology of avian influenza virus: a 

review. Dev Comp Immunol 24, 269-283. 

Suarez, D. L. & Schultz-Cherry, S. (2000b). The effect of eukaryotic expression 

vectors and adjuvants on DNA vaccines in chickens using an avian influenza 

model. Avian Dis 44, 861-868. 



 104 

Suarez, D. L., Senne, D. A., Banks, J., Brown, I. H., Essen, S. C., Lee, C. W., 

Manvell, R. J., Mathieu-Benson, C., Moreno, V., Pedersen, J. C., Panigrahy, 

B., Rojas, H., Spackman, E. & Alexander, D. J. (2004). Recombination 

resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis 

10, 693-699. 

Subbarao, K., Murphy, B. R. & Fauci, A. S. (2006). Development of effective 

vaccines against pandemic influenza. Immunity 24, 5-9. 

Swayne, D. & Kapczynski, D. (2008a). Avian Influenza Control Strategies. In Avian 

Influenza, pp. 407-451. Edited by D. Swayne. Ames, Iowa: Blackwell 

Publishing. 

Swayne, D. & Kapczynski, D. (2008b). Vaccines, Vaccination and Immunology for 

Avian Influenza Viruses in Poultry. In Avian Influenza, pp. 407-451. Edited by 

D. Swayne. Ames, Iowa: Blackwell Publishing. 

Swayne, D. E. (2003). Vaccines for List A poultry diseases: emphasis on avian 

influenza. Dev Biol (Basel) 114, 201-212. 

Swayne, D. E. (2006). Principles for vaccine protection in chickens and domestic 

waterfowl against avian influenza: emphasis on Asian H5N1 high pathogenicity 

avian influenza. Ann N Y Acad Sci 1081, 174-181. 

Swayne, D. E. (2007). Understanding the complex pathobiology of high pathogenicity 

avian influenza viruses in birds. Avian Dis 51, 242-249. 

Swayne, D. E. (2008). Avian influenza vaccines and therapies for poultry. Comp 

Immunol Microbiol Infect Dis. 



 105 

Swayne, D. E., Beck, J. R. & Mickle, T. R. (1997). Efficacy of recombinant fowl 

poxvirus vaccine in protecting chickens against a highly pathogenic Mexican-

origin H5N2 avian influenza virus. Avian Dis 41, 910-922. 

Swayne, D. E., Senne, D.A. & Beard, C.W. (1998). Isolation and Identification of 

Avian Pathogens. In Isolation and Identification of Avian Pathogens, 4th edn, pp. 

150-155. Edited by J. R. Glisson, D.E. Swayne, M.W. Jackwood, J.E. Pearson & 

W.M. Reed. Kennett Square, Pennsylvania: American Association of Avian 

Pathologists. 

Swayne, D. E., Garcia, M., Beck, J. R., Kinney, N. & Suarez, D. L. (2000). Protection 

against diverse highly pathogenic H5 avian influenza viruses in chickens 

immunized with a recombinant fowlpox vaccine containing an H5 avian 

influenza hemagglutinin gene insert. Vaccine 18, 1088-1095. 

Sylte, M. J., Hubby, B. & Suarez, D. L. (2007). Influenza neuraminidase antibodies 

provide partial protection for chickens against high pathogenic avian influenza 

infection. Vaccine 25, 3763-3772. 

Talon, J., Salvatore, M., O'Neill, R. E., Nakaya, Y., Zheng, H., Muster, T., Garcia-

Sastre, A. & Palese, P. (2000). Influenza A and B viruses expressing altered 

NS1 proteins: A vaccine approach. Proc Natl Acad Sci U S A 97, 4309-4314. 

Taylor, H. P. & Dimmock, N. J. (1985). Mechanism of neutralization of influenza 

virus by secretory IgA is different from that of monomeric IgA or IgG. J Exp 

Med 161, 198-209. 



 106 

Thiermann, A. B. (2007). The New World Organisation for Animal Health standards on 

avian influenza and international trade. Avian Dis 51, 338-339. 

Toro, H., Tang, D. C., Suarez, D. L., Sylte, M. J., Pfeiffer, J. & Van Kampen, K. R. 

(2007). Protective avian influenza in ovo vaccination with non-replicating human 

adenovirus vector. Vaccine 25, 2886-2891. 

Tumpey, T. M., Alvarez, R., Swayne, D. E. & Suarez, D. L. (2005). Diagnostic 

approach for differentiating infected from vaccinated poultry on the basis of 

antibodies to NS1, the nonstructural protein of influenza A virus. J Clin 

Microbiol 43, 676-683. 

Ulmer, J. B., Donnelly, J. J., Parker, S. E., Rhodes, G. H., Felgner, P. L., Dwarki, V. 

J., Gromkowski, S. H., Deck, R. R., DeWitt, C. M., Friedman, A. & et al. 

(1993). Heterologous protection against influenza by injection of DNA encoding 

a viral protein. Science 259, 1745-1749. 

Ulmer, J. B., Deck, R. R., DeWitt, C. M., Friedman, A., Donnelly, J. J. & Liu, M. A. 

(1994). Protective immunity by intramuscular injection of low doses of influenza 

virus DNA vaccines. Vaccine 12, 1541-1544. 

van Ginkel, F. W., Nguyen, H. H. & McGhee, J. R. (2000). Vaccines for mucosal 

immunity to combat emerging infectious diseases. Emerg Infect Dis 6, 123-132. 

Veits, J., Wiesner, D., Fuchs, W., Hoffmann, B., Granzow, H., Starick, E., Mundt, 

E., Schirrmeier, H., Mebatsion, T., Mettenleiter, T. C. & Romer-

Oberdorfer, A. (2006). Newcastle disease virus expressing H5 hemagglutinin 



 107 

gene protects chickens against Newcastle disease and avian influenza. Proc Natl 

Acad Sci U S A 103, 8197-8202. 

Villarreal, C. L. (2006). Control and eradication strategies of avian influenza in 

Mexico. Dev Biol (Basel) 124, 125-126. 

Vogel, F. R. (2000). Improving vaccine performance with adjuvants. Clin Infect Dis 30 

Suppl 3, S266-270. 

Wang, L., Suarez, D. L., Pantin-Jackwood, M., Mibayashi, M., Garcia-Sastre, A., 

Saif, Y. M. & Lee, C. W. (2008). Characterization of influenza virus variants 

with different sizes of the non-structural (NS) genes and their potential as a live 

influenza vaccine in poultry. Vaccine 26, 3580-3586. 

Wang, X., Basler, C. F., Williams, B. R., Silverman, R. H., Palese, P. & Garcia-

Sastre, A. (2002). Functional replacement of the carboxy-terminal two-thirds of 

the influenza A virus NS1 protein with short heterologous dimerization domains. 

J Virol 76, 12951-12962. 

Wang, X., Li, M., Zheng, H., Muster, T., Palese, P., Beg, A. A. & Garcia-Sastre, A. 

(2000). Influenza A virus NS1 protein prevents activation of NF-kappaB and 

induction of alpha/beta interferon. J Virol 74, 11566-11573. 

Watson, D. S., Reddy, S. M., Brahmaksatriya, V. & Lupiani, B. (2008). A 

multiplexed immunoassay for detection of antibodies against avian influenza 

virus. J Immunol Methods. 



 108 

Webster, R. G., Kawaoka, Y., Taylor, J., Weinberg, R. & Paoletti, E. (1991). 

Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowlpox 

virus as vaccine for influenza in chickens. Vaccine 9, 303-308. 

Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. 

(1992). Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152-

179. 

Wood, J. M., Kawaoka, Y., Newberry, L. A., Bordwell, E. & Webster, R. G. (1985). 

Standardization of inactivated H5N2 influenza vaccine and efficacy against lethal 

A/Chicken/Pennsylvania/1370/83 infection. Avian Dis 29, 867-872. 

Zebedee, S. L. & Lamb, R. A. (1988). Influenza A virus M2 protein: monoclonal 

antibody restriction of virus growth and detection of M2 in virions. J Virol 62, 

2762-2772. 

Zhao, S., Jin, M., Li, H., Tan, Y., Wang, G., Zhang, R. & Chen, H. (2005). Detection 

of antibodies to the nonstructural protein (NS1) of avian influenza viruses allows 

distinction between vaccinated and infected chickens. Avian Dis 49, 488-493. 

Zhou, A., Paranjape, J. M., Der, S. D., Williams, B. R. G. & Silverman, R. H. 

(1999). Interferon action in triply deficient mice reveals the existence of 

alternative antiviral pathways. Virology 258, 435-440. 

 



 109 

VITA 

 

Name: Vinayak R. Brahmakshatriya 

 
 
Education: Ph.D. Poultry Science, Texas A&M University, 2009 
 M.S., Animal Science, University of Delaware, 2004 
 B.V.Sc & A.H. (Equivalent to DVM in India), Maharashtra Animal 

and Fisheries Science University, India, 2002 
 
  
 
Address: Department of Poultry Science 
 C/O Dr. Sanjay M Reddy 
 Texas A&M University 
 College Station, TX 77843-4467 
 
 
Email Address: vinbrahma@gmail.com 
 


