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ABSTRACT 

 

The Regulation of Salmonella Typhi Vi Capsular Antigen Expression in Intestinal 

Model Epithelia and the Bovine Ligated-Ileal Loop Model.  (August 2009) 

                        Quynh Tien-Ngoc Tran, B.S., Texas A&M University; 

D.V.M., Texas A&M University 

Co-Chairs of Advisory Committee,  Dr. L. Garry Adams 
         Dr. Andreas J. Bäumler 

 

 Salmonella enterica serovar Typhi, a major public health concern in developing 

countries, continues to be a priority for the World Health Organization.  S. Typhi 

possesses a viaB locus responsible for the biosynthesis of the Vi-capsular antigen, a 

significant virulence factor at the focus of developing improved prophylaxis for typhoid 

fever.  Tissue culture experiments have demonstrated that S. Typhi wild-type capsule-

expressing strain elicits less chemokine secretion than a viaB mutant.  Calf experiments 

using the viaB mutant resulted in an increase inflammatory response.  Osmolarity is one 

of the control signals that affect the biosynthesis of the Vi antigen.  Under high 

osmolarity growth conditions of 300 mM and greater, Vi production is suppressed and S. 

Typhi is highly invasive.  Studies reveal that the viaB mutant displays increased invasion 

towards intestinal epithelial cells.  Our first objective was to implement direct and 

indirect methods to localize and detect Vi expression within intestinal epithelial cells and 

bovine Peyer’s patch.  The second objective was to compare the invasiveness between a 
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viaB mutant, an ompR mutant, and S. Typhi grown under hyperosmolarity.  We also 

measured the effects of these strains in eliciting inflammation in the calf model. 

 We report that tviB was significantly up regulated intracellularly within T84 

polarized cells.  In the calf experiments, tviB was expressed at levels significantly higher 

in calf tissue following invasion compared to inoculum grown under Vi-suppressing 

conditions.  Together, these results support the idea that the Vi capsular antigen is 

expressed after invasion of intestinal epithelial cells in vivo. 

 We found that S. Typhi grown under high osmolarity, the viaB mutant, and the 

ompR mutant had increased invasion in polarized T84 cells and bovine ileal tissue.  Fluid 

accumulation among Vi-deficient and Vi-suppressed strains was similar.  The 

histopathology of the inflammatory lesions of the small intestine produced by the Vi-

deficient and suppressed strains was quite comparable.  Our data supports the notion that 

Vi-suppressed and Vi mutants of S. Typhi exhibit similar levels of increased invasion 

and inflammation, perhaps mechanistically through the inactivation of the Vi antigen. 
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CHAPTER I 

INTRODUCTION 

 

BACKGROUND 

 The organism.  Salmonella Typhi, the etiological agent of typhoid fever, is 

responsible for 16 million cases of human disease and 600,000 deaths worldwide each 

year (68).  This disease is endemic to many developing countries including regions of 

Africa, South America, and Asia.  Children living in endemic areas, travelers to affected 

locations, and microbiological laboratory workers are among those at particularly high 

risk for contracting typhoid fever.  This gram-negative enteric bacillus belongs to the 

family Enterobacteriacea, and it is a motile, facultative anaerobic intracellular pathogen.  

Epidemic recurrences of typhoid fever remain among the most costly human infections 

in terms of both morbidity and mortality (107, 74). 

 

 Transmission.  S. Typhi is transmitted via contaminated water and food and is 

strictly host adapted to humans.  Due to the recent emergence of multidrug-resistant 

strains, the treatment of S. Typhi infection has proven to be difficult and poses a serious 

threat to future treatment options (6, 75, 86, 106).  Infected patients present with a 

history of prolonged fever, headache, abdominal discomfort, and general lethargy.  

____________________ 
This dissertation follows the style of Infection and Immunity. 
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Around 10% of these develop severe or complicated disease and without necessary 

treatment 5-30% of typhoid fever patients may die. 

 

 Pathogenesis: typhoidal versus non-typhoidal salmonellosis.  Experiments 

using the calf model and cultured human cell lines have elucidated some of the 

mechanisms by which S. Typhimurium causes the massive neutrophil influx infiltrate in 

the intestine, which is a pathological hallmark of human non-typhoidal enteritis.  The 

invasion-associated Type III secretion system (T3SS-1), encoded by Salmonella 

pathogenicity island 1 (SPI-1), allows S. Typhimurium to invade intestinal epithelial 

cells in vitro (29, 84).   The mechanisms in which S. Typhimurium and S. Typhi use for 

invasion (26) and for intracellular trafficking are quite similar.  Once S. Typhimurium 

invades, like S. Typhi, it induces membrane ruffling and cytoskeletal rearrangements 

upon contact with HeLa cell surfaces.  Ruffling induced by S. Typhi and S. 

Typhimurium is then accompanied by macropinocytosis and aggregation of cell surface 

class I MHC (26).  Once S. Typhimurium crosses the intestinal epithelial barrier, the 

innate immune system is able to recognize pathogen-associated molecular patterns 

(PAMPS) by toll-like receptors (TLRs) expressed by intestinal epithelial cells.  TLR5, 

which recognizes flagella, appears to be preferentially expressed at the basolateral pole 

of intestinal epithelial cells in vitro (31) and in vivo (12).  The TLR stimulation leads to 

the production of CXC chemokines (e.g. IL-8), which consequently leads to the 

recruitment of a massive neutrophil influx characteristic of gastroenteritis in humans.  

One mechanism by which neutrophils may contribute to diarrhea is related to neutrophil 
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de-granulation and the generation of tissue injury, resulting in damage to the epithelial 

barrier and leakage of extravascular fluids, allowing liquid to flow from blood into the 

intestinal lumen (111).  Both S. Typhi and S. Typhimurium secrete known effectors, 

SipA, SopB, SopD, SopE, that contribute to invasion and inflammation in the host; 

however, SopE2 and SopA are pseudogenes in S. Typhi.  In addition, it has been found 

that the alteration of these effectors do not contribute to the strict host adaptation of S. 

Typhi (83).   

S. Typhi possesses a single, monophasic flagellum (fliC) that has the same 

antigenic specificity whereas S. Typhimurium produces a biphasic (fliCfljB) flagella that 

has two different H antigenic specificities.  The role of flagella is believed to aid in 

motility and is generally associated with the extracellular life of the pathogen. However, 

continuous research is revealing the significance of novel roles of flagella during 

salmonellosis. 

 S. Typhi is highly host adapted to humans and higher nonhuman primates.  Thus, 

there is a lack of animal models suitable to study the molecular mechanisms of this 

pathogen as well as its host-pathogen interactions.  The S. Typhimurium murine model 

of infection is commonly used to study the pathogenic mechanisms of typhoid fever.  S. 

Typhimurium is a zoonotic pathogen that can cause enteritis in a broad host range.  

Upon comparison of the clinical syndromes of typhoidal with those of non-typhoidal 

salmonellosis (caused mainly by S. Typhimurium and other Salmonella enterica 

serovars), significant differences in their pathology and host agent interactions are 

exposed.  First, S. Typhi causes a systemic infection characterized by bacterial 



 4

colonization of the liver, spleen, bone marrow, mesenteric lymph nodes and Peyer’s 

patches.  The propagation of S. Typhi at systemic locations is believed to occur within 

macrophages and evidence provided by in vitro studies demonstrate that the organism 

survives well in human monocyte derived macrophages and other macrophage cell lines 

(21, 24, 42, 45, 46, 90).  SPI-2 has been shown to be important for the survival of S. 

Typhimurium and S. Typhi in macrophages.  In contrast, S. Typhimurium infection in 

human causes a localized gastroenteritis, while bacteremia only occurs in a small 

percentage of patients (approximately 1%).  Typhoid fever also has a longer incubation 

period (median of 5-9 days) and longer duration of symptoms (fever lasting for 

approximately 3 weeks) when compared to humans infected with non-typhoidal 

salmonellosis.  The incubation period of gastroenteritis caused by S. Typhimurium is 

short (12-72 h) and is followed by a short course of disease (< 10 days), suggesting that 

the infection is successfully cleared by the host’s immune response. 

 Another major difference between typhoid fever and S. Typhimurium-induced 

diarrhea in human is the type of inflammatory response elicited in the intestine.  The 

intestinal pathology observed during S. Typhimurium infection in humans is dominated 

by a massive neutrophil influx in the terminal ileum and proximal colon.  Analysis of 

intestinal biopsies from patients infected with S. Typhimurium reveals an infiltrate 

primarily composed of neutrophils, although mononuclear cells are also present (19, 66).  

Similarly, neutrophils are the predominant cell type (75% fecal leukocytes) in stools 

from patients diagnosed with non-typhoidal salmonellosis (36).  In contrast, typhoid 

fever is not a typical diarrheal disease and biopsies from typhoid fever patients or from 
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volunteers infected with S. Typhi reveal an infiltrate dominated by mononuclear cells 

(53).  Though S. Typhimurium and S. Typhi share similar mechanisms in invading the 

intestinal epithelium, penetration of the intestinal mucosa by S. Typhi does not induce 

IL-8 production from intestinal epithelial cells nor does it trigger the same massive 

neutrophil infiltration seen with S. Typhimurium.  S. Typhi infection does however cause 

the production of IL-6 production due to unclear mechanisms (107).  In addition, 

diarrhea is not a significant sequelae to human infection with S. Typhi, in which diarrhea 

only develops in 1% of typhoid fever patients and only after the onset of fever (44).   

Differences in disease manifestations in humans between S. Typhi and S. Typhimurium 

indicate that S. Typhi possesses distinct virulence factors important in its pathogenesis.   

 

 Animal models of infection.  Our knowledge of the pathogenesis of S. Typhi is 

limited due to the fact that it only infects humans, resulting in the lack of in vivo models 

to study host-pathogen interactions.  The implementation of a variety of cell culture lines 

have elucidated some of the molecular mechanisms in which S. Typhi causes disease; 

however in vivo studies are still warranted in order to validate in vitro findings and to 

promote further understanding of typhoid fever pathogenesis in the host.  Much of our 

information comes from observations in clinical settings, mainly conducted during the 

first half of the 20th century, and in the course of experimental challenge studies in 

healthy adult volunteers carried out in the 1950s and 1960s (44, 60).  Two animal 

models have contributed significantly to our understanding of the human pathogenesis of 
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typhoid infection:  oral challenge of chimpanzees with S. Typhi (22, 28) and oral or 

systemic challenge of mice with S. Typhimurium (13, 15).   

 Initial studies conducted at the Walter Reed Army Institute showed that orally 

inoculated chimpanzees with S. Typhi develop a clinical illness that mimicked human 

typhoid fever (22, 28).  The animals experienced a bacteremia, produced fever for 10 

days, and excreted bacteria in their stools.  Differences in clinical typhoid infections 

between chimpanzees and humans included a shorter incubation period followed by a 

milder clinical course of disease in the animal model.  The systemic spread of the 

disease progressed from the primary site of infection, the intestinal lymphoid tissue and 

metastasized to the general lymphatic system and subsequently a circulating bacteremia.  

S. Typhi was found in the liver and spleen, in addition to the bile and gallbladder.  

Pathological examination of lesions present in the intestinal mucosa and lymphoid 

tissue, spleen and liver of infected animals resembled those seen in humans.  

Chimpanzees also had serum antibody and responses to S. Typhi LPS and flagella. 

 The use of higher non-human primates in research has declined in popularity 

overtime due to the expense and public concerns.  Therefore, most studies have relied on 

a murine model of human typhoid that uses S. Typhimurium, which causes a typhoid-

like illness in mice (90).  As a consequence, most of what is known about the 

pathogenicity of S. Typhi has been extrapolated from S. Typhimurium infections in 

mice.  A significant limitation to using this murine model is that S. Typhimurium does 

not cause typhoid fever in humans, but instead causes a localized purulent gastroenteritis 

resulting in diarrhea.   
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Mice infected with S. Typhimurium exhibit systemic disease resembling human 

typhoid fever.  Therefore, the pathogenesis of typhoid fever has been commonly studied 

using S. Typhimurium infection in mice as an animal model.  The intestinal pathology 

caused by S. Typhimurium in mice is similar to that observed in human typhoid fever 

patients and is characterized by edema and mononuclear cell infiltrates of villi which 

become shortened in height (91).  Capillary thrombosis, hemorrhage, and ulcerations 

may be present in the ileum at areas of Peyer’s patches while the epithelium in other 

areas remains largely intact (7, 53, 90, 94).  In susceptible mice, rapid bacterial 

migration to the liver and other internal organs causes death within 6-10 days following 

S. Typhimurium infection (48).  

 More recently, studies have focused on the calf as a model for S. Typhimurium-

induced enterocolitis (89, 98, 99, 110, 112).  Calves develop diarrhea within 12-24 h 

post-ingestion of S. Typhimurium (98).  The infection typically remains localized to the 

intestine and mesenteric lymph nodes (98, 109).  Calves develop a necrotizing 

fibrinopurulent enterocolitis characterized by a severe, diffuse infiltration of 

polymorphonuclear leukocytes (22).  In contrast, mice infected with S. Typhimurium 

develop diffuse moderate mononuclear enteritis in the small intestine characterized by a 

predominantly mononuclear leukocyte infiltrate with no association with diarrhea (91).  

The clinical and pathological features of S. Typhimurium infection in calves parallel the 

disease in man and provide a natural human model of disease.   

 In addition, the use of the calf ligated-ileal loop model has been used to study the 

pathogenesis of S. Typhi (82, 83, 91).  Moreover, the role of the Vi capsular antigen, an 
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important virulence factor present in S. Typhi but absent in S. Typhimurium, has been 

shown to reduce inflammation in the calf model and research findings illustrate that the 

model is suitable for studying the effects of Vi antigen expression in vivo (82).  Thus, the 

calf model is a good animal model that allows us to perform comparative studies 

investigating S. Typhi virulence factors that are absent from S. Typhimurium and those 

that may be responsible for allowing S. Typhi to cause typhoid fever in humans. 

 

 Current prophylaxis and treatment.  The Vi capsular polysaccharide of S. 

Typhi is an important virulence factor and protective antigen during its pathogenesis.  

The Vi antigen is believed to block toll-like receptor recognition of pathogen associated 

molecular patterns and allows S. Typhi to go systemic by resisting complement-

mediated phagocytosis.  Immunization with a capsule-containing vaccine has been 

shown to confer protective antibody responses against typhoid fever and is generally 

considered efficacious.  Thus, the Vi capsule is and continues to be a significant focus 

for the development of improved typhoid fever vaccines. 

 Inactivated whole-cell parenteral vaccines have been used previously to prevent 

typhoid fever infections, but the adverse associated reactions have made it unpopular as 

a public health vaccine.  As a result, two vaccines have been developed in the past 

fifteen years and licensed for protection against S. Typhi.  The first one is a parental 

vaccine based on the isolation of a purified Vi capsule polysaccharide from the blood of 

an infected patient.  The second one is a live attenuated oral vaccine derivative of S. 

Typhi Ty21a strain.  
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 Immunization with the capsular polysaccharide vaccine (Typhim Vi) has been 

shown to be effective in its ability to stimulate protective antibody responses against 

typhoid fever (40).  Conversely, inoculation with the vaccine produces some adverse 

side effects.  For example, 17% of adult recipients and 86.7% of children recipients 

experience non-severe and transient local pain at the injection site (40).  The vaccine is 

given subcutaneously at a single dose of 25 µg to persons over 2 years of age, confers 

protection within 7-10 days post-inoculation, and requires 3-year boosters (57, 68). 

 The second licensed typhoid vaccine that is currently available is the S. Typhi 

strain Ty21a live, attenuated oral vaccine (Vivotif).  Ty21a is characterized by a galE 

mutation and its inability to produce the Vi antigen (68).  This mutation is not solely 

responsible for the attenuation of the Ty21a strain since a defined galE and Vi negative 

mutant still maintained some virulence when tested in human volunteers (43).  This 

suggests that the mutations that attenuate Ty21a remain unclear. Hypothetically, a 

problem that may arise with the use of Ty21a is the ability to revert back to a virulence 

form, although no known cases have been reported (67). 

 Similar to the Vi capsular antigen vaccine, Ty21a has been proven to be effective 

and safe in several vaccine trials (8, 16, 57-59, 105).  Ty21 elicits a moderate 

immunogenic response and requires at least 3-4 doses initially (8, 57-59, 72).  Thus, the 

vaccine is usually given at the beginning as three to four bacteria-containing capsules on 

alternate days and requires boosters every five years (68), although a liquid formulation 

of the Ty21a vaccine has been shown to improve the protectiveness (57, 59) .   



 10

 New generations of typhoid vaccines are being studied and developed to replace 

the current ones due to their drawbacks.  One weakness associated with the use of the 

parenteral vaccine is the greater number of side effects that occur; though the oral 

vaccine may have fewer side effects, it may confer a reduced immunogenicity.  The 

Ty21a strain vaccine offered less protective immunity with the simultaneous 

administration of antimalarial drugs (52).  However, both vaccines are equally effective 

and offer 65% to 75% protection against the disease.  Nevertheless, some of the 

innovative vaccines include a parenteral Vi polysaccharide-protein conjugate that is 

expected to produce higher antibody titers following initial and booster immunizations 

than the Vi vaccine (68) and a number of genetically defined attenuated strains of S. 

Typhi.  Shortfalls in both vaccines and a greater understanding of the genetics of S. 

Typhi virulence and recombinant DNA technology promotes the search for a more 

efficacious and better defined vaccine. 

 

 The Vi (virulence) capsular antigen.  Whole genome sequencing has revealed 

that S. Typhi genome contains 601 genes on 82 genetic islands that are absent from S. 

Typhimurium genome (76).  The largest of these islands termed SPI-7, contains 134 kb 

of S. Typhi-specific DNA and carries biosynthesis genes (viaB locus) for the production 

of the Vi capsular antigen, a linear polymer of α-1,4 2-deoxy-2-N-acetylgalacturonic 

acid variably O-acetylated at the C3 position (38, 41) and the genes encoding Type IVB 

pilus, a structure involved in the invasion of intestinal epithelial cells (113).  The Vi-

antigen is expressed in vitro in macrophages (17, 24) and during human infection, as 
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indicated by the infection of anti-Vi antibodies in patient serum (Widal test) and the fact 

that with vaccination with Vi antigen confers protection against typhoid fever (49, 50, 

62, 85).  Some S. Typhi isolates were reported to lack the ability to express the Vi 

antigen as determined by slide agglutination (3, 87).  However, a prospective analysis of 

clinical S. Typhi isolates for the presence of viaB by polymerase chain reaction (PCR) 

and for Vi expression by a more sensitive technique (i.e. immunofluorescence) found 

that S. Typhi isolates that are Vi-negative by slide agglutination are in fact Vi-positive 

and carry the viaB region (106).   Although the Vi antigen appears to be present in fresh 

clinical isolates, SPI-7 can be lost by deletion upon passage or storage of S. Typhi in the 

laboratory (10, 73).  Most importantly, the role of the Vi antigen during host-pathogen 

interactions is still poorly understood. 

 Recent in vitro observations have revealed that the expression of the Vi capsular 

antigen is regulated by osmolarity.  Under conditions of high osmolarity, as expected in 

the intestinal lumen, the Vi antigen is turned off (78), while flagella and the T3SS-1 

genes are expressed (2).  When S. Typhi wild type is cultured in 300 mM NaCl 

containing Luria-Bertani broth (LBH), the expression of the Vi antigen is suppressed, 

but the secretion of invasion proteins (SipB, SipC, SipA) is increased (114).   

 Under the same conditions, S. Typhi wild type is highly invasive and destructive 

towards epithelial and M cells of rat’s Peyer’s patches (114).  These data suggest that the 

Vi antigen may not be expressed in the intestinal lumen and possibly allow S. Typhi to 

have a more invasive phenotype as it penetrates the intestinal epithelium.  In addition, 

the mechanisms by which Vi expression and invasion are controlled appear to act in 



 12

opposition to one another.  Infection of polarized human epithelial cells (T84 cells) and 

human macrophage-like cells (THP-1) with a capsulated S. Typhi significantly reduces 

the amount of IL-8 production compared to a non-capsulated mutant (80).  Furthermore, 

these findings support the notion that the Vi antigen may be expressed after invading 

cells and inhibit PAMP recognition by TLRs and resulting in no IL-8 production.  

 The two component positive regulatory systems, RcsBC and OmpR EnvZ, in 

addition to the promoter of the viaB region, located upstream of tviA, have been 

identified as contributors to Vi expression and are modulated by osmolarity.  Under low 

osmolarity conditions, the production of Sip proteins, flagellin, and Vi antigen is 

differentially modulated by the RcsB-RcsC regulatory system.  The transcription of 

iagA, invF, and sipB genes is negatively controlled by the RcsB regulator (2).  The TviA 

protein is not essential for Vi synthesis, but it does function as a positive regulator in co-

transcribing the tviA and tviB genes (37, 104).  When the tviA gene is disrupted, the 

expression of the Vi antigen is strongly decreased.  In addition, the TviA protein may act 

in concert with the RcsB protein at the tviA promoter to activate transcription of the 

genes involved in the Vi synthesis (103).  Hence, the regulations of Vi expression under 

the control of the promoter of tviA and its co-regulatory functions with rcsB have not 

been clearly elucidated.  S. Typhi strains harboring ompR deletions no longer 

agglutinated with Vi anti-serum (78), indicating that somehow the ompR-envZ system is 

involved in the Vi biosynthesis.   Recently, other components of the S. Typhi genome 

have been implicated for involvement with Vi expression.  The type IVB pillus has been 

shown to assist in the invasion of intestinal epithelial cells (113) and evidence suggests 
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that the pilus production and Vi synthesis may be regulated under similar promoters and 

that Vi synthesis precedes pilus production (54).  The rpoS gene, which is a master 

regulator in stress response and required for survival under extreme conditions in S. 

Typhimurium, has been implicated as another regulator of Vi synthesis of S. Typhi (88).

 Polysaccharide capsules are found on the surface of a wide range of gram-

negative bacteria.  Capsules have a significant role in determining access of certain 

molecules to the cell membrane, mediating adherence to surfaces, and increasing 

tolerance of desiccation. Furthermore, capsules of many pathogenic bacteria impair 

phagocytosis (63) and reduce the action of complement-mediated killing.  Consistent 

with this belief, the Vi-antigen was shown to impede uptake of S. Typhi by human 

neutrophils (64).  Thus, the Vi capsular antigen is likely to be major virulence 

determinant of S. Typhi. 

Osmolarity has been shown to be one of the signals that control Vi capsule 

expression in S. Typhi in vitro (2, 78, 114).  S. Typhi grown under hyperosmotic 

conditions in LBH medium suppresses Vi expression where as growing S. Typhi under 

hyposmotic conditions in SOB medium upregulates Vi expression.  This research 

finding corresponds to the different stages of S. Typhi pathogenesis as it encounters 

different osmolarities in vivo.  In the gut lumen, hyperosmotic conditions exist due the 

enzymatic digestion of macromolecular foodstuffs in addition the presence of sodium, 

chloride, and potassium ions in the intestinal fluid.  In tissue and blood, the conditions 

are hypososmotic compared to the intestinal lumen as a result of homeostatic 

mechanisms.  The Vi may be downregulated in the gut, facilitating interactions of S. 
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Typhi with epithelial cells, while it is upregulated in blood, where it is known that Vi is 

important for this stage of infection and in tissue, where it may inhibit TLR recognition.  

Therefore, the central hypothesis of this study is during S. Typhi invasion of intestinal 

epithelial cells, the Vi antigen is downregulated, which enhances the secretion of the 

SPI-1 (T3SS) effector proteins and promotes a more invasive phenotype, possibly 

allowing invasion into deeper tissues.  Following invasion, the Vi is upregulated, 

blocking innate immune recognition of PAMPs.  This theory has been formulated on 

previous studies that expression of the Vi antigen causes decreased levels of pro-

inflammatory cytokine production in human epithelial cells (80) and in the calf ligated 

ileal-loop model (82).   

The second aspect of this study involves the ompR regulator and unraveling its 

role in the expression of the Vi antigen and activation of invasion-associated genes.   

OmpR-Envz, the two-component regulatory system, has been shown to be a positive 

regulator of Vi expression (78), in which the construction of a S. Typhi ompR mutant no 

longer produced the Vi polysaccharide.  Prior studies have shown that a viaB mutant and 

S. Typhi grown under Vi-suppressed secreted increased levels of invasion proteins and 

demonstrated increased invasion (71, 80, 114).  Accordingly, we believe that the ompR 

mutant possesses a hyperinvasive phenotype through the inactivation of Vi expression.  

This would further support the idea that the mechanisms by which Vi expression and 

invasion are controlled appear to act in opposition to one another.  However, currently 

there are no convincing reports of a S. Typhi ompR mutant demonstrating whether or not 

there is an increase invasion associated with this Vi-deficient strain.  As a result, we 
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wanted to test our ompR mutant in the T84 polarized cell experiments and the calf 

ligated loop-model and study invasion. 

In the first set of experiments, we tested the hypothesis that the Vi antigen will be 

upregulated and expressed following invasion of intestinal epithelial cells by infecting 

T84 polarized cells and inoculating calf ligated-ileal loops with S. Typhi and 

demonstrating Vi expression.  We first constructed a gfp fusion to the promoter of the 

viaB region in S. Typhi and determined the fluorescence population between 

intracellular and extracellular bacteria in T84 experiments by using flow cytometry.  We 

performed real-time PCR experiments to analyze Vi capsule expression and invasion 

genes in T84 polarized and the calf ligated-ileal loops.  Ultimately, we directly detected 

the presence of the Vi capsule in calf ileal tissue with fluorescence 

immunocytohistochemistry. 

In the second set of experiments, we tested and compared the ompR mutant, viaB 

mutant, S. Typhi grown under Vi-suppressing conditions, and S. Typhi grown under Vi-

expressing conditions.  We first analyzed the protein secretion profile from the 

supernatant of each strain.  We conducted RT-PCR analysis to study the expression of 

invasion genes associated with each strain.  We infected T84 polarized cells and 

inoculated calf ligated-ileal loops to perform invasion analysis.  Lastly, slides from the 

calf ileal tissue were read and scored according to a scale for inflammatory changes. 

Vi antigen expression has not been studied adequately in different cells lines nor 

has it been examined extensively in animal models.  In addition, the mechanism in 

which the ompR regulon mediates Vi expression and affects invasion remains unclear.  
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Our experiments elucidated how S. Typhi may have adapted to the natural host 

environment and exploited the host environmental niche in order to promote disease in 

humans.  Our results revealed some of the molecular mechanisms of the Vi capsular 

antigen expression and support its role in allowing S. Typhi to evade the host innate 

immunity. 
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CHAPTER II 

VI ANTIGEN EXPRESSION IN CULTURED INTESTINAL EPITHELIAL 

CELLS AND BOVINE PEYER’S PATCH 

 

INTRODUCTION  

 Typhoid fever is an acute, systemic infection of the reticuloendothelial system 

caused by Salmonella enterica serotype Typhi, that is annually responsible for an 

estimated 16 million illnesses and 600,000 deaths worldwide (68).  Our knowledge of 

the pathogenesis of S. Typhi is limited because it only infects humans and higher non-

human primates (28), resulting in the absence of in vivo models to study host-pathogen 

interactions.  Many studies have relied on a murine model of human typhoid that uses S. 

enterica serovar Typhimurium, which causes a typhoid-like illness in mice.  As a 

consequence, most of what is known about the pathogenicity of S. Typhi has been 

extrapolated from S. Typhimurium infections in mice.  A significant limitation to using 

the murine model is that S. Typhimurium does not cause typhoid fever in humans, but 

instead causes a localized gastroenteritis resulting in diarrhea. 

 Whole genome sequencing has revealed that S. Typhi genome contains 601 

genes on 82 genetic islands that are absent from the S. Typhimurium genome (76).  The 

largest of these islands termed SPI-7, contains 134 kb of S. Typhi-specific DNA and 

carries biosynthesis genes (viaB locus) for the production of the Vi capsular antigen, a 

linear polymer of α-1,4 2-deoxy-2-N-acetylgalacturonic acid variably O-acetylated at 

the C3 position (38, 41).   The Vi capsular antigen is a significant virulence factor for 
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typhoid fever as strains positive for Vi production have higher rates of infection (43, 44),  

and it continues to be the focus for improvement in current treatment and prophylaxis for 

this disease. 

 The two component positive regulatory systems, RcsBC and OmpR EnvZ, in 

addition to the promoter of the viaB region, located upstream of tviA, have been 

identified as contributors to Vi expression and are modulated by osmolarity.  Under low 

osmolarity conditions, the production of Sip proteins, flagellin, and Vi antigen is 

differentially modulated by the RcsB-RcsC regulatory system.  The transcription of 

iagA, invF, and sipB genes is negatively controlled by the RcsB regulator (2).  The TviA 

protein is not essential for Vi synthesis, but it does function as a positive regulator in co-

transcribing the tviA and tviB genes (37, 104).  In addition, the TviA protein may act in 

concert with the RcsB protein at the tviA promoter to activate transcription of the genes 

involved in the Vi synthesis (103).  S. Typhi strains harboring ompR deletions no longer 

agglutinate with Vi anti-serum (78).  The rpoS gene, which is a master regulator in the 

stress response and required for survival under extreme conditions in S. Typhimurium, 

has been implicated as another regulator of Vi synthesis of S. Typhi (88).  Indeed, 

extensive work has been attempted to characterize the regulation of the Vi expression in 

vitro; however, studies have shown that the gene regulation in infected hosts can 

markedly differ from what has been expected based on in vitro and cell culture work (5, 

55, 56), stressing the need for in vivo studies to understand Salmonella virulence gene 

regulation fully. 
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As S. Typhi encounters different osmolarity environments during its 

pathogenesis, it may in fact possess adaptive responses to these changes (79).  In the 

intestinal lumen, the osmolarity is high, with values considered to be equivalent to 

300mM NaCl and greater (32, 70, 97).  Once S. Typhi invades the intestinal barrier, it 

encounters a lower osmolarity condition equivalent to ~150mM (69), which has been 

reported to be the osmolarity of blood and plasma.  It is thought that the hyperosmotic 

conditions within the intestinal lumen may promote a hyperinvasive phenotype while 

suppressing Vi expression and then following invasion, the Vi is activated and expressed 

whereas the T3SS-1 is down-regulated (81).  

In contrast, other studies have shown that the capsule may inhibit bacterial 

adhesion and invasion of the intestinal epithelium (2, 71), suggesting that the Vi may be 

produced in the intestinal lumen.  Experiments have also demonstrated that natural 

occurring typhoid fever infections as well as live S. Typhi vaccines provoke a poor host 

protective immune response even though the Vi is a good antigen (96), which may be 

due to the inactivation of Vi antigen expression once the pathogen invades the intestinal 

epithelium and resides in macrophages.  This concept has been proposed to be a possible 

explanation for the reduced Vi antibody responses as decreased amounts of antigen may 

be presented to the host’s immune system for processing (78).  However, these 

assumptions are not supported by the current data on Vi capsule expression.  

Nevertheless, the location and the regulation of Vi capsule expression in the host remain 

unclear.  The purpose of this study was to investigate the expression of the Vi antigen in 
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vitro using intestinal model epithelia (polarized T84 cells) and in vivo in the bovine 

ligated-ileal loop model of Salmonella infection. 

 

MATERIALS AND METHODS 

 Bacterial strains and culture conditions.  S. Typhi strain Ty2 was obtained 

from the American Type Tissue Culture Collection (ATCC 19430).  Strains were 

cultured aerobically in Luria-Bertani broth containing 300mM NaCl, (LBH) for optimal 

Vi suppression supplemented with the following antibiotics carbenicillin, 100 mg/L 

and/or kanamycin 100 mg/L, as appropriate.  For T84 cell infection experiments, each 

strain was grown overnight at 37ºC shaking in LBH broth with appropriate antibiotics.  

The next day 1:1000 dilution of overnight culture was made and bacteria were grown 

until OD600= 1.0-1.5 (late log phase) for optimal Vi suppression without antibiotics.  

Bacteria were added at a concentration of 107 cfu/well.  For bovine ligated ileal loops, 

each strain was grown overnight at 37ºC shaking in 4 ml of LBH broth with appropriate 

antibiotics.  A volume of 0.04 ml of overnight culture was used for inoculation of 4 ml 

of LBH broth without antibiotics, and bacteria were grown until OD600= 1.0-1.5 (late log 

phase) for optimal Vi suppression, and the culture was used as the inoculum.  Strains 

were cultured in SOB (Vi-inducing conditions) medium where indicated as controls.  

Strains and plasmids used in this study are listed in Table 1. 

 
 
 
 
 
 



 21

 
 
 
 
Table 1.  Strains and plasmids  
 
Strain or plasmid Description Reference and/or 

source 
Strains   
    S. Typhi    
       Ty2 Salmonella Typhi wild type ATCC 19430 
       QT74 Ty2∆ompR::KanR This study 
       QT81 Ty2::pBluescript::egfp::viaB promoter 

region 
This study 

       QT113 Ty2∆ompR carrying pBluescript 
SK+::ompR::KanRCarbR 

This study 

   
Plasmids   
       pcR 2.1 Cloning vector Invitrogen 
       pBluescript SK+ Cloning vector Stratagene 
       pEGFP Green Fluorescent Protein (GFP) 

mut1variant expressing vector 
Clonetech 

       pQT13 pGP704::ompRFR1 This study 
       pQT17 pGP704::ompRFR1::ompRFR2 This study 
       pQT19 pGP704::ompRFR1::ompRFR2::KanR This study 
       pQT27 pEGFP::viaB promoter This study 
       pQT28 pBluescript SK+::egfp::viaB promoter This study 
       pQT50 pBluescript KS:: ompR This study 
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Construction of a non-polar deletion of ompR in S. Typhi and the 

complementation strain.  A region 1.2 kb upstream of ompR was amplified by PCR 

using FW (5’-GACGGTTCGTGTTCCAGAGCAG-3’) and RV (5’-

CTCTTGCATTGTCTGTACTCC-3’) and a 1.0 kb region downstream of ompR was 

PCR amplified using FW (5’-CGCCGTATGGTGGAAGAAG-3’) and RV (5’-

ACCTGGATGCTGCCTGCCTG-3’).  Both downstream and upstream flanking regions 

were cloned into pCR 2.1 (Invitrogen).  Subsequently, the upstream fragment was 

subcloned into the BglII/SalI site of pgP704, giving rise to pQT13.  The downstream 

fragment was cloned into pQT13 using the XbaI/SmaI site, giving rise to pQT17.  The 

kanamycin cassette (1.5 kb) was excised from pKIXX and inserted in the SalI site in 

pQT17 to give rise to pQT19.  The entire construct was confirmed via nucleotide 

sequencing and restriction enzyme digestion (Figure 1).  Using the suicide plasmid 

pQT19, alleles were introduced into S. Typhi with standard allelic methodologies.  

Colonies were screened for kanamycin resistance and loss of carbenicillin resistance.  A 

general schematic for the generation of QT74 is depicted in Figure 2.   

A single colony, demonstrating loss of carbenicillin resistance and gain of 

kanamycin resistance, was further screened for the ompR deletion.  Loss of the ompR 

gene was confirmed by Southern blotting with an ompR-specific probe, PCR analysis, 

and the inability to agglutinate with Vi antisera (Difco).  The strain was designated 

QT74. 
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Figure 1.  Restriction enzyme digestion of pQT19 with SmaI.  Two possible 

orientations:  1st band~6.1 kb and 2nd band~1.15 kb (Lane 4) or 1st band~1.95 kb and 2nd 

band~5.25 kb (Lane 2 and 3).  All colonies were correct for pQT19. 
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Figure 2.  General schematic illustrating the generation of QT74 (S. Typhi Ty2 ompR 

mutant strain) from allelic exchange methodologies.  E. coli (S17 lambda pir) harboring 

the plasmid construct (pQT118) and S. Typhi Ty2 wild type strain were grown over 

night shaking at 37 degrees C  in appropriate liquid medium.  Following day, 

conjugation experiments involving both strains were performed on LBH plates.  

Colonies were subsequently selected for loss of carbenicillin resistance and gain of 

kanamycin resistance. 
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To generate the complementation strain, ompR was amplified using FW(5’-

TGCCAGCCATCAGCGGGGGCTT-3’) and RV (5’-

GCCCTGATGAATCTCGGTCAG-3’) primers.  The PCR fragment was cloned into 

pBluescript KS+ using EcoRV/EcoR1, creating pQT50.  The plasmid was then 

electroporated into QT74, giving rise to QT113.  The ability of QT113 to agglutinate 

with Vi antisera was restored, indicating the ompR gene was complemented successfully. 

 

Construction of an egfp reporter system encoding the promoter of the viaB 

locus of S. Typhi.  For construction of a Ty2 strain carrying a high copy plasmid 

encoding the viaB region promoter fused to a mutant variant of gfp (i.e. egfp), the 

promoter of the viaB locus was amplified by PCR using the primers FW (5’-

tataccatgggaagtctccttatgctgaaa-3’) and RV (5’-tatagtcgacgcagtcacgcaccatc-3’) flanked 

with restrictions sites SalI and NcoI, respectively.  The resulting 600 bp PCR fragment 

was cloned into pCR2.1 (Invitrogen), and the fragment was confirmed by nucleotide 

sequencing and restriction enzyme digestion (Figure 3).  The fragment was subcloned 

into pEGFP, using the Nco I and Sal I multiple cloning site, giving rise to plasmid 

pQT27.  The promoter of the viaB region and the egfp fragments were excised using SalI 

and EcoRI, and subsequently subcloned into pBluescript SK+ (Strategene), giving rise to 

plasmid pQT28.  A general schematic demonstrating the construction of pQT28 is 

illustrated in Figure 4.  The plasmid was electroporated into Ty2 to produce strain QT81.  

To confirm that Vi expression is modulated by osmolarity in vitro, QT81 was grown in 

culture containing different salt concentrations and investigated with flow cytometry. 
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Figure 3.  Restriction enzyme digestion of pQT28 with SalI and EcoR1. Band 1~1.36 kb 

(insert) and Band 2~ 3.0 kb (vector). The plasmid was subsequently electroporated into 

Ty2. 
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Figure 4.  General schematic illustrating the generation of QT81 (S. Typhi 

Ty2::pBluescript::viaBp:: egfp).  The plasmid construct (pQT28) was electroporated into 

S. Typhi Ty2 wild type electrocompetent cells.  Colonies positive for carrying the 

plasmid were selected on CarbR plates.  Plasmid extraction was subsequently performed 

to confirm the presence of the plasmid. 
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To confirm the phenotype ompR as a regulator of Vi expression, pQT28 was 

electroporated into QT74, giving rise to QT114.  This strain was grown in different 

osmolarity conditions in broth and subjected flow cytometry analysis. 

 

Cell culture.  T84 cells are a human cell line of colon carcinoma cells that can be 

polarized upon seeding the cells on the apical compartment of Transwell plates and 

adding medium to the basolateral compartment.  Over the duration of a week, the cells 

develop a transepithelial resistance that allows them to mimic the conditions of the 

human intestinal epithelium (shown in Figure 5).  T84 cells were seeded at 5 x 105 cells/ 

well and once they developed a transepithelial resistance of 500-1500Ω (65), bacteria 

were added at approximately 0.418 x 109 cfu/well (multiplicity of infection was 

approximately 10:1) to the apical compartment of polarized T84 cells for 1 hour at 37°C 

in 5% CO2 to allow invasion.  After 1 hour, the supernatant from each well was 

removed.  To compare bacterial gene expression inside and outside mammalian cells, the 

traditional gentamicin approach is not required (9).  Instead, pre-warmed DMEM-F12 

media was added to the apical side and incubated for 2 hours at 37°C in 5% CO2.  After 

the incubation period, the supernatant was collected and extracellular bacteria were 

harvested via centrifugation.  The monolayer was then washed 3 times with ice cold 

PBS.  T84 cells were then harvested and lysed with 1% Triton x-100 and incubated on 

ice for 10 minutes. 
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Figure 5.  Intestinal culture model epithelia: T84 polarized cells. T84 cells were seeded 

at 5 x 105 cells/ well and after 7-10 days, they develop a transepithelial resistance of 500-

1500Ω.  Bacteria were added at approximately 0.418 x 109 cfu/mL (multiplicity of 

infection was approximately 10:1) to the apical compartment. 
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Flow cytometry.  Flow cytometry samples were prepared as described 

previously (9).  To characterize QT81 and QT114 in broth, one ml of bacteria culture 

was harvested by centrifugation at 6000x g for 5 minutes.  Bacteria cells were washed 

twice with PBS to remove LB media.  Bacterial pellets were resuspended in 1 ml of 4% 

paraformaldehyde and incubated for 30 minutes at room temperature.  Fluorescence was 

measured by using a FACS Calibur (Becton Dickinson) and the Cell quest software 

provided by the supplier.  The bacterial population was gated by using side and forward 

scatter parameters and then analyzed for fluorescence.  For the analysis of QT81, the 

fluorescence intensities were determined for the number of particles (bacterial cells) as 

follows in culture:  QT81 grown in LBH medium, 87759, QT81 grown in SOB medium, 

73121, and the negative control Ty2 wild type, 62471.  For the analysis of QT114, the 

fluorescence intensities were determined for the number of particles (bacterial cells) as 

follows QT114 grown in LBH, 17640, QT114 grown in SOB, 17583, and Ty2 wild type, 

19413.   

In T84 polarized cell infected with QT81, the flow cytometry results were pooled 

from experimental infections of two separate transwell plates of polarized T84 cells.  

The bacterial population was gated with side and forward scatter parameters using 

samples from the QT81 grown in inducing or low osmolarity (SOB) conditions and 

uninfected T84 polarized cells treated under the same conditions as infected cells in 

order to set the region of fluorescence.  The results are expressed as the percentage 

population fluorescing and the mean fluorescence intensity.  The number of particles 
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used to determine fluorescence intensities were:  extracellular bacteria, 9704 and the 

intracellular bacteria with T84 cell lysates, 49812. 

 

 Bovine ligated-ileal loop model.  Four milk fed 3-4 weeks old calves were 

obtained from a Texas A&M University cattle herd.  Calves were tested for Salmonella 

infection by fecal swabs, enriched in tetraiodothionate broth and plated on XLT4.  

Calves were tested for leukocytosis and fever prior to experiments.  To perform the 

ligated-ileal loop experiments, calves were anesthetized using propofol induction and 

isoflurane maintenance for the duration of the experiment (1).  A right-flank laparotomy 

was performed, the jejunum and ileum exposed and loops with lengths ranging from 6-9 

cm ligated, leaving 1-cm loops between them.  The loops were infected by intralumenal 

injection of a 4 ml suspension containing approximately 1 X 109 CFU/ml of S. Typhi 

strains grown in LBH broth.  Loops injected with LBH broth served as a negative 

control.  Loops were excised at 2 and 8 hours post infection to:  1) collect the fluid that 

has accumulated in the lumen, 2) harvest extracellular bacteria, 6.0 mm biopsy punched 

tissue samples of the mucosa/submucosa for RNA extraction, and 3) collect tissues for 

frozen OCT sections.  The frozen sections were later cut at 10µm thickness for 

fluorescence immunohistochemistry and stored at -80ºC. 

 

 Fluorescence immunocytohistochemistry.  Frozen sections of ileal tissue 

infected with Typhi grown in LBH and loops inoculated with LBH (negative control) 

were fixed in methanol.  Samples were incubated with a primary anti-Vi rabbit antibody 
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(1:250) (Difco) overnight in 4ºC.  Next day, samples were incubated for 2 hours at room 

temperature in a humidified chamber with secondary anti-rabbit conjugated to 

Alexafluor 549 (1:250) (Molecular Probes) in the dark.  All antibodies were diluted in 

antibody dilution buffer (1% BSA in 0.02 M PBS/Tween).  Slides were washed 3 times 

for 10 minutes each in 0.3% Tween/PBS.  A drop of prolong- antifade DAPI solution 

(Invitrogen) was added to each slide.  A coverslip was placed over the top and slides 

were allowed to dry overnight at room temperature.  Next day, slides were stored at 4ºC 

until ready to view.  Samples were observed and photographed with an Olympus IX-70 

camera. 

 

 Real-time PCR.  For analysis of intracellular and extracellular Typhi gene 

expression after one hour post-infection of T84 polarized cells with Typhi wild type, 

extracellular bacteria were collected from the media and T84 cells were lysed with 

Triton X-100 to harvest the intracellular bacteria.  Samples were stored in ethanol/phenol 

mRNA stop solution until RNA was extracted with hot acid phenol/chloroform.  For 

analysis of intracellular and extracellular Typhi gene expression in bovine ileal loop 

infection experiments, extracellular bacteria were harvested from the lumen and kept 

frozen on dry ice and the ileum tissue was kept frozen on dry ice in TriReagent 

(Molecular Research Center) at the site of surgery until further processing for RNA 

extraction.  After RNA extraction from ileal tissue, samples were processed 

subsequently, using the Microbe Enrichment Kit (Ambion) in order to isolate bacterial 

RNA.  All samples prior to Reverse Transcriptase were DNase treated (Ambion DNA-
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free kit).  Subsequently, 1,000 ng of each sample was retrotranscribed in a 50µl volume 

(Taqman reverse transcription reagents; Applied Biosystems) and 4µl of cDNA was 

used for each real time (RT)-PCR.  RT-PCR with primers were used to detect the tviB 

gene in bacterial messenger RNA in order to measure Vi expression and rpoD, the 

internal control gene, in S. Typhi infected T84 polarized cells using SYBR Green 

(Applied Biosystems) and the ABI 7500 Real Time PCR System.  The rpoD gene has 

been shown to have no significant variation of expression in either Typhi or 

Typhimurium inside macrophages (23, 25) and T84 polarized cells (this study).  RNA 

samples were analyzed for prgH and fliC genes to monitor the expression levels of the 

SPI-1 (T3SS) and flagellin, respectively.  For each run, the calculated threshold cycle 

(Ct) was normalized to the Ct of rpoD gene amplified from the corresponding sample, 

and the data were analyzed using the comparative Ct method (Applied Biosystems).  

Levels of Typhi gene expression in T84 polarized cells were calculated relative to the 

inoculum Ty2 wild type grown in LBH.  Levels of Typhi gene expression in calves were 

calculated for each ileal loop infected with Typhi wild type relative to an infected loop 

with Typhi ompR mutant strain (non-producing Vi strain) collected at the same time 

point from the same animal.  A list of genes analyzed in this study with respective 

primers is provided in Table 2. 
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Table 2.  Primers for Real-time PCR 
Gene Primer pairs 
fliC 5’-CAACCTGGGCAATACCGTAAATAA-3’ 

5’-CTGCGCGCGAGACATG-3’ 
iagA 5’-ACGGACAGGGTTATCGGTTTAAT-3’ 

5’-AAAAGGAAGTATCGCCAATGTATGAG-3’ 
tviB 5’-ATAATAGGGATCTACGCCAATA-3’ 

5’-CGCTGGCAGCAAATGGA-3’ 
prgH 5’-TCATAATCGCCCCTCGCTAA-3’ 

5’-TCTATGTCGCTGCGCAAAAT-3’ 
rpoD 5’-GTATGCGTTTCGGTATC-3’ 

5’-GCTAGGGTGGCGCAGTTTAC-3’ 
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Statistical analysis.  For statistical analysis of ratios (i.e. increases in Typhi gene 

expression or data expressed as percentages), data were transformed logarithmically 

prior to performance of statistical analysis.  A parametric test (paired student’s t-test for 

T84 polarized cell samples and for calf ligated-loop samples) was used to calculate 

whether differences were statistically significant. 

 

RESULTS 

S. Typhi carrying the viaB promoter fused to egfp (enhanced green 

fluorescent protein) on a plasmid grown in different salt concentrations indicates 

that the Vi antigen expression is modulated by osmolarity.  GFP (Green fluorescent 

protein) has been previously applied to study host pathogen interactions and 

salmonellosis gene expression (9, 11, 100, 101).  Here we first wanted to determine 

whether the S. Typhi wild-type isolate Ty2 harboring the viaB region promoter fused to 

egfp on a high-copy plasmid (QT81) would demonstrate that Vi antigen expression is 

modulated by osmolarity and to validate this strain for subsequent T84 polarized cells 

infection experiments, thus we inoculated SOB (Vi-inducing) and LBH (Vi-suppressing) 

medium with this strain.  As a negative control, SOB medium was inoculated with the 

Ty2 wild type.  The bacterial population was gated by using side and forward scatter 

parameters and then analyzed for fluorescence.  The results are expressed as the 

percentage population fluorescing and the mean fluorescence intensity.   

 When QT81 was grown in LBH media (Vi-suppressing) containing carbenicillin 

(100µg/ml) overnight at 37º C shaking, the number of bacterial cells fluorescing and 
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level of fluorescence intensity was comparable to that of the negative control.  When the 

same strain was grown in SOB medium (Vi-inducing) containing carbenicillin 

(100µg/ml) under similar conditions, the majority of cells exhibited fluorescence 

intensity which was increased by 100 times when compared to the negative control and 

the strain grown in LBH medium (Figure 6).  These results agreed with previous reports 

that Vi expression of serotype Typhi is affected by osmolarity (114).  

 

 S. Typhi expresses the Vi capsular antigen at higher levels intracellularly 

within T84 polarized cells.  To further investigate the location of Vi expression in 

intestinal epithelial cells in vitro, we proceeded by infecting T84 polarized intestinal 

epithelial cells with QT81.  We wanted to determine if Vi expression occurred inside 

intestinal epithelial cells by infecting T84 polarized cells with QT81.  The flow 

cytometry results were pooled from experimental infections of two separate transwell 

plates of polarized T84 cells.  The bacterial population was gated with side and forward 

scatter parameters using samples from QT81 grown in inducing or low osmolarity 

(SOB) conditions and uninfected T84 polarized cells treated under the same conditions 

as infected cells in order to set the region of fluorescence.  The results demonstrated that 

a larger percentage of bacteria (53.8%) were expressing fluorescence inside polarized 

T84 cells as opposed to the 22.9% expressed by the extracellular bacteria in the 

supernatant (Figure 7). 
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Figure 6.  In vitro induction of serotype Typhi Ty2 carrying pBlueScript 

SK+::ptviA::egfp (QT81).  Thick line represents QT81 grown under inducing conditions: 

low osmolarity (SOB broth).  Thin line represents QT81 grown under non-inducing 

conditions:  high osmolarity (LBH broth).  The shaded area represents Ty2 wild type 

without the reporter plasmid under inducing conditions. The results are expressed as the 

percentage population fluorescing and the mean fluorescence intensity.  The number of 

cells used to determine fluorescence intensity and % GFP positive cells for each sample 

are as follows:  QT81 in LBH, 87759, 28.8%, QT81 in SOB, 73121, 69.2%, and Ty2 wt, 

62471, 0.9%.   
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Figure 7.  Flow cytometry detection of Vi expression in T84 polarized cells using Typhi 

Ty2 carrying pBlueScript SK+::viaB promoter::egfp. (QT81).  The number of particles 

used to determine fluorescence intensities were:  extracellular bacteria, 9704 and the 

intracellular bacteria with T84 cell lysates, 49812.   
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To further examine Vi expression during infection of T84 cells with QT81, we 

performed real-time PCR analysis.  We monitored the expression of tviB and of genes 

encoded by the SPI-1 T3SS-1 (fliC, prgH, and iagA).  T84 polarized cells were 

inoculated with serotype Typhi grown in LBH medium and for each experiment, 

bacterial RNA was pooled from infections of 10 separate transwells.  The invasion 

associated SPI-1 and the genes involved in flagellar biosynthesis were previously shown 

to be upregulated during initial stages of crossing the epithelial cell barrier and down 

regulated following invasion (30, 35, 39).  Levels of serotype Typhi gene expression in 

T84 polarized cells were calculated relative to the inoculum Ty2 wild type grown in Vi-

suppressing medium.  The results from the real-time PCR experiments analyzing the 

expression of S. Typhi Vi capsular antigen, flagellin, and invasion genes revealed that 

tviB was expressed significantly higher (p=0.049) by intracellular bacteria than by 

extracellular bacteria, suggesting that the expression of the Vi biosynthesis genes was 

upregulated after invasion of T84 polarized cells (Figure 8). The fliC gene was expressed 

at higher levels among extracellular bacteria, though this difference was not statistically 

significant. The prgH invasion gene was expressed at significantly higher (p=0.013) 

levels by extracellular bacteria than by intracellular bacteria.  Similarly, the iagA 

regulator was expressed at significantly (p=0.037) higher levels by extracellular bacteria 

compared to intracellular bacteria.  These findings provided evidence that the Vi antigen 

was expressed at lower levels during invasion compared to higher levels observed 

following invasion of epithelial the cells.  The inverse was observed for SPI -1 (T3SS) 

genes, which is in good agreement with previous reports (26, 29).   
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The transcript levels of tviB were expressed as fold increase over those measured 

in the inoculum culture, which was grown under Vi-suppressing and optimal invasion 

conditions.  The increased level of detected tviB expression in extracellular bacteria may 

be an effect of DMEM-F12 media, which possesses an osmolarity of 150 mM.  Thus, the 

low osmolarity cell culture media may be responsible for inducing Vi expression 

extracellularly, as suggested in other studies (39).  This may be a limitation of the T84 

polarized cell culture model in studying Vi expression.  However, growing S. Typhi in 

300 mM NaCl media is known to suppress Vi expression.  S. Typhi grown under those 

conditions produces a weak agglutination reaction with Vi antisera (2, 78), indicating 

that the Vi capsule is expressed at low basal levels. 

 

 The osmolarity of the fluid within calf ligated ileal loops is not hyperosmotic.  

The calf model has been implemented successfully to study the pathogenesis of S. Typhi 

(82, 83).  In order to study the expression of the Vi antigen in vivo, we inoculated calf 

ligated-ileal loops with serotype Typhi grown under high osmolarity (300mM NaCL 

containing LB medium) to mimic the intestinal luminal conditions and to suppress Vi 

expression, as reported in broth culture experiments (114) . 
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Figure 8.  Profile of bacterial gene expression in extracellular and intracellular bacteria 

harvested from T84 polarized cells infected with serotype Typhi wild type after 1 hour.  

Expression levels of tviB, fliC, prgH, and iagA were determined by real-time PCR.  Data 

are shown as increases of Typhi gene expression relative to the preinoculum grown 

under Vi suppressing conditions.  These data are averages from three independent 

experiments. 
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 We first wanted to determine the osmolarity level of the intestinal luminal 

contents at 2 and 8 hours post-infection by measuring the osmolalilty of the luminal fluid 

using Wescor 5100C Vapor Pressure Osmometer according to manufacturer’s 

instructions.  Experimentally only the osmolality can be measured; however the 

approximate osmolarity values can be determined by conversion (95).  A list of 

osmolality and osmolarity values measured is listed in Table 3. 

 

 

 

 Table 3.  Measured osmolality values. 

 

 

  

 

 

 

 

 8 hr post-
infection 

 Blood/Tissue 150 mM NaCl ~363 (estimated)1 

92.86-101.64 mM 259-275 

99.45-114.26 mM 271-298 2 hr post-
infection 

~105 mM  282 T84 cell media 

10mM NaCl 104SOB  
300 mM NaCl 631LBH  
170 mM NaCl 409LB 

osmolarity (mosm/L, 
mmol/L) 

osmolality (mmol/kg, 
mosm/kg) 

Sample 

 1Value was estimated based upon reported osmolarity value of 150 mM NaCl from reference 30. 
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Measurements of the osmolality of the intestinal fluid revealed that at 2 and 8 

hour time points, the intestinal fluid possessed osmolality values of approximately 294 

mmol and 268 mmol, respectively, which corresponded to an osmolarity level of ~150 

mM.  These results agree with previous calf ileal cannula studies in which the ileal fluid 

osmolality was reported to be similar to that of plasma (280-300 mmol) (18, 61).  

Nevertheless, the values obtained in our study indicated hypoosmotic conditions, which 

were predicted to induce Vi expression within the intestinal lumen.  This prediction was 

tested by real-time PCR analysis performed on the extracellular bacteria collected at the 

time indicated points (Figure 9). 

 

Characterization of a nonpolar ompR deletion in S. Typhi Ty2.  A deletion in 

ompR was previously shown to inhibit Vi synthesis and result in a negative Vi slide 

agglutination reaction (78).  A deletion of the ompR gene was constructed in serotype 

Typhi strain Ty2 and the mutation was verified by Southern Blotting (Figure 10A).  The 

inability of the S. Typhi ompR mutant to express the Vi antigen was verified with Vi 

antisera (Figure 10B). 
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Figure 9.  Profile of extracellular bacterial gene expression collected from the luminal 

fluid at two and eight hours in the calf ligated ileal loops post-infection.  Data are 

expressed as increases in bacterial mRNA levels relative to loops infected with serotype 

Typhi ompR mutant at the same time point.  Bars represent geometric means ± standard 

deviation.  These data are averages from four different bovids. 
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We also constructed a high copy plasmid carrying the whole ompR gene (plasmid 

pQT50) and introduced it into the S. Typhi ompR mutant by electroporation.  Expression 

of the Vi capsular antigen in S. Typhi was restored and confirmed by Vi agglutination 

(Figure 10B).  Complementation with a low copy plasmid (pwsk29) carrying the ompR 

gene did not restore Vi production when detected by slide agglutination.  This finding 

was consistent with prior ompR complementation studies (78).  The ompR mutant strain 

was subsequently used in our calf ligated-ileal loop studies. 

 Vi expression by the ompR mutant was further characterized by introducing 

plasmid pQT28 (carrying a egfp reporter gene fused to the promoter of the viaB region).  

The resulting strain (QT114) was grown in culture in media with different osmolarities 

and egfp expression was analyzed by flow cytometry.  Bacterial cells were gated using 

forward and side scatter parameters.  The fluorescence intensity emitted by the S. Typhi 

Ty2 wild-type grown under non-Vi inducing conditions (negative control) and strain 

QT114 grown under Vi-inducing conditions (SOB broth) were similar (Figure 11).  

QT114 grown in LBH also exhibited similar levels of fluorescence to the Ty2 wild type 

(data not shown).  These data indicated that ompR encoded a positive regulator of the 

viaB locus, which was consistent with previous reports (78). 
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Figure 10.  Characterization of serotype Typhi ompR mutant. (A)  Southern blot with 

ompR specific probe. (B)  Agglutination reactions with Vi antisera. 
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Figure 11. Flow cytometry analysis of QT114 grown under Vi optimal expressing 

conditions (SOB).  Ty2 was used as a negative control. The numbers of cells used to 

determine fluorescence intensity for each sample are:  QT114 in SOB, 17583 and Ty2 

wt, 19413. 
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The Vi capsule is expressed after invasion of the bovine intestinal 

epithelium.  The mammalian small intestinal lumen has a reported osmolarity of 300 

mM NaCl (~676 mOsm) and greater (47, 69).  However, we detected hypoosmotic 

conditions within the lumen of bovine ileum (Table 3), which has been shown 

previously in calf ileal studies post-treated with hypertonic and isotonic solutions (18, 

61), suggesting that the intestinal lumen is not consistently hyperosmotic.  It has also 

been demonstrated that in the human small intestine, except shortly after eating, the 

luminal content osmolarity is the same as plasma as a function of a normal intestinal 

permeability mechanisms (27). 

Nonetheless, we reasoned that to study increases in bacterial gene expression in 

the tissue, Vi-expression may be compared to that of a S. Typhi culture grown in 300 

mM NaCl broth (Vi-suppressing conditions), the reported osmolarity of intestinal 

contents (47, 69).  In order to illustrate Vi expression, bacterial gene expression for each 

loop inoculated with serotype Typhi wild type was analyzed as log fold increase over the 

S. Typhi ompR mutant, which is deficient for Vi expression, collected at the same time 

point.   

 We performed real-time PCR analysis to investigate the expression of the Vi 

antigen, by monitoring tviB, and genes encoded by SPI-1 T3SS-1 (fliC, prgH, and iagA) 

in calf ileal tissue following invasion at two and eight hours post-infection.  At 2 and 8 

hours, expression of tviB among intracellular bacteria within calf tissue was significantly 

higher than in the inoculum (Figure 12).  All the invasion-associated genes were down 
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regulated in tissue at 2 h, and 8 h when compared to expression levels detected in the 

ompR mutant, suggesting that OmpR may be a positive regulator for invasion.  
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Figure 12.  Profile of bacterial gene expression in the preinoculum and bovine ileal tissue infected with 

serotype Typhi wild type determined by Real-time PCR at two and eight hours post infection.  Data are 

expressed as increases in bacterial mRNA levels relative to loops infected with serotype Typhi ompR 

mutant at the same time point.  Bars represent geometric means ± standard deviation.  These data are 

averages from four different bovids.  Statistical significances of differences are provided. 
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We wanted to directly detect Vi production within frozen sections of calf 

intestinal tissue and to identify the location of capsule expression at 2 hours and 8 hours 

post infection.  We first labeled the infected tissue with primary anti-Vi antibody and 

then labeled the tissue with a secondary anti-rabbit goat antibody conjugated to 

Alexafluor 594, which emitted an orange-red emission and the nuclei of cells were 

stained with DAPI.  As a negative control, uninfected intestinal tissue at corresponding 

time points were subjected to similar labeling procedures.  No Vi antigen production was 

detected in the uninfected ileal tissue (Figure 13C and 13F).  Ileal loops infected with S. 

Typhi strain Ty2 grown under Vi-suppressing conditions after 2 hours revealed Vi 

expressing bacteria along the intestinal villi tips where they appeared to penetrate the 

intestinal epithelial barrier and enter the lamina propria (Figure 13A and 13B).  The two 

component regulatory systems, OmpR EnvZ and RcsBC, activate Vi antigen expression 

when S. Typhi encounters decreasing osmolarity in tissue or blood (2, 103).  Thus, our 

findings support the concept that the production of the Vi antigen may occur while 

bacteria pass through the intestinal epithelium.  Fluorescent staining of bovine Peyer’s 

patch sections revealed large numbers of Vi-expressing bacteria in the mantle and in the 

area between germinal centers (Figure 13D and 13E).  Since Peyer’s patch are large 

lymphoid aggregations consisting of both T and B cell areas within the small intestinal 

mucosa, these data suggested that the Vi antigen may be expressed intracellullarly within 

dendritic cells.  Reports suggest that murine Peyer’s patch dendritic cells are important 

in antigen presentation for T-cell proliferation and T-cell help for B-cell responses (92, 

93),  leading us to reason that dendritic cells may serve a similar immune function in the  
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Figure 13. Fluorescence immunohistochemistry detection of Vi antigen expression in bovine ileal tissue.  

Frozen calf ileal tissue in OCT medium were sectioned at 10μm and primarily stained with anti-Vi rabbit 

antibody and secondarily with goat anti-rabbit antibody conjugated to Alexfluor 549.  Cell nuclei were 

stained with DAPI.  Slides were viewed and images were taken with an Olympus IX-70. 
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bovine Peyer’s patch when encountering enteropathogens.  At 8 hours, our findings were 

similar but the numbers of invasive bacteria expressing capsule within the tissue were 

elevated.  These findings illustrated that the Vi capsule was expressed following 

invasion of the gut mucosa, which supported a role of the capsule during bacterial host 

cell interaction in tissue.   

 

DISCUSSION 

The expression of the Vi capsular antigen in serotype Typhi infection presents a 

possible explanation for the different clinical manifestations observed in humans 

compared to other serotypes of Salmonella.  There are two major hypotheses on the 

regulation of Vi expression in the intestinal environment.  One theory suggests that the 

Vi is produced in the intestinal lumen and may inhibit bacterial adhesion and invasion of 

intestinal epithelia (2, 71).  The second theory suggests that the Vi is suppressed in the 

lumen and activated following invasion to allow the organism to evade host innate 

immunity (80, 82).  Current research on the regulation of the Vi antigen supports the 

latter hypothesis that the Vi antigen may be expressed after invading nonphagocytic cells 

and following uptake by macrophages.  To further test this hypothesis, we investigated 

the regulation of Vi antigen expression in vivo by performing direct and indirect 

experimental techniques to detect the Vi antigen in intestinal model epithelia (T84 

polarized cells) and in vivo in the bovine ligated- ileal loop model.   

The infection of T84 polarized cells with S. Typhi grown under Vi-suppressing 

conditions and analyzed by flow cytometry and real-time PCR demonstrated that the Vi 
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antigen was expressed at higher levels by intracellular bacteria.  These results, along 

with previous findings that capsulated S. Typhi have a significant reduction in the 

amount of inflammatory cytokine secretion compared to a non-capsulated mutant (42, 

80), support the view that the Vi antigen has a role following invasion of intestinal 

epithelial cells.  Consistent with this concept, our analysis of T3SS-1 gene expression 

with real-time PCR indicated increased transcription in extracellular bacteria and a down 

regulation of these genes after invasion. 

 Studies on the regulatory mechanisms responsible for Vi capsular expression 

revealed that the expression of the biosynthesis genes is regulated by osmolarity.  

Though it is believed that the small intestinal lumen is hyperosmotic due to the influx 

and digestion of foodstuffs and the presence of sodium salts and bile acids, we reported 

that the fluid collected from lumen of the calf ligated-ileal loops at designated time 

points was hypoosmotic, which is considered to be a normal physiological occurrence as 

seen in prior calf ileal cannula studies measuring the osmolality of luminal fluid (61) 

(Table 3). Previous experiments have shown that large variations in osmolality occur 

within the lumen due to the mechanistic effects of the villus countercurrent exchanger, 

which mobilizes water and electrolytes (33, 34).  This counter current exchanger 

maintains the plasma osmolality of the blood and leaves the fluid surrounding the villus 

close to isotonicity, regardless of the lumen osmolality.  As a result, the hypoosmotic 

fluid, which can also be considered isotonic, within the lumen may account for inducing 

Vi expression in the extracellular bacteria (Figure 4).   Nevertheless, these data agree 
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with previous findings and support the concept that Vi expression is regulated by 

osmolarity in vivo.   

 Under conditions of high osmolarity, which are thought to mimic conditions 

encountered in the intestinal lumen, the Vi antigen is suppressed (78), while flagella and 

the T3SS-1 genes are activated (2).  When S. Typhi wild type is cultured in 300 mM 

NaCl containing Luria-Bertani broth (LBH), the expression of the Vi antigen is 

decreased, but the secretion of invasion proteins (SipB, SipC, SipA) are increased (114).  

Under the same growth conditions, S. Typhi wild type is highly invasive and destructive 

towards epithelial and M cells of rat’s Peyer’s patches (114).  These data suggest that the 

Vi antigen may be repressed in the intestinal lumen and possibly allow serotype Typhi to 

express a more invasive phenotype as it penetrates the intestinal epithelium.  Here we 

show that the extracellular bacteria in the lumen of the calf ligated ileal loops expressed 

tviB at significantly higher levels while invasion and flagellin genes (prgH, iagA, fliC) 

were expressed at lower levels in intracellular bacteria when compared to expression 

levels of a serotype Typhi ompR mutant.   

Peyer’s patches are large lymphoid aggregations in the small intestinal mucosa 

that are comprised mainly of T cells, B cells, macrophages, and dendritic cells.  The 

surface epithelium contains M cells that transfer antigen from the lumen into the Peyer’s 

patch.  We directly detected Vi production in the bovine intestinal mucosa by using anti-

Vi antigen antibodies and labeling the antibodies with an orange-red fluorophore.  We 

observed Vi-expressing bacteria during the initial stages of penetration of the intestinal 

epithelium as well as following invasion in the areas of the intestinal villi and Peyer’s 
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patches.  Bacteria entering the patch via M cells are taken up by macrophages and 

presented to T lymphocytes.  Interestingly, the Vi antigen was detected in the dendritic 

cell-rich areas between the germinal centers, which suggest that Vi antigen expression 

occurs within dendritic cells.  These results illustrate the presence of Vi expression in 

vivo, but the exact cell types involved remain unknown.  The Vi capsule has been shown 

to be expressed inside macrophages in vitro (17) and during human infection, as 

indicated by the detection of anti-Vi antibodies in patient serum and the fact that 

vaccinations with the Vi antigen confers protection against typhoid fever (49, 50, 62, 85)  

In addition, CD18-expressing phagocytes have been shown to transport S. Typhimurium 

from the intestine to systemic circulation (106).  Therefore, it is plausible that CD-18 

phagocytes may also be important in systemic pathogenesis of S. Typhi. 

In conclusion, this chapter reports that Vi expression is detected following 

invasion in vivo, in T84 polarized cells and in vivo in the bovine intestinal mucosa.  

Furthermore, we demonstrated that T3SS-1 genes, responsible for mediating invasion, 

act paradoxically to viaB encoding locus of the Vi antigen. 
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CHAPTER III 

VI-SUPPRESSED AND VI-DEFICIENT MUTANT STRAINS OF SALMONELLA 

TYPHI PROMOTE A HYPERINVASIVE PHENOTYPE TOWARDS THE 

BOVINE INTESTINAL MUCOSA 

 

INTRODUCTION 

 Salmonella Typhi causes a severe systemic infection of the reticulendothelial 

system, which is communicable by ingesting contaminated food or water.  Because it is 

solely a human pathogen, there is a lack of suitable animal models available to study the 

disease.  Different cell culture systems and the S. Typhimurium murine model have been 

used extensively to study the pathogenesis of S. Typhi (26, 35, 41, 82, 91).  However, a 

limitation to using cell culture systems is that studies performed in infected hosts can 

markedly differ from what has been expected based on in vitro and cell culture work (5) 

and a consequence to using the murine model is that S. Typhimurium does not cause 

typhoid fever in humans, but instead causes a localized gastroenteritis resulting in 

diarrhea.  Recent studies have successfully used the calf model of enterocolitis to study 

the pathogenic mechanisms of S. Typhimurium (84, 89, 98, 99) and S. Typhi (82, 83).   

 The mechanisms used by S. Typhimurium and S. Typhi for invasion and for 

intracellular trafficking are quite similar (26, 29, 84).  The invasion-associated Type III 

secretion system (T3SS-1), encoded by Salmonella pathogenicity island 1 (SPI-1), 

allows S. Typhimurium to invade intestinal epithelial cells in vitro (26, 29).  Once S. 

Typhimurium invades, like S. Typhi, it induces membrane ruffling and cytoskeletal 
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rearrangements upon contact with HeLa cell surfaces.  Ruffling induced by S. Typhi and 

S. Typhimurium is then accompanied by macropinocytosis and aggregation of cell 

surface class I MHC (26). 

 Nevertheless, the ability for S. Typhi to only infect humans and produce disease 

must mean that there are virulence factors present in S. Typhi but absent in S. 

Typhimurium.  Whole genome sequencing has uncovered that S. Typhi possesses a viaB 

locus encoding region for a linear polymer of α-1,4 2-deoxy-2-N-acetylgalacturonic acid 

variably O-acetylated at the C3 position (10, 40), most notably recognized as the Vi 

capsular antigen.  Studies with the viaB mutant have shown that the presence of the Vi 

capsular antigen of S. Typhi blocks the recognition of pathogen associated molecular 

patterns (PAMPs) and inhibits toll-like receptor (TLR) signaling in intestinal epithelial 

cells (80).  Calf ligated-ileal loop experiments using the viaB mutant resulted in an 

increased inflammatory response, supporting the idea that the viaB region plays a role in 

reducing intestinal inflammation in vivo (82). 

 The growth of S. Typhi in high osmolarity (300 mM NaCl containing LB broth, 

LBH) has been demonstrated to suppress the production of the Vi antigen, but the 

secretion of invasion proteins (SipB, SipC, SipA) are increased (2, 114).  Under the 

same conditions, S. Typhi wild type is highly invasive and destructive towards epithelial 

and M cells of rat’s Peyer’s patches (114).  A viaB mutant has been shown to secrete 

more effector proteins and exhibit increased invasiveness compared to the wild type 

strain using rat ileal loops and the human intestinal epithelial cell line Intestinal 407 (71).  

These findings suggest that Vi deficient and Vi suppressed strains may promote a 
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hyperinvasive phenotype.  The ompR regulon in S. Typhi has been identified as a 

regulator of Vi biosynthesis and that one of its signals for regulation may be osmolarity 

(78).  Furthermore, mutants in ompR have been found to be impaired in virulence, 

preventing them from colonizing epithelial cells in tissue culture (4).  

 Here we compared the invasive characteristics of Vi suppressed and Vi deficient 

mutants of Salmonella Typhi in polarized T84 cells and the bovine ligated ileal loop 

model.  Also, we wanted to investigate whether or not a deleted ompR mutant, that no 

longer agglutinates Vi antisera, would induce similar inflammatory lesions and invasion 

properties as the Salmonella Typhi grown in high osmolarity and the viaB mutant. 

 

MATERIALS AND METHODS 

 Bacterial strains and culture.  S. Typhi strain Ty2 was obtained from the 

American Type Tissue Culture Collection (ATCC 19430).  Strains were cultured 

aerobically in Luria-Bertani broth containing 300mM NaCl, (LBH) for optimal Vi 

suppression supplemented with the following antibiotics:  carbenicillin, 100 mg/L or 

kanamycin 100 mg/L, unless otherwise noted.  For T84 cell infection experiments, each 

strain was grown overnight at 37ºC shaking in LBH broth with appropriate antibiotics.  

The next day 1:1000 dilution of overnight culture was made and bacteria were grown 

until OD600= 1.0-1.5 (late log phase) for optimal Vi suppression without antibiotics.  

Bacteria were added at a concentration of 0.418 x 109 cfu/well.  For bovine ligated ileal 

loops, each strain was grown overnight at 37ºC shaking in 4 ml of LBH broth with 

appropriate antibiotics.  A volume of 0.04 ml of overnight culture was used for 
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inoculation of 4 ml of LBH broth without antibiotics, and bacteria were grown until 

OD600= 1.0-1.5 (late log phase) for optimal Vi suppression.  Subsequently, the culture 

was used as the inoculum, and the numbers of CFU were determined by plating serial 

10-fold dilutions on LB plates.  S. Typhimurium, IR715 is a fully virulent, nalidixic acid 

resistant strain derivative of isolate ATCC 14028 (96).  IR715 was used as a comparator 

for fluid accumulation in bovine ligated loops at 8 hours, as previously done (83, 84).  

Strains used in this study are listed in Table 4. 

 

 

 

Table 4.  Strains used in this study 

Strain Description Reference and/or source 
S. Typhi   
     Ty2 Salmonella Typhi wild type ATCC 19430 
     QT74 Ty2::ompR-::KanR This study 
     QT113 Ty2::ompR-:: KanR carrying 

pBluescript 
SK+::ompR::CarbR 

This study 

     STY2 Ty2::∆tviABCDEvexABCDE:: 
KanR 

(Raffatellu, 2005) 

S. Typhimurium   
IR715 Nalidixic acid-resistant 

derivative of bovine wild type 
isolate ATCC 4028 

(Stoiljkovic, 1995) 
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 Analysis of secreted protein.  The precipitation of bacterial proteins in the 

supernatant of Salmonella growing in culture has been performed previously (84, 85).  In 

brief, bacteria were grown under SPI-1 inducing conditions as described above.  The 

cells were pelleted by centrifugation and 2 ml of the supernatant was collected for each 

sample.  The supernatants were filtered (0.45 µm pore size) and then the proteins were 

precipitated with 0.25% Trichloroacetic acid for 1 hour on ice.  The samples were 

pelleted by high-speed centrifugation (14,000 x g) for 30 minutes.  The pellet was 

washed with cold acetone and resuspended in PBS.  The proteins were then boiled in 

sodium dodecyl sulfate (SDS) for 5 min, and an aliquot of each sample was separated by 

SDS-10% polyacrylamide gel electrophoresis (SDS-PAGE). 

 

 Real-time PCR.  For analysis of Typhi gene expression in culture grown 

bacteria, samples in broth were pelleted and extracted with hot acid phenol/chloroform.  

All samples prior to Reverse Transcriptase were DNase treated (Ambion DNA-free kit).  

Following, 1,000 ng of each sample was retrotranscribed in a 50µl volume (Taqman 

reverse transcription reagents; Applied Biosystems) and 4µl of cDNA was used for each 

real time (RT)-PCR run.  Gene expression was detected using SYBR Green (Applied 

Biosystems) and the ABI 7500 Real Time PCR System.  The rpoD gene has been shown 

to have no significant variation of expression in either Typhi or Typhimurium inside 

macrophages (16, 22).  RNA samples were analyzed for prgH and fliC genes to monitor 

the expression levels of the SP-1 (T3SS) and flagellin, respectively.  For each run, the 

calculated threshold cycle (Ct) was normalized to the Ct of rpoD gene amplified from the 
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corresponding sample and the data were analyzed using the comparative Ct method 

(Applied Biosystems).  Levels of Typhi gene expression were calculated relative to the 

Ty2 wild type grown in LB (Vi expressing conditions).  Primers used in this study are 

listed in Table 5. 

 

 

 

Table 5.  Primers used in this study 

 
Primers Forward 5’ to 3’ Reverse 5’ to 3’ 
fliC CAACCTGGGCAATACCGTAAA

TAA 
CTGCGCGCGAGACATG 

iagA ACGGACAGGGTTATCGGTTTA
AT 

AAAAGGAAGTATCGCCAATGT
ATGAG 

prgH TCATAATCGCCCCTCGCTAA TCTATGTCGCTGCGCAAAAT 
rpoD GTATGCGTTTCGGTATC GCTAGGGTGGCGCAGTTTAC 
 

 

 

 

 Cell culture and invasion assay.  T84 cells are a human cell line of colon 

carcinoma cells that can be polarized upon seeding the cells on the apical compartment 

of Transwell plates and adding medium to the basolateral compartment.  Over the 

duration of a week, the cells develop a transepithelial resistance that allows them to 

mimic the conditions of the human intestinal epithelium.  T84 cells were seeded at 5 x 

105 cells/ well and once they developed a transepithelial resistance of 500-1500Ω (65), 
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bacteria were added at approximately 107 cfu/well (multiplicity of infection was 

approximately 10:1) to the apical compartment of polarized T84 cells for 1 hour at 37°C 

in 5% CO2 to allow invasion.  Invasion assays were performed by using gentamicin 

protection assays described previously (84, 85).  Each well was washed 5 times with 

sterile PBS to remove extracellular bacteria and medium containing 0.1 mg 

gentamicin/ml was added for 90 minutes incubation at 37°C in 5% CO2.  Intracellular 

bacteria were quantified by spreading serial 10-fold dilutions of T84 cell lysates (1% 

Triton x-100) on LB agar plates to determine the number of colony forming units (cfu).  

Invasion results were averaged from infection experiments of 3 separate transwell plates 

of polarized T84 cells. 

 

 Bovine ligated-ileal loop model.  Four milk fed 3-4 weeks old calves were 

obtained from Texas A&M University cattle herd.  Calves were tested for Salmonella 

infection by fecal swabs, enriched in tetraiodothionate broth and plated on XLT4 

(Difco).  Calves were tested for leukocytosis and fever prior to experiments.  Bovine 

ligated ileal loop surgery has been described previously (1, 83).  In brief, the calves were 

fasted 24 hours prior to surgery.  Calves were induced using propofol (Abbott 

Laboratories), followed by placement of an endotracheal tube and then maintained on 

isoflurane (Abbott Laboratories) for the duration of the experiment (1).  A right-flank 

laparotomy was performed, the jejunum and ileum exposed and loops with lengths 

ranging from 6-9 cm ligated, leaving 1-cm loops between them.  The loops were infected 

by intralumenal injection of a 4 ml suspension containing approximately 1 X 109 
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CFU/ml with S. Typhi strains grown in LBH broth.  Loops injected with LBH broth 

served as a negative control.  Loops were replaced into the abdominal cavity until 

collection at 2 and 8 hour time points.  Each bacterial strain was tested in four different 

animals. 

 After surgical removal of the loops, the fluid in accumulated in the loops was 

measured and samples were collected for bacteriology and histopathological analysis.  

The fluid accumulated was normalized to the weight of the tissue (in grams) before 

statistical analysis.  Two 6.0 mm biopsy punches were obtained from intestinal tissue 

and incubated in PBS containing 0.1 mg/liter gentamicin for 90 minutes.  Tissue samples 

were then homogenized in PBS, serially diluted, and plated on LB plates containing 

appropriate antibiotics for determining CFU.  Data on bacterial CFU were normalized to 

the length of the loop and the CFU present in the inoculum prior to statistical analysis.  

 

 Histopathology.  Tissue samples were fixed in formalin, processed according to 

standard procedures for paraffin embedding, sectioned at 5μm, and stained with  

hematoxylin and eosin.  Inflammatory changes were scored from 0 to 5 according to the 

following criteria: 0, no inflammation; 1, mild inflammatory changes characterized by  

multifocal intravascular margination and mild perivascular infiltration of neutrophils in 

the lamina propria and submucosa; 2, mild to moderate inflammatory changes, 

characterized by mild to moderate multifocal to coalescent or diffuse infiltration of 

neutrophils in the lamina propria and submucosa, associated with mild to moderate 

edema; 3, moderate inflammatory changes, characterized by moderate multifocal to 
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coalescent or diffuse infiltration of neutrophils in the lamina propria and submucosa, 

associated with moderate edema; 4, moderate to severe inflammatory changes, 

characterized by mild to severe multifocal to coalescent or diffuse infiltration of 

neutrophils in the lamina propria and submucosa, associated with mild to severe edema; 

and 5, severe inflammatory changes characterized by diffuse severe infiltration of 

neutrophils in the lamina propria and submucosa, associated with severe edema and/or  

multifocal hemorrhage and epithelial erosion.  Slide reading and grading were conducted 

blindly by two boarded veterinary pathologists. 

 

 Statistical analysis.  For statistical analysis of ratios (i.e. increases in Typhi gene 

expression or data expressed as percentages), data were transformed logarithmically 

prior to performance of statistical analysis.  A parametric test (paired student’s t test for 

T84 polarized cell samples and for calf ligated loop samples) was used to calculate 

whether differences were statistically significant. 

 

RESULTS 

 Hypersecretion of invasion proteins in the supernatant of Vi suppressed and 

Vi mutant strains of S. Typhi.  Previous studies have demonstrated that a viaB deleted 

mutant strain secreted greater amount of proteins in the supernatant (71) and Vi-

suppressed S. Typhi grown in LBH broth have a secretion pattern similar to the viaB 

deleted mutant (114).  We wanted to compare the amounts of secreted proteins in the  

 



 65

 

 
     1    2        3   4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 

      37 

  50  

  100 

  Flagellin (52 kDa) 

SipC (41 kDa)

 

Figure 14.  Invasion proteins secreted in the supernatant of Vi suppressed and Vi mutant 

strains of S. Typhi.  Lane 1- Ty2 wt grown in LB, 2- Ty2 wt grown in LBH, 3-Ty2 viaB 

mutant (STY2), 4- Ty2 ompR mutant (QT74). 
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supernatant of broth media among S. Typhi Ty2 grown in LB (Vi-expressing), S. Typhi 

Ty2 grown in LBH (Vi-suppressing), QT74, and STY2 (Figure 14).  After growth in 

LBH or LB broth for 4.5 hours, secreted proteins of S. Typhi were collected and 

separated on a 12% SDS-PAGE gel.  A prominent flagellin 52 kDa protein was secreted 

in comparable amounts in all the strains.  However, SipC, a type III invasion associated 

protein, appeared to be secreted the most in STY2.  SipC in both QT74 and Ty2 wild 

type grown under Vi-suppressing conditions seem to be produced at similar levels.  Ty2 

wild type grown in LB broth, in which Vi antigen is expressed, secreted the least amount 

of SipC in the supernatant.  These findings are in agreement with previous studies (114) 

and support the concept that the regulatory mechanisms responsible for Vi antigen 

expression and the expression of the SPI-1 (T3SS) may act paradoxically.  Essentially, 

when the Vi antigen is expressed, the Type III secretion system may be down-regulated; 

whereas when the Vi antigen is suppressed, then the SPI-1 (T3SS) may be up-regulated. 

 

 Invasion associated genes of the T3SS are expressed at relatively higher 

levels in Vi suppressed and Vi mutants grown in culture.  We wanted to confirm that 

the Vi mutants and Typhi wild type grown in LBH would transcribe invasion genes at 

higher levels than Typhi grown in LB.  Regular Luria Bertani broth contains 170 mM 

NaCl and has an osmolarity near that of blood and plasma.  Thus, under this growth 

condition, Vi production is detectable by antisera.  Using Real-time PCR, we found that 

fliC, prgH, and iagA, genes associated with the 
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Figure 15.  Profile of invasion associated genes expressed in Vi suppressed and Vi deficient strains grown 

in culture.  Bacteria were grown in culture to late log phase (OD600=1.0-1.5).  RNA was extracted via hot 

phenol chloroform.  Expression levels of fliC, prgH, and iagA were determined by real-time PCR.  Data 

are shown as increases of gene expression relative to Ty2 wild type grown in Vi expressing conditions 

(LB).  These data are averages from three independent experiments. 
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T3SS-1 and important in invasion tended to be elevated compared to the Typhi Vi 

expressing strain (Figure 15).  The invasion associated SPI-1 and flagellar biosynthetic 

genes were previously shown to be up regulated under high osmolarity conditions in 

recent in vitro studies (2).  In addition, experiments with a viaB deleted mutant also 

revealed increase invasion in cell culture systems (71, 114) and the calf ligated-ileal loop 

model (83), perhaps associated with the inactivation and repression of Vi antigen 

expression when encountering hyperosmotic stimuli.  Our results supported prior 

findings as we also demonstrated that the growth of QT74, STY2, and S. Typhi Ty2 wild 

type grown in LBH medium (Vi-suppressing conditions) tended to express prgH, fliC, 

and iagA at higher levels than S. Typhi Ty2 wild type grown in LB medium (Vi-

expressing conditions), though these data were not found to be statistically significant 

(Figure 15).   

 

S. Typhi cultured in high osmolarity and Vi- deleted mutants are 

hyperinvasive in T84 polarized cells and the bovine intestinal mucosa.  We wanted 

to further investigate the invasiveness of these strains in cell culture as well as an in vivo 

system.  T84 cells are a human colon carcinoma cell line that upon polarization mimic 

the conditions of intestinal epithelial cells (20).  This intestinal model epithelia has been 

used successfully to study invasion of Salmonella (84, 85).  Previous invasion 

experiments have revealed that a viaB mutation introduced in to S. Typhi results in 

increased invasion (83, 114).  To the author’s knowledge, no invasion experiments for 

the an ompR deletion has been performed in T84 polarized cells.  Therefore, we  
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Figure 16.  Bacterial invasion of T84 polarized cells after 1 hour of invasion. CFU 

recovered from each experiment was expressed as a percentage of CFU recovered from 

each well relative to the inoculum.  Data are expressed as geometric means (bars) ± 

standard deviations from three independent experiments.  Statistical significance of 

differences between groups is given. 
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performed invasion assay in T84 polarized cells to determine if the ompR mutant 

invaded at a higher percentage than the Vi-expressing wild type and to confirm increased  

invasion among S. Typhi grown under hyperosmotic conditions and the viaB mutant.  

We also used the ompR complementation strain to verify our findings. 

S. Typhi Ty2 wild type grown in LBH medium, QT74, and STY2 (p-value= 

0.032) was recovered in higher numbers from the T84 polarized cells than S. Typhi Ty2 

wild type grown in LB medium (Figure 16).  We used QT113, which introduced the 

ompR gene on a plasmid in QT74.  The results illustrated comparable levels of invasion 

between S. Typhi Ty2 wild type grown in LB and the fully complemented ompR mutant, 

supporting the role of ompR as a negative regulator of S. Typhi invasion. 

Subsequently, we investigated whether the increased invasion associated with 

suppressing Vi antigen expression can also be demonstrated in the calf ileal-loop model.  

We inoculated calf loops with the same strains used in the T84 polarized cell 

experiments:  S. Typhi Ty2 wild type grown in LBH broth, STY2, QT74, and S. Typhi 

Ty2 wild type grown in LB medium, which contains 170 mM NaCl and allows Vi 

expression.  At two hours post-infection, S. Typhi grown under hyperosmotic conditions 

and both of the deleted Vi antigen mutants exhibited significantly higher percentages of 

invasion then S. Typhi grown in LB (Figure 17A).  Next, we wanted to determine if 

there was a difference in invasion between S. Typhi grown in LBH, the ompR mutant 

and viaB mutant.  We found no statistical significance between S. Typhi grown in LBH 

and the ompR mutant (p=0.26) and the viaB mutant (p=0.12).  We compared the results  
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Figure 17.  Bacterial invasion in bovine ligated ileal loops (A) at 2 hours and (B) at 8 

hours post-infection.  Bacteria was recovered from tissue (6.0 mm biopsy punches) and 

subsequently incubated with gentamicin to kill extracellular bacteria.  CFU recovered 

from each animal was expressed as a percentage of CFU recovered from each loop 

relative to the inoculum.  Data are expressed as geometric means (bars) ± standard 

deviations from experiments performed with four different animals.  Statistical 

significances of differences between groups are given. 
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of invasion between the ompR and viaB mutant, the p-value calculated was 0.06, which 

indicates no significance as well.  Therefore, we found no statistical difference in the 

amount of invasion between these groups at the 2 hour time point, revealing that S. 

Typhi grown in LBH and the Vi mutants had similar levels of invasion in bovine ileal 

tissue. 

At 8 hours post-infection, S. Typhi grown in high osmolarity and both of the 

deleted Vi mutants also exhibited significantly higher percentages of invasion then 

Typhi grown in LB (Figure 17B).  We compared S. Typhi grown in LBH, the ompR 

mutant and viaB mutant in invasion at this time point.  There was no statistical 

difference in S. Typhi grown in LBH and the ompR mutant (p= 0.14) and the viaB 

mutant (p=0.56).  Then, we compared the results of invasion between both of the 

mutants, ompR and viaB, the p-value calculated was 0.16, which indicates no 

significance.  Again, we found that there was no statistical difference in the amount of 

invasion between these groups.  Thus, at the 8 hour time point, S. Typhi grown in LBH 

and the Vi mutants also invaded bovine tissue at similar levels. 

We used the Ty2 wild type strain carrying a high copy plasmid carrying the 

whole ompR gene in the calf experiments.  However, this strain was not used in the 

analysis of our calf experiments for the 8 h time point because the number of cfu 

recovered from calf tissue was very minimal, suggesting that over time, the plasmid was 

lost due to instability or lack of selective pressure.  This was confirmed with a growth 

curve in LB without antibiotics and subsequently plating cfu over time on LB plates 

containing carbenicillin (100 µg/ml), to check for the presence of the plasmid.  The 
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optimal time point, in which the number of cfu still retained the plasmid was the highest, 

was at an OD600= 1.2 at 4 hours.  At approximately 6 hours, the number of colonies 

retaining the plasmid dropped dramatically; less than ~ 38 % of the cfu recovered at the 

4 hour time point.  By the 8 hour time point, the numbers recovered were ~11% of the 

amount at the 4 hours time point. 

 

 Vi deficient and suppressed strains of serotype Typhi cause increase fluid 

accumulation in bovine ileal loops.  Bovine ligated-ileal loops were inoculated with S. 

Typhi wild type, viaB mutant, ompR mutant, and LBH as a control loop.  For 

comparative purposes, an LB loop was included to illustrate that LBH would not induce 

considerable osmosis into the lumen and samples were expressed relative to IR715, as 

previously done (81, 85).  Fluid accumulation (a surrogate of diarrhea) is a marker of 

host response in salmonellosis infections.  After 8 hours after infection, fluid amounts 

elicited by each strain were measured.  S. Typhi wild type grown in Vi suppressing 

medium, viaB mutant, and ompR mutant expressed significantly higher (p<0.05) levels 

of fluid accumulation then the LBH control loop.  The viaB mutant has been previously 

shown to produce increase fluid accumulation and cause increase inflammation 

compared to wild type in the calf model.  In this case, we analyzed for statistically 

significant differences in the amount of fluid accumulation between serotype Typhi 

grown in LBH, the viaB mutant, and the ompR mutant.  The fluid accumulated with  
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Figure 18.  Fluid accumulation in the bovine ileum at eight hours post-infection of 

ligated ileal loops with indicated strains of serotype Typhi.  Data are expressed as 

percentages of the response elicited by serotype Typhimurium wild type.  Data on fluid 

accumulation were normalized to the weight of the tissue (in grams).  Bars represent 

geometric means with ± standard deviation.  Asterisks (*) indicate that differences in 

percent fluid accumulation are statistically significant (p<0.05) when compared to LBH 

control loop.  These data are averages from four different bovids. 



 75

 

serotype Typhi grown in high osmolarity was not significantly higher (p=0.11) than the 

ompR mutant grown in LBH.  Typhi grown in LBH was not significantly higher  

 (p=0.17) than the viaB mutant grown in LBH.  In comparing the ompR and viaB mutant, 

the amount of fluid was not statistically different (p=0.79).  Interestingly, when 

performing the student’s t-test to compare the strains with serotype Typhimurium, there 

was no statistically significant difference in the amount of fluid accumulated as well.  

Together, these data support the idea that the level of host response correlates with the 

lack of Vi expression.   

 

Histopathology of bovine ileal tissue reveals increased inflammation 

amongst non-expressing Vi capsular strains compared to Vi expressing wild type. 

Gross pathological sections were observed at both 2 and 8 hour time points for bovine 

ligated-ileal loops inoculated with S. Typhi Ty2 wild type grown in LBH, S. Typhi Ty2 

wild type grown in LB, STY2, QT74, S. Typhimurium IR715 wild type, or with sterile 

LBH broth.  Histopathological changes in the bovine ileum in response to infection were 

graded blindly by two board certified veterinary pathologists based on a scale from 1 to 

5, as mentioned in the material and methods section at both two hour and eight hour time 

points.  However, more pathological changes were observed at the eight-hour time point.  

Therefore, pathology scores were determined based on changes for the eight-hour time 

point.  The average pathological scores assigned for each strain at the 8 hour time point 

were:  4.5, 2.5, 4.8, 4.5, 4.9, and 1, respectively. 
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Sections of ileum infected with S. Typhi Ty2 wild type grown in LBH revealed moderate 

to severe changes in the epithelium, characterized by epithelial detachment, blunting and 

erosion, which agrees with previous studies that demonstrate the induction of invasion 

genes and the destruction of the intestinal epithelium with S. Typhi under high 

osmolarity growth conditions (114).  Only mild increases in neutrophilic counts were 

detected in the lamina propria and submucosa of the ileum whereas the numbers of 

macrophages were markedly increased (Table 6 and 7).  Sections of bovine Peyer’s 

patches illustrated mild to moderate increases in neutrophil and moderate mononuclear 

cell counts.  Our pathological findings were similar to previous S. Typhi cultured in 

LBH infection experiments involving rat (114) and murine (51) ileal Peyer’s patches.   

 

 

 
 
 
 
Table 6.  Histologic changes of calf ileal loops infected with S. Typhi Ty2 wild type 
grown in LBH medium (Vi-suppressing conditions) at 2 hours 
 

Calf 
# 

Changes in 
Epithelium 

Changes in 
Villi/Crypts

Neuts Monos/ 
Macs 

Lymphs Other 
Pathological 
Findings 

1 0   erosion 
 

1  blunting 1 1 1 Some dilated 
lacteals 

2 0   erosion 1  blunting 1-2 1 1 Some luminal 
necrotic debris 

3 0   erosion 1  blunting 1 1 1 None 
4 0   erosion 1  blunting 1 1 1 None 
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Table 7.  Histologic changes of calf ileal loops infected with S. Typhi Ty2 wild type 
grown in LBH medium (Vi-suppressing conditions) at 8 hours 
 
Calf 
# 

Changes in  
Epithelium 

Changes in 
Villi/Crypts 

Neuts Monos/ 
Macs 

Lymphs Other 
Pathological 
Findings 

1 2  erosion 
2 exocytosis 

3 blunting 3-4 2 1 Margination of 
neutrophils in 
submucosal blood 
vessels 

2 1 erosion 2-3 blunting 
2 crypt    
   abscessation 

2 1 1 Some luminal 
necrotic debris, 
neutrophils, fibrin 

3 4 erosion, 
epithelial 
necrosis 

4 blunting 
2 early crypt  
   abscessatiom 

2 2-3 1 Pseudomembrane 
Formation 
Bacterial colonies 
in submucosa 

4 4 erosion 4 blunting 
2 crypt 
   abscessation 

1-2 2 2 Pseudomembrane 
formation 
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 Histopathological analysis of ileum infected with S. Typhi Ty2 wild type grown 

in LB revealed normal contracted intact epithelium with a mild increase in neutrophils 

(Table 8 and 9).    The lack of infiltrating neutrophils and the presence of a predominate 

mononuclear cell infiltrate within the intestine is characteristic of typhoid fever 

infections (36, 53, 72, 75, 95).   

 
 
 
 
 
 
 
Table 8.  Histologic changes of calf ileal loops infected with S. Typhi Ty2 grown in LB 
at 2 hours 
 
Calf # Changes in 

Epithelium 
Changes in 
Villi/Crypts 

Neuts Monos/  
Macs 

Lymphs Other 
Pathological 
Findings 

1 1   erosion 2 blunting 2 2 1 None 
2 1   erosion 2 blunting 2 1 1 Neutrophils in 

lacteals 
3 1   erosion 2 blunting 2 2 1 None 
4 1   erosion 1  blunting 1 1 1 None 
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Table 9.  Histologic changes of calf ileal loops infected with S. Typhi Ty2 grown in LB 
at 8 hours 
 
Calf # Changes in 

Epithelium 
Changes in 
Villi/Crypts 

Neuts Monos/  
Macs 

Lymphs Other 
Pathological 
Findings 

1 1   erosion 1 blunting 1 1 1 Reactive 
endothelium 
lining submucosal 
blood vessels 

2 2   erosion 1   blunting 2 2 1 Some luminal 
necrotic debris 

3 1   erosion 1   blunting 2 2 1 Some luminal 
necrotic debris 

4 2   erosion 1  blunting 2 2 1 None 
 
 
 
 
 
 
 
 Sections of ileal loops inoculated with STY2 demonstrated moderate to severe 

changes in the epithelium infrastructure characterized by blunting and fusion of the 

epithelium (Table 10 and 11).  There was a loss of glandular structures along with a 

predominant neutrophil infiltrate in the lamina propria with signs of early crypt abscess 

development.  Large numbers of neutrophils were also present within the interstitium of 

lymphoid follicles (Peyer’s patch).  Our results confirm previous data in bovine ligated-

ileal loops, in which the viaB mutant induced more inflammatory changes when 

compared to the wild type (83).  In rat ligated-ileal loop experiments infected with a Vi-

deficient strain (GIFU10007-3), similar morphological destructive changes in intestinal 

follicle-associated epithelium were observed (114).   
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Table 10.  Histologic changes of calf ileal loops infected with S. Typhi Ty2 ∆viaB at 2 
hours 
 
Calf # Changes in 

Epithelium 
Changes in 
Villi/Crypts 

Neuts Monos/  
Macs 

Lymphs Other 
Pathological 
Findings 

1 0   erosion 0-1 blunting 1 1 1 Some dilated 
lacteals 

2 0   erosion 1   blunting 1 1 1 Some luminal 
necrotic debris, 
neutrophils, fibrin 

3 0   erosion 0-1    
early crypt 
abscess 
formation 
2  blunting 

0-1 2 1 None 

4 0   erosion 1  blunting 1 1 1 None 
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Table 11.  Histologic changes of calf ileal loops infected with S. Typhi Ty2 ∆viaB at 8 
hours 
 
Calf 
# 

Changes in  
Epithelium 

Changes in 
Villi/Crypts 

Neuts Monos/ 
Macs 

Lymphs Other 
Pathological 
Findings 

1 2  erosion 
2 exocytosis 

3 blunting 
1-2 crypt 
   abscessation 

3 2 1 Pseudomembrane 
formation 

2 2 erosion 
2 epithelial   
detachment 
2 exocytosis 

3-4 blunting 
2 crypt  
   abscessation 

2 2 1 Pseudomembrane 
formation 

3 3-4 erosion 4 blunting 
2 early crypt 
   abscessation 

1 2-3 1 Pseudomembrane 
formation 

4 2 erosion 2-3 blunting 
1 crypt  
   abscessation 

2 2-3 2 Pseudomembrane 
formation 
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 To the author’s knowledge, no previous experiments have been conducted to 

examine the intestinal pathology induced by an ompR deletion, a possible positive 

regulator for Vi antigen expression and negative regulator for invasion of S. Typhi.  Calf 

ligated-ileal loops were inoculated with QT74, an ompR mutant we generated in this 

study.  After two and eight hours of infection, the intestinal epithelium displayed 

moderate blunting and fusion of the intestinal epithelium along with a predominant 

neutrophil infiltrate within the lamina propria (Table 12 and 13).  Fibrin and neutrophils 

were present within the intestinal lumen (pseudomembranous formation).  There were 

signs of early crypt abscess formation and submucosal edema.  Multiple sections 

revealed engorgement of blood vessels with neutrophils as well as rod-shaped bacteria 

inside neutrophils, as a result of phagocytosis.  The lack of Vi antigen production and the 

activation of the invasion-associated genes have been previously reported (2, 79, 104, 

114).  This provides a possible explanation for the inflammation and subsequent 

destruction to the intestinal epithelial integrity induced by S. Typhi Vi-deficient strains 

(114). 
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Table 12.  Histologic changes of calf ileal loops infected with S. Typhi Ty2 ∆ompR  
at 2 hours 
 
Calf 
# 

Changes in 
Epithelium 

Changes in 
Villi/Crypts 

Neuts Monos/ 
Macs 

Lymphs Other 
Pathological 
Findings 

1 1 erosion 
1 exocytosis 

1  blunting 2-3 2 1 Reactive 
endothelium  
and margination 
of neutrophils in 
arterioles 

2 1  erosion 1 blunting 1-2  1 1 None 
3 3  erosion 3 blunting 1 2 1 None 
4 0  erosion 1 blunting 0 0 0 None 
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Table 13.  Histologic changes of calf ileal loops infected with S. Typhi Ty2 ∆ompR at 8 
hours 
 
Calf 
# 

Changes in  
Epithelium 

Changes in 
Villi/Crypts 

Neuts Monos 
/ Macs 

Lymphs Other 
Pathological 
Findings 

1 2 erosion 
2 exocytosis 

2-3 blunting 
3 crypt  
abscessation 

3 2-3 1 Pseudomembrane 
formation 

2 2 erosion 2-3 blunting 
2 crypt 
abscessation 

2-3 2 1 Bacterial emboli 
Pseudomembrane 
formation 

3 2-3 erosion 2-3 blunting 
2 crypt 
abscessation 

2 2-3 1 
 

Bacteria in deep 
submucosa 

4 2 erosion 2 blunting 
2 crypt  
abscessation 

3 2 1 Pseudomembrane 
formation 
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 Studies infecting bovine ligated ileal loops with S. Typhimurium IR715 wild 

type, an in vivo model for human gastroenteritis, have previously demonstrated the 

inflammatory deleterious effects on gut tissue (27, 91).  Results from inoculating calf 

ligated-ileal loops with IR715 served as our positive control in these studies for host 

inflammatory changes.  Sections of ileum illustrated blunting and fusion of the intestinal 

epithelium with a predominant neutrophil infiltrate in the lamina propria as neutrophils 

marginated from the vascular supply into tissue (Table 14 and 15).  There were also 

signs of submucosal edema, congested lymphatics, and necrosis.  All these finding were 

in good agreement with previous reports (91, 100, 113).   

 

 

 

Table 14.  Histologic changes of calf ileal loops infected with S. Typhimurium IR715 
wild type at 2 hours 
 
Calf 
# 

Changes in 
Epithelium 

Changes in 
Villi/Crypts 

Neuts Monos/ 
Macs 

Lymphs Other 
Pathological 
Findings 

1 4 erosion 
3 exocytosis 

3  blunting 3-4 2 1 Margination of 
neutrophils in 
arterioles 

2 3  erosion 3 blunting 3  2 1 Early crypt 
abscess 
formation 

3 3  erosion 3 blunting 4 2 1 Margination of 
neutrophils in 
arterioles 

4 3  erosion 4 blunting 3 2 1 Margination of 
neutrophils in 
arterioles 
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Table 15.  Histologic changes of calf ileal loops infected with S. Typhimurium IR715 
wild type at 8 hours 
 
Calf 
# 

Changes in 
Epithelium 

Changes in 
Villi/Crypts 

Neuts Monos/ 
Macs 

Lymphs Other 
Pathological 
Findings 

1 4 erosion 
3 exocytosis 

3 blunting 3-4 2 1 Margination of 
neutrophils in 
arterioles 

2 4  erosion 3 blunting 4  2 1 Crypt abscess 
formation 

3 4  erosion 3 blunting 4 2 1 Crypt abscess 
formation 

4 4  erosion 4 blunting 4 2 1 Margination of 
neutrophils in 
arterioles 
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Negative control loops inoculated with LBH broth had no significant 

pathological findings.  Most sections revealed submucosal edema with a normal intact 

epithelium, with few neutrophil infiltrates.   

 
 
 
 
 
 
Table 16.  Histologic changes of uninfected LBH control calf ileal loops at 2 hours 
 
Calf 
# 

Changes in  
Epithelium 

Changes in 
Villi/Crypts 

Neuts Monos/ 
Macs 

Lymphs Other 
Pathological 
Findings 

1 0  erosion 0 blunting 1-2 1 1 None 
2 0  erosion 0 blunting 1-2 1 1 None 
3 0  erosion 1 blunting 1 2 1 None 
4 0  erosion 2 blunting 0-1 2 1-2 None 
 
 
 
 
 
 
 
Table 17.  Histologic changes of uninfected LBH control calf ileal loops at 8 hours 
 
Calf 
# 

Changes in  
Epithelium 

Changes in 
Villi/Crypts 

Neuts Monos/ 
Macs 

Lymphs Other 
Pathological 
Findings 

1 0 erosion 0 blunting 1 1 1 None 
2 0 erosion 0 blunting 1 1 1 None 
3 0 erosion 0 blunting 1 1 1 None 
4 0 erosion  0 blunting 1 1 1 None 
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DISCUSSION 

 The Vi capsular antigen of S. Typhi is a significant virulence factor important in 

the pathogenesis of typhoid fever.  Studies have shown that the Vi capsule may exhibit 

anti-inflammatory effects (81, 83).  Much focus has recently been placed on studying the 

regulators and environmental conditions that modulate the Vi antigen expression.  

Expression of the Vi antigen is controlled by the viaA and viaB chromosomal loci (37).  

In vitro studies have demonstrated that the infection of T84 polarized cells with a viaB 

mutant of S. Typhi causes an increase in IL-8 levels compared to infection with S. Typhi 

wild type, suggesting that the presence of the capsule causes decreased inflammatory 

cytokine production (81).  ompR and tviA are two genes that are located on the viaB 

locus.  Another gene, rcsB, located on the viaA locus is thought to act as a positive 

regulator of Vi expression through tviA (105).  More recently, the rpoS gene, a master 

regulator in the general stress response and required for survival under extreme stress 

conditions and for virulence in S. Typhimurium, has been reported to act as another 

regulator of Vi polysaccharide synthesis (88). 

 In this study, our main goal was to examine the role of the ompR regulon in vitro 

with T84 polarized cells, an intestinal culture model system that has not been used 

extensively to study S. Typhi and the bovine ligated ileal loop model, an animal model 

that has been successfully implemented to S. Typhi pathogenesis (81, 84).   

 The involvement of the S. Typhi ompR gene in regulating the biosynthesis of the 

Vi capsule has been previously demonstrated, and it has been suggested that this 

regulation may be responsive to osmolarity environmental signals (78).  However, the 
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function of ompR during invasion of S. Typhi remains unclear.  In Shigella flexneri, 

ompR mutants were shown to be defective in their ability to invade epithelial cells (4).  

The evaluation of the  invasion properties of a S. Typhi ompR mutant have been reported 

in one study to not impair the ability of invasion of epithelial cells, but does not divulge 

any data indicating increased levels of invasion  (78).  Currently, experimental studies 

are underway to evaluate the current hypothesis that the lack of Vi antigen production 

may up-regulate the expression of the T3SS-1 invasion genes and cause hyperinvasion 

among these strains.  Studies have shown that Vi-deficient strains and Vi-suppressed 

strains result in increased invasion compared to the wild type and destruction to murine 

Peyer’s patches (71, 114).  Our results from performing the invasion assay in T84 

polarized cells showed increase invasion among Vi-suppressed strains and Vi-deficient 

strains, including a S. Typhi ompR mutant we constructed, compared to the wild type Vi-

expressing strain.  Using the same strains and inoculating them into bovine ligated-ileal 

loops, we also recovered higher bacterial numbers among the Vi-lacking strains.  

Histopathological examination of infected bovine ileal tissue with Vi mutant strains 

revealed moderate to severe inflammation along with high neutrophilic infiltration.   

Our other experimental results pertaining to the hypersecretion of invasion-

associated proteins in the supernatant of culture medium agree with previous studies 

(114).  Our protein expression analysis revealed that the ompR mutant secretes 

moderately increased levels of flagellin and SipC.  Real-time PCR analysis of invasion 

genes in different osmolarity growth conditions and among different Vi regulator 

mutants also supports the increased invasion theory when repressing or inactivating Vi 
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expression.  Fluid accumulation in the intestinal (a surrogate of diarrhea) is a valid 

measurement of the host inflammatory response induced by each bacterial strain (111).  

The measured fluid collected in the bovine intestinal lumen at 8 hours revealed that the 

ompR deletion mutant results in similar levels of inflammation to S. Typhi grown in 

LBH and the viaB deletion mutant.  Thus, it is logical to propose based on previous data 

and our findings that deleting the ompR gene in S. Typhi, which inhibits Vi capsule 

production, may subsequently up-regulate the SPI-1 (T3SS-1) invasion genes, resulting 

in equivalent invasion and damaging effects to the intestinal epithelium.   

 Possible explanation for any differences in invasion analysis results may be a 

consequence of laboratory techniques, including bacterial growth conditions; inoculation 

at different growth phases; inoculum size; and inoculum composition used.  Divergent 

findings in the interaction between Salmonella invasion and murine Peyer’ patch has 

been reported (14, 51, 77).  Clark demonstrated that the infection of murine ileal-ligated 

loops with S. Typhimurium results in M cells damage and follicular-associated 

epithelium dependent upon inoculum composition (14).  Our T84 infection (65, 80) and 

bovine ligated ileal-loop experiments (82, 84) were conducted based on previous 

methodology.  In brief, our strains were grown overnight at 37ºC shaking in appropriate 

broth, LB or LBH medium with or without appropriate antibiotics.  The next day 1:1000 

dilution of overnight culture was made and bacteria were grown until OD600= 1.0-1.5 

(late log phase) for optimal Vi suppression without antibiotics.  Subsequently, the 

culture was used as the inoculum, and the numbers of CFU were determined by plating 

serial 10-fold dilutions on LB plates. 
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 In conclusion, our data confirm the concept that the Vi polysaccharide of S. 

Typhi behaves as a negative regulator in the invasion process under hyperosmotic 

growth conditions, which is proposed to mimic the conditions of the intestinal lumen in 

mammals.  This is further supported by increased invasion demonstrated among Vi 

regulator mutants in this investigation and others.  The Vi-suppressed S. Typhi is similar 

to the Vi-deficient mutants in its increased invasiveness in T84 polarized cells bovine 

ligated-ileal loops and destruction the bovine intestinal epithelium and Peyer’s patch.   
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

 Typhoid fever is an acute, systemic infection of the reticuloendothelial system 

caused by Salmonella enterica serovar Typhi, which is responsible for an estimated 16 

million illnesses and 600,000 deaths worldwide, annually (68).  S. Typhi is highly host 

adapted to humans and higher nonhuman primates.  Thus, there is a lack of animal 

models suitable to study the molecular mechanisms of this pathogen as well as its host-

pathogen interactions.  The pathogenesis of typhoid fever is commonly studied using 

Salmonella enterica serovar Typhimurium infection in mice as an animal model.  The 

intestinal pathology caused by S. Typhimurium in mice resembles that of typhoid fever 

patients.  However, human infection with S. Typhimurium causes a localized 

enterocolitis with a massive neutrophil influx and subsequent diarrhea.  Differences in 

disease manifestations in humans between S. Typhi and S. Typhimurium indicate that S. 

Typhi possesses distinct virulence factors important in its pathogenesis.  The calf model 

has been used previously to study the pathogenic mechanisms of typhoidal salmonellosis 

(82, 83).  Thus, the calf model is a good animal model that allows us to perform 

comparative studies investigating S. Typhi virulence factors that are absent from S. 

Typhimurium and those that may be responsible for allowing S. Typhi to cause typhoid 

fever in humans.   

 S. Typhi possesses an important virulence factor, recognized as the Vi antigen, 

which is not present in the S. Typhimurium genome.  Current preventative typhoid fever 
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vaccines are formulated based on the polysaccharide capsule and confer a 65-75% 

protective immunity.  Previous studies demonstrated that a non-capsulated S. Typhi 

produces a stereotypic inflammatory host response resulting in CXC IL-8 secretion and 

neutrophilic infiltration, resembling the inflammatory cascade elicited by S. 

Typhimurium (80, 82).  The results from these experiments suggest that the Vi capsular 

antigen may be responsible for preventing the host innate immune response in the 

intestinal mucosa.  The lack of inflammation seen with typhoidal salmonellosis also 

raises the possibility that the Vi antigen may exhibit properties of an anti-inflammatory 

drug.  However, Vi polysaccharide expression in response to the intestinal 

environmental stimuli and the regulators involved in its biosynthesis and export has not 

been examined extensively in cell culture models or in a suitable animal model.   

Therefore, the goal of these studies was to unravel the mechanisms of Vi capsule 

expression and to understand the function of the regulators that modulate its expression 

using human colonic epithelial cells and the bovine ligated-ileal loop model. 

In the first chapter, we implemented direct and indirect methods to localize and 

detect Vi antigen expression within intestinal epithelial cells using T84 polarized cells 

and the bovine ligated-ileal loop model.  We reported that tviB, a gene necessary for Vi 

production in S. Typhi, was significantly up-regulated intracellularly within T84 

polarized cells using real-time PCR.  Infection experiments conducted in the same cell 

line with a S. Typhi carrying a gfp-expressing plasmid fused to the viaB promoter, 

revealed relatively increased numbers of intracellular Vi-expressing bacteria compared 

to the numbers of extracellular bacteria using flow cytometry analysis.  These findings 
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help support our hypothesis that the Vi antigen is up-regulated following invasion of 

intestinal epithelial cells.  Along with previous data showing a viaB mutant eliciting 

decreased levels of IL-8 production in human epithelial cells (82), it provides evidence 

that the location of Vi expression may in fact serve to prevent TLR recognition.   

To determine whether this occurred in vivo, we inoculated calf ligated ileal loops 

and studied Vi gene expression with real-time PCR and detected Vi production via 

fluorescence immunohistochemistry.  Again, we discovered that tviB was expressed at 

levels significantly higher in calf tissue after invasion compared to the inoculum grown 

under Vi-suppressing conditions.  The presence of the Vi capsular antigen was detected 

in bacteria along the intestinal villi tips where they appeared to penetrate the intestinal 

epithelial barrier and enter the lamina propia.  The expression of the Vi capsule along the 

tips of the villi and essentially in the lumen may be a result of the hypoosmotic stimuli of 

the luminal fluid since it is has been shown that Vi is expressed under hypoosmotic 

growth conditions (78, 103).  On the other hand, it may be that the Vi capsule is 

expressed in the lumen, which would be in support of other research findings that 

indicate the capsule may reduce bacterial adhesion and invasion of intestinal epithelium 

(2, 71).  This explanation, however, is not supported by the majority of the current 

studies on capsule expression.  Thus, the reason for Vi expression detected at the tips of 

the villi remains unclear.  

The detection of Vi production in the area of the lamina propria does suggest that 

the Vi may function in masking innate immune recognition in the lamina propria since 

the location of TLRs have been identified on the basolateral pole of intestinal epithelial 
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cells (31).  Additionally, the lamina propria contains numerous phagocytes that express a 

wide range of PAMP receptors on their surfaces.  Fluorescent staining of bovine Peyer’s 

patch sections revealed large numbers of Vi-expressing bacteria in the mantle and in the 

area between germinal centers.  Since Peyer’s patch are large lymphoid aggregations 

consisting of both T and B cells areas within the small intestinal mucosa, these data 

suggested that Vi antigen may be expressed intracellularly with dendritic cells.  The 

dendritic cells may function in antigen presentation for T cell- proliferation and T-cell 

help for B-cell responses.  The Vi capsule has been shown to be expressed inside 

macrophages in vitro (17) and during human infection.  In addition, CD18-expressing 

phagocytes have been previously shown to be important in the dissemination of S. 

Typhimurium infection (102), so it is possible that Vi-expression may occur within CD-

18 cells.  However, no studies have definitely shown the exact cells types in which Vi-

expression occurs.  Our results illustrated that the Vi capsule was expressed following 

invasion of the gut mucosa, which supported a role of the capsule during bacterial host 

cell interaction in tissue.  This coincides with earlier calf ligated-ileal loop studies in 

which a capsulated S. Typhi reduced IL-17 expression in the bovine intestinal mucosa 

(82).  Our data along with the experimental findings from that study help to put forth the 

belief that Vi expression occurs after invasion and blocks the host immune system.  With 

previous data and our experimental findings in this chapter, the potential role of the Vi 

polysaccharide capsule and its regulated expression are summarized in Figure 19. 

Two distinct processes contribute to the hyperosmotic conditions within the 

intestinal lumen.  First, the digestions of foodstuffs in which macromolecules are  
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Figure 19.  Summary of events occurring within the gut lumen and gut-associated 

tissues with Salmonella typhi (Vi+) infection.  (1)  Exposure to the hyperosmotic 

conditions of the gut lumen upregulates SPI-1 and promotes a hyperinvasive phenotype.  

Vi-expression is down-regulated, which further contributes to increase secretion of SPI-1 

effectors. (2)  Salmonella typhi invades intestinal epithelial cells and induces IL-6 

secretion.  (3)  Exposure to the hypoosmotic conditions within tissue downregulates SPI-

1 and Vi-expression is upregulated.  (4) The invading bacteria are taken up by 

macrophages, dendritic cells (M cells), and lymphocytes within gut-associated tissue and 

disseminated throughout the body. 
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enzymatically broken down into thousands of smaller molecules, each osmotically active 

and causing a dramatic increase in the osmolarity of the chyme.  Secondly, crypt cells 

actively secrete electrolytes into the lumen.  S. Typhi gains access to the intestinal lumen 

and is exposed to the hyperosmotic conditions, causing an up-regulation of SPI-1 (Type 

III secretion system) genes and the suppression of Vi antigen genes.  S. Typhi invades 

the intestinal mucosa and induces IL-6 secretion from intestinal epithelial cells.  After 

invasion, S. Typhi encounters hypoosmotic conditions within the tissue.  At this point, 

SPI-1 is down-regulated and Vi antigen expression is activated.  The expression of the 

Vi antigen in the lamina propria may be acting to mask PAMP recognition by 

phagocytes and preventing a TLR-mediated response.  This is consistent with the lack of 

IL-8 production and neutrophil recruitment seen with typhoid fever infections.  The 

invading bacteria are eventually taken up by macrophages, dendritic cells, and 

lymphocytes within the gut-associated lymphoid tissue and disseminated systemically.  

In the second chapter, we wanted to particularly study the involvement of the 

ompR regulon during invasion and its role in mediating Vi expression using human 

intestinal epithelial cells and the calf-ligated ileal loop model.  Salmonella Typhi 

possesses a functional invasion associated Type III secretion system (T3SS-1) important 

during the initial stages of infection of intestinal epithelial cells, similar to the 

mechanisms present in S. Typhimurium.  Recent studies have shown that that S. Typhi 

grown under conditions of high osmolarity in vitro switches off Vi antigen expression 

(78) whereas the type III secretion system genes become up-regulated (2).  The 
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mechanism by which this occurs still remains uncertain, though it appears that the 

expression of the Vi capsule and invasion-associated genes behave in an opposite 

manner.   Results from experiments with non-expressing Vi strains displayed increased 

invasion towards intestinal epithelial cells (71, 114).  These findings support the concept 

that Vi-suppressed and Vi mutant strains of S. Typhi promote an increased invasive 

phenotype, perhaps through the downregultion of Vi expression.  OmpR is a positive 

regulator in the synthesis and expression of the Vi capsule.  A single study reports that 

an ompR deletion in S. Typhi inhibits Vi production and the strain was not impaired in 

its ability to invade intestinal epithelial cells, but did not assess whether this strain 

displayed increased invasion (78).  As a result, we wanted to compare the invasiveness 

characteristics between S. Typhi grown under hyperosmotic conditions, a viaB mutant, 

and an ompR mutant.  We also wanted to determine the effects of these strains in 

eliciting inflammation in the calf model, a good animal model for studying typhoid fever 

pathogenesis.   

 We report that S. Typhi grown under Vi -suppressing conditions, the viaB 

mutant, and the ompR mutant all illustrated increase invasion in polarized T84 cells and 

bovine ileal tissue.  Analysis of invasion-associated genes encoded by SPI-1 with real 

time PCR also revealed increased levels of expression in fliC, iagA, prgH in the ompR 

mutant strain.  These data help to support our hypothesis that increased invasion among 

these strains may be due to the deficiency in Vi antigen expression and the regulation 

responsible for controlling SPI-7 and SPI-1 may function conversely.  The findings 

complement the theory that Vi expression maybe down-regulated in the intestinal lumen 
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in response to hyperosmotic stimuli in order to promote a hyperinvasive phenotype, 

allowing S. Typhi to invade deeper into tissues.   

Fluid accumulation in previous calf ligated-loop studies is observed as a marker 

of inflammation elicited by S. Typhimurium and S. Typhi as it corresponds to the 

number of bacteria that have invaded the gut mucosa (82-84).  The viaB mutant was 

previously demonstrated to have more fluid accumulation relative to the wild-type S. 

Typhi capsulated strain and similar levels of fluid accumulation to a S. Typhimurium 

capsule-expressing strain, once more suggesting the presence of the capsule may be 

responsible for inhibiting inflammation (82).  Fluid accumulation in loops inoculated in 

this investigation with Vi-deficient and Vi-suppressed strains were comparable to S. 

Typhimurium and were significantly higher than the LBH uninfected control loop.  This 

indicates the number of bacteria that invaded were comparable among the different 

strains.  Interestingly, all the S. Typhi strains used were Vi-lacking and S. Typhimurium 

does not possess a Vi capsule, providing a potential rationale for the increase invasion 

among Vi negative strains.  Histopathological evaluation of ileal tissue has also been 

performed to characterize inflammation induced by S. Typhimurium and S. Typhi in 

earlier experiments (82, 90).  The S. Typhi viaB mutant (STY2) has been shown to 

trigger more inflammation than its capsulated wild-type (82).  The histopathological 

inflammatory lesions produced in this study by the Vi-deficient and suppressed strains 

were quite similar.  The strains appear to elicit more inflammation than the capsulated 

strain.  Our data further supports the notion that Vi- suppressed and Vi mutants of S. 

Typhi exhibit similar levels of increased invasion and inflammation, perhaps  
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Figure 20.  Summary of events occurring within the gut lumen and gut-associated 

tissues with Salmonella typhi (Vi-) infections. (1)  Exposure to the hyperosmotic 

conditions of the gut lumen upregulates SPI-1 and promotes a hyperinvasive phenotype. 

The lack of Vi expression further contributes to increase secretion of SPI-1 effectors. (2)  

Salmonella invades intestinal epithelial cells and PAMPs are recognized by TLRs on the 

basolateral surface and induces IL-8 secretion.  (3) Salmonella continues to express SPI-

1 after encountering hyposmotic conditions in tissue.  (4) IL-8 recruits neutrophils to the 

site of infection. 
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mechanistically through the inactivation of the Vi antigen.  With previous reports and 

our experimental findings in this chapter, the characteristics of the Vi negative strains 

and their regulated expression are portrayed in Figure 20. 

In summary, the non-capsulated S. Typhi strains are exposed to the hyperosmotic 

conditions within the intestinal lumen.  Subsequently, the SPI-1 (T3SS-1) genes are 

upregulated and allow increased invasion.  Following invasion, the Vi negative strains 

do not express a Vi capsule, so PAMPS are recognized by the innate immune system, 

including TLR5 and TLR4, stimulated by flagellin and LPS, respectively.  The bacteria 

are also recognized by a wide variety of other PAMP receptors located on phagocytes 

circulating in the lamina propria. Upon activation of the TLR response, neutrophils are 

recruited to the site of infection and IL-8 is secreted. 

Extensive investigation has been conducted to characterize the regulation of the 

Vi expression in vitro; however, studies have shown that the gene regulation in  

infected hosts can markedly differ from what has been expected based on in vitro and 

cell culture work (5, 55, 56) stressing the need for in vivo studies to understand 

Salmonella virulence gene regulation fully. 

 Polysaccharide capsules are found on the surface of a wide range of gram-

negative bacteria.  Capsules have a significant role in determining access of certain 

molecules to the cell membrane, mediating adherence to surfaces, and increasing 

tolerance of desiccation. Furthermore, capsules of many pathogenic bacteria impair 

phagocytosis (63) and reduce the action of complement-mediated killing.  Consistent 
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with this belief, the Vi-antigen was shown to impede uptake of S. Typhi by human 

neutrophils (64).  Thus, the Vi capsular antigen is likely to be major virulence 

determinant of S. Typhi.  With this concept in mind, continued efforts should 

concentrate on the investigation of novel role(s) that the Vi-antigen may serve and the 

regulators that modulate its expression at the host-pathogen interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 103

REFERENCES 

 

1. Alves, G. E. S., S.M. Hartsfield, G.L. Carroll, S. Zhang, R.M. Tsolis, A.J. 
Baumler, L.G. Adams. 2003. Use of propofol, isoflurane and morphine for 
prolonged anesthesia in calves. Arq. Bras. Med. Vet. Zoo. 55:411-420. 

 
2. Arricau, N., D. Hermant, H. Waxin, C. Ecobichon, P. S. Duffey, and M. Y. 

Popoff. 1998. The RcsB-RcsC regulatory system of Salmonella typhi 
differentially modulates the expression of invasion proteins, flagellin and Vi 
antigen in response to osmolarity. Mol Microbiol 29:835-850. 

 
3. Arya, S. C. 2002. Field effectiveness of Vi polysaccharide typhoid vaccine in the 

People's Republic of China. J Infect Dis 185:845; author reply 845-846. 
 
4. Bernardini, M. L., A. Fontaine, and P. J. Sansonetti. 1990. The two-

component regulatory system ompR-envZ controls the virulence of Shigella 
flexneri. J Bacteriol 172:6274-6281. 

 
5. Beuzon, C. R., K. E. Unsworth, and D. W. Holden. 2001. In vivo genetic 

analysis indicates that PhoP-PhoQ and the Salmonella pathogenicity island 2 
type III secretion system contribute independently to Salmonella enterica serovar 
Typhimurium virulence. Infect Immun 69:7254-7261. 

 
6. Bhan, M. K., R. Bahl, and S. Bhatnagar. 2005. Typhoid and paratyphoid fever. 

Lancet 366:749-762. 
 
7. Bitar, R., and J. Tarpley. 1985. Intestinal perforation in typhoid fever: a 

historical and state-of-the-art review. Rev Infect Dis 7:257-271. 
 
8. Black, R. E., M. M. Levine, C. Ferreccio, M. L. Clements, C. Lanata, J. 

Rooney, and R. Germanier. 1990. Efficacy of one or two doses of Ty21a 
Salmonella typhi vaccine in enteric-coated capsules in a controlled field trial. 
Chilean Typhoid Committee. Vaccine 8:81-84. 

 
9. Bongaerts, R. J., I. Hautefort, J. M. Sidebotham, and J. C. Hinton. 2002. 

Green fluorescent protein as a marker for conditional gene expression in bacterial 
cells. Methods Enzymol 358:43-66. 

 
10. Bueno, S. M., C. A. Santiviago, A. A. Murillo, J. A. Fuentes, A. N. Trombert, 

P. I. Rodas, P. Youderian, and G. C. Mora. 2004. Precise excision of the large 
pathogenicity island, SPI7, in Salmonella enterica serovar Typhi. J Bacteriol 
186:3202-3213. 



 104

11. Bumann, D. 2002. Examination of Salmonella gene expression in an infected 
mammalian host using the green fluorescent protein and two-colour flow 
cytometry. Mol Microbiol 43:1269-1283. 

 
12. Cario, E., I. M. Rosenberg, S. L. Brandwein, P. L. Beck, H. C. Reinecker, 

and D. K. Podolsky. 2000. Lipopolysaccharide activates distinct signaling 
pathways in intestinal epithelial cell lines expressing Toll-like receptors. J 
Immunol 164:966-972. 

 
13. Carter, P. B., and F. M. Collins. 1974. The route of enteric infection in normal 

mice. J Exp Med 139:1189-1203. 
 
14. Clark, M. A., B. H. Hirst, and M. A. Jepson. 1998. Inoculum composition and 

Salmonella pathogenicity island 1 regulate M-cell invasion and epithelial 
destruction by Salmonella typhimurium. Infect Immun 66:724-731. 

 
15. Collins, F. M. 1972. Salmonellosis in orally infected specific pathogen-free 

C57B1 mice. Infect Immun 5:191-198. 
 
16. Cryz, S. J., Jr., N. Vanprapar, U. Thisyakorn, T. Olanratmanee, G. 

Losonsky, M. M. Levine, and S. Chearskul. 1993. Safety and immunogenicity 
of Salmonella typhi Ty21a vaccine in young Thai children. Infect Immun 
61:1149-1151. 

 
17. Daigle, F., J. E. Graham, and R. Curtiss, III. 2001. Identification of 

Salmonella typhi genes expressed within macrophages by selective capture of 
transcribed sequences (SCOTS). Mol Microbiol 41:1211-1222. 

 
18. Dalton, R. 1967. The effect of starvation on the fluid and electrolyte metabolism 

of neonatal calves. British Veterinary Journal 123:237-245. 
 
19. Day, D. W., B.K. Mandal, and B.C. Morson. 1978. The rectal biposy 

appearances in Salmonella colitis. Histopathology 2:117--131. 
 
20. Dharmsathaphorn, K., J. A. McRoberts, K. G. Mandel, L. D. Tisdale, and H. 

Masui. 1984. A human colonic tumor cell line that maintains vectorial 
electrolyte transport. Am J Physiol 246:G204-208. 

 
21. Dragunsky, E. M., C. R. Wooden, S. A. Vargo, and I. S. Levenbook. 1989. 

Salmonella typhi vaccine strain in vitro; low infectivity in human cell line U937. 
J Biol Stand 17:353-360. 

 
 



 105

22. Edsall, G., S. Gaines, M. Landy, W. D. Tigertt, H. Sprinz, R. J. Trapani, A. 
D. Mandel, and A. S. Benenson. 1960. Studies on infection and immunity in 
experimental typhoid fever. I. Typhoid fever in chimpanzees orally infected with 
Salmonella typhosa. J Exp Med 112:143-166. 

 
23. Eriksson, S., S. Lucchini, A. Thompson, M. Rhen, and J. C. Hinton. 2003. 

Unravelling the biology of macrophage infection by gene expression profiling of 
intracellular Salmonella enterica. Mol Microbiol 47:103-118. 

 
24. Faucher, S. P., R. Curtiss, III, and F. Daigle. 2005. Selective capture of 

Salmonella enterica serovar typhi genes expressed in macrophages that are 
absent from the Salmonella enterica serovar Typhimurium genome. Infect 
Immun 73:5217-5221. 

 
25. Faucher, S. P., S. Porwollik, C. M. Dozois, M. McClelland, and F. Daigle. 

2006. Transcriptome of Salmonella enterica serovar Typhi within macrophages 
revealed through the selective capture of transcribed sequences. Proc Natl Acad 
Sci U S A 103:1906-1911. 

 
26. Finlay, B. B. 1994. Molecular and cellular mechanisms of Salmonella 

pathogenesis. Curr Top Microbiol Immunol 192:163-185. 
 
27. Fordtran, J. S., F. C. Rector, Jr., M. F. Ewton, N. Soter, and J. Kinney. 

1965. Permeability characteristics of the human small intestine. J Clin Invest 
44:1935-1944. 

 
28. Gaines, S., H. Sprinz, J. G. Tully, and W. D. Tigertt. 1968. Studies on 

infection and immunity in experimental typhoid fever. VII. The distribution of 
Salmonella typhi in chimpanzee tissue following oral challenge, and the 
relationship between the numbers of bacilli and morphologic lesions. J Infect Dis 
118:293-306. 

 
29. Galan, J. E. 2001. Salmonella interactions with host cells: type III secretion at 

work. Annu Rev Cell Dev Biol 17:53-86. 
 
30. Galan, J. E., and R. Curtiss, III. 1989. Cloning and molecular characterization 

of genes whose products allow Salmonella typhimurium to penetrate tissue 
culture cells. Proc Natl Acad Sci U S A 86:6383-6387. 

 
31. Gewirtz, A. T., T. A. Navas, S. Lyons, P. J. Godowski, and J. L. Madara. 

2001. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to 
induce epithelial proinflammatory gene expression. J Immunol 167:1882-1885. 

 



 106

32. Gupta, S., and R. Chowdhury. 1997. Bile affects production of virulence 
factors and motility of Vibrio cholerae. Infect Immun 65:1131-1134. 

 
33. Hallback, D. A., M. Jodal, and O. Lundgren. 1980. Villous tissue osmolality, 

water and electrolyte transport in the cat small intestine at varying luminal 
osmolalities. Acta Physiol Scand 110:95-100. 

 
34. Hallback, D. A., M. Jodal, A. Sjoqvist, and O. Lundgren. 1979. Villous tissue 

osmolality and intestinal transport of water and electrolytes. Acta Physiol Scand 
107:115-126. 

 
35. Hansen-Wester, I., and M. Hensel. 2001. Salmonella pathogenicity islands 

encoding type III secretion systems. Microbes Infect 3:549-559. 
 
36. Harris, J. C., H. L. Dupont, and R. B. Hornick. 1972. Fecal leukocytes in 

diarrheal illness. Ann Intern Med 76:697-703. 
 
37. Hashimoto, Y., A. Q. Khan, and T. Ezaki. 1996. Positive autoregulation of 

vipR expression in ViaB region-encoded Vi antigen of Salmonella typhi. J 
Bacteriol 178:1430-1436. 

 
38. Hashimoto, Y., N. Li, H. Yokoyama, and T. Ezaki. 1993. Complete nucleotide 

sequence and molecular characterization of ViaB region encoding Vi antigen in 
Salmonella typhi. J Bacteriol 175:4456-4465. 

 
39. Hautefort, I., A. Thompson, S. Eriksson-Ygberg, M. L. Parker, S. Lucchini, 

V. Danino, R. J. Bongaerts, N. Ahmad, M. Rhen, and J. C. Hinton. 2008. 
During infection of epithelial cells Salmonella enterica serovar Typhimurium 
undergoes a time-dependent transcriptional adaptation that results in 
simultaneous expression of three type 3 secretion systems. Cell Microbiol 
10:958-984. 

 
40. Hessel, L., H. Debois, M. Fletcher, and R. Dumas. 1999. Experience with 

Salmonella typhi Vi capsular polysaccharide vaccine. Eur J Clin Microbiol Infect 
Dis 18:609-620. 

 
41. Heyns, K. a. G. K. 1967. Strukturafklarung des Vi-antigens aus Citrobacter 

freundii (E.coli) 5396/38. Carbohydr. Res. 3:340-353. 
 
42. Hirose, K., T. Ezaki, M. Miyake, T. Li, A. Q. Khan, Y. Kawamura, H. 

Yokoyama, and T. Takami. 1997. Survival of Vi-capsulated and Vi-deleted 
Salmonella typhi strains in cultured macrophage expressing different levels of 
CD14 antigen. FEMS Microbiol Lett 147:259-265. 



 107

43. Hone, D. M., S. R. Attridge, B. Forrest, R. Morona, D. Daniels, J. T. 
LaBrooy, R. C. Bartholomeusz, D. J. Shearman, and J. Hackett. 1988. A 
galE via (Vi antigen-negative) mutant of Salmonella typhi Ty2 retains virulence 
in humans. Infect Immun 56:1326-1333. 

 
44. Hornick, R. B., S. E. Greisman, T. E. Woodward, H. L. DuPont, A. T. 

Dawkins, and M. J. Snyder. 1970. Typhoid fever: pathogenesis and 
immunologic control. N Engl J Med 283:686-691. 

 
45. Ishibashi, Y., and T. Arai. 1995. Salmonella typhi does not inhibit phagosome-

lysosome fusion in human monocyte-derived macrophages. FEMS Immunol Med 
Microbiol 12:55-61. 

 
46. Ishibashi, Y., and T. Arai. 1996. A possible mechanism for host-specific 

pathogenesis of Salmonella serovars. Microb Pathog 21:435-446. 
 
 
47. Jodal, M., and O. Lundgren. 1986. Countercurrent mechanisms in the 

mammalian gastrointestinal tract. Gastroenterology 91:225-241. 
 
48. Khan, S. A., P. Everest, S. Servos, N. Foxwell, U. Zahringer, H. Brade, E. T. 

Rietschel, G. Dougan, I. G. Charles, and D. J. Maskell. 1998. A lethal role for 
lipid A in Salmonella infections. Mol Microbiol 29:571-579. 

 
49. Klugman, K. P., I. T. Gilbertson, H. J. Koornhof, J. B. Robbins, R. 

Schneerson, D. Schulz, M. Cadoz, and J. Armand. 1987. Protective activity of 
Vi capsular polysaccharide vaccine against typhoid fever. Lancet 2:1165-1169. 

 
50. Klugman, K. P., H. J. Koornhof, J. B. Robbins, and N. N. Le Cam. 1996. 

Immunogenicity, efficacy and serological correlate of protection of Salmonella 
typhi Vi capsular polysaccharide vaccine three years after immunization. Vaccine 
14:435-438. 

 
51. Kohbata, S., H. Yokoyama, and E. Yabuuchi. 1986. Cytopathogenic effect of 

Salmonella typhi GIFU 10007 on M cells of murine ileal Peyer's patches in 
ligated ileal loops: an ultrastructural study. Microbiol Immunol 30:1225-1237. 

 
52. Kollaritsch, H., J. U. Que, C. Kunz, G. Wiedermann, C. Herzog, and S. J. 

Cryz, Jr. 1997. Safety and immunogenicity of live oral cholera and typhoid 
vaccines administered alone or in combination with antimalarial drugs, oral polio 
vaccine, or yellow fever vaccine. J Infect Dis 175:871-875. 

 
 
 



 108

53. Kraus, M. D., B. Amatya, and Y. Kimula. 1999. Histopathology of typhoid 
enteritis: morphologic and immunophenotypic findings. Mod Pathol 12:949-955. 

 
54. Lee, F. K., C. Morris, and J. Hackett. 2006. The Salmonella enterica serovar 

Typhi Vi capsule and self-association pili share controls on expression. FEMS 
Microbiol Lett 261:41-46. 

 
55. Lee, S. H., and A. Camilli. 2000. Novel approaches to monitor bacterial gene 

expression in infected tissue and host. Curr Opin Microbiol 3:97-101. 
 
56. Lee, S. H., D. L. Hava, M. K. Waldor, and A. Camilli. 1999. Regulation and 

temporal expression patterns of Vibrio cholerae virulence genes during infection. 
Cell 99:625-634. 

 
57. Levine, M. M., C. Ferreccio, P. Abrego, O. S. Martin, E. Ortiz, and S. Cryz. 

1999. Duration of efficacy of Ty21a, attenuated Salmonella typhi live oral 
vaccine. Vaccine 17 Suppl 2:S22-27. 

 
58. Levine, M. M., C. Ferreccio, R. E. Black, and R. Germanier. 1987. Large-

scale field trial of Ty21a live oral typhoid vaccine in enteric-coated capsule 
formulation. Lancet 1:1049-1052. 

 
59. Levine, M. M., C. Ferreccio, S. Cryz, and E. Ortiz. 1990. Comparison of 

enteric-coated capsules and liquid formulation of Ty21a typhoid vaccine in 
randomised controlled field trial. Lancet 336:891-894. 

 
60. Levine, M. M., C. O. Tacket, and M. B. Sztein. 2001. Host-Salmonella 

interaction: human trials. Microbes Infect 3:1271-1279. 
 
61. Levy, M., A. M. Merritt, and L. C. Levy. 1990. Comparison of the effects of an 

isosmolar and hyperosmolar oral rehydrating solution on the hydration status, 
glycemia and ileal content composition of healthy neonatal calves. Cornell Vet 
80:143-151. 

 
62. Lin, F. Y., V. A. Ho, H. B. Khiem, D. D. Trach, P. V. Bay, T. C. Thanh, Z. 

Kossaczka, D. A. Bryla, J. Shiloach, J. B. Robbins, R. Schneerson, and S. C. 
Szu. 2001. The efficacy of a Salmonella typhi Vi conjugate vaccine in two-to-
five-year-old children. N Engl J Med 344:1263-1269. 

 
63. Lindberg, A. A. 1999. Polyosides (encapsulated bacteria). C R Acad Sci III 

322:925-932. 
 
64. Looney, R. J., and R. T. Steigbigel. 1986. Role of the Vi antigen of Salmonella 

typhi in resistance to host defense in vitro. J Lab Clin Med 108:506-516. 



 109

65. McCormick, B. A., A. M. Siber, and A. T. Maurelli. 1998. Requirement of the 
Shigella flexneri virulence plasmid in the ability to induce trafficking of 
neutrophils across polarized monolayers of the intestinal epithelium. Infect 
Immun 66:4237-4243. 

 
66. McGovern, V. J., and L. J. Slavutin. 1979. Pathology of Salmonella colitits. 

Am J Surg Oathol 3:483-490. 
 
67. McKenna, A. J., J. A. Bygraves, M. C. Maiden, and I. M. Feavers. 1995. 

Attenuated typhoid vaccine Salmonella typhi Ty21a: fingerprinting and quality 
control. Microbiology 141 ( Pt 8):1993-2002. 

 
68. Merican, I. 1997. Typhoid fever: present and future. Med J Malaysia 52:299-

308; quiz 309. 
 
69. Miller, V. L., and J. J. Mekalanos. 1988. A novel suicide vector and its use in 

construction of insertion mutations: osmoregulation of outer membrane proteins 
and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 
170:2575-2583. 

 
70. Mishra, A., R. Srivastava, C. Pruzzo, and B. S. Srivastava. 2003. Mutation in 

tcpR gene (Vc0832) of Vibrio cholerae O1 causes loss of tolerance to high 
osmolarity and affects colonization and virulence in infant mice. J Med 
Microbiol 52:933-939. 

 
71. Miyake, M., L. Zhao, T. Ezaki, K. Hirose, A. Q. Khan, Y. Kawamura, R. 

Shima, M. Kamijo, T. Masuzawa, and Y. Yanagihara. 1998. Vi-deficient and 
nonfimbriated mutants of Salmonella typhi agglutinate human blood type 
antigens and are hyperinvasive. FEMS Microbiol Lett 161:75-82. 

 
72. Murphy, J. R., L. Grez, L. Schlesinger, C. Ferreccio, S. Baqar, C. Munoz, S. 

S. Wasserman, G. Losonsky, J. G. Olson, and M. M. Levine. 1991. 
Immunogenicity of Salmonella typhi Ty21a vaccine for young children. Infect 
Immun 59:4291-4293. 

 
73. Nair, S., S. Alokam, S. Kothapalli, S. Porwollik, E. Proctor, C. Choy, M. 

McClelland, S. L. Liu, and K. E. Sanderson. 2004. Salmonella enterica 
serovar Typhi strains from which SPI7, a 134-kilobase island with genes for Vi 
exopolysaccharide and other functions, has been deleted. J Bacteriol 186:3214-
3223. 

 
74. Pang, T., M. M. Levine, B. Ivanoff, J. Wain, and B. B. Finlay. 1998. Typhoid 

fever--important issues still remain. Trends Microbiol 6:131-133. 
 



 110

75. Paniker, C. K., and K. N. Vimala. 1972. Transferable chloramphenicol 
resistance in Salmonella typhi. Nature 239:109-110. 

 
76. Parkhill, J., G. Dougan, K. D. James, N. R. Thomson, D. Pickard, J. Wain, 

C. Churcher, K. L. Mungall, S. D. Bentley, M. T. Holden, M. Sebaihia, S. 
Baker, D. Basham, K. Brooks, T. Chillingworth, P. Connerton, A. Cronin, P. 
Davis, R. M. Davies, L. Dowd, N. White, J. Farrar, T. Feltwell, N. Hamlin, 
A. Haque, T. T. Hien, S. Holroyd, K. Jagels, A. Krogh, T. S. Larsen, S. 
Leather, S. Moule, P. O'Gaora, C. Parry, M. Quail, K. Rutherford, M. 
Simmonds, J. Skelton, K. Stevens, S. Whitehead, and B. G. Barrell. 2001. 
Complete genome sequence of a multiple drug resistant Salmonella enterica 
serovar Typhi CT18. Nature 413:848-852. 

 
77. Pascopella, L., B. Raupach, N. Ghori, D. Monack, S. Falkow, and P. L. 

Small. 1995. Host restriction phenotypes of Salmonella typhi and Salmonella 
gallinarum. Infect Immun 63:4329-4335. 

 
78. Pickard, D., J. Li, M. Roberts, D. Maskell, D. Hone, M. Levine, G. Dougan, 

and S. Chatfield. 1994. Characterization of defined ompR mutants of Salmonella 
typhi: ompR is involved in the regulation of Vi polysaccharide expression. Infect 
Immun 62:3984-3993. 

 
79. Puente, J. L., A. Verdugo-Rodriguez, and E. Calva. 1991. Expression of 

Salmonella typhi and Escherichia coli OmpC is influenced differently by 
medium osmolarity; dependence on Escherichia coli OmpR. Mol Microbiol 
5:1205-1210. 

 
80. Raffatellu, M., D. Chessa, R. P. Wilson, R. Dusold, S. Rubino, and A. J. 

Baumler. 2005. The Vi capsular antigen of Salmonella enterica serotype Typhi 
reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal 
mucosa. Infect Immun 73:3367-3374. 

 
81. Raffatellu, M., D. Chessa, R. P. Wilson, C. Tukel, M. Akcelik, and A. J. 

Baumler. 2006. Capsule-mediated immune evasion: a new hypothesis explaining 
aspects of typhoid fever pathogenesis. Infect Immun 74:19-27. 

 
82. Raffatellu, M., R. L. Santos, D. Chessa, R. P. Wilson, S. E. Winter, C. A. 

Rossetti, S. D. Lawhon, H. Chu, T. Lau, C. L. Bevins, L. G. Adams, and A. J. 
Baumler. 2007. The capsule encoding the viaB locus reduces interleukin-17 
expression and mucosal innate responses in the bovine intestinal mucosa during 
infection with Salmonella enterica serotype Typhi. Infect Immun 75:4342-4350. 

 
 



 111

83. Raffatellu, M., Y. H. Sun, R. P. Wilson, Q. T. Tran, D. Chessa, H. L. 
Andrews-Polymenis, S. D. Lawhon, J. F. Figueiredo, R. M. Tsolis, L. G. 
Adams, and A. J. Baumler. 2005. Host restriction of Salmonella enterica 
serotype Typhi is not caused by functional alteration of SipA, SopB, or SopD. 
Infect Immun 73:7817-7826. 

 
84. Raffatellu, M., R. P. Wilson, D. Chessa, H. Andrews-Polymenis, Q. T. Tran, 

S. Lawhon, S. Khare, L. G. Adams, and A. J. Baumler. 2005. SipA, SopA, 
SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium 
invasion of epithelial cells. Infect Immun 73:146-154. 

 
85. Robbins, J. D., and J. B. Robbins. 1984. Reexamination of the protective role 

of the capsular polysaccharide (Vi antigen) of Salmonella typhi. J Infect Dis 
150:436-449. 

 
86. Rowe, B., L. R. Ward, and E. J. Threlfall. 1997. Multidrug-resistant 

Salmonella typhi: a worldwide epidemic. Clin Infect Dis 24 Suppl 1:S106-109. 
 
87. Saha, M. R., T. Ramamurthy, P. Dutta, and U. Mitra. 2000. Emergence of 

Salmonella typhi Vi antigen-negative strains in an epidemic of multidrug-
resistant typhoid fever cases in Calcutta, India. Natl Med J India 13:164. 

 
88. Santander, J., S. Y. Wanda, C. A. Nickerson, and R. Curtiss, III. 2007. Role 

of RpoS in fine-tuning the synthesis of Vi capsular polysaccharide in Salmonella 
enterica serotype Typhi. Infect Immun 75:1382-1392. 

 
89. Santos, R. L., R. M. Tsolis, S. Zhang, T. A. Ficht, A. J. Baumler, and L. G. 

Adams. 2001. Salmonella-induced cell death is not required for enteritis in 
calves. Infect Immun 69:4610-4617. 

 
90. Santos, R. L., S. Zhang, R. M. Tsolis, R. A. Kingsley, L. G. Adams, and A. J. 

Baumler. 2001. Animal models of Salmonella infections: enteritis versus 
typhoid fever. Microbes Infect 3:1335-1344. 

 
91. Shirai, Y., K. Sunakawa, Y. Ichihashi, and H. Yamaguchi. 1979. A 

morphological study in germfree mice (Salmonella infection). Exp Pathol (Jena) 
17:158-166. 

 
92. Spalding, D. M., W. J. Koopman, J. H. Eldridge, J. R. McGhee, and R. M. 

Steinman. 1983. Accessory cells in murine Peyer's patch. I. Identification and 
enrichment of a functional dendritic cell. J Exp Med 157:1646-1659. 

 



 112

93. Spalding, D. M., S. I. Williamson, J. R. McGhee, and W. J. Koopman. 1984. 
Peyer's patch dendritic cells: isolation and functional comparison with murine 
spleen dendritic cells. Immunobiology 168:380-390. 

 
94. Sprinz, H., E.J. Gangarosa, M. Williams, R. B. Hornick, and T. E. 

Woodward. 1966. Histopathology of the upper small intestines in typhoid fever.  
Biopsy study of experimental disease in man. Am J Dig Dis 11:615-624. 

 
95. Streng, W. H., H. E. Huber, and J. T. Carstensen. 1978. Relationship between 

osmolality and osmolarity. J Pharm Sci 67:384-386. 
 
96. Tacket, C. O., G. Losonsky, D. N. Taylor, L. S. Baron, D. Kopecko, S. Cryz, 

and M. M. Levine. 1991. Lack of immune response to the Vi component of a 
Vi-positive variant of the Salmonella typhi live oral vaccine strain Ty21a in 
human studies. J Infect Dis 163:901-904. 

 
97. Tartera, C., and E. S. Metcalf. 1993. Osmolarity and growth phase overlap in 

regulation of Salmonella typhi adherence to and invasion of human intestinal 
cells. Infect Immun 61:3084-3089. 

 
98. Tsolis, R. M., L. G. Adams, T. A. Ficht, and A. J. Baumler. 1999. 

Contribution of Salmonella typhimurium virulence factors to diarrheal disease in 
calves. Infect Immun 67:4879-4885. 

 
99. Tsolis, R. M., L. G. Adams, M. J. Hantman, C. A. Scherer, T. Kimbrough, 

R. A. Kingsley, T. A. Ficht, S. I. Miller, and A. J. Baumler. 2000. SspA is 
required for lethal Salmonella enterica serovar Typhimurium infections in calves 
but is not essential for diarrhea. Infect Immun 68:3158-3163. 

 
100. Valdivia, R. H., and S. Falkow. 1996. Bacterial genetics by flow cytometry: 

rapid isolation of Salmonella typhimurium acid-inducible promoters by 
differential fluorescence induction. Mol Microbiol 22:367-378. 

 
101. Valdivia, R. H., A. E. Hromockyj, D. Monack, L. Ramakrishnan, and S. 

Falkow. 1996. Applications for green fluorescent protein (GFP) in the study of 
host-pathogen interactions. Gene 173:47-52. 

 
102. Vazquez-Torres, A., J. Jones-Carson, A. J. Baumler, S. Falkow, R. Valdivia, 

W. Brown, M. Le, R. Berggren, W. T. Parks, and F. C. Fang. 1999. 
Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. 
Nature 401:804-808. 

 



 113

103. Virlogeux, I., H. Waxin, C. Ecobichon, J. O. Lee, and M. Y. Popoff. 1996. 
Characterization of the rcsA and rcsB genes from Salmonella typhi: rcsB through 
tviA is involved in regulation of Vi antigen synthesis. J Bacteriol 178:1691-1698. 

 
104. Virlogeux, I., H. Waxin, C. Ecobichon, and M. Y. Popoff. 1995. Role of the 

viaB locus in synthesis, transport and expression of Salmonella typhi Vi antigen. 
Microbiology 141 ( Pt 12):3039-3047. 

 
105. Wahdan, M. H., C. Serie, Y. Cerisier, S. Sallam, and R. Germanier. 1982. A 

controlled field trial of live Salmonella typhi strain Ty 21a oral vaccine against 
typhoid: three-year results. J Infect Dis 145:292-295. 

 
106. Wain, J., and C. Kidgell. 2004. The emergence of multidrug resistance to 

antimicrobial agents for the treatment of typhoid fever. Trans R Soc Trop Med 
Hyg 98:423-430. 

 
107. Weinstein, D. L., B. L. O'Neill, and E. S. Metcalf. 1997. Salmonella typhi 

stimulation of human intestinal epithelial cells induces secretion of epithelial 
cell-derived interleukin-6. Infect Immun 65:395-404. 

 
108. World Health Organization. Geneva, Switzerland. 1996. The world health 

report 1996:  fighting disease fostering development.  
 
109. Wray, C., and W. J. Sojka. 1978. Experimental Salmonella typhimurium 

infection in calves. Res Vet Sci 25:139-143. 
 
110. Zhang, S., L. G. Adams, J. Nunes, S. Khare, R. M. Tsolis, and A. J. Baumler. 

2003. Secreted effector proteins of Salmonella enterica serotype typhimurium 
elicit host-specific chemokine profiles in animal models of typhoid fever and 
enterocolitis. Infect Immun 71:4795-4803. 

 
111. Zhang, S., R. A. Kingsley, R. L. Santos, H. Andrews-Polymenis, M. 

Raffatellu, J. Figueiredo, J. Nunes, R. M. Tsolis, L. G. Adams, and A. J. 
Baumler. 2003. Molecular pathogenesis of Salmonella enterica serotype 
typhimurium-induced diarrhea. Infect Immun 71:1-12. 

 
112. Zhang, S., R. L. Santos, R. M. Tsolis, S. Mirold, W. D. Hardt, L. G. Adams, 

and A. J. Baumler. 2002. Phage mediated horizontal transfer of the sopE1 gene 
increases enteropathogenicity of Salmonella enterica serotype Typhimurium for 
calves. FEMS Microbiol Lett 217:243-247. 

 
 
 



 114

113. Zhang, X. L., I. S. Tsui, C. M. Yip, A. W. Fung, D. K. Wong, X. Dai, Y. 
Yang, J. Hackett, and C. Morris. 2000. Salmonella enterica serovar typhi uses 
type IVB pili to enter human intestinal epithelial cells. Infect Immun 68:3067-
3073. 

 
114. Zhao, L., T. Ezak, Z. Y. Li, Y. Kawamura, K. Hirose, and H. Watanabe. 

2001. Vi-Suppressed wild strain Salmonella typhi cultured in high osmolarity is 
hyperinvasive toward epithelial cells and destructive of Peyer's patches. 
Microbiol Immunol 45:149-158. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 115

APPENDIX 
 

HISTOLOGY SLIDES FROM THE INOCULATION OF  
CALF-LIGATED ILEAL LOOPS 

 

 

 

 
 
Figure A-1.  H&E stain of bovine intestinal epithelium (ileum) from calf# 2, 8 hours 

post-inoculation with S. Typhi Ty2 viaB mutant.  The tissue exhibits moderate blunting, 

erosion, and epithelial detachment, with moderate neutrophilic and mononuclear 

infiltration.  Some luminal necrotic debris containing neutrophils and fibrin present in 

the lumen (pseudomembranous formation). 
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Figure A-2.  H&E stain of bovine intestinal epithelium (ileum) from calf# 2, 8 hours 

post-inoculation with S. Typhi wild type Ty2 grown in LB broth.  The tissue exhibits 

mild blunting and epithelial detachment, with a mild neutrophilic and mononuclear 

infiltration.   
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Figure A-3.  H&E stain of bovine intestinal epithelium (ileum) from calf# 2, 8 hours 

post-inoculation with S. Typhimurium wild type (IR715).  The tissue exhibits severe 

blunting, erosion, and epithelial detachment, with a moderate neutrophilic and 

mononuclear infiltration. The endothelium is reactive and possesses marginating 

neutrophils in the submucosal blood vessels.   Occasional abscess formation is present.   
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Figure A-4.  H&E stain of bovine intestinal epithelium (ileum) from calf# 3, 8 hours 

post-inoculation with S. Typhi Ty2 wild type grown in LBH broth.  The tissue exhibits 

moderate blunting, erosion, and epithelial detachment, with a mild neutrophilic and 

mononuclear infiltration.  Mononuclear cell necrosis in the dome villi. 
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Figure A-5.  H&E stain of bovine intestinal epithelium (ileum) from calf# 1, 8 hours 

post-inoculation with S. Typhi Ty2 wild type grown in LBH broth.  The tissue exhibits 

moderate blunting, erosion, and epithelial detachment, with a mild neutrophilic and 

mononuclear infiltration.  Margination of neutrophils in the submucosal blood vessels 

and transmigration of neutrophils over the dome villi.  Early crypt abscess formation is 

present.   
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Figure A-6.  H&E stain of bovine intestinal epithelium (ileum) from calf# 1, post-

inoculation with S. Typhi Ty2 grown in LBH broth.  The tissue exhibits severe blunting, 

erosion, and epithelial detachment, with a moderate neutrophilic and mild mononuclear 

infiltration.  Prominent pseudomembranous formation containing bacteria present in the 

lumen. 
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Figure A-7.  H&E stain of bovine intestinal epithelium (ileum) from calf# 2, post-

inoculation with S. Typhi Ty2 grown in LB broth.  The tissue exhibits mild blunting, 

erosion, and epithelial detachment, with a mild neutrophilic and mononuclear 

infiltration.  Plugs of neutrophils within the submucosa of thin-walled vessels.  

Neutrophils and globular leukocytes inside lacteals.  Presence of reactive endothelium 

and margination of neutrophils in arterioles. 
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Figure A-8.  H&E stain of bovine intestinal epithelium (ileum) from calf# 1, 8 hours 

post-inoculation with LBH broth (uninfected control loop).  No pathological lesions 

present.  
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